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Abstract

The foundation of experimental condensed matter physics is comprised of two material

processes, synthesis and characterization. For most measurements, single crystal samples are

preferred as they allow spatially dependent information to be obtained. On the other hand,

polycrystalline samples are also critical as they reveal bulk properties of the material and

are generally much easier to produce. Material characterization then relies on accurately

measuring a material’s physical, electrical, and magnetic properties using a variety of

different techniques.

In this dissertation, we focus on triangular lattice antiferromagnets (TLAFs) which have

been studied because of their great potential to exhibit various intriguing magnetic properties

related to strong geometrical frustration. Recent studies of TLAFs mainly explore four

central themes: quantum spin liquid (QSL) states, exotic disordered states, the coplanar

120 degree state and the related field induced spin state transitions, and multiferroicity.

Accordingly, we have investigated two materials which fall into these categories. The first

is the magnetodielectric material RCr(BO3)2 (R = Y and Ho), and the second is a group

of Mo-cluster compounds including the quantum spin liquid candidate Li2In1−xScxMo3O8

and the ferromagnets (Mg,Zn)ScMo3O8. Both materials have been investigated using x-ray

diffraction, powder neutron diffraction, ac and dc susceptibility, and specific heat capacity

measurements as well as other complementary techniques. A discussion of these results as

well as potential future experiments are included.
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Chapter 1

Introduction

This chapter is intended to give a brief introduction to triangular lattice compounds,

primarily focusing on triangular lattice antiferromagnets (TLAFs). I begin with a brief

introduction to geometrical frustration, which is strongly related to many of the intriguing

magnetic properties of TLAFs, focusing on its influence on the quantum spin liquid (QSL)

state. Next, I provide a brief example of the four central themes that are the focus of most

TLAF studies: QSL states, exotic disordered states, the coplanar 120 degree state and the

related field induced spin state transitions, and multiferroicity. Finally, I present a short

explanation as to why the synthesis and characterization of new materials is a necessary

driving force behind condensed matter physics.

1.1 Introduction to Frustration and Quantum Spin

Liquid States

In physics, a system is frustrated if there exist competing forces which cannot be

simultaneously satisfied. Thus, frustrated magnetism implies that a system’s localized

magnetic moments are interacting via competing exchange interactions that cannot be

satisfied at the same time. Such phenomena creates a large degeneracy in the system’s

ground state.[1] In particular, antiferromagnetic (AFM) interactions can lead to frustration

on certain lattices as it is impossible for all nearest neighbor (NN) magnetic moments to
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JAFM < 0 JFM > 0 JAFM < 0

(a) (b) (c)

Figure 1.1: Ising models for (a) a triangle with AFM magnetic moments, (b) a triangle
with FM magnetic moments, and (c) a square with NN AFM magnetic moments.

align anti-parallel. As illustrated in Fig. 1.1(a), a triangle of AFM interacting Ising spins–

spins that must point either up or down–is the simplest example of frustration. Two of the

spins pair up and align antiparallel which causes the third spin to be frustrated as the same

total energy is achieved with either the up or the down spin configuration. If the triangle is

composed of ferromagnetically (FM) interacting Ising spins, the frustration is lifted because

there is now a unique ground state as shown in Fig. 1.1(b); moreover, the frustration also

disappears if the same AFM Ising spin configuration is applied to a square lattice as shown

in Fig. 1.1(c). This simple example highlights two key aspects of frustrated magnetism:

many-body interactions and the lattice geometry.

Geometric frustration refers to frustration that specifically arises due to the lattice

structure, as opposed to distinct competing interactions, preventing all spins from aligning to

form a unique ground state. To study this behavior, one must start with the idea of classical

ground state degeneracy which is considered to be a defining characteristic of frustration. In

1950, Wannier demonstrated that a two-dimensional triangular lattice AFM has an enormous

number of ground states.[2] The extensive ground-state entropy was calculated as 0.323 kBN,

where kB is the Boltzmann constant and N is the number of spins. As the temperature is

decreased, the spins will fluctuate thermally in a correlated manner. What will happen

if we apply this idea to a Kagome lattice AFM where the ground state is known to be

a degenerate Kagome spin ice? For such a state, classical fluctuations such as thermal
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activation dominate. Excitations of any form will require a minimum energy related to the

Ising nature of the spin in order to flip the orientation of the magnetic moment. When the

temperature becomes sufficiently low, the system will fall out of equilibrium and freeze into

one particular microstate. Consequently, such a system can be thought of as a classical spin

liquid, or cooperative paramagnet, which is analogous to an ordinary liquid–a dense, highly

correlated state with no static order.[1]

When a frustrated magnet with a magnetic moment comparable to a spin 1/2 system

is introduced to quantum spin fluctuations, zero-point motions comparable to the size of

the magnetic moment are produced by the quantum mechanical uncertainty principle which

persist down to absolute zero temperature. Quantum spin fluctuations can be phase coherent,

differentiating them from thermal fluctuations. If the quantum spin fluctuations are strong

enough, the result is a superposition state in which the spins are simultaneously pointing

in different directions.[1] Such a state is known as a quantum spin liquid (QSL). The first

study pertaining to QSLs was conducted by P. W. Anderson in 1987.[3] In this manuscript,

Anderson proposed that nearby spins can form pairs of rotationally invariant singlets, or

valence bonds, which never develop long-range order (LRO) at any temperature regardless

of the local environment. This state was known as a resonating valence bond (RVB). In

order to achieve a RVB ground state, different single configurations must produce large-scale

resonances which create a sizable energy gain through interference effects. Thus the ground

state is a superposition of various valence bonds corresponding to different spin partitions.

This idea is illustrated in Fig. 1.2.

Inspired by Anderson, further studies on RVBs revealed the valence bonds can be formed

from pairs separated by much larger distances than initially proposed.[4]. In fact, valence

bonds formed from spins that are farther apart are less tightly bound and are therefore

more easily excited into non-zero spin states. This behavior allows for the possibility of

great numbers of unique QSL states. As a result, the need to classify different QSL states

arose. For square lattice S = 1/2 AFMs, hundreds of QSLs have been classified using the

concept of projective symmetry groups,[5] but there remains much more work to be done in

this area. Finally, it should be pointed out that most QSL states are expected to possess

a definite topological order for both their ground state and their collective excitations, as
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Figure 1.2: a) A ground state configuration of singlet states (valence bonds). b) Ground
state made up of a superposition of many configurations of singlets. c) Longer range valence
bonds that are more easily excited into non-zero spin states. This figure was taken directly
from Ref. 1.
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opposed to disordered states. Such behavior is similar to superconductors and quantum spin

Hall liquids.[6]

If we want to define a QSL state in terms of excitations, then a QSL is a state with

fractional quasi-particle excitations. In classical phases of matter, excitations are composed

of elementary excitations that are either magnon-like (charge neutral with S = 1) or electron-

like (charge ±e with S = 1/2). In contrast, QSL excitations are usually composed of

exotic, charge neutral quasi-particles carrying half-integer spins known as spinons. As the

excitations are fractional, the spinons can be deconfined–placed far apart with a finite energy

cost.[7] Thus, a spinon can be thought of as a fraction of an electron. In one-dimensional

(1D) systems, it is well established that spinons occur as domain walls,[8] whereas in two-

dimensional (2D) and three-dimensional (3D) systems, a spinon is formed as an unpaired

spin which is able to move by locally manipulating the valence bonds.

Experimentally, frustration is measured quantitatively by the frustration index, f ≡

θCW/Tc.[9] Here, θCW is the Curie temperature which characterizes the sign and strength of

the interaction and Tc is the ordering, or spin freezing, temperature. Frustrated materials

have a high frustration index as the paramagnetic region usually extends to temperatures

well below the ordering temperature. The Curie temperature associated with the absence of

static moments can be probed by magnetic susceptibility and specific heat measurements as

well as by nuclear magnetic resonance (NMR) and muon spin rotation (µSR) experiments.

Furthermore, magnetic neutron scattering which probes the dynamical structure factor

S(Q, ω) provides even more detailed information regarding the correlations and excitiations

in the system. Combining these techniques yields the information necessary to fully study

magnetic frustration.

1.2 Triangular Lattice Compounds

For many years, triangular lattice compounds have been studied because of their great

potential to exhibit various intriguing magnetic properties related to strong geometrical

frustration.[1, 9, 10] While the QSL state was previously addressed in relation to frustration,

geometrical frustration can also lead to many other exotic ground states, such as spin
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Figure 1.3: Two energetically equivalent ground states for the 2D TLAF unit cell with
easy plane anisotropy.

ice and spin glass states.[1] One particularly well-studied structure which is susceptible

to geometrical frustration is the 2D triangular lattice antiferromagnet (TLAF).[11, 12, 13]

When considering NN interactions, the 2D TLAF is fully frustrated, and it is also relatively

simple to model numerically. If a 2D TLAF has moments confined to the 2D plane (easy

plane anisotropy), then the ground state is composed of degenerate 120 degree arrangements

as shown in Fig. 1.3. Instead, if easy axis anisotropy is introduced, the moments will

contain a z-axis component and will form a 120 degree configuration in a plane which

includes the c direction. For both types of anisotropy, frustration will produce rich phase

diagrams.[10] In particular, the easy axis anisotropy produces a quantum mechanical up-up-

down state which can be seen as a magnetization plateau, a feature not associated with purely

classical interactions.[10] While 2D TLAFs exhibit many fascinating properties, expanding

the field beyond 2D TLAFs has uncovered a veritable treasure trove of interesting physical

phenomena. Recently, studies of TLAFs mainly focus on four central themes: QSL states,

exotic disordered states, the coplanar 120 degree state and the related field induced spin

state transitions, and multiferroicity. One example of each theme is discussed below.
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1.2.1 Quantum Spin Liquid States

TLAFs with S =1/2 provide an ideal setting for QSL states, and there are currently several

QSL candidates among TLAFs.[3, 14, 15, 16, 17] One promising example is the TLAF

YbMgGaO4. This material belongs to the type Ln3+M2+M ′3+O4 where Ln is Yb or Lu

and M and M ′ are both late 3d transition metals.[18] The Yb or Lu atoms are octahedrally

coordinated with the O atoms. Furthermore, the octahedra form a triangular layer while

the transition metals form disordered triangular double layers as shown in Fig. 1.4(a).

Consequently, these compounds are both geometrically and site-disorder frustrated with two

triangular magnetic sublattices.[18] YbMgGaO4 exploits this geometry to separate the planes

of magnetic Yb3+ atoms using the double layers of nonmagnetic Mg/Ga atoms which leads

to negligible interlayer exchange interactions and 2D triangular magnetic layers.

Polycrystalline YbMgGaO4 was synthesized and found to be an effective spin-1/2 system

with R3̄m symmetry and perfect, spatially isotropic triangular layers.[19] As a result,

inversion centers are located at all Yb3+ ions and at the halfway sites between them

which excludes any antisymmetric Dzyaloshinsky-Moriya (DM) interactions between the

first, second, and third NN spins.[20] The large chemical difference between the magnetic

Yb3+ Kramer’s ions and the nonmagnetic Mg/Ga ions also greatly reduces the number of

magnetic defects. Analysis of the magnetic susceptibility suggested an AFM NN exchange

interaction which was further corroborated by a negative Curie temperature θCW = -4.11(2)

K; however, the measured zero field cooling (ZFC) and field cooling (FC) susceptibilities

as well as the heat capacity showed no features associated with a long-range ferromagnetic

(FM) or AFM or a short-range spin glass or spin ice transition down to 60 mK.[19] Below

2 K, the magnetic heat capacity follows a power-law temperature dependence with γ ∼ 0.7,

approaching the theoretical value of γ = 2/3 for U(1) QSLs,[21] and the tiny residual spin

entropy further corroborate the existence of a possibly gapless QSL state.[19]

More recent studies on single crystal samples have shed more light upon the system’s

ground state. The effective spin-1/2 nature of the Yb3+ moments at low temperature

was confirmed via specific heat and magnetic entropy measurements, and anisotropic

spin exchange interactions on the triangular Yb3+ lattice were confirmed using electron
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spin resonance (ESR) measurements.[22] A possible U(1) QSL regime was discovered via

µSR measurements, and a phase diagram based on these measurements combined with

the bulk susceptibility was constructed as shown in Fig. 1.4(b).[23] Inelastic neutron

scattering (INS) experiments further suggest a possible low temperature spinon-fermi-

surface U(1) QSL regime highly correlated with the NN spin interactions and the Mg/Ga

disorder.[24, 25, 26, 27] On the other hand, while ultralow-temperature specific heat

measurements suggested gapless magnetic excitations, the thermal conductivity revealed

no significant magnetic contribution at zero field.[28]

A standard XXZ Hamiltonian[22] modeling YbMgGaO4 reveals two distinct phases

illustrated in Fig. 1.4(c): a 120 degree phase with three sublattices and two stripe phases.[29]

Adding pseudodipolar terms which tend to align the direction of the spins on a bond either

parallel or perpendicular to the bond itself to the XXZ model provides a more robust phase

diagram. As shown in Fig. 1.4(d), the system now includes a 120 degree phase, a strip phase,

and spin liquid phases; however, this model actually predicts that the system’s ground state

is not a QSL but rather generates a mimicry of a QSL state in the form of short-range

stripe-superposition domains.[30] If the system is modeled instead using the spinon mean-

field Hamiltonian for a U(1) QSL, a model consistent with the low temperature specific heat

capacity measurements, the ground state is found to be a spinon-fermi-surface U(1) QSL,

and the numerical results are consistent with the experimental INS results.[22] Clearly, there

is still much work to do in order to identify the exact ground state of this system.

1.2.2 Exotic Disordered States

NiGa2S4 is an excellent example of a compound which exhibits an exotic disordered

ground state. First reported in 2005, NiGa2S4 contains a stacked triangular lattice of

magnetic Ni2+ ions with S = 1.[31] Polycrystalline samples were initially characterized

using powder x-ray diffraction (XRD), magnetic susceptibility, specific heat, and elastic

neutron scattering (ENS) measurements which revealed several unique low temperature

properties of the system including the existence of an incommensurate short-range order

with nanoscale correlations, a complete lack of canonical bulk spin glass freezing, 2D gapless

coherent excitations which are sensitive to impurities but not to field, and low-energy states
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(a)

(c)

(b)

(d)

Figure 1.4: a) The crystal structure of the LnM2+M ′3+O4 family. This figure was taken
directly from Ref. 18. b) A magnetic phase diagram constructed from µSR and bulk
susceptibility measurements. This figure was taken directly from Ref. 23. c) A schematic
quantum phase diagram constructed from the exact-diagonalization method of an XXZ
model Hamiltonian. This figure was taken directly from Ref. 29. d) A phase diagram
constructed from an XXZ model modified with pseudodipolar terms. This figure was taken
directly from Ref. 30.
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that are remarkably degenerate.[31] Single crystals were quickly grown by chemical vapor

transport with properties matching those of the polycrystalline samples.[32, 33, 34] The

mysterious ground state inspired several more experiments including µSR[35, 36, 37, 38],

NMR[38], ESR[39, 40], nuclear quadrupole resonance (NQR)[38], and neutron scattering

measurements[41] as well as several doping studies.[32, 42, 43, 44] The results revealed

complex low temperature behavior best understood as a viscous spin liquid with slow

dynamics, and the origin of this behavior is still being hotly debated.

One of the earliest theories proposed for the ground state of NiGa2S4 was the spin nematic

phase,[45, 46] characterized by spin quadrupole moments with finite amplitudes which are

prevented from attaining LRO due to quantum fluctuations. This theory can explain the

T 2 behavior at low temperatures seen in Fig. 1.5(b) but not the slowly fluctuating internal

field observed in the µSR, NQR, ESR, and neutron diffraction measurements. Another

current theory suggests that there is a topological phase transition at low temperatures

involving the binding and unbinding of vortices composed of twofold degenerate S = 1 spins

known as Z2 vortices.[47, 48, 49] Several experimental results support this theory including

the significant slowing down of the spin dynamics at the transition temperature, a peak

in the specific heat at a slightly higher temperature than the transition temperature as

shown in Fig. 1.5, and the results of the temperature dependence of the ESR linewidth

which suggest that the Z2 vortex binding transition occurs at the transition temperature

while the vortices disturb the spin dynamics associated with the 2D critical slowing down

above the transition temperature. On the other hand, this topological transition does not

account for the finite correlation length at low temperatures in NiGa2S4 or the spin size

effects observed in the doping studies. The phase transition has also been modeled as a

Berezinskii-Kosterlitz-Thouless (BKT) transition,[50] which results from the proliferation

of vortices and antivortices in a 2D superfluid, and has been analyzed as a product of C3

symmetry breaking[51], but these models also have their flaws. Even after several years of

research, further experiments are necessary in order to fully understand this system.
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Figure 1.5: a) The field cooled (solid circle) and zero-field cooled (open circle) dc
susceptibility of polycrystalline NiGa2S4 measured under different fields. Inset: For a
single crystal sample, the ab-plane and c-axis components are shown for B = 7 T. b) For
polycrystalline samples, the magnetic specific heat under different temperatures, and the
entropy measured at 0 T (blue) and 7 T (red). These figures were taken directly from Ref.
34.
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1.2.3 Coplanar 120 Degree State and the Related Field Induced

Spin State Transitions

While Anderson postulated the RVB state as the ground state of the S = 1/2 AFM

Heisenberg model,[3] more recent work has shown that the ground state has magnetic LRO

with a 120 degree structure.[52, 53, 54, 55] One interesting sample that exhibits a non-

collinear 120 degree state is Ba3CoSb2O9. Ba3CoSb2O9 was first synthesized by Blasse in

1965,[56] and the initial characterization of polycrystalline samples that followed revealed

a hexagonal structure with a pseudo 2D triangular lattice formed by the Co2+ ions and an

AFM transition which occurs near 3.8 K.[57, 58]. Furthermore, powder neutron diffraction

measurements revealed that, due to the weak interlayer interactions, the compound adopts

a non-collinear 120 degree structure in the ab-plane.[58] A few years later, single crystal

samples were synthesized, and the initial magnetic susceptibility measurements matched

very closely with theoretical calculations made for 2D S = 1/2 triangular lattice Heisenberg

antiferromagnets (TLHAFs); moreoever, the magnetization also revealed a plateau at one-

third of the saturation magnetization MS, indicative of an up-up-down (uud) spin state, as

shown in Fig. 1.6(a).[59]

The existence of a stabilized MS/3 state in a system whose symmetry precludes DM

effects inspired several more experiments in order to probe the magnetic properties. Single

crystal neutron measurements,[60] high-field magnetization and ESR measurements,[61]

NMR spectroscopy measurements in zero field and high magnetic fields,[62] and high-

resolution sound velocity measurements[63] were all used in an effort to fully explore the

intricacies of the system. A magnetic phase diagram is shown in Fig. 1.6(b), and the

results for µ0H ‖ a are consistent with 2D isotropic Heisenberg models.[63] Furthermore,

several theoretical approaches using a quantumXXZ model and numerical cluster mean-field

methods have been very successful modeling this system as a 2D TLHAF;[64, 65, 66, 67, 68]

yet, as close to perfect as the system may seem, recent INS experiments have revealed a

high-energy excitation continuum which is inconsistent with any current theory and will

require a new theoretical framework to explain.[69, 70] Such findings are a strong reminder
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(a) (b)

Figure 1.6: a) The magnetization curve corrected for Van Vleck paramagnetism. This
figure was taken directly from Ref. 58. b) Magnetic phase diagram for µ0H ‖ a and µ0H ‖
c. This figure was taken from Ref. 62.

that theoretical advances rely on the findings of new measurements and new materials in

order to advance.

1.2.4 Multiferroicity

In general, a material is considered multiferroic when the magnetism and ferroelectricity

coexist, and multiferroics are split into two groups: materials in which the magnetism

and ferroelectricity originate from different sources and are largely independent are type-I

multiferroics whereas materials in which the magnetism causes the ferroelectricity are type-

II multiferroics.[71] Ba3MnNb2O9 is a fascinating example of a type-II multiferroic. While

Ba3MnNb2O9 was first synthesized years ago, it was not recognized as a multiferroic material

until recently.[72] At first, Ba3MnNb2O9 was synthesized via solid state reactions and found

to have trigonal P 3̄m1 symmetry where the Mn2+ and Nb5+ ions are mostly ordered;

furthermore, the dielectric properties of the system were found to be highly dependent upon

the extent of this ordering.[73] In the trigonal system, it was determined that disorder was
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introduced into the system via rotational twinning and translational stacking faults.[74] As

complex perovskites gained more attention in the following years, Ba3MnNb2O9 was revisited

in order to further characterize the magnetic and electric properties of the system.

Polycrystalline samples of Ba3MnNb2O9 were analyzed using high-field susceptibility,

magnetization, and specific heat measurements as well as ESR spectroscopy.[75] This work

showed that Ba3MnNb2O9 undergoes a paramagnetic to antiferromagnetic transition around

3.2 K, and the Curie-Weiss analysis revealed that the Mn2+ ions are in the high spin

S = 5/2 configuration. Additionally, the ESR spectra determined that short-range AFM

correlations begin to develop near 18 K, well above the transition temperature.[75] Further

analysis of the specific heat, ac and dc susceptibility, and dc magnetization as well as

neutron powder diffraction (NPD) measurements and density functional theory (DFT)

calculations revealed three separate magnetic transitions which correspond to a 120 degree

Y phase, an uud phase, and an oblique phase as shown in Fig. 1.7.[76] Additionally,

dielectric constant and polarization measurements revealed that while the material is in

the Y phase, it is ferroelectric.[76] Interestingly, no polarization is seen for either the uud or

the oblique phase which distinguishes Ba3MnNb2O9 from other similar perovskites.[77, 78]

As the ferroelectricity is concomitant with the magnetic phase, Ba3MnNb2O9 is a confirmed

multiferroelectric material.

1.3 Synthesis and Characterization

The four examples above clearly demonstrate how experimental and theoretical physics grow

hand-in-hand. Without a theoretical framework, experiments have no reference for success,

and without tangible results, theories have no way to diagnose their flaws. The two sides

feed off one another in order to survive, and in the process both end up thriving.

The search for new materials will always be an important undertaking. Technologies

today use the best materials at hand, but that does not mean they are the optimal materials.

Corporations are constantly searching for new compounds with exotic magnetic and electric

properties. By synthesizing a large variety of materials and characterizing their properties,

new paths open for theoretical calculations as well as material engineering which may lead
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Figure 1.7: The experimental magnetic phase diagram of Ba3MnNb2O9. This figure was
taken from Ref. 75.
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to useful results that can be seen in everyday life such as the semiconductors found in all

modern electronics. It is for these reasons that the search for new materials must continue.

In the following chapters of this manuscript, the synthesis and characterization of two

families of materials will be presented. First, the layered perovskite RCr(BO3)2 (R = Y

and Ho) is analyzed in hopes of finding a multiferroic material. Second, materials composed

of Mo clusters are studied in hopes of finding a QSL state as well as to probe the effects

of asymmetry in the Kagome lattice. Hopefully the results of these studies will inspire

additional works that provide a more fundamental understanding of these and other exotic

ground states.
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Chapter 2

Experimental Methods

This chapter provides a brief introduction to most of the research techniques used for sample

synthesis and characterization. This will include details on XRD, ac and dc susceptibility and

magnetization, specific heat, resistivity, µSR, and neutron diffraction measurements which

were used to examine the structural, magnetic, and transport properties of the materials.

Each of these complementary techniques was crucial in characterizing the materials studied

in this dissertation.

2.1 Sample Synthesis

Polycrystalline samples of RCr(BO3)2 (R = Ho and Y) were synthesized by solid state

reactions. The stoichiometric mixture of Ho2O3/Y2O3, Cr2O3, and B2O3 were ground

together and pressed into 6-mm-diameter 60-mm rods under 400 atm hydrostatic pressure

to form rods of RCr(B1.15O3)2 and then calcined in Argon at 1100◦ C three times: once for

12 hours and twice for 36 hours each, adding an extra 10% of Cr2O3 by weight before each

36 hour annealing.

Similarly, polycrystalline samples of Li2In1−xScxMo3O8 (x = 0.2, 0.4, 0.6, 0.8, and

1.0) and (Mg,Zn)ScMo3O8 were synthesized by solid state reactions. The stoichiometric

mixture of Li2MoO4/MgO/ZnO, Mo, MoO3, and In2O3/Sc2O3 were ground together and

pressed into 6-mm-diameter, 60-mm rods under 400 atm hydrostatic pressure to form rods

of Li2In1−xScxMo3O8, Zn1.25ScMo3O8, or Mg1.35ScMo3O8. The rods were placed in alumina
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crucibles before being sealed in silica tubes at a pressure of 10−4 mbar. Finally, the samples

were annealed in a box furnace at 850◦ C for 48 hours for the Li samples and 1000◦ C and

1150◦ C for 48 hours and 24 hours, respectively, for the Mg/Zn samples..

While polycrystalline samples are crucial for research–and have lead to several publi-

cations for our group[79, 80, 81, 82, 83, 84, 85]–as they reveal bulk properties and are

generally much easier to produce, single crystal samples are also needed in order to obtain

spatially dependent information. While not discussed in this dissertation, several other

samples were grown as single crystals by the traveling-solvent floating-zone technique,

such as the Fe1−xCoxV2O4 family, which were subsequently used for many successful

experiments.[86, 87, 88, 89, 90]

2.2 X-ray Diffraction and Structural Refinements

Powder x-ray diffraction is an important technique for gathering bulk structural information

about a sample. In particular, powder XRD measurements were used to determine the

quality of samples, to check for the presence of impurities, and to determine lattice constants,

atomic positions, and bond lengths for the samples presented in this dissertation. Like all

powder diffraction, powder XRD spectra are determined from Bragg’s law which states

2dsinθ = nλ, where d is the interatomic distance, θ is the scattering angle, n is a positive

integer, and λ is the wavelength of the incident wave as shown in Fig. 2.1. X-rays

interact with the valence electron cloud of the atoms, so the scattering power of an atom is

dependent on its number of electrons; furthermore, the intensity of XRD has a strong sinθ/λ

dependence, so the data quality may decline at high momentum values. Even so, XRD is a

valuable tool because it is relatively non-destructive, affordable, and quick.

XRD measurements were obtained from small pieces of polycrystalline sample which

were ground into a fine powder. The resulting powder XRD patterns were recorded at room

temperature with a HUBER Imaging Plate Guinier Camera 670 with Ge monochromatized

Cu Kα1 radiation (1.54059 Å). Measurements were taken at room temperature between 4

≤ 2θ ≤ 100 ◦ with ∆2θ = 0.05◦. The diffraction patterns were analyzed using the Rietveld

refinement software package FullProfSuite with typical refinements for all samples having
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2dsinθ = λ

d θ

Figure 2.1: A schematic diagram of Bragg diffraction.

χ2 ≈ 1 ∼ 2.[91] Peak shapes were modeled using a pseudo-Voigt function convoluted with an

axial divergence asymmetry function, and the backgrounds were obtained through a linear

interpolation of manually chosen background points with refinable heights.

2.3 Specific Heat

In general, the specific heat measures the change in the average kinetic energy of the particles

as heat is added to the system. For this dissertation, we have specifically measured the

isobaric specific heat capacity CP = (dQ/dT ), and the measurements in this dissertation

were used to determine magnetic transition temperatures and to help classify the type of

magnetic transitions that occurred. As the system cools to absolute zero, a purely classical

and magnetically isolated system would see CP also drop to zero as there would be no energy

left for the transport particles to interact; moreover, there is a low temperature maximum

originating from thermal excitations between two states around kbT known as the Shottky

anomaly.[92] In reality, degrees of freedom can still be present at absolute zero including

magnetic degrees of freedom like those in a QSL. In this case, the specific heat could be
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Figure 2.2: A schematic of the setup of the laboratory specific heat measurements.

propagated by the spin flips associated with the degenerate ground states. Maintaining

these degrees of freedom leads to various other low temperature behaviors.

The specific heat measurements were performed on a Quantum Design Physical Property

Measurement System (PPMS). In this system, the sample is mounted on a thermally

conducting platform using apiezon grease to provide a thermal contact. The platform is

attached to a heater and a thermometer; additionally, the platform is connected to a thermal

bath which allows both the sample and the platform to achieve thermal equilibrium during

measurements. This setup is shown in Fig. 2.2. In order to obtain an accurate measurement

of the specific heat, the puck and grease are measured separately to determine the addenda

specific heat which is then subtracted from the sample measurement. Temperatures as high

as 350 K can be achieved using the heater, and a dilute refrigeration insert can achieve

temperatures as low as 50 mK.

2.4 dc Susceptibility and Magnetization

Bulk magnetization ~M is one of the most elementary measurements of magnetic properties.

By measuring the magnetic flux density ~B as a function of the external magnetic field

µ0
~H, magnetization can be calculated as ~B = µ0( ~H + ~M). Similarly, the magnetic

susceptibility χ which measures the change in magnetization with an external magnetic

field can be calculated as ~M = χ ~H or ~B = µ0(1+χ) ~H. In this dissertation, dc susceptibility
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measurements were used to determine transition temperatures and to differentiate between

FM and AFM transitions by applying various magnetic fields as well as to make magnetic

phase diagrams. Magnetization measurements were used to determine saturated magnetic

moments and transition field strengths as well as to probe the nature of the dominant FM

or AFM interactions.

Paramagnetic (PM) materials will show a positive susceptibility that increases linearly

with decreasing temperature as the unpaired electrons will align with the external magnetic

field. On the other hand, diamagnetic materials will show a negative susceptibility as

the electron pairs will rearrange in the presence of an external magnetic field which will

create magnetic repulsion. This effect is generally weak and is overcome by other types of

magnetic orderings. For example, ferromagnetic materials have the ability to easily align

their magnetic domains with the external magnetic field and therefore will show a large

positive susceptibility. Complex magnetic behavior is observed near the PM-FM transition

temperature. Antiferromagnetic materials will show a smaller positive susceptibility which

is related to the external magnetic field’s ability to excite spins out of the magnetic ground

state. The AFM-PM transition is generally observed as a peak followed by a reduction in

the susceptibility upon decreasing temperatures.

The susceptibility in the PM region can be modeled as

χ =
C

T − θCW
, (2.1)

where C is the Curie constant and θCW is the Curie temperature in Kelvin. Clearly, at T

= TC a singularity appears. Furthermore, TC will be zero for a purely PM ordering, positive

for a FM ordering, and negative for an AFM ordering.

All dc susceptibility, χdc, and isothermal magnetization measurements were performed

using a Magnetic Property Measurement System (MPMS) with a superconducting interfer-

ence device (SQUID) magnetometer capable of measuring temperatures between 2-350 K

and magnetic fields ranging from -6.5 T to 6.5 T.
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Figure 2.3: A schematic diagram of the SQUID magnetometer.

Magnetic dc susceptibility (χdc) measurements were made using a Magnetic Properties

Measurement System (MPMS) with a superconducting interference device (SQUID) magne-

tometer. Measurements were made after cooling in zero field and in a measuring field of µ0H

= 0.1T over the temperature range between 2 K and 300K. The Curie temperature (θCW ) was

obtained by a Curie-Weiss (CW) fit of the inverse susceptibility. Isothermal magnetization

M(µ0
~H) measurements were made using a Quantum Design Vibrating Sample Magnetometer

(VSM) at 2 K with magnetic fields between -6.5 ≤ µ0
~H ≤ 6.5 T. For this setup, the

sample is suspended in a coil of superconducting loops which contain two similar Josephson

junctions as shown in Fig. 2.3. In the presence of a magnetic flux Φ, an electromotive

force creates unequal currents across each junction. Thus, by varying the temperature while

a constant field is maintained, Φ can be measured and used to calculate the temperature

dependence of χdc. Similarly, by varying the magnetic field strength while maintaining a

constant temperature, the bulk magnetization can be calculated.
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2.5 ac Susceptibility

An important tool for characterizing magnetic properties, ac susceptibility χac measurements

introduce a small magnetic field created by an alternating current which is superimposed

on the dc field. This causes the sample’s magnetic moment to be time-dependent as

opposed to the static moment measured by χdc. χac measures the dM/dH of ~M(µ0
~H)

curve and is therefore very sensitive to small changes in magnetization. Additionally, χac

measurements provide information about the magnetization dynamics. In this dissertation,

χac measurements were used to probe magnetic transition temperatures and critical field

values as well as to determine any frequency dependence associated with a sample’s magnetic

transition.

The χac measurements were performed at the National High Magnetic Field Laboratory

(NHMFL) and were obtained using an ac-dc current calibrator (Valhalla Scientific, model

2700) and three lock-in amplifiers (Stanford Research, SR 830).[93] The phases of the lock-in

amplifiers are set to measure each harmonic’s signal, which is shifted from the oscillating

magnetic field according to

E = A{χt0h0cosωt+ χt1h
2
0sin2ωt− 3/4χt2h

3
0cos3ωt− ...}, (2.2)

where χt0, χ
t
1h0, and 3/4χt2h

2
0 are the first harmonic, second harmonic, and third harmonic

components of χac, respectively. The lock-in amplifiers are also set to read the linear

component (first harmonic response) and the nonlinear components (second and third

harmonic responses) with respect to the oscillating ac field frequency. The root mean square

amplitude of the ac excitation field (h0) varies from 0.43 to 4.3 Oe with the frequency (f)

ranging from 40 to 1000 Hz. The applied external dc magnetic field (µ0Hdc) was varied from

0 to 1000 Oe. The data was taken while warming up the sample from the base temperature

with a rate of 7.6 mK/min with the zero-field-cooling process.
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2.6 Resistivity

As magnetism stems directly from the order of electron spins, it is natural that studying

other electronic properties would provide additional insight into the magnetic ordering. One

property which is particularly important is electron mobility. Electron mobility distinguishes

between metals, insulators, semiconductors, and semimetals and can be analyzed in bulk via

resistivity, ρ, measurements. For free electrons in an electric field, the force, ~F , is related to

velocity, ~v, and wavevector, ~k, by ~F = md~v
dt

= ~d~k
dt

, and in a constant electric field ~E yields

~j = nq~v = ~E/ρ = ne2τ ~E/m, where ~j is the electron current density, n is electron density,

and τ is the collision time. Thus, ρ is defined as m/ne2τ .

When related to materials, the mobility of the electrons is determined by the electronic

band structure. If we begin from the free electron picture, the electrons form Bloch waves

of the form ψk(~r) = exp(i~k ·~r). For a 1D periodic lattice, the Bragg condition (~k+ ~G)2 = k2

indicates that diffraction will occur at k = ±1
2
G = ±nπ/a where n is an integer and a is

the lattice constant. At these points, a superposition of waves traveling in both directions

creates a standing wave of ψ(±) = exp(iπx/a) ± exp(−iπx/a). Analyzing the location of

the electrons for each standing wave using the probability given by p(±) = |ψ(±)|2 yields

p(+) ∝ cos2(πx/a) and p(−) ∝ sin2(πx/a). This framework implies that ψ(+) weights

electrons located on the atomic position while ψ(−) weights electrons between the atomic

positions. This results in an energy gap as a lower energy from ψ(+) is produced due to the

attractive nature of the nucleus/electron pair. This energy gap is not explained by the free

model which predicts a continuum of allowable electron energies and, instead, indicates that

the system has particular energy bands that the electrons are allowed to populate.

Materials where the Fermi energy, the energy of the outermost filled level in the ground

state of the system, lies within an energy gap creates a filled energy band of electrons and

leaves the lower electron band empty. Thus, applying an electric field will not mobilize the

electrons unless they gain enough energy to clear the energy gap. For a partially filled band,

particularly near half filling, the electrons are mobilized by an external electric field as there

is no band gap constraining them. For materials with a nearly full band or materials that

thermally excite electrons from a full band which partially fill the next are semiconductors.
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Materials that have a mostly full outer band and a partially full subsequent band at zero

temperature compose the semimetals. The complex band structures seen in real materials

is a product of the complex nature of the system’s crystal symmetry.

Resistivity measurements were performed using a Quantum Deisign Physical Properties

Measurement System. Each maeterial’s ρ was measured using the four-wire resistance

method, where two wires measure the voltage difference across a sample and two separate

wires provide the current across the sample. Combining this with Ohm’s Law of V = IR,

resistance (R) can easily be calculated. The relation of ρ = RA
l
, where A is the cross-sectional

area and l is the length, is then used to calculate the resistivity. To assist in the accuracy

of this relationship, samples were pressed into pellets and cut using a rotating diamond saw

into rectangular plates. The distance between the voltage leads on the sample was used to

record the length, and the cross-sectional area was measured with calipers.

2.7 µSR

In general, magnetic resonance techniques utilize spin probes such as nuclei, electrons,

and muons to investigate atomic scale magnetic properties. In this dissertation, µSR

measurements were used to detect the presence of weak quasistatic magnetism in order to

study possible disordered spin freezing. Two different methods were used. In time-differential

µSR, positive muons (µ+) are embedded into the sample such that they may interact with

any local magnetic field at that site. The µ+ then decay according to µ+ → e+ + νe + ~νµ

with the direction of the decay e+ correlated to the spin orientation of the µ+ at the time of

the decay. Then, the time evolution of the muon spin polarization, P (t), can be extracted

from the asymmetry of the emitted positron’s angular distribution. On the other hand,

longitudinal-field µSR measures the decoupling of the relaxation rate of the µ+ as a function

of longitudinal field as the spin polarization decouples from a static field distribution when

a sufficiently large magnetic field is applied parallel to the initial muon spin direction.

The µSR measurements were done at the quasi-continuous source at the Centre for

Molecular and Materials Science of TRIUMF in Vancouver, Canada. Ultra-low temperature

measurements in the range from 25 mK up to 3 K were performed at the M15 facility
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equipped with a dilutions fridge while higher temperature measurements in the range of

1.8 K to 50 K were carried out at the M20 facility equipped with a variable temperature

insert. For each sample, 0.5g of powder was spread on a copper ring holder and secured with

aluminum foil. The samples were measured in both zero and longitudinal-field geometries for

a range of temperatures. For each sample, a set of spectra at the same field and temperature

was obtained at both the M15 and M20 facilities for comparison in order to account for

any differences in the initial experimental asymmetry and background losses between the

measurements at the two facilities.

2.8 Neutron Diffraction

One incredibly powerful material characterization tool is neutron diffraction. While x-

rays interact with the electron cloud, neutrons scatter directly off the nucleus making

them more effective at determining atomic positions, occupancy, and Debye-Waller factors.

Additionally, neutrons possess a magnetic moment which allows them to interact with

unpaired spins in magnetic materials and scatter accordingly. As a result, the magnetic

structure of a material can be probed with this technique. Another advantage of neutrons

over x-rays is that the scattering cross section can differ greatly for atomic isotopes, allowing

one to engineer isotopic analogues to emphasize particular elements’ contributions. This

technique was used to minimize the neutron absorption by Boron in the RCr(BO3)2 family.

For neutron studies, it is often more useful to model the experiment in terms of the

momentum ~(k) where ~k = 2πm~v/h. Here, m is the neutron mass, ~v the velocity, and h is

Planck’s constant. We can then define the scattering vector ~Q of a collision as h~Q/2π =

h(~k − ~k′)/2pi. Elastic scattering occurs when there is no energy transfer which implies

|~k| = |~k′| and thus | ~Q| = |4πsin(θ/λ)|. If we consider inelastic scattering where energy

transfer is possible, the calculations are much more complex. By making use of the Born

approximation, Van Hove was able to model the scattering intensity as

I( ~Q.E) =
1

h

k′

k

∑
i,j

bibj

∫ ∞
−∞

〈
e−i

~Q·~ri(0)e−i
~Q·~rj(t)

〉
ei−(E/~)tdt, (2.3)
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where b is the scattering length of the nuclei, i and j are position labels such that nucleus

j is at rj at time t, and the angled brackets indicate a thermodynamic average over all

possible configurations of the sample. In general, the nuclear spin is decoupled from the

position of the nucleus, so Eq. 2.3 can be generalized as

I( ~Q.E) =
∑
i,j

〈bibj〉Aij =
∑
i,j

〈b〉2Aij +
∑
i

(
〈b2〉 − 〈b〉2

)
Aii, (2.4)

where Aij represents the integral in 2.3. In this form, the first term represents the

coherent scattering, resulting from neutrons scattering off of separate nuclei, and the

second term represents the incoherent scattering, resulting from non-interfering scattered

neutrons. Coherent scattering provides information about the atomic structure for elastic

scattering and measures collective phenomena such as phonons and spin waves for inelastic

scattering whereas incoherent scattering provides information about excitations of the nuclei

or unpaired spins for elastic scattering and measures individual phenomena like atomic

diffusion for inelastic scattering.

For unpolarized neutrons, the spin-only magnetic scattering cross section is defined as:

d2σ

dΩdω
= (γr0)

2k′

k
F 2
(
~Q
)
e−2W( ~Q)

∑
α·β

(
δαβ −

QαQβ

Q2

)
Sαβ

(
~Q, ω

)
, (2.5)

where γ = -1.91 is the gyromagnetic ratio of the neutron moment, r20 is the nuclear cross

section, F ( ~Q) is the magnetic form factor that usually falls off with increasing
∣∣∣ ~Q∣∣∣, e−2W ( ~Q)

is the Debye-Waller factor,

(
δα13 −

QαQB

Q2

)
is the polarization factor, and Sαβ

(
~Q, ω

)
is

the magnetic scattering function. Note that the polarization factor indicates that neutrons

can only couple to the magnetic moments that are perpendicular to ~Q. This allows the

direction of the magnetic moments to be unambiguously determined. Furthermore, the term

Sαβ (Q, ω) in the integral representation is given by:

Sαβ (Q, ω) =
1

2π~
∑
j,j′

∫ ∞
−∞

eiQ(Ri−R′j)
〈
Ŝαj (0) Ŝβj (t)

〉
e−iωtdt. (2.6)

27



where
〈
Ŝαj (0) Ŝβj (t)

〉
describes the thermal average of the time-dependent spin operators,

and Rj is the coordination of the magnetic moment at site j. Therefore, a neutron diffraction

experiment measures the Fourier transform of the pair correlation function in space and time.

Lastly, the energy transfer ~ω in the INS experiments can be either positive or negative.

Known as the principle of detailed balance, there is a scattering law of S(Q, ω) which,

according to Boltzmann statistics, upon time reversal states that:

S (−Q,−ω) = e
−
~ω
kBT S (Q, ω) . (2.7)

This principle unambiguously relates the neutron energy-gain and energy-loss processes

to each other.

2.8.1 Neutron Powder Diffraction

Neutron powder diffraction is a technique very similar to XRD except it uses neutrons

rather than x-rays to scatter off of the material. In particular, NPD measurements were

used to determine the lattice constants, atomic positions, magnetic structures, and magnetic

moments of the samples presented in this dissertation. NPD data presented here was taken

at the HB-2A powder diffractometer at the High Flux Isotope Reactor (HFIR) at Oak

Ridge National Laboratory (ORNL). Powder diffraction data collected on this instrument

are ideally suited for the Rietveld method.

The HB-2A powder diffractometer is used to conduct crystallographic and magnetic

structural studies of powder and ceramic samples as a function of intensive conditions (such

as temperature, pressure, and magnetic field). This instrument makes use of Debye-Scherrer

geometry. HB-2A has a range of 2◦ < 2θ < 155◦ covered by 44 3He detectors, and each

detector is separated by∼ 3◦2θ. Consequently, the detector bank is moved to scan the desired

2θ. The neutrons are reflected off of a germanium wafer-stack monochromator to provide

wavelengths of 1.54 and 2.41 Å. Collimation is provided by a 12’ pre-sample collimator, a

removable 21’ post-sample collimator, and 12’ collimators for each detector tube. Samples

are loaded into aluminum or vanadium cans and can be mounted inside of a variety of sample

environments. Due to the low background of HB-2A, measurements can be performed in
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cryofurnaces (4-800 K), 3He cryostats (> 300 mK), dilute refrigeration cryostats (> 30 mK),

or furnaces (< 1800 K). In addition, magnetic fields up to 7 T can be applied as well as high

pressure cells, including diamond anvils.

Similar to the XRD data, NPD data can be refined using the Rietveld method and the

FullProfSuite software package. Due to powder averaging, Bragg reflections are often

convoluted, causing multiple reflections to be located at the same position in 2θ. As a result,

is is often not possible to isolate individual peaks in order to integrate them individually.

Instead, one must also account for the geometry of the peaks which is determined by the

configuration and geometry of the scattering instrument. For data collected at HB-2A, the

peak shape is determined by a Thompson-Cox-Hastings pseudo-Voigt convoluted with an

axial divergence asymmetry function[94] modeled with Gaussian and Lorentzian halfwidth

components (HG and HL, respectively) of

H2
G = (U +D2

ST )tan2θ + V tanθ +W +
IG

cos2θ
, (2.8)

HL = Xtanθ +
[Y + F (SZ)]

cosθ
, (2.9)

where U , V , andW are halfwidth parameters, DST is a strain parameter, IG is an isotropic

size effect, X is the Lorentzian isotropic strain parameter, Y is the Lorentzian isotropic size

parameter, and F (SZ) is an isotropic size parameter.

In order to determine the magnetic propagation vector, FullProfSuite includes the

tool k-search. Reasonable candidates found via k-search were then input into SARAh-

Representational Analysis to calculate magnetic structures allowed by the crystalline space

group and the propagation vector. SARAh-Refine then allows for the selection of the

irreducible basis of the magnetic symmetry.[95] A refineable magnetic phase is produced

by the corresponding basis vectors of the magnetic structure. After the crystallographic

structure parameters and all of the shape parameters have been established from a NPD

pattern taken above the magnetic transition temperature, refinement of the magnetic phase

is performed using a NPD pattern taken below the magnetic transition. The magnetic phase

will gain a form factor of
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F 2
h = |F⊥(h)|2 − (e · Fm(h))2, (2.10)

where Fm(h) is the magnetic structure factor and e is the unit vector along h. By

fixing the refined parameters from the crystalline structure, the magnetic structure can be

refined by determining the coefficient for each of the magnetic basis vectors. Along with

other experimental results and theoretical models, the refined magnetic structure is taken

into consideration in order to determine the magnetic ground state of the sample.

2.8.2 Inelastic Neutron Scattering

Inelastic neutron scattering provides information about the energy dispersion of a material by

measuring the magnetic scattering function S( ~Q,ω) with a certain energy transfer (~ω) and

momentum transfer ( ~Q). The dispersion relation probes both the structural and magnetic

properties of the material via phonons and magnons/spinons, respectively. In general,

INS data is collected either using time of flight measurements or triple-axis spectrometers.

Experimental INS results are instrumental in testing the limitations of theoretical models

and offer a unique perspective into the spin dynamics of a system.

Inelastic neutron scattering measurements used in this dissertation were performed on

a 5g polycrystalline sample of YCr(BO3)2 at the Cold Neutron Triple-Axis Spectrometer

(CTAX) at HFIR in ORNL. Measurements were made using a fixed final energy of EF =

5.0 meV in order to investigate a reasonable range of energy transfers and characterize the

overall spectrum. A traditional triple-axis spectrometer, CTAX allows for variable incident

energy and sample-analyzer distances, and the background levels are minimized by the Cold

Guide 4 bender and guide hall shielding.

In order to simulate the spin wave spectrum generated by the INS data, we utilized the

Matlab library SpinW.[96] SpinW uses classical Monte Carlo simulations as well as linear

spin wave theory in order to solve a given spin Hamiltonian. The results were used to

further corroborate the proposed magnetic structure as well as to investigate the NN and

NNN exchange interactions.
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Chapter 3

Magnetodielectric Triangular Lattice

Antiferromagnets RCr(BO3)2 (R = Y

and Ho)

Triangular lattice compounds have been widely studied for years due to their potential

to exhibit exotic magnetic properties. One of the most sought after properties in these

materials is multiferroicitiy. In this chapter, the synthesis and characterization of RCr(BO3)2

(R = Y and Ho) is presented. Both materials show distinct magnetodielectric behaviors,

and replacing the non-magnetic Y3+ ion with the magnetic Ho3+ ion leads to interesting

differences in their magnetic properties. The results of this chapter have been published in

Ref. 115.

3.1 Introduction

While triangular lattices are a vast playground for interesting physics, another group of

materials that commonly exhibit noteworthy properties is materials with layered structures.

When a layered material has more than one magnetically active ion, the exchange interactions

between the different magnetic ions on different layers possibly induce strong magnetoelectric

(ME) behaviors. One well-studied system where the layered structure has a large effect

is the magnetoelectric perovskites.[97, 98, 99] In particular, SrNdFeO4[100, 101] and
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NdCrTiO5[102, 103, 104] are both layered perovskites with two different active magnetic

ions on adjacent layers, and they both exhibit ME behaviors dependent upon the magnetic

orderings or spin flop transitions. Therefore, from a materials engineering perspective, a

compound with a magnetic triangular lattice, two different magnetic ions, and a layered

structure may lead to strong ME or multiferroic properties.

With this in mind, we chose the system RCr(BO3)2 (R = Y and Ho) to investigate.

Individually, each of the orthoborates that compose the layered structure has interesting

properties. For example, while YBO3 contains no magnetically active ions, it has a

high ultraviolet transparency and an astonishing optical damage threshold which makes

it a practical material for industry purposes, especially when the Y-site is doped with

Eu.[105, 106, 107, 108, 109, 110, 111] Additionally, while there have been a few hypothesized

structures,[112, 113] more recent studies have shown that the crystal structure of YBO3 is

best described by the hexagonal P63/m space group.[114] On the other hand, CrBO3 contains

magnetically active S = 3/2 Cr3+ ions. Initially, CrBO3 was shown to possess rhombohedral

R3̄c symmetry;[115] futhermore, dc susceptibility measurements revealed an AFM transition

near 15 K where it was thought the spins align antiparallel along the c axis, and the Curie-

Weiss analysis indicated an effective magnetic moment of 3.73 µB.[116] Further experiments

revealed that CrBO3 exhibits not only uniaxial but also hexagonal anisotropy.[117] Moreover,

thorough magnetic measurements revealed that the effective moment is closer to 2.95 µB

and that the magnetic structure is not as simple as first hypothesized.[118] Finally, initial

measurements of HoBO3 revealed a hexagonal structure modeled by the P 6̄c2 space group, an

effective moment of 10.61 µB, and a negative Curie temperature of -4.2 K.[119] More recent

experiments contradicted the initial crystal structure, positing instead that the system is

best described by the monoclinic space group C2/c; moreoever, while Curie-Weiss analysis

revealed an effective moment closer to 9.73 µB and a Curie temperature of -14 K, isothermal

magnetization and specific heat measurements imply that the ground state of HoBO3 is

non-magnetic.[120]

Previous studies of YCr(BO3)2 and HoCr(BO3)2 have shown that they both crystallize in

the rhombohedral space group R3̄ and have dolomite-type structures with a small amount

of anti-site disorder between the Y/Ho and Cr sites.[121] As shown in Fig. 3.1(a), both
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Table 3.1: Magnetic moments for YCr(BO3)2 at T = 1.5 K determined from refined
neutron diffraction measurements for (a) µ0H = 0 T and (b) µ0H = 5.0 T. This table can
be found in Ref. 115.

YCr(BO3)2 Atom x y z Mx My Mz M
(a)

T = 1.5 K
µ0H = 0 T

Cr1 0 0 0 2.11(17) 2.11(17) 1.29(5) 2.47(24)
Cr2 2/3 1/3 1/3 -2.11(17) -2.11(17) -1.29(5) 2.47(24)
Cr3 1/3 2/3 2/3 -2.11(17) -2.11(17) -1.29(5) 2.47(24)

(b)
T = 1.5 K
µ0H = 5.0 T

Cr1 0 0 0 2.41(17) 2.41(17) 2.06(15) 3.17(28)
Cr2 2/3 1/3 1/3 2.41(15) 2.41(15) 2.06(15) 3.17(28)
Cr3 1/3 2/3 2/3 2.41(15) 2.41(15) 2.06(15) 3.17(28)

the Y/Ho and Cr ions occupy octahedral sites which form a three dimensional network by

sharing corner-oxygen ions. The BO3 triangles also share the octahedra’s oxygen atoms.

Moreover, both the Y3+/Ho3+ and the Cr3+ ions form a triangular lattice in the ab-plane as

shown in Fig. 3.1(b). The intraplanar distance between the Ho/Cr ions is 4.76 Å, and the

interplanar distance between the Ho/Cr ions is 5.86 Å. YCr(BO3)2 and HoCr(BO3)2 both

also show magnetic transitions around TN ∼ 8 K. [121] Therefore, with two magnetic ions,

HoCr(BO3)2 meets the requirements listed above and is a strong candidate for multiferroic

behavior. Another advantage here is that by replacing the Ho3+ ions with non-magnetic Y3+

ions while retaining the same structure, a comparison between the Y-compound with one

magnetic ion and the Ho-compound with two magnetic ions is established which will help

us to better understand how exactly the extra magnetic ion affects the system.

Before now, no detailed studies on the magnetic and electric properties of this interesting

system have been performed. Thus, with fresh motivation, we studied the RCr(BO3)2 (R =

Y and Ho) system with various experimental techniques including ac and dc susceptibility, dc

magnetization, specific heat, elastic and inelastic neutron scattering, and dielectric constant

measurements in order to characterize the magnetic ground states and investigate possible

multiferroic properties of the system.[122]

33



4.76 Å

5.86 Å

(b)
J2

J1

Figure 3.1: (a) The dolomite-type crystal structure of RCr(BO3)2. The orange/blue R/Cr
octahedra form a triangular lattice in the ab plane as shown in (b). Only the Cr ions are
plotted here. The intralayer and interlayer exchange interactions are labeled as J1 and J2,
respectively. This figure can be found in Ref. 115.

3.2 Synthesis and Characterization

3.2.1 YCr(BO3)2

First, polycrystalline samples of YCr(BO3)2 were synthesized as described in Ch. 2.1. In

order to begin to probe the elementary magnetic properties of the system, dc susceptibility

and isothermal magnetization measurements were performed on polycrystalline samples of

YCr(BO3)2. In Fig. 3.2(a), we show the temperature dependence of the dc magnetic

susceptibility measured between µ0H = 0.1 and 3.0 T. At µ0H = 0.1 T, there is a sharp

peak at TN = 8 K representing a magnetic transition. As the applied field is increased, TN

decreases and the peak begins to broaden. This temperature dependence of TN suggests

that the transition is antiferromagnetic in nature. At µ0H = 3.0 T, TN is no longer visible

down to 2 K. The Curie-Weiss analysis of the 1/χ data above 100 K shown in Fig. 3.2(b)

yields an effective magnetic moment of µeff = 3.85 µB and a Curie temperature of θCW =

-1.86 K which are in good agreement with the previously reported values.[121] While µeff

matches closely with what one would expect for S = 3/2 Cr3+ ions, the dc magnetization

measured at 2 K saturates around 2 µB, much smaller than the spin-only value of 3.87 µB
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Figure 3.2: For YCr(BO3)2, (a) the temperature dependence of the dc susceptibility, (b)
the Curie-Weiss analysis of the inverse dc susceptibility, (c) the magnetization curve, and
(d) the field dependence of the ac susceptibility.

(Fig. 3.2(c)). There is also a notable slope change in the magnetization data measured at 2

K around µ0H = 2.5 T.

Currently, it seems that this decreased magnetic moment is likely affected by the R/Cr

anti-site disorder which has been characterized by Doi et al.[121] We estimate the anti-site

disorder in our sample to be ∼3% from our elastic neutron scattering Rietveld refinements (as

discussed below). In order to investigate this magnetic transition further, ac susceptibility

measurements were utilized. While no frequency dependency was observed, a kink around

µ0H = 2.5 T can be seen in Fig. 3.2(d) suggesting a possible phase transition near this

critical value, HC .
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Figure 3.3: The zero-field cooled specific heat measured at various magnetic fields for
YCr(BO3)2.

The temperature dependence of the zero-field cooled specific heat measurements is plotted

in Fig. 3.3 for various magnetic fields. The data shows sharp λ-type anomalies at the same

temperatures that the dc susceptibility measurements showed cusps at TN = 8 K up to 1.0

T, indicative of an AFM transition as explained in Ch. 2.4. At fields of 2.0 T and higher, the

sharp feature noticeably broadens. These results provides further evidence that this material

undergoes an AFM transition at TN unless a critical field HC is applied.

After the preliminary magnetic measurements have provided some details into the nature

of the magnetic transition in YCr(BO3)2, a NPD experiment was designed in order to

characterize the magnetic ground state. The NPD pattern was first measured at room

temperature for YCr(BO3)2 with a wavelength of 1.5405 Å in order to study the lattice

information as shown in Fig. 3.4. The refinements yielded lattice parameters a = 4.76422(6)

Å and c = 15.51574(28) Å and showed approximately 3% site disorder between the Y and Cr

sites. Polycrystalline samples were also measured above (T ∼ 20 K) and below (T ∼ 2 K)
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Figure 3.4: The elastic neutron diffraction patterns (crosses) for polycrystalline YCr(BO3)2
at room temperature and zero field using a wavelength of 1.5405 Å. The solid curves are
the best fits from the Rietveld refinements using FullProf Suite. The vertical marks indicate
the position of Bragg reflections, and the bottom curves show the difference between the
observed and calculated intensities.

TN as well as with applied fields up to µ0H = 5.0 T at T = 1.5 K using a longer wavelength

of 2.413 Å in order to study the magnetic structure information. The diffraction patterns

and refinements can be seen in Fig. 3.5(a-c), and the results of the refinement are presented

in Table 3.1.

For YCr(BO3)2 which contains only a single magnetic ion (Cr3+), the NPD pattern

clearly shows extra Bragg peaks at 2 K under zero field (Fig. 3.5(b)). These lattice

forbidden reflections strongly suggest an AFM spin structure, and they can be described by

a propagation vector ~k = (0, 0, 3/2). The magnetic structure resulting from the diffraction

pattern refinement is shown in Fig. 3.6(c). The Cr3+ spins form a ferromagnetic configuration
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Figure 3.5: The neutron diffraction patterns for polycrystalline YCr(BO3)2 (crosses) at
(a) T = 20 K and µ0H = 0 T, (b) T = 1.5 K and µ0H = 0 T, and (c) T = 1.5 K and µ0H
= 5.0 T using a neutron wavelength of 2.413 Å. The solid curves are the best fits from the
Rietveld refinements using FullProf Suite. The vertical marks indicate the position of Bragg
reflections, and the bottom curves show the difference between the observed and calculated
intensities. The * in (b) marks the location of the (0, 0, 3/2) reflection. This figure can be
found in Ref. 115.
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in the ab-plane but tilt away from the ab-plane with a canting angle of 31.5◦. Between the

layers, the Cr3+ planes align antiferromagnetically.

The intensity of the (0, 0, 3/2) magnetic Bragg reflection was investigated as a function

of both temperature and magnetic field as shown in Fig. 3.6(a-b). It not only disappears

above TN but also is suppressed by a critical magnetic field HC = 2.5 T which agrees with

our previous dc and ac susceptibility measurements. The NPD pattern measured at 2 K

under µ0H = 5.0 T (Fig. 3.5(c)), larger than HC , confirms that the material now adopts a

FM ground state which is supported by the observed magnetic Bragg peaks which are at

the same positions as the lattice Bragg peaks. This suggests a new propagation vector, ~kFM

= (0 0 0). As shown in Fig. 3.6(d), the refinement of the 5.0 T NPD pattern shows that

in this FM state, the Cr3+ spins are aligned in the ab-plane with a canting angle of 40.6◦

away from the ab-plane. Therefore, a magnetic field above HC flips the AFM arrangements

of spins between the layers along the c-axis and aligns them ferromagnetically. The total

magnetic moment for both the AFM and FM ground states is µCr ∼ 2.5 µB which is a bit

smaller than the theoretical value for Cr3+ ions as well as the effective magnetic moment

derived from our 1/χ data.

After confirming the transition temperature and critical field value as well as defining the

magnetic ground state through NPD measurements, INS measurements on polycrystalline

samples were used to study the exchange interactions in the system. The critical field value

near 2.5 T indicates a possible anisotropy gap near 0.5 meV at zero field which can be

measured directly via INS measurements using cold neutrons. Figure 3.7 shows the inelastic

neutron scattering profiles measured at 20 K and 1.5 K with various momentum transfers ( ~Q)

ranging from 0.5 Å−1 to 1.5 Å−1. At each ~Q, a peak in the intensity with the energy transfer

(E) between 1-2 meV is clearly observed at 1.5 K which should represent the spin wave

excitation in the magnetic ordered state. This feature disappears in the 20 K measurements

suggesting that the observed peak is from the magnetic origin.

The spin wave excitation was analyzed to produce a spin wave spectrum within a limited

E−Q space as shown in Fig. 3.8(a). The first branch of the spectrum is visible in our region

of interest. The feature fattens out around ~Q = 0.8 Å−1 and peaks near 1.5 meV. From

the location of the magnetic peaks in Fig. 3(b), we expect the first zone boundary of the
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and (d) µ0H = 5.0 T. This figure can be found in Ref. 115.

40



0

60

120

180

240

0

60

120

180

240

0

60

120

180

0

60

120

180

0 1 2 3

0

30

60

90

120

0 1 2 3

0

40

80

120

 

 

 20 K

1.5 K

Q = 0.50 Å
-1

(a)

(f)(e)

(d)(c)

(b)

In
te

n
si

ty
 (

ar
b
. 
u

n
it

s)

Q = 0.70 Å
-1

 

 

 20 K

 1.5 K

Q = 0.90 Å
-1

 

 

 20 K

 1.5 K

Q = 1.10 Å
-1

 

 

 20 K

 1.5 K

Q = 1.30 Å
-1

 

 

 20 K

 1.5 KIn
te

n
si

ty
 (

ar
b
. 

u
n
it

s)

E (meV)
 

 

Q = 1.50 Å
-1

 20 K

 1.5 K

E (meV)

R = Y
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be found in Ref. 115.
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(a)

(b)

Figure 3.8: The (a) measured and (b) calculated powder-averaged spin wave dispersion
for YCr(BO3)2 measured at T = 1.5 K. This figure can be found in Ref. 115.
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spectrum to be centered near ~Q = 0.60 Å−1 and the second zone boundary to be centered

near ~Q = 1.53 Å−1. Unfortunately, no anisotropy gap was observed in the available data, but

the spectrum can still be modeled in order to estimate the magnetic exchange interactions

in the system.

In order to simulate this spin wave spectrum, we used the Matlab library SpinW to

model the system.[123] SpinW uses classical Monte Carlo simulations as well as linear spin

wave theory in order to solve the spin Hamiltonian:

H =
∑
i,j

SiJijSj +
∑
i

SiAiSi +B
∑
i

giSi (3.1)

where Si are spin vector operators and Jij are 3x3 matrices which describe pair coupling

between spins, Aij are 3x3 anisotropy matrices, B is the external magnetic field, and gi is

the g-tensor.

For our model, the Hamiltonian is greatly simplified as the powder sample averages out

all anisotropy effects and as the sample was measured under zero field. Therefore, the spin

Hamiltonian is left with the following terms:

H =
∑
i,j

SiJijSj (3.2)

Our SpinW models included the nearest neighbor intralayer interaction J1 as well as

the next nearest neighbor (NNN) interlayer interaction J2. The values for J1 and J2

were determined empirically by comparing the simulated spin wave spectrum against the

experimental data. J1 = -0.12 meV determines the general size and location of the feature,

and J2 = 0.014 meV determines the slope of the branch. Specifically, J2 changed the initial

energy value where the branch begins at ~Q = 0.50 Å−1 and the maximum energy value of

the branch achieved near ~Q = 0.90 Å−1. Several values of J1 and J2 were tested in order to

closely match the experimental results.

The final result is shown in Fig. 3.8(b). The simulation was constructed using a finite

energy resolution consistent with the elastic line for EF = 5.0 meV of dE = 0.3 meV . Similar

to the measured data, the simulation shows one branch which begins near 1.0-1.2 meV at

~Q = 0.50 Å−1, fattens around ~Q = 0.80 Å−1, and fades into the second zone boundary.
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Figure 3.9: The calculated powder-averaged spin wave dispersion for YCr(BO3)2 measured
at T = 1.5 K in an expanded E−Q space.

Moreover, both the measured and the calculated data show very little intensity below 1.0

meV of transferred energy. Although we expected to find a spin gap with a magnitude

close to 0.5 meV, both the measured data and the simulation appear to be gapless. Our

simulation provides a good overall agreement with the experimental data which reasonably

suggests that the intralayer interaction is at least one order of magnitude stronger than the

interlayer interaction in YCr(BO3)2.

As our SpinW simulation matches our experimental results quite closely, the E−Q range

was expanded in order to further investigate the system. Figure 3.9 shows the calculated

spin wave spectrum from 0 meV ≤ E ≤ 2.25 meV and 0 Å−1 ≤ ~Q ≤ 3.5 Å−1. Again,

the system appears to be gapless according to our simulation. Moreover, the second zone

boundary is now clearly visible, and the location of the branches matches the refinement of

the magnetic structure shown in Fig. 3.5(b) nicely. This model provides additional evidence
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that our proposed magnetic ground state accurately describes the system; however, more

INS experiments are necessary in order to develop this theory.

Finally, with a good grasp of the magnetic ground state in hand, electric polarization

and dielectric constant measurements were used to investigate potential magnetoelectric

phenomena. The capacitance was measured on thin-plate polycrystalline samples with an

Andeen-Hagerling AH-2700A commercial capacitance bridge using a frequency of 20 kHz

which was analyzed to obtain the dielectric constant data by approximating the sample as

an infinite parallel capacitor. The pyroelectric current was measured using a Keithley 6517A

electrometer during warming after the sample was cooled in an electric field from above TN .

Fig. 3.10(a) shows the magnetic field dependence of ε for YCr(BO3)2. Below T = 1.5 K,

the data shows a sharp peak around µ0H = 3.0 T as well as a clear minimum near µ0H =

1.5 T. Above T = 1.5 K, only the sharp peak near µ0H = 3.0 T remains visible. Above TN ,

this behavior disappears. Fig. 3.10(a) shows the temperature dependence of the dielectric

constant, ε, for YCr(BO3)2. At zero field, ε shows a cusp near 8 K. While this feature

broadens consistently with the strength of the applied field, the amplitude and transition

temperature are more complicated. The amplitude increases with increasing applied field

up to the critical field µ0H = 3.0 T at which point it begins to decrease as the applied fields

get even larger. On the other hand, the transition temperature decreases with increasing

applied field up to µ0H = 3.0 T and then increases with larger applied fields.

While YCr(BO3)2 was studied via pyroelectric current measurements at different

magnetic fields, no electric polarization was observed for bulk polycrystalline samples around

the transition temperatures. It is possible that a single crystal sample could produce an

anisotropic polarization which is hidden by the powder averaging of the results or that

the system is already ordered in an antiferroelectric state. Further experiments including

Polarization vs. Electric field hysteresis measurements on single crystal samples may be

necessary to elucidate the matter.

3.2.2 HoCr(BO3)2

Now that the compound containing one magnetic ion has been adequately studied, it is

time to introduce a second magnetic ion and observe the effects. Polycrystalline samples
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Figure 3.10: For YCr(BO3)2, (a) the field dependence of the dielectric constant measured
at 20 kHz at varying temperatures, and (b) the temperature dependence of the dielectric
constant measured at 20 kHz under applied fields. This figure can be found in Ref. 115.
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Table 3.2: Magnetic moments for HoCr(BO3)2 at T = 1.5 K determined from refined
neutron diffraction measurements for (a) µ0H = 0 T and (b) µ0H = 4.0 T.

HoCr(BO3)2 Atom x y z Mx My Mz M

(a)
T = 1.5 K
µ0H = 0 T

Cr1 0 0 0 2.44(9) 2.44(9) 1.87(4) 3.07(13)
Cr2 2/3 1/3 1/3 -2.44(9) -2.44(9) -1.87(4) 3.07(13)
Cr3 1/3 2/3 2/3 -2.44(9) -2.44(9) -1.87(4) 3.07(13)
Ho1 0 0 1/2 0.0 0.0 0.0 0.0
Ho2 2/3 1/3 5/6 0.0 0.0 0.0 0.0
Ho3 1/3 2/3 1/6 0.0 0.0 0.0 0.0

(b)
T = 1.5 K
µ0H = 4.0 T

Cr1 0 0 0 1.19(11) 1.19(11) 3.25(31) 3.46(35)
Cr2 2/3 1/3 1/3 1.19(11) 1.19(11) 3.25(31) 3.46(35)
Cr3 1/3 2/3 2/3 1.19(11) 1.19(11) 3.25(31) 3.46(35)
Ho1 0 0 1/2 1.10(8) 1.10(8) 6.80(25) 6.89(27)
Ho2 2/3 1/3 5/6 1.10(8) 1.10(8) 6.80(25) 6.89(27)
Ho3 1/3 2/3 1/6 1.10(8) 1.10(8) 6.80(25) 6.89(27)

of HoCr(BO3)2 were synthesized as described in Ch. 2.1. Again, the elementary magnetic

properties of the system were probed using dc susceptibility and isothermal magnetization

measurements on polycrystalline samples of HoCr(BO3)2. In Fig. 3.11(a) the temperature

dependence of the dc magnetic susceptibility measured between µ0H = 0.1 and 3.0 T also

shows an AFM transition at TN = 9 K which decreases with applied field and vanishes at

µ0H = 3.0 T. The Curie-Weiss analysis of the 1/χ data above 100 K shown in Fig. 3.11(b)

resulted in an effective magnetic moment of µeff = 10.99 µB and a Curie temperature of

θCW = -15.1 K which are again in good agreement with the previously reported values.[121]

The dc magnetization measured at 2 K shown in Fig. 3.11(c) saturates around 9 µB, and

there is a slope change which appears around µ0H = 2.0 T.

In order to investigate this magnetic transition further. ac susceptibility measurements

were utilized. While no frequency dependency was observed, the field dependence of the ac

susceptibility measured at 0.3 K shown in Fig. 3.11(d) also reveals a clear feature near µ0H

= 2.0 T. We again propose that these results indicate a critical field around µ0H = 2.0 T for

the system.

The temperature dependence of the zero-field cooled specific heat measurements is plotted

in Fig. 3.12. The data shows a sharp λ-type anomaly at the same temperature that the dc

susceptibility measurements showed cusps at TN = 9 K. This provides further evidence that
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Figure 3.11: For HoCr(BO3)2, (a) the temperature dependence of the dc susceptibility,
(b) the Curie-Weiss analysis of the inverse dc susceptibility, (c) the magnetization curve, and
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Figure 3.12: The zero-field cooled specific heat measured at zero field for HoCr(BO3)2.

HoCr(BO3)2 undergoes an AFM transition at this temperature. No data was taken under

magnetic fields for this material.

Again, as the preliminary magnetic measurements have provided some details into the

nature of the magnetic transition in HoCr(BO3)2,a NPD experiment was designed in order

to characterize the magnetic ground state. The NPD pattern was first measured at 20 K

for HoCr(BO3)2 with a wavelength of 1.5405 Å in order to study the lattice information as

shown in Fig. 3.13. The refinements yielded lattice parameters a = 4.76002(6) Å and c

=15.49239(32) Å and also revealed approximately 3% site disorder between the Ho and Cr

sites. Moreover, a small amount of HoBO3 impurity (< 5%) was observed. Polycrystalline

samples were measured above (T ∼ 20 K) and below (T ∼ 2 K) TN as well as with applied

fields up to µ0H = 4.0 T at T = 1.5 K using a longer wavelength of 2.413 Å in order to

study the magnetic structure information. The diffraction patterns and refinements can be

seen in Fig. 3.14(a-c), and the results of the refinement are presented in Table 3.2.

49



1 2 3 4 5 6 7

-1000

0

1000

2000

3000

4000

5000

6000

7000

R = Ho

 

 

T = 20 K

H = 0 T

In
te

n
si

ty
 (

ar
b

. 
u

n
it

)

Q (Å
-1
)

Figure 3.13: The elastic neutron diffraction patterns (crosses) for polycrystalline
HoCr(BO3)2 at room temperature and zero field using a wavelength of 1.5405 Å. The solid
curves are the best fits from the Rietveld refinements using FullProf Suite. The vertical
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Figure 3.14: The neutron diffraction patterns for polycrystalline HoCr(BO3)2 (crosses) at
(a) T = 20 K and µ0H = 0 T, (b) T = 1.5 K and µ0H = 0 T, and (c) T = 1.5 K and µ0H
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HoBO3 impurity peaks. This figure can be found in Ref. 115.
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While HoCr(BO3)2 contains two magnetic ions (Cr3+/Ho3+), its magnetic structure at

zero field is very similar to that of the Y-compound’s. Below TN with no applied field,

the system is again described by a propagation vector of ~k = (0, 0, 3/2) (Fig. 3.14(b)).

Analogously to the Y-compound, the refinement shows that for HoCr(BO3)2, the Cr3+ spins

arrange ferromagnetically with a canting angle of 37.5◦ away from the ab-plane while the

Cr3+ layers align antiferromagnetically (Fig. 3.15(c)). This canting angle is slightly larger

than that of the Y-compound. Here, no evidence was observed to support the magnetic

ordering of the Ho3+ spins down to 2 K at zero field. The total refined magnetic moment

of µCr = 3.07(13) µB supports this conclusion as the moment size is close to the theoretical

value for Cr3+ ions.

Major magnetic Bragg reflections of HoCr(BO3)2 were also investigated. As shown in

Fig. 3.15(a), the intensities of the (0, 0, 3/2) and the (1, 0, -1/2), (1, -1, 1/2), and (0,

1, 1/2) reflections are suppressed above TN = 9 K. Meanwhile at 2 K, the intensity of

the (0, 0, 3/2) reflection is suppressed above HC = 2.0 T while the intensity of the (1, 0,

1) reflection increases linearly with increasing field. These critical values agree with our

previous susceptibility measurements.

From Fig. 3.14(c) we can see that the lattice Bragg peaks and magnetic Bragg peaks

align exactly for HoCr(BO3)2 at 2 K and under 4.0 T. This suggests that the system enters

a FM ground state above HC similar to the Y-compound. However, the refinement of this

data reveals that both the Cr3+ and the Ho3+ spins order now. The obtained spin structure

at 2 K and under 4.0 T is shown in Fig. 3.15(d) in which both the Ho3+ and Cr3+ spins

are arranged ferromagnetically in the ab-plane, but the Cr3+ spins have a canting angle of

69.8◦ away from the ab-plane while the Ho3+ ions have a canting angle of 80.8◦ away from

the ab-plane. The total refined magnetic moment of 10.35(44) µB also supports the fact

that now both the Cr3+ and the Ho3+ spins order and contribute to the value of the total

magnetic moment. This value also matches closely with the saturation value determined

from the magnetization curve as well as the effective magnetic moment derived from our 1/χ

data.

Due to the complexity associated with the addition of a second magnetic ion, no INS

data was measured for HoCr(BO3)2. Because the two magnetic ground states are similar in
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dependence of certain magnetic and lattice Bragg reflections, and the magnetic ground state
at (c) µ0H = 0 T and (d) µ0H = 4.0 T. *Note that the reflection marked (1, 0, -1/2) in (a)
also includes intensity from the (1, -1, 1/2) and (0, 1, 1/2) reflections. This figure can be
found in Ref. 115.
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nature, it is expected that the exchange interactions found under zero field would be very

similar to the Y-compound’s.

Finally, possible magnetoelectric phenomena in HoCr(BO3)2 were investigated using

electric polarization and dielectric constant measurements. The capacitance was measured

on thin-plate polycrystalline samples with an Andeen-Hagerling AH-2700A commercial

capacitance bridge using a frequency of 20 kHz which was analyzed to obtain the dielectric

constant data by approximating the sample as an infinite parallel capacitor. The pyroelectric

current was measured using a Keithley 6517A electrometer during warming after the sample

was cooled in an electric field from above TN .

The magnetic field dependence of ε for HoCr(BO3)2 is presented in Fig. 3.16(a). At

temperatures lower than its TN , ε increases sharply at low fields and then saturates into

a broad feature around µ0H = 1.5 T. Similar to the Y-compound, above its transition

temperature, such behavior disappears. The temperature dependence of ε for HoCr(BO3)2

exhibits a more drastic response as shown in Fig. 3.16(b). First, a broad feature around

T = 4 K is observed at zero field. As the field increases, this shoulder feature becomes

suppressed and vanishes near µ0H = 1.0 T. Meanwhile, a sharp peak appears near T = 7 K

which increases in relation to the field up to µ0H = 1.0 T at which point it begins to weaken

with increasing field. Furthermore, the critical temperature associated with the sharp peak

decreases with increasing field.

The anomalies observed from ε for both the Ho-compound and the Y-compound are

all observed around their magnetic ordering temperatures or critical fields for spin state

transitions; therefore, both systems exhibit some degree of magnetodielectric (MD) coupling.

Furthermore, the replacement of the non-magnetic Y3+ ion with the magnetic Ho3+ ion

affects this coupling which leads to stronger MD phenomena as revealed by the sharp peak

around TN in the field induced ε data. It is also worth noting that the Ho-compound shows

little response at zero field near TN in stark contrast to the Y-compound. Thus the MD

phenomena are likely related to different mechanisms for each sample, such as spin-phonon

coupling or magnetostriction.

While HoCr(BO3)2 was studied via pyroelectric current measurements at different

magnetic fields, no electric polarization was observed for bulk polycrystalline samples around
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Figure 3.16: For HoCr(BO3)2, (a) the field dependence of the dielectric constant measured
at 20 kHz at varying temperatures, and (b) the temperature dependence of the dielectric
constant measured at 20 kHz under applied fields. This figure can be found in Ref. 115.
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the transition temperatures. Similar to the Y-compound, it is possible that a single crystal

sample could produce an anisotropic polarization which is hidden by the powder averaging of

the results or that the system is already ordered in an antiferroelectric state. Again, further

experiments may be necessary to elucidate the matter.

3.3 Discussion

After several enlightening characterization experiments, it is clear that YCr(BO3)2 and

HoCr(BO3)2 share several characteristics of their magnetic properties. The Cr3+ spins of

both samples enter a canted AFM state below TN ∼ 9 K at zero field. With applied

field above a critical value of HC ∼ 2.0 to 2.5 T, the antiferromagnetic arrangement of

the Cr3+ spins along the c-axis is flipped to become ferromagnetic for both samples. The

major difference here is that for the Ho-compound, both the Ho3+ and the Cr3+ spins order

ferromagnetically when µ0H > HC . This canted AFM state at zero field with spins aligning

ferromagnetically in the ab-plane and antiferromagnetically along the c-axis of YCr(BO3)2

is consistent with the fact that its intralayer interaction is ferromagnetic and its interlayer

interaction is antiferromagnetic which was revealed by the spin wave spectrum simulation.

Furthermore, by analyzing the zero field magnetic structure information obtained from

the neutron diffraction data combined with the previously determined structural information

for both samples, we were able to obtain two possible magnetic space groups, RI 3̄ and PS 1̄,

using the Bilbao Crystallographic Server. [124, 125, 126, 127] While the PS 1̄ magnetic space

group allows for the magnetic moment to freely align along any direction, RI 3̄ completely

restricts the magnetic moment to the c-axis. Moreover, the Rietveld refinements of the

system reveal that the existence of the intense (0, 0, 3/2) peak depends upon having a

magnetic moment in the ab-plane. Therefore, our data strongly suggests that the system is

best described by the PS 1̄ magnetic space group.

To understand why the intralayer interaction of the Y-compound is ferromagnetic we look

into the superexchange interactions involving the Cr3+ ions. In order to qualitatively discuss

the sign (FM or AFM) of the superexchange interactions, we turn to Kanamori theory.

For a magnetic cation on an octahedral site, Kanamari has shown that the superexchange
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interaction via nonmagnetic anion is closely connected with the orbital states of the cation

and anion.[128] In YCr(BO3)2, two superexchange pathways for the Cr3+ spins in the same

layer are available as the CrO6 octahedrons are connected by YO6 octahedrons with corner

sharing oxygens. As shown in Fig. 3.17(a), the first is Cr3+-O2−-O2−-Cr3+ and the second is

Cr3+-O2−-Y3+-O2−-Cr3+. As observed from other magnetic oxides, the Cr3+-O2−-O2−- Cr3+

pathway’s superexchange interaction is often AFM. Meanwhile, one possible situation for

the Cr3+-O2−-Y3+-O2−-Cr3+ exchange path is shown in Fig. 3.17(b).

Here we consider the superexchange interaction between the spins on the dxy orbitals of

the Cr3+ ions. In the Cr3+ ions’ frame of reference, the dxy orbitals are centered 45◦ from

both the x-axis and the y-axis. Through our Rietveld refinements of the neutron diffraction

pattern, we determined that the Cr3+-O2−-Y3+ bond angle is 123.67(9)◦ and the O2−-Y3+-

O2− bond angle is 88.79(9)◦, very close to 90◦; therefore, the dxy orbitals are centered ∼10
◦

from the line where the O2− and the Y3+ ions are situated which allows for the necessary

hybridization to occur between the dxy and the px and py orbitals. In this configuration,

the spin 1 on the left Cr3+ ion is transferred to the molecular orbital composed of the py

orbitals of the O2− 2p orbitals and the Y3+ 4p orbitals (the filled outermost orbitals), and

the spin 2 on the right Cr3+ ion is transferred to the molecular orbital composed of the px

orbitals of the O2− and Y3+ ions. Due to Hund’s rules, these two spins on the py and px

orbitals in the Y3+ ions have to be parallel. Then, after these two spins are transferred back

to the Cr3+ ion, a FM superexchange interaction is built. For YCr(BO3)2, it is reasonable

to assume that this FM interaction overcomes the AFM interaction leading to the FM spin

arrangements in the ab-plane.

In several other TLAF systems with layered perovskite structures, similar FM superex-

change interactions involving 3d-2p-4p (or 3p)-2p-3d paths have been reported. For example,

in Ba3CoNb2O9,[129] a weak AFM interaction is the result of the FM Co2+-O2−-Nb5+-O2−-

Co2+ superexchange interaction involving the Nb5+ 4p orbitals competing with the AFM

Co2+-O2−-O2−-Co2+ interaction. Accordingly, this system exhibits a small saturation field

and a low AFM transition temperature. In another triangular lattice magnet, AAg2M(VO4)2

(A = Ba, Sr; M = Co, Ni),[130] the FM Co2+-O2−-V5+-O2−-Co2+ interaction involving the

V5+ 3p orbitals is stronger than the AFM Co2+-O2−-O2−-Co2+ interaction resulting in a FM
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(a)

(b)

Figure 3.17: (a) The lattice view of the Cr3+-O2−-O2−-Cr3+ and the Cr3+-O2−-Y3+-O2−-
Cr3+ superexchange paths; (b) the orbital configurations related to the Cr3+-O2−-Y3+-O2−-
Cr3+ superexchange path. The Cr3+ ions’ frame of reference is denoted with primes. The
angle between the unprimed and primed axes is 55◦. This figure can be found in Ref. 115.
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transition. One important note here for YCr(BO3)2 is that although the FM interaction

overcomes the AFM interaction in the ab-plane, the AFM interlayer interaction still leads to

an AFM arrangement of spins along the c-axis to stabilize the canted AFM spin structure.

This interlayer interaction is weaker, but it plays an important role in defining the magnetic

ground state.

From a magnetodielectric perspective, both YCr(BO3)2 and HoCr(BO3)2 exhibit some

MD behaviors. The Y-compound’s dielectric constant shows a slope change around TN and

a sharp peak around HC ; on the other hand, the Ho-compound’s dielectric constant shows

a strong peak around TN with an applied field and a broad peak around HC . Apparently,

this difference is related to the presence of the second magnetic ion, Ho3+, in HoCr(BO3)2.

It is also worth noting that the MD behavior observed in the R = Y sample occurs near

the transition temperature at zero field while the R = Ho sample’s MD behavior seems to

depend on an applied magnetic field. Therefore, it is likely that the mechanisms behind this

behavior in both samples are different.

To explain the MD anomalies, we first examined a possible linear magnetoelectric effect.

For our system, both possible magnetic space groups, RI 3̄ and PS 1̄, contain an inversion

center as one of their symmetry elements. Additionally, symmetry operators in both

magnetic space groups do not break time reversal symmetry. Therefore, the linear ME

effect is excluded by symmetry.

We also observed that the cusp-shape of the Y-compound’s MD anomaly is similar to

behavior observed in the AFM EuTiO3.[131, 132] In EuTiO3, the pair correlation of the Eu

spins to a soft-phonon mode containing Eu-O stretching motions was ascribed to the MD

anomaly. Such spin-phonon coupling was also attributed to the MD anomaly observed in

a ferrimagnetic spinel Mn3O4.[133] On the other hand, it is also possible that the higher

order, symmetry independent ME terms can be relevant as in the case for TeCuO3[134] and

in Cr[(H3N-(CH2)2-PO3(Cl)(H2O)].[135, 136]

Another way to understand the differences between the MD effect in both samples is to

consider magnetostriction. As the order of magnitude of the effect is fairly large (∼10−3),

we speculate that the differences in the dielectric constant data are more likely due to the

magnetostriction caused by the extra exchange interaction between the Cr3+ and Ho3+ layers
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with an applied field rather than due to the change of the lattice parameters which typically

produces a much smaller anomaly (10−5 ∼ 10−6). Specifically, (i) at zero field, there is no

exchange interaction between the Cr3+ and Ho3+ spins in HoCr(BO3)2 since only the Cr3+

spins order. Therefore, there is no obvious dielectric anomaly around TN ; (ii) with an applied

field µ0H < HC , the short range ordering of Ho3+ spins could be induced which can lead to an

AFM exchange interaction between the Cr3+ and Ho3+ layers and results in magnetostriction.

Thus, a small magnetic field such as 0.25 T induces a dielectric constant peak around TN .

Moreover, with increasing field this effect is strengthened by involving more short range

ordered Ho3+ spins, and, consequently, the dielectric constant peak intensity increases; (iii)

with even larger applied fields µ0H > HC , the Ho3+ spins order ferromagnetically along with

the Cr3+ spins. This new spin structure possibly leads to weak magnetostriction compared

to that of µ0H < HC . Therefore, the dielectric constant peak intensity achieves the highest

value with µ0H = 1.0 T and then decreases with increasing field as soon as it exceeds HC ,

such as 3.0 T.

In any case, more studies are needed to determine the origin of the observed MD anomaly

in both compounds. Experimental probes such as infrared and Raman spectroscopy could

reveal possible spin-phonon coupling. Furthermore, dielectric constant and polarization

(pyroelectric current) measurements on single crystal samples can be helpful not only

to identify the ME coefficients for both compounds but also to study the possible

magnetostriction effect for the Ho-compound.

3.4 Conclusions

In summary, we report detailed experimental studies of the layered perovskites RCr(BO3)2

(R = Y and Ho) with triangular lattices, focusing on their magnetic and electric properties.

We observed the presence of a canted AFM state in both samples at zero field for the Cr3+

spins as well as a FM state while a critical field was applied. More interestingly, in comparison

to the Y-compound, far different MD behaviors were observed in the Ho-compound which

should be due to the interplay between the Cr and Ho magnetic layers. Our studies here

demonstrate that the combination of layered structures with two different magnetic ions and
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triangular lattices can produce intriguing physical properties. This principle of materials

engineering can help us to design and explore more complex magnetic materials.
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Chapter 4

Mo Cluster Magnets

Li2In1−xScxMo3O8 and

(Mg,Zn)ScMo3O8

In the previous chapter, the combination of a triangular lattice and multiple magnetic ions

was investigated. Now, the focus will shift to triangular lattice cluster magnets. In particular,

we studied two Mo cluster families, Li2In1−xScxMo3O8 and (Mg,Zn)ScMo3O8. Both families

exhibited intriguing magnetic properties ranging from an ordered FM state to a possible

QSL state. Some of the results of this chapter have been published in Ref. 148.

4.1 Introduction

Recently, the years of studying geometrically frustrated materials has inspired pioneering

research on so-called cluster magnets, systems composed of several ions with overlapping

molecular orbitals. Several cluster magnets exhibiting novel magnetic properties have been

investigated previously.[137, 138, 139, 140, 142, 141, 143, 144] It is possible that a system

containing both a frustrated lattice and cluster magnets could lead to a new frontier of

research regarding frustrated magnetism.

One particularly promising family of compounds which appear to meet the above criteria

is composed of triangular lattice Mo cluster compounds. This family includes the compound
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λ = [Mo-Mo]d/[Mo-Mo]u

(a)
[Mo-Mo]u

[Mo-Mo]d

(b)

(c)

Figure 4.1: (a) The smaller up-triangles and larger down-triangles in the “breathing”
Kagome lattice formed by the Mo atoms in the ab-plane. The Mo-Mo bond lengths as well
as the breathing parameter λ are included. (b) Type-I cluster Mott insulator. (c) Type-II
cluster Mott insulator.
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LiZn2Mo3O8, a well-studied material containing two distinct Curie-Weiss regimes and a

possible QSL ground state.[142, 143, 144, 145, 146, 147, 148] This material contains [Mo3]
11+

clusters with seven 4d electrons which result in one unpaired electron per cluster and is

thus an effective S = 1/2 system. Moreover, the Mo ions form a “breathing” Kagome

lattice[149, 150, 151] in the ab-plane composed of slightly larger down-triangles and slightly

smaller up-triangles as shown in Fig. 4.1(a). This asymmetry can be used to define the

breathing parameter λ for the system:

λ = [Mo−Mo]d/[Mo−Mo]u, (4.1)

where [Mo−Mo]d and [Mo−Mo]u are the Mo bond lengths of the down-triangles and

up-triangles, respectively.

Currently, there are two hypotheses as to how the electrons behave in these Mo3O13

clusters. First, it has been proposed that each unpaired electron is delocalized over an up-

triangle which leads to a S = 1/2 triangular lattice as shown in Fig. 4.1(b).[142, 146] This

behavior, dubbed the Type-I cluster Mott insulator,[148] is expected to occur when λ is

large. Alternatively, due to the large spatial extent of the 4d electrons, there is a non-zero

probability of tunneling between adjacent clusters, so when λ is small, this gives rise to the

long range plaquette charge order (PCO), dubbed the Type-II cluster Mott insulator, as

shown in Fig. 4.1(c).[148] In order to test these models, more Mo cluster materials will need

to be investigated.

To this end, we studied two separate Mo cluster compounds: Li2In1−xScxMo3O8 (x =

0, 0.2, 0.4, 0.6, 0.8, and 1.0) and (Mg,Zn)ScMo3O8. For Li2In1−xScxMo3O8, both ends

of the doping study have been previously investigated. It was found that Li2InMo3O8

adopts a 120 degree AFM ground state,[152, 153] while Li2ScMo3O8 was shown not to

order down to 4.2 K according to 7Li nuclear magnetic resonance measurements making it

another potential QSL candidate.[153, 154] Thus we probed the tunability of the spin and

charge degrees of freedom in the system by doping Li2InMo3O8 with Sc ions on the In-

site. For (Mg,Zn)ScMoO3O8, the physical properties of ZnScMo3O8 have been reported

previously,[154] but no in-depth magnetic or electric studies have been performed for
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either sample. Therefore, we characterized both compounds using XRD pattern analysis

as well as ac and dc magnetic susceptibility, specific heat, and resistivity measurements.

Additionally, time-differential and longitudinal-field µSR measurements were performed on

the Li2In1−xScxMo3O8 samples as discussed in Sec. 2.7.[155] Our results are consistent with

the previous reports and suggest many similarities between these materials and the other

studied Mo3 cluster compounds while also introducing new and exciting physics.

4.2 Synthesis and Characterization

4.2.1 Li2In1−xScxMo3O8

Polycrystalline samples of Li2In1−xScxMo3O8 (x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) were

synthesized as described in Ch. 2.1. The purity of the samples as well as the elementary

structural properties were then probed via XRD measurements. Every sample crystallized

into the P63mc space group analogously to the parent compounds. As such, their crystal

structures are composed of hexagonal-close-packed Oxygen layers with an abac stacking

sequence along [0 0 1]. These are held together by alternating Li-In and Mo layers where

the Li+ and the In3+ ions occupy tetrahedral and octahedral sites, respectively, in the ratio

2:1, and the Mo atoms occupy octahedral sites, forming strongly bonded triangular clusters

as shown in Figure 4.2(a). Each cluster consists of three MoO6 octahedra which are shared

along two edges to form the Mo3O13 cluster.

The structures were determined using the Rietveld refinement method, and the results

for the x = 0.6 XRD pattern are shown in Fig. 4.2(b). Additionally, the results for the x =

0.6 and x = 1.0 samples’ XRD fittings are shown in Table 4.1. No obvious impurities appear

in the data. Additionally, Fig. 4.2(c) shows the standard linear relationship expected as the

larger In3+ ions are replaced with smaller Sc3+ ions. The preliminary XRD measurements

suggest that no macroscopic structural changes are present in any of the doped samples at

room temperature.

In Fig. 4.3(a), we show the temperature dependence of the dc magnetic susceptibility

measured at µ0H = 2 T for Li2In1−xScxMo3O8. As previously stated, the x = 0 sample
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Figure 4.2: (a) The hexagonal P63mc crystal structure of Li2InMo3O8. (b) The XRD
pattern (crosses) for polycrystalline Li2In0.4Sc0.6Mo3O8 at room temperature and zero field.
The solid curves are the best fits from the Rietveld refinements using FullProf Suite. The
vertical marks indicate the position of Bragg reflections, and the bottom curves show the
difference between the observed and calculated intensities. (c) The Sc doping dependence of
the lattice parameters measured at room temperature.
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Table 4.1: Structural parameters at room temperature (space group P63mc) for (a)
Li2ScMo3O8 and (b) Li2In0.4Sc0.6Mo3O8 determined from refined XRD measurements.

Refinement Atom Site x y z Occupancy

(a)
Li2ScMo3O8

χ2 = 1.29

Li1 2a 0 0 0.198(27) 0.167
Li2 2b 1/3 2/3 0.096(27) 0.167
Sc 2b 1/3 2/3 0.753(27) 0.167
Mo 6c 0.18644(4) 0.81356(4) 0.468(27) 0.500
O1 2a 0 0 0.074(27) 0.167
O2 2b 1/3 2/3 0.316(27) 0.167
O3 6c 0.51777(33) 0.48223(33) 0.104(27) 0.500
O4 6c 0.84135(46) 0.15865(46) 0.354(27) 0.500

a = b = 5.77116(5) Å, c = 10.28917(15) Å

Overall B-factor = 1.796(17) Å2

(b)
Li2In0.4Sc0.6Mo3O8

χ2 = 1.77

Li1 2a 0 0 0.175(45) 0.167
Li2 2b 1/3 2/3 0.114(45) 0.167
In 2b 1/3 2/3 0.741(45) 0.0692(26)
Sc 2b 1/3 2/3 0.741(45) 0.0975(26)
Mo 6c 0.18595(5) 0.81405(5) 0.458(45) 0.500
O1 2a 0 0 0.064(45) 0.167
O2 2b 1/3 2/3 0.303(45) 0.167
O3 6c 0.51823(37) 0.48177(37) 0.098(45) 0.500
O4 6c 0.84117(57) 0.15883(57) 0.344(45) 0.500

a = b = 5.77034(35) Å, c = 10.35095(63) Å

Overall B-factor = 1.135(16) Å2
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Figure 4.3: For Li2In1−xScxMo3O8, (a) the temperature dependence of the dc susceptibility
measured at 2 T. The inset shows a zoomed-in region of the dc susceptibility. (b) The
temperature dependence of the inverse dc susceptibility measured at 2 T. The inset shows a
zoomed-in region of the inverse dc susceptibility.
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Table 4.2: Calculated Curie-Weiss constants for Li2In1−xScxMo3O8 at varying
temperatures.

Li2In1−xScxMo3O8 Sc doping (x) θCW1 (K) µeff1 (µB) θCW2 (K) µeff2 (µB) C2/C1

CW Fit 1:
T = 96 - 300 K

0.0 -166.7 1.58 - - -
0.2 -126.4 1.36 - - -
0.4 -81.8 1.20 -9.27 0.58 0.236551

CW Fit 2:
T = 2 - 10 K

0.6 -96.7 1.30 -6.83 0.61 0.236551
0.8 -80.4 1.34 -8.07 0.65 0.236551
1.0 -84.8 1.50 - - -

shows a feature near 25 K which indicates the samples transition to the 120◦ structure. The

x = 0.2 sample exhibits very similar behavior to the x = 0 sample. However, by exchanging

40-80% of the In atoms with Sc, the magnetic order is suppressed–one feature we expect a

QSL to display. Finally, the x = 1.0 sample shows a clear slope change near 10 K which

suggests some short-range ordering.

For the samples with suppressed order, the inverse susceptibility, illustrated in Fig.

4.3(b), revealed two separate regions of interest. Thus for these three samples, two

temperature regions were analyzed by Curie-Weiss fits as shown in Fig. 4.4(a-f). The results

of this analysis are found in Table 4 4.2. For the fits from 96 - 300 K, the values of µeff

vary from roughly 1.2-1.6 µB. The deviation from the expected value for a S = 1/2 system

for the samples in the QSL regime is likely due to spin-orbit coupling effects. Additionally,

all of the negative θCW values suggest that the dominant magnetic interactions are AFM in

the Mo clusters. The CW fits from 2 - 10 K show values which are less than half of the high

temperature fits for µeff , indicating a possible placquette charge ordering ground state.[156]

This idea is explored further in Section 4.3.

The molar specific heat capacity was measured for each sample under zero field as shown

in Fig. 4.5(a). Similar to the dc susceptibility results, the measurements indicate an AFM

transition for the x = 0 sample, show a small kink for the x = 0.2 sample and a broad feature

for the x = 1.0 sample, but no features associated with a magnetic transition are observed

for the x = 0.4, 0.6, and 0.8 samples. Additionally, nonmagnetic Zn2Mo3O8 was measured in

order to investigate the lattice contribution to the specific heat. This contribution, illustrated

69



700

1050

1400

0

700

1400

2100

600

1200

1800

0

700

1400

0 50 100 150 200 250 300
0

700

1400

2100

0 50 100 150 200 250 300
0

450

900

1350

 x = 0.0

 Fit T = 96-300 K

 

 

 

H = 2.0 T
 x = 0.6

 Fit T = 96-300 K

 Fit T = 2-10 K

 

H = 2.0 T

 

 

 x = 0.2

 Fit T = 96-300 K

 

 
 

1
/

 (
m

o
le

/e
m

u
)

H = 2.0 T

 x = 0.8

 Fit T = 96-300 K

 Fit T = 2-10 K

 

H = 2.0 T

 

 

1
/

 (
m

o
le

/e
m

u
)

 x = 0.4

  Fit T = 96-300 K

  Fit T = 2-10 K

H = 2.0 T

 

T (K)

H = 2.0 T

 

 x = 1.0

 Fit T = 96-300 K

T (K)

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.4: The CW fits of the inverse dc susceptibility measured at 2 T for
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Figure 4.5: (a) The temperature dependence of the specific heat capacity measured at zero
field. (b) The specific heat for the x = 0 sample as well as the for nonmagnetic Zn2Mo3O8
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in Fig. 4.5(b), was scaled by molar mass and then subtracted from the molar specific heat

data in order to calculate the magnetic specific heat capacity for each sample.

As shown in Fig 4.5(c), the magnetic specific heat capacity divided by the temperature

for each sample reveals a nearly linear region from T = 1-10 K for the x = 0.4, 0.6, and 0.8

samples. As a result, the magnetic molar specific heat capacity in these regions should vary

linearly with temperature which has been reported as proof of the existence of a QSL state in

previously reported organic salts.[157, 158, 159] Figure 4.6(a-f) shows the power law fits for

each samples. The data shows that for the x = 0.6 samples, Cmag varies as T 1.04 and thus is

approximately linear in the region of interest. Similarly, the x = 0.4 and 0.8 samples vary as

T 1.1 and T1.02, respectively. Moreover, below 1 K, the magnetic heat capacity of the x = 0.6

sample can roughly be fit with a T 2/3 power law which has been theorized to be associated

with a U(1) QSL state.[21, 148, 155, 156] Therefore, the samples in this intermediate region

are strong potential QSL candidates.

With convincing evidence of a potential QSL state well established, it was time to probe

the magnetic ground state directly. Time differential µSR measurements were performed on

the x = 0.0, 0.2, 0.4, 0.6, and 1.0 samples, and the results of this study can be found in Ref.

148. The experiments revealed that the x = 0.0 sample demonstrated LRO and corroborated

that the S = 1/2 magnetic moment is highly distributed over the Mo3O13 cluster, illustrated

in Fig. 4.7(a). [155] On the other hand, measurements at 25 mK revealed a weakly relaxing

dynamic fraction and an inhomogeneous mix of disordered static magnetism for the x = 0.2,

0.4, and 1.0 samples, and no indication of static fields originating from electron spins for the

x = 0.6 sample, illustrated in Fig. 4.7(b).[155]

The inhomogeneous samples were then measured in various longitudinal fields, and

the muon polarization for the zero field and field measurements for each sample was

fit using a two-component polarization function, Ptot = fPS(t) + (1 − f)PD(t), where

PS(t) is the polarization for the fraction of of muons stopping in a static fraction and

PD(t) is the contribution from regions with dynamic electron spins. The details of the

fits can be found in Ref. 148. These fits are shown via black lines in Fig. 4.7 and

indicate that the frozen fraction of spins for the inhomogeneous samples are 49%, 25%,

and 43% for the x = 0.2, 0.4, and 1.0 samples, respectively. The consistency between the
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Figure 4.6: The power law fit of the magnetic specific heat for Li2In1−xScxMo3O8, x =
(a) 0.0, (b) 0.2, (c) 0.4, (d) 0.6, (e) 0.8, and (f) 1.0.
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Figure 4.7: (a) For Li2InMo3O8, the zero-field muon spin polarization P (t) measured
at various temperatures. (b) For Li2In1−xScxMo3O8, the zero-field P (t) measured at 25
mK. For (c) x = 0.6 and (d) x = 0.2, the polarization in various longitudinal fields. The
black lines are fits which are described in the text. This figure was taken directly from Ref.
C4-Akbari-Sharif1.
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Figure 4.8: (a) The longitudinal-field dependence of the spin-lattice relaxation rate at base
temperature with fits given by Redfield theory with two different fluctuation frequencies. (b)
The temperature dependence of the relaxation rate in a longitudinal field of 55 G. This figure
was taken directly from Ref. 148.

calculations and the measurements for the x = 0.6 and 0.2 samples shown in Fig. 4.7(c)

and (d), respectively, provide strong evidence that the frozen and dynamic fractions of

spins calculated for each sample are accurate.[155] Moreover, as shown in Fig. 4.8(a), the

frozen fractions are also fit via the 1/T1(BL) data with Redfield Theory using a sum of

two characteristic fluctuation frequencies,[160] and relaxation plateaus are revealed in the

temperature dependence of 1/T1 which is a common yet still crudely understood feature

of potential QSL materials.[161, 162, 163, 164, 155] A magnetic phase diagram constructed

from these µSR results was taken from Ref. 148 and is shown in Fig. 4.9

4.2.2 (Mg,Zn)ScMo3O8

While the Mo cluster compounds Li2In1−xScxMo3O8 exhibited several different magnetic

ground states, (Mg,Zn)ScMo3O8 introduces another layer of diversity. Polycrystalline

samples of (Mg,Zn)ScxMo3O8 were synthesized as described in Ch. 2.1. In order to ensure

the quality of each sample, they were first studied via XRD at room temperature. The

compounds crystallize into the hexagonal space group P63mc, as seen in Fig. 4.10(a), and

the Mo atoms form a “breathing” Kagome lattice in the ab-plane similar to other systems
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Figure 4.9: The magnetic phase diagram determined by µSR. This figure was taken
directly from Ref. 148.
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Figure 4.10: (a) The hexagonal P63mc crystal structure of (Mg,Zn)ScMo3O8; the
XRD pattern (crosses) for polycrystalline (b) ZnScMo3O8 and (c) MgScMo3O8 at room
temperature and zero field. The solid curves are the best fits from the Rietveld refinements
using FullProf Suite. The vertical marks indicate the position of Bragg reflections, and the
bottom curves show the difference between the observed and calculated intensities.
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Table 4.3: Structural parameters at room temperature (space group P63mc) for (a)
ZnScMo3O8 and (b) MgScMo3O8 determined from refined XRD measurements.

Refinement Atom Site x y z Occupancy

(a)
ZnScMo3O8

χ2 = 1.88

Zn 2b 1/3 2/3 0.554(27) 0.16667
Sc 2b 1/3 2/3 0.996(27) 0.16667
Mo 6c 0.14458(7) 0.85543(7) 0.255(27) 0.50
O1 2a 0 0 0.116(27) 0.16667
O2 2b 1/3 2/3 0.370(27) 0.16667
O3 6c 0.49225(59) 0.50774(59) 0.138(27) 0.50
O4 6c 0.83591(73) 0.16409(73) 0.373(27) 0.50

a = b = 5.80017(8) Å, c = 9.99115(16) Å

Overall B-factor = 2.141(33) Å2

(b)
MgScMo3O8

χ2 = 2.66

Mg 2b 1/3 2/3 0.580(35) .16667
Sc 2b 1/3 2/3 0.999(35) .16667
Mo 6c 0.14507(6) 0.85493(6) 0.254(35) .50
O1 2a 0 0 0.112(35) .16667
O2 2b 1/3 2/3 0.363(35) .16667
O3 6c 0.49143(39) 0.50857(39) 0.138(35) .50
O4 6c 0.82392(72) 0.17608(72) 0.371(35) .50

a = b = 5.78507(8) Å, c = 9.95680(16) Å

Overall B-factor = 2.450(29) Å2
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containing the Mo3O13 cluster. The Rietveld refinement of the XRD patterns are shown in

Fig. 4.10(b-c), and the results of the XRD fittings are shown in Table 4.3. The site positions

and lattice parameters are consistent with previously reported results for ZnScMo3O8.[154]

The XRD refinement also provided the Mo-Mo bond lengths necessary to define λMg =

1.2977(4) and λZn = 1.3056(3), significantly larger than the values obtained for the QSL

states previously discussed.

The bulk magnetization properties were then probed using ac and dc susceptibility as

well as isothermal magnetization measurements. From the temperature dependence of the

dc magnetic susceptibility measured at various applied fields shown in Fig. 4.11(a), a slope

change at low fields near TC = 8 K is observed which represents a magnetic transition. As

the applied field is increased, the value of TC increases. Additionally, TC displays a similar

relationship with the applied field for the temperature dependence of the derivative of χ.

Such temperature dependence observed for TC is indicative of a FM transition. The CW

analysis of the 1/χ data above 50 K shown in Fig. 4.11(b) yields an effective magnetic

moment of µeff = 1.28 µB and a Curie temperature of θCW = 18.5 K which are in good

agreement with the previously reported values.[154] Additionally, the value of µeff is slightly

smaller than that of a spin-1/2 system.

Figure 4.11(c) shows the dc magnetization measured at various temperatures. While a

clear hysteresis loop is visible in the data measured below TC , further corroborating the

existence of a FM transition, the magnetization up to 14 T saturates at 0.55 µB/f.u., only

half of the expected value for a spin-1/2 system; although, it is possible that the full moment

could be recovered using a higher applied field.

The temperature dependence of the ac magnetic susceptibility measured at 0.055 T using

various frequencies for ZnScMo3O8 is shown in Fig. 4.11(d). Again, a slope change is evident

near TC = 8 K indicating a magnetic transition, but no frequency dependence was observed

in χ′AC or dχ′AC/dT . No ac magnetic susceptibility was measured for MgScMo3O8.

The results for MgScMo3O8 are very similar. As shown in Fig. 4.12(a), the temperature

dependence of the dc magnetic susceptibility measured at various applied fields again shows

a slope change at low fields near TC = 8 K. As the applied field is increased, the value of

TC increases. Additionally, TC displays a similar relationship with the applied field for the
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Figure 4.11: For ZnScMo3O8, (a) the temperature dependence of the dc susceptibility
at various magnetic field strengths. The inset shows the temperature dependence of the
derivative of the dc susceptibility; (b) the inverse dc susceptibility at 1.0 T as well as
the Curie-Weiss fit of the data from 50-400 K; (c) the magnetization curve at various
temperatures. The solid violet line marks the maximum moment size of 0.55 µB. The inset
shows the zoomed-in hysteresis loop; (d) the temperature dependence of the ac susceptibility
at 0.055 T using various frequencies. The inset shows the temperature dependence of the
derivative of the ac susceptibility.
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(a)

(b)

(c)

MgScMo3O8

Figure 4.12: For MgScMo3O8, (a) the temperature dependence of the dc susceptibility
at various magnetic field strengths. The inset shows the temperature dependence of the
derivative of the dc susceptibility; (b) the inverse dc susceptibility at 1.0 T as well as
the Curie-Weiss fit of the data from 50-400 K; (c) the magnetization curve at various
temperatures. The solid violet line marks the maximum moment size of 0.24 µB. The
inset shows the zoomed-in hysteresis loop.
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temperature dependence of the derivative of χ. Such temperature dependence observed for

TC is indicative of a FM transition. The CW analysis of the 1/χ data above 50 K shown in

Fig. 4.12(b) yields an effective magnetic moment of µeff = 0.89 µB and a Curie temperature

of θCW = 11.9 K. Here, the value of µeff is clearly suppressed as it lower than that of a

spin-1/2 system.

Figure 4.12(c) shows the dc magnetization measured at various temperatures. The

hysteresis loop in this compound is noticeably smaller, indicating a shorter-ranged transition,

and the magnetization up to 14 T saturates at 0.24 µB/f.u., a quarter of the value expected

for a spin-1/2 system. Like before, it is possible that the full moment could be recovered

using a higher applied field.

In order to further investigate the nature of the magnetic transition, specific heat

measurements were obtained at various magnetic field strengths. At zero field, the data

for ZnScMo3O8 shows a cusp near TC = 8 K as shown in Fig. 4.13(a). As the field strength

is increased, TC increases and the feature broadens. This behavior further suggests that a

FM transition occurs near TC .

In order to analyze the magnetic specific heat, a non-magnetic isostructural compound

Zn2Mo3O8 was measured to obtain the lattice component of the specific heat. The lattice

component was scaled by the molar mass, illustrated in Fig. 4.13(b) and Fig. 4.14(b) for

ZnScMo3O8 and MgScMo3O8, respectively, and then subtracted from the specific heat data.

At zero field, a peak in the magnetic specific heat appears near 6 K for ZnScMo3O8 as

illustrated in Fig. 4.13(c), and the location of the peak increases with increasing magnetic

field strength as one would expect for a FM transition.

The magnetic specific heat data was integrated against temperature in order to calculate

the magnetic entropy of the system. As observed in Fig. 4.13(d), the entropy for ZnScMo3O8

saturates at increasingly larger values as the magnetic field strength increases. For a spin

1/2 system, we expect this saturation to occur near Rln2; however, the measurements here

only reach close to half of Rln2. This relationship is similar to the saturation that occurs in

the dc magnetization.

The results for MgScMo3O8 were very similar. Depicted in Fig. 4.14(a), the zero field

specific heat data revealed no major features; however, when a small magnetic field is applied,

82



(a) (b)

(c) (d)

0 5 10 15 20

0.5

1.0

1.5

2.0

2.5

 

 

    0 T

 0.5 T

 1.0 T

 C
P
 (

J/
m

o
le

 K
)

T (K)

0 100 200

0

70

140

 

 

 ZnScMo
3
O

8

 Zn
2
Mo

3
O

8

C
P
 (

J/
m

o
le

 K
)

T (K)


0
H = 0 T

0 5 10 15 20

0.6

0.9

1.2

1.5     0 T

 0.5 T

 1.0 T

 

 

 C
m

ag
 (

J/
m

o
le

 K
)

T (K)

0 5 10 15 20

0

1

2

 

 

 H = 0 T

 H = 0.5 T

 H = 1.0 T

S
 (

J/
m

o
le

 K
)

T (K)

ZnScMo3O8

Figure 4.13: For ZnScMo3O8, (a) the temperature dependence of the specific heat
at various magnetic field strengths; (b) the temperature dependence at zero field of the
specific heat of ZnScMo3O8 and the non-magnetic isostructural compound Zn2Mo3O8; (c)
the temperature dependence of the magnetic specific heat at various magnetic field strengths;
(d) the temperature dependence of the total entropy of the system at various magnetic field
strengths. The solid violet line lies at (Rln2)/2.
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Figure 4.14: For MgScMo3O8, (a) the temperature dependence of the specific heat
at various magnetic field strengths; (b) the temperature dependence at zero field of the
specific heat of MgScMo3O8 and the non-magnetic isostructural compound Zn2Mo3O8; (c)
the temperature dependence of the magnetic specific heat at various magnetic field strengths;
(d) the temperature dependence of the total entropy of the system at various magnetic field
strengths. The solid violet line lies at (Rln2)/4.

84



50 100 150 200 250 300 350

0.0

5.0x10
5

1.0x10
6

1.5x10
6

0.24 0.27 0.30 0.33

6

8

10

12

14

T
0

1/4
 = 83.2 K

1/4

 

 

 ZnScMo
3
O

8

 Linear Fit: 70-350 K

ln
(

)
T

-1/4
(K)

 

 


 (


 m
)

T (K)

Figure 4.15: For ZnScMo3O8, the temperature dependence of the resistivity at zero field.
The inset shows the calculated linear fit in the Mott-VRH model of ln(ρ) vs. T−1/4.

a similar cusp to that of the ZnScMo3O8 data appears near TC = 8 K, and TC increases

with increasing field strength. The magnetic specific heat capacity reveals nearly the same

behavior as shown in Fig. 4.14(c). This behavior also suggests that a FM transition occurs

near TC . Furthermore, the entropy depicted in Fig. 4.14(d) only reaches close to a quarter of

Rln2. This relationship is again similar to the saturation that occurs in the dc magnetization.

Finally, the zero field temperature dependence of the resistivity for ZnScMo3O8 can

be seen in Figure 4.15. Clearly, ZnScMo3O8 behaves as an insulator in this temperature

regime. The data was analyzed using Mott’s variable range hopping (Mott-VRH) model.

In this model, hopping electrons attempt to find the lowest activation energy ∆E as well
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as the shortest hopping distance, and the hopping probability is maximized by an optimum

hopping distance r. Under zero bias, the hopping probability is

P ∼ exp(−2r/a−∆E/kBT ), (4.2)

where a is the localization length, kB is the Boltzmann constant, and ∆E is the activation

energy. Assuming a constant density of states, g0, at the Fermi level, Mott used this equation

with ∆E ∼ 1/g0r
3 to derive a relation between conductance, G, and temperature, T , which

states:

G ∝ exp(−B/T ν) (4.3)

where ν = 1/4 for 3D systems. [165] As our data was taken between 2 and 300 K, it is

reasonable to believe that the behavior will be well-described by this model. [166] Thus we

plotted ln(ρ) vs. T−1/4 which was then linearly fit to obtain a characteristic temperature of

T
−1/4
M = 83.2 K−1/4.

The zero field temperature dependence of the resistivity was not measured for MgScMo3O8,

but similar 3D insulator behavior is expected due to the similarities between the compound’s

bulk magnetic and structural properties.

4.3 Discussion

Clearly, the Mo cluster compounds investigated in this Chapter have exhibited several exotic

magnetic properties. The results of our Li2In1−xScxMo3O8 measurements agree with the

previous reports on the x = 0.0 and x = 1.0 samples and strengthen the arguments that

those conclusions are based on. Additionally, we discovered that the ground state of the x =

0.2 and 0.4 samples consist of both static and dynamic spins. While no µSR measurements

were performed on the x = 0.8 sample, it is assumed that the ground state is similar

based on the similar bulk magnetic and thermal properties. We also have identified a

prime U(1) QSL candidate in Li2In0.4Sc0.6Mo3O8. Moreover, we have identified two FM
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Mo cluster compounds, (Mg,Zn)ScMo3O8, which exhibit characteristics associated with

quenched magnetic moments.

Several measurements including the linear T dependence of the magnetic specific heat

from 1-10 K as well as the roughly T 2/3 power law dependence of the low temperature

(T < 1 K) magnetic specific heat indicate that Li2In0.4Sc0.6Mo3O8 may be described by a

U(1) QSL state. Furthermore, the µSR experiments indicated that the x = 0.2, 0.4, and

1.0 samples also contain frozen spin moments at low temperatures while simultaneously

revealing no indication of static fields originating from electron spins. The mechanisms

responsible for the QSL states in Li2In1−xScxMo3O8 are likely similar to those responsible

for the QSL state in LiZn2Mo3O8. Currently, LiZn2Mo3O8 is believed to be a Mott insulator

where the charge degrees of freedom are localized in cluster units, known as a cluster Mott

insulator (CMI).[142, 145, 148] The ground state of Mott insulators with an odd number

of electrons per unit cell may exhibit a QSL state if there is no spontaneous symmetry

breaking.[167] These QSLs arise from strong charge fluctuations in the weak Mott regime

which can generate sizable long range spin exchanges or spin ring exchanges and suppress

possible magnetic orderings.[21, 168]

A characteristic feature of LiZn2Mo3O8 is the existence of two CW regimes. At 96 K,

the Curie constant is reduced to 1/3 of its high temperature value.[142] It has been shown

that a cluster Mott insulator with the PCO previously described will result in two CW

regimes.[156] Our data also shows a high temperature and a low temperature CW regime

for the intermediate doped samples, and the ratio of the Curie constants in these regions

has been provided in Table 4.2. Our samples appear to show C2/C1 ∼ 0.25 as opposed

to the 1/3 value found in LiZn2Mo3O8. This was originally attributed to two-thirds of the

spins condensating into singlet states.[142, 147]. A separate explanation was later proposed

explaining the anomaly in terms of a long range PCO which reconstructs the spinon bands,

creating a filled sub-band with 2/3 of the spins and a partially filled upper sub-band with

the remaining 1/3 of the spins.[148, 156] In this model, above 96 K the full spin degrees

of freedom are recovered as the PCO is destroyed. However, such spontaneous breaking of

symmetry would normally be observable in the specific heat data. It is believed that disorder

plays a role in the absence of such a feature.[156]
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Figure 4.16: The [Mo-Mo]u bond lengths and the λ values for various [Mo3O13] cluster
compounds.

A third explanation for this behavior has recently been proposed which explains that the

energy scale required to break the PCO could be much larger than the energy gap between

the filled and partially filled spinon sub-bands. This would allow the spinons to be thermally

excited across the gap while preserving the PCO.[155] Locally, each resonating hexagon in

the PCO phase is composed of three coupled spins with a S = 1/2 ground state and a S =

3/2 excited state. The magnetic susceptibility was calculated for non-interacting resonating

hexagons, and the susceptibility for both the x = 0.6 sample and for LiZn2Mo3O8 was

successfully fit using this model.[155] While our measurements seem to support this model,

more experimental and theoretical work still needs to be done in order to determine which,

if any, of the available theories accurately describes the ground state of these Mo cluster

compounds.
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Another possible mechanism for the QSL state lies in the level of asymmetry in the

Kagome lattice. As explained in Sec. 4.1, the breathing Kagome lattice formed by the Mo

atoms forms larger down-triangles and smaller up-triangles which can be used to define the

asymmetry parameter λ. For these breathing Kagome systems, λ describes how much the

lattice is distorted from a perfect Kagome lattice, where a large λ implies a large amount of

distortion. We compared the values of λ at room temperature for several of the Mo cluster

compounds that were studied. The results shown in Fig. 4.16 reveal that larger λ values

are associated with the compounds which exhibit LRO, while the smallest λ values belong

to the materials with a QSL ground state. Similarly, this behavior may also correlate to

the size of the up-triangles, illustrated in Fig. 4.16 using size of the [Mo-Mo]u bond lengths,

where the smaller triangles are associated with LRO and the largest triangles are associated

with the QSL states. As the amount of asymmetry and the size of the triangles influence the

potential localization of the electrons in the cluster, it is certainly possible that there is a

critial value where LRO is no longer possible. Further experiments are necessary to elucidate

the matter.

While the mechanism behind the FM transition in the (Mg,Zn)ScMo3O8 family has

not yet been identified, it is noteworthy that the values of λ for these samples are

particularly large and the size of the up-triangles are particularly small. It appears likely

that the difference between a possible FM LRO versus an AFM LRO may be influenced

by these factors as well. Additionally, the dc magnetization measurements and the entropy

calculations for the FM samples indicate potentially quenched moments. As more Mo cluster

samples are characterized, the importance of these properties should become clearer.

4.4 Conclusions

In summary, we report detailed experimental studies of the Mo cluster compounds

Li2In1−xScxMo3O8 and (Mg,Zn)ScMo3O8, focusing on their magnetic and thermal properties.

We observed several different magnetic ground states ranging from LRO AFM and FM

ground states to a pure QSL state. By comparing the different Mo cluster compounds, we

identified a asymmetry in the Kagome lattice as a possible mechanism for these differences.
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Furthermore, the QSL states were examined in the context of three separate charge ordering

models. Our studies here demonstrate that the combination of triangular lattice compounds

with cluster magnets can produce intriguing physical properties. Additional studies on

these materials will surely increase our knowledge regarding the fundamental principles of

magnetism.
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Chapter 5

Conclusion and Outlook

This dissertation focused on the synthesis and characterization of new triangular lattice

compounds. Specifically, the properties of the layered perovskites RCr(BO3)2 (R = Y and

Ho) as well as the Mo cluster compounds Li2In1−xScxMo3O8 and (Mg,Zn)ScMo3O8 were

investigated using several experimental techniques such as XRD and NPD as well as ac

and dc susceptibility, specific heat, resistivity, and µSR measurements which revealed many

fascinating physical phenomena. It was possible to explain many of the observed behaviors,

but there is still work to be done in order to fully understand these materials.

A comprehensive study of the layered perovskites RCr(BO3)2 (R = Y and Ho) contained

in this dissertation examined both the magnetic and electrical properties of the system

as well as the interplay between the two. An AFM ground state below TN = 8 K was

discovered for both compounds with only the Cr3+ ions ordering at zero field. Upon adding

a critical magnetic field of HC = 2 T, the materials adopt a FM ordering which now involves

the Cr3+ ions and the Ho3+ ions. Furthermore, both samples exhibit strong features in

their respective dielectric constant measurements around these critical temperature and

field values. Therefore, both materials are magnetodielectric. As the addition of the

second magnetic ion greatly affects this exchange, it is likely the affect of magnetostriction

which occurs as the Ho3+ ions begin to order in the presence of an external magnetic field.

Moreover, comparing these results to behaviors witnessed in EuTiO3 indicated that the

features observed in the R = Y compound may be related to spin-phonon coupling. A spin

wave spectrum for a limited E−Q space was constructed, and a simulation of the spectrum
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provided information regarding the NN and NNN interaction strengths. These results were

further analyzed via superexchange pathways.

In order to fully understand this system, there is still much experimental and theoretical

work to do. Able to probe possible spin-phonon coupling in the R = Y sample, infrared

and Raman spectroscopy experiments should be performed on polycrystalline samples.

Additionally, it would be very fruitful to pursue the growth of single crystal samples in order

to study possible anisotropic effects including additional dielectric constant and polarization

(pyroelectric current) measurements. Synthesizing samples with different magnetically

active ions would also provide useful comparisons that could lead to a more fundamental

understanding of the physics involved. Additionally, more INS measurements would allow

the system to be studied in a broader E−Q range which could then be modeled with a more

complex Hamiltonian and could include possible spin-orbital coupling terms.

This dissertation also includes an extensive study on the Mo cluster compounds

Li2In1−xScxMo3O8 (x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) and (Mg,Zn)ScMo3O8 focusing

primarily on the structural and magnetic properties of the system. The measurements

confirmed an AFM LRO magnetic ground state for the x = 0.0 as well as an inhomogeneous

mixture of mix of disordered static magnetism for the x = 0.2, 0.4, and 1.0 samples which

is also predicted for the x = 0.8 sample, and no indication of static fields originating from

electron spins for the x = 0.6 sample, indicating a probable QSL ground state; moreover,

the (Mg,Zn)ScMo3O8 compounds were shown to have a FM ground state with potentially

quenched magnetic moments. Two CW regimes were observed for the intermediate doping

samples similar to the behavior observed in LiZn2Mo3O8. This behavior was examined via

charge condensation, a long range PCO model, and a non-interacting resonating hexagon

model, but more work is needed to exactly explain this phenomenon. The differences in the

observed ground states were also examined as a function of the asymmetry of the Kagome

lattice. The samples with the largest amount of disorder exhibited LRO while the samples

closer to a perfect Kagome lattice showed QSL ground states.

While many interesting physical properties of these Mo cluster compounds were

examined, there are still many theoretical and experimental avenues to explore. Single crystal

samples should be attempted in order to probe possible anisotropic behavior. Polarized
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neutron studies should be undertaken in order to examine the nature of the FM transition

in the (Mg,Zn)ScMo3O8 compounds. Additionally, INS measurements should be performed

on all of the samples in order to probe the spin wave dynamics and the exchange interaction

strengths of the system. High pressure studies which could be used to tune the asymmetry

parameter could also help to determine the importance that asymmetry has on the system.

Moreover, synthesizing and characterizing additional Mo cluster compounds is essential to

expanding and fine-tuning the current models used to describe not only the QSL states

observed but also the other anomalous behavior such as the quenched magnetic moments

associated with the FM compounds. It is our hope that expanding upon this research will

reveal productive advancements in the field of condensed matter physics.

93



Bibliography

94



[1] L. Balents, Nature 464, 199 (2010). 1, 3, 5, 6

[2] C. Wannier, Phys. Rev. 79, 357 (1950). 2

[3] e.g. P. -W. Anderson, Mater. Res. Bull. 8, 153 (1973). 3, 7, 12

[4] S. Liang, B. Doucot, and P. W. Anderson, Phys. Rev. Lett. 61, 365 (1988). 3

[5] X.-G. Wen, Phys. Rev. B 65, 165113 (2002). 3

[6] X.-G. Wen, Condens. Matt. Phys. 2013, 198710 (2013). 5

[7] G. Misguich and C. Lhuillier, in FrustratedSpinSystems, edited by H. T. Diep (World

Scientific, Singapore, 2005). 5

[8] F. D. M. Haldane, Phys. Rev. Lett. 66, 1529 (1991). 5

[9] A. P. Ramirez, Annu. Rev. Mater. Sci. 24, 453 (1994). 5

[10] M. F. Collins and O. A. Petrenko, Can. J. Phys. 75, 605 (1997). 5, 6

[11] J. Iida, M. Tanaka, Y. Nakagawa, S. Funahashi, N. Kimizuka, and S. Takekawa, J. Phys.

Soc. Jpn. 62, 1723 (1993). 6

[12] S. Mitsuda, M. Mase, K. Prokes, H. Kitazawa, and H. A. Katori, J. Phys. Soc. Jpn. 69,

3513 (2000). 6

[13] R. Coldea, D. A. Tennant, and Z. Tylczynski, Phys. Rev. B. 68, 134424 (2003). 6

[14] Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G. Saito, Phys. Rev. Lett. 91,

107001 (2003). 7

[15] T. Itou, A. Oyamada, S. Maegawa, M. Tamura, and R. Kato, Phys. Rev. B 77, 104413

(2008). 7

[16] P. Khuntia, R. Kumar, A. V. Mahajan, M. Baenitz, and Y. Furukawa, Phys. Rev. B 93

140408(R) (2016). 7

[17] Y. Zhou, K. Kanoda, and T.-K. Ng, Rev. Mod. Phys. 89, 025003 (2017). 7

95



[18] R. J. Cava, A. P. Ramirez, Q. Huang, and J. J. Krajewski, J. Solid State Chem. 140,

337 (1998). 7

[19] Y. Li, H. Liao, Z. Zhang, S. Li, F. Jin, L. Ling, L. Zhang, Y. Zou, L. Pi, Z. Yang,

J. Wang, Z. Wu, and Q. Zhang, Sci. Rep. 5, 16419 (2105). 7

[20] T. Moriya, Phys. Rev. Lett. 4, 228 (1960). 7

[21] O. Motrunich, Phys. Rev. B 72, 045105 (2005). 7, 72, 87

[22] Y. Li, G. Chen, W. Tong, L. Pi, J. Liu, Z. Yang, X. Wang, and Q. Zhang, Phys. Rev.

Lett. 115, 167203 (2015). 8

[23] Y. Li, D. Adroja, P. K. Biswas, P. J. Baker, Q. Zhang, J. Liu, A. A. Tsirlin,

P. Gegenwart, and Q. Zhang, Phys. Rev. Lett. 117, 097201 (2016). 8

[24] J. A. M. Paddison, M. Daum, Z.L. Dun, G. Ehlers, Y. Liu, M. B. Stone, H.D. Zhou,

and M. Mourigal, Nat. Phys. 13, 117 (2017). 8

[25] Y. Shen, Y.-D. Li, H. Wo, Y. Li, S. Shen, B. Pan, Q. Wang, H. C. Walker, P. Steffens,

M. Boehm, Y. Hao, D. L. Quintero-Castro, L. W. Harriger, M. D. Frontzek, L. Hao,

S. Meng, Q. Zhang, G. Chen, and J. Zhao, Nature (London) 540, 559 (2016). 8

[26] Y. Li, D. Adroja, R. I. Bewley, D. Voneshen, A. A. Tsirlin, P. Gegenwart, and Q. Zhang,

Phys. Rev. Lett. 118, 107202 (2017). 8

[27] Y. Li, D. Adroja, D. Voneshen, R. I. Bewley, Q. Zhang, A. A. Tsirlin, and P. Gegenwart,

Nature Commun. 8, 15814 (2017). 8

[28] Y. Xu, J. Zhang, Y.S. Li, Y.J. Yu, X. C. Hong, Q.M. Zhang, and S. Y. Li, Phys. Rev.

Lett. 117, 267202 (2016). 8

[29] Q. Luo, S. Hu, B. Xi, J. Zhao, and X. Wang, Phys. Rev. B 95, 165110 (2017). 8

[30] Z. Zhu, P. A. Maksimov, S. R. White, and A. L. Chernyshev, Phys. Rev. Lett. 119,

157201 (2017). 8

96



[31] S. Nakatsuji, Y. Nambu, H. Tonomura, O. Sakai, S. Jonas, C. Broholm, H. Tsunetsugu,

Y. Qiu, and Y. Maeno, Science 309, 1697 (2005). 8, 10

[32] Y. Nambu, S. Nakatsuji, and Y. Maeno, J. Phys. Soc. Jpn. 75, 043711 (2006). 10

[33] S. Nakatsuji, Y. Nambu, K. Onuma, S. Jonas, C. Broholm, and Y. Maeno, J. Phys.:

Condens. Matter 19, 145232 (2007). 10

[34] S. Nakatsuji, Y. Nambu, and S. Onoda, J. Phys. Soc. Jpn. 79, 011003 (2010). 10

[35] D.E. Maclaughlin, R.H. Heffner, S. Nakatsuji, Y. Nambu, K. Onuma, Y. Maeno,

K. Ishida, O.O. bernal, and L. Shu, J. of Mag. and Mag. Mat. 310, 1300 (2007). 10
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