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Abstract 

This thesis studies the metabolic engineering of candidate consolidated bioprocessing biocatalyst 

microorganisms through targeting regulatory genes, with an emphasis on redox metabolism.  

Consolidated bioprocessing is the single-step hydrolysis and conversion of lignocellulosic material to 

biofuels.  The biocatalysts considered are Clostridium thermocellum and Caldicellulosiruptor bescii, and 

the primary product of interest is ethanol.  Both organisms are thermophilic anaerobic bacteria which 

encode and express genes that facilitate the deconstruction and solubilization of lignocellulose into 

fermentable carbohydrates.  Furthermore, these organisms ferment these carbohydrates into ethanol, 

organic acids, as well as other fermentation products.  We seek to improve redox metabolism and 

osmotolerance in these organsisms toward a biorefining objective goal of engineering a biocatalyst 

capable of facilitating economically viable consolidated bioprocessing.   

Expression profiling, transcription factor regulon mapping, genetic engineering, and analytical 

fermentation were approaches employed to assay and understand which specific traits can be 

beneficially altered.  The traits sought to be altered are characteristically complex, co-opting many 

cellular sub-processes to enable a molecular mechanism resulting in an observable trait.  Such traits are 

notoriously difficult not only to understand, but to alter through classical metabolic engineering.  

Instead, the possibility of making system-wide changes through a minimal number of genetic alterations 

to methodically selected and/or screened regulatory genes was investigated. 

Active redox-dependent systems were characterized in both bacteria, many of which are controlled by 

the global redox-state sensing transcription factor Rex.  Eliminating Rex control over gene expression in 

C. bescii resulted in a more reduced intracellular redox state, and ultimately drives increased ethanol 

synthesis.  A method for quantifying important redox metabolites intracellularly is also adopted and 

validated for use with C. thermocellum.  This approach was extended to less characterized gene targets 
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and, arguably, even more complex traits.  Screening of single-gene deletion mutants identified two 

strains of C. bescii showing phenotypic growth differences in elevated osmolarity conditions. One strain 

housed a deletion of the fapR gene, while the other a deletion of the fruR/cra gene. Characterizing these 

transcription factors and their regulons elucidates mechanisms which this organism uses to facilitate 

survival at elevated osmolarities.  We are also able to construct genetic variants in C. bescii which are 

substantially more osmotolerant than native strains, highlighting the usefulness of these genes as 

targets and the applicability, and important considerations, of our metabolic engineering approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

Table of Contents 
Chapter 1: Introduction and Motivation ....................................................................................................... 1 

Chapter 2:  Clostridium thermocellum DSM 1313 Transcriptional Responses to Redox Perturbation ...... 11 

Abstract ................................................................................................................................................... 15 

Background ......................................................................................................................................... 15 

Results ................................................................................................................................................. 15 

Conclusions ......................................................................................................................................... 16 

Keywords ............................................................................................................................................. 16 

Background ............................................................................................................................................. 16 

Results and Discussion ............................................................................................................................ 18 

Preliminary Batch Experiments with Methyl Viologen ....................................................................... 18 

Chemostat Response to Methyl Viologen Addition ............................................................................ 18 

Decreased Transcription of Redox Active Pathways ........................................................................... 23 

Ammonia Assimilation ........................................................................................................................ 24 

Sulfate Transport and Metabolism ..................................................................................................... 29 

Porphyrin Biosynthesis ........................................................................................................................ 30 

NiFe Hydrogenases ............................................................................................................................. 31 

Transcription Differences in Other Systems ....................................................................................... 32 

Hydrogen Peroxide Addition to Chemostat Culture ........................................................................... 35 

Conclusions ............................................................................................................................................. 36 

Methods .................................................................................................................................................. 37 

Strains, Media, and Materials ............................................................................................................. 37 

Preliminary Batch Fermentations ....................................................................................................... 38 

Chemostat Growth and Stress Application ......................................................................................... 38 

Fermentation Product Analysis using High-Performance Liquid Chromatography (HPLC) ................ 40 

RNA isolation, cDNA synthesis, Microarray Hybridization and Data Analysis .................................... 40 

Microarray Validation Using Real-Time Quantitative-PCR (RT-qPCR) ................................................ 42 

Methyl Viologen Incubation Experiment ............................................................................................ 42 

Chapter 3: Targeted Redox and Energy Cofactor Metabolomics in Clostridium thermocellum and 

Thermoanaerobacterium saccharolyticum ................................................................................................. 43 

Abstract ................................................................................................................................................... 46 

Background: ........................................................................................................................................ 46 



vi 
 

Results: ................................................................................................................................................ 46 

Conclusions: ........................................................................................................................................ 46 

Background ............................................................................................................................................. 47 

Critical Aspects of Metabolomics Methods ........................................................................................ 50 

Other Nicotinamide Metabolite Quantification Methods .................................................................. 53 

Results ..................................................................................................................................................... 57 

The Adenylate Energy Charge and Metabolomic Protocol Efficacy ................................................... 57 

Metabolite Recovery Through a Single Extraction.............................................................................. 59 

Recovery Losses Through Handling in Fast Filtering and Collection ................................................... 59 

Storage Stability at -80oC. ................................................................................................................... 61 

No Matrix-Induced Signal Suppression of Targeted Metabolites ....................................................... 63 

Nicotinamide and Adenylate Cofactor Extractions from C. thermocellum and T. saccharolyticum ... 63 

Discussion................................................................................................................................................ 68 

Adenylate Energy Charge and Reliable Quantifications ..................................................................... 68 

Fast Filtering with Organic/Aqueous Solvent Precludes Matrix-Induced Ion Suppression and 

Simplifies Sample Handling and Analysis ............................................................................................ 70 

Redox Dynamics of Ethanol-Producing Anaerobic Thermophiles ...................................................... 71 

Higher NADH/NAD+ in C. thermocellum than T. saccharolyticum ...................................................... 73 

Free vs. Bound Cofactors .................................................................................................................... 74 

Conclusions ............................................................................................................................................. 75 

Methods .................................................................................................................................................. 75 

Strains, Media and Growth ................................................................................................................. 75 

Metabolite Extractions ........................................................................................................................ 76 

LC-MS/MS of Intracellular Metabolites .............................................................................................. 79 

Chapter 4: Rex in Caldicellulosiruptor bescii: Novel Regulon Members and its Effect on the Production of 

Ethanol and Overflow Metabolites ............................................................................................................. 83 

Abstract ................................................................................................................................................... 87 

Importance .............................................................................................................................................. 87 

Introduction ............................................................................................................................................ 88 

Results ..................................................................................................................................................... 90 

Deletion of the rex Open Reading Frame ........................................................................................... 90 

Bioinformatic Prediction of the Rex Regulon in C. bescii .................................................................... 91 



vii 
 

Expression Profiling of JWCB005Δrex and Selecting Transcription Factor Binding Sites for In Vitro 

Verification .......................................................................................................................................... 91 

Electromobility Shift Assays to Test Rex Binding to Predicted C. bescii Binding Sites ........................ 92 

NADH Binding by Rex in C. bescii ........................................................................................................ 95 

Ethanol Productivity of a rex Deletion in an Ethanol Producing Strain of C. bescii ............................ 95 

Discussion................................................................................................................................................ 97 

Expanding the Rex Regulon in C. bescii ............................................................................................... 97 

Ethanol-producing rex-deficient C. bescii produces more ethanol under nitrogen limiting conditions 

which extends fermentation ............................................................................................................... 99 

Redox Buffer Systems ....................................................................................................................... 104 

Differentially Abundant Metabolites in JWCB032Δrex ..................................................................... 105 

Intracellular Redox Conditions and Pyruvate Accumulation Possibly Driving Metabolite Differences

 .......................................................................................................................................................... 108 

Absence of Correlation Between the Rex Regulon, Differentially Expressed Genes and Differentially 

Abundant Metabolites ...................................................................................................................... 109 

Conclusions ........................................................................................................................................... 109 

Methods ................................................................................................................................................ 110 

Batch Growth and Fermentation ...................................................................................................... 110 

pH Controlled Fermentation ............................................................................................................. 110 

Fermentation Product Analysis ......................................................................................................... 111 

Mutant Construction ......................................................................................................................... 111 

RNA-seq Analysis ............................................................................................................................... 112 

Metabolomic Profiling ...................................................................................................................... 114 

Transcription Factor Binding Site Prediction .................................................................................... 114 

Rex Protein Purification .................................................................................................................... 114 

Electromobility Shift Assays .............................................................................................................. 115 

Accession Numbers ........................................................................................................................... 116 

Chapter 5: Understanding and Improving Osmotolerance in Caldicellulosiruptor bescii Through Metabolic 

Engineering of Selected Transcription Factors ......................................................................................... 117 

Abstract ................................................................................................................................................. 121 

Introduction .......................................................................................................................................... 122 

Results ................................................................................................................................................... 125 

Growth Phenotypes of Single-Gene Deletion Strains of Two Regulatory Proteins .......................... 125 



viii 
 

Transcription Factor Binding Site Prediction .................................................................................... 126 

Direct and Indirect Regulatory Actions of FapR and Cra in C. bescii ................................................. 131 

Discussion.............................................................................................................................................. 139 

Osmolarity Stress Response and the Cellular Function of The FapR and FruR/Cra Transcription 

Factors in C. bescii ............................................................................................................................. 139 

Proposed Mechanism of FapR and Cra-Enabled Osmotolerance in C. bescii ................................... 141 

Improving Osmoresistance in Consolidated Bioprocessing Through Regulatory Metabolic 

Engineering ....................................................................................................................................... 143 

Conclusions ........................................................................................................................................... 143 

Methods ................................................................................................................................................ 144 

Screening Single Gene Deletion Mutants ......................................................................................... 144 

RNAseq Analysis of Single Gene Deletion Mutants Under Elevated Osmolarity Conditions ............ 145 

Transcription Factor Binding Site Prediction .................................................................................... 146 

Assessment of Genome Differences Between JWCB005/JWCB018 and JWCB005 ΔB5X54_RS01260

 .......................................................................................................................................................... 147 

C. bescii Cra/FruR Protein Purification .............................................................................................. 147 

Chapter 6: Summary and Future Directions ............................................................................................. 148 

References ................................................................................................................................................ 156 

Appendix ................................................................................................................................................... 171 

Vita ............................................................................................................................................................ 206 

 

 

 

 

 

 

 

 



ix 
 

List of Tables 

Tables Embedded in Text 

Table 1. Number of genes showing differential expression after beginning methyl viologen addition

 ........................................................................................................................................................... 20 

Table 2. Differential expression for GS-GOGAT ammonia and [NiFe] hydrogenase genes ............... 27 

Table 3. Differential expression information for genes Clo1313_0107 through Clo1313_0124 ....... 33   

Table 4.  Adenylate energy charge (AEC) improvements observed through protocol  

development ...................................................................................................................................... 58 

Table 5.  Varying adenylate charge ratios observed across species highlights the need to develop 

protocols specific for each species/strain .......................................................................................... 66 

Table 6.  Ionization and collision cell parameters used to analyze metabolites in this study ........... 81 

Table 7.  Rex operator binding sites chosen for in vitro binding validation from predicted Rex  

operator sites in the C. bescii genome ............................................................................................... .94 

Table 8.  Primers, plasmids, and C. bescii strains generated and/or used in this study .................... 113 

Table 9. Genes in strain JWCB005 ΔB5X54_RS06355 (ΔfapR) which exhibit increased expression  

when cells were cultured in elevated osmolarity conditions ............................................................ 133 

Table 10. Genes in strain JWCB005 ΔB5X54_RS01260 (Δcra) which exhibit increased expression  

when cells were cultured in elevated osmolarity conditions ............................................................ 134 

Table 11.  Genes in strain JWCB005 ΔB5X54_RS01260 (Δcra) which exhibit decreased expression  



x 
 

when cells were cultured in elevated osmolarity conditions ............................................................ 135 

Table 12.  Genes that were found to have similar differential expression in strain JWCB005 

ΔB5X54_RS01260 (Δcra) and JWCB005 ΔB5X54_RS06355 (ΔfapR), each compared to their common 

genetic parent strain JWCB005 .......................................................................................................... 136 

Table 13.  Genes found to have relatively low normalized expression values in strain JWCB005 

ΔB5X54_RS01260 (Δcra) .................................................................................................................... 138 

Tables in Appendix 

Table A1.  Primers used in qPCR validation of gene expression differences of selected genes ........ 193 

Table A2.  These predicted operator sites were taken as the complete list of all possible Rex binding  

sites in the C. bescii genome .......................................................... ………………………………………….194-198 

Table A3.  Primers used in this study ............................................. …………………………………………199-203 

Table A4.  Plasmids used in this study ........................................... ……………………………………….……….204 

Table A5.  Strains used in this study……………………………………………………………………… ........................ 205 

 

 

 

 

 



xi 
 

List of Figures 

Figures Embedded in Text 

Figure 1.  (A) OD600 and measured redox potential before, during and after methyl viologen addition.   

(B) Detailed view of boxed region indicated in Figure 1(A) ............................................................... .21 

Figure 2.  Fermentation productivity during addition of methyl viologen to chemostat culture ..... .22 

Figure 3. Global view of main of C. thermocellum DSM 1313 transcriptional responses to methyl  

viologen .............................................................................................................................................. 25 

Figure 4.  Cell biomass was extracted multiple times to determine if extracting biomass multiple  

times is necessary to recover all metabolites present in collected biomass ..................................... 60 

Figure 5.  Extraction solvent containing exogenously added metabolites was used to conduct a  

‘mock-extraction’ to assess metabolite losses due to handling ........................................................ 62 

Figure 6.  Storage stability of metabolites was assessed over 5 days at -80oC in extraction solvent at 

concentrations 0.01 µM to 1 µM ....................................................................................................... 64 

Figure 7:  Mass-spectrometry signal suppression brought about by cell extract components were 

assessed as deflections in steady state metabolite signals (created by infusing a mixture of the  

seven metabolites of interest in this study into the chromatography column eluent) ..................... 65 

Figure 8.  Diagram of the fast-filtering protocol used to extract and detect intracellular metabolites  

from cell biomass in this study .......................................................................................................... 77 

Figure 9.  Diagram of method used to collect and aliquot cell extract from biomass that had been 

extracted multiple times .................................................................................................................... 80 

Figure 10.  Electromobility shift assays of binding sites identified upstream of putative transcriptional 

units associated with a poorly annotated, though highly expressed, oxidoreductase gene ............ 93 



xii 
 

Figure 11.  Electromobility shift assays and genomic orientations of Rex binding sites upstream of 

hydrogenase genes in C. bescii .......................................................................................................... 100 

Figure 12.  Electromobility shift assays of binding sites upstream of central glycolytic genes ......... 101 

Figure 13.  Electromobility shift assays of other predicted Rex binding sites whose role in redox 

metabolism, and C. bescii metabolism in general, is not well understood ....................................... 102 

Figure 14.  Electromobility shift assay showing DNA binding by Rex is disrupted by NADH and is  

sensitive to NADH/NAD+ ratio across cofactor pool concentrations of 1µM to 100 µM .................. 96 

Figure 15.  (a) Growth of ethanol producing JWCB032 and JWCB032Δrex conducted in media  

containing 1/10th of typical concentration of ammonia .................................................................... 103 

Figure 16:  Differential metabolomic comparison of JWCB032Δrex and its parent strain  

JWCB032 ............................................................................................................................................ 106 

Figure 17.  Growth phenotypes of strains ΔB5X54_RS01260 (Δcra) and ΔB5X54_RS06355 (ΔfapR)  

when grown in increasing amounts of added glycerol ...................................................................... 127   

Figure 18.  Growth phenotypes of strains ΔB5X54_RS01260 (Δcra) and ΔB5X54_RS06355 (ΔfapR)  

when grown in increasing amounts of added NaCl ........................................................................... 128 

Figure 19.  Growth phenotypes of ΔB5X54_RS01260 (Δcra) and ΔB5X54_RS06355 (ΔfapR) when  

grown in liquid culture containing 20 g/L added ethanol .................................................................. 129 

Figure 20.  Growth phenotypes of strain ΔB5X54_RS01260 (Δcra) and ΔB5X54_RS06355 (ΔfapR)  



xiii 
 

when grown in liquid culture containing added NaCl to make calculated initial osmolarity of 200  

mOsm/L .............................................................................................................................................. 130 

Figure 21. Proposed roles of the FruR/Cra and FapR transcription factors in C. bescii, and the 

hypothesized regulatory response of these transcription factors to increased osmolarity conditions

 ........................................................................................................................................................... 142 

Figures in Appendix 

Figure A1.  Batch fermentation performance under methyl viologen and hydrogen peroxide initial 

loadings .............................................................................................................................................. 172 

Figure A2. Specific end-point fermentation products at different initial methyl viologen concentrations, 

normalized to maximum OD600 achieved.  Cultures were grown in MTC media containing 1.1 g/L 

cellobiose ........................................................................................................................................... 173   

Figure A3.  Specific end-point headspace H2 at different initial methyl viologen concentrations, 

normalized to maximum OD600 achieved ........................................................................................... 174 

Figure A4.  (A) Adjusted OD600 of batch cultures grown at various initial hydrogen peroxide 

concentrations ................................................................................................................................... 175 

Figure A5.  qPCR validation of expression differences of selected genes of interest ........................ 176 

Figure A6. (a) Chromosomal integration and recombination scheme for constructing Δrex mutants 

of JWCB005 and JWBCB032 ............................................................................................................... 177 

Figure A7.  (a) Growth profile and (b) supernatant acetate concentration of JWCB005Δrex strain and 

parent strain JWCB005 ...................................................................................................................... 178 



xiv 
 

Figure A8.  Principal component analysis of normalized mapped RNA-seq read-counts from  

strains ................................................................................................................................................. 179   

Figure A9. Electromobility shift assay using ATHE_RS03255 probe containing a mutated Rex binding  

site showing in vitro EMSA assay is sequence specific for Rex operator sites .................................. 180 

Figure A10. Electromobility shift assay reactions using probes containing non-homologous sequence  

to Rex binding sites showing Rex binding is sequence specific for previously predicted operator sites

 ........................................................................................................................................................... 181  

Figure A11.  (a) OD680 observed after 48 hours of growth in replete LOD media ............................. 182 

Figure A12.  Growth profiles and OD680 of cultures when samples were collected for RNAseq analysis  

for strains JWCB005 ΔB5X54_RS01260, JWCB005 ΔB5X54_RS06355, and JWCB005 (genetic parent  

strain to both single-gene deletion strains) ....................................................................................... 183 

Figure A13. PCR of the genomic region spanning B5X54_RS07485 - B5X54_RS07500 ..................... 184 

Figure A14.  Single-gene deletion mutant screen for growth phenotypes in media containing 5 g/L  

xylose as the primary source of carbon ............................................................................................. 185 

Figure A15.   Single-gene deletion mutant screen for growth phenotypes in media containing 5 g/L 

glucose as the primary source of carbon ........................................................................................... 186 

Figure A16.  Single-gene deletion mutant screen for growth phenotypes in media containing 5 g/L xylan 

as the primary source of carbon ........................................................................................................ 187   



xv 
 

Figure A17.  Single-gene deletion mutant screen for growth phenotypes in media containing 5 g/L 

crystalline cellulose as the primary source of carbon........................................................................ 188 

Figure A18.  Single-gene deletion mutant screen for fermentation product phenotypes in media 

containing 5 g/L washed, unpretreated cellulose as the primary source of carbon ......................... 189   

Figure A19.  Single-gene deletion mutant screen for growth phenotypes in media containing 5 g/L 

glucose as the primary source of carbon and 150 mg/L added methyl viologen .............................. 190 

Figure A20.  Single-gene deletion mutant screen for growth phenotypes in media containing 5 g/L 

glucose as the primary source of carbon and added NaCl to an initial calculated media osmolarity  

of 200 mOsm/L .................................................................................................................................. 191 

Figure A21.  Single-gene deletion mutant screen for growth phenotypes in media containing 5 g/L 

glucose as the primary source of carbon and 20 g/L added ethanol ................................................ 192 

 

 

 

 

 

 

 

 

 



xvi 
 

List of Attachments 

 

Attachment 1.  Normalized probe hybridization intensity for methyl viologen and hydrogen peroxide 

exposed C. thermocellum DSM 1313.  Filename: attachment_1_Sander.xlsx 

Attachment 2.  RNAseq differential expression for strain JWCB005Δrex at early, mid, and late log phase 

of growth.  Filename: attachment_2_Sander.xlsx 

Attachment 3.  RNAseq differential expression for strains JWCB005ΔB5X54_RS01260 and 

JWCB005ΔB5X54_RS06355 grown in elevated osmolarities of glycerol, sodium chloride, and glucose.  

Filename: attachment_3_Sander.xlsx 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

Chapter 1: Introduction and Motivation 
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Bioenergy needs in the transportation sector are currently met almost entirely with bioethanol [1].  

Currently, the commodity fuel ethanol demand in the United States is met through a fermentation 

process with the fermentable carbohydrates originating from corn starch [2], making it a ‘first-

generation’ biofuel.  The production rate of fuel ethanol in the United States has climbed steadily since 

2011, regularly hovering above 1 million gallons per day since the beginning of 2017 [3].   

While bioethanol currently makes up a small portion of total transportation fuel needs in the United 

States, it will likely [4] constitute the bulk of the 36 billion gallons of total biofuels projected to be 

produced through 2022, as mandated by the Renewable Fuel Standard [5].  The Renewable Fuel 

Standard is a compulsory and integral part of larger legislation (the Energy Independence and Security 

Act of 2007) that aggregates and expresses the policy objectives in the United States to reduce our 

carbon footprint, become more energy independent and diverse, and economically bolster rural 

agricultural economies.  As of 2016, only 312 million gallons of ‘advanced’ non-corn starch bioethanol 

was produced [5], far below the annual volume mandated for 2016 by the original Renewable Fuel 

Standard (~9 Billion gallons).  It is unlikely that processes, abiotic or biotic, to generate ‘drop-in’ 

alternatives to ethanol will emerge to fill this gap, as these are subject to the same economic and 

technological constraints as bioethanol, and are far less technologically mature.   

Though there is hope for replacing existing ethanol demand with more sustainable ethanol made using 

more advanced processes, the demand is unlikely to increase without the removal of the restrictions 

placed on its volumetric blending with gasoline, the so-called ‘blend wall,’ in the United States.  More 

mature ethanol markets, such as Brazil which relies largely on ethanol to meet liquid transportation fuel 

demand, do not face this artificial ceiling on ethanol demand as their infrastructure is amenable to much 

higher ethanol blends. 

Since 2007, when the Energy Independence and Security Act was enacted, the United States has 

dramatically increased efforts to recover domestic petroleum fuels, and the retail price of gasoline has 
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fallen nearly in half.  These economic factors inhibit the development and deployment of sustainable 

alternative fuels.  By 2075, under the International Energy Agency’s ‘2 degree’ scenario, biofuels are 

projected to make up ~30% of all transportation fuel energy in the world, while petroleum based fuels 

are projected to comprise < 10% [6].  No long-term transportation sector projections ever foresee 

electricity providing more than 50% of world-wide transportation sector energy [4].  These projections 

and facts illustrate the need for fuel ethanol.  Furthermore, they negate the notion that bioethanol is a 

temporary ‘stop gap’ to other technologies, or that it is an ‘optional’ piece of the United States’ 

sustainability strategy.  

Consolidated bioprocessing (CBP), a process utilizing a single microbial biocatalyst for both 

deconstruction of lignocellulosic materials to soluble components and subsequent conversion to 

ethanol, is the least expensive biological route to ethanol production on the basis of capital, operating, 

and input costs [7].  Lignocellulosic material (such as high-yielding switchgrass) is the only bioenergy 

feedstock currently being considered that can potentially be grown on lands that cannot support food 

crop production [8].  While sustainably produced lignocellulosic material would make an ideal bioenergy 

feedstock, the biotechnological conversion of this material to fuel ethanol suffers from low product 

yields/productivities, and incomplete feedstock utilization.  Increases in both of these metrics are 

needed to decrease the total costs ($/annual L of ethanol) of CBP produced ethanol.  Abiotic processes 

(gasification, pyrolysis) for fuels using lignocellulosic material suffer the same cost constraints as CBP, 

and large scale deployment of these processes is hindered currently by prohibitively high capital costs 

[8].  As a result, most ethanol refineries, old and new, operate biological processes [9]. 

In addition to the technological challenges of the conversion process, another primary challenge to 

large-scale deployment of consolidated bioprocessing are the logistical challenges of obtaining sufficient 

lignocellulosic material to support a CBP process.  Current research is addressing these challenges by 

exploring cost drivers of feedstock delivery such as optimizing the placement of biorefineries with 
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respect to their distance from places where feedstock material is grown [10] and utilizing a plurality of 

lignocellulosic materials to dampen the effects of supply disruptions [11].  

The key to an effective CBP process is the biocatalyst, which must simultaneously degrade lignocellulose 

to their soluble, fermentable carbohydrate constituents, and ferment the carbohydrate fraction to make 

bioethanol.  Two promising CBP biocatalysts are Clostridium thermocellum and Caldicellulsiruptor bescii.  

Both organisms are strict anaerobic thermophiles, culture conditions which inherently occlude 

contamination by common biotechnology contaminant microorganisms.  Caldicellulosiruptor is one 

among thermophilic CBP candidates in that it can hydrolyze non-pretreated switchgrass and metabolize 

both the resulting pentose and hexose sugars simultaneously [12-14].  Clostridium thermocellum also 

hydrolyses lignocellulosic biomass, though does not naturally catabolize five-carbon sugar monomers.  

Both organisms encode a host of cellulolytic enzymes which facilitate direct solubilization of 

lignocellulosic biomass to their fermentable carbohydrate components [15].  Recently, strains of C. bescii 

have been engineered to produce ethanol, though at yields far below theoretical maximum [16].  

Clostridium thermocellum produces ethanol naturally, though alongside other fermentation products.  

These native traits make these organisms ideal CBP candidate biocatalysts, though their native 

performance falls far short of objectives identified for cost-effective, industrial CBP [17, 18].  As such 

methods for genetically modifying these organisms were developed [19, 20], and efforts toward 

improving the bioperformance of these organisms has made great strides toward CBP performance 

objectives.     

Previous and ongoing metabolic engineering these CBP candidate biocatalysts has largely targeted well-

known enzymes belonging to well-understood pathways.  Modulating carbon flux using this approach 

has afforded large gains in ethanol yield in CBP organisms [16, 21, 22], but is limited to the small number 

of pathways for which we have sufficient knowledge [9].  The diminishing returns realized from 

successive modifications using this approach suggest these efforts alone will not suffice to meet all 
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objectives for a commercial CBP catalyst.  There are very few instances [23] of improving more complex 

behaviors in CBP biocatalysts, such as lignocellulosic biomass deconstruction (of which much of the 

mechanistic process is unknown [24-26]), or tolerance to stressors.  Efforts to improve these CBP 

performance shortcomings rooted in more complex cellular processes, have not previously been 

undertaken, but remain as imminent obstacles to the industrial utilization of the organisms in a CBP 

setting.   

Common to the works described in this thesis is the aim to increase the performance of these CBP 

biocatalysts, Caldicellulosiruptor bescii and Clostridium thermocellum, which we have endeavored to do 

so by exploring and metabolic engineering regulatory gene targets in these organisms.  This is a proven 

strategy, particularly when faced with the task of improving performance metrics associated with 

complex and poorly understood traits, as we were.  Transcription factors have been effectively used as 

metabolic engineering targets many times over towards attaining large bioprocessing performance 

gains.  Clostridium acetobutylicum final ethanol titer increased ~200% upon deleting its rex redox-

sensing transcription factor [27].  Over-expressing the FadR fatty acid metabolism regulator in E. coli 

increased total fatty acid production 5-7.5 fold, and was shown to be more effective than 

overexpressing individual enzymes responsible for fatty acid production [28].  Ethanol tolerance, but not 

productivity, was improved in S. cerevisiae by iteratively evolving and screening strains carrying mutated 

variants of the spt15 transcription factor [29], showing that engineering transcription factors and 

regulators can have a large impact on performance metrics associated with complex and poorly 

understood cellular processes. 

Facilitating more effective sugar-to-ethanol processes within these organisms will increase ethanol yield 

and productivity.  Biological ethanol synthesis in both organisms requires the cofactor NADH in 

stoichiometric quantities to be provided by a host’s native redox metabolism.  Expressing an exogenous 

alcohol dehydrogenase shifted nearly 70% of product carbon flux toward ethanol without any 
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subsequent pathway optimization [16].  Low overall substrate conversion and low final ethanol product 

titer suggest further improving ethanol synthesis efficacy through engineering of redox systems in C. 

bescii is possible.  The redox systems of Clostridium theromcellum have been studied extensively and 

redox modulation, either through end-product forcing [30], genetic modification [21, 31-33], or other 

alterations to growth conditions [34], effects the relative and absolute amount of ethanol synthesized.  

The native redox conditions, and the availability of NADH for ethanol synthesis, appear to be limiting 

ethanol production in C. thermocellum [35], as many of these genetic modifications which affect redox 

system components directly increase ethanol yield considerably.  While improvements in ethanol 

synthesis have been realized in C. thermocellum, its redox systems, outside of glycolytic and 

fermentative pathways, remain largely unexplored.  While these alterations did not suffice to achieve 

ethanol yield and productivity objectives, it was clear that redox-imbalance, as evidenced by overflow 

metabolite production [31, 34] and incomplete carbon balances, was still limiting ethanol synthesis.   

In the second chapter, we studied redox dynamics with an emphasis on identifying previously unknown 

active redox nodes in C. thermocellum metabolism, and how they interact with overall redox 

metabolism to effect ethanol fermentation.  We chose to focus on the transcriptomic response to redox 

perturbation as this would allow for a comprehensive view of redox dynamical systems in C. 

thermocellum, including the regulatory networks governing redox state response.  Intracellular redox 

state was perturbed by adding known redox-active chemicals to steady-state growing cultures, and 

transcriptomic profiles were assessed during transient periods, as well as long after cultures had 

achieved perturbed steady state conditions.  We perturbed growing cultures with methyl viologen, 

which served to decrease whole-cell measured redox potential, and, separately, with hydrogen 

peroxide, which increased whole-cell measured redox potential.  Toward informing future redox-system 

metabolic engineering efforts, we elucidated active redox systems that were coordinately varying in 

response to redox conditions.  Subsequent efforts have capitalized on these elucidations through the 
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elimination of a glutamine synthetase gene, which resulted in a 53% increase in ethanol yield and a 44% 

decrease in secreted soluble amino acids, an unwanted overflow metabolism product and carbon sink 

[36]. 

Global redox cofactor metabolites, NAD(H) and NADP(H), are charge carrier molecules through which 

many redox reactions are facilitated within the cell, including the final two steps of ethanol synthesis 

catalyzed by the AdhE enzyme in C. thermocellum [37], and in C. bescii engineered to produce ethanol 

[16].  Redox reactions can be facilitated by other recycled cofactor molecules and small proteins, though 

the most important redox charge carrier molecules in C. thermocellum and C. bescii are NAD(H), 

NADP(H) and the hydrogenase/PFOR-associated ferredoxin(s) [12, 34, 38-40].  NAD(H) and NADP(H) 

both form redox couples with their oxidized counterparts which have similar characteristic standard 

biological redox potentials (Eo’), while ferredoxin redox couple standard potentials are typically much 

lower [41].  As such these two typically catalyze different reactions within the cell metabolism.  

Measuring the intracellular concentrations of these molecules is imperative to gain a determining sense 

of intracellular redox conditions within a cell, and measuring the concentrations of these molecules 

separately allows for the ever-important estimation of thermodynamic forcing on important glycolytic 

and fermentative reactions.  These measurements have historically proven to be challenging 

measurements to make and validate.  Of similar importance is the measurement of energy-transferring 

adenylate cofactors; ATP, ADP and AMP.  These molecules too have proven very difficult to measure.  

Intrinsic measures of state for these molecules (the adenylate energy charge for adenylates and redox 

potential for the nicotinamides) taken from the same organism grown in similar conditions can span the 

range of possible values.  As these intrinsic parameters are known to be tightly controlled by the cells 

metabolism [42, 43], it is unlikely that this variation reliably represents biological systems being 

interrogated.  Such wide variations, if they were indeed biological, in these fundamental intrinsic values 

would greatly disrupt cellular metabolic processes.  It is more likely that many of these results are the 
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spurious consequences of experimentally and/or procedurally induced artifacts and do not represent 

the true biological state of the cells from which the measurements were taken.  The reason these 

metabolites are notoriously difficult to reliably extract and quantify is that they are exceedingly labile, 

even under the most careful of handling and processing conditions [44, 45].  Previously used methods 

do not account for this and employ unnecessarily harsh chemicals and protocols, leaving these labile 

metabolites susceptible to degradation and/or conversion to their more stable conversion counterparts 

(NAD(P)H to NAD(P)+ and ATP to ADP and AMP).  Toward obtaining robust and validated measured 

intracellular concentrations of these important intracellular metabolites, the second work of this thesis 

adapted an extraction and detection methodology previously developed and validated for use with E. 

coli cell biomass [45] to be used with the organisms of interest to this work and to the BioEnergy Science 

Center.  This method was chosen as the basis for our adaptation primarily because of its careful 

attention to preserving labile metabolites, while also ensuring replete extraction of metabolites from 

cell biomass.  Toward this end, we adapt and modified our method while paying close attention to one 

strong indicator of labile metabolite degradation; the adenylate energy charge (AEC).  This parameter is 

tightly regulated in cellular tissues [42], and decreases in the most labile adenylate, ATP, are readily 

manifest in a decreases in the AEC.  In achieving acceptably high, physiologically relevant AEC values, we 

arrive at an adapted method suitable for extracting and quantifying these metabolites from C. 

thermocellum and another thermophilic ethanologen often studied in co-culture with C. thermocellum, 

Thermoanaerobacterium saccharolyticum. 

Toward studying the potential of engineering redox systems in these organisms, beyond what has 

already been accomplished in C. thermocellum through engineering catalytic enzymes, we sought to 

affect the redox-driven production of ethanol through modulating redox systems at the level of 

transcription, and demonstrate that redox state could be altered and ethanol bioproduction increased 

through the engineering of regulatory genes.  We selected the rex gene as the regulatory target.  The 
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Rex protein is a global transcription factor that regulates redox state within the cell.  Its presence, 

structure, function, and regulon are largely conserved across gram positive bacteria [46].  Rex regulates 

gene expression in response to NADH/NAD+ levels within the cell.  Binding of NADH disrupts Rex’s ability 

to bind DNA and repress transcription.  Rex in its apo form is free to bind to Rex-specific binding sites 

located in the promoter regions of genes and allosterically repress transcription.  Rex has been shown to 

effectively regulate transcription in response to the NADH/NAD+ ratio, over total pool sizes many orders 

of magnitude [47], effectively regulating redox state rather than NADH concentration alone.  

Additionally, Rex regulon targets stretch beyond those genes which are NAD(H) dependent, and include 

genes which encode redox proteins dependent on other redox carrying cofactors [46, 48].  Combined, 

Rex indirectly serves as a master regulator of redox state in general for the cell.  For this reason, the 

study of Rex and its regulon served two purposes.  The first was to elucidate the, largely unknown, 

network of genes involved in redox state regulation and modulation within C. bescii.  The second was to 

inform an engineering strategy aimed at poising redox systems in C. bescii toward more effective 

ethanol synthesis.    

As a final and culminating effort in this work, we aimed to assess and leverage bioperformance impacts 

associated with ten different transcription factor targets in C. bescii.  Little is known of the regulatory 

network space of C. bescii, and of the genus Caldicellulosiruptor in general.  Due to this lack of previous 

knowledge, candidate gene targets were selected from primarily global differential expression profiles 

collected under growth on switchgrass (a candidate CBP feedstock) [49], and from a close relative 

Caldicellulosiruptor saccharolyticus (with which C. bescii shares 93% nucleotide similarity) while being 

sparged with hydrogen [50], a potent redox stress.  Single-gene deletion mutants were generated for 

each of the ten candidate gene targets, and these strains were assayed for performance differences 

while grown under eight different CBP relevant conditions.  Defined growth media and methods for a 
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variety of assay conditions [12, 51, 52], as well as a versatile and robust genetic system [20], developed 

and optimized previously for C. bescii, were used extensively in this work.   

DNA transformation was initially made possible in C. bescii through identifying and mitigating the effects 

of a potent native restriction endonuclease [20].  Eliminating its activity enabled eletrotransformation of 

DNA into C. bescii cell biomass.  Subsequently, methods were developed to delete genes and introduce 

genes onto the chromosome using a non-replicating suicide vector and homologous recombination [53].  

A replicating shuttle vector [54], as well as an additional selection marker conferring resistance to 

kanamycin [55] were subsequently developed and are both used in these works.        

From the traits screened, two genes were shown to effect osmotolerance.  Elevated concentrations of 

osmolytes is one of the many cytological stresses biocatalysts encounter during CBP.  For example, basal 

C. bescii media containing 50 g/L of ethanol (a nominal target final concentration for a cost-effective CBP 

process) contains >1,300 mOsm/L.  Natively, C. bescii is relatively sensitive to higher osmolarities, 

displaying severe growth defects at 160 mM synthesized acetate [12], 160 mM added MOPS buffer [56], 

and ~200 mOsm/L from added NaCl [51], far below what is needed for industrial CBP.  We again 

assessed the regulons of these two genes using global transcription profiling under high osmolarity 

loadings of different osmolytes, allowing us to predict the regulons of these two transcription factors 

and hypothesize the modes of action by which they effect osmotolerance.  We are following up by 

combining these two mutations in a single strain to generate a highly osmotolerant strain of C. bescii. 

The exploration and modulation of regulatory genes has not only broadened our knowledge of 

previously unknown redox systems in these organisms, but allowed for further bioproductivity 

improvements in these two organisms.  It is shown herein that CBP bioperformance gains rooted in 

complex traits, such as the redox state of the cell and tolerance to elevated osmolarities, can be realized 

through exploration and metabolic engineering of regulatory gene targets in CBP organisms. 
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Chapter 2:  Clostridium thermocellum DSM 1313 Transcriptional 

Responses to Redox Perturbation 
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The following work was published in the journal Biotechnology for Biofuels in 2015.  It is presented here 

as it appears in the journal, formatted to fit applicable requirements for inclusion in this thesis.  The 

citation for this work, as published is: 

 

Sander, K., et Al., Clostridium thermocellum DSM 1313 transcriptional responses to redox perturbation. 

Biotechnol Biofuel, 2015. 8(1): p. 211. 

 

This work is the initial, preliminary exploration of redox metabolism in the thermophilic CBP candidate 

organisms studied throughout this thesis.  In this work, we elaborate the cellular response to a discrete 

and defined redox stress in C. thermocellum giving initial insight into the coordinated responses 

employed when challenged with a changing redox environment.  We were able to observe a difference 

in ethanol yield during the prescribed redox treatment, meeting a primary objective of observing active 

and dynamic redox systems which are closely linked to the synthesis of ethanol, and which impact the 

ethanol product yield.  Furthermore, we observed these differences at the level of transcription, leading 

us to the realization that redox dynamics are affected by transcription-level changes, and not being 

enabled in other ways (e.g. metabolically or within the proteome for example).  Observing these 

systems not only informed future metabolic engineering efforts by others, but led us to pursue redox-

sensing transcription factors, and transcriptional regulatory machinery in general in future efforts to 

increase bioperformance in these CBP candidate organisms.  

 

Kyle Sander led efforts in designing the study, forming the hypotheses to be addressed, designed and 

carried out all experiments, collected and analyzed samples and data, assisted in microarray cDNA 

preparation, hybridization and analysis, and drafted the manuscript and figures.  Charlotte M. Wilson 

assisted in designing experiments, preparing cDNA, hybridizing cDNA and analyzing expression profiling 
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Rydzak provided thoughtful, thorough, and scientifically critical reviews of the article prior to 
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Abstract 

Background 

Clostridium thermocellum is a promising consolidated bioprocessing candidate organism capable of 

directly converting lignocellulosic biomass to ethanol. Current ethanol yields, productivities and growth 

inhibition are industrial deployment impediments for commodity fuel production by this bacterium. 

Redox imbalance under certain conditions and in engineered strains may contribute to incomplete 

substrate utilization and may direct fermentation products to undesirable overflow metabolites. Toward 

a better understanding of redox metabolism in C. thermocellum, we established continuous growth 

conditions and analyzed global gene expression during addition of two stress chemicals (methyl viologen 

and hydrogen peroxide) which changed the fermentation redox potential. 

Results 

The addition of methyl viologen to C. thermocellum DSM 1313 chemostat cultures caused an increase in 

ethanol and lactate yields. A lower fermenter redox potential was observed in response to methyl 

viologen exposure, which correlated with a decrease in cell yield and significant differential expression 

of 123 genes (log2 > 1.5 or log2 < -1.5, with a 5% false discovery rate). Expression levels decreased in four 

main redox active systems during methyl viologen exposure; the [NiFe] hydrogenase, sulfate transport 

and metabolism, ammonia assimilation (GS-GOGAT), and porphyrin/siroheme biosynthesis. Genes 

encoding sulfate transport and reduction and porphyrin/siroheme biosynthesis are co-located 

immediately downstream of a putative iscR regulatory gene, which may be a cis-regulatory element 

controlling expression of these genes. Other genes showing differential expression during methyl 

viologen exposure included transporters and transposases.   
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Conclusions 

The differential expression results from this study support a role for C. thermocellum genes for sulfate 

transport/reduction, glutamate synthase-glutamine synthetase (the GS-GOGAT system), and porphyrin 

biosynthesis being involved in redox metabolism and homeostasis. This global profiling study provides 

gene targets for future studies to elucidate the relative contributions of prospective pathways for co-

factor pool re-oxidation and C. thermocellum redox homeostasis. 

Keywords 

Clostridium thermocellum DSM 1313, microarray, transcriptomics, methyl viologen, chemostat, redox, 

sulfate, GS-GOGAT, hydrogenase.  

Background 

Clostridium thermocellum natively expresses enzymes to both deconstruct lignocellulosic biomass and 

ferment cellulose into ethanol, making it a candidate biocatalyst for consolidated bioprocessing (CBP). 

C. thermocellum hydrolyzes lignocellulosic biomass rapidly and efficiently using an elaborate enzyme 

system in the form of free and cell bound multi-enzyme cellulolytic complexes called cellulosomes [57, 

58]. Though its hydrolysis machinery is among the fastest and most effective known [59], its 

fermentative metabolism results in yields and productivities too low for cost-effective industrial 

lignocellulosic ethanol production [58, 60]. 

In addition to ethanol, C. thermocellum natively produces acetate, lactate, formate and hydrogen. 

Efforts to eliminate these undesirable products [61-63], in conjunction with metabolic engineering of 

lignocellulosic substrates, have been met with higher ethanol yields [64]. Another limitation to ethanol 

yield and productivity is a presumed ‘overflow’ metabolism by which C. thermocellum makes a number 

of other products, a phenomenon that seems to be exacerbated when fermentative metabolic pathways 

that reoxidize redox cofactors are eliminated or when substrate loadings are relatively high [65-67]. C. 

thermocellum metabolism is affected by the addition of exogenous fermentation products [68] and 
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inhibitor chemicals [69] as well as other environmental perturbations. These responses were seen 

through altered end product distributions, O/R balances, and inhibited substrate uptake. Further, 

metabolic changes that originate at the level of sensing and transcription have been observed in 

response to different physical and chemical perturbations [70-73]. The mechanisms by which 

C. thermocellum senses, regulates and balances redox status remain poorly understood and a deeper 

understanding may inform future metabolic engineering efforts. The potential inability of various 

engineered and wild-type strains to sufficiently reoxidize redox cofactors and possible cellular redox 

imbalance from overly reduced cofactor pools is an area of biotechnological interest. 

Redox metabolism has been studied in many organisms capable of carrying out a variety of redox 

reactions. One method to examine redox related metabolism is to observe gene expression responses to 

an altered redox environment [74, 75]. Other studies have employed comparative genomics approaches 

[76], rex regulatory gene deletion studies [77, 78] or high-throughput genetic approaches such as rapid 

transposon liquid enrichment sequencing (TnLE-seq) under stress conditions [79] to investigate 

physiological and regulatory responses. Such studies give insights into not only transcriptional 

responses, but also regulons and signaling responses to such environments. After methyl viologen 

exposure Clostridium acetobutylicum showed decreased expression of solvent producing genes, as well 

genes involved in sulfate and iron transport, while butanol synthesizing genes showed increased 

transcription concomitant with a much higher butanol/acetone ratio [75]. Fermentation and metabolite 

analysis of Clostridium cellulolyticum implicated high NADH/NAD+ ratio, and low pyruvate:ferredoxin 

oxidoreductase activity as causing limited fermentative metabolism and production of overflow 

products [80, 81]. Hence, studies into redox metabolism have the potential to not only provide 

fundamental insights but also have potential to advance applied goals. 

In this study, we established C. thermocellum steady state chemostat cultures and investigated redox 

processes after perturbing environmental conditions through separate additions of two redox-active 
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chemicals; methyl viologen and hydrogen peroxide. Fermentative changes were observed and 

transcriptional responses of C. thermocellum DSM 1313 were studied using DNA microarray analyses. 

Results and Discussion 

Preliminary Batch Experiments with Methyl Viologen  

Preliminary batch growth indicated methyl viologen reduction in vivo required viable metabolically 

active cellular biomass. A change to blue coloration was used as an indication of methyl viologen 

reduction. To assess methyl viologen reduction, abiotic medium, autoclave killed cells (in medium or 

water), live growing cells and cell free spent medium, each containing 150 mg/L methyl viologen, were 

incubated in C. thermocellum growth conditions overnight. Blue coloration was only observed after 

incubation of cells from log phase or stationary phase cultures medium containing cellobiose and methyl 

viologen. Blue coloration was not observed after 5 days of incubation in fresh medium, spent medium, 

autoclaved cells (in medium or resuspended in water), cells (log phase or stationary phase) resuspended 

in water, after 5 days of incubation at 55oC. Preliminary batch fermentations were conducted to 

estimate the appropriate methyl viologen concentration to introduce into the carbon-limited 

chemostats (Figure A1). A decrease in growth rate of batch cultures was seen in cultures containing 

initial loadings of methyl viologen of 150 ug/mL and higher. Consistent with an earlier study [82], an 

increase in end-point ethanol productivity was observed in cultures containing methyl viologen (Figure 

A2) and at a final concentration of 150 mg/L was used in chemostat studies. Methyl viologen has been 

shown to inhibit Clostridium butyricum hydrogen production during glycerol fermentation [83]; 

however, in preliminary C. thermocellum cellobiose batch studies specific end-point  H2 productivity 

increased with methyl viologen. 

Chemostat Response to Methyl Viologen Addition 

Carbon limited (1.1 g/L cellobiose) chemostat grown cultures (0.1 hr-1) were supplied with MTC medium 

containing methyl viologen (Figure 1). Time “0” for methyl viologen addition was the point when the 



19 
 

feed medium was switched from MTC medium to MTC medium containing methyl viologen (~88h after 

the experiment began). Addition of methyl viologen to the reactor lowered cell density (as measured by 

fermenter OD600) (Figure 1). An increase in specific ethanol production was observed concomitant with 

methyl viologen exposure, lower cell densities and an approximate 50 mV decrease in redox potential 

(Figure 1 and 2). Throughout methyl viologen exposure, a total of 123 individual genes were significantly 

differentially expressed within at least one timepoint (defined as a log2 expression change of <-1.5 or 

>1.5 at a false discovery rate <0.05) (Table 1). After methyl viologen was flushed from the system, 

ethanol specific productivity returned to pre-exposure levels (Figure 2) and redox potential 

measurements returned to pre-exposure redox potential levels (Figure 1A). Production of acetate 

remained unchanged before and during methyl viologen addition. Acetate concentration and yield 

increased after methyl viologen exposure was completed and as methyl viologen was being diluted out 

of the chemostats. CO2 and hydrogen production was not measured in the open chemostat system. 

Lactate began to be synthesized after 50 hours of methyl viologen exposure, increasing a specific 

productivity from 1.85 mM/OD600 to 3.55 mM/OD600. Before and throughout methyl viologen addition, 

all cellobiose substrate was utilized as no residual cellobiose or glucose was detected by HPLC analysis of 

samples from the fermenters. Specific fermentation products (converted to reflect the amount of 

carbon in the products; mol C-equivalents/L/OD600) increased throughout methyl viologen exposure. 

Ethanol and estimated CO2 (mol C equivalents/L/OD600) increased 17.6% and 15.8%, respectively, during 

60 hours of increasing methyl viologen exposure (Figure 2). Increased alcohol concentrations have been  

observed after adding methyl viologen to cultures of C. acetobutylicum, which was attributed to 

decreased hydrogen production [84, 85]. This phenomenon was observed upon methyl viologen 

addition to C. acetobutylicum cultures and was attributed, in part, to increased transcription of butanol 

synthesis pathway genes [75]. In this study, transcription of ethanol synthesis genes was not increased 

significantly.  Global transcriptional analysis suggests found two broad temporal expression patterns to  
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Table 1. Number of genes showing differential expression after beginning methyl viologen addition. 

Significant differential expression was determined to be genes showing log2 fold change relative to 

untreated controls of >1.5 or <-1.5 at a 5% false discovery rate. 

 

  

3 
min. 

15 
min. 

35 
min. 7 hr. 14 hr. 50 hr. 60 hr. 

Number of 
Genes Up-
Regulated 

0 14 1 3 1 21 36 

Number of 
Genes Down-
Regulated 

20 37 3 8 1 40 47 
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Figure 1.  (A) OD600 and measured redox potential before, during and after methyl viologen addition.  (B) 

Detailed view of boxed region indicated in Figure 1(A).   
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Figure 2.  Fermentation productivity during addition of methyl viologen to chemostat culture. Specific 

fermentation products (converted to reflect the amount of carbon in the products (mol C-

equivalents/L/OD600) are reported in equivalent carbon mole basis (e.g., 1 mol ethanol = 2 mol C-

equivalent). Productivity in carbon moles is normalized to OD600 to account for changing cell yields 

observed across the time culture was exposed to methyl viologen. CO2 productivity is estimated by 

assuming one mole of CO2 is produced for each mole of ethanol and each mole of acetate produced. 

Green arrow indicates when methyl viologen exposure began and purple arrow indicates time when 

methyl viologen flushing from the reactor began. 
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be present across genes which showed differential expression in at least one time-point taken during 

methyl viologen exposure.  Indeed, differential expression at 15 minutes was very similar to that 

sampled at 50 and 60 hours.  The first pattern observed was decreased expression at 15 minutes, 

followed by a return to pre-exposure expression, and finally decreased expression at 50 and 60 hours.  

We interpret this result to suggest an expression response occurring immediately after initial exposure 

to methyl viologen (while concentrations of methyl viologen in the fermenters are low) followed by a 

decay of this response to pre-exposure conditions.  Beginning at 50 hours, expression levels return to 

levels similar to those seen at 15 minutes, but do so in a sustained fashion as those levels of expression 

are largely maintained for another 10 hours.  It should be mentioned that, by 50 hours, concentrations 

of methyl viologen in the fermenters had essentially asymptoted to that of concentrations introduced in 

the feed carboy; 150 mg/L.   

While many genes showed significant and appreciable differential expression, much of the expression 

differences appeared disparate and singular, or to occur in genes which had poor or no annotation.  In 

an effort to piece together a system-wide view of expression differences with the objective of visualizing 

whole metabolic systems, normalized, log2 differential expression data were overlayed onto a metabolic 

map to further interrogate metabolic systems showing differential expression.  From this, metabolic 

systems which showed, in an apparently coordinated fashion, significantly decreased transcription in 

many related loci were identified; those of glutamate/ammonia metabolism as well as those of sulfate 

transport and reduction 

Decreased Transcription of Redox Active Pathways 

Methyl viologen can occur in three reduction states, MV0, MV+, and MV2+, with the redox potential of 

the most reduced form being similar to that of electron transfer proteins, flavodoxins and ferredoxins 

[86, 87]. Methyl viologen can be used in place of natural electron-acceptors and oxidoreductase proteins 

in nitrogenase [88], nitrate reductase [89] and other enzyme assays . In addition to these known 
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enzymatic interactions, methyl viologen has also been shown to interact directly with iron-sulfur clusters 

and, in some cases, degrade them [90].  Fe-S cluster degradation by methyl viologen and other redox-

active compounds has been shown to initiate wide-ranging transcriptional changes through induction of 

the SoxRS transcription factor system [91].  Using mechanisms similar to these, it is conceivable that 

methyl viologen can interact with redox metabolism indirectly in C. thermocellum and, as such, our 

experimental system may be capturing transcriptional outcomes of these mechanisms in addition to 

direct interactions facilitated by enzymes and redox chemistry with redox-active intracellular 

metabolites. 

Four redox active pathways showed decreased transcription at various time points after methyl viologen 

addition; sulfur transport and assimilation, ATP dependent GS-GOGAT ammonia assimilation, porphyrin 

and siroheme biosynthesis and the [NiFe] Fd dependent hydrogenase (Figures 1-3). All four systems 

show decreased transcription at 50 h (3,000 min)- 60h (3,600 min) after methyl viologen addition when 

estimated methyl viologen concentration in the reactor is greatest and the fermenter redox potential 

was the lowest. GS-GOGAT and some genes of the [NiFe] system and gene cluster show decreased 

transcription at three and 15 minutes after beginning methyl viologen addition. 

Ammonia Assimilation 

Previous studies have shown the malic enzyme is allosterically activated by ammonia for the conversion 

of malate to pyruvate and it is likely the primary carbon flux channel under certain growth conditions in 

C. thermocellum [92]. The putative DSM 1313 malic enzyme gene (Clo1313_1878) showed slightly 

greater transcript levels after methyl viologen treatment, but not at levels considered significant. 

Intracellular metabolites, such as ammonia, and enzymatic activities were not measured as part of 

present study. We observed genes encoding the GS-GOGAT system showed decreased transcription 

(Table 2).  Both glutamine synthetase (GS) and glutamate synthase (GOGAT) showed decreased 

expression (log2 differential expression of -1.3 to -2.4 relative to untreated controls) at 3 min and 15 
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Figure 3. Global view of main of C. thermocellum DSM 1313 transcriptional responses to methyl 

viologen. Red indicates decreased transcription of genes in the indicated systems. Numbers in 

parenthesis are the number of genes in the indicated pathways that show decreased expression during 

methyl viologen addition.  
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 minutes and also at 3000 and 3600 minutes (log2 differential expression of -0.6 to -1.5 relative to 

untreated controls (Table 2)). Other genes annotated as glutamine synthetase (Clo1313_2038, 

Clo1313_2031, and Clo1313_1357) in KEGG and predicted to catalyze the same enzymatic reaction (E.C. 

6.3.1.2) showed no differential transcription in this study. One other gene annotated as a glutamate 

synthase (Clo1313_1849) also did not show any differential transcription in this study. Recent reports 

suggest Clo1313_1849 actually encodes the NfnA subunit of NfnAB [69]. 

Clo1313_2036 and Clo1313_2035, the genes putatively encoding two subunits of glutamate synthase, 

are part of a gene cluster (Clo1313_2030 – Clo1313_2036) that showed similar expression behavior 

(Table 2). Clo1313_2034 is annotated as a 4Fe-4S ferredoxin iron-sulfur binding domain-containing 

protein. Top global protein-BLAST similarity scores are to iron-sulfur cluster containing ferredoxin in 

other strains of C. thermocellum and other Clostridia. Both the GS-GOGAT system and glutamate 

dehydrogenase are annotated as being NADPH dependent and, to our knowledge, ferredoxin 

dependent GS-GOGAT activity has not been assayed for in C. thermocellum and NADH dependent 

GOGAT activity was not found in crude cell lysates of C. thermocellum DSM 1273 [93].  Glutamate 

synthesis from glutamine using glutamate synthase may compete for reductant with other redox 

processes, including the reduction of methyl viologen. Glutamine biosynthesis also requires glutamate, 

ATP and ammonium. Reduced expression of the GS-GOGAT system may be the result of added demand 

for reductant and/or altered cofactor pool states introduced by the presence of oxidized methyl 

viologen, may reflect lower intracellular ATP levels and/or reflect less cellular demand for glutamine. 

Such altered states may trigger a transcriptional response toward preserving reductant and/or ATP at 

the expense of glutamine and glutamate production using this GS-GOGAT system. 

Transcriptional regulation of ammonia transport, the GS-GOGAT system and glutamate dehydrogenase 

appears to be complex, multi-layered, and varies greatly between organisms [94, 95]. A transcriptional 

regulator of ammonia assimilation characterized in C. acetobutylicum, relies on expression of a nitR 
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Table 2. Differential expression for GS-GOGAT ammonia and [NiFe] hydrogenase genes.  Values in bold 

indicate statistical significance using a 5% false discovery rate. 

Locus Tag Gene Product 
Metabolic 
Function 

𝒍𝒐𝒈𝟐 (
𝑬𝒙𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏 (𝑻𝒊𝒎𝒆 𝑬𝒙𝒑𝒐𝒔𝒆𝒅)

𝑬𝒙𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏 (𝑼𝒏𝒆𝒙𝒑𝒐𝒔𝒆𝒅)
) 

3 min. 15 min. 35 min. 7 hr. 14 hr. 50 hr. 60 hr. 

Clo1313_2303 glutamine synthetase 
catalytic region 

GS-GOGAT 
Ammonia 
Fixation 

-2.2 -2.4 -0.9 1.0 1.2 -1.5 -1.3 

Clo1313_2036 
glutamine 
amidotransferase class-II -1.3 -2.1 -0.4 1.6 1.5 -0.6 -0.7 

Clo1313_2035 
ferredoxin-dependent 
glutamate synthase -2.0 -2.2 -0.6 1.2 1.2 -1.1 -0.9 

Clo1313_2034 
4Fe-4S ferredoxin iron-
sulfur binding domain-
containing protein 

-2.3 -2.4 -0.9 0.7 0.7 -1.5 -1.3 

Clo1313_0564 
hydrogenase 
expression/formation 
protein HypE 

NiFe 
Hydrogenase 

-0.4 -1.4 -0.5 -0.9 -0.7 -1.3 -1.7 

Clo1313_0565 
hydrogenase 
expression/formation 
protein HypD 

-0.4 -0.6 -0.1 -0.3 -0.3 -0.7 -0.9 

Clo1313_0566 hydrogenase assembly 
chaperone hypC/hupF -0.5 -0.8 -0.2 -0.4 -0.3 -0.9 -1.2 

Clo1313_0567 (NiFe) hydrogenase 
maturation protein HypF -0.7 -0.9 0.0 -0.5 -0.3 -1.0 -1.0 

Clo1313_0568 hydrogenase accessory 
protein HypB -0.1 -0.5 0.5 0.0 0.0 -0.4 -0.9 

Clo1313_0569 
hydrogenase 
expression/synthesis 
HypA 

-0.3 -0.9 0.1 -0.3 -0.2 -0.7 -1.1 

Clo1313_0570 
4Fe-4S ferredoxin iron-
sulfur binding domain-
containing protein 

-0.4 -1.2 0.2 -0.2 -0.2 -0.8 -1.3 
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antiterminator protein and an antisense RNA [96]. Clo1313_2030 is annotated as a response regulator 

receiver and ANTAR domain protein. The Clo1313_2030 gene showed decreased expression mirroring 

that of the gene cluster containing the genes Clo1313_2030 through Clo1313_2036 and its product may 

provide an antiterminator role sensitive to ammonia concentrations similar to the one described in 

C. acetobutylicum. The AmtB and PII proteins contribute to ammonia transport and regulation in 

different systems [94]. Clo1313_2260 contains putative AmtB and PII domains is 51% and 81% similar to 

C. acetobutylicum ATCC 824 CA_C0682 and CA_C0681 at the protein level, respectively. In this study, 

Clo1313_2260 was not significantly differentially expressed.   

Glutamate dehydrogenase (Clo1313_1847) catalyzes an alternative mechanism for synthesizing 

glutamate and assimilating ammonia and glutamate dehydrogenase (Clo1313_1847) was not 

differentially expressed in this study. Glutamate dehydrogenase activity was shown to be much higher 

than GOGAT in C. thermocellum DSM 1273 extracts, suggesting it is the predominant method for 

assimilating ammonia and generating glutamate [93]. However, these experiments were conducted at a 

maximum nitrogen concentration of 18 mM, supplied as ammonia and 0.2% yeast extract. MTC medium 

used in this experiment contained more inorganic nitrogen in the form of both urea (33.3 mM) and 

ammonia (as ammonium chloride at 28 mM). The medium used in this experiment and routinely for C. 

thermocellum growth contains a large excess of nitrogen source and it is possible to culture C. 

thermocellum in medium containing less nitrogen [97].  

Glutamate is a precursor to many biosynthetic pathways, including the biosynthesis of porphyrin rings. 

Porphyrin ring biosynthesis also showed decreased transcription upon exposure to methyl viologen. 

Decreased demand for glutamate or increased availability may have led to decreased transcription of 

GS-GOGAT. Other putative KEGG pathways using glutamate as a precursor did not show differential 

expression. By contrast, increased transcription and translation of both glutamine synthetases 

(Cthe_0196, Cthe_1539) were observed after C. themocellum ethanol stress, which may have been 
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related to metabolite shuttling into carbamoyl-P, a precursor to pyrimidine, arginine and proline 

biosynthesis [72], or possibly glutamine synthetase and the ammonia assimilation pathways indirectly 

assist in reoxidizing redox cofactors.   

Sulfate Transport and Metabolism 

C. thermocellum strain ATCC 27405 has genes for and can assimilate sulfate [97]. As in strain ATCC 

27405, sulfate transport genes (Clo1313_0114 – Clo1313_0117) and putative assimilatory sulfate 

reduction genes (Clo1313_0119, Clo1313_0120, and Clo1313_0124) are co-located on the DSM 1313 

chromosome. In this study, these genes show similar expression patterns and lower expression levels 

under methyl viologen stress with log2 differential expression of -0.9 to -1.6 relative to untreated 

controls at 3000 and 3600 minutes (Table 3), which is consistent with methyl viologen-exposed C. 

acetobutylicum cells [75] and indicates potential similarity in the physiological and regulatory responses 

between these organisms. Adjacent to sulfur related genes, the C. thermocellum Clo1313_0107 gene 

encodes a putative transcriptional regulator IscR [70], and its expression increased following methyl 

viologen exposure (Table 3). Differential expression profiles for Clo1313_0107 (iscR) and porphyrin 

biosynthesis genes are similar when exposed to furfural or heat [70]. Further studies to generate and 

characterize a Clo1313_0107 deletion strain are required to elucidate its possible roles in sulfate uptake 

and metabolism, stress responses and gene regulatory networks. Because methyl viologen is a potential 

alternative electron sink to reoxidize reduced intracellular cofactors, C. thermocellum DSM 1313 could 

potentially repress genes involved in sulfate transport and reduction when exposed to methyl viologen 

in response to a decreased need for electron acceptors. Sulfate reduction is also ATP dependent and it 

may benefit C. thermocellum DSM 1313 energetically to decrease expression and/or activity of this 

pathway.  
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Porphyrin Biosynthesis  

Many redox active enzymes are iron-sulfur containing proteins and siroheme is often a necessary redox 

active cofactor. The genes Clo1313_0108 – Clo1313_0113 putatively encode for proteins involved in 

porphyrin/siroheme biosynthesis and they are adjacent to genes involved in sulfate transport/reduction 

as well as genes potentially involved in regulation. The Clo1313_0109, Clo1313_0112 and Clo1313_0113 

genes show differential expression at 3000 minutes after methyl viologen addition (log2 differential 

expression of -0.7, -1.2 and -1.2 respectively, relative to untreated controls), and show the largest 

differential expression after 3600 minutes (log2 differential expression of -1.2, -1.5 and -1.6 respectively, 

relative to untreated controls), when estimated methyl viologen concentration is the highest (Table 3). 

Three other putative porphyrin biosynthesis genes in this cluster do not meet criteria for significant 

differential expression. Clo1313_0124 is annotated as nitrite and sulfite reductase, predicted to contain  

an iron-sulfur/siroheme binding site, and also shows decreased transcription under methyl viologen 

exposure. Clo1313_0124 is annotated to be ferredoxin dependent. Expression of Clo1313_0109 was 

shown to increase upon exposure to Populus hydrolysate [73] and decreased expression 10, 30, and 60 

minutes following exposure to increased ethanol concentration [72], which suggests, along with results 

from this study, that transcription of genes responsible for porphyrin biosynthesis is sensitive to cellular 

redox potential and/or the redox potential of the fermentation environment. With methyl viologen 

potentially providing an extra sink for cellular reductant through a process mediated by hydrogenases or 

occurring directly, there may be less overall demand for these proteins mediating redox reactions. 

Unbound heme and some of the metabolic intermediates of the tetrapyrrole biosynthesis pathway are 

known to be cytotoxic and can be recycled [98]. Pseudomonas aeruginosa appears to regulate early 

stages of heme biosynthesis in accordance with growth state and overall need for heme enzyme 

cofactors [99]. Many microorganisms have been shown to limit the amount of accumulated 5-

aminolenulevulenate [98], suggesting it may be particularly cytotoxic and/or the precursor to a rate-
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limiting step in tetrapyrrole biosynthesis. Thus, it may be advantageous for C. thermocellum DSM 1313 

to regulate this pathway and Clo1313_0107 may play a role. 

NiFe Hydrogenases  

Methyl viologen has been shown to mediate reoxidation of reduced cellular species through interaction 

with hydrogenase proteins [100, 101]. C. thermocellum DSM 1313 encodes four hydrogenases; three 

[FeFe] hydrogenases and one [NiFe] hydrogenase. No differential expression was observed in genes 

encoding any of the three [FeFe] hydrogenase systems in response to methyl viologen exposure. It is 

thought that two of the three [FeFe] hydrogenases are bifurcating hydrogenases [1], necessarily 

requiring one mole of NADH and one mole of reduced ferredoxin to produce one mole of hydrogen. The 

third [FeFe] hydrogenase is thought to be NADPH dependent. It has been shown that the NADPH 

dependent hydrogenase activity was greater than either reduced ferredoxin or NADH dependent 

hydrogenase activity [102, 103]. Further, low amounts of Ech hydrogenase protein was quantified [1] 

and poor transcription of ech genes [104] was found using reverse transcriptase PCR from C. 

thermocellum. In contrast, we observe all genes in the ech hudrogenase gene cluster to be highly 

transcribed in the conditions used in this study, based on LOWESS normalized hybridization intensity.  

All but one of the genes encoding ech, an [NiFe]-containing hydrogenase (Clo1313_0564 – 

Clo1313_0570) show transient initial decreased transcription at 3 and 15 minutes (log2 differential 

expression -0.3 to -1.2, relative to untreated controls) after beginning methyl viologen exposure, 

followed by a return to unchanged levels of transcription (significant log2 differential expression not less 

than -0.4 or greater than 0.2, relative to untreated controls). Expression of this gene cluster again 

decreased at 3000 and 3600 minutes (log2 differential expression -0.7 to -1.3, relative to untreated 

controls) after beginning methyl viologen exposure when the concentration of methyl viologen in the 

reactor is highest. All genes in this cluster appear to observe this temporal expression behavior (Table 3).  

It would be interesting to determine whether or not the [NiFe] hydrogenase is ferredoxin dependent 
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and biochemically characterize its relative contribution to hydrogen metabolism to better understand 

co-factor reoxidation capacity and dynamics in C. thermocellum. 

C. thermocellum DSM 1313 has been reported to have overflow metabolic pathways, potentially related 

to overly reduced intracellular conditions and a need to re-oxidize redox cofactors [65, 67]. [NiFe] ech 

hydrogenase transcription does not appear to be transcriptionally linked to ATP generation or  

establishing/modulating the proton motive force in C. thermocellum, as there was no significant 

differential expression of the ATP synthase genes (Clo1313_2935 – Clo1313_2942) observed during 

addition of methyl viologen to the culture. In different systems [NiFe] hydrogenase is known to be  

controlled by a number of different mechanisms and responsive to many different environmental and 

physiological cues, such as H2, O2 and CO as well as the FnrT transcription factor [105, 106]. [NiFe] 

hydrogenases have also been linked to nitrogenase activity through electron transfer to membrane-

bound Rnf [105]. C. thermocellum encodes genes with putative functions for N2 fixation (Clo1313_2331, 

Clo1313_2332, and Clo1313_2339). Clo1313_2331 and Clo1313_2339 show significant decreased 

transcription at 3 minutes after methyl viologen addition and differential expression in an equivalent C. 

thermocellum ATCC 27405 gene, Cthe_1573 (nifH) showed increased expression 240 minutes after 

exogenous ethanol addition to batch culture [72]. C. thermocellum DSM 1237 was reported to show 

nitrogen fixing activity in-vitro, via reduction of acetylene, though doubt was cast as the activity was not 

seen to be repressed by added ammonia [93].  C. thermocellum diazotrophic growth was tested and 

under the conditions assayed nitrogen fixation was not detected [97]. C. thermocellum electron transfer 

requires greater study.  

Transcription Differences in Other Systems 

Transporters 

Eight annotated transporters found to be significantly differentially expressed during at least one time 

point under methyl viologen treatment. A CorA family transporter annotated as a magnesium  
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Table 3. Differential expression information for genes Clo1313_0107 through Clo1313_0124.  Values in 

bold indicate statistical significance using a 5% false discovery rate. 

Locus Tag Gene Product 
Metabolic 
Function 

𝒍𝒐𝒈𝟐 (
𝑬𝒙𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏 (𝑻𝒊𝒎𝒆 𝑬𝒙𝒑𝒐𝒔𝒆𝒅)

𝑬𝒙𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏 (𝑼𝒏𝒆𝒙𝒑𝒐𝒔𝒆𝒅)
) 

3 min. 15 min. 35 min. 7 hr. 14 hr. 50 hr. 60 hr. 

Clo1313_0107 
Transcriptional regulator, 
Rrf2 family 

Putative IscR 
Transcription 

Factor 
1.1 0.2 2.4 2.1 1.9 1.3 1.7 

Clo1313_0109 precorrin-6X reductase 
Porphyrin 

Biosynthesis 

-0.5 -0.4 0.2 -0.2 -0.1 -0.7 -1.2 
Clo1313_0112 

delta-aminolevulinic acid 
dehydratase 

-0.8 -0.5 -0.1 -0.5 -0.3 -1.2 -1.5 

Clo1313_0113 
glutamate-1-semialdehyde-
2,1-   aminomutase 

-0.9 -0.6 0.1 -0.3 -0.3 -1.2 -1.6 

Clo1313_0115 
sulfate ABC transporter, 
inner membrane subunit 
CysT Sulfate ABC 

Transporter 

-0.6 -0.1 0.5 0.4 0.4 -1.2 -1.3 

Clo1313_0116 
sulfate ABC transporter, 
inner membrane subunit 
CysW 

-0.6 0.1 0.5 0.4 0.4 -1.0 -1.4 

Clo1313_0118 
adenylylsulfate reductase, 
thioredoxin dependent Sulfate 

Reduction 

-0.9 -0.4 0.5 0.1 0.1 -1.4 -1.6 

Clo1313_0124 
nitrite and sulphite 
reductase 4Fe-4S region 

-1.4 -0.2 0.2 0 -0.1 -0.9 -1.5 
 

 

 

 

 

 

 

 

 

 

 



34 
 

transporter showed relatively strong increased transcription at 3000 and 3600 minutes after methyl 

viologen addition. Five transporters annotated as being ATP binding showed decreased transcription at 

least one timepoint during methyl viologen exposure.  

Sporulation 

C. thermocellum strain ATCC 27405 sporulates at low frequencies (maximum ~7%) and not under certain 

conditions such as in response to low carbon or nitrogen environments [107], which confounds global 

population based analyses. In this study, three sporulation genes showed significant decreased 

transcription (false discovery rate < 0.05 and log2 differential expression less than -1.5 relative to 

untreated controls); Cthe_3070, Cthe_0044 and Cthe_2948. The initial sporulation developmental 

stages transcription factor, spoOA (Clo1313_1409), showed significant changes in expression at three 

and 15 minutes after beginning methyl viologen addition (log2 differential expression of 0.4 and -0.8, 

respectively). Two of the four histidine kinases (Clo1313_0286 and Clo1313_1973) previously identified 

as agents of sporulation control [108] showed increased differential transcription at 3000 (log2 1.1 and 

1.1, respectively) and 3600 minutes (log2 1.0 and 1.5, respectively) after beginning methyl viologen 

exposure. Clo1313_1973 also showed relatively strong decreased transcription at 3 minutes (significant 

log2 differential expression of -1.5). In addition to spore formation, C. thermocellum (strain ATCC 27405) 

can develop an L-form morphology which is another non-growth cell state characterized by low 

metabolic activity with a spherical or pleomorphic morphology [107]. Spores and L-form cells were not 

observed together in a previous study [107]. Much remains to be elucidated regarding signal-

transduction and regulatory cascades controlling these processes.  

Transposases and Phage Associated Gene Expression 

Two genes annotated as transposases (Clo1313_0662 and Clo1313_2686) showed increased 

transcription after 3600 minutes (significant log2 differential expression of 1.8 and 1.7, respectively). 

These two genes appear to be highly transcribed before and during exposure to methyl viologen 
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(LOWESS normalized expression intensity ranged from log2 11.4 to 13.4). Transposons have been shown 

to interrupt and inactivate the C. thermocellum cipA genes [109]. C. thermocellum ATCC 27405 

transcriptomic studies have shown differential expression for transposases under different growth and 

stress conditions [70, 72]. C. thermocellum strains differ in their phage and CRISPR content [110]. 

Increased expression of genes associated with a putative phage island (Clo1313_2379 – Clo1313_2409) 

was observed in one of two replicate samples taken after exposure to methyl viologen and immediately 

prior to beginning exposure to H202, after 3600 minutes (60 hours) of re-equilibration growth on MTC 

not amended with either stressor chemical. The majority of genes from this phage island were found to 

show significant increased transcription in C. thermocellum ATCC 27405 after 30, 60 and 120 minutes of 

exposure to furfural and ethanol, with the largest transcriptional increases coming 30 minutes after 

exposure and dropping gradually at 60 and 120 minutes for both conditions [70, 72]. This gene region 

C. thermocellum DSM 1313 does not contain ‘att sites’ characteristic of functional lysogenic phage, 

though the closely related C. thermocellum ATCC 27405 does [110]. Genes for phosphate transport and 

regulation are adjacent to recombinase and phage genes in C. thermocellum ATCC 27405, which 

indicates possible mechanisms for horizontal gene transfer [70]. Observed strain genome differences 

and differential expression from this and prior studies suggest transposons, bacteriophage and CRISPR 

systems may have and may continue to play important roles in C. thermocellum evolution, although the 

functionality and implications for these systems have only begun to be investigated.  

Hydrogen Peroxide Addition to Chemostat Culture  

Compared to untreated fermentation redox potential (~-500 mV), fermenter redox sharply and briefly 

increased by approximately 100 mV initially and then remained  approximately 25 mV higher than the 

control during prolonged H2O2 exposure. However, no genes showed significant differential expression 

(log2 fold change >1.5 or <-1.5 and a 5% false discovery rate) after chemostat hydrogen peroxide 

exposure and only a few gene comparisons showed significant differences (below fold threshold) after 3 
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minutes of H2O2 exposure. There was no apparent change in acetate, ethanol, lactate, or estimated CO2 

cell yields (moles C equivalent/OD600). Furthermore, addition of H2O2 under the conditions mentioned 

previously had no prominent effect on fermenter OD600 (Figure A4).  

It is likely the concentration of hydrogen peroxide introduced into the fermenter, though enough to 

alter the fermentation redox potential, was not enough to bring about detectable transcriptional-level 

changes.  Redox couples within the cell, such as the GSH/GSSG couple [111], are able to act as redox 

buffers and provide cells protection against unfavorable environmental redox conditions while not 

necessarily requiring changes in transcription.  It is conceivable that C. thermocellum could have used 

similar systems to modulate the hydrogen peroxide induced redox perturbation it was exposed to in this 

experiment, instead of systems requiring changes to its transcription profile.  Additionally, hydrogen 

peroxide is a meta-stable chemical susceptible to degradation and chemical change under the 

conditions it was used in this experiment.  A portion of the hydrogen peroxide may have degraded in the 

process steps leading up to its introduction into the fermenters.  Though we recognize this possibility, 

we infer a change in redox potential after the addition of of hydrogen peroxide to the fermenters as 

evidence that the hydrogen peroxide treatment did have an oxidizing effect on the culture, though 

possibly not as large as anticipated.  

Conclusions 

We examined C. thermocellum DSM 1313 redox metabolism by analyzing the transcriptional response to 

gradual addition of methyl viologen to steady state cultures. Specific ethanol productivity increased 

steadily during methyl viologen addition, likely due to altered redox state, while OD600 dropped initially 

after methyl viologen addition and then recovered slightly and stabilized after 3000 minutes exposure. 

The redox potential of the fermentation was stable at -500 mV before methyl viologen addition and 

began dropping immediately after methyl viologen addition began and stabilized at -550 mV after 

approximately 100 minutes. We observed a number of redox active and ATP requiring systems showing 
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decreases in transcription as methyl viologen was added to chemostat cultures. Genes encoding sulfate 

transport and reduction, glutamate synthase-glutamine synthetases (the GS-GOGAT system), and 

portions of porphyrin biosynthesis showed differential expression in response to added methyl viologen, 

suggesting their involvement in mediating C. thermocellum redox homeostasis and energy metabolism. 

Genes encoding subunits and accessory proteins of the sole [NiFe] hydrogenase differentially expressed 

while those of [FeFe] hydrogenases did not. Other genes involved in transport, sporulation and 

transposons also showed differential expression upon exposure to methyl viologen. This global profiling 

study provides gene targets for future studies to elucidate the relative contributions of prospective 

pathways for co-factor pool re-oxidation and C. thermocellum redox homeostasis. 

Methods 

Strains, Media, and Materials 

C. thermocellum DSM 1313 was obtained from the German Collection of Microorganisms and Cell 

Cultures (DSMZ) and grown in MTC medium essentially described previously [112]. Briefly, MTC was 

prepared as a mixture of five solutions and contained the following (final concentrations): Solution A; 

1.1 g/L cellobiose, 2 mg/L resazurin. Solution B: 2.12 g/L C6H7K3O8, 1.25 g/L C6H8O7-H20, 1 g/L Na2SO4, 1 

g/L KH2PO4, 2.5 g/L NaHCO3. Solution C: 1.5 g/L NH4Cl, 2 g/L CH4N2O. Solution D: 1 g/L MgCl2-6H20, 0.2 

g/L CaCl2-2H20, 0.1 g/L FeCl2-2H2O, 1 g/L C3H7NO2S-HCl-H2O. Solution E: 20 mg/L Pyridoxamine 

dihydrochloride, 4 mg/L P-aminobenzoic acid, 2 mg/L D-biotin, 2 mg/L vitamin B12. Solution F: 0.5 mg/L 

MnCl2-4H2O, 0.5 mg/L CoCl2-6H2O, 0.2 mg/L ZnCl2, 0.05 mg/L CuCl2-2H2O, 0.05 mg/L H3BO3, 0.05 mg/L 

Na2MoO4-2H2O, 0.05 mg/L NiCl2-6H2O. Media prepared for bottle-based batch fermentations contained 

5 g/L MOPS sodium salt. Media for chemostat cultivation did not contain MOPS sodium salt. All media 

were made anaerobic by sparging with N2 gas. 
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Preliminary Batch Fermentations 

C. thermocellum DSM 1313 was grown in MTC medium containing 1.1 g/L cellobiose. Cultures were 

inoculated into hungate tubes containing 10 mL of medium and initial headspace of 10% CO2 (v/v), 5% H2 

(v/v), and the balance N2. Methyl viologen was added to medium which was then pre-warmed overnight 

prior to inoculation. H202 was added to pre-warmed medium immediately prior to inoculation. Cultures 

were inoculated with 1 mL of overnight grown culture and growth was monitored using a Milton Roy 

Spectronic 21D UV-Visible Spectrophotometer (Milton Roy Company).  Soluble fermentation products 

were measured using HPLC (see HPLC analysis portion of methods) and headspace H2 % was measured 

using an Agilent 6850 GC equipped with a thermal conductivity detector (TCD) for CO2 and H2 

quantification (Agilent Technologies, USA).  

In preliminary batch fermentations, the end of fermentation was determined based on a drop-in culture 

OD600, common in C. thermocellum batch fermentations and thought to correspond with the onset of 

cell lysis.  Samples for end-product determination were gathered immediately after the final OD600 

reading was taken.  End-products were normalized to the average maximum OD600 achieved during 

batch fermentation. 

Chemostat Growth and Stress Application 

C. thermocellum DSM 1313 was grown at 55oC in duplicate 1 L (total vessel capacity 1.3 L) chemostat 

cultures using water-jacketed BioFlo110 bioreactors (New Brunswick Scientific, Edison, NJ) with 1.1 g/L 

cellobiose as the carbon source in MTC medium, which was fed at a dilution rate of 0.1 hr-1. 

Temperature, pH and agitation speed were monitored and controlled during fermentation. Culture pH 

was monitored using pH electrodes (Mettler-Toledo, Columbus, OH) and the pH control set point was 

maintained at 7.0 by automatic titration with 3 N KOH. Fermenter redox potential was measured using 

DPAS K8S 325 combination redox probes (Mettler-Toledo) attached to an independent signal transducer 

and readout (Sartorious Stedim Biotech, model # 8890354). Redox probes were checked for accuracy 
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using new redox probe calibration solutions (Ricca Chemical Company catalog #4330-16, Ricca Chemical 

Company catalog #9880-16, Orion Application Solution # 967901). Agitation was supplied by a central 

impeller with two paddled rotors maintained at 200 rpm and no additional baffles. Culture turbidity was 

measured taking optical density readings at 600 nm using a Genesys 20 spectrophotometer (Thermo 

Fisher Scientific Inc., Waltham, MA). 

Fermenters were inoculated using 100 mL of overnight cultures into 900 mL of neutral MTC previously 

sparged overnight with N2 gas. After inoculation, N2 sparging was stopped and for the duration of 

chemostat growth N2 was flushed into the fermenter headspace. Chemostat steady state growth was 

defined as being at least 50 hours of continuous growth during which the culture OD600 fluctuated less 

than 5%. Individual chemical stressors were added to medium feed carboys at final concentrations of 10 

mg/L H202 or 150 mg/L methyl viologen and fed into the reactors with medium feed over 60 hours (6 

retention times). Chemostat methyl viologen and H202 concentrations were selected based preliminary 

batch experiments (Figure A1 and Figure A4a, respectively) and in each case, culture growth rates were 

not impacted by greater than 50% and final fermentation product concentrations (normalized to 

maximum OD600) changed by >20%. Upon completion of each chemostat stress treatment, a 500 mL 

volume was withdrawn from each vessel and then reactors were re-filled in fed-batch mode to 1 L with 

only MTC medium and then chemostat operation was resumed. Remaining stressor was allowed to 

wash out for another 50 hours (5 retention times) and a re-equilibration period of 50 hours followed 

before the next stress application. Methyl viologen and hydrogen peroxide concentrations or chemical 

stability were not measured or assayed directly in the fermenters or feed carboys. Redox potential was 

measured and recorded in the fermenters to ensure stress chemical additions were changing the 

fermentation redox potential and the overall redox environment. Chemostat culture integrity was 

checked periodically by microscopy and PCR amplification and sequencing of the 16S rRNA gene using 

forward sequencing primer AGAGTTTGATCCTGGCTCAG and reverse sequencing primer 
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GGGCGGTGTGTACAAGG. Biofilm growth or excessive frothing was not observed or mitigated during 

chemostat growth. 

Fermentation Product Analysis using High-Performance Liquid Chromatography (HPLC) 

HPLC samples were collected by centrifugation at 13,000 rpm in a microcentrifuge and passed through a 

0.22 µm filter, acidified with 11.6 mN H2SO4 and stored at 4°C until analyzed using a LaChrom Elite 

System (Hitachi High Technologies America, Inc., CA) fitted with a Aminex HPX 87H HPLC column (300 x 

7.8mm) (Bio-Rad, Hercules, Dallas, TX) kept at 60°C and using a mobile phase of 5 mM H2SO4 with a flow 

rate of 0.5 mL/min for 35 min per sample. Eluted compounds were detected by a refractive index 

detector (Model L-2490) and quantified via retention time and peak areas. Standard curves were used to 

quantify peak areas from samples and each sample was injected at least twice.  

RNA isolation, cDNA synthesis, Microarray Hybridization and Data Analysis 

Briefly, 50 mL aliquots from chemostat cultures were harvested by centrifugation (8,000 rpm, 4oC, 4 min 

using a Sorvall RC5C plus centrifuge), the supernatant decanted and removed and the remaining pellets 

were quickly frozen in liquid nitrogen and stored at -80C. Frozen cell pellets were resuspended in TRIzol 

reagent (Invitrogen, Carlsbad, CA), lysed by adding 1.5 mL of cell pellet/TRIzol mixture to 2 mL screw top 

tubes containing 800 mg of ashed glass beads (#11079101, Biospec products, Bartlesville, OK, USA) 

followed by bead beating for three 20 second cycles at 6,500 rpm using a Precellys-24 (Bertin 

Technologies, Montigny-le-Bretonneux, France). Total cellular RNA was purified using a QIAGEN RNeasy 

Mini kit according to the manufacturer's instructions, which included an on-column RNase-free DNase 

treatment to digest residual chromosomal DNA. RNA was quantified using a NanoDrop ND-1000 

spectrophotometer (NanoDrop Technologies, DE) and a Bioanalyzer 2100 (Agilent Technologies Inc., 

CA). Double-strand (ds) cDNA was generated from purified RNA using a ds-cDNA synthesis kit (Invitrogen 

Life Technologies, NY), which was subsequently labeled, hybridized and washed according to the 
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NimbleGen (Roche NimbleGen, IN) protocols as described previously [72]. C. thermocellum 

transcriptome profiles were generated using an established C. thermocellum strain 27405 DNA 

microarray platform that contains 5-7 unique probes per gene and with three technical replicates for 

each unique probe, as described previously [14-16]. C. thermocellum strains DSM1313 and ATCC27045 

are closely related; with average nucleotide identities (ANIs) of 99.6 and 99.3 % in reciprocal genome 

comparisons, indicating the strains are very closely related. Strain ATCC 27405 has a putative high 

affinity phosphate transport system that DSM1313 lacks [16] and ATCC 27405 contains additional 

prophage and restriction-modification sequences [110]; hence the ATCC27405 DNA microarray was 

suitable to assess C. thermocellum strain DSM1313. Hybridizations were conducted using a 12-bay 

hybridization station (BioMicro Systems, Inc., UT). Microarrays were dried and then scanned with a 

Surescan high-resolution DNA microarray scanner (5 μm) (Agilent Technologies, CA), and the images 

were quantified using NimbleScan software (Roche NimbleGen). Raw data was log2 transformed and 

imported into the statistical analysis software JMP Genomics 6.0 software (SAS Institute, NC). Data were 

normalized together using a single round of the LOWESS normalization algorithm within JMP Genomics. 

Distribution analyses were conducted before and after normalization as a quality control step. An 

ANOVA was performed in JMP Genomics to determine differential expression levels between un-

treated, equilibrated conditions immediately prior to stressor exposure and time points during stressor 

exposure using the False Discovery Rate (FDR) testing method (p < 0.05) and array slide used as a 

random variable. Microarray data have been deposited in the NCBI GEO database [accession number 

GSE71465] and can be queried at the following URL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi 

(also see attachment 3).   

The Pathway Tools software [113] was used to overlay differential expression data onto a C. 

thermcellum metabolic map.  The ‘Omics Viewer’ function within the software was used along with the 

curated genome-inferred metabolic model of C. thermocellum as provided in the Pathway Tools 
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Pathway/Genome Database.  Log2 normalized differential transcription as computed by differential 

expression analysis done using JMP genomics was imported and used to overlay the data. 

Microarray Validation Using Real-Time Quantitative-PCR (RT-qPCR) 

Microarray data were validated using RT-qPCR, as described previously [72]. Oligonucleotide sequences 

of the primers targeting five genes are listed in Table A1. Correlations between differential expression 

values obtained by RT-qPCR analysis and microarray analysis gave an R2 value of 0.94 indicating 

expression values obtained by microarray analysis are of good quality.  

Methyl Viologen Incubation Experiment 

C. thermocellum DSM 1313 cells prepared under different conditions (washed and resuspended in 

distilled water, actively growing in medium, stationary phase in medium, autoclave killed, grown with 

and without resazurin) were incubated in 150 mg/L methyl viologen (Sigma Aldrich) to determine the 

origin of the reductant being used to reduce methyl viologen by growing cultures. To prepare live cell 

aliquots containing medium, 1 mL of log phase and stationary phase C. thermocellum DSM 1313 cells 

were aliquoted anaerobically into 1.5mL centrifuge tubes. To prepare live cell aliquots without medium, 

1 mL of live cells (both log phase and stationary phase) were aliquoted and washed three times with and 

resuspended in anaerobic distilled water. To prepare spent medium aliquots, 1 mL of log phase cells 

were aliquoted, centrifuged at 14,000 rpm for 3 minutes and filtered with a 0.22 micron syringe filter. All 

preparations were conducted in duplicate. Methyl viologen was added to all preparations to a final 

concentration of 150 mg/L, incubated anaerobically at 55oC for five days and visually inspected for blue 

coloration as an indication of reduced methyl viologen. 
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Chapter 3: Targeted Redox and Energy Cofactor Metabolomics in 

Clostridium thermocellum and Thermoanaerobacterium saccharolyticum 
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The following work was published in the journal Biotechnology for Biofuels in 2017.  It is presented here 

as it appears in the journal, formatted to fit applicable requirements for inclusion in this thesis.  The 

citation for this work, as published is: 

Sander, K., et Al., Targeted redox and energy cofactor metabolomics in Clostridium thermocellum and 

Thermoanaerobacterium saccharolyticum. Biotechnology for Biofuels, 2017. 10(1): p. 270.   

This work provides a method by which to directly measure redox, NAD(P)(H) and energy, A(T,D,M)P, 

metabolites from C. thermocellum and T. saccharolyticum cell biomass.  Doing so allows for a reliable 

representation of redox state within the cell.  Sampled, ‘snapshot’ representations of redox state allow 

for many robust and useful inferences to be made about a cells general metabolic state, metabolic 

abilities and hypothesize about what may be inhibiting cellular metabolism.  While we did not utilize this 

method in subsequent work outlined in this thesis, the strain assessments we did in this validation work 

allowed us to confirm our hypotheses generated from the previous work; that C. thermocellum redox 

metabolism is dynamic, responds to metabolic engineering, and the reduced conditions brought on by 

fermentation, ultimately limit ethanol production and need to be alleviated.  In the first chapter, this 

alleviation was accomplished by adding methyl viologen, which resulted in increased ethanol yields.   

Kyle Sander led efforts in adapting, optimizing, and validating the method, assisted in designing 

experiments, assisted in conducting experiments, assisted in analyzing and interpreting data, and 

drafted the submitted manuscript.  Deepak Bhandari, Keiji Asano, Timothy Tschaplinski, Gary Van 

Berkel, Brian Davison, and Steven D. Brown all assisted in designing experiments, interpreting data, and 

optimizing the adapted metabolite extraction and detection method.  Deepak Bhandari and Keiji Asano 

conducted the liquid chromatography-tandem mass spectrometry metabolite detection used 

extensively throughout this manuscript.  Keiji Asano assisted in drafting the manuscript, assisted in 

preparing figures, and assisted in conducting experiments.   
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Abstract 

Background:  Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are prominent 

candidate biocatalysts that, together, can enable the direct biotic conversion of lignocellulosic biomass 

to ethanol.  The imbalance and suboptimal turnover rates of redox cofactors is currently hindering 

engineering efforts to achieve higher bioproductivity in both organisms.  Measuring relevant 

intracellular cofactor concentrations will help understand redox state of these cofactors and help to 

identify a strategy to overcome these limitations, however, metabolomic determinations of these labile 

metabolites has historically proved challenging.   

Results:  Through our validations, we verified the handling and storage stability of these metabolites, 

and verified extraction matrices and extraction solvent were not suppressing mass spectrometry signals.  

We recovered adenylate energy charge ratios (a main quality indicator) above 0.82 for all extractions.  

NADH/NAD+ values of 0.26 and 0.04 for an adhE deficient strain of C. thermocellum and its parent, 

respectively, reflect the expected shift to a more reduced redox potential when a species lacks the 

ability to reoxidize NADH by synthesizing ethanol.  This method failed to yield reliable results with C. 

bescii and poor-growing strains of T. saccharolyticum.   

Conclusions: Our validated protocols demonstrate and validate the extraction and analysis of selected 

redox and energy related metabolites from two candidate consolidated bioprocessing biocatalysts, 

Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.  This development and 

validation highlights the important, but often neglected, need to optimize and validate metabolomic 

protocols when adapting them to new cell or tissue types. 

Keywords:  Clostridium thermocellum, Thermoanaerobecterium saccharolyticum, redox, adenylate 

energy charge, targeted metabolomics  
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Background  

Clostridium thermocellum is a promising consolidated bioprocessing candidate microorganism capable 

of enzymatically degrading lignocellulosic biomass and simultaneously converting soluble hydrolyzed 

sugars to ethanol.  Metabolic characterization and engineering efforts have afforded large 

improvements in overall bioproductivity [114, 115], as well as engineering for heterologous production 

of isobutanol [116].  Thermoanaerobacterium saccharolyticum is a noted anaerobic, thermophilic 

ethanologen which has also been extensively studied and engineered [117].  While it does not possess 

the lignocellulolytic capability of C. thermocellum, its optimum temperature and pH compliment those 

of C. thermocellum and make it a well-suited co-culture counterpart.  These two species of bacteria 

grown together have successfully produced 38 g/L ethanol in a fermentation initiated with 92 g/L of 

crystalline cellulose [115].  

Previous metabolic engineering efforts toward improving ethanol bioproductivity in C. thermocellum 

and T. saccharolyticum have largely focused on carbon forcing [32, 115, 117].  Eliminating competing 

fermentation end products in these two organisms did not result in maximal ethanol yield on a carbon 

basis.  In C. thermocellum, such efforts increased ethanol yield, but failed to decrease carbon flux to 

other unwanted products, such as amino acids [118], where pathway disruption would likely generate a 

conditional lethal strain. 

The native redox metabolism has been the sole source of reductant enabling ethanol production in 

these two organisms as yield and overall productivity has improved, and overall conversion and 

substrate utilization has increased, and larger flux demands have been placed on cellular metabolism.  C. 

thermocellum intracellular redox dynamics are unconventional and still being fully elucidated [35, 38, 

114, 119].  Increasing expression of the rnf in C. thermocellum was able to increase ethanol yield 30% 

[35], while deleting the nfnAB genes in T. saccharolyticum caused a 30% decrease in ethanol yield [120].  
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Enabling the bifunctional alcohol dehydrogenases to accept both NADH and NADPH to facilitate ethanol 

conversion, rather than NADH alone, improved tolerance to ethanol [121], and increased ethanol yield 

by 37.5% and 73% in C. thermocellum and T. saccharolyticum, respectively [122].  It was identified 

through metabolic modeling that C. thermocellum does not re-oxidize reduced ferredoxin fast enough to 

support the fermentative metabolism, leading to metabolic stalling at the pyruvate to acetyl-CoA 

metabolic node [38], thus highlighting the large effect NADH-dependent ferredoxin re-oxidizing activity 

of Rnf has on metabolic flux and ethanol productivities.  Rate limitation at the catabolic step of acetyl-

CoA synthesis from pyruvate is further supported by a metabolomic pulse-chase study that used 13C 

labeled cellobiose to show the unlabeled fraction of pyruvate decreased more slowly than the central 

glycolytic metabolites upstream of pyruvate [123].  This slower-than-expected depletion of unlabeled 

pyruvate may also be due to unlabeled CO2-derived carbon being assimilated into pyruvate from the 

reversible activity of Pyruvate-Ferredoxin Oxidoreductase [124], a process which is also redox-driven 

and can impact ethanol productivity.  These in vivo studies suggest it is intracellular redox state and 

redox-driven thermodynamic limitations of key metabolic reactions that is now limiting further 

improvements in yield and overall productivity of ethanol in these microorganisms.  A clear and 

validated assessment of intracellular redox cofactors would help the mechanistic understanding of this 

limitation further and help identify strategies to increase redox-dependent metabolic flux toward the 

production of ethanol.  Redox-centered metabolic engineering enabled Yarrowia lipolytica to produce 

fatty acid methyl esters at the highest yield and productivity achieved [125].  The performance metrics 

achieved simultaneously met final titer and productivity objectives (and falling just 4% shy of the yield 

objective) needed for cost effective production of Biological Renewable Diesel Blendstock [126].  

Similarly, growth of Pseudomonas putida in a bioelectrochemical cell in media containing soluble redox 

mediators allowed it to produce 2-keto-gluconate at 90% of theoretical maximum yield [127]. 



49 
 

Different metabolomic techniques used previously to estimate nicotinamide redox cofactors in C. 

thermocellum have given NADH/NAD+ ratios that span a large range [128, 129] and, because of the 

disparity, offer little metabolic insight beyond intra-experiment relative comparisons.  As the relative 

concentrations of these two metabolites is a tightly regulated parameter [47], it is unlikely C. 

thermocellum, grown and sampled under similar conditions in these studies, is allowing the relative 

abundance of these metabolites to vary so much.  Reliable and validated determination of NADH/NAD+ 

redox couples will assist in estimating reaction directionality and net flux ratios [130] of critical redox 

reactions in C. thermocellum.  Intracellular concentrations, redox state, and adenylate energy charge can 

make metabolic models more accurate and representative, and elucidate energetic limitations in C. 

thermocellum metabolism.  Furthermore, redox cofactor measurements can help understanding of 

cofactor requirements and interchangeability between charge-carrying species in C. thermocellum, and 

help identify pathways responsible for electron yield losses (in this case defined as electrons that are not 

being directed toward biomass or ethanol production).   

Redox and energy metabolites are known to be chemically labile and susceptible to degradation under 

routine laboratory handling [131].  We hypothesize that the extraction and detection protocols being 

used are affecting reported measurements and need optimization and robust validation.  Typically, upon 

adapting metabolomic methods developed for one microorganism for use in other microorganisms, a 

small number of validation experiments are done addressing a few concerns, but rarely are protocols 

validated comprehensively.  We have identified the many common issues as critically affecting 

metabolite extractions from microorganisms and biological tissues in general, which sometimes go un-

validated before they are adapted and employed. 
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Critical Aspects of Metabolomics Methods 

Adenylate Energy Charge 

Many studies use the adenylate energy charge (AEC) as an intrinsic efficacy indicator of metabolomic 

extraction and detections.  The adenylate energy charge is known to be maintained between 0.80 – 0.95 

in most cells [42].  This value is relatively static in growing microorganisms, particularly anaerobic 

organisms [131].  In facultative anaerobes the adenylate energy charge only undergoes small and 

transient changes, upon major shifts in growth state, such as shifting to anaerobic growth from aerobic 

growth [131].  The AEC is known to be tightly regulated, and is also sensed and responded to by 

elements of cell state-regulation [132, 133].  For these reasons, the AEC is often used as an indicator for 

overall cell well-being [134, 135], and a decreased AEC can be a proxy for the magnitude of stress 

induced from experimental treatments [136, 137].   

ATP is known to be a particularly labile metabolite [131], as well as the most abundant of the three 

adenylate nucleotides used to calculate the adenylate energy charge.  The ability to observe high and 

physiologically relevant adenylate charges in metabolomic datasets is a key indicator of adequately 

careful and reliable metabolite extraction and detection.  A low adenylate energy charge may indicate 

that one or more processing steps could be degrading ATP, as well as other exceedingly labile 

metabolites.  The regulated stability of the AEC, and the ability to detect adenosine cofactors alongside 

other metabolites, makes the AEC an ideal quality control indicator of metabolomic extractions from 

actively growing cells.  

Solvent/Extraction and Quenching 

While rapid and complete metabolic quenching is important to metabolomic extractions, an equal 

requisite is to quench cell metabolism and extract cellular metabolites in a way that preserves labile 

metabolites.  Other ways to protect labile metabolites are through the introduction of chemical 



51 
 

protectants to the extraction protocols, such as redox and pH buffers.  Protection of nicotinamide 

species with the use of chemical additives is specific to cells and tissues, whereby each cell/tissue type 

requires a specific protocol [138, 139].  Previous reports which quantify nicotinamide and adenosine 

cofactors show it is possible to preserve these labile species through minimal, cold handling alone, 

without the need for chemical protectants.  The solvent mixture chosen was found to be a superior 

global metabolomic extraction solvent, developed with special consideration for extracting nucleotides 

[45].  This solvent mixture is amenable to global metabolomic profiling, and achieves metabolism 

quenching and extraction simultaneously [140, 141], important to minimizing sample handling.   

Washing, Centrifugation, and Metabolite Leakage 

Washing steps are often included in metabolomic quantification protocols of intracellular metabolites, 

to remove extracellular species and media components prior to extracting metabolites.  Washing cells 

can cause metabolites to leech from the cells in substantial quantities [142-145].  We are unaware of 

any precedent to show washing of cells is necessary during fast-filtration metabolomic extractions.  We 

have assessed media supernatant and spent culture supernatant for the metabolites of interest in this 

study, and found they were not present in either (data not shown).  Some studies introduce a correction 

to metabolite concentrations by first attempting to quantify metabolite leeching, and then using these 

leakage yield losses to ‘correct’ metabolite quantifications [146, 147].  The amount of metabolite 

leakage may change as a function of experimental condition, cell growth state, as well as other 

parameters that are often experiment specific, necessitating careful quantification of leakage losses for 

each experiment.  If the amount of leakage is large and variable, these yield corrections may not viably 

represent leakage across experiments and replicates. 

Centrifugation steps can last on the order of ~minutes.  If centrifugation is done before metabolic 

quenching, the metabolite profile can change, even at decreased temperatures [148].  If centrifugation 
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is done after metabolism quenching, metabolite degradation or metabolite leeching from cells may 

ensue. 

With sub-second turnover rate of many reactions and degradation mechanisms involving these 

metabolites, quenching within the timescales of these reactions is preferred, as is offered by direct 

cooled solvent quenching.  Studies have shown metabolites of upper glycolysis to have turnover rates of 

< 1 second, even at 0oC [149-151].  Though most rapid quenching/extraction methods involve 

submerging cells + media directly into cooled extraction solvent, which can result in >20% leakage of 

some metabolites [152, 153].   

Metabolite Mass Spectrometry Signal Suppression 

The suppression of mass spectrometry signals of metabolites is often encountered in metabolomic 

protocols that do not separate cells from their spent media prior to metabolite extraction [154, 155].  

The IDMS (Isotope Dilution Mass Spectrometry) method, or one of the many derivatives of this method 

[156], is used to check for and correct signal suppression in metabolomics.  Labeled extracts used in 

IDMS themselves are subject to degradation from handling and storage.  Metabolite degradation in 

IDMS standards which are spiked into sample extracts could incorrectly skew correction factors and lead 

to inaccurately corrected data.  Labeled metabolites, particularly for global metabolomics, are typically 

produced by growing Escherichia coli on 100% labeled carbon substrate in minimal media, extracting 

those metabolites and spiking this extract into samples to be analyzed.  This method of preparing 

labeled metabolites for IDMS results in metabolite pools that are incompletely labeled [45], requiring 

additional data corrections.  This method introduces extensive data augmentation, an additional 

potential source of error.  We are not aware of a published incidence of signal suppression in 

metabolomic studies employing fast-filtering and solvent extraction for the targeted subset of 

metabolites assayed for in this study.  An alternative to IDMS, particularly amenable to targeted 
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metabolomics of a small number of metabolites, is to validate that there is not ion suppression of target 

metabolites occurring prior to analyzing experimental samples.  It is important to re-affirm this upon 

introducing new or different experimental or sampling conditions.   

Other Nicotinamide Metabolite Quantification Methods  

Native In Vivo Fluorescence and Fluorescent Biosensor Detection of Pyrimidine Nucleotides 

Nicotinamide cofactors natively fluoresce, and this fluorescence can be used to quantify them in vivo.  

The emission spectra for NADH and NADPH are similar (abs. 366 nm, emit. 460 nm) [157] and 

instantaneous fluorescent measurements cannot discriminate between the two species, nor can they 

discriminate between bound and free forms of these cofactors.  The standard potential of NAD(H) and 

NADP(H) differs slightly [158], as does the intracellular concentration and often the relative ratios of the 

oxidized and reduced species and enzymes typically do not use both interchangeably.  As such, these 

two charge carriers are not equivalent within the cell and combined measurements of both, as reported 

from chemical autofluorescence, are inappropriate when attempting to infer redox information about 

one or the other.  Further complicating in vivo analysis of native forms is the fact that other 

biomolecules can interfere with fluorescent measurements, such as FAD and other flavins [159, 160].  

The fluorescence decay properties of pyrimidine cofactors are different from each other and thus allow 

for their determination individually in vivo [161-163].  Coupling fluorescence decay analysis and spectral 

decoupling methods allows for the in vivo differentiation of free and protein-bound NADH [163, 164].  

Fluorescence lifetime techniques require specialized equipment, cell preparations and techniques which 

would likely result in cells being in a state not representative of growth.  These techniques are also not 

amenable to large numbers of samples and replicates, nor are they compatible with simultaneous 

determination of other metabolites through methods such as global metabolomic profiling.  
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Toward achieving NADH/NAD+ determinations during active growth states and increasing throughput 

and flexibility of analysis, abiotic and protein based biosensors have been developed to assay the in vivo 

redox potential of NADH/NAD+.  Biotic biosensors have been developed to measure NADH/NAD+ redox 

state directly, largely leveraging the differential affinity of the Rex transcription factor for NAD+ and 

NADH [165-167], or indirectly, through the use of coupled reporter systems [168].  While these 

biological redox sensor systems can give measurements under a variety of growth states, they are 

vulnerable to interference from pH, other nucleotides/metabolites, temperature [169], and the 

exogenous redox potential [170].  Their use to quantitatively measure NADH/NAD+ requires careful 

control and calibration of many parameters which affect their performance [169] and, given the 

difficulties in calibrating and standardizing these biosensors for all possible conditions and interferences, 

measurements derived from these biosensors are usually reported as relative and differential after 

being normalized to an appropriate control.  Furthermore, genetic biosensors must be genetically 

integrated and functionally validated for each adapted use, a particular challenge to metabolic 

investigations of non-model organisms whose heterologous genetic expression tools are still being 

developed [171].  Though of relevance to C. thermocellum and other biotechnologically relevant 

thermophiles, there is a class of NADH/NAD+ biosensors based on T-Rex, the Rex protein from Thermus 

aquaticus [172], a thermophile with an optimum growth temperature of 70oC, though the biosensor 

itself has not been applied, tested or adapted at elevated temperatures. 

Abiotic biosensors, based on activated surface chemistries synthesized specifically to record 

amperometric responses to oxidation of NADH extracted from cells.  These devices assay NADH from 

biological extractions, which must be extracted/prepared, wherein doing so requires the same 

considerations as addressed when preparing extracts for LC-MS/MS.  As with biotic biosensors, these 

devices are susceptible to interference from other biomolecules present in extracted matrices.  Unlike 

biological in situ biosensors, assay conditions can be carefully controlled, allowing for calibration and 
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absolute quantification of NADH.  The detection limit for NADH in these devices is similar to those 

reported for MS/MS methods and in vivo fluorescent methods (~20-160 nM) [173, 174]. 

Enzymatic Cycling Assay 

Enzyme cycling assays are also commonly used to detect NADH and NAD+ [138, 139].  Extractions using 

~1M acid or base (depending on the metabolite being assayed for) are commonly employed with these 

assays.  This protocol is able to chemically stabilize and detect picomolar concentrations [138], which is 

well below the concentrations typically found in metabolite extractions.  Extensive tissue specific 

requirements are typically required to preserve NADH and NAD+ from degradative ability of extraction 

matrices [138, 139].Extractions involving high concentrations of acid or base is destructive and not 

amenable to concomitant measurements of other metabolites.  Aside from assessing recovery in ‘blank’ 

or matrix-laden extractions, there are few other options to assess metabolomic data quality with this 

method.  This assay is not amenable to detecting NADH and NAD+ metabolites extracted in organic 

containing solvents and co-extraction of adenylate cofactors to determine the AEC is not possible.  

In conducting cycling assays, unwanted nicotinamide species (NADH, NAD+) in each extraction are 

degraded away prior to quantifying the corresponding other species.  While this was shown to occur to 

completion in pure solution [148], many cycling assay development and adaptation papers mention 

incomplete destruction of unwanted nicotinamides in the extractions, which then can interfere with the 

assay.  Incomplete destruction and conversion of interfering species is difficult to detect and account 

for, even when assaying for recovery of exogenously added metabolites.  When assaying for small 

quantities of metabolites, these interferences can have a large effect.  Not only does fast filtering utilize 

quenching and extractions designed to preserve the native state of all metabolites extracted, but all 

metabolites are also analyzed for simultaneously, rather than separately from different extractions, 
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eliminating the possibility of overestimating the concentration of nicotinamide metabolites or the entire 

nicotinamide pool.   

In vivo NMR 

In vivo NMR has been used to detect intracellular metabolite concentrations in various microbes [175], 

including redox and energy cofactors [176].  In vivo determination does not require metabolites to be 

extracted from cell biomass prior to detection and quantification.  The main drawback from NMR 

metabolomics is the relatively low detection limit, which is often many orders of magnitude above 

metabolite concentrations found in metabolomic extracts [177].  In vivo NMR metabolomic methods 

offset this limitation by detecting metabolites from highly concentrated material, in situ or as extracts 

from large amounts of cell biomass.  In vivo intracellular adenylate cofactor determination of C. 

thermocellum [178, 179] used highly concentrated cells and, though the cells are metabolically active, 

the metabolic state of these cells may not represent the metabolic state of actively growing and 

fermenting cells.  Metabolic or metabolomic inferences between the two cell states may be only 

tangential.  Ex vivo NMR-based metabolomics circumvent low detection limit limitation by extracting 

metabolites from relatively large amounts of cell biomass [176].   

In this study we conduct a series of experiments toward qualifying a protocol for the reliable 

simultaneous determination of NAD(H), NADP(H) and A(T,D,M)P.  Toward adopting and optimizing a 

protocol originally developed for use with E. coli [45], we obtain intracellular energy and redox cofactor 

concentration measurements, as well as validation experiments which address common metabolomic 

concerns that introduce large artifacts in other metabolomic extraction and detection protocols; 

metabolite leakage, degradation, yield losses and mass spectrometer signal suppression.  We use a 

solvent quenching/extraction of filtered cell biomass followed by direct determination of metabolites 

using LC-MS/MS modified to include a minimum number of processing steps, and occurring at or below 



57 
 

0oC in an anaerobic environment.  We have omitted centrifugation and washing steps to avoid 

metabolite leakage and, because we observe no matrix induced mass spectrometry signal suppression, 

omit any signal correction methods (e.g. isotope-dilution mass spectrometry, standard additions) as 

well.  These validations also bound the quantitative possibilities of our results and add confidence to the 

measurements.  Similar validations might be used when adapting metabolomic methods to other cell or 

tissue types. 

Results 

The Adenylate Energy Charge and Metabolomic Protocol Efficacy 

A key metric and indicator of metabolite extraction efficacy and quality typically referenced is the 

adenylate energy charge (AEC) recovered from observed metabolites, when possible.  We followed this 

metric while adapting the protocol of [45] and augmenting it for use with C. thermocellum and T. 

saccharolyticum.  Through our adaptation of this protocol, we aimed to alter and improve our protocols 

to attain and observe increasingly higher AEC values in metabolite extracts.  We find the ability to 

preserve ATP generally indicates we were preserving other labile metabolites as well, such as NADH 

(Table 4)  

Metabolite extraction efficacy increases with the AEC ratio and the AEC ratio is an appropriate quality 

control metric to use, if possible, when extracting metabolites.  The AEC is an appropriate and important 

measure of metabolomic process quality and efficacy, as making changes that increased the AEC, we 

concomitantly saw that we could extract and preserve higher concentrations of the two most labile 

metabolites targeted in this study, ATP and NADH.   
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Table 4.  Adenylate energy charge (AEC) improvements observed through protocol development. 

Date AEC 

NADH 

(µM) ATP (µM) Protocol Improvements from Previous 

1 
0.411 +/- 

0.017 
0 

0.246 +/- 

0.031 

Ethanol based solvent, aggressive sonication 

protocol, extraction temperatures reached 

~50C 

2 
0.804 +/- 

0.009 

0.123 +/- 

0.006 

2.31 +/- 

0.13 

Fast-filtering extraction and aqueous/organic 

extraction solvent, adapted from [45] with 

modifications 

3 0.91 +/- 0.01 
1.17 +/- 

0.06 

3.61 +/- 

0.02 

Further improved handling, removed formic 

acid from extraction solvent 
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Metabolite Recovery Through a Single Extraction 

Often in metabolomic studies, sample biomass is extracted multiple times [154, 180], presumably as a 

precautionary measure to ensure complete extraction.  We aimed to determine if extracting biomass 

multiple times is necessary to extract redox and energy metabolites of interest from C. thermocellum 

and T. saccharolyticum.  We extracted unwashed cell biomass entrained on a nylon filter into 2 mL of 

chilled extraction solvent.  To extract cell biomass more than once, the cell-containing filter was washed 

with an additional 1 mL of fresh solvent, to prevent carryover, and then transferred to a fresh chilled 2 

mL of extraction solvent.  Within error, a single extraction of cell biomass is sufficient to extract 

metabolites from C. thermocellum using the protocol developed herein (Figure 4).  Furthermore, the 

sample-to-solvent ratio is sufficient for metabolites to be extracted in a single extraction. 

In doing this experiment, we were unable to detect all seven metabolites we were attempting to detect.  

To prepare extracts for LC-MS/MS analysis, extract from each of the four sequential extractions were 

combined as shown in Fig. 6, so as to make detection of incremental increases in subsequent extractions 

possible.  In doing so, the extract concentration of all metabolites was ~1/4 of concentrations typically 

observed for C. thermocellum.  Though this finding and suggestion is made on the basis of detecting five 

of the seven targeted metabolites in this experiment, the levels of corresponding cofactor pool 

counterpart metabolites which were detected are not varying in extracts of biomass extracted multiple 

times.  As such, It is not likely that multiple extractions are necessary or will enable better metabolite 

recovery and detection.  

Recovery Losses Through Handling in Fast Filtering and Collection 

Through adding exogenous metabolites into the extraction solvent, and performing a ‘mock’ extraction 

(see methods) using a filter with no cell biomass entrained in it, we enumerated metabolite recovery  
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Figure 4.  Cell biomass was extracted multiple times to determine if extracting biomass multiple times is 

necessary to recover all metabolites present in collected biomass.  Using this protocol, extracting cell 

biomass once is sufficient for complete extraction and quantitation of metabolites.  AMP and NADH 

were unable to be detected in this experiment.   
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losses which occur during a metabolite extraction.  We assayed for yield losses using metabolite 

concentrations typical of those found in metabolite extracts of C. thermocellum and T. saccharolyticum.  

ATP, ADP, NADPH and NADP incurred the largest recovery losses (Figure 5).  Less than 10% of NADH and 

NAD+ were lost during sample handling.  NADH and NAD+ loss differences are among the smallest of the 

seven redox and energy metabolites targeted in this study.  The yield losses quantified here cannot 

account for large differences in NADH/NAD+ ratios observed in this study and others quantifying this 

parameter in C. thermocellum [128, 129].  Reduced nicotinamide cofactor losses cannot be accounted 

for in their oxidized counterparts and ATP does not appear to be hydrolyzing to ADP and AMP.  Yield 

losses due to handling were observed in all metabolites, to varying degrees.  We observed one of the 

largest recovery losses in ATP, though are still able to observe relatively high and physiologically relevant 

AEC ratios.  Yield decreases across all seven metabolites suggests metabolites may have been lost to 

sorption to a surface or material contacted during the extraction protocol.  One reason glass materials 

were chosen was to minimize such losses.  The most likely source for these sorptive losses is the nylon 

filter.  It may be prudent to further assess different filter material for their sorption properties and select 

filter media displaying appropriately low metabolite adsorption.  As this mock extraction was carried out 

using filters containing no cell biomass, sorptive properties of filters may be different when they contain 

cell biomass.  While these losses are non-trivial, it will serve as a basis and starting point for estimating 

true intracellular metabolite concentrations and inform future protocol improvements aimed at 

reducing these losses. 

Storage Stability at -80oC.   

These labile metabolites do undergo degradation at sub-zero temperatures [148].  To validate a typical 

storage protocol, an equimolar mixture of exogenous metabolites was prepared in fresh extraction 

solvent.  Aliquots were frozen for prescribed lengths of time and metabolite concentration was analyzed  
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Figure 5.  Extraction solvent containing exogenously added metabolites was used to conduct a ‘mock-

extraction’ to assess metabolite losses due to handling.  Blue bars indicate amount of metabolite 

quantified in solvent containing spiked metabolite.  Orange bars indicate amount of solvent quantified in 

spiked solvent after one pass through a mock extraction.  Noted above each metabolite is the 

percentage of each metabolite lost during mock-extractions relative to the amount present in the spiked 

solvent.  A(T,D,M)P and  NAD(P)(H) are susceptible to handling-related losses. 
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for stability over time.  Each sample mixture was frozen and thawed once.  Figure 6 shows metabolite 

concentrations of these seven metabolites, added exogenously, after being stored at -80oC for various 

lengths of time.  All metabolites were stable when frozen at -80oC for up to five days. 

No Matrix-Induced Signal Suppression of Targeted Metabolites 

Signal suppression of the metabolites was assayed by first injecting either C. thermocellum cell extract or 

extraction solvent.  A mixture of the seven metabolites of interest (0.25 µM each metabolite) were 

introduced into the stream of column eluent, creating a steady state mass spectrometry signal for each 

metabolite.  The resulting combined signal was monitored for signal decrease at the expected retention 

time and m/z value corresponding to each metabolite.  Small signal increases seen at the expected 

retention times of some trials appear as the result of metabolites present in the initial injected sample.  

Any signal decrease at the expected retention time and m/z value would indicate suppression of the 

metabolite signal by the cell extract matrix.         

No signal decreases were seen at any of the expected retention times at any of the m/z signals in the 

presence of either C. thermocellum cell extract or extraction solvent, indicating that neither interferes 

with detected signals assayed for in this study (Figure 7).  Instances of signal suppression were observed, 

but were found outside of the expected retention time, such as at ~2 minutes at m/z corresponding to 

NAD+.  As cell extract matrix resulting from this extraction protocol does not produce any mass 

spectrometry signal interference for these seven metabolites, there is no need to correct for signal 

suppression.     

Nicotinamide and Adenylate Cofactor Extractions from C. thermocellum and T. saccharolyticum 

We have only validated other extraction aspects for C. thermocellum, however, we report intracellular 

metabolite concentrations for both C. thermocellum and T. saccharolyticum (Table 5).   We have 

extracted and detected these redox and energy metabolites from a strain of C. thermocellum in which 
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Figure 6.  Storage stability of metabolites was assessed over 5 days at -80oC in extraction solvent at 

concentrations 0.01 µM to 1 µM.  All metabolites appear stable under these storage conditions.   

 

 

 

 

 

 

 



65 
 

 

Figure 7:  Mass-spectrometry signal suppression brought about by cell extract components were 

assessed as deflections in steady state metabolite signals (created by infusing a mixture of the seven 

metabolites of interest in this study into the chromatography column eluent).  Predetermined retention 

times for each metabolite (indicated by green bars) were monitored for signal deflection, which would 

indicate signal suppression by the cellular extract matrix.  No signal suppression was observed from 

extraction solvent or extraction matrix at expected retention times for metabolites.  Each steady-state 

metabolite signal was assayed for signal suppression in the presence of cell extract twice.  Both assays 

are shown overlaid (red and blue lines).   



66 
 

Table 5.  Varying adenylate charge ratios observed across species highlights the need to develop 

protocols specific for each species/strain. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Species/Strain Genotype
Fermentation 

Capabilities
AMP ADP ATP NAD NADH NADP NADPH

NADH/

NAD+

NADPH/

NADP+

Adenylate 

Energy 

Charge

LL345 Δhpt wildtype 0.12±0.047 0.64±0.23 4.22±1.1 1.26±0.4 0.05±0.01 0.15±0.03 0.17±0.07 0.039683 1.13 0.91

LL1111 Δhpt ΔadhE <5% of wt ethanol 0.53±0.14 1.87±0.54 5.64±1.14 1.83±0.42 0.48±0.23 0.49±0.04 0.71±0.15 0.262295 1.45 0.82

LL1025 wildtype wildtype 0.16±0.078 0.88±0.21 4.4±1.26 2.41±0.51 0.06±0.01 0.52±0.1 0.09±0.02 0.024896 0.17 0.89

Metabolite Concentrations (µmoles/g CDW)

Clostridium thermocellum

Thermoanaerobacterium saccharolyticum
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the bifunctional adhE gene has been removed [181], as well as its genetic parent strain.  We find the 

ΔadhE strain to have a larger NADH/NAD+, as is expected without the function of the NADH-dependent 

enzyme.  This relative difference in the NADH/NAD+ ratio has been shown before, though the 

magnitude of the ratios were much higher [129].  We also observe a much lower NADH/NAD+ ratio in T. 

saccharolyticum than was observed previously.   

We also attempted to extract and detect metabolites from a ΔadhE strain of T. saccharolyticum, though 

the observed adenylate charge ratio was 0.69, a value too low for reliable metabolomic determination.  

This was likely due to the incompatibility between this poor growing strain [129] and this metabolomics 

protocol.  As the strain grew poorly and unpredictably, it did not display a clear log phase of growth and 

it was difficult to discern the growth state the cells.  Other studies have circumvented troubles brought 

about by this severe phenotype by adding yeast extract to growth media.  We opted not to do this as 

previously, yeast-extract containing media had given interfering MS signals when assayed for previously 

(data not shown).   

Contrary to previous findings [129], we find T. saccharolyticum to have a lower intracellular NADH/NAD+ 

ratio than C. thermocellum, and a much lower NADPH/NADP+ ratio.  In agreement with these previous 

findings, we find C. thermocellum to have a much higher NADPH/NADP+ ratio than T. saccharolyticum.  

T. saccharolyticum is a noted natural ethanologen [117] and grows at a much lower optimum pH than C. 

thermocellum, suggesting it may employ far different membrane potential dynamics than C. 

thermocellum.  C. thermocellum suffers from a large ‘titer gap’ [182], where it is tolerant to a far higher 

concentration of ethanol than it produces.   

We also attempted to apply this protocol to extract and detect these metabolites from the 

lignocellulolytic thermophile Caldicellulosiruptor bescii.  In our attempts, the AEC observed in metabolite 

extracts were 0.6-0.7, below acceptable values, likely due to the much lower total adenylate pool size 
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observed in Caldicellulosiruptor [146].  Though our protocol was very similar (with adjustments made to 

filter equivalent amount of cell biomass), we obtained very different results, further highlighting the 

need to optimize and validate metabolomic protocols for each cell type.   

Discussion 

The reliable metabolomic determination of labile metabolite detection requires careful considerations, 

beyond the considerations required of more stable metabolites.  We have developed a protocol for 

extracting and detecting a subset of labile redox and energy metabolites, namely; ATP, ADP, AMP, 

NADH, NAD+, NADPH, and NADP from C. thermocellum and T. saccharolyticum.  Throughout the 

development of this protocol, we achieved more reliable and higher quality metabolite extractions 

through minimizing the processing steps of our quenching and extractions, as well as ensuring cold, 

anaerobic culture handling up until the time samples were diluted and prepared for HPLC separation.  

Included in this study are a series of validations, meant to assess how various process steps can impact 

metabolite extraction yield at each process step.  Data from these experiments can assess extraction 

efficacy, inform efforts to further improve this extraction protocol, or provide a format for adapting and 

optimizing this protocol for use in other species or cell types.      

Adenylate Energy Charge and Reliable Quantifications 

A hallmark of high quality metabolomic extractions is the ability to observe high and physiologically 

relevant adenylate energy charge ratios in metabolite extracts [45, 154].  The AEC is often cited, though 

briefly, as a sign that metabolites are being preserved in their physiological state [140, 154].  We used 

this ratio as the main indicator of quality, along with metabolite concentrations extracted and results of 

the various validations we did, to assess reliability of the targeted metabolomic protocol we have 

adapted for use in C. thermocellum and T. saccharolyticum.  Based on relative increases in extraction 

yield, and instances of co-degradation (Table 4), we show that the ability to preserve ATP (and observe a 
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high adenylate energy charge) is an indicator that our extraction and detection protocol preserves other 

labile metabolites as well.  While some studies indicate the need for acidic species, such as formic acid 

[140], to be present in the extraction solvent to reliably extract ATP, we found higher and more 

consistent AEC ratios in C. thermocellum and T. saccharolyticum using extraction solvents without formic 

acid.  The addition of formic acid was originally empirically determined to increase adenylate detection 

when extracted from E. coli [183], and was also suggested to aid in denaturing proteins [140], though no 

data was presented in support of this suggestion.  The reason our empirical finding, that extractions are 

more effective when formic acid is omitted from the extraction solvent, differs from those made 

previously may be due to cell-wall structure differences between E. coli (gram-negative) and the 

organisms studied herein (both gram-positive).  Gram-negative cell walls are generally considered more 

impervious than Gram-positive cell walls, making these organisms generally more resistant to antibiotics 

and able to support a chemically-isolated periplasmic space.  Gram-positive cell membranes, while more 

structurally resistant to disruption, are typically more porous and susceptible to dyes and detergents.  

While these cell wall descriptions are generalities and do not always hold true, e.g. C. thermocellum can 

appear Gram-negative when subjected to a Gram stain [184], formic acid may not be necessary to 

extract these metabolites from the cellular matrix largely made up of gram-positive cell walls.  Another 

important observation is that formic acid improved extraction of metabolites form cells grown 

aerobically, either in liquid culture [183] or grown on filter membranes supported on agar media [45].  C. 

thermocellum and T. saccharolyticum are both strict anaerobes.  Another study employing a similar 

extraction protocol to measure intracellular metabolites from a strict anaerobe (C. acetobutylicum), also 

mentions using the same extraction solvent used in this study (40%/40%/20% 

acetonitrile/methanol/water) without the addition of formic acid [141], suggesting that growing the 

cells anaerobically or aerobically may determine metabolite extraction efficacy when formic acid is 

present in the extraction solvent. 
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Fast Filtering with Organic/Aqueous Solvent Precludes Matrix-Induced Ion Suppression and Simplifies 

Sample Handling and Analysis 

We observe 9-27% yield loss during extraction handling steps of our seven targeted metabolites, with 

the highest losses coming from NADPH and NADP.  Another study mentions not being able to extract 

NADPH in cold methanol, and achieved higher concentrations with perchloric acid [185], suggesting the 

use of organic solvents to extract NADP(H) may be suboptimal.  Under analogous conditions 

(exogenously added cofactors, no extract matrix present) 14% of NAD+ and up to 17% of NADH was not 

recovered when using acid/base extraction and an enzymatic cycling assay [44].  They also mentioned 

observing higher yield losses of these metabolites when they were present at lower concentrations, and 

virtually no loss at higher concentrations, emphasizing the need to assay recovery using additions at 

metabolite concentrations expected in cell extracts. By comparison, we observed recovery losses of 

NADH and NAD+ of less than 10%.   In another study, >95% of nicotinamides were recovered when 

coextracting exogenously added chemicals alongside C. thermocellum cell biomass [129], though it is 

unclear what concentration of exogenously added chemical was used and if the concentration used is 

representative of cell extract concentrations.   

The present method is both sufficiently sensitive to detect ~10 nM quantities of metabolites in extracts, 

and is not chemically destructive.  Not only does this protocol allow AEC monitoring, but also makes the 

protocol amenable to development of detection protocols of more metabolites are likely present in the 

extract [140].  Furthermore, there is no need for IDMS-based signal correction, as we found no evidence 

the mass spectrometry signal was being suppressed at the retention times for these seven metabolites.  

A similar method was used to assess intracellular metabolites in C. acetobutylicum [141], and appears to 

also have been adapted from the same protocol originally developed for E. coli [45].  They observed very 

high AEC values in log phase growing cells, though did not report any other validation experiments such 

as yield losses incurred at each process step. 
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To enable more quantitative metabolite determinations, which are imperative for making reliable 

thermodynamic inferences, accounting for the different types of yield loss can inform protocol 

improvement.  Examples are losses due to leaching (or leakage), degradation, or sorptive losses, and 

losses during storage, and suppressed signals in detection.  This is likely not an exhaustive list of yield 

losses, but accounts for the most documented sources of metabolite losses.   

This fast-filtering protocol does not induce signal suppression during mass spectrometry detection.  This 

is preferable as it does not require extensive sample alterations and data corrections, which both could 

be potential sources of error in measurements and add processing steps which might reduce extraction 

and detection reliability. 

Redox Dynamics of Ethanol-Producing Anaerobic Thermophiles 

To assess the performance and sensitivity of this protocol, we extracted metabolites from C. 

thermocellum ΔadhE strain (LL1111) as well as its parent (LL375).  We also extracted metabolites from T. 

saccharolyticum ΔadhE strain (LL1076) as well as its parent (LL1025), though the AEC ratios obtained for 

the LL1076 strain were too low (0.69) to be considered reliable.  We also tested this protocol with 

strains of C. bescii, though AEC ratios obtained for all strains were low (0.60 – 0.70), and are not 

discussed herein.   

Two other studies [128, 129] have reported values for these metabolites in C. thermocellum, and have 

used protocols much different than the protocol developed and used in this study.  We observe large 

differences in the NADH/NAD+ and NADPH/NADP+ ratios between all three studies, while all three 

studies reported similar intracellular concentrations for these metabolites.  This suggests that the values 

obtained and reported are heavily influenced by the extraction and detection protocol used.  [128] 

extracted metabolites from wildtype C. thermocellum as well as two strains that had been 

exposed/adapted to 3 g/L ethanol.  Only in [128] was it possible to assess the AEC, as [129] used an 
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extraction protocol which does not preserve adenylate cofactors.  Nicotinamide cofactors were recently 

reported from a suite of wildtype and engineered strains of C. thermocellum and T. saccharolyticum 

collected using a different extraction and analysis method [129].  Three of the strains analyzed were also 

assessed in the present study. 

All but one AEC ratios calculated from reported values in [128] are below the physiological range of 0.8-

0.95 for actively growing cells [42].  The WT and EA0 samples had observed adenylate charge ratios of 

0.737 and 0.699 respectively, while the EA3 sample had an AEC of 0.873.  The low AEC observed were 

likely due to the extraction protocol used; a multistep quenching and extraction followed by high 

pressure cell cracking, centrifugation, and filtering, all potential sources of degradation or extraction 

yield loss.  We observed approximately the same concentration of adenylate and nicotinamide cofactors 

as was observed in this study using a quenching and extraction protocol with far fewer steps, and which 

can be completed in much less time overall, and in which cell metabolism is quenched within a few 

seconds rather ~10 minutes.  [128] also grew C. thermocellum in a media containing 6 g/L yeast extract 

[186], which may have both altered metabolite states and, as we found in our work, may have been a 

source of MS signal suppression, justifying their use of stable isotope dilutions to correct for any signal 

suppression.  Between this study and two other studies mentioned, reported values of NADH/NAD+ in 

wildtype, unperturbed, C. thermocellum strains range from 0.04 to 0.48.  NADPH/NADP+ values range 

from 0.41 to 2.1.  Redox couple ratios for the nicotinamides are reported as being much more reduced 

in the studies of [128, 129] than this study.  Between these three studies, intracellular nicotinamide 

cofactor concentrations range from between 0.05 - 1.64; spanning two orders of magnitude.  For 

comparison and context, NADH/NAD+ ratios change only two-fold when C. acetobutylicum shifts its 

metabolism from acidogenic to solventogenic [141], a major metabolic change as indicated by large 

shifts in intracellular metabolite profiles and AEC.   
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C. thermocellum uses a bifunctional alcohol dehydrogenase to produce most of the ethanol it produces 

[181].  This reaction is NADH dependent and the amount of ethanol produced changes in response to 

environmental and genetic changes [114, 187], suggesting a major determinant for ethanol production 

is the state of the NADH/NAD+ redox couple.  As the ΔadhE strain does not have this enzymatic 

capability, relatively higher NADH/NAD+ ratios are expected in this strain, as observed in both this study 

and in [129]. 

Higher NADH/NAD+ in C. thermocellum than T. saccharolyticum 

The NADH/NAD+ ratios observed in this study were approximately an order of magnitude smaller than 

those observed by [129].  The reason for this difference remains unclear.  As many biochemical reactions 

can exist in a state near equilibrium, it is important to correctly determine the NADH/NAD+ ratio when 

making thermodynamic or directionality inferences, and a possible range spanning an order of 

magnitude for the same species grown in the same media and in similar conditions does not lend 

confidence to such inferences.   

We observe a slightly higher NADH/NAD+ ratio in C. thermocellum when compared to mid log 

NADH/NAD+ ratio of T. saccharolyticum, though we observe relatively small intracellular NADH 

concentrations in both species.  Higher NADH/NAD+ ratios were also observed previously in T. 

saccharolyticum relative to C. thermocellum [129].  A strong inverse relationship was observed between 

intracellular NADH/NAD+ and GAPDH activity in C. acetobutylicum, particularly in the range of 

NADH/NAD+ of 0 – 0.2 [188].  Another study demonstrates a direct link between GAPDH activity and flux 

through lower glycolysis in Lactococcus lactis [189].  This enzyme is part of the central glycolytic 

‘thermodynamic bottleneck’ [130], a set of reactions with noticeably small free energy changes and 

operating at relatively low net flux ratios.  This enzyme is likely operating very near equilibrium and 

relatively reduced GAP dehydrogenase activity, resulting from the observed higher NADH/NAD+, may 
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contribute ultimately to the disparity in ethanol productivity between C. thermocellum and T. 

saccharolyticum.  NADH/NAD+ ratio are also driving reactions elsewhere in glycolysis of C. 

thermocellum, namely the Pyruvate:Ferredoxin Oxidoreductase (PFOR) in C. thermocellum.  This enzyme 

has shown ‘reverse’ flux in C. thermocellum, fixing CO2 and synthesizing formate during fermentative 

growth [124].  If the reaction catalyzed by PFOR is operating opposite to glycolytic flux, and has a 

relatively low ΔrGo’ of -20 kcal/mol [190], it is reasonable that, given amenable concentrations, other 

glycolytic reactions might be operating similarly; at relatively low net flux ratios.  In this way, the 

NADH/NAD+ redox couple would be heavily influencing the direction of flux for this reaction and 

potentially other reactions in which it participates. 

Free vs. Bound Cofactors 

It is only free redox cofactors that contribute to the reaction potential of those reactions which they 

participate in, and it is this potential we desire to estimate with quantitative, or near-quantitative 

estimations of metabolite concentrations.  It is suggested that acetonitrile component in extraction 

solvents sufficiently denatures all proteins, thereby releasing would-be bound cofactors and making 

them available for extraction [191], though it is unclear whether this solvent mix is capable of releasing 

all enzyme bound cofactors [45].  It has been reported that a substantial portion of the nicotinamide 

cofactor pool is protein bound in mitochondria [164], while [140] found in E. coli that, globally, 

metabolites were largely in the free, unbound state within the cytosol.  The whole-cell total 

NAD+/NADH ratio and the free/unbound NAD+/NADH portion of the pool differed by an order of 

magnitude in Saccharomyces cerevisiae and the thermodynamic potential of each of these pools would 

be interpreted differently [192], though total NADH/NAD+ and free NADH/NAD+ were found to 

approximate each other in human erythrocytes in a variety of growth states [193].  [194] used cytosolic 

lactate/pyruvate ratio as a proxy indicator of the free cytosolic NADH/NAD ratio, though the 

lactate/pyruvate ratio itself was labile.  Fluorescent lifetime imaging and quantification measurements 
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(FLIM) can also discern free from bound NAD(H) and, thus, the free cytosolic NADH/NAD+ ratio [161], 

though the growth state of cells prepared for this technique may not approximate that of actively 

growing cells.  It is unclear how well these estimates approximate those of the free, unbound portion of 

the pool and, thus, the thermodynamic driving force of these unbound pools. 

Conclusions 

To enable determining intracellular NAD(H), NADP(H), ATP, ADP and AMP concentrations in C. 

thermocellum and T. saccharolyticum, we have adapted and validated a cold solvent, fast-filtering 

protocol adapted based on a protocol developed for use with E. coli [45].  This protocol is validated on 

the basis of metabolite recovery, storage and handling stability, mass-spectrometry signal suppression, 

and the ability to recover physiologically relevant adenylate energy charge ratios in extractions.  We 

compare our results with those of two similar studies utilizing different determination methods to 

quantify these metabolites in C. thermocellum and T. saccharolyticum.  We find that our protocol 

recovers high adenylate energy charges and physiologically meaningful values for NADH/NAD+ and 

NADPH/NADP+ that are validated by other metabolomic data in the related literature.  Due to tissue and 

extraction matrix specific needs, such validations can and should be used when adapting this and other 

metabolomic protocols for use in different cell and tissue types.  

Methods 

Strains, Media and Growth 

All strains of Clostridium thermocellum (LL345 and LL1111) and Thermoanaerobacterium 

saccharolyticum (LL1025 and LL1076) used in this study were gifts of Lee Lynd (Dartmouth College) and 

his laboratory.  Strain LL345 (Δhpt) was used in all C. thermocellum metabolite extraction protocol 

validation experiments, unless otherwise listed.  Strains of C. thermocellum were grown in MTC-5 media 

[32] and strains of T. saccharolyticum were grown in MTC-6 media [195].  Cultures were grown in 50 mL 
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aliquots in 135 mL serum bottles containing a starting gaseous headspace of 5% H2, 10% CO2 and the 

balance N2.  Cultures were grown to mid log phase at 55ºC, shaking at 200 rpm.  Cell growth was 

monitored by measuring OD600 measured in a Genesys 20 spectrophotometer (Thermo Fischer Scientific, 

Waltham, MA).     

Metabolite Extractions 

For Determination of Intracellular Metabolites 

To determine intracellular metabolites, 5 mL of actively growing mid log phase cells were quickly 

aspirated and vacuum filtered onto Whatman Nylon Membrane 0.22 µm Filters (GE Healthcare Life 

Sciences, 7404-004).  The filters were then submerged (with the filter face containing cell biomass 

‘down’) into 2 mL of extraction solvent (Figure 8), consisting of 40% methanol (v) /40% acetonitrile 

(v)/20% water (v).  The solvent was pre-chilled in a glass mini-petri dish (89000-300, VWR International, 

Radnor, PA) resting on top of an ice block which had been previously frozen at -80oC.  The extraction 

solvent remained liquid throughout the extraction/submersion.  Glass Pasteur pipettes (14672-380, 

VWR International, Radnor, PA) were used to collect extract and place extracts into pre-chilled silanized 

glass vials (MSCERT5000-S41W, Thermo Fischer Scientific, Waltham, MA).  Glass vials were pre-chilled by 

placing them in pellet ice for ~20 minutes prior to adding extract to them.  Extract was kept on pellet ice, 

in liquid form, and delivered for day-of LC-MS/MS analysis.   

Metabolomic sampling and extractions were done in a Coy anaerobic chamber (Type B, Coy Laboratory 

Products, Grass Lake, MI).  All glassware was brought into the anaerobic chamber 24 hours before 

metabolomic extractions to allow them to become anaerobic.  Extraction solvent was prepared fresh for 

each extraction using HPLC grade solvents (water; WX0004-6, methanol; MX0488-6, acetonitrile; 

AX0142-6, VWR International, Radnor, PA).  The solvent mixture was prepared, the headspace was 

sparged for 20 minutes with N2 gas, and it was stored overnight at -20oC in the dark.  Extraction solvent  
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Figure 8.  Diagram of the fast-filtering protocol used to extract and detect intracellular metabolites from 

cell biomass in this study. 
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was kept cold on pellet ice prior to use.  Cell biomass from which metabolites were extracted (g CDW) 

was calculated using OD600 readings taken at the time of sampling and converted to cell dry weight using 

the conversion cited in [129].   

For Determination of Metabolite Losses Due to Handling 

To determine metabolite losses due to handling, a mixture containing 1.66 µM of each metabolite was 

prepared and chilled in glass petri dishes as described previously.  A fresh filter was adhered to the filter 

extraction apparatus and wetted with anaerobic water that had been treated using a Barnstead 

Nanopure Analytical Ultrapure Water System (D11901, Thermo Fisher Scientific, Waltham, MA).  This 

filter was then placed into 2 mL of pre-chilled extraction solvent containing metabolites and allowed to 

incubate for 5 minutes, to simulate handling steps used, and approximate interferences from dilution, 

adsorption, degradation, etc., encountered during a typical extraction.  Extraction solvent from the petri 

dish containing solvent and the wetted filter was collected and measured.  Extraction solvent containing 

the spiked in metabolite, but had not been used in the ‘mock’ extraction was also collected and 

metabolites quantified.   

For Determination of Metabolite Yield Loss During Storage at -80oC 

Metabolite mixtures containing 1 µM, 0.1 µM, and 0.01 µM of each metabolite was prepared in 

extraction solvent and aliquoted into silanized glass vials.  The vials were frozen at -80oC.  At each 

prescribed sampling time, one of the aliquots were thawed and analyzed for metabolite concentrations.  

Vials were thawed and analyzed via LC-MS/MS at 0, 24, 48 and 120 hours.   

Extracting Cell Biomass Multiple Times to Determine Extraction Efficacy 

To determine metabolite extraction efficacy and examine whether multiple extractions would afford 

more complete/quantitative extraction, C. thermocellum cell biomass was extracted as described above.  

After incubating the filter containing cell biomass for 5 minutes in pre-chilled solvent, the filter was 
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rinsed with an additional 1 mL of extraction solvent and placed into another glass petri dish containing 2 

mL of fresh extraction solvent.  The filter was rinsed and transferred two more times to fresh solvent, 

having the effect that the filter-laden cell biomass was exposed to fresh solvent four times sequentially.  

Samples were collected for LC-MS/MS analysis as shown in Figure 9.    

LC-MS/MS of Intracellular Metabolites 

LC-MS/MS analyses were performed using a Waters Aquity UPLC system coupled to either an ABSciex 

4000 QTrap or ABSciex 5500 QTrap mass spectrometer equipped with a TurboIon Spray source.  The 

mass spectrometer was operated in negative ion mode using multiple reaction monitoring (MRM). 

Chromatographic separation of metabolites was attained on a 150 mm x 2.1 mm ID, 5 µm SeQuant 

ZIC®pHILIC column (part number 1.50460.0001, Merck from VWR)  using acetonitrile (mobile phase A) 

and 10 mM ammonium carbonate in 0.2% (v/v) aqueous ammonium hydroxide (mobile phase B).  

Metabolite elution was performed using a gradient from 80% A to 60% B over 15 min and holding at 

60% B for 5 min and then to 80% A for a 10 minute equilibration period (30 min total run time) at a flow 

rate of 300 µL/min.  Samples were diluted five-fold in 80/20 acetonitrile/water (v/v) and placed in an 

autosampler held at 4oC. Sample volume injected onto the column was 5 µL.   

The mass spectrometer settings were as follows: IonSpray voltage -4.5 kV, curtain gas flow 20 (arb.), ion 

source gas 1 (nebulizer) flow 40 (arb.), ion source gas 2 (heating) flow 75 (arb.), nebulizing gas 

temperature 350°C.  Ionization and collision cell parameters were optimized separately for each 

metabolite and are shown in table 6.  
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Figure 9.  Diagram of method used to collect and aliquot cell extract from biomass that had been 

extracted multiple times.  
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Table 6.  Ionization and collision cell parameters used to analyze metabolites in this study. 

Metabolite Product Ion 
(m/z) 

Declustering Potential 
(DP) V 

Collision Energy 
(CE) eV 

Cell Exit Potential 
(CXP) V 

AMP 79 -100 -60 -15 
ADP 79 -105 -120 -15 
ATP 79 -55 -100 -15 
NAD 540.1 -70 -20 -10 

NADH 79 -110 -120 -3 
NADP 620.1 -60 -20 -10 

NADPH 79 -110 -115 -5 
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Preparation of Calibration Curve 

A concentrated stock solution (1 mM) of each metabolite standard was prepared in water.  A 

concentrated mixture of metabolites (each 10 µM) was prepared by aliquoting the appropriate volume 

from each standard and diluting to a final volume of 5 mL in 80/20 acetonitrile/water (v/v).  Serial 

dilutions were then made to obtain standard mixtures ranging from 0.01 µM to 1 µM.  Five µL of each 

standard was injected onto the column.  A linear calibration curve was generated by plotting the area 

response of the metabolite versus the concentration of the metabolite which was then used to 

determine the metabolite concentration in the cell extracts. 

To determine yield loss of metabolites due to handling and storage, metabolite separation and analysis 

was done as described above, though analyzing either thawed or freshly prepared metabolite mixtures 

in place of a cell extract.   

LC-MS/MS assessment of solvent and matrix induced signal suppression of targeted metabolites 

To assess for signal suppression form cell extract matrix, chromatographic and mass spectrophotometric 

instruments were used as described above, with modifications.  A mixture containing 0.25 µM of each 

metabolite was prepared in fresh extraction solvent.  This mixture was infused into the elution stream 

exiting the chromatography column (5 µL/min standard mixture via syringe pump to 300 µL/min HPLC 

mobile phase flowrate), generating a steady state signal for each metabolite.  Cell extract prepared, 

diluted, were injected and analyzed as stated above and signal suppression (indicated by deflections in 

the steady state signal of each metabolite) was assessed at the predetermined retention time for each 

metabolite. 
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Chapter 4: Rex in Caldicellulosiruptor bescii: Novel Regulon Members 

and its Effect on the Production of Ethanol and Overflow Metabolites 
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This work, as presented, has been submitted for peer-review at the time of the publication of this thesis.   

The work in this chapter investigates the hypothesis that redox metabolism can be altered through 

genetic modifications of a regulatory gene Rex; a redox-sensing global transcription factor in C. bescii 

responsible for regulating expression of some redox-active genes and maintaining redox state within the 

cell.  Previous work in this thesis has established that redox metabolism and the redox state of the cell 

throughout fermentation are hindering ethanol synthesis, and that the redox state of these 

lignocellulolytic hyperthermophiles is likely dynamic and facile, susceptible to augmentation toward 

higher ethanol productivity.  In this work we follow up on this hypothesis by broadly investigating the 

redox dynamics of C. bescii, through the study of this global transcription factor, and by assessing 

metabolite concentrations in strains shown to make markedly different amounts of ethanol.  Further, 

we observe an increase ethanol productivity by eliminating Rex regulation of redox state in C. bescii.  By 

alleviating Rex transcriptional control within the cell, the redox state of the cell is likely fluctuating and 

arriving at a new state whereby, after prolonged fermentation under nitrogen limitation, we see a 54% 

increase in final ethanol titer relative to the genetic parent strain containing a wildtype Rex gene.   

Kyle Sander formulated hypotheses to be tested, designed and executed all experiments, generated 

genetic mutant strains, collected samples and data, analyzed and interpreted data, and drafted the 

manuscript.  Daehwan Chung and Janet Westpheling graciously provided C. bescii genetic parent strains 

used in this study and assisted in generating mutant strains used in this study.  Doug Hyatt performed 

Rex transcription factor binding site informatic prediction.  Nancy Engle and Timothy J. Tschaplinski 

extracted metabolites from C. bescii biomass samples and quantified intracellular and extracellular 

metabolites.  Dawn Klingeman assisted in cDNA generation and RNA-seq library generation.  Miguel 

Rodriguez Jr. quantified fermentation products from supernatants by HPLC/RI detection.  Brian H. 
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Davison and Steven D. Brown assisted in formulating hypotheses to be tested, designing experiments, 

interpreting data, as well as editing the manuscript. 
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Abstract 

Rex is a global redox-sensing transcription factor that senses and responds to the intracellular 

[NADH]/[NAD+] ratio, regulating its poise by regulating expression of a variety of genes in Gram-positive 

bacteria.  We decipher and validate four new members of the Rex regulon inCaldicellulosiruptor bescii;  

a gene encoding a class V aminotransferase, the HydG FeFeHydrogenase maturation protein, a vaguely 

annotated oxidoreductase, and a gene encoding a hypothetical protein.  Structural genes for the NiFe 

and FeFe hydrogenases, pyruvate:ferredoxin oxidoreductase, as well as the rex gene itself are also 

members of this regulon, as has been predicted in previous organisms.  A C. bescii rex deletion strain 

constructed in an ethanol producing strain made 54% more ethanol (0.16 mM) than its genetic parent 

after 36 hours of fermentation, though only under nitrogen limited conditions.  Metabolomic 

interrogation show this rex deficient ethanol-producing strain synthesizes other reduced overflow 

metabolism products likely in response to more reduced intracellular redox conditions and the 

accumulation of pyruvate.  These results show ethanol production is strongly dependent on the native 

intracellular redox state in C. bescii, and highlight the promise of using this gene to metabolically 

engineer strains capable of producing ethanol at higher yield and final titer.   

Importance 

Redox metabolism drives the synthesis of bioethanol in C. bescii and other candidate consolidated 

bioprocessing biocatalysts, though the systems-level redox metabolism of this organism remains largely 

unexplored.  In this study, new genomic, regulatory, and metabolic interconnections that govern 

C. bescii redox homeostasis are elucidated.  Ethanol productivity differences between a rex deletion 

mutant and its parent strain constitutively expressing AdhE are explained in the context of metabolite 

fluxes, rather than direct control of expression by Rex, as is the case in other gram positive 

ethanologens.  This work further expands knowledge into redox systems in C. bescii, the regulon of Rex, 

and will further inform metabolic and process engineering efforts to improve bioethanol production. 
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Introduction 

Liquid transportation fuel demand is projected to increase through 2075 [6] and an inexpensive, reliable 

way to produce bioethanol from lignocellulosic feedstocks will be necessary to meet increased demand. 

Consolidated bioprocessing (CBP) is expected to be a cost-saving way for producing bioethanol [18], 

primarily because of its use of inexpensive lignocellulosic feedstocks and lower capital and operating 

costs due to biocatalysts that produce enzymes for the deconstruction and solubilization of feedstocks 

to soluble carbohydrates.   

Caldicellulosiruptor bescii is a promising candidate biocatalyst for this single-step ethanol production 

process [196].  The genus Caldicellulosiruptor are anaerobic hyperthermophiles which can ferment a 

variety of organic substrates [14], and produce nearly theoretical amounts of hydrogen in order to 

recycle redox cofactors [197, 198].  It is capable of solubilizing lignocellulosic biomass through the 

activity of its suite of CAZymes [26, 199, 200], and fermenting many of the resulting soluble 

carbohydrates, producing primarily acetate, lactate, hydrogen, and CO2.  Some species can also produce 

ethanol, though this trait is not conserved across the genus.  C. bescii does not natively produce ethanol 

as a fermentation product, but was recently engineered to produce ethanol directly from lignocellulosic 

biomass substrates by introducing an AdhE gene which is constitutively expressed [16, 56].  

Ethanol synthesis in C. bescii relies on cofactors from the organism’s native redox system, as is the case 

in other CBP organisms [31, 201].  These redox systems are plastic and subject to modulation through 

genetic modifications or by altering growth conditions.  Eliminating lactate production in C. bescii 

increased overall hydrogen production [40], while eliminating the NiFe membrane-bound hydrogenase 

decreased ethanol yield in a strain expressing an exogenous bifunctional AdhE [39].  Another method of 

redox modulation by Caldicellulosiruptor is demonstrated by the closely related bacteria 

Caldicellulosiruptor saccharolyticus. C. saccharolyticus produces lactate upon sparging a continuously 

growing culture with hydrogen [50].  It was suggested that this results from the introduced hydrogen 
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inhibits hydrogen generation by hydrogenases, resulting in NADH-driven metabolic forcing of lactate 

dehydrogenase activity.  While Caldicellulosiruptor species rely heavily on hydrogenases and 

fermentation to facilitate redox balance, other metabolic components also contribute to its redox 

metabolism.  C. bescii strains expressing exogenous alcohol dehydrogenases with different redox 

cofactor requirements synthesized variable amounts of ethanol when grown under similar conditions 

[56]. These experiments demonstrate that a better understanding of cellular redox systems is needed to 

more effectively engineer this biocatalyst to produce ethanol more effectively.   

Rex is a well characterized and conserved global redox responsive transcription factor [43] that was first 

characterized in S. coelicolor as a global repressor able to detect and regulate gene expression in 

response to the intracellular [NADH]/[NAD+] couple [202].  In doing so, Rex not only regulates the poise 

of this redox couple, but the cellular redox state in general, as evidenced by its conserved transcriptional 

regulation of redox genes that are not NAD(H) dependent [43].  Conserved Rex regulon members 

include genes involved in energy conversion, redox metabolism, glycolytic and fermentation genes, and 

NAD biosynthesis [43].  Examples of genes where Rex regulation is found to be taxon specific and less 

conserved are those of hydrogenases, heme biosynthesis, sulfate reduction [203] and biofilm formation 

[204], solventogenic metabolism [48], nitrate and chlorate metabolism/resistance [205], and 

cytochrome biosynthesis [206].  

Redox sensing and regulation by the transcriptional regulator Rex in the closely related species 

Caldicellulosiruptor saccharolyticus was partially inferred from a differential gene expression study of 

cells grown under hydrogen sparging [50].  Genes encoding elements of both the NiFe and FeFe 

hydrogenases were predicted to be under transcriptional control of Rex, as were the subunits of 

pyruvate:ferredoxin oxidoreductase.  Lactate dehydrogenase is not predicted to be controlled by Rex in 

C. saccharolyticus [50], though it  predicted to be controlled by Rex in other many other organisms [43].  

Rex is predicted to be a global repressor in C. saccharolyticus, regulating expression of other regulatory 



90 
 

elements such as a histidine kinase, a CopG family transcription factor, the iron uptake regulator Fur, as 

well as the rex gene itself.  Other regulatory targets of Rex and action of some regulatory elements in 

the regulon of C. saccharolyticus remain unknown and unexplored.  

A consensus binding sequence for Rex was predicted in C. saccharolyticus [50] that is similar to 

predicted Rex binding sequences identified in bacteria from other genera [207].  The operator site in C. 

saccharolyticus and other organisms is an 18-20 bp palindrome sequence with the overall consensus 

sequence of TTGTGAANNNNTTCACAA [43].  The residues of the binding sequence important for Rex-

DNA interaction have been shown to be its most conserved residues [47, 208-210]. 

Deleting the rex gene can have dramatic effects on intracellular redox state and the production of 

ethanol.  A strain of Clostridium acetobutylicum containing a disrupted rex gene produced more ethanol 

and butanol after 60 hours than its parent strain or a rex deletion strain complemented with the C. 

acetobutylicum rex gene [211].  De-repression of adhE genes, which are transcriptionally controlled by 

Rex in C. acetobutylicum [48, 211], and increased NADH-dependent AdhE activity were shown to 

coincide with increases in ethanol and butanol production.  

The goal of this study is to understand the redox metabolism in this unique and biotechnologically 

relevant species and genus, specifically as it pertains to ethanol synthesis, and we do so by studying the 

rex gene in C. bescii.  A comprehensive understanding of redox metabolism in C. bescii will allow more 

effective engineering of redox systems to promote synthesis of ethanol at higher yield and productivity.  

Results 

Deletion of the rex Open Reading Frame 

Two rex deletion mutants were generated for this study; one using strain JWCB005 [54] as the genetic 

parent strain, and the other using the ethanol-producing strain JWCB032 [16] as the parent strain.  

Strain JWCB005 contains a functional lactate dehydrogenase gene, while the lactate dehydrogenase 

gene in strain JWCB032 contains an active insertion element and the strain does not make lactate [212, 
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213].  Lactate production was not observed in our experiments with strain JWCB032 or the rex knockout 

derivative of this strain.  Strain JWCB032 was engineered to produce ethanol as a fermentation product 

through heterologous expression of a C. thermocellum adhE gene, encoding an NADH-dependent 

bifunctional alcohol dehydrogenase [16].  Deletion strains were verified via PCR (Figure A6) and Sanger 

sequence analysis.  

Bioinformatic Prediction of the Rex Regulon in C. bescii 

Predicted promoter regions in the C. bescii genome (taken to be the 300 bp region upstream of all 

predicted open reading frames) were analyzed for the presence of a putative Rex transcription factor 

binding site using a C. saccharolyticus Rex consensus sequence [50].  Orthologous base pair matches 

were identified in C. bescii for 6 of the 11 binding sites previously identified for C. saccharolyticus.  A 

total of 63 possible binding sites were identified in the C. bescii genome (Table A2) and scored based on 

their homology to the predicted C. saccharolyticus consensus Rex binding site sequence.  We verified 

that all genes containing representative orthologs of those identified as Rex regulon members in C. 

saccharolyticus [50], as well as those binding sites identified for C. saccharolyticus in the RegPrecise 

database [207] were included in this list of 63 possible Rex binding sites. 

Expression Profiling of JWCB005Δrex and Selecting Transcription Factor Binding Sites for In Vitro Verification 

Differential transcript expression was conducted with strain JWCB005Δrex and its parent strain 

JWCB005 to identify genes and transcriptional units under Rex control.  Samples were collected at early, 

mid and late log phase, (Figure A7a).  Acetate synthesis was also monitored during experiments as 

indication of metabolic activity (Figure A7b).  Within error, differences in growth or acetate production 

were not observed under the growth conditions tested.  An average of 83.2% of RNA-seq reads that 

passed quality assurance aligned uniquely to the C. bescii genome (S.D. 1.3%), with an average per-

sample genome coverage of 276X (S.D. 28).  A Principle Component Analysis (PCA) showed two major 
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groupings of samples coinciding with the two different strains, and triplicate samples grouped together 

based on the different timepoints (Figure A8).  Taken together, these summary analyses indicate that 

the RNA-seq data are of high quality.  

Increased expression during at least one timepoint in JWCB005Δrex relative to its parent strain was 

observed for 15 genes, while 9 showed decreased expression.  Putative Rex binding sites were identified 

upstream of four genes based on differential expression analysis (ATHE_RS04105, ATHE_RS10680, 

ATHE_RS04720 and ATHE_RS05415).  A binding site was also predicted upstream of ATHE_RS04125 

(Figure 10), a putative transcriptional unit containing genes involved in tungstate transport potentially 

important to a tungsten containing oxidoreductase enzyme in C. bescii [214].  These and other binding 

sites from our de novo binding site predictions, sites predicted in the RegPrecise database entry for C. 

saccharolyticus, and those predicted in previous C. saccharolyticus analyses [50] for which there were C. 

bescii homologs were selected for validation.  A summary of genes identified as being likely members of 

the Rex regulon in C. bescii, and binding targets were tested by electromobility shift assay (Table 7). 

Electromobility Shift Assays to Test Rex Binding to Predicted C. bescii Binding Sites 

In vitro binding assays allow analysis of recombinant Rex (rRex) binding to the predicted binding sites 

(Table 7) and suggest possible identification of systems under transcriptional control of Rex in C. bescii 

(figures 1-4).  A series of operator sites that displayed an in vitro Kd between 10 and 50 nM were 

identified, similar to other in vitro Rex binding studies in other Gram-positive organisms [47, 48, 215].  

Furthermore, operator sites giving these Kd values are those located in the promoter regions of genes 

shown to be conserved members of the Rex regulon [43]. 

Sequence specificity of in vitro binding reactions was checked by using a synthetic dsDNA probe in which 
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Figure 10.  Electromobility shift assays of binding sites identified upstream of putative transcriptional 

units associated with a poorly annotated, though highly expressed, oxidoreductase gene.  Rex represses 

a vaguely annotated, though highly expressed, tungstate-containing oxidoreductase gene [214].  rRex 

Binding upstream of ATHE_RS04125 was found to have a Kd much higher than other Rex binding sites, 

suggesting Rex does not bind to this site in vivo.  Figure adapted from [214].  Gene color representations 

are as represented in [214]; Blue – tungstate transport, Green – pyranopterin biosynthesis, Orange - 

ferredoxin and ‘XOR.’ 
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Table 7.  Rex operator binding sites chosen for in vitro binding validation from predicted Rex operator 

sites in the C. bescii genome.  Sites were chosen from homologous sites identified in the RegPrecise 

[207] curated regulon, previously inferred Rex binding sites in C. saccharolyticus [50], and observed 

differential expression between JWCB005Δrex and its parent strain (JWCB005).  Grey shading indicates 

non-significant values. Black values indicate values which are significant (Benjamini-Hochburg adjusted 

p-value > 0.05).  Putatively regulated transcriptional unit operon structure are reported as predicted in 

the DOOR database [216] and previous literature [198, 214].   

Locus Tag 

Downstream 

of Operator 

Site 

Predicted 

Transcription Unit 
Distance 

from 

ATG (bp) 

RegPrecise 

[207] 

Predicted 

Regulon 

Predicted 

Regulon 

in [50] 

Site Homology 

Prediction Score 

(This Study) 

log
2
 (JWCB005Δrex/JWCB005) 

of downstream gene 
Early 

Log 

Phase 

Mid 

Log 

Phase 

Late Log 

Phase 

ATHE_RS00825, 

Athe_0168 

2 genes; CopG family 

transcriptional regulator, 

HydG hdyrogenase 

maturation protein 
181 X X 10.5 -0.21 -0.23 -0.27 

ATHE_RS03255, 

Athe_0654 
1 gene; Rex 41 X X 9.25 N/A N/A N/A 

ATHE_RS04105, 

Athe_0820 

2 genes, Ferredoxin, 'XOR' 

oxidoreductase protein 

[214] 
148   

9.5 0.86 0.60 0.75 

ATHE_RS04125, 

Athe_0824 

3 genes; tungsten transport 

system [214] 274   
8.75 0.47 0.38 0.77 

ATHE_RS04390, 

Athe_0874 

4 genes; subunits of 

pyruvate/ketoisovalerate:fe

rrodoxin oxidoreductase 
112  

X 9.5 -0.28 -0.73 -0.62 

ATHE_RS04720, 

Athe_0942 

2 genes; hypothetical 

protein, hypothetical 

protein 
40   

10 -1.46 -1.42 -0.83 

ATHE_RS05415, 

Athe_1082 

19 genes; Ech hydrogenase 

system 147 X X 9 -0.43 -0.80 -1.13 
ATHE_RS06475, 

Athe_1295 

5 genes; Hyd hydrogenase 

system 39 X X 10 -0.13 -0.35 -0.38 

ATHE_RS10680, 

Athe_2126 

3 genes; class V 

aminotransferase, 

phospoglycerate 

dehydrogenase (NADH), 

hypothetical protein 
88   

8.75 0.59 0.63 0.57 

ATHE_RS11210, 

Athe_2226 

1 gene; pyruvate 

carboxyltransferase (KEGG) 

or 2-isopropylmalate 

synthase LeuA (RefSeq) 
169  

X 8.75 0.08 0.12 0.22 
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the Rex operator site upstream of the rex gene were altered by introducing transverse mutations at 

conserved residues in the binding site.  Assays using this probe showed Rex binding at a Kd ~500 nM, one 

order of magnitude greater than the Kd observed using an analogous probe containing the actual Rex 

binding site sequence, Kd ~50 nM (Figure A9), upstream of the Rex gene itself.  Furthermore, probes of 

the same length but containing sequence found to be of low homology to the predicted C. 

saccharolyticus Rex consensus binding site were also used (Figure A10).  These probes displayed no shift 

at concentrations of recombinant Rex protein of 2 µM.  

NADH Binding by Rex in C. bescii 

Rex protein binding to DNA with or without NADH was assayed in vitro (Figure 14).  Binding was 

disrupted with as little as 5 µM of added NADH.  NAD+ had no effect on DNA binding of Rex at the 

concentrations assayed.  The ability of C. bescii Rex to respond to varying [NADH]/[NAD+] ratios at total 

cofactor pool concentrations of 1 µM and 100 µM was observed, suggesting that Rex in C. bescii 

operates in response to the relative [NADH]/[NAD+] ratio rather than NADH concentration alone, as 

previously reported in other organisms [202].  

Ethanol Productivity of a rex Deletion in an Ethanol Producing Strain of C. bescii  

To test the direct impact of the Rex protein on ethanol production in C. bescii, we deleted the rex gene 

in an ethanol producing strain, JWCB032 [16].  JWCB032Δrex showed no differences in growth profile or 

fermentation products relative to its parent after 48 hours when grown in LOD media (Figure A11).  

However, phenotypic differences were observed when these two strains were grown in LOD media 

augmented with 1/10th the typical amount of ammonium carbonate (0.467 mM), the only source of 

soluble reduced nitrogen in LOD media [51] making this a nitrogen-limited growth condition.  C. bescii 

actively grows for only 10-12 hours when grown in this condition (Figure 15a).  Both strains grew to 
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Figure 14.  Electromobility shift assay showing DNA binding by Rex is disrupted by NADH and is sensitive 

to NADH/NAD+ ratio across cofactor pool concentrations of 1µM to 100 µM. 
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similar turbidity under this growth condition, with the rex mutant exhibiting a lag phase about 5 hours 

longer than its parent strain (Figure 15).  Differences in fermentation product profile appear after active 

growth ceases (>36 hours, Figure 15b).  The rex knockout strain produced 54% more ethanol after 36 

hours of fermentation than its parent strain (Figure 15), accounting for a 0.16 mM difference in final 

ethanol concentration between the two strains.  The two strains produced similar amounts of acetate 

after 36 hours of fermentation.  The relative difference in the amount of ethanol produced in 

JWCB032Δrex relative to JWCB032 increased through 60 hours of fermentation.   

To investigate ethanol production differences between the two strains under nitrogen-limiting 

conditions, intracellular and extracellular metabolomic profiles were generated after 36 hours of 

fermentation, when differences in ethanol concentrations were previously observed to be prominent 

(Figure 15).  Succinate and 2-oxoglutarate, two TCA cycle metabolites, show a shift in TCA cycle carbon 

flux toward succinate production in JWCB032Δrex.  Lactate, glycerol/glycerol-3P, ethanol, 

hexadecanoate, and many amino acids concentrations were increased after 36 hours of fermentation in 

JWCB032Δrex, particularly in the exometabolome.  Mesaconate and citramalate were found in greater 

abundance in JWCB032Δrex.  Oxalomalate was found to be less abundant in, both in the pellet and the 

supernatant.  Cystine was found in decreased abundance in JWCB032Δrex, both intracellularly and in the 

supernatant. 

Discussion 

Expanding the Rex Regulon in C. bescii 

The Rex regulon of the close C. bescii relative, Caldicellulosiruptor saccharolyticus, has been curated in 

the RegPrecise database [207].  RegPrecise predicts six Rex binding sites in C. saccharolyticus.  Two of 

these sites are located upstream of adhA genes (Csac_0622 and Csac_0407) of which C. bescii does not 

have a homolog of.  Homologs of the remaining four predicted Rex operator sites predicted in C. 
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saccharolyticus were found on the C. bescii genome (table 7).  A study of gene expression in C. 

saccharolyticus under hydrogen sparging [50] found evidence to extend the putative Rex regulon of C. 

saccharolyticus beyond those genes predicted in RegPrecise.  Our study validates  Rex regulatory control 

of these previously predicted regulon members, as well as novel members of the Rex regulon not 

previously predicted; the HydG hydrogenase maturation factor collocated in a putative operon with a 

CopG family transcription factor, the ‘XOR’ gene [214], an unannotated highly expressed oxidoreductase 

gene, and a class V aminotransferase. 

HydG is responsible for synthesizing a di-iron precursor to the H-cluster active site of the FeFe 

hydrogenase [217].  As the presence or absence of HydG protein can effectively regulate assembly of 

functional FeFe hydrogenase by modulating correct active site assembly [31], and the FeFe hydrogenase 

is a main hydrogen generation route in C. bescii [39], its regulation by Rex is consistent and expected.  

The regulon of this CopG transcription factor remains unknown and unpredicted.   

Rex regulation of the ‘XOR’ gene is also to be expected given its presumed importance to redox 

metabolism in C. bescii [214].  While Rex is only known to sense the redox potential of the NADH/NAD+ 

redox couple within the cell, it regulates redox metabolic reactions whose cofactors stretch beyond just 

this couple, exemplified in C. bescii by Rex regulation of the ferredoxin-dependent NiFe membrane 

bound hydrogenase (Figure 11) and of a likely ferredoxin-dependent pyruvate:ferredoxin 

oxidoreductase (Figure 12).  While the specific function of this gene remains unknown, its relatively high 

expression level, unique reliance on tungsten, and coordinated expression with tungsten assimilation 

genes and a ferredoxin suggest its importance to redox metabolism in C. bescii.   

Rex regulatory control of a class V aminotransferase in C. bescii is not well understood.  A serine-

pyruvate aminotransferase was identified as part of the Rex regulon of five genomes from 

Thermotogales, constituting an NADH-dependent step of a serine utilization pathway [43].  This Rex 
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regulated class V aminotransferase in C. bescii is annotated as an alanine-glyoxylate aminotransferase 

and no reference is given to its redox dependence.  This gene is also collocated in a putative 

transcriptional unit with an NADH dependent 3-phosphoglycerate dehydrogenase, also a biochemical 

step in serine biosynthesis.   

Ethanol-producing rex-deficient C. bescii produces more ethanol under nitrogen limiting conditions which 

extends fermentation 

A rex deletion strain was generated using C. bescii strain JWCB032 [16] as the parent to investigate the 

effect Rex may have on ethanol production and overall redox metabolism.  Differences in ethanol 

synthesis were observed when the cells were grown in nitrogen limiting conditions (Figure 15), though 

not in replete media, and only after 24 hours of fermentation.   Under replete conditions, the pH of 

batch cultures of C. bescii drop to ~4.5 from an initial pH of 7.2 (data not shown) due mainly to the 

production of acetic acid.  Growth and fermentation are not observed at or below these pH values.  

Growing the cells in nitrogen limiting conditions restricts active growth, the total amount of cell biomass 

synthesized, and acts to limit the total amount of acetate that is generated, allowing fermentation to 

continue long after active growth has ceased.  A shift was observed in whole-cell redox state in C. 

saccharolyticus as it entered stationary phase, as indicated by an increase in lactate production and 

lower response when harvested cells were subjected to a poised amperometric cell [218].  This indicates 

redox mediated end-product shifting is occurring as cells enter stationary phase, likely favorable 

conditions for ethanol production as the exogenous AdhE of JWCB032 and native lactate dehydrogenase 

both rely on NADH to generate their respective products.  C. cellulolyticum grown in nitrogen limited 

chemostat culture similarly showed an increase in fermentative flux toward ethanol as dilution rates 

increased [219].    Ethanol generation by heterologously expressed AdhE protein expressed in strain 
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Figure 11.  Electromobility shift assays and genomic orientations of Rex binding sites upstream of 

hydrogenase genes in C. bescii.  Rex represses FeFe hydrogenase structural genes and hydG, a maturase 

necessary for active site assembly in FeFe hydrogenases.  Rex represses expression of NiFe hydrogenase 

structural genes. Rex also auto-regulates itself.  Genomic arrangement of hyd and ech genes inferred 

from homology to putative transcriptional units identified in C. saccharolyticus [198] and predicted 

transcriptional units identified using the DOOR prokaryote operon database [216].  Hyd subunit 

assembly scheme adapted from [217]. 
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Figure 12.  Electromobility shift assays of binding sites upstream of central glycolytic genes.  Rex 

represses expression of ferredoxin-dependent pyruvate/ketoisovalerate oxidoreductase (Solid red line).  

Rex transcriptional control of pyruvate carboxyltransferase (ATHE_RS11210, also annotated as 

oxaloacetate decarboxylase), though remains doubtful because of the relatively high Kd observed in vitro 

(dashed red line).   
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Figure 13.  Electromobility shift assays of other predicted Rex binding sites whose role in redox 

metabolism, and C. bescii metabolism in general, is not well understood.  Rex regulates expression of 

ATHE_RS10860, a class V aminotransferase as well as ATHE_RS04720, annotated as a hypothetical 

protein.  
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Figure 15.  (a) Growth of ethanol producing JWCB032 and JWCB032Δrex conducted in media containing 

1/10th of typical concentration of ammonia.  (b) Acetate and (c) ethanol produced by strains 

JWCB032Δrex and JWCB032 showing a shift away from acetate and toward ethanol production after 36 

hours of fermentation.  Error bars represent one standard deviation of two culture replicates.   
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JWCB032 has been shown to be dependent on redox conditions in the native host.  Perturbing redox 

metabolism in C. thermocellum, the native host of this AdhE enzyme, either through genetic 

modification or altering growth conditions, has predictably resulted in altered levels of the formation of 

ethanol and other reduced fermentation products [30, 31, 52, 121].  It is likely this AdhE enzyme is 

similarly sensitive to redox conditions when expressed in C. bescii. 

Another possible explanation for elevated levels of ethanol in JWCB032Δrex under nitrogen limitation 

would be an interaction between the rex regulator and nitrogen metabolism in C. bescii, which could be 

augmented in the JWCB032Δrex strain deficient in this regulator.  Metabolic and expression coupling 

between nitrogen metabolism and ethanol production has been studied in mutant strains of C. 

thermocellum [36], though no regulatory link involving Rex was found.  No known link between nitrogen 

metabolism and ethanol production involving Rex in C. bescii is known to exist either. 

To investigate why JWCB032Δrex produced more ethanol than its parent strain, intracellular and 

extracellular metabolomics was conducted on this strain and its parent, JWCB032.  Most metabolites 

found in increased abundance in strain JWCB032Δrex require reduction reactions (with reductant being 

provided by NADH and NADPH in most cases) for their synthesis.  Apart from the glycerol and glycerol-

3P, inferred metabolic pathways [220] responsible for the synthesis of metabolites found in differential 

abundance originate at the  pyruvate metabolic pathway node (Figure 16).  The accumulation of 

pyruvate and the reduction of intracellular redox pools may support the synthesis of overflow 

metabolites.  

Redox Buffer Systems 

Increased concentrations of components of two known redox buffer systems were observed in 

JWCB032Δrex cells; the cysteine-cystine couple [221] and the 2-oxoglutarate-glutamate couple [222, 

223].  The reactions of both couples involve the interchange of one molecule of NAD(P)(H) and 2 
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electrons.  The oxidized component of each couple was found in decreased concentration in 

JWCB032Δrex, suggesting that these redox buffer systems are responding to more reduced redox 

conditions relative to those of strain JWCB032 by reducing the pools of these molecules.  Cysteine is 

known to be one of the most oxidizing cellular redox buffer system [221].  Free cysteine has been shown 

to reduce iron in E. coli, generating hydroxyl radicals and causing DNA damage [224].  This is thought to 

be an evolutionary reason intracellular free cysteine levels are kept low in cells.  Components of other 

cellular redox buffer systems were not detected in our metabolomic study of JWCB032 and 

JWCB032Δrex.  C. bescii redox conditions may be more readily augmented using the cysteine/cystine 

system rather than other redox buffering systems.  

Differentially Abundant Metabolites in JWCB032Δrex 

Metabolites involved in glycerol metabolism, biosynthesis of the fatty acid hexadecanoate, five amino 

acids (isoleucine, phenylalanine, alanine, valine and leucine), TCA cycle metabolites, ethanol and acetate 

were found in increased abundance in JWCB032Δrex.  As the genes responsible for biosynthesis of these 

metabolites were not differentially expressed in strain JWCB005Δrex, we hypothesize that these 

differences result from metabolite-driven flux.  The metabolites glycerate, glycerol, and glycerol 3-

phosphate were found in relatively increased abundance in strain JWCB032Δrex, and two reactions  

involved in the synthesis of these metabolites (glyceraldehyde dehydrogenase and glycerol 

dehydrogenase) are redox dependent.  There are no genes annotated in the C. bescii KEGG database 

entry [220] that encode catalytic enzymes for these reactions, nor are there any genes annotated with 

these functions in the recently re-annotated RefSeq annotations for the C. bescii DSM 6725 genome, 

though the presence of these molecules indicates these functions must be present in vivo in C. bescii.  It 

is worth noting that C. bescii cannot grow in media containing glycerol as a sole source of carbon [14].  

Increased abundance of amino acids, particularly branched chain amino acids, was also observed as 
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Figure 16:  Differential metabolomic comparison of JWCB032Δrex and its parent strain JWCB032. 

Metabolites indicate a metabolic shift toward reductive metabolic reactions in JWCB032Δrex, indicative 

of more reduced intracellular redox status and possibly being driven by the accumulation of pyruvate.  

Solid lines indicate reactions annotated in KEGG for C. bescii, while dashed black lines indicate reactions 

not annotated in the C. bescii KEGG database entry.  Metabolites labeled in green were either not 

detected or their fold-change differences were not statistically significant.  Red colored metabolites 

showed significant decreased metabolites levels in JWCB032Δrex (relative to its parent strain JWCB032) 

while black colored metabolites showed significantly increased metabolite levels.  Black numbers 

indicate values that were found to be statistically significant, while blue numbers are not statistically 

significant.  Significance was determined as p-value < 0.05 from a two-tailed students t-test (n = 4, equal 

variance assumed).  Twelve replicate cultures were collected, and material from three cultures were 

combined to make one analytical replicate and four replicates per strain.  Pellets and supernatants of 

four analytical replicates of each strain were thus analyzed, separately. 
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products of overflow metabolism of C. thermocellum [225, 226] in response to genetically induced redox 

perturbations and increased substrate loading.  Metabolic flux of the TCA cycle and associated reactions 

was also redistributed toward reductive reactions, resulting in increased supernatant concentrations of 

succinate and glutamate and decreased supernatant and intracellular concentrations of oxalomalate 

and 2-oxoglutarate.  Succinate production was increased 60% in E. coli by altering redox metabolism 

[227], highlighting the importance intracellular redox can have on the synthesis of succinate and TCA 

cycle flux.  

According to the KEGG functional annotation [220] of the C. bescii genome, metabolites whose synthesis 

do not require redox reactions in reaction steps unique to their synthesis are mesaconate, citramalate, 

oxalomalate and acetate.  Acetate and oxalomalate are competing pathways to metabolites whose 

synthesis pathways do depend on redox reactions, and the relatively decreased amount of these 

metabolites may be due to redox-driven flux through these competing pathways.  Mesaconate can be 

synthesized from pyruvate or glutamate.  Citramalate and mesaconate production are sequential 

metabolic steps, and because citramalate is also found in increased abundance, mesaconate is likely 

synthesized from pyruvate rather than from glutamate.  KEGG does not annotate/assign genes for 

mesaconate synthesis from pyruvate or glutamate in C. bescii, though the most recent RefSeq 

annotation of the C. bescii DSM 6725 genome does contain an annotation for a gene encoding a 

citramalate synthase (ATHE_RS02505).  No gene encoding a mesaconate hydratase, the enzyme 

synthesizing mesaconate from citramalate, could be identified.  Neither of the two genes necessary for 

mesaconate synthesis from glutamate are annotated and protein BLAST homology searches for 

methylaspartate ammonia-lyase from E. coli and Aspergillus oryzae returned no genes with significant 

similarity.  This further suggests mesaconate is being generated from citramalate as an intermediate and 

as an overflow metabolism product resulting from the accumulation of pyruvate.  
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Intracellular Redox Conditions and Pyruvate Accumulation Possibly Driving Metabolite Differences 

Many reactions synthesizing differentially abundant metabolites are [NADH]/[NAD+] dependent, and the 

observation of cellular redox buffer systems being active, further supports the hypothesis that 

metabolite differences observed in JWCB032Δrex stem, in part, from redox-driven flux differences.  

Redox-driven overflow metabolism is observed in two other CBP organisms, Clostridium thermocellum 

[225] and Clostridium cellulolyticum [228].  Excess free amino acids are found in the supernatant of 

strains of C. thermocellum whose redox metabolism has been perturbed [225], and strains of C. 

cellulolyticum grown at high dilution rates [228].  Upon being challenged with these increased reductive 

loads, pyruvate is found in the supernatant of both species and both species synthesize lactate [225, 

228].  C. cellulolyticum also shunts carbon at an earlier glycolytic node (Glucose 1-phosphate  Glucose 

6-phosphate) toward glycogen and exopolysaccharide synthesis in response to increasing substrate 

loads [229].  Pyruvate accumulation and subsequent overflow metabolism has been observed and 

studied in detail in C. thermocellum [38, 225, 230, 231].  Accumulation of formate and hydrogen in C. 

thermocellum collectively restrict the re-oxidation of ferredoxin and limit its availability for 

pyruvate:ferredoxin oxidoreductase-enabled conversion of pyruvate to acetyl-CoA, causing 

accumulation of pyruvate and pyruvate-derived overflow metabolism products [38, 225, 232].  C. 

cellulolyticum growth was shown to be inhibited by high concentrations of NADH, which inhibits 

glyceraldehyde 3-phosphate dehydrogenase activity and limits glycolytic flux [81].  Substantial overflow 

metabolism and increased ethanol synthesis was observed at relatively lower [NADH]/[NAD+] ratios in C. 

cellulolyticum [228], as to where strains of C. thermocellum demonstrating the most overflow 

metabolism and highest ethanol yields generally exhibit relatively higher [NADH]/[NAD+] ratios [233] 

suggesting [NADH]/[NAD+] ratio alone may not always determine flux directionality and flux toward 

overflow products.  Overflow metabolism may be similarly metabolite and/or redox driven in C. bescii, 
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though direct measurement of intracellular redox conditions and/or validated metabolic modeling 

would further qualify this hypothesis. 

Absence of Correlation Between the Rex Regulon, Differentially Expressed Genes and Differentially 

Abundant Metabolites 

Curiously, genes downstream of some Rex binding sites did not display significant differential 

expression, such as ATHE_RS08255 and ATHE_RS04125, among others. Our differential expression 

experiment and metabolomic experiments were conducted under different growth conditions, at 

different sampling points, and used different strains, the absence of overlap between differentially 

expressed genes and differentially abundant metabolites suggests genes which synthesize the observed 

differentially abundant metabolites are either regulated by other transcription factors, possibly in 

addition to Rex, or the metabolite differences found in strain JWCB032Δrex were the result of 

metabolite and/or redox driven flux.  Of particular interest in this regard is the increased abundance of 

pyruvate observed in JWCB032Δrex and verification of Rex expression control of genes encoding the 

pyruvate:ferredoxin oxidoreductase (Figure 12).  One would expect de-repression of these genes 

(through deletion of the rex gene) to increase expression of this enzyme and more effectively convert 

pyruvate, though the opposite is observed in increased intracellular pyruvate accumulation, further 

suggesting metabolic differences observed are redox and metabolite driven. 

Conclusions 

In studying the rex gene in Caldicellulosiruptor bescii, we have found novel members of the Rex regulon 

not previously described.  These include the ‘XOR’ gene [214], a vaguely annotated oxidoreductase gene 

that is highly expressed in C. bescii, a class V aminotransferase (ATHE_RS10680), a hypothetical protein 

(ATHE_RS04720), and the hydG gene contained in a putative transcriptional unit along with a  CopG 

family transcription factor.  The functional contribution of these genes to redox homeostasis, the 
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primary function of the Rex protein, remains unknonwn.  A rex deletion mutant strain heterologously 

expressing a bifunctional alcohol dehydrogenase gene produced 54% more ethanol (a 0.16 mM increase 

in final titer) when fermentation continued for 36 hours (while limited for nitrogen).  Metabolomic 

profiling shows differential abundance of reduced products and the shift of two known redox buffering 

systems toward their reduced counterparts, suggesting the elimination of the rex gene leads to a more 

reduced intracellular redox environment in stationary phase that in turn drives increased production of 

ethanol and other overflow metabolites.   

Methods 

Batch Growth and Fermentation 

Caldicellulosiruptor bescii was grown in 50 mL culture volumes in sealed 135 mL serum bottles.  The 

medium was comprised of components as described previously [51], with maltose being used as the 

primary carbon source, and ammonium chloride as the primary nitrogen source.  Media were prepared, 

adjusted to pH of 6.8, and allowed to become anaerobic overnight through dissolved oxygen exchange 

in an anaerobic chamber containing an environment of 5% H2, 10% CO2 and the balance N2.  Cultures 

were grown at 75oC shaking at 200 rpm.  Samples for cell growth were collected as 1 mL aliquots and 

measured for absorbance at OD680. Nitrogen limited batch growth was conducted as outlined above with 

the only difference being the final concentration of ammonium chloride (the only source of reduced 

nitrogen in LOD media) of 0.467 mM rather than 4.67 mM as in standard LOD media.   

pH Controlled Fermentation 

Cells were cultured in 3L Applikon Ez-Control fermenters (Applikon Biotechnology, Delft, Netherlands) in 

a working culture volume of 1.5 L at a growth temperature of 75oC.  Maltose, resazurin and an 

appropriate volume of water were added to assembled fermenters and autoclaved.  Fermenters were 

cooled while sparging with N2 gas.  Upon cooling, other media components were added as pre-sterilized 
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stock solutions.  The media was again heated and sparged with N2 gas to ensure anaerobic conditions.  

Upon reaching 75oC, the pH was adjusted to 7.1 by sparging with an 80%/20% N2/CO2 gas mix.  The pH 

was then aseptically checked using a second probe which had been calibrated with fresh pH buffers 

maintained at 75oC.  Any differences were accounted for as the pH probe offset.  Fermenters were 

inoculated to equivalent OD680 of 0.01-0.05 with batch grown cultures grown to mid-log phase.  Stirring 

was maintained at 200 rpm without gas being sparged during growth, though the headspace outlet line 

was kept open to allow fermentation off-gasses to vent through a sterilized water trap.  

Fermentation Product Analysis 

Samples were collected from batch serum bottles or fermenters as 1 mL aliquots and centrifuged at 

maximum speed in a microcentrifuge for five minutes, followed by collecting and filtering (0.22µm) the 

supernatant.  250 µL of filtered supernatant was added to 1.75 uL of 2M H2SO4 and 20 µL of this mixture 

was injected onto a Biorad Aminex 87H column operated on a Hitachi LaChrom Ultra HPLC system 

(Hitachi High Technologies America, Dallas, TX).  Chromatograms were collected on a Hitachi RI detector 

(part number L-2490).  

Mutant Construction 

C. bescii rex deletion mutants were constructed as described previously [234].  Strains generated for this 

study, necessary oligonucleotides, and plasmids used for strain generation are listed in table 8.  Briefly, 

an integrating suicide vector was prepared containing 1000 bp of homology overlap to genomic 

sequence immediately 5’ and 3’ of the rex (ATHE_RS03255) coding sequence (Figure A6a).  Plasmids 

were transformed into the respective genetic background, either strain JWCB005 [54] or strain JWCB032 

[16], and transformants selected in LOD media containing no uracil to enforce prototrophic growth and 

plasmid integration.  These cultures were subsequently plated on LOD media containing 40 uM uracil (to 

allow for a return to strain auxotrophy) and 6 mM 5-fluororotic acid (Oakwood Products Inc., Estill, 
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South Carolina) to screen and select for the double homologous recombination event.  Deletions were 

confirmed by PCR (Figure A6b) and Sanger sequencing of the rex gene genomic locus.  

RNA-seq Analysis 

Samples were collected from fermenter-grown cultures of JWCB005Δrex and its parent strain JWCB005 

at early, mid and late log phase (Figure A7a).  25 mL culture aliquots were harvested, centrifuged at 

20,000 x g in a Piramoon fixed angle FiberLite rotor (ThermoScientific, Waltham, MA) for 4 minutes at 

4oC, decanted, snap frozen in liquid nitrogen and stored at -80oC. Total RNA was extracted by first 

incubating cell pellets in 250 µL of 20 mg/mL Lysozyme (Sigma Aldrich part number L-7651, St. Louis, 

MO) resuspended in SET buffer (50 mM Tris-HCl pH 8.0 50 mM EDTA, 20% w/v Sucrose) and incubated 

in a dry stationary bath at 37oC for eight minutes, vortexing briefly every two minutes.  RNA was purified 

with a Qiagen RNEasy Kit according to manufacturer’s protocol (Qiagen, Hilden, Germany).  RNA 

concentration was quantified with a Nanodrop 1000 instrument (ThermoScientific, Waltham, MA) and 

RNA quality was assessed via RNA Integrity Numbers (RIN) obtained with an Agilent 2100 Bioanalyzer 

and corresponding RNAchip (Agilent Technologies, Santa Clara, CA).  Ribosomal RNA was then depleted 

from total RNA samples with a RiboZero rRNA Removal Kit (Illumina Inc. San Diego, CA) following 

manufacturer’s instructions.  Next, cDNA was synthesized from RNA depleted of ribosomal RNA with a 

TruSeq Stranded mRNA Library Preparation Kit (Illumina Inc. San Diego, CA) following the manufacturers 

protocol.  cDNA libraries were sequenced on an Illumina Hi-seq 2500 using v4 chemistry (Illumina Inc. 

San Diego, CA) and de-multiplexed as a sequencing service provided by The Genomic Services Lab at 

HudsonAlpha Institute for Biotechnology (HudsonAlpha, Huntsville, AL).  Each sample library was 

sequenced on two different sequencing lanes and reads containing identical barcodes from each lane 

were combined for subsequent analysis.  Reads obtained were scored for quality, trimmed, mapped, 

and the mapped reads counted with the corresponding functions in the CLC Genomics Workbench 
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Table 8.  Primers, plasmids, and C. bescii strains generated and/or used in this study. 

Primer Name Sequence 

pDCW88 gib assy backbone fwd gtgcactctgacgctc 

pDCW88 gib assy backbone rev ggtaccaccagcctaac 

pDCW88_athe_0654_up_fwd tccaatgatcgaagttaggctggtggtaccatatcttcaattttgtccacagcag 

pDCW88_athe_0654_up_rev ttacataacgcattcatttcacctcaagtccttttctcccccttatcttcttttg 

pDCW88_athe_0654_down_fwd gacttgaggtgaaatgaatgc 

pDCW88_athe_0654_down_rev gttttcgttccactgagcgtcagagtgcacaacctttctaaattacttgcaacaag 

upstm 5' flank fwd athe_0654_P3 agaatattgaagcgccgaac 

dnstm 3' flank rev athe_0654_P3 gtggaaaaatcaccccagaa 

internal fwd athe_0654_P3 gggtttggtcagcaaggata 

internal rev athe_0654_P3 acccttaatcccaccttcaa 

3' flank rev seq athe_0654_P3 tttgcaagatttgcgtaaga 

Plasmid Description Reference 

pETE01 
Non-replicating suicide vector used to generate strains JWCB005Δrex 
and JWCB032Δrex 

This study 

pTXB1::rex 
IPTG-inducible expression vector used to express recombinant Rex 
protein in E. coli T7 Express 

This study 

Strains Description Genotype Reference 

JWCB005 
Genetic background strain used to generate 
JWCB005Δrex, wildtype ldh locus ΔpyrFA (ura

-
/5-FOA

R
) [36] 

JWCB005 
Δrex 

Markerless rex deletion using strain 
JWCB005 as genetic parent 

ΔpyrFA Δrex (ura
-
/5-

FOA
R
) 

This study 

JWCB032 

Genetic background strain used to generate 
JWCB032Δrex, ldh locus disrupted by 
ISCbe4, expressing genomically integrated 
bifunctional alcohol dehydrogenase (AdhE) 
from C. thermocellum 

ΔpyrFA ldh::ISCbe4 
ΔcbeI::Ps-layer Cthe-

adhE (ura
-/5-FOA

R
) 

[4] 

JWCB032 
Δrex 

Markerless rex deletion using strain 
JWCB032 as genetic parent 

ΔpyrFA Δrex ldh::ISCbe4 
ΔcbeI::Ps-layer Cthe-

adhE (ura
-
/5-FOA

R
) 

This study 
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version 8 using default settings for genome analysis of prokaryotes.  Raw read counts for each coding 

sequence were used as input for differential expression analysis using the DEseq2 [235] package as part 

of the Bioconductor Suite in R.  Genes were considered differentially expressed if they displayed 

differential normalized log2-transformed read count abundance >0.5 or <-0.5 with a Benjamini-Hochburg 

adjusted p-value <0.05.  

Metabolomic Profiling  

Differential metabolomic profiling was conducted on strains JWCB032Δrex and JWCB032 collected after 

36 hours of batch serum-bottle growth in 50 mL culture volume of nitrogen limiting media, as described 

above.  50 mL replicates were collected, centrifuged and snap frozen as described in the sample 

collection section of RNA-seq analysis.  Additionally, following centrifugation, the supernatants were 

aliquoted separately, snap frozen and stored at -80oC for metabolomic analysis.  Cell biomass was 

pooled from three 50 mL cultures to make one replicate for intracellular metabolite analysis, as was 

needed to attain sufficient signal intensity.  Cell pellets and supernatants were analyzed for intracellular 

and extracellular metabolites, respectively, as described previously [225]. 

Transcription Factor Binding Site Prediction 

The consensus Rex binding sequence identified in C. saccharolyticus [50] was used to seed a search 

genomic regions 300 bp upstream of every coding DNA sequence in the C. bescii genome.  Binding sites 

were identified and scored based on similarity to this consensus binding site, yielding 63 total putative 

Rex binding sites across the C. bescii genome (Table A2).  Homology scores for these sites ranged from 

8.75 (least homologous) to 10.5 (most homologous). 

Rex Protein Purification 

Rex protein was purified by first expressing the C. bescii rex coding sequence on plasmid pTXB1 (New 

England Biolabs part number N6707S, Ipswitch, MA) upstream of the gyrase intein and chitin binding 
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domain (CBD), yielding plasmid pTXB1::rex (Table 8).  This plasmid was transformed into T7 Express E. 

coli cells (New England Biolabs, Ipswitch, MA).  Cells were grown, induced and harvested according to 

manufacturer’s suggested instructions.  Recombinant Rex (rRex) protein was purified from induced cell 

biomass according to protocols supplied with the IMPACT protein purification kit (New England Biolabs, 

Ipswitch, MA). 

Electromobility Shift Assays 

Electromobility shift assays were carried out to test Rex binding to predicted operator sites listed in 

table 7.  Probes used were biotin-labeled 50-mers of double stranded DNA consisting of the 18 bp 

putative binding site centered on the probe and surrounding genomic sequence on either side to make 

50 bp.  Probes were ordered as complimentary oligonucleotides, with one oligonucleotide biotin labeled 

(Integrated DNA Technologies, Coralville, IA).  All probes were annealed in a mixture containing 3 µL of 

100 µM of each oligonucleotide, 3 µL of 10X polynucleotide kinase buffer (Roche part number 

12579400, Roche Holding AG, Basel, Switzerland), 3 µL of 0.5 M NaCl, 18 µL of DEPC treated H20.  

Mixtures were heated at 96oC for 5 minutes in a Fisher Scientific Isotemp Stationary Bath 

(ThermoScientific, Waltham, MA) after which the heat block was removed from the bath and placed on 

a lab bench for 60 minutes to cool slowly.  Probes were then purified using a Qiagen PCR clean-up kit 

(Qiagen, Hilden, Germany) according to manufacturer’s instructions.  

Electromobility shift assay reactions were conducted in 20 µL volumes and the following components 

were added in the following order: 1X EMSA binding buffer (LightShift Chemiluminescent EMSA Kit part 

number 20148, ThermoScientific, Waltham, MA), 25 ug dI-dC, recombinant Rex protein in various 

concentrations noted on figures, and 0.1 nM biotin-labeled 50 bp dsDNA probes.  In reactions containing 

NADH or NAD+, these components were added from freshly prepared stocks kept on ice prior to adding 

recombinant Rex protein but after adding other components.  Reactions were incubated for 30 minutes 
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at room temperature after which 5 µL of EMSA loading buffer containing 15% w/v Ficoll (Sigma Aldrich, 

St. Louis, MO) and 0.4 % w/v Orange G (Sigma Aldrich, St. Louis, MO) was added to each reaction.  20 µL 

of the reaction mixture containing loading buffer was loaded onto a Novex 6% DNA Retardation Gel 

(Invitrogen # EC63652BOX, Life Technologies Corporation, Carlsbad, CA) and run in 0.5X TBE (Invitrogen 

# LC6675, Life Technologies Corporation, Carlsbad, CA) in an Invitrogen Novex Mini-Cell X Cell SureLock 

(Life Technologies Corporation, Carlsbad, CA) at 90 V for 45 minutes, or until Orange G from gel loading 

buffer had run ¾ of the length of the gel.  After electrophoresis products were transferred onto Biodyne 

B Pre-Cut Modified Nylon 0.45 µm Membranes (Product # 77016 ThermoScientific Rockford, IL) using 

the Invitrogen X Cell Blot Module (catalog # EI9051) and Invitrogen Novex Mini-Cell X Cell SureLock (Life 

Technologies Corporation, Carlsbad, CA).  Transfers were carried out in 0.5X TBE at 450 mA for 45 

minutes, with the surrounding outer minicell volume packed with ice and filled with water to cool the 

blot module. Biotin labeled probes were detected on transfer membranes using the ThermoScientific 

Chemiluminescent Nucleic Acid Detection Module Kit (part number 89880, ThermoScientific, Rockford, 

IL) according to manufacturer’s instructions. 

Accession Numbers  

Raw reads, processed data and experiment metadata were submitted to the NCBI Gene Expression 

Omnibus (GEO) under accession number GSE102041 and can be queried at the following URL: 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi (also see attachment 2) 
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Chapter 5: Understanding and Improving Osmotolerance in 

Caldicellulosiruptor bescii Through Metabolic Engineering of Selected 

Transcription Factors  
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In this final work of this thesis, we endeavor to effect performance through characterization and 

metabolic engineering of regulatory machinery — this time to affect the very complex trait of osmolarity 

resistance.  This differs substantially from the third chapter because the cellular subsystems that are 

typically involved in survival under high osmolarity conditions are far more complex and numerous than 

those involved in ethanol fermentation.  Furthermore, redox systems in C. bescii were largely either 

predicted previously, or could be confidently predicted from binding site assessments.  Few of the 

systems which are responsible for survival under elevated osmolarity have been characterized in C. 

bescii.  Therefore, neither the mechanisms that are responsible for C. bescii’s relative sensitivity to 

osmolarity, nor the cellular mechanisms we are augmenting allowing for greater resistance to elevated 

osmolarity, were known before undertaking this work.  Through this work, we show that engineering of 

regulatory machinery can best effect changes in systems with little to no a priori characterization.  These 

strategies typically also require very few genetic modifications, but generate expression differences 

across the genome leading to desired phenotypes. 

Kyle Sander formulated hypotheses to be tested, designed and conducted experiments, collected 

samples and data, analyzed and interpreted data, and drafted the manuscript.  Daehwan Chung and 

Janet Westpheling assisted in generating strains needed for experiments.  Dawn Klingeman led efforts to 

generate and sequence RNAseq libraries from collected samples.  Miguel Rodriguez Jr. quantified 

fermentation products in samples.  Jason Whitham led efforts to process raw RNAseq reads, quality 

check sequencing reads, trim, map, and count mapped reads, as well as helped to draft and edit the 

manuscript.  Steven D. Brown and Brian H. Davison assisted in formulating hypotheses, designing 

experiments, interpreting data, and editing the manuscript. 
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Abstract 

Through phenotype screening of 10 single-gene deletion mutants of regulatory genes in C. bescii, two 

genes important to growth in elevated osmolarities were identified.   The first was the FapR fatty acid 

biosynthesis and malonyl-CoA metabolism repressor, which showed a more severe growth defect than 

its genetic parent strain when grown in high-osmolarity conditions introduced through the addition of 

ethanol, NaCl, glycerol, or glucose to growth media.  The second was a single-gene deletion of the 

FruR/Cra carbon metabolism regulator, which conversely displayed a growth rate over three times 

higher than its genetic parent when grown in high-osmolarity media containing NaCl.  Similar growth 

improvements were seen over the genetic parent strain in elevated levels of added ethanol, glycerol, or 

glucose as well. RNAseq analysis of mutant and parent strains, along previous predictions, were used to 

characterize the C. bescii FapR and FruR/Cra regulons.  We find evidence of both local repression and 

novel global gene regulation by the FruR/Cra protein in C. bescii, though we are unable to determine if 

global gene expression differences are due directly or indirectly to the FruR/Cra protein.  Genes 

exhibiting differential expression in a single-gene deletion of the fapR/cra gene include fructose 

metabolism genes collocated with the regulator, a transposase, sigma factor E, sigma factor G, two 

hypothetical proteins and a vaguely annotated oxidoreductase.  We endeavored to generate a highly 

osmotolerant strain of C. bescii through overexpressing the FapR protein in a genetic background 

deficient of the fapR/cra gene, hypothesizing that such a strain will combine beneficial alterations of 

both phenotypes and result in a highly osmotolerant strain of C. bescii.  This overexpression experiment 

is still in progress. 
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Introduction 

Consolidated bioprocessing (CBP) is projected to be among the least expensive [236] processes being 

developed for the synthesis of ethanol from biomass.  Critical to an effectve and economically viable 

CBP process is a biocatalyst organism capable of basal yield, productivity, and final titer metrics required 

by such a process [237, 238].  Currently no such organism exists and active efforts to engineer such an 

organism are underway.  Each biocatalyst being engineered suffers from its own inherent limitations 

[12, 35, 239].  Caldicellulosiruptor bescii, a promising lignocellulolytic hyperthermophilic candidate CBP 

biocatalyst, is exceedingly sensitive to elevated osmolarities, showing pronounced growth defects at a 

fraction of the projected final osmolarities of CBP fermentations (>1000 mOsm/L) [12, 51, 56].  A large 

increase in the osmotolerance will be needed if C. bescii is to be used as a CBP biocatalyst. 

Osmolarity stress in bacteria, in the context of bioprocessing, is typically brought about by elevated 

osmolarity in the extracellular environment exceeding that of the intracellular environment, causing 

intracellular influx of solutes and efflux of water.  This decreases water activity inside of the cell and 

increases the intracellular concentration of potentially inhibitory solutes.  Changes in growth 

environment osmolarity has also been shown to effect a number of other cellular behaviors and 

phenotypes, such as attachment [240], which metabolically interact with other cellular stress response 

systems, through pleiotropic regulators, such as carbon catabolite repression [241] and the expression 

of sigma factors [242].   

Resistance to elevated osmolarity in bacteria is generally enabled through any of, or a combination of, 

many physiological responses.  First, bacteria actively regulate their intracellular ionic environment to 

counter the charge-dissipating effect of ion intrusion into the cell toward maintaining cellular membrane 

potential [243].  Active transport processes often require chemical energy, and concomitantly ATP 

generating processes will be activated to supply ATP needed for active ion extrusion [244].  ATP 
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generation during osmostress has been detailed in Synechosystsis sp. PCC6803, where ATP generation is 

coupled to photosynthesis [245].   

Some bacteria are also known to synthesize metabolites, such as trehalose or glutamate, which remain 

in the cellular cytoplasm to increase intracellular osmolarity and bring it closer to that of the 

environment outside the cell [243].  These synthesized counter-osmolytes typically do not interfere with 

cellular processes, and can also act as chaperones and promote correct protein folding and function 

[246].   

Lastly, bacteria will adjust the fatty acid composition of their cell membranes, to increase membrane 

fluidity and decrease chemical permeability, making cells less susceptible to the physical effects of 

osmotic pressure [247].  An increase in anionic membrane lipids [248], and cardiolipin [249] typically 

accompanies an increase in extracellular osmolarity in bacteria and other cells.  This shift in membrane 

lipid distribution is found to be beneficial to the function of osmotically driven membrane transport 

proteins, as well as mechanosensitive membrane proteins, both important to survival in elevated 

osmolarities [243].  Biophysical modeling suggests membrane lipid differences in the chemical structure 

of membranes of osmo-stressed cells simultaneously promote increased membrane fluidity and stability 

[250].   

The response to osmotic stress, beyond observed effect on growth rate and product formation, has not 

been explicitly studied in the genus Caldicellulosiruptor, and it remains unclear which adaptation 

systems, if any, are utilized to counter the effects of elevated osmolarity.  The effects of osmolarity on 

growth and fermentation productivity were empirically modeled in the closely related species 

Caldicellulosiruptor saccharolyticus [251].  It was found that the effect of elevated osmolarity was 

secondary to that of the inhibitory effect of dissolved hydrogen during continuous growth at moderate 

dilution rate.  Hydrogen is able to super-saturate in this cultivation system [251], and the 
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Caldicellulosiruptor genus relies heavily on hydrogen production for ferredoxin turnover [252].  The 

growth conditions employed contained relatively low levels of dissolved osmolytes (e.g. 5 and 10 g/L 

initial glucose loading), and did not explicitly assess for osmotolerance across a broad range of 

osmolarities.  It was found that decreases in growth and product evolution become prominent at 0.2 

Osm/L, agreeing with an earlier finding that batch growth rates of C. saccharolyticus are reduced by 60% 

at 0.218 Osm/kg water [253].   

It was found that adding >80 mM of the biological buffer MOPS (3-(N-morpholino)propanesulfonic acid), 

reduced the growth rate substantially [56].  After alleviating the ammonia limitation, it was observed 

that actively growing cells are able to continue growth in 520 mOsm/L, and able to initiate log-phase 

growth in media with a starting osmolarity >550 mOsm/L (mostly from dissolved glucose) after an 

extended lag phase [12], indicating strong growth inhibition.  Interestingly, no growth was able to be 

initiated in spent media containing, among other osmolytes, 165 mM of organic acids produced during 

fermentation.  This disparity suggests C. bescii is differentially resistant to different osmolytes.  Ions 

capable of permeating, or being actively transported across, cell membranes are typically more cytotoxic 

than otherwise charge-neutral osmolytes, as they can disrupt and decrease membrane potential 

otherwise utilized to generate useful chemical potential energy for the cell [244]. 

A low osmolarity defined media was developed to alleviate the effects on growth present when C. bescii 

was grown in other growth medias [51] and this enabled the subsequent development of auxotrophy-

based genetics in the species [20].  The osmolarity of this LOD (Low Osmolarity – Defined) media was 

half of that of previous media compositions, made possible by eliminating yeast extract, and decreasing 

the concentrations of macronutrients, among other changes.  This resulted in better growth of C. bescii 

and a growth environment, whereby more osmolytes could be added before equivalent growth defects 

were observed [51].   
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Tolerance to osmolarity is a complex trait, as it involves the coordinated action of multiple cellular 

subsystems.  Engineering more complex traits is difficult and cumbersome when modifying components 

of each system involved separately.  Also, as effects of genetic modifications can be unpredictable, doing 

many successive modifications on a single strain increases the chances of encountering unintended 

effects [33] and detrimental unknown gene interactions.  Success has been had engineering regulatory 

mechanisms of organisms, model and non-model alike, toward desired traits [254-256].  Modifying 

regulatory systems can potentially affect larger gene/metabolic space with fewer number of mutations 

than modifying enzymes.  For example, modifying one global regulator can effect expression of many 

different operons charged with many different functions in a coordinated fashion [211].  We propose 

engineering regulatory machinery of C. bescii to effect osmotolerance by characterizing and engineering 

two regulatory gene targets we show to affect osmotolerance in C. bescii.   

Results  

Growth Phenotypes of Single-Gene Deletion Strains of Two Regulatory Proteins 

Single-gene deletion strains of various regulatory genes were assessed for performance differences in 

CBP-related growth conditions (see methods).  Regulatory gene targets were selected from genes 

belonging to regulatory gene families, and displayed differential expression in either or both of two 

previous differential gene expression studies [50, 257].  Also considered in selection of gene targets was 

the genes which were collocated with candidate regulatory gene targets, and the hypothesized 

regulatory actions of candidate gene targets.  Single-gene deletion strains were generated for each of 

the 10 candidate regulatory genes (Table A5) and these strains, along with their genetic parent strains, 

were assayed in eight different CBP relevant growth conditions.  Growth conditions included growth 

various soluble and insoluble carbon sources, including unpretreated, washed switchgrass, xylan, 

crystalline cellulose, glucose, or xylose.  Other conditions represented stress conditions which can be 
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encountered during CBP; addition of methyl viologen to simulate a redox stress, added ethanol to 

simulate the stresses of fermentation product accumulation, and added NaCl to simulate the stress of 

elevated osmolarity.   

Across all conditions screened for growth and fermentation phenotypes (Figures A14-A21), we found 

two single-gene deletion strains which both displayed prominent growth phenotypes when assayed 

under various elevated osmolarity conditions (Figures 17-20).  When NaCl was added to growth media 

to make the total starting osmolarity 200 mOsm/L (calculated), strain JWCB005 ΔB5X54_RS01260 (Δcra) 

displayed an estimated growth rate of 0.4, while its genetic parent displayed a similarly estimated 

growth rate of 0.12 (Figure 20).  At a starting osmolarity of 400 mOsm/L (achieved by adding NaCl), 

strain JWCB005 ΔB5X54_RS01260 spent 15 hours in lag phase, while its genetic parent (JWCB005) spent 

47 hours (Figure 18).  Similar growth phenotypes, relative to the genetic parent strain, were observed in 

elevated osmolarity medias made with glycerol (Figure 17).  Across increasing concentrations of added 

NaCl, strain JWCB005 ΔB5X54_RS06355 displayed more severe growth defects than its genetic parent 

strain (JWCB005) (Figure 18).  Similar relative growth defects were observed when these strains were 

grown in LOD media containing 20 g/L added ethanol (Figure 19), when grown in 10 mL culture volumes 

in Balch tubes and 100% N2 headspace.  The relative growth differences exhibited by both strains in 

ethanol containing media could not be replicated in 50 mL cultures contained in 135 mL serum bottles 

and a headspace of 5% H2, 10% CO2, and 85% N2.  

Transcription Factor Binding Site Prediction 

Using the Virtual Footprint tool associated with the PRODORIC database [258], we searched the C. 

saccharolyticus genome for individual FruR binding sites predicted in Thermotoga [259].  These 
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Figure 17.  Growth phenotypes of strains ΔB5X54_RS01260 (Δcra) and ΔB5X54_RS06355 (ΔfapR) when 

grown in increasing amounts of added glycerol.  Glycerol was added to make total initial (calculated) 

media osmolarities of (a) 400 mOsm/L, (b) 500 mOsm/L, and (c) 600 mOsm/L.  Batch growth was 

conducted in 50 mL culture in 135 mL serum bottles with 5% H2/10% CO2/85% N2 as initial headspace.  

Strain JWCB005 is the genetic parent strain to both single gene deletion strains.  Across the osmolyte 

concentrations assayed, strain ΔB5X54_RS01260 exhibits shorter lag phases while strain 

ΔB5X54_RS06355 exhibits a longer lag phase and lower apparent growth rates. 
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Figure 18.  Growth phenotypes of strains ΔB5X54_RS01260 (Δcra) and ΔB5X54_RS06355 (ΔfapR) when 

grown in increasing amounts of added NaCl.  NaCl was added to make total initial (calculated) media 

osmolarities of (a) 200 mOsm/L, (b) 300 mOsm/L, and (c) 400 mOsm/L.  Batch growth was conducted in 

50 mL culture in 135 mL serum bottles with 5% H2/10% CO2/85% N2 as initial headspace.  Strain 

JWCB005 is the genetic parent strain to both single gene deletion strains.  Across the osmolyte 

concentrations assayed, strain ΔB5X54_RS01260 exhibits shorter lag phases and higher apparent growth 

rates, while strain ΔB5X54_RS06355 exhibits longer lag phases and a lower apparent growth rate in 400 

mOsm/L. 
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Figure 19.  Growth phenotypes of ΔB5X54_RS01260 (Δcra) and ΔB5X54_RS06355 (ΔfapR) when grown in 

liquid culture containing 20 g/L added ethanol.  These growth experiments were conducted in 10 mL 

volumes in Balch tubes containing N2 gas as initial headspace. 
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Figure 20.  Growth phenotypes of strain ΔB5X54_RS01260 (Δcra) and ΔB5X54_RS06355 (ΔfapR) when 

grown in liquid culture containing added NaCl to make calculated initial osmolarity of 200 mOsm/L.  

These growth experiments were conducted in 10 mL volumes in Balch tubes containing N2 gas as initial 

headspace.  Red line/markers indicate cultures grown containing no added NaCl. 
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searches did not find any putative binding sites.  Manual inspection of the Thermotoga FruR binding 

sites predicted in RegPrecise [259] suggests that these predicted sites are about twice the length of a 

typical transcription factor binding site (~18-20 bp).  These predicted sites may be two individual sites 

oriented adjacent to each other.  Splitting each site in half yielded four ‘half sites’ with the regular 

expression consensus sequence (A|G)TCATAA(A|T)NNNNNAT(A|C)ANN.  This consensus sequence is 

similar in length and conserved position sequence predicted for the FruR/Cra transcription factor in 

other organisms curated in the RegPrecise database [259] – particularly those genera in which 

consensus binding sites have been built using far more individual binding sites, such as Bacillus (17 

predicted sites) and Streptococcus (34 predicted sites).  The only putative site identified outside of 

coding regions when searching for this manually generated consensus sequence was a site located 46 bp 

immediately upstream of the the fruR/cra gene itself, presumably indicating the local negative 

regulation of itself and other collocated genes contained in the same putative transcriptional unit.  

Similarly, we were able to identify FapR binding sites in the C. bescii JWCB005 genome that are 

homologous to previously predicted FapR binding sites in C. saccharolyticus [50]; upstream of 

B5X54_RS06355 (a putative fatty acid biosynthesis transcription unit) and B5X54_RS07175 (a putative 

malonyl-CoA biosynthesis transcription unit).   

Direct and Indirect Regulatory Actions of FapR and Cra in C. bescii  

Toward a more complete assessment of the regulons of these two transcription factors, we conducted 

RNAseq analysis of these two strains, and their common genetic parent strain, under three different 

moderate elevated osmolarity conditions (added glycerol to total 500 mOsm/L, added glucose to total 

300 mOsm/L, added glycerol to total 300 mOsm/L, see Figure A12).  We assessed differentially 

expressed genes which showed common expression patterns in these three elevated osmolarity 

conditions, to avoid confounding osmolarity response with any that might be chemically specific to a 

particular osmolyte.  Genes contained in putative operons encoding genes responsible for fatty acid 
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biosynthesis (B5X54_RS06360 - B5X54_RS06395) and malonyl-CoA biosynthesis (B5X54_RS07175 - 

B5X54_RS07190) displayed increased expression in strain JWCB005 ΔB5X54_RS06355 (Table 9).   

In strain JWCB005 ΔB5X54_RS01260, increased expression of genes involved in fructose PTS as well as a 

phosphofructokinase (B5X54_RS01265 - B5X54_RS01290) (Table 10) was observed.  Interestingly, we 

find these genes to not be significantly differentially expressed under elevated levels of glucose, 

suggesting these genes may be differentially regulated in response to glucose as compared to other 

osmolytes assayed.  Additionally, two adjacent genes (a transposase, sigma factor E) were differentially 

expressed in strain JWCB005 ΔB5X54_RS01260 when grown in elevated levels of glucose and glycerol, 

but not NaCl, and a gene encoding sigma factor G (B5X54_RS04530) differentially expressed under all 

three elevated osmolarity conditions tested (Table 10). 

We also find genes displaying decreased expression levels in strain JWCB005 ΔB5X54_RS01260.  Three 

adjacent genes (B5X54_RS01990 - B5X54_RS02000) showed similar differential expression patterns.  

B5X54_RS01990 and B5X54_RS01995 are annotated as hypothetical proteins, and B5X54_RS02000 is 

annotated as a peptidase S8 protein.  Similarly, a vaguely annotated oxidoreductase gene, 

B5X54_RS07480, showed increased expression in all three elevated osmolarity conditions.   

Three genes exhibited decreased expression in both strains; B5X54_RS00980, B5X54_RS05305, and 

B5X54_RS05310 (Table 12).  The latter two are annotated as hypothetical proteins, adjacent to each 

other and may likely be part of the same transcriptional unit. B5X54_RS00980 is annotated as an endo-

1,4 beta xylanase.  Expression differences in these two genes could be genomic artifacts acquired in 

strain JWCB005 before either of the single-gene deletion strains considered here were generated.  As 

these genes showed similar expression patterns in two strains which displayed largely different growth 

phenotypes, it is further unlikely they are contributing to the observed phenotypes and were not 

considered further. 
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Table 9. Genes in strain JWCB005 ΔB5X54_RS06355 (ΔfapR) which exhibit increased expression when 

cells were cultured in elevated osmolarity conditions.  Colors denote adjacent genes which may be co-

expressed as part of the same transcriptional unit.  Genes denoted in green are responsible for fatty acid 

biosynthesis.  Genes denoted in red are responsible for the metabolism of malonyl-CoA, a fatty acid 

biosynthesis precursor and also a regulatory effector which binds the FapR transcription factor.  All 

values are statistically significant (Wald test, Benjamini-Hochburg adjusted p-value < 0.05, n=3) 

    log2(ΔB5X54_RS06355/JWCB005) 

Locus Tags Annotation Glycerol Glucose NaCl 

B5X54_RS06360 phosphate acyltransferase 3.9 2.9 2.8 

B5X54_RS06365 ketoacyl-ACP synthase III 3.8 2.3 2.2 

B5X54_RS06370 malonyl CoA-acyl carrier protein transacylase 3.8 2.5 2.2 

B5X54_RS06375 beta-ketoacyl-ACP reductase 3.7 2.2 2.1 

B5X54_RS06380 acyl carrier protein 2.1 1.5 1.3 

B5X54_RS06385 beta-ketoacyl-[acyl-carrier-protein] synthase II 2.8 1.8 1.7 

B5X54_RS06390 ribonuclease III 2.2 1.3 1.3 

B5X54_RS06395 radical SAM protein 2.3 1.3 1.5 

B5X54_RS07175 methylmalonyl-CoA carboxyltransferase 3.6 1.6 1.9 

B5X54_RS07180 hypothetical protein 3.6 1.8 2.2 

B5X54_RS07185 
acetyl-CoA carboxylase biotin carboxyl carrier 
protein subunit 3.6 1.8 2.1 

B5X54_RS07190 oxaloacetate decarboxylase 3.7 1.7 2.0 
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Table 10. Genes in strain JWCB005 ΔB5X54_RS01260 (Δcra) which exhibit increased expression when 

cells were cultured in elevated osmolarity conditions.  Colors denote adjacent genes which may be co-

expressed as part of the same transcriptional unit.  Bold text denotes statistical significance (Wald test, 

Benjamini Hochburg adjusted p-value < 0.05, n=3), values that are not statistically significant are 

denoted in grey text.   

    log2(ΔB5X54_RS01260/JWCB005) 

Locus Tag Annotation Glycerol Glucose NaCl 

B5X54_RS01265 1-phosphofructokinase 4.2 0.8 4.5 

B5X54_RS01270 PTS fructose transporter subunit IIA 4.5 0.7 4.5 

B5X54_RS01275 PTS fructose transporter subunit IIBC 4.8 0.6 4.3 

B5X54_RS01280 HPr family phosphocarrier protein 4.1 0.8 3.7 

B5X54_RS01285 
phosphoenolpyruvate-protein 
phosphotransferase 

4.5 0.6 4.0 

B5X54_RS01290 Acetylesterase 2.4 0.4 2.7 

B5X54_RS04520 transposase 1.4 1.8 0.6 

B5X54_RS04525 sporulation sigma factor SigE 1.5 1.4 0.9 

B5X54_RS04530 sporulation sigma factor SigG 1.3 1.2 1.0 
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Table 11. Genes in strain JWCB005 ΔB5X54_RS01260 (Δcra) which exhibit decreased expression when 

cells were cultured in elevated osmolarity conditions.    Colors denote adjacent genes which may be co-

expressed as part of the same transcriptional unit.  All values are statistically significant (Wald test, 

Benjamini-Hochburg adjusted p-value < 0.05, n=3) 

    log2(ΔB5X54_RS01260/JWCB005) 

Locus Tag Annotation Glycerol Glucose NaCl 

B5X54_RS01990 hypothetical -3.3 -2.2 -2.9 

B5X54_RS01995 hypothetical -3.5 -2.9 -3.2 

B5X54_RS02000 peptidase S8 -3.8 -3.7 -3.5 

B5X54_RS07480 oxidoreductase -1.3 -2.2 -1.6 
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Table 12.  Genes that were found to have similar differential expression in strain JWCB005 

ΔB5X54_RS01260 (Δcra) and JWCB005 ΔB5X54_RS06355 (ΔfapR), each compared to their common 

genetic parent strain JWCB005.  Values are average differential log-fold changes observed for the 

indicated gene across three indicated high-osmolarity conditions (glucose, glycerol, sodium chloride).  As 

these genes were similarly differentially expressed in strains showing different growth phenotypes, it is 

unlikely these genes are contributing to phenotype differences, and were not considered in this study.  

All values are statistically significant (Wald test, Benjamini-Hochburg adjusted p-value < 0.05, n=3) 

Locus Tag Annotation 

Average 
log2(ΔB5X54_RS01260/JWCB005) 

across three osmolarity 
conditions 

Average 
log2(ΔB5X54_RS06355/JWCB005) 

across three osmolarity 
conditions 

B5X54_RS00980 
endo-1,4-
beta-
xylanase 

-4.1 -4.2 

B5X54_RS05305 Hypothetical -4.9 -2.5 

B5X54_RS05310 Hypothetical -4.3 -2.4 
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Additional genes showed significantly decreased expression in strain JWCB005 ΔB5X54_RS01260.  These 

genes were distinct from other genes displaying differential expression in that their normalized read 

count values were near zero (Table 13).  It is possible that this differential expression is artefactual 

carryover from genomic alterations which have occurred in the strain.  One such example was 

considered further; B5X54_RS07480 - B5X54_RS07510.  This locus was of interest as it contains many 

genes involved in uracil biosynthesis and sits adjacent to the pyrF gene (B5X54_RS07475) which is 

truncated and non-functional in this strain [54] – the truncation making uracil-auxotrophy based genetic 

modifications possible.  PCR amplification of a region spanning the genomic region between genes 

B5X54_RS07485 and B5X54_RS07515 resulted in a single product of expected size when using genomic 

DNA from strain JWCB018 (an auxotrophic derivative of strain JWCB005) as template, though no PCR 

product could be amplified when using genomic DNA from JWCB005 ΔB5X54_RS01260 as PCR template 

(Figure A2).  This suggests that differential expression results obtained from these genes in JWCB005 

ΔB5X54_RS01260 are artifacts resulting from genomic differences between this strain and its genetic 

parent.  Furthermore, repeated efforts to transform strain JWCB005 ΔB5X54_RS01260 using pyrF as a 

positive heterotrophic selection marker did not yield any transformants, suggesting additional genes 

(beyond just pyrF) necessary for uracil biosynthesis are missing or have been functionally disrupted in 

this strain.  Differential expression from these genes, and other genes showing normalized read count 

values <5 were also omitted from analysis (Table 13), as these may too be genomic differences and not 

genuine expression differences.  

In an effort to generate a strain more osmotolerant than JWCB005 ΔB5X54_RS01260, we will 

overexpress the fapR gene in strain JWCB005 ΔB5X54_RS01260.  As a single-gene deletion of the fapR 

gene generated a strain, JWCB005 ΔB5X54_RS06355, sensitive to elevated concentrations of certain 

osmolytes, we hypothesize that overexpressing the fapR gene may increase osmotolerance and further 

improve growth characteristics in the presence of elevated osmolarities.  We have generated the strains  
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Table 13.  Genes found to have relatively low normalized expression values in strain JWCB005 

ΔB5X54_RS01260 (Δcra).  These very low expression values may be artefactual, and instead the result of 

the loss of these genes in this strain.  All differential expression log2 values are statistically significant 

(Wald test, Benjamini-Hochburg adjusted p-value < 0.05, n=3) 

    
log2(ΔB5X54_RS01260/JW

CB005) 
Average Normalized Read 

Counts 

Locus Tag Annotation Glycerol Glucose NaCl 
ΔB5X54
_RS012

60 

JWCB00
5 

ΔB5X54_
RS06355 

B5X54_RS04240 
DNA-binding 
protein -6.6 -6.4 -6.8 

0.58 366 346 

B5X54_RS04275 
transcriptional 
regulator -6.5 -7.5 -7.8 

0.57 659 773 

B5X54_RS04280 DNA primase -6.9 -7.5 -8.3 0.57 824 968 

B5X54_RS04285 
hypothetical 
protein -7.1 -7.5 -7.7 

0.57 856 828 

B5X54_RS04290 
site-specific 
integrase -6.6 -5.6 -6.2 

0.12 300 277 

B5X54_RS04295 tRNA-Pro -5.6 -5.2 -5.7 1.6 212 220 

B5X54_RS07485 
dihydroorotate 
dehydrogenase 

-6.6 -6.9 -6.8 0.59 358 383 

B5X54_RS07490 

histidine 
phosphatase 
family protein -6.5 -6.6 -7.0 

0.62 350 401 

B5X54_RS07495 

orotate 
phosphoribosylt
ransferase -6.8 -6.9 -6.9 

1 467 523 

B5X54_RS07500 
hypothetical 
protein -6.6 -6.4 -6.6 

0.39 290 304 
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necessary for this experiment and will conduct the comparative growth studies in the near future.  In 

addition, we have expressed the B5X54_RS01260 gene in strain JWCB005 ΔB5X54_RS01260, generating 

a genetic complement in which we should see a phenotype reversion upon reintroducing the 

B5X54_RS00710 gene back into C. bescii if the osmolarity resistance phenotype is, in fact, due to the 

absence of the fruR/cra gene.  Another strain hosting an expression vector without a corresponding 

expression cassette (an ‘empty vector’), will serve as a control to both of the aforementioned strains.   

Discussion  

We found substantial growth phenotypes exhibited by two single-gene deletion strains of C. bescii.  A 

single gene deletion of the fapR/cra gene showed considerable growth defect when grown in elevated 

levels of osmolarity (Figures 17-20) and a single-gene deletion of the fruR or cra gene grew substantially 

better than its genetic parent strain (on the basis of growth rate and time in lag phase) in elevated levels 

of added osmolarity (Figures 17-20).  Neither strain displayed growth phenotypes when grown in 

unaltered, replete LOD media (Figure A15). 

Osmolarity Stress Response and the Cellular Function of The FapR and FruR/Cra Transcription Factors in C. 

bescii  

As similar relative growth phenotypes were observed in the presence of different osmolytes, we 

hypothesize these genes to be part of cellular processes that are a common response to osmolytes, and 

not to individual chemical stressors (e.g. ethanol stress, NaCl stress).  The fapR gene, and associated 

regulon genes, was shown to be upregulated under hydrogen sparging in C. saccharolyticus [50].  Not 

surprisingly, the transcription levels of fruR/cra in C. saccharolyticus were increased when cells were 

grown on fructose [257], suggesting that this gene is in fact locally regulating genes contained within the 

same operon. 
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FapR is a conserved transcription factor present in gram positive bacteria.  Its regulon consists of the 

genes responsible for fatty acid biosynthesis as well as malonyl-CoA metabolism [260].  Malonyl-CoA 

also serves as the binding cofactor molecule for FapR.  It has been shown previously in other organisms 

that altering this transcription factor can effect cell growth [261], and the composition of cellular 

membrane lipids [262], increasing the relative amount of long chain fatty acids in a strain of B. subtilis 

deficient in its fapR gene.  Altering cellular membrane composition in bacteria effects a cells ability to 

withstand osmotic stress [263], suggesting deletion of this gene in C. bescii is resulting in similar 

membrane composition changes and affecting growth rate and survival.   

The fruR gene was first characterized and shown to be a local regulator of fructose metabolism and a 

fructose-specific PTS, and was subsequently shown to have a regulon extending far beyond just genes it 

is collocated with [264-266].  The gene was aptly renamed Cra (for cyclic AMP independent 

repressor/activator).  FruR was shown to both activate genes as well as repress genes [264], as well as 

work coordinately with other carbon regulatory genes to globally regulate carbon metabolism [267], for 

which we also see putative evidence of in C. bescii, as fru operon genes appear to be coordinately 

expressed differently in high concentrations of glucose (Table 10).  This transcription factor regulates 

expression in response to binding fructose 1-phosphate [264, 268], a metabolic intermediate in fructose 

metabolism.  It is known to be a global regulator of carbon metabolism, regulating genes involved in 

fermentation, glycolysis/gluconeogenesis, carbohydrate transport, and the TCA cycle [264, 267, 269, 

270].  Though conserved homologs appear in many organisms [271-274], it is unclear whether it plays a 

global regulatory role in C. bescii, or if it is a local repressor of the fructose metabolism genes it is 

collocated with.   

A FruR homolog with 70-80% operon-level sequence homology in Thermotoga [272] is predicted to be a 

local repressor of fructose metabolism genes, though this gene or its regulon have not been 
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biochemically or genetically evaluated.  In addition to this local regulation, FruR/Cra may negatively 

regulate two stress-related sigma factors; Sigma E and Sigma G (Table 10).  The regulons genes whose 

transcription is affected by these transcription factors in C. bescii remains unknown, though homologs of 

these two sigma factors are known to be active in stress-response [275, 276].  The RefSeq gene 

annotations of these two sigma factors annotate these genes as being involved in sporulation, though C. 

bescii is not known to form spores [14].  As both increased and decreased differential expression are 

observed in strain JWCB005 ΔB5X54_RS01260 (Table 10 and 11), this gene may have a pleiotropic 

regulatory role in C. bsecii.  It is not possible at this time to determine if such pleiotropy would be the 

effect of direct or indirect regulatory action by this transcription factor.     

Proposed Mechanism of FapR and Cra-Enabled Osmotolerance in C. bescii  

We confirm that the FapR transcription factor does regulate fatty acid biosynthesis and malonyl-CoA 

metabolism genes in C. bescii, as predicted previously for the closely related species C. saccharolyticus 

[50].  As has been shown in other organisms, it is likely that the cell membrane lipid composition of C. 

bescii is altered in response to altering the fapR regulatory gene in C. bescii, directly affecting biophysical 

properties of the membrane.  Such membrane composition changes may also be affecting the activity of 

osmo-responsive membrane proteins in C. bescii. 

The role of FruR/Cra to osmoresistance in C. bescii remains more cryptic than that of FapR.  Evidence 

collected in this work, and previously in Caldicellulosiruptor, offer little evidence as to what the 

osmolarity-specific mechanism that could be conferring the observed growth differences in strains 

containing a modified fruR/cra gene.  From transcription factor binding site identification evidence, and 

differential expression evidence (Table 10 and 11), we postulate that FruR/Cra negatively regulates 

elements of fructose metabolism as well as fructose-specific PTS in C. bescii.  Two other putative 

transcription units may be activated by FruR/Cra in C. bescii under elevated osmolarity conditions; one  
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Figure 21. Proposed roles of the FruR/Cra and FapR transcription factors in C. bescii, and the 

hypothesized regulatory response of these transcription factors to increased osmolarity conditions. 
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containing a single gene generally annotated as an oxidoreductase.  The other contains three genes; two 

annotated as hypothetical and one annotated as a peptidase. 

Improving Osmoresistance in Consolidated Bioprocessing Through Regulatory Metabolic Engineering 

Osmosensitivity is one of the defining needs in a candidate industrial consolidated bioprocessing 

organism.  To make 50 g/L ethanol, a nominal target for consolidated bioprocessing, the final 

fermentation osmolarity will exceed that of seawater, which is ~1000 mOsm/L and a CBP biocatalyst will 

need to actively ferment at these osmolarities.  The cellular response to osmotic shock involves a large 

number of cellular sub-processes [243], many of which are poorly understood in C. bescii.  Engineering 

an osmoresistant strain using only rational metabolic engineering would, at present, be impossible 

without further characterizing osmolarity response systems in C. bescii.  We instead pursued a strategy 

of identifying the metabolic systems important to survival in elevated osmolarities through screening 

transcription factors.  Doing so allowed us to effect maximal gains in osmoresistance, by making very 

few genetic modifications.  We show herein a strain with one transcription factor gene (fruR/cra) 

deleted had a growth rate over three times greater than its genetic parent (Figure 20).  Furthermore, we 

identified a second transcription factor gene (fapR) which shows a substantial growth defect when 

grown in the presence of elevated osmolarities, suggesting yet another gene target through which 

further osmoresistance gains may be achieved.  We aim to assess whether a strain carrying putatively 

beneficial alterations in both gene targets will, in fact, generate a highly osmotolerant strain. 

Conclusions  

Through screening of single-gene deletion mutants of selected regulatory genes, we identified two 

transcription factors important to osmoresistance in C. bescii, the FapR repressor, as well as a regulator 

which is most likely either the FruR local repressor of fructose metabolism or the global carbon 

metabolism regulator Cra.  Differential expression and prediction of transcription factor binding sites 
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along the genome show the FapR gene regulates fatty acid biosynthesis genes as well as genes 

responsible malonyl-CoA metabolism, each organized into a functionally related putative transcriptional 

unit.  The FruR transcription factor negatively regulates a functionally related transcription unit 

containing genes responsible for fructose metabolism and fructose-specific PTS.  In addition, differential 

expression evidence also suggests it has a regulatory effect on other poorly-annotated genes.  While the 

role of FapR in osmolarity and stress-related phenotypes is previously reported and conserved, the role 

of the fruR/cra gene in osmotolerance is unique and the mechanism of its influence on this phenotypic 

behavior remains cryptic.  As these two gene targets both influence osmoresistance in C. bescii, we will 

engineer a strain which both loci are altered, with the hope of generating a highly osmotolerant strain of 

C. bescii.  Doing so will enable C. bescii to grow more robustly in elevated osmolarity conditions in which 

its native growth and carbon conversion suffers.  This approach has proven to effectively yielded the 

desired increase in resistance to osmolarity, with little a priori systems-level information about the 

mechanism responsible for this trait in C. bescii. 

Methods 

Screening Single Gene Deletion Mutants 

Markerless deletions of 10 regulatory genes were generated in one of two strains of C. bescii (Table A14) 

using previously described methods [20, 53].  Single gene deletion strains were grown in eight different 

conditions and screened for growth or fermentation productivity phenotypes (Figures A14 – A21).  

Media was prepared as described previously [51].  Initial screening cultures utilizing soluble carbon 

sources (xylose, glucose, added ethanol, added NaCl, added methyl viologen) were all grown in Balch 

tubes containing 10 mL of media.  Cultures containing insoluble carbon substrates (xylan, crystalline 

cellulose, and switchgrass) were grown in 50 mL of media in a 135 mL serum bottle.  All medias 

contained 5 g/L of the respective carbon substrate.  Cultures containing added methyl viologen, ethanol, 
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or NaCl contained 5 g/L glucose as the primary source of carbon.  Methyl viologen was utilized at a 

concentration of 150 mg/L, ethanol was added to a final concentration 20 g/L, and NaCl was utilized to 

make media with an initial calculated total osmolarity of 200 mOsm/L.  All media osmolarities were 

calculated based on accounting for media osmolarity of LOD media reported previously [51], and adding 

osmolytes as dry chemical sufficient to make each media the desired osmolarity.  All screening cultures 

contained a headspace of 100% N2.  Growth and fermentation products were assayed as previously 

described [52].  Growth was monitored in cultures containing xylan or crystalline cellulose as the 

primary source of carbon by assaying total culture protein.  300 µL of culture was added to 100 µL of 

500 mM NaOH and incubated at 100oC for 10 minutes.  Incubated samples were then centrifuged 

(13,000 x g, 10 minutes).  Aliquots of the supernatant were analyzed for total protein using the 

Coomassie (Bradford) Protein Assay Kit (ThermoFisher Scientific catalog #23200) according to 

manufacturer’s instructions.      

Subsequent osmolarity stressor assays (Figures 17 and 18), as well as batch growth for RNAseq analysis 

(Figure A12), were done in 50 mL culture volumes, in elevated osmolarity conditions indicated, in 135 

mL serum bottles containing a headspace of ~5% H2,10% CO2, and 85% N2.   

RNAseq Analysis of Single Gene Deletion Mutants Under Elevated Osmolarity Conditions 

RNAseq analysis was conducted on strains grown to mid-log phase in three different elevated osmolarity 

conditions; added NaCl to a total initial osmolarity of 300 mOsm/L, added glycerol to make a total initial 

osmolarity of 500 mOsm/L, and added glucose to a total initial osmolarity of 300 mOsm/L.  All cultures 

were grown to mid-log phase (Figure A12) at which point sacrificial 50 mL cultures were collected, 

centrifuged, and cell biomass pellets were snap frozen in liquid nitrogen.  Growth was monitored in 

parallel-grown triplicate cultures (Figure A12).  RNA was extracted, and RNAseq libraries were 

synthesized and sequenced as described previously [277].   
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Fastq files were downloaded from HudsonAlpha’s servers and verified for integrity by computing their 

checksum.  Read quality was checked using FastQC (v. 0.11.5) [278].  RNAseq reads were trimmed the 

using Trimmomatic (v. 0.33) MAXINFO method with target length and strictness parameters set to 40 

and 0.8, respectively [279]. Reads were mapped to the genome of Caldicellulosiruptor bescii JWCB005 

(GCF_900166995.1, last modified 2017/03/09) using Bowtie2 (v. 2.2.9) with the same parameters as the 

very-sensitive preset option expect the number of mismatches was set to 1 [280], and reads were 

counted with HTSeq (v. 0.6.1p1) [281].  Differential expression was computed using the DEseq2 R 

package [278] using default parameters.  Differentially expressed genes were determined to be those 

exhibiting a statistically-significant log2 fold change of >1 or <-1, normalized average read counts above 

50, and individual strain normalized read counts > 5 (Tables 9 – 13).  Raw, unprocessed RNAseq reads as 

well as differential expression data for all genes were deposited into the Gene Expression Omnibus 

database as accession number GSE107393 and can be queried at the following URL: 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi (also see attachment 3). 

Transcription Factor Binding Site Prediction 

Transcription factor binding sites were predicted for the FruR/Cra transcription factor using the C. bescii 

JWCB005 genome (NCBI Accession # PRJEB19583).  A regular expression consensus binding site was 

adapted from Thermotoga FruR predicted binding sites in RegPrecise [259]; the sequence 

(A|G)TCATAA(A|T)NNNNNAT(A|C)ANN.  This sequence was used to seed a transcription factor binding 

site sequence search using the Virtual Footprint Regulon Analysis tool [282].  The above-mentioned 

sequence was entered as ‘Regular Expression’ subpattern type and the maximum distance to gene 

(maximum promoter length) was set to 350 bp.  The match properties ‘Ignore Match Orientation’ and 

‘Remove Redundant (Palindromic) Matches’ were selected. 
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Assessment of Genome Differences Between JWCB005/JWCB018 and JWCB005 ΔB5X54_RS01260 

Primers were designed to amplify a genomic region spanning B5X54_RS07480 - B5X54_RS07510.  A 

primer was designed to anneal to the B5X54_RS07480 coding region (pyr fwd screen, Table A1), and 3’ 

to the B5X54_RS07510 coding DNA sequence (pyr rev screen, Table A12).  Genomic DNA was extracted 

from the respective strains using a Zymo Research Quick-DNA Miniprep Kit (Catalog # D3006, Zymo 

Research Corp., Irvine, CA) according to manufacturer’s instructions, and used as template in PCR 

amplification carried out using Phusion 2X Master Mix according to manufacturer’s instructions (Catalog 

# M0531S, New England Biolabs, Ipswich, MA).   

C. bescii Cra/FruR Protein Purification 

We attempted to express and purify recombinant C. bescii FruR/Cra protein using the IMPACT Protein 

Purification System (New England Biolabs, Ipswich, MA), with the B5X54_RS01260 coding DNA sequence 

cloned into the 5’ region upstream of the Mxe Gyrase Cleavage Intein and Chitin Binding Domain 

present on plasmid pTXB1.  It was subsequently found that the native protein sequence encoded by 

B5X54_RS01260 becomes insoluble upon DTT-induced cleavage from the fusion affinity binding 

peptides.  Special considerations were necessary to enhance solubility of the E. coli Cra protein upon 

recombinant expression and purification as well [264].  Problems encountered with protein insolubility 

during purification of E. coli Cra protein were partially solved by overexpressing the GroES and GroEL 

chaperone proteins simultaneously with the Cra protein [264].  Subsequent efforts to increase 

recombinant C.bescii FruR/Cra solubility were attempted (increasing additive concentrations, modifying 

regimes to elute protein from affinity resin, eluting protein in partially denaturing conditions), though 

none were successful. 
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Chapter 6: Summary and Future Directions 
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Herein we examine the effect that metabolic engineering using regulatory gene targets can have on 

performance of candidate consolidated bioprocessing organisms. We strive to understand if the 

engineering of gene targets, implying the engineering of regulatory mechanisms within the cell, would 

stand to be a promising and effective method to further effect growth and fermentation in organisms. 

Previous rational and classical engineering strategies (carbon forcing, electron forcing) had all but been 

exhausted [31, 33, 39, 40] in these organisms, and performance metrics (such as ethanol product yield, 

ethanol tolerance, and lignocellulose substrate conversion) have not been met fully at this time.  

We are not investigating whether such effects are possible to attain, as regulatory engineering was 

demonstrated previously in various organisms [78, 284, 285] and shown to have dramatic effects on 

desired traits in these organisms. Instead, this thesis sought to engineer for phenotypes unique to these 

organisms; the unique processes we wish to enable them to perform, and unique environments we will 

challenge them with. We chose to undertake this thesis question knowing that only a very scant amount 

of information existed about the systems we would engineer, another stark difference from previous 

regulatory engineering efforts.  

Redox metabolism had been identified as the primary bottleneck in C. thermocellum fermentation [21]. 

Similarly, a large relative shift in carbon flux was brought about in C. bescii through the unoptimized 

introduction of an NADH-dependent alcohol dehydrogenase gene [16], and a large shift in electron 

metabolism through the elimination of NADH-dependent lactate dehydrogenase [40]. These findings led 

us to postulate that fermentation performance gains would be realized through engineering the redox 

systems of these organisms. Coincidentally, both of these organisms contain actively-expressed rex 

genes, suggesting that this global redox-state regulator [46] was maintaining redox state within these 

cells. The study and engineering of the rex gene an ideal way to both comprehensively  
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understand redox dynamics in these organisms, and engineer these systems to ultimately improve the 

redox-dependent synthesis of ethanol.  

Chapters 2, 3, and 4 in this thesis address redox dynamics and the rex gene in these organisms. We 

identify previously unknown active redox-mediating systems at play in these organisms which are acting 

as unwanted, yield-decreasing, electron and carbon sinks.   

These organisms will ferment industrially in a media that contains a primary carbon substrate that is 

largely insoluble.  The insights and engineering efforts that stem from them will be relevant to those 

identified in these experiments, which are almost entirely carried out in soluble carbon substrate media, 

as both are ultimately potent reductive stresses.  One likely difference will be the dynamic profile of 

redox stress experienced by these organisms in these two different scenarios; soluble vs. insoluble 

carbon substrates.  Early-stage fermentation conditions are characterized by much less osmotic pressure 

and less carbon forcing on fermentative glycolysis in insoluble substrate fermentations, though later 

stages of these two fermentation scenarios will more closely resemble each other as soluble sugars tend 

to accumulate as fermentation slows.  The different dynamic profiles of redox stress will need to be 

considered when engineering efforts aimed more specifically at insoluble substrate utilization.      

Identification of the active redox systems has informed ongoing metabolic engineering efforts to 

streamline and optimize redox-dependent flux in these organisms, including the generation of a 

glutamine synthetase deletion mutant which exhibited 53% higher ethanol yield and 43% less amino 

acid overflow metabolism products [36]. Further, we identify a robust and validated method for 

quantifying redox-charge carriers, the currency of intracellular redox, within a cell. We confirm that 

engineering the rex gene does have the intended effect on cellular redox state and ethanol synthesis, 

and there are not additional significant insulating levels of regulation (transcription or metabolic) 

working to maintain the redox-state in these organisms. Another important finding of chapter three are 

the key regulon members, both previously predicted and those identified here for the first time, which 
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constitute the network nodes with which the rex regulator interacts. Every biological cell must maintain 

its redox state, though there is much variety and disparity in the way different cells and tissues do so, 

and C. bescii is no exception to this general observation. Its redox state regulation contains elements 

mirrored in other species, as well as many elements not identified elsewhere. 

It appears that the Rex regulator is active during particular metabolic states in these organisms during 

fermentation, and not during other metabolic states. This is evidenced by the ethanol fermentation 

phenotype in a rex-deficient C. bescii only occurring long after active growth had ceased, and the 

absence of rex-regulator (which is negatively autoregulated) differential expression under oxidizing 

conditions in C. thermocellum. We currently do not understand these metabolic states, and, in 

particular, the differences between them. The fermentation shift observed in C. bescii is reminiscent of 

the solventogenic shift that occurs in mesophilic species of Clostridia [141], and similarly occurs inverse 

to active growth. An important future direction, as it relates directly to ethanol productivity, would be a 

regulatory and mechanistic exploration of this phenomenon. As this appears outwardly similar to 

Clostridial solventogenic shifting, the path and template followed for metabolically understanding this 

shift should be pursued in Caldicellulosiruptor. Such understanding will afford metabolic engineering of 

ethanol synthesis in C. bescii that is more sophisticated and more amenable with native metabolism.  

The fifth chapter explores the same regulatory engineering approach, though this time by addressing a 

multitude of candidate targets and bioperformance traits in combinations factorially. In contrast to the 

knowledge-driven approach in engineering redox systems, this approach was primarily data-driven. It 

became a data driven approach because of the lack of a priori knowledge, and not expressly because of 

an abundance of pre-existing data, which we also did not possess at the time. The data we did have (in 

the form of two differential expression profiles), and distantly inferable hypotheses from past work in 

Caldicellulosiruptor, led us to a set of candidate gene targets. Screening of single-gene deletion mutants 

led us fortuitously to two gene targets effecting osmolarity tolerance, one of the most potent growth 
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inhibitions identified in C. bescii. Furthermore, no mechanistic understanding existed about resistance to 

osmolarity in Caldicellulosiruptor, and thus there was little hope of improving this performance metric 

by way of rational and classical metabolic engineering. We have quantified the benefits of altering these 

two loci, individually, by way of growth differences in a selection of different osmolytes representing 

different chemical and metabolic characteristics (neutral and ionic chemicals, metabolically inert, 

interacting, and catabolized osmolytes). Further, identifying regulon members of these regulatory genes, 

as was done previously with rex, allowed us a first glance into osmoresistance mechanisms in C. bescii 

and to hypothesize about the dynamic systems which are responsible for survival at elevated 

osmolarities in C. bescii. Through a rudimentary description of the effects these genes can have on 

osmotolerance, we have made effective headway into a very difficult metabolic engineering problem 

and growth limitation using very little data and very few genetic modifications.  

In this work we have deciphered instances where engineering using regulatory genes as targets can be 

effective. Often in non-model organisms, predicted or experimentally verified information about 

regulatory networks is scant or altogether missing. Even for relatively well characterized regulators like 

Rex, regulon information is predicted for a portion of the regulon, such as in the case of C. bescii, or 

altogether absent, as is the case for C. thermocellum. Surprisingly, it is in these cases where regulatory 

engineering can be effective. Though it may not be known exactly which systems are being affected or in 

what way, effects of altering regulatory systems (or lack thereof) are immediately apparent and can thus 

be quickly screened, given appropriate methods. Once a regulatory target is identified as important, it 

can then be further characterized (to whatever extent is needed or possible) and related engineering 

strategies can be improved and refined.  

Strains with engineered regulatory machinery rarely display unwanted or severely detrimental 

phenotypes, as is common when engineering catalytic enzymes or small portions of individual pathways. 

The disruption of pathways through metabolic enzyme engineering can cause catastrophic effects to cell 
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metabolism which the existing metabolism may not be able to effectively deal with, such as large 

unpredicted and unwanted shifts in metabolic flux, severe growth defects, and suboptimal performance 

in a desired trait. It is likely that these effects are rarely encountered in regulatory engineering as 

metabolic systems are left intact. Further, transcription units are often redundantly or multiply 

regulated by more than one regulatory element, meaning the elimination of any one regulator will likely 

not completely abolish regulation of expression of genes within its regulon. Thus, regulatory engineering 

can be an effective way to affect phenotypes while not introducing other severely detrimental, 

unwanted, and unpredicted effects.  Annotation information about some regulatory genes is missing, 

vague, or inaccurate in non-model organisms. Many of the genes screened for phenotypes in this work 

were vaguely or mis-annotated, such as the cra gene itself. Also, hypothetical, unannotated, or vaguely 

annotated genes were found to be active in the C. thermocellum response to redox stress and regulated 

components of the Rex and Cra regulons in C. bescii. None the less, other information was relied upon to 

both select genes for screening and subsequently select them for further engineering. Most other forms 

of metabolic engineering is completely reliant on annotation information, which is largely derived from 

homology, and pathway information, which is both incomplete and also derived from homology. When 

working with non-model organisms, homology derived methods are often of limited use due to the large 

evolutionary distances between model organisms from which homology seed information is derived and 

the organisms of interest.  Our empirical, data-driven methods used in this work can serve as effective 

indicators of bioperformance. While we were able to identify, and even engineer regulatory targets, 

poorly annotated genes identified in regulons amount to dead ends. Without reliable gene annotations, 

we cannot further proceed generating testable hypotheses which involve these genes, nor can we 

compile a comprehensive understanding of how these systems work. Both of these limitations severely 

hinder our ability to engineer or understand these systems. Homology based methods, while useful, 
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have inherent biases and provide no insight into the function of these genes. Gene function inference 

methods which are independent of homology are desperately needed to close this information gap.  

Many regulatory genes act globally across the genome, regulating many individual metabolic systems 

simultaneously. Complex traits, by definition, are those which involve the simultaneous action of many 

metabolic systems. As such, impacting bioperformance associated with complex traits is an ideal 

application of regulatory engineering. We show in this work the effectiveness of this approach in 

identifying and utilizing two genes to effect osmolarity tolerance, a complex trait. As metabolic 

engineering and synthetic biology move toward ever-more difficult tasks, such as bioremediation in 

unforgiving environments or curing complex metabolic disorders, the prevalence of complex traits and 

the need to effectively understand and impact them will be necessary. The approach outlined in this 

work, of deciphering and altering regulatory networks associated with these traits, will help to both 

understand and engineer complex traits.  

One future direction worth pursuing is the engineering of a strain whereby these identified regulatory 

gene targets are both augmented in a single strain toward affording more robust growth in elevated 

osmolarities. This experiment, along with a genetic complementation analysis of the fruR/cra deficient 

strain, would further elucidate the importance of the cra gene to osmotolerance and the potential of 

combining beneficial mutations in both genes to generate a highly osmotolerant strain of C. bescii. 

Another important future direction will be a more concise and comprehensive understanding of the 

function of the FruR/Cra transcription factor in C. bescii. The single-gene deletion strain exhibits a 

pronounced phenotype, and this gene stands as one of the most promising growth-enhancing genetic 

determinants in C. bescii. Understanding the mechanisms by which this is occurring is essential to tuning 

and optimizing the use of this gene as a metabolic engineering target.  

Through this work we have found regulatory engineering to be an effective approach when the trait 

being engineered involves many cellular sub-systems which act simultaneously to produce a phenotype 
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and interact with each other in a complex way. Such traits are difficult to effect through other rational 

engineering methods, as the dynamics of these highly interconnected systems is typically lacking. This 

factorial approach to regulatory engineering to be useful when there is little pre-existing knowledge 

and/or data to formulate reliable hypotheses from. 
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Figure A1.  Batch fermentation performance under methyl viologen and hydrogen peroxide initial 

loadings.  Adjusted OD600 of batch cultures grown at various initial methyl viologen concentrations.  

OD600 values were adjusted to account for initial blue coloration due to methyl viologen reduction.  

Cultures were grown in MTC media containing 1.1 g/L cellobiose. 
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Figure A2. Specific end-point fermentation products at different initial methyl viologen concentrations, 

normalized to maximum OD600 achieved.  Cultures were grown in MTC media containing 1.1 g/L 

cellobiose.   

 

 

 

 

 

 

 

 

 

 

 

 



174 
 

 

Figure A3.  Specific end-point headspace H2 at different initial methyl viologen concentrations, 

normalized to maximum OD600 achieved.  Cultures were grown in MTC media containing 1.1 g/L 

cellobiose.  Initial headspace % (v/v) H2 was 5%.   

 

 

 

 

 

 

 

 

 

 



175 
 

 

Figure A4.  (A) Adjusted OD600 of batch cultures grown at various initial hydrogen peroxide 

concentrations.  Cultures were grown in MTC media containing 1.1 g/L cellobiose; (B) Chemostat OD600 

and measured redox potential before, during and after hydrogen peroxide addition; (C) Detailed view of 

boxed region indicated in panel (B).  
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Figure A5.  qPCR validation of expression differences of selected genes of interest. 
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 Figure A6. (a) Chromosomal integration and recombination scheme for constructing Δrex mutants of 

JWCB005 and JWBCB032. Red arrows distal to homology region indicate primer binding sites for flanking 

primers used to screen knockout strains. Green arrows inside ATHE_RS03255 coding DNA sequence 

indicate primers binding internal to rex gene used to screen for the presence of rex coding sequence 

DNA.  (b) PCR confirmation of Δrex in strains JWCB005 and JWCB032 using primers which anneal within 

the deleted CDS (internal primers) and primers which anneal outside of the 5’ and 3’ flanking regions of 

homology (flanking primers). Expected rex wt amplicon using flanking primers is 2825 bp and expected 

Δrex amplicon using flanking primers is 2171 bp. Expected amplicon length of PCR product using internal 

primers is 348 bp. 
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Figure A7.  (a) Growth profile and (b) supernatant acetate concentration of JWCB005Δrex strain and 

parent strain JWCB005. Labels indicate when samples were collected for expression profiling. No lactate 

was detected during growth. 
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Figure A8.  Principal component analysis of normalized mapped RNA-seq read-counts from strains.  

Replicates of JWCB005 are labeled as ‘JWCB005_X,’ where X is the replicate number and replicates of 

JWCB005Δrex are labeled as ‘del0654_X’ in the same manner. 
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Figure A9. Electromobility shift assay using ATHE_RS03255 probe containing a mutated Rex binding site 

showing in vitro EMSA assay is sequence specific for Rex operator sites.   
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Figure A10. Electromobility shift assay reactions using probes containing non-homologous sequence to 

Rex binding sites showing Rex binding is sequence specific for previously predicted operator sites.  
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Figure A11.  (a) OD680 observed after 48 hours of growth in replete LOD media.  (b) Fermentation 

products observed after 48 hours of growth in replete LOD media.   
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Figure A12.  Growth profiles and OD680 of cultures when samples were collected for RNAseq analysis for 

strains JWCB005 ΔB5X54_RS01260, JWCB005 ΔB5X54_RS06355, and JWCB005 (genetic parent strain to 

both single-gene deletion strains).   
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Figure A13. PCR of the genomic region spanning B5X54_RS07485 - B5X54_RS07500 failed to yield a PCR 

product when using genomic DNA from strain JWCB005 Δ B5X54_RS01260 and primers designed based 

on the JWCB005 genome, while yielding a product of expected size when using genomic DNA from strain 

JWCB018 (a derivative of strain JWCB005) as template for PCR.  Expected size for PCR product based on 

JWCB005 genome is 4841 bp.  Lane 1 is PCR reaction using JWCB005 ΔB5X54_RS01260 genomic DNA as 

template.  Lane 2 is PCR reaction using JWCB018 genomic DNA as template.  M1 is O’gene 10 kb ladder 

(ThermoFisher Scientific catalog # SM1163).  M2 is Lambda DNA/HindIII Marker (ThermoFisher Scientific 

catalog # SM0102).  
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Figure A14.  Single-gene deletion mutant screen for growth phenotypes in media containing 5 g/L xylose 

as the primary source of carbon.  (a) denotes strains generated using JWCB005 as the genetic parent 

strain while (b) denotes strains generated using JWCB018 as the genetic parent strain. 
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Figure A15.   Single-gene deletion mutant screen for growth phenotypes in media containing 5 g/L 

glucose as the primary source of carbon.  (a) denotes strains generated using JWCB005 as the genetic 

parent strain while (b) denotes strains generated using JWCB018 as the genetic parent strain. 
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Figure A16.  Single-gene deletion mutant screen for growth phenotypes in media containing 5 g/L xylan 

as the primary source of carbon.  (a) denotes strains generated using JWCB005 as the genetic parent 

strain while (b) denotes strains generated using JWCB018 as the genetic parent strain. 
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Figure A17.  Single-gene deletion mutant screen for growth phenotypes in media containing 5 g/L 

crystalline cellulose as the primary source of carbon.  (a) denotes strains generated using JWCB005 as 

the genetic parent strain while (b) denotes strains generated using JWCB018 as the genetic parent 

strain. 
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Figure A18.  Single-gene deletion mutant screen for fermentation product phenotypes in media 

containing 5 g/L washed, unpretreated cellulose as the primary source of carbon.  Supernatant 

fermentation product concentrations were collected and assayed after 24 hours (blue bars), 48 hours 

(orange bars), and 120 hours (grey bars) of fermentation.   
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Figure A19.  Single-gene deletion mutant screen for growth phenotypes in media containing 5 g/L 

glucose as the primary source of carbon and 150 mg/L added methyl viologen.  (a) denotes strains 

generated using JWCB005 as the genetic parent strain while (b) denotes strains generated using 

JWCB018 as the genetic parent strain. 
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Figure A20.  Single-gene deletion mutant screen for growth phenotypes in media containing 5 g/L 

glucose as the primary source of carbon and added NaCl to an initial calculated media osmolarity of 200 

mOsm/L.  (a) denotes strains generated using JWCB005 as the genetic parent strain while (b) denotes 

strains generated using JWCB018 as the genetic parent strain. 
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Figure A21.  Single-gene deletion mutant screen for growth phenotypes in media containing 5 g/L 

glucose as the primary source of carbon and 20 g/L added ethanol.  (a) denotes strains generated using 

JWCB005 as the genetic parent strain while (b) denotes strains generated using JWCB018 as the genetic 

parent strain. 
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Table A1.  Primers used in qPCR validation of gene expression differences of selected genes. 

Locus Tag 
C. thermocellum DSM 

1313 Annotations 
F Primer Sequence R Primer Sequence 

Cthe_0197 
glutamine 

amidotransferase class-II 
tgacggtgatgtggctaaag tcccttggtctttttcgttg 

Cthe_1539 
glutamine synthetase 

catalytic region 
ctcattttcctggtggctgt ggctccaagtctgtggtcat 

Cthe_2524 IscR CCGAATCATACCTGGAGCAG GAAGGGTCGTCTGCAAGAAC 

Cthe_3016 
(NiFe) hydrogenase 

maturation protein HypF 
tccctatgacaggcacaaca atatggtttgggcgtgaaag 

Cthe_3019 
4Fe-4S ferredoxin iron-
sulfur binding domain-

containing protein 
cgatggagcataaaccgact aacgacggagcaggatacat 
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Table A2.  These predicted operator sites were taken as the complete list of all possible Rex binding sites 

in the C. bescii genome.  Additional evidence from Rex binding site predictions in C. saccharolyticus and 

differential expression were used to narrow down this list to likely putative Rex operator sites in C. 

bescii.  * indicates locus tags not represented in the most recent RefSeq reannotation of the C. bescii 

genome.  Locus tags from the previous generation annotation are provided instead.   

Locus Annotation Strand Begin End 
Binding 

Site 
Sequence 

Length Score 
Distance 
to ATG 

ATHE_RS
00445 

hypothetical 
protein + 

11239
9 112761 

ATGTATAA
AATCTAAC
TT 18 9 72 

ATHE_RS
00820 

glycosyl 
transferase family 
2 - 

20618
5 207282 

TTGTTAAT
ATTATAAC
AT 18 10 209 

ATHE_RS
00825 

CopG family 
transcriptional 
regulator + 

20765
3 207898 

ATGTTATA
ATATTAAC
AA 18 10.5 181 

ATHE_RS
00970 

AbrB family 
transcriptional 
regulator - 

24412
0 244389 

AAGTATTT
ATAATAAC
AT 18 9 106 

ATHE_RS
01085 

hypothetical 
protein + 

26796
6 268904 

TTGTAGAC
TATTTTAC
AA 18 8.75 273 

ATHE_RS
01090 

hypothetical 
protein - 

26909
4 269807 

TTGTTATG
TAAATAAC
TT 18 9 95 

Athe_02
62* #N/A - 

31281
1 313146 

ATGTTTTA
AATATTAC
CT 18 8.75 41 

ATHE_RS
01280 

hypothetical 
protein - 

31330
0 314661 

TTGTATAT
AAATTACC
AT 18 9.25 129 

ATHE_RS
01695 

hypothetical 
protein + 

40304
2 403926 

TTGAAAAT
AATATAAC
AG 18 9 196 

ATHE_RS
02010 

hypothetical 
protein + 

46969
4 470419 

TTGAATTT
AAAATATC
AA 18 8.75 76 

ATHE_RS
02075 

glyceraldehyde 3-
phosphate 
reductase - 

48026
5 481251 

TTGTTGAG
ATTTTAAC
TA 18 9 275 

ATHE_RS
02085 

hypothetical 
protein + 

48344
1 483914 

TTGCAATT
ATAATAAC
AA 18 9.5 281 
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Table A2 Continued 

Locus Annotation Strand Begin End 
Binding 

Site 
Sequence 

Length Score 
Distance 
to ATG 

ATHE_RS
02420 

hypothetical 
protein - 

56011
5 560873 

TTGAATTT
AAAATATC
AA 18 8.75 74 

ATHE_RS
02730 

hypothetical 
protein - 

62125
6 621510 

TTGATTTT
ATTATATC
AA 18 8.75 177 

ATHE_RS
02735 glucokinase + 

62171
6 622666 

TTGTTTTCA
TAATATCA
A 18 9.25 178 

ATHE_RS
02955 

sugar ABC 
transporter 
permease + 

67112
5 672066 

TTGAAAAA
GTTTTAAC
AA 18 9 230 

ATHE_RS
02990 excisionase - 

68087
4 681317 

TTGTTTAT
AATATAAC
TA 18 10 59 

ATHE_RS
03055 

hypothetical 
protein - 

69622
2 696917 

TTGTATTTT
TATTAGCT
T 18 8.75 159 

ATHE_RS
03075 xylose repressor + 

70050
0 701699 

TTGCTTTA
GTATTAAC
AA 18 9 290 

ATHE_RS
03110 

preprotein 
translocase 
subunit SecD + 

70921
4 710461 

TTGTTGAC
TTTTTATCA
A 18 8.75 119 

ATHE_RS
03255 

transcriptional 
regulator + 

73711
6 737769 

ATGTCAAA
AAAATATC
AA 18 9.25 41 

ATHE_RS
03280 

transcription 
elongation factor 
GreA + 

74264
2 743130 

TTGATTTA
TAATTGAC
AA 18 8.75 115 

ATHE_RS
03355 

hypothetical 
protein + 

76025
5 761088 

TGGTTTTA
ATACTAAC
AA 18 9 196 

ATHE_RS
03475 

sorbitol-6-
phosphate 
dehydrogenase - 

78288
1 783660 

ATGTTAAA
ACAATATC
AA 18 9.25 36 

ATHE_RS
03785 pyrophosphatase + 

84436
2 846497 

TTGTCAAA
TTATTGAC
AA 18 9.25 49 

ATHE_RS
03830 peptidase M16 + 

85424
9 855523 

TTGTGAGA
TTTATAAC
AA 18 9.5 189 

ATHE_RS
04100 

hypothetical 
protein - 

91472
2 915471 

TCGTTTAA
AATTTAAC
AA 18 9.5 148 
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Table A2 Continued 

Locus Annotation Strand Begin End 
Binding 

Site 
Sequence 

Length Score 
Distance 
to ATG 

ATHE_RS
04125 

tungsten ABC 
transporter 
permease + 

91902
9 919847 

TTGTAAAT
CTTCTGAC
AA 18 8.75 274 

 
ATHE_RS
04390 pyruvate synthase + 

97376
3 974338 

ATGTTGAT
TTTTTAAC
AT 18 9.5 112 

ATHE_RS
04625 

hypothetical 
protein + 

10251
01 

102630
3 

TTGATAAT
TTTATAAC
AA 18 9.5 42 

ATHE_RS
04720 

hypothetical 
protein + 

10447
72 

104561
7 

CTGTAAAA
AATTTAAC
AA 18 10 40 

ATHE_RS
04760 

hypothetical 
protein - 

10539
58 

105429
9 

TTGTAATT
TTTATACC
AT 18 9.25 206 

ATHE_RS
04765 

hypothetical 
protein + 

10545
88 

105553
5 

ATGGTATA
AAAATTAC
AA 18 8.75 102 

ATHE_RS
04830 

hypothetical 
protein - 

10702
16 

107094
4 

ATGTATTA
GAAATTAC
AC 18 8.75 103 

ATHE_RS
05410 hydrolase Cof - 

11759
67 

117682
1 

AAGTTAAT
TTGTTAAC
AA 18 9 84 

ATHE_RS
05415 

NADH 
dehydrogenase + 

11770
33 

117890
7 

TTGTTAAC
AAATTAAC
TT 18 9 147 

ATHE_RS
06125 methyltransferase + 

13164
42 

131699
6 

GTGTTTAA
AATTTACC
AA 18 9.25 115 

ATHE_RS
06335 

30S ribosomal 
protein S21 + 

13590
37 

135921
3 

AGGTTAAT
AATTTAAC
AC 18 9 287 

ATHE_RS
06475 

NADH 
dehydrogenase + 

13857
00 

138618
2 

ATGTTAAA
TTTCTAAC
AA 18 10 39 

ATHE_RS
06655 NAD kinase + 

14193
93 

142017
8 

ATGTATTT
GTTGTAGC
AA 18 8.75 204 

ATHE_RS
07090 

hypothetical 
protein + 

15044
65 

150499
8 

ATGTTTTT
ATAGTAGC
AA 18 9.25 115 

ATHE_RS
07400 

hypothetical 
protein + 

15655
17 

156614
3 

TTGTTTCTA
TTATTACC
A 18 8.75 243 
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Table A2 Continued 

Locus Annotation Strand Begin End 
Binding 

Site 
Sequence 

Length Score 
Distance 
to ATG 

ATHE_RS
08595 

histidinol 
phosphate 
phosphatase + 

18011
88 

180198
8 

ATGTCAAT
AAAATATC
AT 18 8.75 67 

ATHE_RS
08810 MFS transporter + 

18276
09 

182879
0 

TTGATAAA
TAAATAAC
CA 18 9 216 

ATHE_RS
10330 histidine kinase - 

21710
70 

217283
3 

ATGTTATT
TATGTCAC
AA 18 9.25 231 

ATHE_RS
10335 alpha-glucosidase - 

21729
03 

217522
1 

TTGTATTG
ATTATAGC
AA 18 9.25 155 

ATHE_RS
10680 

class V 
aminotransferase - 

22606
91 

226185
1 

TTGTCAAA
TTATTGAC
AT 18 8.75 88 

ATHE_RS
10870 

flagellar hook 
protein FlgE - 

22932
72 

229473
8 

ATGATTTA
AAATTGAC
AA 18 8.75 135 

ATHE_RS
11210 

2-isopropylmalate 
synthase + 

23590
00 

236035
8 

ATGTTATC
ACAATATC
AA 18 8.75 169 

ATHE_RS
11390 phosphohydrolase - 

23984
73 

239975
6 

TTGCATTT
AATTTTAC
AA 18 8.75 178 

Athe_23
05* #N/A - 

24418
38 

244248
8 

TTGTTAAA
AAATTGAC
CA 18 9.25 73 

ATHE_RS
11720 malate transporter - 

24651
00 

246605
0 

ATGCAAAA
AATTTGAC
AA 18 8.75 43 

ATHE_RS
11890 

hypothetical 
protein - 

25059
38 

250703
2 

TTGTTTAA
TAATTTAC
TG 18 8.75 167 

ATHE_RS
11905 membrane protein + 

25108
39 

251184
6 

TTGTAAAG
TATTTCAC
AC 18 8.75 147 

ATHE_RS
11980 

sugar ABC 
transporter 
substrate-binding 
protein - 

25296
21 

253108
1 

ATGTATTG
TTTTTATCA
T 18 8.75 98 

ATHE_RS
12440 

XRE family 
transcriptional 
regulator - 

26058
48 

260621
6 

TTGCTTTTT
TGTTAACA
A 18 9 70 

ATHE_RS
12590 

hypothetical 
protein - 

26279
91 

262818
5 

ATGTTGAT
ATTATAGC
AG 18 8.75 128 
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Table A2 Continued 

Locus Annotation Strand Begin End 
Binding 

Site 
Sequence 

Length Score 
Distance 
to ATG 

ATHE_RS
12835 

AbrB family 
transcriptional 
regulator + 

26639
72 

266425
3 

TTGCATTT
AATTTTAC
AA 18 8.75 98 

ATHE_RS
13540 

CRISPR-associated 
protein - 

28224
34 

282375
9 

ATGTTATA
TTGTTAAC
AA 18 10 167 

ATHE_RS
13740 

hypothetical 
protein + 

28693
36 

287169
0 

TTGAAATT
AATATAAC
TA 18 9 65 
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Table A3.  Primers used in this study 

Primer Name Primer Sequence  Purpose 

upstm 5' flank fwd 
athe_1015_P3 

TGGGCTACTCCTTTGAG
GAA 

genomic screening primer flanking the 
B5X54_RS05670 gene 

dnstm 3' flank rev 
athe_1015_P3 

CAATTGAATTTCCCGAC
CTG 

genomic screening primer flanking the 
B5X54_RS05670 gene 

internal rev 
athe_1015_P3 

GCTCCTGGTTGAAACCA
AAC 

genomic screening primer binding internal 
to the B5X54_RS05670 gene 

upstm 5' flank fwd 
athe_1669_P3 

GGGATATCGCTATAAGA
TGAAGG 

genomic screening primer flanking the 
B5X54_RS08965 gene 

dnstm 3' flank rev 
athe_1669_P3 

TTTCGGAATATAATTGTG
CATGA 

genomic screening primer flanking the 
B5X54_RS08965 gene 

internal rev 
athe_1669_P3 

TTCACGAAAAGAAGGAG
ACCA 

genomic screening primer binding internal 
to the B5X54_RS08965 gene 

upstm 5' flank fwd 
athe_1152_P3 

CGTCAAAAAGAGCCAAG
AGG 

genomic screening primer flanking the 
B5X54_RS06355 gene 

dnstm 3' flank rev 
athe_1152_P3 

TCAGGGGGTGAAAATGG
TAA 

genomic screening primer flanking the 
B5X54_RS06355 gene 

internal rev 
athe_1152_P3 

AAATTTGCCCCTGAAAA
CCT 

genomic screening primer binding internal 
to the B5X54_RS06355 gene 

upstm 5' flank fwd 
athe_2264_P3 

GCATAACTCCTAATGAAT
GTCCAA 

genomic screening primer flanking the 
B5X54_RS12050 gene 

dnstm 3' flank rev 
athe_2264_P3 

GAGGTGCTGCGTATGTT
CTG 

genomic screening primer flanking the 
B5X54_RS12050 gene 

internal rev 
athe_2264_P3 

GCTGCAGCAGACCTGTA
CG 

genomic screening primer binding internal 
to the B5X54_RS12050 gene 

upstm 5' flank fwd 
athe_0146_P3 

ACCTGCCACCACAACTA
CAA 

genomic screening primer flanking the 
B5X54_RS01260 gene 

dnstm 3' flank rev 
athe_0146_P3 

GCACCCTTTGATCCCAT
CG 

genomic screening primer flanking the 
B5X54_RS01260 gene 

internal rev 
athe_0146_P3 

CAAGCCTTTCCACAGGA
CAT 

genomic screening primer binding internal 
to the B5X54_RS01260 gene 

upstm 5' flank fwd 
athe_0343_P3 

GAGAGTTCTGTGGGGCA
AAA 

genomic screening primer flanking the 
B5X54_RS02215 gene 

dnstm 3' flank rev 
athe_0343_P3 

ATCTTGTGAACGCCAAG
GTC 

genomic screening primer flanking the 
B5X54_RS02215 gene 

internal rev 
athe_0343_P3 

GGCTGTGCAACTGTTGT
GAT 

genomic screening primer binding internal 
to the B5X54_RS02215 gene 

upstm 5' flank fwd 
athe_0799_P3 

CGGTGATGTAACCACTC
CAA 

genomic screening primer flanking the 
B5X54_RS04585 gene 

dnstm 3' flank rev 
athe_0799_P3 

TTCCAATACCGCTTTTAA
ATGCCT 

genomic screening primer flanking the 
B5X54_RS04585 gene 

internal rev 
athe_0799_P3 

TAATCTTGACTGCCGTG
CATC 

genomic screening primer binding internal 
to the B5X54_RS04585 gene 
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Table A3 Continued 

Primer Name Primer Sequence  Purpose 

dnstm 3' flank rev 
athe_2074_P3 

AACACATGGGAGGAGAC
CAG 

genomic screening primer flanking the 
B5X54_RS11065 gene 

internal rev 
athe_2074_P3 

GAAGTGAATGAGATTGC
AAGAGGC 

genomic screening primer binding internal 
to the B5X54_RS11065 gene 

upstm 5' flank fwd 
athe_1407_P3 CTGCTGCTCTTGCTCTCCTT 

genomic screening primer flanking the 
B5X54_RS07610 gene 

dnstm 3' flank rev 
athe_1407_P3 

CAAAGTTGGAACAATGATTGA
GG 

genomic screening primer flanking the 
B5X54_RS07610 gene 

internal rev 
athe_1407_P3 GGGCAGGAAGTTGAAAAACA 

genomic screening primer binding internal 
to the B5X54_RS07610 gene 

pyr fwd screen 
CTTGAAAATCCAGGGGT
TGA 

pyrF region to screen pyr biosyntheis region 
of gDNA of delAthe_0146 mutant 

pyr rev screen 
GGTCAGTTTTCCCTTGG
ACA 

pyrF region to screen pyr biosyntheis region 
of gDNA of delAthe_0146 mutant 

pJGW03 fwd insert 
check seq Gccgcatctgagagtt 

screening insert site on pJGW03-based 
integrating suicide vectors 

pJGW03 rev insert 
check seq Ctacggaaggagctgtg 

screening insert site on pJGW03-based 
integrating suicide vectors 

pDCW88 gib assy 
backbone fwd Gtgcactctgacgctc 

amplify pJGW03 based integrating suicide 
vector backbone 

pDCW88 gib assy 
backbone rev Ggtaccaccagcctaac 

amplify pJGW03 based integrating suicide 
vector backbone 

pDCW88_athe_1152_
up_fwd 

tccaatgatcgaagttaggctggtggta
ccAATCTATAAGGTAAAGGACC
TTGTTG 

amplify upstream region of the 
B5X54_RS06355 gene 

pDCW88_athe_1152_
up_rev 

AATCCTCATATTTTACTACACTC
CCATTTCAATTTTATCACCATG
ATTTAATATTTGA 

amplify upstream region of the 
B5X54_RS06355 gene 

pDCW88_athe_1152_
down_fwd 

GAAATGGGAGTGTAGTAAAAT
ATGAG 

amplify downstream region of the 
B5X54_RS06355 gene 

pDCW88_athe_1152_
down_rev 

Gttttcgttccactgagcgtcagagtgc
acgccatctgagcaaactgc 

amplify downstream region of the 
B5X54_RS06355 gene 

pDCW88_athe_1015_
up_fwd 

tccaatgatcgaagttaggctggtggta
ccATAAAATTTAAAGAGGCAGC
TTTAGC 

amplify upstream region of the 
B5X54_RS05670 gene 

pDCW88_athe_1015_
up_rev 

AAGCGCAGATGGCGGTAAATT
TTTGAAAAGatctttccacctcatttt
ctg 

amplify upstream region of the 
B5X54_RS05670 gene 

pDCW88_athe_1015_
down_fwd CTTTTCAAAAATTTACCGCC 

amplify downstream region of the 
B5X54_RS05670 gene 

pDCW88_athe_1015_
down_rev 

gttttcgttccactgagcgtcagagtgca
cAATACCAGAGCCAACACCTG 

amplify downstream region of the 
B5X54_RS05670 gene 
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Table A3 Continued 

Primer Name Primer Sequence  Purpose 

pDCW88_athe_0343_
up_rev 

acaatggttttaaaataaaaaataacct
tcTTTACACCCCCAGATACTTTT
AC 

amplify upstream region of the 
B5X54_RS02215 gene 

pDCW88_athe_0343_
down_fwd 

GAAGGTTATTTTTTATTTTAAA
ACCATTG 

amplify downstream region of the 
B5X54_RS02215 gene 

pDCW88_athe_0343_
down_rev 

gttttcgttccactgagcgtcagagtgca
cGCCTTTTTGTGGGCTATATTT
AAC 

amplify downstream region of the 
B5X54_RS02215 gene 

pDCW88_athe_2074_
up_fwd 

tgatcgaagttaggctggtggtaccGA
AAGATAAGACTTATTTTTCATT
ATAGAAACTG 

amplify upstream region of the 
B5X54_RS11065 gene 

pDCW88_athe_2074_
up_rev 

aactaataaaaggttattatacaaaag
aggTTTTATTGGGTTTGAGATG
ATTTG 

amplify upstream region of the 
B5X54_RS11065 gene 

pDCW88_athe_2074_
down_fwd 

CCTCTTTTGTATAATAACCTTTT
ATTAGTTTA 

amplify downstream region of the 
B5X54_RS11065 gene 

pDCW88_athe_2074_
down_rev 

gttttcgttccactgagcgtcagagtgca
cGGATTTAGTTCTACACCCAAA
ATAG 

amplify downstream region of the 
B5X54_RS11065 gene 

pDCW88_athe_2264_
up_fwd 

ccaatgatcgaagttaggctggtggtac
cAAACTCATATAATTTTTCACTC
ATTTTTTC 

amplify upstream region of the 
B5X54_RS12050 gene 

pDCW88_athe_2264_
up_rev 

AAAATTATATTTGAGGAGGTTT
GGTAGGCTatgaactgagatgtatc
ttaaaaagc 

amplify upstream region of the 
B5X54_RS12050 gene 

pDCW88_athe_2264_
down_fwd AGCCTACCAAACCTCCTCA 

amplify downstream region of the 
B5X54_RS12050 gene 

pDCW88_athe_2264_
down_rev 

gttttcgttccactgagcgtcagagtgca
cTGTGTACTATGTTGGTAGTAA
CGAAA 

amplify downstream region of the 
B5X54_RS12050 gene 

pDCW88_athe_1407_
up_fwd 

tccaatgatcgaagttaggctggtggta
ccCTCCTCATTTACACCCATAAC
A 

amplify upstream region of the 
B5X54_RS07610 gene 

pDCW88_athe_1407_
up_rev 

TAAAATTGTCCCGCTGGAGAA
TGAGAGAGTaaggtaagaggcaaa
aacactg 

amplify upstream region of the 
B5X54_RS07610 gene 

pDCW88_athe_1407_
down_fwd ACTCTCTCATTCTCCAGCG 

amplify downstream region of the 
B5X54_RS07610 gene 

pDCW88_athe_1407_
down_rev 

gttttcgttccactgagcgtcagagtgca
cATGACTTAACACAGATGACTT
TTGG 

amplify downstream region of the 
B5X54_RS07610 gene 

pDCW88_athe_0799_
up_fwd 

tccaatgatcgaagttaggctggtggta
ccAATTGGAGAAAAACTGTCTT
CAAAG 

amplify upstream region of the 
B5X54_RS04585 gene 
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Table A3 Continued 

Primer Name Primer Sequence  Purpose 

pDCW88_athe_0799_
down_fwd 

AAAAGAGGAGTAATGAAAAAT
GGTC 

amplify downstream region of the 
B5X54_RS04585 gene 

pDCW88_athe_0799_
down_rev 

gttttcgttccactgagcgtcagagtgca
cCTTCATATCTGCCACTTTCAA
G 

amplify downstream region of the 
B5X54_RS04585 gene 

pDCW88_athe_1669_
up_fwd 

tccaatgatcgaagttaggctggtggta
ccTTGTTCTAATGTAAGATCTG
AAAACAATC 

amplify upstream region of the 
B5X54_RS08965 gene 

pDCW88_athe_1669_
up_rev 

tcagatgagcagaaatgaggtatataa
aagGATGGTTAAAGATGAGAT
TGTAAAGG 

amplify upstream region of the 
B5X54_RS08965 gene 

pDCW88_athe_1669_
down_fwd 

CTTTTATATACCTCATTTCTGCT
CATC 

amplify downstream region of the 
B5X54_RS08965 gene 

pDCW88_athe_1669_
down_rev 

tttcgttccactgagcgtcagagtgcac
TATAAAGAGTTAAAAAGAGGA
GATTAAAGAT 

amplify downstream region of the 
B5X54_RS08965 gene 

pDCW88_athe_0146_
up_fwd 

tccaatgatcgaagttaggctggtggta
ccCGACTTTGTATACAACCCAT
CTTC 

amplify upstream region of the 
B5X54_RS01260 gene 

pDCW88_athe_0146_
up_rev 

caatttgatcccaccttgaaatttaaaat
tTTTATTCACCTTTCGTTTATGC 

amplify upstream region of the 
B5X54_RS01260 gene 

pDCW88_athe_0146_
down_fwd 

AATTTTAAATTTCAAGGTGGG
ATC 

amplify downstream region of the 
B5X54_RS01260 gene 

pDCW88_athe_0146_
down_rev 

gttttcgttccactgagcgtcagagtgca
cTTTCGTTTTAGCATTCTTATAA
GCTC 

amplify downstream region of the 
B5X54_RS01260 gene 

fwd 
amp_pDCW173::0146
_overlap 

GAGTATGAAAAACTTAGTGTG
AAGGTCATCACGTAAgagggtga
gattgattctcac 

amplifying replicating shuttle vector 
backbone containing B5X54_RS01260 gene 

rev 
amp_pDCW173::0146
_overlap 

CTGCGCAATTCTGCTTTTTCTTT
CCTCTGCAAACATaactactcacc
aaacctccttg 

amplifying replicating shuttle vector 
backbone containing B5X54_RS01260 gene 

fwd 
athe_0146::pDCW173 
insert 

aaatcatacaaggaggtttggtgagta
gttATGTTTGCAGAGGAAAGAA
AA 

amplifying B5X54_RS01260 gene for 
expression insert 

rev 
athe_0146::pDCW173 
insert 

taaaagagggtgagaatcaatctcacc
ctcTTACGTGATGACCTTCACAC
TA 

amplifying B5X54_RS01260 gene for 
expression insert 

fwd 
amp_pDCW173::1152
_overlap 

GTTGCATTAAATGAAGAGACT
AATTCAGCGCAATAGgagggtga
gattgattctcac 

amplifying replicating shuttle vector 
backbone containing B5X54_RS06355 gene 

rev 
amp_pDCW173::1152
_overlap 

AAGTCTGTGTCTTTCTTTCCTT
GATAGTTTTGCCATaactactcac
caaacctccttg 

amplifying replicating shuttle vector 
backbone containing B5X54_RS06355 gene 
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Table A3 Continued 

Primer Name Primer Sequence  Purpose 

rev 
athe_1152::pDCW173 
insert 

taaaagagggtgagaatcaatctcacc
ctcCTATTGCGCTGAATTAGTCT
CTT 

amplifying B5X54_RS06355 gene for 
expression insert 

Forward (Gblk_fwd) - 
Kan HT ATGAAAGGACCTATAATTATG 

amplifying high-temperature kanamycin 
marker for autonomously replicating 
expression vectors 

Reverse (Gblk_rev) - 
Kan HT TCAAAATGGTATTCTTTTG 

amplifying high-temperature kanamycin 
marker for autonomously replicating 
expression vectors 

gb_bbR_173iCbhtk  

TCTTCTCTAGTCATAATTATAG
GTCCTTTCATtctagagaccatcctt
tctatg 

amplifying expression vectors to insert 
kanamycin marker in place of existing pyrF 
gene 

gb_bbF_07_cbhtk_2 

AGTAGATGTTAGCAAAAGAAT
ACCATTTTGAgatatgtaacggtga
acagttg 

amplifying expression vectors to insert 
kanamycin marker in place of existing pyrF 
gene 

fwd_kaninsert_07_Xb
aI 

AACTTTCTACATAGAAAGGAT
GGTCTCTAGatgaaaggacctataa
ttatgactagag 

amplifying high-temperature kanamycin 
marker for autonomously replicating 
expression vectors 

rev_kaninsert_07_Nd
eI 

CGTTACATATCAAAGGGAAAA
CTGTCCATAtcaaaatggtattctttt
gctaacatc 

amplifying high-temperature kanamycin 
marker for autonomously replicating 
expression vectors 

fwd_mkrscreen_pJGW
07 atccgttgatcttcctgcat 

screening marker site on autonomously 
replicating expression vectors 

rev_mkrscreen_pJGW
07 ctcacgcaaaaacaacgaac 

screening marker site on autonomously 
replicating expression vectors 

fwd 
amp173_Mkr::Kan 
overlap 

AGTAGATGTTAGCAAAAGAAT
ACCATTTTGAcatcatcatcatcatc
actaacc 

amplifying expression vector backbones to 
insert high-temperature kanamycin marker 

rev amp173_Mkr::Kan 
overlap 

TCTTCTCTAGTCATAATTATAG
GTCCTTTCATtctagagaccatcctt
tctatg 

amplifying expression vector backbones to 
insert high-temperature kanamycin marker 
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Table A4.  Plasmids used in this study 

Plasmid Purpose 

pB5X54_RS06355_del Non-replicating vector used to delete the B5X54_RS06355 gene 

pB5X54_RS05670_del Non-replicating vector used to delete the B5X54_RS05670 gene 

pB5X54_RS02215_del Non-replicating vector used to delete the B5X54_RS02215 gene 

pB5X54_RS11065_del Non-replicating vector used to delete the B5X54_RS11065 gene 

pB5X54_RS12050_del Non-replicating vector used to delete the B5X54_RS12050 gene 

pB5X54_RS07610_del Non-replicating vector used to delete the B5X54_RS07610 gene 

pB5X54_RS04585_del Non-replicating vector used to delete the B5X54_RS04585 gene 

pB5X54_RS08965_del Non-replicating vector used to delete the B5X54_RS08965 gene 

pB5X54_RS01260_del Non-replicating vector used to delete the B5X54_RS01260 gene 
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Table A5.  Strains used in this study 

Strain Genotype Reference 

JWCB005 ΔB5X54_RS06355 ΔB5X54_RS06355 ΔpyrFA This Study  

JWCB005 ΔB5X54_RS03805 ΔB5X54_RS03805 ΔpyrFA This Study  

JWCB005 ΔB5X54_RS05670 ΔB5X54_RS05670 ΔpyrFA This Study  

JWCB018 ΔB5X54_RS02215 ΔB5X54_RS02215 ΔpyrFA ΔcbeI This Study  

JWCB005 ΔB5X54_RS11065 ΔB5X54_RS11065 ΔpyrFA This Study  

JWCB005 ΔB5X54_RS12050 ΔB5X54_RS12050 ΔpyrFA This Study  

JWCB018 ΔB5X54_RS07610 ΔB5X54_RS07610 ΔpyrFA ΔcbeI This Study  

JWCB005 ΔB5X54_RS04585 ΔB5X54_RS04585 ΔpyrFA This Study  

JWCB018 ΔB5X54_RS08965 ΔB5X54_RS08965 ΔpyrFA ΔcbeI This Study  

JWCB005 ΔB5X54_RS01260 ΔB5X54_RS01260 ΔpyrFA This Study  

JWCB005 ΔpyrFA [54] 

JWCB018  ΔpyrFA ΔcbeI [20] 
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