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Abstract

The pattern, magnitude, and frequency of hillslope erosion and deposition are spatially varied

under the influence of micro-topography and channel geometry. This research investigates the

interrelationships between erosion/deposition, micro-topography, and channel connectivity

on a hillslope in Loudon, Tennessee using the centimeter (cm) level temporal Digital

Elevation Models collected using laser scanning. This research addressed (1) the effect

of spatial resolution on the erosion/deposition quantification, and rill delineation; (2) the

influences of micro-topographic factors (e.g. slope, roughness, aspect) on erosion and

deposition; (3) the relationship between the structural connectivity — depressions and

confluence of rills — and the sedimentological connectivity. I conducted (1) visual and

quantitative assessments for the erosion and deposition, and the revised automated proximity

and conformity analysis for the rill network; (2) quantile regression for micro-topographic

factors using segmented rill basins; and (3) cross-correlation analysis using erosion and

deposition series along the channels.

Overall, rills are sedimentologically more dynamic than the interrill areas. A larger

grid size reduces the detectable changes in both areal and volumetric quantities, and also

decreases the total length and number of rills. The offset between delineated rills and the

reference increases with larger grid sizes. A larger rill basin has higher erosion and deposition

with the magnitude of erosion greater than deposition. The slope has a positive influence on

erosion and a negative one on deposition; roughness has a positive influence on deposition

and a negative one on erosion. Areas that are more north-facing experience higher erosion

and lower deposition. Rill length explains 46% of the variability for erosion and 24% for

deposition. The depressions are associated with higher erosion in the downslope direction.
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The correlations between the erosion and the confluence are positive; the correlation between

the deposition and the sink is positive. Overall, the influence of structural connectivity on the

sedimentological connectivity is within 25 cm in both upstream and downstream directions.

This research contributes to the understanding in how the sediment movement on hillslopes

is governed by topographic variations and channel connectivity, and future work may explore

hillslope channels at broader geographical and temporal scales.
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Introduction
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1.1 Overview of this doctoral dissertation research

This doctoral dissertation investigates the inter-relationships between the dynamics of

sediment movement and the spatial variations of topographic factors as well as channel

connectivity on a rilled hillslope. The sediment movement in this study is defined as

the pattern of sediment redistribution both on a planar dimension (spatial pattern) and

a longitudinal dimension (sedimentological connectivity). Sedimentological connectivity,

defined by Bracken and Croke (2007) as the continuity of sediment transport pathways

from source to a sink, describes the coupling between erosion rates and sediment yield

and has been used to link the spatially varied sediment transfer mechanism to the channel

morphology (Hooke, 2003), runoff transport capacity (Bracken and Croke, 2007), topography

(de Vente et al., 2006), vegetation (Sandercock and Hooke, 2011), and abrupt events such

as landslides (de Vente et al., 2006). Previous studies in the spatial pattern of sediment

redistribution and sedimentological connectivity have focused mainly on the watershed scale,

emphasizing fluvial channels and their connection to the hillslopes (Cavalli et al., 2013; Detty

and McGuire, 2010). In contrast, limited investigations have been made on hillslope channels

such as rills and gullies (Ohde, 2011; Sandercock and Hooke, 2011).

The relatively limitedness of studies on the sedimentological connectivity of hillslope

channels is a consequence of the lack of means to accurately quantify and monitor sediment

movement within small hillslope channels (rill and ephemeral gullies). The magnitude of

the sediment movement in hillslope channels is usually much smaller than that of stream

channels, making it difficult to detect landform changes in a short period. With the advance

of technologies in remote sensing, the ability to measure topographic change has reached a

higher level of accuracy and resolution, allowing for more accurate and precise detection and

quantification of sediment movement for hillslope channels. Linking sediment yield, channel

change, and topographic variation will provide useful insight into the physical processes that

govern sediment yield and channel development on hillslopes and improve our understanding

in the practices of land management and soil erosion control.
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This research investigates rill erosion, channel connectivity, and sediment dynamics

on a hillslope in the East Tennessee. Repeated field surveys were conducted using a

terrestrial laser scanner (TLS), and temporal digital elevation models (DEMs) were generated

to quantify sediment movement within the channels and the sediment yield from the

hillslope. The spatial pattern of sediment movement was used to investigate sedimentological

connectivity and channel development and their relationships with micro-topographic factors

and channel connectivity.

1.2 Background

1.2.1 Rill erosion on hillslopes

Water-induced soil erosion is one of the most common Earth-surface processes driven by

raindrop impact, surface overflow, and mass wasting (Knighton, 1998; Selby, 1982). It

accounts for > 50% of the total soil loss (can reach up to 95% under certain conditions) on

the hillslopes (Van Asch, 1983; Morgan et al., 1987). The loss of soil reduces agricultural

productivity, causes sedimentation in reservoirs, and contributes to water pollution in

streams. Governed by climatic events and geologic conditions, water erosion can also be

influenced by other environmental factors including vegetation, topography, land use, and

human activities (Wischmeier and Smith, 1978).

Rills are micro-channels on hillslopes that are initially formed during rainfall events.

Rills are typically 0.05 – 0.3 m wide and up to 0.3 m deep (Knighton, 1998), and can be as

shallow as < 0.02 m in depth with a cross-sectional area as small as 3 cm2 (Colborne and

Staines, 1985). The zones between the rills are called the inter-rill areas, where the erosion is

dominated by raindrop impact and unconcentrated sheet wash (Kirkby, 1980; Meyer et al.,

1975). Once the flow become concentrated, rills emerge as the venue for collecting sediment

detached from inter-rill areas, and transporting the mixture of runoff and sediment removed

from rill walls and floors (Foster and Meyer, 1975). Rills are often ephemeral features and

can be obliterated by agricultural practices or sudden sediment supply from inter-rill areas

or rill sidewalls (Bull and Kirkby, 1997; Kirkby and Bracken, 2009).
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During rainfall events, surface soil particles are directly impacted and some of them

are detached by the kinetic energy of raindrops. Once the rainfall intensity becomes greater

than the soil infiltration rate, the overland flow emerges, concentrates, and travels downslope

(Horton, 1933, 1945). The concentrated flow, with substantially greater detachment power,

scours the surface and further entrenches the channels. For rills, the development and growth

are governed by the equilibrium between the detachment potential, the transport capacity

of the flow, and the sediment load (Haan et al., 1994). If the shear stress is higher than

the tractive force, rills incise and develop horizontally, eventually grow to an equilibrium

width (Foster, 1986). The magnitude of erosion caused by shear stress is controlled by many

factors including soil salinity, soil moisture content, shear strength, and the particle size

distribution.

Other processes governing the propagation and promotion of channels and within-

channel erosion include headwall cutting and sidewall sloughing. The headwall is a

discontinuity in the channel profile, representing the transition from channelized flow that

are relatively shallow to much narrower and deeper flow (Haan et al., 1994; Harvey et al.,

1985). Headwall cutting allows the channel head to slowly migrate upstream, generating

a large amount of sediment for the channel. Sidewall sloughing occurs as a consequence

of the combined effect of gravitational forces and flow hydraulics. The geometry of the

channel cross-section and soil properties including soil moisture content, bulk density, and

particle cohesion, govern the resistance to sidewall failure. For rills, sidewall failures occur

due to the gravitational forces imposing on an overhang initially created by undercutting

(Toy et al., 2002). Hirschi and Barfield (1988) modeled the stability of the sidewall based on

the concept of a critical slope, and suggested that the sidewall starts to slough off to form

slope that is more stable. During the process, the soil mass that is detached gets deposited

into the channel once a critical slope gradient is reached. Crouch (1987) also found that the

undercutting process can be sensitive to the slope of the sidewall, resulting in varied erosion

rates.

Concentrated flow in channels constantly erode channel bottoms and undercut sidewalls,

reducing the stability of the sidewalls (Foster, 1986). Episodic failure events on channel
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sidewalls occur when the gravitational stress on the sidewalls exceeds a certain threshold

value, and these events drastically increase the sediment supply. Other natural processes

such as freeze-thaw and animal activities also accelerate the destabilization of channels.

Govers and Poesen (1988) suggested that the sidewall failures within rills contribute to the

majority of the erosion, especially when deep-seated failures are present. The headwall and

sidewall failures sometimes account for > 90% of the sediment yield on hillslopes (Betts

et al., 2003). The failures can reshape the channel geometry and alter the flow hydraulics.

The sidewall failures gradually consume interrill areas and widen the channels, and once the

channel width exceeds a threshold (Nearing et al., 1989), channel erosion will be stopped

unless an unsteady flow is present (Toy et al., 2002).

1.2.2 Classic approaches

Soil erosion is commonly measured in weight and volume of eroded sediment from a certain

area. For small areas, experimental plots can be established either in the field or in the lab,

and the runoff and sediment can be collected at the outlet during an observational period

(Morgan et al., 1987; Stroosnijder, 2005). This method requires controlled conditions for

erosion-related factors (e.g. vegetation, topography, soil type, and rainfall), but measuring

the runoff and sediment can be difficult for large areas. Another method is to manually

measure the geomorphic changes such as cross-sectional areas and rill lengths at sampling

points using micro-topographic profilers, tapes, or rulers (Govers, 1987, 1991a; Govers and

Poesen, 1988). One widely used method is to survey the volume of the gullies using cross-

sectional profilers at space intervals measured in the fields (Auzet et al., 1995; Casaĺı et al.,

1999; Poesen et al., 2003). Erosion pins are also used to assess the erosion within the gullies

by measuring the elevation changes along the cross-sections (Oostwoud Wijdenes and Bryan,

2001; Vandekerckhove et al., 2001).

The attempts to expand the erosion rates measured from experimental plots to larger

landscape produced unsatisfactory results (Boardman, 2006). Previous literature found that

compared to the measurements made in agricultural fields, data collected in the experimental

plots generally overestimate the erosion values and show more skewed distribution (Evans,
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1995; Govers, 1991b). Evans (1995) suggested that this discrepancy results from the limited

sampled area of plots; also, plots failed to account for the complex topography which

contributes to spatially varied erosion rates and local deposition. However, in the natural

landscape, the transformation from rills to gullies are often observed (Casaĺı et al., 2006;

Desmet and Govers, 1997; Gao, 2013; Knighton, 1998; Selby, 1982), making it necessary to

bridge the gap with a method which produces comparable measurements.

Another factor that cannot be assessed using the “sediment collection” method is the

spatial redistribution of material, especially the material deposited (Boardman, 2006). In

natural landscape, deposition tends to occur at the foot of hillslopes when a sudden decrease

in slope gradient coincides with increased drainage area (Nachtergaele et al., 2002; Poesen

et al., 2003, 1998), in front of vegetation patches (Meyer et al., 1995; Steegen et al., 2000;

Takken et al., 1999), at areas with a sudden increase in surface roughness (Papanicolaou

et al., 2001), and in local depressions within the landscape (Poesen et al., 2003). Therefore,

amount of sediment leaving a drainage area is always less than that detached, as a part

of the sediment deposited before reaching the outlet (Morgan et al., 1987). The “sediment

collection” method measures “net loss”, the difference between the detached sediment and

the sediment deposited. Questions such as where the material moves to, where the materials

deposit, and what caused the deposition, are not answered. It is possible to trace the

movement of sediment in the field by recording erosion and deposition using tracer substance

including paint (Kirkby and Kirkby, 1974), 137Cs (Walling and Quine, 1990; Walling et al.,

1990), and mineral magnetics (Coutts et al., 1968; De Ploey, 1969). However, these methods

are expensive and time-consuming, and the assumptions on which some of the methods are

based is still questionable (Dalgleish and Foster, 1996; Foster et al., 1994).

The methods based on measuring rill or gully morphology are usually time-consuming

and labor-intensive. Also, the elevation information collected using erosion pins or cross-

sections is dependent upon whether the measured cross section is representative or not

(Casaĺı et al., 2015, 2006). Other studies on soil erosion also suggested that both natural

characteristics and human errors associated with measurement are accountable for a great

degree of unexplained variability (Nearing, 2000; Nearing et al., 1989; Todisco et al.,
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2012). Further, the data collected using erosion pins are susceptible to contamination from

disturbance of various sources, and the researcher always bear the risk of theft and vandalism

(Haigh, 1977). The disruptive nature of the methods brings further complication into the

attempts to link erosion and channel geometry with sediment yield.

1.2.3 Recent opportunities

The main concern preventing the use of elevation data for erosion studies has been the

limited ability to account for uncertainty, and the lack of a method to provide spatial

and temporal resolution on a proper scale without introducing the measurer disturbance

(Govers, 1991b). In recent years, the ability for more accurate measurement has advanced

with the improved accuracy and finer resolution brought by new technologies, including

advanced photogrammetry, unmanned aerial system, and laser scanning. These technologies

are comparatively efficient and are capable to produce high-resolution topography with three-

dimensional features (Everaerts, 2008; Heritage and Large, 2009; Rieke-Zapp and Nearing,

2005; Shan and Toth, 2008). Laser scanning – also known as LiDAR (Light Detection and

Ranging) – allows for rapid acquisition of high-resolution topographic data (Lefsky et al.,

2002). As the lens of the scanner is able to rotate both horizontally and vertically, the

scanner can generate a three-dimensional virtual environment (Jensen, 2009). Originally

designed for surveying and engineering applications, laser scanning has shown its capability

in various environment-related studies (Heritage and Large, 2009).

TLS is suitable for small scale (rill to gully) soil erosion research, and existing

applications of TLS in past studies demonstrated its advantages (Schneider et al., 2012;

Vinci et al., 2015). First, TLS units are able to produce DEMs with spatial resolution at the

centimeter or sub-centimeter level, and research has successfully produced protocols for TLS

in geomorphological applications, and suggested a reliable horizontal accuracy of ± 1 cm,

and a vertical accuracy of approximately ± 1.5 cm (Eltner and Baumgart, 2015; Heritage

and Hetherington, 2007). The three dimensionality of TLS further allows for geomorphic

change detection for features that are not suitable for airborne and space-borne sensors (for

example, cliffs (Gulyaev and Buckeridge, 2004), steep hillslopes (Wawrzyniec et al., 2007),
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and channel bank undercut (Chu-Agor et al., 2008)). TLS also allows the measurement to

be performed at a distance. Consequently, the safety of the researcher is more secured and

the absence of direct human impact minimizes the error from human disturbance. Therefore,

TLS is widely used in studies of various types of dynamic environments, including cliff (Lague

et al., 2013; Olsen et al., 2009) and landslide (Bitelli et al., 2004; Jaboyedoff et al., 2012;

Jones, 2006). This feature of TLS also allows the measurement to be performed for areas with

limited accessibility. For example, Hancock et al. (2008) used a TLS to survey a hillslope at

Rix’s Creek Coal Mine in Singleton, Australia across a pond that prevents access for field

measurement.

Development in the field of geomatics provides useful tools to detect features and

quantify the geomorphologic processes. Progress has been made to quantify the uncertainty

associated with the TLS-generated elevation data on a cell-to-cell basis, which is affected by

factors including roughness, point density, and slope (Brasington et al., 2012; Lane et al.,

2003; Wheaton, 2008). Such improvement allows for a more accurate way to quantitatively

map the erosion and deposition pattern associated with various processes (Prosdocimi et al.,

2015; Tarolli and Dalla Fontana, 2009). Brodu and Lague (2012) developed a method to

use multi-scale 3-d properties for classification of geomorphic features. Lague et al. (2013)

developed a method that calculates the difference between temporal TLS dataset in a spatial

perspective at various scales and found it useful in dynamic environment with spatially varied

erosion and deposition.

The quantitative analysis of erosional landscapes is dependent upon successful definition,

extraction, and calculation of important geomorphic factors (Bishop et al., 2012; James

et al., 2012; Tarolli, 2014). Studies have successfully used fine resolution elevation data to

extract stream networks (Charrier and Li, 2012; Passalacqua et al., 2010), landslide scars

(Baldo et al., 2009; Glenn et al., 2006; Jaboyedoff et al., 2012; Tarolli et al., 2012), gullies

(Perroy et al., 2010), and channel heads (Passalacqua et al., 2012; Tarolli and Dalla Fontana,

2008, 2009). High-resolution elevation data have exhibited great potential in advancing our

knowledge in the physical processes (Bremer and Sass, 2012; Chen et al., 2006; Tarolli,

2014; Vaze and Teng, 2007). In the meantime, the limitations of high-resolution topographic
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data are discussed in several studies (Barber and Shortridge, 2005; Charrier and Li, 2012;

Tarolli, 2014; Yang et al., 2014; Zhang et al., 2008). Conceptual frameworks of quantitative

geomorphometric analyses suggested that the morphology of drainage basins and channels

can be characterized using parameters calculated based on elevation data (Horton, 1932,

1945; Moore et al., 1991). A good example is the study of gullies on hillslopes. Gullies initiate

once the magnitude and duration of concentrated surface runoff exceed a threshold value,

causing substantial magnitude of sediment loss. This thresholding nature of gully initiation

is considered a transition between diffusive processes and convergent channel processes

(Tarboton et al., 1991; Tarolli et al., 2009). The direct link is established between this

value and the geomorphic thresholds, as a function of slope steepness and the contributing

area (Horton, 1945; Montgomery and Foufoula-Georgiou, 1993; Poesen et al., 1998; Vandaele

et al., 1996).

The elevation data with high-resolution and accuracy produced using TLS can be

used to derive certain geomorphic factors and allows for linking these factors to erosion

and deposition on the hillslope. For example, surface roughness, or the micro-topographic

variation of the elevation, plays a critical role in affecting flow path formation, flow erosion,

infiltration rates, surface depositional storage, and hydraulic resistance (Abrahams and

Parsons, 1991; Cogo et al., 1984; Darboux and Huang, 2005; Gómez and Nearing, 2005).

Various soil erosion models, including the Revised Universal Soil Loss Equation (RUSLE)

(Renard et al., 1997), and the Water Erosion Prediction Project (WEPP) (Nearing et al.,

1989), include a surface roughness factor in the model framework. Surface roughness was

measured using profilers in the past, but the profiler has limitations as it only covers a

narrow band along the cross section, and is of limited field portability (Bertuzzi et al., 1990;

Huang and Bradford, 1990; McCarroll and Nesje, 1996). Until recently, the use of TLS has

enabled research to assess the impact of roughness from a spatial perspective, and improved

the prediction of the erosion based on this topographic information (Eitel et al., 2011; Lague

et al., 2013; Nield et al., 2013; Sankey et al., 2012).
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1.2.4 Sedimentological connectivity in hillslope channels

The sedimentological connectivity is defined as “the transfer of sediment from one location

to another and the potential for any particle to move through the system” (Bracken

and Croke, 2007; Hooke, 2003), and determines whether the erosion and sediment yield

within an upland drainage system are coupled or not. The sedimentological connectivity,

influenced by the connectivity of both topography and hydrology, varies for different

drainage basins (Michaelides and Wainwright, 2002; Morgan et al., 1987; Walling, 1999).

The sedimentological connectivity is often conceptualized as the “sediment delivery ratio”

in literatures (Haan et al., 1994; Walling, 1983; Williams and Berndt, 1976). In many

studies, a “black box” approach was commonly adopted for the “sediment delivery” concept,

with limited understanding of the spatial and temporal patterns of sediment routing.

Although some approaches such as the sediment tracing (Walling and Quine, 1990; Wilkinson

et al., 2013) help understand this topic, current knowledge regarding the sedimentological

connectivity is still limited due to the complex interaction between various factors, including

climate, soil, vegetation, and topography (Bracken and Croke, 2007).

The development in hi-resolution remote sensing technology allows for the examination

of the topic of sedimentological connectivity at finer scales. One opportunity is the improved

ability to detect, monitor, quantify, and assess fine-scale (plot or even smaller) geomorphic

changes. The classic “sediment collection” method relies on the “coupling” assumption, that

the higher erosion rates on upland areas always translate to similar, or at least comparable

level of increase in sediment yield within fluvial channels (Harvey, 2001). The presumed

connectivity between different geomorphologic components guarantees the transmission of

energy and material within the system. In other situations when erosion rate and sediment

yield are not coupled, the sediment yield is often over-estimated, suggesting that sediment

cannot transport throughout the system without energy loss, but was partially deposited at

a certain intermediate stage (Boardman, 2006). Harvey (2001) suggested that this type of

non-coupled, or “buffered” systems are featured with spatially restricted local changes.
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The current knowledge of sedimentological connectivity is mainly derived at the scale

of watersheds, which is a synthesized system of both hillslopes and fluvial channel systems

(Bracken and Croke, 2007; Cavalli et al., 2013; Detty and McGuire, 2010; Hooke, 2003; López-

Vicente et al., 2015; Vigiak et al., 2012). In these studies, the hillslopes were often considered

as a unit delivering sediment into the fluvial channels, but the connectivity of hillslope

channels was not given much attention, possibly due to a lack of accurate methods to measure

and track the sediment movement. A few studies have applied the concept of connectivity to

upland channels, and the majority of these literatures focused on the gullies (de Vente et al.,

2006; Sandercock and Hooke, 2011), with only a few investigations on the sedimentological

connectivity for a rilled hillslope (Huang et al., 1996; Penuela Fernandez et al., 2014).

Literatures proposed two types of connectivity: topographic/structural connectivity that

describes the continuity of the terrain, and sedimentological connectivity that describes how

well sediment particles are routed throughout the system (Fryirs, 2013; Brierley et al., 2006).

The knowledge of the sedimentological connectivity within hillslope channels, especially

rills, is still lacking. Further work is also necessary to examine the influence of structural

connectivity on the sedimentological connectivity. Experiments for rill formation and

development studies are often conceptualized as a scenario where rills emerge on a freshly

engineered hillslope with uniform surface geometry (usually either in a field plot or an

experimental plot). These experiments emphasize sediment yield at the early phase of

hillslope channel development when rills emerge and grow, until the geometry of the cross-

sections is somewhat stabilized. Only a few studies investigated how the erosion rate and

sediment yield change after the locations of the rills are defined (Kavvas and Govindaraju,

1992). However, studies suggest that rills are negative-feedback or self-stabilizing systems

that the emergence of new rills results in a cumulative effect of uniform erosion across a

hillslope (Bull and Kirkby, 1997). Also, both lab-based and field-based experimental studies

have demonstrated that the erosion rate and sediment delivery on the hillslope surface are

significantly affected by the presence of rills (Kavvas and Govindaraju, 1992; Meyer et al.,

1975). Similar to fluvial channels, the coupling of the hillslope channels is governed by the

balance between the sediment load and the transport capacity. Some of the factors affecting

the coupling, such as channel connectivity, the temporal variation of surface runoff, and the
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abrupt increase in sediment supply due to episodical events such as sidewall failures also

apply to the hillslope channels, although the effects are likely to be scale-dependent. Thus,

understanding the sedimentological connectivity, and how the influences of different factors

differ at various scales is critical for a better knowledge of the physical processes driven

hillslope erosion, sediment yield, and channel evolution.

1.3 Research objectives

The overall goal of this dissertation research is to assess the spatial variation of the

sedimentological redistribution within a rilled hillslope by analyzing the impact of micro-

topographic factors and structural connectivity on the sedimentological connectivity. The

central objectives of this study include:

i To examine the effect of DEM resolution on the quantification of erosion and deposition.

The measurements of erosion and deposition based on DEMs are scale-dependent, and

quantifying the effect of DEM resolution on these measurements provide useful guidance

for future studies.

ii To identify micro-topographic factors that control the dynamics of erosion and deposition.

Understanding the roles of different factors on erosion and deposition improve the

knowledge in the mechanisms of fine-scale sediment movement.

iii To assess the spatial variation of sedimentological connectivity and how structural

connectivity affect the variation. This research investigates the correlation between the

structural connectivity and the sedimentological connectivity, and examines the spatial

extent of such relationships.

This dissertation research is helpful for revealing the relationship between sedimentolog-

ical connectivity and topography, channel geometry, and precipitation. The research aims

to test the following hypotheses:

Hypothesis 1 DEM-based measurements of sediment erosion, deposition, and summary

metrics of delineated channels decrease with the increased DEM grid size.
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Hypothesis 2 The amount of erosion is positively related to slope, aspect, contributing

area, and the channel density; within-channel deposition is related positively to

roughness but negatively to the contributing area.

Hypothesis 3 The structural (dis)connectivity, including depressions and channel conflu-

ence, controls the sedimentological connectivity — depressions lead to local deposition

and confluences of rills result in higher erosion.

1.4 Study area

The study site (35◦37’33”N, 84◦13’00”W, Figure 1.1) is an engineered hillslope located on the

terraces of the Little Tennessee River that contributes to the Fort Loudoun Lake Watershed

in East Tennessee. This area has a Humid Subtropical climate (Cfa in the Köppen climate

classification) with hot summers, mild winters, and year-round precipitation. The frequent

rainfall events interact with the local geology and topography, causing intensive soil erosion

throughout the state, impairing the agricultural productivity and fragmenting the landscape

(Barnhardt, 1988; Dotterweich et al., 2014; Harden and Mathews, 2000). One hillslope

with well-developed rill networks is selected to observe the evolution of a rilled landscape.

Located in natural settings with limited human disturbance, the site suffered intensive soil

loss, and is still affected by the erosion. No physical boundaries were installed, therefore

the erodible materials are unlikely to be exhausted and long-term observation of erosion is

possible (Boix-Fayos et al., 2006).

The annual precipitation in the study area is around 1300 mm, and the annual

temperature is around 15◦C according to US Climate Data (http://www.usclimatedata.

com/). The study site is located in the Southern Limestone/Dolomite Valleys and Low

Rolling Hills sub-ecoregion, a region composed predominantly of shale. The slope is around

20 m long and was initially created by post-construction land abandonment, set at a ratio

of 2:1 (horizontal: vertical). As Google Earth historic images suggest, the site has been

exposed as a bare surface since at least 2007. Although vegetation strips were installed at

the foot of the hillslope to control sediment delivery, the hillslope surface has been free of
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vegetation and is characterized by well-developed rill networks formed in 2007 according to

historical images in Google Earth. The bed material in our study site is shale.

1.5 Methods

1.5.1 Data acquisition

This research relies on the successful acquisition and processing of fine-resolution (∼ 1 cm)

temporal DEMs. I used a FARO Focus3D X 330 laser scanner which has a 360◦ horizontal

and 300◦ vertical scanning view, and a ranging accuracy of ± 2 mm at 50 m according to the

manufacturer’s specifications. The scanner uses a class 1 laser (wavelength: 1550 nm) and

is able to acquire three-dimensional features within 330 meters at a rate of 976000 pulses

per second. In field surveys, I mount the scanner on a tripod with dual-axis compensation

function activated. All field surveys are performed during daytime with clear-sky condition,

and at least two days after any prior precipitation event. I repeated the field survey every

few months, and for each survey, at least 3 scans at different locations across the site are

performed to minimize occlusion caused by surface roughness or uncertainty introduced by

the positioning of TLS. The number of scans depends on the complexity and the extent

of the site, but the scan locations are selected at approximate uniform distribution, and I

try to re-occupy the same scan location for every field survey. I used 5 spherical reference

targets (ATS Scan Reference System) of a diameter of 139 mm for intra-survey registration.

I did not use the targets for geo-referencing between time-series surveys because it would be

difficult to re-locate the targets at the same position every time in dynamic environments

(Lague et al., 2013; Schürch et al., 2011). The scanning procedure started with a full 360

scan at a low resolution (∼ 5 cm at 50 m) followed by scans only on the area of interest at

a much higher resolution (∼ 1 cm at 50 m). The locations of each scan and each spherical

targets were recorded using a GeoExplorer 6000 Series GeoXHTM handheld differential GPS

(dGPS) that has a location accuracy of less than 1 cm.

Climate data were collected as daily records and propagated in accordance with the

interval between any two consecutive field surveys. The data were obtained from the
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US Climate Data (http://www.usclimatedata.com/). The US Climate Data offers daily

precipitation and temperature dataset, and the station at the Lenoir City is approximately

28 km away from our study site.

1.5.2 Data processing

Registration and geo-referencing were performed using the FARO SCENE software (https:

//www.faro.com/products/product-design/faro-scene/). I conducted the intra-survey reg-

istration using a target-based method. The location of all scans and reference targets

recorded by the dGPS were input by the user, and the software uses an automated

procedure to register the scans on a target-to-target basis. The between-survey geo-

referencing was performed using the GPS records and the user manually aligns the scans

using features with regular geometry (e.g. buildings). Once scans were well-aligned,

they were exported as point cloud files in binary format. I used the method proposed

by Brodu and Lague (2012) to classify and separate vegetation from the terrain surface

using CloudCompare(http://www.cloudcompare.org/), a free software specially developed

for processing and analyzing point cloud files. To produce the DEM raster using the point

cloud files, a bilinear interpolation was used, as this method is not computing-intensive,

and less sensitive to randomness and errors associated with the dataset compared to other

methods (Haile and Rientjes, 2005; Wang et al., 2015). As the extents of the study areas in

this research were all within 20 m × 20 m, a local Cartesian projection was used, as it is

generally used for large-scale mapping purposes without much consideration of the curvature

of the earth (Kennedy and Kopp, 2002).

1.5.3 Data analyses

The analyses of the data were performed in accordance with the three separate tasks:
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Task 1. To evaluate the effect of spatial resolution on the analyses

I used different grid size for the mapping of erosion and deposition, and quantification of

the sediment yield, to examine how spatial resolution affects the propagation of sediment

budget from both an areal and volumetric perspective. I used multiple methods to extract

channel networks, and compare the sensitivity to DEM grid size of different models. The

DEM of the finest resolution was used as the reference. The analyses of sensitivity to

resolution are not only based on a numerical basis, and also on spatial patterns. For the

extraction of channel systems (rills in this research), I compared multiple methods, including

morphology-based methods (Horn, 1981; Roth and La Barbera, 1997; Tarolli et al., 2012),

and quantity-based methods (Broscoe, 1959; Tarboton et al., 1991). The channel systems

extracted using different DEMs were compared to the reference using the Revised Automated

Proximity and Conformity Analysis method (Li et al., 2008; Napieralski et al., 2006). This

method is suitable for our purpose as it was originally designed for quantitatively compare

the offset between linear features.

Task 2. To examine how topographic factors affect the dynamics of erosion and deposition

This research further examines the influence of different factors on the erosion and deposition

events after the frequency and the magnitude of erosion and deposition are quantified using

the DEM of Difference (DoD) method. The study area is divided according to drainage divide

and contributing area into segments of rill basins, and the erosion and deposition within each

segment can be quantified. The topographic factors including slope, area, contributing area,

are be calculated using ArcGIS 10.4.

Statistical methods were used to investigate the relationship between erosion/deposition

and topographic indices including slope, aspect, contributing area and potential between-

variable high correlation, and channel density. This research used the group k-fold cross

validation method that is able to handle spatial auto-correlation, and the quantile regression

to quantitatively assess the relationship of these topographic factors with the erosion and
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deposition. The analyses also included the determination of relative importance between

various variables.

Task 3. To assess the influence of structural connectivity on the spatial variation of

sedimentological connectivity

I used the DEM of Difference (DoD) to quantify the amount of sediment that was eroded and

deposited in the channels (Knapen et al., 2007). The time-series of the DEMs produced were

imported to ArcGIS 10.4 and the Geomorphic Change Detection package (Wheaton et al.,

2010) was used for the propagation of uncertainties. The spatial distribution of erosion and

deposition hotspots within the study area were mapped, and the volume of sediment change

was quantified. The sediment yield was calculated as the net sediment loss, or the difference

between erosion and deposition. The sediment delivery ratio was calculated as the ratio of

eroded volume to the sediment yield.

The channels were delineated at our study site using the Arc Hydro Tools in ArcGIS 10.4

(Maidment, 2002). I extracted the longitudinal profiles of major rill channels. The channels

were segmented along the profile, and the local depressions within the study area and the

confluence of channels was used to quantify the structural connectivity of the channels. The

cross-correlation between the structural and sedimentological connectivity was examined.

I picked several locations along the channel to measure the change of the cross-sections

and used visual analysis on the change of the cross-sectional area to determine whether

the channels were widening and whether it’s deepening. Through comparison between the

temporal variations of the cross-sections of channels, the trend of channel change along the

rill profile can be determined.

1.6 Dissertation outline

This dissertation is organized based on the manuscript format, with chapters 2 – 4 as three

individual manuscripts targeted for different academic journals.
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Chapter 2 focuses on the effect of spatial resolution on the erosion/deposition monitoring

and quantification on hillslopes. This chapter discusses the effect of spatial resolution in the

study of erosion and deposition on hillslopes, as well as the delineation of channel features.

Chapter 3 focuses on the impact of micro-topographic variations on erosion and

deposition by identifying representative topographic indices that best predict erosion and

deposition within the hillslope. This chapter aims to quantify erosion and deposition within

a hillslope, identify the important micro-topographic factors that influence the erosion and

deposition, and predict erosion and deposition values in our study site using the quantile

regression model.

Chapter 4 aims to examine the relationship between the local depressions, rill confluence,

and sedimentological connectivity. I also investigated the spatial extent of such influences,

to reveal the scale of the impact of topographic (dis)connectivity on sedimentological

connectivity.

Chapter 5 summarizes the major findings of this research, and presents major

conclusions derived from Chapter 2 – 4. I also discussed potential topics that might be

of interest for future work.

Exemplary Python scripts associated with this research are provided in Appendices.
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Gómez, J. A. and Nearing, M. A. (2005). Runoff and sediment losses from rough and smooth
soil surfaces in a laboratory experiment. Catena, 59(3):253–266.

Govers, G. (1987). Initiation of motion in overland flow. Sedimentology, 34(6):1157–1164.

Govers, G. (1991a). Rill erosion on arable land in Central Belgium: Rates, controls and
predictability. Catena, 18(2):133–155.

Govers, G. (1991b). Time-dependency of runoff velocity and erosion the effect of the initial
soil moisture profile. Earth Surface Processes and Landforms, 16(8):713–729.

Govers, G. and Poesen, J. (1988). Assessment of the interrill and rill contributions to total
soil loss from an upland field plot. Geomorphology, 1(4):343–354.

Gulyaev, S. A. and Buckeridge, J. S. (2004). Terrestrial methods for monitoring cliff erosion
in an urban environment. Journal of Coastal Research, pages 871–878.

Haan, C. T., Barfield, B. J., and Hayes, J. C. (1994). Design Hydrology and Sedimentology
for Small Catchments. Academic Press, London.

Haigh, M. J. (1977). The use of erosion pins in the study of slope evolution. British
Geomorphological Research Group Technical Bulletin, 18:31–49.

Haile, A. T. and Rientjes, T. H. M. (2005). Effects of LiDAR DEM resolution in flood
modelling: a model sensitivity study for the city of Tegucigalpa, Honduras. In ISPRS
WG III/3, III/4, volume 36, pages 168–173, Enshede, the Netherlands.

Hancock, G. R., Crawter, D., Fityus, S. G., Chandler, J., and Wells, T. (2008). The
measurement and modelling of rill erosion at angle of repose slopes in mine spoil. Earth
Surface Processes and Landforms, 33(7):1006–1020.

Harden, C. P. and Mathews, L. (2000). Rainfall response of degraded soil following
reforestation in the Copper Basin, Tennessee, USA. Environmental Management,
26(2):163–174.

22



Harvey, A. M. (2001). Coupling between hillslopes and channels in upland fluvial systems:
implications for landscape sensitivity, illustrated from the Howgill Fells, northwest
England. Catena, 42(2):225–250.

Harvey, M. D., Watson, C. C., and Schumm, S. A. (1985). Gully erosion. Technical report,
Denver, USA.

Heritage, G. and Hetherington, D. (2007). Towards a protocol for laser scanning in fluvial
geomorphology. Earth Surface Processes and Landforms, 32(1):66–74.

Heritage, G. and Large, A. (2009). Laser Scanning for the Environmental Sciences. John
Wiley & Sons, London.

Hirschi, M. C. and Barfield, B. J. (1988). KYERMO – A Physically Based Research Erosion
Model Part I. Model Development. Transactions of the ASAE, 31(3):804–813.

Hooke, J. (2003). Coarse sediment connectivity in river channel systems: a conceptual
framework and methodology. Geomorphology, 56(1):79–94.

Horn, B. K. P. (1981). Hill shading and the reflectance map. Proceedings of the IEEE,
69(1):14–47.

Horton, R. E. (1932). Drainage-basin characteristics. Eos, Transactions American
Geophysical Union, 13(1):350–361.

Horton, R. E. (1933). The role of infiltration in the hydrologic cycle. Eos, Transactions
American Geophysical Union, 14(1):446–460.

Horton, R. E. (1945). Erosional development of streams and their drainage basins;
hydrophysical approach to quantitative morphology. Geological society of America
bulletin, 56(3):275–370.

Huang, C.-h. and Bradford, J. M. (1990). Portable laser scanner for measuring soil surface
roughness. Soil Science Society of America Journal, 54(5):1402–1406.

Huang, C.-h., Laflen, J. M., and Bradford, J. M. (1996). Evaluation of the detachment-
transport coupling concept in the WEPP rill erosion equation. Soil Science Society of
America Journal, 60(3):734–739.

Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M.-H., Loye, A., Metzger, R., and
Pedrazzini, A. (2012). Use of LIDAR in landslide investigations: a review. Natural
hazards, 61(1):5–28.

James, L. A., Hodgson, M. E., Ghoshal, S., and Latiolais, M. M. (2012). Geomorphic
change detection using historic maps and DEM differencing: The temporal dimension
of geospatial analysis. Geomorphology, 137(1):181–198.

Jensen, J. R. (2009). Remote sensing of the environment: An earth resource perspective.
Prentice-Hall Inc., New York, New York, USA.

23



Jones, L. D. (2006). Monitoring landslides in hazardous terrain using terrestrial LiDAR: an
example from Montserrat. Quarterly journal of engineering geology and hydrogeology,
39(4):371–373.

Kavvas, M. L. and Govindaraju, R. S. (1992). Hydrodynamic averaging of overland flow and
soil erosion over rilled hillslopes. In Erosion, debris flows and environment in mountain
regions, number 209, pages 101–111, Chengdu, China. IAHS Publ.

Kennedy, M. and Kopp, S. (2002). Understanding map projections. ESRI.

Kirkby, A. and Kirkby, M. J. (1974). Surface wash at the semi-arid break in slope. Zeitschrift
fuer Geomorphologie, Supplement Volumes., 21:1521–2176.

Kirkby, M. J. (1980). Modelling water erosion processes. John Wiley & Sons, Chichester,
UK.

Kirkby, M. J. and Bracken, L. J. (2009). Gully processes and gully dynamics. Earth Surface
Processes and Landforms, 34(14):1841–1851.

Knapen, A., Poesen, J., and De Baets, S. (2007). Seasonal variations in soil erosion resistance
during concentrated flow for a loess-derived soil under two contrasting tillage practices.
Soil and Tillage Research, 94(2):425–440.

Knighton, D. (1998). Fluvial Forms and Processes: A New Perspective. Number Ed. 2.
Edward Arnold, London, UK.

Lague, D., Brodu, N., and Leroux, J. (2013). Accurate 3D comparison of complex topography
with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS
Journal of Photogrammetry and Remote Sensing, 82:10–26.

Lane, S. N., Westaway, R. M., and Murray Hicks, D. (2003). Estimation of erosion and
deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing.
Earth Surface Processes and Landforms, 28(3):249–271.

Lefsky, M. A., Cohen, W. B., Parker, G. G., and Harding, D. J. (2002). Lidar Remote
Sensing for Ecosystem Studies. BioScience, 52(1):19–30.

Li, Y., Napieralski, J., and Harbor, J. (2008). A revised automated proximity and conformity
analysis method to compare predicted and observed spatial boundaries of geologic
phenomena. Computers & Geosciences, 34(12):1806–1814.
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Evaluation of remotely-sensed DEMs and modification based on plausibility rules and
initial sediment budgets of an artificially-created catchment. Earth Surface Processes
and Landforms, 37(7):708–725.

Schürch, P., Densmore, A. L., Rosser, N. J., Lim, M., and McArdell, B. W. (2011). Detection
of surface change in complex topography using terrestrial laser scanning: application to
the Illgraben debris-flow channel. Earth Surface Processes and Landforms, 36(14):1847–
1859.

Selby, M. J. (1982). Hillslope Materials and Processes. Oxford University Press, New York.

Shan, J. and Toth, C. K. (2008). Topographic laser ranging and scanning: principles and
processing. CRC Press, Boca Raton, FL.

Steegen, A., Govers, G., Nachtergaele, J., Takken, I., Beuselinck, L., and Poesen, J. (2000).
Sediment export by water from an agricultural catchment in the Loam Belt of central
Belgium. Geomorphology, 33(1):25–36.

Stroosnijder, L. (2005). Measurement of erosion: Is it possible? Catena, 64(2–3):162–173.

Takken, I., Beuselinck, L., Nachtergaele, J., Govers, G., Poesen, J., and Degraer, G. (1999).
Spatial evaluation of a physically-based distributed erosion model (LISEM). Catena,
37(3–4):431–447.

Tarboton, D. G., Bras, R. L., and Rodriguez-Iturbe, I. (1991). On the extraction of channel
networks from digital elevation data. Hydrological Processes, 5(1):81–100.

Tarolli, P. (2014). High-resolution topography for understanding Earth surface processes:
opportunities and challenges. Geomorphology, 216:295–312.

Tarolli, P., Arrowsmith, J. R., and Vivoni, E. R. (2009). Understanding earth surface
processes from remotely sensed digital terrain models. Geomorphology, 113(1):1–3.

Tarolli, P. and Dalla Fontana, G. (2008). Analysis of the headwater basins’ morphology by
high resolution LiDAR-derived DTM. International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, 36(5/C55):297–306.

Tarolli, P. and Dalla Fontana, G. (2009). Hillslope-to-valley transition morphology: new
opportunities from high resolution DTMs. Geomorphology, 113(1):47–56.

Tarolli, P., Sofia, G., and Dalla Fontana, G. (2012). Geomorphic features extraction
from high-resolution topography: landslide crowns and bank erosion. Natural hazards,
61(1):65–83.

Todisco, F., Vergni, L., Mannocchi, F., and Bomba, C. (2012). Calibration of the soil loss
measurement method at the Masse experimental station. Catena, 91:4–9.

Toy, T. J., Foster, G. R., and Renard, K. G. (2002). Soil erosion: processes, prediction,
measurement, and control. John Wiley & Sons, New York.

27



Van Asch, T. W. J. (1983). Water erosion on slopes in some land units in a Mediterranean
area. Catena supplement, 4:129–140.

Vandaele, K., Poesen, J., Govers, G., and van Wesemael, B. (1996). Geomorphic threshold
conditions for ephemeral gully incision. Geomorphology, 16(2):161–173.

Vandekerckhove, L., Poesen, J., Wijdenes, D. O., and Gyssels, G. (2001). Short-term bank
gully retreat rates in Mediterranean environments. Catena, 44(2):133–161.

Vaze, J. and Teng, J. (2007). High resolution LiDAR DEM-how good is it. In the Proceedings
of the MODSIM 2007 International Congress on Modelling and Simulation, pages 692–
698.

Vigiak, O., Borselli, L., Newham, L. T. H., McInnes, J., and Roberts, A. M. (2012).
Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery
ratio. Geomorphology, 138(1):74–88.

Vinci, A., Brigante, R., Todisco, F., Mannocchi, F., and Radicioni, F. (2015). Measuring rill
erosion by laser scanning. Catena, 124:97–108.

Walling, D. E. (1983). The sediment delivery problem. Journal of hydrology, 65(1-3):209–237.

Walling, D. E. (1999). Linking land use, erosion and sediment yields in river basins.
Hydrobiologia, (410):223–240.

Walling, D. E. and Quine, T. A. (1990). Calibration of caesium-137 measurements to provide
quantitative erosion rate data. Land Degradation & Development, 2(3):161–175.

Walling, D. E., Quine, T. A., Boardman, J., Foster, I. D. L., and Dearing, J. A. (1990).
Use of caesium-137 to investigate patterns and rates of soil erosion on arable fields. In
Soil erosion on agricultural land. Proceedings of a workshop sponsored by the British
Geomorphological Research Group, Coventry, UK, January 1989., pages 33–53. John
Wiley & Sons Ltd.

Wang, B., Shi, W., and Liu, E. (2015). Robust methods for assessing the accuracy of
linear interpolated DEM. International Journal of Applied Earth Observation and
Geoinformation, 34:198–206.

Wawrzyniec, T. F., McFadden, L. D., Ellwein, A., Meyer, G., Scuderi, L., McAuliffe, J.,
and Fawcett, P. (2007). Chronotopographic analysis directly from point-cloud data:
A method for detecting small, seasonal hillslope change, Black Mesa Escarpment, NE
Arizona. Geosphere, 3(6):550–567.

Wheaton, J. M. (2008). Uncertainty in morphological sediment budgeting of rivers. PhD
thesis, UK.

Wheaton, J. M., Brasington, J., Darby, S. E., and Sear, D. A. (2010). Accounting for
uncertainty in DEMs from repeat topographic surveys: improved sediment budgets.
Earth Surface Processes and Landforms, 35(2):136–156.

28



Wilkinson, S. N., Hancock, G. J., Bartley, R., Hawdon, A. A., and Keen, R. J. (2013). Using
sediment tracing to assess processes and spatial patterns of erosion in grazed rangelands,
Burdekin River basin, Australia. Agriculture, ecosystems & environment, 180:90–102.

Williams, J. R. and Berndt, H. D. (1976). Sediment yield prediction based on watershed
hydrology. American Society of Agricultural Engineering, 20(6):1100–1104.

Wischmeier, W. H. and Smith, D. D. (1978). Predicting rainfall erosion losses-A guide to
conservation planning. (20782).

Yang, P., Ames, D. P., Fonseca, A., Anderson, D., Shrestha, R., Glenn, N. F., and Cao, Y.
(2014). What is the effect of LiDAR-derived DEM resolution on large-scale watershed
model results? Environmental Modelling & Software, 58:48–57.

Zhang, J. X., Chang, K.-T., and Wu, J. Q. (2008). Effects of DEM resolution and source on
soil erosion modelling: a case study using the WEPP model. International Journal of
Geographical Information Science, 22(8):925–942.

29



Appendix for Chapter 1

Figure 1.1: Study site in Loudon, Tennessee. Red color represents the county boundary.
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Chapter 2

The effect of grid size on the quantification of erosion,

deposition, and rill network on a hillslope
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all co-authors on the manuscript. My primary contribution to this work include (i) forming
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organizing the literature; (iv) producing the necessary tables and figures; (v) writing the

manuscript.
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Abstract

Hillslope rill/interrill erosion has been investigated mainly based on the collection of sediment

and runoff from certain outlet locations. Recent advances in terrestrial laser scanning provide

high-resolution of elevation data to centimeter levels, and temporal digital elevation models

(DEMs) enabled the detection and quantification of sediment redistribution. Erosion and

deposition are spatially heterogeneous across hillslopes, and when using a DEM to study the

spatial pattern of the processes, the choice of resolution is critical. This study investigates

the influence of grid size on the sediment change calculation and rill network delineation

based on two surveys that were conducted using a terrestrial laser scanner at a hillslope

with well-developed rills in 2014 and 2015. Temporal DEMs were produced and differenced

to quantify changes and delineate rill networks. We investigated DEM pairs of incremental

grid sizes (1-cm, 2-cm, 5-cm, 8-cm, 10-cm, 15-cm, 20-cm, and 30-cm) for DEM difference

and rill network delineation. We used the 1-cm DEM as the reference to compare the results

produced from other DEMs. Our results suggest that erosion mainly occurs on the rill

sidewalls, and deposition on the rill floors, with patches of erosion/deposition within interrill

areas. Both the area and volume of detectable change decreases as the grid size increases,

while the area and volume of erosion are less sensitive compared to those of deposition. The

total length and number of rills decrease with the increased grid size, whereas the average

length of rills increased. The mean offset between delineated rill network and the reference

increased toward larger grid sizes. In contrast to the erosion and deposition detected within

rills, minor changes are detected in interrill areas, indicating either no topographic changes

occur or the changes are too small to be detected in interill areas by our finest 1-cm DEMs.

We recommend future studies to use the finest possible grid size that can be achieved.
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2.1 Introduction

Water erosion on hillslopes is one of the dominant Earth-surface processes driven by the

rainfall impacts and concentrated surface runoff (Knighton, 1998). During a rainfall event,

the soil particles on the ground are detached by the rainfall impact and splashed to all

directions with a tendency toward the downslope direction. Once the rainfall intensity

exceeds the soil’s infiltration capability, surface runoff appears, concentrates, and flows

toward the foot of the hillslope (Horton, 1945). During this process, rills emerge as micro-

channels to dissect the hillslope into rill and interill areas. Rills are the venues to transport

sediments detached from both rills and interrill areas through concentrated flow. Rills are

micro-relief channels (Knighton, 1998) that are usually < 0.3 m in depth and < 0.3 m in

width (Gao, 2013; Nearing et al., 1997). They are mostly ephemeral features and can be

easily removed by conventional tillage (Nearing et al., 1997; Haan et al., 1994).

Classic approaches for studying hillslope erosion either measure the sediment collected

at the bottom of a plot, or measure the changes in surface elevation. The first method collects

all or part of the flow and sediment during a period, and measures the weight or the volume

(Stroosnijder, 2005). One limitation of this method is that it only measures the net value

of sediment delivery, without accounting for the spatial variability of sediment movement

(Boardman, 2006). The second method examines the changes in elevation over an area

and/or the channel geometry (usually width and depth), and it is commonly used for areas

that are longer than 100 m (such as gullied hillslopes)(Stroosnijder, 2005). The changes

in elevation or channel geometry are usually measured using erosion pins or tapes. This

method requires expertise in identifying “representative” locations, thus may be subjective

with human bias. The relatively low spatial resolution of data collected using this method

is also not sufficient to capture the continuous nature of sediment redistribution.

The development of digital elevation models (DEMs) has led to innovative instrument

and software developments to detect and quantify the topographic characteristics of

landforms, such as elevation, slope, profile/curvature, aspect, and roughness (Moore et al.,

1991; Pike, 2002; Pike et al., 2009). Recent advances in remote sensing instruments,
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particularly the use of terrestrial laser scanning (TLS) systems, have provided measurements

of unprecedented accuracy and fine resolution that allow for the rapid collection of

data for the three-dimensional (3-D) surface reconstruction and modeling (Heritage and

Hetherington, 2007). Various fields have witnessed an increasing trend in applying TLS to a

wide range of topics, such as geology, glaciology, hydrology, biogeochemistry, and terrestrial

ecology (Eitel et al., 2011; Smith, 2015). The point cloud that is collected by TLS can be

directly analyzed for metrics of interest, or converted to a triangulated irregular network

(TIN), or raster-based DEM with resolutions that are greater than the TLS’s laser spot size

(usually in mm) and range accuracies of a few millimeters (may be varied for different scanner

systems). The DEM, TIN, or point cloud generated using TLS is suitable for quantifying

hydrologic and geomorphic variables of a specific area in a more automatic and flexible

fashion (Cavalli et al., 2013; Pirotti and Tarolli, 2010; Starek et al., 2013; Tarolli et al., 2015;

Vinci et al., 2015).

Many studies have used TLS to investigate rill/interrill erosion in experiment plots and

the natural environment (Eltner et al., 2013; Eltner and Baumgart, 2015; Vinci et al., 2015,

2016), see Table 2.1. The DEMs produced by TLS can be used to discriminate the spatial

pattern of erosion and deposition (Eitel et al., 2011), derive geomorphometric indices (e.g.

surface roughness, in Eitel et al. (2011)), and provide high resolution topographic inputs for

modeling efforts (Hancock et al. 2008). For example, Eitel et al. (2011) used TLS to test

the effect of surface roughness in concentrated flow processes. Vinci et al. (2015) used TLS-

produced DEMs to extract rill networks and calculate the rill morphometric characteristics

in an experiment plot. They found that TLS has advantages in measuring certain indices

(e.g. rill length, eroded volume) compared to manual surveys. Zhang et al. (2016) used the

TLS-surveyed DEM to quantify rill morphology. Eltner and Baumgart (2015) investigated

the accuracy constraints of TLS in a controlled experiment condition and suggested that

with the propagated error from multiple sources (including registration, surface roughness,

systematic error, and interpolation), the minimal threshold of vertical change detection is

1.5 cm. Hancock et al. (2008) used TLS to produce a DEM of the angle-of-repose of slope

in mine spoil for the input of the SIBERIA landscape model.
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Some critical issues still exist in TLS-based rill/interrill erosion studies, such as the

choice of scanner spacing at a certain range and the point spacing necessary to detect surface

features and their changes. A few airborne LiDAR and TLS studies have discussed the effect

of DEM grid size on the detection and analysis of land surface features (Woolard and Colby,

2002), especially the delineation and morphology of rill networks (Vinci et al., 2015; Zhang

et al., 2016), but none of these studies have systematically analyzed the effect of grid size

for change detection and feature geometry in rill/interrill erosion studies. A few studies

have shown a resolution threshold, that beyond a certain resolution, any finer resolution no

longer improves the range accuracy of airborne LiDAR systems (Garćıa-Quijano et al., 2008).

This threshold effect is important to TLS systems as the amount of erosion on a hillslope is

spatially heterogeneous, and the TLS’s ability to detect rill networks and the spatial pattern

of erosion/deposition may be limited by the grid size of observation for these features. For

example, a finer resolution may not be a better representation for a type of geomorphic

features compared to a coarser resolution, especially when the level of noise (random local

variance) is high. On the other hand, a coarser resolution might filter the random local

noise, but it is also possible to over-generalize the features of interest, reducing the accuracy

of mapping and detecting a certain type of features (Lechner et al., 2008, 2009; Woodcock

and Strahler, 1987).

The effect of TLS point spacing and the grid size of TLS-derived DEMs has been

investigated in various water- and erosion-related studies, including erosion modeling (Zhang

et al., 2008), watershed modeling (Yang et al., 2014), and delineation of stream network

(Charrier and Li, 2012). The purpose of this study is to assess the effect of DEM resolution

on the quantification of hillslope erosion and deposition, and on the delineation of rill network

through a case study from a rilled hillslope in Loudon, Tennessee. The results of this study

provide insights into the determination of an optimal DEM resolution and guidance for future

TLS-based erosion studies.
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2.2 Material and Methods

2.2.1 Study Site

This study was conducted at an engineered hillslope on a terrace of the Little Tennessee

River (35◦37’32.52”N, 84◦12’59.69”W, Figure 2.1) in Loudon County, Tennessee. The annual

precipitation in this area is 1300 mm, and the annual temperature is 15 C. The study site

is within the Southern Limestone/Dolomite Valleys and Low Rolling Hills sub-ecoregion,

a region dominated by shale as parent materials. The dominant soil type is Waynesboro

Loam with moderately low runoff potential according to US Department of Agriculture

Natural Resources Conservation Service Web Soil Survey (http://websoilsurvey.sc.egov.usda.

gov/). Land use/land cover in this region includes agriculture, urban, industrial, forest, and

grassland.

Historical aerial photos and satellite images in Google Earth show that the hillslope

was formed during the construction of the facility of Christensen Yacht in 2007, and the

original soil structure was likely to be disturbed. To control erosion, bluestem (Schizachyrium

scoparium) grass was planted on the top of the hill and also as a dense strip at the bottom

of the slope. A small pond was formed at the foot of the hillslope that contains broadleaf

cattail (Typha latifolia). The length of the hillslope is about 20-m with a slope of 27◦ facing

southwest (257◦ clockwise from due north). The altitude of the hillslope section extends

from approximately 255 m a.s.l. to 263 m a.s.l. The surface of the hillslope is covered

with sparse vegetation patches, and the overland flow during precipitation events created a

vast rill network on the slope (Figure 2.2). The very upper part of the hillslope does not

have well-formed rills, indicating a lesser chance of frequent incoming runoff from top of the

hillslope as a consequence of grass cover on the top of the hillslope. This study focuses on a

mostly vegetation-free and about 20 m by 20 m square section that extends from the top to

the foot of the hillslope.
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2.2.2 Data acquisition

We used a 1550-nm wavelength FARO Focus3D X 330 TLS that was mounted on a tripod

with dual-axis compensation. The Focus3D has a 360◦ horizontal and 307◦ vertical scanning

view, a laser spot size of 2.25-mm at exit with 0.19 mrad (0.011◦) beam divergence, a ranging

accuracy of ± 2 mm at 50-m distance, with a customizable scan spacing. This TLS is able

to acquire 3-D features within a radius of 330 meters at a maximum rate of 976000 pulses

per second. This scanner unit is not equipped with a collimator, thus the diameter of

the laser beam increases with increasing distance between the scanner and the intercepting

surface. The ranging distance in our case varies from ∼ 10 to 20 m, and the spot size at

the intercepting surface ranges from 4.15 to 6.05 mm using the methods suggested by Pesci

et al. (2011).

We surveyed the study site on December 10th, 2014 and November 12th, 2015. Prior

to scanning, 5 spherical reference targets (ATS Scan Reference System) with diameters of

139-mm were placed around the slope as uniformly as we could for registration between

different scans within a single survey (Figure 2.2). We used a Trimble GeoExplorer 6000

Series GeoXHTM handheld differential GPS (dGPS) to record the location of the ground

point above which the scanner and targets were placed. This GPS unit has an integrated

satellite-based augmentation system which locks onto the most power satellite signal and

does real-time correction using the mobile network. The closest base station is McGhee

Tyson ANGB (35.81◦N, 84.00◦W), about 28.47 km away from our study site. At each scan

location, the GPS measurement was taken once for 20 mins for the carrier to constrain

the horizontal accuracy to 10 cm + 2 parts per million(ppm) and vertical accuracy to 20

cm + 2 ppm. The level of accuracy of this GPS unit is not sufficient to georeference the

data collected by the scanner, we used it to roughly place the scans to their geographic

locations, and then manually transformed the scan in three dimensions (x, y, and z) and

used recognizable features, such as the targets and yacht facility, to register different scans

and surveys.
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We started each survey with a panoramic scan, which was performed with a 360◦

horizontal (H) by 307◦ vertical (V) at a coarse resolution (5 cm point spacing at 50 m radius),

followed by 3 scans from 3 fixed positions at 15-m away from the foot of the hillslope at finer

resolution (1 cm spacing at 50 m radius). Multiple scan locations help reduce the influence

of occlusion caused by rugged terrain, and also improve the density of points at further

distance. We selected days with mild temperature and clear weather condition and at least

two days after any prior precipitation event to conduct the surveys.

2.2.3 Data processing and DEM generation

We used the FARO SCENE software’s (http://www.faro.com/en-us/products/faro-software/

scene/overview) target-based method to register the 3 scans in a survey. The location of

all scans and reference targets recorded by the dGPS were input to an Iterative Closest

Point algorithm (Chetverikov et al., 2002) to help register the scans on a target-to-target

basis. Scans were visually checked in correspondence view to make sure the location of

identical targets in each scan were well-aligned. The 2014 survey had a root-mean-square

error (RMSE) of 3.46 mm, and the 2015 survey had a RMSE of 3.51 mm. For the registration

error between the 2014 and 2015 survey, we used permanent artificial features in our scan

datasets, such as the walls of the yacht facility, to assess the horizontal offset. The matching

sections of wall (composed of ∼ 31000 points) in the two datasets showed good agreement,

with an RMSE of 0.8 mm, with 95% of the point-to-point offset within 2.91 mm. The

ground was used for registration between different scans of the same field survey. However,

as the surrounding environment is susceptible to dynamic erosion and deposition events,

it is not suitable to use the ground surface to register the two scans. We used the gravel

road (composed of ∼ 24000 points) adjacent to the site to assess the vertical offset between

different surveys. The vertical offset between two surveys in our case is 2.08 mm, with 95%

of the point-to-point offset within 5.66 mm.

The two registered surveys were exported as two point cloud files, which were then

converted to two raster DEMs of 1-cm grid size using the bilinear interpolation method in

the Quick Terrain Modeler (http://appliedimagery.com/). Both DEMs were then projected

39

http://www.faro.com/en-us/products/faro-software/scene/overview
http://www.faro.com/en-us/products/faro-software/scene/overview
http://appliedimagery.com/


to a local Cartesian projection because the point cloud datasets used in this study only

cover a small area (∼ 20 m by 20 m). A local Cartesian projection is designed for large-scale

mapping purposes, with minimal consideration of the Earth curvature (Kennedy and Kopp,

2002). The 2014 and 2015 DEMs at the 1-cm resolution were resampled using a bilinear

interpolation to resolutions of 2-cm, 5-cm, 8-cm, 10-cm, 15-cm, 20-cm, and 30-cm.

2.2.4 DEM of difference

One widely employed method in topographic and geomorphologic research is a change

detection technique called DEM of difference (DoD, see Williams 2012). DEMs from different

periods are subtracted from each other to produce a raster of differences in elevation:

∆DEM = DEMt1 −DEMt0 ± ε (2.1)

Where t0 is the initial time that elevation data were collected and t1 is the subsequent

time of data collection, and ε is the error term. DoD is a method widely used for comparison

between temporal/sequential DEMs and is suitable for elevation change detection in dynamic

landforms. This method uses pre-registered time series of DEMs to spatially quantify the

volume of eroded and deposited sediment.

We used the DoD method to calculate the change between the 2014 and 2015 datasets

and quantify the areas of erosion and deposition. The DoD accounts for not only the elevation

changes between these two periods, but also potential errors (ε) caused by noise, registration

errors, as well as the vertical or ranging errors of the instrument (± 2-mm for the FARO

3-D). One method to quantify the error is to aggregate of the possible errors of various

sources, and produce a single value for the maximum potential level of uncertainty (Lane

et al., 2003). However, the assumption to apply a maximum level of uncertainty uniformly

to an entire surface likely overestimates the uncertainty, thus underestimates the overall

changes. The use of a uniformly distributed uncertainty value is especially problematic for

areas with high geomorphic complexity but comparably small changes (Brasington et al.,

2003; Brasington and Smart, 2003; Westoby et al., 2012; Wheaton et al., 2013, 2010a,b).
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Studies have suggested that the uncertainty is associated with the geometries of the terrain

surface, and should be considered as spatially varied and calculated on a cell-by-cell basis

(Lane et al., 2003; Wheaton, 2008; Wheaton et al., 2010b).

We used the Geometric Change Detection 6.0 (GCD) software to compute the difference

between the DEMs that account for the spatially-varied uncertainty (Wheaton et al., 2010b).

The GCD using the Fuzzy Inference System tool that combines a set of inputs (e.g. point

density, slope, and surface roughness) through a set of fuzzy membership functions to

generate an output function for the uncertainty on a cell to cell basis (Wheaton et al.,

2010b). The cell-based uncertainty is propagated with the uncertainty of other sources (e.g.

registration error, uncertainty of the scanner unit), and produce the level of uncertainty

(minimum level of detection) for each cell, and any elevation change at a certain pixel that

is less than the level of detection is considered insignificant. A more detailed explanation

of this method and the toolset can be found in Wheaton et al. (2010b). In this paper, we

designed presumed scenarios in which the same area of interest is surveyed at different point

spacing. The input used in the GCD (point density, slope, roughness) are all calculated

using the DEM of the corresponding resolution, instead of the DEM of the finest resolution.

For the change detection, only the change that is statistically significant at the 95% level is

considered, and the cells with changes below the threshold are treated as no change. This

treatment may underestimate the elevation changes between these two periods.

2.2.5 Rill network delineation

Various methods and geomorphometric indicators have been used to delineate channel/rill

networks from a DEM, such as the use of maximum landform curvature (Passalacqua et al.,

2010; Pirotti and Tarolli, 2010; Tarolli and Dalla Fontana, 2009; Tarolli et al., 2012), moving

window detection of convex (ridge) and concave (streams) features (Band, 1986; Peucker

and Douglas, 1975), and the drop analysis using a pixel-based flow direction determination

method (Broscoe, 1959; Tarboton et al., 1992; Tarboton, 2001). In this study, we used the

drop analysis method to determine the critical contributing area that allows for the initiation

of rills (Broscoe, 1959; Tarboton, 2001). This method selects the weighted contributing area
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based upon the assumption that the mean stream drop, or elevation difference between

the beginning and the end of stream segments of the same Strahler order should not be

statistically different from those of higher orders (Tarboton et al., 1992; Tarboton, 2001).

Previous studies showed that the drop analysis method and alternative geomorphometry-

based methods produced results that are in good agreement (Vinci et al., 2015). The drop

analysis method starts with the basic flow direction and accumulation processes that are

commonly used in channel network delineation, and extracts the rill network using a series

of values for the critical contributing area that is necessary to initiate the rills. The rill

segments in each rill network are then assigned the Strahler’s Order, and a t-test is used to

compare the average elevation difference for rill segments of different orders (Tarboton et al.,

1991). The null hypothesis of the test is that all of the population distribution functions of

the samples (in our case, the elevation drops for streams in different orders) are identical. The

value that produces the most “identical” elevation drop is considered the optimal threshold

to initiate the rills.

We used the 1-cm 2014 DEM for the drop analysis. We calculated the contributing

area using a Deterministic-8 single flow method (O’Callaghan and Mark, 1984), and

used the Stream Drop Analysis tool in the Terrain-analysis-using-Digital-Elevation-Models

(TauDEM) toolbox in ArcGIS 10.3 to perform the rill network extraction of different

grid sizes (Tarboton, 2001). Other methods are not considered in this study, as some

of the methods are dependent upon the calculation of localized topographic indices using

progressive window size. In such cases, the results are subjective to both the size of single

pixel and the processing window (Pirotti and Tarolli, 2010; Tarolli, 2014; Tarolli and Dalla

Fontana, 2009).

2.2.6 Rill networks assessment

To assess the effect of DEM grid size on the delineation of rill networks, several metrics

of the rills, including the total number of rills, the total length of rills, and the average

length of rills, to quantitatively assess the delineated rill networks (Strahler, 1952, 1957).

We also used the Revised Automated Proximity and Conformity Analysis (RAPCA) tool
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(Li et al., 2008; Napieralski et al., 2006) to quantify the offset between the rills derived from

the DEMs with larger grid sizes and the reference. RAPCA was originally designed to assess

the level of proximity and parallel conformity between observed and simulated boundaries

of ice sheets (Li et al., 2008; Napieralski et al., 2006) and it can be used to calculate the

minimum, maximum, mean and standard deviation of offsets between any linear feature to

the reference. Previous studies used this method in the comparison of fluvial channels and

the boundaries of mountain glaciers (Charrier and Li, 2012; Li and Li, 2014).

2.3 Results and Discussion

2.3.1 DEM of Difference and Delineation of Rill Networks

Table 2.2 shows the descriptive statistics of the raw data. The result of the DoD between the

1-cm 2014 and 2015 DEMs shows that the elevation changes (both erosion and deposition)

that are statistically significant at 95% level mainly occurred within or close to the rills

(Figure 2.3). The total area with statistically significant changes is 23.82 m2, accounting

for 11.56% of the entire hillslope. The area with significant erosion covers 18.11 m2, and

that with deposition covers 5.71m2. The volume that was eroded is 1.55 m3, greater than

the volume deposited (1.01 m3). The majority of the erosion occurred on the rill sidewalls,

while most deposition occurred on the rill floor. The interrill areas were relatively stable

without detectable change on the 95% confidence level, although sparse patches of erosion

and deposition can be observed (Figure 2.4).

Table 2.3 shows the results of the constant drop theory. The Stream Drop Analysis tool

takes a list of numeric values as the number of contributing pixels in a DEM to initiate a

rill. Based on the results, the optimal threshold for the contributing area is about 1500 cm2.

We used this value for the threshold to determine the rill networks for all different grid sizes,

and assigned the Strahler stream order to each rill segment.

The deposition was observed mostly along the rill floor and also in the form of sparse

clusters in interrill areas. A potential factor controlling deposition is surface armoring, the
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exposure of pebbles both in the rill channels and in interrill areas as a result of the selective

mechanism of detachment processes. Compared to the coarser particles and pebbles, the finer

sediment particles (mainly clay and silt) are relatively easier to get detached and transported.

This selective mechanism exposes pebbles on hillslope surface (Figure 2.2), increasing the

surface roughness and preventing the rills from being further entrenched and interrill areas

from getting detached by rainfall splash or surface sheet flow. As we observed on the slope,

the rill bottoms were generally either armored with pebbles or already cut down to the less

erodible bedrock (shale) (Figure 2.2). Instead of further entrenching, rill channels tend to

widen, creating a larger cross-sectional area to allow for efficient sediment transport until

reaching a equilibrium. This model, initially proposed by Foster and Lane (1983), implies

that once the down-cut of channel bottom reaches a non-erodible layer, the expansion of

channels starts to occur in the form of sidewall sloughing. Although it was originally proposed

for ephemeral gully erosions, previous studies also found that this model is suitable for the

explanation of rill development (e.g. Lewis et al. 1994.

In some parts of the interrill areas, we also observed surface crusting (a thin layer of

dense and tough materials on the surface) in the field. Under this circumstance, soil particles

on the surface are less likely to be affected by raindrop impact (McIntyre, 1958). The

overland flow in interrill areas is usually not yet concentrated, thus the ability to detach soil

particles is not comparable to the shear stress of the concentrated flow within rill channels.

The majority of the erosion occurred on the rill sidewalls, due to the higher steepness and

relatively looser material compared to interrill areas that are already crusted, and rill floors

which are armored. In the field, we observed signs of failure on the rill sidewalls (Figure 2.2),

and in the result of DoD, such failures are likely to be represented as a sharp decrease in

elevation on rill sidewalls; the sediment collapsed from the sidewalls will feed into the rills,

and deposit on the floors until being removed in the future storms.

2.3.2 Effect of grid size on DoD results

Table 2.4 and Figure 2.5 show the effect of grid size on erosion and deposition quantified using

DoD. As the grid size progressively increases, the observed total area of change decreases,
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as some of the changes that are detectable at a finer scale are smoothed out. The total

area of erosion at the finest 1-cm resolution is 18.11 m2, and it gradually decreases as the

grid size increases. The total area of deposition at the finest 1-cm resolution is 5.71 m2,

and it decreases to 1.08 m2 as grid size increases to 30-cm. When calculating using the

2-cm DEM, the area with the detectable change drop to 67.63% of the reference DEM (1-

cm). The decreasing trend slows down and becomes relatively stable when the resolution is

greater than 15-cm, but only 46.39% of the area is detectable with change at 95% confidence

interval. In addition, the erosion/deposition spots across the hillslope are continuous at the

finer scales, but as the grid size increases, the continuity reduces, and areas with smaller

vertical changes are smoothed out, leaving gaps between the pixels (Figure 2.5). Compared

to the erosion and deposition areas calculated using the reference DEMs, the percentage

of erosion area in a sequence of 2-cm, 5-cm, 8-cm, 10-cm, 15-cm, 20-cm, and 30-cm drop

first and then become stable around 50%, while the percentage of deposition area drastically

decreases to around 10% when the grid size reaches 20 cm.

The volume of erosion and deposition also tend to decrease with the increased grid size

(Table 2.5). The total volume of sediment eroded is 0.81 ± 0.53 m3 and the total volume of

sediment deposited is 0.23 ± 0.15 m3 at 1-cm grid size. For the grid size of 30-cm, the volume

of erosion decreases to 0.40 ± 0.27 m3 (49.38% compared to the reference) and the volume

of deposition decreases to 0.05 ± 0.04 m3 (49.38% compared to the reference). The volume

of erosion does not show a sharp change as the grid size progressively increases, and the

2-cm DEM still produces the volume of erosion that accounted for 82.72% of the reference

DEM. The trend becomes flatter after the grid size of 15-cm, and eventually drops below

50% of the reference DEM at the 30-cm grid size. The volume of deposition shows a sharp

drop for the grid size of 2-cm, to 0.11± 0.09 m3 (47.83% of the reference). After the grid

size increases to and beyond 5-cm, the volume of deposition becomes relatively stationary,

and accounts for 13.04% – 34.78% of the volume from the 1-cm DEM.

Our results indicate that erosion tends to be less sensitive to grid size compared to

deposition from both areal and volumetric perspectives. As the grid size progressively

increases, the area and volume of deposition show faster decreasing rates compared to those
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of erosion. The net change volume (the difference between erosion and deposition) tends

to decrease at a flat rate with increasing grid sizes. Compared to the reference DEM pair

(1-cm), the net change volume accounts for 91.80% of the reference for the 2-cm grid size,

and 81.97% of the reference for the 10-cm grid size. The net change volume keeps decreasing

to 57.38% of the reference at the 30-cm grid size. The hotspots of change tend to be more

sensitive to the smoothing effect at the margins of such hotspots, as the resampling window

tends to include more cells with less change into calculation.

Our results indicate different grid size effects on erosion and deposition, possibly due to

the overall shapes of the observed phenomenon. Deposition mainly occurred at the rill floor

following the thalweg, and the common shape of the depositional areas is more elongated.

Compared to the deposition, the erosion mainly occurred at the sidewall of the rills, which

are relatively larger compared to the depositional areas (Figure 2.4 & 2.5 ). Usually, features

that are more linear tend to be more sensitive to reduced mapping accuracy/increased grid

size (Lechner et al., 2008, 2009; Woodcock and Strahler, 1987). Also, erosion tends to

occur at locations where slope gradient is high, whereas deposition occurs where the slope

is more gentle. In a grid system, such difference is represented as the magnitude of changes

on a vertical dimension, where the value of erosion at pixels with high slope gradient is

more pronounced and less likely to be smoothed out. In our case, the resampling process

incorporates more areas with no detectable change for deposition, making it more sensitive

to the reduction of resolution.

The detection and quantification of both erosion and deposition showed dependency

on the scale (grid size), and a possible explanation is that the increased sampling interval

resulted in loss of information when terrain is complex (Mark and Aronson, 1984). McNelis

(2016) suggested a 10 – 30 points/m2 to be optimal density when using TLS to detect gully

erosion, that a finer resolution won’t bring improve the quantified erosion/deposition amount,

whereas a coarser resolution leads to loss of information. However, in our case, no such effect

was observed, which suggests that a similar “optimal” scale to study rill/interrill erosion is

yet to be determined using sensors with higher accuracy and finer spatial resolution.
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2.3.3 Effect of Grid Resolution on Rill Networks

The total number of rill segments shows an overall decreasing pattern as the grid size increases

(Table 2.6). Only 292 rill segments are extracted at the grid size of 30-cm, compared to 327

at 1-cm. The total length of the rills also decreases, from 443.98 m (1-cm grid size) to 420.60

m (30-cm grid size). The average length of each rill increases from 1.36 m to 1.44 m. As

the rills in our research are extracted based on the DEM, once the spatial resolution of the

data reduces, some rills showing zig-zag or meandering at a higher resolution are replaced

by a straight line at a coarser resolution. Also, some of the rill segments detected at a fine

resolution are no longer detectable at coarse resolutions.

The RAPCA analysis quantified the offsets of the rill networks delineated from various

resolution DEMs compared to the 1-cm DEM (Table 2.6). The minimum offset is not

included in the table, as in our case, the value is always zero where rills produced from

higher grid sizes intersect with those produced using the reference DEM. The results show

that the maximum, mean, and standard deviation of the offset increases as DEM grid size

increases. The mean offset of rills shows a linear increasing trend with the increased grid

size (R2 = 0.90). Compared to the absolute offset, the increase in the relative offset of the

rill network is not significant, and the relative offset is always less than one cell size of the

DEMs. The offset of delineated rill networks introduced by increased grid size shows limited

sensitivity to the larger grid size. However, once the grid size becomes greater than 5-cm,

the maximum offset becomes larger than 0.27 cm, which is comparable to the common width

of rills (Knighton, 1998). Therefore, it becomes very difficult to represent the rills at the

accurate location once the grid size is larger than 5-cm.

2.3.4 Other limitation factors

Our results reflect the nature of scale-dependency in the study of geomorphology. Bishop

et al. (2012) emphasized the importance of various facets of scale, including geographic,

cartographic, measurement, operational, and computational scales, in the application of high-

resolution data for geomorphological mapping. The measurement scale is limited to the size
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of the object of interest and the technology used for the measurement; the operational scale

is dependent upon the physical processes, feedback mechanism, and how the natural system

behaves. The analyses can only be reasonably performed when the measurement scale is in

agreement with the operational scale. In our study, the measurement scale is governed by

the hillslope area, the morphology of the channeled slope surface, the accuracy and spatial

resolution we used for the TLS unit, and the quality of the registration within-survey and

between survey. The coarsest resolution necessary to reflect the geometry of a gentle hillslope

and a hillslope that is incised with channels is apparently different. In our case, the rills are

well-defined and can be as deep as tens of centimeters. However, the spacing, depth, width,

and/or sinuosity of the rills are varied for different landscapes. The operational scale of the

erosion/deposition processes, on the other hand, is heterogeneous across the hillslope since

processes are of different magnitudes and spatial extents. This is also affected by the choice

of time intervals between repeated field surveys, as the magnitude of geomorphic changes

would be more prominent over longer period, making it easier to be detected. Other factors

such as the grain size of the soil, the type of parent material, the climate conditions, the

existence or the absence of vegetation, are likely to affect the development of channels and

the morphology of the landforms. Thus, our results are likely site-specific and how well the

results can be translated to other environmental conditions and technological availabilities

is yet to be examined.

2.4 Conclusions

The temporal DEMs produced using TLS exhibited capability in capturing continuous

erosional and depositional patterns at the finest resolution. The erosion mainly occurred on

rill sidewalls with some patches in interrill areas; the deposition occurred on some rill floors

and also on some patch interrill areas. As the DEM resolution progressively reduces, the

spatial variations of elevation change at a finer scale become averaged across larger pixels,

making it difficult to visually represent the continuous pattern of sediment redistribution

along the rills. The absolute values of the area and volume of sediment change tend to

decrease as the grid size increases, due to the smoothing effect introduced by larger grid size.
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Such results reflect the critical role of scale in geomorphology and the fractal nature of the

Earth surface (Mark and Aronson, 1984).

A grid size equal to, or finer than 1-cm is recommended for mapping erosion and

deposition in a rilled hillslope. The overall area of detectable change reduces to less than

50% of the 1-cm DEM when the grid size increased to 2-cm. As the grid size increases, the

raster cells are no longer showing continuous patterns. Both area and volume of erosion

in our study are less sensitive to resolution reduction compared to deposition, presumably

due to the different spatial patterns. The deposition mainly occurred at the rill floors, as a

narrow band following the thalweg; while rill erosion occurred on the sidewalls of rills, and

the erosional areas are relatively less elongated in shape compared to depositional areas. The

resampling process incorporates fewer pixels of no data (detectable change) when calculating

erosion compared to deposition.

A grid size equal to, or finer than 1-cm is recommended for monitoring sediment delivery

of rill/interrill erosions, although a grid size of 5-cm is sufficient if an estimation of 85% for

the volume is acceptable. In our case, the relative value of sediment change (shown as the

percent compared to the reference) is the least sensitive, and 81.97% of the sediment change

is observed at the 10 cm grid size. From an areal perspective, however, the area of detectable

change reduces to 67.63% when using a grid size of 2 cm, and 44.58% when using a grid size

of 10 cm. In our study area, the total volume of deposited sediment was 0.23 ± 0.15 m3,

which is much less compared to the volume of the sediment that was eroded (0.81 ± 0.53

m3). Although the deposition is more sensitive to the increased grid size, the net difference

between the volume of deposition and erosion is decreasing at a slower rate, and even at the

grid size of 5-cm, we are able to obtain 86.89% of the net sediment volume change.

The total length and the total number of rill segments show a decreasing trend, while

the average length of rills increases with greater DEM grid size. As the spatial resolution

gets coarser, the detailed shape information of rills can be smoothed by the generalization.

The RAPCA method was used to compare the offset between rill networks delineated using

the resampled DEMs (with grid size larger than 1-cm) and the reference DEM (1-cm). The

results show that although the mean and maximum offset increases as the grid size get larger,
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the relative offset is always within one pixel. Therefore, using a larger grid size might reduce

the accuracy of the mapped rill networks in the slope, but the effect is always within one

pixel.

Our results suggest that while the temporal DEMs produced using TLS are suitable

for rill erosion studies, they fail to capture the majority of the change in interrill areas.

More accurate scanner units and better control over the errors are necessary to improve

the precision and accuracy, possibly enabling the detection of change in interrill areas. We

recommend that future research on rill/interrill erosion uses the finest grid size possible to

minimize the possible loss of information. In our case, for net sediment change estimation, a

grid size finer than 5-cm is sufficient to obtain more than 85% of the information compared

to the 1-cm DEM. However, it should be noted that the effect of spatial resolution is likely to

differ from site to site, and factors such as rill geometry, grain size, and temporal resolution

may also affect the result and should be taken into account.
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Table 2.1: Application of TLS for rill/interrill erosion studies

DEM grid size Study site Soil Type Experimental setting [width (m)× length (m)] Reference

20 cm Rix’s Creek Coal Mine, Australia mudstone spoil Engineered slope (100 × 20) (Hancock et al., 2008)

5 cm St. Märgen, Germany dystric cambisol Virtual field plots (4 × 7) (Schmid et al., 2004)

2 cm Perugia, Italy Calcaric Cambisol field experiment plot (2 × 11, 4× 11, and 8 × 22) (Vinci et al., 2016)

2 cm Andalusia, Spain colluvium soil field experiment plot (∼ 20 × 50) (Eltner and Baumgart, 2015)*

1 cm Andalusia, Spain colluvium soil field experiment plot (∼ 20 × 50) (Eltner and Baumgart, 2015)*

1 cm Perugia, Italy Calcaric Cambisol field experiment plot (8 × 2) (Vinci et al., 2015)

1 cm China Loess, undisturbed soil pan (5 × 1) (Zhang et al., 2016)

1cm Boise Front Range, US Andisol field experiment plot (2 × 4.25) (Eitel et al., 2011)

* Authors divided the experimental plot into the eastern and western sections, with different grid sizes of 1 cm and 2 cm, respectively.
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Table 2.2: The descriptive statistics for each of the point clouds compared in this study

Dataset Number of points Average point density (pts/cm2) Registration RMSE (mm)

2014 4458176 1.11 3.46 ± 1.13

2015 4791057 1.20 3.51 ± 1.28

Table 2.3: T-statistics for drop analysis with
different threshold values

Number of pixels initiating a rill * P-Value

100 0.015

300 0.022

600 0.041

900 0.035

1200 0.476

1500 0.871

1800 0.667

2000 0.385

* The drop analysis is done using the 1-cm DEM.

Table 2.4: The descriptive statistics of the DEMs with incremental grid size derived from
the point clouds

Grid size 1 2 5 8 10 15 20 30

14

Rows 1737 868 347 217 174 116 87 58

Columns 1878 939 376 235 188 125 94 63

Min 255.25 255.25 255.25 255.26 255.26 255.31 255.35 255.26

Max 262.28 262.28 262.28 262.28 262.27 262.25 262.25 262.20

Mean 258.96 258.96 258.96 258.96 258.95 258.96 258.96 258.95

STD.ev 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85

15

Rows 1737 868 347 217 174 116 87 58

Columns 1878 939 376 235 188 125 94 63

Min 255.40 255.41 255.42 255.43 255.26 255.31 255.44 255.56

Max 262.28 262.27 262.25 262.26 262.27 262.24 262.24 262.24

Mean 258.96 258.96 258.96 258.96 258.95 258.96 258.96 258.96

STD.ev 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85
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Table 2.5: The result of differencing the 2014 and 2015 DEMs at different cell resolutions of the hillslope in Loudon, TN

Cell size(cm) 1 2 5 8 10 15 20 30

Areal

Total area of erosion (m2) 18.11 13.4 12.59 11.55 11.88 10.26 9.88 9.54

Percent area of erosion compared to reference 100.00% 73.99% 69.52% 63.78% 65.60% 56.65% 54.56% 52.68%

Total area of deposition (m2) 5.71 2.71 1.89 1.16 1.64 0.79 0.6 1.08

Percent area of deposition compared to reference 100.00% 47.46% 33.10% 20.32% 28.72% 13.84% 10.51% 18.91%

Total area of detectable change (m2) 23.82 16.11 14.48 12.71 13.52 11.05 10.48 10.62

Percent area of change compared to reference 100.00% 67.63% 60.79% 53.36% 56.76% 46.39% 44.00% 44.58%

Volumetric

Total volume of erosion (m3) 0.81 ± 0.53 0.67 ± 0.45 0.61± 0.41 0.55 ± 0.37 0.57 ± 0.38 0.45 ± 0.30 0.44 ± 0.30 0.40 ± 0.27

Percent volume of erosion compared to reference 100.00% 82.72% 75.31% 67.90% 70.37% 55.56% 54.32% 49.38%

Total volume of deposition (m3) 0.23 ± 0.15 0.11 ± 0.09 0.08 ± 0.06 0.05 ± 0.04 0.07± 0.06 0.03 ± 0.02 0.03 ± 0.02 0.05 ± 0.04

Percent volume of deposition compared to reference 100.00% 47.83% 34.78% 21.74% 30.43% 13.04% 13.04% 21.74%

Total Net Volume Difference (m3) 0.58 ± 0.46 0.56 ± 0.42 0.53 ± 0.39 0.50 ± 0.38 0.44 ± 0.35 0.42 ± 0.32 0.41 ± 0.32 0.35 ± 0.27

Percent volume of change compared to reference 100.00% 91.80% 86.89% 81.97% 75.86% 68.85% 67.21% 57.38%
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Table 2.6: Morphometric and Revised-automated-proximity-and-conformity-analysis
results for rill network delineated using different grid sizes

Grid size (cm) 1 2 5 8 10 15 20 30

Total number of rills 327 312 310 303 301 302 299 292

Total length (m) 443.98 435.70 435.69 433.91 429.46 427.45 426.80 420.60

Average length (m) 1.36 1.40 1.41 1.43 1.43 1.42 1.43 1.44

Maximum offset (m) NA 0.06 0.27 0.32 0.25 0.44 0.61 1.20

Mean offset (m) NA 0.01 0.03 0.05 0.04 0.07 0.09 0.25

Standard deviation (m) NA 0.01 0.04 0.05 0.04 0.07 0.12 0.28

Relative mean offset * NA 0.40 0.62 0.56 0.43 0.47 0.47 0.82

* Relative mean offset = Mean offset/Grid size
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Figure 2.1: Study site
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Figure 2.2: The hillslope with well-developed rill networks: a) rills and scan targets; b)
surface armoring within rills and in interrill areas; c) bedrock exposed in some rill channels;
d) evidence of failure on rill sidewalls.
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Figure 2.3: The difference between 2015 DEM and 2014 DEM; cold colors imply deposition
and warm colors imply erosion.
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Figure 2.4: Some erosion features observed in a section of our dataset; cold colors imply
deposition and warm colors imply erosion.
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Figure 2.5: The erosion/deposition patterns become more discrete and not as proximate
to rills; cold colors imply deposition and warm colors imply erosion.
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Chapter 3

Micro-topographic controls on erosion and deposition on a

rilled hillslope
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This chapter is a manuscript that is prepared for Earth Surface Processes and Landforms.

The use of “we” in this chapter refers to all co-authors on the manuscript to be submitted.

My primary contribution to this work include (i) forming the research idea; (ii) collecting,

processing, and analyzing the data; (iii) gathering and organizing the literature; (iv)

producing the necessary tables and figures; (v) writing the manuscript.
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Abstract

Topography imposes control on the magnitude and spatial pattern of sediment movement

by directly governing the path of surface runoff, and is associated with variations of soil

properties, including soil texture, moisture, organic matter and others. Previous research has

investigated the importance of topography at basin scales, while the influence of topography

on surface processes at hillslope scales (micro-topography) has not been systematically

examined. The variations of slope, roughness, aspect, and other factors at a micro-

topographic scale are likely to affect the erosion and deposition in a rilled hillslope. This

research used quantile regression (QR) to investigate the micro-topographic variation and its

influence on the sediment movement on a rilled hillslope in Loudon, TN. The elevation data

and its derivatives, including slope, aspect, roughness index (RI), terrain wetness index

(TWI), drainage density, channel depth, contributing area (CA), and the slope length-

gradient (LS) factor were taken into consideration. Our results suggest that CA is the

most important variable for both erosion and deposition. A larger rill basin tends to have

higher erosion and deposition, although the magnitude of erosion is higher than that of

deposition. The slope is positively related to erosion and negatively related to deposition,

and the roughness is positively related to deposition and negative to erosion. Areas that are

more north-facing are likely to have higher erosion and lower deposition, possibly because

the north-facing areas receive less solar insolation in the Northern Hemisphere and usually

have higher soil moisture content, resulting in faster generation of surface runoff. Larger

TWI and LS lead to more erosion possibly due to higher soil moisture content. Generally,

the relationships between topographic variation and erosion/deposition on a hillslope are

consistent with the erosion/deposition studies at basin scales. Future research is necessary

to further translate the conclusions to assist land management practices.
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3.1 Introduction

Topography imposes critical impact on the magnitude and spatial distribution of water-

induced soil erosion and deposition. Topography governs the pattern of surface flow and

influences the flow velocity and subsequently the erosive power. Terrain characteristics are

also associated with variations of soil properties (e.g. soil moisture, organic matter, and

particle size), which affect a variety of hydrological processes including infiltration, runoff

generation, and ponding (Schneiderman et al., 2007). Soil erosion models including the

Universal Soil Loss Equation (USLE, Wischmeier and Smith 1978), Revised Universal Soil

Loss Equation (RUSLE, Renard et al. 1997), and Water Erosion Prediction Project (WEPP,

Nearing et al. 1989) incorporated factors including slope and curvature to represent the

characteristics of topography. However, the majority of the models use a single parameter to

represent the topography of a hillslope/experiment plot, without accounting for the spatially

varied terrain characteristics on the hillslope surface (Liu et al., 2000; McCool et al., 1997).

These single factors denoting the topography mainly emphasize the slope length, gradient,

or concavity/convexity (Liu et al., 2000; Nearing et al., 1989; Wischmeier and Smith, 1978),

while the micro-scale topographic variation (e.g. roughness) is often incorporated as a non-

topographic parameter (e.g. as the cover factor in USLE). Although it is generally accepted

that the topography influences the spatial patterns of erosion and deposition, much emphasis

has been given to this topic at a watershed scale (Desmet and Govers, 1995; Montgomery

and Brandon, 2002; Tarolli et al., 2012), with a few attempts at a plot scale (Eltner and

Baumgart, 2015; Eltner et al., 2013; Vinci et al., 2015), possibly due to a lack of means to

obtain elevation data of high resolution and accuracy. The majority of the publicly available

digital elevation models (DEMs) are at the scale of meters, making them not ideal for the

erosion/deposition quantification and assessment within a hillslope.

Recent development in remote sensing technologies (e.g. airborne/terrestrial laser

scanning and unmanned aerial systems) allows for the high-resolution mapping of the terrain

features and the detection of geomorphic changes (Brubaker et al., 2013; Eitel et al., 2011;

Eltner and Baumgart, 2015; Hancock et al., 2008; Lucieer et al., 2014; Vinci et al., 2015).
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Subsequently, a wide range of successful applications of those high-resolution DEMs has been

executed in the field of hillslope processes over the past decades. Hancock et al. (2008) used

a terrestrial laser scanner (TLS) to generate a DEM at the cm scale that was used as the

input for landform evolution modeling. Eitel et al. (2011) examined the impact of surface

roughness on concentrated flow processes of experimental plots, and cm-level DEM pairs

were used to detect the surface change due to rill erosion. Vinci et al. (2015) found TLS

advantageous compared to the manual survey when measuring rill length and eroded volume.

Despite the emerging success of TLS in the micro-scale (cm or sub-cm) geomorphic studies,

no research has been conducted to systematically evaluate the influence of micro-topographic

variations on the erosion and deposition at the hillslope extent.

This research aims to examine the impact of micro-topographic variations on erosion

and deposition by identifying representative topographic factors that best predict erosion and

deposition on the hillslope. Although the term “micro-topography” was conventionally used

to represent the surface roughness, we hereby broadly define it as a variety of topographic

indices (e.g. slope, aspect, roughness, and others) derived from high-resolution (cm or sub-

cm) DEMs. The research questions include:

i What is the spatial pattern of erosion and deposition on a rilled hillslope?

ii What are the most important micro-topographic factors that influence erosion and

deposition, respectively?

iii How do the most significant micro-topographic factors influence erosion and deposition?

3.2 Study area

Our study site is a non-vegetated hillslope located in Loudon County, Tennessee (35◦37’32.52”N,

84◦12’59.69”W, Figure 3.1). This area is dominated by the Humid Subtropical climate

(Cfa in Köppen climate classification). Located in East Tennessee, this region is featured

with perennial precipitation and strong seasonality with hot summers and mild winters.

The precipitation events are frequent and sometimes featured with high intensity. With
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the local soil and topographic conditions that are prone to intense water-induced erosion,

soil loss in this area has been impairing the agricultural productivity and fragmenting the

landscape (Harden and Mathews, 2000; Matmon et al., 2003; Turnage et al., 1997). Once

occupied by hardwood forests, this area was subsequently cleared for cultivation, grazing,

and construction. Currently, this area is dominated by croplands and grassland, with

successional forests dominated by mesophytic species. Chestnut oak (Quercus montana)

and eastern white pine (Pinus strobus) mixed-forests are typical for the higher elevation

ridges, while areas with lower elevations are occupied with white oak (Quercus alba), tulip

poplar (Liriodendron tulipifera), and other species. The change of land use also led to a

much higher erosion rate that is approximately greater compared to the natural background

erosion rate by an order of magnitude (Leigh and Webb, 2006).

The annual total precipitation in this area is 1300 mm, and the annual mean temperature

is 15◦C. This hillslope is situated on the terrace of the Little Tennessee River, which

originated from the Blue Ridge Province of the southern Appalachian Mountains and

meanders westward into the Ridge and Valley physiographic province, constantly eroding the

carbonate and silicate sedimentary rock layers formed during the Cambrian and Ordovician

age (Chapman et al., 1982; Delcourt et al., 1986). The site is located within the Southern

Dissected Ridges and Knobs sub-ecoregion, and the dominant parent material at our site is

shale. The parent materials gradually weather to silty and clayey Ultisols, a type of fine-

grained soil that is susceptible to rilling and gullying (Luffman et al., 2015). Particle size

analyses on 6 soil samples collected at the site show that the texture of the soil is mainly

clay (70.00%) with a limited amount of silt (14.67%) and sand (15.33%).

The engineered hillslope was created during the construction of the Christensen Yacht

facility in 2007 according to Google Earth historical images. The construction created an

almost non-vegetated hillslope that has undergone intense erosion since then. Bluestem

grass (Schizachyrium scoparium) was planted on the terrace above the hillslope and also as

a strip at the bottom of the slope to control erosion. Despite such efforts, rills emerged on

the surface of the hillslope with 20 m in length from the top to the foot and 27◦ in slope

gradient, detaching and transporting sediment that was subsequently deposited at the foot
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of the hillslope. The southwest-facing slope is 257◦ clockwise from north, and the attitude

of the slope ranges from approximately 255 m to 263 m a.s.l.. This study focuses on a

vegetation-free section of the hillslope that extends about 20 m in length by 20 m in width

of the hillslope. Since no man-made boundaries (earthen berms, metal sheets, etc.) were

constructed there, the hydrology at the site is not disturbed, and the erodible materials

are abundant, making it ideal for long-term erosion monitoring and observation (Boix-Fayos

et al., 2006).

3.3 Materials and methods

3.3.1 Data acquisition

We conducted 5 field surveys at the study site on December 10th, 2014, March 7th, 2015,

June 11th, 2015, September 13th, 2015, and December 16th, 2015, respectively. Elevation

data of the slope surface were collected using a FARO Focus3D X 330 TLS, a scanner unit

with a shortwave infrared laser (wavelength 1550 nm). We used an elevator tripod on which

the scanner was mounted, and set the height of the scanner at approximately 2 m above

ground with dual-axis compensation function activated. This scanner unit can scan the

surrounding environment at a 360◦ horizontal and 307◦ vertical view with a scan radius of

330 m, and the ranging accuracy of the scanner is ± 2 mm at 50 m distance. During one

scan, the scanner emits up to 976000 laser pulses per second. The size of a laser spot is 2.25

mm at the exit, and as it gets further away from the scanner, the laser beam diverges at 0.19

mrad (0.011◦). In our case, the ranging distance between the scanner and the slope varies

from approximately 10 to 20 m, and the corresponding size of the laser spot ranges from

4.15 to 6.05 mm, based on the calculation method introduced by Pesci et al. (2011). Before

each survey, we placed 5 identical spherical reference targets (ATS Scan Reference System

with a diameter of 139 mm) around the slope. The targets are important to intra-survey

registration, and we tried to distribute these targets in a uniform fashion while avoiding any

potential disturbance on the slope. We did not install permanent targets for concerns of
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theft or vandalism. Since the scan targets are placed differently for each survey, we only

used the targets for registering intra-survey scans.

A Trimble GeoExplorer 6000 Series GeoXHTM handheld differential GPS (dGPS) was

used to record the location where the scanner and targets were placed. This dGPS unit has

a built-in satellite-based augmentation system, and a real-time correction on the coordinates

can be performed once the system locks onto the strongest satellite signal. The nearest GPS

base station is the McGhee Tyson ANGB (35.81◦N, 84.00◦W), which is approximately 28

km away from our study site. At each location, we performed the dGPS measurement for

at least 20 mins, and this allows the carrier to update the horizontal accuracy to 10 cm ±

2 parts per million (ppm) and the vertical accuracy to 20 cm ± 2 ppm. Since such level

of accuracy is not sufficient for cm level geo-referencing, the coordinates collected are used

only to coarsely place the scans at their relative locations in the 3-D virtual environment

before manual registration was performed. Further details of intra-survey registration and

between-survey geo-referencing are given in sub-section Pre-processing and DEM generation.

Surveys were performed on days with mild temperature and clear sky condition, and at

least two days after any prior precipitation event. Each survey starts with a coarse resolution

(approximately 5 cm point spacing at 50 m radius) panoramic scan at the maximum viewing

angle of the scanner unit (360◦ horizontal by 307◦ vertical) about 10 m away from the foot

of the hillslope. At least 3 scans were performed subsequently from 3 different locations at a

similar distance from the slope. The subsequent scans were parameterized so only the section

of slope that we are interested was captured at a much finer resolution (approximately 1-cm

spacing at a 50-m distance). We conducted multiple scans to minimize the occlusion caused

by the roughness of the terrain, and by merging the multiple scans together, a relatively

uniform density of points can be obtained. For each field survey, we also tried to re-occupy

the same scanning locations to achieve comparable geometry of occlusion (Lague et al.,

2013), but returning to the exact identical scan locations is difficult, as the environment is

undergoing dynamic erosion and deposition processes (Girardeau-Montaut et al., 2005).
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3.3.2 Pre-processing and DEM generation

The registration and geo-referencing were performed in the FARO SCENETM software. This

software has a target-based registration function that allows for intra-survey registration

between different scans. An Iterative Closest Point algorithm (Chetverikov et al., 2002) is

incorporated in this software to help align the scans on a target-to-target basis. At last, we

visually checked the results of the registration/geo-referencing in a correspondence view and

manually placed the different scans using the scan targets and other features in our scan

with regular geometry (e.g. the wall of the yacht facility) to further improve the results.

The panoramic scan performed at a relatively coarser resolution is used as the reference

for intra-survey registration. Once the scans within the same survey are registered, they are

considered a cluster. Any transformation in the between-survey geo-referencing is performed

based on the entire cluster while the relative locations of scans in the same cluster stay fixed.

The reference cluster for geo-referencing was the December 2014 survey. We used the root-

mean-square error (RMSE) between control points in each survey to assess the quality of the

registration and geo-referencing. The RMSE is calculated in a three-dimensional space (x,

y, and z). The intra-survey RMSE is calculated based on the offset of the 5 spherical targets

in three-dimensions, while the geo-referencing RMSE is calculated based on the permanent

artificial features captured in our survey with regular geometry (e.g. walls of the yacht

facility). The RMSE for intra-survey registration and the between-survey geo-referencing

are listed in Table 3.1.

We then exported the 5 surveys as 5 separate point cloud files, with each point stored as a

single data entry with attributes (x, y, and z) defining their location in the three-dimensional

space. The section of the slope we surveyed is free of vegetation, so no vegetation removal

is necessary in data processing. We then converted the point cloud files to 5 DEMs of 1 cm

resolution using a bilinear interpolation method and projected all DEMs to a local Cartesian

projection. The bilinear interpolation algorithm determines the value of a grid cell using the

linear combination of four nearby neighbors while the value on each dimension (x or y) in

the linear function is determined while the other is held fixed. A more detailed instruction
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of the calculating method can be found in Kidner et al. (1999). The method is suitable for

continuous spatial datasets that don’t exhibit distinct boundaries and is widely accepted in

converting LiDAR datasets to raster DEMs (Cobby et al., 2001; Rees, 2000; Smith et al.,

2004). The local Cartesian projection focuses on the center point of the area of interest and

defines a plane that is tangent to the spheroid at the center point, without accounting for

the differences in z between corresponding points on the plane and the spheroid (Kennedy

and Kopp, 2002). In our case, since the scanner stores each point in a Cartesian space, the

use of the local Cartesian projection best preserves the original quality of the data since the

distortion of the z is negligible due to the small extent of our study area.

3.3.3 DEM of difference

We used the DEM of Difference (DoD) method to calculate the erosion and deposition in

our study area. The DoD method is a widely used for geomorphic change detection based

on temporal DEMs of the same study area (Williams, 2012). The differences between two

DEMs obtained at time t1 and time t0 are quantified based on the equation:

∆DEM = DEMt1 −DEMt0 + ε (3.1)

where t0 is the initial time when the DEM was collected, t1 is the subsequent time of

data collection, and ε is the error. The calculation is performed on a cell-to-cell basis, and

the result is a raster with cells of positive values representing deposition and negative values

representing erosion. The error (ε) in the equation is propagated using the ranging error

associated with the scanner (2 mm), the registration and geo-referencing error (see Table 3.1),

the noise created by local elevation variation, and the error associated with environmental

factors (e.g. atmospheric conditions, soil moistures, etc.).

The Geometric Change Detection 6.0 (GCD) software allows for the DoD calculation

while accounting for the spatially varied uncertainties (Wheaton et al., 2010). The GCD

uses the Fuzzy Inference System that applies the fuzzy membership function to assign the

uncertainties of each individual cell based on a set of input variables including point density,
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roughness, and slope. For example, cells of high point density, low roughness, and low

slope gradient are considered with low uncertainty and vice versa. When performing the

DoD calculation, the output uncertainty is propagated along with uncertainties from other

sources (e.g. registration, survey method). A more detailed instruction on the method

is available through Wheaton et al. (2010). We repeated the DoD analysis between each

adjacent surveys, and produced 4 DoD raster files from the 5 temporal DEMs, and only

considered the change that is statistically significant at the 95% confidence level. The output

raster of the DoD allows for the estimate of the volume of erosion and that of deposition.

3.3.4 Micro-topographic indices considered in this study

A number of micro-topographic factors are associated with erosion and deposition. The

following subsections briefly review each factor and summarize the relationships between

individual index and erosion/deposition. Most of the indices are derived based on DEMs with

the resolution of meters, or tens of meters, and have been commonly used for watershed-scale

research purposes in previous literature. To what degree that the findings at a watershed

scale are translatable to a smaller hillslope scale is to be determined in our study.

Contributing Area

The contributing area denotes the entire area that contributes to the generation of runoff

to a certain location. Contributing area has been widely used for channel network modeling

(O’Callaghan and Mark, 1984; Tarboton et al., 1991), soil moisture mapping (Beven and

Kirkby, 1979; Moore et al., 1991), and soil erosion prediction (Desmet and Govers, 1995,

Montgomery and Brandon, 2002). The contributing area is considered positively related

to rill erosion: for Hortonian overland flow, the contributing area affects rill discharge thus

indirectly influences rill hydraulics (Beven and Kirkby, 1979; Desmet and Govers, 1996).

Contributing area is also found to be correlated to the frequency of rill occurrence (Ludwig,

et al., 1995) and a correlation between the rill cross-sectional area and a power function of

the contributing area has been observed (Desmet and Govers, 1997; Ludwig et al., 1995).
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Roughness

Terrain Roughness describes the variation and irregularities of soil surface created due to

grains, micro-aggregates, soil clodiness, and farming implements (Allmaras et al., 1966;

Linden and Van Doren, 1986; Riley, 1999; Römkens and Wang, 1986; Saleh, 1993, 1994). The

recent use of digital photogrammetry, laser profile meters, or TLS provides more efficient

and accurate alternatives compared to traditional techniques (Aguilar et al., 2009; Eitel

et al., 2011). A higher roughness reduces soil erosion by increasing hydraulic resistance

and dissipating the flow energy (Abrahams and Parsons, 1991; Römkens and Wang, 1986).

Roughness also delays runoff generation by increasing depression storage and infiltration

(Cogo et al., 1984; Darboux and Huang, 2005; Gómez and Nearing, 2005).

Elevation

Elevation in this research is included as a approximation of the effective slope length, which

describes the distance from the drainage divide to a certain location (Liu et al., 2000; McCool

et al., 1997, 1989). Moore and Burch (1986) suggested that the sediment yield per unit area is

proportional to the length of the slope if the erosion is governed by the steady-state discharge

per unit width. The slope length has been widely incorporated in the USLE (Wischmeier

and Smith, 1978) and RUSLE (Renard et al., 1997) based on a power function between

normalized soil loss and slope length. Some studies found that the slope length is also

related to the ratio of rill to interrill erosion (Foster et al., 1977; McCool et al., 1997, 1989).

Other studies found increased deposition rates with increased slope length and suggested

that the relationship between the sediment yield and slope length is scale-dependent (Yair

and Raz-Yassif, 2004).

Slope gradient

The slope gradient refers to the steepness of a certain area, and on a plot scale, it is

positively related to both interrill and rill erosion (Abrahams et al., 1996; Fox and Bryan,

2000; Meyer et al., 1975). Some studies established a power function between erosion and

77



slope steepness (Desmet and Govers, 1997; Fu et al., 2011; Mah et al., 1992). Soil erosion

models including RUSLE commonly incorporate the slope gradient and the slope length as

one single factor (Desmet and Govers, 1996; Morgan et al., 1984; Renard et al., 1997). At

finer scales, it is shown that slope positively affects the within-channel erosion by increasing

the within-channel detachment through higher shear stress on the channel bed or more

frequent occurrences of tension crack on sidewalls (Haan et al., 1994; Mart́ınez-Casasnovas

et al., 2009; Nearing et al., 1989).

Rill density

The rill density is defined as the number of rills per unit width (rill spacing) or the total

length of rills per unit area (Tucker and Bras, 1998). Rill density varies for different

slope steepness, slope length, runoff condition, soil texture, erodibility, and variation in

precipitation (Fang et al., 2015; Gilley et al., 1990; Meyer and Monke, 1965; Shen et al.,

2015). Soil erosion models, such as the KYERMO (Hirschi and Barfield, 1988a) and WEPP

(Nearing et al., 1989), incorporated parameters denoting rill density in the prediction of

erosion. The KYERMO model suggested that the rill density controls sediment yield mainly

by affecting rill detachment and boundary shear stress, and the testing of model showed

that higher rill density leads to reduced sediment yield, as the surface runoff is of lower flow

rates while distributed over more rills (Hirschi and Barfield, 1988a,b). Olsen (2016) assessed

rill networks and sediment yields during the post-wildfire erosion in the Coastal Ranges of

California, and found rill density highly correlated to sediment yields (R2 = 0.97). The rill

density changes over time with the development of rill networks, and so far no consensus

exists as for how to parameterize rill density for erosion prediction.

Aspect

The aspect influences soil properties, including the soil depth, moisture, pH, organic matter,

and other soil nutrients (Agassi et al., 1990; Cerdà et al., 1995; Kutiel and Lavee, 1999;

Qiu et al., 2001; Rech et al., 2001; Reid, 1973). The aspect affects the soil moisture on

the surface layer, and usually the north-facing slopes have higher soil moisture compared
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to the south-facing slopes in the Northern Hemisphere (Hanna et al., 1982; Reid, 1973).

Since soil moisture is directly related to the infiltration and runoff generation, erosion rates

differ between north- and south-facing slopes (Torri, 1996). No consensus exists regarding

the effect of aspect on soil erosion, as the relationship between aspect and erosion is often

obfuscated by complex interactions between environmental and experimental factors, such as

microclimate (Marque and Mora, 1992), vegetation cover (Cerdà, 1998; Marque and Mora,

1992; Notario del Pino and Ruiz-Gallardo, 2015) and other experiment treatments (Agassi

and Ben-Hur, 1991).

Topographic wetness index

The Topographic Wetness Index (TWI) was originally proposed by Beven and Kirkby (1979)

to quantify the topographic control on hydrological processes. TWI is derived based on

contributing area and the slope (calculation detailed in Table 3.2), and is related to soil

depth, infiltration rate, runoff generation, soil texture, and soil aggregates (Barling et al.,

1994; Burt and Butcher, 1985; Hancock et al., 2015; Western et al., 2004). Studies have found

positive relationships between TWI and sediment yield through hillslope channel erosion

(Daba et al., 2003; Kheir et al., 2007; Pike et al., 2009).

LS factor

The Slope length-gradient (LS) factor incorporates information regarding the slope length

and gradient to predict soil erosion (McCool et al., 1997; Renard et al., 1997; Wischmeier

and Smith, 1978). The LS factor is positively related to erosion and is a sensitive parameter

in RUSLE/USLE (McCool et al., 1997). Although the original LS factor was introduced at

the plot scale and defined as the proportion to the standard plot of a given slope length,

many new methods have developed to derive this factor in GIS using DEMs, based on the

contributing area and the slope gradient (Oliveira et al., 2013; Tetzlaff and Wendland, 2012;

Desmet and Govers, 1995). Molnár and Julien (1998) used LS factor calculated at various

resolutions to estimate soil erosion and concluded that the detailed slope gradient can be

smoothed out with increased cell size thus affecting the calculation result. The LS factor
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was almost universally used as a plot-wise parameter, but the efficacy of using the LS factor

to predict erosion on the micro-scale has not been investigated. We used the DEM-based

method proposed by Desmet and Govers (1995) to extract the LS factor.

Channel depth

Channel depth, or the measure of elevation difference for any pixel and the dividing ridge,

reflects the location of a certain pixel along the cross-section of the basins: lower values

of channel depth represent interfluve areas, while higher values represent channels. The

spatial pattern of the channel depth is dependent upon the general terrain characteristics; in

relatively flat regions, the channel depth values should be stable; while in regions with high

variation in elevation, the index has larger variances. The channel depth is useful in soil

classification, soil organic carbon mapping, and geomorphic feature analyses (Abdel-Kader,

2013; Adhikari et al., 2014; Feuillet et al., 2012; Yang et al., 2016).

3.3.5 Calculation of the factors

We derived the above-mentioned 9 factors in ArcGIS 10.4 and SAGA GIS using 4 DEMs

(December 2014, March 2015, June 2015, and September 2015). These 4 DEMs are

considered the initial stages, and the elevation changes occurred until the next survey are

produced by the DoD analyses. We used rill basins to derive summary statistics of each

variable, defining the median, sum, or percentage value within each basin. The basins were

derived using the watershed tool in TauDEM (Tarboton, 2001). We then generated points

at 0.5 m interval along the rills to segment the rill basins into a series of non-overlapping

polygons at equal intervals.

All geomorphic indices are calculated based on the 1-cm DEMs, and subsequently

summarized for the rill basin segments. The information of the independent variables is

detailed in Table 3.2. The aspect (surface facing) extends clockwise from 0◦ (north) to

full 360◦ (again north), and we used the first harmonic of the Fourier transformation to

convert the aspect to the cosine and sine components. The Fourier transformation is widely
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accepted in statistical models for terrain analysis to differentiate influence of aspect into the

north-south and west-east variations, meanwhile maintaining the circular and continuous

nature of the aspect (Evans, 2006; Li et al., 2016). For factors including the contributing

area (Erskine et al., 2006), LS (Desmet and Govers, 1996), RI (Mukherjee et al., 2013),

and TWI (Sörensen et al., 2006), a variety of calculation methods are available. To date,

no specific calculation methods have been proven especially advantageous, and the merits

of various methods are dependent upon the explicit research topic, scale of the area, data

source, and data resolution. We selected calculation methods that are less computationally

intense and prioritized methods that produce unitless indices so the findings are possibly

more translatable.

3.3.6 Quantile regression

We used the quantile regression (QR) models to examine the relationship between ero-

sion/deposition and the independent variables listed in Table 3.2. The QR was developed

based on the modification of classical Ordinary Least Squares (OLS) regression.

Classical OLS regression which is based on the estimation of regression coefficient using

the unconditional mean by solving

β̂ = arg min
β∈Rρ

∑
(yi − x

′

iβ)2. (3.2)

QR is originally developed by Koenker and Hallock (2001). The quantile regression

estimates the coefficient using the conditional quantile τ as,

β̂(τ) = arg min
β∈Rρ

∑
ρτ (yi − x

′

iβ) (3.3)

where τ is the τth quantile (0 < τ < 1) that is defined as,

Q(τ) = inf{y : F (y) ≥ τ} (3.4)
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which satisfies

F (y) = Prob(Y ≤ y) (3.5)

The QR is considered more suitable for this research because 1) QR is more robust for

potential outliers; 2) QR provides better performance when variables are non-Gaussian; 3)

QR is more robust when the variables do not exhibit homoscedasticity (similar variance for

all x).

Spatial autocorrelation among variables violates the assumption of independence for

common statistical practices (Legendre, 1993). In our case, a variety of sources might

contribute to the spatial autocorrelation from the variables, through hydrological and other

physical processes associated with the movement of sediment. Spatial autocorrelation might

also be affected by the spatial structure imposed through the choice of spatial areal units,

the segments at the 0.5 m interval, to summarize the data.

We used a group k-fold cross-validation method to minimize the influence of spatial

autocorrelation while achieving the optimal quantile τ without overfitting. The group k-

fold cross-validation method divides data into k groups based on a categorical variable; the

cross-validation is repeated for k times, and for each iteration, k − 1 groups are used to

train the model and the one group that is left out is then used to validate the model. The

k results from the iterations are eventually averaged to yield an estimation. There are 19

rill drainage points at the foot of the slope, and to reduce the spatial autocorrelation, we

divided the entire dataset into 19 groups based on the 19 outlets to which the basin segments

drain. Therefore, the segments within a rill basin cannot be included in both the training

and testing sets.

Since we included various terrain derivatives that may or may not share redundant

information, it is possible for our model to produce biased estimation unless variables are

selected in an objective fashion. We used the Recursive Feature Elimination (RFE) with

external validation to select the fewest possible variables that preserve the best predictive

ability (Kuhn, 2008). Sometimes a backward feature selection approach is used for statistical
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models: the model loads all the variables in the beginning and the least important variable

is dropped at each iteration, until the model performance converges at an optimal set of

variables. However, such approach is susceptible to over-fitting to the training data but the

variables of selection may be uninformative when predicting on new datasets (Ambroise

and McLachlan, 2002). The RFE approach accounts for such issues by enclosing the

backward feature selection within a resampling procedure, that for each iteration, the data

are partitioned into different training and testing subsets, and the performance of the model

is evaluated using the MSE of the testing subset. The variables included in the final model

are determined based on a consensus ranking from all the iterations (Kuhn, 2012).

3.4 Results

3.4.1 DEM of Difference

Table 3.3 summarizes the areal and volumetric changes in the study area during the 4 periods

in the 1 year cycle. In all situations, both erosion and deposition were observed in the study

area and our study area underwent intensive erosion, with a total of 1.19 ± 0.46 m3 sediment

eroded and 0.17 ± 0.08 m3 sediment deposited from December 2014 to December 2015. The

total net volume of sediment delivery is 1.02 ± 0.54 m3. The March – June period witnessed

the largest volume of erosion (0.38 ± 0.16 m3) followed by the September – December period

(0.36 ± 0.13 m3); the December 2014 – March 2015 and the September – December periods

underwent the largest volume of deposition (0.05 ± 0.03 m3 and 0.05 ± 0.02 m3, separately).

Figure 3.2 shows the spatial pattern of erosion and deposition in the study area during

the 4 periods from December 2014 to December 2015. Generally, the rills are more dynamic

compared to interrill areas, with the majority of the detectable changes having occurred

either within or in proximity to the rills. The majority of the interrill areas are relatively

stable, that only a few “hotspots” of erosion or deposition can be observed in interrill areas.
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3.4.2 Variable selection

Table 3.4 shows the results of the Pearson’s correlation analyses between the dependent

variables and independent variables. Both erosion and deposition are correlated with several

independent variables, and many independent variables are correlated with one another.

High correlation is observed between some of the variables. For example, the correlation

coefficient between the slope and the LS is 0.83, and the correlation between the slope and

RI is 0.97. The LS factor is highly correlated with CA (0.73) and RI (0.84). The correlations

might lead to biased estimation of coefficients and affect the efficacy of OLS regression.

We used the RFE to select the fewest variables that could achieve the minimal MSE.

Table 3.5 shows the results of the RFE. The erosion model and the deposition model achieved

the least MSEs with 8 and 9 variables, respectively. The variables in Table 3.5 are ranked

in correspondence to their importance to the model (reflected in the % change in MSE).The

% change in MSE can also be viewed as a measurement of the relative importance of each

variable in the model. In the erosion model, the CA is the most important factor and the

model with only the CA has a high MSE of 0.28600. With more variables included in the

model, the MSE gradually decreases until it increases again. The second most important

factor is the slope, followed by the CosA, Depth, RI, TWI, LS and Elevation. For the

deposition model, the CA is also of the highest importance, followed by Elevation, Depth,

CosA, TWI, LS, Slope, RD, and RI. The RD was only included in the deposition model,

and the SinA is the only variable not included in either the erosion or the deposition model.

This suggest that the variation of the aspect on the west-east direction in our study area did

not have significant influence on the erosion and deposition.

3.4.3 Quantile regression for erosion/deposition modeling

Figure 3.3 shows the comparison between the observed and predicted erosion/deposition

using OLS regression and QR models. The OLS regression models produced R2 values of

0.19 and 0.31 for erosion and deposition, respectively; the QR models produce R2 values

of 0.29 and 0.34, respectively. The QR model has stronger explanatory ability compared
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to the OLS regression model, possibly because the amount of erosion and deposition in our

study area do not follow a uniform distribution. The QR models also produced less biased

prediction at the extreme values when the optimal quantile parameter was adopted. The

predictions made by the QR showed a better agreement with the observed values compared

to those of the OLS regression models (the black and red dashed lines are closer in QR

models).

Table 3.6 – 3.9 show the coefficients of individual variables in the QR models. We

examined the erosion and the deposition models for the 4 periods and for each model, the

quantile (τ) that produces the smallest cross-validation MSE were used. Generally, CA is

associated with higher erosion and deposition, although the absolute value of the coefficient

for CA is relatively higher in the erosion model, although during the Jun. 2015 – Sep. 2015

period, the coefficient for CA (0.015) in the deposition model is slightly higher than the

absolute value of CA coefficient (0.011) in the Erosion model. As is shown in Table 3.6 –

3.9, the steepness of the slope is also associated with higher erosion and lower deposition.

In our study area, the slope has been incised with well-developed rills, and rill sidewalls are

steeper compared to interrill areas and rill floors. During rainfall events, the flow in the

rills would slough the sidewalls and failure events would occur when the stability reaches a

certain threshold. The coefficient of slope represents the influence of steepness change on

the magnitude of erosion/deposition. For example, the coefficient of slope in the Dec. 2014

- Mar. 2015 model is -0.332 for erosion and -0.025 for deposition, and this suggests that one

degree of slope change will have an effect of -0.357 cm on the average elevation change. This

effect of slope is the greatest during the Mar. 2015 - Jun. 2015 period, when the combined

coefficient from the erosion model (-0.356) and the deposition model (-0.227) is -0.583 cm.

This is possibly because the materials are relatively loose at the beginning of this period

following the diurnal freeze-thaw cycles in the past winter, and the sidewalls of the rills are

more vulnerable when exposed to the sloughing of the concentrated flow.

A higher roughness is associated with higher deposition and lower erosion, since more

rugged terrain surface tends to dissipate the flow power therefore reduces the transport

capacity. In our study site, the roughness is introduced by the surface armoring created by
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the selective processes from the rill flows. During the four periods, higher elevation generally

leads to lower erosion and lower deposition, which is reflected by the field observation that

the areas closer to the top of the hillslope are generally more inactive compared to the foot

area. A larger depth leads to less erosion and more deposition. Areas with the largest depth

are usually where the rills are most deeply incised, such as the rill floors; the deeper the rills

grow, the more compact and less erodible the materials will be.

Moreover, several factors that are generally considered to be related to soil moisture

affect erosion and deposition. Our results suggest that a larger CosA leads to higher erosion

and lower deposition. The CosA represents the facing of an area in a north-south direction,

and a larger CosA is closer to due north. North-facing areas are more likely to have higher

soil moisture in the Northern Hemisphere, thus during the rainfall events, more likely to be

saturated and generating runoff more quickly. The effect of soil moisture is more pronounced

in frequent consecutive rainfall events, as the moisture present in the soil has not been fully

evaporated. A larger TWI leads to higher erosion and lower deposition. One possible reason

is that areas with higher TWI values are more likely to have higher soil moisture, and during

an rainfall event, or consecutive rainfall events, locations with higher soil moisture would

have more rapid runoff generation and concentration.

3.5 Discussion

3.5.1 Seasonal variation of erosion and deposition

Different precipitation and temperature conditions during the 4 scan periods likely to

contribute to variations in erosion and deposition. The December 2014 to March 2015

period witnessed less erosion and more deposition compared to the other 3 periods. A

possible explanation is that the transport capacity of the flows during this period was

relatively limited. During most days of this period, the low temperature in our study

area was below the freezing point and the observed change might be driven by the freeze-

thaw mechanism. Historical daily meteorological data are available at U.S. climate data

(www.usclimatedata.com). Figure 3.4 illustrates the variation of daily high temperature, low
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temperature, precipitation, and snow at Lenoir City, TN, USA (35.79◦N, 84.26◦W), which

is approximately 18 km from the study area. The daily low temperature dropped below 0◦C

starting late October, and for most days of November, December, and January, the daily

temperature fluctuates above and below 0◦C. Meanwhile, occasional precipitation events may

keep the soil moist, allowing for intense freeze-thaw cycles with the diurnal variation of the

temperature. Barnes et al. (2016) found that a thin soil layer on the surface can be heaved

by ice crystals formed during freezing seasons, and these crystals leads to failures and within-

channel deposition during thawing. The mass failures along the sidewalls created by freeze-

thaw cycle lead to wider cross-sections that reduced the flow velocities within the rills (Gatto,

2000). The DoD result during the first period suggests that the limited transport capacity

created more within-channel deposition in the first period, leading to higher sediment supply

in the subsequent period which resulted in high erosion rates between the 03/2015 and the

06/2015 surveys.

3.5.2 Factors controlling erosion and deposition

Factors show different importance regarding their impact on erosion and deposition, and

their influences also differ at different scales. CA is the most important variables in all

models, suggesting the importance of relative location on the slope and the relative location

within a rill basin. The coefficients of the QR models show that a larger TWI value leads

to more erosion and less deposition, and the closer the facing is to the due north (larger

CosA), the more erosion and less deposition are observed. Both TWI and aspect are indirect

indicators of soil moisture content. In an area with lower TWI, or more south-facing, the

soil moisture level is likely to be lower, and vice versa. During a rainfall event, the drier

soil is able to absorb more precipitation and postponing the generation and concentration of

surface runoff. Depth is another important factor in most of our models, and this variable

denotes the importance of relative location along the cross-section of a rill. A larger depth

suggests less erosion and more deposition in our study area. The rills in our study area have

been well developed, and the deeper rills have reached to a compact layer when they get to

∼ 25 cm deep, where the bed materials are not completely decomposed. These materials
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are less-erodible compared to the loose materials at the surface layer. The failure events will

provide higher sediment supply into the rills, and these materials are likely to deposit, even

temporarily, at the rill floors where the depth is the greatest.

3.5.3 Limitations of this work

The complex nature of the erosion and deposition processes introduces challenges to modeling

the sediment redistribution at a hillslope scale using grid-based approaches (Gessesse et al.,

2010; Nouwakpo et al., 2017). Although the use of modern remote-sensing technologies

(e.g. terrestrial and airborne laser scanning, unmanned aerial systems) allows for accurate

detection and reconstruction of the details of terrain surface, various tools are designed for

their respective purposes with different levels of accuracy. The choice of method should be

in correspondence with the extent of the study area, the size of the feature to be monitored,

the acceptable level of error, and other factors, such as temporal intervals of data acquisition

and logistic availabilities. TLS is useful in our study by allowing for rapid mass sampling of

the terrain surface with no direct interference, and the high-resolution dataset enabled the

differentiation and quantification of the spatially varied erosion and deposition. However,

limited to the errors from various sources, we could not detect most of the changes in the

interrill areas.

A closer field examination shows that the redistribution of sediment in our study area is

further complicated by other factors, including surface armoring and crusting (Figure 3.5).

The erosive power gradually exhausts the relatively finer particles (e.g. clay and silt) that are

more easily to be detached and transported, leaving behind coarser materials including some

pebbles. Our model also did not take into account the heterogeneity of soil properties,

including particle size, organic matter, and soil moisture. The spatially heterogeneous

properties of soil particles, if included, would possibly improve the performance of our

model. However, a mass sampling of the entire slope at such fine resolution can be both

expensive and time-consuming, and causing some damaging interferences to the plot. Other

factors such as the existence of the pebbles within our study area are also likely to change

the erosion/deposition patterns by altering surface hydrology. We observed the exposure of
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pebbles in both rill channels and the interrill areas. The pebbles help prevent raindrop splash

and sheet erosion on interrill areas by reducing the impact of raindrops and dissipating flow

energy with an increased surface roughness; they also protect the floors of the rills from

further entrenchment. The sudden increase in roughness may cause the transport capacity

of flow to decrease, leading to depositions within the rills. We also observed surface crusting

in our study area, with a thin layer of dense and tough materials forming on the soil surface.

This layer can offset the impact of raindrop in interrill areas (Mah et al., 1992).

3.6 Conclusions

This research used statistical models to examine the micro-topographic factors and its

influence on sediment movement across a rilled hillslope. Generally, the quantile regression

model (QR) showed stronger predictive ability compared to the classical GLM, with 29%

of the variability for erosion and 34% for deposition explained by the micro-topographic

variables. The coefficients of 9 factors (contributing area, roughness, slope length, gradient,

rill density, aspect, wetness, LS, and channel depth) reflect the level of their influence on the

prediction of erosion or deposition in the QR models. A larger CA leads to higher erosion

and deposition, although the absolute value of the coefficient for CA in the erosion model

is relatively higher. A steeper slope increases the amount of erosion and reduces deposition.

Roughness is positively related to deposition and negatively related to erosion. Rill floors

with larger depth value tend to have less erosion and more deposition. The cosine component

of the aspect is associated with higher erosion and lower deposition, possibly due to higher

soil moisture on the north-facing slopes with limited solar insolation. The Topographic

Wetness Index (TWI), another index that is positively associated with the soil moisture,

also leads to higher erosion and lower deposition. Through all period, the coefficients of

individual variable showed consistent influence on erosion and deposition.
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Appendix for Chapter 3

Table 3.1: The descriptive statistics of surveys and registration/geo-
referencing quality

Dataset
Number of Avg. point density RMSE (cm)*

points (pts/cm2) Intra-survey Between-survey

12/2014 7671276 1.91 0.35 ± 0.11 0 (reference)

03/2015 8983232 2.25 0.35 ± 0.13 0.53 ± 0.08

06/2015 8223775 2.06 0.34 ± 0.11 0.41 ± 0.08

09/2015 8059708 2.02 0.33 ± 0.12 0.44 ± 0.05

12/2015 7931839 1.99 0.35 ± 0.14 0.40 ± 0.07

* mean ± standard error
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Table 3.2: Variables included as inputs to the statistical analyses

Factor Variable name Unit Summary Statistics Calculation method

Contributing area CA m2 median D8 method

Slope length Elevation m median –

Slope gradient Slope ◦ median Derived using DEM

Surface facing Aspect ◦ median
Derived using DEM. Transformed to cosine and sine components to
represent north-south and east-west trend separately

Rill density Drainage m/m2 median L/A, where L is the total length of rill and A is the area

Roughness RI m median
RI =

√∑
(xij − x00)2, where x00 is the elevation of the central cell,

and xij is the elevation of each neighboring cell in a 3 × 3 kernel

Topographic Wetness Index TWI unitless median TWI = ln(α/ tanβ), where α is the contributing area, and β is the slope

LS factor LS unitless median

LS = (
(Ai,j−in+D2)m+1−Am+1

i,j−in
Dm+2×xmi,j×22.13m

)×
√
G2
x +G2

y ,where m is the slope length

exponent, Ai,j−in is the contributing area at the inlet of grid cell with
coordinates (i, j), α is the aspect of the cell, D is the grid cell size,
and Gx and Gy represents gradient on x and y directions.
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Table 3.3: The areal and volumetric changes within our study area during the 4 scans

Date

12/2014 03/2015 06/2015 09/2015

– – – – Total

03/2015 06/2015 09/2015 12/2015

Areal

Area w. Detectable Change (m2) 5.83 8.73 6.86 8.75 –

Area of Erosion (m2) 3.80 8.59 6.35 7.37 –

Area of Deposition (m2) 2.03 0.14 0.52 1.38 –

Percent of Area w. Detectable Change 3.76% 5.63% 4.42% 5.65% –

Volumetric

Volume of Erosion (m3) 0.18 ± 0.07 0.38 ± 0.16 0.27 ± 0.10 0.36 ± 0.13 1.19 ± 0.46

Volume of Deposition (m3) 0.07 ± 0.03 0.03 ± 0.01 0.04 ± 0.02 0.05 ± 0.02 0.17 ± 0.08

Net sediment change (m3) 0.13 ± 0.10 0.35 ± 0.17 0.23 ± 0.12 0.31 ± 0.15 1.02 ± 0.54
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Table 3.4: Results of Pearson’s correlation analysis

erosion deposition elevation slope LS CA Depth aspect RD RI

deposition -0.11

elevation 0.38
∗∗

-0.17
∗∗∗

slope -0.30
∗∗∗

0.23
∗∗∗

-0.36
∗∗∗

LS -0.37
∗∗∗

0.25 -0.50
∗∗

0.83
∗∗∗

CA -0.43
∗∗∗

0.31
∗∗

-0.55
∗∗∗

0.53
∗∗∗

0.73
∗∗∗

Depth 0.27
∗∗

-0.12 -0.10
∗

-0.01 0.03 0.15
∗∗

aspect 0.04 -0.09
∗

0.01 -0.06 -0.07 -0.01 0.07

RD -0.01 0.04 0.06 0.04
∗∗∗

0.25
∗∗

0.15 -0.07
∗∗

-0.11
∗∗∗

RI -0.31
∗∗∗

0.24
∗∗∗

-0.37
∗∗∗

0.97
∗∗∗

0.84
∗∗∗

0.58
∗∗∗

-0.02
∗∗

-0.09 0.04
∗∗

TWI 0.02
∗∗

0.01 -0.07
∗∗∗

-0.52
∗∗∗

-0.05 0.00 0.10 0.00 0.31 -0.50
∗∗∗

∗
significant at the 0.1 level (p < 0.1);

∗∗
significant at the 0.05 level (p < 0.05);

∗∗∗
significant at the 0.01 level (p < 0.01).
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Table 3.5: Change of MSE as more variables are included in the final models

Erosion Deposition

No. of variables Variable* MSE** Variable* MSE**

1 CA 0.28600 CA 0.22500

2 Slope 0.22090 Elevation 0.17898

3 CosA 0.20833 Depth 0.16456

4 Depth 0.19665 CosA 0.15949

5 RI 0.19082 TWI 0.15715

6 TWI 0.17694 LS 0.15247

7 LS 0.17349 Slope 0.14779

8 Elevation 0.17151 RD 0.14223

9 RD 0.17241 RI 0.14077

10 SinA 0.17286 SinA 0.14155

* The variables are ranked according to their importance in each model in
descending order.

** The minimal MSE produced with the fewest variables is in bold.

Table 3.6: Coefficients of the QR models: Dec. 2014 – Mar. 2015

Erosion model*(τ = 0.56) Deposition model (τ = 0.53)

n = 322 Coefficients std. error P-value n = 297 Coefficients std.error P-value

constant -2.235 1.186 0.060 constant 16.454 2.903 0.000

CA -0.011 0.005 0.042 CA 0.010 0.002 0.000

Slope -0.322 0.090 0.000 Slope -0.025 0.013 0.065

CosA -0.367 0.116 0.002 CosA -0.726 0.213 0.001

RI 81.325 43.617 0.000 RI 95.151 12.201 0.000

Depth 1.199 0.669 0.074 RD 0.036 0.027 0.185

TWI -0.115 0.055 0.035 Depth 0.425 1.164 0.715

LS -0.012 0.005 0.021 TWI -0.056 0.042 0.188

Elevation 0.009 0.004 0.000 LS 0.068 0.228 0.767

Elevation -0.058 0.011 0.000

* Erosion values are shown as negative elevation change.
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Table 3.7: Coefficients of the QR models: Mar. 2015 – Jun. 2015

Erosion model*(τ = 0.66) Deposition model (τ = 0.59)

n = 285 Coefficients std. error P-value n = 302 Coefficients std.error P-value

constant 6.454 2.525 0.011 constant 3.098 1.328 0.019

CA -0.127 0.007 0.000 CA 0.011 0.002 0.000

Slope -0.356 0.160 0.000 Slope -0.227 0.085 0.000

CosA -0.798 0.337 0.019 CosA -0.142 0.115 0.143

RI 68.499 19.014 0.000 RI 68.773 56.161 0.216

Depth 1.727 0.353 0.001 RD -0.099 0.022 0.000

TWI -0.967 0.451 0.033 Depth 0.085 0.081 0.299

LS 1.956 1.018 0.056 TWI -2.020 0.239 0.000

Elevation 0.085 0.028 0.003 LS -3.699 0.447 0.000

Elevation -0.019 0.007 0.002

* Erosion values are shown as negative elevation change.

Table 3.8: Coefficients of the QR models: Jun. 2015 – Sep. 2015

Erosion model*(τ = 0.63) Deposition model (τ = 0.52)

n = 341 Coefficients std. error P-value n = 169 Coefficients std.error P-value

constant -0.647 2.078 0.755 constant -1.816 4.472 0.685

CA -0.011 0.004 0.008 CA 0.015 0.006 0.000

Slope -0.012 0.007 0.113 Slope -0.210 0.059 0.000

CosA -0.124 0.049 0.012 CosA -0.705 0.091 0.000

RI 88.795 38.530 0.022 RI 17.169 14.803 0.256

Depth 1.409 1.302 0.280 RD -0.057 0.041 0.162

TWI -0.039 0.016 0.015 Depth 1.553 1.065 0.147

LS -0.305 0.027 0.000 TWI -0.759 0.237 0.002

Elevation 0.004 0.006 0.481 LS 1.565 0.408 0.000

Elevation -0.144 0.044 0.000

* Erosion values are shown as negative elevation change.
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Table 3.9: Coefficients of the QR models: Sep. 2015 – Dec. 2015

Erosion model*(τ = 0.58) Deposition model (τ = 0.66)

n = 290 Coefficients std. error P-value n = 149 Coefficients std.error P-value

constant -5.791 1.452 0.000 constant -11.040 4.232 0.010

CA -0.015 0.002 0.000 CA 0.021 0.003 0.000

Slope -0.049 0.012 0.000 Slope -0.017 0.033 0.607

CosA -0.177 0.102 0.083 CosA -0.265 0.147 0.073

RI 95.925 26.975 0.000 RI 42.273 40.107 0.300

Depth 0.034 0.014 0.012 RD -0.009 0.022 0.680

TWI -0.042 0.083 0.017 Depth 1.553 1.065 0.147

LS -0.429 0.189 0.022 TWI -0.092 0.093 0.322

Elevation 0.020 0.006 0.000 LS 0.408 3.910 0.917

Elevation 0.047 0.018 0.009

* Erosion values are shown as negative elevation change.
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Figure 3.1: Study area of this research
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Figure 3.2: the DoD results show the spatial pattern of sediment redistribution in our
study area.
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Figure 3.3: Predicted vs. observed erosion and deposition using LR and QR models. The
regression between predicted and observed values is shown in black dashed lines; the red
dashed line represents y = x (perfect agreement).
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Figure 3.4: The variation of high temperature, low temperature, precipitation, and snow
in our study area during the span of this research. The data is obtained from U.S.
climate data (http://www.usclimatedata.com/climate/lenoir-city/tennessee/united-states/
ustn0284). Vertical brown lines represent five days on which the field surveys were
undertaken.

(a) surface armoring with pebbles
covering the floor of a rill

(b) surface crusting in the interrill areas

Figure 3.5: Field photos
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Chapter 4

Structural and sedimentological connectivity on a rilled

hillslope
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Abstract

Sedimentological connectivity within channels is governed by the balance between the

sediment load and the transport capacity of the flow. Such balance is influenced by the

longitudinal (dis)continuity of the channels associated with local depressions and channel

confluences. Most studies have focused on the (de)coupling of structural and sedimentological

connectivity on a basin scale, with only few examining this phenomenon on a hillslope.

Important questions are yet to be asked, including how barriers and confluence affect the

flow/sediment balance, and the spatial extent at which these influences take place. This study

investigates the relationship between structural and sedimentological connectivity within a

rill network on a hillslope in Loudon, Tennessee. We used a time-series of digital elevation

models (DEMs) to quantify the temporal erosion/deposition on the hillslope from December

2014 to December 2016, and rill basins were segmented at an interval of 0.05 m to summarize

the changes along the profile. Our results show that both longitudinal erosion and deposition

exhibit an exponential trend along the profile. The magnitude of the erosion is dominant on

the hillslope with a higher coefficient (2.86) than that of the deposition (2.06). The rill length

accounts for 46% of the variability for erosion and 24% for deposition. The depressions are

correlated with higher erosion at approximately ∼ 10 cm at the downslope direction. The

correlations between the erosion and the confluence are significant from approximately 20

cm upslope through 25 cm downslope with the peak at 5 cm. The correlation between the

deposition and the depression is significant from 20 cm to 5 cm upstream with the peak at

10 cm. These results reveal various spatial extents of events that compromise the structural

connectivity and how it influences the sedimentological connectivity.
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4.1 Introduction

Channels are critical venues to transport eroded sediments across different landscapes. One

measure for the efficiency of sediment transport is the sediment delivery ratio, the proportion

of sediment reaching the basin outlet to the total amount of sediment eroded. This ratio

is often less than one as the capacity of the sediment transport is influenced by various

geomorphological, environmental, and biological factors (Croke and Hairsine, 2006; Ferro and

Minacapilli, 1995; Fryirs, 2013; Richards, 2002; Walling, 1983). The sediment delivery ratio

is also conceptualized as the sedimentological connectivity to denote how efficient sediment

can travel between different compartments of the landscape (Fryirs, 2013; Wester et al.,

2014). Originally introduced by Chorley and Kennedy (1971), connectivity describes how

material and energy travel across different components of a system. This concept has been

extended to describe the within-basin sediment transport and the physical linkage between

compartments of landform units (Brierley et al., 2006; Fryirs et al., 2007; Wester et al.,

2014). Fryirs (2013) proposed three types of connectivity, including the longitudinal, lateral,

and vertical linkages, based on the spatial context of various processes including hillslope

reworking/development, channel incision/expansion, and slope denudation and erosion via

mass movement, creep, wash, etc. The longitudinal connectivity examines the linkage

along an upstream-downstream direction, the lateral connectivity describes the relationship

between the slope/channels networks/floodplains, and the vertical connectivity characterizes

the interactions between surface and subsurface components.

Previous research has extensively examined the relationship between the topographic/

structural connectivity and the sedimentological/functional connectivity that has been

characterized based on different geomorphic behaviors, environmental responses, and

geomorphometric characteristics (Brierley and Fryirs, 2013; Cavalli et al., 2013; Cohen et al.,

2008; Fryirs, 2013; Harvey, 2001; Ijjasz-Vasquez and Bras, 1995; Montgomery, 1994; Tarolli

and Dalla Fontana, 2009; Wethered et al., 2015). The structural (dis)connectivity takes two

forms: the depressions (broken linkage) and the confluence of channels (merged linkage).

The depressions are formed either by natural processes (e.g. karst processes) or artificial
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barriers (e.g. check dams). Once the precipitation rate exceeds the infiltration rate, the

surface runoff accumulates within such depressions, and can only escape through evaporation,

infiltration, or overspill. Ponding in such depressions dissipates the impact of raindrops

and reduces the flow velocity, leading to increased deposition if the transport capacity is

exceeded by the sediment load. The confluences are junctions where different channels merge

together. The flow dynamics and mixing at these junctions are complicated with spatially

varied factors on sediment routing (Best, 1988; Boyer et al., 2006; De Serres et al., 1999).

The sediment movement and the distribution of shear layer at the confluences are mainly

governed by the momentum ratio between confluence flows, the confluence angles, and bed

morphology (Rhoads and Sukhodolov, 2001; Sukhodolov and Rhoads, 2001). Research has

shown that the discordance of channel bed at the confluence tend to increase the vertical

mixing within the channel, and therefore the location of confluence is likely to experience

massive scouring that is able to create increased channel depth (Biron et al., 2004; Ullah

et al., 2015). The implications of confluences on structural connectivity is usually reflected

in changes in network geometry and the channel cross-sections (Benda et al., 2003; Grant

and Swanson, 1995; Wohl and Pearthree, 1991).

At a basin scale, the connectivity is conceptualized as the linkage between different

components including hillslopes, fluvial channels, and valleys. The (dis)connectivity — or

sediment delivery ratio — between hillslopes and valleys are controlled by the slope gradient,

slope convexity/concavity, bed material, vegetation, and other factors (Brierley et al., 2006;

de Vente and Poesen, 2005; de Vente et al., 2007; Ferro and Minacapilli, 1995; Walling, 1983).

The sediment movement on the hillslope is driven by weathering, mass wasting, and erosion

(Selby, 1982), while the sediment transport from hillslopes to channels are often constrained

by the lateral linkage (Fryirs, 2013) which is governed by the stability of hillslopes (e.g.

landslide) and episodic flooding events (floodplain inundation). The spatially varied particle

size along a hillslope-valley gradient also imposes influence on the transfer of sediment (Tarolli

and Dalla Fontana, 2009; Tucker and Bras, 1998).

At the hillslope scale, the general trend of sediment movement varies regarding different

length of the rill channel. Such relationship is driven by the increased flow power as
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more runoff becomes concentrated at downslope direction (Auzet et al., 1995; Foster and

Lane, 1983). It is generally accepted that the longitudinal connectivity within a hillslope

is governed by the shape of the catchment, drainage pattern, drainage density, channel

geometry, and the existence of barriers (Brierley et al., 2006). The connectivity within

hillslopes is likely to change over space and time at different stages of rill formation and

development (Darboux et al., 2002; Darboux and Huang, 2005; Gessesse et al., 2010).

Researchers have established some quantitative relationships between rill length and erosion

volume; one widely accepted model is a power relationship between the rill length and the

eroded volume (V = aLb, where L is the length of the rill, and a and b are both coefficients

(Di Stefano et al., 2017). The relationship between the flow power and erosion is further

complicated by factors, including variations of rainfall duration and intensity, bed material,

particle size, vegetation, and micro-topography (Eitel et al., 2011; Knapen et al., 2007a,b;

McCarroll and Nesje, 1996; Richards, 1973; Römkens and Wang, 1986). The presence of

rock fragments, grass strips, walls, and terraces have further influences on the coupling of

structural and sedimentological connectivity. Over time, rills on steep hillslope connect

to a network that exhibits paralleled patterns of higher spacing at lower slopes, forming

master rills (Horton, 1945; Knighton, 1998; Selby, 1982). The connected structures of the

rill network increase the transport capacity and facilitate the surface runoff concentration.

As the rills get deeper and wider at lower slopes, the magnitude of erosion increases. Some

master rills may eventually connect to larger channels including gullies or ephemeral streams

(Haan et al., 1994; Ritter et al., 2011).

The hillslopes are a major source of sediment influx contributing to the fluvial system,

and in-depth research on the structural and sedimentological connectivity is necessary

to strengthen our understanding in sediment routing and erosion control (Detty and

McGuire, 2010). Recently, there has been an increased interest in studying the longitudinal

(dis)connectivity within a hillslope (Bracken and Croke, 2007; Kirkby and Bracken, 2009;

Lesschen et al., 2009; Penuela Fernandez et al., 2014; Wester et al., 2014). Wester et al.

(2014) investigated the post-wildfire hillslopes in California and concluded that erosional

events are dominant when the contributing area is less than 10 m2, but such phenomenon
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is also influenced by different durations and intensity of rainfall and whether the erosion

occurred in rills or interrill areas.

Research has shown that the (de)coupling of structural and sediment connectivity

is subjective to spatial and temporal scales (de Vente and Poesen, 2005; Fryirs et al.,

2007; López-Vicente et al., 2015; Masselink et al., 2016; Nardi and Rinaldi, 2015). The

existing literatures exhibited stronger interest in the connectivity at a basin scale with an

emphasis on hillslope-valley coupling (Brunton and Bryan, 2000; Harvey, 2001; Michaelides

and Wainwright, 2002; Tarolli and Dalla Fontana, 2009), whereas the connectivity within

the hillslopes (upslope-downslope and interrill-rill) is still not well understood. Important

questions need to be addressed to improve our understanding in the influences of local

barriers/depressions on the flow/sediment properties, such as when and where such influences

exist and to what extent these influences take place. This research aims to examine

the structural and sedimentological connectivity within rills and attempts to reveal the

relationship between the local depressions, rill confluence, and sedimentological connectivity

by examining the following questions:

(1) Do the depressions influence the erosion/deposition positively or negatively?

(2) Do the confluences affect the erosion/deposition positively or negatively?

(3) What is the spatial extent of such influences?

4.2 Study area

This research focuses on an engineered, vegetation-free hillslope in Loudon County,

Tennessee, United States (35◦37’32.52”N, 84◦12’59.69”W, Fig. 4.1). The climate of this

region is categorized as Cfa (Humid Subtropical) in the Köppen climate Classification

that is featured with hot summers and moderate winters, and precipitation is abundant

throughout the year. The annual mean temperature is approximately 15 ◦C and the annual

total precipitation is about 1300 mm. The region is currently occupied by agricultural lands,

grassland, and successional forests mainly composed of mesophytic species. The intense and
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frequent rainfall events, the steep topography in the region, and the human activities such

as agriculture and mining, created a scenario that makes the hillslope susceptible to water-

induced soil erosion (Harden and Mathews, 2000; Leigh and Webb, 2006; Luffman et al.,

2015; Matmon et al., 2003; Nandi and Luffman, 2012; Turnage et al., 1997).

Our studied hillslope is situated on the terrace of the Little Tennessee River, which

originates from the Blue Ridge Province of the southern Appalachian Mountains (Delcourt

et al., 1986). The parent material of the site is shale that has developed into silty and

clayey Ultisols, vulnerable to rilling and gullying (Luffman et al., 2015; Nandi and Luffman,

2012). Historical images of Google Earth reveal that the hillslope was formed with all

vegetation removed during the construction of the Christenson Yacht facility sometime in

2007. Although bluestem grass (Schizachyrium scoparium) was planted at some locations

within the property to control erosion and sediment delivery, the slope of interest was free

from vegetation and erosion created rill networks on the hillslope surface. The slope extends

about 20m from the top to the bottom with the altitude ranging between approximately 263

m and 255 m a.s.l., and the overall slope gradient is approximately 27◦. This study focuses

on a vegetation-free section of the slope, and the dimension of the section is about 20 m

by 20 m. We did not set up any physical boundaries (e.g. earthen berms or metal sheets),

therefore, the hydrology at the site was not disturbed, and the erodible material within the

section is likely to be non-exhaustive with sediment feeding into the system from areas above

the slope. Such properties make this section of the slope suitable for long-term monitoring

and observation of the sediment dynamics (Boix-Fayos et al., 2006).

4.3 Methods

To address the research questions, this research adopted the following workflow (Fig. 4.2):

a. Data collection and pre-processing: to obtain the temporal elevation data in the study

area, remove the outliers, and geo-reference raw data;
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b. Data processing: to convert the data to raster format, perform error propagation and

change detection, and create spatial series of indices denoting the structural and

sedimentological connectivity;

c. Data analyses: to extract the signal and the noise from the spatial series, and examine

the relationship between the processed series.

4.3.1 Data collection

A total number of 7 field surveys were conducted on 7 different days between December

10th, 2014 and December 14th, 2016, respectively. When choosing the dates for the survey,

we only selected days with clear weather condition and no prior precipitation in the past

2 days. We used a FARO Focus3D X330 Laser Scanner to survey our study site. This

scanner unit emits shortwave infrared laser (wavelength 1550 nm) and is able to survey the

surrounding environment at 360◦ horizontal and 307◦ vertical view at a radius of 330 m.

The ranging accuracy of the scanner is approximately ± 2 mm at 50 m distance using laser

pulses that are emitted at up to 976000 pulses/second. For this scanner unit, the size of

a single laser spot is 2.25 mm at the exit, and the beam diverges at 0.19 mrad (0.011◦)

as it gets further away. The distance between the scanner unit and the intercepting slope

surface ranges approximately from 10 m to 20 m in our case, and the size of the laser spot

ranges between 4.15 mm and 6.05 mm using the calculation method detailed in Pesci et al.

(2011). We started each survey with a panoramic scan (360◦ horizontal by 307◦ vertical) at

a relatively coarse resolution (a point spacing of about 5 cm at 50 m radius) followed by at 3

– 5 subsequent finer resolution scans that were performed with a point spacing of about 1 cm

at 50 m. The scans were conducted at different angles to prevent possible occlusions due to

rugged terrain surface. We tried to occupy the same scan locations for surveys on different

dates to achieve comparable geometry between surveys, as suggested by Lague et al. (2013).

We used the reference target spheres (diameter of 139 mm) produced by the ATS Scan

Reference System for within-survey registration. We placed the target spheres around the

slope prior to each survey at locations that are of good visibility, and tried to have the targets
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placed as uniform as possible without disturbing the slope surface. Out of concerns about

vandalism or theft, no targets were permanently installed at the study site. During the

survey, the scanner is mounted on an elevator tripod at approximately 2 m above ground,

with dual-axis compensation function activated. We used a Trimble GeoExplorer 6000 Series

GeoXHTM handheld differential GPS (dGPS) to store the locations of the scanner and the

reference targets. The augmentation function of this dGPS unit allows for a real-time

correction of the coordinates based on the satellite signals. The GPS base station closest

to our study site is at the McGhee Tyson Air National Guard Base (35.81◦N, 84.00◦W)

approximately 28 km away. Once updated through the satellite network, the dGPS can

yield a horizontal accuracy of 10 cm ± 2 parts per million (ppm) and a vertical accuracy of

20 cm ± 2 ppm. The coordinates collected may not be accurate enough for geo-referencing

but are useful in placing the scans coarsely in their relatively same location at each survey

period. The procedures for intra-survey registration and between-survey geo-referencing are

further detailed in the next section.

4.3.2 Data pre-precessing

We used the FARO SCENETM for the intra-survey registration and between-survey geo-

referencing. The intra-survey registration was performed using a target-based method; the

SCENE software is able to extract the spherical targets in each scan, and use an Iterative

Closest Point algorithm (Chetverikov et al., 2002) to align the scans within the same survey.

The minimal root mean squared error (RMSE) between any two scans are calculated using

the three-dimensional data (x, y, and z) on a point-to-point basis to evaluate the quality of

the registration/geo-referencing. The workflow of pre-processing typically starts with intra-

survey registration. The panoramic scan at a coarser resolution was treated as the reference

scan based on which other scans within the same survey were aligned. Based on the target

spheres the RMSE is calculated, and the software would use the Iterative Closest Point

algorithm to re-align the scans until a minimal RMSE is achieved. Once the minimal RMSE

for all scans within the same survey is achieved, the scans are now managed as a cluster and
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any further transformations would only be performed on the cluster without affecting the

relative positions of scans within the cluster.

The between-survey geo-referencing was performed in FARO SCENETM using manual

registration in the corresponding view based on permanent features in the scans that share

regular geometry, such as the walls of the yacht facility. When geo-referencing the between-

survey scans, the first survey (Dec. 10th 2014) was used as the reference scan based on

which the locations of the other surveys were transformed to. The summary statistics of

the 7 surveys and the registration results are shown in Table 4.1. After the registration,

the 7 surveys are exported as 7 separate files which store the three-dimensional location

information (x, y, and z) of all the points. Each point cloud file is then converted to a raster

DEM of 1 cm spatial resolution in Quick Terrain Modeler. A bilinear algorithm was used

to interpolate the points and the final DEMs are projected to a local Cartesian projection,

a projection commonly used for large-scale mapping (Kennedy and Kopp, 2002). The local

Cartesian projection does not account for the curvature of the earth, but the distortion

introduced by this projection is negligible since our study area is small.

4.3.3 Change calculation

We investigated the geomorphic changes between 7 field surveys using the DEM of Difference

(DoD) method. The DoD method is designed for geomorphic change detection and is capable

of mapping, detecting, and quantifying the erosion and deposition between temporal DEMs

collected over the same study area. The DoD method uses the two temporal DEMs as input

and calculates the difference on a pixel-to-pixel basis. The output of DoD is a raster with

the value of each pixel representing the elevation change at the location — positive values

suggest deposition and negative values suggest erosion. The geomorphic change between any

two DEMs is calculated as:

∆DEM = DEMt1 −DEMt0 + ε (4.1)
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where the DEMt0 and DEMt1 denote DEMs collected at time t0 (prior survey) and the

t1 (subsequent survey), respectively; ε is the error, which is a propagation of uncertainties

of various sources, including the error associated with the scanner unit, the within-survey

registration, and between-survey geo-reference. We performed 6 DoD analyses between

the 7 temporal DEMs using the Fuzzy Inference System-based error propagation in the

Geomorphic Change Detection (GCD) tool. The method and the GCD tool are further

detailed in Wheaton et al. (2010). In this paper, we only considered the elevation changes

that are significant at the p < 0.05 level. The output of the DoD was a raster file that allows

for the estimation of the net volume of sediment change:

Vnet = A×
N∑
i=1

∆Zi (4.2)

where Vnet is the net volume of sediment change, A is the pixel size, N is the total number

of pixels, and ∆Zi is the change in elevation for pixel i. The volume of erosion or deposition

can be quantified separately using equation 4.2 by only considering negative/positive values

in the output DEM.

4.3.4 Rill networks delineation

The rill networks within our study area were delineated in the TauDEM plug-in in ArcGIS

(Tarboton, 2001). The minimal number of pixels that allow for the initiation of the channel

was determined using the Drop Analysis method (Broscoe, 1959). This method is based

upon the assumption that the mean stream drop, or the range of elevation between the

starting and the ending nodes of stream segments of the same Strahler order should not be

statistically different from those of other orders. The input for the Drop Analysis method

includes a DEM and a list of integers denoting different numbers of pixels that allow for the

initiation of streams. For each number in the list, the algorithm delineates the rill network

based on the Deterministic-8 method, a method that calculates the flow direction for each

pixel based on the steepest slope within the nearest 8 neighboring pixels (Tarboton et al.,

1992). This method allows for an objective approach of channel delineation that also accounts
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for site-specific information. Initially proposed for the delineation of the fluvial channels,

this method has also been used in recent research to delineate hillslope channels including

rills and gullies; results showed that this method produces output that is in agreement with

morphology-based methods (Lu et al., 2017; Vinci et al., 2015).

4.3.5 Structural and functional connectivity

To quantify the structural and the sedimentological connectivity, the choice of the areal

units is critical to capture the longitudinal variations. Wester et al. (2014) used a series of

rectangles with identical geometry (25 m by 0.05 m) that are perpendicular to the rill/gullies

to track the along-channel changes of sedimentological connectivity. This approach has

several limitations (Fig. 4.3a). First, the size of the rectangles is universal and arbitrarily

defined, but this might create rectangles whose width is too small to capture the change

along the transact, or too large to go beyond the drainage divide. Second, overlap and gap

between adjacent rectangles would occur where the channel bends. Last, the width of the rills

varies over space (Govindaraju and Kavvas, 1992; Torri et al., 2006), and a universal width

imposed upon the entire longitudinal direction of the rills may not always be appropriate.

All three limitations are difficult to address and tend to create unintended errors of omission

and commission that should not be ignored.

Brierley and Fryirs (2013) proposed a method to segment river channels into homoge-

neous reaches of varying lengths. This method is by definition a point-sampling method

that requires the researcher to possess a priori expert knowledge regarding the site, since

the locations of segmentation have to be representative (Brierley and Fryirs, 2013; Nardi and

Rinaldi, 2015). This model does not take into account the changes at the interfluve (Fig.

4.3b). Conceptualized initially to study connectivity within fluvial channels, this method

might not be as for hillslope channels, since the flow in hillslope channels is ephemeral and

episodic, and going through rapid changes. Also, for a paralleled drainage pattern such as

the networks of rills on steep hillslopes, each individual rill may or may not share comparable

characteristics, and identification and segmentation based on each individual rill would be

challenging and labor intensive.
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We employed a method that uses “sub-watersheds” (Fig.4.3c) to summarize the erosion

and deposition along the rills. The “sub-watersheds” are non-overlapping polygons created

at 0.05 m intervals along the channel with all pixels in the same polygon contributing to

the same outlet. These polygons are of various shapes and widths, but a fixed interval

guarantees a uniform sampling distance along the rill basin. For the rill networks in each rill

basin, the “sub-watersheds” of the longest rill are delineated. The Arc Hydro Tools package

(Maidment, 2002) was used to create the polygons in ArcGIS. We only included the longest

rills for each network because the inclusion of these secondary rills would bring noise to our

longitudinal sequence. For examples, the locations where secondary rills join the major rill

may vary and the secondary rills may have varied contributing area, flow property, and/or

sediment load. We did not include polygons that intersect with the boundary of our study

site to minimize the impact of the edge effect. For the structural connectivity analysis, we

used the number of depression pixels (sometimes also referred to as “sinks”) and confluences

as indicators. The depression pixels are ones that have the lowest elevation among its 8

neighboring cells (local depressions within the DEMs); the confluences are the locations

where two separate rill channels join. The percent of pixels that are identified as depressions

and the number of nodes where rill segments merge within each polygon were used as the

indicator for structural connectivity, and the sedimentological connectivity is represented by

the results of DoD. The total upland sediment yield at each location was also calculated as

the cumulative deposition and erosion toward the downslope direction.

To examine the relationships between our 4 series (erosion, deposition, depression, and

confluence), it is necessary to remove the trends — the overall tendency of the data domain,

while keeping the inherent variability of the data (Wu et al., 2007). In most cases, the

trend can be represented using an intrinsically-fitted monotonic function. We decomposed

the 4 series (erosion, deposition, depressions, and confluence) using the Empirical Mode

Decomposition (EMD) method. The EMD extracts different frequencies from the data by

repeatedly removing cubic splines of descending frequencies using local extrema through a

sifting process. The sifting process only stops when the data series are symmetric regarding

zero mean, and the residuals become a monotonic function. The EMD is capable of

decomposing the trends into different intrinsic mode functions that are oscillatory functions
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that exhibit amplitude and frequency modulations, and is able to adapt to nonlinear, non-

stationary data, and the user does not have to define the function form of the trend (Flandrin

et al., 2005; Huang et al., 2003; Wu et al., 2007). Another advantage of the EMD is that

it does not require any pre-defined wavelet basis, and thus would avoid possible spurious

harmonics. A more detailed description of the EMD can be found at Huang et al. (1999,

2003).

Once the 4 series (erosion, deposition, depressions, and confluence) were de-trended,

we used the Cross-Correlation Function (CCF) to examine the relationship between the

structural connectivity and sedimentological connectivity. The CCF requires that the input

series are evenly spaced and share the same length, and is based on the assumption that both

series have stationarity, i.e. constant mean and variance over time. Originally developed for

the analyses of time-series data or the signals, the CCF measures the similarity between two

time-series at the same or different times, and it also measures how well one series can be

used to explain the other series (Scargle, 1989). The CCF between two series of interest X(t)

and Y (t) is calculated as the expectation of the product of the values of X and Y observed

at different times separated by the lag l:

CXY (l) =
1

n

n−l∑
t=1

xtyt+l (4.3)

where n is the number of consecutive observations of both series (Shumway and Stoffer,

2017). For any value of l, the sample correlation coefficient CXY will be calculated and

compared to the 95% significance limits ± l, where l = 1.96/
√
n.

4.3.6 Change in channel geometry

We sampled 9 cross-sections along one of the longest rills in the rill network to examine

the change of channel cross-section over time (Fig. 4.4). The locations of the cross-sections

were manually picked so they are relatively evenly spaced from one another. The profile

analyses tool in ArcMap 10.5 was used to extract the elevation information along the profiles.
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By comparing the elevation change between two survey dates, we can detect the most

sedimentologically active areas along the cross-section, and determine if the channel has

been widening or deepening. These changes affect the shear stress of the concentrated flow

(τ), by affecting the shape of the cross-sections and the channel slope. The shear stress is

calculated as:

τ = γRS (4.4)

where γ is the unit weight of water; R is the hydraulic radius; and S is the slope of the

channel. The hydraulic radius R is equal to A/P , where A is the cross-sectional area and P

is the wetted perimeter.

4.4 Results

4.4.1 Sediment change over time

The DoD results showing the change of sediment in our study area over time are presented

in Table 4.2. Our study area underwent more erosion compared to deposition during all 6

periods. The first period (December 2014 – March 2015) had the lowest amount of erosion

(0.18 ± 0.07 m3). The last two periods (December 2015 – May 2016 and May 2016 –

December 2016) both showed a high volume of erosion (0.53 ± 0.17 m3 and 0.55 ± 0.16 m3),

as well as the highest volume of net sediment loss (0.55 ± 0.20 m3 and 0.55 ± 0.16 m3).

This is possibly due to longer intervals between the scan dates. The first period (December

2014 – March 2015) also witnessed the highest amount of deposition (0.07 ± 0.03 m3).

4.4.2 Structural and sedimentological connectivity

Fig. 4.5 shows the structural connectivity (represented by the percent of area that are

depressions and the number of confluences) as well as the sedimentological connectivity

(erosion and deposition) along the flow paths (rills). The rate of increase for the erosion
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is dominantly higher than that of the deposition. The magnitude of both the erosion and

deposition tends to increase further down the drainage basin. Approximately 85% of the total

sediment loss occurred at the lower 50% of the rills. Generally, depression pixels account for

less than 5% of each individual rill basin segment, and there is no apparent trend regarding

how depressions and confluence points change along the rills over space.

4.4.3 Sediment dynamics along the profile

The volume of erosion and deposition increases along the profile, and the increasing rates also

tend to increase as rills get further down the slope (Fig. 4.5). The log-transformed erosion

and deposition values both increase along the distance downslope (Fig. 4.6). However, the

coefficient of the erosion function (2.86) is greater than that of the deposition (2.06). The

magnitude of erosion increases faster compared to that of deposition as getting closer to the

lower end of the rills. The R2 value of erosion (0.46) is also greater than that of the deposition

(0.24). This is possibly due to the differences in the driving mechanisms between erosion

and deposition; erosion in the rills are more related to the growing erosive power of the

concentrated flow (directly related to the rill length as a power function), while deposition

is more driven by local micro-topographic factors including slope and roughness (Giménez

and Govers, 2001; Govers, 1992; Govers et al., 2000; Haan et al., 1994; Nearing et al., 1997;

Sankey et al., 2010).

We decomposed the erosion, deposition, depressions, and confluence series using the

EMD method. Here we only kept the residuals for the cross-correlation analyses. The

residuals of erosion, deposition, depressions, and confluence are plotted in Fig. 4.7, and

exhibit the overall stationarity along the rill profile.

The results of the cross-correlation function are shown in Fig. 4.8. The cross-correlation

function calculates the correlation coefficient at different lags (1 lag = 0.05 m), and we

used the 0.95 confidence level to highlight the most significant coefficients in the results of

the CCF. The correlations between erosion and depression are mostly insignificant, except

the correlation at lag = 2 that is barely above the significance level, suggesting that the
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existence of depressions is likely correlated with higher erosion at approximately 10 cm at

the downslope direction. The correlations between the erosion and confluence are statistically

significant between lag -4 and lag 5. The correlation increases from the lag of -4 and becomes

the highest at 1, and then tapers until becoming not significant at the lag of 6. This suggests

that the confluence of rills are positively related to higher erosion from 20 cm above to 25

cm below the confluence point. The correlation between deposition and the depressions is

significant between lag of -4 and -1, with the peak occurring at lag = -2, indicating positive

relationships between deposition and depressions with the greatest at approximately 10 cm

above the depression location. The correlation between the deposition and confluence is not

significant.

4.4.4 Cross-section analyses

Fig. 4.9 shows the changes to the geometry of the 9 cross-sections over time. It can be

observed that rills get deeper and wider as it gets further downslope. The steepness of the

rill sidewalls is lower when the cross-section is either close to the top (cross-section 1 – 3) or

the foot of the slope (cross-section 6 – 9); whereas in the middle of the slope, the sidewalls

are relatively steeper (cross-section 4 – 5). This is possibly a manifestation of cross section

changes at different stages of rill incision. Where it is closer to the top of the hillslope, the

concentrated flow power is rather limited and rills are relatively shallow; as moving further

down the hillslope, the flow power gets stronger and the scouring on the rill floor becomes

more pronounced. Once the rills become deep enough, the scouring of the rill bottoms is

challenged as the floors eventually reach a non-erodible layer (in our case the shale). Instead,

the rills develop horizontally by eroding the sidewalls. The failure of the sidewalls provides

sediment supply into the rills and sometimes causes temporary depositions, and this process

leads to wider rill cross-sections.
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4.5 Discussion

4.5.1 Difference in mechanisms of erosion and deposition

The sediment dynamics leading to the changes on hillslopes are mainly driven by the

rainstorms. Once the rills and gullies start to form on the hillslopes, the surface runoff

gets concentrated and the flow power becomes the dominant driving force of erosion. The

geometry of the channels, including the planar geometry (the structure of the rill networks)

and the profile geometry (including concavity/convexity, cross-section shapes and areas)

becomes relevant when the connectivity of such channels is directly associated with the

transport capacity of the mixture of runoff and sediment. It was generally accepted that the

erosion associated with concentrated flow is a governed by a threshold effect, that erosion

only occurs when one of the variables including flow shear stress (τ), stream power (ω),

or discharge (Q) exceeds certain critical values (Giménez and Govers, 2001; Govers, 1987;

Knapen et al., 2007b; Line and Meyer, 1989). Govers (1992) found that the relationship

between the flow velocity and the discharge can be predicted by the flow areas, while soil

texture or slope gradient has limited influence over the flow characteristics. Our results show

that the rill length accounts for 46% of the variability associated with log-transformed erosion

(Fig. 4.6), suggesting a strong influence of the concentrated flow power on the magnitude of

erosion.

Deposition occurs when the sediment load exceeds the transport capacity. On rilled

hillslopes, deposition is found to be negatively correlated with the slope gradient and surface

roughness (Brenneman and Laflen, 1982; Cochrane and Flanagan, 2006; Haan et al., 1994).

In our study site, the deposition also increases exponentially with the distance downslope;

as we get closer to the foot of the hillslope, rill floors are generally wider and we have more

roughness created by the pebbles left within channel due to the long-term sorting process.

However, the relationship between rill length and deposition is not as pronounced as that

between rill length and erosion (Fig. 4.6). This may be a combined effect of wider channel

cross-sections, lower slopes, and local bed roughness. Higher roughness is able to dissipate

128



the flow power and reduce the transport capacity; the higher roughness also introduces local

depressions that will facilitate more settling of the particles.

4.5.2 Channel geometry change

The location of the thalweg of the rill network is determined by micro-topography variations,

especially when the surface roughness is altered (Gessesse et al., 2010). The first period

experienced the lowest volume of net sediment loss, with an average elevation change of

-2.2 cm; the last period underwent the highest volume of net sediment loss with an average

elevation change of -4.1 cm. The rill underwent both erosion and deposition at different

times and different locations. Over time, the cross sections tend to grow deeper due to

erosion mainly at the bottom of the rill. The rill cross-sections have yet to become stable by

the end of our field survey. The rills in the study site have developed for more than 7 years

on the slope, and are sometimes as deep as 30 cm. Nevertheless, these rills keep incising,

creating larger cross-sectional areas which are capable of transporting a great amount of

flow and sediments. Aside from rill floor incisions (such as profile 4 – 6 during the 1st

period and profile 3 during the 2nd period), rill sidewall sloughing also occurred at certain

cross-sections, especially the profile 4 through 8 during the 5th period. Such sloughing is

most likely to occur when the sidewalls become steep. For example, profile 5 during the 5th

period underwent intense sidewall sloughing with increased amount of sediment feeding into

the rill segments. Before the sloughing, the sidewalls of the rills were relatively steep, and

the failure events created a more stable geometry. Deposition also occurs in the rills, and the

majority of the depositions occur at the bottom of the rills (e.g. profile 1 and 2 during the

6th period). Possible sources of such sediment supply include sidewall failures (e.g. profile

9 during the 5th period), and incoming sediment flux from upland areas.

In a side-wall failure event, a large amount of sediment is detached off the sidewall

and feeds into the rills. In such cases, the cross-sectional area (A) will remain unchanged

(assuming no sediment exchange on the upstream-downstream direction), while the wetted

perimeter (P ) will be larger because the rill width has increased, leading to a smaller

hydraulic radius (R) and thus a smaller shear stress (τ). However, the rills keep expanding
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in our study area, since the rills keep transporting the detached sediment throughout the

networks, the A will increase as erosion occurs on rill sidewalls and floors. This is observed

as long-term rill growth in the form of incision. This incision will not cease until reaching a

non-erodible layer, which is the shale layer in our case.

4.5.3 Flow connectivity and sediment movement

On rilled hillslopes, the continuity of the flow hydraulics is complicated by the local

topographic variations. The depressions act as local storage for the surface runoff during

rainstorms. The storage can dissipate the flow energy, and a reduced flow energy will lead

to local deposition Once the transport capacity becomes lower than the sediment load.

Our results show that depositions are positively related to the depressions at a distance

of 5 – 20 cm on the upstream direction. This shows the spatial extent of the depression’s

influence of the local depositions. The influence of confluences on the rill hydrology is

associated with the turbidity created by the interaction of the flows. Rills are usually

developed on hillslopes that are steep, and rill flows are shallow with the depth comparable

to bed roughness elements. Sometimes, supercritical flow occurs when confluences exist,

forming the confluence hydrodynamic zone (Hager, 1989; Kenworthy and Rhoads, 1995),

where depth increases by 20 – 30 times and complex turbidity even extends back into the

merging channels. Research has observed both rapid, local, as well as protracted mixing

and recovery (Kenworthy and Rhoads, 1995; Mosley, 1976). Results in our study supported

the conclusions of these studies, and we are also able to identify the spatial extent of the

intensification of erosion as a consequence of the merging flows. Further investigation is

necessary to understand how local depressions influence the erosion and deposition regarding

different geomorphometric information (size, depth, and other properties). Our study did

not take into account the secondary, tertiary and other smaller rills that enter the main rill

channel. The influence of confluence is likely to differ regarding the location, angle, and flow

properties of the merging channels.
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4.6 Conclusions

This research investigates the longitudinal sedimentological connectivity and its relationship

with the structural connectivity. The depressions within the rills and the confluences of the

rills are closely related to the sedimentological connectivity on a rilled hillslope. Both erosion

and deposition increase exponentially along the rills, while the coefficient of erosion (2.86)

is greater than that of deposition (2.06), suggesting that erosion tends to be dominant over

deposition along the rill profile. The rill length accounts for 46% of the variability for erosion

and 24% of the variability for deposition. The depressions are positively correlated with

erosion in the downslope direction. The correlations between the erosion and confluence are

statistically significant in both the upstream and downstream direction with the peak close

to the location of the confluence. The correlation between deposition and the depressions

are significant in the upstream direction.
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Appendix for Chapter 4

Table 4.1: The summary statistics of 7 surveys and quality of intra-
/between-survey registration

Dataset
Number of Avg. point density Intra-survey Between-survey

points (pts/cm2) RMSE (mm)
*

RMSE (cm)
*

12/2014 7671276 1.91 3.46 ± 1.13 0 (reference)

03/2015 8983232 2.25 3.51 ± 1.28 0.53 ± 0.08

06/2015 8223775 2.06 3.35 ± 1.11 0.41 ± 0.08

09/2015 8059708 2.02 3.34 ± 1.20 0.44 ± 0.05

12/2015 7931839 1.99 3.47 ± 1.38 0.40 ± 0.07

05/2016 7812266 1.96 3.75 ± 1.37 0.46 ± 0.08

12/2016 7891978 1.98 3.66 ± 1.32 0.45 ± 0.06

* mean ± standard error
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Table 4.2: The areal and volumetric changes within our study area during the 7 scans

Time

12/2014 03/2015 06/2015 09/2015 12/2015 05/2016

– – – – – – Total

03/2015 06/2015 09/2015 12/2015 05/2016 12/2016

AREAL

Area w. Detectable Change (m2) 5.83 8.73 6.86 8.75 8.43 8.96 –

Area of Erosion (m2) 3.80 8.59 6.35 7.37 8.04 8.10 –

Area of Deposition (m2) 2.03 0.14 0.52 1.38 0.39 0.86 –

Percent of Area w. Detectable Change 3.76% 5.63% 4.42% 5.65% 5.44% 5.78% –

VOLUMETRIC

Volume of Erosion (m3) 0.18 ± 0.07 0.38 ± 0.16 0.27 ± 0.10 0.36 ± 0.13 0.58 ± 0.17 0.62 ± 0.16 2.49 ± 0.79

Volume of Deposition (m3) 0.05 ± 0.03 0.03 ± 0.01 0.04 ± 0.02 0.05 ± 0.02 0.03 ± 0.01 0.03 ±0.01 0.25 ± 0.10

Net sediment change (m3) -0.13 ± 0.10 -0.35 ± 0.17 -0.23 ± 0.12 -0.31 ± 0.15 -0.55 ± 0.18 -0.59 ± 0.17 2.24 ± 0.89

140140140



Figure 4.1: Study area
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Figure 4.2: The workflow of data processing and analyses in this research.
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Figure 4.3: The comparison between the methods used in a) Wester et al. (2014), b)
Brierley and Fryirs (2013), and c) this research. The sizes of the visual elements in this
figure are for demonstration purposes only and may not be of the true scale. Limitations
of a) and b) include: A1 – areas contributing to the rill channel are not captured; A2 –
overlapping areas and gaps exist where rills are sinuous; A3 – sampling polygons are outside
of the drainage divide; B – changes in interfluve are not captured.
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Figure 4.4: Locations of 9 cross-sections along a representative rill in our study area. Each
cross-section is 60 cm long.
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Figure 4.5: The summary of erosion/deposition, depression, confluence points, net elevation
change, cumulative sediment change (m3) and cumulative sediment change (%) along the
rills. The dots specify the values for individual series, while the solid line represents the
median of values at each distance.
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Figure 4.6: Regression results between the log-transformed erosion/deposition and
downslope distance along the rills. The solid line represents the regression line, and shaded
area represents the estimated line at 0.95 confidence interval.
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Figure 4.7: Residuals of the 4 series (erosion, deposition, sink, and confluence) obtained
using the EMD. The EMD removes the trends and makes the series stationary. The values
represent the residuals from the general trend.
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Figure 4.8: Results of the CCF between two sedimentological series (erosion and deposition)
and two topographic series (confluence and depressions). Red dashed lines represent the 0.95
confidence interval. The spatial distance between any two adjacent locations of the same
series is 0.05 m.
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Figure 4.9: The changes along the 9 cross-sections. Red represents erosion, blue represents
depositions, and gray represents area with no detectable changes. Histograms on the bottoms
summarizes the changes during each time period; ones on the right summarizes the changes
occurred for each profile. Each profile is 60 cm in length.
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Chapter 5

Summary and future work
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This dissertation research examined the sediment and channel change on a rilled hillslope in

Loudon, TN. Fine resolution (cm level) DEMs were used to map the sediment redistribution

within the study area and quantify the temporal changes of sediment and rills over time.

Chapters 2 – 5 of this dissertation are stand-alone manuscripts that examined the influence

of grid size on the change detection and rill delineation, the influence of micro-topographic

variation on the erosion and deposition, and the impact of structural connectivity on the

sedimentological connectivity in the study area. This chapter summarizes the major findings

of this dissertation, and I would also discuss some future topics that might be extended from

this research.

5.1 Summary and major findings

TLS is suitable for collecting high-resolution, high-accuracy temporal DEMs for the study

of rill erosion, and the application of the TLS is subjective to the influence of both temporal

and spatial resolution. Based on the pattern of the sediment redistribution, it was concluded

that the erosion mainly occurred on rill sidewalls with some patches of erosion in interrill

areas; the deposition occurred on some rill floors and also on some spots on the interrill

areas. The changes occurred in the interrill areas are of smaller magnitude compared to

those in the rills. Therefore, it is less likely to be captured if the time interval between

two consecutive time periods is short. The interpretation of the results is also subjective

to the spatial resolution. The point cloud dataset collected by the TLS is likely to have

non-uniform density due to the occlusion of terrain ruggedness and the distance between the

scanner and the intercepting surface. The dataset would be more manageable if sub-sampled

to the similar spatial resolution (point spacing for point cloud dataset, and grid size for data

in raster format). This research sought to identify the later one, and it was concluded that

as the DEM resolution progressively reduces, the spatial variations of elevation change at a

finer scale would be averaged across larger pixels, making it difficult to visually represent

the continuous pattern of sediment redistribution along the rills. The absolute values of the

area and volume of sediment change tend to decrease as the grid size increases, due to the
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smoothing effect introduced by larger grid size. Such results reflect the critical role of scale

in geomorphology and the fractal nature of the Earth surface.

A grid size equal to, or finer than 1-cm is recommended for mapping erosion and

deposition in a rilled hillslope. The overall area of detectable change reduces to less than 50%

of the 1-cm DEM when the grid size increased to 2-cm. Both the area and volume of erosion

in the study are less sensitive to resolution reduction compared to deposition, presumably

due to the different spatial patterns. The deposition mainly occurred at the rill floors, as a

narrow band following the thalweg; while rill erosion occurred on the sidewalls of rills, and

the erosional areas are relatively less elongated in shape compared to depositional areas. A

grid size equal to, or finer than 1-cm is recommended for monitoring sediment delivery of

rill/interrill erosions, although a grid size of 5-cm is sufficient if an estimation of 85% for the

volume is acceptable. In this research, the relative value of sediment change (shown as the

percent compared to the reference) is the least sensitive, and 81.97% of the sediment change

is observed at the 10 cm grid size. From an areal perspective, however, the area of detectable

change reduces to 67.63% when using a grid size of 2 cm, and 44.58% when using a grid size

of 10 cm. In my study area, the total volume of deposited sediment was 0.23 ± 0.15 m3,

which is much less compared to the volume of the sediment that was eroded (0.81 ± 0.53

m3). Although the deposition is more sensitive to the increased grid size, the net difference

between the volume of deposition and erosion is decreasing at a slower rate, and even at

the grid size of 5-cm, it is able to obtain 86.89% of the net sediment volume change. The

total length and the total number of rill segments show a decreasing trend, while the average

length of rills increases with greater DEM grid size. As the spatial resolution gets coarser,

the detailed shape of rills can be smoothed by the generalization. The RAPCA method was

used to compare the offset between rill networks delineated using the resampled DEMs (with

grid size larger than 1-cm) and the reference DEM (1-cm). The results show that although

the mean and maximum offset increases as the grid size get larger, the relative offset is

always within one pixel. Therefore, using a larger grid size might reduce the accuracy of the

mapped rill networks in the slope, but the effect is always within one pixel.
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Chapter 2 used used QR to examine the micro-topographic factors and its influence on

sediment movement across a rilled hillslope. Generally, the QR showed stronger predictive

ability compare to the OLS regression models, that 29% of the variability for erosion and

34% for deposition can be explained by the micro-topographic variables. A larger CA leads

to higher erosion and deposition, although the absolute value of the coefficient for CA in

the erosion model is relatively higher. A steeper slope is associated with higher erosion and

lower deposition. The coefficient of slope is -0.052 for erosion and -0.076 for deposition, and

this suggests that one degree of slope change will have an effect of -0.128 cm on the average

elevation change. Ruggedness is positively related to deposition and negatively related to

erosion. Rill floors with larger depth value tend to have less erosion and more deposition.

The cosine component of the aspect is associated with higher erosion and lower deposition,

possibly due to higher soil moisture on the north-facing slopes with limited solar insolation.

The Topographic Wetness Index (TWI), another index that is positively associated with the

soil moisture, also leads to higher erosion and lower deposition.

Chapter 3 investigated the longitudinal sedimentological connectivity and how it is

influenced by the structural connectivity. The depressions within the rills and the confluences

of the rills are closely related to the sedimentological connectivity on a rilled hillslope. The

general trend of both the erosion and deposition increases exponentially along the profile of

the rills, while the magnitude of the increase of erosion is greater than that of the deposition.

The coefficient of erosion (2.86) is greater than that of deposition (2.06), suggesting that

erosion tend to be dominant compared to deposition along the rill profile. The rill length

accounts for 46% of the variability for erosion and 24% of the variability for deposition. The

longitudinal erosion, deposition, depressions, and confluence locations are represented using

series of measurements at a 5 cm interval. By removing the general trend, I extracted the

variations of the series and examined the relationship between any two paired series using

the cross-correlation analyses. The results of the cross-correlation analyses suggest that

the confluences of rills lead to higher amount of erosion in both upstream and downstream

directions. The effect is the strongest at the location of confluence, and attenuates as it

gets further away from the confluence point until becoming statistically insignificant. The
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depressions within the rills lead to higher magnitude of deposition, and such influence is only

observed in the upstream direction.

5.2 Future work

This dissertation research addressed three issues (scale, micro-topographic control, and

channel connectivity) associated with the application of high-resolution DEMs for the study

of sediment and channel dynamics on rilled hillslopes. The findings of this research may

serve as a good starting point for future studies on similar topics. On the other hand, this

work also has limitations that might be addressed in the future studies. A few possible topics

of interest are listed in this section.

5.2.1 Field validation and measurement

This research was based on the fine resolution (cm level) elevation data collected using

the Terrestrial Laser Scanner (TLS). Although the TLS has demonstrated some major

advantages including fast data acquisition and high accuracy, it also has limitations. For the

study area, rills have developed over time and incised the hillslope surface. The ruggedness

of the terrain surface will introduce occlusion, leading to gaps in our survey data. Switching

to multiple scan location can address this problem to a certain degree, but the areas within

the rills are likely to have relatively lower point density, reducing the validity of the elevation

measurements. We used the Fuzzy Inference Systems in the Geomorphic Change Detection

tool (Wheaton et al., 2010) in ArcGIS to account for the uncertainty associated with the

temporal DEMs. This method provides a convenient and computationally simple way to

address the uncertainty associated with the calculation. Future research could possibly

provide better ways to propagate error and expand our ability to capture the surface changes,

especially in areas with low elevation changes (e.g. interrill areas).

Future research can incorporate data from other sources to enhance the validity of

the data, and the fusion of multi-source dataset may also provide insights into the data

management and processing. Previous works have shown the merit of validation using field
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measurements and other remotely-sensed technologies (Di Stefano et al., 2017; Vinci et al.,

2015, 2016). Di Stefano et al. (2017) measured the geometry of the cross-sections of the rills

using the gypsum cast and the profilometer, to validate the result of the digital terrain model

(DTM) captured by structure-from-motion (SFM). Vinci et al. (2015) also used the DTM

generated using the SFM to measure the rill erosion. More efforts on the validation and

calibration are necessary to improve the quality assessment and control in future research.

Data of other valid sources do not have to be limited to elevation. Images collected either

by the Unmanned Aerial Systems or handheld camera can be used to assist the DEM-based

analyses. Measurements on other properties of the soil including the soil moisture and the

organic matter can also be included.

5.2.2 Physical processes and heuristic implications

The major source of data used in this research is elevation data in the form of DEMs.

We used different approaches to address the selected research topics, but the research is

heuristic and the majority of the findings in this research are data-driven. One limitation

to this research design is that factors including the precipitation, soil, vegetation, and the

topography are not within a controlled environment. That means we cannot set up specific

experimental conditions with some factors fixed. It would be more ideal if in future studies,

the conditions of precipitation, topography, and soil can be controlled either in a natural

or lab setting. Furthermore, with the controlled precipitation conditions, the duration,

intensity, and frequency of the precipitation events can all be adjusted based on the need

of the researcher. The processes can be greatly accelerated, and the controlled experiments

with the same conditions can be performed for multiple times.

Currently, the majority of the TLS-based erosion studies still focus on the statistical

inferences of the surface characteristics and the channel properties on the erosion and/or

deposition. Several attempts to build the linkages between the statistical implications and the

physical processes are present in existing literatures. Eitel et al. (2011) used the flow regulator

to simulate concentrated runoff on several experimental plots, and concluded that TLS-

measured surface roughness yields better results compared to the manually measurements.
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Di Stefano et al. (2017) re-visited the power relationship between the erosional volume and

the contributing area based on the data collected using the TLS. Zhang et al. (2016) used the

TLS to capture the morphological variations of the rills over time during simulated rainfall

events. These attempts exhibit promising perspectives for future applications, and future

researchers would have more opportunities to revisit previous theories and concepts to test

if the incorporation of high-resolution elevation data could help our understanding in the

physical processes, as well as improve our ability to predict erosion and deposition for land

management purposes.

5.2.3 Expanding the time and geographic scale of hillslope processes

This dissertation research has a focus on a rilled hillslope in the East Tennessee. The data

collection has not started until the hillslope has well-developed rill networks that are already

of 10s of centimeters wide and deep. Important questions have yet to be answered as how our

observations and conclusions would differ if the rills were in the early stages of developing.

It has been widely accepted that where the rills emerge on the hillslope is controlled by

the initial condition of the micro-topography (Favis-Mortlock et al., 2000; Bennett et al.,

2015; Gessesse et al., 2010). Through observation of the elevation changes overtime, it

would be possible to bridge the gap between the rill formation and the micro-topographic

characteristics.

The topics investigated in this dissertation research can be expanded to larger hillslope

channels such as gullies as well. Gullies usually form where the contributing area is large

and the vegetation is absent (Knighton, 1998). Therefore, surveying the gullies would be

labor intensive and time consuming if the entire contributing area is to be captured. But for

large permanent gullies (sometimes also referred to as classic gullies) (Haan et al., 1994), the

advantage of the TLS compared to satellite-based or airborne remote sensing technologies

is that the scanner can be mounted within the gully and the entire features on the sidewall

can be captured. McNelis (2016) surveyed a permanent gully in the West Tennessee by

mounting the scanner at different locations within the gully to capture the expansion of

gully head, failures on the sidewall, and within-gully depositions. Traditional raster format
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DEMs would be not optimal since a single value has to be assigned for every horizontal

spatial unit (a pixel/cell in raster dataset), but the point cloud would be able to capture the

varied geometries on the vertical perspective. Consequently, better analytical algorithms

and tools should be developed. In recent years, tools including the CANUPO (Brodu

and Lague, 2012) and M3C2 (Lague et al., 2013) have extended our ability to analyze

the 3-D structural changes in the point cloud dataset. In the future, researchers should

seek to develop and employ more advanced tools to improve the processing, analyzing, and

visualizing capabilities.

5.2.4 Other factors to be considered

Soil erosion and deposition are complex processes driven by topography, climate, soil,

vegetation, and human activities. This dissertation only examined the influence of

topography on the erosion and deposition. The other factors were either not showing much

variability in our study site (vegetation, soil, and human activities), cannot be measured at

such fine-scale (climate and soil), or not included due to logistic limitations. The absence of

these variables in this research by no means suggests these factors are of lesser significance.

Future work, given logistic, financial, and technological feasibility, should incorporate some

factors describing conditions of climate, soil, vegetation, and human activities in the erosion

and deposition modeling efforts.
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The appendices include key Python scripts used for the data analyses and visualization in

this Research. All scripts were produced in Python 3.6 unless otherwise noted.

Appendix 1. Sample script used for Chapter 3

from statsmodels.regression.quantile_regression import QuantReg

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn import metrics

from operator import itemgetter

from sklearn.model_selection import cross_validate, KFold, RFE

%matplotlib inline
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def rfe_select(rfe_result_list,data,target, x):

"""[function for variable selection]

Arguments:

rfe_result_list {[type:list]} -- [list of variables]

data {[type:pandas DataFrame]} -- [data]

target {[type:string]} -- [the dependent variable]

x {[type:array-like]} -- [features used in the model]

Returns:

mse_min {[type:float]} -- [minimal mse]

no_features {[type:int]} -- [the number of features selected]

"""

mse_dict = dict()

features = list()

for i in np.arange(len(rfe_result_list))+1:

feature_index = list(np.arange(i)+1)

feature_select = [rfe_result_list[x] for x in feature_index]

model = QuantReg()

mse_dict[i] = kgf_cv(data = data,

target = target,

features = feature_select)

mse_min = min(mse_dict.values())

f_list = list(mse_dict.keys())

no_features = f_list[list(mse_dict.values()).index(mse_min)]

return (mse_min, no_features)
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def kgf_cv(data, target, features, split):

"""[group k-fold cross-validation]

Arguments:

data {[type:pandas DataFrame]} -- [data]

target {[type:string]} -- [the dependent variable]

features {[type:array-like]} -- [features used in the model]

split {[type:int]} -- [how many folds to split]

Returns:

[test_score] -- [score of model]

"""

model = QuantReg()

y = data[target]

x = data[features]

gkf = KFold(n_splits=2, shuffle=True)

cv = cross_validate(estimator=model, cv=gkf,

X=x, y=y,scoring=’neg_mean_squared_error’)

test_score = -np.mean(cv[’test_score’])

return (test_score)
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def pred_ints(model, X, percentile=95.):

"""[predicting at a given quantile]

Arguments:

model {[type:model.class]} -- [fitted model]

X {[type: array-like]} -- [features to be used]

Keyword Arguments:

percentile {float} -- [quantile] (default: {95})

Returns:

quantile [type:float] -- [quantile predictions]

"""

quantile = []

for x in range(len(X)):

preds = []

for pred in model.estimators_:

preds.append(pred.predict(X[x].flatten().reshape(1,-1)))

quantile.append(np.percentile(preds, (100 - percentile) / 2. ))

return (quantile)
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def quantile_prediction_graph(target, quantile=50., randomstate=42):

"""[quantile predictions]

Arguments:

target {[type:string]} -- [independent variable]

Keyword Arguments:

quantile {[type:float]} -- [quantile] (default: {50.})

randomstate {int} -- [random seeds] (default: {42})

Returns:

y_test [type:array-like] -- [y_test]

prediction [type:array-like] -- [y_hat]

r2 [type:float] -- [r-squared]

slope [type:float] -- [coefficient]

intercept [type:float] -- [intercept]

"""

X_train, X_test, y_train, y_test = train_test_split

(data[features], data[target], test_size=0.1, random_state=12)

X_train = X_train.as_matrix()

y_train = y_train.as_matrix()

X_test = X_test.as_matrix()

y_test = y_test.as_matrix()

model = QuantReg(quantile = 50.)

model.fit(X_train, y_train)

regr = linear_model.LinearRegression()

prediction = pred_ints(model, X_test, percentile = quantile)

regr.fit(X=y_test.reshape(-1,1),y=prediction)

r2 = r2_score(y_pred=prediction, y_true=y_test)

slope = regr.coef_

intercept = regr.intercept_

return (y_test, prediction, r2, slope, intercept)
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Appendix 2. Sample script used for Chapter 4

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

import seaborn as sns

from matplotlib.ticker import FormatStrFormatter

from PyEMD import EMD

%matplotlib inline

165



#script used to plot residuals

f,ax = plt.subplots(ncols=1, nrows=4, figsize=(12,12),dpi=300)

col_list=[’#ff474c’,’#0485d1’,’black’,’black’]

df_new = df.groupby(’Distance’).agg(’median’)

res_dict = {}

for index,ax in enumerate(f.axes):

if index ==0:

target = ’Erosion’

if index ==1:

target = ’Deposition’

if index ==2:

target = ’Sink’

if index ==3:

target = ’Confluence’

data=df_new[target]

if index == 2:

d = np.abs(np.array(data))

else:

d = np.log(np.abs(np.array(data)))

x = np.arange(len(d))

emd = EMD()

res = emd(d)[0]

ax.plot(x, res,c=col_list[index])

ax.set_ylabel(’’)

ax.set_xlabel(’’)

f.tight_layout()
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#script used to produce series figures

sns.set_style(’white’)

nrow, ncol = 2, 3

fig, axs = plt.subplots(nrows=nrow, ncols=ncol, figsize = (15,10), dpi=300)

Feature_list = #list of features

y_label_list = #list of labels

for f, ax in enumerate(fig.axes):

df_j = df[df[’Date’] == Date_list[0]]

if f == 0:

ax.scatter(df[’Distance’], df[’Erosion’],

c=’#ff474c’, alpha=0.2, s = 1)

ax.scatter(df[’Distance’], df[’Deposition’],

c=’#0485d1’, alpha=0.2, s = 1)

dep = df.groupby(’Distance’)[’Deposition’].agg(’median’)

ero = df.groupby(’Distance’)[’Erosion’].agg(’median’)

ax.plot(df_j[’Distance’], ero, c=’#ff474c’, alpha=1)

ax.plot(df_j[’Distance’], dep, c=’#0485d1’, alpha=1)

else:

df_j = df[df[’Date’] == Date_list[0]]

feature = Feature_list[f-1]

if f not in [1, 5]:

ax.scatter(df[’Distance’], df[feature], c=’#929591’,

alpha=0.2, s = 1)

med = df.groupby(’Distance’)[feature].agg(’median’)

ax.plot(df_j[’Distance’], med, c=’black’, alpha=1)

else:

ax.scatter(df[’Distance’], df[feature]*100, c=’#929591’,

alpha=0.2, s = 1)

med = df.groupby(’Distance’)[feature].agg(’median’)*100

ax.plot(df_j[’Distance’], med, c=’black’, alpha=1)

ymax, ymin = ax.get_ylim()

ax.set_ylabel(y_label_list[f], fontsize = 15)

ax.tick_params(labelsize=16)

fig.tight_layout()

167



Vita

Xiaoyu Lu was born and raised in Wuwei, China. He attended the Beijing Forestry University

in 2006. He received a Bachelor of Science degree in Urban and Rural Planning and Resources

Management (now Physical Geography) in July 2010, and a Master of Agricultural Sciences

degree in Soil and Water Conservation and Resources Management in July 2013. Xiaoyu

came to the United States in 2014 to attend the University of Tennessee for a Ph.D. degree in

Geography under the advising of Dr. Yingkui Li. Xiaoyu’s research interests center around

the application of geo-spatial sciences and technology in the study of Earth-surface processes.

168


	Sediment Dynamics and Channel Connectivity on Hillslopes
	Recommended Citation

	tmp.1543871590.pdf.hkq2l

