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ABSTRACT 

 

En route traffic diversions have been identified as one of the effective traffic operations 

strategies in traffic incident management. The employment of such traffic operations will 

help relieve the congestion, save travel time, as well as reduce energy use and tailpipe 

emissions. However, little attention has been paid to quantifying the benefits by deploying 

such traffic operations under large-scale traffic incident-induced congestion on freeways, 

specifically under the connected vehicle environment. New Connected and Automated 

Vehicle technology, known as “CAV”, has the potential to further increase the benefits by 

deploying en route traffic diversions. This dissertation research is intended to study the 

benefits of en route traffic diversion by analyzing large-scale incident-related 

characteristics, as well as optimizing the signal plans under the diversion framework. The 

dissertation contributes to the art of traffic incident management by 1) understanding the 

characteristics of large-scale traffic incidents, and 2) developing a framework under the 

CAV to study the benefits of en route diversions. 

 Towards the end, 4 studies are linked together for the dissertation. The first study 

will be focusing on the analysis of the large-scale traffic incidents by using the traffic 

incident data collected on East Tennessee major roadways. Specifically, incident 

classification, incident duration prediction, as well as sequential real-time prediction are 

studied in detail. The second study mainly focuses on truck-involved crashes. By 

incorporating injury severity information into the incident duration analysis, the second 

study developed a bivariate analysis framework using a unique dataset created by matching 

an incident database and a crash database. Then, the third study estimates and evaluates the 
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benefit of deploying the en route traffic diversion strategy under the large-scale traffic 

incident-induced congestion on freeways by using simulation models and incorporating the 

analysis outcomes from the other two studies. The last study optimizes the signal timing 

plans for two intersections, which generates some implications along the arterial corridor 

under connected vehicles environment to gain more benefits in terms of travel timing 

savings for the studies network in Knoxville, Tennessee. The implications of the findings 

(e.g. faster response of agencies to the large-scale incidents reduces the incident duration, 

penetration of CAVs in the traffic diversion operations further reduces traffic network 

system delay), as well as the potential applications, will be discussed in this dissertation 

study.  
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CHAPTER 1  
INTRODUCTION 

 

Traffic incidents are non-recurring events imposing enormous costs on society in terms of 

productivity loss and delays. Federal Highway Administration (FHWA) has identified 

about 25% of the unexpected traffic congestion is caused by the traffic incidents. In a report 

recently released by Texas Transportation Institute (TTI) in 2015 termed the U.S. nation’s 

congestion problem as “very large” (Schrank, Eisele, Lomax, & Bak, 2015). Traffic 

congestion in 2014 across 471 metropolitan regions of the United States wastes a 

significant amount of nation’s time causing annual travel delay of $6.9-billion hours that 

accounts for $3.1-billion “wasted” gallons of fuel, summing up to a total of $121-billion 

annual congestion costs nationally (Schrank et al., 2015).  

 Traffic incidents, not only cause congestion on the freeway system but also cause 

fatalities and injuries. In 2015, there were an estimated 6,296,000 police-reported traffic 

crashes, in which 35,092 people were killed and an estimated 2,443,000 people were 

injured. The 2016 fatality count (37,461) is the highest since 2007. Among light-truck 

categories, occupant fatality rates increased by 8.4% for vans, 5.2% for SUVs, and 1.5% 

for pickup trucks. As for large-truck categories, there were 722 people killed in crashes 

involving large trucks, an 8.6-percent increase from 2015 to 2016, and an estimated 

116,000 people were injured in crashes involving large trucks in 2015 - an increase of 4% 

from an estimated 111,000 in 2014. 74% of people killed in large-truck involved crashes 

were occupants of the other vehicles (NHTSA, 2017a, 2017b). On average, 96 people died 

each day in motor vehicle crashes in 2015, one fatality every 15 minutes (NHTSA, 2017c). 
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 Therefore, it is necessary to study the incident management in terms of both 

mobility as well as safety. From the perspective of traffic safety that is associated with 

freeway incidents, truck-involved crashes are of top concern to both society and research 

community. These crashes are usually involved with substantial loss of lives, properties, 

and other resources. These crashes are usually considered as large-scale accidents. For 

example, a head-on collision with a truck carrying chemical products and a passenger 

vehicle. It can block all the lanes for a couple of hours. Such an accident might create a 

huge delay if it is happening during rush hours, where tons of traffic are delayed by these 

long-lasting incidents. Long congestion caused by large-scale traffic incidents are most not 

welcome by commercial vehicles because their value of travel time (VOT) is way higher 

than other vehicles. If their delivery business is delayed by a certain amount of time, extra 

money could be charged (Dong, Nambisan, Richards, & Ma, 2015; Golob, Recker, & 

Leonard, 1987; Golob & Regan, 2001; Knorring, He, & Kornhauser, 2005; Lutsey, 

Brodrick, Sperling, & Oglesby, 2004; Ng, Cheu, & Lee, 2006; NHTSA, 2017a). 

 From the perspective of mobility, while short to medium duration incidents can 

affect traffic operations and mobility, large-scale incidents substantially disrupt traffic flow 

by blocking lanes for long periods of time. Large-scale traffic incidents are more complex 

and require more response resources and close coordination between different agencies to 

clear the incident scene and restore to normal traffic (Zhang, Zhang, & Khattak, 2012). 

Large-scale traffic incidents are more likely to trigger traffic en route diversion to deal with 

diverted traffic, detours, special resources for cleanup, and dissemination of dynamic 

information to the public. Such a traffic operation has been evaluated to be one of the 

effective and efficient ways that can help relieve the negative impact of long periods of 
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congestion caused by the large-scale traffic incidents on the freeway (P.E. Dunn 

Engineering Associates, Consulting Services, 2006; Liu, Chang, & Yu, 2011; Liu, Kim, & 

Chang, 2012).  

 However, there are still gaps within the studies of deploying the en route diversion 

strategy, especially when taking into account the large-scale traffic incidents, commercial 

vehicles, as well as the Connected and Automated Vehicle (CAV) technology. Therefore, 

to improve the traffic en route diversion operations along the freeway system, this 

dissertation study intends to first identify and analyze the key characteristics of large-scale 

freeway traffic incidents; and then evaluate the benefits of deploying the en route traffic 

diversion under large-scale incident-induced congestion. Specifically, the truck en route 

diversions, since these types of vehicles need to be carefully handled, otherwise, potential 

safety issues such as intersection crashes might happen. In addition, en route diversion 

under such situations also needs to be analyzed further by taking account of the intersection 

traffic control. Because poor signal timing will hinder a smooth traffic flow along the 

arterial when a sudden rush of traffic diverts from the freeway and enters the arterial.  

 A text mining analysis is done to further explore how each topic is related to each 

other. QDA text mining tool (a qualitative data analysis software developed by Provalis 

Research) is applied and the key topics discussed in the selected literature include incident 

management, truck, diversion strategies, classification, fatalities, injuries, and control. A 

derived cloud graph representing each discussed topic (see Figure 1.1) is presented. They 

are clustered based on previous research. This graph shows incident management and 

agency response is grouped together while routing and network simulation is grouped 

where traffic delay is mostly related to. Interstate and arterial control is another topic,  
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FIGURE 1.1 Text mining analysis among different topics. 
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and severity, as well as injury modeling, is another research aspect. Such isolated research 

islands are not integrated into a complete study framework, and most of the time CAV is 

not selected as the main topic. Therefore, by integrating them together into a framework 

where large-scale traffic incidents/accidents, as well as CAV technologies, are accounted 

for, this study will make a difference from previous studies.  

 In summary, the dissertation research study provides a way in integrating the data 

source to achieve the intended goal of research. The overall study framework is presented 

in Figure 1.2 to present the organization of the whole dissertation study. It is linking the 

pre-crash, crash, and after crash 4 studies. More importantly, this research will apply 

statistical and simulation methods to evaluate the effectiveness of en route diversion 

strategy. The analysis results will help us better understand large-scale traffic incidents, 

and how en route diversion can help improve the traffic congestion management. This 

dissertation will enhance our understanding of the areas by studying the following subjects: 

 Integrating the incident data, crash data, and other related databases (e.g. weather); 

 Exploring the key aspects of large-scale traffic incidents on major freeways;  

 Evaluating the en route diversion under large-scale incident scenarios; and  

 Optimizing the signal timing plans at intersections and along key corridors under 

CAV to save travel time for both truck traffic as well as passenger vehicles. 

 The dissertation is organized in multi-journal article format since each chapter is a 

modified version of an article, which is either published in a journal or submitted for a 

presentation in a conference or submitted for a peer review academic journal. The second 

chapter studies the how large-scale traffic incidents are classified, the characteristics of 

large-scale traffic incidents, the real-time sequential prediction and other empirical 
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FIGURE 1.2 Dissertation structure.  

Note: Solid rectangle boxes indicate the work is finished, while dashed rectangle box indicates 

future work to be done.  
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prediction of incident duration. The third chapter is the extended study of the large-scale 

truck-involved crashes and how injury severity relates to incident duration under a bivariate 

modeling framework. Then, the en route traffic diversion is evaluated under the large-scale 

traffic incident and CAV in Chapter 4 by using simulation models. In addition to this, 

Chapter 5 evaluates the impact of signal timing plans under CAV to further improve the en 

route traffic diversion system. Finally, Chapter 6 completes the dissertation study by 

drawing the conclusion of the above studies. 
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CHAPTER 2  
LARGE-SCALE TRAFFIC INCIDENT DURATION ANALYSIS: 

THE ROLE OF MULTI-AGENCY RESPONSE AND ON-SCENE 

TIMES 
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This chapter presents a revised version of a research paper by adding additional 

classification analysis and sequential prediction analysis. The original research paper was 

published by Li, Xiaobing, Asad J. Khattak, and Behram Wali: 

 Li, Xiaobing, Asad J. Khattak, and Behram Wali. "Role of Multiagency Response 

and On-Scene Times in Large-Scale Traffic Incidents." Transportation Research Record: 

Journal of the Transportation Research Board 2616 (2017): 39-48. 

 Xiaobing Li’s effort on data collection, preprocessing and paper writing, Asad 

Khattak’s effort on idea formation, and Behram Wali’s effort on model construction, 

interpretation and paper writing are all recognized. 

 

2.1  ABSTRACT 

Traffic incidents often known as non-recurring events impose enormous economic and 

social costs. Compared to short duration incidents, large-scale incidents can substantially 

disrupt traffic flows by blocking lanes on highways for long periods of time. A careful 

examination of large-scale incidents and associated factors can assist with actionable large-

scale incident management strategies. For such an analysis, a unique and comprehensive 

5-year incident database on East Tennessee roadways was assembled to conduct an in-

depth investigation of large-scale incidents, especially focusing on operational responses, 

i.e., response and on-scene times by various agencies. Incidents longer than 120 minutes 

and blocking at least one lane are considered large-scale, giving 890 incidents, which are 

about 0.69% of all reported incidents in the database. Fixed- and random-parameter hazard-

based duration models are estimated to account for the possibility of unobserved 

heterogeneity in large-scale incidents. The modeling results reveal significant 
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heterogeneity in associations between operational responses and large-scale incident 

durations. A 30-minute increase in response time for first, second, and third (or more) 

highway response units translates to 2.8, 1.6, and 4.2 percent increase in large-scale 

incident durations, respectively. In addition, longer response times for towing and highway 

patrol are also significantly associated with longer incident durations. Given large-scale 

incidents, associated factors include vehicle fire, unscheduled roadwork, weekdays, 

afternoon peaks, and traffic volume. Notably, the associations are heterogeneous, i.e., the 

direction can be positive in some cases and negative in other cases. Practical implications 

of the results for large-scale incident management are discussed.  

Keywords: Large-Scale, Incident Duration, Random-Parameters, Hazard-Based Modeling, 

Survival Analysis 

2.2  INTRODUCTION & BACKGROUND 

In December 2011, a tractor-trailer combination hauling potatoes crashed on Interstate-40 

in the US between Nashville and Knoxville, closing that Interstate for 12 hours. This 

widely publicized occurrence prompted an aggressive initiative aimed at improved incident 

management conducted jointly by Tennessee Department of Transportation (TDOT) and 

Tennessee’s Department of Safety and Homeland Security (TDOS). Improving roadway 

availability through incident prevention, particularly, large-scale incident management is a 

TDOT priority. Incidents like the infamous potato spill not only delay motorists but also 

impose significant costs on motor carriers. Generally, traffic incidents are non-recurring 

events imposing enormous costs on society in terms of productivity loss and delays. 

Recently in 2015, the Urban Mobility Scorecard released by Texas Transportation Institute 

(TTI) analyzed mobility data from 1982 to 2014 and termed the nation’s congestion 
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problem as “very large” (Schrank et al., 2015). It revealed that traffic congestion in 2014 

across 471 metropolitan regions of the United States wastes a significant amount of 

nation’s time causing annual travel delay of $6.9-billion hours that accounts for $3.1-

billion “wasted” gallons of fuel, summing up to a total of $121-billion annual congestion 

costs nationally (Schrank et al., 2015). Conservatively, traffic incidents account for 

approximately 25% of traffic congestion and is a leading cause of unexpected traffic 

congestion (FHWA, 2015). While short to medium duration incidents can affect traffic 

operations and mobility, large-scale incidents substantially disrupt traffic flow by blocking 

lanes for long periods of time (Zhang et al., 2012). Specifically, a 10-minute lane blockage 

can cause 40+ minutes of extra travel delay (Schrank, Lomax, & Turner, 2010). Also, large-

scale traffic incidents are more complex and require more response resources and close 

coordination between different agencies to clear the incident scene and restore to normal 

traffic (Zhang et al., 2012). Large-scale incidents may trigger special arterial signal 

coordination plans to deal with diverted traffic, detours, special resources for cleanup, and 

dissemination of dynamic information to the public. Despite their costs and adverse 

consequences resulting from large-scale incidents, in-depth analysis of large-scale 

incidents and identification of key associated factors has received limited attention in the 

literature. 

From incident duration modeling perspective, a broad spectrum of studies has 

focused on analyzing traffic incidents, specifically incident durations to identify key factors 

associated with incidents, for better incident management strategies (Chimba, Kutela, 

Ogletree, Horne, & Tugwell, 2013; Jones, Janssen, & Mannering, 1991; Nam & 

Mannering, 2000; Sullivan, 1997) and the references therein. From a methodological 
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standpoint, incident durations and associated factors have been modeled successfully using 

diverse set of rigorous statistical tools such as truncated and quantile regressions (A. 

Khattak, et al., 2016; A. J. Khattak, Schofer, & Wang, 1995), hazard-based duration models 

(Hojati, Ferreira, Washington, & Charles, 2013; Nam & Mannering, 2000),  Bayesian 

Network tools (Boyles, Fajardo, & Waller, 2007; Ozbay & Noyan, 2006; Stephen, David, 

& Travis, 2007), Artificial Neural Networks (Vlahogianni & Karlaftis, 2013; Wei & Lee, 

2007), text analysis and competing risk models (R. Li, Pereira, & Ben-Akiva, 2015; 

Pereira, Rodrigues, & Ben-Akiva, 2013), and recently finite mixture models (Zou, 

Henrickson, Lord, Wang, & Xu, 2016) among others. Several correlates such as accidents 

and injuries involvement, lane closure, number of vehicles, temporal/spatial factors, heavy 

truck involvement, and adverse weather were found positively associated with longer 

incident durations (Boyles et al., 2007; A. Khattak, et al., 2016; Nam & Mannering, 2000; 

Stephen et al., 2007). Zhang and Khattak can be referred to for a summary of findings from 

different studies (Zhang et al., 2012). However, the aforementioned studies did not 

explicitly focus on identifying key correlates that may be associated with durations of 

large-scale incidents, which are different from other traffic incidents in that they typically 

require multi-agency coordination in case there are multiple injuries or a spill of hazardous 

materials. A thorough understanding of the important correlates is needed to devise 

strategies for responding to such incidents effectively.  

While there is considerable literature on the general analysis of incidents, very few 

studies have explicitly focused on analyzing large-scale incidents. Zhang and Khattak 

conducted an in-depth spatial-temporal and statistical analysis of large-scale incidents on 

urban freeways in Hampton Roads, Virginia (Zhang et al., 2012). They were found 16 
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times (on average 216 minutes) longer than non-large-scale incidents (16 minutes). While 

the average incident duration was found to be 163 minutes by Nam and Mannering (Nam 

& Mannering, 2000). Furthermore, Zhang and Khattak identified locations prone to large-

scale incidents, and large-scale incidents typically occur during morning and evening peak 

(Zhang et al., 2012). Empirically, large-scale incidents showed significant positive 

association with work zones, the presence of curvature, and occurrence of secondary 

incidents (Zhang et al., 2012). Similar results were obtained from analysis of cascading 

incident events on urban freeways (Zhang & Khattak, 2010).   

Previous studies have provided actionable strategies for large-scale incident 

management, but they did not focus on multi-agency operational responses, specifically 

response and on-scene times that are likely to be associated with longer durations of large-

scale events. From a methodological perspective, fixed associations between large-scale 

incident durations and associated factors were assumed in most studies - these assumptions 

are restrictive given the presence of several unobserved factors in incident databases and 

in light of the new methods that have emerged to deal with heterogeneity. Recent studies 

have identified the importance of addressing unobserved heterogeneity and the 

implications for general incident duration analysis (Hojati et al., 2013; R. Li et al., 2015). 

2.2.1 Research Objective and Contribution 

The present study conducts an in-depth analysis of large-scale incidents. The main 

objectives are to: 

 Identify large-scale traffic incidents using appropriate criteria and create a 

comprehensive database that can allow in-depth investigation of such crashes; 
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 Conceptualize and quantify the associations between large-scale incident durations 

and multi-agency operational responses, especially their response and on-scene 

times; and 

 Investigate unobserved heterogeneity in large-scale incident duration analysis by 

developing random-parameter hazard-based duration models.  

Such an analysis is important in the sense given the disproportionately high costs 

of large-scale incidents. A careful examination of large-scale incident durations and 

associated factors can assist in developing actionable large-scale incident management 

improvement strategies. It is also original and timely in the sense that a unique database 

was assembled allowing exhaustive investigation of large-scale incidents and its 

associations with multi-agency operational responses. TDOT has an incident database that 

contains information about incident duration, incident type, lane block duration, response 

time, and incident location. However, several new variables were coded manually from 

detailed incident reports for large-scale incidents that include response and on-scene times 

for multiple agencies, i.e., service patrols, incident response units, police, fire, emergency, 

and towing, and other variables such as number of vehicles involved, highway advisory 

radio (HAR)/dynamic message sign (DMS) usage, etc. Unobserved heterogeneity is often 

present in incident duration data, which is explored in this study. Present study contributes 

methodologically by estimating rigorously fixed- and random- parameter hazard-based 

duration models. To the best of our knowledge, such random parameter models have not 

been applied in incident duration modeling. 
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2.3  METHODOLOGY 

2.3.1 Data Source 

Data analyzed in this study was obtained from TDOT Region 1 Traffic Management Center 

(TMC). A web-based archiving tool called LOCATE/IM is used to access the incident 

database. TMC maintains the database through Tennessee SmartWay and TDOT HELP 

program.  

As for the classification purpose, the incident data is obtained for 2017 year-round 

in TDOT Region 1 area. The total number of incident records is 24,015. Due to the missing 

route information of some incidents records, these incident data are removed for the 

classification purpose. The final number of incidents collected is 24,003. 

As for empirical study, and incident duration prediction purpose, the data contains 

traffic incident summary and detailed operational reports. Summary data were collected 

from Sep. 29. 2010 to Dec. 31. 2015, covering 26 counties with 17 routes (7 freeways, 10 

major highways). 129,088 total incident records were obtained.  

2.3.2 Large-scale Traffic Incident Classification 

The Manual on Uniform Traffic Control Devices (MUTCD) has a standard in classifying 

the traffic incidents in Section 6I.01 General. It says “Traffic incidents can be divided into 

three general classes of duration, each of which has unique traffic control characteristics 

and needs. These classes are: 

 Major - expected duration of more than 2 hours, 

 Intermediate - expected duration of 30 minutes to 2 hours, and 

 Minor - expected duration under 30 minutes.” 
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 Such a general classification criterion does not apply to different regions due to the 

heterogeneity among various traffic incident cases. A new proposed machine learning 

classification method called K-means Clustering is applied to classify those traffic 

accidents and the classification results will be used for further traffic incident duration 

prediction.  

2.3.2.1  K-Means Clustering Algorithm 

The K-Means clustering algorithm begins with a predefined number of clusters, and each 

observation is belonging to a single cluster. A measure of within cluster variance is defined, 

thus such variation is minimized in each cluster. Squared Euclidean distance is commonly 

used for this clustering purpose, and the clustering algorithm proceeds iteratively until each 

observation is assigned to the clusters. The formulation of the problem can be written as 

follows:  

𝐦𝐢𝐧
𝑪𝟏,…,𝑪𝑲

{∑ [
𝟏

|𝑪𝒌|
∑ ∑ (𝒙𝒊𝒋 − 𝒙𝒊′𝒋)

𝟐𝒑
𝒋=𝟏𝒊,𝒊′∈𝑪𝒌 ]𝑲

𝒌=𝟏 }                          Eq.  2.1 

 Where, 

𝐾 is the number of clusters chosen,  

𝑘  is the index, [
𝟏

|𝑪𝒌|
∑ ∑ (𝒙𝒊𝒋 − 𝒙𝒊′𝒋)

𝟐𝒑
𝒋=𝟏𝒊,𝒊′∈𝑪𝒌 ]  is the within cluster variant for 

cluster 𝑪𝒌.  

|𝑪𝒌| is the number of observations in cluster 𝑘. 𝑖 and 𝑗 denotes the observation 

index. 

 The K-Means clustering algorithm follows the iterative steps, 

 Step 1. Randomly select 𝐾 clusters and assign them to each observation. These will 

be the initial assignments; 
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Step 2. (1) For each of the 𝐾 clusters, the mean value based on feature is calculated 

as the centroid; (2) Then assign the observations using the least squared Euclidean distance. 

These two steps are repeated until all the assignments are done. 

2.3.2.2  Classification Results 

The incident data is first error checked to validate whether there is any missing information 

for different variables. 12 incident records were found to have missing route information, 

and they are removed from the main body of the data. 19 different types of incident are 

identified including Aban Vehicle, Amber Alert, Debris, Disabled Vehicle, JK TR TR, 

Multivehicle Crash, Overturned Vehicle, PD/MED/FIRE Activity, Sched Roadwork, 

Single Vehicle Crash, Special Evt/PSA, Test Incident, Travel Time, Unknown, Unsched 

Roadwork, Vehicle Fire, Weather, Oversize load, and Grass Fire. Those incidents either 

happened on interstate freeways (e.g. I-40, I-75, I-81, I-640, and I-26) or state routes (e.g. 

SR115, SR158). These incident types, routes, as well as travel direction, morning peak 

hour, afternoon peak hour, and urban/rural area are all coded as binary variables. The 

hierarchical clustering method is preliminarily adopted instead of K-means clustering 

method because K-means clustering method cannot deal with ordinal or categorical 

variables. However, hierarchical clustering method does not produce good results. Figure 

2.1 presents the change in within cluster sum of squares. Notice that a single classification 

result cannot represent well of the separation of incidents. An interactive clustering method 

is developed to cluster those incidents by removing a cluster with a small number at each 

step. At first, those incidents without response time are clusters together. So, these incidents 

are removed from the incidents for better classification (total number of incidents removed 

is 4,041). 
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FIGURE 2.1 Change in within cluster sum of squares for the first iteration.  
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 By inferring only from Figure 2.1, 4 or 5 clusters would be a good choice for 

classifying those data, because the reduction in within cluster sum of squares is large before 

5, and after that, it becomes stable, meaning there is no much change afterwards. Finally, 

five clusters are chosen because it can further reduce the variance within each cluster. In 

total, 19,962 incidents are clustered, and the clustering results are shown in Figure 2.2. 

Figure 2.2 is suggesting pyramid classification where huge numbers of observations are on 

the top, and on the bottom, fewer observations are clustered. In cluster 1, the incidents are 

all abandoned vehicles, and the average incident duration is about 7,009 minutes; In cluster 

2, they are either abandoned vehicle or disabled vehicles, and average incident duration is 

about 3,047 minutes; In cluster 3, mixed incident types are found, and the average incident 

duration is about 1,388 minutes; In cluster 4, majority of incidents are all in this cluster 

(about 90%), and the average incident duration is about 40 minutes; and in cluster 5, the 

incidents are mixed types, and the average incident duration is about 594 minutes. Thus, 

we can see that cluster 1 and cluster 2 are close to each other in terms of incident duration. 

While cluster 3 and cluster 5 are close to each other, and cluster 4 is a cluster with the 

majority of the data. Detailed descriptions of those incident groups (extreme, large-scale, 

and small-medium) are presented as follows: 

In group 1, which extreme long incident duration incidents, the majority of the 

incidents types are abandoned vehicles (98.7%), and the rest are disabled vehicles (1.3%). 

While in group 2, the majority of the incidents are also abandoned vehicles (87.4%), then 

disabled vehicles (10.1%), etc. Only 9 multi-vehicle crashes, and 5 single-vehicle crashes.  

In group 3, the majority of the incidents are disabled vehicles (72.6%), then abandoned 

vehicles (8.1%), debris (8.0%), multi-vehicle crash (7.5%), single-vehicle crash (2.4), etc.   
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FIGURE 2.2 Three-Dimensional representation of 5 clusters of the incident data 

(green represents group 3, dark blue represents group 2, and black represents group 

1). 
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These results indicate that majority of those incidents are not crashes. Looking at the route 

characteristics, 98.1% of group 1 incidents happened on the freeway, where about 68.4% 

of the freeway incidents happened on I-40. Similar statistics can be found for other groups. 

Average AADT for group 1 incidents on freeway routes is 60,817, and 35,550 for non-

freeway routes. Average AADT for group 2 incidents on freeway routes is 61,769, and 

38,733 for non-freeway routes. Average AADT for group 3 incidents on freeway routes is 

59,366, and 37,327 for non-freeway routes. The truck percentage of all traffic (single unite 

trucks and multi-unit trucks) is 16.27% for the freeway, and 4.17% for non-freeway routes 

in group 1 incidents. They are 15.36% for the freeway, and 3.87% for non-freeway routes 

in group 2 incidents, 16.8% for the freeway, and 4.21% for non-freeway routes in group 3 

incidents, respectively. In group 1 incidents, 26.2% of them happened in morning peak 

hours, and 23.6% of them happened in afternoon peak hours. Totally, about 50% of those 

incidents happened during peak hours. While in group 2, 34% in morning peak hours, and 

27.3% in afternoon peak hours, and in group 3, 20.3% in morning peak hours, and 28.9% 

in afternoon peak hours. In terms of the location of those incidents, about 95% of them 

happened in urban areas in each group.  

2.3.2.3  Key Characteristics 

Lane blockage is an important characteristic. Table 2.1 presents the descriptive 

statistics based on the distribution of number of lanes blocked during an incident. In group 

1, 99.4% of those incidents do not involve the lane blockage, with 2 incidents have 1 lane 

blocked. In group 2 incidents, 97.1% of the incidents have no lane blockage, only about 

3% of them have lane blockage. In group 3, 93% of them have no lane blockage, and about 

7% have either 1 lane, 2, 3, 4, 5, or 8 lanes blocked.  Table 2.1 also shows when there is   
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TABLE 2.1 Descriptive Statistics for Incident Duration (in Minutes) based on Lane 

Blockage 

 

Incident duration 

Group 1  

Incidents 

No. of lanes blocked 

N Mean Std. Median Min Max 

0 311 3,954 1,887 3,091 2,225 9,843 

1 2 2,639 417.9 2,638 2,343 2,934 

Incident duration 

Group 2 

Incidents 

No. of lanes blocked 

N Mean Std. Median Min Max 

0 1,600 925.7 464.4 847 318 2,215 

1 29 715.4 424.3 535 315 2,207 

2 18 512.4 208.1 422.5 351 1,118 

3 3 524.33 248.2 434 334 805 

Incident duration 

Group 3 

Incidents 

No. of lanes blocked 

N Mean Std. Median Min Max 

0 16,690 38.7 53.34 17 0 317 

1 872 60.68 51.34 48 1 304 

2 312 69.07 45.98 57 5 295 

3 51 89.57 63.04 71 9 288 

4 8 83.75 32.71 69.5 55 139 

5 3 60.33 21.36 69 36 76 

8 3 7.67 3.51 8 4 11 
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no lane blockage, the average incident duration for group 1 and group 2 incidents are 

usually longer, on average it is 3,954 minutes for group one incidents, and 925.7 minutes 

for group 2 incidents. When there is 1 lane or more lanes blocked during the incident, the 

average incident duration becomes shorter (e.g. from 3,954 minutes to 2,639 minutes for 

group 1 incident, and from 925.7 to 715.4 to 512.4 to 524.3 for group 2 incidents). 

However, such a trend is not represented in group 3 incidents. On contrary, the average 

incident duration increases when the number of lanes blocked ranges from 0 to 3, and after 

that, it decreases. For example, the average incident duration increases from 38.7 minutes 

to 89.57 minutes and then it decreases to 83.75 minutes for 4-lane blockage, 60.33 minutes 

for 5-lane blockage, and significantly short incident duration 7.67 minutes for 8-lane 

blockage incidents. Therefore, in identifying large-scale incidents, lane blockage is one of 

the important characteristics.  

In terms of lane blockage duration and response time for the incidents, Table 2.2 

and 2.3 present the descriptive statistics for block duration and response time. For large-

scale incidents (group 2 incidents), the block duration is much longer than other groups.  

19 times longer than block duration in group 1 and 8.5 times longer than it is in group 3. 

In terms of response time, on average it takes about 77 minutes to respond to group 1 

incidents, and 19.5 minutes to respond to group 2 incidents, and 3.8 minutes to group 3 

incidents. Generally, it takes a longer time to respond to large-scale incidents.  

In summary, large-scale incidents usually are associated with lane blockage, and 

the blockage duration is much higher than small scale or medium scale incidents. For those 

extreme long incidents, they are usually abandoned or disabled vehicles which does not 

block lanes. Therefore, the classifying standards in MUTCD based on just incident duration   
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TABLE 2.2 Descriptive Statistics for Block Duration (in Minutes) for Each Cluster 

 

Block duration 

Group 
N Mean Std. Median Min Max 

1 2 15 19.80 15 1 29 

2 50 303.58 354.2 297 0 2,137 

3 1,249 31.64 38.79 20 0 287 
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TABLE 2.3 Descriptive Statistics for Response Time based on Lane Blockage 

 

Response time 

Group 1 

Incidents 

No. of lanes blocked 

N Mean Std. Median Min Max 

0 311 77.23 461.84 0 0 5,723 

1 2 1 1.414 1 0 2 

Response time 

Group 2 

Incidents 

No. of lanes blocked 

N Mean Std. Median Min Max 

0 1,600 19.66 92.09 0 0 1,750 

1 29 16.34 51.44 2 0 274 

2 18 14.28 18.2 5.5 0 53 

3 3 1 1.732 0 0 3 

Response time 

Group 3 

Incidents 

No. of lanes blocked 

N Mean Std. Median Min Max 

0 16,690 3.72 10.42 0 0 186 

1 872 5.01 9.07 2.5 0 102 

2 312 5.25 9.51 2 0 88 

3 51 5.04 9.49 3 0 68 

4 8 2.25 1.67 2 0 5 

5 3 2.33 2.52 2 0 5 

8 3 0 0 0 0 0 
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is not the best method. Other important characteristics discussed should also be added. 

2.3.3 Data Assembly and Large-scale Incident Selection 

Large-scale incidents are identified using the obtained data. The past methodology, 

MUTCD, TN traffic incident management goals (removing incidents within 90 minutes), 

and mean durations in this database, all contribute to the selection that incidents lasting 

more than 120 minutes and at least one lane is blocked are identified as large-scale. A total 

of 890 out of 129,088 incidents approximately 0.69% are selected of all incidents. Their 

locations are displayed in following Figure 2.3, indicating that most of them occurred near 

urban areas.  

 

 

 

FIGURE 2.3 Spatial distributions of large-scale incidents within TN region 1. 

 

Substantial effort went into creating a comprehensive database for the selected 

large-scale incidents. The data was collected and enhanced by creating new variables from 

incident operations reports, as well as using Google Earth to obtain spatial information, 

e.g., number of lanes. Tennessee crash reports are also used to obtain data, e.g. AADT.   

© OpenStreetMap (and) contributors, CC-BY-SA
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Figure 2.4 shows the general structure of incident management process over time 

(upper part) and the data obtained (lower part). Focusing on multi-agency operational 

response during large-scale incidents, detailed incident reports were reviewed to extract 

relevant temporal operational data such as response times and On-Scene times for each 

agency (i.e., highway incident response unit (HIRU), police, emergency medical services, 

etc.). Incident reports maintained by TDOT contain detailed information about response 

and on-scene times for different agencies, but the data are not readily available for 

statistical analysis. To capture these operational characteristics of each agency such as 

highway safety patrol (HSP) administered by TDOS, HIRU administered by TDOT, local 

police/fire departments, etc., detailed incident reports are downloaded from TDOT 

database and used for coding new variables such as HIRU response, number of vehicles 

involved, lane blockage percentage, secondary incident occurrence, and HAZMAT 

incident, which are either directly obtained from the database or indirectly calculated from 

detailed incident reports, Google earth, and Tennessee crash reports. Newly coded 

variables are integrated with existing incident variables creating a unique database. 

Potential relationships between incident duration and multi-agency response variables can 

be causal or non-causal. For example, shorter response time of ambulances may be 

associated with reduced duration of an incident, while usage of a towing service may be 

associated with longer duration incidents. However, this does not mean that the use of 

towing service “caused” the incident to be longer incidents - it may be that they were likely 

to be used for larger duration accidents. These relationships are investigated further within 

the paper.  

Note that bi-directional relationships may exist between incident durations and   
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response times, as opposed to unidirectional relationships assumed in this study. 

Specifically, we have assumed response times of various agencies as correlates of incident 

duration, but it is also possible that incident managers may respond more promptly to larger 

duration incidents. This may show up as a negative correlation between response times and 

incidents durations, indicating that “potentially” longer incident durations can be a 

predictor of agency’s response time. This simultaneity issue is recognized. However, 

capturing simultaneity through modeling was not done due to a large number of missing 

values for response times of different agencies. For example, response time for the first 

highway response unit was available for only 44.2% of the sampled large-scale incidents 

(See Table 2.4). Also, the modeling will be complicated by the presence of several response 

times, given that multiple agencies are often involved. Nevertheless, it will be valuable to 

investigate the bi-directional relationships between incident duration and response times 

using a simultaneous multi-equation modeling framework.  

2.3.4 Incident Duration Modeling 

The hazard-based modeling approach is adopted in this study based on theoretical and 

empirical criteria. First, numerous researchers have used this technique for modeling of 

durations (Hojati, Ferreira, Washington, Charles, & Shobeirinejad, 2014; Nam & 

Mannering, 2000). Second, incident durations are time dependent for which this approach 

is particularly suitable. Third, hazard-based approach facilitates interpretation of duration 

data using a dynamic sequence of conditional probabilities. Formation of hazard-based 

modeling approach is described as follows. 

Let 𝑇 be a non-negative random continuous variable representing duration time of 

an incident. Let ℎ(𝑡) denote the hazard at time 𝑡 on the continuous time scale, and it is 
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TABLE 2.4 Descriptive Statistics of Variables Associated with Large-Scale Incidents Variables 

 

Variable 
Sample 

size 
Mean SD Min Max VIF 

Incident Durations (in minutes) 

890 274.90  199.22  121 1,738 --- 

10th Percentile: 132 minutes, 25th Percentile: 152 minutes, 

50th Percentile: 203 minutes, 75th Percentile: 321 minutes, 

and 90th Percentile:497 minutes 

Incident type       

Multivehicle crash 890 0.316 0.465 0 1 1.246 

Vehicle fire 890 0.079 0.271 0 1 1.109 

Unscheduled roadwork 890 0.128 0.334 0 1 1.265 

Temporal factors       

Afternoon peak 890 0.228 0.419 0 1 1.08 

Weekday  890 0.794 0.404 0 1 1.048 

Traffic volume       

AADT (log form) 890 11.057 0.553 10.087 12.162 0.112 

Operational Responses       

Response time of first HIRU 394 1.18 2.928 0.033 30.033 1.364 

Response time of second HIRU 245 2.585 6.358 0.033 60.133 1.559 

Average response time if 3rd or more HIRUs responded 75 4.498 6.789 0.166 44.133 1.624 

Response time of HSP 102 0.668 1.165 0.032 5.266 1.32 

Response time for police  232 1.3011 8.874 0.033 132.8 6.405 

Response time for ambulance  130 0.473 0.886 0.0333 5.7 1.283 

Response time for towing company  229 3.761 9.389 0.033 132.8 7.237 

Average on-scene time for HIRU 432 3.026 3.434 0.0333 27 1.607 

On-scene time for HSP 95 5.775 6.007 0.1 36.033 2.138 

On-scene time for police  226 4.951 5.17 0.033 49.3 1.893 

On-scene time for ambulance  120 3.026 4.466 0.033 29.533 2.047 

On-scene time for towing company  219 3.812 5.231 0.033 29.4 2.032 

Indicators for missing values of response and on-scene times of different agencies 
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TABLE 2.4 Continued 

 

Variable 
Sample 

size 
Mean SD Min Max VIF 

Indicator variable for 1st HIRU 890 0.556 0.497 0 1 2.051 

Indicator variable for 2nd HIRU 890 0.723 0.447 0 1 2.095 

Indicator variable for 3rd or more HIRUs 890 0.915 0.277 0 1 1.85 

Indicator variable for HIRU average On-Scene time 890 0.514 0.5 0 1 1.32 

Indicator variable for HSP 890 0.885 0.318 0 1 1.972 

Indicator variable for police 890 0.739 0.439 0 1 2.538 

Indicator variable for ambulance 890 0.853 0.353 0 1 2.209 

Indicator variable for towing company 890 0.742 0.437 0 1 2.877 

Other deployed resources       

Response time for HAZMAT 14 2.233 2.301 0.0333 7.933 8.369 

On-scene time for HAZMAT 13 3.674 2.934 0.067 10.1 6.176 

Number of HAR deployed 705 2.850 1.806 1 8 96.25 

Average HAR deployment time 685 7.370 10.20 0.000 76.533 63.78 

Number of DMS deployed 751 2.500 2.024 1 26 1.938 

Average DMS deployment time 743 6.547 7.735 0.0000 108.13 96.02 
 

Notes: All response, on-scene times and deployment time are scaled in 30 minutes; HIRU refers to Highway Response Units; HSP refers to 

Highway Safety Patrol; AADT refers to Annual Average Daily Traffic; afternoon peak refers to 4 PM to 8 PM; SD is the standard deviation 

and VIF is the variance inflation factor.
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defined as an instantaneous probability that incident duration will end in an infinitesimally 

small time ∆𝑡 after time 𝑡, given that the incident duration has already lasted until time 𝑡. 

This is referred to as duration dependence. Precise mathematical definition for ℎ(𝑡) in 

terms of probability is: 

𝒉(𝒕) = 𝐥𝐢𝐦
∆𝒕→𝟎+

𝑷𝒓(𝒕 ≤ 𝑻 < 𝒕 + ∆𝒕|𝑻 > 𝒕) ∆𝒕⁄                            Eq.  2.2 

 Where, 

 𝑇 = a non-negative random continuous variable representing duration time of an 

incident; 

 𝑡 = time 𝑡; 

∆𝑡 = infinite small duration of time. 

This mathematical form makes it possible to relate the hazard to the probability 

density function and the cumulative distribution function for 𝑇 . Specifically, the 

probability that the incident does not elapse before time 𝑡  is 𝐹(𝑡) = 𝑃𝑟(𝑇 < 𝑡) . The 

probability of the duration terminating in an infinitesimally small time ∆𝑡 after time 𝑡 is 

written as 𝑓(𝑡) = 𝑑𝐹(𝑡) 𝑑𝑡⁄ . So, the survival function, which gives the probability that an 

incident has a duration greater than or equal to 𝑡 is written as 𝑆(𝑡) = 𝑃𝑟(𝑇 ≥ 𝑡) = 1 −

𝐹(𝑡). Thus, the hazard can be reformulated as,  

𝒉(𝒕) = 𝑭(𝒕) 𝑺(𝒕)⁄                       Eq.  2.3 

Where, 

𝑭(𝒕) = the probability that the incident does not elapse before time t; 

𝑺(𝒕) = the probability that an incident has a duration greater than or equal to t. 
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If the hazard function slopes upward, 𝑑 ℎ(𝑡) 𝑑𝑡⁄ > 0 at time 𝑡, the function will 

have positive duration dependence, meaning the probability that the incident will end soon 

increases as the incident duration lasts longer. Otherwise, it is negative duration 

dependence. If 𝑑 ℎ(𝑡) 𝑑𝑡⁄ = 0, then the probability is independent of incident duration. 

Therefore, the shape (underlying distribution of hazard function) has important 

implications for duration dynamics, because an incorrect specification may result in severe 

biases when attempting to quantify factor effects. Three distributions, Log-normal, Log-

logistic, Weibull, are employed to study extreme values which matches the intention of 

large-scale incidents, and to find the best fit using maximum likelihood for fixed parametric 

models. To explore the effect of exogenous variables on incident duration, fixed and 

random parameter hazard-based models are employed to accommodate the effect of 

external covariates on hazard at any time 𝑡 . Proportional Hazards (PH) form and 

Accelerated Failure Time (AFT) form are two alternatives. Previous research reveals no 

strong theoretical or empirical argument to choose one over the other. Because AFT 

assumes that covariates rescale time directly, which can capture the direct effect of an 

exposure on survival time, provide more easily interpretable parameters, and a linear 

relationship between the logarithm of duration and covariates, it is more favored. ATF 

equation is written as, 

𝒍𝒏(𝑻) = 𝜷𝑿 + 𝜺                                Eq.  2.4 

Where,  

𝛽 = the coefficient vector of covariates; 

𝑋 = represents the covariates, and  
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휀 = an error term.  

Since the data are truncated, left truncated hazard-based models are estimated, 

based on Eq. 2.6 with 120 as the truncation point. To overcome potential issues that 

erroneous inferences may occur if the incident duration is not homogeneous across 

observations, two options are available. First, the gamma distribution can be applied to 

incorporate heterogeneity in the Weibull model with mean 1 and variance 𝜃. Second, a pre-

specified distribution can be assumed to incorporate unobserved heterogeneity, allowing 

the parameters to change over observations. Random parameters are estimated in the 

hazard-based models by adding a randomly distributed term. A normally distributed 

~𝑁(0, 𝜎2)) term is added to the original 𝛽, and simulation based maximum likelihood 

using Halton draws is applied to estimate random parameter incident duration models 

(Kamrani, Wali, & Khattak, 2017). Finally, nine models are estimated using the maximum 

likelihood or simulated maximum likelihood methods. These are fixed- and random- 

parameter hazard-based models with and without truncation, based on log-normal, log-

logistic, Weibull and Weibull with gamma heterogeneity distribution.  

2.4  ANALYSIS RESULTS 

The data are error-checked and some of the unreasonable duration observations were 

excluded. Based on the 890 large-scale incident observations, TDOT region 1 averages 

about one large-scale incident every other day.  

2.4.1 Descriptive Statistics 

Table 2.4 presents descriptive statistics showing the mean duration of the large-scale 

incidents is 275 minutes, which is 129% larger than mean duration of all incidents in the 

database. Almost 10% of the large-scale incidents last more than 497 minutes. Key 
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variables (out of all variables in Figure 2.4) descriptive statistics are also shown including 

multi-agency responses and incident types. The resulting 890 large-scale traffic incidents 

exhibit a dispersed distribution with an average duration of 274 minutes and maximum 

duration of 1,738 minutes respectively. Multi-vehicle crashes, vehicle fire, and 

unscheduled roadwork type incidents account for 32%, 8%, and 13% of total large-scale 

incidents sample, respectively (out of 17 incident types, outliers are removed, and these 

three types show their significance in the model). Approximately, 23% of incidents 

occurred during afternoon peak (4 PM – 8 PM), whereas 80% of large-scale incidents 

occurred during weekdays. 

Importantly, data on response and on-scene times of different agencies are 

compiled and used in analyses. Note that data on response and on-scene times for different 

agencies have a substantial number of missing values and are not available for all coded 

large-scale incidents. As such, to utilize the available information on key operational 

variables without losing significant data, indicator variables are created for missing values 

of response and on-scene times of different agencies (A. Khattak & Targa, 2004). For 

example, response times for HSP are available for 102 large-scale incidents. Thus, an 

indicator variable is created for HSP which equals 1 if response time is missing and zero 

otherwise. It is important to note that, in LOCATE/IM detailed operational reports, agency 

on-scene times at specific incident scene may not be available for all cases where a specific 

agency responded. To illustrate this, consider HSP response to 102 incidents for which 

response times are available; However, the on-scene times are available only for 95 

incidents to which HSP responded. Keeping in view the negligible differences between 

sample sizes of response and the on-scene times of same agency, and to avoid collinearity 
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issues among different variables, single indicator variables are created both for missing 

response and on-scene times of specific agency and are used in subsequent analyses. Note 

that separate indicator variables for response and on-scene times are considered and used 

in the modeling process. However, the estimation results were not significantly different 

from using single indicator variables for both response and on-scene times and thus are 

removed from final models for ease of discussion and interpretation.  

  Regarding multiple agency responses to large-scale incidents, HIRU, HSP/police, 

ambulance, and towing companies are the main agencies observed in detailed TDOT 

operational reports. HIRU are TDOT trucks equipped with recovery tools for response 

traffic incidents; while Tennessee HSPs are police units responsible for enforcement and 

accident investigations, reports, etc. Regarding HIRU, the operational reports provide 

information about response times of HIRU (1st, 2nd, 3rd unit, and so on). However, average 

response times of 3 or more than 3 HIRUs are reported in Table 2.4 due to their small 

sample size. Likewise, response times (in 30 minutes) are reported for HSP, police, 

ambulance, and towing company. Overall, the descriptive statistics for response and on-

scene times of different agencies spot important patterns embedded in data. 

 In detail, Table 2.4 shows the average response times for 1st, 2nd, and more than two 

HIRUs are 35.4 (1.18*30), 77.5 (2.58*30), and 134.9 (4.49*30) minutes, respectively. The 

larger response times for greater number of HIRUs may reflect the severity of large-scale 

incidents. Intuitively, among other response agencies, ambulance has the shortest average 

response time (14 minutes) followed by police (39 minutes). The response time for towing 

companies is highest with average response time of approximately 112 minutes with a 

maximum response time of approximately 217 minutes. In terms of on-scene times, on 
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average, HSP and police spend highest amount of time (173 and 148 minutes respectively) 

at large-scale incident scenes. While for towing company it is 114 minutes and HIRU 90 

minutes. Notably, only 1.6% of the large-scale incidents involved hazardous materials, and 

mean response and on-scene for the hazard material removal agency were 54 and 110 

minutes. Regarding dissemination of incident information to the public through HAR and 

DMS, these media are heavily used during large-scale incidents, as expected. Specifically, 

HAR and DMS are used in 84.6% and 92.3% of the large-scale incidents, respectively. On 

average, 2.27 HARs are used with average 148-minute usage; while 2.11 DMS are used 

with average 156-minute usage.  

 For modeling, due to several explanatory variables, it is suspected that 

multicollinearity may affect modeling results if not addressed properly. As such, variance 

inflation factors (VIF) are reported in Table 2.4 for key variables. It can be seen that VIF 

values for key explanatory variables are smaller than 10, which indicates that 

multicollinearity is not a concern (A. Khattak, et al., 2016).  

2.4.2 Model Selection and Performance Comparison  

Before estimating incident duration models, potential explanatory variables are identified 

by developing simple correlation matrices and ordinary least squares regression models 

(Washington, Karlaftis, & Mannering, 2010). This helped in identification and 

conceptualization of explanatory variables. Next, a series of fixed-parameter accelerated 

failure time (AFT) hazard-based duration models were developed. Following (Washington 

et al., 2010), different distributions are tested such as log-normal, log-logistic, Weibull, 

and Weibull with gamma heterogeneity. All the variables shown in Table 2.4 were included 

in the models. The fixed-parameter hazard-based duration models are developed using 
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standard maximum likelihood estimation techniques. For brevity, we only present the final 

summary statistics (goodness-of-fit measures) in Table 2.5. To compare the fixed-

parameter models with different distributional assumptions, likelihood ratio statistics are 

calculated in order to select statistically superior model (Wali, Ahmed, Iqbal, & Hussain, 

2017 (forthcoming)). For details regarding likelihood ratio statistics, interested readers are 

referred to Washington et al. (Washington et al., 2010). Higher value of likelihood ratio 

statistic for a specific model indicates improved statistical fit to data at hand compared to 

other fixed-parameter models (Washington et al., 2010). It can be seen that Weibull model 

resulted in best fit among all other fixed-parameter models with the highest likelihood ratio 

statistic of 449.48. In the Weibull model, P parameter (2.08) is greater than one and 

statistically significant, indicating that hazard is monotone increasing in duration 

(Washington et al., 2010). Truncated hazard-based duration models are also developed 

with log-logistic, log-normal, Weibull, and Weibull with gamma heterogeneity. However, 

the estimation results were approximately similar in terms of parameter estimates and 

likelihood ratio statistics (results can be requested from the authors). Thus, the models with 

no truncation (due to simplicity) are presented and discussed next. 

Given that several observed and unobserved factors can contribute to large-scale 

incident durations, random-parameters are incorporated in fixed-parameter Weibull 

hazard-based duration models. Conceptually, random parameter models provide the 

flexibility to allow parameter estimates to vary across sample observations with some pre-

specified distribution (Washington et al., 2010). As such, random parameter Weibull model 

is estimated to allow parameter estimates to vary across observations. The goodness of fit 

measures indicates the statistically significant superior performance with the highest   



39 

 

TABLE 2.5 Summary Goodness-of-Fit Measures for Hazard Based Duration Models 

 

Performance 

Indices 

Fixed Parameters 
Random 

Parameters 

Log-

Normal 

Log-

Logistic 
Weibull 

Weibull with 

Gamma 

heterogeneity 

Random 

Parameter 

Weibull 

Theta --- --- --- 6.97* --- 

Sigma  0.232* 0.243* 0.48* 0.068* 0.12* 

P 4.3* 4.1* 2.08* 14.52* 8.33* 

LL(0) -695.16 -691.24 -880.65 -457.79 -880.65 

LL(β) -480.99 -478.12 -655.91 -426.72 -462.14 

Number of 

Observations 
890 890 890 890 890 

Likelihood 

ratio statistics 
428.3 426.24 449.48 62.14 831.02 

Rho-Squared 0.308 0.308 0.255 0.068 0.475 
 

Notes: * shows statistically significant estimates at 99% level of confidence; LL(0) is log-likelihood 

of the constant only model; LL(β) is log-likelihood at convergence; P is hazard distribution 

parameter, and Theta is heterogeneity parameter. “---” = Not applicable. 
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likelihood ratio statistic of 831.02.  

 The results of fixed- and random- parameter Weibull models are presented in Table 

2.6. The final random parameter model includes 26 correlates (including indicator variables 

for missing data), of which seven parameters exhibited statistically significant variability 

(as indicated by the standard deviation of parameter estimates for random parameters) 

across the large-scale incidents. For random-parameters, different distributions are tested 

such as normal, uniform, Weibull, and tent distributions, with normally distributed random 

parameters having the best fit. This finding is in agreement with several studies that focused 

on non-large-scale incident duration modeling (Hojati et al., 2013; Hojati et al., 2014). 

Finally, the distributions of normally distributed random parameters are also illustrated. 

2.4.3 Key Findings of Hazard-based Prediction Models 

Table 2.6 presents the fixed- and random- parameter Weibull model for large-scale traffic 

incidents. A positive parameter estimate for an explanatory variable correlates with an 

increase in incident duration or decrease in hazard function with a unit increase in the value 

of explanatory variables and vice versa for negative parameter estimates. To obtain deeper 

insights, the exponents of parameter estimates in Table 2.6 translate to percent 

increase/decrease in large-scale incident durations as a result of a unit change in 

explanatory variables. As such, the percent changes in incident durations associated with a 

unit increase in explanatory variables are given in Table 2.6 for the random-parameter 

Weibull model. For response and on-scene times, the percent changes show the percent 

increase/decrease in large-scale incident duration for each 30-minute increase in response 

or on-scene times. For indicator variables, it translates the percent change in large-scale 

incident durations, while indicator variable changing from zero to one (notes of Table 2.4).  
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 Regarding estimation results are shown in Table 2.6. Response and on-scene times 

of different agencies are observed to play important role in the determination of large-scale 

incident durations, while HAZMAT, HAR, and DMS were not found to be statistically 

significant. The associations between response and on-scene times of different agencies 

(except response time for the ambulance and on-scene time for HSP) and large-scale 

incident durations are fixed across incident observations, i.e. the parameter estimates did 

not vary across incidents. However, incorporation of random-parameters significantly 

enhanced the statistical significance of parameter estimates. For instance, a 30-minute 

increase in response time for 1st, 2nd, and 3rd (or more) (averaging 3rd, 4th, 5th, or 6th unit, if 

they responded and data are available) HIRUs translates to 2.83%, 1.61%, and 4.28% 

increases in incident durations, respectively. The mean incident duration is 338 minutes for 

3rd or more HIRUs responded, and the mean response time is 135. This is an important 

finding as it suggests that the association of response times for the 3rd or more HIRUs is 

more pronounced compared to the response times for 1st or 2nd HIRU on incident durations. 

This finding seems intuitive in the sense that 3 or more HIRUs may respond to large-scale 

incidents that are excessively severe, and an increase in response times at this point is likely 

to result in even longer incident durations.  

Likewise, an increase of 30-minute in response times of HSP and towing company 

are associated with 3.9% and 3.25% increases in large-scale incident durations. This is 

understandable as HSP and towing company may be required to undertake specific 

operations at the incident scene, and an increase in response times of these agencies 

(specifically, towing agency) may delay operations of other agencies. This finding is in 

agreement with Hojati et al. who found a positive correlation between indicator variable
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TABLE 2.6 Model Estimation Results for Fixed- and Random-Parameter Models 

 

Variables 
Fixed Parameters 

Weibull* 
Random Parameters Weibull* 

 Parameter t-stat Parameter t-stat % Changes*** 

Incident type      

Multivehicle crash -0.159 -4.52 -0.138 -14.13 -12.90% 

Vehicle fire 0.092 1.6 0.16 10.28 17.30% 

Unscheduled roadwork 0.4 11.7 0.28 20.59 32.30% 

Temporal factors      

Afternoon peak -0.007 -0.24 -0.021 -2.14 -2.08% 

standard deviation --- --- 0.173 18.24 --- 

Weekday  -0.052 -1.41 -0.037 -3.61 -3.64% 

standard deviation --- --- 0.07 15.36 --- 

Traffic volume      

AADT (log form) -0.1 -2.26 -0.062 -6.48 -6.01% 

standard deviation --- --- 0.021 27.39  

Operational Response      

Response time of first HIRU** 0.028 1.28 0.028 13.14 2.83% 

Response time of second HIRU** 0.03 6.23 0.016 12.57 1.61% 

Average response time: 3rd or more HIRUs** 0.061 7.64 0.042 18.94 4.28% 

Response time of HSP** -0.017 -0.27 0.039 3.62 3.90% 

Response time for police** -0.021 -2.28 -0.025 -11.86 -2.50% 

Response time for ambulance** -0.003 -0.05 -0.028 -2.29 -2.77% 

standard deviation --- --- 0.017 1.98 --- 

Response time for towing company**  0.029 3.53 0.032 15.57 3.25% 

Average on-scene time for HIRU** 0.042 4.23 0.044 23.93 4.40% 

 on-scene time for HSP** 0.012 1.22 0.005 2.01 0.50% 

standard deviation  --- --- 0.002 1.73 --- 

 on-scene time for police** 0.014 2.9 0.01 8.01 1% 
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TABLE 2.6 Continued 

 

Variables 
Fixed Parameters 

Weibull* 
Random Parameters Weibull* 

 on-scene time for ambulance** 0.005 0.33 0.013 4.3 3% 

 on-scene time for towing company** 0.045 4.3 0.047 26.14 4.80% 

Dummies for missing values of response and on-scene times of different agencies (1 if response or on-scene time is 

missing, 0 otherwise) 
Dummy variable for 1st HIRU -0.019 -0.21 -0.041 -2.57 --- 

standard deviation --- --- 0.099 12.66 --- 

Indicator variable for 2nd HIRU 0.138 1.86 0.081 5.81 --- 

Indicator variable for 3 or more HIRUs 0.053 0.45 0.043 2.06 --- 

Indicator variable for HIRU average on-scene 

time 
0.249 2.49 0.195 10.34 --- 

Indicator variable for HSP 0.001 0.03 0.054 3.05 --- 

Indicator variable for police 0.004 0.07 0.006 0.47 --- 

Indicator variable for ambulance 0.095 1.01 0.064 3.66 --- 

Indicator variable for towing company 0.311 4.78 0.281 17.98 --- 

standard deviation --- --- 0.071 7.73 --- 

Constant 6.03 10.8 5.56 46.81  

 

Notes: * Dependent variable is the log of incident duration in minutes; ** response and on-scene times scaled in 30 minutes for ease of 

interpretation; *** Percent changes in incident duration with respect to unit changes in each explanatory variable. Zero to one for binary 

variables, one-unit increase/decrease in logarithm for log-transformed variables, and 30 minutes’ increase for response and on-scene times. 

“---” = Not applicable.  
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for towing and non-large-scale incident duration (Hojati et al., 2013).  

An increase in response times for the police department and the ambulance is 

associated with 2.5% and 2.7% shorter incident durations respectively, contrary to 

expectations. However, it is possible that responses by police and ambulance to larger 

incidents in the database are quicker, while responses may be relatively slower to shorter 

duration incidents. This may result in the unexpected direction of correlation observed. 

Even if an incident is large-scale, ambulance department may respond slower if no severe 

injuries are reported. Notably, longer response times by police or ambulance itself does not 

indicate reductions in incident durations. It is also possible that efficient responses and 

operations of other agencies may have resulted in the reduction of incident durations. In 

Figure 2.5, the response times for ambulance is found to be a normally distributed random 

parameter implying significant heterogeneity (on average 95.02% of the distribution is less 

than zero and about 4.98% greater than zero) in associations between ambulance response 

time and incident durations.  

 The analysis explicates associations between large-scale incident durations and on-

scene times of different agencies. For instance, a 30-minute increase in average on-scene 

time for HIRU translates to 4.4% increase in incident durations. Likewise, a 30-minute 

increase in on-scene times for HSP, police, ambulance, and towing company is associated 

with 0.5%, 1%, 3%, and 4.8% longer incident durations. However, the on-scene time for 

HSP is a normally distributed random parameter implying heterogeneity in the magnitude 

of associations albeit the direction of the association is positive for 99.3% of observations 

(Table 2.6, Figure 2.5). These findings do not imply causation in the sense that agencies 

may have to stay longer at large-scale incident sites to respond to injuries, remove damaged   
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FIGURE 2.5 Distributions of normally distributed random parameters. 
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vehicles, clear debris, manage traffic at the scene, etc. In fact, large-scale incidents may 

have lasted even longer if the agencies would not have responded or stayed.  

 Finally, incident types, vehicle fire, and unscheduled roadwork are associated with 

17.3% and 32.3% increase in large-scale incident durations, respectively. Incidents in 

afternoon peak are associated with relatively shorter durations. However, the associations 

vary substantially across observations—they are positive for 45.1% and negative for 54.9% 

of the data (Figure 2.5). Likewise, large-scale incidents during weekdays are on average 

associated with shorter durations, again found to be a normally distributed random 

parameter with significant heterogeneity (mean of -0.037 and standard deviation of 0.07) 

(Table 2.6, Figure 2.5). Regarding traffic characteristics, the results suggest that incidents 

on higher AADT roadways are relatively shorter; a unit increase in the log of AADT is 

associated with approximately 6% reduction in incident durations. Roadways with higher 

volumes may receive higher priority, more resources, and quicker response times. These 

findings are generally in agreement with the study by Zhang et al. (2012), focusing on 

large-scale incidents on urban freeways in Virginia (Zhang et al., 2012). The indicator 

variables for missing data are statistically insignificant implying missing values are 

randomly distributed, which is the case for most indicated variables.   

2.4.4 Sequential Prediction for Real-Time Incident Duration 

From a practical standpoint, traffic information is obtained chronologically and transmitted 

to Traffic Management Centers. Due to this inherent property of information collection 

procedure, it is better to update the incident duration for practical use by traffic operations 

managers based on the availability of the incident information during different stages. A 

literature review shows that time sequential prediction approach is studied to be practical 
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for traffic operations, and simple regression models, hazard-based models, combined topic 

modeling and hazard-based models, and Artificial Neural Networks has been applied (A. 

J. Khattak et al., 1995; R. Li et al., 2015; Qi & Teng, 2008; Wei & Lee, 2007). However, 

these studies as we discussed before to not sophisticated enough to capture the 

heterogeneity, and obtain high accuracy, so hazard-based parametric survival models with 

frailty distribution and multilevel mixed-effects hazard-based parametric survival models 

are adopted to compare their performance.  

2.4.4.1  Parametric Survival Models 

As discussed before, AFT models are more appropriate for modeling our data, and the 

equation for the logarithm model is expressed as, 

𝒍𝒐𝒈𝒕𝒊 = 𝒙𝒊𝜷 + 𝜺𝒊                   Eq.  2.5 

 Where 𝑥𝑖  is a vector of covariates, and 𝛽  denotes the vector of regression 

coefficients. 휀𝑖 represents the error term with a certain density function and depending on 

this density function, that model will be defined either as lognormal or log-logistic. In our 

analysis, the preliminary results show that log-logistic density function is the best choice 

due to its long-tail in the data distribution. The log-logistic survival and density functions 

for log-logistic AFT models are, 

𝑺(𝒕) = {𝟏 + (𝝀𝒊𝒕𝒊)
𝟏 𝜸⁄ }

−𝟏
                                     Eq.  2.6 

𝒇(𝒕) =
𝝀𝒊
𝟏 𝜸⁄ (𝒕𝒊)

𝟏 𝜸⁄ −𝟏

𝜸{𝟏 + (𝝀𝒊𝒕𝒊)
𝟏 𝜸⁄ }𝟐

⁄                   Eq.  2.7 

 Where 𝜆𝑖 = exp (−𝑥𝑖𝛽), and 𝛾 is an ancillary scale parameter.  
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To better capture the unobservable heterogeneity, frailty is used as an unobservable 

multiplicative effect on the hazard function, denoted as 𝛼 assumed to have mean 1 and 

variance 𝜃, so that ℎ(𝑡|𝛼) = 𝛼ℎ(𝑡), and the new survival function is written as, 

𝑺(𝒕|𝜶) = 𝐞𝐱𝐩 {−∫ 𝒉(𝒖|𝜶)
𝒕

𝟎
𝒅𝒖} = 𝒆𝒙𝒑 {−𝜶∫

𝒇(𝒖)

𝑺(𝒖)
𝒅𝒖

𝒕

𝟎
} = {𝑺(𝒕)}𝜶             Eq.  2.8 

Assuming 𝑔(𝛼)  is the probability density function of the unobservable  𝛼 , the 

unconditional survival frailty function is obtained as, 

𝑺𝜽(𝒕) = ∫ 𝑺(𝒕|𝜶)𝒈(𝜶)
∞

𝟎
𝒅𝜶 = ∫ {𝑺(𝒕)}𝜶𝒈(𝜶)

∞

𝟎
𝒅𝜶               Eq.  2.9 

And the unconditional density and hazard functions are also obtained as, 

𝒇𝜽(𝒕) = −
𝒅

𝒅𝒕
𝑺𝜽(𝒕)                  Eq.  2.10 

𝒉𝜽(𝒕) =
𝒇𝜽(𝒕)

𝑺𝜽(𝒕)
                            Eq.  2.11 

For mathematical tractability, the choice of 𝑔(𝛼) is limited to either the gamma 

distribution denoted as gamma(1 𝜃⁄ , 𝜃) or the inverse-Gaussian distribution with denoted 

as IG(1, 1 𝜃⁄ ). The probability density function of 𝑔𝑎𝑚𝑚𝑎(𝑎, 𝑏) distribution is, 

𝒈(𝒙) =
𝒙𝒂−𝟏𝒆−𝒙 𝒃⁄

Г(𝒂)𝒃𝒂
                 Eq.  2.12 

And, the probability density function of 𝐼𝐺(𝑎, 𝑏) distribution is, 

𝒈(𝒙) = (
𝒃

𝟐𝝅𝒙𝟑
)
𝟏/𝟐

𝐞𝐱𝐩 {−
𝒃

𝟐𝒂
(
𝒙

𝒂
− 𝟐 +

𝒂

𝒙
)}               Eq.  2.13 

 Thus, the frailty models for gamma, and inverse-Gaussian, separately will become, 

𝑺𝜽(𝒕) = [𝟏 − 𝜽𝒍𝒐𝒈{𝑺(𝒕)}]
−𝟏 𝜽⁄                Eq.  2.14 
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𝑺𝜽(𝒕) = 𝒆𝒙𝒑 {
𝟏

𝜽
(𝟏 − [𝟏 − 𝟐𝜽𝒍𝒐𝒈{𝑺(𝒕)}]𝟏 𝟐⁄ )}             Eq.  2.15 

 More details of the frailty models, interested readers can refer to (Hougaard, 1986). 

2.4.4.2  Multilevel Mixed-effects Parametric Survival Models 

By adding random effects into the log-logistic AFT models, this generates new models as, 

𝒍𝒐𝒈𝒕𝒋𝒊 = 𝒙𝒋𝒊𝜷+ 𝒛𝒋𝒊𝒖𝒋 + 𝒗𝒋𝒊                Eq.  2.16 

 Where 𝑗 represents 𝑀 number of clusters. 𝒛𝒋𝒊 denotes the covariates with random 

effects (either random intercepts or coefficients). The random effects 𝒖𝒋 are 𝑀 realizations 

from a multivariate normal distribution with mean 0 and variance matrix Ʃ. 𝒗𝒋𝒊 represents 

the observational-level errors with density distribution 𝜑(∙) , and in our case, this 

distribution is log-logistic.  

 The density and survival function conditional on the linear prediction 𝜂 as, 

𝒈(𝒕|𝜼) = 𝒈(𝒕𝒋𝒊|𝒙𝒋𝒊𝜷+ 𝒛𝒋𝒊𝒖𝒋)                 Eq.  2.17 

𝑺(𝒕|𝜼) = 𝑺(𝒕𝒋𝒊|𝒙𝒋𝒊𝜷 + 𝒛𝒋𝒊𝒖𝒋)                Eq.  2.18  

 The contribution to the likelihood from each observation is written as, 

𝒇(𝒕𝒋𝒊|𝜼𝒋𝒊) = {
𝒈(𝒕𝒋𝒊|𝒙𝒋𝒊𝜷+𝒛𝒋𝒊𝒖𝒋) 

𝑺(𝒕𝟎𝒋𝒊|𝒙𝒋𝒊𝜷+𝒛𝒋𝒊𝒖𝒋)
}
𝒅𝒋𝒊

{
𝑺(𝒕𝒋𝒊|𝒙𝒋𝒊𝜷+𝒛𝒋𝒊𝒖𝒋)

𝑺(𝒕𝟎𝒋𝒊|𝒙𝒋𝒊𝜷+𝒛𝒋𝒊𝒖𝒋)
}              Eq.  2.19 

 The conditional distribution of 𝑡𝑗 for cluster 𝑗 is, 

𝒇(𝒕𝒋|𝜼𝒋) = ∏ 𝒇(𝒕𝒋𝒊|𝜼𝒋𝒊)
𝒏𝒋
𝒊=𝟏

                 Eq.  2.20 

 The model has no closed form and must be approximated based on the likelihood 

of all the clusters by integrating 𝒖𝒋 out of the joint density distribution 𝑓(𝑡𝑗 , 𝑢𝑗). Maximum 

likelihood optimization technique is adopted, and Stata is used for the modeling tasks. 
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𝓛𝒋(𝜷, Ʃ) =  (𝟐𝝅)
−𝒒 𝟐⁄ |Ʃ|−𝟏 𝟐⁄ ∫𝒇(𝒕𝒋|𝑿𝒊𝜷 + 𝒁𝒋𝒖𝒋)𝒆𝒙𝒑(−𝒖𝒋

′Ʃ−𝟏𝒖𝒋/𝟐)𝒅𝒖𝒋          Eq.  2.21 

2.4.4.3  Data  

The data used for this analysis comes from the same LOCATE/IM incident database. They 

are collected from 2015 to 2016, and the selection criterion for large-scale incidents is that 

if it lasts longer 90 minutes and blocking at least one lane on the roadway. The selection 

criterion is intuitive due to the TDOT traffic operations goal to clear the road incident with 

90 minutes. Finally, after removing outliers, a sample of 603 incident records are collected. 

They have almost the same variables compared to the last incident sample used for purely 

empirical prediction purpose. The only different is that the first and second HIRU 

information are combined in terms of their response time and on-scene time. The 

descriptive statistics are shown in the following Table 2.7. 

2.4.4.4  Model Comparison and Results Discussion 

All the models discussed above show their good performance in terms of capturing the 

unobserved heterogeneity in the models in various ways either by adding a multiplicative 

effect to the hazard or adding cluster-level random effects to the covariates. In looking at 

the model’s significance statistics, AIC (Akaike information criterion), BIC (Bayesian 

information criterion) can be used to compare to the model performance. However, for 

practical use, Root Means Square Error (RMSE) is one of the most common ways to 

compare those models, where smaller values of RMSE are preferred.  

 Five stages are used for sequential prediction based on the availability of incident-

related information. These 5 stages are: 

 Stage 1: Location, temporal information, weather; 

 Stage 2: Location, temporal information, weather, incident characteristics (incident 
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TABLE 2.7 Descriptive Statistics of Variables Associated with Large-Scale Incidents Variables (Time in Minutes) 

 

Variable Sample size Mean SD Min Max 

Incident Durations (in minutes) 603 233.97 142 90 5,727 

Incident type      

Aban Vehicle 603 0.06 0.24 0 1 

Debris 603 0.01 0.08 0 1 

Disabled Vehicle 603 0.11 0.32 0 1 

JK TR TR  603 0.02 0.16 0 1 

Multivehicle Crash 603 0.37 0.48 0 1 

Overturned Vehicle 603 0.10 0.30 0 1 

PD/MED/FIRE Activity 603 0.01 0.12 0 1 

Single Vehicle Crash 603 0.14 0.34 0 1 

Special Evt/PSA 603 0.01 0.09 0 1 

Unsched Roadwork 603 0.08 0.27 0 1 

Vehicle Fire 603 0.07 0.26 0 1 

Weather 603 0.00 0.26 0 1 

Grass Fire 603 0.00 0.04 0 1 

Spatial-Temporal & Weather factors      

Weekday 603 0.78 0.42 0 1 

MorPeak (morning peak=1) 603 0.20 0.40 0 1 

AftPeak (afternoon peak=1) 603 0.30 0.46 0 1 

Route (freeway=1) 603 0.98 0.16 0 1 

WeaCond (bad weather=1) 603 0.53 0.49s 0 1 

Urban (yes=1) 603 0.62 0.49 0 1 

RAMP (yes=1) 603 0.06 0.24 0 1 

Other Incident Characteristics      

NumVeh (number of vehicle involved) 603 1.41 0.99 0 9 

DetcCCTV 603 0.63 0.48 0 1 
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TABLE 2.7 Continued 

 

Variable Sample size Mean SD Min Max 

Lanecount (number of lanes blocked) 603 1.49 0.76 1 8 

BlkDuration (lane blockage duration) 603 81.62 137.53 0 1,275 

No_HAR (number of HAR deployed) 603 1.84 1.82 0 6 

HAR_AveUseTim (average time used) 603 91.63 140.06 0 1,077 

No_DMS (number of HAR deployed) 603 2.01 1.64 0 11 

DMS_AveUseTim (average time used) 603 105.89 138.58 0 1,011 

No_BEA (number of Beacon used) 603 1.21 2.01 1 20 

Agency Responses Characteristics      

1stRespAgen (1st response agency) – HSP (safety patrol) 441 0.09 0.3 0 1 

1stRespAgen – HIRU (highway incident response unit) 441 0.53 0.49 0 1 

1stRespAgen – PD (police) 441 0.22 0.42 0 1 

1stRespAgen – FD (fire department) 441 0.06 0.24 0 1 

1stRespAgen – AMB (ambulance) 441 0.05 0.21 0 1 

1stRespAgen – CS (county sheriff)  441 0.006 0.08 0 1 

1stRespAgen – Tow (towing company) 441 0.02 0.16 0 1 

1stRespAgen – ST (service truck) 441 0.007 0.08 0 1 

1stRespAgen – TM (TDOT maintenance) 441 0.002 0.05 0 1 

RespTime (1st agency response time) 441 12.56 37.72 0 480 

TotalResp (total number of response agencies) 603 2.37 2.04 0 8 

HSP_ResTim (safety patrol response time) 72 18.68 31.39 1 157 

HSP_OnsTim (safety patrol on-scene time) 66 131.97 120.07 1 586 

No_HIRU (number of HIRU responded) 603 0.93 0.94 0 4 

HIRU_AveResTim12 (Avg. Response time of first 2 HIRUs) 361 30.5 66.39 0 463 

HIRU_AveOnsTim12 (Avg. On-scene time of first 2 HIRUs) 355 63.61 86.35 1 810 

HIRU_AveResTim36 (Avg. response time if 3rd or more HIRUs) 35 109.06 139.1 1 576 

HIRU_AveOnsTim36 (Avg. On-scene time if 3rd or more HIRUs) 34 82.74 90.25 1 382 

PD_ResTim (Response time for police) 234 17.89 28.28 1 208 

PD_OnsTim (On-scene time for police)  220 99.9 102.47 1 651 
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TABLE 2.7 Continued 

 

Variable Sample size Mean SD Min Max 

FD_ResTim (Response time for fire department) 161 10.2 13.153 1 114 

FD_OnsTim (On-scene time for fire department)  156 70.00 90.36 1 593 

AMB_ResTim (Response time for ambulance) 117 11.50 21.00 1 171 

AMB_OnsTim (On-scene time for ambulance)  116 38.92 44.55 1 365 

CS_ResTim (Response time for county sheriff) 7 17.86 29.58 1 84 

CS_OnsTim (On-scene time for county sheriff)  7 57.14 28.69 21 92 

Tow_ResTim (Response time for towing company) 235 91.07 121.23 1 996 

Tow_OnsTim (On-scene time for towing company)  230 63.41 92.75 0 615 

ST_ResTim (Response time for service truck) 28 103 114.01 2 480 

ST_OnsTim (On-scene time for service truck)  27 91.74 108.97 4 495 

TM_ResTim (Response time for TDOT maintenance) 13 77.23 133.79 2 512 

TM_OnsTim (On-scene time for TDOT maintenance)  11 269.82 181.38 66 628 
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type, number of lanes blocked, number of vehicles involved); 

 Stage 3: Location, temporal information, weather, incident characteristics (incident 

type, number of lanes blocked, number of vehicles involved), incident response 

(first response agency, response time of first response agency, number of dynamic 

message signs (DMS) activated, number of highway advisory radio (HAR) used); 

Stage 4: Location, temporal information, weather, incident characteristics (incident 

type, number of lanes blocked, number of vehicles involved), incident response 

(first response agency, response time of first response agency, number of dynamic 

message signs (DMS) activated, number of highway advisory radio (HAR) used), 

other response agencies’ response time; 

 Stage 5: Location, temporal information, weather, incident characteristics (incident 

type, number of lanes blocked, number of vehicles involved), incident response 

(first response agency, response time of first response agency, number of dynamic 

message signs (DMS) activated, number of highway advisory radio (HAR) used), 

other response agencies’ response time, on-scene time for the response agencies, 

DMS and HAR usage information, lane block duration.  

At each stage, the information of the incident gathered is more than that from the 

previous stage. However, that does not mean all the information in each stage should be 

used. By selecting important variables for each stage, the models can predict a reasonable 

incident duration. The model performance comparison (see Table 2.7 & Figure 2.6) and 

best modeling results for each stage (see Table 2.8) are presented. 

Based on the results on Table 2.8, the performance indicators for AIC is constantly 

decreasing, meaning the model is getting better from stage 1 to stage 5. For each stage, the  
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TABLE 2.8 Model Comparison 

 

Performance Indices 

Fixed-effects Log-Logistic 

Models 

Multilevel Mixed-effects 

Log-Logistic Models 

Inverse-Gaussian  Gamma  Random Effects  

Stage 1 

 

Theta 12.876 0.8389 --- 

Gamma  0.0483 0.1565 --- 

LL(0) -451.54 -513.45 --- 

LL(β) -448.65 -504.33 -3692.49 

N 603 603 603 

AIC 917.29 1028.67 7400.99 

BIC 961.31 1072.69 7436.2 

Rho-Squared 0.006 0.018 --- 

Stage 2 Theta 19.246 0.7725 --- 

Gamma  0.0346 0.1611 --- 

LL(0) -451.53 -513.45 --- 

LL(β) -426.56 -486.06 -3623.06 

AIC 889.12 1008.12 7272.12 

BIC 968.35 1087.35 7329.35 

Rho-Squared 0.055 0.053 --- 

Stage 3 Theta 20.38 0.7163 --- 

Gamma  0.0309 0.1592 --- 

LL(0) -451.54 -513.45 --- 

LL(β) -384.02 -452.05 -3593.97 

AIC 876.04 992.09 7279.93 

BIC 1113.74 1185.78 7482.42 

Rho-Squared 0.15 0.12 --- 

Stage 4 Theta 6.697 0.7038 --- 

Gamma  0.0653 0.1498 --- 

LL(0) -451.53 -513.45 --- 

LL(β) -369.46 -408.01 -3567.64 

AIC 816.91 878.02 7211.28 

BIC 988.59 1014.48 7378.55 

Rho-Squared 0.182 0.205 --- 

Stage 5 Theta 4.5172 0.8235 --- 

Gamma  0.0621 0.098 --- 

LL(0) -451.23 -513.39 --- 

LL(β) -196.52 -219.68 -3443.989 

AIC 483.04 529.35 6975.98 

BIC 681.28 727.59 7169.81 

Rho-Squared 0.564 0.572 --- 

 
Note: “---” = Not applicable.  



56 

 

 

 

FIGURE 2.6 Root mean square error performance for each prediction stage.  
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likelihood ratio test statistics (p-value <0.05) for all models show that there is unobserved 

heterogeneity existing in each model. Comparing to the base fixed-effects models, these 

models have already solved this issue either by adding frailty or by using random effects. 

Also, for each stage, even though the AIC and BIC values are higher for multilevel mixed-

effects survival models compared with other fixed-effects survival models, the RMSE is 

smaller, except for stage 5. One explanation for this outcome is that multilevel mixed-

effects use additional one more level random effect, e.g. incident type, in addition to 

individual random effect for each observation to account for unobserved heterogeneity. 

While fixed-effect models only account for observational level unobserved heterogeneity. 

These random effects really play an important role in the first 4 stages, because most of the 

information gathered at the beginning are categorical variables. They can be easily 

clustered into a different group such as the incident types. Thus, the effect in improving 

prediction accuracy is obvious by adding one more level random effect. However, at the 

last stage when a lot of information is gathered, especially the duration of lane blockage, 

DMS average time usage, HAR average time usage, that information is closely related to 

incident duration, and they are statistically significant, so the effect of additional level 

clustered covariates is not making any contribution to the improvement of prediction 

accuracy.  

Table 2.9 present the model specifications of the best model chosen for each stage. 

Based on the results, in stage 1 prediction model, morning peak and after peak hours, as 

well as weather condition, are statistically, significant because the simple information 

obtained in this stage prohibits us to have good predictions. Negative signs are seen for 

three of them, meaning if it is morning or afternoon peak, or bad weather conditions, then  



58 

 

TABLE 2.9 Model Estimations Result for Multilevel Mix-effects (Stages 1-4) and Gamma Frailty Model (Stage5) 

 

Stage 1 Variables Coef. SE. 

 
Constant 5.378*** 0.183 

Incidentid (level) 0.0044 0.0057 

Location Characteristics 
Route -0.1616 0.1731 

Urban (level) 0.0044 0.0057 

Temporal Characteristics 

MorPeak -0.2007** 0.0968 

AftPeak -0.1536*** 0.0567 

MorPeak*WeaCond 0.1583 0.1213 

Weather Characteristics WeaCond -0.0975* 0.0553 

Stage 2 

 
Constant 5.375*** 0.123 

Incidentid (level) 0.0473 0.0566 

Temporal Characteristics 
MorPeak -0.156*** 0.0585 

AftPeak -0.139*** 0.0526 

Weather Characteristics WeaCond -0.0432 0.0447 

Incident Characteristics 

Inctype (Level) 0.1285 0.0587 

DetcCCTV -0.0739 0.0494 

NumVeh -0.0347 0.0322 

Lanecount=2 (base=1) 0.026 0.4158 

Lanecount=3 0.209** 0.4173 

Lanecount=4 0.186 0.4253 

Lanecount=8 -0.901** 0.4619 

Stage 3 

 
Constant 5.222*** 0.452 

Incidentid (level) 8.72e-31 8.32e-16 

Incident Characteristics 

Inctype (Level) 0.1265 0.0571 

RAMP 0.1714* 0.0953 

Lanecount=2  (base=1) 0.04 0.051 
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TABLE 2.9 Continued 

 

 Variables Coef. SE. 

 

Lanecount=3 0.23** 0.099 

Lanecount=4 0.185** 0.194 

Lanecount=8 -0.704* 0.439 

1STRespAgen=HSP 

(base=no agency) 

-0.0996 0.0931 

1stRespAgen=HIRU -0.194*** 0.0617 

1stRespAgen =POLICE -0.181** 0.0751 

1stRespAgen =FIRE -0.241** 0.1097 

1stRespAgen =AMBULANCE -0.231** 0.1151 

 1stRespAgen =COUNTY SHERRIF -0.143 0.3589 

 1stRespAgen =TOW -0.358** 0.1618 

 1stRespAgen =SERVICE TRUCK -0.307 0.2938 

 1stRespAgen =TDOT MAINTAINANCE 0.724 0.4413 

 RespTime 0.003*** 0.0007 

 No_DMS 0.032** 0.0164 

 No_HAR -0.004 0.0137 

Stage 4 

 
Constant 5.221*** 0.086 

Incidentid (level) 3.28e-32 4.20e-17 

Incident Characteristics 

Inctype (Level) 0.004** 0.0018 

HSP_ResTim 0.251 0.2324 

No_HIRU=1 (base=0) 0.255 0.2339 

No_HIRU=2  0.464 0.4635 

No_HIRU=3 1.125** 0.4872 

No_HIRU=4  0.003*** 0.0004 

HIRU_AveResTim12 0.0009 0.0006 

HIRU_AveResTim36 0.004** 0.0018 
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TABLE 2.9 Continued 

 

 Variables Coef. SE. 

 
AMB_ResTim 0.003* 0.0019 

Tow_ResTim 0.0011*** 0.0003 

Stage 5 

 Constant 4.628*** 0.026 

Incident Characteristics 

HSP_ResTim 0.002*** 0.0008 

HIRU_AveResTim12 0.0002 0.0002 

HIRU_AveResTim36 0.0004 0.0003 

PD_ResTim 0.0009 0.0006 

FD_ResTim -0.004** 0.001 

AMB_ResTim 0.0006 0.0009 

Tow_ResTim 0.003*** 0.0002 

HSP_OnsTim 0.0005 0.0003 

HIRU_AveOnsTim12 0.001*** 0.0003 

HIRU_AveOnsTim36 0.001** 0.0005 

 Tow_OnsTim 0.002*** 0.0003 

 ST_OnsTim 0.001*** 0.0005 

 HAR_AveUseTim 0.001*** 0.0002 

 DMS_AveUseTim 0.0006*** 0.0002 

 BlkDuration 0.0009*** 0.0002 

 
Note: “***” represent a 99% significant level. “**” represent a 95% significant level. “*” represents a 90% significant level.  
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the chance of the incident being cleared in the next infinite small second is small. In another 

word, potentially, the incidents will last longer. Similarly, the explanations can be extended 

to other variables obtained in other stages. For example, in stage 2, number of vehicles has 

a negative sign, so more number of vehicles involved in the incident means potentially 

incident duration will be longer. Other variables having a similar effect on incident duration 

at each stage include number of lanes blocked, 1st arriving agent HIRU, etc. For these 

variables that do not mean they cause the incident to be longer. It just indicates that 

presence of these variables, such as 1st arriving agent being HIRU, have some correlation 

with longer incident duration. In another word, if HIRU arrives, it usually means it might 

be a large-scale incident that needs longer time to deal with. Therefore, there is no causal 

relationship between these kinds of variables and incident duration.  

 Another interesting implication based on those results is that variables that are 

significant in the earlier stages might not be a significant at all at later stages. Because 

variable information obtained at later stages have more valuable information directly or 

indirectly related to the incident itself, such lane blockage information, agency on-scene 

time information, and so on. However, in practical applications, these models might have 

a good prediction on the incident duration outcome at earlier stages, but bad incident 

duration outcomes in later stages. For example, the model might predict an incident to be 

650 minutes long, while the block duration or on-scene time has already exceeded that 650 

minutes. So, in such cases, engineering judgment should be used together with incident 

duration prediction models to provide real-time incident duration prediction, which will 

provide better suggestions towards improved traffic operation. 
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2.5  CONCLUSIONS 

This study contributes by creating a unique incident database to investigate and analyze 

large-scale incidents, focusing on the role of multi-agency operational responses. The study 

identifies large-scale traffic incidents and their correlates while accounting for unobserved 

heterogeneity. Before investigating large-scale incidents empirically, significant efforts 

went into assembling a unique database from different sources including TDOT 

SmartWay, LOCATE/IM, and Google Earth. Then in-depth investigations of large-scale 

incidents and associations of duration with the operational response and on-scene times of 

different agencies can be conducted.  

To conceptualize and quantify the associations between large-scale incident 

durations and associated factors, hazard-based duration models with different distributional 

assumptions are developed. Methodologically, this study contributes by addressing 

unobserved heterogeneity in large-scale duration modeling through estimation of random-

parameter hazard-based duration models. Among all competing models, the random-

parameter Weibull model is observed to be most suitable from a statistical perspective. The 

final model quantifies associations between large-scale incident durations and several 

explanatory factors, out of which seven variables exhibit statistically significant 

heterogeneity across observations. The key findings are: 

 Out of 129,088 traffic incidents in TDOT Region 1 that occurred during 2010-2015, 

large-scale incidents constitute 0.69%, which require significant response 

resources.  

 A 30-minute increase in response time for TDOT’s  1st, 2nd, and ≥ 3 highway HIRUs 

translates to 2.83%, 1.61%, and 4.28% increase in large-scale incident durations. 
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This is an important finding as it suggests the association of response times for the 

3rd (or more) unit is more pronounced as compared to those who respond earlier to 

large-scale incidents. An increase of 30-minute in response times of HSP and 

towing company are associated with 3.9% and 3.25% increase in large-scale 

incident durations, respectively.  

 Given large-scale incidents, incidents involving vehicle fire or unscheduled 

roadwork are likely to last longer on average. Large-scale incidents on weekends, 

non-afternoon peaks, and on lower AADT roads last relatively longer; however, the 

magnitude (in some cases direction) of associations are heterogeneous.  

The results obtained from this study have several implications for large-scale 

incident management. The findings suggest a reduction in response times for HIRU and 

HSP can significantly reduce large-scale incident durations. Specifically, the reduction in 

response times for the 3rd (or more) HIRU unit (when needed) can potentially reduce large- 

scale incident durations. However, finding additional units may be difficult. Segments such 

as I-40 and I-75 near urban areas are identified as high-risk segments. Incident managers 

can also potentially reduce incident duration by working with towing companies to perhaps 

respond more quickly to large-scale incident situations. As such, facilitating close 

coordination between different response agencies and companies can enhance response 

resource deployment, if required. Researchers can extend the methodology proposed to 

other locations in order to further explore practical solutions for mitigating negative 

consequences of large-scale incidents. Future research on incident duration management 

can use a case-based approach where they analyze individual large-scale incidents to obtain 

insights on how operations could be improved through better coordination. Also, 
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HAZMAT incidents, route diversion and detours management, and spatial analysis need to 

be investigated further, based on additional information obtained from other databases 

maintained by various response agencies.   
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CHAPTER 3  
INJURY SEVERITY AND INCIDENT DURATION ANALYSIS OF 

TRUCK-INVOLVED CRASHES USING RECURSIVE BIVARIATE 

ORDERED PROBIT MODEL 
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A version of this chapter was originally written by Xiaobing Li and Jingjing Xu. This 

chapter presents a revised version of this research paper by adding additional fatality data 

analysis. This paper was presented at the Transportation Research Board (TRB) 97th 

Annual Meeting at the Walter E. Washington Convention Center, in Washington, D.C. 

January 7, 2018.  

 Xiaobing Li’s effort on idea formation, data collection, model construction, 

interpretation, and paper writing, Jingjing Xu’s effort on model refinement, interpretation, 

and paper writing are recognized. 

 

3.1  ABSTRACT  

Injury severity and incident duration are two main indicators to measure the impact of 

truck-involved collisions on traffic flows and follow-up incident clearance operations. 

Injury severity often reflects the nature of the collision and persons involved, while incident 

duration partly reflects the effectiveness of incident recovery operations in clearing the site. 

Given that truck-involved crashes are often more disruptive and associated with more 

severe injury and longer durations, this study simultaneously analyzes injury severity and 

incident duration of truck-involved crashes. Given that injury severity may also to some 

extent affect incident duration, a recursive bivariate ordered probit model was estimated in 

this analysis. A unique database was created by integrating crash and inventory data with 

operational response data. These databases are maintained by the Tennessee Department 

of Transportation. The databases are linked by the date, time, route, direction, and type of 

the accident. Final modeling results indicate, as expected, that higher injury severity is 

robustly positively associated with incident duration. Also, response times are not strictly 
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positively associated with incident durations. More findings and practical implications are 

discussed in this study, and that will be essential for future accident management 

operations. 

Keywords: Injury Severity, Incident Duration, Truck-involved Crashes, Recursive 

Bivariate Ordered Probit 

3.2  INTRODUCTION 

Incidents can not only result in severe injuries and damage to the facilities but also cause 

traffic congestion and take a long time for clearance and recovery. Large-scale crashes can 

even lead to secondary incidents causing further disruptions.  As freeway demand increases 

in recent years, transportation safety becomes more of concern to travelers as well as traffic 

operations managers. Notably, truck-involved crashes are becoming disruptive, costly, 

contributing to fatalities/severe injuries, and related to longer incident duration, all of 

which catches more and more attention of state departments, local transportation 

authorities, and other transportation-related communities. 

Federal Motor Carrier Safety Administration reported that the truck- and bus-

involved crashes increased by 5% from 2014 to 2015. Many studies have indicated that if 

trucks were involved in a crash, there were supposed to be more fatalities and injuries 

(Duncan, Khattak, & Council, 1998; Zong, Zhang, Xu, Zhu, & Wang, 2013). Compared 

with single truck crashes, multi-vehicle truck-involved crashes are more likely to 

contribute to severer injury accidents. Therefore, reducing the number of truck-involved 

crashes and their injury severity has been a critical goal in enhancing the safety of the 

occupants in both trucks and other vehicles. In other words, identifying and analyzing the 

risk factors related to injury severity is essential and meaningful for transportation safety. 



68 

 

On the other hand, when a truck-involved accident occurs on highway, it will have 

a huge negative impact on the traffic flow, then a series of accident management processes 

are requested to clear the incident, such as incident detection, verification, notification, 

response, and recovery, which often contributes to a long incident duration. Improving the 

efficiency of management operations after the occurrence of a truck-involved crash can 

help reducing the impact on congestion and reducing the probability of secondary incidents. 

Therefore, reducing the truck-involved crash duration has also become a critical strategy 

for improving the highway operations, and studying the risk factors that are associated with 

incident duration can enhance our understanding of the mechanism of the incident and 

search for the effective methods for reducing the duration. 

Many contributions have been made on investigating the risk factors such as crash, 

vehicle, driver, roadway, and environmental factors with injury severity. There were also 

several studies focusing on exploring the underlying factors strongly correlated with 

incident duration such as response time, lane blockage, and so on. But those studies seldom 

focusing on revealing the relationship between injury severity and incident duration, as 

well as analyzing both simultaneously. This is because the information of injury severity 

and crash related factors are often achieved in the crash database, and the information about 

response time and the incident duration is usually achieved in the incident database. 

Previous studies seldom matched the accidents from the two databases and analyzed them 

together. To better understand the correlation between the injury severity and incident 

duration, this study first links the two databases (crash database and incident database) both 

from Tennessee Department of Transportation (TDOT). Given that injury severity may, to 

some extent, affect incident duration, a recursive bivariate ordered probit model has been 
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 adopted in this analysis to investigate such relationship. 

3.2.1 Research Objective and Contribution 

The key contributions and objectives of this study are to: 

1) Integrate the Tennessee crash database and incident database to create a unique 

database with the information of both injury severity and incident duration, which 

previous studies rarely did before. 

2) Investigate the injury severity and incident duration simultaneously using one 

modeling system. Previous studies often only focused on one of them or analyzed 

injury severity and incident duration by two separate models. 

Integrating the information on injury severity and incident duration can better 

understand the close relationship among incident occurrence, incident management, and 

recovery operations. To achieve the objectives, two databases (Tennessee crash database 

and incident database) are matched by the date, time, route, direction, and incident type. A 

recursive bivariate ordered probit model is adopted for analyzing the injury severity and 

duration simultaneously. The methodology is technically sound. Results from the models 

will provide actionable safety countermeasures in a timely manner for Tennessee 

Department of Transportation.  

3.3  LITERATURE REVIEW 

When an accident occurs, injury severity and incident duration are two main indicators to 

measure the outcome of the accident, and two topics have long been recognized and 

discussed for research. Researchers have considerable efforts on uncovering the 

relationships between risk factors and injury severity, and the contributing variables that 

may be associated with incident duration. In this section, we summarize previous studies 
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(Table 3.1) with the focus on factors that were related to injury severity and duration, and 

the methodologies they used. 

The impact of various factors on injury severity has long been highly concerned. A 

broad range of studies focused on the associations between injury severity and several 

factors such as crash, vehicle, driver, roadway and environmental factors. From the 

perspective of the driver, driver factors such as distraction, physical and emotional 

impairment were found to be associated with higher injury severity in large-truck crashes 

(Khorashadi, Niemeier, Shankar, & Mannering, 2005; Kostyniuk, Streff, & Zakrajsek, 

2002; Zhu & Srinivasan, 2011). Besides, female, older persons without using seat belt were 

also documented to be associated with higher injury severity (Duncan et al., 1998; Islam 

& Hernandez, 2013; Lemp, Kockelman, & Unnikrishnan, 2011). Regarding the vehicle 

type, Zhu and Srinivasan (Zhu & Srinivasan, 2011) claimed that truck-car crashes are 

estimated to be the most serious crashes. Duncan et al. (Duncan et al., 1998) concluded 

higher likelihood of severe injuries to passenger car occupants if it was struck by a truck. 

Chang and Mannering (L.-Y. Chang & Mannering, 1999) also identified that large trucks 

significantly associated with injury severity of the most severely injured occupants. They 

examined the association between occupancy and injury severity and found that the more 

occupancies involved, the higher probability of serious injury would be.  

With respect to incident duration, Khattak et al. (A. J. Khattak et al., 1995) 

discovered that if trucks are involved in the accident, then the incident duration would be 

longer since they are more likely to interfere with incident clearance operations. Garib et 

al. (Garib, Radwan, & Al-Deek, 1997) also found the importance of truck involvement in 

building the incident duration prediction model. Moreover, Nam and Mannering  
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TABLE 3.1 Summary of Selected Studies for Injury Severity and Incident Duration 

 

Author/ 

year 

Safety topic Methodology  

Truck-

involved 
Severity  Duration Data source Model  

Golob et al. 

(1987) 
Yes Yes  Yes  

Accident database 

from Los Angeles, 

CA (1983-1984) 

Log-linear 

models 

Khattak et 

al. (1995) 
No No  Yes  

Incident records from 

Illinois DOT (1989-

1990) 

Truncated 

regression 

models  

Garib et al. 

(1997) 
Yes No  Yes  

Incident data from 

Oakland, CA (1993) 

Incident delay 

model and 

incident 

duration 

prediction 

model 

Duncan et 

al. (1998) 
Yes  Yes  No  

HSIS from North 

Carolina (1993-1995) 

Ordered 

probit model 

Chang and 

Mannering 

(1999) 

Yes  Yes  No  

Accident data from 

Washington State 

DOT (1994) 

Nested logit 

model 

Nam and 

Mannering 

(2000) 

Yes  No  Yes  

Incident database 

from Washington 

State (1994-995) 

Hazard-based 

duration 

model 

Zhu and 

Srinivasan 

(2011) 

Yes  Yes  No  Crash data  
Ordered 

probit model 

Zong et al. 

(2013) 
Yes  Yes  Yes  

Traffic accident data 

from Jilin DOT, 

China (2010) 

Ordered 

probit model 

and hazard 

model 
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(Nam & Mannering, 2000) identified that detection/reporting, response time, and clearance 

time were significantly correlated with incident duration. Garib et al. (Garib et al., 1997) 

concluded that most of the incident durations were found to be predicted by lane counts, 

the number of vehicles involved, time, response, weather, and truck involvement. Khattak 

et al. (A. J. Khattak et al., 1995) identified a series of factors that affected the incident 

duration and predicted the incident duration. The results showed that the response time was 

positively associated with incident duration, which is a little bit different from the results 

of our study.  

Nevertheless, studies that focused on both injury severity and duration were quite 

rare. Nam and Mannering (Nam & Mannering, 2000) revealed a positive relationship 

between the presence of fatality or injury and incident detection/ reporting/ clearance time. 

Golob et al. (Golob et al., 1987) investigated the associations among underlying factors 

and collision type, injury severity and duration separately in the freeway large truck-

involved crashes, but the study analyzed the injury severity and incident duration separately 

and did not discover the associations between injury severity and duration. Zong et al. 

(Zong et al., 2013) applied ordered probit model and hazard model and predicted the 

accident severity and incident duration, respectively. They claimed that the duration of 

truck-involved crashes is 58% longer than other accidents and identified that number of 

fatalities and injuries is a critical factor related to duration, but they only claimed more 

fatalities and injuries (not focused on injury severity) would lead to longer incident duration, 

so it’s necessary to analyze the injury severity and incident duration together within one 

model. 

In sum, previous studies revealed the possibility of analyzing injury severity and 
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incident duration together, but to the best of our knowledge, most of them only used 

separate models for identifying them. Moreover, rare studies integrated the crash database 

and incident database together, so it remains a gap for both obtain the information of injury 

severity and incident duration in a unique database and modeling them within a model 

simultaneously. Furthermore, the risk factors influencing the truck-involved accidents are 

still underexplored, especially taking a specific region into consideration. It has been a long 

time since this area has been fully studied; the temporal and spatial characteristics also 

make this study different from others. Therefore, different from previous studies, this 

analysis mainly focuses on creating a unique database, and exploring the association 

between injury severity and incident duration for a specific region in Tennessee, as well as 

the underlying factors related to injury severity and incident duration simultaneously. 

3.4  METHODOLOGY 

3.4.1 Data Source 

The unique database in this study was integrated from two different databases both from 

Tennessee Department of Transportation (TDOT). One is crash data from Region 1 (Figure 

3.1), East Tennessee, Enhanced Tennessee Roadway Information Management System (E-

TRIMS); another is incident data from TDOT Traffic Management Center (TMC), 

obtained through a web-based archiving tool call LOCATE/IM. All the data were collected 

from September 29th, 2010 to December 31st, 2016. To analyze the injury severity and 

incident duration simultaneously, this study collected truck-involved crashes from both 

databases, then linked the two databases by the time (date, time), location (route, direction), 

and incident type (single- or multi-vehicle involvement) of the accident. Except for crash 

time variable, all other link variables must be strictly matched. Due to the crash time from 
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two different databases are reported by two different reporting systems, the crash start time 

may be slightly different. Finally, the cases from two databases with same crash date, the 

crash start time difference was less than 1 hour being matched. 

 

 

 

FIGURE 3.1 Tennessee state map and region/district information. 

 

Eventually, 442 truck-involved crashes are matched and obtained, 68 of them are 

single truck crashes, and 374 of them are multi-vehicle truck-involved crashes. The data 

has been error-checked for the modeling purpose. The maximum and minimum start time 

difference are 54 minutes and 0 minutes, respectively, and around 95% of matched data 

are within 30-minutes reporting time range, which indicates the different operational 

procedures (or response time) among two different reporting systems.  

For the data collected from TDOT region 1, there are 24 counties (Figure 3.1), and 

13 of them are found to have truck-involved crash records. Among 442 truck-involved 

crashes, 372 are from Knox County, 24 are from Roane County, less than 50 records are 

found from other counties. Also, the majority truck-involved crashes are from the city of 

Knoxville. For route information, most accidents occurred on Interstate route 40 (70.14%) 

and 75 (9.95%).  

To investigate the contributing driver and vehicle factors related to injury severity, 

detailed information of the contributed vehicle was collected based on: (1) If the total 
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vehicle number is one or two, the information of all vehicles was kept; (2) If the total 

vehicle number is three or more, only the information of the truck (no matter contributed 

or not) and the other contributed vehicle was kept. Driver fault was assigned if the driver 

made any unsafe driver action, distraction, under unsafe driving condition or alcohol 

involvement. 

In terms of injury severity, the most severe injury in the crash was considered as 

the injury level in this study. There are five categories: (1) fatal; (2) incapacitating injury; 

(3) non-incapacitating injury; (4) possible injury or damage (over); (5) possible injury or 

damage (under). 

Due to injury severity is categorical variable, and in the modeling task, both 

dependent variables should be categorical variables, this study classified incident duration 

into three categories based on the definition from the Manual on Uniform Traffic Control 

Devices (MUTCD) (Agenda, 2017): (1) low congestion:  duration is 30 minutes or less; (2) 

medium congestion: duration is between 30 and 120 minutes; (3) high congestion: duration 

is more than 120 minutes. The response time and lane block duration had also been 

classified. Response time: (1) 10 minutes or less; (2) between 10 to 20 minutes; (3) between 

20 to 30 minutes; (4) more than 30 minutes. Lane block duration: (1) 30 minutes or less; 

(2) between 30 to 120 minutes; (4) more than 120 minutes. 

Based on the idea of analyzing the injury severity and incident duration 

simultaneously, a conceptual framework has been constructed (Figure 3.2). Injury severity 

and incident duration are two dependent variables, and both are associated with some risk 

factors. As can be seen from the literature, the crash, vehicle, and driver factors were 

associated with injury severity. Some incident factors such as response time, lane block  
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FIGURE 3.2 Data structure and conceptual framework. 
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duration, and incident type are correlated with incident duration. Besides, the crash factors 

like collision types may also affect the incident duration. Given the idea that the injury 

severity has an impact on incident duration, the injury severity is considered as both 

dependent variable for injury equation, and the independent variable of incident duration 

equation. 

3.4.2 Recursive Ordered Probit Model 

The bivariate regression model has been used in many studies (Caliendo & Guida, 2014; 

Dong, Clarke, Nambisan, & Huang, 2016; Dong et al., 2015; Xu, Wong, & Choi, 2014). 

In this study, injury severity is a categorical variable, while the incident duration is a 

continuous variable. Since in the modeling task, both dependent variables should be 

categorical variables, in this case, the incident duration was classified into 3 categories 

based on the definition from the MUTCD (Agenda, 2017), which was stated before. 

Moreover, based on the proposed idea that the injury severity may somewhat related to 

incident duration, and to deal with these categorized dependent variables simultaneously, 

a recursive bivariate ordered probit model was adopted.  

The two dependent variables are determined as below: 

{
𝒚𝟏
∗ = 𝜶𝟏𝑿𝟏 + 𝜷𝒚𝟐

∗ + 𝜺𝟏
𝒚𝟐
∗ = 𝜶𝟐𝑿𝟐 + 𝜺𝟐

                  Eq.  3.1 

Where,  

𝑦1
∗ = incident duration level; 

𝑦2
∗ = injury severity level (the most severe injury level in the crash); 

𝑋1 and 𝑋2 = explanatory variables; 

𝛼1 and 𝛼2 = the unknown parameters of  𝑋1 and 𝑋2; 
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𝛽 = an unknown parameter of 𝑦2
∗ 

휀1 and 휀2 = the error terms.  

The explanatory variables and error terms satisfy the conditionsE(𝑋1휀1) = 0 , 

and E(𝑋2휀2) = 0. The two dependent variables are categorized as the following conditions: 

𝒚𝟏
∗ = {

𝟏  𝒊𝒇 𝒚𝟏 
∗ ≤ 𝒃𝟏

𝟐 𝒊𝒇 𝒃𝟏 < 𝒚𝟏 
∗ ≤ 𝒃𝟐

⋮
𝒍 𝒊𝒇 𝒚𝟏 

∗ > 𝒃𝒍−𝟏

             𝒚𝟐
∗ = {

𝟏  𝒊𝒇 𝒚𝟐 
∗ ≤ 𝒄𝟏

𝟐 𝒊𝒇 𝒄𝟏 < 𝒚𝟐 
∗ ≤ 𝒄𝟐

⋮
𝒎 𝒊𝒇 𝒚𝟐 

∗ > 𝒄𝒎−𝟏

              Eq.  3.2 

The unknown cutoffs satisfy that  𝑏1 < 𝑏2⋯ < 𝑏𝑙−1  and 𝑐1 < 𝑐2⋯ < 𝑐𝑚−1 , the 

probability of 𝑦1
∗ = 𝑖 and 𝑦2

∗ = 𝑗 is: 

𝑷𝒓(𝒚𝟏 = 𝒊, 𝒚𝟐 = 𝒋 ) = 𝑷𝒓(𝒃𝒊−𝟏 < 𝒚𝟏 
∗ ≤ 𝒃𝒊, 𝒄𝒋−𝟏 < 𝒚𝟐 

∗ ≤ 𝒄𝒋) = 𝑷𝒓(𝒚𝟏
∗ ≤ 𝒃𝒊, 𝒚𝟐

∗ ≤

𝒄𝒋) − 𝑷𝒓(𝒚𝟏
∗ ≤ 𝒃𝒊−𝟏, 𝒚𝟐

∗ ≤ 𝒄𝒋) − 𝑷𝒓(𝒚𝟏
∗ ≤ 𝒃𝒊, 𝒚𝟐

∗ ≤ 𝒄𝒋−𝟏) + 𝑷𝒓(𝒚𝟏
∗ ≤ 𝒃𝒊−𝟏, 𝒚𝟐

∗ ≤ 𝒄𝒋−𝟏)     

                     Eq.  3.3 

If 휀1 and 휀2 are bivariate standard normally distributed with the correlation 𝜌, the 

likelihood function is: 

𝑷𝒓(𝒚𝟏 = 𝒊, 𝒚𝟐 = 𝒋 ) = ∅(𝒃𝒊 − 𝑿𝟏𝜶𝟏, (𝒄𝒋 − 𝜷𝑿𝟏𝜶𝟏 − 𝑿𝟐𝜶𝟐)𝝉, 𝝆) − ∅(𝒃𝒊−𝟏 −

𝑿𝟏𝜶𝟏, (𝒄𝒋 − 𝜷𝑿𝟏𝜶𝟏 − 𝑿𝟐𝜶𝟐)𝝉, 𝝆) − ∅(𝒃𝒊 − 𝑿𝟏𝜶𝟏, (𝒄𝒋−𝟏 − 𝜷𝑿𝟏𝜶𝟏 − 𝑿𝟐𝜶𝟐)𝝉, 𝝆) +

∅(𝒃𝒊−𝟏 − 𝑿𝟏𝜶𝟏, (𝒄𝒋−𝟏 − 𝜷𝑿𝟏𝜶𝟏 − 𝑿𝟐𝜶𝟐)𝝉, 𝝆)                Eq.  3.4 

 Where, 

∅ = the bivariate standard normal cumulative distribution function; 

𝜏 =
1

√1+2𝛽𝜌+𝛽2
 ; 

ρ = τ(β + ρ). If β = 0 it is a seemingly unrelated specification. 

The logarithmic likelihood for the whole sample size N is: 
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𝐥𝐧 𝑳 = ∑ ∑ ∑ 𝑰(𝒚𝟏 = 𝒊, 𝒚𝟐 = 𝒋) 𝐥𝐧𝑷𝒓(𝒚𝟏 = 𝒊, 𝒚𝟐 = 𝒋 )𝑲
𝒌=𝟏

𝑱
𝒋=𝟏

𝑵
𝒊=𝟏               Eq.  3.5 

3.5  RESULTS 

3.5.1 Descriptive Statistics 

This study analyzes 442 truck-involved crashes, including 68 single truck crashes, 374 

multi-vehicle truck-involved crashes. Totally 957 vehicles are involved. The data looks 

reasonable and it has been error-checked. This section mainly focuses on the descriptive 

statistics of key variables related to injury severity and incident duration. 

3.5.1.1  Injury Severity and Incident Duration 

The descriptive statistics display the distributions of injury severity by incident duration 

(Table 3.2). It shows most of the incident durations are between 30 and 120 minutes, 

accounting for 74.89%, while the incident duration is less than or equal to 30 minutes 

accounts for 16.97% of the whole truck-involved crashes. Crashes with incident duration 

more than 120 minutes are comparably less, only 8.14%. We can see that most of the 

incidents can be cleared within 120 minutes. The incident duration is normally distributed. 

Injury severity is also normally distributed. A large proportion of injury level is 

property damage (over), accounting for 68.10% (301 out of 442). As the injury severity 

increases, the frequency of crashes decreases. 113 out of 442 accidents are non-

incapacitating injury, while only 4.30% (19/442) and 0.68% (3/442) of them are 

incapacitating injury and fatal injury. 

Given the injury severity level may affect the incident duration, this section presents 

the distribution of injury severity by incident duration. Among all incident duration 

categories, the proportions of fatal (100%) and incapacitating (15.79%) injury incidents 

that durations are more than 120 minutes is higher than non-incapacitating injury (8.85%),    
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TABLE 3.2 Distribution of Injury severity by Incident Duration 

 

Injury 

severity 

Incident duration 
Total 

Duration<=30 30<duration<=120 Duration>120 

Prop damage 

(under) 

2 2 2 6 

33.33% 33.33% 33.33% 100.00% 

Prop damage 

(over) 

58 225 18 301 

19.27% 74.75% 5.98% 100.00% 

Non-

incapacitating 

injury 

14 89 10 113 

12.39% 78.76% 8.85% 100.00% 

Incapacitating 

injury 

1 15 3 19 

5.26% 78.95% 15.79% 100.00% 

Fatal 
0 0 3 3 

0.00% 0.00% 100.00% 100.00% 

Total 
75 331 36 442 

16.97% 74.89% 8.14% 100.00% 

 

  



81 

 

 which is followed by property damage (over) (5.98%). And for the incident duration is 30 

minutes or less, the proportion of property damage (under) (33.33%), property damage 

(over) (19.27%), and non-incapacitating injury (12.39%) is much higher than fatal (0%) 

and incapacitating injury (5.26%). It indicates that the probability of severer injury 

accidents’ duration being more than 120 minutes is higher than that of minor injury 

accidents.  

3.5.1.2  Explanatory Variables 

Regarding the key independent variables, the descriptive statistics of explanatory variables 

are presented. It displays the mean, standard deviation (SD), minimum and maximum value 

for each variable (Table 3.3). 

 Descriptive statistics show that majority of lane block duration is 30 minutes or less, 

and most of the response time is 10 minutes or less, provide 82.81% and 74.21%, 

respectively (Table 3.3). Almost 60% of accidents are rear end collisions, and 18.33% of 

them are no vehicle collision (single truck collisions or collisions with objects, animals, 

train, and motorcyclist). Among all the accidents, most of the roadway surface conditions 

for the other vehicle are dry (67.42%), and 15.38% of them are wet, whereas the 

proportions of ice, snow or slush are rare, only 0.23% and 0.68%, respectively.  

3.5.2 Modeling Results and Discussion   

The results of recursive bivariate ordered probit model has been presented in Table 3.3. 

Note that this model estimated robust standard error. The chi-square is 4.85, which is higher 

than 3.84 (chi-square test statistic at 95% confidence level), which indicates that the 

bivariate ordered probit model is significant at 95% confidence level and suitable for this 

analysis. The explanatory variables with a p-value of ±0.05 or less; or t-statistic of ±1.96   
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TABLE 3.3 Descriptive Statistics for Explanatory Variables 

 

Variables Description  Obs Mean Std. Dev. Min Max 

Lane 

block 

duration 

Block duration≤30 1 if block duration≤30, 0 otherwise 442 0.828 0.378 0 1 

30<Block duration≤120 
1 if 30<block duration≤120, 0 

otherwise 
442 0.158 0.366 0 1 

Block duration>120 1 if block duration>120, 0 otherwise 442 0.014 0.116 0 1 

Respons

e time 

Response≤10 1 if response≤10, 0 otherwise 442 0.742 0.438 0 1 

10<Response≤20 1 if 10<response≤20, 0 otherwise 442 0.104 0.306 0 1 

20<Response≤30 1 if 20<response≤30, 0 otherwise 442 0.023 0.149 0 1 

Response>30 1 if response>30, 0 otherwise 442 0.016 0.125 0 1 

unknown 1 if unknown, 0 otherwise 442 0.11 0.319 0 1 

Collision 

type 

No vehicle collision 1 if no vehicle collision, 0 otherwise 442 0.183 0.387 0 1 

Angle 1 if angle, 0 otherwise 442 0.077 0.267 0 1 

Head on 1 if head on, 0 otherwise 442 0.011 0.106 0 1 

Other 1 if other, 0 otherwise 442 0.011 0.106 0 1 

Rear to side 1 if rear to side, 0 otherwise 442 0.002 0.048 0 1 

Rear end 1 if rear end, 0 otherwise 442 0.595 0.491 0 1 

Sideswipe- opposite 

direction 

1 if sideswipe- opposite direction, 0 

otherwise 
442 0.005 0.067 0 1 

Sideswipe- same 

direction 

1 if sideswipe- same direction, 0 

otherwise 
442 0.113 0.317 0 1 

Driver 

fault 

The other vehicle driver 

at fault 

1 if the other vehicle driver at fault, 0 

otherwise 
442 0.441 0.497 0 1 

Truck driver at fault 1 if truck driver at fault, 0 otherwise 442 0.516 0.500 0 1 
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TABLE 3.3 Continued 

 

Variables Description Obs Mean Std. Dev. Min Max 

Other 

vehicle 

roadway 

surface 

condition 

Dry  1 if dry, 0 otherwise 442 0.674 0.469 0 1 

Ice  1 if ice, 0 otherwise 442 0.002 0.048 0 1 

Snow or slush 1 if snow or slush, 0 otherwise 442 0.007 0.082 0 1 

Wet  1 if wet, 0 otherwise 442 0.154 0.361 0 1 

unknown 1 if unknown, 0 otherwise 442 0.163 0.369 0 1 
 

Note: “No vehicle collision” represents single truck collision or collision types such as hit object, collided with animal, train, and 

motorcyclist. 
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or more will significantly affect the dependent variable at 95% confidence level. Similarly, 

explanatory variables with a p-value of ±0.1 or less, or statistic of ±1.64 or more, will 

significantly affect dependent variable at 90% confidence level.  

 While the results of the associations between the independent and dependent 

variables are presented in Table 3.4, the marginal effects of the independent variables are 

estimated in Table 3.5. The marginal effects present the change of the probability of a 

specific dependent variable outcome for a one-unit change in an independent variable. To 

facilitate discussion, the explanatory variables are classified as injury severity, response 

time, lane block duration, collision type, driver fault, and roadway surface condition. 

3.5.2.1  Injury Severity 

Based on the idea that injury severity is the most critical variable in this study, the important 

association was found between injury severity and incident duration outcome (Table 3.4). 

Property damage (under) was applied as the base level. Most of the injury severity levels, 

except property damage (over), were statistically significant (at 95% confidence level) in 

the recursive bivariate ordered probit model. It shows there is a strong correlation between 

injury severity and incident duration, which is consistent with the hypothesis at the  

beginning of this paper, and also in agreement with Zong et al. (Zong et al., 2013), but the 

study of Zong (Zong et al., 2013) only investigated the association between the number of 

fatalities/ injuries and the incident duration.  

This study investigates the relationship between injury severity and incident 

duration. The severer the injury severity is, the longer the incident duration will be. The 

incident duration is often much longer for fatal crashes, and its coefficient is much higher 

than other injury levels. From an incident management perspective, this finding is essential  
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TABLE 3.4 Modeling Results for Recursive Bivariate Ordered Probit Model (Estimated Standard Errors in Robust) 

 

Variables Coef. 
Robust Std. 

Err. 
Z P>|Z| 

Incident duration 

Injury severity 

(base: prop damage 

(under)) 

Prop Damage (over) 1.547 0.981 1.58 0.115  

Non-Incapacitating Injury 2.707 1.182 2.29 0.022  

Incapacitating Injury 3.295 1.378 2.39 0.017  

Fatal 11.837 0.893 13.26 0.000  

Lane block 

duration (min) 

(base: block 

duration<=30) 

30<Block duration<=120 0.747 0.163 4.57 0.000  

Block duration>120 8.176 2.239 3.65 0.000  

Response time 

(base: response 

time<=10) 

10<Response time<=20 0.461 0.164 2.81 0.005  

20<Response time<=30 0.396 0.219 1.81 0.070  

30<Response time 0.562 0.422 1.33 0.183  

Response time is NA -0.365 0.177 -2.06 0.040  

Collision type 

(base: no vehicle 

collision) 

Angle 0.431 0.233 1.85 0.065  

Head on 0.420 0.157 2.67 0.008  

Other 0.231 0.618 0.37 0.709  

Rear to side -7.583 1.758 -4.31 0.000  

Rear end -0.0002 0.138 0 0.999  

Sideswipe-opposite direction -0.849 0.629 -1.35 0.178  

Sideswipe-same direction 0.073 0.204 0.36 0.719  

Unknown 0.333 0.173 1.92 0.055  

Injury severity 

Driver fault (base: 

not at fault) 

The other vehicle driver at 

fault 
0.301 0.156 1.92 0.054 

Truck driver at fault 0.231 0.138 1.68 0.094 
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TABLE 3.4 Continued 

 

Variables Coef. 
Robust Std. 

Err. 
Z P>|Z| 

Roadway surface 

condition (base: 

dry) 

Ice 1.149 0.550 2.09 0.037 

Snow or slush 0.635 0.279 2.27 0.023 

Wet 0.111 0.148 0.75 0.454 

Unknown 0.142 0.164 0.87 0.384 

 athrho         

 _cons -0.998 0.453 -2.2 0.028 

 /μ11 1.288 1.137   

 /μ12 3.412 0.897   

 /μ21 -1.936 0.211   

 /μ22 0.810 0.157   

 /μ23 1.964 0.177   

 /μ24 2.794 0.262   

 rho -0.761 0.191   
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TABLE 3.5 Marginal Effects 

 

Incident duration     

 Variables  Duration<=30 30<Duration<=120 Duration>120 

Injury severity  

(base: prop damage (under)) 

Prop Damage (over) -0.464 0.226 0.238 

Non-Incapacitating Injury -0.392 -0.379 0.771 

Incapacitating Injury -0.206 -0.675 0.881 

Fatal -0.189 -0.704 0.893 

Lane block duration (min) 

(base: block duration<=30) 

30<Block duration<=120 -0.144 -0.053 0.196 

Block duration>120 -0.198 -0.701 0.899 

Response time  

(base: response time<=10) 

10<Response time<=20 -0.096 -0.018 0.114 

20<Response time<=30 -0.082 -0.017 0.098 

30<Response time -0.106 -0.045 0.150 

Unknown 0.104 -0.041 -0.062 

Collision type  

(base: no vehicle collision) 

Angle -0.090 -0.017 0.106 

Head on -0.085 -0.021 0.106 

Other -0.052 -0.001 0.053 

Rear to side 0.836 -0.710 -0.126 

Rear end 0.00006 -0.00001 -0.00005 

Sideswipe- opposite 

direction 
0.286 -0.186 -0.101 

Sideswipe- same direction -0.018 0.003 0.015 

Unknown -0.071 -0.010 0.081 
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TABLE 3.5 Continued 

 

Injury severity 

 Variables  

Prop 

Damage 

(under) 

Prop 

Damage 

(over) 

Non-

Incapacitating 

Injury 

Incapacitating 

Injury 
Fatal 

Driver fault (base: not at 

fault) 

The other vehicle 

driver at fault 
-0.010 -0.096 0.075 0.025 0.006 

Truck driver at fault -0.008 -0.073 0.057 0.019 0.004 

Roadway surface 

condition (base: dry) 

Ice -0.012 -0.421 0.179 0.172 0.083 

Snow or slush -0.011 -0.234 0.141 0.078 0.025 

Wet -0.003 -0.036 0.028 0.010 0.002 

Unknown -0.004 -0.047 0.036 0.013 0.003 
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and meaningful since it highlights that severer injured accidents are often correlated with 

longer incident duration. Consequently, some actionable countermeasures for reducing the 

injury severity may also decrease the incident duration, thus improving the management of 

transportation safety. The marginal effects also reveal that when the injury severity level is 

non-incapacitating injury, there is a 0.7709 increase in the probability of incident duration 

being more than 120 minutes (Table 3.5). And for incapacitating injury and fatal injury 

level, there is a 0.8807 increase, and a 0.8931 increase in the probability of incident 

duration being more than 120 minutes, respectively. 

3.5.2.2  Response Time 

Response time indicates the time of the first responder (e.g. highway incident response 

unit, police, Emergency Medical Services, and so on) responds to the incident. 

Interestingly, the response time is not strictly positively correlated with incident duration. 

Compared with the base level (response time is 10 minutes or less), response time (between 

10 and 20 minutes, between 20 and 30 minutes) is closely associated with incident duration. 

But it indicates that response time is less than 20 minutes is more likely to associate with 

a longer duration than response time between 20 minutes to 30 minutes. The reason might 

be the severer injury is, the faster the rescue response would be. But given the severer 

injury severity often relates to longer incident duration, so even though the response is very 

fast, it is also usually correlated with longer incident duration. This result is consistent with 

the study of Li et al. (Xiaobing Li, Asad J Khattak, & Behram Wali, 2017). 

As we all know, the response time is a critical factor in traffic recovery. To a certain 

extent, the time of response also determines the incident duration. The marginal effects 

present that compared with the response time being 10 minutes or less (base level) if the 
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response time is between 10 minutes and 20 minutes, there is a 0.1137 increase in the 

probability of incident duration being more than 120 minutes. For the response time 

ranging from 20 to 30 minutes, the probability increases by 9.83%, which a little bit lower 

than response time ranging from 10 to 20 minutes. Thus, the response time is ranging from 

10 to 20 minutes seems more likely to contribute to longer incident duration (more than 

120 minutes) than response time that is between 20 and 30 minutes. 

3.5.2.3  Lane Block Duration 

Lane block duration is a major proportion of incident duration. The lane block duration is 

expected to be positively related to incident duration outcome. Lane block duration is seen 

to be significantly associated with incident duration (Table 3.4). Compared with the lane 

block duration being 30 minutes or less (base level), the lane block duration being more 

than 120 minutes is more likely to associate with longer incident duration. A similar 

relationship can be found when compared with duration being between 30 minutes and 120 

minutes. It shows that the longer the lane block duration is, the longer the incident duration 

will be. Especially for the cases when lane block duration is more than 120 minutes, it is 

often related to longer incident duration. 

As can be seen from Table 3.5, the marginal effects indicate the lane block duration 

also greatly affects the results of incident duration. It shows when the lane block duration 

is more than 120 minutes, the probability of incident duration being more than 120 minutes 

increases by 89.87%.  

3.5.2.4  Collision type 

Out of all collision types, angle and head on collisions are found to be statistically 

associated with incident duration, though the proportion of rear end collisions is much 
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greater than others. Modeling results indicate that head on collision is significantly 

associated with longer incident duration at 99% confidence level, while the angle collision 

is significantly related with incident duration at 90% confidence level (Table 3.4). The 

coefficients of angle and head on collisions are similar. On the contrary, the rear end 

collision that provides the most proportion in descriptive statistics section is not 

significantly associated with incident duration. The marginal effects show that when a head 

on collision occurs, there is a 0.1059 increase in the probability of more than 120 minutes 

incident duration, while for angle collision, it is 0.1061 (Table 3.5).  

3.5.2.5  Driver Fault 

Unsafe driver actions, driver distractions, unsafe driver conditions, and alcohol 

involvement are all belonged to driver errors. Driver fault has been assigned if there is any 

driver action, distraction, driver condition, or alcohol involvement. Series of studies have 

successfully examined the associations between driver errors (driver actions, distractions, 

conditions, and so on) and injury severity (Khorashadi et al., 2005; Kostyniuk et al., 2002; 

Zhu & Srinivasan, 2011). Given injury severity strongly contributes to incident duration, 

risk factors like driver fault and roadway surface condition which are correlated with injury 

severity have been considered in this study.  

Modeling results show that the other vehicle (non-truck) driver at fault is more 

likely to associate with severer injury severity than the truck driver at fault (Table 3.4). 

Truck driver at fault is significantly correlated with injury severity at 90% confidence level, 

and the coefficient of the truck driver is a little bit lower than that of the other vehicle driver. 

The marginal effects also show the other vehicle driver at fault increases more likelihood 

of severely injured crash than the truck driver.  
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3.5.2.6  Roadway Surface Condition 

Roadway surface condition often affects the injury outcome. We have considered the 

roadway surface condition for both trucks and the other vehicles, but it shows some 

roadway surface conditions of the other vehicles are more likely to associate with injury 

severity, and that of trucks are not significantly related to injury severity. The reason might 

be truck occupants are less likely to get injured than occupants in the other vehicles, so the 

roadway surface condition of trucks may not likely to affect the injury severity of occupants 

in other vehicles. It also shows the roadway surface condition (ice, snow or slush) of the 

other vehicle is significantly associated with injury severity, and ice surface condition for 

the other vehicle is correlated with higher injury level than snow or slush. The marginal 

effects also indicate that when the roadway surface condition is ice, snow or slush, there is 

an increased chance of severe injury outcome. For instance, when the roadway surface 

condition is ice, the chance of getting incapacitating injury increases by 17.21%, while for 

snow or slush, that chance increases by 7.81%. 

3.5.3 Injury Severity Analysis Based on Fatality Analysis Reporting System 

In this part, additional analysis is provided specifically to analyze the injury severity 

information for truck-involved crashes based on the Fatality Analysis Reporting System 

data. This analysis will further provide details of the injury severity information associated 

with each crash. This analysis is meaningful in the sense that in large-scale traffic incident 

or accidents, injury severity plays an important role and such a characteristic will help 

better understand large-scale traffic incident or accidents. Furthermore, by analyzing the 

covariates associates with injury severity, other important variables could be selected in 

future work as an additional indirect relationship with incident duration.  
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3.5.3.1  Data  

The data used for this analysis is collected through the Fatality Analysis Reporting System 

(FARS) maintained by National Highway Traffic Safety Administration (NHTSA). The 

2016 crash data was collected. The original sample size is 85,496. After removing the 

missing data records, focusing on truck-involved crashes and removing the records with 

not available injury severity information, the final sample size is 4,997 on the person level, 

which is about 5.84% of the original sample size. The descriptive statistics for the collected 

variables are shown in Table 3.6.  

 Based on the results, total 3, 941 crashes are identified. Some of the variables are 

not listed in this table due to its lack of significance in the modeling process. They are sex, 

manor of collision, roadway functional class, urban, location, etc. Similar to other data sets 

with crash injury severity information, the distribution of the injury severity has a long tail, 

with many crashes with low level of injury severity such as no injury or property damage, 

and fewer crashes with high level injury severity such as fatal injury in the data.  

3.5.3.2  Analysis Methodology  

As mentioned in the last chapter, multilevel mixed-effects models can capture some 

random effects due to the unobserved heterogeneity. For this reason, this analysis also 

applied a multilevel mixed-effects ordered probit regression model, which contains both 

fixed effects and random effects. Its formulation is introduced. 

Now, consider a two-level ordered probit regression model with a series of M 

clusters, which are conditional on a set of fixed effects 𝑥𝑖𝑗, a set of cutpoints ҡ, and a set 

of random effect 𝑢𝑗 . Then the cumulative probability of the response being in a category 

higher than ҡ is written as, 
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TABLE 3.6 Descriptive Statistics for Explanatory Variables 

 

Description  Obs. Mean Std. Dev. Min Max 

Injury Severity 

(Severity of the 

injury of a person 

using the 

KABCO scale) 

Injury Severity=0 (No injury) 4,997  0.597 0.491 0 1 

Injury Severity=1 (Possible Injury) 4,997  0.102 0.302 0 1 

Injury Severity=2 (Non-Incapacitating injury) 4,997  0.102 0.303 0 1 

Injury Severity=3 (Incapacitating Injury) 4,997  0.045 0.208 0 1 

Injury Severity=4 (Fatal) 4,997  0.155 0.362 0 1 

Crash 

Characteristics 

Number of vehicles 4,997  2.291 3.239 1 64 

First harmful event, base - other 4,997 0.012 0.109 0 1 

First harmful event - Motor Vehicle in Transport 4,997 0.717 0.451 0 1 

First harmful event - Parked Motor Vehicle 4,997 0.021 0.144 0 1 

First harmful event - Rollover/Overturn 4,997 0.056 0.230 0 1 

First harmful event - Non-Motorist 4,997 0.090 0.287 0 1 

First harmful event - Fixed object 4,997 0.097 0.296 0 1 

First harmful event - Moving object 4,997 0.006 0.079 0 1 

ROLLOVER base - no rollover 4,997  0.853 0.354 0 1 

ROLLOVER - First event rollover 4,997 0.115 0.319 0 1 

ROLLOVER - Subsequent rollover 4,997 0.024 0.154 0 1 

ROLLOVER - Unknown 4,997 0.007 0.086 0 1 

Fire in a crash, base - no fire 4,997  0.940 0.238 0 1 

Fire occurred in a crash 4,997 0.060 0.238 0 1 

Vehicle 

Characteristics 

Body type of trucks 4,997  --- --- --- --- 

Air bag deployment, base – not deployed 4,997  0.409 0.492 0 1 

Air bag deployed 4,997 0.044 0.204 0 1 

Air bag deployment not applicable or unknown 4,997 0.547 0.498 0 1 

Person 

Characteristics 

AGE 4,997  44.93 13.839 0 89 

Role of this person in a crash - driver 4,997  0.828 0.377 0 1 

Role of this person - Passenger in transport 4,997  0.153 0.360 0 1 
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TABLE 3.6 Continued 

 

Description  Obs. Mean Std. Dev. Min Max 

 

Role of this person, base - Passenger not in transport 4,997  0.018 0.132 0 1 

Role of this person - Unknown 4,997  0.002 0.042 0 1 

Seat position in a vehicle, base - Front seat 4,997  0.931 0.254 0 1 

Seat position in a vehicle - second seat 4,997 0.015 0.121 0 1 

Seat position in a vehicle - Other locations 4,997 0.050 0.218 0 1 

Seat position in a vehicle - Unknown 4,997 0.005 0.068 0 1 

Restraint equipment used, base=0 none restraint 4,997  0.155 0.362 0 1 

Restraint equipment used - Shoulder belt only 4,997 0.003 0.051 0 1 

Restraint equipment used - Lap belt only 4,997 0.013 0.112 0 1 

Restraint equipment used - Lap and shoulder 4,997 0.749 0.443 0 1 

Restraint equipment used - Child safety seat 4,997 0.002 0.040 0 1 

Restraint equipment used - Unknown 4,997 0.0789 0.270 0 1 

Ejection path for a person, base - not ejected 4,997  0.953 0.211 0 1 

Ejection path for a person - Side door 4,997 0.002 0.049 0 1 

Ejection path for a person - Side window 4,997 0.005 0.073 0 1 

Ejection path for a person - Windshield 4,997 0.005 0.069 0 1 

Ejection path for a person - Other 4,997 0.002 0.045 0 1 

Ejection path for a person - Unknown 4,997 0.032 0.176 0 1 

Drunk driving, base - no drinking 4,997  0.6450 0.477 0 1 

Drunk driving 4,997 0.011 0.104 0 1 

Drunk driving - Unknown 4,997 0.339 0.473 0 1 

Drug use, base - no drug  4,997  0.599 0.490 0 1 

Drug used 4,997 0.015 0.122 0 1 

Drug use - Unknown 4,997 0.386 0.487 0 1 

 
Note: “---” denotes that the body types of the trucks are not listed due to space (totally there are 19 types of trucks in those crashes). 
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𝑷𝒓(𝒚𝒊𝒋 > 𝒌|𝒙𝒊𝒋, ҡ, 𝒖𝒋) = 𝜱(𝒙𝒊𝒋𝜷+ 𝒛𝒊𝒋𝒖𝒋 − ҡ𝒌)               Eq.  3.6 

 Where j is the index of M clusters, each cluster has 𝑛𝑗  observations. And k is the 

index for the cutpoints. 𝛷(∙)  represents the standard normal cumulative distribution 

probability. 𝑧𝑖𝑗 are the covariates corresponding to the random effects. Based on equation 

3.6, the derived probability for outcome k is written as, 

𝑷𝒓(𝒚𝒊𝒋 > 𝒌|𝒙𝒊𝒋, ҡ, 𝒖𝒋) = 𝑷𝒓(ҡ𝒌−𝟏 < 𝒙𝒊𝒋𝜷 + 𝒛𝒊𝒋𝒖𝒋 + 𝝐𝒊𝒋 < ҡ𝒌) 

= 𝑷𝒓(ҡ𝒌−𝟏 − 𝒙𝒊𝒋𝜷 − 𝒛𝒊𝒋𝒖𝒋 < 𝝐𝒊𝒋 < ҡ𝒌 − 𝒙𝒊𝒋𝜷 − 𝒛𝒊𝒋𝒖𝒋) 

= 𝜱(ҡ𝒌 − 𝒙𝒊𝒋𝜷 − 𝒛𝒊𝒋𝒖𝒋) − 𝜱(ҡ𝒌−𝟏 − 𝒙𝒊𝒋𝜷 − 𝒛𝒊𝒋𝒖𝒋)              Eq.  3.7 

 Where ҡ0 can be taken as −∞, and ҡ𝐾  is the +∞. K is the number of possible 

outcomes. 𝜖𝑖𝑗 are error terms independent of 𝑢𝑗 , and distributed as standard normal with 

mean 0 and variance 1. Based on above formulation, a model with observed response 𝑦𝑖𝑗 

can be generated from a latent continuous response, it is written as, 

𝒚𝒊𝒋
∗ = 𝒙𝒊𝒋𝜷 + 𝒛𝒊𝒋𝒖𝒋 + 𝝐𝒊𝒋                  Eq.  3.8 

 And, 

𝒚𝒊𝒋 =

{
 
 

 
 𝟏            𝒊𝒇 𝒚𝒊𝒋

∗ ≤ ҡ𝟏
𝟐 𝒊𝒇 ҡ𝟏 < 𝒚𝒊𝒋

∗ ≤ ҡ𝟐

⋮
𝑲

⋮
    𝒊𝒇 ҡ𝑲−𝟏 < 𝒚𝒊𝒋

∗  

                  Eq.  3.9 

 The conditional distribution of 𝑦𝑗 given a set of cluster-level random effects 𝑢𝑗  is 

written as, 

𝒇(𝒚𝒋|𝒖𝒋) = ∏ 𝒑
𝒊𝒋

𝑰𝒌(𝒚𝒊𝒋)𝒏𝒋
𝒊=𝟏

= 𝒆𝒙𝒑∑ {𝑰𝒌(𝒚𝒊𝒋)𝒍𝒐𝒈(𝒑𝒊𝒋)}
𝒏𝒋
𝒊=𝟏

            Eq.  3.10 
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𝑰𝒌(𝒚𝒊𝒋) = {
𝟏     𝒊𝒇 𝒚𝒊𝒋 = 𝒌

𝟎    𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
                  Eq.  3.11 

 The likelihood contribution of the clusters is obtained by integrating 𝑢𝑗  out of the 

joint density function 𝑓(𝑦𝑗|𝑢𝑗), based on the prior distribution of 𝑢𝑗  as multivariate normal 

with mean 0, and variance matrix  𝛴 . It is formulated using equation 3.12. But the 

integration has no closed form, thus it should be approximated using maximum likelihood 

procedure.  

𝓛𝒋(𝜷, ҡ, Ʃ) = (𝟐𝝅)
−𝒒 𝟐⁄ |Ʃ|−𝟏 𝟐⁄ ∫𝒇(𝒚𝒋|ҡ, 𝒖𝒋)𝒆𝒙𝒑(−𝒖𝒋

′Ʃ−𝟏𝒖𝒋/𝟐)𝒅𝒖𝒋 =

(𝟐𝝅)−𝒒 𝟐⁄ |Ʃ|−𝟏 𝟐⁄ ∫𝒆𝒙𝒑{𝒉(𝜷, ҡ, Ʃ, 𝒖𝒋)} 𝒅𝒖𝒋              Eq.  3.12 

𝒉(𝜷, ҡ, Ʃ, 𝒖𝒋) = ∑ {𝑰𝒌(𝒚𝒊𝒋)𝒍𝒐𝒈(𝒑𝒊𝒋)}
𝒏𝒋
𝒊=𝟏

− 𝒖𝒋
′Ʃ−𝟏𝒖𝒋/𝟐            Eq.  3.13 

3.5.3.3  Model Results and Discussion 

The model estimation results are presents in Table 3.7. Based on the results, the log-

likelihood ratios test statistics is 182.21, with p-value as 0.0000. This means the additional 

level random effects have made this model much more significant when compared to fixed-

effects ordered probit models. Those two levels are crash level and vehicle type level. Each 

truck-involved crash might have their own characteristics which might be not captured 

other seemingly independent variables. This is also true for vehicle type level random 

effects. 19 types of trucks are analyzed in our model, so being a certain type of truck will 

be different from others in terms of the effect on the outcome. Regarding the prediction 

accuracy, the model present 74.28% prediction accuracy, an acceptable accuracy for these 

models. 

Regarding the impact of important variables, some suggestions towards good truck 

driving can be made. Rollover is a statistically significant variable. If trucks are turned  



98 

 

TABLE 3.7 Model Estimations of the 3-level Mixed-effects Ordered Probit Regression Model 

 

Description  Coef. SE. Z P_value 

Case level Crash case number 0.758 0.109 --- --- 

Crash 

Characteristics 

Number of vehicles involved -0.016  0.013 -1.24 0.216 

First harmful event - Motor Vehicle in Transport -0.719 0.247 -2.92 0.004 

First harmful event - Parked Motor Vehicle 0.121 0.319 0.38 0.704 

First harmful event - Rollover/Overturn 0.021 0.281 0.07 0.941 

First harmful event - Non-Motorist -2.482 0.299 -8.28 0.000 

First harmful event - Fixed object 0.758 0.258 2.93 0.003 

First harmful event - Moving object 0.635 0.413 1.54 0.125 

ROLLOVER - First event rollover 1.402 0.092 15.30 0.000 

ROLLOVER - Subsequent rollover 1.621 0.219 7.38 0.000 

ROLLOVER - Unknown 1.499 0.298 5.04 0.000 

Fire occurred in a crash 1.148 0.111 10.3 0.000 

Vehicle 

Characteristics 

Body type of trucks 0.054 0.034 --- --- 

Air bag deployed 0.966 0.121 7.99 0.000 

Air bag deployment not applicable or unknown 0.454 0.057 7.98 0.000 

Personal 

Characteristics 

AGE 0.012  0.002 6.29 0.000 

Role of this person in a crash - driver 1.661 0.259 6.42 0.000 

Role of this person - Passenger in transport 1.332 0.259 5.12 0.000 

Role of this person - Unknown 1.373 0.678 2.03 0.043 

Seat position in a vehicle - second seat -0.277 0.197 -1.40 0.161 

Seat position in a vehicle - Other locations -0.592 0.142 -4.18 0.000 

Seat position in a vehicle - Unknown -0.443 0.381 -1.16 0.245 

Restraint equipment used - Shoulder belt only -1.244 0.179 -2.60 0.009 

Restraint equipment used - Lap belt only -0.739 0.222 -3.33 0.001 

Restraint equipment used - Lap and shoulder -0.987 0.089 -11.07 0.000 

Restraint equipment used - Child safety seat -0.515 0.553 -0.93 0.352 
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TABLE 3.7 Continued 

 

Description  Coef. SE. Z P_value 

 Restraint equipment used - Unknown -0.237 0.117 -2.03 0.042 

 

Ejection path for a person - Side door 8.893 407.81 0.02 0.983 

Ejection path for a person - Side window 2.048 0.665 3.08 0.002 

Ejection path for a person - Windshield 1.275 0.486 2.63 0.009 

Ejection path for a person - Other 1.608 0.656 2.45 0.014 

Ejection path for a person - Unknown 1.369 0.169 8.10 0.000 

Drunk driving 0.165 0.259 0.64 0.524 

Drunk driving - Unknown 0.301 0.114 2.63 0.008 

Drug used 0.434 0.201 2.16 0.031 

Drug use - Unknown 0.049 0.109 0.45 0.651 

 
Note: “---” represent that there are no values for corresponding cells because ST_CASE and BODY_TYP are treated as level random effects. 
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over, then the injury severity level will go up. Try avoiding those events in the future for 

truck driving. Also, if a fire is involved in the crash, then certainly the injury severity level 

will also go up.  Compared to the passengers not in transport, passengers in transport will 

receive higher injury severity given a truck-involved crash happened. Compared to the 

seating position in the front driver, the injury severity level of other seating positions is 

much lower, indicating that it is much riskier to have a higher injury during a crash for the 

driver. In terms of the restraint use, the modeling results clearly show that comparing to 

non-restraint use, using whatever type of restraint will significantly reduce the chance of 

having a high injury during a truck-involved crash. Similarly, proper vehicle safety 

equipment such as air bag, if employed will largely reduce the chance of being highly 

injured. But if employed, it usually indicates a large crash. Alcohol use or drug use have 

long been discussed to have a negative impact on good driving. The same conclusion can 

be drawn from the model results here. To sum, multilevel mix-effect ordered probit model 

provides additional prediction power by incorporating the random effects in each level, so 

it is much favored in modeling ordinal response variables. Finally, the marginal effects 

based on the model with means values for each variable are presented in Table 3.8 using 

the Delta-method for estimation. The results are discussed as follows.  

 An interesting outcome is that if a non-motorist is involved in such a crash, the 

potential injury severity level is lower. As of the rollover event, it has a high impact on 

incapacitating injury severity level, no matter it is a first harm event or secondary event. 

But if it is a secondary rollover event, its impact is a little bit higher (0.07 >0.066). 

Similarly, if a fire is involved in a truck-involved crash, then the injury severity level tends 

to be higher, e.g. incapacitating injury or fatal. In terms of the air bag deployment in a  
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TABLE 3.8 Marginal Effects of Each Variable on Injury Severity Outcomes 

 

Variables 
Injury Severity=0 Injury Severity=1 Injury Severity=2 Injury Severity=3 Injury Severity=4 

dy/dx. SE. dy/dx. SE. dy/dx. SE. dy/dx. SE. dy/dx. SE. 

Number of 

vehicles 
0.005 0.004 -0.0005 0.002 -0.001 0.001 -0.001 0.001 -0.002 0.003 

Motor Vehicle 

in Transport 
0.208*** 0.071 -0.0038 0.061 -0.049 0.051 -0.038*** 0.013 -0.117 0.105 

Parked Motor 

Vehicle 
-0.032 0.085 -0.004 0.014 0.004 0.016 0.006 0.015 0.026 0.071 

Rollover/Overtu

rn 
-0.006 0.076 -0.001 0.008 0.001 0.011 0.001 0.014 0.004 0.059 

Non-Motorist 0.587*** 0.173 -0.115 0.079 -0.179*** 0.013 -0.092** 0.04 -0.2 0.205 

Fixed object -0.174 0.11 -0.038 0.044 -0.003 0.082 0.024 0.039 0.192 0.094 

Moving object -0.15 0.117 -0.031 0.045 0.002 0.07 0.022 0.033 0.157 0.125 

First rollover -0.381*** 0.079 -0.014 0.106 0.067 0.112 0.066** 0.026 0.262 0.168 

Subsequent 

rollover 
-0.424*** 0.112 -0.028 0.115 0.059 0.135 0.07* 0.039 0.322* 0.192 

Unknown -0.401*** 0.107 -0.019 0.112 0.064 0.123 0.068** 0.032 0.289 0.193 

Fire -0.315*** 0.072 -0.013 0.09 0.055 0.096 0.056** 0.022 0.217 0.143 

Air bag 

deployed 
-0.279*** 0.036 0.014 0.078 0.07 0.057 0.051*** 0.007 0.145 0.121 

unknown -0.133*** 0.019 0.016 0.034 0.039*** 0.015 0.024*** 0.007 0.053 0.053 

AGE -0.003*** 0.006 0.0004 0.001 0.001** 0.005 0.006*** 0.002 0.002 0.001 

Driver -0.391** 0.16 0.102** 0.04 0.133*** 0.037 0.059 0.04 0.098 0.119 

Passenger in 

transport 
-0.294* 0.152 0.089*** 0.02 0.103** 0.046 0.042 0.035 0.06 0.081 

Unknown -0.306 0.238 0.091** 0.037 0.107 0.073 0.044 0.048 0.064 0.106 

second seat 0.081 0.057 -0.011 0.022 -0.025 0.019 -0.014 0.011 -0.031 0.037 

Other locations 0.168*** 0.049 -0.029 0.037 -0.054*** 0.015 -0.029** 0.014 -0.057 0.062 
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TABLE 3.8 Continued 

 

Variables 
Injury Severity=0 Injury Severity=1 Injury Severity=2 Injury Severity=3 Injury Severity=4 

dy/dx. SE. dy/dx. SE. dy/dx. SE. dy/dx. SE. dy/dx. SE. 

Unknown 0.013 0.107 -0.019 0.037 -0.04 0.036 -0.022 0.019 -0.046 0.057 

Shoulder belt 

only 
0.356*** 0.131 -0.021 0.099 -0.09 0.079 -0.064*** 0.021 -0.18 0.153 

Lap belt only 0.211*** 0.073 0.003 0.063 -0.044 0.061 -0.039** 0.015 -0.13 0.099 

Lap and 

shoulder 
0.283*** 0.037 -0.007 0.081 -0.066 0.066 -0.052*** 0.007 -0.158 0.124 

Child safety seat 0.144 0.165 0.007 0.044 -0.026 0.061 -0.026 0.032 -0.098 0.109 

Unknown 0.064* 0.037 0.006 0.019 -0.009 0.024 -0.012 0.009 -0.049 0.039 

Ejection Side 

door 
-0.55*** 0.026 -0.16*** 0.007 -0.153 0.009 -0.058*** 0.006 0.916*** 0.034 

Ejection Side 

window 
-0.469*** 0.076 -0.073 0.048 0.011 0.058 0.059*** 0.019 0.472** 0.195 

Ejection path 

Windshield 
-0.344*** 0.103 -0.019 0.031 0.055*** 0.015 0.059*** 0.013 0.249* 0.131 

Ejection path 

Other 
-0.408*** 0.11 -0.042 0.047 0.042 0.038 0.064*** 0.007 0.342* 0.189 

Unknown -0.364*** 0.035 -0.025* 0.014 0.053*** 0.012 0.061*** 0.006 0.027*** 0.047 

Drunk driving -0.049 0.076 0.005 0.015 0.014 0.023 0.009 0.014 0.02 0.039 

Unknown -0.089*** 0.034 0.008 0.024 0.025 0.016 0.016** 0.007 0.039 0.039 

Drug used -0.128** 0.058 0.006 0.037 0.033 0.029 0.023** 0.01 0.065 0.065 

Unknown -0.015 0.032 0.002 0.005 0.004 0.009 0.003 0.006 0.006 0.015 

 
Note: “***” represents those marginal effects are significant at 99% significance level. “**” represents those marginal effects are significant 

at 95% significance level. “*” represents those marginal effects are significant at 90% significance level. 



103 

 

truck-involved crash, if the air bag is deployed, it usually indicates such a crash has higher 

injury severity, and such a relationship is not causal. As for the old person in those crashes, 

higher age usually involved higher injury severity. Compared to an occupant of a motor 

vehicle not in transport, those divers or occupants in transport will have higher potential to 

have a possible injury or incapacitating injury. Regarding seating positions in the vehicle, 

if the person is not well seated, they have a lower potential to receive incapacitating or 

capacitating injury, but higher potential with no injury. It is an interesting outcome which 

needs further analysis. Coming to restraint use, contrary to our understanding, if no 

constraint is used, people usually receive lower injury severity. It’s probably due to the 

reason that if people do use restraints, they potentially will drive better and cautiously. But 

such general guess to needs to be further validated by analyzing more person-level data 

such as stated preference survey data. Then, in terms of injection status and degree level of 

injection, the results show that if people are injected during the crash through whatever 

kinds of injection path (side door, side window, windshield, back window, etc.), they are 

generally more likely to be in a higher level of injury severity (Fatal is the most common 

seen outcome, see Table 3.8). So, a good suggestion to those who have bad habits not any 

wearing restraint system is to be restrained in whatever way and avoid death in a truck-

involved crash. Lastly, if people are drunk or using drugs, they are also more likely to be 

in a higher injury severity level crash.  

3.5.4 Fatal Crash Analysis using Multilevel Mixed-effects Logistic Regression Model 

In addition to truck-involved crashes, large-scale fatal crashes are also analyzed based on 

the number of fatalities in a crash (e.g. in our example, 3 number of fatalities is chosen as 

the criteria). FARS data is used again for this analysis and the person file is merged with 
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accident file to obtain more important variables in our analysis.  This task is achieved by 

matching the crash case ID called ST_CASE in both files. After that, other data processing 

work in done to obtain the final merged file by removing the records with missing 

information. The final sample size 2,408. First, this sample data is used for modeling 

whether the person involved in the crash is dead or not, where the multilevel mixed-effects 

logistic regression model is used. Then the data set is further segmented to obtain the time 

to death information as the dependent variable, where the Heckman selection model is 

applied. Detailed descriptions and modeling results for each of them are discussed as 

follows.  

3.5.4.1  Multilevel Mixed-effects Logistic Regression Model 

The methodology is explained in part 3.5.3. Data descriptive are shown in Table 3.9. In 

this table, only the important variables are selected. Base on this descriptive, over 57% of 

the people involved in those crashes are dead. These important variables include whether 

the person in the vehicle was ejected or not, whether the airbag was deployed or not, the 

type of vehicles involved in those crashes also matters. In order to the investigate better of 

their effects on the death outcome of each person involved in the crashes, a 4-level mixed-

effects logistic regression model is built. The results are discussed in the next part.  

3.5.4.2  Modeling Results using 4-level Mixed-effects Logistic Regression 

Geographically, the locations of these crashes happened all over the U.S. Following Figure 

3.3. Table 3.10 presents the results of the 4-level mixed-effects logistic regression 

modeling. Three additional level random effects are added to the fixed-effects model, 

including the random effects on case level (variable name: ST_CASE), number of vehicles 

level (variable name: VE_TOTAL), and manner of collision level (MAN_COLL). The log 
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TABLE 3.9 Descriptive Statistics for Explanatory Variables 

 

Description  Obs. Mean Std. Dev. Min Max 

Dependent DEATH=1 (If person is dead, 0 otherwise) 2,408 0.572 0.495 0 1 

Crash 

Characteristics 

Number of vehicles 2,408 0.08 0.054 1 64 

Vehicle body type, base - passenger vehicle) 2,408 0.629 0.483 0 1 

Vehicle body type - Van 2,408 0.223 0.416 0 1 

Vehicle body type - Truck 2,408 0.135 0.342 0 1 

Vehicle body type - Other 2,408 0.013 0.115 0 1 

Fire in a crash, base - no fire 2,408 0.872 0.334 0 1 

Fire occurred in a crash 2,408 0.128 0.334 0 1 

Crash location with respect to junction or 

interchange areas, base - non-junction 
2,408 0.783 0.412 0 1 

Crash location - Intersection 2,408 0.163 0.37 0 1 

Crash location - Ramp 2,408 0.008 0.09 0 1 

Crash location - Railway 2,408 0.011 0.103 0 1 

Crash location - Other location 2,408 0.034 0.182 0 1 

location of crash on traffic way, base - on roadway 2,408 0.729 0.445 0 1 

location of crash on traffic way - outside roadway 2,408 0.249 0.433 0 1 

location of crash on traffic way - other 2,408 0.022 0.145 0 1 

Air bag deployment, base - not deployed) 2,408 0.173 0.378 0 1 

Air bag deployed 2,408 0.397 0.489 0 1 

Air bag deployment - Unknown 2,408 0343 0.495 0 1 

Person 

Characteristics 

AGE 2,408 33.11 20.28 0 93 

Seat position in a vehicle, base - front seat 2,408 0.569 0.495 0 1 

Seat position - second seat 2,408 0.246 0.431 0 1 

Seat position - third seat 2,408 0.026 0.159 0 1 

Seat position - other locations 2,408 0.098 0.298 0 1 

Seat position - Unknown 2,408 0.061 0.239 0 1 
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TABLE 3.9 Continued 

 

Description  Obs. Mean Std. Dev. Min Max 

 

Restraint equipment use, base - none used 2,408 0.37 0.483 0 1 

Restraint equipment use - Shoulder belt only 2,408 0.002 0.049 0 1 

Restraint equipment use - Lap belt only 2,408 0.005 0.073 0 1 

Restraint equipment use - Lap and shoulder 2,408 0.444 0.497 0 1 

Restraint equipment use - Child safety seat 2,408 0.025 0.156 0 1 

Restraint equipment use - Helmet 2,408 0.004 0.064 0 1 

Restraint equipment use - Unknown 2,408 0.149 0.356 0 1 

Restraint equipment misuse, base – no misuse 2,408 0.993 0.086 0 1 

Restraint equipment misuse 2,408 0.007 0.086 0 1 

Ejection path for a person, base - not ejected 2,408 0.861 0.086 0 1 

Ejection path - Side door 2,408 0.007 0.084 0 1 

Ejection path - Side window 2,408 0.007 0.081 0 1 

Ejection path - Windshield 2,408 0.005 0.07 0 1 

Ejection path - Other 2,408 0.007 0.084 0 1 

Ejection path - Unknown 2,408 0.113 0.317 0 1 

Extrication equipment or force applied, base - no 2,408 0.749 0.433 0 1 

Extrication - yes 2,408 0.219 0.414 0 1 

Extrication - Unknown 2,408 0.032 0.175 0 1 

Number of persons not in motor vehicles in transport 2,408 0.103 0.584 0 11 

Number of persons in motor vehicles in transport 2,408 14.61 26.23 1 120 
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FIGURE 3.3 Locations of the large-fatality crashes within the U.S. mainland.  

.
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TABLE 3.10 Model Estimations of the 4-level Mixed-effects Logistic Regression Model 

 

Description  Coef. SE Z P-value 

Case level Crash case number - level effect 0.219 0.115 --- --- 

 Constant 0.574 0.231 2.48 0.013 

Crash 

Characteristics 

Total number of vehicles involved - level effect  0.078 0.052 --- --- 

Vehicle body type - Van -0.437 0.136 -3.21 0.001 

Vehicle body type - Truck -1.824 0.295 -6.18 0.000 

Vehicle body type - Other 0.676 0.632 1.07 0.285 

Fire 1.434 0.218 6.59 0.000 

Crash location - Intersection -0.233 0.178 -1.31 0.189 

Crash location - Ramp -0.554 0.654 -0.85 0.397 

Crash location - Railway 1.577 0.734 2.15 0.032 

Crash location - Other location -0.518 0.311 -1.67 0.096 

location of crash on traffic way - outside roadway 0.836 0.217 3.85 0.000 

location of crash on traffic way - other 0.871 0.462 1.88 0.060 

Air bag deployed 0.466 0.164 2.84 0.004 

Air bag deployment - Unknown 0.065 0.18 0.36 0.719 

Manner of collision – level effect 0.078 0.052 --- --- 

Person 

Characteristics 

AGE -0.002 0.001 -0.39 0.002 

Seat position - second seat -0.012 0.153 -0.08 0.938 

Seat position - third seat -1.037 0.295 -6.18 0.001 

Seat position - other locations -0.515 0.353 -1.46 0.145 

Seat position - Unknown -0.708 0.263 -2.70 0.007 

Restraint equipment use - Shoulder belt only 0.147 0.904 0.16 0.870 

Restraint equipment use - Lap belt only -0.463 0.703 -0.66 0.51 

Restraint equipment use - Lap and shoulder -0.784 0.158 -4.96 0.000 

Restraint equipment use - Child safety seat 0.0387 0.364 0.11 0.915 

Restraint equipment use - Helmet -0.429 1.01 -0.42 0.671 
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TABLE 3.10 Continued 

 

Description  Coef. SE Z P-value 

 

Restraint equipment use - Unknown -0.273 0.193 -1.41 0.159 

Restraint equipment misuse 2.618 1.115 2.35 0.019 

Ejection path - Side door 4.762 1.947 2.45 0.014 

Ejection path - Side window 1.468 0.888 1.69 0.092 

Ejection path - Windshield 0.679 0.849 0.80 0.424 

Ejection path - Other 2.692 1.127 2.39 0.017 

Ejection path - Unknown 1.264 0.218 5.82 0.000 

Extrication - yes 1.439 0.159 9.00 0.000 

Extrication - Unknown 1.394 0.344 4.06 0.000 

Number of persons not in motor vehicles in transport -0.387 0.159 -2.52 0.012 

Number of persons in motor vehicles in transport -0.039 0.007 -5.10 0.000 
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likelihood ratio test between 4-level mixed-effects logistic regression model and the fixed-

effect logistic regression model is: 19.41, with p-value, equals to 0.0001. Meaning adding 

the random effect to those levels will increase the modeling power to capture more 

heterogeneity in each group that can be clustered using each level. For those important 

variables, the discussions based on the results are presented.  

 Age. This is a statistically significant variable in the model. It shows older people 

are less likely to be dead in a fatal crash.  

 Fire. If the fire is involved in a fatal crash, then it will significantly increase the 

potential death probability for the people involved in the crash. 

Seat position. In terms of where are the people sitting in the vehicle. The results 

show that it is the safest when people sit in the third position in the vehicle, which 

is behind the driver’s seat.  

 Vehicle body type. If the trucks are involved in a crash, then it certainly increases 

the overall injury severity level of the crash, but in terms of each person, the person 

in the truck usually have lower potential to be dead when compared to passenger 

vehicles. Similarly, for other big vehicles (e.g. vans, pick-up trucks), the people in 

those vehicles received less potential to be dead. However, those driving 

motorcycles and smaller vehicles have a high potential to be dead in a fatal crash. 

 Restraint system use. Similarly, if people use full restrain system with lap and 

shoulder belt on, then the chance of being dead in a fatal crash is significantly 

decreased. However, if the restraint system is being misused, then the potential for 

a people to be dead in a fatal crash is significantly increased, and such impact is 

even higher  
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 Air bag. If the air bag is deployed, then surely, the chance of being dead for a person 

is significantly higher (see Table 3.10). However, such a relationship is not causal. 

Contrarily, the installment purpose of air bags is used to protect the body from being 

seriously injured. But the presence of the deployment of the air bag indicates the 

severity of the crash is already very high. Then this indicates a higher potential of 

death in the crash.  

 Ejection path. Compared to no injection of the body in the fatal crash, the presence 

of any type of ejection will increase the potential of death in a crash. Among those 

ejection paths, the most significant ejection paths are people ejected from side door, 

and people ejected from other strange positions other than side window, windshield. 

So, so to avoid being dead in the fatal crash, being well seated using the full restraint 

system is recommended.  

 Equipment or other force to remove a person from the vehicle. It is a statistically 

significant variable. But it also does not reveal a causal relationship. If such 

operations are deployed, it usually means people cannot move, and most likely the 

people are dead already at the scene.  

 Number of persons in motor vehicles in transport, and number of persons not in 

motor vehicles in transport. These two variables are statistically significant with a 

negative sign. It indicates, with more people involved in the crash, either in a motor 

vehicle or not in motor vehicles, the probability of being dead for a specific person 

is lower. It is also not a causal relationship. It just indicates that when the number 

of people is greater, then somebody else will have higher probability surviving the 

crash compared to the dead because not everybody is dead at the crash.  
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 In terms of geometric characteristics, if such crash happened near a junction (e.g. 

intersection, driveway, interchange area), then the potential for a person to the dead 

is much lower. This is probably due to the reason that when vehicles approach those 

areas, their speed is usually slower. However, if such a crash happened at a railway, 

the potential of the person dying in the fatal crash is much higher. Also, if the crash 

happened outside the roadway (e.g. shoulder, median), then it highly increases the 

potential of a person being dead in a crash.  

 To sum up, to avoid being dead in a fatal crash, people need to be extremely careful 

when driving close to bigger vehicles (e.g. trucks, vehicles with hazardous materials). 

Keeping a good distance is a good option. Also, be well seated with full restraint system 

correctly on, thus it is hard for people to be thrown out of the vehicles. When driving on 

the roadway, always keeps eyes on the road. Do not let the unintentional lane departure or 

roadway departure involve in the travel trips.  

3.5.5 Time to Death Analysis using Heckman Selection Model 

Given a person is fatal in a crash, how long they lived until death? Do they die at the scene 

or do they die en route or at the hospital? This analysis is investigating the impact of various 

factors on those people’s final times on the earth. Among those large-fatality crashes, a 

sample size of 1,377 crashes is selected for this analysis.  

3.5.5.1  Heckman Selection Model 

Like ordinal regression, the Heckman selection also assumes an underlying regression 

relationship between the dependent variable and other independent variables. It is often 

written as, 
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𝒚𝒊 = 𝒙𝒊 + 𝒖𝟏𝒊                   Eq.  3.14 

 In addition to that, this model to indicate whether the dependent variable is 

observed or not. If observation 𝑖 is observed for dependent variables, then a new equation 

should be satisfied,  

𝒛𝒊𝜸 + 𝒖𝟐𝒊 > 𝟎                  Eq.  3.15 

 Where, 𝑢1~𝑁(0, 𝜎) , 𝑢2~𝑁(0,1) , and 𝑐𝑜𝑟𝑟(𝑢1, 𝑢2) = 𝜌 . 𝑧𝑖  are the variables 

selected to determine whether the dependent variables are observed or unobserved.  

 Heckman selection model is advantageous in the sense that if 𝜌 ≠ 0, then it can 

solve the problem where standard regression technique applied to equation 3.14 yield 

biased results. Instead, it will provide consistent, asymptotically efficient estimates for all 

the parameters in the model. In order to have a more stable outcome, the two-step Heckman 

selection model is adopted. Lambda 𝜆 = 𝜌𝜎 is used to investigate the selectivity effect.  

3.5.5.2  Modeling Results and Discussion 

The data descriptive are shown in the following Table 3.11. The time to death information 

shows that if a person is involved in a fatal crash, then he/she will most likely die about 

5.22 hours after the crash on average. The selected variables include DOA, ROLLOVER, 

EXTRICAT, WEATHER, REL_ROAD. The independent variables are HOSPITAL, 

LGT_COND, and PER_TYP. Over 81.5% of those people died at the scene, and only about 

0.9% of those people died en route. The mode of transportation will impact the time to 

death when they do not die at the scene. About 63% of those people are passengers in the 

motor vehicle in transport.  

The model estimations are presented in Table 3.12. The p-value for lambda is 0.017, 
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TABLE 3.11 Descriptive Statistics for Explanatory Variables 

 

Description  Obs. Mean Std. Dev. Min Max 

Dependent TTD (Time to death after crash) 1,296 5.226 33.78 0 667.9 

Independent 

Variables 

Mode of transportation to hospital, base - not 

transported 
1,377 0.815 0.389 0 1 

Mode of transportation - EMS Air 1,377 0.033 0.178 0 1 

Mode of transportation - EMS Ground 1,377 0.144 0.351 0 1 

Mode of transportation -Transported, Unknown 

source 
1,377 0.003 0.054 0 1 

Mode of transportation - Unknown 1,377 0.006 0.076 0 1 

Light condition, base - unknown 1,377 0.033 0.179 0 1 

Light condition - Daylight 1,377 0.464 0.498 0 1 

Light condition - Dark not lighted 1,377 0.351 0.477 0 1 

Light condition - Dark lighted 1,377 0.152 0.359 0 1 

Role of person involved in a crash, base - driver) 1,377 0.354 0.478 0 1 

Role of person - Passenger of a motor vehicle in 

transport) 
1,377 0.629 0.483 0 1 

Role of person - Other 1,377 0.017 0.131 0 1 

Selection 

Variables 

Die at scene or en route, base - not applicable) 1,377 0.176 0.381 0 1 

Die at scene 1,377 0.815 0.389 0 1 

Die en route 1,377 0.009 0.097 0 1 

Rollover in a crash, base - no) 1,377 0.713 0.452 0 1 

ROLLOVER - Frist event tripped by object 1,377 0.234 0.423 0 1 

ROLLOVER - Subsequent event untripped 1,377 0.039 0.196 0 1 

ROLLOVER - unknown type 1,377 0.013 0.114 0 1 

Extrication, base – no 1,377 0.643 0.479 0 1 

Extrication - Yes 1,377 0.314 0.464 0 1 
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TABLE 3.11 Continued 

 

Description  Obs. Mean Std. Dev. Min Max 

 

Extrication - Unknown 1,377 0.042 0.203 0 1 

Location of crash related to traffic way, base - on 

roadway 
1,377 0.693 0.461 0 1 

Location of crash - Off road 1,377 0.278 0.448 0 1 

Location of crash - Other 1,377 0.029 0.168 0 1 

Weather condition, base - clear 1,377 0.696 0.459 0 1 

Weather condition - Rain 1,377 0.083 0.276 0 1 

Weather condition - Other 1,377 0.181 0.385 0 1 

Weather condition - Unknown 1,377 0.039 0.196 0 1 
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TABLE 3.12 Model Estimations of the Two-step Heckman Selection Model 

 

Description  Coef. SE Z P-value 

 Constant 16.282 11.66 3.06 0.002 

Independent 

Variables 

Mode of transportation - EMS Air 42.292 2.179 8.17 0.000 

EMS Ground 29.943 2.957 10.13 0.000 

Transported, Unknown source 100.865 21.719 4.64 0.000 

Unknown 7.954 11.647 0.68 0.495 

Light condition - Daylight -11.063 5.29 -2.09 0.037 

Dark not lighted -11.079 5.358 -2.07 0.039 

Dark lighted -9.789 5.598 -1.75 0.080 

Role of person - Passenger of a motor vehicle 

in transport) 
-5.302 1.851 -2.86 0.004 

Other -9.28 6.755 -1.37 0.170 

Selection 

Variables 

Constant 1.132 0.159 7.10 0.000 

Crash case number  6.93e-07 3.63e-07 1.91 0.056 

Die at scene 0.700 0.131 5.33 0.000 

Die en route 0.396 0.532 0.74 0.457 

ROLLOVER - Frist event tripped by object 0.087 0.150 0.58 0.561 

Subsequent event untripped -0.544 0.241 -2.26 0.024 

Unknown type -1.034 0.330 -3.13 0.002 

Extrication - Yes -0.265 0.127 -2.09 0.037 

Extrication - Unknown -0.748 0.220 -3.39 0.001 

Location of crash - Off road -0.451 0.132 -3.43 0.001 

Other -0.015 0.367 -0.04 0.968 

Weather condition - Rain 0.606 0.287 2.11 0.035 

Other 0.305 0.175 1.75 0.081 

Unknown -0.173 0.278 -0.62 0.534 

 



117 

 

TABLE 3.12 Continued 

 

Description  Coef. SE Z p-value 

 

Lambda -23.238 9.767 -2.38 0.017 

Rho -0.705    

Sigma 32.967    
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value for the Wald chi-square test is 0.0000, indicating the power of this regression model. 

In terms of the effect of those selected and independent variables, the discussions are listed 

as follows: 

 The mode of transport will increase the time until death. Especially, the EMS air 

transport, it has a high potential to increase the time to death.  

 Lighting condition also plays an important role in reducing the time to death when 

compared to the unknown type of light conditions. 

 As for passengers in a motor vehicle fatal crash, their time to death is significantly 

reduced. This is probably due to the passengers are not well seated and restrained. 

As for the selection variables, they all show their effect in grouping those 

observations. For example, the group of people died at the scene is totally different 

from people die en route. If a rollover vehicle is involved in a crash, then the 

certainly the potential to die soon is much higher than non-rollover crashes. Also, 

if people need to be taken out of the vehicle, then it has a higher potential the people 

will die soon due to the trap in the vehicle. This also applied to different roadway 

geometrics (on roadway compared to roadway departure).  

3.6  LIMITATIONS 

This study focuses on truck-involved crashes by matching the two separate databases 

(crash and incident) by date/ time, location, and incident type. Due to two different 

databases with two different reporting systems may report slightly different, the time of the 

accident occurred cannot be strictly matched from the two databases, so the matching 

requirements are relaxed to less than 1 hour of time difference. The sample size is not large 
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enough, leading to a smaller number of the severely injured accidents, but that is what we 

can obtain, and analyze right now. 

3.7  CONCLUSIONS 

This study aims at identifying the association between injury severity and incident duration 

in truck-involved accidents, and how they are correlated with other factors. To achieve this 

goal, data have been collected and matched through E-TRIMS for crash data and TDOT 

region 1 TMC for incident data, and 442 truck-involved crashes have been finally collected. 

Injury severity is a categorical variable, and incident duration has been categorized into 

three levels. Based on this, a suitable recursive bivariate ordered probit model was applied.  

Descriptive statistics show both incident duration and injury severity are normally 

distributed. Though most of the incidents can be cleared in 120 minutes, the duration being 

more than 120 minutes is worthy of attention. It indicates that the probability of severer 

injury accidents’ duration being more than 120 minutes is higher than that of minor injury 

accidents.  

Several modeling findings have been presented in the modeling section, and the 

most interesting finding is that there is a strong correlation between injury severity and 

incident duration, the more severe the injury level is, the longer the incident duration will 

be. As expected, the incident duration is much longer for incapacitating or fatal crashes. 

There is a 0.8807 increase, and a 0.8931 increase in the probability of incident duration is 

more than 120 minutes for incapacitating injury and fatal injury level, respectively. 

From an operations perspective, this study reveals the recursive relationship 

between injury severity and incident duration. Operational countermeasures to shorten lane 

block duration, and the response time for reducing the incident duration could be adopted. 
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Given that injury severity robustly affects the incident duration, more severe accidents are 

more likely to associate with longer duration. Preventive actionable countermeasures for 

decreasing the injury severity should be researched such as educating drivers (especially 

non-truck drivers) the dangerous driver actions, conditions, and distractions, which affect 

the injury severity while they in the vicinity of trucks. Moreover, more attention should be 

given by practitioners like city traffic engineers while traveling on snowy days with the icy 

roads, since it is more likely to associate with a severe injury that also may result in longer 

incident duration. Further research is worthy and needed for how to integrate the preventive 

countermeasures with operational measures effectively. 

From the methodological perspective, this study creates a unique database by 

matching two databases (Tennessee crash database and incident database) through the date, 

time, route, direction, and incident type to obtain information of both injury severity and 

incident duration, which previous studies seldom did. In addition, a recursive bivariate 

ordered probit model is adopted for analyzing the injury severity and duration 

simultaneously, which previous studies often only focused on one of injury severity and 

incident duration or analyzed them by two separately models. The unique database created, 

and the methodology presented in this study are technically sound and would be helpful to 

the researchers. 
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CHAPTER 4  
LARGE-SCALE INCIDENT-INDUCED CONGESTION: EN ROUTE 

DIVERSIONS OF COMMERCIAL AND NON-COMMERCIAL 

TRAFFIC 
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4.1  ABSTRACT 

When large-scale incidents occur on freeways, en route diversion of traffic is among the 

effective strategies to reduce the impact of incident-induced congestion. In corridors with 

substantial commercial traffic, especially large trucks, route diversion is complex 

compared with non-commercial vehicular traffic, for several reasons. Large trucks may not 

be able to navigate through the alternate routes (narrower streets and small turning radii), 

and they may be more likely to be associated with a safety risk, e.g., at intersections on the 

alternate route. To address the issue of commercial and non-commercial diversions to 

alternate routes in response to large-scale incidents, this paper identifies truck traffic 

corridors and establishes a methodology for analyzing the impacts of commercial (truck) 

and non-commercial en route diversion. A microscopic simulation model is used to analyze 

en route diversion strategies in real-life corridors for single-unit and multi-unit trucks and 

passenger vehicles under different incident scenarios. The results show that in addition to 

incident duration and lane blockage, important factors such as the availability of incident 

information and number of intersections and AADT on the freeway, alternate routes, as 

well as CAV, impact en route truck diversions and hence the resulting delays. In the future 

practice of traffic diversion operations, a strategy to consider is separately customizing 

incident information to truck drivers and passenger vehicles, especially in urban areas. 

Keywords: Truck en route diversion, Incident-induced congestion, Simulation, CAVs 

4.2  INTRODUCTION 

Under an incident-induced congestion along the freeways, upstream traffic may react in 

different ways in response to this situation. From the perspective of drivers, either be 

patient, stay in the traffic queue or wait for the incident to be cleared or divert to alternative 
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routes and return to the freeway to continue their trips. In corridors with substantial 

commercial traffic, especially large trucks, route diversion is far complex compared with 

non-commercial vehicular traffic when considering the travel time, traffic violations, lane 

changing movements, turning movement, etc. Therefore, commercial trucks, among all 

traffic, are a special group of vehicles that need special traffic operations in such situations, 

due to vehicle weight, traffic impact, road infrastructure, safety, energy, and value of travel 

time, etc. To make good decisions in terms of en route diversion, truck drivers need to 

access some critical and timely traffic information such as incident duration, lane blockage, 

current travel time on the freeway and predicted travel time on the alternate route if any, 

etc. From the perspectives of Traffic Management Center (TMC)’s operations, quick 

clearance of the incident site is their priority, but under large-scale incident-induced 

congestion situations, proper traffic management such as en route diversion will also be 

activated. In extreme cases, law enforcements are implemented to ensure detour 

operations’ effectiveness.  

 However, the benefits of applying the en route diversion strategies for commercial 

trucks are not well understood in many of studies, especially under a large-scale incident 

scenario. Therefore, this paper intends to study the regime about the benefits of applying 

truck en route traffic diversions under large-scale incident-induced congestion scenarios. 

All these scenarios are based on realistic locations along Interstate freeway (I-40) corridor 

in Knoxville area, Tennessee (TN). To be specific, this study will firstly, construct a 

microscopic simulation model to analyze en route diversion strategies in I-40 corridors for 

single-unit and multi-unit trucks and passenger vehicles under different incident scenarios. 

Secondly, estimate benefits obtained from each scenario by using different traffic 
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information penetration ratio, the value of travel time (VOT), incident duration, etc. 

Suggestions based on the simulation results will be provided towards to TN State 

Department of Transportations (TDOT). 

4.3  LITERATURE REVIEW 

A technical report from Federal Highway Administration (FHWA) defines an alternative 

route as a route begins from one point on the primary route and terminates at another point 

on the primary route (P. E. Dunn Engineering Associates, Consulting Services, 2006). 

According to the definitions, the alternative route for a freeway will start from an exit to 

alternative routes and then return to the freeway on another ramp. However, due to the 

weight, height, width, and other truck attributes, most of the alternative routes are not 

intended to be used by trucks. In TN state, the alternative routes for trucks along major 

freeway and highways in metropolitan areas are defined such that trucks will take certain 

alternative routes upon a large-scale incident-induced congestion on the freeway (TDOT, 

2012). Upon incident-related congestion, unreliable travel time is identified as the most 

problematic outcomes of congestion, and it is a significant factor for long-haul truck drivers 

in making route choices as they navigate through the U.S. highway network (Golob & 

Regan, 2001; Knorring et al., 2005). Various factors that impact the en route diversion 

decision are evaluated, such as incident duration, number of blocked lanes, flow rate on 

routes, number of signals on detour route, etc., and generally, under incident scenarios with 

long duration, considerable diversion rates can be observed (Liu et al., 2011; Liu et al., 

2012; Yin, Murray-Tuite, & Wernstedt, 2012). However, detour operations under non-

recurrent congestion can also cause problems on alternative routes. Even though system 

delay in vehicle-hours is reduced, the delay on the detour route went up by about 64%, 
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causing an unexpected congestion in the detour route (Cragg & Demetsky, 1995), so 

estimations should be done for both routes. In terms of traffic operations, traffic 

information systems, as well as the dynamic route guidance systems are found to be 

effective in travel time savings for passenger vehicles as well as public buses and trucks, 

especially during morning or afternoon peak hours upon non-recurrent incidents (Ng et al., 

2006; Pan & Khattak, 2008; Sundaram, Koutsopoulos, Ben-Akiva, Antoniou, & 

Balakrishna, 2011).  

 When estimating the benefits of activating the en route diversion, VOT should be 

emphasized in freight transportation. Due to the heterogeneity and uncertainty of truck 

industry categories, estimating the value of travel time for each individual truck on the road 

is complex and unrealistic. According to the previous research papers, commercial trucks 

usually have much higher VOT than passenger vehicles, so it deserves much attention to 

incorporate VOT in the analysis for truck en route diversions (Belenky, 2011; Pan & 

Khattak, 2008). Upon reviewing previous research papers, seldom has focused on the truck 

en route diversion upon a non-recurrent large-scale incident scenario along the freeways. 

According to Li, et al (2017), when a large-scale incident happens, it usually lasts longer 

than 2 hours and blocks at least one lane on the freeway. In extreme cases, all the lanes are 

blocked (Xiaobing Li, Asad J. Khattak, & Behram Wali, 2017). Therefore, such incident 

characteristics, as well as the existing detour route characteristics (such as the number of 

lanes, existing AADT, number of intersections, signal timing plans, etc.), may eventually 

impact the operational decisions made by TMC managers. Figure 4.1 conceptually shows 

how TMC operations look like for implementing the diversion strategy upon an incident 

occurrence on the freeway.   
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FIGURE 4.1 En route traffic diversion operations system flowchart under the 

incident situation. 
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To sum up, there is a gap in studying the en route diversion strategies for trucks 

under large-scale incident scenarios, because, under such scenarios, the benefits will be 

totally different, and more diversions will cause the alternative route to be very congested. 

To address the above mentioned critical issue, this paper aims to focus on this area by using 

simulation analysis to evaluate the benefits by diverting the truck traffic as well as the 

passenger vehicles. Interstate freeway I-40 and arterial Kinston Pike in Knoxville 

Tennessee will be the main study area for this study. Also, this study is timely and original 

in the sense that truck flow grows significantly in Tennessee State, and estimating the 

benefits in diverting the commercial trucks to alternate route upon a large-scale incident is 

very important in freight traffic management.  

4.4  METHODOLOGY 

4.4.1 Network and Experimental Design 

This study uses TransModeler to run the simulation analysis. TransModeler is a traffic 

simulation package applicable to a wide array of traffic planning and modeling tasks  

(Corporation, Accessed July 71, 2017). It employs advanced methodological techniques 

and software technology to simulate all kinds of road networks, from freeways to 

downtown areas and can analyze wide area multimodal networks in great detail and with 

high fidelity. It can also model and visualize the behavior of complex traffic systems in a 

2-dimensional or 3-dimensional GIS environment to illustrate and evaluate traffic flow 

dynamics, traffic signal and ITS operations, and overall network performance. It simulates 

public transportation as well as car and truck traffic and handles a wide variety of ITS 

features such as electronic toll collection, route guidance, and traffic detection and 

surveillance. 
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 Currently, Connected and Automated Vehicle technology has penetrated the 

vehicle market, and under such environment, the driving behaviors will be somewhat 

different from current driving style. Therefore, in designing the simulation experiments, 

different levels of automation will be added. The details of levels of automation provided 

by National Highway Traffic Safety Administration (NHTSA) are listed as follows 

(Administration, 2016): 

 Level 0, the human driver does everything; 

 Level 1, an automated system on the vehicle can sometimes assist the human driver 

to conduct some parts of the driving task; 

 Level 2, an automated system on the vehicle can actually conduct some parts of the 

driving task, while the human continues to monitor the driving environment and 

performs the rest of the driving task; 

 Level 3, an automated system can both actually conduct some parts of the driving 

task and monitor the driving environment in some instances, but the human driver 

must be ready to take back control when the automated system requests; 

 Level 4, an automated system can conduct the driving task and monitor the driving 

environment, and the human need not take back control, but the automated system 

can operate only in certain environments and under certain conditions; and 

 Level 5, the automated system can perform all driving tasks, under all conditions 

that a human driver could perform them. 

As for dynamic route choices of drivers, it models such behavior based upon 

historical or simulated time dependent travel times, and it models trips based on OD 

(Origination-Destination) trip tables or turning movement volumes at intersections. 
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Therefore, to properly run the simulation analysis and keep high fidelity of the simulation 

model, the OD matrix should be obtained and built into the simulation models. To achieve 

such purpose and realistically reflect the real-world operational characteristics for this 

study network, the Annual average daily traffic (AADT) information is obtained through 

an Enhanced Tennessee Roadway Information Management System (E-TRIMS). Within 

such roadway inventory and traffic archiving system, other key variables associated with 

the experimental scenarios are also extracted, they are grouped as follows (for more details 

on each variable, see Table 4.1): 

 Freeway-related variables: number of lanes on freeway mainline, AADT, 

percentage of passenger vehicles/single-unit (SU) trucks/multi-unit (MU) trucks; 

 Incident-related variables: number of lanes blocked, block duration, the travel 

speed on unblocked lanes, total length of the blockage; and  

 Alternative/detour route-related variables: AADT on two collector road connecting 

freeway and arterial road (one way from the freeway and arterial road, and the other 

one back to the freeway), and on the arterial road such as Kingston Pike in our 

study. Also, the number of lanes, the number of intersections, and signal timing 

plans on these roads. 

As we can see from above Table 4.1, there are thousands of combinations of the 

experimental designs. In order to limit the number of scenarios and also keep the 

experimental designs somewhat realistic, 8 diversion locations are chosen along I-40 in 

Knox County, Tennessee. These locations include: exits 369, 373, 374, 376, 378, 379, 380, 

and 383. 
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TABLE 4.1 Key Variables in the Experimental Design for the En route Diversion Strategy 

 

Variables Description Range of Values 

Fr_Ln Number of main lanes each direction on the freeway 3, 4, 5 

Fr_AADT AADT on freeway 
105,970, 119,300, 136,250, 179,910, 

188,060, 196,210, 196,710 

Fr_PerPC Percentage of passenger vehicles on freeway 
70%, 72%, 74%, 76%, 77%, 78%, 80%, 

81%, 83%, 84%, 87%, 88%, 89% 

Fr_PerSU Percentage of single-unit trucks on freeway 2%, 3%, 4%, 5%, 6% 

Fr_PerMU Percentage of multi-unit trucks on freeway 
8%, 9%, 10%, 11%, 12%, 14%, 15%, 16%, 

17%, 18%, 21%, 25%, 27% 

Inc_Ln Number of lanes blocked during the incident 3, 4, 5 

Inc_BlcDur Incident blockage duration ≥ 2 hours 

Inc_Speed Travel speed on available travel lane on the freeway 10 mph, 15mph  

Inc_length Total length of the blockage during incident 200, 300, 400, 500, 600 

Alt_Col1AADT AADT on collector road 1 from freeway to arterial 
10,740, 27,840, 41,820, 63,990, 19,500, 

11,420, 19,450, 27,284 

Alt_Col2AADT AADT on collector road 2 from arterial to freeway 
27,840, 41,820, 63,990, 19,500, 11,420, 

12,550, 14,360, 77,420 

Alt_AADT AADT on alternative arterial  
22,570, 29,340, 28,760, 31,090, 19,170, 

24749 

Alt_Col1Ln 
Number of lanes each direction on collector road 1 from 

the freeway to arterial 
1, 2, 3, 4 

Alt_Col2Ln 
Number of lanes each direction on collector road 2 from 

arterial to freeway 
1, 2, 3, 4 

Alt_Ln Number of lanes each direction on alternative arterial 2, 3, 4, 5 

Alt_Int 
Number of signalized intersections on the alternative 

route 
2, 3, 4, 5 
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To investigate various outcomes from these simulation runs, a conceptual study 

network is firstly introduced as shown in Figure 4.2. This diagram shows when a traffic 

incident happens on a freeway by blocking, then traffic might take an alternative route (e.g. 

arterial) to bypass the congested area by entering the freeway system in a downstream ramp. 

 
Incident location

Freeway 

Diversion 
Point

Arterial

Merge Point

IntersectionIntersection

Both truck and 
passenger vehicle 

traffic

   

 

FIGURE 4.2 En route diversion scheme along the freeway. 

 

 The diverted traffic from freeway include both passenger vehicles and trucks (SU 

and MU). In TransModeler, if an incident happened along the freeway and if drivers are 

not informed of the updated travel for the freeway, then they will stay on the current 

freeway without any diversion. In this sense, not all the drivers are informed of the updated 

travel time, and information communication devices become very important in delivering 

these information (travel time/delay on freeway, and travel time on alternative route, etc.), 

also in changing drivers’ en route choice behaviors as having mentioned by Sundaram, et 

al (2011), and Pan, and Khattak (2008). In other words, the travel time related information 

penetration ratio will make a difference in the diversion strategies and benefit estimations 

thereafter. Such variations in travel time related information penetration (from 0% to 
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100%) will be incorporated in the simulations scenarios, so do other key variables listed 

above.  

All these diversion strategies are based on the east direction, and all the simulation 

runs are based on these locations. Within each simulation scenario, there are also variations 

in incident characteristics, the percentage of drivers receiving updated travel information, 

and value of travel time for trucks as well as for passenger vehicles. The initial 

configurations for these 8 diversion locations are listed in Table 4.2 as shown below.  

4.4.2 Origination-Destination Estimation 

In estimating the OD matrix for the simulation analysis, 8 nodes are set up for simplicity 

as originations and destinations in the conceptual network as can be seen in following 

Figure 4.3.  

 
Freeway 

1

2 3

4

5

6 7

8

Arterial IntersectionIntersection

 

 

FIGURE 4.3 Originations and destinations for the study network. 

 

 The simplified network here does not include many intersections, they will be 

revealed in the simulation models in TransModeler, but to simplify our analysis, only 8 

nodes will be considered as either originations or destinations. Trip productions and  
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TABLE 4.2 Initial Configurations for 8 Diversion Locations 

 

No 
Location 

1 

Location 

2 

Location 

3 

Location 

4 

Location 

5 

Location 

6 

Location 

7 

Location 

8 

Freeway number of 

lanes  
3 3 4 5 5 4 5 4 

Freeway AADT  150,970 119,300 136,250 179,910 188,060 196,210 196,710 196,410 

Freeway PC % 78% 81% 83% 87% 88% 88% 81% 81% 

Freeway SU % 4% 3% 3% 2% 2% 2% 3% 3% 

Freeway MU % 18% 16% 14% 11% 10% 10% 16% 16% 

Collector 1 AADT  10,740 27,840 41,820 63,990 19,500 11,420 19,450 27,284 

Collector 2 AADT 27,840 41,820 63,990 19,500 11,420 12,550 14,360 77,420 

Arterial AADT  22,570 29,340 29,340 28,760 31,090 31,090 31,090 21,960 

Collector 1 number 

of lanes  
1 2 2 2 3 2 2 2 

Collector 2 number 

of lanes 
2 2 2 3 2 2 2 3 

Arterial number of 

lanes  
2 2 2 2 2 3 2 2 

Number of signalized 

intersections  
11 12 7 11 11 9 10 15 

 
Note: Location 1 is from I-40 to Watt Rd to Kingston Pike to Everett Rd, then to I-40;  

          Location 2 is from I-40 to Everett Rd to Kingston Pike to N Champbell Rd, then to I-40;  

          Location 3 is from I-40 to N Champbell Rd to Kingston Pike to Lovell Rd, then to I-40;  

          Location 4 is from I-40 to Lovell Rd to Kingston Pike to Pellissippi Pkwy, then to I-40;  

          Location 5 is from I-40 to Pellissippi Pkwy to Kingston Pike to N Cedar Bluff Rd, then to I-40;  

          Location 6 is from I-40 to N Cedar Bluff Rd to Kingston Pike to Bridgewater Rd, then to I-40;  

          Location 7 is from I-40 to Bridgewater Rd to Kingston Pike to Buckingham Dr, then to I-40;  

          Location 8 is from I-40 to Northshore Dr to Kingston Pike to Alcoa Hwy, then to I-40.  
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attractions (PAs) are the starting point for generating future OD matrix. Main data from  

Table 4.2 will be utilized as the input data. However, it’s not enough to only use that data, 

other data from E-TRIMS will also be utilized including directional distributions of AADT, 

peak hour traffic direction, AADT on each node if they are different from the AADT on 

the segment in Table 4.2. The data are error checked and validated. All these factors need 

to be considered in the final calculation of the trip productions and attractions for each node 

in the study network. For example, for diversion location 1, the peak hour directional 

distribution of AADT on freeway is 60% (east direction) vs. 40% (west direction), so the 

calculated traffic demand or traffic productions for node 1 is 105,970 * 0.6 = 63,582 trips, 

and attractions will be 105,970 * 0.4 = 42,388. Similar operations can be done for each 

location. After getting the PAs for each location, the next step is to convert the PAs to ODs. 

This can be easily done using the TransCAD software through applying its own internal 

gravity models, which are well known in the traffic demand forecasting community, so 

details about that are not specified here.  

4.4.3 Traffic Composition 

Trucks (SU and MU) are our focus in this paper, so by separating the traffic flows into 

passenger vehicles and trucks (SU and MU) are necessary. Again, E-TRIMS provides us 

information about the percentage of these three vehicle types (PC – Passenger Cars, SU – 

Single-Unit trucks, and MU – Multi-Unit trucks), and they will be dealt with individually 

in the simulation models. More information about the setup of these variables is shown in 

the previous Table 4.1 and Table 4.2.  

4.4.4 Traveler Information and VOT 

In evaluating the impact of traveler information on implementing the en route diversion 
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strategies, the information penetration rate for drivers is set up to vary from 0% to 100%. 

So, for each group of drivers (PC, SU, and MU), they either receive the updated travel time 

information or not. For those who do not receive the updated travel time information, they 

will stay in the current traffic flow without changing the route in the TransModeler 

simulation models; while for those who receive the information, they either stay on original 

route or take the designated alternative route based on the threshold value of the difference 

between travel times on freeway and alternative route. In the simulations, 5% difference of 

the travel time between the freeway and the alternative route is used as the threshold value.  

As for the impact of VOT on the diversion strategies, Pan, and Khattak (2008) finds 

an interesting result where higher VOT are associated with lower percentage of savings in 

total travel cost when applying the diversion strategy. But in large-scale incident situations, 

will this relationship change? The results will be explained in later sections. In saying so, 

we will apply what we have prepared so far in previous sections into the simulation models, 

and results are shown in detail in the next section. 

4.4.5 En Route Choice Model 

Stochastic shortest path method is adopted in this study. This method is all based on path 

costs. Compared to the deterministic shortest path, this method takes account the variations 

in each individual drivers’ perception and behavior on pre- and en- route choice. Thus, the 

path costs are randomized and there is not one, but many, shortest paths between a given 

O-D pair. TransModeler is a path-based simulation model (Caliper, 2014). In 

TransModeler, each vehicle has an assigned path before it departs it origin and enters the 

network, and drivers will consider alternative paths en route if they experience delay on a 

link that far exceeds their expected delay which is usually obtained though dynamic traffic 
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assignment using the stochastic user equilibrium method computed by the method of 

successive averages (MSA). The threshold at which link delay is considered excessive is 

determined by each drivers’ route choice parameters (such as different from current path, 

choice set threshold, update delay threshold, reroute threshold, etc.), and those parameters 

usually vary among the driving population, such as passenger vehicles, single-unit trucks, 

and multi-unit trucks as mentioned in our study. Eventually, these parameters will 

determine whether the drivers will take the alternative new paths en route or not. 

Descriptions of some of the key parameters are presented as following: 

 Informed – drivers in the model have access to updated travel time information. If 

uninformed, drivers will make all route choice decision solely based on historical 

travel time information. Depends on the information penetration rate, and the 

vehicle fleet proportions, the proportions of the informed and uninformed drivers 

vary among each scenario.  

 Update delay threshold – expressed as the percent difference in experienced travel 

time on a line relative to the expected or historical travel time. When the 

experienced travel time exceeds this threshold, a driver will consider alternative 

paths, which may or may not lead to a new route, depending on the alternatives. In 

this study, 20% update threshold is used to let drivers reconsider current path and 

alternative paths. 

 Reroute threshold – it represents the percentage reduction in travel time relative to 

the current path (freeway in our study) that is required in order for a driver to decide 

to switch to the alternative route. 5% is chosen as the criterion for this threshold. 

For trucks, 10% is the chosen criterion since truck drivers’ inertial preference for  
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the current path is usually freeway instead of other local arterials.  

4.5  SIMULATION ANALYSIS RESULTS 

There are many traffic network performance evaluation criteria that can be used to evaluate 

the en route diversion traffic operations strategy. Those criteria include travel time on the 

freeway and alternative route, Level of Service on the alternative routes, and intersections, 

delay by freeway and alternative routes, queue length on the freeway and near intersections, 

etc.(P. E. Dunn Engineering Associates, Consulting Services, 2006; Knorring et al., 2005; 

Liu et al., 2011; Liu et al., 2012; Ng et al., 2006; Pan & Khattak, 2008; Yin et al., 2012). 

Delay statistics is most used among all these criteria. In other words, delay reductions can 

be treated as travel time saving for both freeway and alternative routes, and then delay 

reductions of trucks and passenger vehicles can be converted to savings in dollars, 

emissions, fuel. The simulation runs are based on a daily basis which means each 

simulation starts at 00:00:00 and end at 23:59:59, and the incident is assumed to block all 

other lanes except one lane on the left side of the freeway, and the travel speed is assumed 

to be 10 mph for this available travel lane. The incident is set up during morning peak hours 

from 7 AM to 9 AM for preliminary analysis. Other scenarios are presented afterwards.  

4.5.1 Delay Reductions 

Figure 4.4 presents the delay statistics for freeway and alternative routes at 8 locations 

under different traffic information penetration rate. Figure 4.4 (a) shows the delay statistics 

for the freeway. Compared to normal traffic situation (no incident occurrence), when an 

incident occurs along the freeway and 0% of the drivers in each fleet group are informed 

of the updated travel time, the total delay increased about 6.1 to 12.5 times for freeway 

diversion points at 8 locations, while the average delay increased about 4.6 to 8.7 times for  
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(a)   

 

(b) 

 

FIGURE 4.4 (a) Average delay reductions for freeway at 8 locations; (b) Average 

delay reductions for the alternative route at 8 locations. 
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freeway diversion points at 8 locations. These statistics indicate a driver will spend 20 – 45 

minutes to get through the freeway segment when normally 5 minutes is used to travel 

through it. When traffic information is available to travelers, based on the percentage of 

drivers in each fleet group, Figure 4.4 (a) presents how delay reductions look like for the 

freeway. Those 8 locations (from location 1 to location 8) are located from rural to urban. 

Similar to what has been found before, Figure 4.4 (a) shows that with more and more traffic 

information delivered to drivers, the en route diversion rate will increase, and the travel 

delay will be reduced. Additionally, under dynamic traffic environment, our simulation 

results show that, generally, traffic on the freeway, if taking en route diversions from the 

freeway to alternative arterials at rural locations can receive more benefits of saving travel 

time. Also, the preliminary analysis graphs do reveal a monotonic increasing benefit from 

the average delay reductions for freeway (up to 8% - 10% at various locations) and a 

monotonic average delay increment for an alternative route (up to 10% - 20% at various 

locations, see Figure 4.4 (b)). This interesting result indicates that with more and more 

traffic related information delivered to the drivers, their response to the incident and the en 

route diversion operations are generally contributing the overall congestion relief and 

improving the overall performance of the traffic network. Notice that in Figure 4.4 (a), 

compared to rural locations (such as location 1 and 2), average relay reductions at urban 

locations are less. One reason to explain this is that drivers prefer to stay on the freeway 

since the alternative routes at urban locations are also very congested at morning peak hour. 

Due to the number of intersections and a high chance of long intersection delays, drivers, 

especially truck drivers may still consider the freeway as their primary route choice. While 

in rural areas, fewer intersections are observed, that could be another reason for gaining 
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more benefit in delay reductions for rural areas. This implies that under heavily congested 

areas such as urban areas, downtown area, even though traffic information is available to 

most drivers, the freeway is still their primary choice due to high congestion in peak hour 

because there might be no lane change, merging, diverging, and turning movement on the 

freeway. Therefore, en route diversion strategy applied in rural areas is more effective and 

beneficial in saving travel time and reducing the negative impact of the incident on 

travelers.  

4.5.2 VOT Impact 

Assuming 50% of the drivers can get updated traffic information, then we tested the impact 

of VOT on the delay reduction for the freeway. The base VOT for passenger vehicles is 

assumed to be $15 (for illustration purpose, true values need to be verified for each region), 

and the VOT for trucks (both single-unit and multi-unit) are set up as 2, 4, 6, 8, 10, and 12 

times larger compared to passenger vehicles. Previous studies show that with higher VOT, 

the savings in travel time and cost decreased for the whole network. However, if we only 

consider the freeway and detour route separately, then our simulation analysis results 

(shown in Figure 4.5 (a)) show that the delay reductions/increments for freeway and detour 

route are not very stable. But if we take both of them together, then there is not much 

variation in delay reduction. Higher VOT means higher risk in increasing travel cost if not 

taking a proper alternative route, so most truck drivers prefer to remain on the freeway. 

However, if law enforcement is deployed altogether with real-time information of incident 

to travelers, especially with detailed instructions to trucks, then the benefit of implementing 

the en route diversion traffic operations need to be further investigated in future. If 

converting travel time saving into dollars (fleet composition is 81% / 3% / 16% for PC,  
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(a) 

 

(b) 

 

FIGURE 4.5 (a) Delay changes, and (b) travel cost savings for freeway and alternative 

route under different VOT for trucks. 
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SU, and MU) using conversion factors in Table 4.3, the results shown in Figure 4.5 (b) 

indicate that compared to the based case ($15 VOT for all vehicles), when the VOT of 

trucks are 2, 4, 6, 8, 10, and 12 times larger than that of passenger vehicles, the overall 

travel cost savings in percentage declines, even though the total amount of travel cost 

savings increases, but the magnitude is decreased. This result implies that when en route 

diversion operations are implemented, diverting trucks as well as passenger vehicles is 

necessary because trucks usually have higher VOT, which contributes to higher total cost 

savings, but in terms of percentage savings, it is reduced, implying the huge negative 

impact of large-scale traffic incidents. 

4.5.3 Impact of Incident Durations 

Location 8 is selected specifically to study in detail as shown in Figure 4.6. The east bound 

direction is chosen as the peak hour direction for I-40 and the alternative en route diversion 

route starts from I-40 Exit 383 to Northshore Dr. to Kingston Pike to State Route 129, then 

back to I-40 at 386B.  

 Under normal traffic conditions, the travel time on the freeway is 4 minutes for 4.3 

miles, and it becomes 13 minutes for 5.6 miles if taking the alternative route since there 

are 15 signalized intersections along this route. The network in simulation is shown in 

Figure 4.6. Assuming 50% of the travelers are updated with traffic information. The impact 

of incident duration is evaluated. It will start from 7 AM and last from 2 to 6 hours. Only 

one lane is assumed to be available during the incident. Figure 4.7 presents the delay 

reduction information for the whole study network under large-scale incident scenarios 

lasting from 2 – 6 hours. The delay reductions are increasing as the incident duration lasts 

longer. The scenarios are simulated around morning peak hours. 



143 

 

TABLE 4.3 Conversion Factors and Their Sources 

 

Conversion 

Factor 

Value Source 

Delay to HC 13.073 g/h Chang and Raqib (2013) (G.-L. 

Chang & Raqib, 2013) 

Delay to CO 146.831 g/h Chang and Raqib (2013) (G.-L. 

Chang & Raqib, 2013) 

Delay to NO 6.261 g/h Chang and Raqib (2013) (G.-L. 

Chang & Raqib, 2013) 

Delay to CO2 0.156 gal/h of passenger cars 

0.85 gal/h of trucks 

Ohio Air Quality Development 

Authority; 

Lutsey et al. (2004) (Lutsey et al., 

2004) 

CO2 19.56 lbs/gal of gasoline 

22.38 lbs/gal of diesel 

Chang and Raqib (2013) (G.-L. 

Chang & Raqib, 2013) 

Delay Cost $27.37/h U.S. Census Bureau 2009 

Fuel Cost $2.264/gal of gasoline (East 

Coast) 

$2.546 gal of diesel (East 

Coast) 

Energy Information 

Administration 

HC cost $6,700/ton ($6.7/kg) Chang and Raqib (2013) (G.-L. 

Chang & Raqib, 2013) 

CO cost  $6,360/ton ($6.36/kg) Chang and Raqib (2013) (G.-L. 

Chang & Raqib, 2013) 

NO cost  $12,875/ton ($12.875/kg) Chang and Raqib (2013) (G.-L. 

Chang & Raqib, 2013) 

CO2 cost  $23/metric ton ($0.023/kg) Chang and Raqib (2013) (G.-L. 

Chang & Raqib, 2013) 
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FIGURE 4.6 I-40 and Kingston Pike en route diversion network. 
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FIGURE 4.7 Total delay with and without updated traffic information for the case 

study under large-scale incident scenarios lasting 2 to 6 hours. 
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4.5.4 Benefit Estimation 

Along with reductions in delay, the benefits in terms of emission, and fuel reduction can 

also be estimated. Then the savings can be converted to monetary values using the 

conversion factors in Table 4.3.  

 Using the conversion factors in Table 4.3, the cost savings are obtained for the 

incident scenarios lasting from 2 hours to 6 hours, which are shown in Table 4.4. Column 

2 – 8 in Table 4.4 represents the cost savings by taking account of one of the incident-

related characteristics – incident duration. Results clearly show that with longer incident 

durations, the benefit of cost savings (in delay, emissions, and fuel) is greater. This result 

is in accordance with other studies (G.-L. Chang & Raqib, 2013; Liu et al., 2012; Lutsey 

et al., 2004), but under such large-scale incident scenarios, the magnitude of the cost 

savings is much higher than non-large incident scenarios.  

 

TABLE 4.4 Cost Saving for Large-Scale Incident Scenarios 

 

Incident 

Duration 

(in 

hours) 

Delay  

Cost 

Saving 

Fuel 

Cost 

Saving 

HC  

Cost 

Saving 

CO  

Cost 

Saving 

NO  

Cost 

Saving 

CO2  

Cost 

Saving 

Total 

Cost 

Savings 

2 $31,015  $790  $99 $1,058  $91  $71 $33,126 

3 $55,941 $1,425  $179 $1,908  $164  $129 $59,748 

4 $57,997 $1,477  $185 $1,978  $170  $134 $61,944 

5 $67,469 $1,718  $215 $2,302  $198  $156 $72,061 

6 $85,156 $2,169  $272 $2,905  $250  $197 $90,952 

 

4.5.5 Impact of CAV on Network Performance 

Vehicle automation has made the progress in improving the surface transportation in terms 

of mobility and safety. However, seldom has the current existing studies focused their  
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attention on estimating the benefits under the en route traffic diversion under large-scale 

traffic incident on the freeways. Thus, the impact analysis of CAVs on network 

performance in terms of travel delay reductions and other performance indicators (e.g. 

number of stops, stop time, average speed), is done to compare the difference between the 

benefit estimations under various vehicle automation levels and under normal driving 

conditions with drivers fully controlling the vehicles.  

 Traditionally, the traffic is modeled in the TransModeler using General Motors 

(GM) car-following models, and its formulation based on TransModeler User’s Guide 

version 5.0 is written as follows: 

𝑨𝒊
±[𝒕 + ∆𝒕] = 𝜶±

𝑽𝒊
𝜷±[𝒕]

𝑫𝒊,𝒊−𝟏
𝜷± [𝒕]

(𝑽𝒊−𝟏[𝒕] − 𝑽𝒊[𝒕])
𝜽± + 𝜺𝒊

𝑪𝑭               Eq.  4.1 

 Where:  

𝐴𝑖
±[𝑡 + ∆𝑡] = Acceleration rate of vehicle 𝑖 at time 𝑡 + reaction time ∆𝑡; 

𝑉𝑖[𝑡] = Speed of subject vehicle 𝑖 at time 𝑡; 

𝑉𝑖−1[𝑡] = Speed of front vehicle 𝑖 − 1 at time 𝑡; 

𝐷𝑖,𝑖−1[𝑡] = Distance between the vehicle 𝑖 and front vehicle 𝑖 − 1 at time 𝑡; 

𝛼± , 𝛽± , 𝛾± , 𝜃±  = Model Parameters; + means acceleration, and – means 

deceleration.  

휀𝑖
𝐶𝐹 = Vehicle-specific error term for the car-following regime.  

The acceleration of the subject vehicles happens when its speed is less than the 

speed of the front vehicle. Otherwise, the subject vehicle will remain constant or decelerate. 
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Lower bound and upper bound of headways are set to limit the vehicles running above the 

emergency regime and under the free flow regime.  

However, under the CAV environment, it is suggested to run the Constant Time 

Gap car-following model (CTG) to achieve the goal of improving transportation mobility 

by increasing roadway capacity and travel speed. It follows the concept that drivers seek 

to maintain a constant, desired following headway with the front vehicle. It is more like a 

simplified algorithm representing an on-board computer’s operating policy, thus it can be 

used to approximate the behaviors of connected vehicles in a cooperative adaptive cruise 

control environment. Its formulation based on TransModeler User’s Guide version 5.0 is 

written as, 

𝑨𝒊[𝒕] = −
𝟏

𝒉
(𝑽𝒊[𝒕] − 𝑽𝒊−𝟏[𝒕] + 𝝀𝜹𝒊)                 Eq.  4.2 

𝜹𝒊[𝒕] = 𝑫𝒊,𝒊−𝟏[𝒕] + 𝒉𝑽𝒊[𝒕] + 𝑫𝒊,𝒊−𝟏
𝒅𝒆𝒔𝒊𝒓𝒆                 Eq.  4.3 

 Where: 

 𝐴𝑖[𝑡] = Acceleration rate of vehicle 𝑖 at time 𝑡; 

 ℎ = Desired following time headway (in seconds); 

 𝑉𝑖[𝑡] = Speed of subject vehicle 𝑖 at time 𝑡; 

𝑉𝑖−1[𝑡] = Speed of front vehicle 𝑖 − 1 at time 𝑡; 

𝛿𝑖 = Spacing error for vehicle 𝑖 requiring correction to achieve the desired headway 

ℎ; 

𝐷𝑖,𝑖−1[𝑡] = Distance between vehicle 𝑖 and vehicle 𝑖 − 1 at time 𝑡; 

𝜆 = Model parameter for control purpose.  
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4.5.5.1  Simulation Results with No Incident 

Various scenarios are also created to evaluate the impact of CAV on the network 

performance based on the location 8. Firstly, one of the roadway segments in the 

simulations models are extracted to compare the simulated traffic flows and realistic traffic 

flows. By doing this, the simulation model is validated to have represented more 

realistically about the I-40 and Kingston Pike traffic flow conditions. The segment where 

traffic entered through the freeway network is used. The hourly volume for realistic traffic 

on this segment is shown to be 4918/hour. Using the Mean Absolute Percentage Error 

(MAPE) measurement, the averaged value of MAPE for simulated traffic volume and 

realistic traffic volume is 3.55% based on 70 simulations without any incident. It is an 

acceptance value because 5% is usually used for the gap acceptance in TransModeler.  

 Figure 4.8 and Figure 4.9 presents the simulation outcomes in terms of total 

network delay and average travel speed. A huge jump in all these statistics from no 

automation to level 1 automation. 1.5% - 13% reduction in total delay with incident 

durations ranging from 675 minutes to no incident. 0.96% - 5.16% increase in average 

travel speed for incident durations ranging from 675 minutes to no incident. By adjusting 

the headway (1.1, 1.0, 0.9, 0.7, 0.6, and 0.5) in the 5 automations levels, the scenarios 

present a monotonically decreasing (total delay) or increasing (average travel speed) trends 

for those statistics. Such phenomenon can be explained by the headway setup. With shorter 

headways between vehicles, the roadway has more capacity, so vehicles will use less time 

in the system. Automation level 3 is probably the watershed that distinguishes among those 

automation levels. Because we see a sharp decrease in total network delay percentage 

reductions, and share increase in term of the percentage increase in average travel speed.   
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FIGURE 4.8 Simulation outcomes of total delay in hours and percentage reduction, 

with no incidents & various incident scenarios under 5 levels of automation.  
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FIGURE 4.9 Simulation outcomes of average speed in mph and percentage increase 

with no incidents & various incident scenarios under 5 levels of automation. 
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However, after that, the improvement in gaining those benefits is less when compared to 

previous automation levels. But still, the benefit can be seen from those Figures 4.8 and 

4.9. Overall, introduce of vehicle automation into the transportation will benefit the society 

in saving more travel time. With more and more real traffic operations data collected, more 

analytical results will prove the benefits of deploying those CAV vehicles.  

4.5.5.2  Impact of Vehicle Performance on the Traffic Network 

If the performance of the commercial vehicles (e.g. trucks) can be improved by a certain 

amount of percentage, how the delay in the traffic network will look like. This part is 

analyzing the impact of the performance of truck on the traffic network. Following Figures 

4.10 and 4.11 presents the results of truck performance under different levels of 

automation. As can be seen from these two figures, the network performance can also be 

increased by introducing higher performance trucks, as well as other vehicles. The largest 

change in terms of percentage often happens at level 3 automation when compared with 

level 2 automation. Such a result is in accordance with the conclusion in the last part. 

Maximum percentage reduction in delays can be as large as 25.97% when the vehicle 

performance increases by 10% at level 3 automation. A similar trend can be seen in the 

average speed of the traffic network. A sharp increase can also be seen at the watershed 

level 3 automation. However, the largest percentage increase happens where the vehicle 

performance increases by 15% at level 5 automation when compared to level 4 automation 

with same vehicle performance. Therefore, to sum, both CAV and vehicle performance 

play important roles, and the impact of CAV is much higher in saving more travel time. 
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FIGURE 4.10 Traffic network total delay (in hours and percentage reductions) based 

on vehicle performance under 5 levels of automation.  
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FIGURE 4.11 Traffic network average speed (in mph and percentage increase) based 

on vehicle performance under 5 levels of automation.  
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4.6  CONCLUSIONS 

Upon an incident occurring along the freeway in urban or rural areas, one of the traffic 

calming strategies is to implement the en route diversion traffic operation to divert both 

trucks (SU and MU) and passenger cars to nearby alternative routes. However, seldom 

research has been done to specifically talking about such situations under non-recurrent 

large-scale incident situations. Large-scale incidents usually last longer and block more 

lanes than non-large-scale incident situations. And for our study, TransModeler simulation 

models are applied to analyze the delay reductions and cost savings for both trucks and 

passenger vehicles for such situations. The simulation models are based on real-life data. 

For studying a small network with the only freeway, alternative arterial and a few local 

roads, the biggest problem is to calculate or obtain a relatively realistic OD matrix for the 

trips allocated to the network. AADT data from E-TRIMS is extracted and error checked 

to calculate such OD matrix for the traffic network using the TransCAD. Then the OD 

matrix from TransCAD is incorporated in the simulations models to obtain traffic network 

performance statistics such as travel time, delay, etc. Some key findings from the 

simulation analysis results are: 

 Delay reductions for the trucks as well as passenger vehicles are larger in rural areas 

than in urban area by implementing the en route diversion, because AADT is 

smaller in rural areas, and also there are fewer intersections in rural areas, which 

might attract more travelers to take the alternative route upon a large-scale incident 

on the freeway; 

 The increase in the average delay for alternate route is huge if a lot of traffic is 

diverted to this route, especially when diverted traffic includes a lot of trucks since 



156 

 

they will spend more time in maneuvering. The percentage increase of average 

delay is even higher compared to average delay reduction for freeway traffic.  

 The percentage of travelers accessing the updated travel time has a significant effect 

on persuading truck drivers as well as passenger vehicle drivers to take the 

alternative route;  

 Cost savings in implementing the en route diversion strategy is huge for large-scale 

incidents occurring on the freeway when the incident duration is long. This 

indicates that the longer the incidents, the urgent the implementation of the 

diversion operations will be; and  

 The CAV technology penetration will help improve the traffic detour operations 

better in terms of reducing delays and increasing travel speed. Similarly, this is true 

for truck performance increase. 

In the long term, this research will be useful in helping practitioners in evaluating 

the alternative routes by comparing the benefit estimations. This study highlights the 

necessity and importance of the customization of en route diversion information to trucks 

for traffic management because truck drivers’ primary choice is a freeway and if not well 

informed and guided, the chance of diverting from the freeway is very low for them. Such 

customized information includes the availability of alternate routes for trucks and travel 

time for trucks on the current freeway and alternate routes. This study is limited to a certain 

number of scenarios and study network. Future research direction will be the signal timing 

plans to accommodate diverted traffic on alternative routes. Another research direction 

would be comparing different alternative routes if there are multiple detour routes available 

to trucks. Truck drivers’ en route diversion behavior is another research question left to be 
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answered, and the survey work in undergoing. Drivers’ en route diversion behaviors can 

be used to explain some of the results concluded above, such as why drivers prefer to 

remain in freeways in urban areas, and this is our next step in the truck en route diversion 

analysis for truck drivers’ behaviors. 

  



158 

 

CHAPTER 5  
SIGNAL PHASE TIMING IMPACT ON TRAFFIC DELAY AND 

QUEUE LENGTH-AN INTERSECTION CASE STUDY 
 

  



159 

 

A version of this chapter was originally written by Xiaobing Li, Asad J. Khattak, Airton 

G. Kohls. This chapter presents a revised version of this research paper by adding 

additional arterial signal control analysis under the Connected and Automated Vehicle 

environment. This paper was presented at the Winter Simulation Conference (WSC) 2016 

in Arlington, Virginia at the Crystal Gateway Marriott on December 12, 2016. 

 Xiaobing Li’s effort on idea formation, model construction, interpretation and 

paper writing, Asad Khattak’s effort on instructions, as well as the instructions of Airton 

Kohls’s are all recognized.  

 

5.1  ABSTRACT 

Traditional intersection traffic signal control strategy is a pre-determined signal with 

certain phase timing length for each circle. Studies focusing on adaptive traffic signal 

strategy have somewhat achieved the goal of reducing traffic system delay to some extent. 

However, few of them capture the benefit of using the queue length as the criteria under 

the connected vehicle environment, and this paper focuses on firstly identifying the 

potential saving of average system delay with agent-based simulation modeling, and 

secondly finding out the relationship between average system delay and average queue 

length for traffic approaching the signalized intersections. Through applying the agent-

based simulation modeling approach in AnyLogic, findings show that average system 

delay could be reduced using optimized parameters (e.g. arrival rate, signal phase length, 

etc.), specifically, 5.29% saving of total average system time, 4%-28% traffic queue 

reduction for different traffic lanes, and a positive relationship between average system 

delay and the average traffic queue length is detected.   
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5.2  INTRODUCTION 

An intersection is a junction at grade two or more roads either meeting or crossing and they 

are used to guide the traffic to make the right choice for a vehicle maneuver, such as turning 

right, left or simply going straight. Types of intersections controls include: stop signs, 

signalized, roundabouts, etc. specifically by using the number of road segments, there are 

3-way, 4-way, 5-way, and 6-way intersections. Main goals for setting up those intersections 

are to satisfy the traffic demand with an efficient and safest way to control the traffic. Some 

of these intersections have a better way to manage the traffic and keep them moving in a 

smooth and safe flow, while others are not so well managed. But for safety and operational 

purposes, it is necessary and even required, to some extend to control the traffic arriving 

the intersections either in an automatic way or a manual way, thus creating an environment 

for the traffic to safely go across intersections efficiently. However, in a real situation, 

traffic queue will form at intersections, thus creating a lengthy delay when approaching 

intersections, and sometimes causing traffic incidents on the congested road. Therefore, 

achieving a more efficient and safer intersection is necessary and important not just for 

traffic planners, but truly matters to the drivers.  

Current situation of the traffic control strategies at the intersection has evolved and 

improved through applying the advanced technologies during the last decades, especially 

for the signalized intersection in the urban area. It has evolved from the fixed time signal 

to the actuated signal according to the traffic demand, which is the traditional solution to 

solve the safety and congestion problem at intersections. Even though some achievements 

were achieved in the past, that doesn’t mean there is no space to improve the efficiency of 

traffic operations even further at intersections. Under the vehicle-connected environment, 

https://en.wikipedia.org/wiki/Junction_(road)
https://en.wikipedia.org/wiki/At-grade_intersection
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many areas could be researched, and the intersection is one of those areas that could be 

deeply studied. Recent improvements of the connected vehicle technologies include 

dedicated short-range communication (DSRC), global positioning system, etc.  All these 

advanced technologies are developed to keep maintaining the goal of the efficient and safe 

traffic flow on the road. How can these advanced techniques be used at intersections to 

relieve the situation that people have to be delayed by the signals, where sometimes it is 

not necessary to stay that long at that intersection? Since queuing is an unavoidable 

situation at intersections when the traffic demand is high, it is necessary to conduct an in-

depth analysis about how different techniques could be applied and finally improve the 

overall efficiency and safety conditions at intersections. Therefore, this paper is intended 

to present an in-depth analysis about how to use the information from the connected 

vehicle, then by simulating the real-world situation, we can properly propose the optimal 

solution to traffic signal control at intersections, and final results and suggested intersection 

traffic control strategies can be documented and delivered to traffic planners and managers, 

which will eventually benefit largely traffic flow.  

Several objectives are to be achieved through the study in this area: 

 Critically evaluate previous researchers’ methods in studying the intersections;  

 Evaluate the impact of Signal phase and timing, arrival patterns on the queue length 

approaching the intersections in this study; 

 Simulation modeling on intersection performance: the average system delay and 

the average queue length at intersections using the data from the world congress 

research database; Give out recommendation regarding the intersection traffic 

control policy. 
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Following Figure 5.1 shows the framework that is used for this study of the impacts 

of traffic signal phase and timing on the intersection operational efficiency. We are going 

to test the hypothesis that under the optimized traffic signal environment, the operational 

efficiency will go up and the queue length will be reduced, more specifically how much 

percentage improvement will the simulation modeling technology help achieve the goals.  

 

 

FIGURE 5.1 Conceptual framework of the study on intersection operational 

efficiency and safety. 

 

5.3  LITERATURE REVIEW 

Connect vehicle (CV) technology has been identified by many researchers to be one 

important role-playing in increasing the operations efficiency of signalized intersections. 

Some of the researchers, such as (Lin, Lo, & Xiao, 2011), are focusing on managing the 

queues approaching the intersection. They proposed a quasi-dynamic scheme to keep a 

balanced queue length for all approaches at the intersection in their study. In this way, the 

traffic queue would vanish at the same time. By testing the queue proportion line slope, the 
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width of two regions, the proposed method can reduce the average delay about 15% when 

comparing to fixed time planning. Zhang, et al mainly focused on the queue length and 

control delay for field data and simulated data. By using the video image processors with 

virtual loops, they were able to get a higher accuracy of the estimation algorithm in their 

study when compared with traditional Highway Capacity Manual (HCM)-based 

intersection performance calculation methods. (Zheng, Ma, Wu, & Wang, 2013). Their 

effectiveness needs to be further explored with the real-time queue length data and 

connected vehicle technology can help provide more information about the traffic queue.  

Other methods are still studied to increase the intersection operational efficiency in 

terms of delays or stops. El-Tantawy, et al investigated several ways including 

Reinforcement Learning (RL) method, traffic state representation, and action selection 

method, traffic signal phasing scheme, reward definition and variability of flow arrivals to 

the intersection. Simulation runs showed that RL-based adaptive traffic signal control 

outperforms other strategies in terms of average delay in many cases, especially in high 

traffic demand level.(El-Tantawy, Abdulhai, & Abdelgawad, 2014). Prashanth and 

Bhatnagar used a threshold-tuning algorithm for graded signal control. When compared 

with traditional traffic light control schemes, their approach showed a significant gain in 

system performance. (Prashanth & Bhatnagar, 2012). Coordination between intersections 

is also covered. Girianna and Benekohal formulated a discrete-time signal-coordnation 

model as a dynamic optimization problem and solved it using Genetic Algorithms (GA). 

The algorithm is applied to a one-way arterial network with 20 signalized intersections. 

Depending on the traffic demand’s variation and the position of critical signals along the 
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roadway, the algorithm intelligently generates optimal signal timing (offsets) along with 

individual arterials. (Girianna & Benekohal, 2004).  

Another group of research is intersection studies under the CV environment. 

Goodall, et al. proposed a novel technique to estimate the positions of non-communicating 

vehicles based on the behaviors of communicating vehicles along a signalized arterial. 

Using this location estimation of unequipped vehicles, it achieved some improvement in 

delay, and speed when compared to using the equipped vehicle data only (Goodall, Park, 

& Smith, 2014). He, et al was trying to investigate the multimodal traffic signal control 

under the connected vehicle environment. They proposed a request-based mixed integer 

linear programming approach to accommodate multiple requests from different modes of 

vehicles and pedestrians. By comparing with state-of-practice transit signal priority in 

simulation, they were able to show 14%-25.9% reduction in average delay for different 

travel modes. (He, Head, & Ding, 2014). Girianna and Benekohal investigated the 

effectivesness of car-car communication based adaptive traffic signal intersection. A 

cluster-based data dissmination protocal is proposed and simulation of 7 intersections with 

the implementation of this approach showed a collision free result. (Maslekar, Mouzna, 

Boussedjra, & Labiod, 2013). Guler, et al used information from connected vehicles to 

better adapt the traffic signal. With different penetration rate ranging from 0% to 60%, the 

decrease in delay is up to 60% in low demand scenarios, and if the penetration rate is 

extremely low, the value of running this minimization delay algorithm is limited. 20-40% 

penetration rate seems to be a resonable range according to their study. (Guler, Menendez, 

& Meier, 2014)  
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However, few researchers are studying the safety issues at intersections. Li, et al 

talked about how to apply Markov Process to develop a stochastic dilemma zone protection 

algorithm, which made the end-green criterion be more updated in order to avoid vehicles 

trapping in dilemma zone. (P. Li, Abbas, & Pasupathy, 2015). Girianna and Benekohal 

achieved an intersection collision free result under the car-to-car communiation 

environment using simulaiton. Also, lack of the trajectory information of the vehicles may 

have a negative impact on the intersection performance and cooperative signal intersections 

are seldom covered in the literature. To raise the question whether it is safer to cross the 

intersections under CV environment becomes a valuable research area, which can be also 

found in Table 5.1.  However, due to the reason that the intersection safety data is not 

obtainable, we focus on efficiency part in this study and later research on safety is 

continued.  

5.4  METHODOLOGY 

5.4.1 Data  

The data to be used in this study comes from the Research Data Exchange website, which 

can be downloaded from (Transportation). The data is from the City of Detroit Connected 

vehicle data environment, which was collected during a queue length estimation field test 

being conducted in the Southeast Michigan test bed, during the 2014 Intelligent 

Transportation Systems World Congress. The primary goal of this field test is to use 

connected vehicles, in a connected environment, to support a queue estimation algorithm. 

Additionally, this field test demonstrated a real-world implementation of a connected 

vehicle environment, while showcasing the operation of its Data Warehouse and Data 

Clearinghouse, which are intended to support connected vehicle research. Nine  
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TABLE 5.1 Summary of Studies on Intersection Operational Efficiency in Literature 

 

Authors 

Relationship investigated with 

Connect Vehicle 
Study Approach 

Study 

Quality Operational 

efficiency 
Safety Method 

Location and Sample 

Size 

Lin, Lo et al. 

2011 

Not CV related; 

Based on the selection 

of parameter s, which 

is the queue 

proportion.  

N/A 

Quasi-dynamic robust 

control; Queueing theory; 

Simulation; Cell 

transmission model. 

N/A. 

Estimation. 
Medium 

Li, Abbas et 

al. 2015 
N/A 

Reduce the 

number of 

vehicles in 

dilemma 

zone  

Markov Process; stochastic 

dilemma zone protection 

algorithm. 

Peppers Ferry Road and 

North Franklin Street in 

Christiansburg, VA; 

9 hour period traffic with 

3 lanes and 4 approahces. 

Around 22,000 in volume.  

Very High 

Maslekar, 

Mouzna et 

al. 2013 

Car-to-car 

communication 

reduces cars 

approaching 

intersection by up to 

almst 20%.  

Collisin-

free system 

Density estimation; 

Clustering algorithm. 

Simulation of a topology 

3000m by 3000m with 7 

intersections.  

High  

El-Tantawy, 

Abdulhai et 

al. 2014 

Not quite related to 

CV; 

27%, 28%, 28% 

reduction in average 

delay;  

queue length and 

emissions seperately. 

N/A 

Reinforment learning based 

adaptive traffic signal 

control; 

downtown 

Toronto, Front Street, and 

Bay 

Street; 

4660. 

Very High 
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TABLE 5.1 Continued 

 

Authors 

Relationship investigated with 

Connect Vehicle 
Study Approach 

Study 

Quality Operational 

efficiency 
Safety Method 

Location and Sample 

Size 

(Zheng, Ma 

et al. 2013 

Queue length and 

Control delay 

estimated work well 

with the proposed 

algorithm. But not 

quite related to CV. 

N/A 

Video image processing; 

Queue length estimation 

algorithm; 

Northbound approach of 

the intersection of SR 99 

and 200th Street SW, 

Lynnwood, WA; 

VISSIM simulation; 

1788 

High 

Goodall, 

Park et al. 

2014 

Low penetration rate; 

A small improvement 

in delays, speeds and 

stopped delay.  

N/A 

Location estimation 

algorithm; 

Predictive microscopic 

simulation algorithm; 

U.S. 50, a four-

intersection arterial 

corridor in Chantilly, 

Virginia, 

Data collected in 

2003 between 3:00 p.m. 

and 4:00 p.m. on 

weekdays. 

High 

He, Head et 

al. 2014 

Vehicle-to-

infrastructure 

communication; 

Reduce average 

bus/pedestrian/passen

ger car delay. 

N/A 
Request-based mixed-

integer linear program. 

VISSIM simulation; 

N/A 
Very High 
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TABLE 5.1 Continued 

 

Authors 

Relationship investigated with 

Connect Vehicle 
Study Approach 

Study 

Quality Operational 

efficiency 
Safety Method 

Location and Sample 

Size 

Prashanth 

and 

Bhatnagar 

2012 

Not CV realted; 

Comparions of fours 

algorithms in terms of 

avarage trip waiting 

time; 

N/A 

Traffic light control 

algorithm (TCL); 

Three threshold-based 

TCLs, PTCL, QTCL-SA, 

and QTCL-FA-NFS; 

Stochastic optimization. 

a network of nine 

signalized junctions with 

24 roads around the 

Indian Institute of Science 

campus in Bangalore 

Simulation with 25,000 

cycles and 1500 vehicles. 

High 

Girianna and 

Benekohal 

2004 

Not CV related; 

Coordinated signal 

intersections; 

Computing time 

efficiency increased; 

N/A 
Genetic algorithm; 

Simple genetic algorithm. 
N/A High 

Guler, 

Menendez et 

al. 2014 

Car-to-infrastructure; 

Significant reduction 

of avarage delay; 

N/A 
Minimizing delay; 

Minimizin stops. 
Simulation. High 

 

Notes: 1) N/A represents it is not available in the study; 

            2) Study quality ranges from very low, low, medium, high to very high, totally 5 levels 
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instrumented vehicles were a part of this field test. Their data, along with data from 

instrumented intersections in the test bed and number of travel information messages were 

obtained via subscriptions to the Data Warehouse and Clearinghouse. As for the queue 

length data, those were collected by researchers in the field, with the aid of video recordings 

during the field test. This Data Environment includes 4 data sets: 1) Vehicle Situation Data, 

2) Intersection Situational Data, Traveler Situation Data and the Queue Length Data sets. 

5.4.2 Analysis Method 

By using this dataset, our focus is on the testing of the efficiency of intersection operations, 

which is, to some extent, related to the queuing length. Longer length means more waiting 

time and system delay. Also, by studying traveler’s and vehicles situational data, we may 

find out whether drivers are taking the proper actions or not.  

Simulation is the chosen method towards studying the traffic flow at intersections. 

By investigating the performance of each indicator, a general clue of how and to what 

extent the connected vehicle will impact on the intersection operations is obtained. 

Statistical data analysis is another fundamental analysis method toward analyzing the basic 

distribution information of the traffic and such information will be used as the input into 

the simulation model, the result will finally affect the outcome of the simulation model.  

5.5  RESULTS 

5.5.1 Descriptive Statistics 

The vehicle situational data from the ITS world congress data is used to study the arrival 

pattern, with speed data and vehicle length data. Based on the fundamental traffic flow 

theory, we have the relationship between flow, speed and density, which is, 
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𝒒 = 𝒌 × 𝒗                    Eq.  5.1 

 Where 𝑞 = flow, v/h/l; 𝑘 = density, v/m/l; and 𝑣 = speed, m/h. 

 In order to determine the arrival rate, which is flow rate, we need to determine the 

density and speed. Through doing the statistical analysis, the results show most of the time 

the vehicle length is 500 cm, which is equal to 16.4 feet. Without gap between vehicles, 

the jam density is estimated to be 5,280 16.4⁄ = 321 vechiles/mi/lane. By considering the 

space between vehicles as 10 feet, also the variance of the vehicle length, finally the value 

of 170 is assumed for the jam density. The Greenshield’s linear model is used, and its 

formulation is shown as below: 

𝒗 = 𝒗𝒇 (𝟏 −
𝒌

𝒌𝒋
)  𝒐𝒓 𝒌 = 𝒌𝒋 (𝟏 −

𝒗

𝒗𝒇
)                 Eq.  5.2 

 Where 𝑣𝑓  =free-flow speed and the posted speed limit is 25mph, and 𝑘𝑗  = jam 

density.  

 Then,  

𝒒 = 𝒌𝒋 (𝟏 −
𝒗

𝒗𝒇
) × 𝒗 = 𝟏𝟕𝟎(𝒗 −

𝒗𝟐

𝟐𝟓
)                Eq.  5.3 

 The speed data we analyzed is as follows. Based on this data, the speed of vehicles 

approaching the intersection has the minimum value 0, maximum value 42.94 m/s, and the 

mean 3.5425 m/s shown in Table 5.2. Assume using the triangle distribution for speed, so 

the arrival rate is also calculated as Triangle (0, 517, and 1,063) representing number of 

vehicles coming to this intersection per hour with minimum value 0, maximum value 1,063 

and the mean value 517. 
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TABLE 5.2 Speed Data Descriptive Statistics (m/s) 

 

 N Minimum Maximum Mean 
Std. 

Deviation 

bundle_fundamental_

speed_metersPerSeco

nd 

930,215 .00 42.94 3.543 4.637 

 

 

 Signal phase and timing (SPAT) are also very important to determine the queue 

length, and the SPAT data is analyzed to describe the general statistics and is shown in 

Table 5.3. Where current state 1 means green ball, 2 means yellow ball, 4 means red ball, 

and 16 means left arrow. 

 

TABLE 5.3 Signal Phase and Timing Descriptive Statistics 

 

 Time to change(s) 

Current 

state 
Frequency Min Max Mean 

Std. 

Deviation 

0 195,788 0.1 63.7 25.291 24.2264 

1 / green 969,970 0.1 48 8.616 10.1704 

2 / yellow  260,459 0.1 75 7.638 14.0866 

4 / red  1,418,919 0.1 93.2 15.313 15.104 

16 / left 

arrow 
25,253 7 50 45.97 2.8865 

 

5.5.2 Simulation 

The simulation is based on one two of the intersections, with a horizontal road named 

Shelby and two vertical roads named W Congress and Larned. The vehicle's direction is 

shown in Figure 5.2 below.   

While in Figure 5.3, it is showing the traffic flow logic representing the arrival rate, 

traffic separation, traffic queue, exiting choice, etc, and the traffic signal control. Because  
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FIGURE 5.2 Road configuration for two intersections modeling and simulation. 
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FIGURE 5.3 Traffic flow logic and signal control.  
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of the limitations of the personal learning edition of Anylogic, which is a multi-

method simulation modeling tool developed by The AnyLogic Company supporting agent-

based, discrete event, and system dynamics simulation methodologies, some of the 

information cannot be built into the simulation model, but still some of the findings can be 

obtained to show how traffic flow rate near the intersections, lane choice, and the signal 

phase and timing affect the whole system. We are especially interested in one of the 

intersections, with Larned and Shelby's roadway involved. Optimization procedures are 

based on the total system average delay for the traffic in this small modeling two 

intersections, and to simplify the optimization process, we initially set the traffic arrival 

rate as 15/min, 15/min, 20/min and 6/min from the top, bottom, left and right entrance into 

the system. Some of the simulation results are shown in the following Figure 5.4. 

5.5.3 Queue Statistics based on Simulation 

Based on the parameters given above, the queue statistics of the chosen intersection are 

summarized in the following Table 5.4. The original setting is 10 seconds for red, 25 

seconds for the green on Larned road and 10 seconds for the green on Shelby road.  

Through the optimization procedure with 500 runs, we have the new values for 

those parameters, which is shown as below (see Figure 5.5 for example).  

𝑡𝑆𝑡𝑎𝑡𝑒𝑆𝑡𝑜𝑝 = 12.175, 𝑡𝑆𝑡𝑎𝑡𝑒1 = 33.938, 𝑡𝑆𝑡𝑎𝑡𝑒2 = 10.022 

 𝑡𝑆𝑡𝑎𝑡𝑒3 = 55.968, 𝑡𝑆𝑡𝑎𝑡𝑒4 = 58.276, 𝑎𝑛𝑑 𝑦𝑒𝑙𝑙𝑜𝑤 𝑡𝑖𝑚𝑒 = 7.6  

Total average time saving is 163.599 - 154.943 = 8.656 seconds and the total 

percentage reduction with the optimized parameters is 
163.599−154.943

163.599
× 100% = 5.29%, 

which shows that adjusting the signal timing according to the incoming traffic is a  

https://en.wikipedia.org/wiki/Simulation
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FIGURE 5.4 Optimization and Parameter selections. 
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TABLE 5.4 Queue statistics from simulation 

 

 Time to change (in Seconds) 

Direction 
Simulation 

time 
Min Max Mean 

Bottomtoleft 

3 hours 

0 9 1.69 

Bottomtotop 0 35 12.905 

Bottomtoright 0 13 3.24 

Lefttoright 0 15 2.727 

Lefttotop 0 7 1.158 

Righttotop 0 8 1.931 

Righttoleft 0 19 7.145 
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FIGURE 5.5 Optimization of parameters. 
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promising time saving strategy for the total traffic system. Also, the queue approaching the 

intersection is shown in the following Table 5.5 Based on the output from the model, it is 

found that the queue length is also reduced with 4% - 28% range.  

 

TABLE 5.5 Queue statistics after simulation optimization 

 

 Time to change (in Seconds) 

Direction 
Simulation 

time 
Min Max Mean 

Bottomtoleft 

3 hours 

0 8 1.561 

Bottomtotop 0 33 10.384 

Bottomtoright 0 11 2.874 

Lefttoright 0 15 2.065 

Lefttotop 0 7 0.828 

Righttotop 0 8 1.708 

Righttoleft 0 18 6.854 

 

5.6  LIMITATIONS 

One of the disadvantages of the personal learning edition AnyLogic simulation model is 

that is cannot dynamically update the parameters in the agent-based model, so the traffic 

arrival rate is not dynamically updated according to the real traffic, by just analyzing the 

traffic data using world congress data, we have the distribution of the traffic arrival rate 

and then use that as the input of the simulation. However, with limited data being analyzed, 

it may not represent the real traffic pattern, and also lane choice (preference to take left, 

middle, or right lane) is also another important factor that will impact the overall length of 

the traffic queue. Further, a study on the lane choice is a promising research direction. Even 

though this study two nearby intersections are modeled, we focused on just one of them. 

How the other intersection impacts the overall system performance is not included in this 
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study, so future intersection coordination is another step forward to better understand the 

traffic characters at the intersection.  

5.7  CONCLUSIONS 

In this study, the traffic flow, and signal control operations at the intersections are 

investigated. Several factors will impact the queue length approaching the intersection and 

the performance of the intersection. The traffic demand, traffic arrival pattern, drivers’ 

behavior, drivers’ lane preference when approaching the intersection, signal phase and 

timing, infrastructure, etc. Particularly, in this study, the impact of traffic signal phase and 

timing on the queue length and the total system delay are evaluated based on the traffic 

demand analyzed from the world congress data. By simulating the intersection and 

optimizing the traffic signal parameters, it is found that there is still potential travel time 

savings according to the traffic coming to this intersection, and the percentage reduction in 

this paper is approximately 5.29% in time saving, and the queue length reduction 

percentage is even as high as 28%. However, this study is limited to one configuration of 

demand pattern. While in other cases, such as highly congested traffic intersection, the 

benefit of running the optimization model maybe not so obvious. This pilot study of 

intersection performance will provide more insights how to integrate the agent-based 

model into traffic engineering research. One suggestion for traffic planning and control 

practitioners is to adjust the traffic signal control according to the traffic queue length 

approaching the intersection for medium traffic demand where small traffic queues (e.g. 

10 vehicles in a queue) are forming frequently during the daytime. Even though max queue 

length data is collected in the world congress dataset, it is not related to the signal phase 

and timing, so it is hard for us to find valuable information through that dataset, so future 
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connected vehicle research is suggested in order to fully optimize the traffic signal system, 

where queue length data is quickly obtained and dynamically transmitted to the centralized 

intersection signal controller, and one future possible implementation is to install the 

camera-based queue detection system instead of the now most popular used conventional 

electromagnetic induction loop detectors. The detector can detect the presence of vehicles, 

but it cannot detect the traffic queue at the intersection. Another potential focus area for 

future work is the development of road network topologies of varying size and 

configuration to investigate under what conditions the various signal control strategies, as 

well as the types of detection equipment, are most, and least effective. 
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CHAPTER 6  
CONCLUSION 

 

By integrating and mining traffic incident and crash data, the dissertation aims to explore 

the characteristics associated with large-scale traffic incident and how they can be used to 

evaluate the effectiveness of the en route diversion strategy. First, this research starts by 

extracting data from multiple databases including LOCATE/IM incident data; E-TRIMS 

crash data; RDE signal timing data; and other data source such as weather history. The 

research constructs new datasets for each study by integrating some of these databases 

through powerful programming software. After data integration and preparation, the first 

study applies data mining techniques and statistical modeling approaches to identify large-

scale traffic incidents and predict incident duration both empirically and in real-time. This 

dissertation research study is timely given that there is an increasing trend of large-scale 

traffic incidents occurring in the state of Tennessee in recent years, and there is a strong 

need for methods designed specifically for dealing with large-scale traffic incidents.  

The research contributes to the state-of-art of incident management strategies by 

demonstrating how to identify a large-scale incident by using advanced data mining 

techniques. The en route traffic diversion strategy under large-scale incidents has the 

potential to be incorporated in an ATIS application, e.g. display of travel timing savings 

by taking alternative routes, especially under the CAV environment. This dissertation study 

demonstrates a methodology framework to analyze large-scale incidents and en route 

diversion strategy. The results indicate huge benefits when applying en route traffic 

diversion regarding under large-scale traffic incidents. Future research would be 

integrating signal timing operations under CAV to further improve traffic network savings.   
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