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ABSTRACT 

 

This dissertation examines the role of short selling and short sellers in the process by which 

information is gathered and incorporated into stock prices. The first essay examines how the ability 

to short sell impacts adverse selection in financial markets through its impact on investors’ 

incentives to gather costly information.  The second essay examines how systematic changes 

across the business cycle affect what types of information – macro economic or firm specific – 

short sellers allocate attention to during recessions and expansions.  
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INTRODUCTION 

This dissertation examines the role of short selling and short sellers in the process by which 

information is gathered and incorporated into stock prices. The first essay explores the relation 

between short selling and adverse selection.  Recent studies document that prohibiting short selling 

increases adverse selection in financial markets.  This increase is puzzling given the prevailing 

view of short sellers as informed traders. In a simple rational expectations equilibrium model, I 

study the effect of short selling on adverse selection through its impact on traders’ incentives to 

gather costly information.  The model predicts an increase in adverse selection during a ban, but 

only for seller-initiated trades. Consistent with this prediction, I document that during the 2008 

short selling ban the increase in adverse selection is concentrated almost exclusively on the seller-

initiated side of the market, and also that this increase in adverse selection is the single largest 

factor contributing to increased transaction costs during the ban.  

The second essay examines how systematic changes across the business cycle affect what types 

of information – macro economic or firm specific – short sellers allocate attention to during 

recessions and expansions.  This essay documents that firm-level short interest predicts negative 

returns for individual stocks during economic expansions, while aggregate short interest predicts 

negative market returns during recessions. Viewing short sellers as informed traders, these findings 

are consistent with recent theory which argues that rational, yet cognitively constrained traders 

optimally allocate attention towards aggregate (firm-specific) information in recessions 

(expansions) because these times are marked by higher (lower) aggregate volatility and price of 

risk.  
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CHAPTER I 

 

Short Selling and Liquidity, Why do Bans Increase Adverse Selection?  
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ABSTRACT 

 

Recent studies document that prohibiting short selling increases adverse selection 

in financial markets.  This increase is puzzling given the prevailing view of short 

sellers as informed traders. In a simple rational expectations equilibrium model, I 

study the effect of short selling on adverse selection through its impact on traders’ 

incentives to gather costly information.  The model predicts an increase in adverse 

selection during a ban, but only for seller-initiated trades. Consistent with this 

prediction, I document that during the 2008 short selling ban the increase in adverse 

selection is concentrated almost exclusively on the seller-initiated side of the 

market, and also that this increase in adverse selection is the single largest factor 

contributing to increased transaction costs during the ban.  

 

1. Introduction 

During the 2008 financial crisis, the United States (US) Securities and Exchange Commission 

(SEC) imposed a temporary ban on short selling for US listed financial stocks.  Boehmer, Jones, 

and Zhang (2013) and Kolasinski, Reed, and Thornock (2013) observe that adverse selection 

increases during the ban for those stocks subject to it.  As I document, this increase in adverse 

selection had a significant effect on financial markets and was the single largest factor contributing 

to lower levels of liquidity1 experienced by those stocks subject to the ban.   

                                                      
1 As measured by transaction costs 
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Adverse selection occurs in a transaction when one party has more precise information about 

the value of the asset being transacted than does the other.  In such a transaction the less informed 

party usually loses money on the trade.  Adverse selection affects liquidity because market makers 

are generally uninformed, and so as the fraction of informed traders in the market increases, so too 

do the losses that the market maker experiences due to adverse selection.  When faced with 

increased adverse selection, market makers will compensate by decreasing liquidity and making it 

more expensive to transact (Kyle (1985), Glosten and Milgrom (1985)).2 

The finding that adverse selection increases during a ban highlights a significant gap in our 

understanding of the role that short selling plays in financial markets.  To date there exists no 

suitable explanation for this effect and given that short sellers are generally viewed as informed 

traders, their removal being associated with an increase in adverse selection is counter intuitive.  

Short selling is becoming a more prevalent component of financial markets3 and is a topic of 

significant discussion amongst regulators around the globe.4  It is therefore imperative ask the 

question, why do short selling bans increase adverse selection?  Failing to answer this question 

leaves financial economists with an incomplete view of the role of short selling in modern financial 

                                                      
2 A large literature of both theoretical and empirical work has grown which examines the role of adverse selection in 

as a key component of liquidity, see for example: Copeland and Galai (1983), Kyle (1985), Glosten and Milgrom 

(1985), Diamond and Verrecchia (1987), Glosten and Harris (1988), Stoll (1989), Eom, Ok, and Park (2007), Chung, 

Elder, and Kim (2010), Riordan and Storkenmaier (2012), Fotak, Raman, and Yadav (2014) 
3 Comerton-Forde, Jones, and Putniņš (2016) report in their sample of NYSE and Nasdaq trades that short selling is 

involved in 39% of all trades.  Rapach, Ringgenberg, and Zhou (2016) document that average short interest 

outstanding per stock has been linearly increasing over the past four decades. 
4 For example, in the United States, short selling regulations have changed significantly over the past decade or so.  

Prior to 2005, short selling was only allowed on an uptick, this restriction was partially removed in 2005 and then 

fully removed in 2007.  During the financial crisis, short selling was prohibited for a time then reallowed, and more 

recently the SEC has imposed a ‘modified uptick rule’ which sets a circuit breaker restricting short selling to upticks 

if a stock experiences a severe price decline. 
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markets, and regulators vulnerable to enacting short selling policies which may have unintended 

– and potentially detrimental – effects.5     

Adverse selection also impacts many other aspects of finance and financial markets.  If 

unaddressed, adverse selection can cause markets to fail (Akerlof (1970)). It also plays a role in 

many firm decisions, such as capital structure (Leland and Pyle (1977)), dividend policy (Miller 

and Rock (1985)), contracting (Jullien (2000)), management incentives (Ross (1977)), investment 

decisions (Morellec and Schürhoff (2011)), banking relationships (Sharpe (1990)), and others. 

The finding that adverse selection increases during a short selling ban runs counter to intuitive 

expectations.  There is a large body of research characterizing short sellers as informed traders.6  

Therefore, the intuitive expectation would be that removing short sellers during a ban should 

decrease adverse selection by removing informed traders from the market thus mitigating the 

information asymmetries that cause adverse selection.  Further, this intuition leads to the 

expectation that the decline in adverse selection should be concentrated on the sell side of the 

market, because that is where informed short sellers transact (Comerton-Forde, Jones, & Putniņš 

(2016)).  The finding that a short selling ban increases adverse selection is counter to this intuition 

and suggests the need to consider additional perspectives on the relationship between short selling 

and adverse selection.   

                                                      
5 For example, after the 2008 short selling ban, SEC Chairman Christopher Cox remarked to reporters that “Knowing 

what we know now, I believe on balance the commission would not do it again” see http://www.reuters.com/article/us-

sec-cox-idUSTRE4BU3GG20081231, accessed August 1, 2017 
6 See for example: Figlewski (1981), Desai et al. (2002), Cohen, Diether, and Malloy (2007), Boehmer, Jones and 

Zhang (2008), Diether, Lee, & Werner (2009), Boehmer, Huszar, and Jordan (2010), Karpoff and Lou (2010), 

Christophe, Ferri, and Hsieh (2010), Drake, Rees, and Swanson (2011), Kecskés, Mansi, and Zhang (2013), Boehmer 

and Wu (2013), Henry, Kisgen, and Wu (2015), Rapach, Ringgenberg, and Zhou (2016), Comerton-Forde, Jones, & 

Putniņš (2016), Kelley and Tetlock (2017) among others. 

http://www.reuters.com/article/us-sec-cox-idUSTRE4BU3GG20081231
http://www.reuters.com/article/us-sec-cox-idUSTRE4BU3GG20081231
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The finding that a short selling ban hurts liquidity by increasing adverse selection highlights a 

gap in the current literature linking short selling to liquidity.  There are many studies linking short 

selling to liquidity;7 however, these studies tend to link short selling to liquidity through the role 

of short sellers as liquidity providers.  As articulated by Boehmer, Jones, and Zhang (2013), a short 

selling ban can hurt liquidity through the liquidity provision channel because “Banning short 

sellers could reduce competition in liquidity provision, worsening the terms of trade for liquidity 

demanders.” (p1366).    

However, this liquidity provision channel between short selling and liquidity is incomplete 

because it does not explain the apparent adverse selection link between short selling and liquidity. 

The importance of this link is highlighted in this study as I find that, during the 2008 short selling 

ban, the adverse selection channel between short selling and liquidity dominates the liquidity 

provision channel in terms of the magnitude of its effect on transaction costs. Another point 

concerning the liquidity provision channel is that it comes with the heretofore untested empirical 

prediction that the decline in liquidity during a short selling ban will be concentrated on the buy 

side of the market since short sellers only provide liquidity when they trade passively with an 

active buyer, a prediction that I test in section (4.c.ii). 

Lastly, an increase in adverse selection during a ban is not consistent with the theoretical 

predictions of Diamond and Verrecchia (1987), the seminal theoretical work in the area.  In their 

model, prohibiting short selling does not affect adverse selection because “the prohibition applies 

                                                      
7 Other studies linking short selling to liquidity through the liquidity provision channel include: Diether, Lee, and 

Werner (2009), Boehmer and Wu (2013), Beber and Pagano (2013), Kaplan, Moskowitz, and Sensoy (2013), and 

Comerton-Forde, Jones, & Putniņš (2016).   
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to informed and uninformed alike…As a result, it leaves unchanged the information of actually 

observing [a sell].” (p289).   

In pursuing a potential mechanism to explain the apparent adverse selection link between short 

selling and liquidity, I begin by examining the effect that short selling has on the incentives to 

gather costly information.  When an investor chooses to expend resources to become informed 

they are acting under the assumption that they will be able to trade on the information they acquire.  

When short selling is prohibited, investors who do not already own the asset are unable to trade 

on negative information –decreasing the incentive for them to gather information.  In contrast, by 

rendering them the only investors able to trade on negative information, a short selling ban 

increases the relative benefit to becoming informed for investors who already own the asset.   

By changing the incentives that various investors have to become informed, a short selling ban 

may alter the distribution of informed traders in the market and thus impact the adverse selection 

that market makers face.  I explore the implications of this mechanism in the context of a simple 

rational expectation equilibrium model based on Glosten and Milgrom (1985) and Diamond & 

Verrecchia’s (1987) seminal models.  Exactly opposite to my initial intuition, the model predicts 

that a short selling ban will be associated with an increase in adverse selection that is concentrated 

on the sell side of the market.   

This occurs because the inability to short sell increases the incentive for investors who own 

the asset to become informed and decreases it for those who do not own the asset.  Consequently, 

the inability to short sell skews the distribution of informed traders in the market towards having 

a greater fraction of investors who own the asset who are informed and a smaller fraction of 

informed investors among investors who do not own the asset. 
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The total amount of adverse selection in the market is determined by the sum of the adverse 

selection on the buy and sell sides of the market.  On the sell side of the market the only traders 

allowed to transact during a short selling ban are those who already own the asset, and because of 

the increased incentives to become informed an increased fraction of these investors are informed 

during a ban.  Consequently, the probability a market maker trades with an informed seller 

increases relative to when short selling is allowed, and so adverse selection increases on the sell 

side of the market.   

On the buy side of the market, the effect of the ban on adverse selection is muted.  Since both 

investors who do and do not own the asset can still buy during a ban, the increase in informed 

trading by investors who own the asset is offset by the decrease in informed trading by investors 

who do not own the asset.  Consequently, the effect of the ban on buy side adverse selection is 

comparatively small, and the change in overall adverse selection is driven primarily by the increase 

in adverse selection on the sell side of the market.  This leads to the model’s primary prediction.  

During a short selling ban, overall adverse selection will increase, but the increase will be 

concentrated on the sell side of the market.  

I test these predictions empirically using data from the 2008 short selling ban in the United 

States.  For these tests, each stock subject to the ban is matched to a control stock following the 

procedure described in Boehmer, Jones, and Zhang (2013).  The adverse selection portion of the 

effective spread is measured for both banned and control stocks and is used in difference-in-

difference-in-difference (DDD) regressions that measure the effect of the ban on adverse selection 

for both the buy and sell sides of the market. 

The empirical analysis produces three important results that help illuminate the relation 

between short selling and adverse selection.  First, consistent with the predictions of the model, I 
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document that the increase in adverse selection during the short selling ban is concentrated almost 

exclusively on the sell side of the market.   

Second, I find that the adverse selection channel between short selling and liquidity dominates 

the liquidity provision channel in terms of its effect on overall liquidity during the 2008 short 

selling ban.  This result highlights the economic magnitude of the adverse selection channel linking 

short selling and liquidity, and thus the need to better understand the adverse selection link between 

short selling and liquidity.   

Third, the increase in sell side adverse selection leads total transaction costs to increase 50% 

more for seller-initiated trades than for buyer-initiated trades during the ban – i.e. liquidity declines 

significantly more on the sell side of the market than the buy side during the ban.  This finding has 

potential regulatory implications.  Maintaining sell side liquidity during periods of downward price 

pressure is important to maintaining market stability (Huang and Wang (2008)), and regulations 

which restrict short selling during periods of downward price pressure may have the unintended 

effect of diminishing sell side liquidity when it is most needed. 

In additional analysis, I explore the effects of the ban on the other component of the effective 

spread, the realized spread. The realized spread is the portion of the effective spread that market 

makers earn after adverse selection losses are accounted for.  It compensates market makers for 

the non-adverse selection costs of market making – such as inventory and order processing costs 

– and provides the market maker’s profit.   

If a short selling ban hurts liquidity by decreasing competition among liquidity providers –  as 

the liquidity provision channel suggests – then this effect should manifest through an increase in 

the realized spread during the ban.  However, this increase should be concentrated on the buy side 
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of the market since short sellers only provide liquidity to buyers.  Consistent with this prediction, 

I document that the increase in realized spread during the short selling ban is concentrated on the 

buy side of the market.  

The analysis provided in this study contributes to multiple areas of finance.  First, the result 

that the effect of the 2008 short selling ban on adverse selection is the single largest determinate 

of decreased liquidity during the ban highlights the magnitude of the adverse selection link 

between short selling and liquidity and thus the importance of better understanding this channel.  

This study also provides an explanation for why we may expect this link to exist; specifically, a 

short selling ban may impact adverse selection through how it affects the incentives to gather costly 

information.   

Also, as noted earlier, the finding that sell side liquidity deteriorates more than buy side 

liquidity during the ban has potential regulatory implications and suggests that restricting short 

selling during periods of downward price pressure may have the unintended effect of diminishing 

sell side liquidity when it is most needed. 

Next, the model’s prediction that the inability to short sell will influence the characteristics of 

the investors who choose to become informed may have implications beyond liquidity.  If fewer 

outside investors choose to become informed because of an inability to trade on negative 

information, then the role of outside investors as monitors of the firm may diminish when short 

selling is restricted.  Fang, Huang, and Karpoff (2015) find evidence consistent with this notion.  

They document that easing short selling restrictions is associated with an increased likelihood of 

a firm being caught for misdeeds which occurred before the easing took place suggesting that when 

short selling restrictions are relaxed, more outside investors choose to gather information.  
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Lastly, this study has potential implications for how researchers approach the study of the 

determinates of liquidity.  The asymmetry between the effect of the ban on buy and sell side 

liquidity documented in this study shows that additional insights can be gained by disaggregating 

liquidity measures and studying the buy and sell sides of the market separately.  

2. Background Information 

In the context of financial markets, adverse selection represents the risk that one party in a 

transaction knows more about the asset than the other.  It is costly to market makers, because 

informed traders only transact when the asset is mispriced, leaving the market maker to bear the 

cost of the mispricing. As the fraction of informed traders in the market increases, so too does the 

likelihood that the market maker will lose money on a given transaction.  Market makers will 

respond to increases in adverse selection by decreasing liquidity. Decreasing liquidity has the dual 

effect of both decreasing the value of information – mitigating somewhat the level of adverse 

selection in the market – and also increasing the average revenue per trade – which helps offset 

the losses due to adverse selection.8   

  Empirically, adverse selection is frequently measured using the price impact of a trade.  As 

discussed in Kyle (1985) and Glosten and Milgrom (1985), when there are informed traders in the 

market, order flow conveys information about the value of the asset.  Market makers respond to 

the information in order flow by adjusting subsequent prices to incorporate the information in the 

signal.  When adverse selection increases – implying a greater fraction of informed traders in the 

market – the strength of the signal obtained from order flow is stronger, and the subsequent price 

                                                      
8 See for example: Glosten and Milgrom (1985), Kyle (1985), Glosten and Harris (1988), Stoll (1989), Rubin 

(2007), Chung, Elder, and Kim (2010), Riordan and Storkenmaier (2012), and Fotak, Raman, and Yadav (2014) 
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change – or price impact – increases.  Consequently, the literature uses the price impact of a trade 

as a measure of adverse selection.    

The connection between adverse selection (measured by price impact) and liquidity can be 

seen clearly by analyzing the effective spread.  The effective spread paid on trade i which occurs 

at time t is presented in equation (1).  It is the signed (𝑠𝑖) proportional distance between the trade 

price (𝑃𝑖) and the prevailing midpoint at the time of the trade (𝑀𝑡).  It represents the cost that an 

active trader pays to the market maker to execute a trade.   

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑆𝑝𝑟𝑒𝑎𝑑𝑖𝑡 = 2 ∗ 𝑠𝑖 ∗
(𝑃𝑖 − 𝑀𝑡)

𝑀𝑡
 

(1) 

By adding and subtracting the midpoint at some future time 𝑡 + Δ𝑡, as shown in equation (2), 

the effective spread can be decomposed into two components.  The first component is the price 

impact of the trade and measures the proportional distance that the midpoint moves after the trade.  

It is an empirical measure of adverse selection and the literature uses the terms price impact and 

adverse selection interchangeably to refer to this portion of the effective spread.9  The second 

component is the realized spread.  It is the portion of the spread that the market maker ‘realizes’ 

after adverse selection costs are accounted for. The realized spread compensates the market maker 

for all non-adverse selection related costs as well as provides the market maker’s profit.  

 

 

                                                      
9 See for example: Sandås (2001), Barclay and Hendershott  (2004), and Hendershott, Jones, and Menkveld (2011) 

among others 
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𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑆𝑝𝑟𝑒𝑎𝑑𝑖 = 2 ∗ 𝑠𝑖 ∗
(𝑃𝑖 − 𝑀𝑡 + 𝑀𝑡+𝛥𝑡 − 𝑀𝑡+𝛥𝑡)

𝑀𝑡
 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑆𝑝𝑟𝑒𝑎𝑑𝑖 = 2 ∗ 𝑠𝑖 ∗
(𝑀𝑡+𝛥𝑡 − 𝑀𝑡)

𝑀𝑡
+ 2 ∗ 𝑠𝑖 ∗

(𝑃𝑖 − 𝑀𝑡+𝛥𝑡)

𝑀𝑡
 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑆𝑝𝑟𝑒𝑎𝑑𝑖 = 𝐴𝑑𝑣𝑒𝑟𝑠𝑒 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑡 + 𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑆𝑝𝑟𝑒𝑎𝑑𝑖𝑡 

(2) 

Decomposing effective spreads into adverse selection and realized spread components 

provides a method for testing the economic channels through which an event or situation may 

impact financial markets.  Events that affect the information environment will affect financial 

markets through changes in the adverse selection component of the effective spread, while events 

that affect non-adverse selection related market maker costs, as well as competition among market 

makers, will impact effective spreads by impacting the realized spread.   

The prevailing view linking short selling to liquidity provision emphasizes the role of short 

sellers as liquidity providers and argues that removing short sellers hurts liquidity by decreasing 

competition among liquidity providers.  By impacting competition among market makers – and 

thus market maker profits – the effects of the liquidity provision channel should manifest through 

changes in the realized spread. Decomposing the effective spread into its adverse selection and 

realized spread components allows me to differentiate between the affects due to the liquidity 

provision and adverse selection channels.  

3. The Model 

a. Diamond and Verrecchia (1987)  

The seminal theoretical work examining the relation between short selling and adverse 

selection is Diamond and Verrecchia (1987) (hereafter DV).  DV explore the effect of a short 
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selling ban on the bid-ask spread in the context of a Glosten and Milgrom (1985) (hereafter GM) 

model.  In both models, market makers are perfectly competitive and zero profit, and there are no 

other frictions in the market other than adverse selection.  The assumption of perfectly competitive 

market makers implies that market makers earn zero profit and that the bid and the ask prices are 

set equal to the expected value of the asset given past order flow.  Zero profit market makers 

together with the absence of other frictions (such as order processing costs or inventory costs) also 

implies that the realized spread in the economy is zero.  Consequently, the entire bid-ask spread in 

these models is determined by adverse selection.   

When a trade arrives, the market maker updates the prices for future trades to incorporate the 

information contained in the trade that just arrived.  As the fraction of informed investors in the 

economy increases, adverse selection increases, and the price impact of a trade will also increase.  

As the market maker observes more trades, he becomes increasingly confident about the true value 

of the asset.  This increasing confidence causes spreads to narrow and prices to converge to 

fundamentals.  

In DV, a short selling ban has the effect of converting some trading rounds that would have 

experienced a sell into rounds where no trade occurs.  A no trade event is less informative to the 

market maker than a trade, and so the expected speed at which spreads narrow and prices converge 

to fundamentals slows.  This slowing of the market during a ban provides the mechanism driving 

their analysis of the effect of a short selling ban on financial markets.  However, even though it 

takes longer for spreads to narrow and prices to converge, a short selling ban does not affect the 

level of adverse selection faced by the market maker in their model.  This occurs because, “the 

prohibition applies to informed and uninformed alike…As a result, it leaves unchanged the 

information of actually observing [a sell].” (p289).   
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Although DV predicts no change in the actual level of adverse selection, their analysis does 

suggest that the measured level of adverse selection in financial markets may actually decline.  

This is because empirical measures of price impact keep the time horizon used to measure adverse 

selection constant (usually at 5 minutes).  Consequently, even though the strength of the signal 

extracted from a given trade is unchanged, fewer trades arriving means that the expected price 

change over a given time horizon will decline. Consequently, the analysis in DV suggests that 

empirical measures of price impact that keep the time horizon constant may report a decline in 

adverse selection during a short selling ban due to fewer trades arriving.  However, both DV’s 

prediction that total adverse selection does not change, and the suggestion that observed adverse 

selection may decline are counter to the empirical observation that adverse selection appears to 

increase during a short selling ban suggesting the need for additional analysis.    

b. Setup 

The setup I use to explore short selling and adverse selection follows closely that used in DV 

and GM, with the key exception that I will allow the fraction of informed traders in the economy 

to be endogenously determined.  Allowing the fraction of informed investors to be endogenously 

determined in the model allows me to explore a perspective on the relation between short selling 

and liquidity not considered previously.  Specifically, I am able to consider how a short selling 

ban impacts liquidity through its effect on the incentives that traders face to become informed in 

the first place.  

In the economy there exists one asset which has an equally likely value of either zero or one 

i.e. 𝑣 𝜖[0,1].  There exists a continuum of traders and perfectly competitive market makers. All 

trade occurs in one round, and then the asset is liquidated.  Some fraction 𝛾 of these traders own 

the asset.  Any trader can pay a cost 𝑐 < .5 to learn the value of the asset prior to trading.  The 
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fraction of informed investors in the market is determined endogenously, with the fraction 𝜆𝑒 of 

investors who own the asset choosing to become informed, and the fraction 𝜆𝑛 of investors who 

do not own the asset choosing to become informed. Uninformed traders will buy or sell (or short) 

with equal probability.  Informed traders always buy if the asset value is equal to one and sell (or 

short) if the asset value is equal to zero.  Market makers cannot distinguish which traders are 

informed and which are not, but they do know the distribution of traders in the economy.  Traders 

and market makers are risk neutral and transact one share. 

To understand how the model measures the effect of short selling on adverse selection, it is 

important to note that prior to a trade arriving the expected value of the asset is equal to ½.  This 

is also the bid and ask price that would be in force if none of the traders were informed – i.e. if 

there were zero adverse selection.  To the extent that a market maker faces adverse selection on a 

given side of the market the bid or ask price will deviate from ½.  Consequently, the absolute 

difference between the bid or ask price and ½ provides a measure of the amount of adverse 

selection that market makers face on a given side of the market.  

To study the effect of short selling on adverse selection, I will first solve the model for the case 

where short selling is allowed, and then for the case where short selling is prohibited.  I will then 

compare adverse selection in the two cases to determine the effect of prohibiting short selling on 

adverse selection.  

c. The Baseline Case Where Short Selling is Allowed 

In the absence of a short selling ban traders can buy and sell regardless of whether or not they 

own the asset.  When a market maker trades, they know that the trade originated from one of four 

types of trader: informed investors who own the asset, uninformed investors who own the asset, 
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informed investors who do not own the asset, and uninformed investors who do not own the asset.  

The probability that a market maker transacts with one of these four categories of investors is 

presented below as 𝜋1, 𝜋2, 𝜋3, and 𝜋4 (𝛾 is the fraction of investors who own the asset, and 𝜆𝑒 and 

𝜆𝑛 indicate the fraction of investors who do and do not own the asset who are informed).   

Type of Trader Probability of Event 

Informed who own the asset 𝜋1 = 𝛾𝜆𝑒 

Uninformed who own the asset 𝜋2 = 𝛾(1 − 𝜆𝑒) 

Informed who do not own the asset 𝜋3 = (1 − 𝛾)𝜆𝑛 

Uninformed who do not own the asset 𝜋4 = (1 − 𝛾)(1 − 𝜆𝑛) 

Given this information, the market makers set the bid and ask price equal to the expected value 

of the asset given that a buy or sell arrives as shown in equations (3) and (4).  

𝐴𝑠𝑘𝑛𝑜𝑏𝑎𝑛 = 𝐸[𝑣|𝑢𝑛𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑 𝐵𝑢𝑦] ∗ 𝑃(𝑢𝑛𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑 𝑡𝑟𝑎𝑑𝑒𝑟)

+ 𝐸[𝑣|𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑 𝐵𝑢𝑦] ∗ 𝑃(𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑 𝑡𝑟𝑎𝑑𝑒𝑟) 

         =
1

2
(𝜋2 + 𝜋4) + 1 ∗ (𝜋1 + 𝜋3) 

          =
1

2
[𝛾(1 + 𝜆𝑒) + (1 − 𝛾)(1 + 𝜆𝑛)] 

(3) 
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𝐵𝑖𝑑𝑛𝑜𝑏𝑎𝑛 = 𝐸[𝑣|𝑢𝑛𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑 𝑆𝑒𝑙𝑙] ∗ 𝑃(𝑢𝑛𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑 𝑡𝑟𝑎𝑑𝑒𝑟)

+ 𝐸[𝑣|𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑 𝑆𝑒𝑙𝑙] ∗ 𝑃(𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑 𝑡𝑟𝑎𝑑𝑒𝑟) 

         =
1

2
(𝜋2 + 𝜋4) + 0 ∗ (𝜋1 + 𝜋3) 

         =
1

2
[𝛾(1 − 𝜆𝑒) + (1 − 𝛾)(1 − 𝜆𝑛)] 

(4) 

Prior to trading, a trader may pay a cost c to learn the value of the asset.  Traders will become 

informed until the marginal benefit to becoming informed equals the marginal cost.  I model the 

benefit to information as having two components.  The first is the expected trading profits that can 

be earned if the trader becomes informed.  If the asset is worth zero the trader can either sell the 

asset if they own it, or they can short sell the asset if they do not, doing so earns the trader a profit 

equal to the bid price minus the liquidation value – zero in this case.  If the asset is worth one the 

trader can buy the asset, earning the trader the liquidation price – one in this case – minus the ask 

price.  Both outcomes are equally likely, so the expected trading profit to becoming informed is 

the average of the two cases.     

The other component that affects the benefit to becoming informed draws from the literature 

showing that as more investors become informed, implementing an information based trade 

becomes more difficult and the value of information declines.10  Drawing from this literature, the 

trading profits are multiplied by a coefficient (1 − 𝜆) ≡ 1 − (𝛾𝜆𝑒 + (1 − 𝛾)𝜆𝑛) which is one 

minus the total fraction of informed traders in the market.  This coefficient captures the dynamic 

that as more investors become informed, it becomes more difficult to capture the potential trading 

                                                      
10 Prominent studies in this literature include: Holden and Subrahmanyam (1992), Foster and Viswanathan (1994), 

(1996), Back, Cao, and Willard (2000), Akins, Ng,and Verdi (2012), Di Mascio, Lines, and Naik (2015) 



19 

 

profits that being informed makes possible.  Equation (5), captures both these dynamics which 

affect the benefit to becoming informed.11    

𝐵𝑒𝑛𝑒𝑓𝑖𝑡 𝑡𝑜 𝑏𝑒𝑖𝑛𝑔 𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑜𝑏𝑎𝑛 = (1 − 𝜆) (
1

2
[1 − 𝐴𝑠𝑘] +

1

2
[𝐵𝑖𝑑 − 0])          

= (1 − 𝜆) (
1

2
[1 −

1

2
[𝛾(1 + 𝜆𝑒) + (1 − 𝛾)(1 + 𝜆𝑛)]] +

1

2
[
1

2
[𝛾(1 − 𝜆𝑒) + (1 − 𝛾)(1 − 𝜆𝑛)]]) 

= (1 − 𝜆) (
1

2
[𝛾(1 − 𝜆𝑒) + (1 − 𝛾)(1 − 𝜆𝑛)]) 

(5) 

In equilibrium the marginal benefit to becoming informed must equal the marginal cost of 

becoming informed.  However, since there is no difference in the benefit to becoming informed 

for investors who do and do not own the asset there is only one equation and two unknowns.  To 

solve for the optimal values of 𝜆𝑒 and 𝜆𝑛 I assert that, since there is no difference in the benefit to 

becoming informed for investors who do and do not own the asset, both types of investors will 

behave in the same manner i.e. 𝜆𝑒 = 𝜆𝑛 ≡ 𝜆.  In this case, the benefit to becoming informed 

simplifies to the expression in equation (6) with one equation and one unknown.  

𝐵𝑒𝑛𝑒𝑓𝑖𝑡 𝑡𝑜 𝑏𝑒𝑖𝑛𝑔 𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑 = (1 − 𝜆)
1

2
[𝛾(1 − 𝜆) + (1 − 𝛾)(1 − 𝜆)] (6) 

                                                      
11 If an investor chooses not to become informed, then the investor will on average earn a negative profit equal to 

one half the bid ask spread.  A natural question to ask is, why would the uninformed traders transact in the first place?  

Most studies, including Kyle (1985), GM, and DV (and many others) simply assume that investors who are not 

informed must trade for liquidity reasons.  However, this justification is less applicable to the current analysis because 

uninformed investors must proactively choose to not become informed and then to trade anyways. Another perspective 

on this question is that the decision to become informed (or not) is similar in spirit to the decision that fund managers 

must make when deciding whether or not to be a passively or an actively managed fund.  A passive fund that perfectly 

tracks a given index will earn a benchmark adjusted return equal to zero minus transaction costs (1/2 the bid ask 

spread).  If there is a market for passively managed funds then managers of such funds will still find it beneficial to 

remain in business, even though their benchmark adjusted returns are negative by the amount of transaction costs.  

These indexing fund managers earn an outside benefit that compensates them for the transaction cost losses.  In 

equilibrium managers should be indifferent between the two choices. 
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        =
(1 − 𝜆)2

2
 

Setting the benefit to becoming informed from equation (6) equal to the cost to becoming 

informed (c) and solving for 𝜆 provides the equilibrium fraction of investors who choose to become 

informed when short selling is allowed as shown in equation (7b).   

      𝑐𝑜𝑠𝑡 𝑜𝑓 𝑏𝑒𝑐𝑜𝑚𝑖𝑛𝑔 𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑  = 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 𝑡𝑜 𝑏𝑒𝑖𝑛𝑔 𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑 

𝑐  =
(1 − 𝜆)2

2
 

(7a) 

    𝜆1 = 𝜆2 ≡  𝜆 =  1 − √2𝑐   (7b) 

The assumption 𝑐 < .5 ensures that the fraction of investors choosing to become informed is 

positive.  In (7b) the fraction of investors in the economy that become informed is a monotonic 

function of the cost to becoming informed.  If the cost were zero, then the fraction of investors 

becoming informed would equal one. If the cost were ½ (the maximum allowed), then the fraction 

informed would equal zero.  Consequently, adverse selection in the economy will be a monotonic 

and decreasing function of the cost to becoming informed. To find the equilibrium bid and ask 

prices when short selling is allowed, the equilibrium fraction of investors becoming informed from 

equation (7b) is inserted into the equilibrium bid and ask prices from equations (3) and (4) to find 

the equilibrium bid and ask prices, as well as the bid ask spread in effect when short selling is 

allowed, as shown in equation (8).  
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𝐴𝑠𝑘𝑛𝑜𝑏𝑎𝑛 = 1 −
√2𝑐

2
 

𝐵𝑖𝑑𝑛𝑜𝑏𝑎𝑛 =
√2𝑐

2
 

𝑆𝑝𝑟𝑒𝑎𝑑𝑛𝑜𝑏𝑎𝑛 = 1 − √2𝑐 

(8) 

As expected, the equilibrium bid and ask prices in force when short selling is allowed are 

monotonic functions of the cost of becoming informed.  This makes intuitive sense.  If the cost to 

becoming informed were ½ (the maximum allowed), then no investors would choose to become 

informed and the spread would be equal to 0; as the cost declines, more investors become informed 

and the bid ask spread increases to compensate market makers for the increased adverse selection 

risk they face.  To measure the amount of adverse selection on both sides of the market I simply 

take the absolute difference between the bid or ask and 1/2. Doing so reveals that the adverse 

selection that the market maker faces is symmetric on both sides of the market, and the total 

adverse selection is equal to 1 − √2𝑐.  This provides a baseline case for which to compare adverse 

selection in the market when short selling is prohibited.  

d. Case Where Short Selling is Prohibited 

A short selling ban will change the dynamics of trade by prohibiting traders who do not own 

the asset from transacting at the bid.  Consequently, if a sell arrives then the market maker knows 

that it must come from an investor that already owns the asset.  In this setting, the probability that 

a market maker faces an informed trader at the bid changes from 𝜋1 + 𝜋3 in the case where short 

selling is allowed to 
𝜋1

𝜋1+𝜋2
 , and the probability that a market maker faces an uninformed trader at 
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the bid changes from 𝜋2 + 𝜋4 in the case where short selling is allowed to 
𝜋2

𝜋1+𝜋2
.  Market makers 

update the bid price during a short selling ban accordingly as presented in equation (9).  

𝐵𝑖𝑑𝑏𝑎𝑛 = 𝐸[𝑣|𝑢𝑛𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑 𝑆𝑒𝑙𝑙] ∗ 𝑃(𝑢𝑛𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑 𝑡𝑟𝑎𝑑𝑒𝑟) + 𝐸[𝑣|𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑 𝑆𝑒𝑙𝑙]

∗ 𝑃(𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑 𝑡𝑟𝑎𝑑𝑒𝑟) 

         =
1

2

𝜋2

𝜋1 + 𝜋2
+ 0 ∗

𝜋1

𝜋1 + 𝜋2
 

        =
1 − 𝜆𝑒

2
 

(9) 

Since there are no restrictions on buying during a short selling ban, the expression characterizing 

the ask price – presented in equation (3) – does not change.  Equations (10) and (11) give the bid 

and ask prices in force during a short selling ban.  

𝐴𝑠𝑘𝑏𝑎𝑛 =
1

2
[𝛾(1 + 𝜆𝑒) + (1 − 𝛾)(1 + 𝜆𝑛)] 

𝐵𝑖𝑑𝑏𝑎𝑛 =
1 − 𝜆𝑒

2
 

(10) 

(11) 

The other aspect of the economy that changes during a short selling ban is the benefit to 

becoming informed.  The inability to short sell prevents investors who do not own the asset from 

trading on their information if the value of the asset turns out to equal zero, diminishing the value 

of information for these investors.  This effect on the benefit to being informed is reflected in 

equation (12) in the fact that the trading profit for these investors is limited to 1 − 𝐴𝑠𝑘. 
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𝐵𝑒𝑛𝑒𝑓𝑖𝑡 𝑡𝑜 𝑏𝑒𝑖𝑛𝑔 𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑑𝑜 𝑛𝑜𝑡 𝑜𝑤𝑛,𝑏𝑎𝑛 = (1 − 𝜆)
1

2
[1 − 𝐴𝑠𝑘] 

         = (1 − 𝜆)
1

2
[1 −

1

2
[𝛾(1 + 𝜆𝑒) + (1 − 𝛾)(1 + 𝜆𝑛)]] 

(12) 

  

𝐵𝑒𝑛𝑒𝑓𝑖𝑡 𝑡𝑜 𝑏𝑒𝑖𝑛𝑔 𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑜𝑤𝑛,𝑏𝑎𝑛 = (1 − 𝜆) (
1

2
[1 − 𝐴𝑠𝑘] +

1

2
[𝐵𝑖𝑑 − 0]) 

= (1 − 𝜆) (
1

2
[1 −

1

2
[𝛾(1 + 𝜆𝑒) + (1 − 𝛾)(1 + 𝜆𝑛)]] +

1

2
[
1 − 𝜆𝑒

2
]) 

(13) 

By contrast, the inability of investors who do not own the asset to trade on negative information 

increases the relative benefit to becoming informed for those investors who own the asset by 

rendering them the only traders able to trade on negative information.  The parameters 𝜆𝑒 and 𝜆𝑛 

are found by setting the marginal benefit to becoming informed equal to the marginal cost for both 

types of traders – as shown in equations (14) and (15) – yielding two equations and two unknowns.  

It is then straightforward to solve this system of equations for the equilibrium values of 𝜆𝑒 and 𝜆𝑛.  

𝑐 = 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 𝑡𝑜 𝑏𝑒𝑖𝑛𝑔 𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑜𝑤𝑛,𝑏𝑎𝑛 

          𝑐 = (1 − 𝜆) (
1

2
[1 −

1

2
[𝛾(1 + 𝜆𝑒) + (1 − 𝛾)(1 + 𝜆2)]] +

1

2
[
1 − 𝜆𝑒

2
]) 

(14) 

𝑐 = 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 𝑡𝑜 𝑏𝑒𝑖𝑛𝑔 𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑜𝑡 𝑒𝑛𝑑𝑜𝑤𝑒𝑑,𝑏𝑎𝑛 

          𝑐 = (1 − 𝜆)
1

2
[1 −

1

2
[𝛾(1 + 𝜆𝑒) + (1 − 𝛾)(1 + 𝜆2)]] 

(15) 
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The solution to the above system of equations for 𝜆1 and 𝜆2 is presented in equation (16)12. 

𝜆𝑒 = 1     ,      𝜆𝑛 = 1 −
2√𝑐

1 − 𝛾
 (16) 

It is immediately apparent from the solutions in equation (16) that when short selling is 

prohibited the fraction of investors who own the asset who choose to become informed increases 

as now all investors who own the asset choose to become informed.  It is also straightforward to 

show that fewer investors who do not own the asset choose to become informed.  Consequently, 

the effect of prohibiting short selling on information acquisition is to concentrate information 

acquisition among the investors who own the asset.   

The equilibrium values of 𝜆𝑒 and 𝜆𝑛 presented in equation (16) are then inserted into equations 

(10) and (11) to yield the equilibrium bid and ask prices as well as the spread in force during a 

short selling ban as presented in equation (17).  

𝐴𝑠𝑘𝑏𝑎𝑛 = 1 − √𝑐 

𝐵𝑖𝑑𝑏𝑎𝑛 = 0 

𝑆𝑝𝑟𝑒𝑎𝑑𝑏𝑎𝑛 = 1 − √𝑐 

(17) 

On the seller-initiated side of the market, the market maker knows that all the investors in the 

market are informed, so during a short selling ban a market maker faces the maximum value of 

                                                      
12 Since there can never be a negative fraction of informed traders in the market, the solution presented in equation 

(16) is only when 𝜆2 ≥ 0, i.e. when 
2√𝑐

1−𝛾
< 1.  For parameter values of 𝛾 and 𝑐 that violate this inequality, the 

equilibrium is obtained by setting 𝜆𝑛 = 0 in equation (14) and solving for the equilibrium value of 𝜆𝑒.  Then to ensure 

that this is a valid equilibrium, the equilibrium value of 𝜆𝑒 from the previous step is inserted into equation (15) and 

which is then solved for 𝜆𝑛 to verify that the investors who do not own the asset are not now better off becoming 

informed. This process yields an outcome that 𝜆𝑒 =
3𝛾+1−√𝛾2(16𝑐+1)+𝛾(16𝑐−2)+1

2𝛾(𝛾+1)
, and 𝜆𝑛 = 0, this equilibrium yields 

the same predictions as the solution presented in equation (16) consequently, in the discussion moving forward I limit 

the discussion to those obtained from the values of 𝜆𝑒 and 𝜆𝑛 presented in equation (16).  



25 

 

adverse selection and so the bid is equal to zero, and the absolute difference between ½ and zero 

is one half.  So there is an increase in adverse selection on the sell side of the market during a ban.  

On the buyer-initiated side of the market the effect of the ban on adverse selection is muted.  While 

an increased fraction of investors who own the asset are informed, a smaller fraction of investors 

who do not own the asset choose to become informed.  Consequently, the effect of the ban on buy 

side adverse selection is smaller than the effect of the ban on sell side adverse selection.  The net 

effect is actually a small reduction in adverse selection on the buy side of the market during a short 

selling ban.  

The combined effect of a large increase in sell side adverse selection with a small decline in 

buy side adverse selection combine to produce the net result that overall spreads increase from 

1 − √2𝑐 when short selling is allowed to 1 − √𝑐 when short selling is prohibited.  It is interesting 

to note that when short selling is allowed a total of 1 − √2𝑐 fraction of the investors in the economy 

are informed. However, when short selling is prohibited that fraction declines to 1 − 2√𝑐.  So even 

though market makers face increased levels of adverse selection, fewer total investors are 

becoming informed. 

Although a formal analysis is outside the scope of this model, the finding that a short selling 

ban decreases overall information gathering would seem to suggest that a ban may harm price 

efficiency by increasing the amount of time it takes for information to become incorporated into 

stock prices – similar to what is observed in DV.     

This seeming paradox of a decline in information acquisition occurring at the same time as an 

increase in adverse selection occurs because even though investors who own the asset only make 

up a fraction of the total traders in the market, during a ban they completely determine the amount 
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of adverse selection that market makers face.  Consequently, the ban’s effect on these investors 

has a greater impact on adverse selection than does the ban’s effect on investors who do not own 

the asset.  In sum, the model’s main predictions are that overall adverse selection will increase 

during a short selling ban, but that increase will be concentrated on the sell side of the market. In 

the following section I test this prediction empirically.  

Insert Figure 1 Here 

4. Empirical Analysis 

a. Sample 

The event that I use to study the effects of short selling on adverse selection is the 2008 short 

selling ban imposed by the US Securities and Exchange Commission.  As the financial crisis 

deepened in August and September 2008 the SEC and other policy makers came under increasing 

pressure by executives to put a stop to what they believed was ‘manipulative’ short selling.13  After 

the collapse of Lehman Brothers on September 15, and the subsequent stock market decline, the 

SEC imposed a short selling ban for a list of US financial stocks. The ban began on September 19 

and lasted through October 8.  The initial list of banned stocks comprised 799 US listed financial 

stocks but was eventually expanded to include a total of 931 stocks including non-financial blue 

chip stocks such as General Electric.   

To study the effect of the ban on adverse selection, my primary data source is the NYSE Daily 

Trade and Quote (DTAQ) database for the months of August – October 2008.  This dataset offers 

an improvement over the NYSE Monthly Trade and Quote (MTAQ) database employed in prior 

                                                      
13 For example, then Treasury Secretary Henry Paulson reported in his memoir receiving multiple phone calls from 

executives complaining about short sellers.   
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studies.14  As demonstrated in Holden and Jacobsen (2014) the differences in the two datasets can 

have a significant effect on the results obtained from empirical analysis.  Most relevant to this 

study, Holden and Jacobsen (2014) document that compared to the more accurate DTAQ results, 

computations using MTAQ data can produce effective spreads that are 50% larger than the 

effective spreads computed using DTAQ.  Consequently, where my analysis overlaps with that of 

Boehmer, Jones, and Zhang (2013) the pattern of results is similar, but the magnitudes presented 

here are smaller due to using DTAQ instead of MTAQ data.  Other data sources include 

OptionMetrics from which I obtain data about the options status of the firm, and CRSP where I 

obtain stock specific data such as listing exchange, shares outstanding, and stock return data. 

When the SEC published the list of stocks for which short selling was prohibited they did so 

by publishing a list of tickers.  Of the 931 stocks subject to the ban I remove tickers that do not 

match to a permno in CRSP as well as those that ambiguously match to multiple permnos in CRSP 

leaving 910 tickers that pass the initial filter.  123 Tickers that are not common stocks (CRSP share 

codes 10 and 11) are removed leaving 787 tickers that pass the second filter. Of these 787 tickers 

33 are not listed on NYSE or NASDAQ and are removed leaving 754.  Stocks must also have 

complete CRSP volume and returns data for December 2007-July 2008 as well as DTAQ data 

from August 2008 – October 2008 leaving a total of 711 usable tickers from the published list of 

banned stocks from the SEC.  Of these 653 are on the original list published by the SEC on 

September 19, 2008, and the remaining 58 were added to the ban later.   

                                                      
14 The key differences between the MTAQ database and the DTAQ database are that the trade and quotes in the 

DTAQ database are time stamped at the millisecond whereas the MTAQ database is timestamped at the second.  Also, 

the DTAQ database provides the national best bid and offer prices (NBBO) prices time stamped to the millisecond, 

whereas the MTAQ database requires the user to estimate the NBBO prices from the quotes database which are time 

stamped to the second.   
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Each banned stock is identified as either a large, small, or microcap based on its market cap as 

of December 31, 2007.  Following Fama and French (2008), large stocks are defined as those 

stocks that are in the largest 5 NYSE size deciles as of December 31, 2007, small stocks are defined 

as those stocks that are in NYSE size deciles 3-5, and microcap stocks are those stocks that are in 

the smallest two NYSE deciles.  This methodology results in 139 large stocks, 118 small stocks, 

and 454 microcap stocks.   

Going forward, I omit microcap stocks from the analysis for a few reasons. First, measuring 

adverse selection requires signing order flow with some degree of accuracy.  Microcap stocks trade 

infrequently, and the time between quote revisions can be significant.  Consequently, signing order 

flow using algorithms which match trades to prior quotes – such as the Lee and Ready (1991) 

algorithm –  for microcap stocks is likely to be highly noisy.  Second, as Boehmer, Jones, and 

Zhang (2013) document, smaller stocks are lightly shorted and thus the effects of the short selling 

ban on smaller stocks is muted.  Lastly, trading in microcap stocks accounts for only a tiny fraction 

of total trading volume, and a study whose results are strongly influenced by microcap stocks may 

lack generalizability. 

Each banned stock is matched – with replacement – to a control stock based on market cap 

(calculated from CRSP) as of December 31, 2007, dollar trading volume in the first seven months 

of 2008 (calculated from CRSP), listing exchange (from CRSP), and options status (from Options 

Metrics).  This matching procedure is similar to that employed by Boehmer, Jones, and Zhang 

(2013) and Brogaard, Hendershott, and Riordan (2017).     

To determine the control stock, I take the universe of CRSP common stocks (share codes 10 

and 11) which have complete DTAQ data for August-October 2008, and complete CRSP data for 

2007 and 2008, as well as the same listing exchange and the same options status as the banned 
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stock in question.   I employ a distance measure like the one employed by Boehmer, Jones, and 

Zhang (2013) and Brogaard, Hendershott, and Riordan (2017) to determine which potential control 

stock is most similar to the banned stock in question.  As shown in equation (18) where i indexes 

the banned stock, and j indexes the potential match, the distance between a banned stock and a 

potential control stock is the sum of the proportional distance between the banned stock and the 

control stock based on market cap and dollar volume.  The control stock with the smallest distance 

measure becomes the assigned control stock for the banned stock under consideration.  Following 

Boehmer, Jones, and Zhang (2013) the sampling is done with replacement.  Table 1 presents 

descriptive statistics for the banned and control stocks used in this study.  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗 =
|𝑀𝑘𝑡𝑐𝑝𝑖 − 𝑀𝑘𝑡𝑐𝑝𝑗|

𝑀𝑘𝑡𝑐𝑝𝑖
+

|𝐷𝑣𝑜𝑙𝑖 − 𝐷𝑣𝑜𝑙𝑗|

𝐷𝑣𝑜𝑙𝑖
 (18) 

Insert Table 1 Here 

b. Computation of Adverse Selection and Spread Measures 

As discussed in section (2.a) adverse selection comprises a key component of the effective 

spread.  The primary empirical objective in this section is to estimate the effect of the 2008 short 

selling ban on adverse selection on the buy and sell sides of the market.  To estimate adverse 

selection and realized spread, I use DTAQ data for both banned and control stock and I compute 

the effective spread, and its constituent components of adverse selection and realized spread for 

all qualifying trades in August -October 2008.  To be included in the sample a trade must not have 

a non-normal trade code.15  Also, Reg NMS requires that brokers route orders to the best quote 

price, and so trades outside the current national best bid and offer (NBBO) prices should not occur 

                                                      
15 Non-normal trades include those trades in the field tr_scond which have a value of J, L, N, O, P, T, Z, U, and Q.  
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and may be indicative of errors in the data.  Consequently, I remove trades where the posted trade 

price is more than one cent outside of the NBBO prices in the millisecond prior to the trade.  To 

eliminate trades associated with erroneous quotes I remove trades corresponding to quoted spreads 

(computed from the NBBO file) that are greater than 30% in the millisecond prior to the trade.   

As shown in equation (2), the computation of adverse selection and realized spread require the 

use of a midpoint at some point Δ𝑡 after the initial midpoint which occurs at time 𝑡.  I eliminate 

trades in my computation of realized spread and adverse selection that are associated with quoted 

spreads at time 𝑡 + Δ𝑡 that are greater than 30%.  Lastly, trades associated with locked or crossed 

quotes are eliminated.  These filters eliminate approximately 4% of trades from the sample.   

For each remaining trade in the DTAQ database the effective spread, realized spread, and 

adverse selection measures are computed as displayed in equations (19) through (21).  In these 

equations i indexes a given trade, 𝑠𝑖 indexes the sign of the given trade as assigned by the Lee and 

Ready (1991) algorithm (1 indicates a buyer-initiated trade and -1 indicates a seller-initiated trade) 

using the prevailing NBBO midpoint in the millisecond prior to the trade provided by DTAQ as 

the reference midpoint in the algorithm.  𝑃𝑖,𝑡 is equal to the transaction price for trade 𝑖 which 

occurred at time 𝑡.  𝑀𝑡−1 is the prevailing NBBO midpoint in the millisecond prior to trade 𝑖.  

𝑀𝑡+Δ𝑡 is the prevailing NBBO midpoint at some time Δ𝑡 after the arrival of the given trade.   

When selecting a time horizon to measure adverse selection and realized spread there is 

unfortunately a lack of guidance in the literature.  Perhaps the most common time horizon 

employed in the literature is five minutes, however, as O’Hara (2015) points out, five minutes in 

modern markets is a ‘lifetime’.  Consequently, in my analysis I will allow the time horizon used 

to measure adverse selection to vary from one to five minutes.   
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𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑆𝑝𝑟𝑒𝑎𝑑𝑖 =
2 ∗ 𝑠𝑖(𝑃𝑖,𝑡 − 𝑀𝑡−1)

𝑀𝑡−1
 (19) 

𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑆𝑝𝑟𝑒𝑎𝑑𝑖,Δ𝑡 =
2 ∗ 𝑠𝑖(𝑃𝑖,𝑡 − 𝑀𝑡+Δ𝑡)

𝑀𝑡−1
 (20) 

𝐴𝑑𝑣𝑒𝑟𝑠𝑒 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑖,Δ𝑡 =
2 ∗ 𝑠𝑖(𝑀𝑡+Δ𝑡 − 𝑀𝑡−1)

𝑀𝑡−1
 (21) 

The measurements from individual trades are aggregated and equally weighted daily averages 

for each of the three metrics are computed.  These daily averages are computed in one of two ways.  

If the empirical specification is analyzing the total effect of the ban on adverse selection or spreads, 

then the dependent variable will be the equally weighted daily average across all trades – 

irrespective of sign – yielding one observation per stock per day.  In specifications where the 

objective is to measure the differential effect of the ban on adverse selection or spreads for buy 

and sell sides of the market, then the dependent variable will be the equally weighted daily average 

across all buy or sell trades – producing two observations per stock per day.  Adverse selection, 

realized spread, and effective spreads are converted to basis points for all analysis. 

c. Empirical Results 

The primary empirical methodology used to determine the effects of the ban on adverse 

selection and spreads is difference-in-difference (DD) regressions when estimating the overall 

effect of the ban, and difference-in-difference-in-difference (DDD) regressions for the signed 

analysis.  In these regressions, the dependent variable is the difference in equally weighted daily 

average adverse selection (or realized spread or effective spread) between a banned stock and its 

matched control for the variable of interest.  This effectively places the first difference in the DD, 

or DDD regressions on the left-hand side of the regression and allows the use of stock pair fixed 
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effects in my model to control for systematic differences in the dependent variable between each 

banned stock and its matched control.  

i. The Effect of the Ban on Adverse Selection 

The primary prediction of the model presented in section 3 is that prohibiting short selling will 

lead to an overall increase in adverse selection, but that that increase will be concentrated on the 

sell side of the market. To study the effect of the short selling ban on adverse selection during the 

2008 short selling ban, I use DD and DDD regressions presented in equations (22) and (23).     

𝐴𝑆𝑖,𝑡
𝐵,Δ𝑡 − 𝐴𝑆𝑖,𝑡

𝐶,Δ𝑡 = 𝜂0 + 𝜂1𝐵𝑎𝑛𝑡 + 𝛤𝑋𝑖𝑡 + 𝜈𝑖 + 𝜀𝑖𝑡 (22) 

𝐴𝑆𝑖,𝑡,𝑠
𝐵,Δ𝑡 − 𝐴𝑆𝑖,𝑡,𝑠

𝐶,Δ𝑡 = 𝜉0 + 𝜉1𝐵𝑎𝑛𝑡 + 𝜉2𝑆𝐼𝑠 + 𝜉3𝐵𝑎𝑛𝑡 ∗ 𝑆𝐼𝑠 + 𝛤𝑋𝑖𝑡 + 𝜈𝑖 + 𝜀𝑖𝑡 (23) 

In these specifications, 𝑖 indexes the banned stock, 𝑡 indexes the day and 𝑠 indexes which side 

of the market a given observation corresponds to – buyer or seller-initiated. In equation (22) the 

coefficient 𝜂1 indicates the total effect of the short selling ban on adverse selection.  Equation (23) 

is a DDD regression identifying the differential effect of the short selling ban on the buyer and 

seller-initiated sides of the market.  The coefficient 𝜉1 from equation (23) identifies the effect of 

the short selling ban on buyer-initiated adverse selection, and the sum of coefficients 𝜉1 + 𝜉3 

identifies the effect of the short selling ban on adverse selection for seller-initiated trades.  𝑋𝑖𝑡 is a 

matrix of control variables.16  All models include stock pair fixed effects and standard errors are 

clustered at the date level. 

                                                      
16 Control variables include the difference between banned and control stocks on dimensions of value weighted 

average price, market cap, dollar volume, number of trades, price volatility, and daily return, as well as the return on 

the CRSP value weighted index and level of the value weighted average price, market cap, dollar volume, number of 

trades, daily return, and price volatility for the banned stock. 
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Table 2 presents the regression estimates for the coefficient 𝜂1 from equation (22) indicating 

the total effect of the short selling ban on adverse selection.  In these specifications, the results for 

adverse selection are computed using horizons of one, two, three, four, and five minutes, and are 

presented in columns one through five of Table 2 respectively.  Panel A presents the results for 

large stocks and panel B the results for small stocks.  In both instances, the regressions reveal that 

the short selling ban is associated with a statistically significant increase in adverse selection.  For 

large stocks, the measured increase in adverse selection is about 2.5-3.5 basis points, depending 

on the time horizon used.  The pattern of results in panel B for small stocks is similar with adverse 

selection costs increasing by about 5-7 basis points. These results confirm the findings of Boehmer, 

Jones, and Zhang (2013) and Kolasinski, Reed, and Thornock (2013)  that the ban is associated 

with an increase in adverse selection costs, and are consistent with the model’s prediction that 

overall adverse selection will increase during a ban. 

Insert Table 2 Here 

Table 3 presents the results from the DDD regressions from equation (23) examining the 

differential effect of the short selling ban on adverse selection on the buy and sell sides of the 

market.  The results presented in Table 3 are consistent with the predictions of the model as the 

effect of the short selling ban on adverse selection appears concentrated almost exclusively on the 

sell side of the market.  For large stocks, there is not a single instance where the regressions indicate 

that the ban is associated with a statistically significant increase in buy side adverse selection, yet 

every time frame at which adverse selection is measured indicates a statistically significant 

increase in adverse selection costs of 4-6 basis points on the sell side of the market.   

For small stocks, the pattern of results is similar.  Across all time horizons the regressions 

indicate a statistically significant increase in adverse selection on the sell side of the market of 
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between 8 and 14 basis points.  The results identifying the effect of the ban on buy side adverse 

selection (𝜉1) indicate an increase of only about 2 basis points – which is not statistically significant 

in three of the five specifications. 

To highlight the economic magnitude of the effect of the ban on adverse selection costs it is 

illustrative to note that the average effective spreads (of which adverse selection is a key 

component) paid by traders outside the ban for large (small) stocks is approximately 7 (15) basis 

points.  Consequently, the increase in sell side adverse selection costs of 4-6 (8-12) basis points 

for large (small) represents an increase in transaction costs equal to approximately 60%-85 (50-

90%) of total transaction costs paid outside the ban.   

Figure 2 presents a graphical description of the regressions results presented in Tables 2 and 

3.    Each point in each series indicates the observed value of coefficient 𝜂1, 𝜉1, or the sum of 

coefficients 𝜉1 + 𝜉3 from a DD or DDD regressions corresponding to equations (22) and (23) and 

for a given time horizon used to compute adverse selection.  Time horizons vary from 60 to 300 

seconds.  The vertical axis indicates the magnitude of the effect in basis points and the horizontal 

axis indicates the time horizon used to compute adverse selection.   The dotted colored line in the 

figure shows the effect of the short selling ban on sell side adverse selection (coefficients 𝜉1 + 𝜉3 

from equation (23)).  The solid colored line indicates the effect of the ban on buy side adverse 

selection (coefficient 𝜉1 from equation (23)), and the grey line indicates the aggregate effect of the 

ban on adverse selection (𝜂1 from equation (22)).  

This figure provides a graphical illustration of effect of the ban on adverse selection which is 

documented in Tables 2 and 3.  Consistent with the predictions of the model, for every time horizon 
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used to measure adverse selection, the effect of the ban on adverse selection is concentrated almost 

exclusively on the sell side of the market.   

Insert Table 3 Here 

Insert Figure 2 Here 

ii. The Effect of the Ban on Realized Spread 

    The other component of the effective spread paid by the liquidity demanders is the realized 

spread. This is the portion of the spread that compensates market makers for non-adverse selection 

costs and provides their profit.  The literature examining the link between short selling and liquidity 

has primarily concentrated on studying the role that short sellers play as liquidity providers.  As 

articulated by Boehmer, Jones, and Zhang (2013), the effect that a short selling ban may have on 

liquidity through the liquidity provision channel comes because “Banning short sellers could 

reduce competition in liquidity provision, worsening the terms of trade for liquidity demanders.” 

(p1366).    

A decline in competition among liquidity providers allows the remaining liquidity providers 

to charge higher rents.  These higher rents should be discernable in the data through an increase in 

the realized spread portion of the effective spread.  However, this liquidity provision channel 

comes with the heretofore untested prediction that the increase in realized spread during a short 

selling ban will be concentrated on the buy side of the market. This asymmetry comes because 

short sellers only provide liquidity when they trade passively with buyers, so the decline in 

competition due to prohibiting short sellers is likely to be concentrated on the buy side of the 

market – leading to an increase in buy side realized spread.    
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I examine the asymmetric effects of the short selling ban on buy and sell side realized spread 

employing DD and DDD regressions presented in equations (24) and (25) similar to those 

employed in the previous section.  Equation (24) is used to determine the total effect of the short 

selling ban on realized spread and in this specification, the coefficient 𝜅1 indicates this overall 

effect.  Equation (25) is used to study the differential effect of the short selling ban on realized 

spread for the buy and sell sides of the market.  In equation (25) the coefficient 𝜌1 indicates the 

effect of the short selling ban on buyer-initiated trades whereas the sum of coefficients 𝜌1 + 𝜌3 

indicates the effect of the short selling ban on seller-initiated trades.  In all specifications, the 

matrix of control variables 𝑋𝑖𝑡 contains the same controls as those employed in the regressions in 

the prior analysis. All models include stock pair fixed effects, and standard errors are clustered at 

the date level. 

𝑅𝐸𝑆𝑃𝑖,𝑡
𝐵,Δ𝑡 − 𝑅𝐸𝑆𝑃𝑖,𝑡

𝐶,Δ𝑡 = 𝜅0 + 𝜅1𝐵𝑎𝑛𝑡 + 𝛤𝑋𝑖𝑡 + 𝜈𝑖 + 𝜀𝑖𝑡 (24) 

𝑅𝐸𝑆𝑃𝑖,𝑡,𝑠
𝐵,Δ𝑡 − 𝑅𝐸𝑆𝑃𝑖,𝑡,𝑠

𝐶,Δ𝑡 = 𝜌0 + 𝜌1𝐵𝑎𝑛𝑡 + 𝜌2𝑆𝐼𝑠 + 𝜌3𝐵𝑎𝑛𝑡 ∗ 𝑆𝐼𝑠 + 𝛤𝑋𝑖𝑡 + 𝜈𝑖 + 𝜀𝑖𝑡 (25) 

Table 4 presents the regression estimates for the coefficient 𝜅1 from equation (24), which 

indicate the total effect of the short selling ban on realized spread.  The results of the DD 

regressions indicate that for both large and small stocks, the short selling ban is associated with a 

statistically significant increase in realized spread at all time horizons used to compute realized 

spread – except for five-minute realized spread for large stocks.  For large stocks, the increase is 

around 1 basis point.  For small stocks, the increase in realized spread is approximately 5 to 6 basis 

points.   

Insert Table 4 Here 
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Table 5 presents the DDD regression results indicating the effect of the short selling ban on 

realized spread for the buyer and seller-initiated sides of the market from equation (25).  The 

coefficient 𝜌1 from equation (25) measures the impact of the ban on buy side realized spread while 

the sum of coefficients 𝜌1 + 𝜌3 indicates the effect of the ban on sell side realized spread.  Panel 

A of Table 5 presents the results for large stocks and panel B the results for small stocks. 

Table 5 documents evidence consistent with the prediction that the increase in realized spread 

will be concentrated on the buy side of the market. On the buy side of the market, large (small) 

stocks experience an increase in realized spread of approximately 3 (7) basis points. Whereas on 

the sell side of the market the effect of the ban on realized spread is not clear.  For large stocks, 

the sum of coefficients 𝜌1 + 𝜌3 indicating the effect of the short selling ban on sell side adverse 

selection is not significant in any specification, and negative in three of them. For small stocks, 

the effect of the ban on sell side realized spread is positive and significant when employing time 

horizons of one and two minutes but attenuates and is statistically indistinguishable from zero at 

longer time horizons. 

Recall that outside the ban, the average effective spreads paid by traders for large (small) stocks 

is 7 (15) basis points.  Consequently, the increase in buy side realized spread of approximately 3 

(7) basis points for large (small) stocks represents an increase in transaction costs equal to 

approximately 40% (45%) of total transaction costs paid outside the ban, an economically 

meaningful increase, but smaller than the observed increase in adverse selection presented in the 

prior section – a difference that will be explored in greater depth in the next section.     

Figure 3 presents a graphical description of the regression results presented in Tables 4 and 5 

similar to Figure 2 in the prior section.    Each point in each series indicates the observed coefficient 

𝜅1, 𝜌1, or the sum of coefficients 𝜌1 + 𝜌3 from the DD or DDD regressions corresponding to 
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equations (24) and (25) for a given time horizon used to compute realized spread.  Time horizons 

are varied from 60 to 300 seconds.  The vertical axis indicates the magnitude of the effect in basis 

points and the horizontal axis indicates the time horizon used to compute realized spread.   The 

dotted colored line presents the effect of the short selling ban on sell side adverse selection 

(coefficients 𝜌1 + 𝜌3 from equation (25)).  The solid colored line indicates the effect of the ban on 

buy side adverse selection (coefficient 𝜌1 from equation (25)), and the grey line indicates the 

aggregate effect of the ban on adverse selection (𝜅1 from equation (24)).  Figure 3 illustrates that 

the effect of the ban on buy side realized spread is positive and stable across all time horizons for 

both large and small stocks.   

The finding that the increase in realized spread during the ban appears to be concentrated on 

the buy side of the market is consistent with the notion that removing short sellers is likely to hurt 

liquidity because short sellers only provide liquidity when they trade passively with a liquidity 

demanding buyer.  Consequently, the removal of passive – liquidity providing – short sales during 

the ban produces a negative shock to liquidity supply on the buy side of the market resulting in 

wider realized spreads for buyers.   

Insert Table 5 Here 

Insert Figure 3 Here 

iii. Comparing the Adverse Selection and Realized Spread Channels 

The prior two sections document that the ban was associated with an increase in both adverse 

selection and realized spread.  In this section I provide an analysis comparing the magnitude of 

these two effects with one another.  The purpose of this analysis is to highlight the economic 
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magnitude – and thus relevance – of the relatively unexamined adverse selection channel linking 

short selling and liquidity.   

Empirically, liquidity can be affected through one of four channels: adverse selection on the 

buy and sell sides of the market and realized spread on the buy and sell sides of the market. Figure 

4 displays the economic magnitude of the effect of the ban on each of these four channels with 

respect to one another by combining Figures 2 and 3 which plot the effect of the ban on adverse 

selection and realized spread using DD and DDD regressions.   

What becomes apparent from this figure is that the largest single effect that the ban appears to 

have on transaction costs comes through sell side adverse selection.  For large stocks, this effect 

is nearly twice as large as the second largest effect, that of buy side realized spread.  This finding 

is important, because most of the literature linking short selling to liquidity highlights the liquidity 

provision role of short sellers, and Figure 4 shows that, in the context of the 2008 short selling ban, 

these effects were secondary in magnitude compared to the effect of the ban on adverse selection.   

Insert Figure 4 Here 

To more formally test the hypothesis that the informational effect of the ban on transaction 

costs, through its effect on adverse selection, is greater than the realized spread channel, I use DDD 

regressions.  In these regressions, the dataset employed to test the effect of the ban on aggregated 

adverse selection, presented in Table 2, is combined with the dataset employed to test the effect of 

the ban on aggregated realized spread, presented in Table 4.  DDD regression are then estimated 

to test whether the effect of the ban on transaction costs through the adverse selection channel is 

greater than its effect through the realized spread channel.   
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I omit the full results for brevity sake, and because the coefficients, indicating the differential 

effect of the ban can be obtained by simply subtracting the results in Table 2 from those in Table 

4.  What is of interest is the test of significance for the coefficient indicating the difference between 

the two economic channels. For both large and small stocks, the measured effect of the ban on 

adverse selection is larger than the effect of the ban on realized spread in every case except for 

small stocks at the 1-minute horizon. This difference is statistically significant across every time 

horizon employed to measure adverse selection and realized spread for large stocks.  For small 

stocks the effect of the ban on adverse selection is statistically greater than the effect on adverse 

selection for time horizons longer than 2 minutes.  With time horizons shorter than two minutes 

the difference is statistically insignificant.  These tests document that during the 2008 short selling 

ban, the effect of the ban on liquidity through adverse selection appears to dominate the ban’s 

effect on liquidity through the realized spread.    

iv. Effect of the Ban on Effective Spread 

Adverse selection and realized spread sum to equal the effective spread, which is the total cost 

paid to execute a trade and provides one of the primary indicators of liquidity in financial markets.  

The prior sections document that the ban’s impact on the adverse selection portion of the effective 

spread is concentrated on the sell side of the market and that the ban’s effect on the realized spread 

portion is concentrated on the buy side.  In this section I explore how these two effects aggregate 

to impact the total transaction costs paid by liquidity demanders during the short selling ban.   

I explore the effect of the ban on effective spreads using the same basic DD and DDD 

regression models that have been used previously.  In these models, the dependent variable is the 

difference in equally weighted daily average effective spread between a banned stock and its 

matched control for a given day.  In equation (26), which measures the aggregate effect of the ban, 
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effective spreads are averaged across all trades irrespective of sign.  In equation (27), effective 

spreads are averaged across the buy and sell sides of the market separately allowing me to study 

the differential effect that the ban has on the buy and sell sides of the market.  The same control 

variables are used as in the prior sections, and both specifications include stock pair fixed effects 

and standard errors are clustered at the date level.   

𝐸𝑆𝑃𝑖,𝑡
𝐵 − 𝐸𝑆𝑃𝑖,𝑡

𝐶 = 𝛾0 + 𝛾1𝐵𝑎𝑛𝑡 + 𝛤𝑋𝑖𝑡 + 𝜈𝑖 + 𝜀𝑖𝑡 (26) 

𝐸𝑆𝑃𝑖,𝑡,𝑠
𝐵 − 𝐸𝑆𝑃𝑖,𝑡,𝑠

𝐶 = 𝛽0 + 𝛽1𝐵𝑎𝑛𝑡 + 𝛽2𝑆𝐼𝑠 + 𝛽3𝐵𝑎𝑛𝑡 ∗ 𝑆𝐼𝑠 + 𝛤𝑋𝑖𝑡 + 𝜈𝑖 + 𝜀𝑖𝑡 (27) 

The coefficient identifying the aggregate effect of the short selling ban on effective spreads 

from equation (26) is 𝛾1, the coefficient identifying the buy side effect is 𝛽1 from equation (27) 

and the sum of coefficients 𝛽1 + 𝛽3 (from equation (27)) indicate the effect of the ban on seller-

initiated effective spreads.  Table 6 presents the results from these regressions.  

Insert Table 6 Here 

Among large and small stocks, the total effect (𝛾1) of the ban on effective spreads amounts to 

a statistically significant increase of 4.8 and 12.7 basis points respectively.  Relative to the average 

effective spreads paid outside the ban, these magnitudes indicate that the ban is associated with an 

increase in effective spread of 68% and 84% for large and small stocks respectively.  

When the effect of the short selling ban on effective spread is divided into its effect on the buy 

and sell sides of the market in equation (27), the results indicate that among both large and small 

stocks, seller-initiated trades experience an increase in effective spread that is approximately 50% 

larger than the increase experienced by buyer-initiated trades. This asymmetry is to be expected 

given the prior findings that the ban’s effect on adverse selection appears to dominate the ban’s 
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effect on realized spread, and that the increase in adverse selection is concentrated on the sell side 

of the market. 

 For large stocks average seller (buyer) initiated effective spread increases by 5.6 (3.7) basis 

points.  For small stocks, the effect of the ban on seller (buyer) initiated effective spread is equal 

to 15.3 (10.1) basis points.  For large (small) stocks, this amounts to an increase in the cost of 

transacting of 53% and 70% (80% and 102%) on the buy and sell sides of the market respectively.17 

The cost of transacting is a key indicator of liquidity in financial markets, and the finding that 

the short selling ban deteriorates sell side liquidity significantly more than buy side liquidity has 

potential regulatory implications.  Maintaining sell side liquidity – particularly periods of 

downward price pressure – is important to maintaining market stability (Huang and Wang (2008)).  

Consequently, regulations which restrict short selling during periods of downward price pressure 

may have the unintended effect of diminishing sell side liquidity when it is most needed. 

v. Summary of Empirical Findings 

The key findings from the empirical analysis can be summed up as follows:  

1) The 2008 short selling ban led to an increase in adverse selection that was concentrated almost 

exclusively on the sell side of the market  

2) The ban led to an increase in realized spread that was concentrated on the buy side of the market.  

3) The effect of the ban on liquidity through the adverse selection channel is significantly greater 

than its effect through the realized spread channel.  

                                                      
17 Outside the ban I am unable to find systematic differences between buy and sell side transaction costs.  
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4) Total transaction costs increase more for seller-initiated trades than for buyer-initiated trades 

during the ban.   

5. Extensions: Institutional Investors and Adverse Selection 

In this section I test the hypothesis that the increase in sell side adverse selection, which causes 

the overall increase in overall adverse selection during a ban will be more pronounced among 

stocks with higher institutional ownership. This prediction arises because the core of the model 

presented in section (3) is a description of how the ability to short sell impacts investor behavior – 

specifically the decision to gather information. The model implicitly assumes two things about the 

characteristics of the investors in the economy.  First that they are actively in the market for 

information, and second that they are willing to use short selling to execute their trading strategies.   

These two characteristics seem more descriptive of institutional investors than of their retail 

counterparts.  There is a large literature documenting that stocks with higher institutional 

ownership tend to incorporate new information more quickly suggesting that institutional investors 

are more active in the market for information than are their retail counterparts.18  In addition to 

being less active in the market for information, retail investors are also less likely to actively use 

short selling in their trading strategies. 

These characteristics lead me to conjecture that the behavior described in the model is likely 

to be more descriptive of the effect of a short selling ban on the behavior of institutional investors 

than it is of their retail counterparts, suggesting that the predictions of the model will be more 

pronounced among stocks with higher institutional ownership.   

                                                      
18 For example: Badrinath, Kale, and Noe (1994), Sias and Starks (1997), El-Gazzar (1998), Bartov, Radhakrishnan, 

and Krinsky (2000), Balsam, Bartov, and Marquardt (2002), and Jiambalvo, Rajgopal, and Venkatachalam (2002) 

among others.  
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This prediction is essentially a cross sectional one, and testing a cross sectional hypothesis 

requires distilling the effect of the ban for each stock into one number and then determining the 

effect of institutional ownership on that number.   To accomplish this, I define Δ𝐴𝑆𝑡𝑖 as the 

difference in equally weighted daily average adverse selection at the one-minute time horizon 

between a banned stock and its matched control on a given day.  I then use regressions to estimate 

the relation between Δ𝐴𝑆𝑡𝑖 and a host of dependent variables selected to capture relevant 

components indicating the state of the market for both the banned and control stocks.19       

The relation between Δ𝐴𝑆𝑡𝑖 and the state of the market is estimated individually for each stock 

pair using data from August – October 2008 utilizing all dates where the short selling ban is not in 

force.  These regressions provide a baseline estimate of the relation between Δ𝐴𝑆𝑡𝑖 and the 

dependent variables when short selling is allowed.   

The coefficients from these regressions are saved for each stock pair and are used to calculate 

the expected value of Δ𝐴𝑆𝑡𝑖 for each stock pair each trading day in August through October – 

including when the short selling ban is in place.  Abnormal adverse selection experienced by the 

banned stock is defined simply as the difference between the observed value of Δ𝐴𝑆𝑡𝑖 and the 

predicted value.  This abnormal adverse selection is then averaged for a given stock across all days 

that the short selling ban is in place for that stock producing a single number indicating the average 

effect of the ban on adverse selection.   

This methodology produces estimates for the average effect of the ban on adverse selection 

across all stocks that are remarkably similar to those presented in Table 2 column 1 from DD 

                                                      
19 Control variables include: price, dollar volume, price volatility, return, and market cap.  For each of these variables 

I include both Control the level of the given variable for the banned stock as well as the difference between the banned 

stock and its matched control.   
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regressions based on equation (22).  In these regressions, the estimated effect of the ban on one-

minute adverse selection is 2.5 and 4.5 basis points for large and small stocks respectively.  

Averaging the abnormal adverse selection calculated in this section across stocks suggests an 

average effect of the ban of 2.5 and 4.3 basis points for large and small stocks respectively.  

To measure institutional holdings, I use 13 (f) filings to determine the fraction of a stock’s 

shares held by institutional investors.  These holdings are then standardized to give the number of 

standard deviations above or below the mean institutional holdings across all stocks in a given 

quarter. Dividing by the standard deviation across all stocks, as opposed to just those subject to 

the ban, does not affect the statistical significance or sign of any of the coefficients in the following 

tests.  It does however convert the effect of the ban on adverse selection into one that is relative to 

the variation in institutional holdings across the broader market as opposed to just the variation in 

institutional ownership among just financial stocks, which may not be representative of the market 

as a whole.  Standardized institutional holdings are then matched to each banned stock as of the 

closest observation on or prior to September 2008.    

I estimate the relation between average abnormal adverse selection and institutional holding 

using cross-sectional regressions presented in equations (28) and (29). 

𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝐴𝑆𝑖 = 𝛽0 + 𝛽1𝐼𝑛𝑠𝑡 𝐻𝑙𝑑𝑛𝑔𝑠𝑖 + Γ𝑋𝑖 + 𝜀𝑖 (28) 

𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝐴𝑆𝑖,𝑠 = 𝛾0 + 𝛾1𝐼𝑛𝑠𝑡 𝐻𝑙𝑑𝑛𝑔𝑠𝑖 + 𝛾2𝐼𝑛𝑠𝑡 𝐻𝑙𝑑𝑛𝑔𝑠𝑖 ∗ 𝑆𝐼𝑖𝑠 + 𝛾3𝑆𝐼𝑖𝑠 + Γ𝑋𝑖 + 𝜀𝑖 (29) 

Equation (28) estimates the effect of institutional holdings on aggregate abnormal adverse 

selection while equation (29) estimates the effect of institutional holdings on adverse selection for 

the buy and sell sides of the market separately. In equation (28) the coefficient 𝛽1indicates the 

effect of a one standard deviation increase in institutional holdings on average abnormal adverse 
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selection. Equation (29) measures the signed effect. In this specification, the coefficient 𝛾1 

identifies the effect a one standard deviation increase in institutional holdings has on buy side 

adverse selection while the sum of 𝛾1 + 𝛾2 indicates the effect of a one standard deviation increase 

in institutional holdings on sell side adverse selection.  The hypothesis that the effects of the model 

will be more pronounced among stocks with higher institutional ownership suggests that both 𝛽1 

and the sum 𝛾1 + 𝛾3 will be statistically greater than zero.  Table 7 presents the results from these 

tests.  

The results presented in Table 7 indicate that a one standard deviation increase in institutional 

ownership is associated with a 2.6 basis point increase in overall abnormal adverse selection during 

the ban.  This increase in adverse selection also appears concentrated on the sell side of the market. 

Buy side abnormal adverse selection declines by a statistically insignificant 3.7 basis points with 

a one standard deviation increase in institutional ownership while sell side abnormal adverse 

selection experienced during the ban increases by a statistically significant 9.4 basis points.  These 

findings are consistent with the idea that the effects of the ban on adverse selection are more 

pronounced for stocks with greater institutional ownership, because the model is more likely to 

describe the behavior of institutional investors than their retail counterparts. 

Insert Table 7 Here 

6. Conclusion 

This study investigates theoretically and empirically the relation between short selling and 

adverse selection.  Prior studies indicate that the 2008 short selling ban was associated with an 

increase in adverse selection.  This finding is puzzling, however, given the prevailing view of short 

sellers as informed traders and the lack of theoretical explanation for such an outcome.   
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I address the relation between short selling and adverse selection by noting that the ability to 

short sell changes the benefit of information differently for investors who do and do not own the 

asset.  By rendering them unable to transact on negative information, a short selling ban decreases 

the benefit to information for investors who do not own the asset leading fewer of them to become 

informed.  For investors who own the asset a short selling ban increases the relative value of 

information by rendering them the only investors able to trade on negative information, and 

consequently a greater fraction become informed.  During a short selling ban, only investors who 

own the asset are allowed to sell, and more of these investors are informed relative to the no ban 

case.  Consequently, the probability that a sell order originates from an informed trader increases 

leading to increased adverse selection on the sell side of the market.  This dynamic leads to the 

prediction that a short selling ban will lead to an increase in adverse selection, but only on the sell 

side of the market.  

Empirical tests provide evidence consistent with this prediction.  I find that the observed 

increase in adverse selection during the 2008 short selling ban is concentrated almost exclusively 

on the sell side of the market.  Additionally, I observe that the increase in sell side adverse selection 

is the largest component contributing to the increase in effective spreads observed during the ban 

and leads effective spreads to increase 50% more on the sell than buy side of the market during 

the ban.   

This analysis has implications for multiple areas of finance.  First, the study helps to fill a gap 

in the understanding of the link between short selling and liquidity.  Prior explanations of the link 

between short selling and liquidity do provide for adverse selection.  In this study, I suggest that 

an adverse selection link between short selling and adverse selection may exist through a ban’s 

impact on the incentives to gather information.   The need to better understand this channel is 
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highlighted by the finding that the 2008 short selling ban’s effect on liquidity through adverse 

selection dominates the ban’s effect on realized spread.   

The finding that sell side liquidity deteriorates more than buy side liquidity during the ban has 

potential regulatory implications and suggests that restricting short selling during periods of 

downward price pressure may have the unintended effect of diminishing sell side liquidity when 

it is most needed. 

Also, the model’s prediction that the inability to short sell will influence the characteristics of 

the investors who choose to become informed may have implications beyond liquidity.  If fewer 

outside investors choose to become informed because of an inability to trade on negative 

information, then the role of outside investors as monitors of the firm may diminish when short 

selling is restricted.  Fang, Huang, and Karpoff (2015) find evidence consistent with this notion.  

They document that easing short selling restrictions is associated with an increased likelihood of 

a firm being caught for misdeeds which occurred before the easing took place suggesting that when 

short selling restrictions are relaxed, more outside investors choose to gather information.  

Lastly, this study has potential implications for how researchers approach the study of the 

determinates of liquidity.  The asymmetry between the effect of the ban on buy and sell side 

liquidity documented in this study shows that additional insights can be gained by disaggregating 

liquidity measures and studying the buy and sell sides of the market separately. 
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Appendix: Figures and Tables

 

Figure 1: Comparison of the Bid-Ask Spread When Short Selling is Allowed and When it is Prohibited. This figure presents a graphical 

representation of the bid and ask prices predicted in the model both short selling is and is not allowed. 
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Panel A: Large Stocks Panel B: Small Stocks 

Figure 2: Regression Results for the Empact of the Short Selling Ban on Adverse Selection. This figure presents the regression coefficients from regressions 

estimating the effect of the short selling ban on adverse selection.  Adverse selection is measured from DTAQ data employing time horizons from 60 seconds 

to 300 seconds as described in section (4.b).  The effect of the ban on aggregate and buyer and seller-initiated adverse selection are estimated using equations 

(22) and (23).  Coefficients from these regressions are saved and plotted in this figure.  The effect of the ban on aggregate adverse selection is indicated by the 

coefficient 𝜂1 from equation (22) which are plotted as the solid grey line.  The effect of the ban on buyer-initiated adverse selection is indicated by the coefficient 

𝜉1  from equation (23) and are presented as the dotted colored line.  The effect of the ban on seller-initiated adverse selection is the sum of coefficients 𝜉1 + 𝜉3 

from equation (23) and are shown as the dashed colored line.  The horizontal axis indicates the time frame used to measure adverse selection, and the vertical 

axis indicates the observed value of the indicated coefficients in basis points.  Panel A presents the results for large stocks and Panel B presents the results for 

small stocks. 
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Panel A: Large Stocks Panel B: Small Stocks 

Figure 3: Regression Results for the Impact of the Short Selling Ban on Realized Spread. This figure presents the coefficients from regressions estimating 

the effect of the short selling ban on realized spread.  Realized spread is measured from DTAQ data employing time horizons from 60 seconds to 300 seconds 

as described in section (4.b).  The effect of the ban on aggregate and buyer and seller-initiated realized spread are estimated using equations (24) and (25).  

Coefficients from these regressions are plotted in this figure.  The effect of the ban on aggregate realized spread is indicated by the coefficient 𝜅1 from equation 

(24) which are plotted as the solid grey line.  The effect of the ban on buyer-initiated realized spread is indicated by the coefficient 𝜌1  from equation (25) and 

are presented as the dotted colored line.  The effect of the ban on seller-initiated realized spread is the sum of coefficients 𝜌1 + 𝜌3 from equation (25) and is 

shown as the dashed colored line. The horizontal axis indicates the time frame used to measure realized spread, and the vertical axis indicates the observed value 

of the indicated coefficients in basis points.  Panel A presents the results for large stocks and Panel B presents the results for small stocks. 
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Panel A: Large Stocks Panel B: Small Stocks 
Figure 4: Comparing the Adverse Selection and Realized Spread Channels. This figure combines Figures 2 and 3 to compare the effect of the ban on 

transaction costs through both the adverse selection and realized spread channels.  Each point represents the estimated coefficient indicating the effect of the 

short selling ban on one of the given channels obtained from DD and DDD regressions estimated from equations (22) through (25).  The time horizon used to 

measure adverse selection and realized spread varies from 60-300 seconds as indicated on the horizontal axis, the vertical axis indicates the magnitude of the 

observed effect in basis points.  The red lines show the effect of the ban on adverse selection and the blue lines indicate the effect of the ban on realized spread.  

The solid lines present the aggregate effect of the ban, the dashed lines present the effect on the seller-initiated side of the market, and the dotted lines present 

the effect of the ban on the buyer-initiated side of the market.  Panel A presents the results for large stocks and Panel B presents the results for small stocks. 
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Table 1 

Summary Statistics for Matched Sample 

This table presents descriptive statistics for the 257 stocks used in the regression analysis.  Each stock subject to the ban is 

matched, with replacement, to a stock not subject to the ban that has the same listing exchange and options status.  The 

match is based on market cap as of December 31, 2007, and average dollar trading volume over the first seven months of 

2008 based on the distance measure below.  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗 =
|𝑀𝑘𝑡𝑐𝑝𝑖 − 𝑀𝑘𝑡𝑐𝑝𝑗|

𝑀𝑘𝑡𝑐𝑝𝑖
+

|𝐷𝑣𝑜𝑙𝑖 − 𝐷𝑣𝑜𝑙𝑗|

𝐷𝑣𝑜𝑙𝑖
 

Stocks are divided into three groups based on their market cap as of December 31, 2007.  Large stocks are those stocks 

with market caps in the top five NYSE deciles, small stocks are those stocks with market caps in NYSE deciles 3-5.  Results 

are provided both in aggregate and by size group.  Average dollar volume and market cap statistics are reported for the total 

as well as for each of the three size groups separately.  T statistics and p values for a t-test on the difference between the 

banned and matched stocks are performed and the results provided below. 

  Total Large Small 

N 257 139 118 

Average Distance 0.142 0.171 0.108 

   Banned   Matched   Banned   Matched   Banned   Matched  

 Average Monthly 

Dollar Volume 

(Millions) 

2,838 2,421 5,046 4,271 260 259 

t statistic  (0.75) (0.81) (0.02) 

p value  0.451 0.421 0.981 

Market Cap (Millions) 12,547 13,049 22,363 23,301 1,081 1,075 

t statistic  (-0.16) (-0.16) (0.15) 

p value  0.876 0.87 0.881 
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Table 2 

Effect of the Ban on Adverse Selection 

This table presents the results from DD regressions indicating the effect of the short selling ban on 

adverse selection for large stocks (Panel A) and small stocks (Panel B) using time horizons of one 

minute to five minutes to compute adverse selection in basis points.  Small stocks are those stocks 

which have a market cap in NYSE deciles 3-5, and large stocks are those stocks subject to the short 

selling ban which have a market cap in the largest 5 NYSE deciles as of December 31, 2007.  Each 

banned stock is matched to a control stock based on listing exchange, options status, dollar volume, 

and market cap.  Equally weighted adverse selection is computed for each stock each day.  Then 

the difference in daily average adverse selection between a banned stock and its matched control 

is computed and is the dependent variable used in the following DD regression.   

𝐴𝑆𝑖,𝑡
𝐵,Δ𝑡 − 𝐴𝑆𝑖,𝑡

𝐶,Δ𝑡 = 𝜂0 + 𝜂1𝐵𝑎𝑛𝑡 + 𝛤𝑋𝑖𝑡 + 𝜈𝑖 + 𝜀𝑖𝑡 

Presented in the table are the estimated coefficients from the above regression for the effect of the 

short selling ban on one to five-minute adverse selection in columns one through five respectively.  

In this specification, the coefficient 𝜅1 indicates the effect of the short selling ban aggregate 

realized spread. P values testing the hypothesis that 𝜅1is equal to zero are presented in parentheses. 

 

Panel A: Large Stocks 

  

1-Minute 

(1) 

2-Minute 

(2) 

3-Minute 

(3) 

4-Minute 

(4) 

5-Minute 

(5) 

Ban (𝜂1) 2.536*** 3.092*** 3.138*** 3.161*** 3.416*** 

  (0.000) (0.000) (0.000) (0.000) (0.000) 

N 9452 8000 8000 8000 8000 

RSQ 0.257 0.238 0.228 0.205 0.187 

Stock FE Yes Yes Yes Yes Yes 

Date Clustered SE Yes Yes Yes Yes Yes 

            

Panel B: Small Stocks 

  

1-Minute 

(1) 

2-Minute 

(2) 

3-Minute 

(3) 

4-Minute 

(4) 

5-Minute 

(5) 

Ban (𝜂1) 4.500*** 5.876*** 6.209*** 6.604*** 7.032*** 

  (0.000) (0.000) (0.000) (0.000) (0.000) 

N 8000 8000 8000 8000 8000 

RSQ 0.395 0.389 0.397 0.392 0.371 

Stock FE Yes Yes Yes Yes Yes 

Date Clustered SE Yes Yes Yes Yes Yes 

* p<.1, **p<.05, ***p<.01 
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Table 3 

Effect of the Ban on Signed Adverse Selection 

This table presents the results from DDD regressions indicating the effect of the short selling ban 

on signed adverse selection for large stocks (Panel A) and small stocks (Panel B) using time 

horizons of one minute to five minutes to compute adverse selection in basis points presented in 

columns one through five respectively.  Small stocks are those stocks which have a market cap in 

NYSE deciles 3-5, and large stocks are those stocks subject to the short selling ban which have a 

market cap in the largest 5 NYSE deciles as of December 31, 2007.  Each banned stock is matched 

to a control stock based on listing exchange, options status, dollar volume, and market cap.  The 

equally weighted adverse selection is computed for each stock each day.  Then the difference in 

daily average adverse selection and adverse selection between a banned stock and its matched 

control is computed and is the dependent variable used in the DDD regressions.  Presented in the 

table are the estimated coefficients from the below regression for the effect of the short selling ban 

on adverse selection. 

𝐴𝑆𝑖,𝑡,𝑠
𝐵,Δ𝑡 − 𝐴𝑆𝑖,𝑡,𝑠

𝐶,Δ𝑡 = 𝜉0 + 𝜉1𝐵𝑎𝑛𝑡 + 𝜉2𝑆𝐼𝑠 + 𝜉3𝐵𝑎𝑛𝑡 ∗ 𝑆𝐼𝑠 + 𝛤𝑋𝑖𝑡 + 𝜈𝑖 + 𝜀𝑖𝑡 

In this specification, the coefficient 𝜉1 indicates the effect of the short selling ban on buyer-initiated 

adverse selection, the sum of coefficients 𝜉1 + 𝜉3 indicates the seller-initiated effect, and the 

coefficient 𝜉3 indicates the difference between the buyer and seller-initiated effect.  P values testing 

the hypothesis that the relevant coefficients are equal to zero are presented in parentheses. 

Panel A: Large Stocks 

  

1-Minute 

(1) 

2-Minute 

(2) 

3-Minute 

(3) 

4-Minute 

(4) 

5-Minute 

(5) 

Buyer (𝜉1) 0.386 1.051 0.528 0.534 0.666 

  (0.656) (0.336) (0.674) (0.722) (0.706) 

Seller (𝜉1 + 𝜉3) 4.340*** 5.232*** 5.874*** 5.702** 6.065* 

  (0.000) (0.000) (0.000) (0.000) (0.000) 

Difference (𝜉3) 3.954** 4.181* 5.319** 5.168 5.399 

  (0.019) (0.056) (0.050) (0.114) (0.163) 

N 18904 18904 18904 18904 18904 

R-sq 0.035 0.035 0.032 0.030 0.027 

Stock FE Yes Yes Yes Yes Yes 

Date Clustered SE Yes Yes Yes Yes Yes 

Panel B: Small Stocks 

  

1-Minute 

(1) 

2-Minute 

(2) 

3-Minute 

(3) 

4-Minute 

(4) 

5-Minute 

(5) 

Buyer (𝜉1) 2.166*** 2.616** 2.217 2.316 2.554 

  (0.009) (0.034) (0.146) (0.262) (0.299) 

Seller (𝜉1 + 𝜉3) 7.747*** 10.393*** 12.135*** 12.936*** 14.284** 

  (0.030) (0.014) (0.015) (0.008) (0.043) 

Difference (𝜉3) 5.581*** 7.777*** 9.918*** 10.62** 11.73** 

  (0.001) (0.004) (0.003) (0.019) (0.025) 

N 16000 16000 16000 16000 16000 

R-sq 0.171 0.144 0.126 0.108 0.095 

Stock FE Yes Yes Yes Yes Yes 

Date Clustered SE Yes Yes Yes Yes Yes 

* p<.1, **p<.05, ***p<.01 
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Table 4 

Effect of the ban on Realized Spread 

This table presents the results from DD regressions indicating the effect of the short selling ban on 

signed realized spread for large stocks (Panel A) and small stocks (Panel B) using time horizons of 

one minute to five minutes to compute realized spread in basis points.  Small stocks are those stocks 

which have a market cap in NYSE deciles 3-5, and large stocks are those stocks subject to the short 

selling ban which have a market cap in the largest 5 NYSE deciles as of December 31, 2007.  Each 

banned stock is matched to a control stock based on listing exchange, options status, dollar volume, 

and market cap.  Equally weighted realized spread is computed for each stock each day.  Then the 

difference in daily average realized spread between a banned stock and its matched control is 

computed and is the dependent variable used in the DD regressions.   

𝑅𝐸𝑆𝑃𝑖,𝑡
𝐵,Δ𝑡 − 𝑅𝐸𝑆𝑃𝑖,𝑡

𝐶,Δ𝑡 = 𝜅0 + 𝜅1𝐵𝑎𝑛𝑡 + 𝛤𝑋𝑖𝑡 + 𝜈𝑖 + 𝜀𝑖𝑡 

Presented in the table are the estimated coefficients from the above regression for the effect of the 

short selling ban on one to five-minute realized spread in columns one through five respectively.    In 

this specification, the coefficient 𝜅1 indicates the effect of the short selling ban aggregate realized 

spread. P values testing the hypothesis that 𝜅1is equal to zero are presented in parentheses. 

Panel A: Large Stocks 

  

1-Minute 

(1) 

2-Minute 

(2) 

3-Minute 

(3) 

4-Minute 

(4) 

5-Minute 

(5) 

Ban (𝜅1) 1.646*** 1.023*** 1.028** 1.013** 0.837 

  (0.000) (0.005) (0.019) (0.036) (0.101) 

N 9452 9452 9452 9452 9452 

RSQ 0.175 0.135 0.111 0.095 0.080 

Stock FE Yes Yes Yes Yes Yes 

Date Clustered SE Yes Yes Yes Yes Yes 

            

Panel B: Small Stocks 

  

1-Minute 

(1) 

2-Minute 

(2) 

3-Minute 

(3) 

4-Minute 

(4) 

5-Minute 

(5) 

Ban (𝜅1) 6.722*** 5.483*** 5.169*** 4.819*** 4.455*** 

  (0.000) (0.000) (0.000) (0.000) (0.000) 

N 8000 8000 8000 8000 8000 

RSQ 0.257 0.238 0.228 0.205 0.187 

Stock FE Yes Yes Yes Yes Yes 

Date Clustered SE Yes Yes Yes Yes Yes 

* p<.1, **p<.05, ***p<.01 
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Table 5 

Effect of the Ban on Signed Realized Spread 

This table presents the results from DDD regressions indicating the effect of the short selling ban 

on signed realized spread for large stocks (Panel A) and small stocks (Panel B) using time horizons 

of one minute to five minutes to compute realized spread in basis points presented in columns one 

through five respectively.  Small stocks are those stocks which have a market cap in NYSE deciles 

3-5, and large stocks are those stocks subject to the short selling ban which have a market cap in 

the largest 5 NYSE deciles as of December 31, 2007.  Each banned stock is matched to a control 

stock based on listing exchange, options status, dollar volume, and market cap.  The equally 

weighted adverse selection and realized spread is computed for each stock each day.  Then the 

difference in daily average adverse selection and realized spread between a banned stock and its 

matched control is computed and is the dependent variable used in the DDD regressions.  Presented 

in the table are the estimated coefficients from the below regression for the effect of the short 

selling ban on realized spread. 

𝑅𝐸𝑆𝑃𝑖,𝑡,𝑠
𝐵,Δ𝑡 − 𝑅𝐸𝑆𝑃𝑖,𝑡,𝑠

𝐶,Δ𝑡 = 𝜌0 + 𝜌1𝐵𝑎𝑛𝑡 + 𝜌2𝑆𝐼𝑠 + 𝜌3𝐵𝑎𝑛𝑡 ∗ 𝑆𝐼𝑠 + 𝛤𝑋𝑖𝑡 + 𝜈𝑖 + 𝜀𝑖𝑡 

In this specification, the coefficient 𝜌1 indicates the effect of the short selling ban on buyer-initiated 

realized spread, the sum of coefficients 𝜌1 + 𝜌3 indicates the seller-initiated effect, and the 

coefficient 𝜌3 indicates the difference between the buyer and seller-initiated effect.  P values testing 

the hypothesis that the relevant coefficients are equal to zero are presented in parentheses.   

Panel A: Large Stocks 

  

1-Minute 

(1) 

2-Minute 

(2) 

3-Minute 

(3) 

4-Minute 

(4) 

5-Minute 

(5) 

Buyer (𝜌1) 2.914*** 2.506** 2.982** 2.888* 2.709 

  (0.001) (0.021) (0.018) (0.056) (0.127) 

Seller (𝜌1 + 𝜌3) 0.878 0.002 -0.449 -0.421 -0.817 

  (0.000) (0.021) (0.239) (0.460) (0.817) 

Difference (𝜌3) -2.036 -2.504 -3.431 -3.309 -3.526 

  (0.210) (0.251) (0.207) (0.312) (0.362) 

N 18904 18904 18904 18904 18904 

R-sq 0.012 0.010 0.010 0.009 0.009 

Stock FE Yes Yes Yes Yes Yes 

Date Clustered SE Yes Yes Yes Yes Yes 

Panel B: Small Stocks 

  

1-Minute 

(1) 

2-Minute 

(2) 

3-Minute 

(3) 

4-Minute 

(4) 

5-Minute 

(5) 

Buyer (𝜌1) 7.510*** 7.013*** 7.328*** 7.200*** 7.024*** 

  (0.000) (0.000) (0.000) (0.001) (0.007) 

Seller (𝜌1 + 𝜌3) 6.571*** 4.060** 2.462 1.910 .0681 

  (0.001) (0.002) (0.008) (0.007) (0.025) 

Difference (𝜌3) -0.939 -2.953 -4.866 -5.290 -6.343 

  (0.563) (0.206) (0.111) (0.193) (0.192) 

N 16000 16000 16000 16000 16000 

R-sq 0.099 0.082 0.063 0.053 0.046 

Stock FE Yes Yes Yes Yes Yes 

Date Clustered SE Yes Yes Yes Yes Yes 

* p<.1, **p<.05, ***p<.01 
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Table 6 

Effect of the Ban on Effective Spread 

This table presents the results for regressions testing the effect of the short selling ban on 

effective spreads for large and small stocks.  Effective spread is computed as the equally 

weighted daily average effective spread.  The total effect of the short selling ban on effective 

spreads is estimated using the difference-in-difference regression from equation (26).  In this 

regression, the dependent variable is the difference in daily average effective spread between a 

banned stock and its matched control.  The effect of the short selling ban on buyer and seller-

initiated effective spread is estimated using the following difference-in-difference-in-difference 

regression from equation (27). In this regression, equally weighted average effective spread is 

computed daily for buyer and seller-initiated trades, where trades are signed using the Lee and 

Ready (1991) algorithm.  The dependent variable is the difference in equally weighted average 

effective spread between a banned stock and its matched control on a given day for either all buy 

or sell trades.  This table presents only the coefficients indicating the effect of the short selling 

ban on effective spreads. The coefficient 𝛾1from equation (26) indicates the total effect of the 

short selling ban on transaction costs.  The coefficient 𝛽1 from equation (27) indicates the effect 

of the ban on buyer-initiated trades, and the sum of 𝛽1 + 𝛽2 indicates the effect of the ban on 

seller-initiated trades.  Significance for the seller-initiated effect is determined by an F test of 

joint significance.  Panel A presents the aggregate effect of the ban on effective spread, and panel 

B presents the signed effect of the ban on effective spread.  P values are provided in parentheses.   

Panel A: Aggregate Effect 

  

Large Stocks 

(1) 

Small Stocks 

(2) 

Total Effect (𝛾1) 4.770*** 12.66*** 

  (0.000) (0.000) 

N 9452 8000 

R-sq 0.618 0.469 

Stock FE Yes Yes 

Date Clustered SE Yes Yes 

 

Panel B: Signed Effect   

 

Large Stocks 

(1) 

Small Stocks 

(2) 

Buyer-initiated Effect (𝛽1) 3.773*** 10.11*** 

  (0.000) (0.000) 

Seller-initiated Effect (𝛽1 + 𝛽3)  5.596*** 15.317*** 

  (0.000) (0.000) 

Difference (𝛽2) 1.823*** 5.207*** 

  (0.000) (0.000) 

N 18904 16000 

R-sq 0.581 0.434 

Stock FE Yes Yes 

Date Clustered SE Yes Yes 

* p<.1, **p<.05, ***p<.01 
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Table 7 

Institutional Ownership and Abnormal Adverse Selection 

This table presents results from regressions indicating the effect of institutional holdings 

on abnormal adverse selection. Abnormal adverse selection is estimated following the 

process described in section 5.  Institutional ownership is estimated using data from 13f 

filings and is standardized so that it indicates the number of standard deviations above or 

below the mean a given stock’s level of institutional ownership is.  Columns 1 and 2 

present the effect of institutional ownership on aggregate adverse selection as estimated 

from equation (28). Columns 3 and 4 present the effect of institutional ownership on 

signed adverse selection as estimated from equation (29).  Adverse selection is measured 

in basis points employing a 60 second horizon.  T statistics are provided in parentheses 

except where the seller effect is estimated, where it is the f statistic from an f test of joint 

significance of the variables 𝛾1 + 𝛾2 from equation (29).  Even numbered columns include 

control variables while odd numbered columns do not.  

 (1) (2) (3) (4) 

𝑇𝑜𝑡𝑎𝑙 𝐸𝑓𝑓𝑒𝑐𝑡 (𝛽1) 2.611** 2.585**   

 (2.25) (2.22)   

𝐵𝑢𝑦𝑒𝑟 𝐸𝑓𝑓𝑒𝑐𝑡 (𝛾1)   -3.749 -3.677 

   (-0.82) (-0.79) 

𝑆𝑒𝑙𝑙𝑒𝑟 𝐸𝑓𝑓𝑒𝑐𝑡 (𝛾1 + 𝛾2)   9.401** 9.473** 

   (4.21) (4.09) 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝛾2)   13.15** 13.15** 

   (2.03) (2.01) 

N 257 257 514 514 

R-sq 0.019 0.098 0.012 0.017 

Control Variables No Yes No Yes 

* p<.1, **p<.05, ***p<.01 
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ABSTRACT 

 

We show that firm-level short interest predicts negative returns for individual 

stocks during economic expansions, while aggregate short interest predicts negative 

market returns during recessions. Viewing short sellers as informed traders, these 

findings are consistent with Kacperczyk, Van Nieuwerburgh, and Veldkamp’s 

(2016) model in which rational yet cognitively constrained traders optimally 

allocate attention among firm-specific and systematic signals. In their model, 

traders collect aggregate (firm-specific) information in recessions (expansions) 

because these times are marked by higher (lower) aggregate volatility and price of 

risk. 
 

 

 

1. Introduction  

When faced with information processing constraints, even the most sophisticated and 

capital rich investor must allocate the scarce resource of attention. The resulting allocation choices 

directly influence the composition and performance of managed portfolios. More broadly, since 

information acquisition—or the lack thereof—drives price efficiency (e.g., Grossman and Stiglitz 

(1980)), attention allocation has implications for the welfare of market participants, the severity 
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and duration of mispricing, and the extent to which stock prices may guide firms’ real investment 

decisions (Dow and Gorton (1997), Chen, Goldstein, and Jiang (2007)).  

Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016), hereafter KVV, model a multi-

asset framework in which rational yet cognitively constrained traders optimally choose which 

types of information to observe prior to forming portfolios. Signals that are either systematic or 

firm-specific in nature represent these different types of information. Since recessions coincide 

with greater aggregate volatility and an elevated price of risk, constrained information processors 

allocate relatively more attention to signals affecting all firms than to signals affecting only a single 

firm. The opposite prediction holds for expansionary times. In short, the marginal benefit of 

collecting systematic (as opposed to idiosyncratic) signals is greatest during recessions, and 

rational agents respond accordingly. 

We offer a novel test of the rational inattention model by analyzing the trading decisions 

of short sellers. This laboratory is appealing because empirical evidence portrays short sellers as 

informed investors. First, Saffi and Sigurdsson (2010) and Boehmer and Wu (2012) show that 

stocks with lower shorting constraints and higher shorting activity, respectively, have more 

efficient prices. These findings are consistent with a Grossman and Stiglitz (1980) world in which 

short sellers represent informed traders. Second, a large literature relates shorting activity to low 

future stock returns, again suggesting short sellers possess information relevant to future prices. 

Most of this work uses cross-sectional tests to show that stocks with greater short selling 

experience lower future returns than those with less shorting. Prominent studies that document this 

effect using monthly or bi-monthly short interest include Figlewski (1981) and Boehmer, Huszar, 

and Jordan (2010), hereafter BHJ. Those employing daily data on equity lending and shorting flow 

include Cohen, Diether, and Malloy (2007) and Diether, Lee, and Werner (2009). In addition, 
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Boehmer, Jones, and Zhang (2008) and Kelley and Tetlock (2016) show that both institutional and 

retail short sellers correctly anticipate future negative returns. Recent work by Rapach, 

Ringgenberg, and Zhou (2016) complements the cross-sectional literature by demonstrating that 

short interest aggregated across stocks predicts market returns over the subsequent year. Short 

sellers’ ability to anticipate aggregate cash flows primarily drives this predictability.  

While the literature generally agrees that short sellers successfully anticipate stock returns, 

the timing and nature of this predictability is largely unexplored. We examine how short sellers’ 

ability to predict aggregate and firm-specific stock returns varies across the business cycle and 

offer new insights into the attention allocation decisions of informed traders. To the extent that 

switching attention from aggregate to firm-specific signals drives time variation in short sellers’ 

cross-sectional and aggregate return predictability, our two main results are consistent with the 

rational attention allocation theory of KVV. In our first set of tests, we examine a portfolio that is 

long stocks with low short interest and short stocks with high short interest. Consistent with prior 

literature, this portfolio has a positive alpha over the full time series from 1973 to August 2015. 

More importantly, the alpha is over twice as large in expansions as it is during recessions, 

suggesting that short sellers’ trades convey less firm-specific information during recessions 

compared to expansions.  

Our second set of tests examines the relation between Rapach, Ringgenberg, and Zhou’s 

(2016) short interest index (SII) and future aggregate market returns. We show that aggregate short 

interest predicts future market returns economically and statistically more strongly during 

economic recessions than during economic expansions. Specifically, we find that during a 

recession (expansion), a one standard deviation increase in SII is associated with a future three-

month excess return of -1.7% (-0.4%), -1.4% (-0.2%), and -1.3% (-0.2%) on the CRSP value 
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weighted index, the CRSP equal weighted index, and the S&P 500 respectively. During recessions, 

the relation between each of the three indices and the SII is highly significant.  However, for the 

S&P 500 and the CRSP value weighted index the observed relation is statistically insignificant 

during expansions. Taken as a whole, our results are consistent with one class of informed 

investors – short sellers – shifting their attention from firm-specific information in expansions to 

aggregate information in recessions. 

 These results are robust to a number of alternative specifications. First, our cross-sectional 

results hold when we allow factor loadings to vary with the business cycle and when we measure 

abnormal returns using Daniel, Grinblatt, Titman, and Wermers (1997) characteristic adjustments 

(DGTW). Second, our findings are robust to two alternative real-time recession indicators: the 

probability of recession based on the work of Chauvet and Piger (2008) and a measure based on 

the Chicago Fed’s National Activity Index. Finally, we divide our sample in June 1988 and verify 

our results in both subsamples.  

Our paper joins a budding empirical literature on rational attention allocation. Most closely 

related is the analysis in KVV. These authors test their model by examining the covariances 

between actively managed mutual funds’ quarterly position changes and future aggregate and firm-

level fundamentals. They find that during expansions, funds tilt their holdings in the cross-section 

of stocks toward those with strong future earnings. In contrast, during recessions, funds tend to 

shift into and out of equities in a manner that anticipates future aggregate earnings shocks. This 

evidence speaks directly to how certain traders allocate attention but is silent on the extent to which 

the attention reallocation is profitable. Kacperczyk, Van Nieuwerburgh, and Veldkamp (2014), in 

contrast, show certain funds switch from stock selection strategies in expansions to market timing 

strategies in recessions and that these particular funds generate positive alpha. In other words, 
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these authors identify skilled investors as those who switch focus from firm-specific to aggregate 

information across the business cycle. Because we study short interest aggregated across all short 

sellers, we conduct no analysis at the trader level. Rather, in our analysis, we speak to business 

cycle variations in an entire class of investors’ ability to identify firm-specific and market-wide 

mispricing. 

Other authors provide empirical evidence that attention allocation matters for prices. Ben-

Rephael, Da, and Israelsen (2016) show that institutional attention facilitates the incorporation of 

information in earnings announcements and analyst recommendation changes. In a similar vein, 

DellaVigna and Pollet (2009) and Hirshleifer, Lim, and Teoh (2009) show that markets respond 

sluggishly to earnings announcement information when investors are likely distracted by other 

stimuli. A key difference between these studies and ours is that they relate attention to efficient 

incorporation of public information. We consider how informed traders allocate attention by 

observing the manner in which their trades convey private information and predict returns. 

Our analysis also suggests potential real implications of rational attention allocation. 

Kempf, Manconi, and Spalt (2016) argue that investors who allocate attention elsewhere play a 

diminished monitoring role. Firms with such “distracted” shareholders are more likely to announce 

value-destroying acquisitions, cut dividends, and retain CEOs in the wake of poor performance. 

Other work shows short sellers are effective monitors. For example, Karpoff and Lou (2010) show 

that short sellers are able to identify financial misconduct well in advance of other market 

participants and Fang, Huang, and Karpoff (2015) relate short-selling constraints to greater 

earnings management. As short-sellers allocate attention away from firm-specific signals in 

recessions, managers may engage in more value-destroying and nefarious behavior in these states 

of the world. This is particularly concerning in recessions because some combination of greater 
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operating and financial leverage, weak fundamental performance, and underdiversified managers 

may facilitate inefficient outcomes ranging from excessive risk-taking to underinvestment (e.g., 

Jensen and Meckling, (1976); Myers, (1984)). 

2. Hypothesis Development 

In KVV’s model, investors make two rounds of choices. In the first, they allocate attention 

amongst firm-specific and aggregate signals. In the second, they form portfolios. While this model 

is static in nature, its rich predictions highlight how investors optimally reallocate attention across 

the business cycle as the price of risk and volatility evolve. In particular, since aggregate volatility 

and the price of risk both tend to rise during recessions20, investors in this model find it more 

valuable to allocate attention to aggregate (firm-specific) signals in recessions (expansions). 

Intuitively, recessions are times when aggregate shocks have the greatest effects on overall 

portfolios, and it is during these times when investors most value the reduction in risk that results 

from learning aggregate signals. Since attention is a scarce resource in the model, investors who 

learn more about aggregate signals must necessarily learn less about firm-specific signals. 

In standard information asymmetry models (e.g, Kyle (1985)), informed traders gain at the 

expense of the uninformed. KVV’s model implies the nature of these gains varies across the 

business cycle. This reasoning leads to our main hypotheses regarding short sellers’ ability to 

predict future stock returns which we refer to as the Stock Selection Hypothesis and the Market 

Timing Hypothesis. According to the Stock Selection Hypothesis, short interest will be a stronger 

cross-sectional predictor of stock returns during expansions than recessions. During expansions, 

informed traders, as proxied by short-sellers, should allocate attention to firm-specific signals, and 

                                                      
20 KVV summarize this literature in their Section 3.2. 
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the profitability of their trading strategies should manifest cross-sectionally via the stocks they 

trade. According to the Market Timing Hypothesis, short interest will be a stronger time-series 

predictor of stock returns during recessions than expansions. This is because during recessions, 

informed traders should reallocate attention to aggregate signals, and their trading should better 

predict future aggregate stock returns. 

3. Data 

We analyze short interest data for NYSE, AMEX, and NASDAQ listed stocks as compiled 

and reported by the exchanges from 1973 to 2015. Exchanges reported outstanding short interest 

once per month (as of the 15th) from 1973 through August, 2007 and twice per month (as of the 

15th and 30th) from September, 2007 until present. We limit our analysis to the mid-month reports 

for consistency over the entire time series. We obtain these data primarily from Compustat, which 

provides short interest data for NYSE and AMEX listed firms from 1973 to 2015 and for NASDAQ 

listed firms from 2004 to 2015.We supplement the Compustat data with monthly short interest for 

NASDAQ-listed securities obtained directly from NASDAQ for the years 1988-2003.21  For each 

stock-month, we normalize short interest by computing the fraction of shares held short as the 

number of shares held short divided by the number of shares outstanding. Henceforth, we refer to 

this fraction as short interest.  

We obtain stock specific information on shares outstanding, returns, delisting returns, 

price, and trading volume from CRSP. We consider only ordinary common stocks that have traded 

for at least one year and require non-missing data for return, trading volume, shares outstanding, 

and share price. To measure recessions, we use official business cycle dates published by the 

                                                      
21 The NASDAQ short interest dataset is not perfectly complete as noted also by Chen and Singal (2003) and 

Boehmer, Huszar, and Jordan (2010) data is missing for February and July of 1990. 
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National Bureau of Economic Research (NBER). Since the NBER establishes these dates ex post 

and our hypotheses describe real-time attention allocation decisions of short-sellers, we employ 

two real-time business cycle measures similar to those used in Kacperczyk, Van Nieuwerburgh, 

and Veldkamp (2014). The first is the probability of recession (Pr_REC), as estimated by Chauvet 

and Piger (2008) using a dynamic-factor-Markov-switching model applied to four monthly 

macroeconomic variables. We obtain the time series of recession probabilities from Marcelle 

Chauvet’s website.22 The second alternative measure for the business cycle is based on the Chicago 

Fed’s National Activity Index (CFNAI).   

In Table 8 we present descriptive statistics for our sample.  In our descriptive statistics, we 

split our sample into two periods with the first period beginning in January 1973 and ending in 

May 1988 and the second period beginning in June 1988 and running through August 2015.  This 

partition ensures that both periods have approximately the same number of recession months (34 

in the first period and 38 in the second period). We also note that since the NASDAQ short interest 

data begins in June 1988, our subsample procedure facilitates a cursory analysis of the exclusion 

of NASDAQ securities.  

Insert Table 8 Here 

In Panel A of Table 8, we present descriptive statistics for the 25th, 50th, and 75th percentiles, 

as well as the mean value of short interest for the two time periods considered. In Panels B and C, 

we present similar statistics for stock price and market cap (in thousands) for the two periods. 

Panel D presents other statistics, including the average number of stocks with zero and non-zero 

reported short interest each month and the number of NBER recession months in a given 

subsample.  From Table 8 we observe that average short interest has increased over time.  Further, 

                                                      
22 https://sites.google.com/site/marcellechauvet/u-s-probabilities-of-recession-chauvet-and-piger-2008 
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the median stock price declines in the latter period coincident with the addition of NASDAQ 

securities. Also, we find that the addition of NASDAQ securities increases our average number of 

observations each month from just over a thousand to over four thousand.   

4. Empirical Analysis 

In our empirical analysis, we test the Stock Selection and Market Timing Hypotheses by 

examining how the relation between short selling and future returns varies with the business cycle.  

We proceed with a cross-sectional analysis of the information content of short sales around the 

business cycle. This analysis follows the established literature documenting that in the cross 

section of stocks, high short selling conveys information about low future returns of individual 

stocks.23 We then consider the relation between short interest and aggregate stock returns by 

building on the recent work of Rapach, Ringgenberg, and Zhou (2016) who document that 

detrended aggregate short interest strongly predicts future returns on the S&P 500 index.   

a. Cross Sectional Results 

Our first set of analysis tests the Stock Selection Hypothesis. Specifically, we assess how 

short sellers’ ability to explain the cross-section of individual security returns varies around the 

business cycle. A large literature documents the informed nature of short sells, and our tests most 

closely follows those relating the cross-section of short interest to future stock returns such as 

Figlewski (1981), Desai, Ramesh, Thiagarajan, and Balachandran (2002), Asquith, Pathak, and 

Ritter (2005), and BHJ. To test the hypothesis that short interest better predicts firm-specific 

returns during expansions than during recessions, we begin with the framework of BHJ. They find 

                                                      
23 See for example Figlewski (1981), BHJ, Cohen, Diether, and Malloy (2007) , Diether, Lee, and Werner (2009), 

Boehmer, Jones, and Zhang (2008), and Kelley and Tetlock (2016) 
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that a portfolio with long exposure to lightly shorted stocks and short exposure to highly shorted 

stocks earns a positive abnormal return over the subsequent month during the 1988 to 2005 time 

period.    

We sort stocks each month according to short interest on the 15th of the prior month. We 

then form portfolios of lightly and heavily shorted stocks as those with short interest below (above) 

some extreme threshold percentile in the prior month’s cross-sectional short-interest distribution. 

Following BHJ, we consider the 10th, 5th, and 1st percentiles as the thresholds for lightly shorted 

stocks and the 90th, 95th, and 99th percentiles as thresholds for heavily shorted stocks. We then 

compute equal-weighted returns for the three lightly and heavily shorted stock portfolios over the 

h months following the formation month. For h > 1, we overlap returns in calendar time as in 

Jegadeesh and Titman (1993). Lastly, we compute three spread portfolio returns corresponding to 

portfolios that buy and sell the 10th and 90th short interest percentile portfolios, the 5th and 95th 

short interest percentile portfolios, and the 1st and 99th short interest percentile portfolios. 

We evaluate the profitability of these strategies using the Carhart (1997) four-factor model 

augmented with a recession dummy:   

𝑟𝑒𝑡𝑡+1:𝑡+ℎ
𝑝 = 𝛼𝑒 + 𝛼𝑟𝑅𝑒𝑐𝑡 + 𝛽𝑀𝐾𝑇𝑅𝐹𝑡 +  𝑠𝑆𝑀𝐵𝑡 + ℎ𝐻𝑀𝐿𝑡 + 𝑚𝑀𝑂𝑀𝑡 + 𝜀𝑡 (1) 

The dependent variable 𝑟𝑒𝑡𝑡+1:𝑡+ℎ
𝑝

 corresponds to the excess return on portfolio 𝑝 where 𝑝 

indexes the percentile 𝑝 𝜀 (10,5,1,90,95,99, 10 − 90,5 − 95, 1 − 99)). The indicator variable 

𝑅𝑒𝑐𝑡 equals 1 during NBER recession months and 0 during expansion months. The variables 

𝑀𝐾𝑇𝑅𝐹𝑡, 𝑆𝑀𝐵𝑡, 𝐻𝑀𝐿𝑡, and 𝑀𝑂𝑀𝑡 correspond to the monthly factors in the Carhart (1997) four 

factor model.24 The coefficient 𝛼𝑒 denotes the four-factor alpha for the given portfolio during an 

                                                      
24 We obtain the monthly market, SMB, HML, and momentum factors as well as the risk-free rate from Ken 

French’s website. 
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expansion. The coefficient  𝛼𝑟 indicates the incremental four-factor alpha during a recession. The 

sum of 𝛼𝑒 + 𝛼𝑟 indicates the alpha of the portfolio during a recession. 

To establish a baseline and connect with prior literature, we first estimate the model under 

the restriction 𝛼𝑟 = 0 and report the results in Table 9. Columns one through three contain results 

corresponding to one-month calendar time portfolio returns (h = 1), and columns four through six 

contain the results for three-month calendar time portfolio returns (h = 3). These unconditional 

results cohere with prior findings. First, across all six models, the spread portfolios produce 

significantly positive alphas; lightly-shorted firms tend to out-perform heavily-shorted firms on a 

risk-adjusted basis. Second, portfolios formed using more extreme short interest cutoffs experience 

more extreme alphas. Specifically, we find that for one (three) month calendar time portfolios the 

alphas are 1.8 (1.7), 2.1 (2.1), and 2.9 (2.6) percent monthly for portfolios that are long and short 

stocks in the most extreme 10%, 5%, and 1% of high and low short interest respectively.  These 

findings also demonstrate that the alphas decay in event time as in every case the alphas for the 

portfolios with three month holding periods produces smaller risk adjusted alphas than their 

corresponding one month portfolios. Finally, the significantly negative market betas for the spread 

portfolios are consistent with the known finding that investors tend to short high-beta stocks.  

Insert Table 9 Here 

We present our main cross-sectional results in Table 10. Across all six specifications in 

Table 10 we observe that the expansion alpha is positive and significant at the one-percent level. 

In column 1 (4) the monthly alpha generated by the one- (three-) month calendar time portfolio 

that goes long stocks below the 10th percentile and short stocks above 90th percentile is 2.0 percent 

(2.0 percent). Similarly, in column 2 (5) the monthly alpha generated by the one (three) month 

calendar time portfolio that goes long stocks below the 5th percentile and short stocks above 95th 
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percentile is 2.3 percent (2.3 percent). Lastly, in column 3 (6) we observe the monthly alpha 

generated by the one (three) month calendar time portfolio based on the most extreme short interest 

cutoffs is 3.1 percent (2.9 percent). These results suggest that during an expansion the trades of 

short sellers in individual securities contain significant information about future firm-specific 

returns. Moreover, these findings are consistent with the unconditional results from Table 9 and 

prior literature. This is not surprising given the U.S. economy has experienced far more months in 

expansions than recessions over the sample period. 

Insert Table 10 Here 

Examining the point estimate on the Rec variable, we observe that in each of the six 

specifications, alpha diminishes significantly during recession months. These findings provide 

strong support for the Stock Selection Hypothesis. The decrease in alpha is economically 

meaningful as point estimates decrease by about one-half during recessions. For the one-month 

calendar time portfolios, monthly alpha falls from 2.0 percent, 2.3 percent, and 3.1 percent in 

expansions to 0.8 percent, 0.9 percent, and 1.6 percent in recessions. The changes in point 

estimates for the three-month calendar time portfolios are similar. Table 5 summarizes these 

results. The blue bars represent spread portfolio alphas for one-month calendar time portfolios, 

and the green bars represent those for the three-month calendar time portfolios. The dark bars 

indicate the expansion alpha as indicated by the coefficient 𝛼𝑒 from Equation (1), and the light 

bars indicate the recession alpha computed as the sum of the coefficients 𝛼𝑒 + 𝛼𝑟  from Equation 

(1).  

Insert Table 5 Here 

We next investigate separately each leg of the spread portfolio to better describe how short 

sellers reallocate attention across the business cycle. The attention theory suggests that highly 
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shorted stocks should drive business cycle variation in alpha. High shorting activity in a stock 

implies attention; however, this attention may reflect the collection of either aggregate or firm-

specific signals. Theory predicts the type of signals collected will vary with the business cycle. In 

contrast, low or zero shorting activity is more difficult to interpret. On the one hand, low shorting 

may reflect inattention. On the other hand, it may reflect attentive investors who have observed 

positive signals, potentially either aggregate or firm-specific in nature.25 Thus, during a recession, 

as short sellers shift their attention from firm specific to macro information we expect that the 

individual short sales will become less informed about firm specific information, and alphas 

become smaller in magnitude for the portfolio of stocks with high short interest. It is not clear 

what, if any effect a recession will have on the alphas in the portfolios of lightly shorted stocks.   

We study the effect of a recession on the alphas of heavily and lightly shorted stocks in 

Table 11. In this analysis, we employ the same specification from Equation (1) with the returns on 

the lightly and heavily shorted portfolios. In Panel A, we present the results for the portfolios of 

heavily shorted securities. Across all specifications, the portfolios of highly shorted stocks produce 

a significantly negative four-factor alpha during expansions. This alpha diminishes significantly, 

and in some cases, disappears entirely, during a recession. For example, in column 4, the expansion 

alpha for the three-month calendar time returns for the portfolio of heavily shorted stocks is a 

statistically significant -0.8 percent. Thus, stocks with high short interest during expansions 

subsequently experience low future returns.  However, the alpha for the high short interest 

portfolio during recessions is -0.8 + 1.0 = 0.2 percent.  An F-test fails to reject the null hypothesis 

that 𝛼𝑒 + 𝛼𝑟 = 0 (p=0.72).  Similar F-tests for each of the other five specifications in Panel A also 

                                                      
25 As discussed by BHJ, a low level of short interest may indicate that there is a consensus among market 

participants that a stock is not overpriced, and thus not worth shorting. These lightly shorted stocks would therefore 

be less likely to experience negative future returns, and BHJ demonstrate that a portfolio of lightly shorted stocks 

does produce positive four factor alpha. 
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fail to reject the null hypothesis of zero recession alpha at the 10% level or better. These findings 

bolster our interpretation that short sellers pay more attention to macro information than firm-

specific information during recessions. 

Insert Table 11 Here 

In Table 11 Panel B, we present results for lightly shorted stocks. In these specifications, 

we find, consistent with the unconditional results of BHJ, that the portfolios of lightly shorted 

stocks produce significant four factor alphas across all six specifications during expansions. The 

intercept in each of our specifications is significantly positive. Moreover, these alphas generally 

do not significantly change during recessions.  

In sum, our findings demonstrate that high short interest is only an effective predictor of 

future firm-specific returns during economic expansions. During recessions, high short interest has 

no measurable ability to predict future stock returns. Consequently, the alphas on an arbitrage 

portfolio that is long low short interest stocks and short high short interest stocks is cut 

approximately in half during recessions. These finding are consistent with short sellers devoting 

less attention to firm-specific information during recessions than during expansions. 

b. Aggregate Returns 

According to the attention allocation theory of KVV, informed investors reallocate 

attention away from firm-specific signals and toward aggregate signals during recessions. Our 

results in the prior section are consistent with the first part of this theory; short interest does not 

correctly predict the cross-section of future stock returns during recessions. We now turn to the 

second part of the theory and examine how the relation between aggregate short interest and future 

market returns varies with the business cycle. If informed traders are reallocating attention to 
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aggregate signals during recessions, we expect their positions to better predict aggregate market 

returns during these periods. This is the essence of the Market Timing Hypothesis.  

Compared to the vast literature relating short selling to the future returns of individual 

stocks, few authors have examined short sellers’ ability to anticipate aggregate returns. Rapach, 

Ringgenberg, and Zhou (2016) offer the first analysis covering a long time series. They construct 

a detrended aggregate short interest index (SII) that predicts future aggregate stock returns. They 

show that the SII’s ability to predict returns surpasses that of other variables widely studied in the 

literature (e.g., Welch and Goyal, 2008). The short interest index offers an ideal environment for 

testing whether investors shift from firm-specific signals to macroeconomic signals because the 

index aggregates the trading behavior of short sellers across stocks. If short sellers are, as an 

investor class, observing aggregate signals during recessions and firm-specific signals during 

expansions, then we expect SII to correlate more strongly with future market returns during 

recessions than during expansions. We construct SII as in Rapach, Ringgenberg, and Zhou (2016). 

We first restrict the sample to stocks with price exceeding $5 and those with market capitalization 

above the NYSE 5th percentile. Since the index is based on an equal-weighted average, these filters 

reduce the influence of the disproportionate number of stocks with little or no short interest, 

especially early in the time series. We then compute the equal weighted average short interest 

across all stocks each month (𝐸𝑊𝑆𝐼𝑡), leaving us with a monthly time series from 1973 through 

2015. This series has a strong linear trend, so we detrend the series using the following regression:  

log(𝐸𝑊𝑆𝐼𝑡) = 𝑎 + 𝑏𝑡 + 𝑢𝑡 (2) 

We divide the time series of residuals 𝑢𝑡 by their standard deviation 𝜎𝑢𝑡
 to create the final SII. In 

Table 6, we present the computed SII time series from January 1973 through August 2015. 

Insert Table 6 Here 
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Rapach, Ringgenberg, and Zhou (2016) demonstrate that SII has strong predictive 

properties for future realizations of the S&P 500 index by estimating the predictive regression: 

𝑟𝑒𝑡𝑡+1:𝑡+ℎ
𝑆&𝑃500 = 𝛼 + 𝛽𝑆𝐼𝐼𝑡 + 𝜀𝑡+1:𝑡+ℎ, (3) 

where 𝑟𝑒𝑡𝑡+1:𝑡+ℎ
𝑆&𝑃500 = (

1

ℎ
) (𝑟𝑒𝑡𝑡+1

𝑆&𝑃500 + ⋯ + 𝑟𝑒𝑡𝑡+ℎ
𝑆&𝑃500). In this specification, the coefficient 𝛽 

measures the relation between SII in month t and the S&P500 over the subsequent h months.  In 

Table 11 we perform a similar analysis except that we allow the relation between the SII and future 

returns to vary with the state of the market. We augment Equation (3) with the Rec dummy and its 

interaction with SII: 

𝑟𝑒𝑡𝑡+1:𝑡+ℎ
𝑚 = 𝛼 + 𝛽𝑆𝐼𝐼𝑡 + 𝛽𝑟𝑆𝐼𝐼𝑡 ∗ 𝑅𝑒𝑐𝑡 + 𝛾𝑅𝑒𝑐𝑡 + 𝜀𝑡+1:𝑡+ℎ (4) 

As before, the indicator variable 𝑅𝑒𝑐𝑡 equals one during months identified by the NBER as 

recession months and zero otherwise.  The variable 𝑟𝑒𝑡𝑡+1:𝑡+ℎ
𝑚  is the return on either the CRSP 

equal weighted index, the CRSP value weighted index, or the S&P 500. The coefficient 𝛽 measures 

the relation between the SII and future aggregate returns during expansions, and the coefficient 𝛽𝑟 

measures the effect that being in a recession has on the relation between the SII and future returns.  

Because the SII is high when short interest is high, the Market Timing Hypothesis predicts 𝛽𝑟 will 

be negative. 

We estimate Equation (4) using future one-month and three-month market returns (h = 1, 

3) and present the results in Table 12. In Panels A, B, and C the dependent variable is the return 

on the S&P 500 index, the CRSP value weighted index, and the CRSP equal weighted index, 

respectively. The first and third models restrict 𝛽𝑟 = 0 to compare our results to Rapach, 

Ringgenberg, and Zhou (2016). Consistent with their findings, our unconditional models show a 

negative relation between SII and future market returns. This holds for one-month and three-month 

market returns and for all three market indices. 
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Insert Table 12 here 

Turning to our models that include the recession indicator, we observe that in Column (2) 

in all three panels the coefficient on SII is statistically significant, indicating that we cannot reject 

the null hypothesis of no relation between SII and one month returns during expansion times.  In 

contrast, during recessions, the relation between SII and future returns is negative and statistically 

significant. While 𝛽𝑟 itself is not significant, the effect of SII during recessions, measured as the 

sum of the coefficient on the SII plus the interaction term 𝛽 + 𝛽𝑟 is significant at the 5% level. 

This result holds when measuring the aggregate market with the S&P 500 as well as the equal and 

value weighted CRSP indices.  

In Column (4), in which SII predicts three-month market returns, the results are statistically 

stronger. In particular, the coefficient on the interaction term is statistically significant in each of 

the three Panels. That is, for all three market indices, we observe a statistically significant increase 

in the magnitude of the relation between SII and aggregate returns during recessions. Moreover, 

for the S&P500 and the CRSP value weighted index, the relation between SII and the market return 

does not appear to be statistically significant during expansions. 

We summarize how the relation between SII and future market return changes over the 

business cycle in Table 7. We plot the various coefficients from Columns (2) and (4) for the three 

measures of market returns. The blue bars present coefficients using one-month returns and the 

green bars present coefficients for the specifications using three-month returns.  The lighter bars 

present the coefficient 𝛽, which indicates the relation between the SII and future returns during 

expansions. The darker bars present the sums of coefficients 𝛽 + 𝛽𝑟 which represent the relation 

between the SII and future returns during expansions. For the analysis employing the S&P 500 

index and the CRSP value weighted index, the observed relation between the SII and future one-
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month and three-month returns is four to six times stronger during recession months compared to 

expansion months.  For the equal weighted index the relation between the SII and future returns is 

two to four times larger during recession months than during expansion months.    

Insert Table 7 Here 

The impact of the state of the market on the relation between the SII and future returns can 

also be seen by analyzing the increase in adjusted R-squared in the various regressions. For the 

three-month returns, adjusted R-squared nearly doubles across all three indices by allowing the 

relation between SII and future returns to be conditional on the state of the economy.   

The results from this analysis suggest that the aggregate positions of short sellers, as an 

investor class, better anticipate aggregate market returns during recessions compared to 

expansions.  This finding is consistent with the notion that short sellers allocate more attention to 

aggregate signals during recessions than during expansions. This result complements the analysis 

in the prior section to support the rational attention theory of KVV. 

5. Robustness 

In this section, we explore the robustness of the results obtained in Section IV. We first 

examine the robustness of our cross-sectional results from Section IV part (a) to alternative 

methods of risk adjusting returns.  We then explore the robustness of both the cross-sectional and 

aggregate stock return results to two alternative measures of recession and to various sub-periods 

of the data.  

a. Alternative Model Specification 

The analysis in Section IV Part (a) demonstrates that a portfolio that purchases stocks with 

low short interest and sells stocks with high short interest generates positive four-factor alpha 
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during expansions and that this alpha diminishes significantly, or disappears, during recessions. 

One potential concern with this approach is that factor loadings may change around the business 

cycle. In principle, factor loadings could change due to either changes in portfolio composition or 

time variation in stocks’ factor loadings. Either way, if portfolio factor loadings systematically 

changes during recessions, then unconditional estimation of Equation (1) may produce biased 

estimates of the effect of a recession on alpha.   

We address this potential issue in two ways.  First, we estimate a variation of the four-

factor model where each of the factors is interacted with the recession indicator Rec, which allows 

the relation between factors and returns to vary across the business cycle.  Second, we use 

characteristic based benchmarks to adjust the returns of the stocks in each of our long-short 

portfolios based on a procedure similar to Daniel, Grinblatt, Titman, and Wermers (1997). In this 

procedure, we assign each stock to one of 125 benchmark portfolios formed using dependent sorts 

on firm size, book-to-market, and prior eleven-month return.26 Since these benchmarks are 

estimated each month and the stock assignments are updated frequently, the characteristic-adjusted 

returns should account for dependency between factor sensitivity and the business cycle.   

Insert Table 13 Here 

Table 13 Panel A contains results from the four-factor model with time-varying factor 

loadings. As in Table 10, the dependent variable is the return on an equally weighted portfolio that 

purchases low short interest stocks and sells high short interest stocks. Columns one through three 

present the results from regressions with one month returns for portfolios that are long and short 

stocks in the lowest and highest 10, 5, and 1 percentiles respectively. Columns four through six 

                                                      
26 Each June, we update size as June market equity and book-to-market as the ratio of the prior December market 

equity to prior year book equity. We update prior return each calendar quarter as the 11-month return ending the 

month prior to the calendar quarter end. Since our calendar-time analysis uses equal-weighted portfolios, we 

compute benchmarks as equal weighted returns as well. 
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present the results for three-month calendar time portfolios. Only the HML loading changes over 

the business cycle, and the interaction coefficients for this factor are modest at best. More 

importantly, in all cases the alphas for expansions and recessions are quite close to their values in 

the unconditional estimation from Table 10. Consequently, allowing the factor loadings to vary 

over the business cycle does not significantly affect the finding that portfolios that buy low short 

interest stocks and sell high short interest stocks produces positive alpha during expansion.  

 We present similar results using the characteristic-adjusted abnormal returns in Table 13 

Panel B. These results are also consistent with the inferences from Table 10. Each of the six 

specifications produces a positive expansion alpha. The one (three) month calendar time portfolios 

produce positive monthly alpha of 1.4 (1.3), 1.7 (1.6), and 2.5 (2.1) percent respectively. These 

quantities are somewhat smaller than what is obtained using the four-factor regression framework 

but still reasonably similar.  Further, one (three) month abnormal returns decrease in recessions a 

statistically significant 1.3 (1.2), 1.7 (1.4), and 1.8 (1.6) percent. In every case, an F-test fails to 

reject the null hypothesis that the characteristic-adjusted alpha is equal to zero during recessions.  

b. Alternative Recession Variables 

The underlying theory for our analysis describes how short sellers’ attention allocation 

decisions change in real-time with the business cycle. As such, our utilizing NBER business cycle 

indicators, which are determined ex post, may overstate traders’ abilities to optimally reallocate 

attention. To alleviate such concerns, we employ two alternative definitions of recession that can 

be estimated in real-time. The first is the probability of recession, Pr_Rec, studied by Chauvet and 

Piger (2008). This measure employs a dynamic-factor-Markov-switching model applied to four 

monthly macroeconomic variables to produce a variable ranging from zero to one indicating the 

likelihood of a recession. This metric has the advantage that it is a continuous time variable derived 
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directly from time series of macro variables that are available in a timelier manner than are the 

official NBER recession turning points. Further, because this variable is a probability, we can 

substitute it in our prior regressions in place of the recession indicator without changing the 

inference of the coefficients.  

The second alternative measure is based on the Chicago Fed’s National Activity Index 

(CFNAI), which aggregates data from 85 macroeconomic time series. It is constructed to be mean 

zero and standard deviation of one such that a high value indicates economic output is ‘high’. 

Because our main goal is to study the interaction between states of the world where economic 

output is abnormally ‘low’ and the nature of information contained in short sales, we set the 

indicator variable CFNAI_Rec to one if the value of the CFNAI is one standard deviation below 

the mean and zero otherwise. The pairwise correlations between the NBER Rec indicator and each 

of these alternatives are 0.87 and 0.79, respectively. In Table 8 we present the time series of Pr_Rec 

and CFNAI_Rec along with shaded bars denoting NBER recessions.   

Insert Table 8 Here 

We first repeat the calendar-time portfolio analysis from Table 10 using the two alternative 

recession variables. Table 14 presents point estimates for the spread portfolios with long exposure 

to low short interest stocks and short exposure to high short interest stocks. Panel A uses Pr_Rec, 

and Panel B uses CFNAI_Rec. In both Panel A and Panel B, we observe similar patterns as those 

described in Table 10. The spread portfolio alphas are positive and significant during expansions 

as denoted by the positive and significant intercepts. Across all specifications in Panel A, the 

alphas of the portfolios diminish significantly as the probability of recession increases. For both 

the 10%-90% and the 5%-95% short interest portfolios, alpha declines about 40% (80%) when the 
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probability of recession is 0.5 (1.0). For the 1%-99% short interest portfolio, the decline is smaller 

but still economically meaningful.  

Insert Table 14 Here 

Panel B documents a similar pattern based on CFNAI_Rec. For both the 10%-90% and the 

5%-95% one-month short interest portfolios, alpha declines about 50% when the Rec indicator 

equals one. For the one-month 1%-99% short interest portfolio, the point estimate for the recession 

is negative, consistent with prior results, but not statistically significant. For the three-month 

calendar time portfolios, the recession point estimates are negative, but they are not statistically 

significant in the 5%-95% and the 1%-99% portfolios.  It is perhaps not surprising that the CFNAI 

results are slightly weaker than those in Table 10 and Table 14, Panel A; since it indicates 

economic output of one standard deviation below normal, the CFNAI dummy is a less extreme 

definition of recessions than our other two measures.  

Insert Table 15 Here 

In Tables 8 and 9 we perform similar robustness tests for the analysis of SII and aggregate 

stock market returns. In Table 15 we present results of a specification that interacts SII with 

Pr_Rec. Table 16 contains results from the same analysis employing CFNAI_Rec in place of the 

recession indicator. We observe in Table 15 that using the probability of recession to interact with 

SII as opposed to the NBER recession indicator strengthens the result that the relation between SII 

and aggregate returns strengthens as the economy heads towards recession. In each specification 

in Table 15, the interaction term between SII and the probability of recession is always negative 

and statistically significant, and the magnitude of the coefficient is larger than in the initial 

regressions.  
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In Table 16, we present results based on CFNAI_Rec. In all specifications, the interaction 

between the recession indicator and SII is negative, but the statistical significance of the point 

estimates are somewhat weaker than in the analysis employing the NBER recession dates or the 

probability of recession. Across all three measures of aggregate market returns, the interaction 

terms indicating how the relation between SII and future returns changes when CFNAI_Rec equals 

one are statistically significant when predicting three-month returns but insignificant when 

predicting future one-month returns. However, for the one month returns, F-tests for the joint 

significance of the SII and SII x CFNAI_Rec indicate that for each of the three indices the negative 

relation between SII and future one-month aggregate returns is statistically significant. Overall, 

the results employing either real-time measure – the probability of recession or the CFNAI index 

– are consistent with the main findings from Table 12.  

Insert Table 16 Here 

c. Subsamples 

We next examine the robustness of our findings to different time periods. Since recessions 

are not evenly distributed across the sample, we split our sample in May 1988 so that 

approximately half of the recession months are in the first period (January 1973 through May 

1988), and half of the recession months are in the second period (June 1988 through August 2015). 

We also note that since the NASDAQ short interest data begins in June 1988, our subsample 

procedure facilitates a cursory analysis of the exclusion of NASDAQ securities.  

In Table 17, we report results from our main calendar-time analysis for each subperiod. 

Panel A of Table 17 presents four-factor regression results using the period of January 1973 

through May 1988; Panel B present results for the period beginning June 1988. Across all 

specifications in both subperiods, the intercept, indicating the alpha during expansions, is positive 
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and significant at the 1% level and the coefficient estimates for the Rec indicator variable are 

negative. The statistical significance of the decline in alpha during recessions is diminished relative 

to the whole sample analysis presented in Table 10, particularly in the early period.  For the earlier 

sub-sample, two of the six Rec coefficients are significantly negative, while four of six are 

significantly negative in the later time period.  

Insert Table 17 Here 

The decline in statistical significance is not surprising given that the time series was already 

relatively short, and therefore dividing the sample results in a material loss in statistical power. F-

tests in each of the six specifications in the earlier time period fail to reject the null hypothesis that 

the alpha of the long short portfolio during recession months is different from zero.  The pattern 

of results presented in Table 17 are consistent with the decline in alpha during recessions existing 

in both sub-samples. 

Insert Table 18 Here 

We next explore the robustness of the relation between SII and future returns.  In Table 18, 

we present the results for regressions estimating the relation between SII and future aggregate stock 

returns for the 1973-1988 sub-sample. Table 19 presents the same analysis for the latter sub-

sample. Overall, our results from Table 19 hold in both subsamples. The Rec x SII interaction 

coefficient estimates are uniformly negative. As in the full sample, the interactions are generally 

only statistically significant for models predicting future three-month returns. Only one three-

month return model, Table 18 Panel C, fails to find a statistically significant interaction coefficient. 

Taken as a whole, the results presented in Tables 11 and 12 document that the relation between 

the SII and future aggregate stock returns strengthens during recessions and that this relation 

appears to exist in both sub-samples.  
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Insert Table 19 Here 

6. Conclusion 

Sophisticated market participants play the important role of discovering and trading on 

private valuation signals. This activity provides a social good that can result in positive effects on 

real outcomes: it may lower firms’ cost of capital, improve CEO incentives, and provide useful 

feedback in managerial decision making. Further, traders who discover and trade on private signals 

provide an additional source of external monitoring. Observing signals necessarily requires the 

scarce resource of attention (Kahneman, 1973); however, existing research offers few empirical 

explorations of factors influencing how large groups of traders allocate attention. We partially fill 

this void by studying the trading choices of short sellers, a group largely viewed as sophisticated, 

and the nature of how their revealed beliefs predict future stock returns. 

Our findings that short sellers better anticipate firm-level returns during economic 

expansions and aggregate market returns during economic recessions are consistent with the 

rational attention allocation theory of Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016). In 

short, their model predicts informed traders will shift their focus from firm-specific to aggregate 

signals during recessions because greater aggregate volatility and a higher price of risk increase 

the marginal benefit of collecting information that affects large portfolios during these times. 
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Appendix: Figures and Tables 

 

Figure 5: Four Factor Alpha During Recessions and Expansions. This figure presents the monthly alphas from Carhart (1997) four-factor 

regressions which include an additional intercept for recession months as in Equation (1).  The first set of bars presents the monthly alphas from 

regressions where the dependent variable is either the one-month or three-month return on a calendar time portfolio that buys stocks with short 

interest below the 10th percentile and sells stocks with short interest above the 90th percentile.  The middle and rightmost set of bars present the 

results for similar portfolios with thresholds for the long and short portfolios being 5% and 95% respectively for the middle set of bars, and 1% 

and 99% respectively for the rightmost set of bars.  The green bars identify three-month calendar time portfolios and the blue bars one-month 

calendar time portfolios.  The darkly shaded bars present the observed value of the coefficient 𝛼𝑒 from Equation (1) which indicates the four-

factor alpha for the given arbitrage portfolio during expansions. The darkly shaded bars present the observed value of the sum of coefficients 

𝛼𝑒 + 𝛼𝑟 from Equation (1) which indicates the magnitude of the four-factor alpha for the given arbitrage portfolio during NBER recession months. 
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Figure 6: Short Interest Index from 1973-2015. This figure presents the monthly Short Interest Index as developed by Rapach, Ringgenberg, 

and Zhou (2016). Each month short interest is calculated for each stock as the number of shares held short divided by the number of shares 

outstanding.  The long of the equally weighted average of short interest across all stocks is computed and the time trend is removed.  The remaining 

series is divided by its standard deviation to produce the aggregate short interest index (SII). This figure presents the aggregate short interest index 

from 1973-2015.  Recession bars are in grey.  
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Figure 7: Relation Between SII and Aggregate Stock Returns During Recessions and Expansions. This Table presents a graphical description 

of the coefficients indicating the relation between SII and future aggregate stock returns from Equation (4).  The first, second, and third set of bars 

present the results where the dependent variable is either the one-month or three-month return on the S&P 500 index, CRSP Value Weighted 

index, or the CRSP Equal Weighted index. The blue (green) bars correspond to specifications where the dependent variable is the one-month 

(three-month) return on the given index.  The lightly shaded bars present the observed value of the coefficient 𝛽 from Equation (4) which indicates 

the relation between SII and future returns during expansion periods, and the darkly shaded bars present the observed value of the sum of 

coefficients 𝛽 + 𝛽𝑟 which indicates the magnitude of the relation between SII and future aggregate returns during NBER recession months.  

-0.2 -0.225

-0.442

-0.941

-1.056
-1.021

-0.202 -0.218

-0.392

-1.265

-1.425

-1.716

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

S&P 500 CRSP Value Weighted CRSP Equal Weighted

V
al

u
e 

o
f 

C
o

ef
fi

ci
en

ts

Expansion 1 Month Recession 1 Month Expansion 3 Month Recession 3 Month



 

95 

 

Figure 8: Alternative Recession Measures. This figure presents two alternative recession indicators.  The dotted line indicates the probability 

of recession as described by Chauvet and Piger (2008).  The solid line is the Chicago Fed National Activity Index (CFNAI).  The grey bars indicate 

NBER recession dates.   
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Table 8 

Summary Statistics 

This table presents summary statistics for the short interest data employed in this study. Short 

interest is reported as shares held short and is reported once per month. We divide shares 

outstanding (from CRSP) to compute the short interest ratio (SIR) as the fraction of shares held 

short divided by the total shares outstanding. We divide our descriptive statistics into two 

periods, the first beginning in January 1973 and ending in May 1988 and the second beginning 

in June 1988 and continuing through August 2015. Since we only have short interest data for 

Nasdaq securities beginning in June 1988, this bifurcation separates our data into the two 

periods where we have only NYSE and Amex listed securities, and where we have NYSE, 

Amex, and Nasdaq securities. Panel A presents summary statistics for SIR. Panels B and C 

presents summary statistics for stock price and market capitalization. Panel D presents various 

other statistics.  

Panel A: Short Interest 

  1973-May 1988 June 1988-Aug 2015 

25th Percentile 0.04% 0.07% 

Median 0.12% 0.65% 

Mean 0.44% 2.45% 

75th Percentile 0.37% 2.87% 

Panel B: Price 

  1973-May 1988 June 1988- Aug 2015 

25th Percentile 9.88 4.59 

Median 19.25 12.71 

Mean 23.85 19.75 

75th Percentile 31.88 25.95 

Panel C: Market Cap (Thousands) 

  1973-May 1988 June 1988-Aug 2015 

25th Percentile 36,226 36,561 

Median 164,456 156,969 

Mean 883,753 2,294,219 

75th Percentile 690,652 796,248 

Panel D: Other Statistics 

  1973-May 1988 June 1988-Aug 2015 

Average number of stocks with zero 

short interest per month 
1 199 

Average number of stocks with short 

interest data per month 
1,017 4,674 

Number of NBER Recession Months 34 38 
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Table 9 

Calendar Time Analysis of Short Interest Portfolios 

This table presents monthly returns based on short interest as a fraction of total shares 

outstanding (SIR) according to short interest reports from the 15th of the prior month. 

Lightly shorted stocks correspond to those with SIR below the 10th, 5th, or 1st percentiles; 

heavily shorted stocks corresponding to those with SIR above the 90th, 95th, or 99th 

percentiles. Spread portfolios purchase an equal weighted portfolio of lightly shorted stocks 

and sell an equal weighted portfolio of highly shorted stocks. The first three columns 

consider a one month calendar-time analysis. The second three columns consider a three-

month calendar-time analysis with overlapping portfolios as in Jegadeesh and Titman 

(1993). Numbers in the table contain factor loadings and intercepts estimated using the 

Carhart (1997) four-factor model with t-statistics in parenthesis. The regressions begin in 

January 1973 and run through August 2015. One, two, and three stars indicates statistical 

significance at the ten, five, and one percent levels, respectively.   

  Rett+1 Rett+1:t+3 

  (1) (2) (3) (4) (5) (6) 

  

SIR10%-

SIR90% 

SIR5%-

SIR95% 

SIR1%-

SIR99% 

SIR10%-

SIR90% 

SIR5%-

SIR95% 

SIR1%-

SIR99% 

MKTRF -0.624*** -0.676*** -0.753*** -0.664*** -0.730*** -0.814*** 

  (-18.83) (-17.75) (-12.69) (-21.89) (-21.14) (-15.43) 

SMB -0.365*** -0.491*** -0.556*** -0.407*** -0.549*** -0.600*** 

  (-7.77) (-9.09) (-6.60) (-9.45) (-11.20) (-8.02) 

HML 0.152*** 0.165*** 0.252*** 0.102** 0.106** 0.105 

  (2.95) (2.79) (2.73) (2.16) (1.98) (1.28) 

MOM 0.0227 0.0389 0.0744 0.0395 0.0451 0.0685 

  (0.70) (1.04) (1.28) (1.33) (1.33) (1.32) 

Intercept 1.809*** 2.119*** 2.896*** 1.750*** 2.080*** 2.674*** 

  (12.40) (12.64) (11.08) (13.08) (13.67) (11.50) 

N 512 512 512 510 510 510 

Adj. R2 0.553 0.547 0.393 0.622 0.627 0.468 

* p<.01  **p<.05  ***p<.01 
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Table 10 

Calendar Time Analysis of Short Interest Portfolios in Expansions and Recessions 

This table presents monthly returns based on short interest as a fraction of total shares 

outstanding (SIR) according to short interest reports from the 15th of the prior month. 

Lightly shorted stocks correspond to those with SIR below the 10th, 5th, or 1st percentiles; 

heavily shorted stocks corresponding to those with SIR above the 90th, 95th, or 99th 

percentiles. Spread portfolios purchase an equal weighted portfolio of lightly shorted stocks 

and sell an equal weighted portfolio of highly shorted stocks. The first three columns 

consider a one- month calendar-time analysis. The second three columns consider a three-

month calendar-time analysis with overlapping portfolios as in Jegadeesh and Titman 

(1993). Numbers in the table contain factor loadings and intercepts estimated using the 

Carhart (1997) four-factor model with t-statistics in parenthesis. The indicator variable Rec 

equals one if the given month is identified as a NBER recession month and zero otherwise.  

The regressions begin in January 1973 and run through August 2015. One, two, and three 

stars indicates statistical significance at the ten, five, and one percent levels, respectively.  

   

  Rett+1 Rett+1:t+3 

  (1) (2) (3) (4) (5) (6) 

  

SIR10%-

SIR90% 

SIR5%-

SIR95% 

SIR1%-

SIR99% 

SIR10%-

SIR90% 

SIR5%-

SIR95% 

SIR1%-

SIR99% 

MKTRF -0.636*** -0.691*** -0.770*** -0.675*** -0.742*** -0.826*** 

  (-19.19) (-18.18) (-12.90) (-22.21) (-21.43) (-15.57) 

SMB -0.357*** -0.481*** -0.545*** -0.400*** -0.541*** -0.593*** 

  (-7.64) (-8.97) (-6.49) (-9.33) (-11.09) (-7.92) 

HML 0.144*** 0.155*** 0.241*** 0.0950** 0.0988* 0.0974 

  (2.81) (2.64) (2.62) (2.02) (1.85) (1.19) 

MOM 0.0146 0.0288 0.0638 0.0325 0.0375 0.0606 

  (0.45) (0.78) (1.10) (1.10) (1.11) (1.17) 

Rec -1.182*** -1.482*** -1.546** -1.027*** -1.115*** -1.158* 

  (-2.93) (-3.20) (-2.13) (-2.78) (-2.65) (-1.79) 

Intercept 1.989*** 2.345*** 3.131*** 1.907*** 2.251*** 2.850*** 

  (12.65) (12.99) (11.07) (13.21) (13.70) (11.31) 

N 512 512 512 510 510 510 

Adj. R2 0.560 0.555 0.397 0.627 0.631 0.471 

* p<.01  **p<.05  ***p<.01 
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Table 11 

Calendar Time Analysis of High and Low Short Interest Portfolios in Expansions 

and Recessions 

This table presents monthly returns based on short interest as a fraction of total shares 

outstanding (SIR) according to short interest reports from the 15th of the prior month. Panel 

A analyzes equal weighted portfolios of heavily shorted stocks which have SIR above the 

90th, 95th, or 99th percentiles. Panel B analyzes equal weighted portfolios of lightly shorted 

stocks which have SIR below the 10th, 5th, or 1st percentiles. The first three columns 

consider a one month calendar-time analysis. The second three columns consider a three-

month calendar-time analysis with overlapping portfolios as in Jegadeesh and Titman 

(1993). Numbers in the table contain factor loadings and intercepts estimated using the 

Carhart (1997) four-factor model with t-statistics in parenthesis. The indicator variable Rec 

equals one if the given month is identified as a NBER recession month and zero otherwise.  

The regressions begin in January 1973 and run through August 2015. One, two, and three 

stars indicates statistical significance at the ten, five, and one percent levels, respectively. 

   

Panel A: Heavily Shorted Stocks 

  Rett+1 Rett+1:t+3 

  (1) (2) (3) (4) (5) (6) 

  SIR 90% SIR 95% SIR 99% SIR 90% SIR 95% SIR 99% 

MKTRF 1.283*** 1.308*** 1.335*** 1.242*** 1.263*** 1.315*** 

  (49.28) (43.32) (27.00) (45.45) (38.76) (26.03) 

SMB 0.975*** 1.053*** 1.128*** 0.967*** 1.066*** 1.084*** 

  (26.58) (24.76) (16.19) (25.10) (23.21) (15.21) 

HML 0.161*** 0.140*** 0.0863 0.213*** 0.197*** 0.209*** 

  (3.99) (3.00) (1.13) (5.05) (3.91) (2.67) 

MOM -0.125*** -0.144*** -0.156*** -0.139*** -0.161*** -0.162*** 

  (-4.92) (-4.90) (-3.23) (-5.23) (-5.07) (-3.29) 

Rec 0.806** 0.930** 0.738 0.981*** 0.839** 1.377** 

  (2.54) (2.53) (1.23) (2.95) (2.12) (2.24) 

Intercept -0.893*** -1.054*** -1.667*** -0.825*** -1.015*** -1.646*** 

  (-7.23) (-7.36) (-7.11) (-6.36) (-6.56) (-6.86) 

N 512 512 512 510 510 510 

Adj. R2 0.896 0.874 0.737 0.881 0.850 0.715 
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Table 11 Continued 

Panel B: Lightly Shorted Stocks  

  Rett+1 Rett+1:t+3 

  (1) (2) (3) (4) (5) (6) 

  SIR 10% SIR 5% SIR 1% SIR 10% SIR 5% SIR 1% 

MKTRF 0.647*** 0.616*** 0.566*** 0.533*** 0.505*** 0.472*** 

  (23.53) (21.05) (13.79) (20.51) (17.95) (11.93) 

SMB 0.618*** 0.572*** 0.583*** 0.548*** 0.481*** 0.502*** 

  (15.96) (13.87) (10.09) (14.94) (12.12) (9.00) 

HML 0.305*** 0.295*** 0.328*** 0.277*** 0.267*** 0.283*** 

  (7.17) (6.52) (5.17) (6.89) (6.15) (4.63) 

MOM -0.110*** -0.115*** -0.0918** -0.0890*** -0.116*** -0.108*** 

  (-4.12) (-4.04) (-2.30) (-3.51) (-4.21) (-2.81) 

Rec -0.376 -0.551 -0.808 0.111 0.0631 0.159 

  (-1.12) (-1.55) (-1.62) (0.35) (0.18) (0.33) 

Intercept 1.096*** 1.291*** 1.464*** 1.059*** 1.156*** 1.278*** 

  (8.40) (9.29) (7.53) (8.58) (8.66) (6.80) 

N 512 512 512 510 510 510 

Adj R2 0.687 0.635 0.441 0.634 0.564 0.378 

* p<.01  **p<.05  ***p<.01 
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Table 12 

Short Selling Index and Aggregate Return Predictability 

This table presents time series regressions of aggregate stock market returns on the short 

selling index (SII) of Rapach, Ringgenberg, and Zhou (2016). The dependent variable for 

the columns (1) and (2) is the future one-month return. The dependent variable for columns 

(3) and (4) is the future three-month return. The indicator variable Rect equals one when 

month t is an NBER recession month and zero otherwise.  The return variables in Panels A, 

B, and C are the return on the S&P500 index, the CRSP value weighted index, and the CRSP 

equal weighted index, respectively. The regressions begin in January 1973 and run through 

August 2015. t-statistics appear in parenthesis, and one two and three stars indicates 

statistical significance at the ten, five, and one percent levels respectively.    

Panel A: S&P 500 Index 

  RetMt+1 RetMt+1:t+3 

  (1) (2) (3) (4) 

SIIt -0.363* -0.200 -0.413*** -0.202 

  (-1.84) (-0.91) (-3.56) (-1.59) 

SIIt * Rect   -0.741   -1.063*** 

    (-1.45)   (-3.61) 

Rect   -0.705   -0.187 

    (-1.23)   (-0.57) 

Intercept 0.245 0.368* 0.263** 0.322*** 

  (1.25) (1.74) (2.30) (2.64) 

N 512 512 510 510 

Adj. R2 0.005 0.009 0.022 0.046 

          

Panel B: CRSP Value Weighted Index 

  RetMt+1 RetMt+1:t+3 

  (1) (2) (3) (4) 

SIIt -0.399* -0.225 -0.450*** -0.218 

  (-1.96) (-1.00) (-3.69) (-1.62) 

SIIt * Rect   -0.831   -1.207*** 

    (-1.57)   (-3.89) 

Rect   -0.542   0.0114 

    (-0.91)   (0.03) 

Intercept 0.497** 0.600*** 0.519*** 0.553*** 

  (2.45) (2.75) (4.31) (4.32) 

N 512 512 510 510 

Adj. R2 0.006 0.009 0.024 0.050 
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Table 12 Continued 

Panel C: CRSP Equal Weighted Index 

  RetMt+1 RetMt+1:t+3 

  (1) (2) (3) (4) 

SIIt -0.553** -0.442 -0.620*** -0.392** 

  (-2.20) (-1.58) (-3.80) (-2.18) 

SIIt * Rect   -0.579   -1.324*** 

    (-0.89)   (-3.18) 

Rect   -0.0681   0.849* 

    (-0.09)   (1.82) 

Intercept 0.339 0.367 0.776*** 0.697*** 

  (1.36) (1.36) (4.82) (4.05) 

N 512 512 510 510 

Adj. R2 0.007 0.005 0.026 0.044 

* p<.01  **p<.05  ***p<.01 
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Table 13 

Calendar Time Analysis with Time Varying Factor Exposure 

This table presents monthly returns based on short interest as a fraction of total shares outstanding 

(SIR) according to short interest reports from the 15th of the prior month. Lightly shorted stocks 

correspond to those with SIR below the 10th, 5th, or 1st percentiles; heavily shorted stocks 

corresponding to with SIR above the 90th, 95th, or 99th percentiles. Spread portfolios purchase an 

equal weighted portfolio of lightly shorted stocks and sell an equal weighted portfolio of highly 

shorted stocks. The first three columns consider a one- month calendar-time analysis. The second 

three columns consider a three-month calendar-time analysis with overlapping portfolios as in 

Jegadeesh and Titman (1993). Numbers in the table contain factor loadings and intercepts estimated 

using the Carhart (1997) four-factor model with each factor loading interacted with the NBER 

recession indicator in Panel A.  In Panel B, all returns are characteristic adjusted with benchmarks 

based on size, book-to-market, and prior 11-month return. t-statistics in parenthesis. The indicator 

variable Rec equals one if the given month is identified as a NBER recession month and zero 

otherwise.  The regressions begin in January 1973 and run through August 2015. One, two, and three 

stars indicates statistical significance at the ten, five, and one percent levels, respectively.  

 

Panel A: Recession Varying Factor Loadings 

  Rett+1 Rett+1:t+3 

  (1) (2) (3) (4) (5) (6) 

  

SIR10%-

SIR90% 

SIR5%-

SIR95% 

SIR1%-

SIR99% 

SIR10%-

SIR90% 

SIR5%-

SIR95% 

SIR1%-

SIR99% 

MKTRF -0.617*** -0.669*** -0.706*** -0.673*** -0.736*** -0.818*** 

 (-15.90) (-15.04) (-10.07) (-18.90) (-18.12) (-13.09) 

MKTRF * Rec -0.0249 -0.0139 -0.235* 0.0388 0.0360 -0.00446 

 (-0.32) (-0.15) (-1.66) (0.54) (0.44) (-0.04) 

SMB -0.336*** -0.439*** -0.569*** -0.378*** -0.513*** -0.610*** 

 (-6.57) (-7.48) (-6.15) (-8.03) (-9.56) (-7.39) 

SMB * Rec 0.00972 -0.0997 0.208 -0.0265 -0.0526 0.172 

 (0.07) (-0.66) (0.87) (-0.22) (-0.38) (0.80) 

HML 0.216*** 0.239*** 0.235** 0.149*** 0.150** 0.0747 

 (3.61) (3.49) (2.18) (2.72) (2.40) (0.78) 

HML * Rec -0.261** -0.289** 0.0387 -0.197* -0.177 0.0824 

 (-2.23) (-2.16) (0.18) (-1.84) (-1.45) (0.44) 

MOM -0.0140 -0.0130 0.0334 0.00746 0.000508 0.0236 

 (-0.36) (-0.29) (0.47) (0.21) (0.01) (0.38) 

MOM * Rec 0.0905 0.119 0.0479 0.0938 0.126 0.143 

 (1.20) (1.37) (0.35) (1.35) (1.59) (1.17) 

Rec -1.131*** -1.378*** -1.731** -0.961** -1.051** -1.286* 

 (-2.76) (-2.94) (-2.34) (-2.56) (-2.46) (-1.95) 

Intercept 1.968*** 2.324*** 3.118*** 1.902*** 2.252*** 2.885*** 

 (12.39) (12.77) (10.87) (13.03) (13.55) (11.27) 

N 512 512 512 510 510 510 

Adj. R2 0.563 0.560 0.397 0.630 0.633 0.469 
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Table 13 Continued 

Panel B: Characteristic-Adjusted Returns 

 Rett+1 Rett+1:t+3 

 (1) (2) (3) (4) (5) (6) 

 

SIR10%-

SIR90% 

SIR5%-

SIR95% 

SIR1%-

SIR99% 

SIR10%-

SIR90% 

SIR5%-

SIR95% 

SIR1%-

SIR99% 

Rec -0.814** -1.166** -1.240* -0.714** -0.920** -0.994 

 (-2.13) (-2.57) (-1.72) (-1.99) (-2.19) (-1.54) 

Intercept 1.212*** 1.469*** 2.221*** 1.072*** 1.295*** 1.782*** 

 (8.44) (8.65) (8.22) (7.98) (8.20) (7.34) 

N 512 512 512 510 510 510 

Adj. R2 0.310 0.262 0.121 0.331 0.305 0.168 

*p<.01   **p<.05   ***p<.01 
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Table 14 

Calendar Time Analysis with Alternative Recession Metrics 

This table presents monthly returns based on short interest as a fraction of total shares 

outstanding (SIR) according to short interest reports from the 15th of the prior month. Lightly 

shorted stocks correspond to those with SIR below the 10th, 5th, or 1st percentiles; heavily 

shorted stocks corresponding to those with SIR above the 90th, 95th, or 99th percentiles. Spread 

portfolios purchase an equal weighted portfolio of lightly shorted stocks and sell an equal 

weighted portfolio of highly shorted stocks. The first three columns consider a one- month 

calendar-time analysis. The second three columns consider a three-month calendar-time 

analysis with overlapping portfolios as in Jegadeesh and Titman (1993). Numbers in the table 

contain factor loadings and intercepts estimated using the Carhart (1997) four-factor model 

with t-statistics in parenthesis. In Panel A, the variable Pr_Rec is equal to the probability of 

recession in a given month as computed by Chauvet and Piger (2008).  In Panel B the variable 

CFNAI_Rec is equal to one if the value of the Chicago Fed National Activity Index is less than 

one standard deviation below the mean and zero otherwise.  The regressions begin in January 

1973 and run through August 2015. One, two, and three stars indicates statistical significance 

at the ten, five, and one percent levels, respectively.  

 

Panel A: Probability of Recession 

  Rett+1 Rett+1:t+3 

  (1) (2) (3) (4) (5) (6) 

  

SIR10%-

SIR90% 

SIR5%-

SIR95% 

SIR1%-

SIR99% 

SIR10%-

SIR90% 

SIR5%-

SIR95% 

SIR1%-

SIR99% 

MKTRF -0.633*** -0.688*** -0.763*** -0.673*** -0.740*** -0.824*** 

  (-19.12) (-18.12) (-12.81) (-22.21) (-21.45) (-15.57) 

SMB -0.359*** -0.482*** -0.549*** -0.401*** -0.542*** -0.594*** 

  (-7.67) (-9.00) (-6.52) (-9.35) (-11.12) (-7.93) 

HML 0.143*** 0.153*** 0.242*** 0.0934** 0.0968* 0.0956 

  (2.79) (2.61) (2.62) (1.99) (1.81) (1.17) 

MOM 0.0122 0.0250 0.0630 0.0296 0.0339 0.0574 

  (0.37) (0.67) (1.08) (0.99) (1.00) (1.10) 

Pr_Rec -1.537*** -2.033*** -1.662 -1.452*** -1.632*** -1.631* 

  (-2.67) (-3.09) (-1.61) (-2.76) (-2.73) (-1.78) 

Intercept 1.969*** 2.330*** 3.068*** 1.901*** 2.250*** 2.843*** 

  (12.55) (12.96) (10.87) (13.23) (13.76) (11.33) 

N 512 512 512 510 510 510 

Adj. R2 0.558 0.555 0.395 0.627 0.631 0.471 
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Table 14 Continued 

Panel B: CFNAI Index Measure 

  Rett+1 Rett+1:t+3 

  (1) (2) (3) (4) (5) (6) 

  

SIR10%-

SIR90% 

SIR5%-

SIR95% 

SIR1%-

SIR99% 

SIR10%-

SIR90% 

SIR5%-

SIR95% 

SIR1%-

SIR99% 

MKTRF -0.628*** -0.680*** -0.756*** -0.668*** -0.733*** -0.817*** 

  (-19.01) (-17.92) (-12.72) (-22.04) (-21.23) (-15.47) 

SMB -0.361*** -0.486*** -0.553*** -0.404*** -0.546*** -0.597*** 

  (-7.71) (-9.04) (-6.56) (-9.39) (-11.15) (-7.97) 

HML 0.138*** 0.149** 0.241*** 0.0899* 0.0956* 0.0941 

  (2.66) (2.51) (2.60) (1.90) (1.77) (1.14) 

MOM 0.0128 0.0279 0.0675 0.0314 0.0378 0.0610 

  (0.39) (0.74) (1.15) (1.05) (1.11) (1.17) 

CFNAI_Rec -0.974** -1.094** -0.685 -0.802** -0.718 -0.744 

  (-2.28) (-2.23) (-0.89) (-2.05) (-1.61) (-1.09) 

Intercept 1.945*** 2.271*** 2.991*** 1.862*** 2.181*** 2.777*** 

  (12.39) (12.59) (10.59) (12.93) (13.29) (11.06) 

N 512 512 512 510 510 510 

Adj. R2 0.557 0.551 0.393 0.625 0.628 0.469 

* p<.01  **p<.05  ***p<.01 
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Table 15 

Aggregate Return Predictability and the Probability of Recession 

This table presents time series regressions of aggregate stock market returns on the short selling index 

(SII) of Rapach, Ringgenberg, and Zhou (2016). The dependent variable for the columns (1) and (2) 

is the future one-month return. The dependent variable for columns (3) and (4) is the future three-

month return. The indicator variable Pr_Rect is equal to the probability of recession in a given month 

as computed by Chauvet and Piger (2008). The return variables in Panels A, B, and C are the return 

on the S&P500 index, the CRSP value weighted index, and the CRSP equal weighted index, 

respectively. The regressions begin in January 1973 and run through August 2015. t-statistics appear 

in parenthesis, and one two and three stars indicates statistical significance at the ten, five, and one 

percent levels respectively.    

Panel A: S&P 500 Index 

  RetMt+1 RetMt+1:t+3 

  (1) (2) (3) (4) 

SIIt -0.363* -0.140 -0.413*** -0.150 

  (-1.84) (-0.65) (-3.56) (-1.20) 

SIIt * Pr_Rect   -1.618**   -1.919*** 

    (-2.39)   (-4.96) 

Pr_Rect   -0.424   0.142 

    (-0.53)   (0.31) 

Intercept 0.245 0.301 0.263** 0.267** 

  (1.25) (1.44) (2.30) (2.22) 

N 512 512 510 510 

Adj. R2 0.005 0.013 0.022 0.064 

          

Panel B: CRSP Value Weighted Index 

  RetMt+1 RetMt+1:t+3 

  (1) (2) (3) (4) 

SIIt -0.399* -0.148 -0.450*** -0.157 

  (-1.96) (-0.66) (-3.69) (-1.20) 

SIIt * Pr_Rect   -1.850***   -2.157*** 

    (-2.65)   (-5.31) 

Pr_Rect   -0.122   0.457 

    (-0.15)   (0.95) 

Intercept 0.497** 0.527** 0.519*** 0.495*** 

  (2.45) (2.44) (4.31) (3.93) 

N 512 512 510 510 

Adj. R2 0.006 0.015 0.024 0.073 
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Table 15 Continued 

Panel C: CRSP Equal Weighted Index 

  RetMt+1 RetMt+1:t+3 

 (1) (2) (3) (4) 

SIIt -0.553** -0.323 -0.620*** -0.301* 

  (-2.20) (-1.17) (-3.80) (-1.71) 

SIIt * Pr_Rect   -1.756**   -2.446*** 

    (-2.04)   (-4.50) 

Pr_Rect   0.681   1.836*** 

    (0.67)   (2.86) 

Intercept 0.339 0.293 0.776*** 0.624*** 

  (1.36) (1.09) (4.82) (3.70) 

N 512 512 510 510 

Adj. R2 0.007 0.012 0.026 0.072 

* p<.01  **p<.05  ***p<.01 
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Table 16 

Aggregate Return Predictability and CFNAI Recessions 

This table presents time series regressions of aggregate stock market returns on the short selling 

index (SII) of Rapach, Ringgenberg, and Zhou (2016). The dependent variable for the columns 

(1) and (2) is the future one-month return. The dependent variable for columns (3) and (4) is the 

future three-month return. The indicator variable CFNAI_Rect is equal to one if the value of the 

Chicago Fed National Activity Index is less than one standard deviation below the mean and 

zero otherwise.  The return variables in Panels A, B, and C are the return on the S&P500 index, 

the CRSP value weighted index, and the CRSP equal weighted index, respectively. The 

regressions begin in January 1973 and run through August 2015. t-statistics appear in 

parenthesis, and one two and three stars indicates statistical significance at the ten, five, and one 

percent levels respectively.    

Panel A: S&P 500 Index 

  RetMt+1 RetMt+1:t+3 

  (1) (2) (3) (4) 

SIIt -0.363* -0.261 -0.413*** -0.242* 

  (-1.84) (-1.20) (-3.56) (-1.92) 

SIIt * CFNAI_Rect   -0.658   -1.046*** 

    (-1.25)   (-3.44) 

CFNAI_Rect   0.543   0.600* 

    (0.90)   (1.74) 

Intercept 0.245 0.191 0.263** 0.208* 

  (1.25) (0.91) (2.30) (1.72) 

N 512 512 510 510 

Adj. R2 0.005 0.005 0.022 0.044 

          

Panel B: CRSP Value Weighted Index 

  RetMt+1 RetMt+1:t+3 

  (1) (2) (3) (4) 

SIIt -0.399* -0.274 -0.450*** -0.259* 

  (-1.96) (-1.23) (-3.69) (-1.96) 

SIIt * CFNAI_Rect   -0.838   -1.193*** 

    (-1.54)   (-3.75) 

CFNAI_Rect   0.913   0.891** 

    (1.48)   (2.47) 

Intercept 0.497** 0.400* 0.519*** 0.430*** 

  (2.45) (1.85) (4.31) (3.39) 

N 512 512 510 510 

Adj. R2 0.006 0.010 0.024 0.054 

 

 

 

 

 



 

110 

Table 16 Continued 

Panel C: CRSP Equal Weighted Index 

  RetMt+1 RetMt+1:t+3 

  (1) (2) (3) (4) 

SIIt -0.553** -0.473* -0.620*** -0.429** 

  (-2.20) (-1.72) (-3.80) (-2.45) 

SIIt * CFNAI_Rect   -0.711   -1.338*** 

    (-1.07)   (-3.17) 

CFNAI_Rect   1.976***   2.146*** 

    (2.60)   (4.48) 

Intercept 0.339 0.107 0.776*** 0.533*** 

  (1.36) (0.40) (4.82) (3.17) 

N 512 512 510 510 

Adj. R2 0.007 0.018 0.026 0.071 

* p<.01  **p<.05  ***p<.01 
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Table 17 

Calendar Time Analysis: Subperiods 

This table presents monthly returns based on short interest as a fraction of total shares 

outstanding (SIR) according to short interest reports from the 15th of the prior month for 

two sub-samples of the data.  Panel A presents the analysis for the period of January 1973-

May 1988, and panel B presents the analysis for the period of June 1988-August 2015. 

Lightly shorted stocks correspond to those with SIR below the 10th, 5th, or 1st percentiles; 

heavily shorted stocks corresponding to those with SIR above the 90th, 95th, or 99th 

percentiles. Spread portfolios purchase an equal weighted portfolio of lightly shorted 

stocks and sell an equal weighted portfolio of highly shorted stocks. The first three 

columns consider a one- month calendar-time analysis. The second three columns consider 

a three-month calendar-time analysis with overlapping portfolios as in Jegadeesh and 

Titman (1993). Numbers in the table contain factor loadings and intercepts estimated using 

the Carhart (1997) four-factor model with t-statistics in parenthesis. The indicator variable 

Rec equals one if the given month is identified as a NBER recession month and zero 

otherwise.  The regressions begin in January 1973 and run through August 2015. One, two, 

and three stars indicates statistical significance at the ten, five, and one percent levels, 

respectively.  

 

Panel A: 1973-1988 

  Rett+1 Rett+1:t+3 

  (1) (2) (3) (4) (5) (6) 

  

SIR10%-

SIR90% 

SIR5%-

SIR95% 

SIR1%-

SIR99% 

SIR10%-

SIR90% 

SIR5%-

SIR95% 

SIR1%-

SIR99% 

MKTRF -0.460*** -0.505*** -0.585*** -0.547*** -0.626*** -0.665*** 

  (-10.41) (-8.57) (-5.37) (-13.96) (-12.21) (-6.82) 

SMB -0.257*** -0.380*** -0.304* -0.380*** -0.522*** -0.436*** 

  (-3.64) (-4.04) (-1.74) (-6.04) (-6.35) (-2.79) 

HML 0.274*** 0.290*** 0.628*** 0.199*** 0.202** 0.364** 

  (3.67) (2.92) (3.42) (3.01) (2.33) (2.21) 

MOM -0.0716 -0.0607 0.0661 -0.0389 -0.0467 -0.0812 

  (-1.40) (-0.89) (0.52) (-0.86) (-0.79) (-0.72) 

Rec -0.897* -1.269** -1.753 -0.609 -0.837 -0.922 

  (-1.91) (-2.03) (-1.51) (-1.46) (-1.54) (-0.89) 

Intercept 1.725*** 2.008*** 2.222*** 1.507*** 1.849*** 2.141*** 

  (7.64) (6.69) (4.00) (7.51) (7.04) (4.29) 

N 185 185 185 183 183 183 

Adj. R2 0.594 0.517 0.320 0.715 0.669 0.384 
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Table 14 Continued 

Panel B: 1973-1988 

  Rett+1 Rett+1:t+3 

  (1) (2) (3) (4) (5) (6) 

  

SIR10%-

SIR90% 

SIR5%-

SIR95% 

SIR1%-

SIR99% 

SIR10%-

SIR90% 

SIR5%-

SIR95% 

SIR1%-

SIR99% 

MKTRF -0.766*** -0.828*** -0.888*** -0.762*** -0.814*** -0.914*** 

  (-16.38) (-16.31) (-12.34) (-17.27) (-16.90) (-14.27) 

SMB -0.436*** -0.560*** -0.710*** -0.429*** -0.572*** -0.719*** 

  (-7.26) (-8.59) (-7.67) (-7.56) (-9.23) (-8.73) 

HML 0.0819 0.0968 0.0501 0.0567 0.0643 -0.0291 

  (1.22) (1.33) (0.49) (0.90) (0.93) (-0.32) 

MOM 0.0183 0.0339 0.0500 0.0373 0.0522 0.0990* 

  (0.45) (0.76) (0.79) (0.96) (1.24) (1.77) 

Rec -1.528** -1.706** -1.268 -1.363** -1.243* -1.127 

  (-2.49) (-2.56) (-1.34) (-2.35) (-1.96) (-1.34) 

Intercept 2.174*** 2.566*** 3.545*** 2.140*** 2.472*** 3.179*** 

  (10.73) (11.66) (11.36) (11.19) (11.84) (11.45) 

N 327 327 327 327 327 327 

Adj. R2 0.582 0.601 0.479 0.606 0.621 0.549 

*p<.1  **p<.05  ***p<.01 
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Table 18 

Short Selling Index and Aggregate Return Predictability: 1973-1988 

This table presents time series regressions of aggregate stock market returns on the short selling 

index (SII) of Rapach, Ringgenberg, and Zhou (2016). The dependent variable for the columns 

(1) and (2) is the future one-month return. The dependent variable for columns (3) and (4) is the 

future three-month return. The indicator variable Rect equals one when month t is an NBER 

recession month and zero otherwise.  The return variables in Panels A, B, and C are the return on 

the S&P500 index, the CRSP value weighted index, and the CRSP equal weighted index, 

respectively. The regressions begin in January 1973 and run through May 1988. t-statistics appear 

in parenthesis, and one two and three stars indicates statistical significance at the ten, five, and 

one percent levels respectively.    

Panel A: S&P 500 Index 

  RetMt+1 RetMt+1:t+3 

  (1) (2) (3) (4) 

SIIt -0.605 -0.454 -0.570** -0.307 

  (-1.39) (-0.95) (-2.28) (-1.13) 

SIIt * Rect   -1.299   -1.719** 

    (-1.04)   (-2.43) 

Rect   -1.134   -0.686 

    (-1.05)   (-1.12) 

Intercept -0.220 -0.0858 -0.207 -0.181 

  (-0.58) (-0.21) (-0.95) (-0.76) 

N 185 185 185 185 

Adj. R2 0.005 0.002 0.022 0.043 

          

Panel B: CRSP Value Weighted Index 

  RetMt+1 RetMt+1:t+3 

  (1) (2) (3) (4) 

SIIt -0.858* -0.724 -0.793*** -0.524* 

  (-1.91) (-1.46) (-3.04) (-1.85) 

SIIt * Rect   -1.225   -1.764** 

    (-0.95)   (-2.39) 

Rect   -1.182   -0.706 

    (-1.06)   (-1.10) 

Intercept 0.107 0.254 0.132 0.160 

  (0.27) (0.59) (0.58) (0.65) 

N 185 185 185 185 

Adj. R2 0.014 0.010 0.043 0.062 
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Table 18 Continued 

Panel B: CRSP Equal Weighted Index 

  RetMt+1 RetMt+1:t+3 

  (1) (2) (3) (4) 

SIIt -1.432** -1.554** -1.450*** -1.300*** 

  (-2.56) (-2.52) (-4.18) (-3.41) 

SIIt * Rect   0.487   -0.802 

    (0.30)   (-0.81) 

Rect   -0.416   0.0330 

    (-0.30)   (0.04) 

Intercept -0.283 -0.177 0.390 0.336 

  (-0.58) (-0.33) (1.29) (1.01) 

N 185 185 185 185 

Adj. R2 0.029 0.021 0.082 0.077 

*p<.1  **p<.05  ***p<.01 
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Table 19 

Short Selling Index and Aggregate Return Predictability: 1988-2015 

This table presents time series regressions of aggregate stock market returns on the short selling 

index (SII) of Rapach, Ringgenberg, and Zhou (2016). The dependent variable for the columns 

(1) and (2) is the future one-month return. The dependent variable for columns (3) and (4) is the 

future three-month return. The indicator variable Rect equals one when month t is an NBER 

recession month and zero otherwise.  The return variables in Panels A, B, and C are the return on 

the S&P500 index, the CRSP value weighted index, and the CRSP equal weighted index, 

respectively. The regressions begin in June 1988 and run through August 2015. t-statistics appear 

in parenthesis, and one two and three stars indicates statistical significance at the ten, five, and 

one percent levels respectively.    

Panel A: S&P 500 Index 

  RetMt+1 RetMt+1:t+3 

  (1) (2) (3) (4) 

SIIt -0.361* -0.157 -0.452*** -0.225 

  (-1.65) (-0.66) (-3.51) (-1.63) 

SIIt * Rect   -1.234   -1.820*** 

    (-1.53)   (-3.98) 

Rect   0.0915   1.080* 

    (0.08)   (1.71) 

Intercept 0.473** 0.569** 0.515*** 0.567*** 

  (2.04) (2.36) (3.81) (4.11) 

N 327 327 325 325 

Adj. R2 0.005 0.012 0.034 0.080 

          

Panel B: CRSP Value Weighted Index 

  RetMt+1 RetMt+1:t+3 

  (1) (2) (3) (4) 

SIIt -0.294 -0.0765 -0.391*** -0.147 

  (-1.30) (-0.31) (-2.85) (-1.01) 

SIIt * Rect   -1.500*   -2.110*** 

    (-1.81)   (-4.35) 

Rect   0.482   1.478** 

    (0.42)   (2.21) 

Intercept 0.636*** 0.719*** 0.679*** 0.719*** 

  (2.66) (2.89) (4.72) (4.91) 

N 327 327 325 325 

Adj. R2 0.002 0.011 0.021 0.074 
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Table 19 Continued 

Panel C: CRSP Equal Weighted Index 

  RetMt+1 RetMt+1:t+3 

  (1) (2) (3) (4) 

SIIt -0.324 -0.0855 -0.354* -0.0809 

  (-1.18) (-0.29) (-1.93) (-0.42) 

SIIt * Rect   -2.705***   -3.415*** 

    (-2.69)   (-5.33) 

Rect   2.635*   3.760*** 

    (1.90)   (4.26) 

Intercept 0.530* 0.519* 0.831*** 0.773*** 

  (1.82) (1.71) (4.32) (4.00) 

N 327 327 325 325 

Adj. R2 0.001 0.017 0.008 0.084 

*p<.1  **p<.05  ***p<.01 
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CONCLUSION 

The first essay explores the relation between short selling and adverse selection.  The 

theoretical analysis provided suggests that prohibiting short selling may increase adverse selection 

by impacting the incentives investors have to become informed.  In the model, the distribution of 

informed investors in the market skews towards having more investors who own the asset 

becoming informed relative two when short selling is allowed.  This skewing of the distribution 

of informed investors leads market makers to face increased adverse selection risk on the sell side 

of the market because only investors who own the asset can sell and a greater freaction of them 

are informed during the ban.  Empirical analysis produces results consistent with the predictions 

of the model.    

These findings have implications for various aspects of finance.  First, the analysis highlights 

the magnitude of the adverse selection link between short selling and liquidity. Also, the finding 

that sell side liquidity deteriorates more than buy side liquidity during the ban has potential 

regulatory implications and suggests that restricting short selling during periods of downward price 

pressure may have the unintended effect of diminishing sell side liquidity when it is most needed. 

Next, the model’s prediction that the inability to short sell will influence the characteristics of 

the investors who choose to become informed may have implications beyond liquidity.  If fewer 

outside investors choose to become informed because of an inability to trade on negative 

information, then the role of outside investors as monitors of the firm may diminish when short 

selling is restricted.   

Lastly, this study has potential implications for how researchers approach the study of the 

determinates of liquidity.  The asymmetry between the effect of the ban on buy and sell side 
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liquidity documented in this study shows that additional insights can be gained by disaggregating 

liquidity measures and studying the buy and sell sides of the market separately.  

The second essay examines how systematic changes across the business cycle affect what types 

of information – macro economic or firm specific – short sellers allocate attention to during 

recessions and expansions.  This essay documents that firm-level short interest predicts negative 

returns for individual stocks during economic expansions, while aggregate short interest predicts 

negative market returns during recessions. Viewing short sellers as informed traders, these findings 

are consistent with recent theory which argues that rational, yet cognitively constrained traders 

optimally allocate attention towards aggregate (firm-specific) information in recessions 

(expansions) because these times are marked by higher (lower) aggregate volatility and price of 

risk. 

This study suggests potential real implications of rational attention allocation.  A large 

literature discusses the role of outside investors – such as short sellers – as monitors of the firm. 

Monitoring requires attention.  As short-sellers allocate attention away from firm-specific signals 

in recessions, managers may engage in more value-destroying and nefarious behavior in these 

states of the world. This is particularly concerning in recessions because some combination of 

greater operating and financial leverage, weak fundamental performance, and underdiversified 

managers may facilitate inefficient outcomes ranging from excessive risk-taking to 

underinvestment. 
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