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Abstract 
 

Although work has been done on a wide variety of fields in multi-criteria decision analysis, no 

literature was found that has specifically studied the development of a spent nuclear fuel (SNF) 

allocation queue strategy to maximize value to decision maker (DM) based on multiple 

objectives (allocation queue will be mostly used in this document as a shortened version of this, 

but allocation queue and allocation queue refer to this same thing). In this document, the DM is 

the person or persons who ultimately decide what allocation queue is selected.  Previous work by 

Petersen [1] researched optimizing the order in which SNF is removed from nuclear reactor sites 

with the goal of reducing the number of years after all reactors on a site shut down by when all 

fuel is cleared from a site. This research proposal seeks to build on those methods to optimize the 

allocation queue by employing multiple criteria, because the development of allocation strategies 

for clearing nuclear reactor sites is expected to depend upon several other factors in addition to 

minimizing the number of Shutdown Reactor Years (SRY).  Shutdown reactor years are the 

cumulative number of years that reactor sites have SNF remaining on-site after they are shut 

down summed over the entire reactor fleet.  

In this dissertation, a new model has been developed with the ability to consider a multiple 

number of DM’s preferences when developing an optimal allocation queue (in terms of 

maximizing value to the DM).  Unlike traditional multi-objective evaluations where potential 

allocation strategies are developed manually, and the results compared after analyzing each 

scenario separately, the model was developed to search for optimum allocation strategies based 

on DM’s preferences. A Chebyshev integer programming method was developed for this 
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application and the results herein provided show that the new model, denoted as the Tractable 

Validation Model for Value (TVMV), performs as intended.   

Additionally, major assumptions that affect the TVMV were explored to investigate the 

implications of different system assumptions. These parameters include the year in which 

acceptance from reactor sites begins, the maximum fleet-wide acceptance rate per year, the 

maximum number of canisters that can be accepted from operating or shutdown reactors in each 

year, and the assumed storage and transportation cask thermal limits.  
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Chapter One 

 
Introduction 

Alvin Weinberg, who worked on the Manhattan Project and is a former director of Oak Ridge 

National Laboratory (ORNL), is quoted in an interview with the Knoxville News-Sentinel as 

saying, “During my years at ORNL, I paid too little attention to the waste problem. Designing 

and building reactors, not nuclear waste, was what turned me on… had I to do it over again, it 

would be to elevate waste disposal to the very top of ORNL’s agenda. [2]” To what level solving 

nuclear waste disposal was made a priority on the national level is debatable, but what is not 

debatable is that no long-term solution to the nuclear waste problem currently exists.  

Chapter 1 of this dissertation introduces the current situation in the U.S. of SNF and allocation 

strategies, with Sections 1.3 and 1.4 providing a literature review of other works which have 

investigated multiple-criteria decision analysis as applied to a variety of situations and fields, in 

preparation to help account for the many other factors that can ultimately affect the allocation 

queue to remove SNF from reactor sites, beyond just minimizing shutdown reactor years (SRY). 

SRY is defined as the cumulative number of years that SNF remains on-site after every reactor 

on a site is shut down, summed overall reactor sites. Section 1.5 focuses upon a “gap analysis” 

between single- and multi-objective optimization for SNF allocation applications, with Section 

1.6 presenting how the proposed research provides a new and original approach to advance the 

state of the field.   

Chapter 2 describes a variety of mathematical methods and algorithms with an emphasis upon 

multi-objective decision making and optimization techniques herein considered.   
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Chapter 3 introduces the concept of the Tractable Validation Model for Value (TVMV), which 

represents the evolving and expanded multi-objective version of the software developed by 

Petersen [1], originally given the acronym: Tractable Validation Model (TVM).  This chapter 

describes the capabilities and development of the TVMV. 

Chapter 4 describes the development of multi-objective optimization factors to be considered by 

the DM. Various factors that could possibly be considered have been investigated from the 

literature review, and a suggested list of factors to be considered is herein defined. The focus of 

the research described in this chapter is the flexible framework to consider the DM’s preferences. 

The goal of the model is the ability to consider any of the DM’s preferences when developing an 

optimal allocation queue (in terms of maximizing value to the DM). Unlike traditional multi-

objective evaluations where the allocation queue is developed manually, and the results 

compared after analyzing the results of each scenario separately, the model is developed such 

that ‘value’ is optimized ‘on-the-fly’ as the allocation is developed. 

The major expansion of the TVM is the ability to develop an allocation queue while considering 

multiple objectives. This is accomplished using ‘weighted’ multi-criteria decision making by 

utilizing weighted integer goal programming. Chebyshev integer programming has been 

investigated and developed as well.  

The Standard Contract [3] currently dictates that the allocation queue is oldest fuel first (OFF). 

The Standard Contract is an agreement between DOE and the utilities that stipulates that DOE 

will begin picking up fuel from reactor sites in exchange for contributions to the Nuclear Waste 

Fund.  It would take a mutually agreed-to modification of the Standard Contract to allow an 

allocation queue other than OFF. The OFF allocation queue implies that each reactor site would 
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be allocated an amount of fuel (in Metric Tons of Heavy Metal [MTHM]) per year based on 

when their fuel was permanently discharged from the reactor, beginning with the oldest fuel and 

commensurate with the amount of mass that was produced at that period of time. The Standard 

Contract also stipulates that sites having no operating nuclear reactors (stranded sites) can 

potentially be moved to the front of the queue of the allocation queue. Accordingly, this work 

investigates the implications of other potential allocation strategies. In addition, the optimized 

allocation strategies developed by the TVMV are compared against allocation strategies 

developed manually by a subject matter expert (SME) employing his/her scientific expertise to 

see how the allocation strategies compare.  

Chapter 5 explores the model on sample problems, highlighting an 8-reactor small-scale 

scenario.  Section 5.1.1 explores an example that employs weighted integer programming with 

two factors: minimizing SRY and giving priority to sites based either on economic 

considerations or regulatory considerations, while Section 5.1.2 illustrates using the TVMV with 

three factors on a small-scale scenario.  Section 5.1.3 presents the results of using Chebyshev 

integer programming on a small-scale scenario.  Section 5.2 explores and validates the 

assumptions used in the TVMV model, including the yearly fleet-wide acceptance rate, the 

maximum number of canisters that can be shipped from shutdown and operating sites, and the 

storage and transportation cask thermal limits at sites.   

Chapter 6 explores the TVMV model with scenarios that include the entire U.S. reactor fleet, 

including scenarios with two objectives, three objectives, and the newly developed Chebyshev 

integer goal programming method for determining allocation strategies. Section 6.3 explores 

how considering additional objectives is affected if the assumed system parameters are highly 
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optimistic or highly pessimistic. Chapter 7 presents the conclusions of this work, as well as 

suggestions of future work that would be useful to complete.  

1.1 The Spent Nuclear Fuel (SNF) Situation in the United States 

The SNF assemblies used to produce electricity at nuclear reactor sites are radioactive long after 

they are discharged from the nuclear reactor core. Once the fuel assemblies are removed from the 

reactor core, they are placed in on-site spent fuel storage pools. Once they are cool enough for 

storage in spent fuel storage casks (in other words, under the thermal limit for a specific 

canister), and if additional storage capacity is needed in the pool, the utility that runs the site may 

elect to load them into canisters for storage. Currently, nearly all used SNF assemblies in the 

U.S. are stored at reactor sites, and none have been moved to either a centralized interim storage 

facility (ISF) or a permanent Monitored Geologic Repository (MGR). The plan is to eventually 

remove the reactor fuel for transport to either an ISF or a MGR.  The order in which the fuel will 

be transported from commercial nuclear sites is referred to as an ‘allocation queue’ or ‘allocation 

queue.’ The allocation queue or allocation queue determines the order that utilities or reactor 

sites are prioritized for the opportunity to have their fuel transported off-site.   

The issue of how to handle the commercial nuclear waste from nuclear reactors has been 

considered and investigated since commercial nuclear power plants began producing power in 

the United States in the 1950s. After various studies about potential storage options for nuclear 

waste, on June 4, 1981, Morris K. Udall, a Democratic member of the U.S. House of 

Representatives from Arizona, introduced H.R. 3809 in the U.S. House of Representatives, now 

known as the Nuclear Waste Policy Act of 1982. H.R. 3809 passed the Legislature and was 

signed into law by President Ronald Reagan on January 7, 1983 [4]. On December 22, 1987, The 
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Nuclear Waste Policy Act Amendments Act of 1987 [5] was passed and it directed that Yucca 

Mountain, Nevada be the only potential repository site to be characterized. On July 23, 2002, 

President George W. Bush signed House Joint Resolution 87 which directed the Department of 

Energy (DOE) to establish a repository at Yucca Mountain [6]. In 2009, Secretary of Energy 

Steven Chu stated that “Nuclear waste won’t be going to Nevada’s Yucca Mountain” and 

President Obama’s administration subsequently removed funding for Yucca Mountain from the 

budget, which effectively stopped work on the project [7]  

Following the stoppage of work at Yucca Mountain, the Blue-Ribbon Commission on America’s 

Nuclear Future (BRC) was formed, based on a recommendation of the Obama Administration, 

and its final recommendations was released in 2012 [8]. Based on the BRC’s recommendations, 

the Administration released the “Strategy for the Management and Disposal of Used Nuclear 

Fuel and High-Level Radioactive Waste” in January 2013 [9].  

Since legislation to implement the Administration Strategy has not been passed as of March 

2017, and the Administration is now led by President Donald Trump, the timing of when nuclear 

waste might be removed from reactor sites is uncertain. Therefore, whenever nuclear waste is 

removed, an allocation queue or queuing order for the reactor sites will be necessary.  

1.2 SNF Allocation Strategies  

A search of the literature related to developing an allocation queue mostly yielded publications 

that fall into three basic categories as defined by the author of this dissertation; namely, 

allocations developed by clearly-defined rules, allocations developed by subject matter expertise 

to meet desired criteria, and allocations developed by mathematical optimization with the goal to 
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reduce the total number of SRY across the entire reactor fleet. Three articles and a contract are 

discussed in this section that fit into these three categories. 

The Standard Contract (10 Code of Federal Regulations (CFR) Part 961- Standard Contract for 

Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste) falls in the category of 

‘allocations developed by clearly-defined rules’ [3]. The utilities are charged based on how much 

electricity they generate from their fuel assemblies and the money is placed in the Nuclear Waste 

Fund. The US government’s responsibility, as stated in the Standard Contract, is to begin 

removing SNF and/or high-level waste (HLW) by January 31, 1998. The Standard Contract 

specifies the rule that allocation is to be granted to sites based on the principle of Oldest Fuel 

First (OFF), meaning that the site with the oldest fuel is placed first in the allocation queue 

commensurate with the mass of the fuel being considered. Further, the Standard Contract gives 

DOE the sole discretion to move shutdown sites (sites that have no operating nuclear power 

plants) to the top of the allocation queue. The Standard Contract also stipulates that fuel will be 

picked up ‘bare’ using bare fuel casks, meaning not stored in canisters. DOE is also required by 

the Standard Contract to annually release an Acceptance Priority Ranking (APR) report and an 

Annual Capacity Report [10]. The APR is relevant to this work and lists the order that the DOE 

will allocate to each of the reactor sites based on when fuel assemblies were discharged from 

reactors [10]. This report shows the order in which DOE would pick up SNF from reactor sites 

assuming the OFF allocation queue is implemented. It also defines what determines the age of 

the SNF- which is the “date the SNF was permanently discharged” [10], or in other words, the 

date the fuel was no longer being used by the reactor to make electricity.   

“A Proposed Acceptance Queue for Shutdown Nuclear Power Reactors” by Nesbit and Nichols 

[11] is a report that presents allocations that are in the category of allocations developed by 
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clearly-defined rules. The queues proposed in Nesbit’s paper are proposed only for how to 

handle shutdown sites, but its allocation strategies could also be applied in the future as more 

sites shut down, or even used to project a future allocation based on projected or planned 

shutdown dates. As previously stated, the Standard Contract gives DOE the flexibility to move 

sites that are completely shut down (all reactors on a site have ceased power operations) to the 

front of the allocation queue. Nesbit points out that the Standard Contract does not stipulate a 

specific order or strategy that would be used to ship fuel among all the shutdown plants. The 

paper proposes a “mini-queue” for this pickup that includes the following recommendations: 

• “To the extent practical, DOE would pick up fuel site by site. 

• The order of pickup would be for the longest shutdown plant first (LSPF). 

• For a multi-unit site, the shutdown date would be based on the most recently shutdown 

unit. 

• For sites containing both shutdown reactors and operating reactors, pickup would occur 

only after all fuel is removed from other sites with no operating reactors.” [11]   

Nesbit also proposed alternative strategies to the LSPF strategy described above. These include 

the following allocation strategies: ‘OFF (Shutdown Plant Fuel Only),’ ‘Closest Plant First,’ 

‘Ease of Site Access,’ ‘Least Fuel First,’ ‘On-site storage mode,’ and ‘Shutdown vs. 

Decommissioned’ sites [11]. For the strategy ‘OFF (Shutdown Plant Fuel Only)’, the OFF 

allocation queue would initially only be applied to the pool of currently shut down sites. The 

‘Closest Plant First’ strategy would prioritize sites based on their proximity to the location the 

SNF is being shipped to. The ‘Ease of Site Access’ strategy would prioritize sites that are easiest 

to access from a transportation perspective (it is recognized that this is subjective). The ‘Least 

Fuel First’ allocation queue would give priority to the site with the least amount of fuel stored 



8 
 

on-site. The ‘On-site storage mode’ allocation queue proposes that the mode that SNF is stored 

in (wet, dry, dry storage configuration) should be considered when developing the allocation. 

The ‘Shutdown vs. Decommissioned’ alternative allocation queue suggests giving priority to 

sites that are completely decommissioned except for the removal of the remaining SNF in dry 

storage [11]. Some sites that are shut down may still have decommissioning activities that have 

not yet been completed, and thus the site is still being maintained for things other than storing 

SNF.   

The paper “Waste Management System Architecture Evaluations” by Nutt, Trail, Cotton, 

Howard, and van den Akker [12] is an example within the category of ‘allocations developed by 

subject matter expertise to meet desired criteria.’  In addition to the OFF allocation queue, this 

paper investigated four additional allocation strategies that were developed by SMEs. The four 

allocation strategies that were developed were ‘DS-SD Priority,’ ‘P-SD Priority,’ ‘SD-5 

Priority,’ and ‘DS-SD Priority, Variable’ [12]. The ‘DS-SD Priority’ has three objectives: give 

priority in the queue to current (not future) shutdown sites; to the extent possible, minimize 

transfers to on-site storage once acceptance across the fleet begins; begin clearing shutdown sites 

with the constraint of the maximum acceptance rate per year across the fleet. The P-SD Priority 

has two objectives: give priority in the queue to current (not future) shutdown sites and to only 

accept from other sites after the site is completely shut down. The ‘SD-5 Priority’ also gives 

priority to shutdown reactor sites and seeks to clear sites of fuel by five years after they shut 

down. This priority strategy assumes an acceptance rate of 4,500 metric tons of heavy metal per 

year (MTHM/yr) so that it is possible all future sites can be cleared in the five years after they 

shut down (given the assumptions about the future system). The ‘DS-SD Priority’ variable 

strategy differs from the DS-SD Priority strategy only in that the acceptance rate is increased 
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from 3,000 MTHM/yr to whatever is necessary to ensure that sites are cleared in five years after 

they shut down (with acceptance beginning, at the latest, five years before the site shuts down). 

The first two allocation strategies discussed in this paragraph assumed an acceptance rate of 

either 3,000 MTHM/yr or 4,500 MTHM/yr [12].     

“Algorithms and Methods for Optimizing the Spent Nuclear Fuel Allocation queue” [1] by 

Petersen is an example of a report (dissertation) in the category of ‘allocations developed by 

mathematical optimization.’ The goal of the Tractable Validation Model (TVM) developed by 

Petersen was to find the optimal allocation queue using mathematical optimization methods to 

reduce the number of SRY when compared to the status quo strategy of using an OFF allocation. 

One interesting finding from Petersen’s research was that the OFF allocation queue was in the 

bottom 10% of all investigated allocation strategies in terms of minimizing SRY [1]. In other 

words, if the only goal of creating an allocation queue is to minimize the number of years that 

fuel is kept on sites after they are shut down, then it would be difficult to randomly find an 

allocation that performs more poorly than OFF. 

Petersen’s algorithm found that an optimal allocation queue is for the oldest shutdown reactor 

with fuel still on-site to remove as much fuel as possible in the year in question. It also found that 

the site that was projected to shut down latest should be at the back of the queue, and that if two 

sites had the same shutdown date, then the site with the least amount of fuel should be prioritized 

[1]. Note that it is recognized that sites will probably not share the same specific shutdown date, 

but since the allocation strategies are developed on a yearly basis, instances when sites shut 

down the same year do occur.  
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The methods that were investigated by Petersen to find an allocation queue that minimizes SRY 

include integer programming, a genetic mutation algorithm, a simulated annealing algorithm, a 

greedy algorithm, and a combinatorial algorithm [1]. The integer programming formulation 

found the optimal solution each time, and it also required the least amount of computational 

effort to calculate the answer. Another interesting result from Petersen’s work was that a Pareto 

formulation could be developed that did not increase the number of SRY at any one site, but that 

still found an optimal solution at the system level in terms of minimizing SRY of the entire fleet 

[1].  

1.3 Multi-Objective Evaluations 

The method of comparing various scenarios based upon their value to decision makers (DM) is 

presented in a book entitled ‘Value-Focused Thinking’ [13]. These methods are used to develop 

the ‘value,’ ‘weights,’ and ‘preferences’ used in this study. It is likely that the weights (for future 

uses of this software) would have to be eventually determined by the waste management 

organization with input from stakeholders, elected officials, or potentially others. In Petersen’s 

work, the only preference that was considered was to minimize SRY and the weight applied to 

this factor was effectively assumed to be 1 (since no other factors were considered). 

Other work [14] has investigated determining the ‘value’ of a decision when looking at different 

allocation strategies that were developed based on either the principle of OFF or manually based 

on the expertise of a systems analyst with the objective to either to minimize the number of SRY 

or to only load fuel at sites that were no longer operating. This involves developing complete 

allocations manually and analyzing the entire scenario to generate results before comparing 

alternatives.  
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Numerous works in the literature present examples of decision analysis being applied to real-

world applications. One example presented the results from the decision analysis completed on 

the 2005 Army Base Realignment and Closure (BRAC) [15]. The paper describes the entire 

decision analysis process from start to finish, including developing objectives and weights to 

implementing decision-analysis on complicated situations. The authors highlighted the following 

four takeaways from their paper:  

• An instructive application of multiple-objective decision analysis methods to portfolio 

selection, 

• A useful method for constructing scales for interdependent attributes, 

• A new method for assessing weights that explicitly considers importance and variation 

(Swing Weight Matrix), and  

• Some practical advice on how to use multiple-objective decision analysis methods in a 

complex and controversial political environment [15]. 

1.4 Multi-objective Decision Analysis Optimization 

From a high-level perspective, the optimization techniques that can be used to solve problems 

with multiple objectives are detailed in the book ‘Multi-objective Optimization: Interactive and 

Evolutionary Approaches’ [16]. The research field that is used to solve this type of problem is 

sometimes referred to as ‘multiple criteria decision making’ (MCDM) [16]. There are multiple 

conflicting objectives and stakeholders that need to be considered when developing an allocation 

queue. The decision maker or decision makers are defined as the person, persons, organization, 

or some other entity that the allocation queue aims to please. A multi-objective optimization 

method is needed to develop a method for considering the DM’s preferences to find an allocation 
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queue that gives the most ‘value’ to the stakeholder. Different stakeholders’ preferences can be 

investigated to explore how the results are changed based on which stakeholders’ preferences are 

used. [16]  

Three different methods were described that can be used to develop the optimal allocation queue 

based on its value. In the no-preference method, the DM’s opinions are not a part of the solution 

process [16]. These methods are usually used if preferences from the DM are unknown or not 

available. Since it is expected that preferences relating to the allocation queue will be numerous, 

this method is not currently planned to be investigated in-depth.  

Since a DM is expected to provide input throughout the development process of an allocation 

queue, two other methods are investigated more in-depth. In one method, the preferences are 

detailed after the simulation (‘A Posteriori Methods’ [16]) and in another, the preferences are 

only detailed before the simulation (‘a priori methods’ [16]). In ‘A Posteriori Methods,’ several 

‘Pareto optimal solutions’ are generated and the DM can then select their preference from these 

choices. It is possible this method may be computationally expensive and result in more options 

than the DM wants. But,, the ultimate DM that will decide the allocation queue is currently 

unknown. In ‘a priori methods,’ the DM gives preferences and those are applied when 

developing the model to find the outcome that maximizes the value to the DM. In theory, the 

effort spent by the DM will probably be less with ‘a priori methods’ than with ‘a posteriori 

methods’ because preferences are given once instead of needing to look through multiple 

options, potentially multiple times. One ‘a priori’ method that is expected to be used for the 

expansion of the TVM is the weighted goal programming approach [16]. In this approach, the 

DM must specify their ‘goal’ for the objective functions and how much weight they give to each 

function.   
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The weighted goal programming approach is the main focus of this research. A flexible 

framework is developed that will aid the DM in developing an allocation queue that meets their 

objectives and adds the maximum value to their goals. This study does not result in just one 

allocation queue, but also results in a flexible and robust method that will be able to aid the DM 

in the development of an allocation queue in the future.  

Other work has investigated goal programming applied to a variety of situations and fields. 

Three major goal programming variants are the previously mentioned weighted goal 

programming, lexicographic goal programming, and Chebyshev goal programming [17]. In 

lexicographic goal programming, the DM must order the objectives in their preferred order of 

importance. Then, each objective is prioritized completely over the objective prioritized below it. 

Once the objectives are ordered, value is maximized based on the objective with the most 

importance. If only one solution is found, the process is over. However, if more than one solution 

is found, then the next most important objective is considered, while a constraint still exists to 

prioritize the most important objective function. This process continues until a unique solution is 

found [16]. In Chebyshev goal programming, ‘the maximum deviation from amongst the 

weighted set of deviations is minimized rather than the sum of the deviations themselves’ [17]. 

In other words, a balance between the objectives is desired instead of a strict goal of maximizing 

value without regard to how the individual objectives are affected (as in weighted goal 

programming).  

1.5 Gap Analysis 

This section presents the results of a researching the literature to find where the gap or 

unexplored research space is in this area that this study fills. The Standard Contract specifies the 
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current status quo allocation queue of OFF for removal of SNF from commercial nuclear reactor 

sites. Absent a mutually agreed-to contract modification, then OFF is how the allocation queue 

will be determined. The Standard Contract does give DOE the flexibility to move shutdown 

reactor sites to the top of the queue. [3] The Standard Contract is a defined, rule-based allocation 

queuing system.  

The methods proposed in Nesbit’s paper are all qualitative proposals to develop the queue to 

clear currently shutdown sites [11]. The ‘longest plant shutdown first’ method (the method 

focused on) is based on fairness (the sites that have been shut down the longest are considered 

first in line), not other potential factors that could affect allocation queue. Nesbit also proposes 

six other criteria that could potentially factor into how an allocation queue is developed [11]. 

Some of these suggested methods for developing the queue for shutdown reactor sites can 

possibly be applied to the entire system allocation queue, but no quantitative analysis has been 

done on these suggestions. Additionally, how two or more of these strategies might be applied at 

the same time to the development of an allocation queue was not discussed.  

The conference paper “Waste Management System Architecture Evaluations” [12] described 

allocation strategies developed by SMEs. Like the allocation strategies developed by rules, these 

queues are developed with certain (usually multiple) objectives in mind. However, they are more 

complicated than the rule-developed allocation strategies because subject matter expertise is 

needed to apply the desired objectives to create the allocation strategies. The paper discusses the 

implications of implementing each of these allocation strategies given other system analysis 

assumptions in the nuclear waste management system. While the conclusions are valid, it would 

take systematically investigating many variations of each allocation queue manually to determine 

the most efficient application of each of these strategies. Even if many different variations were 
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studied, there would be no mathematical way to guarantee that the resulting allocation queue was 

optimal. 

Petersen’s research [1] found that if two sites have the same shutdown date, then the site with the 

least amount of fuel should be prioritized. This is similar to the alternative allocation queue 

suggested by Nesbit to give allocation priority to the site with the least amount of fuel.  

Giving priority to the plant that has been shut down the longest does not affect the number of 

SRY if all the sites are currently shut down, it only applies for equity purposes. However, this 

priority does have an effect if you are projecting when sites currently operating may shut down. 

If multiple sites are already shut down, then the future number of SRY (among only those sites) 

cannot be minimized using this priority. However, future number of SRY might be able to be 

minimized by looking at projected or planned site shutdown dates. 

Petersen’s work [1] was the only research found in the literature that explored mathematical 

methods to optimize the allocation queue to reduce the total number of SRY (or a mathematical 

method to optimize the allocation queue for anything, for that matter). However, the limitation of 

Petersen’s TVM is that it only seeks to minimize the number of SRY across the entire fleet but 

does not consider any other factors that may be used to develop an allocation queue. As seen 

when reviewing the literature in this area, numerous other rules, factors, or methods have been 

proposed to be considered when developing an allocation queue. 

1.6 Proposed Problem Statement 

Although work has been done in a wide variety of fields in multi-criteria decision analysis, no 

literature was found that specifically looked at the development of an SNF allocation queue to 

maximize value to the DM based on multiple objectives. Petersen’s work [1] investigated 
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multiple methods that could be used to minimize SRY. This work seeks to build on those 

methods to optimize the allocation queue using multiple objectives because the development of 

optimal allocation queues for reactor sites is most likely based on several other factors in 

addition to minimizing the number of SRY. Many factors may ultimately affect what allocation 

is used to remove SNF from reactor sites. Some potential factors that could possibly be 

considered were thoroughly investigated in the literature and a potential list of factors were 

defined. The focus of the research is the flexible framework to consider the DM’s preferences. 

The goal of the model is the ability to consider any of the DM’s preferences when developing an 

optimal allocation queue (in terms of maximizing value to the DM).  Unlike traditional multi-

objective evaluations where the allocation queue is developed manually, and the results 

compared after analyzing each scenario separately, the model is developed such that ‘value’ is 

optimized ‘on-the-fly’ as the allocation is developed. Multi-objective evaluations have never 

been used to develop SNF allocation strategies directly.  

The major expansion of the TVM [1] is to implement the ability to develop an optimum 

allocation queue while considering multiple objectives. This is accomplished using the concept 

of ‘weighted’ multi-criteria decision making. Chebyshev integer goal programming is 

investigated and developed as well. The results when using Chebyshev integer goal 

programming is compared to the results when using integer goal programming.  Weighted 

integer goal programming and Chebyshev integer goal programming have never been used to 

develop a SNF allocation queue. Additionally, the optimized allocation strategies that are 

developed are compared against allocation strategies developed by a SME manually by using 

their expertise.   
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Chapter Two 

 
Mathematical Methods and Algorithms 

This chapter presents the mathematical methods and algorithms that are used for multi-objective 

decision making and multi-objective optimization. The algorithms for multi-objective decision 

making are relatively straightforward but become more complicated when they are applied to an 

optimization problem involving the minimization of SRYs.  

2.1 Multi-objective Decision Making 

Many multi-objective type evaluations have been completed in a variety of fields, as was 

presented in section 1.3. How to think about multi-objective decision making can be divided into 

two parts: what is desired and how to accomplish it [13]. In terms of developing an allocation 

queue, what may be desired in the future by DOE or the waste management organization that 

may exist at the time is difficult to predict. For the purposes of this investigation, a proxy and 

best guess for what may be desired can be informed from previous literature in this area, as is 

done in Section 4.1 of this dissertation.  

How to accomplish creating an allocation queue, if what is desired is known, can be 

accomplished by implementing multi-objective decision making principles into a multi-objective 

optimization model. This section describes the multi-objective decision-making principles that 

are used to optimize the allocation queue.  The reason that multi-objective decision making is 

needed for developing an allocation queue is that the DM may have multiple conflicting 

objectives that will influence what allocation queue most satisfies (from the prospective of value) 

all their objectives.   
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A few terms are defined before proceeding further. The DM (decision maker) is the person, 

persons, or organization that decides what alternative is ultimately chosen [13]. An objective is 

“a statement of something that one desired to achieve. It is characterized by three features: a 

decision context, an objective, and a direction of preference.” [13] For example, when 

developing an allocation queue to minimize SRYs, the decision context is the allocation queue, 

SRYs are an objective, and minimizing SRYs is the direction of preference.  

If more than one objective is to be considered, they must be weighed against each other. The DM 

must give a relative importance to each objective, and if each objective is the same scale or 

transformed into the same scale, then the Weighted Sum Model [18, 19] can be used:   

𝑽(𝒙) = ∑ 𝒘𝒊 ∗ 𝒗𝒊
𝒏
𝒊=𝟏 (𝒙𝒊)                                                      (2.1.1) 

where V is the value of the alternative (in this case, a specific allocation queue) to the DM, n is 

the number of performance measures, w is the relative importance of each objective (defined by 

the DM), xi is the level of performance of the i
th

 performance measure, and 𝒗 i(𝒙 i) is the value 

function of each objective to the DM [19]. Value is defined as the “importance, worth, or 

usefulness of something to someone relative to satisfying their objectives.” [19] 

If SRY were the only performance measure, the following would be true in the above equation: 

• n=1 

• w1=1 

• v1(x1) = single-objective value for SRY measure  

The range of SRY found by Petersen [1] in an analysis of the entire reactor fleet between a 

scenario using OFF and an optimized allocation queue is 532 to 1554 SRY. The scenario which 
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resulted in 1554 SRY was a scenario using the OFF strategy, but this is not the scenario that 

would produce the maximum number of SRY. Therefore, a problem was simulated to find the 

allocation queue that resulted in the maximum number of SRY.  

When maximizing the number of SRY, the exact number of years that shipments would occur 

must be used as a constraint in the integer program problem, otherwise the result that would be 

found would not ship the maximum number of canisters in some years and would artificially 

‘delay’ the shipments to years later than the allocation queue that minimized the number of SRY. 

The presence of this artificial delay in the scenario that maximized the number of SRY would not 

allow an ‘apples-to-apples’ comparison to the scenario that minimized the number of SRY. The 

exact number of years that shipments occur for the scenario that maximized SRY was found to 

be 45. This is also the least number of years the model can be simulated, and the solution be 

feasible. In other words, 45 years are needed to ship all the canisters given the other constraints 

in the problem.   

Value functions can be either continuous or discrete. For this investigation, they will all be 

scaled from 0 to 1 to ensure an ‘apples to apples’ comparison, and to simplify that the value 

function is most optimized for the DM at 1 and the least optimized at 0. The value functions for 

performance measures for other objectives that are used in this research are developed in Section 

4.4.  

If it is assumed that the performance of the objective to minimize SRY is maximized by the 

allocation queue that resulted in 532 SRY and minimized by the allocation queue that resulted in 

1679 SRY, then the value function becomes:  

𝛖(𝒙) = −𝟎. 𝟎𝟎𝟎𝟗(𝒙) + 𝟏. 𝟒𝟔𝟑𝟖                                           (2.1.2) 
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and the values of an allocation that produces a scenario with SRY is equal to 532 and 1679 SRY 

become: 

𝛖(𝟓𝟑𝟐) = 𝟏                                           (2.1.3) 

𝛖(𝟏𝟔𝟕𝟗) = 𝟎                                           (2.1.4) 

Thus, if an allocation queue produced a scenario with 1000 SRY, then its value would be 

calculated with equation 2.1.5 

𝛖(𝟏𝟎𝟎𝟎) = −𝟎. 𝟎𝟎𝟎𝟗(𝟏𝟎𝟎𝟎) + 𝟏. 𝟒𝟔𝟑𝟖 = 𝟎. 𝟓𝟔𝟑𝟖             (2.1.5) 

If the swing weight applied to SRY is assumed to be 0.5 and assuming a second objective with a 

swing weight of 0.5 and an assumed performance value function of:  

𝛖(𝒙) = 𝟎. 𝟎𝟎𝟎𝟗(𝒙) − 𝟎. 𝟒𝟔𝟑𝟖             (2.1.6) 

The value of the scenario with 1000 SRY would then become: 

𝛖(𝟏𝟎𝟎𝟎) = 𝟎. 𝟓 ∗ 𝟎. 𝟓𝟔𝟑𝟖 + 𝟎. 𝟓 ∗ [(0.0009*1000)-0.4638] = 0.5            (2.1.6) 

The level of performance or value of a specific allocation queue can currently only be known by 

simulating the entire scenario and calculating a total number of SRY. If there is a need to 

consider other objectives besides SRY, a multi-objective optimization method is needed. .  

2.2 Multi-objective Optimization 

Of all the various methods (combinatorial algorithm, genetic mutation algorithm, simulated 

annealing, greedy algorithm, and integer programming) that Petersen investigated to minimize 

SRYs when developing an allocation queue for the nuclear waste management system, it was 
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found that the model where integer programming was utilized found the solution with the least 

number of SRYs the highest percentage of time (by a significant margin) and with the least 

computational effort [1]. Therefore, integer programming is the chosen method for this analysis.   

2.2.1 Integer Programming 

A type of constrained optimization problem where a set of continuous variables either maximizes 

or minimizes a linear objective function while also satisfying a set of linear constraints is 

referred to as a linear programming problem (LP). If at least one variable is entirely integer 

values, then the problem can be referred to as an integer programming problem (IP). 

Programming in this context does not refer to coding computer programs but planning activities 

that consume resources [20]. In the context of this study, the consumed resources are the number 

of canisters that each individual reactor site can ship in each year.  

An integer program is given mathematically by: 

𝐌𝐚𝐱𝐢𝐦𝐢𝐳𝐞    𝐳 =  ∑ 𝒄𝒋 𝒙𝒋 + ∑ 𝒅𝒌 𝒚𝒌𝒌𝒋              (2.2.1) 

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨    ∑ 𝒂𝒊𝒋 𝒙𝒋 + ∑ 𝒈𝒊𝒌 𝒚𝒌 ≤ 𝒃𝒊   (𝒊 = 𝟏, 𝟐, … , 𝒎)𝒌𝒋              (2.2.2) 

    𝒙𝒋 ≥ 𝟎               (𝒋 = 𝟏, 𝟐, … , 𝒏)             (2.2.3) 

    𝒚𝒌 = 𝟎, 𝟏, 𝟐, …               (𝒌 = 𝟏, 𝟐, … , 𝒑)             (2.2.4) 

Where m=number of constraints, n=number of continuous variables, p=number of integer 

variables, and all input parameters (cj, dk, aij, gik, bi) may be positive, negative, or zero [20].  
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The integer program notation above is given in standard form. If an integer program is given in 

nonstandard form (z is minimized, or the 3 constraints are not of the form given above), it can 

easily be transformed to standard form using mathematical manipulations [20]. 

2.3 Integer Goal Programming 

If more than one goal is sought by a DM (which may be the case when developing an allocation 

queue), then goal programming is often used to determine what maximizes value to the DM. A 

generic goal program consists of goals (q=1, 2,…Q), decision variables (x=x1,x2,…xn), an 

achieved value [fq(x)], and a desired value for each goal (bq) [21]. The algebraic representation 

of the qth goal is given as:  

𝐟𝒒(𝒙) + 𝒏𝒒 − 𝒑𝒒 = 𝒃𝒒                   (2.3.1) 

where nq represents the underachievement of the desired value and pq represents the 

overachievement of the desired value [21]. 

Linear programming can be used to solve goal programming problems. As mentioned earlier, an 

integer goal program is a linear goal program where decision variables are restricted to countable 

values [21]. The three main types of integer goal programming are weighted, lexicographic, and 

Chebyshev and are discussed in the following subsections.  

2.3.1 Weighted integer goal programming 

Weighted goal programming was introduced as a method used in multi-objective decision 

analysis in Section 1.4. Weighted goal programming can be used to find an allocation queue 

using trade-offs between desired objectives. The linear weighted goal program can be 

algebraically represented by [21]: 
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𝐌𝐢𝐧 𝐚 = ∑ (
𝒖𝒒𝒏𝒒

𝒌𝒒

𝑸
𝒒=𝟏 +

𝒗𝒒𝒑𝒒

𝒌𝒒
)             (2.3.2) 

𝐒𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨                                                                              𝐟𝒒(𝒙) + 𝒏𝒒 − 𝒑𝒒 = 𝒃𝒒                   (2.3.3) 

𝒙 ∈ 𝑭                    (2.3.4) 

𝒏𝒒, 𝒑𝒒 ≥ 𝟎       𝒒 = 𝟏, … . , 𝑸             (2.3.5) 

where equation 2.3.4 means that the allocation queue is feasible. In other words, F is the feasible 

region of allocation queues that satisfy all constraints and sign restrictions [21].  Other terms not 

previously defined are shown below: 

𝒖𝒒 − 𝒑𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒕𝒊𝒂𝒍 𝒘𝒆𝒊𝒈𝒉𝒕 𝒂𝒑𝒑𝒍𝒊𝒆𝒅 𝒕𝒐 𝒕𝒉𝒆 𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒂𝒕𝒊𝒐𝒏  𝒐𝒇 𝒏𝒒 

𝒗𝒒 − 𝒑𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒕𝒊𝒂𝒍 𝒘𝒆𝒊𝒈𝒉𝒕 𝒂𝒑𝒑𝒍𝒊𝒆𝒅 𝒕𝒐 𝒕𝒉𝒆 𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒂𝒕𝒊𝒐𝒏  𝒐𝒇 𝒑𝒒 

The preferential weights applied to the minimization of each of the objectives must be provided 

by the DM.  

For the above representation to become an integer goal program, equation 2.3.4 is modified to 

become [21]:  

𝒙 ∈ 𝑭 𝒊𝒏𝒄𝒍𝒖𝒅𝒊𝒏𝒈 𝒙𝒊 ≥ 𝟎 𝒂𝒏𝒅 𝒊𝒏𝒕𝒆𝒈𝒆𝒓 𝒊 = 𝟏, … , 𝒏                   (2.3.6) 

Equation 2.3.6 specifies (as before) that for integer programming problems, decision variables 

are restricted to integer values. This section is to introduce the concept of weighted integer goal 

programming in general. See Section 2.3.2 for the equations used for this research.  
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2.3.2 Weighted integer programming to maximize value 

Multi-objective decision making was introduced in Section 2.1. Weighted integer goal 

programming can be used to seek the goal of maximizing the value to decision makers using 

multi-objective decision making principles. Recall that equation 2.1.1 introduced the weighted 

sum model for calculated value: 

𝑽(𝒙) = ∑ 𝒘𝒊 ∗ 𝒗𝒊
𝒏
𝒊=𝟏 (𝒙𝒊)          (𝟐. 𝟑. 𝟕)                                                       

However, value to the DM is maximized by minimizing SRY and thus cost. Assuming only one 

objective to minimize SRY, equation 2.3.2 becomes: 

𝐌𝐚𝐱 𝐕 =  𝐌𝐢𝐧 𝐚 = ∑ ∑ 𝑺𝑹𝒀𝒊𝒓

𝒊∈𝑻𝒓∈𝑹

       (𝟐. 𝟑. 𝟖) 

Where: 

• V: value 

• SRY: Shutdown Reactor Years 

• r:reactor 

• R: Reactors 

• i:year 

• T: Time Horizon 

When considering other objectives in addition to minimizing SRY, it is simple and intuitive to 

transform the value functions for additional objectives to match the how SRY are calculated, so 

that a direct comparison is being made. Since the value functions for additional objectives 

already span from 0 to 1, each literal SRY is assumed as 0.5 for consistency. Once the value 
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functions are transformed into the same scale, swing weights can be used. Swing weights are a 

concept from multi-objective decision analysis in which the DM weights each objective based on 

its importance to maximizing the DM’s value. If two or more objectives are being compared 

(minimizing SRY and any other objective(s)), the other objectives’ value functions for each 

reactor site can be thought of as increasing the value to the DM of eliminating the reactor’s 

specific literal SRY if the value function is high and decreasing the value to the DM of 

eliminating a reactor’s specific literal SRY if the value function is low. In other words, additional 

objectives that are considered in addition to SRY in effect change the value of each individual 

SRY for each specific site to be changed from 1 (now 0.5) as it was assumed in the TVM to 

dependent on the specific objectives that are considered in the TVMV.   

Therefore, value can be maximized with the following equation (completed formulated to be 

clear): 

𝐌𝐚𝐱 𝐕 =  𝐌𝐢𝐧 𝐚 = ∑ ∑ 𝒘𝟏 ∗ (𝟎. 𝟓 ∗ 𝑺𝑹𝒀𝒊𝒓) + 𝒘𝟐 ∗ (𝑺𝑹𝒀𝒐𝒃𝒋𝟐) + ⋯

𝒊∈𝑻𝒓∈𝑹

+ 𝒘𝒏 ∗ (𝑺𝑹𝒀𝒐𝒃𝒋𝒏)  (𝟐. 𝟑. 𝟗) 

Where: 

• SRYobj2: value function of objective 2 

• SRYobjn: value function of objective n 

• 𝒘𝟏 : swing weight applied to objective 1 

• 𝒘𝟐 : swing weight applied to objective 2 

• 𝒘𝒏 : swing weight applied to objective n 

More information about the methods discussed in this section can be found in Appendix B.  



26 
 

2.3.3 Lexicographic integer goal programming 

Lexicographic goal programming was introduced in Section 1.4. To use lexicographic goal 

programming on this problem, the most important objective to the DM would be maximized 

first. Then, each successive objective would be optimized (if a unique solution was not found) 

with the first objective still being used as a constraint [21]. Because it must be known whether 

the solution found for an allocation queue is optimal to move on to the next step, using 

lexicographic goal programming would probably be its own dissertation topic given the number 

of potential allocation strategies when modeling the all reactor sites in the commercial nuclear 

waste management system. Therefore, this concept was not pursued on the entire waste 

management system for this research.  

2.3.4 Chebyshev integer goal programming 

Instead of minimizing the sum of the absolute value of all deviations from desired objectives as 

is typically done with goal programming, Chebyshev integer goal programming minimizes the 

maximum deviation from desired objectives (goals) [21]. It is named Chebyshev because it uses 

L∞ means of measuring distance [21]. In other words, Chebyshev integer goal programming 

seeks to balance all competing goals as opposed to maximizing total value. The Chebyshev 

integer goal program can be algebraically represented by [21]: 

𝐌𝐢𝐧 𝐚 = 𝝀             (2.3.10) 

  𝐒𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨                             𝐟𝒒(𝒙) + 𝒏𝒒 − 𝒑𝒒 = 𝒃𝒒     𝒒 = 𝟏, … . , 𝑸                   (2.3.11) 

𝒗𝒒𝒏𝒒

𝒌𝒒
+

𝒗𝒒𝒏𝒒

𝒌𝒒
≤ 𝝀        𝒒 = 𝟏, … . , 𝑸                   (2.3.12) 
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𝒙 ∈ 𝑭 𝒊𝒏𝒄𝒍𝒖𝒅𝒊𝒏𝒈 𝒙𝒊 ≥ 𝟎 𝒂𝒏𝒅 𝒊𝒏𝒕𝒆𝒈𝒆𝒓 𝒊 = 𝟏, … , 𝒏                   (2.3.13) 

𝒏𝒒, 𝒑𝒒 ≥ 𝟎       𝒒 = 𝟏, … . , 𝑸             (2.3.14) 

In other words, 𝝀  is minimized in the solution. From Practical Goal Programming [21] the ‘Min 

a’ notation is described this way (a represents an achievement function being minimized): 

“…the unwanted deviation variables need to be brought together in the form an 

achievement function whose purpose is to minimize them and thus ensure that a solution 

is ‘as close as possible’ to the set of desired goals is found.” [21] 

Note that equation 2.3.10 was again modified to limit variables to integer values to transform the 

problem from a linear Chebyshev programming problem to a Chebyshev integer programming 

problem. 
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Chapter Three 

 
Tractable Validation Model for Value 

To distinguish between the original TVM developed by Petersen [1] and the expanded version 

used for this research, the expanded version of the model is called the TVMV. It builds on the 

original TVM in many ways, the most extensive of which is to have the capability to maximize 

value if multiple objectives and appropriate weights are defined, either with a linear integer goal 

programming method or a Chebyshev integer goal programming method. 

3.1 Beginning Product 

This work expands upon the work by Petersen [1] where a model was developed in the 

commercial software Gurobi (Appendix B describes Gurobi in more detail) that simulated the 

nuclear waste management system and found allocation queues that minimized the number of 

SRY. The purpose of the TVM as defined by Petersen is that it “simulates removing SNF from 

reactor sites to demonstrate the effectiveness of different algorithms in reducing the total number 

of shutdown year incurred by the system” [1]. The TVM is used as the starting point for the 

work, and the author adds capabilities to the TVM, as is described in the next section. Further 

information about the TVM, including information about object-oriented programming, TVM 

inputs, objects in the TVM, methods of the TVM, and TVM variables, is presented in Appendix 

A.    

The original TVM [1] had three dynamic variables (Year, Shutdown Years, Number of 

assemblies) and three static variables (canister shipment limit for operating reactors, canister 

shipment limit for shutdown reactors, and the total number of canisters that can be shipped fleet 
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wide in a year). Static variables do not change in the model, while dynamic variables may 

change by year or among different scenarios. More information about variables in the original 

TVM is shown in Appendix A. 

3.2 New Capabilities in the TVMV not present in TVM 

The TVMV is major improvement on the TVM with two original contributions from the author 

of this dissertation. The two major new capabilities in the TVMV are the capability to consider 

an infinite number of objectives when developing allocation queues and the ability to perform 

Chebyshev integer programming to develop allocation queues. The TVM was originally 

designed to only consider one objective (minimizing SRY) when developing allocation queues, 

while the TVMV can now consider an infinite number of objectives to develop allocation 

queues. The TVM originally only used traditional integer programming methods to develop 

allocation queues, while the TVMV adds the capability to use Chebyshev integer programming 

to optimize allocation queues. Details of the required software improvements, methods, and 

variables required to implement these two added capabilities can be found in Appendix B.    

3.3 Modeled capabilities 

Capabilities in the TVMV that were modeled to produce results that are presented in this 

dissertation include: 

1. Model the TVMV to maximize SRY (instead of minimizing SRY). 

2. Model a small-scale scenario (only eight reactors) with two objectives and their 

associated weights using the weighted integer goal programming method. 

3. Model a small-scale scenario (only eight reactors) with three objectives and their 

associated weights using the weighted integer goal programming method. 
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4. Model a small-scale scenario (only eight reactors) using the Chebyshev integer 

programming method. 

5. Model scenarios that include the entire reactor fleet with two objectives and their 

associated weighting using the weighted integer goal programming method. 

6. Model scenarios that include the entire reactor fleet with three objectives and their 

associated weights using the weighted integer goal programming method. 

7. Model scenarios that include the entire reactor fleet using the Chebyshev integer  

programming method. 

The capabilities described in Section 3.2 could also be used on systems with different 

reactors, various total numbers of reactors, and as previously mentioned, an infinite number 

of objectives. Any system can be modeled if all of the inputs that were described in 

Petersen’s dissertation are known and defined [1].  
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Chapter Four 

 
Multi-objective Optimization Factors Development  

Many factors may ultimately affect what allocation is used to remove SNF from reactor sites. 

The allocation strategies that have been considered or proposed are explored in Section 4.1 as a 

starting point. The objectives that a DM may ultimately select for developing an allocation queue 

are also difficult to predict. However, a search of the literature yields clues to some potential 

factors that may be considered, and this is described in Section 4.2. Section 4.3 lists the swing 

weights that are explored to determine their impact on the allocation queue selected. Swing 

weights are a concept from multi-objective decision analysis in which the DM weights each 

objective based on its importance to maximizing the DM’s value. For example, in this study, if 

there are two objectives, both objectives are given swing weights of 50%.   

4.1 Summary of Allocation Strategies Considered or Proposed 

Many allocation strategies have been considered or proposed in the literature. Table 1 lists the 

different rules, strategies, and objectives found in a literature search that have been proposed or 

analyzed in developing allocation strategies for either just shutdown sites or the entire fleet. It is 

recognized this may not include every factor that may be considered but it is believed to be a 

comprehensive list.  

The strategies that were applied or discussed being applied to all sites could be applied to 

shutdown sites as well, and vice versa. The rules and strategies described here would not  
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Table 1: Rules, strategies, and objectives proposed or analyzed for developing allocation 

strategies 

APPLIED TO ALL SITES Rule, Strategy, or 

Objective 

Comment 

Oldest Fuel First [3] Rule Specified by Standard 

Contract- clearly a rule 

Reduce transfers to dry storage [12] Strategy Strategy needed because 

systems analysis needed to 

estimate when transfers to dry 

storage might take place 

Priority given to shutdown sites [12] Rule Clearly a rule- which 

shutdown sites to give priority 

to is an open question 

Clear sites within five years after [12] 

shutdown 

Rule or Strategy Strategy needed because 

systems analysis needed to 

estimate when transfers to dry 

storage might take place 

Only pickup fuel from shutdown sites 

[12] 

Rule Clearly a rule- which 

shutdown sites to give priority 

to is an open question 

Minimize number of SRY [1] Objective Petersen [1] created method to 

minimize SRY 

APPLIED TO SHUTDOWN 

SITES 

  

Longest Shutdown Plant First [11] Rule Clearly a rule 

OFF [11] Rule Clearly a rule 

Closest Plant First [11] Rule Could potentially use as 

objective if location where 

fuel will be transported is 

assumed 

Ease of Site Access [11] Rule (subjective 

measure) 

Could potentially use as an 

objective 

Least Fuel First [11] Rule Clearly a rule 

On-Site Storage Mode [11] Rule  Cleary a rule 

Shutdown vs. Decommissioned Sites 

[11] 

Rule Could potentially use as an 

objective 
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necessarily require a mathematical model (but they may) unless minimizing SRY is one of the 

objectives chosen by the DM. 

4.2 Determination of Potential Objectives 

One could brainstorm and list many potential objectives that a DM may ultimately want 

considered when developing an allocation queue. A search of the literature was performed to 

gain insight as to which objectives may be used to increase the relevance of this research. The 

final list of objectives used in this study should not be considered official or complete but should 

only be considered the proxies selected by the author of this study for the purposes of this study.    

The first study found in the literature investigated the impacts of metal cask systems used for the 

shipment of SNF from reactor sites to a consolidated storage location was used as an example in 

the book ‘Value Focused Thinking’ [13]. This table is presented and discussed to explore 

potential fundamental objectives that may be used when developing an allocation queue. It is 

recognized that not all these objectives are applicable to this specific situation and thus will not 

necessarily point to all objectives that might ultimately be used, but this exercise is only 

completed to find potential objectives.   

Three panels were used to create the combined fundamental objectives list shown below. The 

three panels were technical, governmental, and public interest. The technical panel comprised 

experts from the utility or related industries. The governmental panel included representatives 

from state or federal governmental agencies. The public interest panel included people from 

universities; and environmental and consumer group representatives [13]. These panels 

developed the objectives around 30 years ago regarding metal cask systems and not about an 

allocation queue, so it is recognized that panels convened now regarding developing an 
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allocation queue may come up with different objectives than were selected by the author of this 

dissertation.  

Table 2 [13] shows the summarized results of the combined fundamental objectives hierarchy 

from the three different panels.    

A brief discussion about how each of the eight objectives might apply to developing an 

allocation queue is now explored. It is not anticipated that the objectives about ‘health and safety 

impacts,’ ‘flexibility,’ and ‘scheduling’ will apply to developing an allocation queue because 

there is not envisioned to be a difference in these objectives based on which site was allocated to 

have fuel removed first. It should be noted that some of the assumptions when doing the analysis 

of the waste management system assume that the ‘scheduling’ objective mentioned is able to be 

met 100% of the time. Schedule variability is not considered in this analysis.     

The ‘economic costs’ objective can be best estimated for reducing ‘federal government costs’ by 

reducing the total number of SRY of the system. For reducing ‘state government costs,’ this 

would be accomplished by reducing the total number of SRY for specific states. Likewise, 

‘utility company costs’ could be estimated by looking at the total number of SRY of specific 

utilities. An allocation solution could be formulated where no reactor site, utility, or state is 

harmed compared to the OFF allocation queue, as was done by Petersen [1]. However, the DM 

may prioritize certain reactor sites, utilities, or states for various reasons and not have as an 

objective to not harm a specific site, utility, or state by adding SRY (when the allocation is 

compared against the OFF allocation).   

The ‘environmental impacts’ objective may not be affected depending on the allocation queue 

unless there is some site or sites that either are more environmentally sensitive than most reactor   
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Table 2: Combined fundamental objectives hierarchy  

Top Level 2nd Level 3rd Level 

Health and Safety 

Impacts (P) 

Radiation Exposure To the public (PGT) 

To the workers (PGT) 

Transportation Accidents To the public (PGT) 

To the workers (PGT) 

Future Generations Genetic effects (P) 

Cancer (P) 

Economic Costs (G) State government costs (G)  

Federal government costs (PGT) 

Utility Company Costs (PGT) 

Environmental Impacts 

(G) 

Visual (G)  

Land Use (PG) 

Political Impacts (G) Public confidence in the technical 

system (PG) 

 

Public confidence in government 

(G) 

Local and state attitudes (GT) 

Social Impacts (PT) Fears and anxieties (P)  

Transportation system 

inconvenience (PT) 
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Table 2 Continued 

Top Level 2nd Level 3rd Level 

Fairness (PG) Equity 

 

 

 

Transportation workers, 

industry workers, public (G) 

Geographical (G) 

Beneficiaries of nuclear power 

(P) 

Intergeneration (P) 

Liability (P)  

Scheduling (T) Timely availability of system (GT)  

Ability to handle appropriate 

quantities of spent fuel (T) 

Flexibility (T) Technical with respect to Consolidation of spent fuel (T) 

Reprocessing (T) 

Plant types (T) 

Retrievability (G) 

Repository media (GT) 

Institutional with respect to Transport regulation changes 

(T) 

Regulation changes (PGT) 

Political changes (P) 

NOTE: P, G, and T stand for the public interest, government, and technical panels, respectively. 
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sites (for example, a reactor site near an ocean or where earthquakes are more likely) or a reactor 

site that has imminent plans to re-purpose the land which it occupies. It is also possible that sites 

in a certain area are perceived to be more environmentally sensitive by the local population than 

others, and this also could be a potential objective.  

The ‘political impacts’ objective may be affected by what allocation queue is developed but is 

difficult to quantify. Public confidence in government and the technical system would be 

demonstrated regardless of what the allocation queue is (at a national level). ‘Local and state 

attitudes,’ however, as mentioned in the discussion on ‘environmental impacts,’ could be a 

potential objective. Along these lines, political leaders representing different areas may have 

dissimilar concerns or levels of political power that affect how an allocation queue is developed. 

The ‘social impacts’ objective (including both ‘fears and anxieties’ and ‘transportation system 

inconvenience’) is related to political and social impacts in terms of how particular sites are 

affected by specific allocation strategies.  

The ‘fairness’ objective may be affected by what allocation queue is selected. Specifically, this 

project may investigate an allocation queue objective for geographical equity. This may be an 

objective related to state equity discussed above, and it is recognized that it might be correlated 

to other objectives. 

As discussed previously, it is recognized that some of these final objectives could potentially be 

correlated. Other examples include environmental, political, and social attitudes being potentially 

correlated; sites that have already been shut down may be in areas where attitudes toward nuclear 

power are not as positive; and geographical and/or state equity being related to state government 

or utility costs. 
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The second study found in the literature [19] reviewed several sources to come up with a 

potential list of high-level attributes. The results were presented as a starting point and were very 

high level, so they are not as useful as the first study mentioned above for developing attributes 

for this investigation. However, as observed by the list of high-level attributes below, similar 

categories of objectives appeared (this is expected because this work [19] references the metallic 

cask study [13]). However, it should also be recognized that similar themes were found in the 

other references that Kalinina et. al [19] investigated. 

High-level attributes given in Kalinina, et al. [19]: 

• Transportation impacts 

• Flexibility and adaptability 

• Adequate institution in place 

• Technical approach 

• Economic viability 

• Future generations 

• Stewardship 

• Transparency, accountability, and knowledge 

• Fairness and justice 

• Security 

• Environmental impacts 

• Health and safety 

• Impacts on community 

After investigating the literature, the following objectives are planned to be investigated: 
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• Minimizing SRY; 

• Giving priority to sites in states with deregulated energy markets over sites in states with 

regulated energy markets; 

• Giving priority to sites based on the percentage of people in the county where the reactor 

site is located who are in poverty. 

The swing weights and value functions that are assumed and applied to these objectives are 

developed in Sections 4.3 and 4.4, along with a brief description about the two additional 

objectives noted above beyond SRY. It should be noted again that the tool is developed so any 

objective that a DM wishes to incorporate into the model can be handled if swing weights and a 

value function are provided by the DM.  

4.3 Selection of swing weights to apply to each objective 

Swing weights will ultimately be determined by the DM who determines the allocation queue. If 

only two objectives are being investigated, then for the purposes of this research, each objective 

is given swing weights of 50%. If three objectives are investigated, then each will be given a 

swing weight of 33.33%. Future work could investigate the implications of using four or more 

objectives as well as various swing weight percentages.  

4.4 Development of value functions for each objective 

Value functions must ultimately be developed by the DM who oversee determining the 

allocation queue. For the purposes of this study, value functions must be assumed for each 

objective used in the model. Multiple value functions for each objective may be investigated, as 

the DM will ultimately determine the value function for each of their objective. For this 
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investigation, the value functions are scaled to between 0 and 1 so that all objectives are being 

compared ‘apples-to-apples.’  

The value function for minimizing SRY was previously estimated in Section 2.1 using SRY data 

from Petersen’s work [1]. Since the ‘maximum’ amount of SRY that an allocation queue could 

produce is assumed to be the OFF strategy, the maximum number of SRY was calculated to give 

a more accurate value function for SRY.  

It should be noted that because the number of SRY is minimized on the fly, every individual 

SRY is effectively given a weight of 0.5 in the model. This was necessary to have an ‘apples-to-

apples’ comparison with the other weighting factors that were developed.  

The value function for ‘giving priority to sites based on the percentage of people in the county 

where the reactor site is located who are in poverty’ is estimated based on 2015 census data [22]. 

It is debatable whether this is the best proxy for the economic conditions around a site, but it is 

assumed for the purposes of this study and believed to be a reasonable metric available to the 

author.  

Data from the U.S. Census Bureau, Small Area Income and Poverty Estimates in 2015 is used to 

create the value function for giving priority to sites based on the economic conditions in the area. 

The value function for every site that has an operating nuclear power plant or SNF stored on site 

is shown in Table 3 [22]. The value is assumed to be ‘1’ for the site with the largest percentage 

of its county in poverty and ‘0’ for the site with the lowest percentage of its county in poverty. 

The value function for ‘Giving priority to sites in states with deregulated energy markets’ is 

estimated as ‘1’ for shutdown sites, ‘0.5’ for deregulated energy markets and ‘0’ for regulated   



41 
 

Table 3: Value Functions for the sites based on economic conditions in the zip code where 

the site is located  

Reactor Site County, State % of county in poverty Value Function 

Arkansas Nuclear Pope, Arkansas 20.8 0.38164 

Beaver Valley Beaver, Pennsylvania 13.1 0.19453 

Big Rock Charlevoix, Michigan 11.6 0.15808 

Braidwood Will, Illinois 8 0.07060 

Browns Ferry Limestone, Alabama 14.3 0.22369 

Brunswick Brunswick, North Carolina 14.3 0.22369 

Byron Ogle, Illinois 10.4 0.12892 

Callaway Callaway, Missouri 13.9 0.21397 

Calvert Cliffs Calvert, Maryland 5.9 0.01957 

Catawba York, South Carolina 12.5 0.17995 

Clinton De Witt, Illinois 11.6 0.15808 

Comanche Peak Somervell, Texas 12.1 0.17023 

Cook Berrien, Michigan 17.1 0.29173 

Cooper Station Nemaha, Nebraska 13.1 0.19453 

Crystal River Citrus, Florida 17.5 0.30145 

Davis-Besse Ottawa, Ohio 9.7 0.11191 

Diablo Canyon San Luis Obispo, California 14.4 0.22612 

Dresden Grundy, Illinois 7.7 0.06331 

Duane Arnold Linn, Iowa 11 0.1435 

Enrico Fermi Monroe, Michigan 10.6 0.13378 

Farley Houston, Alabama 18.3 0.32089 

Fitzpatrick Oswego, New York 17.4 0.29902 

Fort Calhoun Washington, Nebraska 6.7 0.03901 

Ginna Wayne, New York 12.2 0.17266 

Grand Gulf Claiborne, Mississippi 46.3 1.00000 

Haddam Neck Middlesex, Connecticut 6.7 0.03901 

Harris Wake, North Carolina 11.1 0.14593 

Hatch Appling, Georgia 22.5 0.42295 

Hope Creek Salem, New Jersey 11.9 0.16537 

Humboldt Bay Humboldt, California 20.9 0.38407 

Indian Point Westchester, New York 10.1 0.12163 
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Table 3 Continued 

Reactor Site County, State % of county in poverty Value Function 

Kewaunee Kewaunee, Wisconsin 8.2 0.07546 

LaCrosse Vernon, Wisconsin 14.8 0.23584 

LaSalle La Salle, Illinois 12.9 0.18967 

Limerick Montgomery, Pennsylvania 6.6 0.03658 

Maine Yankee Lincoln, Maine 14.1 0.21883 

McGuire Mecklenburg, North Carolina 14.3 0.22369 

Millstone New London, Connecticut 11.1 0.14593 

Monticello Wright, Minnesota 5.1 0.00000 

Nine Mile Point Oswego, New York 17.4 0.29902 

North Anna Louisa, Virginia 10.6 0.13378 

Oconee Oconee, South Carolina 18 0.3136 

Oyster Creek Ocean, New Jersey 10.9 0.14107 

Palisades Van Buren, Michigan 15.7 0.25771 

Palo Verde Maricopa, Arizona 16.3 0.27229 

Peach Bottom York, Pennsylvania 10.4 0.12892 

Perry Lake County, Ohio 8.3 0.07789 

Pilgrim Plymouth, Massachusetts 9.7 0.11191 

Point Beach Manitowoc, Wisconsin 10.7 0.13621 

Prairie Island Goodhue, Minnesota 8.9 0.09247 

Quad Cities Rock Island, Illinois 13.2 0.19696 

Rancho Seco Sacramento, California 16.9 0.28687 

Robinson Darlington, South Carolina 21.5 0.39865 

River Bend West Feliciana Parish, 
 Louisiana 

23.9 0.45697 

Salem Salem, New Jersey 11.9 0.16537 

San Onofre San Diego, California 13.9 0.21397 

Seabrook Rockingham, New Hampshire 5.2 0.00256 

Sequoyah Hamilton, Tennessee 15.2 0.24556 

South Texas Matagorda, Texas 20.5 0.37435 

St. Lucie St. Luci, Florida 16.4 0.27472 

Summer Fairfield, South Carolina 23 0.4351 

Surry Surry, Virginia 13 0.1921 
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Table 3 Continued 

Reactor Site County, State % of county in poverty Value Function 

Susquehanna Luzerne, Pennsylvania 15.1 0.24313 

Trojan Columbia, Oregon 13.4 0.20182 

Turkey Point Miami-Dade, Florida 20 0.3622 

Vogtle Burke, Georgia 25.1 0.48613 

Vermont Yankee Windham, Vermont 13.2 0.19696 

Wash Nuclear Benton, Washington 14.2 0.22126 

Waterford St. Charles Parish, Louisiana 11.8 0.16294 

Watts Bar Rhea, Tennessee 23.3 0.44239 

Wolf Creek Coffey, Kansas 9.9 0.11677 

Yankee-Rowe Franklin, Massachusetts 11.8 0.16294 

Zion Lake, Illinois 9 0.0949 

Three Mile Island Dauphin, Pennsylvania 13.6 0.2068 
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energy markets. Nuclear power plants in states with deregulated electricity markets have faced 

more competition from other electricity sources [23]. Because of this, it may be considered an 

objective to give priority to nuclear sites that are in states with deregulated energy markets over 

nuclear sites in states with regulated energy markets. In general, nuclear reactor operators in 

states with regulated markets are doing better economically and thus are less likely to shut down 

early. The World Nuclear Association reports that ‘about 54 GWe of U.S. nuclear capacity is in 

regulated markets, and 45 GWe in deregulated merchant markets, with power sold competitively 

on a short-term basis [23].’ 

Table 4 lists every nuclear reactor site in the U.S. and whether the site is shutdown, deregulated, 

or regulated. For this value function, shutdown sites are given the highest priority, sites in 

deregulated states are given 2nd highest priority, and sites in regulated states are given the lowest 

priority. Note that the sites Duane Arnold and Point Beach are considered as sites in deregulated 

states, even though they are in regulated states, because they have power purchase agreements 

[23].  

   

  



45 
 

 Table 4: Nuclear Reactor Sites in the U.S.; whether they are shutdown, deregulated, or 

regulated; and value function given in the model 

Reactor Site Shutdown, Deregulated, or Regulated Value Function 

Arkansas Nuclear Regulated 0 

Beaver Valley Deregulated 0.5 

Big Rock Shutdown 1 

Braidwood Deregulated 0.5 

Browns Ferry Regulated 0 

Brunswick Deregulated  0.5 

Byron Deregulated 0.5 

Callaway Regulated 0 

Calvert Cliffs Deregulated 0.5 

Catawba Regulated 0 

Clinton Deregulated 0.5 

Comanche Peak Deregulated 0.5 

Cook Deregulated 0.5 

Cooper Station Regulated  0 

Crystal River Shutdown 1 

Davis-Besse Deregulated 0.5 

Diablo Canyon Regulated 0 

Dresden Deregulated 0.5 

Duane Arnold Deregulated* 0.333 

Enrico Fermi Deregulated 0.5 

Farley Regulated 0 

Fitzpatrick Deregulated 0.5 

Fort Calhoun Regulated 0 

Ginna Deregulated 0.5 

Grand Gulf Regulated 0 

Haddam Neck Shutdown 1 

Harris Regulated 0 

Hatch Regulated 0.333 

Hope Creek Deregulated 0.5 

Humboldt Bay Shutdown 1 

Indian Point Deregulated 0.5 
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Table 4 Continued 

Reactor Site Shutdown, Deregulated, or Regulated Value Function 

Kewaunee Shutdown 1 

LaCrosse Shutdown 1 

LaSalle Deregulated 0.5 

Limerick Deregulated 0.5 

Maine Yankee Shutdown 1 

McGuire Regulated 0 

Millstone Deregulated 0.5 

Monticello Regulated 0 

Nine Mile Point Deregulated  0.5 

North Anna Regulated 0 

Oconee Regulated 0 

Oyster Creek Deregulated 0.5 

Palisades Deregulated 0.5 

Palo Verde Regulated 0 

Peach Bottom Deregulated 0.5 

Perry Deregulated 0.5 

Pilgrim Deregulated 0.5 

Point Beach Deregulated* 0 

Prairie Island Regulated 0 

Quad Cities Deregulated 0.5 

Rancho Seco Shutdown 1 

Robinson Regulated 0 

River Bend Regulated 0 

Salem Deregulated 0.5 

San Onofre Shutdown 1 

Seabrook Deregulated 0.5 

Sequoyah Regulated 0 

South Texas Deregulated 2 

St. Lucie Regulated 0 

Summer Regulated 0 

Surry Regulated 0 
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Table 4 Continued 

Reactor Site Shutdown, Deregulated, or Regulated Value Function 

Susquehanna Deregulated 0.5 

Trojan Shutdown 1 

Turkey Point Regulated 0 

Vogtle Regulated 0 

Vermont Yankee Shutdown 1 

Wash Nuclear Regulated 0 

Waterford Regulated 0 

Watts Bar Regulated 0 

Wolf Creek Regulated  0 

Yankee-Rowe Shutdown 1 

Zion Shutdown 1 

Three Mile Island Deregulated 0.5 
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Chapter Five  

 
Exploration of Sample Problems 

This section presents the results of sample problems completed using the TVMV. The two 

methods of validation completed included exploring the results on small-scale scenarios (eight 

reactors), as well as investigating the implications of various assumptions in the TVMV 

including the year of first acceptance from reactors, total canister acceptance rate per year across 

the entire fleet, the maximum canister acceptance rates per year for both individual shutdown 

and operating reactors, and storage and transportation cask thermal heat limits.   

5.1 Sample Problem Exploration (Eight reactor scenario) 

To validate the TVMV, a scenario with only eight reactors (Arkansas Nuclear, Beaver Valley, 

Big Rock Point, Braidwood, Browns Ferry, Brunswick, Byron, Callaway) is explored before 

analyzing the scenario that includes all reactor sites in the U.S. This scenario assumes that fuel 

begins being picked up in 2021; a total acceptance rate of 100 canisters per year; and limits on an 

individual operating reactor site of 15 canisters per year and on a shutdown reactor site of 25 

canisters per year. The canisters used in this scenario have a maximum assembly capacity of four 

for Pressurized Water Reactor (PWR) assemblies and nine for Boiling Water Reactor (BWR) 

assemblies. Table 5 presents the assumed shutdown date and the total number of canisters for the 

reactors selected for the small-scale scenario.  
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Table 5: Eight reactors used for small scenario, their assumed shutdown date, and the total 

number of canisters that ship 

 Reactor Assumed Shutdown Date Total Number of Canisters 

1 2034 624 

2 2036 659 

3 1997 59 

4 2046 840 

5 2033 750 

6 2036 860 

7 2044 974 

8 2044 974 
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In the following subsections, the small-scale scenario described here is used to investigate 

scenarios with two objectives, a scenario with three objectives, and the newly developed 

Chebyshev integer goal programming method. 

5.1.1 Weighted integer goal programming with two factors 

To explore the effect of adding weights to the TVMV in the development of allocation queues, 

the scenario is first run with the only objective to minimize SRY. The scenario is then run with 

the objectives of minimizing SRY and giving priority to sites based on the economic 

disadvantage of residents of the county where the reactor is located (with 50% weight for each 

objective). Table 6 shows the dates when each of the eight reactor sites are cleared for each 

scenario.   

Note that in this scenario, the solution found did not change. This is due to the assigned weights 

of the economic factors objective not being different enough to overcome the objective to 

minimize SRY. This is further explored on scenarios considering the entire reactor fleet, as eight 

reactors may not be enough to observe a modified allocation, given the economic conditions 

objective, the eight reactors that were selected, and other problem parameters and assumptions.   

Next, a scenario is run with the objectives of minimizing SRY and giving priority to sites based 

on whether the site is shutdown, in a state where energy markets are regulated, or in a state 

where energy markets are deregulated (i.e. 50% weight for each objective). Table 7 shows the 

dates when each of the eight reactor sites are cleared for each scenario.    

Adding the objective to give priority to sites that are in states with deregulated energy markets 

(Reactors #2, #4, and #7) results in two out of the three sites being cleared earlier. Reactor #4 is 

cleared one year earlier, and Reactor #7 is cleared 12 years earlier. Reactor #2 is cleared the  
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Table 6: Date of clearing eight reactors with objective to minimize SRY (Scenario 1) and 

with two objectives of equal weight: giving priority to sites based on economic factors near 

the site and minimizing SRY (Scenario 2) 

Reactor Weight given to 

reactor based on 

economic factors  

Date of Reactor 

Clearing (Scenario 1-

minimizing SRY only) 

Date of Reactor 

Clearing (Scenario 2- 

two objectives) 

1 0.38164 2051 2051 

2 0.19453 2053 2053 

3 0.15808 2023 2023 

4 0.07060 2076 2076 

5 0.22369 2056 2056 

6 0.22369 2075 2075 

7 0.12892 2076 2076 

8 0.21397 2076 2076 

Total SRY  193 193 
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Table 7: Date of clearing eight reactors with objective to minimize SRY (Scenario 1) and 

with two objectives of equal weight: giving priority to sites based on whether the site is 

shutdown, in a regulated state, or in a deregulated state (Scenario 2) 

Reactor Weight given to reactor based 

on regulatory conditions of the 

state where the reactor site is 

located 

Date of Reactor 

Clearing 

(Scenario 1-

minimizing SRY 

only) 

Date of Reactor 

Clearing 

(Scenario 2- two 

objectives) 

1 0 2051 2051 

2 0.5 2053 2053 

3 1 2023 2023 

4 0.5 2076 2075 

5 0 2056 2076 

6 0 2075 2076 

7 0.5 2076 2064 

8 0 2076 2076 

Total SRY  193 201 
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same year because it was already cleared as earliest as possible given the other constraints in the 

problem. Two out of the four sites in states with regulated markets were cleared in the same year, 

and two sites had the date that their site was cleared delayed by one year (Reactor #6) and 21 

years (Reactor #5). Additionally, the total number of SRY increased from 193 to 201 when 

adding the additional objective (instead of the only objective being to minimize SRY). It should 

also be noted that while Reactor #3 was given priority because it was already shut down, the year 

in which it was cleared did not change because it was already given priority in the allocation 

only seeking to minimize SRY across the entire reactor fleet.  

The nature of these scenarios results in some reactors filling up all their available maximum 

‘allocation’ in terms of the maximum canisters that can be shipped from a site in a year and the 

number of potential years in the scenario, and therefore relatively little variation is observed.  

Because of this, the author believes the weighted integer goal programming method that was 

implemented is best explored on a scenario considering the entire reactor fleet, thus, that is 

where most of the effort in this research is placed.  

5.1.2 Three factors 

To further explore the effect of adding weights to the TVMV when developing an allocation 

queues, the scenario is run with three objectives: minimizing SRY, giving priority to sites based 

on whether they are located in states with regulated or deregulated energy markets, and giving 

priority to sites based on the economic disadvantage of residents of the county where the reactor 

is located (i.e. 33.33% weight for each objective). Table 8 shows the dates when each of the 

eight reactor sites are cleared for each scenario.   
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Table 8: Date of clearing eight reactors with objective to minimize SRY (Scenario 1) 

and with three objectives of equal weight: minimizing SRY, giving priority to sites 

based on economic factors near the site, giving priority based on whether the site is 

shutdown, in a regulated state, or in a deregulated state, and minimizing SRY 

(Scenario 2) 

Reactor Weights given to reactor based 

on economic factors; regulatory 

factors  

Date of Reactor 

Clearing 

(Scenario 1-

minimizing SRY 

only) 

Date of Reactor 

Clearing 

(Scenario 2- three 

objectives) 

1 0.38164; 0 2051 2051 

2 0.19453; 0.5 2053 2053 

3 0.15808; 1 2023 2023 

4 0.07060; 0.5 2076 2076 

5 0.22369; 0 2056 2056 

6 0.22369; 0 2075 2076 

7 0.12892; 0.5 2076 2075 

8 0.21397; 0 2076 2076 

Total SRY  193 193 
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 When considering three objectives, Reactor #6 is cleared one year later, and Reactor #7 is 

cleared one year earlier. This is due to Reactor #7 being located in a state with deregulated 

energy markets and Reactor #6 being located in a state with regulatory energy markets. In 

comparison to the economic factors objective, the regulated/deregulated objective has more  

impact on the result for this particular scenario. This is an illustration that objectives should 

always be compared apples-to-apples (i.e., do not compare using value functions that are not in 

the same scale). The objectives are still compared apples-to-apples in this particular instance, it is 

just that the weights for economic objectives are low for the eight reactors that are compared due 

to the weights being used that were developed for the scenario with the entire reactor fleet.  

5.1.3 Chebyshev integer goal programming  

To validate the TVMV using the newly developed Chebyshev integer goal programming 

method, a scenario with only eight reactors is explored before analyzing the scenario that 

includes all reactor sites in the U.S. The desired value for SRY that was used for the Chebyshev 

analysis was found by running the scenario with an unlimited number of canisters allowed to 

ship per year (keeping the same transportation thermal limits and at-reactor site limits for 

shutdown and operating reactors). By doing this, the year when the site would be cleared if the 

site was given first priority can be found. The algorithm seeks to minimize the cumulative 

difference (summed across all 8 reactor sites) between a specific reactor’s number of SRY and 

the defined desired value of SRY that was described earlier. The lowest value found for the total 

departure from lambda for the SRY value in the Chebyshev scenario was 16. The results are 

shown in Table 9. 

As can be seen from the results, minimizing the cumulative difference that an individual 
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Table 9: Date of clearing eight reactors with objective to minimize SRY (Scenario 1) and to 

minimize the difference between the cumulative difference between an individual site’s 

number of SRY and the desired value (lambda) (Scenario 2) 

Reactor Date of 

Reactor 

Clearing 

(Scenario 1-

minimizing 

SRY only) 

Desired value 

of SRY  

Date of 

Reactor 

Clearing 

(Scenario 2) 

SRY of 

Scenario 2 

Difference 

between site’s 

number of 

SRY and the 

desired value 

(lambda) 

1 2051 17 2061 27 10 

2 2053 17 2058 22 5 

3 2023 3 2032 12 9 

4 2076 18 2076 30 12 

5 2056 23 2072 39 16 

6 2075 23 2075 39 16 

7 2076 20 2076 32 12 

8 2076 25 2076 32 7 

Total SRY  193 233 233  
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reactor’s SRY differs from desired SRY values results in an increase in the total number of SRY 

for the entire problem (233 vs. 193) in this instance. Additionally, four reactors end up having 

fuel on-site longer, and four reactors end up with the same date of SNF being cleared from their 

site. This is due to the simulation only seeking to minimize the maximum deviation between 

each reactor’s SRY value and the desired SRY value. The model is seeking to minimize the 

maximum deviation from desired values, and thus is only focusing on a smaller subset of the 

eight reactors in the problem. The Chebyshev method is further investigated for a scenario that 

includes the entire reactor fleet, but it appears that the Chebyshev method may not always result 

in an optimal result compared to scenarios that seek to minimize the total SRY for the entire 

reactor fleet. To summarize, because of the variety of situations that reactor sites are in, this is 

not the most elegant method that can be used and is only done to demonstrate the validity of the 

method. Additionally, it is recognized each reactor’s individual SRY could be weighted as is 

done in Section 5.1.1, in other words, each reactor’s SRY value would be ‘worth’ a different 

amount.  

5.2 Parametric Study on Assumptions (full-scale model) 

This section presents the results of a parametric study in which certain and major assumptions 

used in the TVMV are varied. The assumptions and parameters that are varied include the year 

that SNF acceptance begins, the total canister acceptance rate per year across the entire reactor 

fleet, the maximum canister acceptance rate for both individual shutdown and individual 

operating reactors, and the maximum storage and transportation cask thermal limits. When the 

TVM was first presented by Petersen [1], the space of potential assumptions was not completely 

explored. This section presents the results of an effort to more completely investigate the 

implications of different assumptions on how the TVMV produces an allocation queue.  
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For the scenarios presented in this section, except for the values being varied for the study, the 

assumed values are: 

• Beginning of fuel acceptance: 2021 

• Fleet-wide maximum canister acceptance rate per year: 225 canisters/year 

• Maximum canister acceptance rate for shutdown sites: 38 canisters/year 

• Maximum canister acceptance rate for operating sites: 15 canisters/year 

• Storage cask thermal limit: 32 kW/canister 

• Transportation cask thermal limit: 20 kW/canister 

5.2.1 Year of 1st acceptance 

This section investigates the implications of various years that SNF is first accepted from reactor 

sites. It is apparent without even modeling the waste management system that given an assumed 

constant acceptance rate (225 canisters per year in these scenarios), the longer acceptance is 

delayed, the greater the total number of SRY of the system will be. Figure 1 presents the results 

of shutdown sites with fuel on-site by year for four different acceptance start dates investigated.  

The results confirm the obvious: delaying the beginning of SNF acceptance results in sites being 

cleared later. However, detailed examination of the results also shows the impact to the system is 

not linear with every 10-year delay. The total SRY of the entire reactor fleet if the first SNF is 

picked up in 2021 is 611, for 2031 it is 976, for 2041 it is 1630, and for 2051 it is 2348. 

Therefore, a 10-year delay from 2021 to 2031 results in 365 additional SRY; a 10-year delay 

from 2031 to 2041 results in 654 additional SRY; and a 10-year delay from 2041 to 2051 results 

in an additional 718 additional SRY. These additional SRY are due to more reactors being 

expected to shut down between 2030 and 2050 than are expected to shut down in approximately   
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Figure 1: Number of shutdown sites with fuel on-site for various dates of first acceptance 
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the next 10 years. These results show that if one is concerned about reactor sites having fuel on-

site after they shut down, delays in the start of acceptance become more impactful (in terms of 

increasing SRY of the system) over time, up until the point when all sites are shut down.  

Sites are impacted in different ways from delays in beginning acceptance. A method to observe 

this is by plotting the deviations in the year that sites are cleared for additional scenarios 

compared to the scenario where acceptance begins in 2021. The deviation resulting from 10-,  

20-, and 30-year delays in the start of acceptance is shown in Figure 2.  

This figure illustrates that delays in starting the system of 10, 20, and 30 years affect different 

reactor sites differently. In fact, a 10-year delay in the start of the system results in a maximum 

delay of 32 years for any one reactor site; a 20-year delay in the start of the system results in a 

maximum delay of 44 years for any one site; and a 30-year delay in the start of the system results 

in a maximum delay of 54 years for any one site. The reactor that experienced these delays is 

assumed to have its last discharge in 2034. These delays are due to the site in question having 

many canisters to pick up in comparison to other sites. Because of the delays in pickup of SNF, 

other sites that shut down are prioritized over the site in question (before it is cleared) because 

they have less inventory of SNF to pick up in comparison. This result illustrates an important 

result from the model: to minimize SRY, the site with the least amount of fuel should be picked 

up if both sites being compared are shut down. From the plot, it can also be observed that some 

sites are not affected at all by the system delay, some sites are not as delayed by as much as the 

system delay, while other sites are delayed by more than the system delay. As was seen in the 

analysis of Figure 1, more sites are negatively impacted the longer the 10-year delay is in the 

future (in other words, a delay from 2041 to 2051 negatively impacts more reactor sites than a 

delay from 2021 to 2031). In addition, the reactor sites that are negatively impacted have a  
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Figure 2: Deviation in Year of Last Pickup for reactor sites from the scenario where 

acceptance begins in 2021 for the scenarios with delays in the 1st acceptance of 10, 20, and 

30 years 
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greater negative impact in terms of the number of years delayed from a delay that happens from 

2041 to 2051 compared to a delay that happens from 2021 to 2031.   

5.2.2 Maximum fleet-wide canister acceptance rate per year 

This section investigates the implications of various maximum fleet-wide yearly canister 

acceptance rates. Acceptance rates of 112 canisters per year, 225 canisters per year, and 337 

canisters per year are investigated. These canister acceptance rates serve as approximate 

acceptance rates given in mass values of 1,500 MTHM/yr, 3,000 MTHM/yr, and 4,500 

MTHM/yr respectively. Figure 3 presents the results of shutdown sites with fuel on-site by year 

for the three different system rates investigated.  

The three acceptance rates of 112, 225, and 337 canisters per year resulted in 1401, 611, and 602 

SRY across the entire reactor fleet, respectively. From the figure, it is obvious that an acceptance 

rate of 112 canisters per year results in sites being cleared much slower, and this is reinforced by 

the increase in SRY from 611 to 1401 if the acceptance rate per year is cut in half. However, in 

terms of minimizing SRY for the system, increasing the acceptance rate from 225 canisters per 

year to 337 canisters per year only reduces the number of SRY for the system from 611 to 602. It 

is believed that this result is because the scenarios assume the sites still have limits related to the 

number of canisters that can be shipped from individual operating and shutdown sites per year, 

as well as sites must wait until their canisters meet transportation thermal limits. The effects of 

these other parameters are further explored in subsequent sections.  

Site-specific effects of varying acceptance rates are now explored. Sites are impacted in different 

ways from different acceptance rates. A method to observe this is by again plotting the 

deviations in the year that sites are cleared for additional scenarios compared to the scenario with  
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Figure 3: Number of shutdown sites with fuel on-site with various maximum canister 

acceptance rates across the fleet per year 
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an acceptance rate of 225 canisters per year. The deviation resulting changing the acceptance rate 

to 112 canisters per year and 337 canisters per year is shown in Figure 4.  

As expected from the minimal change in SRY by increasing the acceptance rate to 337 canisters 

per year, not much difference at a site level is observed due to an increase in the fleet-wide 

acceptance rate. However, many reactor sites are affected by reducing the fleet-wide acceptance 

rate to only 112 canisters per year. The maximum delay in clearing a site due to reducing the  

acceptance rate to 112 canisters per year is 60, and the average site delay is approximately 10.5 

years. The figure shows that while some sites are not affected, or affected minimally, a 

significant number of sites have their final clearing delayed 10-60 years by cutting the fleet-wide 

acceptance rate of canisters to 112 per year.   

5.1.1 Maximum canister acceptance rate per year for individual shutdown 

reactor sites 

This section investigates the implications of various maximum canister acceptance rates per year 

for each individual shutdown reactor. If sites contain no operating reactors, they usually have 

more time to allow for loading and shipping SNF canisters. The assumed base value is that only 

38 canisters can be shipped from each shutdown reactor site per year. This was assumed because 

it represents approximately 500 MTHM of SNF. Variants of 25, 50, and 75 canisters per year 

were also investigated. Figure 5 presents the results of shutdown sites with fuel on-site by year 

for the four different maximum canister rates per year for shutdown reactor sites.  

Increasing the maximum number of canisters that can be accepted from shutdown reactor sites in 

a year results in less total SRY across the entire reactor fleet. For example, as the maximum 

number of canisters that each shutdown reactor site increases from 25 to 38 to 50 to 75, the total   
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Figure 4: Deviation in Year of Last Pickup from the base scenario with an acceptance rate 

of 225 canisters/yr compared to scenarios with acceptance rates of 112 and 337 canisters/yr  
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Figure 5: Number of shutdown sites with fuel on-site with various maximum canister 

acceptance rates per year for individual shutdown reactor sites 
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SRY for the system is reduced from 629 to 611 to 603 to 599, respectively. From the figure, one 

can notice that the time periods when shutdown reactors with fuel on-site are affected are the 

early- to mid-2020s and from ~2055 to ~2065. This is because some sites can be cleared faster if 

more canisters can be picked up from their site each year. This can be done while still reducing 

the overall SRY of the system, and this is further explored in the next paragraph.   

How individual reactor sites are affected by increasing the maximum number of shipments that 

shutdown sites can complete in a year is further explored by looking at the deviations in the year 

that sites are cleared for additional scenarios compared to the base scenario where a maximum of 

38 canisters are assumed to be shippable in a year from shutdown reactor sites. The deviation 

resulting changing this maximum value to 13, 50, or 75 is shown in Figure 6.  

Reducing the number of shipments that shutdown reactor sites can make in a year from 38 to 25 

causes eight reactor sites to be cleared later. Increasing the number of shipments that shutdown 

reactor sites can make in a year from 38 to either 50 or 75 causes either 7 or 10 sites respectively 

to be cleared earlier. As can be seen from the figure, this increase to 50 or 75 canisters per year 

results in 7-10 reactors being cleared earlier while not harming any reactor sites by delaying the 

year in which they are finally cleared. Therefore, any possible means to allow for an increased 

number of canisters to be picked up from specific shutdown reactor sites in a year should be 

explored. This would also be advantageous because it might reduce the number of sites having to 

undertake shipping campaigns in a year.  

The overall takeaway from this section is that how many canisters can ship from shutdown 

reactor sites is important to how many SRY result across the fleet. Specifically, increasing the 

number of shipments that an individual shutdown reactor site can perform during a year results  
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Figure 6: Deviation in year of last pickup from the base scenario (maximum of 38 

shipments from shutdown sites) compared to scenarios with assumed max rates of 13, 50, 

and 75 
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in the minimization of total SRY across the entire reactor fleet. Additionally, this reduction of 

SRY across the reactor fleet can probably be done without delaying the final shipment from any 

reactor site.  

5.1.1 Maximum canister acceptance rate for individual operating reactor sites 

This section investigates the implications of various maximum canister acceptance rates per year 

for each individual operating reactor. Operating reactor sites prioritize the operation of their 

reactor units and any needed maintenance and refueling needed during outages [25]. Loadings 

that have taken place recently have averaged around a week to complete [25]. Because of this,  

only about 10 to 15 canisters have historically been loaded at operating reactor sites in each year 

[25], and this is expected to continue to be the case. Shipments from operating reactor sites are 

assumed to be on the same order of magnitude as loadings, as operating reactor sites are 

expected to ship SNF they load directly from the pool instead of the Independent Spent Fuel 

Storage Installation (ISFSI), if possible, to reduce the amount of effort needed by the utility. The 

assumed base value assumption is that only 15 canisters can be shipped from each operating 

reactor site per year. Variants of this scenario assumed either 10 or 20 canisters per year were 

also investigated. Figure 7 presents the results of shutdown sites with fuel on-site by year for the 

three different limits of shipments from operating reactor sites in a year. 

Figure 7 shows that varying how many canisters can be shipped from operating reactors in a year 

does not significantly affect the chosen allocation queue. In fact, the number of SRY was 611 for 

all three of the scenarios analyzed. Additionally, the results found that less than five total 

reactors were affected by varying the shipment limit from operating sites, and those were only 

affected by being cleared either one year earlier or later. The takeaway from this portion of the  
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Figure 7: Number of shutdown sites with fuel on-site with various maximum shipment 

rates from operating reactor sites 
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investigation is that how many canisters can ship from operating reactor sites per year is not as 

important as how many canisters can ship from shutdown reactor sites per year. This is expected 

for two reasons: 1. Shutdown sites can ship more canisters per year than operating sites, and 2. 

The number of SRY of a site is only increasing after it shuts down, so any shipments made 

during that time span are usually more important for reducing SRY than shipments that take 

place from a site while it is operating.  

5.1.2 Storage and transportation maximum thermal limits 

This section investigates the implications of varying the maximum storage and transportation 

cask thermal limits. The assumed base scenario values are 32 kW per cask for the storage limit 

and 20 kW per cask for the transportation limit.  

The implications of varying the assumed storage thermal limits were investigated first. In 

addition to the assumed storage thermal limit value of 32 kW per canister, additional assumed 

limits of 28 kW and 36 kW were also investigated. However, modifying the storage cask thermal 

limits to these two values did not affect when any of the investigated reactor sites were cleared. 

This is expected because transportation thermal limits have most, if not all, of the effect on 

whether shipments can leave sites and when the site is ultimately cleared. Because the ultimate 

allocation queue is not affected by modifying the storage cask thermal limit, this will not be 

investigated further.  

The implications of varying the assumed transportation cask thermal limits were also 

investigated. In addition to the assumed transportation thermal limit value of 20 kW per canister, 

additional limits of 15 kW and 25 kW were investigated. Figure 8 presents the results of  

 



72 
 

 

Figure 8: Number of shutdown sites with fuel on-site with various transportation thermal 

limits 
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shutdown sites with fuel on-site by year for the three-different transportation cask thermal limits 

investigated. 

As expected, Figure 8 shows that increasing the assumed transportation cask thermal limit results 

in reactor sites being cleared faster. In fact, increasing the assumed transportation thermal limit 

per canister from 15 kW to 20 kW to 25 kW results in a reduction of SRY of the entire fleet from 

976 to 611 to 489, respectively. This indicates that the inability to ship canisters/casks due to  

them not being under the transportation cask thermal limit is keeping sites open that could 

otherwise be cleared.  

How individual reactor sites are affected by varying the assumed transportation cask heat limit is 

further explored by investigating the deviations in the year that sites are cleared for additional 

scenarios compared to the base scenario where a 20 kW per canister heat limit is assumed. The 

deviation resulting from changing this maximum transportation heat limit to 15 or 25 kW per 

canister is shown in Figure 9.  

The figure shows that some reactor sites are cleared earlier when the assumed transportation heat 

limit is increased to 25 kW; conversely, many reactor sites are cleared later when the 

transportation heat limit is decreased to 15 kW. In fact, the average site is cleared ~1.6 years 

earlier by increasing the transportation heat limit to 25 kW, while the average site is cleared ~5 

years later when the transportation heat limit is reduced to 15 kW.  

It should also be noted that for a smaller number of reactor sites, the opposite behavior is 

observed: either the sites are cleared later when the transportation limit is increased, or the sites 

are cleared earlier when the transportation limit is decreased. In the scenario with an increased 

transportation heat limit, this is the result of more canisters becoming shippable earlier, and thus   
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Figure 9: Deviation in Year of Last Pickup for reactor sites from the base scenario with an 

assumed transportation heat limit of 20 kW compared to the scenarios with transportation 

heat limits of 15 kW and 25 kW 
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creating more canisters that need to ship at sites that are prioritized over the sites in question, and 

thus the sites in question are cleared later. Conversely, in the scenario with a decreased 

transportation heat limit, this is the result of more canisters becoming shippable later, and thus 

resulting in less canisters that need to ship at sites that are prioritized over the sites in question, 

and thus the sites in question end up being cleared earlier. The first situation is somewhat 

common–seven sites are cleared later when the transportation heat limit is increased. The second 

situation is less common–only two sites are cleared earlier when the transportation heat limit is 

increased.  

It should be noted this investigation did not consider other ways of clearing sites faster including 

short-loading canisters when shipments are imminent and/or other optimized canister loading 

strategies. In addition, due to increased technology and competition between canister vendors, 

the general trend has been for storage and transportation thermal limits to increase over time. 

Whether that trend increases in the future is uncertain, but any trend toward higher transportation 

limits should prove beneficial to clearing reactor sites in the future.  

This report assumed that the thermal limits for each canister are the same across all sites. This is 

considered to be a good assumption across the reactor sites to represent average canisters for the 

purposes of exploring the implications of different allocation queues at the system level of the 

entire reactor fleet. However, canister types and vendors vary across all reactor sites. Additional 

future work that would be interesting and valuable would be to combine the detailed work 

canister optimization loading work done by Spencer [26] with the in-depth study of allocation 

queue done in this work. In fact, this future work could potentially show that sites could be 

cleared even sooner with optimized loading patterns.  
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Chapter Six 

 

Results 
 

This chapter presents the results of the TVMV on scenarios which include the entire reactor fleet 

(full-scale analysis). The TVMV full-scale analysis is first explored when using two objectives. 

The allocation results from these scenarios are compared to an allocation developed with the 

only objective to minimize SRY, as well as a manually-developed allocation queue developed by 

a SME. The TVMV full-scale analysis is then explored when considering three objectives. The 

allocation results from this scenario are compared to the scenarios that only consider two 

objectives. Finally, the allocation results when using the newly developed Chebyshev integer 

goal programming to determine allocation strategies for the entire reactor fleet are investigated 

and compared to a scenario only seeking to minimize SRY.  

6.1 Weighted integer goal programming full-scale analysis (two factors) 

To explore the effects of adding weights to the TVMV when using weighted integer 

programming in the development of the allocation queues, the objectives that were developed in 

Chapter 4 and used in Chapter 5 on small-scale scenarios (only eight reactors) are investigated 

on scenarios including the entire current reactor fleet. The implications of the developed 

objectives are best studied on the current situation involving SNF in the U.S., as that is the real-

world situation on which the objectives may potentially be used.   
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6.1.1 Weighted integer goal programming full-scale analysis (two factors: 

minimize SRY and give priority to sites based upon economic 

disadvantage) 

For the purposes of comparison, the scenario is first run with the only objective to minimize 

SRY. The scenario is then run with the objectives of minimizing SRY and giving priority to sites 

based on the economic disadvantage of residents of the county that the reactor is located (with 

50% weight for each objective). Figure 10 compares the number of sites with fuel on-site for 

both the scenario with one objective (minimizing SRY) and the scenario with two objectives 

(minimizing SRY and economic considerations).   

At first glance, the figure shows that adding an objective to give priority to sites based on the 

economic conditions in the county where the site is located does not affect the allocation queue 

or queue ordering significantly. This is also confirmed by the fact that the number of SRY for the 

system found by the TVMV was the same for both scenarios: 611. This shows that in certain 

situations, the additional objective could be considered while still finding an allocation queue 

solution that minimizes the number of SRY of the entire system.  

How individual reactor sites are affected by including an additional objective to give priority to 

reactor sites based on the economic conditions in the county where the site is located is further 

explored by investigating the deviations in the year that sites are cleared for the scenario with  

explored by investigating the deviations in the year that sites are cleared for the scenario with 

two objectives compared to the base scenario that only seeks to minimize the total SRY of the 

system. The deviation resulting from adding the objective about economic conditions is shown in 

Figure 11.  
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Figure 10: Number of shutdown sites with fuel on-site for two scenarios: one with an 

objective only to minimize SRY; and one with objectives to both minimize SRY and 

give priority to sites based on the economic conditions 
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Figure 11: Deviation in Year of Last Pickup from the base scenario (with a sole objective to 

minimize SRY) compared to scenario with two objectives (minimizing SRY and giving 

priority based on economic factors) 
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A few main conclusions are discussed based on the results presented in Figure 11. The first is 

that only seven sites are affected by considering the additional objective of the economic 

conditions around reactor sites, and all but one has their site cleared sooner. One site has its final 

clearing delayed by seven years. That particular site had a low priority in terms of the economic 

considerations objective, as well as approximately 250 canisters to clear off site. The more 

canisters that need to be shipped off-site, the higher likelihood that adding objectives will result 

in the site’s final clearing date being affected. Sites that have canister inventories under 50 are 

unlikely to be affected by considering different objectives, as they can potentially be cleared in 

one year once they are shut down.  

The results when considering this objective suggest that minimizing SRY is a dominant objective 

in this scenario due to the nature of how the two objectives were defined. This is somewhat 

expected since each SRY is scaled between 0 to 1 when considering the economic considerations 

objective in the model as opposed to being assumed to be 0.5 when only minimizing SRY (since 

it is weighted at 50%). Alternative assumed value functions for objectives may yield different 

results. Additionally, the yearly allocation for each site is limited by year (for both operating and 

shutdown sites), thus not allowing significant ‘swapping’ in allocation between sites by year due 

to the limits of how much fuel can be shipped per year on both the site and system level. The 

inclusion of the objective minimizing SRY at a 50% weight in the final value function was found 

to be significant to the result. The second item of note from the figure is that no site shut down 

before 2033 is affected by the addition of the second objective. Meaning, the date that currently 

shut down reactor sites are cleared was not affected by the additional objective.  Another 

potential objective is explored in the next section. The final item of note is that one reactor was 

prioritized first in the ‘economic considerations’ objective due to the poverty rate in the county 
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where the reactor site is located being significantly higher than any other reactor site. As 

expected, this resulted in that reactor site being cleared earlier with the consideration of the 

additional objective involving economic considerations.  

6.1.2 Weighted integer goal programming full-scale analysis (two factors: 

minimize SRY and give priority to sites based upon whether they are 

shutdown, reside in a regulated state, or reside in a deregulated state) 

A comparison is now done with a scenario that includes a different additional objective, again 

minimizing SRY; and additionally, giving priority to sites based on whether the site is shutdown, 

in a state where energy markets are regulated, or in a state where energy markets are deregulated 

(i.e. 50% weight for each objective). As before, this two-objective scenario is also compared 

against the scenario with the only objective to minimize SRY. Figure 12 compares the number of 

sites with fuel on-site for both the scenario with one objective (minimize SRY) and the scenario 

with two objectives (minimizing SRY plus regulatory considerations).   

An interesting result in the scenario when considering the additional objective of sites in 

regulated/deregulated energy markets is that the resulting allocation queues had an increase in 

SRY to 613 from 611 in the scenario that only sought to minimize SRY. This result shows that 

adding additional objectives in addition to minimizing SRY could potentially result in an 

allocation queue that does not minimize SRY on the entire fleet. As was the case in the 

comparison with the objective involving economic considerations, the addition of the objective 

giving priority to sites in states where deregulated energy markets did not result in significant 

changes to the resulting allocation queues on a fleet-wide level.  

How individual reactor sites are affected by including an additional objective to give priority to 

reactor sites based on whether the site is in a state with a deregulated or regulated energy market   
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Figure 12: Number of shutdown sites with fuel on-site for two scenarios: one with 

objective to minimize SRY; and one with objectives to both minimize SRY and give 

priority to sites based on regulatory considerations) 
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is further explored by investigating the deviations in the year that sites are cleared for the 

scenario with two objectives compared to the base scenario that only seeks to minimize the total 

SRY of the system. The deviation resulting from adding the objective about regulatory 

conditions is shown in Figure 13.  

A few notable behaviors were observed when comparing a scenario only seeking to minimize 

SRY and a scenario with the additional objective to give first priority to shutdown sites, then 

second priority to sites in states with deregulated energy markets, and last priority to sites in 

states with regulated energy markets. First, giving top priority to sites that are currently shut 

down reinforced the objective to minimize SRY, and predictably, no sites that are currently shut 

down have the date in which their site is cleared changed. Second, only six reactor sites are 

affected by an additional objective giving priority to sites in deregulated energy markets over 

regulated energy markets, including four sites that are cleared earlier, and two sites cleared later. 

While no site is cleared more than two years earlier due to the added objective, one site is cleared 

six years later due to the added objective. The total cumulative years that the four sites are 

cleared earlier is six, and the total cumulative years the two sites are cleared later is eight, which 

accounts for the increase in total SRY from 611 to 613 for the entire fleet. As expected, the two 

sites that are cleared later reside in states with regulated energy markets, and the four sites 

cleared earlier reside in states with deregulated energy markets.  

Another item to note is that all six reactor sites that were affected are projected to have over 200 

canisters to ship off site (only 16 of the 74 reactor sites in the fleet are projected to have over 200 

canisters), suggesting that sites with larger inventories of canisters are more likely to have the 

year of their final clearing affected by the addition of the objective related to states’ energy 

markets (or more likely, nearly any objective). This follows logically because the higher number   



84 
 

 

Figure 13: Deviation in Year of Last Pickup for reactor sites from the base scenario (with a 

sole objective to minimize SRY) compared to a scenario with two equally-weighted 

objectives (minimizing SRY and giving priority to sites based on whether they are shut 

down, in a state with a deregulated energy market, or in a state with a regulated energy 

market) 
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of canisters needed to be shipped from a site, the more likelihood that ‘swapping’ allocation 

between that site and another site would satisfy the objective to minimize SRY while also 

satisfying the objective to give priority to deregulated reactor sites.  

6.1.3 Comparison to manually-developed allocation queue by SME 

To further illustrate the worth of the TVMV capability of creating allocation queues on-the-fly in 

a systematic way, and to further explore the process that the TVMV undertakes to develop an 

allocation queue for the waste management system, an allocation queue is developed manually 

by a SME of allocation queues and the nuclear waste management system. The SME who 

manually developed the allocation queues has approximately five years of experience in 

performing analysis of the SNF waste management system and around 11 years of experience in 

the nuclear industry.  

The allocation queues developed manually by a SME was created with the same assumptions 

assumed in Section 6.1.1 (two objectives: one to minimize SRY and one to give priority to sites 

based upon the economic conditions of those living near a site). The allocation was developed 

manually in a methodical way, but some simplifying assumptions were made, and these are 

noted below and discussed after the list is presented. The need for the simplifying assumptions 

reinforces the usefulness of having an automated model that utilizes integer programming to 

develop the allocation queue. The manual allocation was developed using the following steps: 

1. To represent the sites in order of ‘minimizing SRY,’ a scenario was modeled in the 

TVMV with unlimited fleet-wide yearly acceptance, but with the yearly shipment limits 

on operating and shutdown sites still enforced.  
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a. Then, the sites are ordered based on what year the sites would be cleared if they 

were all given first priority. 

b. Value functions are assigned from 1 to 0 (1 being highest priority) using a linear 

objective function based on the order the sites would be cleared if they were all 

given first priority. 

2. The previously developed value functions for each site for the objective to give priority to 

sites based upon the economic conditions in the county in which the site is located are 

used as the second objective. 

3. Each objective is given an equal weight of 50%. 

4. A combined value function is calculated for every site and then the sites are re-ordered in 

priority order from #1 to #74.  

5. When each site can clear is determined based on heat limits by looking at the date when a 

site clears in the scenario where the site is given first priority. 

6. Starting with the highest priority site that was determined in Step #4, allocations are 

placed beginning in the year when a site can first clear, and then working backwards in 

time, ensuring the limits per site per year are met based on if the site is operating or 

shutdown.  

a. Note that the year when the last canister was cool enough (in terms of heat) to 

ship was used, but no effort was made to see when each individual canister was 

old enough to ship [simplifying assumption]. 

7. Allocations are continued to be filled working backwards in time until each yearly fleet-

wide allotment is reached (the maximum acceptance rate per year for this scenario is 

assumed to be 225 canisters). 
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8. Once all available allocation spots before the site can possibly be cleared are filled, 

allocations begin to be filled after the year in which the site could be cleared if given first 

priority. 

9. Once allocations are placed, no attempts are made to move them around ‘after-the-fact’ 

between sites in order to reduce SRY [simplifying assumption]. 

The two main simplifying assumptions that were made are detailed in steps 6a) and 9) above. 

The first simplifying assumption was not attempting to compare the date when every individual 

canister at sites becomes shippable. This simplifying assumption does not allow a site to clear 

earlier than it should, but it could potentially allow individual canister shipments to be placed in 

a year before they are actually below the transportation heat limit. This assumption could 

potentially cause other reactor sites to be cleared later than they otherwise would be (due to 

swapping of allocations between sites) compared to the optimal allocation in terms of 

maximization of value to the DM.  

The second simplifying assumption is not attempting to optimize the final allocation by 

‘swapping’ allocations between sites once the allocation was developed initially. Because the 

allocation was developed with clearly defined steps, any ‘swapping’ of allocations after it is 

developed by the SME would be subjective and can only be known to be more optimal by testing 

various changes and their results. Additionally, the SME has no way of knowing whether 

additional modifications to the allocation are even necessary, and thus the quest for a perfect 

allocation would potentially be a boundless effort. The discussion of these simplifying 

assumptions enforces the usefulness and worth of the systematic methods implemented in the 

TVMV.  
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The process of developing the allocation manually also yielded insights into waste management 

system allocation queues. As the allocations were being filled in by going down the list of 

reactor sites in priority order, the years 2036 through 2039 reached their maximum of 225 

canisters allocated per year first due to the high number of shutdowns near those dates. For 

similar reasons 2042-2046 fill up next. Eventually, the yearly fleet-wide allocations for 2034-

2046 filled up. This behavior implies that raising the maximum yearly allocations for certain 

high-demand periods may be advantageous for the waste management system. Note that the 

high-demand periods are mostly due to large amounts of reactor sites shutting down before and 

during that time period. It is also noted that during periods when most of the sites are operating 

(2020s and early 2030s), the fleet-wide yearly allocation limits do not fill up until the bottom ¼ 

of sites (when listed in priority order) are reached. In fact, the last time period before 2060 to fill 

up its fleet-wide yearly allocation is 2022-2028. Figure 14 compares the number of sites with 

fuel on-site for both the scenario modeled with the TVMV and the one modeled manually by a 

SME.   

The results from the figure clearly show that the TVMV found an allocation queue that 

minimized the SRY (611 total SRY) of the fleet better than the allocation queue developed by a 

SME (649 total SRY). The main time period in which sites are cleared faster in the allocation 

developed by the TVMV compared to the queue developed by a SME is in the 2050s. The 

differences in when sites are cleared between the allocation developed by the TVMV and the 

manually-developed allocation show that while a manually-developed allocation can get close to 

arriving at the optimal result, the systematic integer programming methods present in the TVMV 

arrive at a closer-to-optimal solution.  

The implications to the fleet-wide result by manually developing an allocation queue has been  
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Figure 14: Number of shutdown sites with fuel on-site for two scenarios: one modeled 

with the TVMV, and one developed manually by a SME 
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investigated. How individual reactor sites are affected by developing an allocation queue using 

the TVMV versus a SME developing an allocation queue is now explored. The deviation from 

the allocation queue developed by the TVMV resulting from developing the allocation queue 

manually is shown in Figure 15.  

While four reactor sites are cleared earlier (none more than four years earlier) when developing 

an allocation queue manually, 12 reactor sites are cleared later, with one site being cleared nine 

years later. As expected, most of the sites cleared later are lower priority sites based on the 

priority order that was developed manually. In fact, 10 of the 12 sites cleared later were in the 

bottom 1/3 of priority site order. While the overall impact of developing an allocation manually 

may be small as a percentage on a fleet-wide level, the handful of sites (in this case 12) that have 

their final pickup delayed would benefit from the allocation queue developed by the TVMV 

model compared to an allocation developed by a SME. A systematic method of determining the 

allocation queue will also likely increase the confidence that utilities and other stakeholders have 

in the DM charged with determining the order in which SNF is picked up from reactor sites.  

6.2 Weighted integer goal programming full-scale analysis (three objectives) 

This section explores the results when considering three objectives in the TVMV. The three 

objectives are minimizing SRY, plus the two objectives previously investigated in Sections 6.1.1 

and 6.1.2. These two additional objectives include an objective to give priority to sites based on 

the economic conditions in the country in which they are located, plus an objective that gives 

first priority to sites that are shut down, then prioritizes sites located in states with deregulated 

energy markets, then gives last priority to sites located in states with regulated energy markets. 

While three objectives are the maximum number of objectives investigated in this report, the  
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Figure 15: Deviation in Year of Last Pickup for reactor sites from a scenario modeled in 

the TVMV compared to a scenario developed by a SME  
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TVMV was developed such that it can consider as many objectives for which the DM provides 

value functions and weights.  

It should be noted that a comparison to a manually-developed allocation is not made when 

dealing with three objectives, as this is believed to be too complicated for a SME to be able to 

develop because considering three factors on-the-fly would be very difficult to be done by hand. 

In theory, the steps described in Section 6.1.3 could be completed considering three objectives 

instead of two, but the results did not suggest this type of exercise would prove beneficial given 

that the TVMV does things automatically, quickly, and systematically. These things further 

illustrate the usefulness of the developed model’s ability to consider multiple competing 

objectives at one time. The following two sections compare the allocation queue developed when 

using three objectives to the allocations queues developed with two objectives that were 

previously investigated in Sections 6.1.1 and 6.1.2.  

6.2.1 Comparison to allocation developed with two factors: to minimize SRY 

and economic considerations 

An allocation was developed by the TVMV considering the three objectives listed in Section 6.2, 

with each objective given a weight of 33.3%. This allocation resulted in a total fleet-wide SRY 

value of 614. Figure 16 compares the number of sites with fuel on-site for both the scenario 

modeled three objectives and the one modeled with two objectives, one to minimize SRY, and 

one to give priority based on economic considerations.   

The addition of the objective relating to sites residing in regulated/deregulated states increased 

the total SRY across all reactor sites to 614 from 611. Figure 16 shows that besides slight 

changes during the 2050s, the number of sites with fuel on-site between the two compared 

scenarios is very similar. This points to the fleet-wide results not changing significantly with the   
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Figure 16: Number of shutdown sites with fuel on-site for two scenarios: one considering 

three objectives, and one considering two objectives (minimizing SRY and economic 

considerations)   
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addition of the third objective of giving priority to sites based upon the energy market in the state 

in which they reside.  

How individual reactor sites are affected by the addition of a third objective is now investigated. 

The deviation resulting from adding the objective about the energy market in which each site 

resides is shown in Figure 17.  

The first thing one notices from the figure is that most of the sites do not have the year in which 

their site is ultimately cleared affected by the addition of the third objective. In fact, only three of 

the 74 sites are affected. Two sites are cleared earlier, and one is cleared later. Not surprisingly, 

the two sites cleared earlier are in deregulated states and the site that is cleared later is in a 

regulated state due to deregulated states being given priority over regulated states. This further 

reinforces that while the model does give priority to some sites based on how energy markets are 

regulated in the state in which they reside, this objective is not dominant compared to the 

objective to minimize SRY across the entire fleet. Additionally, it should be noted that the added 

objective is only given ~33% weight, compared to the ~67% weight applied from objectives 

already present in the allocation queue it is being compared against.   

6.2.2 Comparison to allocations developed with two factors: to minimize SRY 

and deregulated/regulated energy markets 

An allocation was developed by the TVMV considering the three objectives listed in Section 6.2, 

with each objective given a weight of 33.3%. This allocation resulted in a total fleet-wide SRY 

value of 614. Figure 18 compares the number of sites with fuel on-site for both the scenario 

modeled with three objectives and the one modeled with two objectives (minimizing SRY and 

regulatory considerations).   

The addition of the objective relating to economic considerations around each reactor site   
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Figure 17: Deviation in Year of Last Pickup for reactor sites from a scenario modeled with 

two objectives (minimizing SRY and economic considerations) compared to a scenario 

modeled with three objectives  
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Figure 18: Number of shutdown sites with fuel on-site for two scenarios: one considering 

three objectives, and one considering two objectives (minimizing SRY and regulatory 

considerations)   
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increased the total SRY of the entire fleet from 613 to 614. Figure 18 shows that besides slight 

changes to the number of shutdown sites with fuel on-site during approximately the years 2052 

to 2065, the number of sites by year with fuel on-site between the two compared scenarios is 

very similar. This points to the fleet-wide results not changing significantly with the addition of 

the third objective of giving priority to sites based on economic considerations.  

How individual reactor sites are affected by the addition of a third objective is now investigated. 

The deviation resulting from adding the objective about economic considerations is shown in 

Figure 19.  

The first thing one notices from the figure is that most of the sites do not have the year in which 

their site is ultimately cleared affected by the addition of the third objective. In fact, only four of 

the 74 sites are affected, three positively and one negatively in terms of how quickly their site is 

cleared. As expected, the three sites that are cleared earlier have relatively higher value functions 

for the economic considerations objective, while the site that is delayed by 12 years has a low 

value function for the economic considerations objective. It is noted again that it follows 

logically that only four sites are affected by the addition of the economic considerations 

objective, as its weight is only given ~33%, compared to the weights of ~67% weight applied 

from objectives already present in the allocation queue that it is being compared against. 

6.3 Highly Optimistic versus Highly Pessimistic Assumptions (entire reactor 

fleet) 

The weighted integer goal programming method has thus far only been explored using the ‘base’ 

scenario assumptions. To investigate the implications of using multiple objectives to develop 

allocation queues using a wider variety of assumptions, two additional sets of assumptions are   



98 
 

 

Figure 19: Deviation in Year of Last Pickup for reactor sites from a scenario modeled with 

two objectives (minimizing SRY and regulatory considerations) compared to a scenario 

modeled with three objectives  
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now considered: a set of highly optimistic assumptions and a set of highly pessimistic 

assumptions. Optimistic and pessimistic are defined in terms of how quickly sites are assumed to 

be cleared given the chosen assumptions. These assumptions were developed based on the trends 

observed in the parametric portion of Chapter 5 that investigated varying various model 

assumptions for the reactor fleet. The highly optimistic set of assumptions are that canister 

acceptance begins in 2021, the fleet-wide acceptance rate is 337 canisters per year, the maximum 

number of canisters that can be accepted from a shutdown site in a year is 75, and the 

transportation cask thermal limit is 25 kW. The highly pessimistic set of assumptions are that 

canister acceptance begins in 2051, the fleet-wide acceptance rate is 112 canisters per year, the 

maximum number of canisters that can be accepted from a shutdown site in a year is 25, and the 

transportation cask thermal limit is 15 kW. It should be noted that other parameters investigated 

in Chapter 5 (namely, the maximum number of canisters that can be accepted from an operating 

site in a year and the storage cask thermal limit) were not varied for this investigation as the 

parametric study found that modifying these two assumptions does not significantly affect the 

final allocation queue that is developed.  

Two scenarios (one with the only objective to minimize SRY, and the other with the three 

objectives investigated in Section 6.2) were compared using the highly optimistic set of 

assumptions. Both scenarios resulted in a fleet-wide number of SRY of 417. Two major 

conclusions can be reached based on the results from this comparison. One, given the assumed 

optimistic set of assumptions, the total number of SRY across the entire reactor fleet can be kept 

to a minimum (417 SRY) compared to the scenario using base assumptions (611 SRY). This 

value of 417 SRY is reduced to 143 if SRY are only counted once each reactor site is shut down 

for five years (which is the assumed time it would take to clear the pool of SNF). Second, if SNF 
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is removed from sites in a reasonable time-period, considering additional objectives (in addition 

to minimizing SRY) results in no change to the allocation queue outcome that is determined 

compared to the allocation that only seeks to minimize SRY. This makes intuitive sense because 

the scenario with the highly optimistic set of assumptions results in reactor sites having their 

sites cleared very close to as soon as possible. In other words, backlogs of sites waiting for their 

canisters to be picked up from their sites are not very prevalent in this scenario.  

Figure 20 compares the number of sites with fuel on-site scenarios modeled with the highly 

optimistic, base, and highly pessimistic sets of assumptions. The plot shows that sites are cleared 

very quickly when using the highly optimistic assumptions (417 SRY), a little slower for the 

base scenario (611 SRY), and extremely slow for the scenario using the highly pessimistic set of 

assumptions (3531 SRY). Most of the SRY in this plot for the scenario with the highly optimistic 

set of assumptions are waiting for canisters to be able to meet transportation cask thermal limits.  

Scenarios with either 1 or 3 objectives were compared using the highly pessimistic set of 

assumptions. The scenario that only seeks to minimize the number of SRY across the entire 

reactor fleet resulted in a total SRY value summed across the entire reactor fleet of 3,531. The 

scenario that considered three objectives resulted in a total SRY value summed across the entire 

reactor fleet of 3,632. Figure 21 compares the number of sites with fuel on-site for both the 

scenarios modeled with the highly pessimistic set of assumptions.   

This figure illustrates two main points. One, the scenario that uses the pessimistic set of 

assumptions severely delays acceptance from reactor sites. This is consistent with the calculated 

total fleet-wide number of SRY from the scenarios that are both over 3,500. Two, it shows that 

the number of sites shut down with fuel is affected by considering three objectives when  



101 
 

 

Figure 20: Number of shutdown sites with fuel on-site for the scenarios modeled using the 

highly optimistic, base, or highly pessimistic sets of assumptions 
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Figure 21: Number of shutdown sites with fuel on-site for the two scenarios (one with 1 

objective and one with 3 objectives) modeled using the highly pessimistic set of assumptions 
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compared against the scenario with one objective. This difference of 101 SRY between the two 

scenarios would amount to ~ $1B in additional costs if each SRY is assumed to cost ~$10M. 

How individual reactor sites are affected by using three objectives compared to using one 

objective is now explored, given the pessimistic set of assumptions. The deviation between the 

two scenarios is shown in Figure 22. The first observation from the Figure 22 is that most the 

sites have the year in which they are ultimately cleared changed when using three objectives 

instead of one objective. In fact, 59 of the 74 sites have the date in which their site is cleared 

modified. Also, over half of the 59 sites that have their final clearing changed are affected by 

over 10 years. Specifically, one site is cleared 36 years later, and one site is cleared 29 years 

earlier when considering additional objectives. As expected, the site that is cleared 36 years later 

is in a regulated state and has a relatively low priority value function (for the economic 

considerations objective). The site that is cleared 29 years later is located in a deregulated state 

and for the economic considerations objective, has a relatively higher priority value function. 

These results clearly show that as pickups from reactor sites are delayed (due to later acceptance, 

smaller acceptance rates per year, or for other reasons), the likelihood increases that considering 

objectives besides minimizing SRY will result in a modified allocation queue. The implication 

from this result is clear: as acceptance from reactor sites is delayed and, additionally, if the 

acceptance rate from reactor sites is not great enough to catch up to the backlog of SNF stored at 

reactor sites, then the consideration of the DM’s objectives in the development of an allocation 

queue becomes more and more imperative. In other words, consideration of additional objectives 

has greater consequence overall to the number of SRY at individual sites and the cumulative 

number of SRY across the entire reactor fleet, and thus the at-reactor cost difference associated 

with keeping ISFSIs open longer or closing them earlier.     
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Figure 22: Deviation in Year of Last Pickup for reactor sites from scenarios modeled with 

one and three objectives, assuming pessimistic assumptions 
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6.4 Chebyshev integer goal programming full-scale analysis  

This section investigates the allocation queues that were developed using Chebyshev integer goal 

programming on scenarios including the entire reactor fleet. The method was described, its 

development documented in Section 2.3.3, and the developed method was demonstrated on a 

small-scale scenario in Section 5.1. To recap, the Chebyshev integer goal programming method 

seeks to minimize the maximum deviation from any one reactor site’s desired SRY value and the 

final calculated SRY value. The desired SRY value is the number of SRY each reactor site 

would have if it was given first priority to be cleared among reactor sites, given the other 

previously defined constraints of the problem (most notably, the limit on the number of canisters 

that can be shipped from individual operating and shutdown reactor sites in a year).  

The allocation queues compared in this section both assume the base scenario assumptions that 

are defined in Section 5.3. One allocation queue is developed to minimize SRY using weighted 

integer goal programming (the objective of minimizing SRY is given a weight of 1), and the 

other allocation queue is developed using Chebyshev integer goal programming with the 

objective to minimize the maximum deviation from any one reactor site’s desired SRY value and 

the final, calculated SRY value by the TVMV. Figure 23 compares the number of sites with fuel 

on-site for both the scenario modeled to minimize SRY and the scenario modeled with the 

Chebyshev integer goal programming method to minimize the maximum deviation from any one 

reactor site’s desired SRY value and the calculated SRY value.  

The weighted integer programming scenario allocation queue resulted in 611 total SRY for the 

entire fleet, while the allocation queue developed by using Chebyshev integer goal programming 

resulted in a 636 total SRY for the entire reactor fleet. The figure shows that during nearly all the   
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Figure 23: Number of shutdown sites with fuel on-site for two scenarios: one minimizing 

SRY and one using the Chebyshev integer goal programming method   
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years between approximately 2021 and 2063, the scenario that seeks to minimize SRY has less 

sites with fuel on-site than the scenario using Chebyshev integer goal programming. The results 

indicate that the Chebyshev integer goal programming scenario does not minimize SRY as well 

as the traditional weighted integer programming method in the TVMV on a fleet-wide level. 

How individual reactor sites are affected when using Chebyshev integer goal programming is 

now explored. The deviation resulting from using Chebyshev integer goal programming instead 

of weighted integer programming is shown in Figure 24. 

The figure shows that many sites (25) are cleared later when developing the allocation queue 

with Chebyshev integer goal programming (compared to the scenario using weighted integer 

programming), while only one site is cleared earlier. This result shows that while the Chebyshev 

integer goal programming method minimizes the deviation from a desired SRY on an individual 

reactor site level, it does not result in an allocation that clears sites as soon as an allocation that 

minimizes SRY. For 25 of the 74 reactor sites, this results in a delayed final reactor clearing 

compared to the integer programming scenario. In the context of developing an allocation queue, 

the Chebyshev integer goal programming method does not result in an allocation queue with as 

few SRY as an allocation queue produced by integer programming with the objective of 

minimizing SRY. However, the Chebyshev integer goal programming method can be used to 

confirm that the maximum deviation from the desired SRY value for any one reactor is 

minimized when using weighted integer goal programming to minimize the total number of SRY 

across the entire reactor fleet.  

It is also noteworthy that the maximum deviation between the desired SRY values and the actual 

SRY values was found to be nine years for any site for both the allocation developed by   
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Figure 24: Deviation in Year of Last Pickup for reactor sites from a scenario modeled to 

minimize SRY compared to a scenario modeled using Chebyshev integer goal 

programming 
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Chebyshev methods and the allocation developed using integer goal programming to minimize 

the SRY of the entire fleet. 

In other words, no site was cleared more than nine years after the earliest possible year that the 

site could be cleared using either method. This shows that for this particular scenario, the 

Chebyshev integer goal programming method was not necessary to confirm that the maximum 

deviation from any one reactor site’s desired SRY value was minimized. Figure 25 shows the 

deviation from the desired SRY values and the actual SRY values of the scenario determined by 

Chebyshev integer goal programming.  

The results from the figure show that 31 of the 74 sites are cleared in the earliest possible year 

that their site could be cleared. The other 43 sites are delayed by up to nine years after the 

earliest possible year they could be cleared if their site was given first priority. No significant 

trend is noticed in terms of how long sites are cleared after the first year in which they could 

possibly be cleared in terms of the year of each site’s final discharge from the site. Twenty-four 

sites are cleared more than two years after the first potential year in which they could be cleared. 

Most of these sites have over 200 canisters to clear. 

While the developed Chebyshev integer goal programming method functions as intended, the 

resulting allocation queues from minimizing the ‘maximum’ deviation of the desired SRY value 

from the calculated SRY value does not optimize the entire fleet’s total SRY value. This is 

expected since the method only seeks to minimize the maximum deviation between the desired 

and actual SRY value at individual reactor sites, not the cumulative fleet-wide SRY value. 
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Figure 25: Deviation in the desired SRY value for each reactor site with the SRY value 

determined using Chebyshev integer goal programming 
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Chapter Seven 

 
Conclusions 

7.1 Summary 

A model has been developed with the ability to consider any the DM’s preferences when 

developing an optimal allocation queue (in terms of maximizing value to the DM).  Unlike 

traditional multi-objective evaluations where the allocation queue is developed manually, and the 

results compared after analyzing each scenario separately, the model was developed such that 

‘value’ is optimized ‘on-the-fly’ as the allocation is developed. The model functions as intended, 

and a few take-away points are summarized in the next section. A Chebyshev integer goal 

programming method was also developed.  

Additionally, major assumptions that affect the TVMV were explored parametrically to 

investigate the implications of different system assumptions. These parameters include the year 

in which acceptance from reactor sites begins, the maximum fleet-wide acceptance rate per year, 

the maximum number of canisters that can be accepted from operating or shutdown reactors in 

each year, and the assumed storage and transportation cask thermal limits. This parametric study 

yielded major take-away points that are summarized in the next section.   

7.2 Key Takeaway Points 

Some key takeaway points observed during this research include: 

• If objectives, weights, and value functions are provided by the DM charged with  
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determining the allocation queue, then the developed model can use weighted integer 

programming to recommend the allocation queue that would maximize the objectives of 

the DM; 

• The need for the TVMV to consider the preferences of the DM and to develop allocation 

queues in general has become more important (and is expected to continue to become 

more important as long as reactors are shutting down) the more time that passes before 

fuel acceptance begins at reactor sites due to increases in the number of reactor sites that 

are shut down and fuel inventories. In fact, if acceptance begins soon, the yearly fleet-

wide acceptance rate per year ends up being higher than 225 canisters per year, the 

maximum number of canisters that can be picked up from shutdown sites per year is 

higher than 50 canisters per year, and transportation cask thermal limits continue to 

increase (being optimistic), the need for additional objectives other than minimizing SRY 

decreases. On the other hand, if acceptance is delayed and the acceptance rate per year is 

lower than 225 canisters per year, the need for additional objectives other than 

minimizing SRY increases. To summarize, the more sites that wish to ship at the same 

time, the more important that considering alternative objectives is expected to become;  

• Transportation thermal limits, when fuel acceptance from reactor sites begins, and the 

maximum number of canisters that can be shipped from shutdown sites per year were 

found to be the most significant assumptions in terms of the effect on the final developed 

allocation queue; 

• As expected, the earlier fuel acceptance begins, the lower number of SRY of the entire 

reactor fleet. In addition, the longer that fuel acceptance is delayed (up until the point 
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when all currently operating reactors shut down), the greater the rate of increase of SRY 

per year for each that acceptance is delayed; 

• As transportation cask thermal limits increase, the total SRY of the entire fleet decreases;  

• As the limit on the number of canisters that can be shipped from shutdown reactor sites 

increases, the total SRY of the entire fleet decreases;  

• Storage cask thermal limits and the maximum number of canisters that can be shipped 

from individual operating sites in a year were not found to be significant to the final 

allocation queue that was calculated by the TVMV; 

• The developed Chebyshev integer goal programming method functions as intended, but 

the resulting allocation queues from minimizing the ‘maximum’ deviation of the desired 

SRY value from the calculated SRY value does not optimize the entire fleet’s SRY value. 

This is expected since it is only minimizing the maximum deviation from a desired SRY 

value for each individual reactor site, not the cumulative fleet-wide SRY value.  

The main takeaways from the parametric study completed in this work are summarized in this 

paragraph. Acceptance from reactor sites was planned to start using an OFF allocation in 1998. It 

is now approximately 20 years later, and it does not appear that acceptance is close to beginning. 

The longer that acceptance is delayed, the more that the fleet-wide acceptance rate of canisters 

needs to be increased if there is any hope at clearing shut down reactor sites of SNF in a 

reasonable time period after they shut down (i.e. catch up with the backlog).   

7.3 Future Work 

One way to improve the developed framework would be to combine the TVMV with an 

advanced canister loading algorithm, such as the one which has been developed as a part of a 
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Texas A&M dissertation [26]. The canister loading algorithm used in this work is simple 

compared to the advanced canister loading method developed by Spencer [26]. Another potential 

future area of research would be to develop an advanced algorithm to predict how utilities might 

swap their allocations with other utilities to minimize the number of shipping campaigns that 

need to be staffed.  

One major thing to consider when considering the results given in this work is that the allocation 

queue and the waste management system, in general, are a fluid situation that change as time 

passes. Therefore, the conclusions and insights were drawn from this work may not be applicable 

5, 10, or 25 years from now. Therefore, it would be beneficial to repeat these types of analyses 

with updated fuel projections, potential additional early reactor shutdowns, and evolving 

stakeholders’ preferences closer to when the allocation queue will be needed (when acceptance 

from reactor sites is close to beginning). It should be noted that when the OFF allocation queue 

was selected in the 1980s, SNF was expected to be picked up starting in 1998.  Similar to the 

OFF allocation queue not being what would probably be chosen if the decision was made in 

2018, decisions about how the allocation queue is ultimately developed should be revisited when 

fuel acceptance is close to beginning, as well as every 5-10 years when the waste management 

system is operating.  
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Appendix A 

TVM for Minimizing SRY 

 

This Appendix is included to serve as a user guide and background information. It gives 

background information about the starting point of the model developed by Petersen for 

minimizing SRY, which is known as the TVM. This Appendix summarizes Chapter 3 of 

Petersen’s dissertation [1].  

Tractable Validation Model 

The tractable validation model (TVM) simulates removing SNF from reactor sites to demonstrate 

the effectiveness of different algorithms in reducing the total number of SRY incurred by the 

entire reactor fleet. The goal of the TVM is to validate the implementation of the optimization 

algorithms on a problem space small enough such that the true optimum is analytically known 

via exploration of all permutations (via a combinatorial algorithm). By validating the 

optimization algorithms against a space where the solution can be analytically known, they can 

then be applied to larger, more representative systems where the number of permutations is too 

large for a combinatorial algorithm to effectively process. This provides a true optimal solution 

as a baseline for the other algorithms to achieve. 

The TVM receives inputs specifying when reactors discharge assemblies, as well as the burnup 

and enrichment of an assembly. Other inputs give data for canisters and directions for selecting a 
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canister to load based on the pool and year. The TVM utilizes Java version 8.91 and follows an 

object-oriented programming approach. 

Object-Oriented Programming 

The TVM utilizes object-oriented programming to replicate similar objects and give certain 

objects ownership of others. A reactor owns the pools and the ISFSIs that are on site. The pools 

own the assemblies contained within its walls just as canisters own the assemblies packaged 

inside. The hierarchal approach is a fundamental concept of the TVM, because the simulation 

can manipulate and track objects to determine the fitness of a particular solution. The fitness 

variables become objects, which help determine the optimal solution for the scenario. Further 

details about object-oriented programming can be found in Chapter 3 of Petersen’s dissertation 

[1].  

TVM Inputs 

The TVM requires five data sheets in order to run: the ‘Fuel Projection Table,’ the ‘BWR Heat 

Table,’ the ‘PWR Heat Table,’ the ‘Canister Info Table,’ and the ‘Canister Matching Table.’ 

Each one of these tables must be formatted correctly in order to run the optimization model. 

Further details about TVM inputs can be found in Chapter 3 of Petersen’s dissertation [1]. 

TVM Objects 

The TVM utilizes an assembly, canister, pool, ISFSI, reactor, Allocate_Year_ISFSI, reactor site, 

and removal object. These objects contain different attributes and defining characteristics set by 

the object’s template. Further details about TVM objects can be found in Chapter 3 of Petersen’s 

dissertation [1]. 
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TVM Methods 

A method is similar to a function in that the model calls the method and a task is performed. In 

many instances, there is an input and an output to the method, but both input and output may be 

void. In object-oriented programming, methods that are contained within an object’s class are 

“encapsulated.” About half of the methods in the TVM are classified as encapsulated methods. 

They interact with an object in order to change its state. Further details about TVM methods can 

be found in Chapter 3 of Petersen’s dissertation [1]. 

TVM Variables 

The TVM has many variables that operate as either static or dynamic. The static variables are 

limits used to curtail the number of canisters from a reactor site or total number of canisters 

shipped in a year. The dynamic variables change by year or as a new scenario is complete. 

Further details about TVM variables can be found in Chapter 3 of Petersen’s dissertation [1]. 
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Appendix B 

TVMV Description of New Capabilities 

This Appendix gives information about the improvements made to the TVM to transform it into 

the TVMV. The two major new capabilities in the TVMV are the capability to consider an 

infinite number of objectives when developing allocation queues and the ability to perform 

Chebyshev integer programming to develop allocation queues. The TVM was originally 

designed to only consider one objective (minimizing SRY) when developing allocation queues, 

while the TVMV can now consider an infinite number of objectives to develop allocation 

queues. The TVM originally only used traditional integer programming methods to develop 

allocation queues, while the TVMV adds the capability to use Chebyshev integer programming 

to optimize allocation queues. It  

Java/Gurobi 

Both the TVM and TVMV utilize Java [27] and the commercial optimization code Gurobi [28] 

to develop allocation queues. All improvements to the TVM to make it into the TVMV were 

completed using the Java and Gurobi code created by Petersen [1]. 

TVMV Variables 

Additional static variables that were added to the TVM to facilitate the consideration of 

objectives others than minimizing SRY when developing allocation queues include the 

associated weights of each of the objectives provided by the DM and value functions for each 

objective for each reactor site. Each objective that is presented in-depth in Section 4.4 has a 
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value function that is defined in the TVMV. The TVMV can consider an infinite number of 

objectives if objectives, weights, and value functions are defined in the TVMV. Additionally, 

static variables added to the TVMV for use when using the Chebyshev integer goal programming 

method include the ‘desired’ SRY values for each reactor site.  

An additional dynamic variable that was added to the TVM to make this possible is ‘lambda.’ 

Lambda is defined mathematically in the TVMV in the Chebyshev integer programming section 

below.  

TVMV weighted integer programming methods 

Recall that value functions have been normalized to a linear function between zero and one. To 

consider multiple objectives, the TVMV creates new variables for each objective that assign a 

matrix of value functions for each reactor site by year. As previously mentioned in Section 2.3.2, 

multi-criteria decision making principles are used in the creation of weighted integer goal 

programming problems to maximum value to decision makers. Because the TVM already was 

capable of minimizing SRY, a method was created that uses the value functions for each reactor 

site by year to transform each SRY to effectively be greater if the value function is high, and 

effectively be lower if the value function is low. By doing this, the TVMV minimizes the 

transformed SRY to maximize value to the DM by seeking to remove SNF from sites that have a 

higher value of cumulative transformed SRY. Thus, reactors that have a higher priority value 

function are prioritized since their SRY are greater values, and the total transformed SRY is 

being minimized.  

Equation B.1 below was previously introduced in Section 2.3.2 
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𝐌𝐚𝐱 𝐕 =  𝐌𝐢𝐧 𝐚 = ∑ ∑ 𝒘𝟏 ∗ (𝟎. 𝟓 ∗ 𝑺𝑹𝒀𝒊𝒓) + 𝒘𝟐 ∗ (𝑺𝑹𝒀𝒐𝒃𝒋𝟐) + ⋯

𝒊∈𝑻𝒓∈𝑹

+ 𝒘𝒏 ∗ (𝑺𝑹𝒀𝒐𝒃𝒋𝒏)  (𝑩. 𝟏) 

Equation B.1 was implemented in Gurobi by adding additional terms for each objective that is 

being considered to the Gurobi linear expression that is minimized. The weights are also defined 

in the TVMV model as a static variable.  Each objective that is considered requires an additional 

Gurobi term to be created to be included in the Gurobi linear expression.  

TVMV weighted integer programming methods 

The original integer programming construction in the TVM, as presented in Petersen’s 

dissertation [1], is listed below:  

    𝒎𝒊𝒏                                                               ∑ ∑ 𝑺𝑹𝒀𝒊𝒓

𝒊∈𝑻𝒓∈𝑹

                                                           (𝑩. 𝟐) 

     𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐                                                ∑ 𝒄𝒂𝒏𝒔𝒊𝒓

𝒓∈𝑹

≤ 𝒚𝒆𝒂𝒓𝒍𝒚 𝒍𝒊𝒎𝒊𝒕𝒊     𝒇𝒐𝒓 𝒊 ∈ 𝑻        (𝑩. 𝟑) 

𝒂𝒔𝒔𝒆𝒎𝒓 × 𝑺𝑹𝒀𝒊𝒓 + ∑ (𝒄𝒔𝒊𝒓 ∗ 𝒄𝒂𝒏𝒔𝒊𝒓)

𝒊∈𝒊−𝟏

≥ 𝑺𝑫𝒊𝒓 × 𝒂𝒔𝒔𝒆𝒎𝒓         𝒇𝒐𝒓 𝒊 ∈ 𝑻   &  𝒓 ∈ 𝑹  (𝑩. 𝟒) 

                                                                             ∑  𝒄𝒔𝒊𝒓 × 𝒄𝒂𝒏𝒔𝒊𝒓

𝒊∈𝑻

≥ 𝒂𝒔𝒔𝒆𝒎𝒓      𝒇𝒐𝒓 𝒓 ∈ 𝑹   (𝑩. 𝟓) 

       𝒄𝒔𝒊𝒓 × 𝒄𝒂𝒏𝒔𝒊𝒓 + ∑ (𝒄𝒔𝒊𝒓 × 𝒄𝒂𝒏𝒔𝒊𝒓)

𝒊∈𝒊−𝟏

≤ 𝒓𝒆𝒂𝒄𝒕𝒐𝒓 𝒍𝒊𝒎𝒊𝒕𝒊𝒓      𝒇𝒐𝒓 𝒊 ∈ 𝑻   &  𝒓 ∈ 𝑹  (𝑩. 𝟔) 

                                                             𝟎 ≤ 𝒄𝒂𝒏𝒊𝒔𝒕𝒆𝒓𝒔𝒊𝒓 ≤ 𝒔𝒉𝒖𝒕𝒅𝒐𝒘𝒏𝒍𝒊𝒎𝒊𝒕𝒓     𝒊𝒏𝒕𝒆𝒈𝒓𝒂𝒍  (𝑩. 𝟕) 

                                                                        𝟎 ≤ 𝑺𝑹𝒀𝒊𝒓 ≤ 𝟏                                     𝒊𝒏𝒕𝒆𝒈𝒓𝒂𝒍   (𝑩. 𝟖) 
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Where the variables listed in the above equations are defined below. 

• SRY: Shutdown Reactor Years 

• cans: number of canisters shipped 

• cs: size of the canister shipped (number of assemblies inside the can) 

• assem: total number of assemblies at a reactor 

• SD: shutdown binary variable 0 if not shutdown 1 if shutdown 

• reactor limit in assemblies 

• yearly limit in canister 

• r:reactor 

• R: Reactors 

• i:year 

• T: Time Horizon 

 

For the Chebyshev integer programming formulation in the TVMV, everything above holds 

except that equation B.1 becomes equations B.8 and B.9 below:  

 𝒎𝒊𝒏             𝒎𝒂𝒙(𝒍𝒂𝒎𝒃𝒅𝒂𝒓)                                            𝒓 = 𝟏, 𝟐, … , 𝟕𝟒        (𝑩. 𝟗) 

        𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐                      𝑺𝑹𝒀𝒊𝒓 − 𝑺𝑹𝒀_𝒅𝒆𝒔𝒊𝒓𝒆𝒅𝒊𝒓 ≤ 𝒍𝒂𝒎𝒃𝒅𝒂𝒓     𝒓 = 𝟏, 𝟐, … , 𝟕𝟒    (𝑩. 𝟏𝟎) 

Where the new variables listed in the above equations are defined below. 

• SRY_desired: the number of SRY that is ‘desired’ by the DM (in this dissertation, 

this was defined as the number of SRY if a given reactor was given 1st priority) 
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• Lambda: difference between site’s number of SRY and the desired value; what is 

being minimized by the Chebyshev integer programming model 

 

Equation B.9 minimizes the maximum value of lambda across all reactor sites.  Equation B.10 

specifies that lambda for each reactor sites is the difference between the site’s number of SRY 

and the desired value of SRY given as an assumption. 

Equation B.9 was implemented in the TVMV by creating an entirely new term in the Gurobi 

linear expression that is minimized. Equation B.10 was implemented by creating 74 new 

constraints, one for each reactor site.  
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