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ABSTRACT 
 

Herein, we present data supporting a role for copper (Cu) and Cu homeostasis in the 

suprachiasmatic nucleus (SCN), the location of the mammalian circadian pacemaker. Although 

many studies have investigated the function and effects of Cu in synaptic function and receptor 

signaling in the brain and other tissues, these results are the first to directly link Cu with the SCN 

master clock and circadian neuronal activity rhythms. Previous work using extracellular 

recordings of SCN neurons in ex vivo hypothalamic slices has demonstrated that resetting the 

circadian clock, e.g. by glutamate (Glu) treatment during the night, induces shifts in the phase of 

SCN neuronal activity rhythms that correspond to phase shifts in circadian behavioral activity 

(Albers et al., 2017; Golombek and Rosenstein, 2010; Herzog et al., 2017; Lindsay et al., 2014; 

Prosser, 1998). Here we first have demonstrated that both Cu chelation and Cu application are 

able to induce night-time phase shifts in neuronal activity rhythms in vitro. Second, we have 

shown that these two treatments affect N-methyl-D-aspartate receptor (NMDAR) and Glu 

neurotransmission differently. Since Glu phase-shifts the SCN clock through NMDAR-mediated, 

calcium-dependent signaling pathways and activation of other pathways, we pharmacologically 

tested several of these pathways to investigate how application of Cu or the Cu chelator, 

tetrathiomolybdate (TTM), induces NMDAR-independent and dependent phase shifts, 

respectively. Our results demonstrate that Cu induces mitogen-activated protein kinase (MAPK)-

dependent phase shifts in the absence of NMDAR-mediated calcium influx. On the other hand, 

the specific extra- and intracellular mechanisms by which Cu removal induces phase shifts remain 

unclear. Lastly, we have preliminary results indicating that concentrations of Cu in the SCN are 

comparable to other brain regions, and show day-night expression of two Cu transporters, 

copper transporter 1 (CTR1) and ATPase-7A (ATP7A) in the SCN.  We discuss these findings in 

light of the existing literature and current models of SCN circadian oscillator mechanisms. Our 

results together with published findings suggest that Cu homeostasis is tightly regulated in the 

SCN, and that changes in Cu levels serves as a time cue for the circadian clock. Future research 

can elucidate how Cu (dys)regulation interacts with oscillations in SCN neuronal firing and 

signaling activity and whether Cu or other trace elements influence SCN metabolic and redox 

activity. 
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CHAPTER ONE  

INTRODUCTION 

 

1.1 Circadian Rhythms 

1.1a Three Interlinked Clocks in Circadian Biology 

Organisms have an internal timekeeping system to synchronize their physiology and 

behavior and coordinate these activities to increase benefits and reduce harms present in the 

environment. With light being the dominant environmental stimuli, ~24-h (“circadian”) clocks 

evolved to respond to changes in the light-dark cycle (LD) to maintain synchrony with the daily 

rotation of the Earth. Many important physiological processes and behaviors are controlled by 

such clocks and exhibit a circadian rhythm with coordinated peaks and troughs to minimize 

energy and resource loss, maximize energy/resource utility, and facilitate homeostatic processes 

(reviewed in Asher and Sassone-Corsi, 2015; Asher and Schibler, 2011; Bailey et al., 2014; Bass 

and Lazar, 2016; Bass and Takahashi, 2010; Cribbet et al., 2016; Farajnia et al., 2014; Gamble et 

al., 2014; Man et al., 2016; Nakagawa and Okumura, 2010; O'Neill et al., 2013; Panda, 2016; 

Reddy and Rey, 2014; Riede et al., 2017; Silver and Kriegsfeld, 2014; Wilking et al., 2013).  

With the evolution of photosynthetic organisms such as cyanobacteria, circadian 

timekeeping allowed for timely regulation of proteins and molecules in light harvesting as well 

as upregulation of processes in response to UV exposure and DNA damage (Cockell and 

Rothschild, 1999; Gehring and Rosbash, 2003; Hitomi et al., 2000; Lucas-Lledo and Lynch, 2009; 

Mei and Dvornyk, 2015; Milev and Reddy, 2015). Analogously, mitochondrial processes such as 

oxidative phosphorylation require coordinated activity of enzymes and abundance of molecules 

involved in ATP production (Cela et al., 2016; Chiang et al., 2014; Isobe et al., 2011a, b; Masri et 

al., 2013; Neufeld-Cohen et al., 2016; Peek et al., 2013). Because food/energy availability and 

mitochondrial processes were evolutionarily linked to the circadian oscillators, organisms also 
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coordinate anabolic processes including protein synthesis in a circadian fashion (Chaix et al., 

2016; Huang et al., 2013; Panda, 2016; Wang et al., 2015a). Thus, energy storage and metabolism 

are central to the evolution of circadian biology, while the “gears” for circadian timekeeping are 

internal to the cell and autonomous. 

In order to coordinate processes with the environment and anticipate daily rhythms in 

the availability of light or food sources, organisms possess an autonomous and temperature 

compensated (largely unaffected by fluctuations in environmental temperature) circadian 

timekeeping system in the form of molecular feedback loops (rev. in Chaix et al., 2016; Herzog et 

al., 2017; Hurley et al., 2016; Ukai and Ueda, 2010). Constituting the gears and mechanics of such 

molecular feedback loops are the circadian transcription and translation of transcriptional 

activators and repressors, which are thusly called central, or core, clock genes/proteins. In 

mammals, the transcriptional activators CLOCK and BMAL1 working as a dimer form the positive 

loop to transcribe mRNA for transcriptional repressors, in particular PER and CRY proteins of the 

negative loop, which feedback and block CLOCK and BMAL1 transcription until the repressor 

complexes of PER and CRY are removed and degraded (Herzog et al., 2017; Partch et al., 2014; 

Takahashi, 2017). The transcription/translation feedback loop (TTFL) is well established as the 

primary basis by which organisms maintain endogenous ~24-h rhythms indefinitely even in the 

absence of cyclic photic signals (e.g., during continuous dark or light). However, in constant light 

or constant dark conditions most organisms will exhibit rhythms with periods slightly greater or 

less than 24-h, demonstrating the requirement for external cues to synchronize their clocks with 

the Earth’s 24-h LD cycle. Circadian time cues or “zeitgebers” (“timegivers”) affect endogenous 

molecular clocks through activation of signaling pathways and/or changes in the cellular context 

that directly affect the kinetics or activity levels of clock genes/proteins. Depending on time-of-

cue, such external input can advance or delay the molecular clock and its output in order to 

synchronize the organism’s activities to the environment.   

As mentioned, coordination of metabolic activity is fundamental to the evolution of 

circadian clocks, and research has demonstrated how clock proteins regulate various metabolic 

activities via transcription/translation (rev. in Asher and Sassone-Corsi, 2015; Bass and Lazar, 



 

3 
 

2016; Panda, 2016). Conversely, availability of energy-providing molecules (glucose, ATP, NADH, 

etc.) or other molecules directly related to photosynthesis or cellular respiration also affect the 

core molecular clock (Asher and Sassone-Corsi, 2015; Bailey et al., 2014; Choudhary et al., 2016; 

Feeney et al., 2016; Feng et al., 2017; Panda, 2016; Reddy and Rey, 2014). Generally, lack of ATP 

and other energy-associated substrates reduces other cellular functions including synthesis, 

transport, or degradation of molecules involved in faithful circadian timekeeping. Because the 

clock regulates protein and lipid metabolism, circadian input to the mitochondria allows for 

coordinated generation of ATP and cofactors such as NADH/FADH required for protein/lipid 

metabolism and function (Aviram et al., 2016; Bellet et al., 2016; Chiang et al., 2014; Hirano et 

al., 2017; Kumar Jha et al., 2015; Loizides-Mangold et al., 2017; Masri et al., 2014; Milev and 

Reddy, 2015; Neufeld-Cohen et al., 2016; Panda, 2016; Poggiogalle et al., 2017; Reddy and Rey, 

2014; Robles et al., 2014; Robles et al., 2017; Wang et al., 2017).  

Cellular activities produce free radicals and reactive oxygen species (ROS) that can affect 

the redox state of the cell and lead to oxidative stress. The redox state of the cell in turn can 

directly affect the function of some clock proteins (e.g. Rev-Erbα) (Bailey et al., 2014; Carter et 

al., 2017; Hirano et al., 2017; Hirayama et al., 2007; Ivleva et al., 2005; Milev and Reddy, 2015; 

Qian et al., 2012a; Rey et al., 2016; Rutter et al., 2001; Shang et al., 2012; Sundar et al., 2017; 

Wende et al., 2016; Wood et al., 2010; Yang et al., 2014; Yoshida et al., 2011). In addition, 

oxidative damage of clock proteins may enhance their degradation or hinder their function. It is 

still unclear whether such effects on the core molecular clock are important for adjusting other 

processes to the metabolic state of the cell(s) or are just epiphenomenal to high cellular activity. 

Nonetheless, one important clock function may be to coordinate enzymatic removal of ROS to 

when peak oxidative stress is anticipated.  

Interestingly, the removal of ROS and cellular redox reactions involve redox recycling of 

antioxidant enzymes and molecules, (Chakravarty and Rizvi, 2012; Cho et al., 2014; Edgar et al., 

2012; Hardeland et al., 2003; Hirayama et al., 2007; Hoyle and O'Neill, 2015; Kil et al., 2015; Milev 

and Reddy, 2015; O'Neill and Feeney, 2014; O'Neill et al., 2011; Patel et al., 2014; Putker and 

O'Neill, 2016; Reddy and Rey, 2014; Toledano and Delaunay-Moisan, 2015), and studies using 
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mature red blood cells has demonstrated circadian oscillations in the redox states of antioxidant 

enzymes in the absence of transcription/translation feedback loops (Cho et al., 2014; Homma et 

al., 2015; O'Neill and Reddy, 2011). In addition, genomics and other experiments provide 

emerging evidence for redox oscillations as a primary cellular rhythm intimately tied to cellular 

energy production (Mendez et al., 2016; Putker et al., 2017; Rey et al., 2016; Rhee and Kil, 2016; 

Toledano and Delaunay-Moisan, 2015; Wende et al., 2016), and redox molecules are more 

broadly conserved among biology than specific clock genes/proteins (Causton et al., 2015; Edgar 

et al., 2012; Fanjul-Moles, 2013; Hoyle and O'Neill, 2015; O'Neill et al., 2011; Olmedo et al., 2012). 

However, it is not known how ubiquitous circadian redox oscillators are, as well as how cells 

coordinate molecular, metabolic, and redox rhythms to generate output adjusted to input from 

the environment.  

 

1.1b The suprachiasmatic nucleus and mammalian circadian rhythms 

In the mammalian brain, a central pacemaker or “master clock” in an area of the 

hypothalamus called the suprachiasmatic nucleus (SCN) governs circadian processes through 

outputs to other brain regions and various tissues/organs which themselves contain circadian 

clocks. Input from the SCN synchronizes the clocks within each organ system and coordinates the 

activity of different organ systems across the day (Bass and Lazar, 2016; Cribbet et al., 2016; 

Gamble et al., 2014; Kumar Jha et al., 2015; Riede et al., 2017; Silver and Kriegsfeld, 2014). 

Without daily SCN output, organs lose temporal coordination with each other, and within an 

organ the amplitude of circadian rhythms dampens within days as the cells become 

desynchronized (Brown and Azzi, 2013; Evans, 2016; O'Neill et al., 2013). In contrast, dispersed 

SCN cells in vitro can maintain circadian clock activity for weeks at the single cell level in the 

absence of daily synchronizing input (Honma et al., 1998; Noguchi et al., 2017; Welsh et al., 1995; 

Welsh et al., 2010). In addition, cultured SCN tissue slices maintain high amplitude circadian 

rhythms as a result of endogenously produced synchronizing agents such as vasoactive intestinal 

polypeptide (VIP). 
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In vivo, light stimulates melanopsin containing retinal ganglion cells, which project to the 

SCN through the retinohypothalamic tract, and induces glutamate release from axon terminals 

(Baver et al., 2008; Berson et al., 2002; de Vries et al., 1993; Ding et al., 1994; Doyle et al., 2008; 

Drouyer et al., 2007; Ebling et al., 1991; Hattar et al., 2002; Mikkelsen et al., 1995; Mintz and 

Albers, 1997; Mintz et al., 1999; Tsai et al., 2009; Vindlacheruvu et al., 1992; Wong et al., 2007). 

During the subjective night, i.e. night according to the animal’s pacemaker, glutamate release 

onto SCN neurons resets their clocks by activating calcium-dependent signaling pathways (Albers 

et al., 2017; Colwell, 2000; Fukushima et al., 1997; Golombek and Rosenstein, 2010; Hamada et 

al., 1999; Tominaga et al., 1994). Resetting of the SCN clock results in either an advance or delay 

shift in the phase of circadian activity (“phase shift”). However, during the subjective day, photic 

cues (i.e. light/glutamate) are not able to reset the SCN clock and induce phase shifts. 

Physiologically, this time-dependent regulation and sensitivity to photic input underlies the 

ability to synchronize to the external LD cycle, which is called photic entrainment. Several non-

photic cues can reset the SCN clock also, such as behavioral activity, cocaine, and serotonin (Antle 

and Mistlberger, 2000; Edgar et al., 1993; Glass et al., 2012; Prosser et al., 1993; Prosser et al., 

1992; Prosser et al., 1990; Prosser et al., 2014; Stowie et al., 2015; Webb et al., 2014; Yamakawa 

et al., 2016). The phase-shifting effect of these cues are seen when they occur in the subjective 

day. 

A unique feature of the SCN is the diurnal increase in neuronal activity and firing rate that 

peaks around mid-subjective day (rev. in Albers et al., 2017; Colwell, 2011; Hastings et al., 2014; 

Herzog et al., 2017; Nakagawa and Okumura, 2010; Riede et al., 2017). This diurnal peak in SCN 

neuronal activity occurs in both diurnal and nocturnal animals. The increased daytime activity of 

SCN neurons, seen at the level of increased cellular respiration and an increased ratio of action 

potential generation, involves an increase in excitatory drive arising from circadian changes in 

expression and activity of ion channels and pumps. Exactly how the TTFL clock regulates these 

ionic currents and ultimately the rhythm in neuronal excitability is not well understood. On the 

other hand, emerging evidence suggests that the enhanced daytime SCN neuronal activity 

functions as an input for pacemaker activity and not just an output of the TTFL clock (Granados-

Fuentes et al., 2015; Hermanstyne et al., 2017; Jones et al., 2015; Kononenko et al., 2013). In a 
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subset of SCN neurons, conditional blocking of synaptic transmission disrupts the TTFL clock (Lee 

et al., 2015). Furthermore, optogenetic excitation of SCN neurons is sufficient to induce phase 

shifts in molecular (ex vivo) and behavioral rhythms (Jones et al., 2015). One simple explanation 

is that these manipulations alter VIP release, which affects the TTFL by activating cyclic AMP and 

Gq-dependent calcium signaling pathways (Enoki et al., 2017; Han et al., 2012; Jones et al., 2015). 

Although most SCN neurons release GABA, due to the multifaceted, circadian physiology of GABA 

signaling in the SCN (Alamilla et al., 2014; Albers et al., 2017; Albus et al., 2005; Belenky et al., 

2003; Choi et al., 2008; De Jeu and Pennartz, 2002; DeWoskin et al., 2015; Evans et al., 2013; Fan 

et al., 2015; Freeman et al., 2013; Gribkoff et al., 2003; Hamada and Shibata, 2010; Hummer et 

al., 2015; Moldavan et al., 2017; Walton et al., 2017), the role of GABA neurotransmission 

remains unclear and/or has not been addressed in these studies. 

The SCN also exhibits a daily rhythm in cellular redox state driven by TTFL output (Wang 

et al., 2012). The ratio of oxidized forms of redox molecules to reduced redox molecules (FAD(ox) 

to NADPH; DHA-dehydroascorbic acid to ascorbic acid) and global protein glutathiolation are 

higher in SCN tissue during the early subjective night, reflective of a relatively oxidized state 

during the night and reduced state during the day (Wang et al., 2012).  The ~24-h rhythm in redox 

state is absent in SCN tissue from arrhythmic mice lacking the core clock protein BMAL. 

Furthermore, pharmacological manipulation using oxidizing or reducing agents demonstrate that 

the cellular redox state is linked to neuronal excitability rhythms in the SCN (Wang et al., 2012). 

A reduced state allows for increased K+ influx and decreased K+ efflux, most likely through redox 

modulation of leaky K+ channels and voltage-gated K+ channels respectively, and is involved in 

the relatively depolarized state of SCN neurons during the day. The importance of redox in 

circadian neuronal excitability and K+ channels has also been demonstrated in Drosophila 

circadian clock neurons and behavior (Fogle et al., 2015).  In addition to reports of redox effects 

on K+ channels, an increased oxidative environment can change the function of other channels, 

and proteins in general, indirectly via redox cofactors and directly through modifications 

including glutathiolation and nitrosylation. Although the physiological consequences of the 

aforementioned rhythm in global protein glutathiolation are yet unknown, nitrosylation may be 

important in SCN rhythmicity (Riccio et al., 2006).  
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While questions regarding the connections between redox state on neuronal excitability 

remain largely unanswered, studies have shown that a variety of circadian clocks are sensitive to 

oxidative stress and changes in redox state (Mendez et al., 2016; Milev and Reddy, 2015; Putker 

and O'Neill, 2016; Wende et al., 2016). These include non-mammalian model organisms, such as 

zebrafish, Arabidopsis, Neurospora, and cyanobacteria (Hirayama et al., 2007; Ivleva et al., 2005; 

Ivleva et al., 2006; Kim et al., 2012; Lai et al., 2012; Qian et al., 2012a; Wood et al., 2010; Yoshida 

et al., 2011). In mammalian cells, such as mouse hepatocytes and embryonic fibroblasts, 

oxidative stress affects clock proteins and their functions (Gupta and Ragsdale, 2011; Rutter et 

al., 2001; Shang et al., 2012; Tamaru et al., 2013; Yang et al., 2014). Furthermore, TTFL-driven 

circadian oscillations in nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting 

enzyme in NAD+ biosynthesis, produce oscillations in NAD+ (Bellet et al., 2013; Nakahata et al., 

2009; Ramsey et al., 2009). NAD + is a cofactor for the transcriptional suppressor SIRT1, and 

increased NAD+ abundance suppresses CLOCK:BMAL complex-dependent transcriptional 

activation, inhibiting the core positive loop of the TTFL clock. Pharmacologically or genetically 

changing NAD + abundance and dynamics disrupts TTFL output (Nakahata et al., 2009; Ramsey et 

al., 2009). On a separate note, in vitro DNA binding by the transcriptional activators and core 

clock proteins, CLOCK and BMAL, increases in the presence of NADH or NADPH, the reduced 

forms of NAD + or NADP+, respectively (Rutter et al., 2001; Yoshii et al., 2013). Notably, NADH is 

required for oxidative phosphorylation, and mitochondrial energy production is affected by the 

ratio of these redox pairs (Jokinen et al., 2017; Mendez et al., 2016; Scialo et al., 2017; Verdin, 

2015). The effects of redox agents on NAD+/NADH ratio and rhythmic output has not been 

reported in the SCN. However, the redox oscillation in the SCN mentioned previously would favor 

a nighttime increase in the oxidized NAD+, which is consistent with increased nampt mRNA and 

SIRT1 levels in the SCN during the night (Chang and Guarente, 2013). Similarly, the role of 

diurnally fluctuating NADPH in circadian biology has recently been reported, and manipulation 

of NADPH rhythms and redox have been shown to affect clock gene expression, albeit not in the 

SCN (Putker et al., 2017; Rey et al., 2016). In summary, circadian oscillations in the redox state of 

SCN neurons is involved in neuronal excitability and presumably TTFL output of the master clock, 
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hence changes in the redox state caused by excess ROS/oxidative stress or external input will 

likely shift SCN circadian output.   

 

1.2 Copper is an Essential Trace Element 

1.2a Copper in biology  

Copper is an essential trace element involved in energy production and cellular redox 

activities. Depending on cellular location and protein coordination, copper (Cu) switches 

oxidation state (Cu2+/+) making it uniquely important as an essential cofactor of several enzymes 

such as cytochrome c oxidase in the mitochondrial electron transport chain (Gaier et al., 2013a; 

Scheiber et al., 2014). Total intracellular Cu concentration is thought to range from nanomolar to 

micromolar (Balamurugan and Schaffner, 2006). However, the intracellular concentration of 

unbound Cu is virtually zero in most cells under homeostatic conditions, due to an abundance of 

proteins that bind Cu to protect against Cu-induced ROS generation and oxidative stress (Hung 

et al., 2010). Metallothioneins, ATOX1 (antioxidant protein-1), and GSH (glutathione) play a 

primary role in Cu homeostasis by binding and buffering against the toxic effects of Cu (Baker et 

al., 2017a; Bhattacharjee et al., 2017; Calvo et al., 2017; Hatori et al., 2017; Hatori and Lutsenko, 

2016; Ohrvik et al., 2017; Scheiber et al., 2014). 

The necessity for Cu in mammalian development is evidenced by embryonic lethality of 

homozygous knockout of the Cu import protein CTR1 (copper transporter 1) in mice (Kuo et al., 

2001). Furthermore, systemic Cu deficiency, as occurs in Menkes disease, has moderate to severe 

effects on development and neurological function, and disruption of Cu delivery due to 

mutations, dietary deficiency, or chelation can lead to improper mitochondrial function, iron 

metabolism, and neuronal function (Gaier et al., 2013a; Greenough et al., 2016; Kawahara et al., 

2017; Medeiros, 2017; Opazo et al., 2014; Scheiber et al., 2014). In addition, mutations in 

mitochondrial proteins involved in Cu transport and incorporation in cytochrome c oxidase lead 

to defects in mitochondrial oxidative phosphorylation and cardiac hypertrophy (Baertling et al., 
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2015; Baker et al., 2017b; Boulet et al., 2017; Dodani et al., 2011b; Freisinger et al., 2004; Ghosh 

et al., 2014; Hlynialuk et al., 2015; Jaksch et al., 2001a; Jaksch et al., 2001b; Leary et al., 2007; 

Leary et al., 2013; Leary et al., 2004; Pacheu-Grau et al., 2015; Punter et al., 2000; Stiburek et al., 

2009; Stroud et al., 2015; Vesela et al., 2004; Yang et al., 2010). In some animal and cellular 

models of these mutations, Cu supplementation rescues the mitochondrial and cardiac 

pathologies, illustrating the intimate connection between intracellular Cu and mitochondrial 

activity (Baertling et al., 2015; Elsherif et al., 2004a; Elsherif et al., 2004b; Ghosh et al., 2014; 

Jaksch et al., 2001b; Jiang et al., 2007; Johnson and Newman, 2007; Leary et al., 2013; Li et al., 

2015a; Medeiros, 2017; Zhou et al., 2008; Zhou et al., 2009).  

Because Cu can switch oxidation states, excessive or dysregulated Cu can generate 

reactive oxygen species and cause oxidative damage intracellularly or extracellularly. Thus, there 

are several mechanisms for buffering, storing, and removing Cu. When Cu levels exceed the 

capacity of Cu-storage into vesicles or buffering proteins (e.g. metallothioneins), insufficiently 

buffered Cu can generate ROS via Fenton chemistry (Baker et al., 2017a; Bhattacharjee et al., 

2017; Hatori and Lutsenko, 2016; Hordyjewska et al., 2014; Ohrvik et al., 2017). In mammals, two 

P-type ATPases, ATP7A and ATP7B, have a prominent role in intracellular Cu homeostasis and 

transport (Lutsenko, 2016; Migocka, 2015; Yu et al., 2017). Mutations in ATP7A disrupt Cu 

absorption in the gut and intracellular delivery to Cu-dependent enzymes, resulting in Menkes 

disease (Kaler, 2014; Lenartowicz et al., 2015; Zlatic et al., 2015). Conversely, mutations in ATP7B 

transporters, which relocate to the plasma membrane in response to excess intracellular Cu and 

function in Cu efflux, underlie Wilson’s disease. Toxic Cu accumulation in Wilson’s disease is the 

result of dysfunctional ATP7B and inability to pump excess Cu out of cells (Bandmann et al., 2015; 

Burkhead et al., 2011; Lutsenko, 2014). Neurological manifestations can occur in both diseases, 

but studies on the neurobiological basis of these symptoms are lacking. Nevertheless, by 

perturbing Cu regulatory mechanisms or Cu levels directly, studies have demonstrated a 

physiological role of Cu in modulating the activity of various proteins inside and outside the cell, 

including signaling pathways.   
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Exogenous Cu is reported to activate multiple signaling pathways depending on cell or 

tissue type (Barthel et al., 2007; Chen et al., 2009; Eckers et al., 2009; Mattie et al., 2008b). Many 

studies have looked into the role of Cu in cancer because of its role in MAPK and hypoxia inducible 

factor-1α (HIF-1α) signaling, and their relevance in growth factor receptor (EGFR/VEGFR) 

signaling, angiogenesis and tumor proliferation (Acevedo et al., 2017; Brady et al., 2017; Brady 

et al., 2014; Calderon-Aparicio et al., 2015; Chen et al., 2006; Chen et al., 2009; Chesi et al., 2016; 

Denoyer et al., 2015; Gaitanaki et al., 2007; Hassouneh et al., 2007; Henry et al., 2006; Ishida et 

al., 2013; Kadowaki et al., 2009; Kim et al., 2015; Kumar et al., 2010; Li et al., 2015b; Liu et al., 

2016a; Mattie et al., 2008a; Pan et al., 2002; Redman et al., 2003; Rigiracciolo et al., 2015; Tsai 

et al., 2012; Yee et al., 2017; Yip et al., 2011; Yoo et al., 2012). Importantly, MAPK signaling is not 

only under circadian control but plays an important role in entrainment of the clock (Antoun et 

al., 2012; Butcher et al., 2002; Butcher et al., 2005; Butcher et al., 2003; Cao et al., 2015; Dziema 

et al., 2003; Hainich et al., 2006; Pizzio et al., 2003; Pizzio et al., 2005; Sanada et al., 2000; Sato 

et al., 2014). On the other hand, several clock proteins interact/modulate HIF-1α activity, 

including in cancer cells (Choudhry and Harris, 2017; Eckle et al., 2012; Ghorbel et al., 2003; 

Kobayashi et al., 2017; Peek et al., 2017; Suyama et al., 2016), but the interactions between the 

clock and HIF-1α are still unclear (Bozek et al., 2007; Bozek et al., 2009; Chilov et al., 2001; Okabe 

et al., 2014; Yu et al., 2015). Nonetheless, Cu-induced changes in MAPK and HIF-1α activity, as 

well as other signaling molecules, could affect the clock through changes in clock gene/protein 

expression and activity. In summary, Cu is involved in metabolic, redox, and signaling aspects of 

various cells and tissues and tight homeostatic regulation is critical for cellular function.  

 

1.2b Copper in the Brain 

Brain Cu concentrations range from 1 to 4 ug/g wet tissue in mice and 5-15 ug/g wet tissue 

in humans, but there is considerable variability depending on brain region (Genoud et al., 2017; 

Hare et al., 2012; James et al., 2017; Keen and Hurley, 1979; Lovell et al., 1998; Lutsenko et al., 

2010; Magaki et al., 2007; Prohaska, 1987; Pushie et al., 2011; Rajan et al., 1997; Xu et al., 2017; 

Zatta et al., 2009). In the brain, perturbation of Cu levels leads to complex changes in synaptic 
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function that are often biphasic (D'Ambrosi and Rossi, 2015; Peters et al., 2011). The effects on 

synaptic function result from Cu’s role in both excitatory and inhibitory transmission, and may 

differ across brain regions depending on the distribution of neurotransmitter receptors. In 

hippocampal brain slices, bath-application of Cu blocks long-term potentiation (LTP) (Doreulee 

et al., 1997); inhibition of hippocampal LTP was further demonstrated by dietary 

supplementation or chronic injection of Cu in vivo (Goldschmith et al., 2005; Leiva et al., 2009). 

Cu inhibition of excitatory transmission is due to blocking calcium influx either through NMDA 

receptors (NMDAR) or postsynaptic voltage-gated calcium channels (e.g. L-type) (Doreulee et al., 

1997; Gaier et al., 2013a; Leiva et al., 2009; Morera et al., 2003; Schlief et al., 2006; Stys et al., 

2012b; Vlachova et al., 1996; You et al., 2012). Many groups have demonstrated inhibition of 

NMDAR-mediated calcium influx by application of exogenous Cu, while studies using Cu-specific 

chelators to remove endogenous Cu have provided evidence for a physiological role of Cu in 

modulating NMDAR activity (Doreulee et al., 1997; Gaier et al., 2013a; Horning and Trombley, 

2001; Marchetti, 2014; Marchetti et al., 2013; Schlief et al., 2005; Schlief and Gitlin, 2006; Schlief 

et al., 2006; Stys et al., 2012b; Trombley and Shepherd, 1996; Vlachova et al., 1996; Weiser and 

Wienrich, 1996; You et al., 2012).  

While total extracellular Cu concentrations (bound + unbound) can range from high 

nanomolar to low micromolar (rev. Mathie et al., 2006), studies have found a releasable pool of 

Cu stored in secretory vesicles (Dodani et al., 2011a; Hartter and Barnea, 1988; Kardos et al., 

1989). Cu can reach micromolar concentrations (~15µM) within the synaptic cleft and can 

modulate neurotransmitter signaling and synaptic activity in an ATP7A-dependent manner 

(Schlief et al., 2005; Schlief et al., 2006). Electrophysiology studies demonstrated that applying 

low micromolar Cu can inhibit NMDA, AMPA, and GABAa receptor activity (Kumamoto and 

Murata, 1995; Ma and Narahashi, 1993; Sharonova et al., 1998; Trombley and Shepherd, 1996; 

Vlachova et al., 1996; Weiser and Wienrich, 1996). A number of Na+, Ca2+ and K+ channels are 

also inhibited by micromolar amounts of Cu (Castelli et al., 2003; Horning and Trombley, 2001; 

Mathie et al., 2006; Morera et al., 2003; Niu et al., 2006), some of which are known to play 

important roles in SCN neuronal activity rhythms (Itri et al., 2005; Kent and Meredith, 2008; Kim 

et al., 2005; Meredith et al., 2006). Interestingly, one study has shown a biphasic effect of Cu on 
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cell firing, where low nanomolar concentrations of Cu increase the firing rates of olfactory 

epithelial neurons, while >1µM Cu decreases firing rates (Aedo et al., 2007). The mechanisms 

through which Cu inhibits many of the different receptors and ion channels have not been 

elucidated. However, in some cases, direct oxidization of thiol groups by Cu seems to be involved 

in the inhibitory effects seen at higher concentrations, as treatment with the reducing agent 

dithiotreitol blocks or reverses the Cu effects (Aedo et al., 2007; Morera et al., 2003; Weiser and 

Wienrich, 1996). Cu may also modulate neuronal activity indirectly by S-nitrosylation of NMDAR 

and other proteins (Schlief and Gitlin, 2006; Schlief et al., 2006). 

 

1.2c Copper and Circadian Clocks 

The central goal of this research is to determine whether Cu in the SCN participates in 

circadian clock functioning. Because Cu’s role in biology is pleiotropic, even in the brain there are 

many possible links between circadian output and Cu homeostasis, some of which are reviewed 

below. Importantly, this project is the first to explore Cu’s role in the SCN.       

Increased SCN neuronal activity during the day creates a higher metabolic demand as 

reflected in upregulation of mitochondrial enzymes and increased mitochondrial activity 

(Gellerich et al., 2013; Isobe et al., 2011b). Rhythmic activity of cytochrome c oxidase peaks 

during the day in SCN mitochondrial extracts, which also exhibit increased membrane potential 

(Isobe et al., 2011b). Cu is essential for normal cytochrome c oxidase function, and hence 

oxidative phosphorylation, and the TTFL clock may coordinate Cu homeostasis to ensure timely 

cellular Cu import and/or delivery to mitochondrial proteins. Interestingly, in Arabidopsis 

thaliana, clock proteins have been shown to regulate the expression of Cu import and export 

proteins in such a way that cytosolic Cu may oscillate also (Penarrubia et al., 2010; Perea-Garcia 

et al., 2016a; Perea-Garcia et al., 2016b). On the other hand, unanticipated changes in cytosolic 

and mitochondrial Cu levels may induce responses that feedback on TTFL clock function. In 

Arabidopsis, a Cu-metabolism relationship has been shown to affect circadian output (Andres-
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Colas et al., 2010; Perea-Garcia et al., 2016a; Perea-Garcia et al., 2016b). Similarly, exposure to 

Cu has been shown to affect circadian gene expression in zebrafish (Vicario-Pares et al., 2017). 

In a study of  Cu transporter expression across different brain regions, ATP7A and ATP7B 

mRNA are highest in the hypothalamus (Platonova et al., 2005b). Hypothalamic cells also express 

mRNA for CTR1 (Platonova et al., 2005b). Additionally, in the hypothalamus, ATP7A protein is 

expressed specifically in neurons and partially present in the plasma membrane, whereas ATP7B 

is mostly found associated with ependymal cells lining the third ventricle (Platonova et al., 

2005a). Interestingly, there is an ATP7B variant selectively expressed in the pineal gland and 

retina that exhibits circadian expression, with highest mRNA levels during the night (Borjigin et 

al., 1999). Rhythmic expression in the pineal gland requires SCN circadian clock signaling, and 

light-dark cycles are needed for both retinal and pineal rhythms to be maintained. In addition, 

the roles of ATOX1, ATP7A, and ATP7B in Cu homeostasis have been shown to be affected by 

redox cycling of glutathione (GSH/GSSG) by glutaredoxin-1 (Baker et al., 2017a; Bhattacharjee et 

al., 2017; Brose et al., 2014; Hatori et al., 2012; Hatori et al., 2017; Hatori and Lutsenko, 2016; 

Hatori et al., 2016; Lutsenko, 2016; Singleton et al., 2010). Since glutaredoxin utilizes NADPH in 

GSH redox (Ivarsson et al., 2005; Johansson et al., 2004; Mailloux and Treberg, 2016; Reinbothe 

et al., 2009), the circadian control and diurnal changes in NADPH as well as (global) 

glutathiolation levels (Putker et al., 2017; Rey et al., 2016; Wang et al., 2012) raise the possibility 

of circadian, posttranslational control of Cu homeostatic proteins.   These findings point to the 

possibility of circadian regulation of copper transporters/homeostasis and a putative role in 

rhythmic SCN neuronal output.  

Increases in Cu abundance promote an oxidative environment through increases in ROS 

generated through Cu participating in Fenton-type reactions and mitochondrial activity. Although 

acute changes in Cu abundance may be rare physiologically, circadian systems provide a unique 

possibility that day/night differences in Cu levels could be tied to physiological changes in ROS 

levels. Intriguingly, structural and in vitro studies suggest that the circadian hormone melatonin 

physically interacts with Cu and can scavenge and protect against Cu-induced free radical 

generation (Galano et al., 2015; Ghosh et al., 2017; Parmar et al., 2002; Perez-Gonzalez et al., 
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2017; Romero et al., 2014). Several antioxidant molecules are under circadian control, including 

Cu/Zn-dependent superoxide dismutase and glutathione (Wilking et al., 2013), and antioxidant 

responses are neuroprotective against Cu-induced oxidative stress. Notably, ATP7A dysfunction 

and resulting Cu dyshomeostasis induces redox imbalances among different cellular 

compartments, and particularly affects mitochondrial redox state by increased Cu oxidization of 

GSH (Bhattacharjee et al., 2016). Along similar lines, GSH affects CTR1-mediated Cu import, and 

conversely, Cu influx affects GSH levels; Cu import and antioxidant status are thus linked to 

protect against Cu-induced ROS generation/oxidative stress (Bhattacharjee et al., 2017; Chen et 

al., 2008a; Jazvinscak Jembrek et al., 2014; Kumar et al., 2016; Maryon et al., 2013; Mercer et al., 

2016; Ozcelik and Uzun, 2009; Scheiber and Dringen, 2011). Since redox/oxidative stress has been 

shown to influence various circadian parameters as mentioned in section 1.1, acute changes in 

intracellular Cu levels may shift the clock through these and other related mechanisms.  In brief, 

Cu-dependent changes in the activity of redox molecules may affect neuronal excitability and 

TTFL clocks in the SCN.  

In summary, studies support three interconnected oscillatory loops, including redox 

cycles, controlling circadian activity and output. In the SCN, these oscillators function in 

coordination to generate diurnal neuronal firing rhythms, which in turn directly or indirectly can 

affect these oscillators. Copper levels are tightly regulated by various homeostatic mechanisms, 

and changes in Cu concentration affects various processes, often in an inverse or biphasic 

manner. Cu’s roles include neuromodulation at various receptor-ion channels, intracellular 

signaling pathways such as MAPK/ERK, and as a redox-active element for various metabolic 

activities. Several cuproproteins, such as Cu transporters and Cu-dependent enzymes, are 

expressed in the hypothalamus and may have a role in circadian rhythms. Here we are 

investigating the role of Cu in the SCN circadian clock. 
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CHAPTER TWO  

COPPER CHELATION AND EXOGENOUS COPPER AFFECT RECEPTORS IN THE 

SUPRACHIASMATIC NUCLEUS 

This chapter is adapted for dissertation formatting from the following publication: 

Yamada Y, and Prosser RA (2014) Copper chelation and exogenous copper affect circadian clock 

phase resetting in the suprachiasmatic nucleus in vitro. Neuroscience 256: 252-261 

 
 

2.1 Introduction 

In mammals, the suprachiasmatic nucleus (SCN) in the hypothalamus governs circadian 

rhythms as the master pacemaker. The SCN is responsible for coordinating various peripheral 

clocks  and synchronizing the entire system to environmental light/dark cycles (entrainment) 

(Welsh et al., 2010). The SCN clock entrains to light/dark cycles via retinohypothalamic 

innervation from specialized retinal ganglion cells, which release glutamate (Glu) upon light 

stimulation (de Vries et al., 1993; Ebling, 1996). Glu activation of postsynaptic N-methyl-D-

aspartate receptors (NMDAR) is the dominant cue for photic entrainment, where influx of Ca2+ 

through NMDAR leads to activation of Ca2+ dependent signaling pathways (Ding et al., 1994). 

Activation of downstream kinases and transcription factors leads to induction of immediate-early 

genes and clock-associated genes involved in the molecular feedback loops that underlie cellular 

circadian rhythmicity (Golombek and Rosenstein, 2010; Welsh et al., 2010). These events reset 

the phase of the SCN circadian clock, and phase-resetting ultimately keeps physiological and 

behavioral processes coordinated with the environment. 

The process of SCN circadian clock phase resetting involves complex cellular mechanisms. 

One mechanism involves brain-derived neurotrophic factor (BDNF), which activates the tyrosine 

kinase receptor TrkB (Liang et al., 2000; Liang et al., 1998; Mou et al., 2009). The exact mechanism 

by which TrkB activation couples with SCN clock phase-resetting is unknown but may involve 

modulation of NMDAR signaling as shown in other systems  (Carreno et al., 2011; Mizuno et al., 
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2003). Previous research has found that copper (Cu) can inhibit NMDAR activation and can 

interact with proteins upstream and downstream of TrkB signaling pathways (Hwang et al., 2007; 

Thompson et al., 2011; Turski et al., 2012; Vlachova et al., 1996; Weiser and Wienrich, 1996). We 

set out to investigate potential modulatory effects of Cu in the SCN. To this end, we chose a 

potent Cu-specific chelator, tetrathiomolybdate (TTM) to decrease bioavailable Cu. TTM has 

been used in clinical studies of Wilson’s disease to reverse the pathological Cu accumulation 

caused by mutations in the copper transporter ATP7B (Brewer et al., 2003). TTM at nanomolar 

and low micromolar concentrations is well tolerated in cell culture and can chelate multiple Cu 

(up to 6) ions (Juarez et al., 2006; Kumar et al., 2010; Lowndes et al., 2009; Zhang et al., 2009b). 

Here, we report the results of in vitro electrophysiological recordings of neuronal activity from 

SCN brain slices following treatments designed to increase or decrease Cu availability. The results 

suggest that Cu functions to regulate glutamate signaling and clock resetting in SCN neurons, 

demonstrating the need for further research on the role of transition metals in SCN circadian 

clock phase regulation. 

 

2.2 Methods 

2.2a Brain slice preparation 

 Coronal brain slices (500 u) containing the SCN were prepared during the daytime from 

adult male C57BL/6Nhsd mice (Harlan Laboratories) housed in a 12:12 light/dark cycle. Slices 

were maintained at the interface of a Hatton-style brain slice chamber as described (Prosser, 

1998). Brain slices were continuously perfused with Earle’s balanced salt solution (EBSS) 

supplemented with glucose, bicarbonate and gentamicin at pH 7.4. Both the slice chamber and 

media reservoir were oxygenated (95% O2 ⁄ 5% CO2) and maintained at 37°C. All experimental 

protocols were approved by the University of Tennessee Knoxville Institutional Animal Care and 

Use Committee. 
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2.2b Drug treatments 

 All treatments were performed on day 1 in vitro. All drugs were prepared in warm, 

oxygenated EBSS. At the onset of the drug treatments, perfusion of the standard medium was 

stopped and the medium in the chamber replaced with fresh medium containing the 

experimental treatments. After 10 min this medium was removed and perfusion with untreated 

medium was reinstated. Previous experiments have demonstrated that changing the perfusion 

medium by itself does not affect the phase of the circadian clock (Biello et al., 1997; Gillette and 

Prosser, 1988; Prosser et al., 1989; Prosser et al., 2003). CuCl2, CoCl2, Glu, NMDAR antagonist 

AP5 ((2R)-amino-5-phosphonovaleric acid), and AMPA receptor antagonist NBQX (2,3-dihydroxy-

6-nitro-7-sulfamoyl-benzo[f] quinoxaline-2,3-dione) were purchased from Sigma-Aldrich (St. 

Louis, MO). TTM and bathocuproine disulfonate (BCS) salts (Sigma-Aldrich) were used to chelate 

copper. Trk receptor antagonist K252a (EMD Biosciences (Philadelphia, PA)) and TrkB inhibitor, 

TrkB-Fc (R&D Biosciences (Minneapolis, MN)) were also used in this study. For experiments 

involving the TrkB inhibitor (TrkB-I), slices were pre-treated for 5 min, followed by a 10 min 

treatment of TrkB-I in combination with Glu, TTM, or CuCl2. 

 

2.2c Single-unit recording and data analysis 

 Single-unit recordings were performed on day 2 in vitro for most experiments, and on day 

3 in vitro where indicated. The procedure for neuronal recordings has been described previously 

(Prosser, 1998). Briefly, the spontaneous activity of single SCN neurons was recorded 

extracellularly using glass capillary microelectrodes filled with 3M NaCl. Each neuron was 

recorded for 5 min, and the data stored for later determination of firing rate using a DataWave 

system (Berthoud, CO). Typically, 4–7 cells were recorded during each hour. These individual 

firing rates were then used to calculate 2 h running averages, lagged by 1 h (± SEM), to obtain a 

measure of population neuronal activity. As in previous studies (Mou et al., 2009; Prosser, 1998), 

the time of peak neuronal activity was assessed visually by estimating, to the nearest quarter 

hour, the time of symmetrically highest activity. For example, if the two highest 2 h means are 
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equal, then the time of peak is estimated to be halfway between them. Phase shifts were 

calculated as the difference in time-of-peak of untreated slices vs. drug treated slices. Using these 

methods, the consistency of the results obtained for each experimental manipulation is such that 

differences in phase of as little as one hour are often statistically significant with few replicates 

(Chen et al., 1999; Prosser, 1998). Statistical analyses were performed using Sigmastat (San Jose, 

CA, USA). One-way ANOVA was used to test for significant differences between treatment and 

control experiments, followed by Holm-Sidak test for post hoc comparisons. 

 

2.3 Results 

2.3a Copper chelation phase-shifts the SCN circadian clock 

In our SCN slice recordings, the population neuronal firing rates of untreated control slices 

peaked during mid-subjective day on 2 d in vitro with a mean (± SEM) time-of-peak of Zeitgeber 

time (ZT) 6.06 ± 0.07 (n = 4; Fig. 2.1a; ZT 0 = lights-on and ZT 12 = lights-off in the animal colony). 

These results are consistent with previous studies showing that peak activity occurs around mid-

day on days 1-3 in vitro (Gillette and Prosser, 1988; Prosser et al., 1989) . To assess the role that 

Cu plays in the SCN circadian clock, we began by using a high affinity Cu-specific chelator, TTM to 

reduce available Cu levels in the SCN. Bath application of 1µM TTM at early subjective night 

(ZT16) induced a significant delay in peak neuronal activity, with a mean time-of-peak occurring 

at ZT9.0 ± 0.24 (n = 4, p<0.001; Fig. 2.1). As expected, the delayed time of peak neuronal activity 

seen on day 2 in vitro reflects a permanent shift of the underlying circadian clock, as we observed 

a similarly delayed time-of-peak on the third day in vitro (mean phase shift: -3.0 h ± 0.14, n = 3; 

Fig. 2.1b).  

The ~3-h phase shifts induced by TTM at ZT16 are similar to those induced by Glu 

activation of NMDAR (Biello, 2009; Mou et al., 2009). Since Cu is known to inhibit NMDAR activity 

(Trombley and Shepherd, 1996; Vlachova et al., 1996), we hypothesized that TTM phase-shifts 

the SCN circadian clock by decreasing Cu inhibition of NMDAR activity. If correct, lower doses of 
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Figure 2.1. TTM treatment at early-subjective night (ZT16) induces phase-delays 

Top: Shown are the 2 h means ± SEM of SCN neuronal activity recorded on day 2 in vitro from 

control slices and slices treated at ZT16 with the compounds indicated. 10 min treatment with 

1µM TTM induces a phase-delay that is blocked by co-application of AP5 and 10µM Cu. NBQX 

partially blocks the effect of TTM. Horizontal bars: time of lights-off in the animal colony; vertical 

bars: time of drug treatment; dotted line: mean time-of-peak in control experiments.  Bottom: 

Histogram plot summarizing the mean phase shifts ± SEM resulting from the indicated 

treatments. Phase delays induced by 1µM TTM occur on day 2 and day 3 in vitro. 10nM TTM does 

not induce phase delays by itself but induces phase delays in the presence of 1µM Glu. 1µM Glu 

by itself does not have an effect. One-way ANOVA indicated a significant effect of treatments (F 

= 23.23). Numbers in parentheses indicates number of experiments. *Phase delays significantly 

different from (untreated) control slices based on post hoc (Holm-Sidak) test (P < 0.01). Delays 

are plotted as negative values. ZT, zeitgeber time. 
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Figure 2.1 continued 
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TTM would be less effective at removing this inhibition. Consistent with this, a 10-fold lower 

concentration of TTM (100nM) also induced phase delays but of a smaller magnitude (mean 

phase shift of -1.50 h ± 0.31, n = 4, p<0.01; Fig. 2.1b), while a 100-fold concentration (10nM) did 

not induce significant changes (mean phase shift: 0.58 h ± 0.22, n = 3). This theory also assumes 

that there is a low concentration of endogenous Glu, below what is needed to activate NMDAR 

until the inhibition by Cu is removed by TTM. On-going studies in our lab have demonstrated that 

10µM Glu and higher concentrations cause ~3-h phase delays when applied at ZT16 (e.g., see Fig. 

2.3), but 1µM Glu does not cause phase delays (mean phase shift: 0.23 h ± 0.24, n = 3; Fig. 2.1b). 

However, a combined treatment of 10nM TTM and 1µM Glu causes phase delays (mean phase 

shift: -1.44 ± 0.43, n = 4, p<0.01; Fig. 2.1b), suggesting a synergistic effect in activating NMDARs. 

 

2.3b TTM-induced phase shifts depend on NMDAR and TrkB receptor activity 

To further investigate whether TTM-induced phase delays involve NMDAR and other 

relevant receptors, we used various antagonists in combination with TTM. In support of our 

hypothesis, co-application of the NMDAR antagonist AP5 (50μM) blocked TTM-induced phase 

delays (mean phase shift: -0.17 h ± 0.44, n = 3; Fig. 2.2).  Previous reports indicate that AMPA 

receptors participate in photic phase shifts upstream of NMDAR, likely by removing the 

magnesium block of NMDAR channels (Mintz et al., 1999; Mizoro et al., 2010). Consistent with 

this, the AMPA receptor antagonist NBQX (20μM) attenuated TTM-induced phase delays (mean 

phase shift: 0.83 h ± 0.44, n = 3; Fig. 2.2). Neither AP5 nor NBQX affected the phase of SCN 

neuronal activity rhythms when applied alone to the brain slices (mean phase shifts, respectively:  

-0.25 h ± 0.38, n = 3; -0.17 h ± 0.08, n = 3; data not shown). 

Glu-induced phase shifts also require activation of TrkB receptors by its ligand BDNF (Allen 

et al., 2005; Liang et al., 2000; Mou et al., 2009). We therefore used the non-selective Trk 

receptor inhibitor K252a to test whether the TrkB receptor is similarly involved in TTM-induced 

phase delays. Co-treatment with K252a (1μM) blocked TTM-induced phase delays (mean phase 

shift: 0.33 h ± 0.72, n = 3; Fig. 2.2). To further test TrkB receptor involvement, we used a TrkB 
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Figure 2.2. TTM-induced phase shifts require NMDA and TrkB signaling  

Histogram plot summarizing the mean phase shifts ± SEM resulting from the indicated 

treatments, where TTM concentration is 1µM. ZT16: TTM-induced phase delays are blocked by 

AP5, NBQX, K252a, and TrkB-I (inhibitor). ZT23: TTM induces phase advances that are blocked by 

AP5, K252a, and TrkB-I. One-way ANOVA indicated a significant effect of treatments (F = 18.31). 

*Phase delays significantly different from control (p<0.05). aData repeated from Fig. 2.1 for 

clarity. 
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fusion protein (TrkB-I) to bind BDNF and inhibit activation of TrkB signaling selectively. We found 

that TTM-induced phase delays were also blocked by TrkB-I (1μg/mL) co-treatment (mean phase 

shift: 0.0 h ± 0.14, n = 3; Fig. 2.2), Analogous to previous results from our lab with K252a (Mou et 

al., 2009), TrkB-I did not cause phase delays when applied alone (mean phase shift: -0.08 h ± 0.55, 

n = 3; data not shown). We also confirmed that TrkB-I treatment inhibits Glu-induced phase 

delays (mean phase shift: 0.25 h ± 0.25, n = 3; data not shown).  

Glu activation of NMDAR during late subjective night (ZT23) causes ~2-3 h phase advances 

through somewhat different intracellular mechanisms from ZT16 (Mou et al., 2009). Therefore, 

we investigated whether TTM applied to SCN brain slices at ZT23 mimics the phase-advancing 

effects of late-night Glu applications. We determined that 1μM TTM induced phase advances 

when applied to SCN brain slices at ZT 23 (mean phase shift: 1.63 h ± 0.31, n = 4, p<0.05; Fig. 2.2).  

Together, these results indicate that Cu chelation can induce photic-like phase delays and phase 

advances when applied to the SCN in vitro. 

Furthermore, we found that the phase advances induced by TTM application at ZT 23 

were blocked by co-treatment with AP5 (mean phase shift: 0.5 h ± 0.0, n = 3), K252a (mean phase 

shift: 0.58 h ± 0.22, n = 3), or TrkB-I (mean phase shift: 0.17 h ± 0.46, n = 3; Fig. 2.2), analogous to 

the results of our ZT16 experiments. Together, the results suggest that TTM-induced phase shifts 

at both ZT16 and ZT23 are dependent on NMDAR and TrkB receptor activity in a manner similar 

to Glu-induced phase shifts. 

 

2.3c Cu application phase-shifts the SCN circadian clock  

To confirm whether TTM-induced phase delays result from Cu depletion, we used a 

different Cu chelator, bathocuproine sulfonate (BCS). Bath-application of 10μM BCS caused 

phase delays similar to TTM (mean phase shift: -2.67 h ± 0.44, n = 3, p<0.001; Fig. 2.3). 

Furthermore, co-application of 10µM Cu with TTM prevented TTM-induced phase delays (mean 

phase shift: -0.25 h ± 0.20, n = 3; Fig. 2.3), whereas 10µM cobalt was unable to block the effect  
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Figure 2.3. 10µM Cu induces phase delays at ZT16 

 Histogram plot summarizing the mean phase shifts ± SEM resulting from the indicated 

treatments. 10µM of the Cu chelator, bathocuproine sulfonate (BCS), induces phase delays 

similar to TTM. Co-application of 1µM TTM with 10µM Cu results in no phase delays, but the 

combination of TTM with 10µM Co2+ causes phase delays.10 min treatment with 10µM Cu 

induces phase delays, but 4µM Cu does not. However, 4µM Cu inhibits Glu (100µM)-induced 

phase delays, resulting in no shift. One-way ANOVA indicated a significant effect of treatments 

(F = 14.97); *p<0.05 (compared to control). 
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of TTM (mean phase shift: -2.25 h ± 0.25, n = 3, p<0.001; Fig. 2.3). Application of cobalt alone did 

not have an effect (mean phase shift: 0.08 h ± 0.22, n = 3; Fig. 2.3). Thus, two Cu chelators induce 

phase delays, while saturating TTM with excess Cu inhibits TTM-induced phase delays.  

Next, we investigated the effects of Cu treatment on the SCN circadian clock phase. First, 

we applied the same concentration of Cu (10µM) as that which inhibited TTM-induced phase 

delays at ZT16. Interestingly, treatment with 10µM Cu alone at ZT16 resulted in phase delays 

with a mean shift of -2.06 h ± 0.07 (n = 4, p<0.01; Fig. 2.3). Given that TTM and Cu applied 

individually both induced phase delays, the lack of phase shift induced by the combined 

treatment reported above led us to explore Cu effects in more detail.  Based on the maximum 

estimated 6:1 binding ratio of Cu to TTM, a combined treatment of 10μM Cu and 1μM TTM could 

result in a net increase in Cu levels of 4μM. Therefore, we applied 4µM Cu to investigate the 

dose-dependency of Cu-induced phase delays. As shown in Fig. 2.3, this concentration of Cu had 

no effect on the time of peak neuronal activity in the SCN (mean phase shift: 0.0 h ± 0.58, n = 3). 

These results suggest that with the combined TTM/Cu treatment, a portion of the Cu binds to 

and saturates the chelation capacity of TTM, while the remaining Cu is insufficient to induce a 

phase shift on its own. 

Based on previous reports suggesting that Cu can inhibit Glu signaling (Vlachova et al., 

1996; Weiser and Wienrich, 1996), next we tested whether Cu could inhibit Glu-induced phase 

delays at ZT 16. Since 10μM Cu alone causes phase delays, for these experiments we needed to 

use the lower (4µM) concentration of Cu. We also used a lower concentration of Glu (100μM) 

that still induces a robust phase shift (mean phase shift: -2.9 + 0.17 h, n = 3, p<0.001; Fig 2.3), to 

increase the potential of seeing an inhibition. Co-application of 4 μM Cu and 100μM Glu induced 

no phase shift (mean phase shift: -0.0 h ± 0.29, n = 3; Fig. 2.3), demonstrating that, while 4µM Cu 

applied alone has no phase-shifting effect, it nonetheless is able to inhibit Glu-induced phase 

delays. These results demonstrate that the effects of exogenous Cu on SCN clock phase 

regulation are highly dependent on its concentration, with lower levels capable of inhibiting Glu-

induced phase shifts and higher levels capable of mimicking Glu-induced phase shifts.  
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Importantly these results are also consistent with our hypothesis that TTM-induced phase shifts 

involve chelation of endogenous Cu. 

 

2.3d Cu-induced phase shifts are not NMDAR dependent 

To begin exploring the cellular mechanisms underlying 10µM Cu-induced phase shifts, we 

first tested whether Cu-induced phase delays involve either NMDA or TrkB receptors. We found 

that Cu-induced phase delays were not inhibited by either AP5 (mean phase shift: -1.75 h ± 0.18, 

n = 3, p<0.05) or NBQX (mean phase shift: -2.5 h ± 0.38, n = 3, p<0.001; Fig 2.4). In contrast, Cu-

induced phase delays were inhibited by K252a (mean phase shift: -0.38 h ± 0.28, n = 3) and TrkB-

I (mean phase shift: 0.33 ± 0.22, n = 3; Fig 2.4).  

Similar to our results at ZT 16, treatment with 10μM Cu at ZT23 induced phase advances 

(mean phase shift: 1.56 h ± 0.36, n = 4, p<0.05; Fig. 2.4) that were not sensitive to AP5 (mean 

phase shift: 1.92 h ± 0.55, n = 3, p<0.05; Fig. 2.4). However, unlike our results at ZT 16, neither 

K252a co-application nor the more specific TrkB-I inhibitor blocked Cu-induced phase advances 

(mean phase shift, respectively: 2.17 h ± 0.60, n = 3, p<0.01 and 1.69 ± 0.45, n = 4, p<0.05; Fig. 

2.4). The above data suggest that the mechanisms involved in Cu-induced phase shifts are 

different from TTM-induced phase shifts. Moreover, the mechanisms associated with Cu-induced 

phase delays and phase advances also appear to be different. 

 

2.4 Discussion 

 These experiments are the first to demonstrate that SCN circadian clock phase is affected 

by in vitro treatments that either increase or decrease Cu levels.  These data implicate 

endogenous Cu in the regulation of mammalian circadian rhythms. The concentrations of 

physiologically relevant transition metals (Cu, Zn, Fe) have been shown to vary between brain 

regions, and these metals have diverse tissue-specific functions. Little is known about their  
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Figure 2.4. Cu-induced phase shifts do not depend on NMDAR signaling  

Histogram plot summarizing the mean phase shifts ± SEM resulting from the indicated 

treatments. ZT16: Neither AP5 nor NBQX affects Cu-induced phase delays, whereas K252a and 

TrkB-I inhibited the effect of Cu. ZT23: 10µM Cu causes phase advances, but AP5, K252a, nor 

TrkB-I blocked these phase advances. One-way ANOVA indicated a significant effect of 

treatments (F = 19.93). *Phase advances significantly different from (untreated) control slices (P 

< 0.05). Advances are plotted as positive values. aData repeated from Fig. 2.3 for clarity. 
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functions in circadian biology. By investigating the phase-shifting effects of TTM and Cu, this 

study provides the groundwork for future research regarding the role of Cu in modulating Glu 

signaling in the SCN and in turn, whether the SCN clock regulates Cu availability in SCN cells and 

other brain areas. 

 Brain Cu concentrations range from 1 to 4 ug/g wet tissue in mice and 5-15 ug/g wet tissue 

in humans, but there is considerable variability depending on brain region (Keen and Hurley, 

1979; Lovell et al., 1998; Lutsenko et al., 2010; Magaki et al., 2007; Prohaska, 1987; Rajan et al., 

1997; Zatta et al., 2009). Because high Cu concentrations can be toxic to cells, most cellular Cu is 

restricted by binding to storage/buffering proteins, as well as through Cu transport. Total 

extracellular Cu concentrations (bound + unbound) can range from high nanomolar to low 

micromolar (rev. Mathie et al., 2006). Total intracellular Cu concentration is thought to range 

similarly from nanomolar to micromolar (Balamurugan and Schaffner, 2006). However, the 

intracellular concentration of unbound Cu is virtually zero under homeostatic conditions due to 

an abundance of proteins that can bind Cu and respond to sudden influxes (Hung et al., 2010). 

In hypothalamic and hippocampal neurons, studies have found a releasable pool of Cu 

stored in vesicles (Dodani et al., 2011a; Hartter and Barnea, 1988; Kardos et al., 1989). Two P-

type ATPases, ATP7A and ATP7B, are responsible for intracellular Cu transport. Mutations in 

ATP7A disrupt Cu absorption and delivery to Cu-dependent enzymes, resulting in symptoms of 

Cu deficiency (as occurs in Menkes disease). Mutations in ATP7B result in Wilson’s disease, 

marked by excess Cu accumulation in tissues. Neurological manifestations can occur in both 

diseases, but studies on the neurobiological roles of ATP7A/B in general are lacking. In response 

to excess intracellular Cu, these transporters relocate to the plasma membrane and function in 

Cu efflux in different tissues. In neurons, Cu can reach micromolar concentrations (~15µM) within 

the synaptic cleft and can modulate neurotransmitter signaling and synaptic activity in an ATP7A-

dependent manner (Schlief et al., 2005; Schlief et al., 2006). In a study of  Cu transporter 

expression across different brain regions, ATP7A and ATP7B mRNA is highest in the hypothalamus 

(Platonova et al., 2005b). Hypothalamic cells also express mRNA for the Cu import protein, 

copper transporter 1, although protein levels were not reported (Platonova et al., 2005b). In a 
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recent proteomic study of SCN tissue, rhythmic expression of the Cu chaperone and transporter 

ATOX1 was reported (Lee et al., 2013); ATOX1 interacts with ATP7A and appears to be required 

for normal Cu efflux (Hamza et al., 2003; Hamza et al., 1999) Additionally, in the hypothalamus, 

ATP7A protein is expressed specifically in neurons and partially present in the plasma membrane, 

whereas ATP7B is mostly found associated with ependymal cells lining the third ventricle 

(Platonova et al., 2005a). 

In hippocampal neurons, ATP7A has been found to traffic to the plasma membrane in 

response to KCl-induced depolarization―as well as in response to NMDA or Glu treatment―an 

event accompanied by an increase in Cu efflux (Schlief et al., 2005; Schlief et al., 2006). Both KCl- 

and NMDAR-induced re-localization of ATP7A can be blocked by NMDAR antagonists or Ca2+ 

chelation (Schlief et al., 2005).  In a more recent study, the link between Ca2+ signaling and Cu 

efflux in hippocampal neurons was further confirmed using both Cu2+-specific fluorescent sensors 

and X-ray fluorescence microscopy (Dodani et al., 2011a). Cu release in response to Glu is 

postsynaptic and is thought to modulate postsynaptic neuronal activation. Importantly, our data 

are the first to functionally link Cu and NMDA signaling in the hypothalamus. It is tempting to 

speculate that, as in the hippocampus, vesicular release of Cu by SCN neurons may modulate 

NMDAR activity. Because Glu is released by retinal ganglion cells when they are stimulated by 

light, high daytime Glu activation of NMDAR may increase ATP7A localization to the plasma 

membrane of SCN neurons and enhance synaptic release of Cu, which could dampen NMDA 

receptor activity. In fact, a similar idea has been proposed for Arabidopsis thaliana, where 

cytosolic Cu levels may oscillate in a circadian fashion as a result of feedback loops regulating the 

expression and activity of Cu transporters (Penarrubia et al., 2010).  

Interestingly, there is an ATP7B variant selectively expressed in the pineal gland and retina 

that exhibits circadian expression, with highest mRNA levels during the night (Borjigin et al., 

1999). Rhythmic expression in the pineal gland requires SCN circadian clock signaling, while light-

dark cycles are needed for both retinal and pineal rhythms to be maintained. Using organotypic 

pineal cell culture, the authors also showed that activation of β-adrenergic receptors or 

treatment with a cAMP analog can induce transcription of the ATP7B variant (Borjigin et al., 
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1999). Together, these studies raise the possibility that cytosolic Cu levels and proper delivery of 

Cu to cuproproteins may be regulated in a circadian fashion in multiple endogenous oscillators 

in a manner that reflects day-night variations in metabolic demands. Thus, it will be important to 

determine whether the Cu transporters described above are found in the SCN, and assess 

whether cytosolic Cu levels oscillate in SCN cells.  

Early electrophysiology studies demonstrated that applying low micromolar Cu can inhibit 

NMDA, AMPA, and GABAa receptor activity (Kumamoto and Murata, 1995; Ma and Narahashi, 

1993; Sharonova et al., 1998; Trombley and Shepherd, 1996; Vlachova et al., 1996; Weiser and 

Wienrich, 1996). A number of Na+, Ca2+ and K+ channels are also inhibited by micromolar amounts 

of Cu (Castelli et al., 2003; Horning and Trombley, 2001; Mathie et al., 2006; Morera et al., 2003; 

Niu et al., 2006), some of which are known to play important roles in SCN neuronal activity 

rhythms (Itri et al., 2005; Kent and Meredith, 2008; Kim et al., 2005; Meredith et al., 2006). 

Interestingly, one study has shown a biphasic effect of Cu on cell firing, where low nanomolar 

concentrations of Cu increase the firing rates of olfactory epithelial neurons, while >1µM Cu 

decrease firing rates (Aedo et al., 2007). As the physiological effects of Cu on postsynaptic 

receptors are dependent on Cu concentration and localization, speculation on how Cu modulates 

the activity of the various receptors in the SCN in vivo is difficult. Based on the results presented 

here, however, we hypothesize that there are diurnal changes in the effects of extracellular Cu 

and the overall function of Cu in the SCN.  

 The mechanisms through which Cu inhibits many of the different receptors and ion 

channels have not been elucidated. However, in some cases, direct oxidization of thiol groups by 

Cu seems to be involved in the inhibitory effects seen at higher concentrations, as treatment with 

the reducing agent dithiotreitol blocks or reverses the Cu effects (Aedo et al., 2007; Morera et 

al., 2003; Weiser and Wienrich, 1996). Cu may also modulate activity indirectly by S-nitrosylation 

of NMDAR and other proteins (Schlief and Gitlin, 2006; Schlief et al., 2006), a mechanism 

reported to be important in SCN rhythmicity (Riccio et al., 2006). Conversely, a recent study using 

hippocampal neurons (You et al, 2012) together with earlier reports (Martin et al, 1971; Vlachova 

et al 1996) suggests that Cu inhibition of NMDA signaling could involve an interaction with 
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glycine/D-serine.  Clearly, the mechanism through which Cu acts in the SCN deserves further 

investigation. 

In the present study, we used TTM to investigate whether endogenous Cu modulates SCN 

circadian rhythms. TTM is able to compete with high affinity cuproproteins (e.g. metallothionein) 

for Cu and is suggested to have sub-nanomolar affinity (Lowndes et al., 2009; Ogra et al., 1996).  

To evaluate whether the effects of TTM are specifically attributable to Cu chelation, we tested a 

second Cu chelator, BCS. Since BCS also caused phase delays when applied at ZT 16, this strongly 

indicates that it is the removal of Cu that causes the phase delays. Consistent with this, combining 

Cu and TTM at a 10:1 ratio (which would prevent chelation of endogenous Cu) resulted in no 

phase delay. Conversely, cobalt had no effect on TTM-induced phase delays. Since 10nM TTM did 

not induce phase delays, this suggests that there is enough Cu in the slice to saturate and block 

the effect of 10nM TTM. However, when combined with a concentration of Glu (1µM) that by 

itself does not induce phase delays, we observed an additive effect of 10nM TTM and 1µM Glu. 

These results suggest that TTM does chelate Cu at this low nanomolar concentration and thereby 

increases the sensitivity of SCN neurons to Glu.  

Our results suggest that TTM induces both phase advances and phase delays by relieving 

Cu antagonism of NMDAR activity, as the NMDAR antagonist AP5 blocked the early- and late-

night effects of TTM while low (4µM) concentrations of Cu inhibit Glu-induced phase shifts. The 

results from NBQX experiments suggest that AMPA receptors also contribute to TTM effects. 

Since TrkB receptor activation is necessary for Glu-induced phase shifts, the K252a and TrkB-I 

inhibition of TTM-induced phase shifts is also consistent with Cu modulation of NMDAR activity 

(Liang et al., 2000; Michel et al., 2006; Mou et al., 2009).  

Additionally, our results raise the question whether TTM-induced phase shifts require 

endogenous Glu in our SCN slices. One study demonstrated that on average, ~200 picomoles (per 

15 minutes) of Glu is released at early night in rat SCN slices, and application of 1µM NMDA 

increased Glu release (Hamada et al., 1998). Furthermore, the authors used enucleated rats to 

demonstrate that spontaneous Glu release does not require retinal ganglion cells and intact 

retinohypothalamic input to SCN neurons. If TTM chelation of Cu leads to increased NMDAR 



 

32 
 

activation, then this may stimulate additional release of Glu in the SCN slice and enhance NMDAR 

activity even further. Our data showing that 10nM TTM enabled 1µM Glu to induce phase delays 

support such a model. Moreover, 100nM TTM alone induced small phase delays while 1µM Glu 

treatment did not. This suggests that there is enough Cu present in the SCN to block NMDAR 

activation by 1µM Glu treatment in addition to endogenous Glu, but upon sufficient removal of 

Cu inhibition, endogenous Glu alone is capable of phase-shifting the clock. Whether TTM effects 

require endogenous Glu and whether Cu chelation increases Glu release in the SCN remains 

untested. Altogether, our experiments with TTM suggest an important role of Cu in modulating 

glutamatergic tone in the SCN, and Cu’s potential in vivo role in modulating retinohypothalamic 

innervation warrants further investigation.  

The data regarding Cu-induced phase shifts is less straight-forward. One study using 

cultured cortical neurons demonstrated that 10µM Cu significantly increases phosphorylation of 

Trk receptors in a matrix metalloproteinase dependent manner (Hwang et al., 2007). Because 

K252a and TrkB-I blocked Cu-induced phase delays at ZT16, it will be important to determine 

whether Cu increases TrkB phosphorylation in the SCN. However, neither K252a nor TrkB-I 

blocked Cu-induced phase advances at ZT23. This suggests that the effects of Cu at ZT23 involve 

distinct cellular mechanisms from those at ZT 16. On first glance, it is surprising that both Cu 

removal and Cu addition induced photic-like phase shifts. However, Cu has been shown to have 

biphasic effects at low nanomolar versus low micromolar concentrations (Aedo et al., 2007; 

Peters et al., 2011). This is similar to the modulatory activities of zinc (II), which have also been 

shown to have biphasic effects at low and high concentrations (Blakemore and Trombley, 2004; 

Lorca et al., 2011; Tian et al., 2010). The involvement of glycine and/or glycine receptors in these 

biphasic effects have been demonstrated for both Cu and zinc (Doi et al., 1999; Miller et al., 2005; 

You et al., 2012; Zhang and Thio, 2007), and glycine itself has biphasic actions in the SCN (Ito et 

al., 1991; Mordel et al., 2011). Hence, the differences in effects of Cu chelation versus Cu 

application are likely to be pleiotropic and complex.   

Evolutionarily, the effects of copper removal and addition might relate to the need for 

SCN cells to tightly regulate copper levels. Cu is required for normal metabolic activity of cells, 
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and both copper excess and copper deficiency are toxic or fatal to most cells, a fact brought 

especially to bear in Menkes’ and Wilson’s disease patients. Further, there is precedence for a 

Cu-metabolism relationship affecting some circadian parameters, as seen in Arabidopsis (Andres-

Colas et al., 2010). In any case, our experiments demonstrate that the mechanisms involved in 

TTM-induced phase shifts differ to some extent from Cu-induced phase shifts: TTM-induced 

phase shifts involve activation of NMDA signaling, while Cu affects circadian rhythms 

independent of Glu receptor signaling. In summary, our data demonstrating that both increasing 

and decreasing Cu levels can affect the phase of the SCN circadian clock lays the foundation for 

future research on the function of Cu in the SCN circadian clock. 
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CHAPTER THREE  

COPPER CHELATION AND EXOGENOUS COPPER AFFECT INTRACELLULAR 

SIGNALING IN THE SCN  

 

3.1 Introduction 

 Copper is an essential trace element involved in energy production and cellular redox 

activities. Depending on cellular location and protein coordination, copper (Cu) switches 

oxidation state (Cu2+/+) making it uniquely important as an essential cofactor of several 

enzymes, such as cytochrome c oxidase in the mitochondrial electron transport chain (Gaier, 

Eipper et al. 2013, Scheiber, Mercer et al. 2014). Because of the redox activity of Cu, however, 

excessive and/or dysregulated Cu can generate reactive oxygen species and cause oxidative 

damage intracellularly or extracellularly. On the other hand, systemic Cu deficiency has moderate 

to severe effects on development and neurological function, as seen in Menkes disease, while 

disruption of Cu delivery due to mutations, dietary deficiency, or chelation can lead to improper 

mitochondrial function, iron metabolism, and neuronal function (Gaier, Eipper et al. 2013, 

Scheiber, Mercer et al. 2014). Thus, Cu homeostasis requires highly regulated, intricate 

mechanisms, many of which are evolutionarily conserved from yeast to humans and yet poorly 

understood in the brain. 

By perturbing Cu regulatory mechanisms or Cu levels directly, studies have demonstrated 

a physiological role of Cu in modulating the activity of various proteins inside and outside the cell.  

By knocking out copper transporter 1 (CTR1) or by chelation of extracellular Cu, diminishing Cu 

influx decreases phosphorylation and activation of the MAPKs, extracellular signal-regulated 

kinase1/2 (ERK1/2), possibly through a direct mechanism (Chen, Lan et al. 2009, Tsai, Finley et al. 

2012, Turski, Brady et al. 2012, Brady, Crowe et al. 2014). The activator of ERK1/2, MAPK/ERK 

kinase1 (MEK1) has been shown to bind Cu with fentomolar or tighter affinity, and MEK1 

phosphorylation of ERK increases in the presence of Cu (Turski, Brady et al. 2012, Brady, Crowe 
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et al. 2014). In addition, exogenous Cu is reported to activate other signaling pathways depending 

on cell or tissue type probably as a result of oxidative stress due to excess or dysregulation of 

free Cu (Barthel, Ostrakhovitch et al. 2007, Mattie, McElwee et al. 2008, Chen, Lan et al. 2009, 

Eckers, Reimann et al. 2009). Thus Cu modulation of signal transduction may occur through 

different mechanisms and have different roles depending on tissue. 

In the brain, perturbation of Cu levels leads to complex changes in synaptic function that 

are often biphasic. The complex effects of Cu illustrate its role in excitatory and inhibitory 

transmission, and they depend on the neurotransmitter receptors and their distribution as well 

as the cellular context or brain region. In hippocampal neurons, bath-application of Cu in 

hippocampal slices blocks LTP (Doreulee, Yanovsky et al. 1997), and inhibition of hippocampal 

LTP was further demonstrated by diet or chronic injection of Cu in vivo (Goldschmith, Infante et 

al. 2005, Leiva, Palestini et al. 2009). Cu inhibition of excitatory transmission is due to blocking 

either calcium influx through NMDA receptors (NMDAR) or postsynaptic voltage-gated calcium 

channels (e.g. L-type) (Vlachova, Zemkova et al. 1996, Doreulee, Yanovsky et al. 1997, Morera, 

Wolff et al. 2003, Schlief, West et al. 2006, Leiva, Palestini et al. 2009, Stys, You et al. 2012, You, 

Tsutsui et al. 2012, Gaier, Eipper et al. 2013). Many groups have demonstrated inhibition of 

NMDAR-mediated calcium influx by exogenous Cu, and moreover, use of Cu-specific chelators to 

remove endogenous Cu has provided evidence for a physiological role of Cu in modulating 

NMDAR activity (Trombley and Shepherd 1996, Vlachova, Zemkova et al. 1996, Weiser and 

Wienrich 1996, Doreulee, Yanovsky et al. 1997, Horning and Trombley 2001, Schlief, Craig et al. 

2005, Schlief and Gitlin 2006, Schlief, West et al. 2006, Stys, You et al. 2012, You, Tsutsui et al. 

2012, Gaier, Eipper et al. 2013, Marchetti, Baranowska-Bosiacka et al. 2013, Marchetti 2014). 

Furthermore, our studies of the suprachiasmatic nucleus (SCN) using hypothalamic slices suggest 

a role for endogenous Cu in modulating NMDAR-mediated effects (Yamada and Prosser 2014).    

The SCN in the hypothalamus is the master clock governing mammalian circadian rhythms 

in coordination with external signals, where the light/dark cycle is the dominant environmental 

cue or zeitgeber (“time-giver”) (Albers et al., 2017; Evans, 2016; Golombek and Rosenstein, 2010; 

Herzog et al., 2017; Welsh et al., 2010). Light-induced NMDAR signaling to the SCN occurs via 
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axons from retinal ganglion cells, which release glutamate (Glu) and other neuromodulatory 

factors onto SCN neurons (Baver et al., 2008; Berson et al., 2002; de Vries et al., 1993; Ding et al., 

1994; Doyle et al., 2008; Drouyer et al., 2007; Ebling et al., 1991; Hattar et al., 2002; Mikkelsen 

et al., 1995; Mintz and Albers, 1997; Mintz et al., 1999; Tsai et al., 2009; Vindlacheruvu et al., 

1992; Wong et al., 2007). During the night, Glu activation of NMDAR shifts the phase of SCN 

rhythmic activity by resetting the clocks of SCN neurons (“phase shifts”), which requires calcium-

dependent signal transduction to activate transcription and translation of various molecules 

(Aguilar-Roblero et al., 2007; Albers et al., 2017; Asai et al., 2001; Colwell, 2000, 2001; de Vries 

et al., 1994; Ebling et al., 1991; Fukushima et al., 1997; Golombek and Rosenstein, 2010; Hamada 

et al., 1999; Mintz and Albers, 1997; Mintz et al., 1999; Tischkau et al., 2003a; Tominaga et al., 

1994; Vindlacheruvu et al., 1992; Watanabe et al., 1994). Resetting the SCN clock phase during 

the early night results in phase delays, while phase resetting during the late night results in phase 

advances. This is because different signaling molecules are involved in early or late night effects 

downstream of calcium influx and calcium-mediated nitric oxide synthase (NOS) activation 

(Agostino et al., 2004; Ding et al., 1994; Ding et al., 1997; Ferreyra and Golombek, 2001; 

Fukushima et al., 1997; Golombek et al., 2004; Golombek and Rosenstein, 2010; Harrington et 

al., 1999; McNulty et al., 1998; Plano et al., 2012; Watanabe et al., 1994). Phase delays require 

ryanodine receptor activation and release of intracellular calcium from the ER, whereas phase 

advances require activity of soluble guanylyl cyclase and cGMP-dependent protein kinase (PKG) 

(Aguilar-Roblero et al., 2007; Aguilar-Roblero et al., 2016; Ding et al., 1998; Ferreyra et al., 1998; 

Ferreyra and Golombek, 2001; Golombek et al., 2004; Mathur et al., 1996; Mercado et al., 2009; 

Oster et al., 2003; Plano et al., 2012; Prosser et al., 1989; Tischkau et al., 2004; Tischkau et al., 

2003b; Weber et al., 1995). However, both night-time phase shifts involve MEK activity and 

phosphorylation of ERK1/2 (Antoun et al., 2012; Butcher et al., 2002; Butcher et al., 2005; Cao et 

al., 2015; Cao et al., 2008; Coogan and Piggins, 2003; Dziema et al., 2003; Hainich et al., 2006). 

Since Cu may be required for MEK activity and ERK signaling, here we investigate the role of 

various signaling pathways in the SCN mediating the effects of exogenous Cu and chelation of 

endogenous Cu in phase-shifting the SCN clock. 
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  Previously we have shown that bath-application of 10µM Cu alone, but not 4µM Cu, 

phase-shifts SCN neuronal activity rhythms. Interestingly, 4µM Cu inhibits co-applied Glu from 

inducing NMDAR-mediated phase shifts, and furthermore, chelation of endogenous Cu induces 

NMDAR-mediated phase shifts without Glu co-treatment. These results suggest biphasic effects, 

where too little or too much Cu activates different signaling pathways. We hypothesize that: 

excess Cu induces MAPK-dependent phase shifts as it relates to oxidative stress signaling; 

however Cu under homeostatic control regulates synaptic signaling and functions to maintain 

normal SCN activity rhythms. Consistent with this hypothesis, our results presented here build 

on our understanding of phase-shifting mechanisms and the effects of Cu dysregulation on SCN 

rhythmic activity. 

 
 

3.2 Methods 

3.2a Brain slice preparation 

Coronal brain slices (500 u) containing the SCN were prepared during the daytime from 

adult male C57BL/6Nhsd mice (Harlan Laboratories) housed in a 12:12 light/dark cycle. Slices 

were maintained at the interface of a Hatton-style brain slice chamber as described (Prosser, 

1998). Brain slices were continuously perfused with Earle’s balanced salt solution (EBSS) 

supplemented with glucose, bicarbonate and gentamicin at pH 7.4. Both the slice chamber and 

media reservoir were oxygenated (95% O2 ⁄ 5% CO2) and maintained at 37°C. All experimental 

protocols were approved by the University of Tennessee Knoxville Institutional Animal Care and 

Use Committee. 

 

3.2b Drug treatments 

All treatments were performed on day 1 in vitro. All drugs were prepared in warm, 

oxygenated EBSS. At the onset of the drug treatments, perfusion of the standard medium was 
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stopped and the medium in the chamber replaced with fresh medium containing the 

experimental treatments. After 10 min this medium was removed and perfusion with untreated 

medium was reinstated. Previous experiments have demonstrated that changing the perfusion 

medium by itself does not affect the phase of the circadian clock (Biello et al., 1997; Gillette and 

Prosser, 1988; Prosser et al., 1989; Prosser et al., 2003). CuCl2, CoCl2, Glu, NMDAR antagonist AP5 

((2R)-amino-5-phosphonovaleric acid), and AMPA receptor antagonist NBQX (2,3-dihydroxy-6-

nitro-7-sulfamoyl-benzo[f] quinoxaline-2,3-dione) were purchased from Sigma-Aldrich (St. Louis, 

MO). TTM and bathocuproine disulfonate (BCS) salts (Sigma-Aldrich) were used to chelate 

copper. Trk receptor antagonist K252a (EMD Biosciences (Philadelphia, PA)) and TrkB inhibitor, 

TrkB-Fc (R&D Biosciences (Minneapolis, MN)) were also used in this study. For experiments 

involving the TrkB-Fc inhibitor (TrkB-I), slices were pre-treated for 5 min, followed by a 10 min 

treatment of TrkB-I in combination with Glu, TTM, or CuCl2. Intracellular kinases were inhibited 

similarly using the PI3K inhibitor LY294002 (Sigma) or ryanodine receptor inhibitor dantrolene 

(Sigma). In the case of the MEK1/2 inhibitor U0126 (Cell Signaling) or PKG inhibitor KT5823 

(Cayman Chemicals), slices were pre-treated for 10 min and post-treated for an additional 5 min. 

After drug or vehicle wash-out, slices remained in perfused media conditions until collection for 

immunoblotting or through the duration of single-unit recording experiments.  

 

3.2c Immunoblotting 

Hypothalamic slices from 2 mice were trimmed and reduced to isolate SCN tissue and 

incubated in the brain slice chamber. Incubated slices were collected at midday or early night 

(ZT6, ZT16) in microcentrifuge tubes set in dry-ice and stored immediately at -80°C. Frozen SCN 

slices were lysed with modified RIPA buffer, sonicated briefly, rotated for 25 min, and centrifuged 

at full-speed (17,000g) for 10 min to remove insoluble cell remnants. For each sample, protein 

concentration was measured using Bradford assay (Thermoscientific) and adjusted for volume 

before addition of 5X running buffer (reducing). Samples were boiled at 70°C and run on 4-12% 

SDS-PAGE gradient gels (Novex), transferred onto immobilon-fl PVDF membranes (EMD 

Millipore), and incubated in 5% non-fat milk for 1 hr for blocking. Antibodies for ATP7A (chicken) 
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and CTR1 (rabbit) were purchased from Abcam and applied overnight at 1:1000 and 1:500 

concentrations in 2% milk after blocking. Corresponding Li-COR secondary antibodies were 

applied at 1:20,000 for 1-1.5 hr and processed for imaging following standard protocols per Li-

COR instructions. 

 

3.2d Single-unit recording and data analysis 

Single-unit recordings were performed on day 2 in vitro for most experiments, and on day 

3 in vitro where indicated. The procedure for neuronal recordings has been described previously 

(Prosser, 1998). Briefly, the spontaneous activity of single SCN neurons was recorded 

extracellularly using glass capillary microelectrodes filled with 3M NaCl. Each neuron was 

recorded for 5 min, and the data stored for later determination of firing rate using a DataWave 

system (Berthoud, CO). Typically, 4–7 cells were recorded during each hour. These individual 

firing rates were then used to calculate 2 h running averages, lagged by 1 h (± SEM), to obtain a 

measure of population neuronal activity. As in previous studies (Mou et al., 2009; Prosser, 1998), 

the time of peak neuronal activity was assessed visually by estimating, to the nearest quarter 

hour, the time of symmetrically highest activity. For example, if the two highest 2 h means are 

equal, then the time of peak is estimated to be halfway between them. Phase shifts were 

calculated as the difference in time-of-peak of untreated slices vs. drug treated slices. Using these 

methods, the consistency of the results obtained for each experimental manipulation is such that 

differences in phase of as little as one hour are often statistically significant with few replicates 

(Chen et al., 1999; Prosser, 1998). Statistical analyses were performed using Sigmastat (San Jose, 

CA, USA). One-way ANOVA was used to test for significant differences between treatment and 

control experiments, followed by Holm-Sidak test for post hoc comparisons. 

 



 

40 
 

3.2e Analysis of Cu levels by ICP-MS 

During the day (ZT4-12), SCN tissue samples were dissected similarly to immunoblot 

samples. Samples were partially dried on filter paper to wick excess media were collected in 

Fisherbrand polypropylene PREMIUM microcentrifuge tubes and weighed before storing at -

80°C. 500 µL of ultrapure 40% nitric acid was added to each sample vortexed and agitated before 

low-speed spin down. In a heat-bloc set at 60°C, samples were uncapped and dissolved in nitric 

acid, allowing for safe evaporation of volatile substances within a contained, clean vial-and-

beaker covered system to avoid contamination of samples (fume hood). Completely digested 

samples were diluted with 500 µL, ultrapure 2% nitric acid and filtered using sterile syringe filters 

(Fisher), washed with 2% nitric acid into pre-cleaned scintillation vials until a final volume of 5 mL 

was reached. Samples were analyzed using a modified Perkin Elmer ICP-MS (inductively coupled 

plasma mass spectrometer) calibrated by a multi-element (calibration standard 3, Perkin Elmer) 

method. 

 

3.3 Results 

3.3a Cu- and TTM-induced phase delays during the early night 

Our previous research found that treating SCN-containing brain slices either with 

exogenous Cu or with the Cu chelator TTM induces phase delays when applied during the early 

night and phase advances when applied during the late night (Yamada and Prosser, 2014).  These 

effects mimic the phase shifts induced by in vivo light pulses and in vitro Glu application. We also 

determined that TTM-induced phase shifts require NMDA receptor activation while Cu-induced 

phase shifts do not. To further elucidate the cellular mechanisms underlying Cu- and TTM-

induced phase shifts, here we focused on downstream mechanisms previously shown to be 

involved in Glu-induced phase shifts, first investigating early night phase delays, and then 

investigating light night phase advances.  
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Glu is known to activate MAPK signaling in the SCN, and inhibiting MAPK activation blocks 

Glu-dependent phase delays in vivo and in vitro. Previous studies have shown that changes in Cu 

levels affect MAPK signaling: increasing Cu increases MEK1 activation while decreasing or 

chelating copper, by TTM for example, dampens or blocks MAPK/ERK signaling ((Brady et al., 

2017; Brady et al., 2014)). Therefore, we started by investigating whether Cu- or TTM-induced 

phase delays involve MAPK signaling.  

As reported previously (Yamada and Prosser, 2014), the mean (± SEM) time of peak 

neuronal activity in the SCN in untreated (control) brain slices is ZT 6.06 ± 0.07 (n = 4), and ZT16 

application of either 10µM Cu or 1µM TTM induces significant phase delays (relative to time-of-

peak firing of control slices; Cu, mean phase shift: -2.06 h ± 0.48, n = 4 (p<0.001, vs. untreated 

slices) ; TTM, mean phase shift: -3.0 h ± 0.24, n = 4 (p<0.001). Here we found that co-application 

of the MEK1 inhibitor U0126 did not block TTM-induced phase delays (mean phase shift: -2.83 h 

± 0.44, n = 3 (p<0.001)). However, Cu-induced phase delays were blocked by co-treatment with 

U0126 (mean phase shift: 0.5 h ± 0.29, n=3 (p=0.50, vs. untreated slices)). These data are 

summarized in Fig 3.1. This suggests that MAPK signaling is involved in Cu-induced but not TTM-

induced phase delays. 

Intracellular calcium release from the endoplasmic reticulum through activation of 

ryanodine receptors has also been shown to be necessary for Glu-induced phase delays: blocking 

ryanodine receptors with dantrolene inhibits Glu-induced phase delays (Aguilar-Roblero et al., 

2007; Aguilar-Roblero et al., 2016; Mercado et al., 2009). Here we assessed the effects of 

dantrolene on Cu- and TTM-induced phase delays. We found that co-treatment with dantrolene 

at ZT16 had no effect on Cu-induced phase delays (mean phase shift: -1.92 h ± 0.08, n=3 (p<0.001, 

vs. untreated slices)), suggesting ryanodine receptor activity is not required for Cu-induced phase 

delays the early night. However, dantrolene did block TTM-induced phase delays (mean phase 

shift: -0.42 h ± 0.36, n = 3 (p=0.58)), similar to its effects on Glu-induced phase delays at ZT16 

(mean phase shift: -0.13 h ± 0.32, n=2). These results are summarized in Fig 3.1 and 3.2 (One-way 

ANOVA for ZT16 data above, F=24.65 (p<0.001)). 
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Figure 3.1. Effects of MEK1/2 inhibition and ryanodine receptor inhibition on Cu and TTM-

induced phase shifts at ZT 16 and 23  

Histogram plot summarizing the mean phase shifts ± SEM resulting from the indicated treatments 

at two different time points. (Left) 10µM Cu and 1 µM TTM induce phase delays at ZT16 which 

require different mechanisms as tested by the MEK1/2 inhibitor U0126 and ryanodine receptor 

inhibitor dantrolene. Dantrolene blocked TTM effects. (Right) At ZT23, Cu and TTM induces phase 

advances. At either time point, Cu-induced phase shifts are blocked by U0126, which has no 

effect on phase shifts induced by TTM. *Phase shifts significantly different from (untreated) 

control slices based on post hoc (Holm-Sidak) test (P < 0.005). Delays are plotted as negative 

values. Advances are plotted as positive values. ZT, zeitgeber time, n=3-4 for all experiments. Cu 

and TTM alone data repeated from Fig. 2.1 and 2.3 for clarity. 
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Figure 3.2. Effects of MEK1/2 inhibition and ryanodine receptor inhibition on Glu-induced 

phase delays at ZT16  

Histogram plot summarizing the mean phase shifts ± SEM resulting from the indicated treatments 

at ZT16. Glu-induced phase delays are blocked by the MEK1/2 inhibitor, U0126, and ryanodine 

receptor inhibitor, dantrolene. *Phase shifts significantly different from (untreated) control slices 

based on post hoc (Holm-Sidak) test (P < 0.001). Delays are plotted as negative values. ZT, 

zeitgeber time. Numbers in parentheses indicates number of experiments. 
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3.3b Cu- and TTM-induced phase advances during the late night 

In our previous work, we showed that in vitro application of either Cu or TTM at ZT23 

induces phase advances: applying 10µM Cu to SCN slices results in a ~1.5-h phase advance (mean 

phase shift: 1.56 h ± 0.36, n = 4 (p<0.05)) while application of 1 µM TTM induces a mean phase 

shift of 1.63 h ± 0.31, n = 4 (p<0.05). Similar to experiments investigating Glu-induced phase 

delays, the MEK1/2 inhibitor U0126 has also been shown to block Glu-induced phase advances 

(Butcher et al., 2005; Coogan and Piggins, 2003), so we performed analogous experiments at 

ZT23 for Cu and TTM. Co-application of U0126 at ZT23 blocked Cu-induced phase advances (mean 

phase shift = 0.5 h ± 0.58, n = 3 (p=0.33, vs. untreated slices)). On the other hand, U0126 did not 

block TTM-induced phase advances (mean phase shift: 2.33 h ± 0.58, n = 3 (p<0.01)). These data 

are summarized in Fig 3.1 (One-way ANOVA for ZT23 results, F=8.77 (p<0.005)). Because 

dantrolene does not inhibit Glu-induced phase advances (Ding et al., 1998), we did not assess the 

effects of dantrolene on Cu- and TTM-induced phase advances. The results thus far suggest that 

MAPK signaling plays an important role in Cu-induced phase shifts at ZT16 and ZT23 but is not 

involved in TTM-induced phase shifts. 

 

3.3c NOS signaling in Cu- and TTM-induced phase shifts 

Nitric oxide (NO) production by NO synthase (NOS) is another cellular mechanism 

involved in Glu-induced phase shifts, and NO has been shown to activate ryanodine receptors in 

addition to other signaling molecules (Kakizawa, 2013; Kakizawa et al., 2012; Mikami et al., 2016; 

Vielma et al., 2016; Wang et al., 2010a). Therefore we investigated the role of NO in Cu- and TTM-

induced phase shifts by inhibiting NOS activity with L-NAME (Fig. 3.3). Consistent with previous 

reports, co-treatment of L-NAME at ZT16 blocked Glu-induced phase delays (mean phase shift: -

0.13 h ± 0.31, n=4 (p=0.70, vs. untreated slices)). Cu-induced phase delays were not affected by 

co-application of L-NAME at ZT16 (mean phase shift: -2.5 h ± 0.5, n = 2). When co-applied at ZT23, 

however, L-NAME blocked Cu-induced phase advances (mean phase shift: 0.19 h ± 0.47, n = 4 

(p=0.96)). Next, we blocked NOS activity with L-NAME to assess whether TTM-induced phase  
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Figure 3.3. NO signaling involvement in Cu and TTM induced phase shifts  

Histogram plot summarizing the mean phase shifts ± SEM resulting from the indicated treatments 

at two different time points. (Left) L-NAME inhibition of nitric oxide synthase does not appear to 

block Cu- or TTM-induced phase delays at ZT16 (N=2, for both however). In contrast, co-

application of L-NAME does block Glu effects at ZT16, consistent with previous reports. (Right) L-

NAME blocked Cu-induced phase advances but had no effect on TTM-induces phase advances. 

Treatment with the PKG inhibitor KT5823 also blocked Cu effects at ZT23, which supports a role 

for NOS in Cu-induced phase advances. However, as an N=1, this result need to be confirmed. 

*Phase shifts significantly different from (untreated) control slices based on post hoc (Holm-

Sidak) test (P < 0.05). Delays are plotted as negative values. Advances are plotted as positive 

values. ZT, zeitgeber time; n=3-4 for all experiments, except where indicated in parentheses. 
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shifts require NOS activity. Surprisingly, L-NAME did not affect TTM-induced phase delays (mean 

phase shift: -2.25 ± 0.75, n = 2) or phase advances (mean phase shift: 2.5 h ± 0.31, n = 4 (p<0.001)), 

suggesting that NOS activity is not involved in TTM-induced phase shifts at either ZT16 or 23. 

During the late night, NO activates soluble guanylyl cyclase production of cGMP, which in 

turn activates cGMP-dependent protein kinase (PKG) (Ding et al., 1998; Ding et al., 1997; Ferreyra 

and Golombek, 2001; Golombek et al., 2004; Golombek and Rosenstein, 2010; Liu et al., 1997; 

Mathur et al., 1996; Oster et al., 2003; Plano et al., 2012; Tischkau et al., 2003b; Weber et al., 

1995). Inhibition of PKG blocks Glu-induced phase advances ((Ding et al., 1998; Golombek et al., 

2004; Mathur et al., 1996; Weber et al., 1995)). If Cu-induced phase shifts of the SCN clock at 

ZT23 require NOS production of NO, then it is possible that downstream PKG activation is also 

involved in Cu-induced phase advances. To test this idea, we inhibited PKG with KT5823, which 

has been shown to block Glu-induced phase advances. Our preliminary data indicate that, similar 

to L-NAME, KT5823 blocked Cu-induced phase advances when co-applied at ZT23 (phase shift: 0 

h, n=1). This is shown in Fig. 3.3. These results suggest that Cu-induced phase delays do not 

require NOS production of NO during the early night, while NOS-dependent signaling pathways 

that include PKG activity play a role in Cu-induced phase advances during the late night.   

 

3.3d PI3K/Akt signaling in TTM-induced phase shifts 

We have previously shown that TTM-induced phase shifts require activation of TrkB 

receptors, similar to Glu-induced phase shifts (Mou et al., 2009; Yamada and Prosser, 2014).  TrkB 

is known to activate PI3k/AKT signaling as well as MAPK/ERK signaling (Hua et al., 2016; Marsden, 

2013; Van't Veer et al., 2009; Yoshii and Constantine-Paton, 2007, 2014; Zhou et al., 2010). Since 

TTM-induced phase shifts were not blocked by inhibition of MAPK or NO signaling cascades, we 

tested whether the PI3K/Akt signaling pathway is involved in TTM-induced phase shifts, using the 

PI3K/Akt inhibitor, LY294002. Co-treatment with LY294002 did not block TTM-induced phase 

shifts at ZT16 (mean phase shift: -1.83 h ± 0.51, n = 3 (p<0.01)) or at ZT23 (mean phase shift: 3 h 
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± 0.76, n = 3 (p<0.001)). To summarize, TTM-induced phase shifts do not require NOS, MEK or 

PI3K activity, but TTM-induced phase delays require ryanodine receptor activation and 

presumably calcium release from the ER. 

 

3.3e Expression of Copper Transporters in the SCN 

In addition to the above results, our previous experiments suggest that decreasing Cu 

levels affects SCN neuronal activity rhythms by strengthening extracellular glutamatergic 

signaling (i.e., TTM-induced phase shifts are inhibited by the NMDA inhibitor AP5), while 

increasing Cu modulates circadian phase through NMDA-independent mechanisms. Because Cu 

homeostasis is highly regulated in various tissues including many regions of the brain, we 

reasoned that SCN neurons regulate extracellular Cu levels in order to modulate or gate 

glutamatergic input. To begin investigating this idea, we performed immunoblot experiments on 

SCN tissue extracts to assess expression of two Cu homeostasis proteins, ATP7A and CTR1. In 

response to various stimuli including Cu overload, ATP7A is known to translocate to the plasma 

membrane of neurons and pump Cu out. On the other hand, CTR1 is the primary Cu importer of 

mammalian cells. We collected SCN samples during midday (ZT6), early night (ZT16), and late 

night (ZT23) corresponding to when Glu does not induce phase shifts (ZT6) and when it induces 

large nighttime phase shifts (ZT16/23). We observed no difference in CTR1 expression at these 

time points (n=6 (One-way ANOVA, F= 1.92, p=0.18)). However, our results (n=4) suggest higher 

ATP7A expression during the early night (P<0.05). These data are summarized in Fig. 3.4. These 

data support the potential for a day-night difference in Cu homeostatic regulation and export by 

ATP7A in the SCN. 

 

3.3f Preliminary Analysis of Cu levels in SCN  

Using SCN extracts collected during the late day, we performed preliminary experiments 

using ICP-MS to measure Cu levels. In our first run, we used 12 mice per sample to obtain 25mg 

of SCN tissue, as well as 50mg of hypothalamic tissue surrounding the SCN remaining after  



 

48 
 

Figure 3.4. Expression of copper transporters in the SCN 

(Top) Representative western blot showing a ~180kDa band corresponding to ATP7A and a 

~30kDa band for CTR1 Cu transporters in SCN tissue lysates collected at ZT6, ZT16, or ZT23 after 

in vitro incubation. Lysates of mouse cortex were included for comparison and positive control. 

Actin was used as a loading control. Western blots were imaged on a Li-Cor Odyssey CLx imaging 

system. *Denotes ATP7A band of interest. (Bottom) Histogram plot showing diurnal differences 

in ATP7A expression (adjusted/relative to actin, n=4), left, and no differences in CTR1 expression 

(relative to actin, n=6), right. Data normalized to ZT6 to show fold changes in night (ZT16) versus 

day (ZT6). *Significantly different from ZT6, p<0.05.  
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Figure 3.4 continued 
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removal of both nuclei. From 2 SCN samples, we obtained values of 14.66ppb (parts per billion) 

and 7.98ppb of Cu, which when adjusted for volume measured and SCN tissue mass, yields an 

average concentration (± SEM) of 4.53 ± 0.95 ug/g. The extra-SCN hypothalamic tissue 

concentrations for 3 samples were 1.98 ± 0.35 ug/g. On the second run, we reduced the number 

of mice per sample to 4 with total tissue collected at 5.6mg and 7.4mg for two samples. Average 

Cu concentration for this run was: SCN, 8.02 ± 0.83 ug/g (n=2); extra-SCN 4.55 ± 0.01 ug/g (n=2). 

Combined, the results indicate that we detected higher levels of copper in SCN extracts compared 

to hypothalamic tissue immediately adjacent to, and surrounding the SCN. 

 

3.4 Discussion 

The relationship between trace metals, circadian rhythms, and metabolism is still largely 

uninvestigated, but several studies in plants demonstrate rhythms in copper and iron 

homeostasis and how they pertain to circadian activity and metabolism of plants (Andres-Colas, 

Perea-Garcia et al. 2010, Perea-Garcia, Andres-Colas et al. 2010, Chen, Wang et al. 2013, Hong, 

Kim et al. 2013, Tissot, Przybyla-Toscano et al. 2014). Since Cu plays a role in iron homeostasis, it 

is noteworthy that a circadian rhythm in iron levels in the midbrain of mice has been reported 

(Unger, Earley et al. 2013, Unger, Jones et al. 2014). In addition, iron deficiency has been shown 

to affect circadian wheel-running activity and is strongly associated with restless leg syndrome, 

which has a circadian component and manifests as a sleep disorder (Dowling, Klinker et al. 2011, 

Earley, Connor et al. 2014, Furudate, Komada et al. 2014). On a slightly different note, circadian 

rhythms in magnesium levels have been demonstrated in mammalian U2OS and mouse fibroblast 

cells, correlating with rhythmic transcription of Mg2+ transporters, and changes in Mg2+ 

availability/transport can affect the period, amplitude, and phase of molecular clocks, as well as 

metabolic (ATP/protein translation) rhythms (Feeney et al., 2016). Even though Cu is essential to 

cellular respiration and other metabolic activities in the brain, there are no reports of how SCN 

neurons regulate Cu homeostasis and its transport to the mitochondria. In this study, we have 

tested several of the intracellular signaling pathways potentially involved in phase-shifting of 
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neuronal activity induced by Cu application or deficiency via Cu chelation, and hence pathways 

responding to changes in Cu availability and homeostasis.  

 

3.4a Intracellular mechanisms of Cu- and TTM-induced phase shifts 

We have shown previously that bath-applying 4µM Cu to SCN-containing brain slices for 

10min does not result in phase delays, but application of 10µM Cu induces phase shifts (Yamada 

and Prosser, 2014). In addition, we have previously shown that 4µM Cu blocks Glu-induced phase 

shifts and that 10µM Cu-induced phase shifts are not blocked by NMDAR inhibition. Thus, 

consistent with other studies, we believe that at micromolar levels, Cu blocks NMDAR activation 

by Glu and therefore calcium influx via NMDAR is not involved in Cu-induced phase shifts (Black 

et al., 2014; Gasperini et al., 2015; Marchetti et al., 2014; Schlief et al., 2005; Schlief et al., 2006; 

Trombley and Shepherd, 1996; Vlachova et al., 1996). In this study, we show that Cu-induced 

phase shifts require MEK1 activity, and that during the late night, but not early night, they require 

NOS activation. For late-night phase advances, activation of NOS and cGMP-dependent PKG is 

required where nitric oxide activates soluble guanylyl cyclase which produces cGMP (Ding et al., 

1998; Ding et al., 1997; Ferreyra and Golombek, 2001; Golombek et al., 2004; Golombek and 

Rosenstein, 2010; Liu et al., 1997; Mathur et al., 1996; Oster et al., 2003; Plano et al., 2012; 

Tischkau et al., 2003b; Weber et al., 1995). Consistent with this, inhibition of PKG blocked Cu-

induced phase advances. It is unclear how Cu induces NOS-dependent phase advances without 

prior activation of NMDAR and influx of calcium. This may involve Cu activation of signaling 

pathways such as MAPK or more indirectly through changes in redox-sensitive proteins or 

displacing zinc from sites able to bind either Cu or Zn. Displacement of Zn or sufficient changes 

in redox activity within SCN neurons may relate to the amount of excess Cu necessary to phase 

shift the clock. Nevertheless, it remains unknown in general, how MAPK and PKG pathways work 

or interact in SCN neurons to reset their clocks.  

 On the other hand, we have shown that lowering the amount of endogenous Cu by 

chelation induces NMDAR-mediated phase shifts. From our prior experiments and studies by 
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other labs (Dodani et al., 2014; Gasperini et al., 2015; Schlief et al., 2006; You et al., 2012), TTM 

likely exerts its effect through removal of Cu and Cu’s inhibitory effect on NMDAR, which could 

allow for endogenously released Glu to then activate NMDARs. A recent study by Brancaccio 

demonstrated a role for NR2C subunit-containing NMDARs in SCN rhythmicity and explored how 

rhythmic release of Glu from astrocytes at night can be manipulated to activate presynaptic NR2C 

containing SCN neurons (Brancaccio et al., 2017). Postsynaptic NMDARs are located in the ventral 

region of the SCN, which receives glutamatergic input from the eyes via the retinohypothalamic 

tract, and their role in Glu-induced phase shifts has been well established (Baver et al., 2008; 

Berson et al., 2002; de Vries et al., 1993; Ding et al., 1994; Doyle et al., 2008; Drouyer et al., 2007; 

Ebling et al., 1991; Hattar et al., 2002; Mikkelsen et al., 1995; Mintz and Albers, 1997; Mintz et 

al., 1999; Tsai et al., 2009; Vindlacheruvu et al., 1992; Wong et al., 2007). As TTM-induced phase 

shifts appear to depend on an increase in intracellular calcium, consistent with inhibition of TTM-

induced phase delays at ZT16 by dantrolene, our results implicate calcium-dependent signaling 

pathways. In contrast, MEK1-dependent phase shifts induced by application of Cu are not 

sensitive to dantrolene inhibition of ryanodine receptors. Since Cu has also been shown to inhibit 

various types of calcium channels (Castelli et al., 2003; Lu et al., 2009b; Mathie et al., 2006; 

Shcheglovitov et al., 2012), TTM may have multifaceted effects on calcium dynamics in the SCN, 

though this remains untested. Thus, the effect of removing Cu’s inhibitory effects on NMDAR and 

other receptor-ion channels may result in multiple presynaptic and/or postsynaptic changes in 

SCN neurons.  

Both Glu- and TTM-induced phase shifts require TrkB signaling in conjunction with 

NMDAR activation. However, downstream of these cell surface receptors, the differences and 

similarities between Glu and TTM effects are intriguing. While Glu induces phase shifts during 

the early or late night by activating NMDAR, NOS, and MAPK signaling, TTM-induced phase shifts 

do not appear to require MAPK or NOS activity downstream of NMDAR-mediated calcium influx. 

Several studies have demonstrated that TTM blocks MEK1, putatively by preventing Cu from 

getting to MEK1’s Cu-binding site (Brady et al., 2017; Brady et al., 2014; Turski et al., 2012). 

Indeed, our results show that TTM-chelation of Cu in SCN slices results in phase shifts that are 

independent of MEK1 activity. In addition, we used LY294002 to inhibit PI3K/Akt because TrkB 
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signaling activates PI3K/Akt in addition to MAPK pathways. PI3K/Akt inhibition had no effect on 

TTM-induced phase shifts, however, similar to another study looking at PI3K/Akt’s role in phase-

shifting SCN rhythms (Cao et al., 2011),  

Interestingly, TTM-induced phase shifts were not blocked by the NOS inhibitor L-NAME, 

which is activated downstream of Glu/NMDAR signaling in the SCN. Why NOS and nitric oxide 

signaling are not required in TTM effects and how ryanodine receptors are activated by Cu 

chelation are important questions needing to be resolved. Decreases in available Cu may directly 

activate signaling pathways upstream of ryanodine receptors and/or exert its effect indirectly 

through changes in oxidation state or redox associated proteins. Our L-NAME experiments 

suggest that nitric oxide modification (nitrosylation) and modulation of ryanodine receptor 

activity does not play a role in TTM-induced phase shifts. However, other redox-related changes 

to ryanodine receptors may be induced by Cu removal. We have not yet tested dantrolene’s 

effects on TTM-induced phase advances; however, ryanodine receptors are reportedly not 

involved in Glu-induced phase advances at ZT23 (Ding et al., 1998). Moving forward, testing 

calcium-dependent signaling pathways downstream of NMDAR-dependent TTM effects remains 

an important task, as well as eliminating other potential players in SCN rhythms such as protein 

kinase A and PKG. Based on the severity and variety of neurological symptoms seen in Cu 

deficiency, namely Menkes disease, Cu’s potential involvement in many neuronal processes, 

including circadian time-keeping, is not surprising. 

 

3.4b Potential role of endogenous Cu and homeostasis in SCN 

Research on Cu chelators, Cu-related pharmaceuticals, and proteins involved in trace 

element homeostasis and their interactions with Cu and other metals is a critical part of 

understanding and treating diseases related to Cu, even certain neurodegenerative diseases and 

cancers. Treatments using TTM or its derivatives have not only been investigated in regard to 

Wilson’s disease, caused by excessive Cu accumulation in various organs including the brain, but 

also in various cancer studies due to their inhibitory effects on MEK1-dependent ERK1/2 signaling 
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as well as on extracellular matrix changes as it relates to angiogenesis (Brady et al., 2014; Brewer, 

2014; Chisholm et al., 2016; Henry et al., 2006; Pan et al., 2002; Wei et al., 2014; Wei et al., 2012). 

Because of the short (10min) application of TTM, we do not expect that this treatment 

significantly affects other intracellular enzymes that depend on Cu, such as the redox scavenger 

Cu/Zn-superoxide dismutase or cytochrome c oxidase (complex IV of electron transport chain) 

(also see Chapter 2 data using membrane impermeable, BCS chelator). Since TTM’s direct 

interaction with Cu is most likely extracellular, it appears that there are physiologically relevant 

amounts of extracellular Cu, and potentially synaptic Cu, in the SCN, whereby extracellular 

chelation induces inter- or intracellular signaling. Many other studies have implicated an 

important role for extracellular or synaptic Cu in different brain regions, some of which are 

discussed below (D'Ambrosi and Rossi, 2015; Gaier et al., 2013a; Scheiber et al., 2014; Zlatic et 

al., 2015). Although some Cu may be introduced in the incubation media, our media does not 

include serum, and intra- versus extracellular levels of Cu should be physiologically equilibrated 

prior to drug treatments, such that our in vitro experiments have consistently modeled in vivo 

results in terms of intra-SCN signaling. Future experiments should investigate intra- versus 

extracellular Cu levels, as well as trace level metal contamination occurring in our media 

solutions. In any case, the removal of extracellular Cu has been shown to disrupt import of Cu 

through CTR1, and CTR1 import of Cu has been directly linked to MEK1 activity (Brady et al., 2014; 

Turski et al., 2012). A model comparing the cellular mechanisms associated with Cu, TTM, and 

Glu-induced phase shifts is presented in Fig. 3.5. 

In this study, we show that CTR1 is present in the SCN and that SCN slices contain Cu. 

Although we need to perform additional ICP-MS experiments to demonstrate low micrograms of 

Cu per gram of SCN tissue with confidence, these values are highly consistent with several studies 

using ICP-MS. The inter-run difference in amounts is likely due to the amount of tissue sampled 

for each and overall optimization of the SCN tissue digestion methodology to minimize loss of 

cellular Cu among different samples. In addition, our results indicate a difference in ATP7A 

regulate changes in extracellular Cu in response to signaling events, some of which could be 

controlled by the circadian clock, not just in response to when intracellular Cu levels increase. A 
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Figure 3.5. Phase-shifting circadian neuronal activity rhythms in the SCN by copper, 

glutamate, and tetrathiomolybdate (TTM) 

 (Left) Application of Cu induces night-time phase shifts by inducing MEK-dependent MAPK 

signaling independently of NMDAR activity. During the early night (ZT16), TrkB may play a role 

upstream of MAPK signaling or through a separate mechanism involving other kinases. During 

the late night (ZT23), nitric oxide synthase (NOS)-mediated activation of cGMP-dependent, 

protein kinase G is involved but not TrkB signaling. (Middle) Endogenous Cu blocks endogenous, 

extracellular Glu accumulation during the night but is not able to inhibit phasic release of Glu at 

the synapse (via retinohypothalamic input, for example). Glu-induced phase shifts are mediated 

by various signaling mechanisms downstream of TrkB and calcium signaling pathways, including 

ryanodine receptor-mediated calcium release from the endoplasmic reticulum during the early 

night and NO-induced production of cGMP by soluble guanylyl cyclase (sGC) and activation of 

PKG during the late night. Phosphorylation of CREB is one of the key transcription factors 

connecting receptor signaling to changes in core clock proteins (of the transcription-translation-

feedback-loop). (Right) TTM binds extracellular Cu, increasing NMDAR activity during the late 

night when extracellular levels of Glu are higher.  Increase in intracellular calcium by NMDAR 

activity, which may or may not be at the synapse, together with TrkB signaling leads to night-time 

expression during the night versus day. This raises the interesting possibility that ATP7A may 

phase shifts through yet unknown mechanisms. Ryanodine receptor activity is required for TTM-

induced phase delays at ZT16. Pathways in green have been demonstrated and connected to 

phase shifts for the corresponding times. Grey arrows represent untested connections. Location 

and function of the Cu-transporter ATP7A have not been investigated in the SCN. 
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Figure 3.5  continued 
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related idea is that changes in extracellular SCN Cu could be driven by Glu input, primarily from 

retinohypothalamic axons, which occurs in vivo when light stimulates specialized retinal cells. Glu 

stimulation of hippocampal neurons has been shown to induce the Cu-transporter ATP7A to 

move to the membrane and increase Cu export (Schlief et al., 2005; Schlief et al., 2006). This 

increase in extracellular Cu was shown to protect hippocampal neurons against Glu/NMDAR 

excitotoxicity, and Cu chelation increases the sensitivity of hippocampal neurons to Glu insult 

(Schlief et al., 2006). As various loss-of-function mutations in ATP7A cause Menkes disease, 

seizures due to dysfunction of ATP7A in neurons more than likely relate to increased 

susceptibility to Glu excitoxicity (Hodgkinson et al., 2015; Prasad et al., 2011). Interestingly, SCN 

neurons are robustly resistant to Glu excitotoxicity, and ERK1/2 signaling in SCN tissue has been 

reported to be neuroprotective against excess Glu (Bottum et al., 2010; Karmarkar et al., 2011). 

Although the protective effect of Cu against excitotoxic Glu insult is redox sensitive and linked to 

decreased NMDAR-mediated calcium influx, the involvement of ERK1/2 has not been 

investigated in this context. As Cu increases MAPK signaling via MEK1 and chelation has the 

opposite effect, activation of this pathway may be involved in a negative feedback loop with 

ATP7A translocating to the membrane. In addition, a potential mechanism for Cu inhibition of 

NMDAR currents involves Cu-bound cellular prion protein nitrosylating NMDARs (Black et al., 

2014; Gasperini et al., 2015; Schlief et al., 2006; You et al., 2012). Based on our results, we 

hypothesize that: ATP7A-released, endogenous Cu blocks Glu activation of NMDAR, in particular 

where rhythmic Glu release occurs at night and potentially during the day when Glu does not 

cause phase shifts; both Cu modulation of NMDAR and Cu-dependent MEK1 signaling contribute 

to neuronal resistance to Glu excitotoxicity in the SCN. In general, tight homeostatic control of 

intra-/extracellular Cu by ATP7A, CTR1 and other Cu regulatory proteins is vital to neuronal 

survival, in that excess Cu is neurotoxic.  

 

3.4c Cu dyshomeostasis and pathological implications 

Dysfunction or loss of circadian rhythms can result from aging and neurodegeneration, 

and oxidative stress plays a central role in the pathological process of both (Aziz et al., 2009; 
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Bellanti et al., 2017; Colwell, 2011; Cuesta et al., 2012, 2014; Fahrenkrug et al., 2007; Fifel, 2017; 

Fifel et al., 2014; Harper et al., 2008; Hu et al., 2013; Hu et al., 2009; Kudo et al., 2011a; Kudo et 

al., 2011b; Li et al., 2017a; Liu and Chang, 2017; Liu et al., 2000; Meijer et al., 2012; Morton et al., 

2005; Stevanovic et al., 2017; Van Erum et al., 2017; Wang et al., 2015b; Wang et al., 2016; 

Wilking et al., 2013; Wu et al., 2006; Wu and Swaab, 2007; Zhou et al., 2016). Studies indicate 

that Cu accumulates in specific brain regions of aged subjects, and it is still unknown how this 

normally occurring phenomena affects neurons and their communication (Braidy et al., 2017; Fu 

et al., 2015a; Pushkar et al., 2013; Singh et al., 2013b; Wang et al., 2010b; Zatta et al., 2008). In 

neurodegenerative diseases, long-term Cu dyshomeostasis plays a role in oxidative damage, and 

redox active Cu accelerates formation of toxic oligomers associated with some 

neurodegenerative factors (Ahuja et al., 2015; Atwood et al., 2000; Dell'Acqua et al., 2015; Drew 

and Barnham, 2011; Greenough et al., 2016; Kawahara et al., 2017; Kitazawa et al., 2009; Lan et 

al., 2016; Lin et al., 2010; Lu et al., 2009a; Mayes et al., 2014; Okita et al., 2017; Singh et al., 

2013b; Squitti, 2014; Strozyk et al., 2009; Villar-Pique et al., 2016). In our experiments we bath-

applied 10µM Cu to SCN brain slices for 10 min to induce phase shifts. Although we believe the 

acute increase in Cu levels are well within a tolerable range, some of the effects of bath-applying 

Cu could be interpreted as less physiological and as such perhaps mimic the initial responses to 

excess Cu or Cu dysregulation. When Cu levels exceed the capacity of Cu-storage into vesicles or 

buffering proteins (e.g. metallothioneins), excess free Cu can generate reactive oxygen species 

via Fenton chemistry (Baker et al., 2017a; Bhattacharjee et al., 2017; Hatori and Lutsenko, 2016; 

Hordyjewska et al., 2014; Ohrvik et al., 2017). The importance of metallothioneins in Cu 

homeostasis has been demonstrated in the context of Alzheimer’s and Parkinson’s disease 

(Chung et al., 2010; McLeary et al., 2017; Meloni et al., 2007; Meloni et al., 2008; Okita et al., 

2017). In addition, Cu’s ability to displace intracellular stores of zinc, including from Zn-bound 

metallothioneins, may play a role in various instances of neurotoxic oxidative stress, such as in 

experiments looking at paraquat-related Parkinson’s disease models for example. On a related 

note, in a recent genetic selection study using CRISPR, some of the key mediators of paraquat-

induced neuronal death were ATP7A, CTR1 and the antioxidant Cu/Zn-superoxide dismutase 

(Reczek et al., 2017). Furthermore, in Alzheimer’s patients and mouse models, Cu is found in high 
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concentrations extracellularly in association with amyloid plaques, yet low intracellular Cu 

concentrations have also been reported (Greenough et al., 2016; James et al., 2017; Xu et al., 

2016; Xu et al., 2017). Amyloid β has a high affinity for Cu and can sequester Cu extracellularly 

(Hatcher et al., 2008; James et al., 2017; Jiang et al., 2013; Lu et al., 2015; Sarell et al., 2009; Singh 

et al., 2013b; Syme et al., 2004). Chelation of Cu by amyloid β in hippocampal neurons has been 

shown to affect NMDAR function and decrease synaptic efficacy (Stys et al., 2012a; You et al., 

2012). Such extracellular sequestration of Cu by amyloids may also decrease influx of Cu and 

reduce ERK1/2 signaling. Thus, some circadian abnormalities observed in aged subjects or those 

with Alzheimer’s disease, for example, may partially involve Cu dyshomeostasis and warrants 

further study.  

This study expands on our previous work exploring the interaction of NMDAR signaling 

and Cu in SCN circadian rhythms and further establishes a putative role for endogenous Cu in 

maintaining normal clock function. We believe that Cu has physiological roles in maintaining clock 

activity both intracellularly and extracellularly within the SCN, and disruption of Cu homeostasis 

may underlie some cases of abnormal circadian activity, and vice-versa. As Cu homeostasis is a 

key component of various neuronal processes, as especially exemplified by Menkes and Wilson’s 

disease, further study of Cu’s role in inter-/intraneuronal signaling in the SCN will greatly 

contribute to our understanding of Cu physiology in excitotoxicity and pathology. 

 

 

 

 

 

 

 



 

60 
 

CHAPTER FOUR  

COPPER IS A KEY ELEMENT OF THE MASTERCLOCK    

 

4.1 Looking back, thinking ahead: Copper in the SCN 

Herein, we have established a starting point for investigating the role of Cu and Cu 

homeostasis in the SCN, location of the mammalian circadian pacemaker. Although many studies 

have investigated the roles and effects of Cu in synaptic function and receptor signaling in the 

brain and other tissues, these results are the first to directly link Cu with the SCN master clock 

and circadian neuronal activity rhythms. First, we have demonstrated that both Cu chelation and 

Cu application are able to induce night-time phase shifts in neuronal activity rhythms in vitro. 

Second, we have shown that these treatments affect NMDARs and Glu neurotransmission 

differently. Since Glu-mediated NMDAR activation phase shifts the SCN clock through calcium-

dependent signaling pathways and requires concurrent activation of other pathways, we 

pharmacologically tested several of these pathways to investigate how the Cu chelator TTM 

induces NMDAR-dependent phase shifts. However, the specific extra- and intracellular 

mechanisms by which Cu removal initiates these events remain unclear. Similarly, we do not 

know fully how addition of Cu activates intracellular signaling pathways leading to night-time 

phase shifts, although our results demonstrate that Cu induces MAPK-dependent phase shifts in 

the absence of NMDAR-mediated calcium influx. In addition, Cu-induced phase delays during the 

early night do not involve ryanodine receptor-mediated calcium release from the endoplasmic 

reticulum, while phase advances do not require concurrent TrkB signaling. Below, we also discuss 

results from TTM and Cu treatment at ZT6 (Fig. 4.1), which suggest that the Cu’s role is dynamic 

and changes during the night versus day. Lastly, we have preliminary results indicating that 

concentrations of Cu in the SCN are comparable to, or possibly higher than, other brain regions, 

and that there is expression of two Cu transporters, CTR1 and ATP7A in the SCN. These results 

are incorporated into models (Fig. 4.2, 4.3) and discussed in more detail below. In this final 
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chapter, I will discuss the main concepts arising from these data and tie these ideas to the findings 

of others, with the goal of providing a foundation for future investigations. 

 

4.2 Cu in the SCN: regional distribution and homeostasis 

 One of the outstanding questions concerns Cu distribution and homeostasis in relation to 

its function in the SCN. The SCN contains functionally heterogeneous groups of neurons across 

ventral and dorsal regions of the SCN, with ventral neurons receiving retinal and other afferent 

input, and pacemaking dorsal neurons responsible for high amplitude, rhythmic activity/output 

and control of extra-SCN clocks (Evans, 2016; Evans and Gorman, 2016; Herzog et al., 2017). 

Although most SCN neurons are GABAergic, they are functionally differentiated by additional 

neuropeptides and molecular characteristics, where in general, ventral neurons secrete 

vasoactive intestinal polypeptide (VIP) to couple with shell neurons, which in turn signal and 

coordinate activity with other neurons via arginine vasopressin. In addition, astrocytes are now 

known to play a substantial role in SCN neuronal timekeeping (Barca-Mayo et al., 2017; 

Brancaccio et al., 2017; Duhart et al., 2013; Tso et al., 2017). Even though our experiments are 

focused on regulation of baseline SCN neuronal activity, the potential role of astrocytes in Cu 

homeostasis should not be overlooked, as astrocytes are known to both store and release Cu (Pal 

and Prasad, 2014; Scheiber and Dringen, 2013; Scheiber et al., 2010a; Scheiber et al., 2012). There 

is, however, stronger evidence for the role of Cu in neurons, such that astrocytes may primarily 

function to maintain adequate regional levels of Cu and protect neurons from excess extracellular 

Cu. Indeed, a recent study demonstrates that neurons have twice the concentration of Cu (per 

milligrams of total protein content) than astrocytes (Hare et al., 2013). Thus, looking at circadian 

dynamics of Cu distribution and homeostasis in the SCN could shed light on the importance and 

function of Cu in both neurons and astrocytes. 
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4.2a Cu homeostatic mechanisms: transporters and chaperones 

Of special interest going forward will be experiments that characterize Cu dynamics 

across multiple 24-h cycles together with assessing the circadian profiles of homeostatic proteins 

such as CTR1 and ATP7A. Our results indicate that ATP7A expression may be higher at night (ZT 

16) than the day (ZT 6), while CTR1 expression does not differ between these two times. 

However, the subcellular localization of CTR1 could change across different circadian times as 

well as in response to various external inputs and environmental changes. As noted previously 

(see Chp3 discussion), ATP7A’s subcellular localization has been shown to change depending on 

signaling events. In situ localization of ATP7A and CTR1 across circadian time as well as the use 

of live imaging studies could shed light on Cu export and distribution dynamics.  

Changes in ATP7A localization are thought to be mediated by ATOX1 in a redox state 

dependent manner. In the SCN, ATOX1 binding and shuttling of Cu to ATP7A-associated trans-

golgi secretory pathways would likely be highest during the day when these neurons are in a 

more reduced state (Brose et al., 2014; Hatori et al., 2016; Singleton et al., 2010; Wang et al., 

2012). Although ATP7A can funnel Cu to secretory vesicles, at the trans-golgi network, ATOX1 

and ATP7A are thought to pass Cu onto Cu chaperones and other cuproproteins (Bhattacharjee 

et al., 2016; Comstra et al., 2017; Gaier et al., 2013b; Hatori et al., 2016; Lutsenko, 2016; Telianidis 

et al., 2013). These chaperones then transport Cu to other subcellular locations such as 

mitochondria and/or transfer Cu to cuproproteins. Through ROS or antioxidant signaling and 

cuproproteins, the mitochondria can feedback on ATOX1/ATP7A activity to decrease 

mitochondrial Cu uptake and increase vesicular Cu (Baker et al., 2017a; Bhattacharjee et al., 2016; 

Hatori et al., 2016; Leary et al., 2013; Lutsenko, 2016). Thus, the potential implications of possible 

diurnal ATOX1 and ATP7A activities most likely depend on factors related to tissue-specific 

demands on Cu distribution, which still needs to be studied in the SCN. There are several 

additional Cu homeostatic proteins also worth nothing for future SCN studies, including Cu 

storage and buffering metallothioneins and the mitochondrial Cu chaperone, SCO1. SCO1 is a 

critical Cu chaperone for assembly/synthesis of cytochrome c oxidase, without which 

mitochondria cannot properly produce ATP through oxidative phosphorylation. It is important to 
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note here that SCO1 is functionally linked to localization of CTR1, hence Cu import, and a SCO1 

mutation is embryonically lethal owing to rapid degradation of CTR1 and Cu deficiency (Baker et 

al., 2017b; Hlynialuk et al., 2015). 

 

4.2b Cu homeostasis, PrPc, and APP/Aβ 

There are many other proteins shown to influence Cu levels, availability, and distribution. 

ATP7B is another ATPase Cu pump, which when mutated results in Cu accumulation and a 

condition known as Wilson’s disease, a condition associated with various neurological symptoms 

including parkinsonism, ataxia, dystonia, and seizures. ATP7B is localized in the parenchyma and 

sites of high Cu concentration such as ventricles, where ependymal ATP7B works to efflux Cu into 

the cerebrospinal fluid (Choi and Zheng, 2009; Davies et al., 2013; Hare et al., 2012; Ohrvik et al., 

2017).  Indeed, the 3rd ventricle that borders the SCN is reportedly enriched in Cu (Davies et al., 

2013; Fu et al., 2015a; Fu et al., 2015b; Hare et al., 2012; Pushie et al., 2011). The cellular prion 

protein, PrPc has been suggested to act as a sensor and potential docking site for extracellular 

Cu, which modulates PrPc interactions with other surface or extracellular proteins (e.g. for 

nitrosylation), and plays a role in metal homeostasis (Brown, 2003; Cheng et al., 2006a; Gasperini 

et al., 2016; Gasperini et al., 2015; Hodak et al., 2009; Pushie et al., 2011; Rachidi et al., 2003; 

Stys et al., 2012a; Urso et al., 2012; Vassallo and Herms, 2003; You et al., 2012). Although it is still 

unclear how PrPc interacts with metal homeostasis machinery, the endocytosis of Cu-bound PrPc 

is thought to be (indirectly) involved, and this endocytosis is mediated by high affinity interaction 

with the low-density lipoprotein-related receptor 1 (LRP1) (Hooper et al., 2008; Jen et al., 2010; 

Parkyn et al., 2008; Pauly and Harris, 1998; Rushworth et al., 2013; Taylor and Hooper, 2007; 

Urso et al., 2010). Interestingly, our lab has demonstrated that LRP1 is expressed in the SCN, and 

that inhibiting LRP1 binding to its ligands blocks Glu-induced phase shifts (Cooper and Prosser, 

2017). Preliminary evidence suggests increased LRP1 expression during the night when NMDAR 

activation by Glu resets the clock.  
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Various proteins involved in Alzheimer’s disease also affect Cu homeostasis. Knockout 

mice lacking amyloid precursor protein (APP) and its paralog APLP2, which have high affinity Cu 

binding sites, show reductions in brain Cu levels (Barnham et al., 2003; Ciccotosto et al., 2014; 

Gough et al., 2014; James et al., 2017; Spoerri et al., 2012; Treiber et al., 2004).  The β-secretase 

BACE1, which cleaves APP and promotes amyloid β (Aβ) processing by γ secretase, is a Cu-binding 

protein that has recently been implicated in Cu compartmentalization, potentially through 

binding Copper Chaperone of SOD1 (Cu/Zn-superoxide dismutase 1) (Dingwall, 2007; Liebsch et 

al., 2017). Similarly, the γ secretase presenilin has been shown to play a role in Cu uptake and 

homeostasis (Greenough et al., 2011; Southon et al., 2013). Although the mechanisms by which 

these amyloidogenic proteins affect Cu homeostasis is yet to be established, the well-

documented involvement of Cu dysregulation in various neuropathologies is consistent with the 

double-sided role of Cu deficiency and Cu excess in neuronal synaptic signaling, metabolism, and 

redox regulation. Thus, the following section discusses Cu’s role in neurodegeneration and how 

studying Cu in the SCN can help elucidate emerging links between circadian rhythms and 

neurodegenerative diseases. 

 

4.3 Cu, neurodegeneration, and oxidative stress 

The link between neurodegeneration and circadian rhythms is one of the many emerging 

areas of interest in neuroscience and chronobiology. Several studies have demonstrated deficits 

in circadian activity in neurodegenerative diseases, as well as changes in pathological behavioral 

and neurobiological profiles that have a circadian component, and studies in the SCN have 

demonstrated direct mechanisms of clock disruption associated with these conditions. Studies 

show that disrupted circadian/sleep rhythms can precede more overt symptoms of 

neurodegeneration (Aziz et al., 2009; Bellanti et al., 2017; Colwell, 2011; Cuesta et al., 2012, 2014; 

Fahrenkrug et al., 2007; Fifel, 2017; Fifel et al., 2014; Harper et al., 2008; Hu et al., 2013; Hu et 

al., 2009; Kudo et al., 2011a; Kudo et al., 2011b; Li et al., 2017a; Liu and Chang, 2017; Liu et al., 

2000; Meijer et al., 2012; Morton et al., 2005; Stevanovic et al., 2017; Van Erum et al., 2017; 
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Wang et al., 2015b; Wang et al., 2016; Wilking et al., 2013; Wu et al., 2006; Wu and Swaab, 2007; 

Zhou et al., 2016). Similarly, Cu has been implicated in various neurodegenerative diseases, owing 

to the variety of processes involving Cu and the role of Cu dyshomeostasis in neurotoxicity. From 

our data and others, we suggest that endogenous Cu modulates synaptic signaling and plays a 

role in several features of SCN neuroglial mechanisms, including clock function.  

 

4.3a PrPc, LRP1, Aβ 

As discussed in Chapter 3, the SCN exhibits a high resistance to excitotoxicity, and we 

postulate that this may involve endogenous Cu inhibition of NMDAR and its putative role in MAPK 

pathway activation. Cu has been shown to reduce NMDAR-mediated Glu excitotoxicity through 

a process that involves Cu efflux via ATP7A and/or PrPc-bound, Cu-mediated nitrosylation of 

NMDAR (Gasperini et al., 2015; Hodgkinson et al., 2015; Schlief et al., 2006; Stys et al., 2012a; 

You et al., 2012). Notably, deficits in circadian/sleep rhythms arising from PrPc knockout have 

been reported [as reviewed in (Castle and Gill, 2017)]. One possibility is that Cu neuromodulation 

of NMDAR is disrupted in these mice, resulting in disrupted circadian activity. As mentioned, PrPc 

may play a role in Cu homeostasis, potentially via LRP1 endocytosis of Cu-bound PrPc, but the 

physiological relevance of this mechanism in Cu homeostasis is contentious. In addition, it is not 

known how LRP1 affects Cu/PrPc-induced nitrosylation of NMDAR and Cu reduction of Glu 

excitotoxicity (Hooper et al., 2008; Jen et al., 2010; Parkyn et al., 2008; Rushworth et al., 2013). 

However, as discussed below, complex interactions of Cu, PrPc, and LRP1 have been reported in 

regard to neurotoxicity and a central Alzheimer’s disease protein, Aβ. 

Cu accumulation in aged mice is correlated with decreased LRP1 in endothelial cells and 

decreased LRP1-mediated, amyloid beta (Aβ) clearance across the blood-brain barrier in a 

transgenic amyloidogenic Alzheimer’s mouse model (Singh et al., 2013b). Interestingly, down-

regulation of LRP1 by Cu involves Cu-induced nitrosylation and degradation of LRP1, possibly 

mediated by Cu-dependent PrPc-LRP1 interaction and endocytosis (Singh et al., 2013b). The 

resulting increase in Aβ accumulation further exacerbates Alzheimer’s pathology by disrupting 
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Cu distribution and homeostasis, which in turn increases BACE1 and inflammation. Similar results 

have been reported by another group (Kitazawa et al., 2009; Kitazawa et al., 2016). Because Aβ 

binds Cu with nanomolar affinity, the Cu/LRP1-dependent Aβ accumulation likely underlies the 

observed Cu redistribution and accumulation outside of neurons, as seen in human brain tissue 

(James et al., 2017). Furthermore, the ability of Aβ to chelate Cu ions has been shown to cause 

neuronal death due to dysregulation of NMDAR, in connection with PrPc (You et al., 2012). Thus, 

by removing Cu from synapses and disrupting its physiological role, Aβ-Cu complexes can induce 

downregulation of LRP1 at the parenchyma, leading to a decrease in Aβ clearance from the brain 

and even greater accumulation, while simultaneously increasing neuronal death via NMDAR 

over-activation. To add further insult, interaction of PrPc with Aβ has been shown to induce 

neurotoxicity through LRP1-depedent endocytosis (Rushworth et al., 2013). Although the actions 

of Cu in this latter process have not been evaluated, we speculate that Aβ-binding of PrPc is less 

likely to occur in healthy tissue where Cu-binding to PrPc and PrPc endocytosis and cell surface 

trafficking by LRP1 are all properly regulated. Thus, further studies on Cu and LRP1 in the SCN, in 

general and in relation to excitotoxicity and Aβ-induced deficits could yield surprising and novel 

discoveries about SCN clock function. 

 

4.3b GSH/SOD1, oxidative stress, and inflammation 

Another feature pertinent to SCN clock function and neurodegeneration is Cu’s general 

role in redox and oxidative stress. First, Cu is known to oxidize various molecules in the cell, and 

high cellular demands for Cu and inadequate buffering by Cu binding proteins and antioxidants 

can lead to cellular damage and death.  Several studies have demonstrated how a proportional 

balance of Cu and reduced glutathione/GSH are important for reducing oxidative damage and 

cell survival, particularly in response to neurotoxic conditions (Du et al., 2008; Hatori et al., 2012; 

Kumar et al., 2016; Liddell and White, 2017; Mercer et al., 2016; Ozcelik and Uzun, 2009; Samuele 

et al., 2005; Singleton et al., 2010; White et al., 1999; White and Cappai, 2003). Mitochondrial 

energetics plays a critical role in determining cellular Cu distribution and metabolism, ROS and 

GSH levels, and highly metabolically active neurons must coordinate antioxidant processes to 
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protect against ROS/oxidative stress (Grimm and Eckert, 2017; Requejo-Aguilar and Bolanos, 

2016; Stefanatos and Sanz, 2017). Indeed, neuronal differentiation involves concomitant changes 

in redox status, glutathione antioxidant system and Cu shuttling via the redox-sensitive ATOX1 

(Hatori et al., 2016). Similar to ATOX1, ATP7A/B also possess redox-sensitive, cysteinyl thiol 

groups that when glutathiolated inhibit Cu binding to the pumps until de-glutathiolated by GSH; 

Cu increases glutaredoxin 1-mediated reduction of oxidized glutathione (GSSG), allowing for 

ATP7A/B-mediated Cu efflux (Singleton et al., 2010). Furthermore, knockdown of glutaredoxin 1 

or chemical depletion of GSH results in intracellular Cu accumulation (Singleton et al., 2010). 

Conversely, when ATP7A-mediated Cu transport is defective and Cu accumulates in 

mitochondria, this increases GSSG and sensitizes cells to GSH depletion (Bhattacharjee et al., 

2016). Thus, increases in Cu decrease the GSH/GSSG ratio, since GSH is utilized to protect against 

Cu redox and move Cu to secretory vesicles and out of the cell, and mitochondrial antioxidant 

systems play a key role in replenishing GSH through mechanisms under circadian control (e.g. 

NADPH and periredoxin/thioredoxin) (LeVault et al., 2016; Mendez et al., 2016; Milev and Reddy, 

2015; Patel et al., 2014; Putker et al., 2017; Rey et al., 2016; Rhee and Kil, 2016). 

Another important antioxidant implicated in neurodegeneration is Cu/Zn-superoxide 

dismutase (SOD1) (e.g., associated with familial Amyotrophic Lateral Sclerosis; ALS). Intriguingly, 

SOD1 activity exhibits diurnal variation in mouse liver and pineal gland (Cipolla-Neto et al., 1993; 

Jang et al., 2011). In a recent study using a novel CRISPR genetic screening method in human 

Jurkat cells, SOD1, ATP7A, and CTR1 were identified as key modifiers of paraquat-induced 

oxidative stress, where SOD1 and CTR1 are required for protection against paraquat-induced cell 

death, and the presence of ATP7A decreases resistance to paraquat (Reczek et al., 2017). 

Increased SOD1 activity due to loss of ATP7A function is a potential mechanism identified in 

resistance to paraquat, albeit many alternative mechanisms remain untested. Paraquat exposure 

is a risk factor for developing Parkinson’s disease and is used in mice to model loss of 

dopaminergic neurons.  In general, both disruption of Cu distribution and Cu-dependent iron 

homeostasis have been identified in Parkinson’s disease, and so the prominent role of Cu 

homeostasis proteins in paraquat-induced cell death is a promising discovery. Another intriguing 

idea is the physiological interaction of SOD1 and  the protein DJ-1, also called Park7, because 
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mutations in DJ-1 are causally related to familial, early-onset Parkinson’s (Girotto et al., 2014; 

Knippenberg et al., 2013; Lev et al., 2015; Lev et al., 2009; Milani et al., 2013; Morimoto et al., 

2010; Wang et al., 2011; Yamashita et al., 2010). DJ-1 has been shown to bind Cu and transfer Cu 

to SOD1 (Bjorkblom et al., 2013; Girotto et al., 2014; Puno et al., 2013), as well as to bind and 

exert a protective effect against mutant SOD1 models of familial ALS (Knippenberg et al., 2013; 

Wang et al., 2011; Yamashita et al., 2010). Given the diurnal rhythms in redox and SOD1 seen in 

different tissues, and the potential circadian function of redox in the SCN, these studies on Cu 

homeostasis and antioxidants demonstrate a strong basis for a link between Cu physiology and 

circadian deficits in oxidative stress-related neurodegeneration. 

The last feature to discuss here in terms of potential Cu-related mechanisms in SCN and 

circadian deficits in neurodegeneration is the role of astrocytes and inflammation in Cu 

metabolism.  Astrocytes are important players in Cu homeostasis, especially in protecting 

neurons against excess Cu. Astrocytes store and release Cu as needed under physiological 

conditions (Hare et al., 2013; Pal and Prasad, 2014; Qian et al., 2012b; Scheiber and Dringen, 

2013; Scheiber et al., 2012). Cu uptake by astrocytes is partially involved in stably maintaining 

extracellular GSH despite sudden increases in extracellular Cu (Pope et al., 2008). However, 

antioxidant stabilization of GSH by astrocyte-conditioned media alone is observed also. In line 

with these observations, astrocytes have been shown to increase export and cellular 

concentration of reduced glutathione when treated with Cu, surprisingly without cellular 

increases in its oxidized form (Scheiber and Dringen, 2011). In addition, astrocytic release of 

pyruvate has been implicated in protecting against oxidative effects of extracellular Cu (Wang 

and Cynader, 2001). Despite being relatively resilient to the damaging effects of Cu, excess Cu 

resulting from Cu dysregulation has been shown to be toxic to astrocytes due to unbuffered 

increases in intracellular Cu (Bulcke et al., 2015; Chen et al., 2008b; Merker et al., 2005; Ramirez-

Ortega et al., 2017; Scheiber et al., 2010b). Given the short duration and low concentrations of 

exogenous Cu used in our experiments (and continued robust neuronal activity rhythms 

exhibited by the SCN tissue after the experimental treatments), we do not believe astrocytic 

death to be a pertinent factor to our SCN data. Nonetheless, determining the effects of acute and 
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long term Cu chelation and Cu application on SCN astrocytes in vivo and in vitro would be useful 

in regard to circadian rhythms and Cu-related brain pathology. 

Studies to date on the effects of Cu and Cu chelation/deficiency on inflammation have all 

focused on tissue/cell lines outside the brain (Ansteinsson et al., 2009; Chen et al., 2015; Di Bella 

et al., 2017; Liu et al., 2016b; Persichini et al., 2006; Wei et al., 2014; Wei et al., 2012); and hence, 

the physiological relevance of these results are unclear in the context of SCN tissue and our data. 

However, Cu homeostasis and inflammatory responses appear to feedback on each other under 

pathological conditions through nitric oxide signaling and various inflammatory factors, in 

particular tumor necrosis factor-alpha (TNF-α) (Becaria et al., 2006; Hu et al., 2016; Kitazawa et 

al., 2016; Lu et al., 2009a; Rossi-George and Guo, 2016; Rossi-George et al., 2012; Sun et al., 2017; 

Terwel et al., 2011). Importantly, TNF-α has been shown to phase shift the SCN molecular clock 

in vitro and in vivo via actions mediated by astrocytes (Duhart et al., 2013; Leone et al., 2012). 

Furthermore, TNF-α has been shown to increase spontaneous firing of SCN neurons by a nitric 

oxide-dependent mechanism (Nygard et al., 2009). In addition, TNF-α signaling is primarily 

responsible for lipopolysaccharide-induced phase shifts in behavioral rhythms (Duhart et al., 

2013; Leone et al., 2012; Paladino et al., 2014), and several studies have shown that Cu affects 

inflammatory responses to lipopolysaccharide challenge in relation to neurological function 

(Kitazawa et al., 2016; Patel et al., 2013; Rossi-George and Guo, 2016; Rossi-George et al., 2012; 

Wei et al., 2011; Wei et al., 2012). In fact, both ATOX1 and ATP7A may mediate Cu’s role in various 

neuro-immunological responses (Chen et al., 2015; Patel et al., 2013). Thus, these studies 

highlight a need to investigate Cu homeostasis as it relates to SCN astrocytic function and the 

interaction between circadian rhythms and inflammation. 

In summary, this section reviewed the role of Cu in SCN function as it relates to 

neurodegenerative diseases, in terms of signaling, redox/oxidative stress, and inflammation. 

Both Cu chelation and Cu treatment paradigms have been used extensively in these areas, yet 

our study is the first to perform such experiments in the SCN. Given our experimental results and 

the various findings described above, it is clear that investigating Cu neurochemistry and 
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physiology in the SCN could greatly enhance understanding of SCN circadian clock function and 

diseases of the brain.  

 

4.4 Zinc and iron in rhythm 

Cu homeostasis also plays a role in both zinc physiology and iron homeostasis, which have 

been frequently explored in various brain regions, yet remains relatively uninvestigated in SCN 

and mammalian circadian rhythms. Zn and Fe rhythms in human blood, milk, and urine have been 

reported, and there are indications that the clock modulates Zn/Fe metabolism (Araki et al., 1983; 

Couturier et al., 1988; Guillard et al., 1979; Hongo et al., 1993; Kanabrocki et al., 2007; Kanabrocki 

et al., 2008; Krebs et al., 1985; Markowitz et al., 1985; Picciano and Guthrie, 1976; Scales et al., 

1988; Schumann and Haen, 1988; Taylor and Ghose, 1986). Because Zn and Fe also have various 

neurobiological functions, dysregulation of these ions has been implicated in 

neurodevelopmental problems, seizures, and neurodegeneration. Thus, in the next section, I will 

briefly discuss Zn and Fe physiology in the brain and how they may play a role in the SCN; overall, 

in light of a Zn-Fe-Cu axis, these ideas reinforce the conclusion that Cu homeostasis and 

dysregulation require further investigation in the SCN.   

 

4.4a Zn physiology in sleep and circadian rhythms 

Constant light has been shown to affect plasma Cu and Zn levels (Morton, 1990). Higher 

circulating Zn levels have been linked to better sleep quality and duration in different human 

populations and in mice (Cherasse et al., 2015; Ji and Liu, 2015; Kordas et al., 2009; Luojus et al., 

2015; Rondanelli et al., 2011; Saito et al., 2017; Song et al., 2012; Tan et al., 1995; Zhang et al., 

2009a). Zn supplementation has been shown to decrease sleep onset latency and to improve 

sleep quality (Kordas et al., 2009; Rondanelli et al., 2011; Saito et al., 2017). In a study by Song et 

al., women who had the highest percentage of optimal sleep duration had the highest serum and 

hair Zn/Cu ratios out of 126, adult Korean women (2012). In another study using mice, Zn 
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increased non-rapid eye movement (NREM) sleep when given at the onset of dark phase before 

their normal active period but not when given during the subjective day prior to sleep onset 

(Cherasse et al., 2015).   

Similar to Cu, Zn is involved in many neuronal functions, including modulation of various 

receptors, intracellular signaling, and apoptosis (Blakemore and Trombley, 2017; Que et al., 

2008). As a neurotransmitter, presynaptic Zn is found co-packaged with Glu in vesicles via activity 

of the transporter ZnT3; in the synapse it can activate a Zn-specific, G-protein coupled receptor, 

while free, excess Zn is taken back in by reuptake transporters (Ketterman and Li, 2008; Khan et 

al., 2014). Additionally, there are other transporters for Zn, such as ZIP1, which can form a 

complex with NMDARs to modulate postsynaptic structure (Mellone et al., 2015). As nearly all 

SCN neurons are GABAergic, a physiological role of presynaptic Zn/ZnT3 in SCN function is only 

likely to occur at the glutamatergic inputs to the SCN, such as from retinal ganglion cells or  on 

SCN efferent neurons projecting to the paraventricular thalamus (Alamilla and Aguilar-Roblero, 

2010). A neuroprotective and regenerative role for Zn in retinal ganglion cells has been described 

in relation to ZnT3 and Zn release from retinal cells (Bai et al., 2013; Chappell and Redenti, 2001; 

Li et al., 2017b). The most likely function of synaptic or extracellular Zn in the SCN would be to 

modulate NMDA receptors and possibly GABAa receptors, as well as in synaptic plasticity.  

NMDAR in the SCN are primarily composed of two NR2B (GluN2B) and two NR1 (GluN1) 

subunits (Bendova et al., 2012; Clark and Kofuji, 2010; Wang et al., 2008). Because NR2B subunits-

containing NMDARs exhibit low-affinity Zn binding, low micromolar applications of Zn have only 

modest inhibitory effects on most NMDAR-mediated currents in the SCN (Clark and Kofuji, 2010; 

Wang et al., 2008). However, high-affinity Zn inhibition (~1nM) of NR2A-containing NMDARs has 

been demonstrated (Bottum et al., 2010; Clark and Kofuji, 2010; Moriya et al., 2000); 

interestingly, from electrophysiology data, these NR2A-mediated currents appear to be relatively 

magnesium insensitive, supporting an NR1/NR2A, heterotetrameric complex with either NR2C or 

NR2D (Clark and Kofuji, 2010). Thus, similarly to Cu, Zn inhibition of presynaptic NR2A/NR2C-

containing NMDAR could have important functions in modulating presynaptic 

neurotransmitter/neuropeptide release. Interestingly, a recent study has shown that NR2C-
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containing NMDAR are expressed presynaptically in the SCN, and that they participate in 

regulating SCN rhythms through astrocytic Glu release rather than stimulus-driven, phasic Glu, 

(Brancaccio et al., 2017) 

Several studies have explored the effects of Zn application on GABAa receptors (-R) in the 

SCN, especially in regard to diurnal differences and GABAa-R subunits (Belenky et al., 2003; 

Kawahara et al., 1993; Kretschmannova et al., 2005; Kretschmannova et al., 2003; Strecker et al., 

1999). In the SCN, the role of GABAa-R is highly complicated by the effects of day-night changes 

in chloride equilibrium and synaptic versus extrasynaptic receptor localization. Of note, Zn has 

been shown to shift the postsynaptic chloride equilibrium via complex effects on the potassium 

chloride co-transporter 2 that depend on presynaptic input and neuron type (Chorin et al., 2011; 

Di Angelantonio et al., 2014; Hershfinkel et al., 2009; Saadi et al., 2012). Indeed, the mechanisms 

and effects of Zn in postsynaptic neurons depend on the activity and function of both presynaptic 

and postsynaptic neurons (Anderson et al., 2015; Izumi et al., 2006; Kalappa and Tzounopoulos, 

2017; Lavoie et al., 2011; Perez-Rosello et al., 2015; Vergnano et al., 2014). In addition, an 

endogenous role for tonic, non-synaptic extracellular Zn in modulating extrasynaptic NMDAR has 

been recently found in the dorsal cochlear nucleus (Anderson et al., 2015). In our preliminary ICP-

MS studies of SCN tissue, we measured a higher Zn content than Cu (approximately double), but 

it would be premature to speculate on the implications of these data. 

How Cu dyshomeostasis may affect these various processes is unclear due to the lack of 

studies involving Cu and Zn, but one emerging mechanism is the possibility that accumulation of 

free Cu can displace Zn from Zn-binding proteins such as metallothioneins or postsynaptic 

proteins (Baecker et al., 2014; Isaev et al., 2016; Meloni et al., 2007; Meloni et al., 2008; Tanaka 

and Kawahara, 2017). Intracellularly, Zn has a multitude of effects, ranging from stabilizing 

protein interactions at the postsynapse (Fernandez et al., 2008; Jan et al., 2002; Lee et al., 2017; 

Sun et al., 2013; Tao-Cheng et al., 2016); to intracellular modulation of ion channels (Di 

Angelantonio et al., 2014; Gao et al., 2017; Pitt and Stewart, 2015; Schulien et al., 2016; Tuncay 

et al., 2013; Wang et al., 2001; Woodier et al., 2015; Xia et al., 2000; Xie et al., 2004; Yi et al., 

2013), including calcium release via ryanodine receptors (Pitt and Stewart, 2015; Schulien et al., 
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2016; Tuncay et al., 2013; Wang et al., 2001; Woodier et al., 2015; Xia et al., 2000; Xie et al., 2004; 

Yi et al., 2013); to TrkB transactivation (Huang and McNamara, 2010, 2012; Huang et al., 2008); 

and ROS generation and apoptosis (Bishop et al., 2007; Chang et al., 2010; Clausen et al., 2013; 

Liao et al., 2011). Although later studies have cast doubt on TrkB transactivation, Zn affects BDNF 

levels potentially via upregulation of Zn-dependent matrix metalloproteinase 9 (Helgager et al., 

2014; Yoo et al., 2016), and more generally, the role of Zn in synaptic plasticity and modulation 

of long-term potentiation is well established (Ando et al., 2010; Fujise et al., 2017; Grabrucker et 

al., 2011; Hagmeyer et al., 2015; Izumi et al., 2006; Kalappa and Tzounopoulos, 2017; Kirsten et 

al., 2015; Kodirov et al., 2006; Pan et al., 2011; Perez-Rosello et al., 2013; Quinta-Ferreira and 

Matias, 2005; Sindreu et al., 2011; Sindreu and Storm, 2011; Takeda et al., 2015; Takeda et al., 

2017; Vergnano et al., 2014). Of particular relevance is Zn binding and strengthening of CRY1 and 

PER2 clock protein dimerization in a potentially redox sensitive manner (Schmalen et al., 2014). 

Although we haven’t addressed the many other ways in which Zn may be a key micronutrient in 

neuronal circadian rhythms, the discussion above highlights the value of studying Zn in different 

brain regions. And Zn ─which is an effective treatment for toxicological Cu in Wilson’s disease 

cases─ tends to compete with Cu metabolism. 

 

4.4b Fe in sleep/circadian rhythms, Cu, and heme 

Clock control of Fe homeostasis is closely coupled to metabolic demands, and the co-

evolution of these systems is inherently driven by cellular handling of oxygen as a byproduct of 

photosynthesis and as an electron acceptor in oxidative phosphorylation. For organisms that 

utilize photosynthesis, circadian regulation of Fe is critical for optimally timed chloroplast 

function, complete with mechanisms to adjust to seasonal variation in LD cycle changes (Botebol 

et al., 2015; Chen et al., 2013b; Duc et al., 2009; Hong et al., 2013; Salome et al., 2013; Tissot et 

al., 2014; Wilson and Connolly, 2013). As Fe is also critical to mitochondrial ATP production and 

the bioenergetics of heterotrophs, food intake influences circadian Fe metabolism, and Fe status 

in turn influences activity levels and cycles as seen in various mammalian species (Dean et al., 

2006; Dowling et al., 2011; Hunt et al., 1994; Kordas et al., 2009; Schumann and Haen, 1988; 
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Simcox et al., 2015; Unger et al., 2009). Long-term shifts in LD cycle affect Fe concentration in the 

frontal lobe (Karakoc et al., 2011).  

 In addition, Fe deficiency negatively impacts sleep quality, and Fe supplementation of Fe 

can improve sleep duration particularly in groups at risk for deficiency (Dean et al., 2006; Kordas 

et al., 2009). Indeed, Fe deficiency underlies a subgroup of Willis-Ekbom disease patients, who 

exhibit periodic limb movements with an apparent circadian/sleep component, and studies and 

treatment have targeted Fe’s role in dopamine synthesis (Allen and Earley, 2007; Baier and 

Trenkwalder, 2007; Connor et al., 2009; DeAndrade et al., 2012; Dowling et al., 2011; Frauscher 

et al., 2009; Freeman and Rye, 2013; Furudate et al., 2014; Trenkwalder et al., 2008), As an 

essential cofactor for tyrosine hydroxylase, Fe dysregulation has also been strongly implicated in 

Parkinson’s pathogenesis. Restless legs symptoms are reportedly common in these patients, 

which correlate with increased severity of motor and sleep dysfunction and is linked to Fe 

dysregulation (Piao et al., 2017). Circadian regulation of dopaminergic circuits has been well 

established both by peripheral clocks and by the master clock (Brooks et al., 2011; Sleipness et 

al., 2007; Verwey et al., 2016). Notably, tyrosine hydroxylase is regulated by the clock (Bussi et 

al., 2014; Chung et al., 2014; McClung et al., 2005), and one study has shown that iron deficiency 

displays a diurnal component in dopamine metabolism (Bianco et al., 2009).  

The direct mechanisms by which the circadian clock affects Fe homeostasis in the brain, 

upstream of changes in expression of Fe-binding proteins, are yet unclear, In mouse colon tumor 

tissue, CLOCK/BMAL1 were recently identified as transcription factors for iron regulatory protein 

2 (IRP2), which is a central component controlling various Fe proteins (Okazaki et al., 2016). 

Although other clock-controlled components are involved in circadian Fe regulation (Ben-Shlomo 

et al., 2005; Okazaki et al., 2010), of primary interest to our work are: (diurnally expressed) PrPc 

and Cu-mediated interactions via Cu-dependent ferroxidases ceruloplasmin and hephaestin. 

Although the role of PrPc in Fe homeostasis has been reported in various models in the past, 

these often involved the scrapie form of PrPc involved in prion disease (Fernaeus et al., 2005a; 

Fernaeus and Land, 2005; Fernaeus et al., 2005b; Singh et al., 2011; Singh et al., 2009a; Singh et 

al., 2009b; Singh et al., 2009c; Singh et al., 2012). Nonetheless, there are data suggesting a 



 

75 
 

physical interaction between PrPc and Fe, and more recent studies have investigated a putative 

ferrireductase domain that mediates interactions with transport machinery to increase Fe import 

(Asthana et al., 2017; Bhupanapadu Sunkesula et al., 2010; Das et al., 2010; Haldar et al., 2015; 

Lee et al., 2007; Park et al., 2008; Singh et al., 2013a; Tripathi et al., 2015). In addition, PrPc 

knockout mice may also have decreased cellular Fe content due to decreased systemic Cu and 

Cu-dependent ferroxidase activity (Gasperini et al., 2016; Pushie et al., 2011). Systemic decrease 

or dysregulation of ferroxidase activity results in deficits in Fe storage and delivery to various 

tissues, and can result in brain Fe deficiency and neurological symptoms as in 

aceruloplasminemia (Gulec and Collins, 2013; Ha et al., 2016; Kono, 2012; McCarthy and Kosman, 

2014). At the cellular level, however, Cu-dependent ferroxidase activity is required for Fe export 

via ferroportin, and as such, Cu dysregulation also causes Fe accumulation in the brain (McCarthy 

and Kosman, 2013, 2014; Vashchenko and MacGillivray, 2013; Welch et al., 2007). Furthermore, 

ferroxidase deficits due to cell- or brain region-specific Cu dysregulation is causally linked to Fe-

induced oxidative stress underlying dopaminergic neurodegeneration as seen in Parkinson’s 

disease (Bharucha et al., 2008; Boll et al., 2008; Boll et al., 1999; Dusek et al., 2015; Rubio-Osornio 

et al., 2013; Song et al., 2017).  

From the evidence above, it is not surprising that studies have shown how Fe physiology 

may conversely feedback on neuronal circadian biology, particularly as a cofactor in heme. In the 

SCN, where heme metabolism is circadian, exogenous heme or inhibition of its degradation 

disrupts PER2 transcriptional rhythms (Guenthner et al., 2009; Rubio et al., 2003). In Drosophila 

neurons, many Fe homeostatic proteins appear to modulate their clock proteins, PER and TIM, 

(Mandilaras and Missirlis, 2012). Underlying these observations is the fact that PAS-domains 

found in clock proteins NPAS, CLOCK, and PER function in heme binding (Hayasaka et al., 2011; 

Kitanishi et al., 2008; Lukat-Rodgers et al., 2010). Perhaps even more intriguing is that binding of 

heme to Rev-Erb proteins affects Rev-Erb’s interaction with nuclear corepressors, and hence, 

modulates their role in circadian transcription regulation in a putatively, redox-dependent 

mechanism (Carter et al., 2017; Gupta and Ragsdale, 2011; Matta-Camacho et al., 2014; Yin et 

al., 2007). There are other heme- or Fe-binding proteins involved in the clock, including sGC, and 

iron homeostatic proteins under circadian control which may feedback and modulate iron levels 
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(Girvan and Munro, 2013; Okazaki et al., 2016; Okazaki et al., 2010; Robles et al., 2014; Schaap 

et al., 2013; Simcox et al., 2015; Zhang et al., 2017). Dexras1 is particularly intriguing as it is: a) 

under circadian control (Gerstner et al., 2006; Hahnova et al., 2016; Takahashi et al., 2003); b) 

plays a role in photic and non-photic phase shifting responses via MAPK signaling (Cheng et al., 

2006b; Cheng et al., 2004; Hahnova et al., 2016); and c) is activated (putatively via nitrosylation) 

downstream of NMDAR and NO signaling, resulting in Fe influx and increased excitoxicity (Cheah 

et al., 2006; Chen et al., 2013a; Choi et al., 2013; White et al., 2016). Thus, the role of Fe in heme 

redox biology and circadian molecular rhythms demands further inquiry and understanding. 

Proteins which can bind both Cu and Fe ‒such as PrPc and alpha-synuclein (amyloidogenic protein 

found in Lewy bodies and Parkinson’s disease), multicopper ferroxidases, and putative 

interacting partners including amyloid precursor protein, and their degenerative, neurotoxic 

forms‒ are implicated in various aspects of neurobiology and psychopathology, including 

excitotoxicity-induced seizures, depression, and fatal brain diseases. These Cu/Fe-associated 

proteins are implicated in sleep and circadian rhythms to varying degrees, and circadian deficits 

together with more conspicuous sleep-wake and monoaminergic disorders can appear when 

these proteins are dysregulated, such as by abrupt or harmful environmental factors, 

metabolic/genetic/nutritional deficiencies, or Zn dyshomeostasis. Therefore, in some cases, the 

early detection of various neurological conditions not yet outwardly apparent may be aided by 

monitoring circadian outputs; conversely, awareness and avoidance of disruptors of circadian 

biology, including exposure to toxic metals, may prevent or prolong onset of neuropathology, 

even cancer.  

I end this section by reframing this under-appreciated, and poorly understood area in SCN 

physiology of metals in rhythms, behavior, and neurodegeneration. Cu, Fe, and Zn accumulate 

with age and correlate with mitochondrial dysfunction and dysregulation of cellular metabolic 

activities, both of which tie into excess oxidative stress and eventual neurodegeneration. Ideally, 

the SCN pacemaker should be able to quickly pick up on various external cues, yet maintain a 

robust, autonomous function. At the same time, it must optimize metabolic and cellular redox 

activities for growth or health, maximize antioxidant and tissue repair and protective 

mechanisms, and minimize environmental hazards (e.g. UV/ozone) and external-internal conflict 
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(e.g. jetlag) in order to coordinate peripheral clocks in the brain and body for evolutionarily 

adaptive behaviors, especially protecting and increasing brain functionality. Thus, the SCN is a 

critical model for metallo-neurobiology and will define new approaches to increase health and 

well-being in conjunction with nutrition, exercise, and self-awareness of key, internal diurnal 

processes. By further studying these trace metals in neurophysiology and SCN rhythms, we can 

begin to explore new solutions to physical and mental health, perhaps even new approaches to 

cancer and neurodegeneration, where Fe/Cu/Zn chelation therapy trials have already begun. 

 

4.5 Conclusion and future directions: Cu and SCN function 

We have only scratched the surface of the myriad questions that come out of this 

research. Focusing back on our model, there remains many questions regarding the effects of 

TTM and exogenous Cu. We hypothesize that extracellular Cu modulates NMDAR activity in the 

SCN, and at night it inhibits the effects of tonic or extrasynaptic Glu that are not related to photic 

input. This is supported by our Cu chelation data, but as stated, we do not know the specific 

mechanisms by which Cu removal directly affects receptors, signaling and metalloproteins. We 

need to assess if and which pools of Cu are directly affected by TTM (and BCS) using fluorescent 

Cu-specific sensors and/or synchrotron X-ray fluorescence, for example. In-depth 

characterization of basal level Cu distribution and homeostasis in astrocytes and neurons over 

circadian time, as discussed earlier, as well as after Glu and other circadian-related manipulations 

would indirectly support some of our hypotheses. 

In addition, Cu has been shown to inhibit or modulate calcium, GABAa-R, and even K+ 

channels, but we have not tested these ideas yet, particularly in regard to TTM effects. As we 

theorize that calcium-dependent signaling is involved in TTM-induced, nighttime phase shifts, 

investigating calcium dynamics and channel activity, respectively, by imaging or patch-clamp 

electrophysiology in tandem with inhibitors would be critical in confirming TTM effects. Calcium 

imaging and electrophysiology would also implicate which neurons are not directly affected by 
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TTM in regard to ventral input (e.g. GABA, VIP) to dorsal neurons in the SCN shell region versus 

selective activation of dorsal neurons only.  

On a different note, TTM-induced phase shifts during the midday (ZT6) are not mediated 

by NMDAR, when Glu does not induce phase shifts either (Fig. 4.1).  Previous research on possible 

mechanisms for daytime phase shifts in general have focused on suppression of neuronal firing, 

such by GABAa-R, serotonin receptors, and K+ channels. It is possible that endogenous Cu inhibits 

hyperpolarizing currents and TTM has the opposite effect, resulting in suppression of neuronal 

activity. In general, however, micromolar Cu is thought to suppress neuronal firing, yet 

application of Cu at ZT6 did not induce daytime phase shifts. We suggest two possible 

explanations: First, TTM could suppress firing of VIP-expressing neurons by decreasing Cu in the 

ventral region, where restoring endogenous Cu inhibition to those specific, extracellular sites is 

delayed; and the effect of Cu bath-application is both temporary and spread throughout SCN 

regions. Alternatively, the divergence of daytime effects between Cu chelation versus Cu 

application on SCN circadian rhythms may functionally relate to ERK1/2 activity rhythms. During 

the day when phosphorylated ERK1/2 activity is the highest, increasing MAPK signaling by Cu 

application would not be expected to have an effect on SCN activity rhythms even if this were 

possible. In fact, non-photic phase shifts induced by dark pulses and sleep deprivation during day 

have been shown to suppress the high ERK1/2 phosphorylation/activity. Since TTM would likely 

also suppress MEK1-MAPK signaling, these reports are consistent with our data showing no effect 

of MEK1/2 inhibition on TTM-induced, daytime phase advances. Thus, daytime effects of TTM 

are likely multifactorial and require further studies on ion channels, neuronal activity, and 

intracellular signaling. Additionally, cAMP-dependent Protein Kinase A has been implicated in 

daytime suppression of neuronal firing and phase shifts and would be an important pathway to 

investigate. 

Of major interest for future studies is to determine whether Cu inhibition of NMDAR 

activity requires PrPc and/or nitrosylation of NMDAR. Although protein level data have not been 

reported, circadian expression of PrPc mRNA with a peak in early subjective night has been shown 

in the SCN (Cagampang et al., 1999). Since the role of Cu-dependent PrPc in modulating NMDAR 
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Figure 4.1. TTM, but not Cu, induces daytime phase advances at ZT6  

Histogram plot summarizing the mean phase shifts ± SEM resulting from the indicated 

treatments. 10min TTM (1µM) treatment at midday (ZT6) induces phase advances, which are not 

blocked by AP5, K252a, and U0126 (inhibitors for NMDAR, TrkB, and MEK1/2, respectively). 

Neither 10min application of 10µM Cu nor 1mM Glu alone phase-shift SCN neuronal activity 

rhythms at ZT6.  One-way ANOVA indicated a significant effect of treatments (F = 8.641, p<0.001). 

Advances are plotted as positive values. *Phase advances significantly different from control 

(p<0.05). N=3-4 for all experiments. 
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has been linked to LRP1 endocytosis, these studies would additionally intersect with LRP1 

research by our group. Whether the endocytosis of NMDAR and the functions of LRP1 in receptor 

endocytosis are relevant to SCN neurons remains unknown. If neither nitrosylation nor Cu-LRP1 

interactions are involved in NMDAR modulation by Cu, a less obvious mechanism may involve Zn 

displacement from redox-sensitive sites and/or complex, biphasic characteristics of both Cu and 

Zn which have been shown to activate or decrease neuronal firing and ion channel activity 

depending on low nanomolar versus micromolar Cu or Zn concentrations (Aedo et al., 2007; 

Delgado et al., 2006; Peters et al., 2011). Neither Zn imaging nor chelation studies have been 

performed with SCN tissue/neurons, but these experiments could prove highly insightful and 

establish a completely new role for Zn in the brain and circadian rhythms. Future experiments 

could test the synaptic effects of applying both Cu and Zn together, with or without the presence 

of metalloproteins such as APP or amyloid β, in order to examine circadian disruptions in receptor 

signaling and neurotoxicity in the context of trace metal dyshomeostasis and SCN 

pathophysiology in neurodegenerative diseases.  

One of our main general questions regarding Cu in the SCN concerns redox and oxidative 

stress. Again, Cu is known to induce nitrosylation of proteins, and this may relate to our result 

that Cu-induced phase advances required NO signaling. Neither nitrosylation of NMDAR and 

other proteins in the SCN nor rhythms in nitrosylation in tissues have been reported, to the best 

of our knowledge. Indeed, nitrosylation of NMDAR may only occur under certain conditions, such 

as when it is physiologically important to inhibit and internalize NMDAR following phasic 

activation. In addition, Cu and Cu homeostasis are intertwined with redox rhythms, and many 

aspects of redox rhythms are unknown in the SCN. One of the primary players in physiological 

Cu-redox activities is glutathione and the enzyme glutaredoxin, and the function and importance 

of the glutathione system is understudied in the SCN and circadian rhythms in general. As 

depicted in the models below (Figs. 4.2 and 4.3), we hypothesize that: diurnal differences in GSH 

metabolism influences cellular Cu distribution and metabolism in a circadian manner, as 

governed by underlying molecular, metabolic, and redox oscillations; and diurnal changes in Cu 

metabolism feedback on these underlying clocks—inducing phase shifts when signaling 

pathways, mitochondria, and ROS/antioxidant activity are uncoupled by shifts in Cu homeostasis. 
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Figure 4.2. Model of SCN Cu physiology during the day.  

During the day, Cu is readily imported into SCN neurons by CTR1, which requires the reduction 

of Cu2+ to Cu+ (not shown here). This would be potentially facilitated by the relatively reduced 

state of SCN neurons and by higher levels of reduced glutathione (GSH) during the day. By 

modifying ATOX1 via glutaredoxin1 (GRX), directly binding Cu immediately upon import, or 

through indirect mechanisms, GSH has been shown to influence Cu uptake. High affinity Cu 

binding by metallothioneins (MT) is crucial in protecting against Cu redox activity (i.e. Fenton 

chemistry) and consequent oxidative stress. Cu chaperones such as ATOX1, CCS (Copper 

Chaperone for Superoxide Dismutase), and mitochondrial Cu chaperones (e.g. SCO1, COX11, etc.) 

deliver Cu to ATP7A-associated secretory vesicles, Cu/Zn-dependent SOD, and mitochondrial 

targets related to cytochrome c oxidase (COX), respectively.  

During the day, (light-stimulated) glutamatergic input to SCN neurons does not induce phase 

shifts, and hence, SCN clock(s) utilize various mechanisms to temporally gate the effects of 

light/glu signaling to coordinate SCN activity rhythms with external daytime cues. These clock-

regulated mechanisms will feedback on the clock(s) overtime, so that entraining cues such as 

light during the night, can shift the clock in a time-dependent manner. The molecular clock 

drives/regulates a variety of processes, including high neuronal firing and [Ca2+]i, Ca-dependent 

and independent signaling pathways, mitochondrial processes, Fe3+/2+-/heme-related 

metabolism, and antioxidant levels. In turn, cellular metabolic activities, particularly within the 

mitochondria, feedback on to the clock by affecting energy substrate levels (e.g., ATP/AMP), 

redox-cycling metabolites (NAD(P)H, FADH), and possibly via increased ROS generation/oxidative 

stress leading to signaling responses and depletion of GSH. Cu metabolism and homeostasis may 

also play a role in these processes/daytime features. Cu may affect activity of redox-sensitive K+ 

channels through direct interaction or indirectly by modulating ROS/antioxidant mechanisms 

(H2O2, SOD, GSH). Higher Cu import during the day could: activate MEK1 via putative, high affinity 

(attomolar) binding and underlie higher MAPK activation during the day; influence COX-

dependent oxidative phosphorylation and ATP production; and generally promote oxidization 

once GSH levels decrease (e.g. protein-thiol oxidation, lipid peroxidation, and zinc displacement). 

Other known intracellular mechanisms relate to metabolism or signal transduction and include, 
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binding-based inhibition of phosphodiesterases and phosphatases, as well as modulation of 

transcription factors (SP1, AP1, NRF2) and proteases/protease inhibitors.  

The last set of mechanisms may not be as relevant to Cu physiology, and rather be associated 

with Cu dyshomeostasis and betray cellular pathophysiology, yet the difference between normal 

Cu function and dysregulation may be functionally relevant in the SCN. The gating of exogenous 

Cu effects during the day versus night, and the shift in rhythms induced by either Cu chelation or 

addition ─nighttime only for addition─ suggests that the status of Cu homeostasis is an important 

metabolic and physiological cue between the SCN and other tissues and brain regions—relaying 

information related to food consumption/energy state, liver function, inflammation, and other 

processes in the context of circadian or sleep-wake rhythms. In a similar vein, Cu levels have been 

shown to influence neuropeptide Y transcription, neuroplasticity, synchronized neuronal firing, 

as well as circadian genes, activity and behaviors (in plants and aquatic animals); and on the other 

hand it is required for iron homeostasis, norepinephrine synthesis, thermoregulation, 

neuropeptide activation (e.g. AVP amidation), and protection against seizures and aberrant 

neuronal activity. Thus, tight control of (intra)cellular Cu distribution is essential for a host of 

processes, and the window between Cu physiology and pathophysiology is narrow.  
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Fig. 4.2 continued 
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Figure 4.3. Model of SCN Cu physiology during the night.  

Cu (blue dots) can inhibit various ion channels, including voltage-gated Ca2+ channels, which may 

partially underlie, decreased postsynaptic [Ca2+]I and neuronal firing during the night in the SCN. 

Extracellular Cu inhibits NMDAR-mediated, calcium influx during the night. Thus, we believe that 

TTM chelation of Cu induces [Ca2+]I increase during the night, and underscore future experiments 

looking at TTM-induced changes in [Ca2+]I and Ca2+ channel activity. ATP7A movement to the 

plasma membrane and efflux of Cu has been shown to suppress NMDAR overactivation and Ca2+ 

excitoxicity. ATP7A translocation can occur in response to excess Cu but also Ca2+ influx and K+-

induced neuronal depolarization/firing, which raises the possibility of a negative feedback loop. 

Thus, high neuronal firing and [Ca2+]i during the day may be followed by increased Cu efflux at 

later time points, which requires increased ATP7A activity and is consistent with increased ATP7A 

expression during the early night (Fig. 3.4). The increased Cu flux and sequestering into secretory 

vesicles would use up reduced glutathione (GSH) more rapidly in order to de-glutathiolate ATOX1 

and ATP7A (via glutaredoxin-1, GRX) for increased Cu binding/transport activities. This redox-

cycling process would require reduction of ATOX1/ATP7A by GSH at a high rate, resulting in a 

higher ratio of oxidized glutathione (GSSH) to GSH during the night. This is consistent with the 

increased, global protein glutathiolation in SCN tissue seen during the night, when SCN neurons 

are also more oxidized (Wang et al., 2012).  

Another facet of Cu inhibition of NMDAR activity is Cu-induced nitrosylation of the receptor, 

possibly via cellular prion protein (PrPc). Cu-bound PrPc is able to physically interact with 

NMDARs, and this Cu-induced interaction is necessary for PrPc-mediated nitrosylation of 

NMDARs. Research by our lab has shown that low-density lipoprotein receptor-related protein-

1 (LRP1) is important in glu/NMDAR-dependent phase shifts during the night when LRP1 

expression may be higher than the day. Because LRP1 is involved in endocytosis of PrPc and 

NMDARs, and Cu promotes PrPc endocytosis, one intriguing possibility is that LRP1 endocytoses 

PrPc which are bound to NMDARs in the presence of Cu. (The PrPc-associated endocytic actions 

of LRP1 may or may not occur extrasynaptically). Since PrPc-bound NMDARs are likely 

nitrosylated, LRP1 may play a role in recycling nitrosylated NMDARs to return them to the cell 
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surface free of this inhibitory modification. Consistent with this hypothesis, blocking LRP1’s 

extracellular binding sites and hence, its cell-surface activities, blocks glu-induced phase shifts. 

Together with Cu’s neuromodulatory role, it is possible that many NMDARs exhibit increased 

nitrosylation during the night, especially pertinent given that SCN astrocytes release higher 

amounts of glu during the night (as depicted by green dots).  

Lastly, processes activated by the circadian clock during the day underlie the transition and 

changing of cellular features in the SCN associated with the night, some of which negatively 

feedback on daytime processes—including an increased role or distribution of extracellular Cu 

during the night (hypothetical). Eventually negative-feedback mechanisms wind down, and 

suppression of daytime processes decreases. However, excess Cu (>4µM) disrupts this timed 

“wind down” through a variety of mechanisms implicated in our pharmacological experiments 

(but many of which remains to be tested). An acute excess of intracellular Cu ─modeled by 

exogenous application experiments─ during the early night could signal a prolonged daytime or 

delay the onset of late-night cellular states, whereas during the late night, could signal an 

advance due to environmentally-linked changes in circadian behavior/physiology. Many disease 

states influenced by the clock (e.g. Alzheimer’s, infection, cancer) exhibit chronic Cu 

dysregulation and highlight the need for future research in circadian Cu physiology and 

dyshomeostasis. 
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Figure 4.3 continued 
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In addition, Cu plays a major role in iron homeostasis and are similar in their redox active 

chemistry. Nonetheless, because Fe and Cu are differently involved in various aspects of cellular 

redox activities, not just limited to mitochondria, and heme plays a key part in circadian rhythms, 

studies on Fe/heme-dependent signaling per se merit much more involved inquiries. 

Furthermore, Cu, Zn, and Fe homeostasis all intersect in respect to oxidative stress and 

mechanisms of cell death. Brain cells are all highly sensitive to excess trace elements to a varying 

degree depending on brain region-associated metabolic processes, redox physiology, and 

neuroglial interactions. In various ways, these metals affect inflammatory processes by increasing 

oxidative stress and participate in programmed cell death, both physiologically and in disease 

states. The robustness of the SCN clock may be adaptive, to be resilient to changes in oxidative 

stress and be protected from acute neurotoxic insults under relatively normal conditions, but in 

cases of neurodegenerative diseases and chronic dysregulation, its output rhythms may be 

sensitively tuned to environmental inputs and offer insight into synaptic dysregulation. Since Cu, 

Zn, and Fe have established roles in synaptic function and their dyshomeostasis is strongly 

implicated in oxidative stress and various neurotoxic/-degenerative states, the SCN and its robust 

cellular rhythms provide a unique opportunity to study both synaptic dysfunction and oxidative 

stress in regard to trace metal dyshomeostasis and neurodegeneration. 

 Finally these data may relate to how the three oscillators found in the SCN intersect. Cu, 

Zn, and Fe are all involved in various aspects of cellular metabolism, from glucose regulation to 

mitochondrial oxidative phosphorylation. Cu and Zn interact with extracellular and intracellular 

signal transduction mechanisms, while Fe primarily affects molecular pathways intracellularly via 

heme and redox-associated activities. The regulatory mechanisms controlling extracellular Cu 

and Zn are strongly influenced by redox and hence, redox modulates the effects of Cu and Zn on 

interneuronal and neuroglial communication.  

Together these highly diverse and complexly intertwined activities provide a picture of 

how these oscillators became interconnected as they evolved, creating a system that is robustly 

sensitive and adaptive to environmental conditions. From the unicellular organisms evolving in a 

metal-rich, redox active environment to photosynthetic organisms in oxidant rich conditions and 
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to brain cells that control sleep/wake and feeding; from the non-transcription based circadian 

redox rhythms to the signal transduction pathways that help integrate external stimuli; from the 

extracellular mechanisms regulating intercellular communication that connect cells of different 

tissue systems to the modulation of synaptic and extrasynaptic neuronal input/output— 

coordinated by various circadian clocks with different gears. Through their roles in cellular 

energetics and redox, in extra- and intracellular signal transduction, and in oxidative stress and 

cell death: Cu, Zn, and Fe have a unique possibility in their interconnected homeostasis to play a 

fundamental role in circadian timekeeping of the SCN master clock. Together they can serve as 

metabolically and pathologically pertinent inputs to the SCN from the body, help coordinate and 

synchronize the complex circuit of the SCN network, and thus, reflect the functional status of 

various cellular processes and overall brain health. In this study of Cu and SCN neuronal activity 

rhythms, we have only uncovered one part of one process in this evolutionarily created puzzle. 

But with more time and hands, we can take this watch apart, piece by piece.   
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