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ABSTRACT 

Measurement of joint sounds and vibrations for non-invasive orthopaedic 

diagnostic purposes has slowly advanced since the 1960s. Most work has been 

focused in the development of methods for screening of abnormal knees. To date 

the technique has not gained clinical traction as is it fraught with various obstacles 

and skepticism. This doctoral thesis is neither an argument in favor of nor against 

the clinical use of vibroarthrography for musculoskeletal diagnostics in humans, 

but rather an exploration of its potential in cases of orthopaedic interest. These 

areas include 1) instability in total hip arthroplasty, 2) cam-post engagement in 

posterior stabilized total knee arthroplasty, and 3) viscosupplementation in 

osteoarthritic knees. It was expected that each of these unique cases would be 

characterized by dynamic phenomena that could be measured in the form of 

surface vibrations at the skin. 

Methods previously presented in various vibroarthrography research were 

adopted, modified, and expounded upon to best suit the needs of each experiment. 

In a mechanical hip simulator, it was found that vibroarthrography could be 

effectively used to distinguish the difference between 1 mm and 2 mm of hip 

separation. In posterior stabilized total knee arthroplasty subjects, it was found that 

multiple vibroarthrographic features may be used to approximate the occurrence 

of cam-post engagement, and that vibrations measured at the joint surface may 

be correlated to cam-post engagement velocity. In osteoarthritic knees, the 

relationship between clinical evidence, viscosupplementation, and 

vibroarthrography varied on a case by case basis.    

To the knowledge of the author, all three of these experiments are the first of their 

kind. Ultimately, the methods and results presented within provide new foundations 
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for vibroarthrography that may be used to further explore the clinical potential of 

this noninvasive diagnostic. 
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PREFACE 

The skeletal system presents engineers with unique opportunities to advance 

technology. In the field of imaging X-ray, computed tomography (CT), ultrasound, 

and magnetic resonance imaging (MRI) techniques have enabled medical 

professionals to analyze the human body with unimaginable detail. Such 

innovations have increased diagnostic accuracies, improved treatment plans, and 

enhanced education leading to improved clinical outcomes. Unfortunately, these 

technologies can be expensive and may be associated with risks, (radiation 

exposure from X-ray and CT), thus its use may not be warranted if symptoms are 

tolerable. Furthermore, some of these techniques are limited in their assessment 

of soft tissue damage. These factors amongst others can lead to late detection of 

orthopaedic disease or trauma which is more effectively treated if detected early. 

In addition, repeated image-based assessment during recovery from orthopaedic 

trauma is minimized due to costs, convenience, and exposure. Thus, a gap in 

diagnostics and monitoring exists which is well suited for a fast, noninvasive, 

affordable, and reliable technology capable of assessing joint health. 

Healthy synovial joints (most common type of joint in the human body) are 

mechanically ideal. The combination of joint fluid (synovial fluid) viscosity and 

bearing surface (articular cartilage) material properties creates a nearly frictionless 

environment in synovial joints that can be mechanically described as gliding, hinge, 

pivot, ellipsoidal, saddle, ball-and-socket and/or compound type joints. In an 

arthritic joint both the fluid and the bearing surface are compromised. Decreases 

in synovial fluid viscosity, cartilage degeneration, and abnormal bone remodeling 

are all associated with this disease. Like all mechanical systems, when damaged 

and/or functioning improperly, it can be assumed that a joint will emit distinctly 

different mechanical vibrations than when completely intact and functioning 
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properly. With the appropriate sensor, these vibrations can be measured at the 

skin surface and used for assessment of joint health. 

Vibroarthrography has often been used to denote the process of inspecting joint 

vibrations. The objective of the research presented here is to explore new 

applications of vibroarthrography at the knee and hip. These include: 

1. An in vitro investigation of instability in a total hip arthroplasty  

2. An in vivo investigation of cam-post engagement in posterior-stabilized total 

knee arthroplasty 

3. An in vivo investigation of viscosupplementation in osteoarthritic knees 
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CHAPTER 1. BACKGROUND AND INTRODUCTION 
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1.1. Vibroarthrography 

The investigation of joint sounds dates to the 17th century when Robert Hooke 

suggested joint noise could be used for diagnostic purposes. Early investigations 

utilized stethoscopes, contact microphones, and cardiophones to listen to joint 

sounds. While this technology was capable of measuring joint sounds, it was 

recognized that signals of interest were surrounded by extrinsic nonstationary 

noise such as snapping tendons and hand tremor associated with holding the 

acoustic instrument [1]. Chu and his research group from the University of Akron, 

Ohio was the first to reduce unwanted noise by utilizing a double microphone 

assembly and a differential amplifier arrangement at the knee joint [1]. In a series 

of investigations, they reported signals could be classified into rheumatoid arthritis, 

degenerative arthritis, and chondromalacia patella [2]. Furthermore, they 

demonstrated that the peak magnitude of the frequency spectrum and signal 

power was correlated with the severity of cartilage damage [1, 2]. 

In the late 1970s Mollan and his research group inspected the efficacy of recording 

joint surface vibrations with piezoelectric accelerometers, and concluded that 

these accelerometers were superior to acoustic sensors available at that time 

because of their frequency response and small size as well as the fact that these 

sensors were unaffected by sources of background noise that plagued acoustic 

sensors (Figure 1.1) [3]. They demonstrated that the major frequency components 

of a pathological knee were less than 100 Hz [4]. It was also determined that 

activity speed affected the peak acceleration and root mean squared (RMS) 

vibration, but not the peak frequency [5]. Most importantly they found that meniscal 

injuries produced unique signals, and that arthroscopic repair of these injuries 

resulted in a significant reduction of signal strength [6]. The same group of 

researchers expanded the role of their vibration system to neonatal screening of 

hips [7]. In a longitudinal investigation they demonstrated that vibroarthrography 
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Figure 1.1. Vibration arthrography data collection by McCoy et al. in 1987 (Mollan research 

group) [6]. 
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(interpretation of vibrations or sound signals emitted from a joint) could be used to 

provide information on the presence of developmental hip dysplasia otherwise not 

available to physicians, and that such a system could be implemented at little cost 

[7, 8]. Ultimately it appears that screening for developmental hip dysplasia has 

been left to physical examination followed by ultrasound inspection if deemed 

appropriate [9-11]. 

Rangayyan and his research institute at the University of Calgary further advanced 

the use of vibroarthrography at the knee through rigorous investigations of signal 

processing and pattern classification [12-29]. This group has made progress in 

adaptive cancellation of muscle interference [16], localization of the sound source 

and pathology [17], auditory mapping and display of signals [24], and parametric 

representation and screening of signals [18-20, 23, 25]. Using model parameters 

from least-squares models (autoregressive, all-pole, or linear prediction) as 

discriminant features in a set of 90 knee signals comprised of 51 normal knees 

and 39 pathological knees, the best normal-versus-abnormal classification 

accuracy was 75.6% [18-20]. More recently, wavelet decomposition and a modified 

local discriminant bases algorithm applied to 89 knee signals achieved a 

classification accuracy of 79.8% [25]. Using statistical parameters and radial-basis 

functions, classification accuracy of the same 89 signals was increased to 82% 

[26]. This last finding was important in demonstrating that simple signal statistics 

and a sophisticated classifier could be used in lieu of previously established 

classification techniques that required signal segmentation and knee flexion angle 

information. Investigation of novel signal processing and classification techniques 

by Rangayyan and his colleagues remains ongoing. This group’s contribution to 

vibroarthrography is unparalleled, and their detailed methods provide solid 

foundations for novel applications in vibroarthrography. 
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Reddy et al. also used accelerometers at the knee to characterize vibrations 

unique to osteoarthritis patients, rheumatoid patients, chondromalacia patients 

and normal subjects [30]. An additional investigation showed the accelerometer 

system was effective in distinguishing spondyloarthropathy (subset of arthritis) 

subjects from rheumatoid subjects [31]. The detected differences were based on 

a power spectral analysis of the average vibration signal power over a 100-500 Hz 

range. 

In a novel series of experiments, Kawchuk’s group at the University of Alberta, took 

a structural health monitoring approach [32-35]. Starting in porcine cadavers, they 

fixed triaxial accelerometers directly to the vertebrae and stimulated the joints with 

an electromechanical shaker [32, 33]. Experiments included analysis of intact 

vertebrae, fused vertebrae, and damaged vertebral discs (disc stab, ½ transection, 

and full transection). Differences in structural response as measured by the 

accelerometers were classified using a neural network. Success in classifying the 

damage led towards similar studies in human cadavers [34]. These investigations 

confirmed that uniaxial accelerometers mounted to the skin was adequate for 

collecting the desired data. Additionally, they demonstrated that signals exhibited 

high repeatability within an original placement, however, following removal and 

replacement of a sensor, signals changed significantly [34]. Recently this structural 

health monitoring technique was implemented on 10 pairs of identical twins to test 

its ability in detecting structural alterations in the spines of living human subjects 

(Figure 1.2) [35]. Significant differences in vibration signals agreed with structural 

differences reported by a blinded radiologist that utilized magnetic resonance 

imaging (MRI) to assess the twins’ anatomy. Specifically, the peak frequency was 

significantly different in twins that were reported to be structurally discordant. None 

of the measured vibration features (peak frequency, area under the curve, and the  

  



6 

 

 

Figure 1.2. Structural health monitoring diagram illustrates the research methods described by 

Kawchuck et al. for the analysis of twin lumbar spines [35]. 
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root mean square) were significantly different in concordant twins [35]. Additional 

research by this group is ongoing.  

Synchronization of vibrations with fluoroscopically derived kinematics has been 

investigated previously at the Center for Musculoskeletal Research (CMR) at the 

University of Tennessee. Glaser et al. conducted an initial in vivo investigation on 

the correlation between sound and hip separation in different bearing surfaces of 

total hip arthroplasty (THA) [36]. This investigation utilized a single sound 

transducer at the hip and included 24 THA subjects. Within this sample of subjects, 

existed six different bearing types. It was reported that a knocking sound was 

observed when the femoral head contacted the acetabulum in all patients that 

experienced separation. In her doctoral thesis, Glaser established methods for 

correlating sound and vibration with fluoroscopically derived kinematics and 

concluded additional research was required to more thoroughly understand the 

correlation between hip joint sounds and potentially detrimental kinematic patterns 

[37]. More recently, Zingde conducted an initial investigation of vibration data as it 

related to cam-post engagement in posterior-stabilized total knee arthroplasty 

(TKA) [38]. It was suggested in this work that vibroarthrography could be used to 

determine the mechanics of cam-post engagement such that lower vibration 

content implied a smooth transition during initial contact, and that the presence of 

a significant impulse in a vibroarthrogram implied an irregular transition during 

initial contact [38]. 

Additional vibroarthrography research conducted at CMR consists of a classifier 

developed to screen for arthritic degeneration in the patellofemoral and the 

tibiofemoral compartments of the knee [38, 39]. This research utilized a control 

group of 23 healthy subjects and an investigational group of 52 arthritic subjects 

scheduled to have a primary total knee replacement. Two triaxial accelerometers 

were used to record vibrations at the knee. The accelerometers were positioned 
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on the patella, the tibial tuberosity, and the medial femoral epicondyle. Subjects 

performed weight bearing and non-weight bearing maneuvers including a deep 

knee bend, chair rise, stair climb, stair descent, gait, and passive leg swings. A 

minimum-error-rate classifier was conditioned to achieve the highest accuracy in 

screening subjects into the appropriate groups (healthy or diseased). Numerous 

features were derived from each subject’s vibroarthrograms to be used in the 

classifier. These included the mean, median, variance, skewness, kurtosis, 90th, 

95th, 97th, and 99th quantiles, envelope integral, and the product of the envelope 

integral with the duration of the activity. All combinations of these features were 

tested to optimize the discriminant function. The highest classification rate reported 

was 96.1% [39]. This rate was achieved with 9 different sets of four features. The 

envelope integral and/or the product of the envelope integral with the duration of 

the activity was present in all of these sets [39]. In conjunction with this 

investigation, a methodology was presented to specify the compartmental 

location(s) and to grade the severity of the lesion(s) [38, 39]. Intraoperative 

inspection at the time of joint replacement was used to confirm the location and 

severity of disease. This clinical assessment served as the control to which 

vibroarthrograms were cross-referenced. Although it was suggested that 

vibroarthrography could be used to triangulate location and judge the severity of 

lesions in select cases, additional evidence is required for this diagnostic capability 

to be considered accurate and reliable.  

1.2. Objectives 

Previous investigations have utilized vibroarthrographic methods for various 

musculoskeletal related initiatives. Most notably is extensive research into the 

development of a classifier for normal and abnormal knees. Other research has 

investigated applications of vibroarthrography at the hip and the spine. 

Conclusions from these studies continue to suggest that vibroarthrography has 
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clinical potential and research remains ongoing. This dissertation was conducted 

to provide unique evidence in the initiative to make vibroarthrography a clinically 

relevant tool. Three investigations were executed to assess the applications of 

vibroarthrography at the knee and hip. Although these investigations used similar 

instrumentation, the data collection methods, post-processing techniques, and the 

assessments conducted were distinctly different depending on the objectives. The 

primary objective of the first investigation was to quantitatively describe hip 

separation as it existed in a mechanical total hip simulator using features derived 

from vibration signals. Specifically, this research sought to determine 1) how 

increases in separation, edge loading, and subsequent femoral head reduction 

effect vibroarthrographic features, and 2) how vibroarthrographic features 

correlate to standardized periods of the gait cycle in the presence of a forced 

instability. 

The objective of the second investigation was to use vibroarthrography to quantify 

the mechanics of cam-post engagement in a posterior stabilized total knee 

arthroplasty. The aims of this investigation were 1) determine how effective 

vibroarthrographic features are in estimating the time of cam-post engagement, 2) 

define the correlation between vibroarthrographic features and cam-post 

engagement velocity, and 3) define the correlation between the vibroarthrographic 

features and cam-post engagement height. 

The final investigation was designed to determine if vibroarthrography could be 

used to assess the mechanical efficacy of viscosupplementation in osteoarthritic 

knees. The objectives of this research were 1) quantify the relationship between 

preoperative and postoperative vibrations emitted from a diseased joint that was 

treated with an intra-articular hyaluronic acid injection, 2) determine if 

viscosupplementation results in more a normal like vibroarthrogram, and 3) 
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determine if vibroarthrography could be used to supplement the assessment of a 

non-surgical treatment’s success. 

1.3. Contributions 

To the best of the author’s knowledge, the three investigations presented here are 

the first of their kind. Previous vibroarthrographic investigations of hip separation 

have been conducted in vivo, but never has a well-controlled mechanical total hip 

simulator been used to study the incremental effects of increasing hip separation 

on the vibrations measured in close proximity to the joint. Similarly, although 

vibrations have previously been described in brief to relate to cam-post 

engagement, no robust quantitative analysis has ever been conducted to detail the 

relationships between vibrations and dynamic variables associated with this 

mechanism. Lastly, vibroarthrography has never been used to dynamically 

evaluate the effectiveness of a non-surgical treatment for knee osteoarthritis. In 

completion of these investigations the following contributions were made:  

1. Vibroarthrographic data collection methods for a mechanical total hip 

simulator 

2. Signal processing and denoising techniques for vibrations measured on a 

total hip simulator 

3. Data segmentation strategy for the analysis of vibrations in relation to 

standardized gait cycle periods  

4. Analysis that demonstrates the effects of increasing hip separation on 

vibroarthrographic features 

5. Fully untethered, wearable data acquisition system for the monitoring and 

collection of vibrations synchronized with fluoroscopy 

6. Methods for approximating the occurrence of cam-post engagement with 

vibroarthrography 

7. Methods for measuring cam-post engagement velocity in vivo 



11 

 

8. Analysis that demonstrates correlations between vibroarthrographic 

features and cam-post engagement velocity 

9. Analysis that demonstrates correlations between vibroarthrographic 

features and cam-post engagement height  

10. Methods for measuring the vibroarthrographic effects of a non-surgical 

treatment for osteoarthritic knees 

11. Methods for comparing vibroarthrographic features across multiple time 

points 

All the algorithms used to conduct these analyses were incorporated into a custom 

designed MATLAB based software package that can be used by CMR personnel 

for the systematic and efficient analysis of vibroarthrography related data in the 

future.  
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CHAPTER 2. REDUCTION OF THE FEMORAL HEAD FOLLOWING 
HIP SEPARATION: AN IN VITRO VIBROARTHROGRAPHIC 

INVESTIGATION OF INSTABILITY IN A TOTAL HIP 
SIMULATOR 
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Raw data for this research was collected at the University of Leeds. Dr. Mazen Al-

Hajjar and Trevor Grieco worked together to design the study and set up the 

experiments at the University of Leeds. All final data was collected by Trevor 

Grieco at the University of Leeds, and all analyses were conducted by Trevor 

Grieco at the University of Tennessee.  
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2.1. Abstract  

Technologically objective diagnosis of instabilities in THA post-operatively is 

limited to invasive and/or static approaches. Because of this, orthopaedic’s most 

advanced diagnostic instruments tend to be used only in cases of gross 

instabilities. Thus, minor instabilities like edge loading and component loosening, 

may remain unnoticed for years until the instability has compromised the joint. 

Detecting and quantifying minor instabilities before maturation into gross 

instabilities can reduce clinical risk, as well, as, emotional and financial burdens 

on patients, physicians, and healthcare providers. Edge loading of femoral heads 

on acetabular liners has been observed under dynamic in vivo conditions, and in 

vitro simulations of edge loading have reproduced clinically relevant wear patterns 

when compared to implant retrievals. Such investigations have concluded that 

small malalignment of the joint centers can result in minor instabilities. These result 

in unintended wear patterns which may lead to premature implant failure. In vivo 

investigations have suggested that surface vibrations can be used to detect 

instabilities in total hip arthroplasty. This work investigated the technique in vitro 

for the first time to gain a more thorough understanding of discriminant vibration 

features that can potentially be used for diagnostic purposes.  

During stance phase of the simulated gait cycle, significant impulse signals existed 

in correlation with the reduction of the femoral head following induced 

medial/lateral shifts that were less than 1 mm in magnitude. Additionally, controlled 

increases in the medial/lateral shift correlated with increases in the energy of the 

associated impulse signals. These findings suggest that when evaluated in relation 

to standard gait cycle periods, vibroarthrography has potential to provide valuable 

diagnostic information related to the presence of edge loading and subsequent 

femoral head reduction in a total hip arthroplasty. Additional research is required 

to test the methods in vivo. 
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2.2. Introduction 

Since first introduced in the 1960s by Sir John Charnley, the modern THA has 

undergone decades of refinement that has positioned it amongst the most 

successful surgical procedures in modern medicine [40]. Despite its resounding 

success, design rationale; surgical technique; and component position theory 

continue to evolve as demand for more functional THA increases. Amongst issues 

that plague THA, is malalignment of the acetabular component. Malalignment can 

be both rotational and translational in nature.  Rotational malalignment is 

characterized by excessive inclination and/or anteversion of the acetabular 

component while translational malalignment is due to improperly aligning the 

centers of the femoral head and acetabular cup [41]. Such malalignments may 

result in undesirable impingement, edge loading, accelerated wear, and 

dislocations. 

Efforts to mitigate such instabilities and failure modes in THA can be categorized 

into 1) implant design rationale and 2) surgical technique. From the Charnley to 

the dual mobility hip, surgeons have been provided access to a range of THA 

geometries intended to restore hip functionality. Head size, cup diameter, neck 

length, neck angle, head-neck ratio, femoral stem angle, and femoral stem length 

may all affect patient outcomes [42, 43]. Numerous investigations have isolated 

various culprits and solutions for instabilities. For example, large femoral heads 

and constrained liners have been recommended and demonstrated to reduce THA 

instabilities such as dislocation and edge loading [44-46]. More recently the dual-

mobility hip has been suggested as an alternative to large femoral heads citing its 

enhanced wear performance in the presence of third-body particles and 

microseparation [47]. Despite these solutions and others, mechanically speaking, 

the correct combination of selected components is required to truly optimize the 

stability of the total joint system. Therefore, provided with appropriate components, 
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successful restoration of the joint mechanics still hinges upon proper surgical 

implementation. Despite the joint’s simplistic ball and socket geometry, a few 

degrees can make all the difference. The orientation of the acetabular cup is most 

often described by two angles – inclination and anteversion. In the 1970s, 

Lewinnek et al. proposed the “safe zone” pertaining to cup orientation in THA [48]. 

This zone suggested if cup inclination was 40° ± 10° and cup anteversion was 15° 

± 10° the risk of dislocation was minimized [48]. For the last 30 years this safe 

zone has been recommended and accepted as the gold standard amongst most 

surgeons [49]. However more recently, fine tuning this concept has been of interest 

to further optimize THA mechanics. Reports of dislocation and abnormal wear 

despite appropriate positioning with regards to the “safe zone” [43] have fueled 

investigations of the reference frames and patient specific dynamics that affect hip 

replacement and function. Abdel et al. reported that in a group of 206 primary THAs 

that subsequently dislocated, 120 of them were within the Lewinnek safe zone. It 

was concluded that this majority demonstrated that THA stability is multifactorial 

and that for some patients, ideal acetabular component positioning is likely outside 

the Lewinnek safe zone. Inconsistencies in measuring and discussing anteversion 

and inclination has led to confusion amongst researchers and surgeons [42]. 

Indeed three reference frames (anatomic, radiographic, and operative) are used 

to describe these angles in practice and literature [42, 50], and not surprisingly, the 

choice of reference frame can have a substantial impact on the reported angles 

[42]. In addition to measurement technique, it is clear now that pelvic tilt (PT), which 

has been shown to have a pre-operative inter-subject range in excess of 35°, also 

affects the “functional” anteversion and inclination [51]. Additional investigations 

have demonstrated that proper target alignment needs to consider the patient 

specific dynamics so that cup positioning is more functional during activities of daily 

living [49, 52, 53]. 
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Malalignment can result in inadequate coverage of the femoral head by the 

acetabular component during activities of daily living. This coverage relates directly 

to the elastohydrodynamic lubrication (EHL) of the joint and in cases of suboptimal 

coverage, the EHL is compromised resulting in increased wear [54, 55]. Therefore, 

mitigation of wear requires a technique by which coverage can be confidently 

measured through various ranges of motion. The calculation of the contact patch 

to rim (CPR) distance is one metric of coverage that accounts for component size, 

design, and acetabular orientation (Figure 2.1) [56-58]. CPR distance utilizes 

radiographs and data from Bergmann’s telemetry investigation to measure 

functional coverage [59]. Multiple investigations have reported correlations of CPR 

distance to edge wear [56, 57] and CPR distance was recently described as the 

best calculation to assess functional coverage [58]. Currently surgical navigation 

that combines CPR distance theory with patient-specific anatomy and 

computational modeling is being utilized by early adopters in the operating room 

to optimize acetabular component positioning.  

Despite guidelines intended to minimize instabilities in THA, instances of 

“separation” during gait and abduction/adduction maneuvers have been observed 

in vivo with fluoroscopic techniques [36, 37, 44, 60, 61]. The separation described 

within this work is not a complete dislocation of the femoral head, but rather a less 

severe loss in the coincident geometrical relationship of the femoral head center 

and the center of the acetabular cup. During such a scenario the femoral head may 

still be in contact with liner. Other works refer to the phenomenon as 

“microseparation” as it is usually on the magnitude of hundreds of microns. In 

cases for which the femoral head is known to maintain contact with the liner, the 

term lateralization may be used. Previous in vitro investigations have simulated 

microseparation through mechanical means by application of external forces. 

Millions of gait cycles that incorporate microseparation successfully reproduce  
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Figure 2.1. Schematic illustrating the contact patch to rim distance for the measure of functional 

coverage in THA as described and presented by Amstutz and Le Duff [58]. 
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clinically relevant wear patterns when compared to failed acetabular components 

and femoral heads obtained through retrieval research [41, 62]. The separation of 

the femoral head with respect to the acetabular liner is most commonly reported 

to occur in an inferior-lateral direction such that when the leg is unloaded during 

swing phase, no compressive forces maintain the concentricity of the malaligned 

joint centers. Depending on alignment, position, soft tissue tension, and muscle 

forces [62], the joint may migrate to a position of equilibrium that compromises the 

contact mechanics of the hip. If the contact patch approaches the acetabular rim 

during swing phase, then unintended loading of the rim (edge loading) can be 

expected upon reloading the joint. Millions of steps later, this edge loading results 

in wear that that can lead to a costly revision. 

Identification of the microseparation in vivo is not trivial. To date it has only been 

confirmed with fluoroscopic evaluation which is inconvenient and involves 

exposing subjects to ionizing radiation. Incidences of audible squeaking in hips 

has led to the investigation of joint sounds and vibrations at the skin surface in 

hopes of developing a noninvasive diagnostic tool for identification of 

microseparation and/or other instabilities in THA [36, 37]. Although the signals are 

corrupted by noise and require substantial post processing, preliminary 

investigations correlating fluoroscopically derived THA kinematics to sound and 

vibration signals suggest potential for this technology [36, 37]. Furthermore, as the 

hip joint is deep and often surrounded by substantial adipose tissue, deliberating 

the signal from noise is near impossible without some preexisting knowledge of 

characteristic signal features. To effectively begin validation of vibration as a 

diagnostic tool in hips, it is critical to start in a controlled environment such as a 

mechanical simulator that can effectively replicate instabilities of interest. 

The Leeds Mark II Physiological Anatomical hip simulator has been utilized 

effectively to replicate clinically relevant wear rates and patterns when compared 
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to retrieved implants. This simulator has been successfully deployed to study 

metal-on-metal (MoM), metal-on-polyethylene (MoP), ceramic-on-ceramic (CoC), 

and ceramic-on-polyethylene (CoP) THAs [47, 62-66]. Aside from material 

properties, experiments have demonstrated the simulator’s role in discerning wear 

as it relates to component size and component alignment [66]. Most importantly 

with regards to the present study, the system has been modified to mechanically 

simulate the adverse conditions associated with edge loading during the swing 

phase of gait [62, 64, 65]. More recently, mathematical models have been 

validated with these experimental results from the simulator to provide additional 

insight with regards to the contact forces and wear mechanisms associated with 

the microseparation [41, 49, 67]. Considered a well validated in vitro test bed for 

THA investigations, this simulator was selected for the initial vibration assessment 

of THA instabilities in vitro.  

Although rotational malalignment is of interest, this investigation focused solely on 

translational malalignment. In this research, it was hypothesized that the instability 

of microseparation in a MoP THA could be successfully measured and 

characterized by surface vibrations and that differences in magnitudes of 

microseparation could be clearly distinguished in features derived from the 

vibroarthrograms. 

2.3. Materials and Methods 

2.3.1. Experimental Configuration of the Simulator 

All experiments used the Leeds Mark II Physiological Anatomical hip joint simulator 

at the University of Leeds Institute of Medical and Biological Engineering (Figure 

2.2). A single station was prepped with DePuy Synthes (Warsaw, IN, USA) THA 

components (Table 2.1). This system has been described and modelled as two 

major parts – the cup holder and the femoral stem [67]. The cup holder used was 

designed such that the acetabular components were set at 45° of inclination and  
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Figure 2.2. The experimental setup utilized a single station of the Leeds II Physiological Anatomical 

hip joint simulator along with hardware and software unique to collecting vibrations. 
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Table 2.1. DePuy Synthes Total Hip Arthroplasty Component Details 

Component Size 

PINNACLE® POROCOAT®  

Acetabular Shell 100 Series 
56mm outer diameter 

PINNACLE® MARATHON®  

Polyethylene Acetabular Shell 

36mm inner diameter, 

 56mm outer diameter 

M-SPEC™ Metal Femoral Head Ø36mm +5 12/14 Taper 

C-STEM® AMT Size 1 
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0° of anteversion. The acetabular shell was cemented into the cup holder and the 

liner was press fit into its appropriate position. It can be assumed that the liner is 

rigidly connected to the acetabular shell and that the acetabular shell is rigidly 

connected to the cup holder. The femoral stem was cemented into its respective 

stem holder. The cup holder, under conditions allowing for separation, exhibited 

three degrees of freedom (Figure 2.3). These included internal/external rotation 

(+/- 10°), superior-inferior (SI) translation, and medial-lateral (ML) translation. The 

femoral stem was limited to a single rotational degree of freedom – 

flexion/extension (-15° to +30°). Vertical loading was applied down through the 

acetabular component and the center of the femoral head to simulate body weight 

(Figure 2.3). The loading was characterized by a twin peak cycle with a peak load 

of 3 kN and a swing phase load of 0.07 kN. A spring was utilized to induce a 

medial/lateral shift of the acetabular components, as first described by Nevelos et 

al. [62], to simulate swing phase hip separation (Figure 2.3). All loading and 

rotations were driven by the same control algorithm to simulate 1 gait cycle per 

second. 

2.3.2. Data Acquisition 

Load profiles and rotations were provided as outputs of the software standard to 

the hip simulator. This data was sampled at 128 Hz. A separate data acquisition 

(DAQ) system utilized custom designed LabVIEW based software and a NI 6341-

USB DAQ board (National Instruments, Austin, TX, USA) to acquire and log six 

signals. These included the signals from four accelerometers, a linear variable 

differential transformer (LVDT), and a sync signal. Four uniaxial accelerometers 

measured simulator surface vibrations during all experiments. These included 

three 352C68 accelerometers and one 352A24 accelerometer (PCB Piezotronics 

Inc., Depew, NY, USA). Both models are high sensitivity, miniature, integrated 

electronic piezoelectric (IEPE) accelerometers with the same performance 
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Figure 2.3. Schematic of the Leeds Mark II Physiological Anatomical hip simulator modified to 

induce a medial/lateral shift of the acetabular components and to measure the vibrations 

experienced at the hip joint with accelerometers. 
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specifications (sensitivity of 100 mV/g, a measurement range of ±50 g pk, and a 

frequency range of 0.5 to 10000 Hz (±5%)). The models differ in physical 

specifications which allowed for the accelerometers to be most effectively utilized 

in certain locations of interest on the simulator. All accelerometers were connected 

to the input terminals of an IEPE signal conditioner (482C16, PCB Piezotronics, 

Depew Inc., NY, USA) which was configured to amplify all incoming signals by a 

factor of 10 (Figure 2.4). Positive leads (red) from the signal conditioner outputs 

were connected to positive analogue inputs (AI) 0-3 on the DAQ board. Negative 

leads (black) were connected to respective AI ground (GND) terminals on the DAQ 

board (Figure 2.4). One LVDT (D6/02500A-L10, RDP Electronics Ltd. 

Wolverhampton, UK) was used to measure the medial/lateral displacement of the 

cup holder. This sensor had its own respective signal conditioner and was 

calibrated to 4 V/mm. The positive lead of the LVDT output was connected to AI 

4+, and the negative lead was connected to its respective AI GND on the DAQ 

board (Figure 2.4). Due to the uncoupled nature of the two data acquisition 

systems (HipSim and LabVIEW), a simple circuit was created to synchronize 

outputs. This circuit consisted of a 9 V battery, a switch, and two parallel branches 

with LED indicators and output terminals. One branch connected to AI 5+ and AI 

5- on the DAQ board (Figure 2.4). The other branch connected to the Load Cell 1 

input on the HipSim system. Specifically, an extra load cell cable was cut at one 

end, and the cable was stripped back to expose the 5 wires. The white wire was 

connected to the positive terminal and the green wire was connected to the 

negative terminal of the sync circuit output. Using the switch to open/close the 

circuit provided a sync signal in the form of a voltage drop/gain that could be 

identified in both the HipSim and LabVIEW data files. 

All incoming signals from the DAQ board were sampled at 10 kHz in LabVIEW. 

Channels AI 0:4 were configured as reference single-ended inputs, and channel 
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Figure 2.4. Accelerometers and the LVDT were connected to analog inputs of the NI USB-6341 

DAQ board. The sync circuit was connected to both the NI USB-6341 DAQ board and an unused 

load cell input for the hip simulator so that signals from the two systems could be synchronized 

during post processing. 
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AI 5 was configured as a differential input. Data was collected from all simulations 

in the same systematic manner. This involved the following steps: 1) Start 

LabVIEW program, 2) turn on hip simulator pump and filter, 3) start gait simulation, 

4) start LabVIEW recording after a minimum 15 gait cycles, 5) flip sync circuit 

switch and allow for a minimum 30 more gait cycles, 6) flip sync circuit switch, 7) 

stop LabVIEW recording, 8) Stop simulator. 

2.3.3. Simulating and Measuring Hip Separation 

The cyclical loading of the hip simulator coupled with the appropriate positioning 

and tensioning of a spring induces a medial/lateral shift of the cup holder that can 

be measured with the LVDT (Figure 2.5) [62]. More specifically when the vertical 

loading was reduced the spring would force the cup holder to shift medially. As 

loading was reintroduced to the system the spring would be forced back into 

tension allowing the cup holder to return to its original position. Depending on the 

amount of separation, this return may be notably characterized by the acetabular 

liner impacting the femoral head. The motion in this experimental setup has been 

previously modelled as four distinguishable phases: 1) lateral separation, 2) edge 

loading, 3) relocation, and 4) centered conditions (Figure 2.6) [67]. The peak-to-

peak voltage (Vpp) of the LVDT signal was used to assess the physical magnitude 

of separation. Three simulations with increasing magnitudes of medial/lateral shift 

were conducted. These included a control (0 mm of separation), approximately 1 

mm of separation, and approximately 2 mm of separation. During standard gait 

with no separation the spring was not under any tension, and the femoral head 

was assumed to maintain concentric contact with the acetabular liner (Figure 

2.7A). For 1 mm and 2 mm separation trials the spring was iteratively tensioned to 

achieve peak-to-peak voltage measurements that were as close to the target value 

(4 Vpp and 8 Vpp respectively) as possible before recording data. A small 

medial/lateral shift was present in the control scenario gait cycles (average  
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Figure 2.5. A linear variable differential transducer (LVDT) was used to measure the medial-lateral 

separation that was induced by a spring during swing phase of the loading cycle. 
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Figure 2.6. During swing phase, the vertical load (red line) on the joint is negligible and lateral 

separation (green line) gradually increases. When loading is reintroduced at the beginning of 

stance phase, edge loading occurs. As the load overcomes the spring force, the separation 

decreases sharply and the accelerometer (blue line) experiences a pronounced impulse associated 

with the abrupt reduction of the femoral head with respect to the liner as it relocates to centered 

conditions. 
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Figure 2.7. (A) Translational instability was forced by increasing tension in a spring to induce a 

superior-medial shift of the of the acetabular components with respect to the femoral head. (B) The 

average LVDT data and load cycle illustrates the difference in medial/lateral shift that was induced 

by the spring experimentally. 
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maximum = 0.2975 mm) (Figure 2.7B). The average maximum medial/lateral shift 

for the 1 and 2 mm gait cycles was 0.8789 mm and 2.0586 mm respectively (Figure 

2.7B). Although, the medial/lateral shifts are not exactly at the target value the trials 

will be referred to as 0 mm, 1 mm, and 2 mm for the remainder of this report.  

A series of trials were undertaken for three unique configurations of the hip 

simulator. These configurations were characterized by the lubricant used at the 

joint. Lubrications included Vaseline, water, and diluted bovine serum. The 

Vaseline and water-based experiments were merely conducted to ensure 

progression in complexity of the hip simulator configuration was warranted. The 

vibration data from these preliminary experiments does not offer additional insight, 

but rather is subject to inferior anatomical representation of the hip joint as 

vibrations will be amplified due to increased friction resulting from the lack of 

adequate EHL. Therefore, the data collected from serum-based experiments was 

used for final analyses as it is considered the most well-defined experiment with 

regards to simulating human gait. Two accelerometers were mounted as close to 

the center of the joint as possible on the acetabular components (Figure 2.3). One 

of these was screwed into the cup holder, and the other was mounted directly to 

the acetabular liner (Figure 2.8). The cup holder site was prepared by tapping a 

hole to match the mounting thread of the accelerometer (5-40) such that the sensor 

was essentially flush with the surface of the cup holder after being screwed into 

position. The liner site was prepared by machining a tunnel into the medial aspect 

of the cup holder. This tunnel was aligned with the retrieval hole that is present on 

the acetabular shell, thus exposing a small circular region of the acetabular liner 

on which the accelerometer could be directly mounted with an adhesive. Since this 

site was below the surface of the lubricant bath, the following steps were taken to 

protect the accelerometer from damage that may have occurred if it were to come 

in contact with the fluid. First the circumferential area between the liner and the  
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Figure 2.8. (Left) An accelerometer was screwed directly into the cup holder. (Middle) A tunnel was 

machined into the cup holder to expose the acetabular liner through the insertion hole present on 

the acetabular shell. (Right) An accelerometer was mounted directly to the acetabular liner. 
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cup holder was filled with silicone to prevent serum from seeping through any gaps 

present between the acetabular liner and the shell (Figure 2.9). Second a snorkel 

was created for the tunnel; a plastic tube with a diameter slightly smaller than that 

of the tunnel was selected to ensure a tight fit inside the tunnel. Before installing 

the snorkel, the accelerometer was passed through the snorkel and mounted into 

position on the liner with super glue. Once dry, the snorkel was put into position 

and surrounded with silicone (Figure 2.9). The lubricant bath was contained by a 

gaiter that encapsulated all suitable mounting sites on the femur near the joint 

center (Figure 2.10). Therefore, the femoral accelerometers had to be positioned 

further from the joint center than the acetabular accelerometers. One was 

positioned on the cylindrical stem holder (Femur ML), and the other was mounted 

on the cross beam of the femoral frame that supports the femoral components 

(Femur SI) (Figure 2.10). Femoral accelerometers were mounted to these 

locations with petro wax (080A24, PCB Piezotronics, Depew Inc., NY, USA). 

All analyses of vibration data were conducted at the University of Tennessee using 

MATLAB (MathWorks, Natick, MA, USA). Three datasets (0 mm, 1 mm, and 2 mm 

of separation) were processed in the following manner. First raw data acquired by 

the two systems (LabVIEW and HipSim) within each simulation was synchronized 

using the two sync signals that existed in each data set. Next, the synchronized 

data was cropped at the front end so that the first sample of each gait cycle 

corresponded to the first reloading sample (physiologically this sample can be 

considered heel strike) (Figure 2.11). The data was cropped again at the end of 25 

complete gait cycles. The 25 gait cycles (each of which contained 10000 samples 

aligned in time) were averaged to obtain a single mean gait cycle. Prior to any 

further processing, the accelerometer data was assessed for noticeable signs of 

impact. Inspection focused on the edge loading and relocation segment of the gait 

cycle for 1 mm and 2 mm of separation. The medial/lateral velocity of the cup  
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Figure 2.9. (Left) Silicone was applied to the area between the acetabular liner and the cup holder 

to prevent serum from seeping through the backside where the accelerometer was mounted. 

(Middle and right) The snorkel was positioned in the tunnel and surrounded with silicone to protect 

the accelerometer from serum. 
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Figure 2.10. (Left) The “Femur ML” accelerometer was mounted below the simulator on the femoral 

stem holder such that its axial direction was medial/lateral. (Right) The “Femur SI” accelerometer 

was mounted on the cross beam of the femoral frame such that its axial direction was 

superior/inferior. A silicone gaiter was used to encapsulate the joint in a lubricant bath (diluted 

bovine serum). 
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Figure 2.11. The load cycle was used to synchronize the different simulations for analysis. A three 

second segment of the twin peak load profile from each simulation illustrates the alignment of 

common characteristics with respect to time. 
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holder was calculated as the time-based derivative of the LVDT data. The 

maximum velocity and acceleration experienced by the system was noted for each 

average gait cycle. Prior to any additional analyses, the signals needed to be 

processed to eliminate simulator noise. 

2.3.4. Discrete Wavelet Transform and Signal Denoising 

The discrete wavelet transform (DWT) is a multiresolution technique that uses 

finite asymmetric functions to approximate a signal. These functions can be dilated 

(scaled) in space and translated (shifted) in time to obtain a unique decomposition. 

This localized decomposition enables the transform to isolate singularities and 

irregularities in a non-stationary signal [68]. This is ideal for naturally occurring 

signals that tend to have slowly varying components punctuated with transients of 

interest and are often buried in noise. The DWT involves convolving the signal with 

filters and dyadic decimation. It can be implemented by passing a signal through 

an iterated two-channel filter bank that uses unique low and high pass filters to 

split the signal into course approximations and fine details [69, 70]. These filters 

can be used to iteratively divide approximation sub-bank data until the desired level 

of detail is obtained (Figure 2.12). The decomposition can then be used to 

selectively denoise or process the signal as desired by thresholding coefficients. 

After processing, the signal can be reconstructed using the inverse discrete 

wavelet transform (IDWT). As the DWT incorporated two decomposition filters and 

downsampling, the IDWT incorporates two reconstruction filters and upsampling. 

These reconstruction filters are quadrature mirror filters of their respective 

decomposition filters [69, 70].  

Since the end of the 1980’s wavelets have been implemented in various 

biomedical applications including magnetic resonance imaging, computerized 

tomography, radiography, respiratory-related evoked potential, electromyography, 

electrocardiography, and electroencephalography [68]. For the present work, the  
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Figure 2.12. The discrete wavelet transform illustrated as a two-channel filter bank with dyadic 

decimation. 
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Daubechies 4 (db4) wavelet was selected as the mother wavelet function as it is 

considered an efficient wavelet for biomedical signal analysis (Figure 2.13 and 

Figure 2.14) [71]. This mother wavelet has previously been utilized to analyze 

vibrations emitted from the knee joint [25, 71], and in the present work it 

demonstrated exceptional correlation with raw signals in regions of interest 

(primarily the reduction of the femoral head following separation). For each level 

of a wavelet decomposition a scaled wavelet is translated and convolved with the 

raw signal to obtain coefficients. To understand the shape of the scaled wavelet at 

each level, the concept of the wavelet center frequency can be used. The center 

frequency of a wavelet is the frequency maximizing the Fourier transform of the 

wavelet modulus [72-74]. For db4, the normed (sampling rate = 1) center frequency 

is 0.7143 Hz [73] (Figure 2.15). A center-frequency for each scale used in the 

decomposition can be calculated with the following relationship 

𝐹𝑎(𝑗) =
𝐹𝑐

2𝑗 · 𝑑𝑡
 

In which 

• 𝑗 is the decomposition level 

• 𝑑𝑡 is the signal sampling period  

• 𝐹𝑐 is the normed center frequency of a wavelet in hertz   

• 𝐹𝑎 is the scaled center frequency in hertz corresponding to the level of 

decomposition, 𝑗, and the signal sampling period, 𝑑𝑡 

The approximations and details have octave bandwidths starting with the Nyquist 

frequency (Table 2.2) [75]. The average gait cycle from each simulation were 

decomposed. A level 10 decomposition was performed resulting in detail subbands 

that ranged from approximately 5 Hz to 5000 Hz (Figure 2.16 and Figure 2.17). 

Inspection of each level for each unique trial of separation yielded the following 
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Figure 2.13. Daubechies 4 scaling and wavelet function coefficients for dyadic grid values. 
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Figure 2.14. Impulse response and discrete Fourier transform (DFT) of Daubechies 4 filters. 
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Figure 2.15. The most prominent feature of the db4 wavelet is comparable to a cosine function that 

oscillates at 0.7143 Hz. 
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Table 2.2. Center Frequency and Decomposition Bandwidths for a Level 10 db4 Wavelet 

Decomposition of a Signal Sampled at 10,000 Hz  

Level 
db4 Scaled 

Center Frequency (Hz) 

Approximation 

Bandwidth (Hz) 

Detail 

Bandwidth (Hz) 

0 7143 0-5000 N/A 

1 3571.4 0-2500 2500-5000 

2 1785.7 0-1250 1250-2500 

3 892.86 0-625 625-1250 

4 446.43 0-312.5 312.5-625 

5 223.21 0-156.25 156.25-312.5 

6 111.61 0-78.125 78.125-156.25 

7 55.804 0-39.063 39.063-78.125 

8 27.902 0-19.531 19.531-39.063 

9 13.951 0-9.766 9.766-19.531 

10 6.9754 0-4.883 4.883-9.766 
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Figure 2.16. Details 1-5 (d1-d5) illustrate bandwidths in which substantial simulator noise 

corrupted the signal. 
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Figure 2.17. Details 6 and 7 (d6 and d7) illustrate bandwidths in which the signal is relatively clear 

of simulator noise. Details 8-10 (d8-d10) and approximation 10 (a10) illustrate low frequency 

bandwidths that were not used in signal reconstruction.  
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conclusions that were eventually used to denoise the signal. Levels 1-5 were 

similar for all three echelons of separation primarily because these levels were 

highly corrupted by simulator induced noise. Level 6 and 7 coefficients were 

distinctly different for each unique amount of separation and exhibited the 

strongest correlation with the signal during times associated with edge loading and 

relocation. Levels 8 and 9 exhibited mild correlation in regions of interest but did 

not provide additional discriminant information. Level 10 detail and approximation 

coefficients provided no useful information. For each magnitude of separation, 

levels 6 and 7 detail coefficients were used to reconstruct the signal (Figure 2.18). 

Reconstructed signal coefficients, 𝐶𝑖, were used to calculate the energy, 𝐸(𝑘), in 

seven commonly described periods, 𝑘, of the gait cycle according to Neumann 

[76]. The seven periods included: 1) loading response, 2) mid stance, 3) terminal 

stance, 4) pre swing, 5) initial swing, 6) mid swing, and 7) terminal swing. The 

boundaries, 𝑏𝑘, of these periods were defined as a percentage of the gait cycle 

coinciding with one of eight events described by Neumann [76]. The energy for 

each period, 𝑘, was calculated as 

𝐸(𝑘) = ∑ 𝐶𝑖
2

𝑏𝑘+1

𝑖=𝑏𝑘

 

and the total energy, 𝐸𝑡𝑜𝑡, for the averaged gait cycle was calculated as 

𝐸𝑡𝑜𝑡 = ∑ 𝐶𝑖
2

𝑖

 

The relative energy, 𝑝(𝑘), for each period was calculated as 

𝑝(𝑘) =
𝐸(𝑘)

𝐸𝑡𝑜𝑡
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Figure 2.18. The denoised and reconstructed signals from the liner accelerometer enable 

discriminant features associated with separation to be more clearly identified. 
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Figure 2.19. Commonly discussed events and periods of a gait cycle were used to segment the 

vibration data for analysis (illustration courtesy of Neumann’s Kinesiology of the Musculoskeletal 

System [76]). 
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2.4. Results 

2.4.1. Dynamic Descriptors of Average Gait Cycles 

The average gait cycle was first analyzed for basic dynamic descriptors ( 

Table 2.3). Distinct impulses were identified during the loading response (0%-10% 

of gait cycle) on both the liner and the cup holder accelerometers. The liner 

accelerometer experienced the greatest accelerations due to its proximity to the 

joint center. This data was used for maximum acceleration (amax) measurements. 

The maximum velocity (vmax) and maximum acceleration occurred during the 

loading response period for all scenarios. In 1 mm and 2 mm trials, vmax and amax 

occurred within 5 milliseconds of each other and amax occurred after vmax. In the 0 

mm experiment, 14.8 milliseconds separated vmax and amax, and amax occurred 

before vmax. The maximum acceleration data and maximum medial/lateral shift 

measured experimentally with the LVDT was used to perform a linear regression. 

The resulting line illustrates the effect that increasing medial/lateral shift has on the 

maximum acceleration (Figure 2.20). The equation of the line fit to the data is 

𝑎𝑚𝑎𝑥(𝑑𝑚𝑎𝑥) = 10302𝑑 − 2470.8 

In which 𝑎𝑚𝑎𝑥 is the maximum raw acceleration logged in a gait cycle, and 𝑑𝑚𝑎𝑥 is 

the maximum shift measured in a gait cycle. This model has a correlation 

coefficient (R2) of 0.9848. 

2.4.2. Total Energy 

All reconstructed signals were analyzed holistically and in segments that 

commonly describe periods of a gait cycle. Inspection of the total energy as a 

function of accelerometer position and amount of separation reveals some 

expected and unexpected patterns. The characteristic pattern is well defined in the 

liner signal due to its proximity to the joint. The total energy measured at this 

position increases with increasing amounts of separation (Table 2.4). The same  
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Table 2.3. Average Maximum Velocity and Accelerations for a One Second Gait Cycle 

Measurement 

0 mm 1 mm 2 mm 

Time 

(sec) 
Magnitude 

Time 

(sec) 
Magnitude 

Time 

(sec) 
Magnitude 

Maximum 

Velocity 

(mm/sec) 

0.0239 17.235 0.0409 33.452 0.0743 78.283 

Maximum 

Acceleration 

(mm/sec2) 

0.0091 1464.8 0.0451 5284.5 0.0769 19166 

 
 

 

Figure 2.20. The maximum acceleration increases as the maximum medial/lateral shift increases 

(R2 = 0.9848). 
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Table 2.4. Total Energy in Average Gait Cycles Measured at Four Locations 

Separation Liner Cup Holder Femur ML Femur SI 

0 mm 1.57 1.86 4.37 4.36 

1 mm 9.24 4.16 8.19 9.69 

2 mm 78.42 12.36 6.90 8.54 
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pattern is also present in the signal measured at the cup holder although to a lesser 

extent. The total energy measured at the cup holder for the control is slightly higher 

than the total energy measured at the liner for the same trial. Total energy 

measurements conducted at the femur locations do not contain the same 

characteristic patterns with respect to increasing amounts of separation. 

2.4.3. Energy by Gait Cycle Period 

To gain a more physiological understanding of the signals, the gait cycle was 

dissected into seven periods. In these seven periods, the energy was calculated 

and used to study how the gait cycle and the location of the accelerometer affected 

vibrations in the presence of an instability (Figure 2.21, Figure 2.22, Figure 2.23). 

The most extreme scenario (2mm) provides the best insight to the patterns (Figure 

2.23, Figure 2.24). The loading response (0-10%) contained the greatest amount 

of energy for each of the four locations. The following period, mid stance (10%-

30%), contained substantially less energy. After mid stance, the liner, cup holder, 

and femur SI location, experienced increased energy in the terminal stance period 

(30%-50%). The energy at the liner and cup holder decreased in pre swing (50%-

60%), and then remained relatively unchanged for the remainder of the gait cycle. 

Both femur locations increased energy in the pre swing phase, after which their 

relative energy fluctuated by smaller amounts through swing phase. Formally, 

swing phase spans 60% to 100% of the gait cycle and includes three phases (initial 

swing, mid swing, and terminal swing). During these three phases and the 

preceding pre swing phase, the energy measured at both femur locations was 

greater than the energy measured at the liner and the cup holder location (Figure 

2.24). 

For the control experiment (0 mm) the energy of the reconstructed signal did not 

exceed 2 units in any period at any of the four locations (Figure 2.21). The energy 

profiles of the four 1 mm signals (Figure 2.22) were very similar in pattern to their  
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Figure 2.21. The energy measured at four locations in each period of the gait cycle for control 

conditions. 
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Figure 2.22. The energy measured at four locations in each period of the gait cycle for 1 mm 

conditions. 
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Figure 2.23. The energy measured at four locations in each period of the gait cycle for 2 mm 

conditions. 
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Figure 2.24. The energy measured at four locations in each period of the gait cycle for 2 mm 

conditions (same data as Figure 22 with zoom applied to energy axis for illustrative purposes). 
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respective 2 mm signals. As expected, the 1 mm signals were significantly less 

than the 2 mm signals. 

2.4.4. Relative Energy by Gait Cycle Period 

The relative energy of each gait cycle period was calculated as a fraction of the 

total energy measured at each location for the duration of the gait cycle. This metric 

was used to gauge the differences in energy among experiments for a given 

transducer location. At the liner, the energy is well distributed across most periods 

for the control (0 mm) scenario. The initial swing period contains 32.8% of the gait 

cycle energy while all other periods contain between 6.3% and 17.9%  

 (Figure 2.25). In cases of separation (1 mm and 2 mm) the energy is more heavily 

concentrated in the loading response of the gait cycle. At the liner, the loading 

response contains 69.6% and 94.8% of the 1 mm and 2mm gait cycle energy 

respectively. After this phase, the relative energy for separation trials remains 

below 20%. One other period of interest at this location is the terminal stance 

phase which contains noticeably more energy than its two surrounding periods. 

During swing phase, the relative energy of the liner is minimal in cases of 

separation.  

Similar to the liner, the cup holder energy is concentrated in the loading response 

period of the gait cycle for cases of separation (Figure 2.26). For 1 mm and 2 mm 

of separation the loading response contains 75.9% and 86.0% of the gait cycle 

energy respectively. One difference for this location, is that more than 50% of the 

energy for the control experiment is also distributed in this period. After the loading 

response, the relative energy for the control decreases significantly and only rises 

above 10% in the initial swing period (60-73%). For cases of separation the relative 

energy at the cup holder experiences the same rise in energy seen at the liner 

during terminal stance before reducing again to a minimum in swing phase. 
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Figure 2.25. The relative energy at the liner illustrates the effects of separation across the gait 

cycle. 
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Figure 2.26. The relative energy at the cup holder illustrates the effects of separation across the 

gait cycle. 
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In agreement with the liner and cup holder locations, the femur locations registered 

maximum relative energy in the loading response in the presence of 2 mm of 

separation (Figure 2.27 and Figure 2.28). The loading response relative energy for 

1 mm of separation was actually less than the control for both femur locations. No 

gait cycle period contained more than 50% of the total energy at either femur 

location. For 2 mm of separation the relative energy at Femur SI decreased in mid 

stance, then increased in terminal swing and pre swing (Figure 2.28). The same 

trend was present in 1 mm of separation and the control scenario. The amount of 

relative energy between terminal stance and initial swing was characteristic feature 

of both femur locations for all experiments including the control. The relative 

energy in this pre swing period is a local maximum for all locations. After pre swing 

the relative energy decreased, before rising again in mid swing and again in 

terminal swing period. In the Femur ML location more than 50% of the energy was 

contained in the pre swing and swing phase periods (50-100%) of the gait cycle 

for all experiments (Figure 2.27). At the Femur SI location nearly 75% of the energy 

was contained in the second half of the gait cycle for the control and 1 mm of 

separation (Figure 2.28).  

2.5. Discussion 

Total hip arthroplasty is considered a highly successful surgery. However, the 

increased demand for more functional implants continues to drive innovation. 

Years of research have demonstrated that instabilities in modern THA do exist, 

and these instabilities can lead to unintended wear patterns that reduce the 

longevity of the prosthesis. Diagnosing such instabilities before they compromise 

the joint may allow for treatments that correct for or mitigate the instability. 

Currently examination and diagnoses of such minor instabilities is relatively 

nonexistent. No objective techniques are readily available to physicians and 

observation of such instabilities is less than convenient. Considering that the 
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Figure 2.27. The relative energy at Femur ML illustrates the effects of separation across the gait 

cycle. 
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Figure 2.28. The relative energy at Femur SI illustrates the effects of separation across the gait 

cycle. 
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instabilities are dynamic in nature, an ideal diagnostic system must monitor the 

joint through full ranges of motion under various loading circumstances. To date 

such instabilities have only been accurately identified in patients using fluoroscopy 

and 3D-to-2D registration techniques for kinematic assessment [44, 60, 61, 77]. In 

conjunction with such techniques, preliminary investigations of joint sounds or 

vibrations has been conducted in vivo using laboratory grade instrumentation [36, 

37]. Findings suggest that vibrations measured at the skin surface can provide 

discriminatory data that correlate with translational instabilities in THA. Specifically, 

Glaser et al. reported the presence of characteristic transients that correlated with 

relocation following instances of separation in different types of THA [36]. Before 

proceeding any further with in vivo work, it is essential to characterize the 

phenomenon in a more controlled environment. Such an environment enables 

comparison of vibrations as they relate to magnitudes of separation and transducer 

location. The current work examines the vibrations associated with hip separation 

in a mechanical hip simulator. Through this work, the characteristic features 

associated with hip separation were assessed with respect to standard periods of 

a gait cycle. The results provide metrics and patterns that can be included in future 

research methodologies, thus advancing the orthopaedic community’s capability 

to noninvasively diagnose THA instabilities. 

In the current work accelerometers positioned at four different locations on the hip 

simulator for three different magnitudes of separation were used to log raw 

vibrations during gait. The simulator itself, induced substantial noise in the signals 

that was removed through wavelet decomposition, coefficient thresholding, and 

reconstruction. A previous in vivo investigation on THA sounds and vibrations 

describes thresholding detail coefficients based on the detail level variance [36]. 

Unlike in vivo experiments, in the present work, multiple levels of the wavelet 

decomposition were highly corrupted by simulator noise. The present methods 
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committed to a more absolute thresholding technique in which only coefficients 

from the level 6 and level 7 details were used for signal reconstruction. Together 

these levels are associated with a bandwidth that ranges from approximately 39 

Hz to 156 Hz (Table 2.2). Previous work suggests that the characteristic vibrations 

associated with micro-separation may exists in this frequency band [67]. Sariali et 

al. constructed a computational model of the Leeds II hip simulator under normal 

and micro-separation conditions. They reported that in the presence of 500 μm of 

separation a distinct chatter existed between the femoral head and the acetabular 

cup during swing phase. The main frequency of this chatter was 65 Hz [67]. 

Although the work here more distinctly characterized the reduction of the femoral 

head following separation, certain features do point towards correlations of the 

vibrations with the occurrence of separation in swing phase. As previously 

mentioned in the methods, a measurable medial/lateral shift of the cup holder 

(0.2975 mm) was logged by the LVDT in the control experiment. This shift initiated 

during the pre swing period at approximately 56% of the gait cycle and peaked 

towards the end of the following period (initial swing) at ~68% of the gait cycle 

(Figure 2.29). The primary shift in 1 mm and 2 mm experiments also initiated during 

the pre swing period. The energy in this period of the gait cycle is quite 

distinguishable for both femur locations during all experiments. For the control 

experiment, Femur ML and Femur SI register more energy in this period than any 

other period. Furthermore, because the control does not experience an aggressive 

reduction of the femoral head in the loading response, these energy magnitudes 

at the femur are greater than all liner and cup holder values (Figure 2.21). For 1 

mm of separation the energy at these sites during pre swing increases, and 

similarly it is a local maximum. Aside from the liner and cup holder energy in the 

loading phase (associated with reduction of the femoral head), these femur energy 

levels are greater than all other energy measurements (Figure 2.22). In the 

presence of 2 mm of separation the femur sites experience maximum energy in  
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Figure 2.29. The medial/lateral shift recorded by the LVDT (zoomed in for illustration purposes). 
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the loading response. The next highest energy for the femur sites is in the pre 

swing period. The maxima and local maxima in energy experienced at the femur 

locations in conjunction with the shifts present in the LVDT data demonstrate that 

vibrations associated with the shift can be measured and recognized. It is likely 

that these vibrations are similar to the chatter between the femoral head and cup 

previously described by Sariali et al. [67]. 

As the amount of medial/lateral shift increases, the liner and cup holder signals 

become dominated by the large transient associated with relocation of the femoral 

head in the loading response (Figure 2.30, Figure 2.31, Figure 2.32, Figure 2.33). 

As expected, the energy at the liner during the loading response is substantially 

greater than the absolute energy at the cup holder for 1 mm and 2 mm of 

separation (Figure 2.22 and Figure 2.23). This can be attributed to two factors: 1) 

proximity to the joint center and 2) axial orientation of the accelerometer. Although 

the first is obvious and requires no additional discussion, the second is worth 

describing in further detail. The accelerometer on the liner is mounted at an angle 

such that its axial direction has both medial/lateral and inferior/superior 

components. As loading is reintroduced to the system, the cup holder moves 

inferiorly and laterally to relocate at centered conditions. The axial direction of the 

liner accelerometer is nearly identical to the direction of relocation and impact. 

Thus, it is more adequately oriented to measure the vibrations than the cup holder 

accelerometer which is positioned such that its axial direction is purely 

medial/lateral. Aside from the transient associated with relocation of the femoral 

head following separation, the liner and cup holder signals are characterized by a 

second smaller transient in the terminal stance phase of the gait cycle (30-50%) 

(Figure 2.30, Figure 2.31, Figure 2.32, Figure 2.33). During this period, there is a 

preliminary medial/lateral shift present in the LVDT data for all experiments (Figure 

2.29). For 1 mm and 2 mm experiments, the end of this shift coincides with a 
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Figure 2.30. The reconstructed liner signal for 1 mm of separation is characterized by two distinct 

transients in the loading response (0-10%) and terminal stance (30-50%) periods of the gait 

cycle. 
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Figure 2.31. The reconstructed liner signal for 2 mm of separation is characterized by two distinct 

transients in the loading response (0-10%) and terminal stance (30-50%) periods of the gait 

cycle. 
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Figure 2.32. The reconstructed cup holder signal for 1 mm of separation is characterized by two 

distinct transients in the loading response (0-10%) and terminal stance (30-50%) periods of the 

gait cycle. 
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Figure 2.33. The reconstructed cup holder signal for 2 mm of separation is characterized by two 

distinct transients in the loading response (0-10%) and terminal stance (30-50%) periods of the 

gait cycle. 
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distinct transient of interest. This suggests that as the load on the cup holder begins 

decreasing, a small abrupt shift occurs that results in some type of impact between 

the femoral head and the acetabular liner. It is believed that the spring force in 

combination with the load and kinematics of this period causes the femoral head 

to slip with respect to the acetabular liner resulting in a dynamic singularity that is 

punctuated by a measurable impact. The existence of this transient is further 

highlighted by a local maximum in the relative energy profiles of the respective 

liner and cup holder signals Figure 2.22 and Figure 2.24.  

Despite the existence of this preliminary shift in the 0 mm LVDT data, the transient 

vibration is nonexistent. The absence of a distinguishable transient in both the 

loading response and terminal stance phase of the 0 mm experiment provides 

valuable insight to the sensitivity of the instrumentation as intended for diagnostic 

purposes. In the presence of ~300 μm of medial/lateral shift the impacts are not 

measurable in the current set up, and thus, such a small instability cannot be 

detected with this instrumentation. 

Comparison of the energy with respect to the two major aspects of the simulator 

(acetabular region vs femoral region) further demonstrates the importance of 

accelerometer positioning. As previously mentioned the two most distinct 

characteristics associated with impacts following medial/lateral shifts were easily 

identified in the liner and cup holder signals. The prominence of these patterns 

caused most of the acetabular region (liner and cup holder) energy to be 

concentrated in the stance phase of the gait cycle. Indeed, swing phase energy 

was relatively negligible for the signals originating from the acetabular region of 

the simulator. This was not the case for the two femur accelerometers. On the 

contrary, the signals from the femur locations concentrated more energy in the 

swing phase of the gait cycle than in the stance phase. This suggests that the 

femur accelerometers registered signals associated with the gradual separation 
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itself, but not as much with the relocation. Such signals are lower in magnitude and 

more dispersed over consecutive periods of the gait cycle as coverage of the 

femoral head decreases. The decrease in coverage results in decreased EHL of 

the joint. This causes increased friction that manifests itself in chatter-like 

vibrations as the femoral head articulates against the rim of the acetabular liner. It 

appears that having accelerometers on each body (femur and acetabulum) is 

important as they provide distinctly different characteristics that can be used 

together to confirm the presence of a translational instability similar to that 

simulated here. 

There are numerous limitations associated with this work. Most importantly, the 

results presented are subject to the representation of the hip simulator, and 

although it has been validated to reproduce relevant wear rates and patterns, it is 

not a human joint. This fact allowed for accelerometers to be positioned closer to 

the joint than possible in vivo. Additionally, this rigid simulator allowed for 

enhanced transmissibility of vibrations that cannot be expected in vivo. Adipose 

tissue, muscles, and the ligamentous sheathe surrounding the hip joint will all 

attenuate and likely alter the signal of interest such that the methods presented 

here may not be perfectly tuned for detecting instabilities in such an environment. 

Lastly, these experiments were conducted in a single configuration. They do not 

account for changes in loading, cadence, or other variables that are different 

patient to patient and they do not test the effect of surgical variables that are known 

to affect coverage such as inclination and anteversion. 

2.6. Conclusion 

This initial investigation provided an excellent opportunity to define a set of 

methods that can be used in the future to investigate the vibrations emitted from a 

hip joint simulator and/or native hips with more focus. This work demonstrated the 

feasibility of using surface-based vibrations to quantify translational instabilities 
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with respect to periods of the gait cycle. It was found that a medial/lateral shift less 

than 1 mm results in at least one, if not two, measurable impacts during stance 

phase. It was also found that increases in medial/lateral shift can be detected and 

differentiated from each other. Lastly it confirmed the importance of monitoring 

both femoral and acetabular components separately as they provide distinctly 

different characteristics that can be used to confirm the presence of an instability. 

Future simulator investigations should study the effects that load, cadence, implant 

configuration, and implant type has on vibration signatures. In vivo investigations 

of this nature still require fluoroscopy to validate any suspected findings present in 

vibration data. Accelerometer positioning and fluoroscopic frame selection are 

critical factors for an in vivo investigation of THA instability. Ideally accelerometers 

would be positioned at bony landmarks to optimize transmissibility. The greater 

trochanter of the femur and the medial anterior aspect of the iliac crest are 

appropriate candidates for mounting sites. Fluoroscopic frames should be selected 

at the eight standard events of the gait cycle, and the kinematics of the femoral 

head with respect to the femur should be defined within the standard gait cycle 

periods. Using the analysis methods presented here, correlations between 

observed kinematics and signal energy may further demonstrate the potential of 

vibroarthrography for diagnosing THA instabilities.   



74 

 

CHAPTER 3. MEASURING CAM-POST ENGAGEMENT IN 
POSTERIOR STABILIZED TKA WITH VIBROARTHROGRAPHY 
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Raw data for this research was collected at the Porter Adventist Hospital in Denver, 

Colorado by Trevor Grieco and Mathew Anderle. All final analyses were conducted 

by Trevor Grieco at the University of Tennessee. Computer aided design models 

of the Attune® Posterior Stabilized Fixed Bearing total knee arthroplasty system 

were provided by DePuy Synthes for analyses. Annotated images of these models 

are presented in multiple figures throughout this chapter for illustrative purposes.   
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3.1. Abstract 

In a posterior stabilized TKA, a cam-post mechanism is used to substitute for the 

posterior cruciate ligament. This mechanical substitute can heavily dictate the 

dynamics of a replaced knee and thus its performance is of interest to 

manufacturers, surgeons, and patients alike. Unfortunately, it is difficult to 

quantitatively assess cam-post engagement under in vivo conditions. Current 

techniques are strictly limited to fluoroscopic analyses. While accurate, such 

analyses are not easily conducted and expose subjects to ionizing radiation. A 

previous qualitative investigation has suggested that the cam-post engagement 

confirmed under fluoroscopy may be associated with characteristic vibrations that 

can be measured at the knee surface. Additionally, it appeared that the differences 

in contact mechanics resulted in differences in the vibrations. The present work 

was designed to explore the quantitative relationships between fluoroscopically 

confirmed cam-post engagement and features derived from mechanical vibrations 

to determine if vibroarthrography could be used as a reliable noninvasive tool for 

assessment of this mechanical interaction.  

Three assessments were conducted in 9 total knee arthroplasties to determine if 

1) vibration features could predict the time of cam-post engagement, 2) vibration 

features were correlated to cam-post engagement velocity, and 3) vibration 

features were correlated to cam-post engagement height. Envelope amplitude and 

variance outperformed all other features in predicting the time of engagement. The 

median error for both features was 0.630 seconds. Variance, mobility and form 

factor all demonstrated considerable correlation to cam-post engagement velocity. 

Variance, crest factor, peak-amplitude-to-power ratio, and envelope amplitude 

demonstrated mild correlation to cam-post engagement height.  

The vibration features and dynamic variables assessed in this pilot research 

highlight the shortcomings and the potential of vibroarthrography for the 
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assessment of cam-post engagement in posterior stabilized total knee 

arthroplasty. 

3.2. Introduction 

The posterior cruciate ligament (PCL) is one of the primary anatomic structures 

that contributes to the anterior-posterior (AP) stability of the tibiofemoral joint. It 

originates from an area along the medial femoral condyle within the intercondylar 

notch and inserts on the posterior aspect of the proximal tibia [78]. The PCL is the 

largest of the intra-articular ligaments and biomechanically functions to prevent 

posterior tibial translation. Its contribution to the rotational stability of the joint 

remains unclear and is a point of contention amid the biomechanics community 

[78]. During a posterior cruciate sacrificing TKA, the surgeon elects to excise the 

PCL. This may be done because the ligament is compromised, or because of 

surgical preference. In fact, supporters of this technique argue that the PCL in a 

degenerative knee is histologically compromised and that properly balancing the 

PCL in a manner that will preserve its ideal biomechanical characteristics is difficult 

[79]. In such a case, the ligament is mechanically substituted for by design features 

of the TKA. Two common methods of PCL substitution include 1) the cam-post 

mechanism and 2) highly congruent, deep dish bearings with anterior buildup [80]. 

These designs are similar in that they both effectively prevent anterior translation 

of the femur on the tibia and encourage posterior positioning of the femoral 

component. In the cam-post design, the reaction forces associated with 

engagement of the mechanism facilitate rollback of the femoral component. In the 

deep dish design, no such forces exist, but the dwell points are positioned 4-6 mm 

posterior to the tibial midline which results in a posterior femoral resting position 

[80]. The advantages and disadvantages of these two designs are well 

documented in the literature, and exploration of these is outside the scope of the 
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present research. What is of interest, is the nature of cam-post engagement and 

its correlation to vibrations measured at the skin surface.  

PCL substitution via a cam-post mechanism, commonly described as posterior 

stabilized, was first implemented in 1976 by John Insall and Al Burstein [79]. The 

prosthesis they designed, the Insall-Burstein prosthesis (IB I), was intended to 

address posterior subluxation and instabilities observed in other prosthesis at that 

time. The IB I consisted of an intercondylar femoral cam that engaged with a 

centralized tibial post at approximately 70 degrees of knee flexion. With increasing 

knee flexion, the femoral cam essentially climbed the tibial post which promoted 

posterior motion of the tibiofemoral contact points [79]. First implanted in 1978, the 

IB I effectively substituted for the PCL and demonstrated exceptional success and 

durability [79].  

Today, posterior-stabilized (PS) TKAs are offered by most manufactures and 

include differences in cam-post geometry intended to optimize the biomechanical 

performance of the prosthesis. Some primary variables at the tibial post include 

AP position, post height, ML width, ML symmetry, and curvature associated with 

mechanism conformity (Figure 3.1). At the femur the dimensions of the box and 

post cutout as well as the position and curvature of the cam are may affect the 

biomechanics of the mechanism (Figure 3.2). These features will directly affect the 

knee flexion angle at which the mechanism engages, as well as the nature of the 

initial contact and the mechanism’s subsequent interaction. Additionally, 

inappropriate design of these features may lead to dislocation of the joint, 

unintended wear, and even breakage of the tibial post [79].  

Cam-post kinematics and kinetics have been studied via combinations of in vitro, 

in vivo, and in silico techniques [81-89]. Dynamic variables of interest specific to 

the mechanism include the knee flexion angle at engagement, SI and ML position  
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Figure 3.1. Design features of the tibial post in a posterior stabilized TKA. 
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Figure 3.2. Design features of the femoral box and cam in a posterior stabilized TKA. 
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of the cam on the post, contact area between the cam and post, contact stress (or 

pressure), impact velocity, and resulting tibiofemoral kinematics such as axial 

rotation and AP translation of the medial and lateral tibiofemoral contact points. 

Cam-post contact area and contact pressure have been reliably reported during in 

vitro simulations using digital pressure sensors [82, 89]. These variables have also 

been evaluated using validated finite element models [84, 86]. In vivo 

investigations of cam-post engagement to date have been limited to fluoroscopic 

evaluations coupled with 3D-to-2D registration techniques [81, 83, 85, 87, 88]. 

These evaluations typically utilize a threshold to approximate contact between the 

cam and post as kinematics are interpolated between overlaid frames of interest. 

Most recently a distance between the cam and post that was less than 0.5 mm has 

been utilized to define contact [85, 88].  

It is mechanically reasonable to consider that some of these dynamic 

characteristics may be correlated to the vibrations produced as the cam engages 

with the post. In particular, the impact velocity and nature of the contact area at 

impact can be expected to affect the magnitude and frequency of vibrations. 

Relationships between cam-post engagement and vibrations has previously been 

presented and described in a qualitative manner [38], but no quantitatively 

significant data has yet been reported. Therefore, the nature of this investigation 

was to compare relationships between vibrations measured at the skin surface and 

cam-post mechanics measured in vivo via fluoroscopy and 3D-to-2D registration. 

The methods and results provide guidance for the future use of vibroarthrography 

in the determination and quantification of cam-post engagement mechanics. 

3.3. Materials and Methods 

3.3.1. Patient Demographics 

This pilot investigation sought to evaluate the in vivo dynamics of cam-post 

engagement in posterior-stabilized TKAs in relation to surface vibrations measured 
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at the knee. Subjects implanted with a modern PS fixed bearing TKA (Attune®, 

DePuy Synthes, Warsaw, IN, USA) were recruited for this study. All subjects were 

implanted by a single surgeon using a gap balancing technique. To meet eligibility 

requirements enrolled subjects were at least six months post-operative, had a BMI 

of less than 30, demonstrated passive flexion greater than 100°, and had Knee 

Society Functional Scores greater than or equal to 90. Nine knees were evaluated, 

and appropriate institutional review board approval was obtained along with the 

informed consents for all subjects participating in the study. 

3.3.2. Vibroarthrography Configuration 

Three uniaxial accelerometers (352A24, PCB Piezotronics Inc., Depew, NY, USA) 

were used to measure the vibrations at the knee. These accelerometers are high 

sensitivity, miniature, integrated electronic piezoelectric (IEPE) accelerometers 

with a sensitivity of 100 mV/g, a measurement range of ±50 g pk, and a frequency 

range of 0.5 to 10000 Hz (±5%).  The accelerometers were connected to a battery 

powered signal conditioner (480B21, PCB Piezotronics Inc., Depew, NY, USA) that 

provides constant-current power to connected sensors. The signal conditioner was 

configured to amplify all incoming signals by a factor of 10. Signal conditioner 

outputs were connected to a portable data acquisition device (DataLOG MWX8, 

Biometrics, Ltd. UK) that was used to log analogue inputs. An electrogoniometer 

(SG 150, Biometrics, Ltd. UK) and a custom-made synchronization light box (sync 

light) were also connected to the data acquisition device. The electrogoniometer 

was used to measure knee flexion/extension (this data was not relied on as a 

primary feature but more as a high-level indicator of the activity motion). The 

synchronization light box was used to synchronize fluoroscopy data with the 

analogue signals logged by the portable data acquisition device. This light box 

housed a small battery powered circuit with a radio frequency receiver and an LED 

light that was remotely triggered at the start and end of data collection to effectively 
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mark the activity within a data acquisition file and in a live video. The accelerometer 

signals were each sampled at 10,000 Hz. The electrogoniometer and sync light 

were sampled at 1000 Hz. All data was saved onboard the data acquisition device 

to a micro SD card. The signal conditioner, data acquisition device, and light box 

are all stored in/on a pack that is worn around the subject’s waist. Signals were 

transferred via Bluetooth to a laptop at a reduced sampling rate for visualization 

purposes during data collection. This setup is entirely wearable/portable and 

leaves the patient free to perform the research activity without being tethered to a 

workstation (Figure 3.3). All subjects were asked to wear shorts to ensure that no 

noise was introduced to the signals from clothing brushing against the sensors. 

Shorts were provided if necessary. The waist pack containing the data acquisition 

instrumentation was then secured to the subject, and the knee was cleaned with 

an alcohol swab to remove any residue/lotion that may have compromised the 

adhesion of the sensors to the skin. Accelerometers were then mounted to the 

patella, tibial tuberosity, and medial femoral epicondyle with hypoallergenic 

medical tape (Figure 3.4). The sensor cables were also taped above the knee. The 

entire knee was then wrapped with foam underwrap from below the knee to above 

the knee to minimize sensor movement and reduce signal artifact that may have 

occurred during the research activity. Next, the digital goniometer was zeroed 

using a straight edge and attached to the lateral side of the knee using double 

sided hypoallergenic tape. Best efforts were made to align the distal end block with 

the ankle joint and proximal end block with the hip joint to best approximate the 

anatomic hip-knee-ankle angle. A test was then conducted in which all signals 

were inspected in real time at the laptop workstation while the subject flexed and 

extended the knee. Any oddities or signal overloads resulted in inspection of 

connections/instrumentation and additional testing to ensure data was being 

appropriately captured prior to collecting data for the primary research activity. 
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Figure 3.3. Data collection instrumentation and configuration for the analysis of fluoroscopy and 

vibration signals. 
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Figure 3.4. Accelerometers (denoted by red circles) were mounted at the medial femoral 

epicondyle, the patella, and the tibial tuberosity. 
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3.3.3. Fluoroscopy and Vibroarthrographic Data Collection 

A c-arm fluoroscopy unit was used to image the subject’s index knee while 

performing a weight-bearing deep knee bend (DKB). During this activity subjects 

flex the knee from maximum extension to maximum flexion. The activity was 

performed on a raised platform to ensure that the entire range of motion could be 

captured by the c-arm fluoroscopy unit. Two researchers were at the subject’s side 

during the activity to instruct the subject and provide a hand for balance if 

necessary. The fluoroscopic output was connected to a picture in picture (PiP) box. 

A live video of the subject was similarly connected to the PiP box. The PiP box 

was configured to overlay a scaled down version of the live video input on top of 

the fluoroscopy input. The PiP configuration was output to a recording device and 

serves as the raw video data for this research. This PiP video configuration is 

necessary to synchronize fluoroscopy data with vibration data. The switching of 

the sync light provides a visual indicator in the PiP video (Figure 3.5) and a voltage 

step in the data acquisition file (Figure 3.6). During analysis these two events can 

be aligned in the time domain to synchronize the vibration data with fluoroscopy 

data. The live video caption input to the PiP was disabled while the subject 

performed the DKB to ensure that anatomy of interest in the fluoroscopy video was 

not occluded by the live video. It was re-enabled after DKB trials were completed. 

Subjects were positioned with the index leg in front of the contralateral leg. The c-

arm was aligned to acquire lateral imaging of the index knee. Once positioned, the 

following steps were executed: 

1. Start recording PiP video with live video input enabled 

2. Start recording analogue data inputs 

3. Switch the sync light on (ensure it is visible in the PiP video) 

4. Disable live video input 

5. Switch the fluoroscopy on 
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Figure 3.5. A picture-in-picture (PiP) video configuration was used to capture the sync light being 

switched from off (left) to on (right). 

 

 

Figure 3.6. Raw data illustrating the sync light (purple signal) switching on and off during data 

collection. The goniometer (red signal) is used to reference the DKB trials. Accelerometer signals 

(green, blue, and orange signals) fluctuate during the activity. 
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6. Perform the deep knee bend 

7. Switch the fluoroscopy off 

8. Reposition subject and repeat steps 4-6 (second deep knee bend) 

9. Re-enable the live video input  

10. Switch the sync light off (ensure it is visible in the PiP video) 

11. Stop recording analogue data inputs 

12. Stop recording PiP video 

Fluoroscopy and vibration data was successfully collected in nine deep knee 

bends. There were two trials captured for each of the five knees. One trial was not 

able to be used due to video data corruption. 

3.3.4. Fluoroscopic Data Processing 

Frames from the PiP video selected for analysis were corrected for pincushion 

distortion and imported into custom-designed software used for three-dimensional 

(3D) to two-dimensional (2D) registration. In this technique 3D computer-aided 

design (CAD) models of the femoral and tibial components are overlaid onto their 

respective silhouettes in the 2D fluoroscopy image (corrected for distortion) to 

obtain 3D position data of the implanted components (Figure 3.7). This registration 

technique used on the femoral component and tibial baseplate has previously been 

validated to provide an accuracy of 0.5 mm for in plane translations and 0.5° for in 

plane rotations [90]. Since the polyethylene tibial insert is nearly invisible in 

fluoroscopic images, it cannot be overlaid like the femoral and tibial components. 

Instead it was assumed to be rigidly fixed to the tibial baseplate. This was achieved 

by aligning the unique geometries of the distal tibial insert and proximal tibial 

baseplate in 3D space prior to overlaying (Figure 3.8). Once the tibial baseplate 

was overlaid onto its silhouette, the transformations were copied to the tibial insert. 

Next a body-to-body contact detection algorithm was executed to determine 

contact between the femoral component and the tibial insert (Figure 3.9). 
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Figure 3.7. (Top) Femoral component and tibial baseplate CAD models overlaid on respective 

silhouettes. (Bottom) CAD model edges demonstrate the quality of fit. 
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Figure 3.8. The unique geometries of the distal tibial insert (green) and the proximal tibial baseplate 

(red) were mated in three-dimensional-space. 
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Figure 3.9. Body-to-body contact map between the femoral component and tibial insert. 
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Areas of contact were defined only by faces that were truly contacting faces on the 

opposing body (no threshold was applied). Inspection of contact (or lack of contact) 

at the cam-post interface served as a basis for additional frame selection. These 

frames were selected at 5° increments. If contact was not observed, a fluoroscopic 

frame with 5° more tibiofemoral flexion was selected. If contact was observed, the 

next frame selected was 5° less flexion. This guess and check process was 

repeated until three primary frames were overlaid – 1) engagement minus 5°, 2) 

engagement, and 3) engagement plus 5°. The first frame of the DKB (maximum 

extension) and the final frame of the DKB (maximum flexion) were also overlaid 

(Figure 3.10). The initial frame was selected based on preliminary inspection of 

vibration signals and published information on the Attune® engagement angle [86]. 

The vibrations signals were inspected for sharp transients between 80° and 100° 

of knee flexion. The time at which the most prominent transient appeared within 

this range of motion was used as the time of the initial frame. 

3.3.5. Kinematic Model of Deep Knee Bend 

Transformations of the overlaid frames were used to create a kinematic model of 

the implanted components on which additional analyses were conducted. First 

surfaces were defined on the cam and the post (Figure 3.11). Then a surface-to-

surface contact detection algorithm was executed for each overlaid frame of the 

kinematic model. In agreement with the body-to-body contact detection previously 

described, the contact patch in this surface-to-surface analysis was comprised only 

of faces that were truly contacting faces on the opposing body. Specifically, for 

each face existing on the surface, true contact was said to exist if the distance from 

the base face to an opposing face along the path of the base face’s normal vector 

was less than or equal to zero. The contact patch was used to evaluate the impact 

velocity of the cam with respect to the post at the engagement frame. A derivative 

of the technique described by Fitzpatrick et al. was used for this measurement [86].  
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Figure 3.10. Fluoroscopy frames were selected and overlaid at maximum extension, engagement 

minus 5°, engagement, engagement plus 5°, and maximum flexion (engagement refers to 

engagement of the cam-post mechanism). 
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Figure 3.11. (Top) The post surface (green) was defined on the tibial insert, and (bottom) the cam 

surface (green) was defined on the femoral component. 
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In the present research, the contact point on the cam was defined as the center of 

the contact patch that existed on the cam surface at the engagement frame (Figure 

3.12). The position of this point was then tracked for each overlaid frame with 

respect to the tibial bearing. The relative coordinates of the point at the 

engagement frame were used to define a second point on the post. Then the 

distance between the contact point on the cam and the contact point on the tibial 

post was measured for each overlaid frame up to the engagement frame (Figure 

3.13). The change in this distance from the engagement minus 5° frame to the 

engagement frame was measured with respect to time and flexion to obtain the 

impact velocity in millimeters per second and millimeters per degree of knee 

flexion. Measuring with respect to knee flexion effectively normalizes the data to 

account for the different speed at which subjects perform the deep knee bend [86].   

The height of the contact point on the tibial post was also assessed. Since the 

implant sizes varied from subject to subject, the SI coordinate of the contact point 

on the tibial post was normalized by the SI distance from the top of the post to the 

dwell point of the tibial insert (Figure 3.14). These two points were 

programmatically extracted from surfaces defined on the top of the post and the 

medial dish to ensure that the dimension used for normalization was consistently 

specified across all subjects. 

3.3.6. Vibration Signals Processing 

Raw vibroarthrograms were first synchronized with the fluoroscopy video. This was 

done using the sync light. Specifically, all analogue signals (three accelerometers, 

goniometer, and sync light) were cropped up to the time at which the light is 

switched on. This instance in time was distinguished in the data file as a prominent 

voltage step on the sync light channel (Figure 3.6). Once synchronized, the relative 

time of each overlaid frame with respect to the light being switched on was used 

to navigate the vibration signals. The start time and end time of each DKB was 
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Figure 3.12. The contact point on the cam (blue dot) at the engagement frame was defined at the 

center of the contact patch (yellow and red area) that existed on the predefined cam surface 

(green). 
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Figure 3.13. The distance (mm) between the contact point on the cam and the contact point on the 

post was calculated for each overlaid frame up to the engagement frame. 
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Figure 3.14. Contact point height was measured with respect to the dwell point along the 

superior/inferior axis. Contact point height was normalized by the distance between the dwell point 

and the top of the post along the superior/inferior axis. 
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then processed for feature extraction. First a cascade moving average filter was 

applied to all three accelerometer channels to estimate and remove the baseline 

wander present in the signals. This filter serves to remove non-stationary low 

frequency signals that are caused by patient movement and or trembling that will 

interfere with vibration signals of interest. The filter was constructed following an 

algorithm presented by Cai et al. [91].  This filter contains two layers. The first layer 

contains a M-order and a N-order moving average operator. The K inputs at the 

end of the M-order operator overlap the initial inputs of the N-order operator [91]. 

The second layer smooths the resulting piecewise linear trends obtained in the first 

layer. Both the M and N moving average operators were specified as 20th order 

operators. K was specified as 5 overlapping inputs. The final output as presented 

by Cai et al. is given as 

𝑦(𝑖) =
[𝑜1(𝑖) + 𝑜2(𝑖)]

2
=  

1

2𝑀
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𝑚=1

+
1

2𝑁
∑ 𝑥(𝑖 − 𝑀 + 𝐾 − 𝑛)

𝑁

𝑛=1

 

in which 𝑜1(𝑖) and 𝑜2(𝑖) are the M and N order moving average operators [91]. The 

transfer function 𝐻(𝑧) of this cascade moving average filter, similarly presented by 

Cai et al., is obtained by applying the z-transform to achieve 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

1

2𝑀
(𝑧−1 + ⋯ + 𝑧−𝑀) +

1

2𝑁
(𝑧−𝑀+𝐾−1 + ⋯ + 𝑧−𝑀+𝐾−𝑁) 

Once filtered, the data was prepared for feature extraction. First the filtered data 

was segmented into nonoverlapping windows. Then nine features were calculated 

in each window to test for correlation with the time of cam-post engagement. Local 

features included 1) minimum, 2) maximum, 3) mean squared, 4) variance, 5) 

mobility, 6) form factor, 7) crest factor, and 8) peak-to-average power ratio. The 

first two local features (minimum and maximum) were used to calculate the 

envelope amplitude as described by Yang et al. [92]. In their research, the signal 
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envelopes were defined by linear interpolation of the local minima and maxima. In 

the present work, Hermite interpolation (third order) was used to derive the upper 

envelope and lower envelope from the local maxima and local minima respectively 

(Figure 3.15A and Figure 3.15B). Then the envelope amplitude was calculated as 

the difference between the upper and lower envelope at each interpolated point in 

time (Figure 3.15C). 

The third local feature, mean squared, is a simple statistical measurement in which 

all samples in a window are averaged. The average value is then squared to obtain 

an exaggerated representation of the local mean value.  

Features 5, 6, and 7 are all related temporal metrics that were presented together 

in the 1970s as an alternative to the Fourier transform for characterizing the 

fluctuations associated with electroencephalography (EEG). Hjorth explains that 

together these three parameters have been shown to characterize patterns in 

terms of amplitude, time scale, and complexity [93, 94]. At the time he described 

variance as activity and form factor as complexity. Hjorth presents the parameters 

in the following fashion: activity is the squared standard deviation of the signal 

amplitude (also known as variance or mean power), mobility is the standard 

deviation of the signal slope with respect to the standard deviation of the signal 

amplitude, and complexity is the number of standard slopes generated during the 

average time required to generate one standard amplitude as defined by mobility 

[93]. Since Hjorth, these features have been adopted for the analysis of signals 

other than EEG. Rangayyan’s research group has tested the applicability of these 

temporal metrics in vibroarthrography [26]. In their work complexity is referred to 

as the signal form factor. They state that the form factor is an improved 

representation of a signal’s variability [26]. Mathematically the local mobility (𝑀𝑥) 

and local form factor (𝐹𝐹) for the index window were derived from the standard 

deviation of the local signal (𝜎𝑥) and the and the standard deviation of the local 



101 

 

 

Figure 3.15. (A) The filtered summation signal. (B) The upper (blue) and lower (red) signal 

envelopes are calculated and subtracted to obtain (C) the envelope amplitude. 
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signal derivatives (𝜎𝑥′ and 𝜎𝑥′′) by following the algorithms presented by 

Rangayyan and Wu [26] 

𝑀𝑥 = [
𝜎𝑥′

2

𝜎𝑥
2

]

1
2

=
𝜎𝑥′

𝜎𝑥
 

𝐹𝐹 =
𝑀𝑥′

𝑀𝑥
=

𝜎𝑥′′/𝜎𝑥′

𝜎𝑥′/𝜎𝑥
 

The last two features, crest factor and peak-to-average power ratio (PAPR) served 

to quantify how extreme the peaks in each window were. The crest factor, 𝐶, is 

defined as 

𝐶 =
|𝑥𝑝𝑒𝑎𝑘|

𝑥𝑟𝑚𝑠
 

in which 𝑥𝑝𝑒𝑎𝑘 is the greatest amplitude present in the signal in the index window, 

and 𝑥𝑟𝑚𝑠 is the root-mean-square of the signal in the index window. 𝑥𝑟𝑚𝑠 is defined 

as 

𝑥𝑟𝑚𝑠 = √
1

𝑁
∑|𝑥𝑛

2|

𝑁

𝑛=1

 

in which 𝑁 is the number of data points in the index window. The local PAPR is 

then simply defined as 

𝑃𝐴𝑃𝑅 =
|𝑥𝑝𝑒𝑎𝑘|

2

𝑥𝑟𝑚𝑠
2

= 𝐶2 

in which the numerator is the peak power of the local signal and the denominator 

is the average power of the local signal.  
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3.3.7. Approximating Cam-Post Engagement Time With Maximum Features 

The vibrations from nine DKBs were evaluated for the ability to approximate the 

cam-post engagement time. The seven local features were calculated in 

nonoverlapping windows for all three accelerometer signals as well as the 

summation of the three signals. The time associated with the end of the window in 

which the maximum of the local features existed was compared to the time 

associated with the engagement frame (Figure 3.16). It is important to describe 

this assessment in the context of the research activity. First, the deep knee bend 

was performed at a relatively slow pace. This had to be done to ensure the image 

quality was acceptable for overlaying CAD models. If a subject moved too quickly 

the possibility of motion blur and loss of anatomy within the field of view increased. 

These two types of image acquisition issues limit the ability to accurately conduct 

the analysis and therefore had to be mitigated at the time of data collection by 

tempering the speed of the research participants. Maximum extension and 

maximum flexion were used along with the start and end time of each DKB to 

approximate the global rate of tibiofemoral flexion in degrees/second (°/sec) (Table 

3.1). The slowest DKB was performed at 6.94 °/sec, and the fastest DKB was 

performed at 12.13 °/sec. On average, deep knee bends were performed at a rate 

of 9.69 °/sec ± 2.05 °/sec. It is equally important to note that the time at which cam-

post engagement occurs is not precisely known. In this analysis the time of 

engagement is the time at which engagement is first definitively identified via 3D-

to-2D registration. It is logical to assume that engagement may have occurred 

sometime prior to this overlaid frame. In this context the duration of the target 

window in which engagement is known to occur should be considered when 

interpreting the results. In this window the tibiofemoral flexion changes by 5°. 

Across the nine deep knee bends analyzed, the duration of target windows ranged 

from 0.46 seconds to 0.90 seconds. The average target window was 0.66 sec ± 

0.14 sec. The difference between the end time of the window in which the  
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Figure 3.16. The time associated with the maximum local feature (tmax) was subtracted from the 

time of engagement (teng) to calculate the error in approximating the occurrence of cam-post 

engagement. In this example the maximum local variance (blue circles) underestimated the time 

of engagement (red line) by 1.0 second. 
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Table 3.1. Deep Knee Bend Range of Motion and Rate of Tibiofemoral Flexion 

DKB 

ID 

Maximum 

Extension (°)* 

Maximum 

Flexion (°) 

DKB Duration 

(sec) 

Tibiofemoral Flexion 

Rate (°/sec) 

001 -4 118 14.04 8.68 

002 -8 119 11.91 10.66 

003 -6 113 16.22 7.34 

004 -4 120 10.41 11.91 

005 -3 109 16.15 6.94 

006 -7 113 11.01 10.90 

007 -1 118 9.81 12.13 

008 -5 105 14.45 7.61 

009 -3 111 10.31 11.05 

*Negative values of Maximum Extension indicate hyperextension of the tibiofemoral joint. 
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maximum local feature occurred, and the engagement frame time is described as 

the error. Negative error indicates that the maximum local feature occurred at a 

time prior to the engagement frame time, and a positive error indicates that the 

maximum local feature occurred at a time after the engagement frame time. This 

assessment was conducted for window lengths equal to 10 samples (0.001 

seconds), 100 samples (0.01 seconds), and 1000 samples (0.1 seconds)  

3.3.8. Correlating Vibrations to Cam-Post Engagement Mechanics 

A second and third assessment was conducted using the same features to 

investigate feature correlation with engagement velocity and contact point height. 

For these assessments the features were only calculated for a single window of 

data – the target window. The start and end of the target window was the time 

associated with two overlaid frames. The start time corresponded to engagement 

minus 5° and the end time corresponded to engagement. In engagement minus 5° 

the cam-post mechanism is definitively not engaged, and conversely in the 

engagement frame the cam-post mechanism is definitively engaged. Therefore, it 

is known that engagement occurs between these two frames. In similar fashion to 

the first assessment, target features were derived from all three signals as well as 

the summation of the signals. The strength of the linear relationship between each 

target feature and the engagement velocity was measured by the Pearson 

Product-Moment Correlation which was calculated using JMP Statistical Discovery 

software (SAS Institute, Cary, NC). 

3.4. Results 

3.4.1. Cam-Post Engagement Time Approximation Errors 

In the medial femoral epicondyle signal with a window length of 10 samples (0.001 

seconds), the smallest error in determining engagement time was -0.050 seconds 

and was derived from the maximum local mean squared. The median of the 

maximum local mobility and the maximum local form factor were 0.429 seconds 



107 

 

and -0.155 seconds respectively. The maximum local variance was the tightest set 

of data with a box height (75th percentile minus the 25th percentile) of 4.740 

seconds (Figure 3.17). Given a window size of 10 samples, no feature derived from 

the medial femoral epicondyle signal stands out as a viable option for predicting 

cam-post engagement time with reasonable accuracy. Increasing the window size 

by a factor of 10 to 100 samples (0.01 seconds) significantly affected the calculated 

errors derived from the medial femoral epicondyle signal (Figure 3.18). The 

maximum local crest factor and PAPR features became relatively accurate 

features with a median error of -0.279 seconds and a box height of 3.506 seconds. 

Increasing the window size to 1000 samples (0.1 seconds) did not have a positive 

effect on most of the features (Figure 3.19). 

The errors for the patella signal contained similarly gross magnitudes. For a 

window size of 10 samples (0.001 seconds), the maximum local envelope 

amplitude can be considered the most accurate feature with a median error of -

0.364 seconds and a box height of 2.914 seconds (Figure 3.20). Increasing the 

window size to 100 samples (0.01 seconds), increased the median error in this 

feature to -1.005 seconds, but decreased the box height to 2.786 seconds. The 

maximum local crest factor and PAPR were significantly impacted by the increase 

in window size to 100 samples (Figure 3.21). The median error magnitude for these 

features was reduced from 0.998 seconds to -0.417 seconds and the box height 

was reduced from 3.971 seconds to 3.384 seconds. Increasing the window size to 

1000 samples (0.1 seconds) further reduced the median error and box height of 

the maximum local crest factor and PAPR features, although not by a significant 

amount (Figure 3.22).  

In the tibia signals, the maximum local variance and the maximum local envelope 

amplitude errors were identical for all subjects, when the window size was equal   
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Figure 3.17. The cam-post engagement time error measured in the medial femoral epicondyle 

signal features for a window size of 10 samples (0.001 seconds). Color indicates DKB ID. 

 

Figure 3.18. The cam-post engagement time error measured in the medial femoral epicondyle 

signal features for a window size of 100 samples (0.01 seconds). Color indicates DKB ID.  
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Figure 3.19. The cam-post engagement time error measured in the medial femoral epicondyle 

signal features for a window size of 1000 samples (0.1 seconds). Color indicates DKB ID. 

 

Figure 3.20. The cam-post engagement time error measured in the patella signal features for a 

window size of 10 samples (0.001 seconds). Color indicates DKB ID. 
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Figure 3.21. The cam-post engagement time error measured in the patella signal features for a 

window size of 100 samples (0.01 seconds). Color indicates DKB ID. 

 

Figure 3.22. The cam-post engagement time error measured in the patella signal features for a 

window size of 1000 samples (0.1 seconds). Color indicates DKB ID. 
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to 10 samples (0.001 seconds). These two features had a median error of 0.092 

seconds and a box height of 2.848 (Figure 3.23). Six of the nine DKB data points 

for these features had an error magnitude of less than 1.314 seconds. Increasing 

the window size to 100 and 1000 samples (0.01 and 0.1 seconds) did not positively 

affect the error of these features (Figure 3.24 and Figure 3.25). Additionally, the 

increase in window sizes did not result in any other features becoming stronger 

predictors of cam-post engagement when compared to variance and envelope 

amplitude. 

In similar fashion to the tibia signals, the maximum local variance and envelope 

amplitude derived from the summation of signals consisted of identical errors for a 

window size of 10 samples (0.001 seconds). These two features with this window 

size can be considered the most accurate in their ability to predict cam-post 

engagement as the errors were consistently negative and tightly clustered (Figure 

3.26). The median error for these two features was -0.630 seconds, and the box 

height was 0.880 seconds. Both features consistently underestimated cam-post 

engagement (negative error). Seven of the nine DKB data points had an error 

magnitude of less than 1.593 seconds. The other two DKB data points (008 and 

009) are considered statistical outliers (noted by the red ‘+’ symbol inside of the 

yellow and dark green data points in Figure 3.26). Increasing the window size to 

100 samples (0.01 seconds) did not significantly affect the error associated with 

these two features (Figure 3.27). Increasing the window size to 1000 samples (0.1 

seconds) compromised the accuracy of variance and envelope amplitude by the 

same amount. The median error increased in magnitude from -0.630 seconds to -

1.005 seconds and the box height increased from 0.880 seconds to 2.187 seconds 

(Figure 3.28). This increase in window size did improve the error associated with 

the maximum local crest factor and PAPR features. The median error for these 

features decreased in magnitude from -1.052 seconds to 0.193 seconds and the  
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Figure 3.23. The cam-post engagement time error measured in the tibial tuberosity signal features 

for a window size of 10 samples (0.001 seconds). Color indicates DKB ID. 

 

Figure 3.24. The cam-post engagement time error measured in the tibial tuberosity signal features 

for a window size of 100 samples (0.01 seconds). Color indicates DKB ID. 
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Figure 3.25. The cam-post engagement time error measured in the tibial tuberosity signal features 

for a window size of 1000 samples (0.1 seconds). Color indicates DKB ID. 

 

Figure 3.26. The cam-post engagement time error measured in the summation signal features for 

a window size of 10 samples (0.001 seconds). Color indicates DKB ID. 
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Figure 3.27. The cam-post engagement time error measured in the summation signal features for 

a window size of 100 samples (0.01 seconds). Color indicates DKB ID. 

 

Figure 3.28. The cam-post engagement time error measured in the summation signal features for 

a window size of 1000 samples (0.1 seconds). Color indicates DKB ID. 
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box height decreased from 3.857 seconds to 2.187 seconds (Figure 3.27 and 

Figure 3.28). 

3.4.2. Correlating Vibrations to Cam-Post Engagement Velocity 

The Pearson Product-Moment Correlation coefficient between each target feature 

and the engagement velocity was also assessed to further study the relationship 

between vibrations emitted from a PS TKA and the dynamics of cam-post 

engagement. Coefficients were calculated for the absolute velocity measured in 

mm/sec (rabs) (Table 3.2) and the normalized velocity measured in mm/deg (rnorm) 

(Table 3.3). For the medial femoral epicondyle signal, the mobility had the 

strongest correlation with engagement velocity (rabs = 0.6663 and rnorm = 0.7684). 

Form factor also exhibited moderate correlation to the engagement velocity (rabs = 

-0.6452 and rnorm = -0.7112). At the patella, mild correlation was present across all 

vibration features except mean squared (Table 3.2 and Table 3.3). For the tibia 

signal, only mean squared had a correlation magnitude greater than 0.5 (rnorm = -

0.5570). In the summation signal, mobility and form factor had rabs values of 0.6419 

and -0.6930 respectively. No other correlations for the summation signal were 

greater than 0.5.  

3.4.3. Correlating Vibration to the Contact Point Height on Tibial Post 

The Pearson Product-Moment Correlation coefficient between each target feature 

and the height of the contact point on the tibial post was also assessed. 

Coefficients were calculated for the normalized height (Table 3.4). The crest factor, 

PAPR, and envelope amplitude exhibited mild negative correlations for the medial 

femoral epicondyle signal. No significant correlations existed for any features 

derived from the patella signal. For the tibial tuberosity signal, mean squared and 

PAPR had correlation magnitudes greater than 0.5 (Table 3.4). The strongest 

correlations between the contact point height and the vibrations existed in the  
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Table 3.2. Correlation Between Signal Features and Absolute Cam-Post Engagement Velocity 

Feature 
Medial Femoral 

Epicondyle 
Patella 

Tibial 

Tuberosity 
Summation 

Mean Squared 0.0270 0.0838 -0.4548 -0.0743 

Variance -0.4737 -0.4966 -0.0204 -0.4213 

Mobility 0.6663 0.5516 0.3068 0.6419 

Form Factor -0.6452 -0.5742 -0.2853 -0.6930 

Crest Factor 0.2808 -0.6622 0.0426 -0.3326 

PAPR 0.2625 -0.6493 0.0313 -0.2634 

Envelope Amplitude 0.0360 -0.5919 -0.0704 -0.4277 

Red values indicate negative correlations that are less than or equal to -0.5. Blue values indicate positive 
correlations that are greater than or equal to 0.5. 

 

Table 3.3. Correlation Between Signal Features and Normalized Cam-Post Engagement Velocity 

Feature 
Medial Femoral 

Epicondyle 
Patella 

Tibial 

Tuberosity 
Summation 

Mean Squared -0.0869 0.0438 -0.5570 -0.3179 

Variance -0.6016 -0.6089 0.4426 -0.2582 

Mobility 0.7684 0.5974 -0.1187 0.3631 

Form Factor -0.7112 -0.5711 0.0417 -0.4988 

Crest Factor 0.5834 -0.5845 0.2007 0.0376 

PAPR 0.6471 -0.6278 0.1236 0.1396 

Envelope Amplitude 0.0226 -0.6580 0.4457 -0.1135 

Red values indicate negative correlations that are less than or equal to -0.5. Blue values indicate positive 
correlations that are greater than or equal to 0.5. 
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Table 3.4. Correlation Between Signal Features and Normalized Cam-Post Contact Height 

Feature 

Medial 

Femoral 

Epicondyle 

Patella 
Tibial 

tuberosity 
Summation 

Mean Squared -0.1802 0.4163 -0.5928 0.1210 

Variance -0.4360 -0.3640 0.0372 -0.6363 

Mobility 0.1806 -0.0251 0.2895 0.2634 

Form Factor -0.2785 0.1330 -0.2496 -0.1228 

Crest Factor -0.5043 -0.3923 -0.2808 -0.6046 

PAPR -0.5040 -0.3521 -0.5742 -0.6243 

Envelope Amplitude -0.5306 -0.1862 0.4457 -0.6330 

Red values indicate negative correlations that are less than or equal to -0.5. 
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summation signal – variance, crest factor, PAPR, and envelope amplitude all had 

correlation magnitudes greater than 0.6 (Table 3.4). 

3.5. Discussion 

The design of the cam-post mechanism in a posterior-stabilized TKA can 

significantly alter surgical outcomes and functional performance. Since its 

inception in the mid-1970s this mechanism has evolved as findings from cadaver 

experiments, mechanical simulations, and computer simulations presented 

valuable insight on the efficacy of varying design rationales [82, 84, 86, 89, 95]. 

Such experiments are extremely useful in the evaluation of cam-post contact 

location, areas, and stresses. During the last decade, multiple groups have utilized 

fluoroscopy and 3D-to-2D registration techniques to study cam-post design factors 

and resulting kinematics in vivo. Specifically, measurements have included the 

knee flexion angle at the time of cam-post engagement, the distance between the 

cam and post throughout a full range of motion, and the height of the contact point 

on the post [81, 83, 85, 87, 88]. Although this method has proven to be useful in a 

research environment, it does not transfer well to a clinical setting. Fluoroscopy is 

inconvenient, and it exposes subjects to ionizing radiation. In addition, the process 

of extracting kinematics via 3D-to-2D registration is a time-consuming technique. 

Thus, even though the method provides valuable information, it remains limited to 

academic use. Given this predicament, it is reasonable to investigate other 

technologies that may provide similarly useful information to that derived from 

fluoroscopic evaluation. Recently it was suggested that vibrations measured at the 

knee joint may correlate with the contact mechanics of the cam-post mechanism 

in a posterior-stabilized knee [38]. In this preliminary research, qualitative 

evaluation of selected cases was presented as evidence. In the present 

investigation, vibroarthrography is further considered for its ability to objectively 

describe cam-post mechanics in a modern posterior-stabilized TKA. 
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Three assessments were conducted to evaluate relationships between 

vibroarthrographic features and cam-post mechanics that were measured using 

fluoroscopy and 3D-to-2D registration. The first assessment sought to determine 

if the time of cam-post engagement could be reasonably approximated by 

vibrations. Although there was a small sample size, the presented methods 

resulted in evaluation of 756 data points (9 deep knee bends x 4 vibration signals 

x 7 features x 3 window lengths). From the boxplots it appears that cam-post 

engagement may be reasonably approximated from the envelope amplitude 

and/or the variance of the summation signal when a window size of 10 samples 

(0.001 seconds) it used. For this window size, both features had a median error of 

-0.630 seconds and an average error of -0.745 seconds. Perhaps more 

importantly, the data for these features and this window size was well 

concentrated. The box height (interquartile range) for these conditions was smaller 

than any other scenario. Additionally, when two data points that are statistical 

outliers are removed, all the data has an error magnitude less than or equal to 

1.593 seconds. Another set of features worth highlighting is the crest factor and/or 

PAPR of the summation signal for a window size of 1000 samples (0.1 seconds). 

Under these conditions, these two features exhibited their lowest error (median 

error = 0.193 seconds) and smallest box height (2.187 seconds). When 

considering the entire set of data, the summation of the three signals outperforms 

its individual components in this assessment. With regards to window size, it is not 

clear if a smaller or larger window will yield better accuracy. Some features 

performed better with the smallest window size (i.e. envelope amplitude and 

variance) while others benefited from the increased window size (i.e. crest factor 

and PAPR).  

Considering that the average speed at which the deep knee bend was performed 

in this investigation (9.69 °/sec ± 2.05 °/sec) was relatively slow, the error 
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associated with some of the features relative to the knee flexion domain are 

tolerable. The duration of the 5° target window in which engagement was known 

to occur ranged from 0.467 seconds to 0.901 seconds. The median target window 

was 0.634 seconds and the average target window was 0.664 sec ± 0.138 sec. 

These are both greater than the median error associated with the variance and the 

envelope amplitude features for the summation signal with a window size of 0.001 

seconds (0.630). Similarly, the median error for crest factor and PAPR in the 

summation signal with a window size of 0.1 seconds (0.193 seconds) is 

substantially smaller than both the median target window and the average target 

window.  In this context it is plausible that under the proper conditions, these 

features may be able to predict cam-post engagement to within 5 degrees of its 

occurrence.  

The second assessment investigated the correlation between vibration features 

and cam-post engagement velocity. Cam-post engagement velocity was first 

described by Fitzpatrick et al. and investigated during a squat activity in cadaver 

specimens and a finite element model [86]. Four fresh-frozen, healthy cadaveric 

knees were implanted with the Sigma TKA knee system (DePuy, Warsaw, IN, 

USA) by an experienced surgeon. A deep knee bend was mechanically simulated, 

and kinematics were tracked with a motion analysis system. The average 

experimental cam-post engagement velocity was reported as 0.27 ± 0.1 mm/° [86]. 

In the finite element model, Fitzpatrick et al. calculated the cam-post engagement 

velocity for eight different PS TKA designs, including the Attune®. Using this 

method, the reported cam-post engagement velocities ranged from 0.05 to 0.22 

mm/° [86]. The engagement velocity reported for the Attune® was approximately 

0.113 mm/°.  Among the motivation for measuring cam-post engagement velocity 

is the clicking that is described by PS TKA subjects. Fitzpatrick et al. suggested 

that these clicking sensations may be due to excessive cam-post impact velocity. 
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In the present research the methods presented by Fitzpatrick et al. were adapted 

to explore in vivo cam-post engagement velocity for the first time. Once measured, 

the engagement velocity was correlated to vibrations measured at the joint surface 

to see if any relation existed that may further support this theory.  

In line with Fitzpatrick et al. findings, the cam-post engagement velocity in the 

present work ranged from 0.076 mm/° to 0.364 mm/°. The average cam-post 

engagement velocity was 0.218 ± 0.092 mm/°. Mild correlations existed between 

some of the calculated vibration features and the cam-post engagement velocity. 

Considerable correlations (greater than 0.5 in magnitude) were most prevalent in 

the medial femoral epicondyle signal and the patella signal. Both mobility and form 

factor correlated well (greater than 0.7 in magnitude) with impact velocity. In the 

patella signal every feature except for mean squared had a correlation coefficient 

magnitude greater than 0.55. Interestingly, when looking at the velocity in 

millimeters per degree of flexion, none of the features in the summation signal had 

strong correlation coefficients. Similarly, the tibial tuberosity signal was lacking in 

relevant correlation when compared to the medial femoral epicondyle and/or the 

patella signal. The correlations at the medial femoral epicondyle and the patella do 

suggest that the impact velocity is related to the vibrations or sounds emitted from 

the joint. In these two signals, three features (variance, mobility, and form factor) 

exhibited consistent patterns. A positive correlation with impact velocity existed for 

variance and form factor in both signals, and a negative correlation existed for 

mobility in both signals. These three features describe variability or a derivative of 

variability in the signal. It is logical that an impact such as cam-post engagement 

would result in an impulse signal that would affect the magnitude of these features. 

Furthermore, it is reasonable to assume that increases in velocity would result in 

increased transfer of momentum within the system. This in turn may increase the 

magnitude of the impulse signal associated with the impact. Although none of the 
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subjects in this investigation explicitly described the “clicking” sensations, the 

collision of two rigid bodies (cam and post) will emit characteristic vibrations that 

may be detected with proper techniques. These characteristic vibrations are 

expected to vary based on subject and TKA design. The Attune® has been 

designed to minimize instabilities and encourage seamless mechanics through a 

complete range of motion. The sagittal plane condylar geometry of the Attune® 

incorporates a gradually reducing radius that has been shown to reduce discrete 

discontinuities or abrupt changes in the helical axis [96]. This combined with the 

curvature and relative conformity of the cam-post mechanism promotes a 

theoretically smooth engagement. Therefore, it may be expected that the 

vibrations elicited by the highly optimized Attune® may be less than other legacy 

TKA devices. 

The final assessment investigated the relationship between vibrations and the 

height of the contact point on the tibial post. In this assessment the only relevant 

correlations were negative. The strongest correlations were present in the 

summation signal. As the height of the contact point on the post increased 

variance, crest factor, PAPR, and envelope amplitude all decreased. In attempt to 

explain this the post is considered a highly rigid cantilever. As the point of contact 

moves away from the base of the post the primary frequencies of the resulting 

vibrations decrease. Depending on the wavelength of these vibrations it is possible 

that some components were removed from the signal by the cascade moving 

average filter. This would result in a more consistent waveform and less signal 

variance. Variance, crest factor, PAPR, and the envelope amplitude are well suited 

to detect abrupt high frequency transients that are distinguishably unique from the 

baseline signal. Thus, it is logical that these features decrease in magnitude if the 

resulting vibrations were relatively harmonic and/or locally stable in comparison to 

those that manifested from an impact near the base of the post. 
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3.6. Conclusion 

All three of the assessments presented here were performed to investigate the 

usefulness of vibroarthrography in describing cam-post contact mechanics in a PS 

TKA. The methods described and tested in this pilot research had mild success 

and are repeatable. However, they can certainly be improved upon. The spread of 

data, presence of outliers, and absence of strong correlations is concerning. These 

shortcomings suggest that the methods may only be applicable to certain subjects 

or that the vibrations are significantly impacted by factors that were not accounted 

for. Some factors that may inhibit the ability of the methods presented here include 

attenuation of the signal from soft tissue and noise induced from other 

physiological mechanisms (muscle contractions, snapping tendons, crepitus, etc.).  

Ultimately a larger set of data consisting of various TKA designs is required to 

validate the methods presented here. Additionally, it would be optimal to study the 

applicability of these methods at more realistic activity speeds rather than the slow 

speeds that characterize the present data set. Lastly, this research only utilized 

the cascade moving average filter to post-process the raw signals. Additional 

research may focus on testing other signal processing techniques to optimize the 

assessments described here. 
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CHAPTER 4. MEASURING THE MECHANICAL EFFECTIVENESS 
OF VISCOSUPPLEMENTATION IN OSTEOARTHRITIC KNEES 

  



125 

 

Raw data for this research was collected at the OhioHealth Grant Medical Center 

(Columbus, Ohio) by Trevor Grieco. All final analyses were conducted by Trevor 

Grieco at the University of Tennessee.  
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4.1. Abstract 

Viscosupplementation of the osteoarthritic knee via intra-articular injection of 

hyaluronic acid remains a controversial treatment for symptomatic patients. 

Currently, conflicting results and clinically irrelevant effects are a cause of 

uncertainty among major orthopaedic societies when it comes to recommending 

this treatment. This investigation was designed to investigate vibroarthrography’s 

ability to provide unique metrics that may be used to supplement future evaluation 

of this treatment. It was expected that after injection vibroarthrographic features 

would be more normal like than their respective preoperative features. 

Six osteoarthritic knees were evaluated at multiple time points prior to and after 

viscosupplementation. Vibroarthrography was used to measure signals at five 

anatomic locations during a chair rise activity. These locations included 1) tibial 

tuberosity, 2) medial tibial condyle, 3) patella, 4) medial femoral epicondyle, and 

5) lateral femoral epicondyle. The variance of the means squared (VMS), form 

factor (FF), turns count adaptive threshold (TC-AT), turns count fixed threshold 

(TC-FT) and the envelope amplitude average (EAA) were derived from the 

vibration signals. These features were compared to clinically relevant information 

from electronic medical records to interpret changes within subjects and across 

the subject sample. 

VMS and TC-AT exhibited the best agreement with clinical observations. Post-

operative decreases in these two features often presented in the medial tibial 

condyle site and the medial femoral epicondyle site for subjects reported to have 

significant medial compartment degeneration. These features also decreased in 

the patellofemoral site for the one subject who was reported to have severe 

osteoarthritis at the patella. 
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Although some patterns of interest existed on a case by case basis, the sample 

size was too small, and the follow-up rate was insufficient to conclude that any 

definitive relationships existed between the vibration signals and the treatment.  
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4.2. Introduction 

It has been estimated that knee osteoarthritis (OA) affects 14 million people in the 

United States and more than 250 million people worldwide [97, 98]. This disease 

can affect the entire synovial joint [98], and subjects may experience pain, aching, 

stiffness and functional loss due to soft tissue damage and the presence of bone 

on bone contact (Figure 4.1 and Figure 4.2) [97]. Muscle atrophy, bone remodeling 

and sclerosis, cartilage degeneration, synovial hypertrophy, ligament dysfunction, 

meniscal damage, and osteophytes all contribute to the debilitating symptoms 

associated with OA [98]. Current conservative treatment options such as knee 

braces, physical therapy and nonsteroidal anti-inflammatory drugs (NSAIDS) are 

limited in their ability to hinder disease progression and/or provide long term 

symptom relief [97]. If eventually all these traditional treatments fail to relieve OA 

symptoms, intra-articular hyaluronic acid (HA) injections may be considered [99].  

HA, also known as hyaluronan or hyaluronate, is a naturally occurring substance 

found in the human body that is critical for cellular and tissue functions [98, 100]. 

Over the last thirty years it has been chemically modified to serve various clinical 

functions [100]. In synovial joints, endogenous HA enables synovial fluid to act as 

a lubricant or shock absorber [98, 101]. In the normal adult knee there is 

approximately 2 mL of synovial fluid with a hyaluronate concentration of 2.5 to 4.0 

mg/mL [101]. One of the physiological mechanisms of OA is the depolymerization 

of hyaluronate [98, 101]. This depolymerization directly affects the intrasynovial 

half-life of hyaluronate. In a normal joint the average half-life has been reported to 

be approximately 20 hours, but in a diseased joint this may decrease by more than 

40% (11 to 12 hours) [98]. Eventually this results in a significantly lower 

concentration of HA in the synovial fluid which ultimately reduces the fluid’s 

viscoelastic properties [98]. Therefore, as deficiencies in HA are responsible for 

the compromised rheological properties of synovial fluid, synthesizing it for  



129 

 

 

Figure 4.1. Osteoarthritis is a disease of the entire synovial joint. The schematic demonstrates how 

each structural part of the knee is affected by osteoarthritis (illustration courtesy of David J. Hunter 

[98]). 
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Figure 4.2. Anterior/Posterior X-rays illustrate the loss of joint space in an arthritic knee (right) 

compared to a normal knee (left) (illustration courtesy of OrthoInfo by the American Academy of 

Orthopaedic Surgeons [102]). 
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repeated injection may be considered a reasonable means of subsidizing an 

osteoarthritic knee.  

Viscosupplementation via intra-articular HA injections has been in use in the 

United States since the late 1990’s [101]. This intra-articular injection of 

bioengineered HA may provide shock absorption, chondroprotection, and anti-

inflammatory effects within the knee [98, 103]. Currently multiple formulations of 

these injections are commercially available and approved for use in the knee in the 

United States. Formulations range in molecular weight from 500 kDA to 6000 kDA 

[103], and manufacturing processes involve extraction of avian-derived molecules 

or bacterial processes of biological fermentation [103]. Initially the treatment was 

administered as a set of multiple injections over 3-5 weeks, but now it is commonly 

administered as a single injection. Studies have been conducted on the safety and 

efficacy of the intra-articular HA injections and findings suggest that certain 

characteristics of synthesized HA may result in more effective treatment than 

others [101, 103]. Some comparisons of viscosupplementation to corticosteroids, 

NSAIDS, and analgesics have reported that in the long term intra-articular HA 

provides better pain relief than conventional care, and that it is a cost-effective 

strategy [104, 105]. However, systematic reviews of the literature report conflicting 

results and clinically irrelevant effects [104, 106, 107]. Since 2013, the American 

Academy of Orthopaedic Surgeons (AAOS) has held the stance that they cannot 

recommend using HA for the treatment of knee OA due to the lack of clinically 

relevant evidence [108]. Similarly, the 2014 guidelines for the non-surgical 

treatment of knee OA presented by the Osteoarthritis Research Society 

International (OARSI) denote uncertainty in recommending intra-articular HA 

injections [109]. The healthcare economics associated with this treatment are 

equally questionable. It has been reported that HA injections account for 25% of 

treatment costs associated with nonoperative care for knee OA (greater 
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percentage than any other treatment) [110], and in 2012 Medicare spent $207 

million on HA products [111]. Accompanying the clinical and economic 

uncertainties is the fact that the ideal candidate for this treatment remains unclear 

[98, 99, 101]. Very recently it was reported that subjects with Kellgren-Lawrence 

(KL) grades of 1 or 2 were twice as likely to respond positively to the HA treatment 

compared to those with KL grade 3 OA [99]. Like other clinical investigations of 

this controversial treatment, these results were based on patient reported 

outcomes (Western Ontario and McMaster Universities Arthritis Index/Knee Injury 

and Osteoarthritis Outcome Score (WOMAC/KOOS) and a visual analogue scale 

were used to measure patient function and pain) [99]. 

To provide additional information of value regarding the use of intra-articular HA 

injections for the treatment of knee OA, the present research was proposed. In this 

research, instead of measuring the efficacy of the treatment by patient outcome 

scores, a mechanical approach was taken. Vibroarthrography has previously been 

utilized to noninvasively measure the mechanical interactions of healthy and 

diseased knees, but it has never been utilized to measure the effectiveness of a 

treatment. In these previous investigations various features demonstrated that 

normal knees exhibit less signal variance than diseased knees. Since the primary 

functions of viscosupplementation are mechanical in nature, it is a perfect 

candidate for the exploration of vibroarthrography’s application beyond screening. 

In accordance with the findings of normal and diseased knees, it was expected 

that the measurable differences in variance would exist between preoperative and 

postoperative signals measured in subjects undergoing intra-articular HA 

treatment. 
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4.3. Materials and Methods 

4.3.1. Subject Recruitment 

Vibroarthrography exams were conducted on a rolling basis as potential 

candidates were identified at initial and/or follow up visits to the Ohio Health Bone 

and Joint Center (Columbus, OH, USA). Symptomatic subjects who were between 

18 and 85 years old and less than 250 pounds were informed of the opportunity to 

participate in this study. All interested subjects were consented by research 

personnel in accordance with the institutional review board approved clinical 

protocol. Once consented subjects were prepared for the Baseline 

vibroarthrographic exam. 

4.3.2. Vibroarthrographic Exams and Treatment 

Subjects were outfitted with an array of uniaxial accelerometers (352A24, PCB 

Piezotronics Inc., Depew, NY, USA) at the knee. These accelerometers are high 

sensitivity, miniature, integrated electronic piezoelectric (IEPE) accelerometers 

with a sensitivity of 100 mV/g, a measurement range of ±50 g pk, and a frequency 

range of 0.5 to 10000 Hz (±5%).  The accelerometers were connected to a signal 

conditioner (482C05, PCB Piezotronics Inc., Depew, NY, USA) that provides 

constant-current power to connected sensors. The signal conditioner was 

configured to amplify all incoming signals by a factor of 10. Signal conditioner 

outputs were connected to a data acquisition device (DI-720-USB, DATAQ 

Instruments, Inc., Akron, OH, USA) that was used to log analogue inputs. 

Accelerometers were mounted to the tibial tuberosity, the medial tibial condyle, the 

medial femoral epicondyle, and the patella (Figure 4.3). Hypoallergenic medical 

tape was used to fix the accelerometers to the skin at these bony landmarks. The 

sensor cables were also taped above the knee prevent interference.  

Subjects performed a sit-to-stand activity in which they steadily rose from a chair. 

Subjects started with the knee flexed to approximately 90° and subjects completed  
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Figure 4.3. Accelerometers (denoted by red circles) were mounted at the medial femoral 

epicondyle, the medial tibial condyle, the patella, the lateral femoral epicondyle, and the tibial 

tuberosity. 
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the activity with the knee fully extended. Subjects were instructed to maintain their 

feet position during the activity to reduce signal artifact. If necessary, multiple trials 

were conducted to ensure the data was collected cleanly.  All accelerometers were 

sampled at 10,000 Hz and the data was saved to a laptop hard drive for analysis. 

Six of the subjects enrolled in this study were scheduled to undergo 

viscosupplementation at the knee. All six of these subjects were diagnosed with 

medial tibiofemoral and/or patellofemoral compartment OA. Five subjects were 

treated with Synvisc-One® (Sanofi, Bridgewater NJ, USA) and one subject was 

treated with MONOVISC® (DePuy Mitek, Raynham, MA, USA). Treatment was 

conducted after the Baseline vibroarthrography exam. Aspiration of the joint was 

performed prior to the HA injection to remove any effusion that may have been 

present. Post injection (PostOp) vibroarthrography exams were conducted after 

the viscosupplementation treatment. The PostOp exam was conducted in identical 

fashion to the Baseline exam. Four subjects participated in PostOp exams on the 

same day of treatment. One subject returned for the PostOp exam one day after 

the Baseline exam, and one subject was unable to participate in the PostOp exam. 

An identical follow-up exam was conducted between Week 3 and Week 6. Only 

three of the six subjects returned for a follow-up exam during this visit window.  

Although no clinical examination was performed per the study protocol, the medical 

history for all six subjects was thoroughly reviewed so that the state of each 

degenerative knee could be appropriately contextualized. Relevant clinical notes, 

imaging, physical exams, and joint evaluations provided valuable insight as to the 

location and severity of degeneration. This information was used to present 

vibroarthrographic results in a clinically relevant manner. 

4.3.3. Vibration Signals Processing 

First, extraneous data was cropped from the raw vibroarthrograms so that only the 

sit-to-stand activity was analyzed. Then the data was filtered using a cascade 
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moving average filter (Figure 4.4). This filter serves to remove non-stationary low 

frequency signals that are caused by patient movement and or trembling that will 

interfere with vibration signals of interest (base-line wander) (Figure 4.5). The filter 

was constructed following an algorithm presented by Cai et al. [91]. This filter 

contains two layers. The first layer contains a M-order and a N-order moving 

average operator. The K inputs at the end of the M-order operator overlap the initial 

inputs of the N-order operator [91]. The second layer smooths the resulting 

piecewise linear trends obtained in the first layer. Both the M and N moving 

average operators were specified as 20th order operators. K was specified as 5 

overlapping inputs. The final output as presented by Cai et al. is given as 

𝑦(𝑖) =
[𝑜1(𝑖) + 𝑜2(𝑖)]

2
=  

1

2𝑀
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𝑀

𝑚=1

+
1

2𝑁
∑ 𝑥(𝑖 − 𝑀 + 𝐾 − 𝑛)

𝑁
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in which 𝑜1(𝑖) and 𝑜2(𝑖) are the M and N order moving average operators [91]. The 

transfer function 𝐻(𝑧) of this cascade moving average filter, similarly presented by 

Cai et al., is obtained by applying the z-transform to achieve 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

1

2𝑀
(𝑧−1 + ⋯ + 𝑧−𝑀) +

1

2𝑁
(𝑧−𝑀+𝐾−1 + ⋯ + 𝑧−𝑀+𝐾−𝑁) 

Once filtered, the data was normalized from 0 to 1 (Figure 4.6A). Then the data 

was segmented into non-overlapping 5 millisecond windows (50 samples). The 

local maxima, local minima, and local mean squared were calculated for each 

window. The local maxima and local minima were used to calculate the envelope 

amplitude as described by Yang et al. [92]. In their research, the signal envelopes 

were defined by linear interpolation of the local minima and maxima. In the present 

work, Hermite interpolation (third order) was used to derive the upper envelope 

and lower envelope from the local maxima and local minima respectively (Figure 

4.6B). Then the envelope amplitude was calculated as the difference between the 
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Figure 4.4 Cascade moving average filter frequency response. 

 

Figure 4.5. The raw signal (top) is passed through the cascade moving average filter to estimate 

and subtract the base-line wander (middle). Subtraction of base-line wander from the raw signal 

results in the filtered signal (bottom).   
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Figure 4.6. (A) The filtered signal is normalized from 0 to 1. (B) The upper (blue) and lower (red) 

signal envelopes are calculated and subtracted to obtain (C) the envelope amplitude.  
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upper and lower envelope at each interpolated point in time (Figure 4.6C). The 

average of the envelope amplitudes (EAA) was analyzed as a primary feature.  

This feature describes the general fluctuation degree of a vibroarthrogram and was 

previously presented by Yang et al. for the screening of diseased knees [92].  The 

variance of the local means squared (VMS) was also analyzed. This parameter 

was first described as a feature for screening diseased knees by Rangayyan and 

Wu [27]. It effectively describes the degree of dispersion within the signal in a short 

time span [112]. 

Three other features were calculated for the duration of the activity. Form factor 

(FF) was calculated as described by Rangayyan and Wu [26]. FF describes the 

complexity or busyness of a signal and is derived from the standard deviations of 

the signal’s first and second derivatives (𝜎𝑥′ and 𝜎𝑥′′)  

𝐹𝐹 =
𝜎𝑥′′/𝜎𝑥′

𝜎𝑥′/𝜎𝑥
 

The turns count was also calculated for the duration of each signal. The turns count 

is simply the number of times the difference between two consecutive samples is 

greater than a predefined threshold. This measure of variability was originally 

presented for the analysis of electromyography (EMG) by Willison [113]. More 

recently it has been used as a discriminant feature for classification of healthy and 

diseased knee vibroarthrograms [27, 114]. Rangayyan and Wu presented an 

adaptive threshold turns count based on the standard deviation of the signal. Using 

a threshold equal to one half of a signal’s standard deviation (0.5σ), they 

demonstrated that the turns count of normal knees was greater than turns count 

of diseased knees. This is explained by the fact that normal knee signals were less 

variable than diseased knee signals. Less variance resulted in smaller thresholds 

which resulted in more counted turns. A few years later, Cai et al. tested the 
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discriminant ability of a fixed threshold turns count on the basis that diseased 

knees should intuitively have more turns of significance (higher variability) than 

normal knees [114]. Using a fixed threshold equal to 0.2, this feature proved to be 

effective in discriminating normal from abnormal knee vibroarthrograms. Turns 

count with an adaptive threshold (TC-AT) and turns count with a fixed threshold 

(TC-FT) were calculated and analyzed in the present research. The adaptive 

threshold was defined as one half of a signal’s standard deviation (Figure 4.7A). 

The fixed threshold was defined as 0.05 (Figure 4.7B).  

Since only a small number of subjects were investigated in this pilot study, the 

results were presented on a case by case basis. Features derived from signals 

measured at the closest proximity to the diseased location(s) were assessed for 

change between Baseline and subsequent vibroarthrographic exams. The percent 

difference with respect to Baseline was reported as the primary endpoint for 

features of interest. The raw feature data derived from signals measured at each 

of the five anatomic locations is presented in Appendices A, B, C, D, and E. 
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Figure 4.7. (A) Red circles denote turns greater than the adaptive threshold of 0.5σ. (B) Red 

circles denote turns greater than the fixed threshold of 0.05. 
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4.4. Results 

4.4.1. Subject 001 

Subject 001 experienced chronic knee pain and X-ray findings indicated prominent 

narrowing in the medial compartment. Vibrations for subject 001 were measured 

at Baseline and PostOp. The PostOp exam was conducted on the same day as 

the Baseline exam following injection of Synvisc-One®. All features derived from 

the accelerometer positioned at the medial tibial condyle exhibited a decrease in 

magnitude postoperatively. The VMS decreased by 94.57%, FF decreased by 

35.96%, TC-AT decreased by 91.81%, TC-FT decreased by 80.00%, and the EAA 

decreased by 84.75%. All five features derived from the accelerometer positioned 

at the medial femoral epicondyle also exhibited decreases in magnitude from 

Baseline to PostOp. VMS decreased by 94.86%, FF decreased by 1.21%, TC-AT 

decreased by 57.62%, TC-FT decreased by 91.30%, and EAA decreased by 

78.31%. 

4.4.2. Subject 002 

Subject 002 experienced chronic knee pain and X-ray findings indicated moderate 

medial cartilage loss.  Vibrations for subject 002 were measured at Baseline and 

PostOp. The PostOp exam was conducted on the same day as the Baseline exam 

following injection of Synvisc-One®. Following treatment, four of the five features 

calculated from the accelerometer positioned at the medial tibial condyle 

decreased in magnitude. VMS decreased by 92.49%, FF decreased by 41.12%, 

TC-AT decreased by 23.56%, and EAA decreased by 38.97%. At the medial 

femoral epicondyle site, only VMS and TC-AT decreased postoperatively. VMS 

decreased by 7.91% and TC-AT decreased by 36.98%. 

4.4.3. Subject 003 

Subject 003 experienced medial joint line tenderness. Baseline X-ray findings 

indicated bone on bone contact and significant spurring in the medial tibiofemoral 
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compartment. Vibrations for subject 003 were measured at Baseline and Week 3. 

Following the Baseline exam, the subject was treated with Synvisc-One®. No 

immediate PostOp exam was collected. The Week 3 follow up visit was scheduled 

due to increased pain since treatment. X-ray findings indicated tibiofemoral 

subluxation that was not previously reported at Baseline. At the medial tibial 

condyle site VMS, FF, TC-AT, TC-FT, and EAA all increased from Baseline to 

Week 3. VMS increased by 984.70%, FF increased by 7.51%, TC-AT increased 

by 7.11%, TC-FT increased by 114.16%, and EAA increased by 22.50%. At the 

medial femoral epicondyle site VMS, TC-AT, TC-FT, and EAA increased from 

Baseline to Week 3. VMS increased by 958.92%, TC-AT increased by 380.59%, 

TC-FT increased by 185.00%, and EAA increased by 34.27%. 

4.4.4. Subject 004 

Subject 004 experienced medial joint line tenderness, had a history of chronic 

medial knee pain, and reported loud popping noises. X-ray findings indicated 

degeneration of the medial tibiofemoral compartment and the patellofemoral 

compartment. Loud popping noises were suspected to be associated with locking 

and catching of menisci and/or ligaments. Observations from MR imaging included 

high-grade articular cartilage loss in the central weight-bearing surface of the 

medial femoral condyle as well as moderate to high-grade articular cartilage loss 

in the central trochlea. No evidence of meniscal or ligament tear was found. 

Vibrations for subject 004 were collected at Baseline, PostOp, and Week 6. The 

PostOp exam was conducted on the same day as Baseline following injection of 

Synvisc-One®. Based on the medical history, signals of interest included those 

measured at the medial femoral epicondyle and the patella.  

From Baseline to PostOp FF, TC-AT, and EAA decreased at the medial femoral 

epicondyle site by 32.22%, 54.15%, 78.10% and 38.72% respectively. All six 
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features derived from the medial femoral epicondyle signal decreased from 

Baseline to Week 6. VMS decreased by 60.23%, FF decreased by 36.40%, TC-

AT decreased by 29.13%, TC-FT decreased by 80.00%, and EAA decreased by 

64.89%.  

From Baseline to PostOp VMS, FF, and TC-AT decreased at the patella site. VMS 

decreased by 69.18%, FF decreased by 1.16%, and TC-AT decreased by 23.66%. 

From Baseline to Week 6, VMS decreased by 94.11%, FF decreased by 13.23%, 

TC-AT decreased by 76.33%, TC-FT decreased by 40%, and EAA decreased by 

57.26%. 

4.4.5. Subject 005 

Subject 005 experienced years of chronic knee pain. The pain was reported to be 

constant, severe, aching pain. X-ray findings indicated a varus deformity and 

severe osteoarthritis with bone on bone contact in the medial compartment. The 

subject failed conservative measures and was prescribed viscosupplement 

treatment as a final measure before resorting to TKA. Vibrations were collected at 

Baseline, PostOp, and Week 6. The PostOp exam was conducted on the same 

day as Baseline following injection of MONOVISC®. Progression of the 

disease/symptoms was noted at Week 6, and the subject underwent total knee 

arthroplasty (TKA) approximately 16 weeks after the Baseline exam. Operative 

notes from TKA describe dissection of synovium scarring from the anterior femur 

and the removal of osteophytes from the femoral notch. 

From Baseline to PostOp VMS, TC-AT, and TC-FT decreased at the medial tibial 

condyle site. VMS decreased by 89.78%, TC-AT decreased by 54.13%, and TC-

FT decreased by 68.89%. From Baseline to Week 6 VMS, FF, TC-AT, and EAA 

decreased at the medial tibial condyle site. VMS decreased by 91.93%, FF 
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decreased by 33.10%, TC-AT decreased by 54.32% and EAA decreased by 

13.10%.  

At the medial femoral epicondyle site most features increased in magnitude 

compared to their Baseline values. Only FF decreased from Baseline to PostOp 

(14.32%), and no features decreased from Baseline to Week 6. At the lateral 

femoral epicondyle site all features measured at PostOp and Week 6 were at 

higher levels than the respective Baseline values. 

At the patella site, VMS, FF, TC-AT, and TC-FT decreased from Baseline to 

PostOp. VMS decreased by 81.55%, FF decreased by 12.84%, TC-AT decreased 

by 45.83% and TC-FT decreased by 28.57%. Only TC-FT decreased between 

PostOp and Week 6 at the patella site. All other features derived from the patella 

signal increased in magnitude between PostOp and Week 6. By Week 6, FF and 

TC-AT had increased to levels that surpassed their respective values calculated 

at Baseline (Week 6 FF increased by 62.10% with respect to Baseline and Week 

6 TC-AT increased by 90.83% with respect to Baseline). Although VMS increased 

from PostOp to Week 6, it was still down compared to its Baseline value (52.75%). 

4.4.6. Subject 006 

Subject 006 experienced months of moderate joint pain and was nonresponsive to 

conservative pain management. X-ray findings indicated bone on bone contact in 

the medial tibiofemoral compartment and polar spurring on the patella. Vibrations 

for subject 006 were measured at Baseline and PostOp. Following the Baseline 

exam, the subject was treated with Synvisc-One®. The PostOp exam was 

conducted one day after treatment. At the medial tibial condyle site, only FF, TC-

AT, and EAA decreased in magnitude from Baseline to PostOp. FF decreased by 

6.63%, TC-AT decreased by 23.16%, and EAA decreased by 16.73%. At the 
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medial femoral epicondyle site, no features decreased from Baseline to PostOp. 

At the patella site, only FF decreased from Baseline to PostOp (2.52%). 

4.5. Discussion 

Past vibroarthrographic investigations of the native knee have focused on the 

screening of subjects with known knee degeneration. The same data set has been 

tested extensively by multiple groups in working towards the development of a 

clinical grade classifier [19, 20, 23, 25-29, 91, 92, 112, 114, 115]. Pre-processing 

and post-processing techniques have been well documented, and the success of 

classification has increased as new discriminant features are derived and tested. 

Instead of expounding further in the same exact direction, methods discussed in 

this wealth of literature were adopted to investigate the effectiveness of a 

treatment. Viscosupplementation remains a controversial and expensive treatment 

for the management of pain associated with arthritis. Fundamentally this treatment 

is intended to supplement the diseased joint by increasing the viscosity of the 

compromised synovial fluid. Bioengineered HA is injected into the joint capsule to 

cushion and protect the diseased articular surfaces. From a vibroarthrographic 

perspective, it is known that diseased joints exhibit increased signal variance 

compared to a healthy joint. Among various reasons for this, is the fact that 

diseased joints do not articulate as smoothly as healthy joints. Decreases in 

synovial fluid viscosity as well as the presence of cartilage lesions, joint space 

narrowing, osteophytes, torn menisci, and other intraarticular damage introduce 

mechanical defects into the once virtually frictionless system. When the defects 

are involved in joint articulation, fluctuations in the energy emitted can be 

measured with vibroarthrographic techniques. The clinical success of traditional 

pain management for knee OA (NSAIDS, corticosteroids, etc.) can only really be 

measured by subjective patient feedback. Unlike conservative treatments, 

viscosupplementation seeks to reduce pain through a quasi-mechanical patch. 
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Therefore, it is reasonable to consider objectively evaluating its effectiveness by 

mechanical testing. This is not to say that patient feedback and outcomes scores 

are an inadequate means of testing the quality of a treatment; rather it is to point 

out the unique opportunity to provide additional information that may be used in 

the assessment of the treatment’s value. 

This pilot study details the novel application of vibroarthrography for the 

investigation of viscosupplement treatment in diseased knees. The methods 

presented here are scalable, and patterns in the data warrant further investigation. 

Unfortunately, the sample size and follow up rate were critical factors that reduced 

the power of this pilot investigation. One subject was unable to participate in a 

PostOp exam, and only three subjects returned for follow-up exams between Week 

3 and Week 6. Given these limitations, the data had to be presented on a case by 

case basis. At this early phase of the research, no statistically valid conclusions 

can be made between vibration related features and the effectiveness of the 

treatment across subjects or longitudinally. Aside from increasing the sample size, 

a future investigation needs to collect data more frequently across a six-month 

timeline. In such an investigation it is recommended that vibroarthrography exams 

be conducted at two-week intervals for the first three months and then monthly 

after that. Additionally, it would be valuable to collect a validated outcome score, 

such as the Knee Injury Osteoarthritis Outcome Score (KOOS), at each visit. It 

would also be ideal if Baseline imaging was required and standardized for all 

subjects. At the very least, anterior/posterior and lateral weight bearing X-rays as 

well as a skyline X-ray should be collected just prior to treatment. MR imaging at 

Baseline would also be extremely useful in the interpretation of vibration signals. 

Lastly it is important to note that there was a chance for error when administering 

the injection. If the treatment is not injected into the intraarticular joint space, it is 

wasted. Although in this investigation the injection was performed by a highly 
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experienced orthopedic surgeon, the chance of error still existed, and there was 

no way of knowing with absolute certainty that the injection was properly delivered. 

Therefore, one may consider using image guidance (ultrasound or fluoroscopy) for 

the purposes of future research to ensure the treatment reaches its target. 

Despite these limitations there are some findings worth noting. The first is the 

apparent relevance of certain features. Previous vibroarthrographic investigations 

have demonstrated that VMS, FF, TC-AT, TC-FT, and EAA are useful features in 

discriminating the difference between normal and diseased knees [26, 27, 92, 112, 

114-116]. In these studies, it was found that all of these features except for TC-AT 

were significantly less in normal knees than in diseased knees. TC-AT is 

dependent on the definition of the adaptive threshold. In previous research and the 

present research, the adaptive threshold was set at one half the standard deviation 

of the activity signal [27]. Mathematically it makes sense that if a normal 

vibroarthrogram has less variance than a diseased vibroarthrogram the adaptive 

threshold will decrease, and ultimately more turns of significance may exist. In the 

present work, it was hypothesized that the PostOp vibroarthrogram would be more 

“normal” like than the Baseline vibroarthrogram. In accordance with this, it was 

expected that postoperative values of VMS, FF, TC-FT, and EAA would be less 

than their respective values at Baseline and TC-AT would be greater than its 

Baseline value.  

Seemingly correlated relationships between clinical data and multiple vibration 

features presented in four of the six subjects. Subjects 001, 002, and 004 exhibited 

decreases in similar features postoperatively. In these subjects, VMS and TC-AT 

decreased postoperatively at the medial femoral epicondyle and the medial tibial 

condyle sites. These two features also decreased at the patella for Subject 004 

who, in addition to medial degeneration, was reported to have high grade articular 

cartilage loss in the trochlea. VMS and TC-AT also appeared to reflect the clinical 
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data for Subject 003. Unlike Subjects 001, 002, and 004, Subject 003’s features 

increased postoperatively. Although unexpected, the increases in VMS and TC-

AT at the medial tibial condyle and the medial femoral epicondyle sites align with 

adverse reports (increased pain and subluxation) in the clinical data. Aside from 

VMS and TC-AT, EAA and FF may be worth considering for use in future 

evaluations as changes in both features reflected clinically relevant interactions in 

most of the cases previously discussed. Together these cases provide some 

evidence that certain vibration features related to the overall signal variance 

fluctuate proportionately to clinically relevant interactions. 

The relationships between vibration features and clinical interactions for subjects 

005 and 006 were less clear. The main problem being that unlike the other subjects 

with medial degeneration, there was not agreement between features measured 

at both medial sites (tibial and femoral). At the medial tibial condyle site both 

subjects exhibited decreases in TC-AT, FF, and EAA postoperatively, but at the 

medial femoral epicondyle site the subjects saw virtually no postoperative 

decreases in vibration features (FF for Subject 005 was the only feature to 

decrease postoperatively). Since the sensors located at these sites are relatively 

close to each other, this discrepancy raises concerns. Primarily, it begs the 

question “were the sensors appropriately fixated to the bony landmarks and did 

anything interfere with the signals?”. Precautions taken during data collection and 

review of the video footage as well as the raw data suggests that the data was 

adequately captured with no interference. However, it is possible that noise existed 

at Baseline in the medial tibial condyle signal that was not present at later time 

points. If the noise made it through the filter, then it would artificially inflate the 

signal features at Baseline resulting in false decreases at later time points. 

Similarly, if noise affected the medial femoral epicondyle signal at postoperative 

time points the apparent increase from Baseline features would be marked as 
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erroneous. For the sake of future investigations, it is important to emphasize the 

fact that the instrumentation used in this research is highly sensitive, and the 

utmost care must be taken when collecting data to ensure the integrity of the 

analysis is not compromised. 

The final aspect of this investigation worth noting is the behavior of TC-AT. 

Previously Rangayyan and Wu demonstrated that normal knee signals have more 

turns than abnormal knee signals when using the adaptive threshold 0.5σ. In the 

present work TC-AT often decreased postoperatively. This seems to be in direct 

disagreement with Rangayyan and Wu’s work. If the treatment is expected to result 

in more normal knee signals, then the TC-AT should decrease. However, 

calculations present otherwise. A positive correlation between the adaptive turns 

count and signal variance existed across the subjects tested in this pilot 

investigation. The only explanation is that the threshold of 0.5σ was inadequate for 

discouraging significant turns in this sample of data. Furthermore, unlike 

Rangayyan and Wu who used this feature to discriminate between distinctly 

different cohorts, the feature in this work is being used for intra-subject 

comparisons within a small sample. Aside from these details, no other reasonable 

explanations can be made without additional monitoring of this feature across more 

time points in a larger number of subjects. Ultimately turns count is intended to 

measure the randomness of the signal, and the relationship between TC-AT and 

clinical interactions in this work remains an encouraging result that deserves 

further investigation in future work. 

4.6. Summary 

A pilot investigation into the use of vibroarthrography for the monitoring of a 

nonsurgical OA treatment has been presented for the first time. Although the data 

was not powerful enough to make clinically relevant conclusions about the 

mechanical efficacy of viscosupplementation in the osteoarthritic knee, this work 
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does present a valuable foundation and methodology that can be expounded on. 

Unfortunately, this study was hindered by enrollment and follow up rates. 

Nevertheless, the work provided preliminary insight and prompted multiple 

recommendations that may be reasonably incorporated into future work. Ultimately 

vibroarthrography provides a new tool for the analysis of this controversial 

treatment. If properly paired with patient outcomes and medical imaging this tool 

has potential to provide new evidence in the debate on the clinical efficacy of intra-

articular HA injections for the treatment of knee osteoarthritis. 
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4.7. Appendices 

 

4.7.1. Appendix A: Tibial Tuberosity Raw Feature Data 

Subject 
ID 

Visit 
Label 

Tibial Tuberosity 

VMS FF TC-AT TC-FT EAA 

001 Baseline 1.905E-05 2.802 131 8 0.0817 

001 PostOp 8.369E-06 2.659 116 7 0.0446 

002 Baseline 4.755E-05 2.138 842 84 0.1242 

002 PostOp 3.666E-05 2.599 488 20 0.1084 

003 Baseline 2.427E-06 1.270 430 11 0.0318 

003 Week 3 1.554E-06 1.567 152 3 0.0289 

004 Baseline 7.577E-07 1.504 379 12 0.0289 

004 PostOp 4.326E-05 2.566 304 23 0.0718 

004 Week 6 2.541E-06 1.609 1099 17 0.0546 

005 Baseline 5.341E-06 1.772 648 111 0.0804 

005 PostOp 1.373E-05 2.991 470 1 0.0662 

005 Week 6 2.882E-05 3.240 71 3 0.0353 

006 Baseline 1.436E-04 2.611 791 99 0.1761 

006 PostOp 2.535E-05 1.595 984 143 0.1404 
VMS = Variance of Means Squared; FF = Form Factor; TC-AT = Turns Count Adaptive Threshold; TC-FT = Turns Count 

Fixed Threshold; EAA = Envelope Amplitude Average; PAPR = Peak-to-Average Power Ratio.  
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4.7.2. Appendix B: Medial Tibial Condyle Raw Feature Data 

Subject 
ID 

Visit 
Label 

Medial Tibial Condyle 

VMS FF TC-AT TC-FT EAA 

001 Baseline 2.207E-04 2.787 635 30 0.112 

001 PostOp 1.198E-05 1.785 52 6 0.017 

002 Baseline 1.121E-04 3.159 416 16 0.067 

002 PostOp 8.416E-06 1.860 318 17 0.041 

003 Baseline 6.571E-06 1.644 2293 113 0.113 

003 Week 3 7.127E-05 1.768 2456 242 0.138 

004 Baseline 4.899E-06 2.267 864 6 0.054 

004 PostOp 3.756E-08 1.278 49 8 0.011 

004 Week 6 9.746E-06 1.835 2168 15 0.067 

005 Baseline 1.110E-05 1.696 1550 45 0.056 

005 PostOp 1.134E-06 1.787 711 14 0.089 

005 Week 6 8.950E-07 1.135 708 72 0.049 

006 Baseline 2.387E-05 1.595 2486 272 0.177 

006 PostOp 4.476E-05 1.490 1910 426 0.147 
VMS = Variance of Means Squared; FF = Form Factor; TC-AT = Turns Count Adaptive Threshold; TC-FT = Turns Count 

Fixed Threshold; EAA = Envelope Amplitude Average; PAPR = Peak-to-Average Power Ratio. 
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4.7.3. Appendix C: Patella Raw Feature Data 

Subject 
ID 

Visit 
Label 

Patella 

VMS FF TC-AT TC-FT EAA 

001 Baseline 1.368E-05 1.260 5327 1099 0.333 

001 PostOp 3.450E-06 1.722 128 6 0.031 

002 Baseline 1.080E-05 1.251 5300 1294 0.359 

002 PostOp 2.299E-06 1.523 386 6 0.029 

003 Baseline 6.682E-07 1.252 410 13 0.034 

003 Week 3 7.221E-07 1.243 187 26 0.030 

004 Baseline 1.446E-06 1.583 169 5 0.023 

004 PostOp 4.458E-07 1.565 129 6 0.024 

004 Week 6 8.514E-08 1.374 40 3 0.010 

005 Baseline 1.495E-06 1.726 120 7 0.018 

005 PostOp 2.759E-07 1.504 65 5 0.023 

005 Week 6 7.063E-07 2.798 229 2 0.033 

006 Baseline 2.627E-06 1.591 154 14 0.056 

006 PostOp 2.879E-06 1.551 291 22 0.059 
VMS = Variance of Means Squared; FF = Form Factor; TC-AT = Turns Count Adaptive Threshold; TC-FT = Turns Count 

Fixed Threshold; EAA = Envelope Amplitude Average; PAPR = Peak-to-Average Power Ratio. Purple shaded rows indicate 

features from corrupt data signals that were not used in analysis. 
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4.7.4. Appendix D: Lateral Femoral Epicondyle Raw Feature Data 

Subject 
ID 

Visit 
Label 

Lateral Femoral Epicondyle 

VMS FF TC-AT TC-FT EAA 

001 Baseline 7.167E-07 1.851 299 2 0.0259 

001 PostOp 2.343E-05 2.253 537 38 0.115 

002 Baseline 1.175E-04 3.506 217 4 0.056 

002 PostOp 5.936E-06 1.512 924 7 0.039 

003 Baseline 7.479E-07 1.701 359 13 0.036 

003 Week 3 8.298E-06 2.567 881 30 0.060 

004 Baseline 1.218E-05 1.239 6720 1752 0.400 

004 PostOp 2.633E-06 1.809 217 13 0.035 

004 Week 6 1.564E-06 1.747 1130 14 0.043 

005 Baseline 1.220E-06 2.003 20 1 0.016 

005 PostOp 9.010E-05 2.102 1381 85 0.140 

005 Week 6 6.505E-05 2.271 1325 163 0.149 

006 Baseline 2.292E-04 3.345 303 17 0.057 

006 PostOp 1.245E-05 1.654 1419 61 0.092 
VMS = Variance of Means Squared; FF = Form Factor; TC-AT = Turns Count Adaptive Threshold; TC-FT = Turns Count 

Fixed Threshold; EAA = Envelope Amplitude Average; PAPR = Peak-to-Average Power Ratio. Purple shaded rows indicate 

features from corrupt data signals that were not used in analysis. 
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4.7.5. Appendix E: Medial Femoral Epicondyle Raw Feature Data 

Subject 
ID 

Visit 
Label 

Medial Femoral Epicondyle 

VMS FF TC-AT TC-FT EAA 

001 Baseline 5.222E-05 2.025 998 46 0.101 

001 PostOp 2.686E-06 2.001 423 4 0.022 

002 Baseline 1.221E-05 1.769 822 28 0.077 

002 PostOp 1.124E-05 1.952 518 47 0.083 

003 Baseline 5.001E-06 2.153 474 20 0.056 

003 Week 3 5.296E-05 1.720 2278 57 0.076 

004 Baseline 2.337E-06 2.519 975 10 0.054 

004 PostOp 9.755E-06 1.707 447 14 0.033 

004 Week 6 9.317E-07 1.602 691 2 0.019 

005 Baseline 1.622E-06 1.857 203 19 0.032 

005 PostOp 6.413E-05 1.591 2150 324 0.179 

005 Week 6 1.000E-04 2.634 765 65 0.118 

006 Baseline 3.736E-07 1.586 770 7 0.038 

006 PostOp 9.492E-05 2.148 1129 52 0.114 
VMS = Variance of Means Squared; FF = Form Factor; TC-AT = Turns Count Adaptive Threshold; TC-FT = Turns Count 

Fixed Threshold; EAA = Envelope Amplitude Average; PAPR = Peak-to-Average Power Ratio. 
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CHAPTER 5. CONCLUSION 
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The development of vibroarthrography as a clinically relevant diagnostic tool 

remains ongoing. Previous research endeavors have demonstrated its potential at 

the knee, hip, and spine using in vitro and in vivo methods. The dynamic, 

noninvasive, and mechanically objective nature of vibroarthrography positions it 

uniquely amongst other diagnostic modalities. Although at this point 

vibroarthrography is unable to provide the level of detail seen in medical imaging, 

it can provide supplemental information about dynamic instabilities that otherwise 

may have remained undiagnosed. In contribution to the further development of 

vibroarthrography, this work presented three novel investigations that explored the 

applications of vibroarthrography at the knee and hip.  

In a total hip simulator, it was found that vibroarthrography could be effectively 

used to distinguish approximately 1 mm differences in the microseparation of the 

femoroacetabular joint. Similar simulations have demonstrated that edge loading 

and subsequent femoral head reduction associated with this instability can result 

in distinct wear patterns that compromise the longevity of a total hip arthroplasty. 

Therefore, it is of interest to be able to detect and/or monitor the presence of this 

microseparation in vivo. The methods presented in the present work, are currently 

being incorporated into in vivo fluoroscopy investigations of healthy, diseased, and 

replaced hip kinematics to better understand the characteristic features of joint 

vibrations in relation to microseparation.  

An in vivo investigation of cam-post contact mechanics and vibroarthrography 

demonstrated that features derived from the vibrations measured at the joint 

surface may be used to approximate the occurrence and nature of cam-post 

engagement. Various features were tested for their ability to identify a window in 

which cam-post engagement occurred as seen via 3D-to-2D registration. 

Additionally, vibration features were correlated to the velocity and height of cam-

post engagement. Future investigations aimed at developing increased 
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understanding of in vivo cam-post contact mechanics may adopt the methods 

presented here to evaluate the differences in cam-post design variables, dynamic 

variables, and resultant vibroarthrographic features. 

Also, in this work, vibroarthrography was used to evaluate the mechanical efficacy 

of intra-articular HA injections for the treatment of knee OA. To the author’s 

knowledge, this is the first time any attempts have been made at utilizing 

vibroarthrography for the evaluation of a non-surgical treatment of knee OA. 

Ultimately, the results were inconclusive due to small sample size and poor follow-

up rates. However, given the controversy that currently surrounds this treatment, 

the methods presented within should be used in future investigations of larger 

scale. Preliminary results suggest that patterns may exist between 

vibroarthrographic features and the treatment. Moving forward these 

vibroarthrographic features need to be investigated in relation to standardized 

outcome assessments and standardized imaging assessments at systematic time 

points over the course of six months to best demonstrate the merit of this 

application in vibroarthrography. 

Vibroarthrography has potential to be a viable diagnostic tool for various 

musculoskeletal applications. Although it may never stand alone, its dynamic 

nature is unquestionably well suited for additional observation and/or monitoring 

of instabilities. Ongoing investigations seeking to define the accuracy and potential 

of vibroarthrography remain well justified as preventative medicine and accessible 

automated diagnostic systems continue to shape the healthcare landscape.  
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