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ABSTRACT 

Faithful cell division is required to maintain ploidy and generate daughter cells with 

necessary genetic components for life. During mitosis, dividing cells face the challenge 

of coordinating multiple processes to ensure that nascent daughter cells inherit an exact 

copy of the parent cell’s genetic identity to maintain viability. To ensure the proper 

execution of cell division, multiple core cell cycle proteins, such as Aurora B kinase and 

separase, are involved in regulating chromosome segregation, cytokinesis and 

abscission. Interestingly, fundamental roles for these core cell cycle proteins are being 

characterized in this coordination. Separase regulates chromosome segregation and 

vesicle trafficking during meiotic and mitotic divisions. Aurora B kinase is well 

characterized to eliminate incorrect attachments of kinetochore with centromere through 

its phosphorylation. These faultless attachments initiate a series of signaling pathways 

to activate separase and promote chromosome segregation. Additionally, Aurora B 

kinase also phosphorylates centralspindlin to complete cytokinesis and midbody 

formation. The collection of work presented here addresses the role of these two master 

cell cycle regulators in cytokinesis, abscission, and cellular events during later 

morphogenesis. Chapter I outlines the contribution of separase to cytokinesis, highlight 

how the protease activity of separase regulates exocytosis in anaphase, and suggesting 

that an unknown substrate is involved in separase’s regulation of exocytosis. Chapter II 

elucidates how programmed cytokinesis in different tissues contributes to later cellular 

events during morphogenesis and uncovers the novel migration pattern of midbody to 

apical surface. Finally, in Chapter III, we present several live imaging methods for 

observing C. elegans embryogenesis which were applied for this study. Collectively, the 
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work presented here addresses the roles of these master cell cycle regulators in 

exocytosis, cytokinesis, abscission, and later developmental events, which is critical to 

understand how failure of cell division promote tumorigenesis and aneuploidy. Finally, 

our study may provide insightful ideas to generate clinical technologies to cure human 

infertility, cancer and other genetic diseases.  
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INTRODUCTION 

Faithful cell division occurs as a result of spatiotemporally-specific cell cycle events 

including error-free chromosome segregation and cytoplasmic division or cytokinesis. 

Many cell cycle regulators are dedicated to controlling progression from chromosome 

segregation to cytoplasmic division to abscission, which physically separates the 

daughter cells. Here we discuss current knowledge of several important cell cycle 

regulation mechanisms. Specifically, those that involve the cysteine protease separase 

and serine/threonine kinase Aurora B, which coordinate several aspects of cell division 

to ensure the inheritance of the necessary constituents by each daughter cell and the 

execution of the final abscission. Finally, this study sheds light on the newly emerging 

role of cytokinesis in regulating development, as well as the cellular mechanism of 

Aurora B kinase in regulating post-mitotic tissue development.  

 

A Journey through Eukaryotic Cell Division 

Cellular division is a multi-phase process that is necessary for growth, reproduction and 

ultimately the survival of the organism. During M phase, accurate chromosome 

segregation requires successful separation of sister chromatids that are produced 

during S-phase. Before chromosome segregation, it is essential that sister chromatids 

become attached to the microtubule spindle apparatus by kinetochores in a bipolar 

fashion (Lara-Gonzalez et al., 2012). The control mechanism to prevent incorrect 

bipolar attachment named Spindle Assembly Checkpoint (SAC) is activated to inhibit 

the metaphase-to-anaphase transition (Carmena et al., 2012; Lara-Gonzalez et al., 
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2012). Correction of the erroneous chromosome-microtubule attachments is mediated 

by the phosphorylation of Aurora B kinase substrates at the kinetochores. The 

phosphorylation facilitates the destabilization of incorrect kinetochores-microtubule 

attachments. Interestingly, Aurora B kinase requires three other proteins, such as 

scaffold protein INCENP, and two non-enzymatic subunits Survivin and Borealin, to 

form into hetero-tetrameric complexes called Chromosomal Passenger Complex (CPC). 

The CPC complex localized at the inner centromere and continually detects and 

corrects kinetochore-microtubule attachment errors (Carmena et al., 2015; Ruchaud et 

al., 2007; Munoz-Barrera and Monje-Casas, 2014; Pinsky et al., 2006; Welburn et al., 

2010). 

 

Once all chromosomes have their kinetochores attached to the spindle apparatus 

properly, the metaphase-anaphase transition is triggered. The Mitotic Checkpoint 

Complex (MCC) is liberated during the metaphase-anaphase transition, which activates 

an E3 ubiquitin-protein ligase called the Anaphase-Promoting Complex/Cyclosome 

(APC/C). Once activated, the APC/C can lead to securin, the separase inhibition 

chaperone, degradation through ubiquitination. The sudden destruction of securin frees 

separase to cleave the cohesin subunit SCC-1 (also known as Mcd1/Rad 21) and 

promotes sister chromatid separation (Hauf et al., 2001; Lara-Gonzalez et al., 2012; 

Nasmyth and Haering, 2009). Simultaneously, activation of the APC/C also promotes 

the degradation of cyclin B1 and inactivates Cdk1, leading to mitotic exit (Herzog et al., 

2009).  
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After chromosome segregation, cytokinesis begins with the formation of the central 

spindle and equatorial contractile ring between the separating chromosomes (Glotzer, 

2009). In early anaphase, the mitotic kinase Cdk-1/cyclin B phosphorylates MKLP1 

subunits and activates the heterotetrameric centralspindlin complex, which contains two 

subunits (kinesin-6 MKLP1/ZEN-4 and GTPase-activating protein CYK-4), to promote 

central spindle formation (Mishima et al., 2004). With the inactivation of Cdk1, Aurora B 

kinase relocates from centromeres to the spindle center to stabilize the central spindle 

and control its length by phosphorylating multiple kinesins, such as KIF2A and KIF4A 

(Gruneberg et al., 2004; Uehara et al., 2013). 

 

Additionally, the actomyosin ring generates contractile force and initiates cleavage 

furrow ingression. A subcellular structure called the midbody forms at the end of the 

furrowing, which connects the nascent daughter cells and orchestrates abscission. The 

midbody is remodeled from the bundled central spindle microtubule. A large number of 

contractile ring and central spindle proteins are required to regulate midbody formation 

(D'Avino and Capalbo, 2016; Green et al., 2012). One group of central spindle proteins, 

including centralspindlin and Ect2, are transported from microtubules to the midbody 

ring, where they localize with Anillin, RhoA and other proteins (Green et al., 2012). 

Another group of central spindle proteins, including Aurora B and MKLP2, colocalizes 

with midbody microtubules in the region called the midbody flank at the outer edges of 

the midbody (Green et al., 2012; Hu et al., 2012). Inactivation of the Plk1 and Aurora B 

kinases leads to abscission through the recruitment and activation of the ESCRT 

components (Green et al., 2013; Green et al., 2012; Mierzwa and Gerlich, 2014).  
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Cytokinesis also requires cell shape remodeling, which causes a dramatic reduction of 

plasma membrane surface area. Rapid recovery of the daughter cell plasma membrane 

surface area is led by vesicle-mediated membrane transportation and subsequent 

vesicle fusion that targets plasma membranes (Boucrot and Kirchhausen, 2007; Schiel 

and Prekeris, 2013). Inhibition of vesicle secretory and protein transport to the plasma 

membrane impairs cytokinesis in C. elegans (Skop et al., 2001; Skop et al., 2004). 

Additionally, vesicle transportation also delivers numerous regulator proteins to the 

cleavage furrow to reconstruct the cytoskeleton and nascent plasma membrane, which 

are required for successful abscission (Skop et al., 2001). The small GTPase RAB 

(Ras-related proteins in brain) family is well characterized as molecular switches in 

regulating endosome vesicle trafficking and controlling cytokinesis (Stenmark, 2009). 

RAB-11 is a well-defined RAB GTPase that promotes endosomal vesicle docking on the 

target membrane (Campa and Hirsch, 2017; Welz et al., 2014). Other factors, such as 

the t-SNARE syntaxin, v-SNARE, and the exocyst complex execute vesicle tethering 

and fusion to complete cytokinesis (Malsam et al., 2008; Wickner and Schekman, 

2008).  

 

Separase has a Myriad of Roles during the Cell Cycle  

Separase is a cell cycle component evolutionarily conserved from yeast to mammalian 

cells (Hauf et al., 2001; Uhlmann et al., 2000; Waizenegger et al., 2002). The canonical 

function of separase is to regulate chromosome segregation. The mechanism by which 

separase controls meiotic and mitotic chromosome segregation is well known (Siomos 

et al., 2001; Uhlmann et al., 2000). Separase is a multiple-motif protein, which contains 
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protease domain at the C-terminus, and an extended helical repeat domain at N-

terminus (Boland et al., 2017). In addition to mediating canonical cohesin proteolysis at 

metaphase-anaphase transition, separase is also necessary for other cell cycle events. 

For example, separase cleaves spindle associated protein Slk19 to control stabilization 

of the anaphase spindle in Saccharomyces cerevisiae (Sullivan et al., 2004; Sullivan et 

al., 2001). Additionally, the protease activity of separase is required to cleave the 

pericentriolar material proteins for disengagement and duplication of centrioles in 

mammalian cells(Lee and Rhee, 2012; Matsuo et al., 2012). Intriguingly, separase also 

cleaves itself at multiple adjacent sites. The auto-cleaved fragments maintain catalytic 

activity, which controls the following cell cycle progression (Papi et al., 2005; Zou et al., 

2002). All of the characterized separase substrates share a consensus recognition motif 

SxD/ExxR. In addition to its roles as a protease, several non-proteolytic functions of 

separase have been identified. Separase regulate Cdc14 early anaphase release 

(FEAR) pathway to initiate mitotic exit in budding yeast(Stegmeier et al., 2002). 

Separase is also identified to bind and inhibit CDK-1 through an uncharacterized region 

outside the protease domain (Gorr et al., 2005; Gorr et al., 2006). Other non-proteolytic 

functions of separase have been identified, such as control of mitotic exit, polar body 

extrusion, and dynamics of the anaphase spindle (Kudo et al., 2006; Lu and Cross, 

2009; Sullivan and Uhlmann, 2003). 

 

We utilized the powerful model system Caenorhabditis elegans to address fundamental 

cell cycle events during meiosis and mitosis. Our previous studies have identified that 

separase directly regulates vesicle trafficking in anaphase to promote cortical granule 
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exocytosis during meiotic anaphase I and mitotic cytokinesis (Bembenek et al., 2007; 

Bembenek et al., 2010). In C. elegans, cortical granules are secreted during meiotic 

anaphase I and exocytosed at plasma membrane to promote eggshell formation. This 

prevents polyspermy and provides protection to other environmental stresses after 

fertilization (Bembenek et al., 2007; Richie et al., 2011). Interestingly, separase 

localizes to cortical granules and is required for their exocytosis in anaphase 

(Bembenek et al., 2007). Core component of exocytosis machinery, RAB-11, is also 

required for cortical granule exocytosis in C. elegans. However, RAB-11 appears on 

cortical granules prior to separase localization, which suggests an temporal recruitment 

of regulators to the vesicles before exocytosis occurs (Kimura and Kimura, 2012; Sato 

et al., 2008). Additionally, our previous studies found that depletion of separase led to 

increased and persistent accumulation of RAB-11 positive vesicles at the ingressing 

furrow and midbody, consistent with a function of separase in promoting exocytosis at 

the plasma membrane (Bembenek et al., 2010). In addition to mediating substrate 

proteolysis, three different hypermorphic alleles at the non-proteolytic domain of 

separase cause defects in cortical granule exocytosis and cytokinesis, but minimal 

disruption of chromosome segregation (Richie et al., 2011). However, the mechanism 

by which separase mediates exocytosis and membrane trafficking in anaphase, such as 

proteolytic vs. non-proteolytic functions, has not been fully characterized. To investigate 

whether the protease activity of separase is involved in exocytosis, we generated a 

separase mutant by mutagenizing the conserved catalytic activity residue cysteine to 

serine, which was denominated as protease dead separase (SEP-1PD::GFP) mutant. 

Interestingly, in Chapter I, we show that chromosome segregation, vesicle exocytosis, 
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and RAB-11 positive vesicle trafficking were impaired in SEP-1PD::GFP mutant. Cohesin 

SCC-1 depletion substantially rescues chromosome bridging in the SEP-1PD::GFP 

mutant, consistent with our hypothesis that SEP-1PD::GFP may disrupt chromosome 

segregation and cytokinesis by preventing substrate cleavage (Bai and Bembenek, 

2017b). In conclusion, this study indicates that separase may cleave an unknown 

substrate to promote exocytosis during CGE and cytokinesis, similar to its function 

during chromosome segregation. Therefore, separase coordinates chromosome 

segregation with vesicle trafficking events to promote cell division, although the details 

of many aspects of separase’s regulatory mechanism remain unanswered. 

 

Aurora B Kinase Performs Multiple Roles during Cell Division 

Aurora B kinase is a serine/threonine protein kinase coordinates chromosomal and 

cytoskeletal events, such as kinetochore-microtubule attachment, kinetochore 

assembly, sister chromatid biorientation, and segregation (Archambault and Carmena, 

2012; Krenn and Musacchio, 2015; Lampson and Cheeseman, 2011). The activation of 

Aurora B kinase in coordinating cellular events requires three additional regulatory 

proteins to form the Chromosomal Passenger Complex (CPC) (Carmena et al., 2012). 

The CPC localized at chromosome region during early mitosis to regulate chromosomal 

events, then it was transferred to the central spindle and the midbody during late 

mitosis, where it regulates anaphase spindle stabilization, construction of the contractile 

ring and drives abscission. During the formation of central spindle, Aurora B 

phosphorylates the serine at the MKLP-1/ZEN-4 C-terminal tail, which prevents MKLP-

1/ZEN-4 from binding to the centralspindlin clustering inhibitor 14-3-3 protein and 
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promotes centralspindlin assembly into clustered oligomers to bundle central spindle 

microtubules, thereby stabilizing the central spindle (Basant et al., 2015; Hutterer et al., 

2009; Zhao and Fang, 2005). Interestingly, the phosphorylation of KIF4A by Aurora B 

kinase also suppresses microtubule dynamics and the growth of the central spindle and 

the midbody (Bastos et al., 2014). Additionally, Aurora B phosphorylates the 

centralspindlin component MgcRacGAP, which indirectly regulates the small GTPase 

RhoA to govern contractile ring maturation (Ban et al., 2004). Aurora B also 

phosphorylates a number of cytoskeletal regulators to lead constriction of the contractile 

ring and control cell shape during cytokinesis (Ferreira et al., 2013; Floyd et al., 2013; 

Goto et al., 2003; Kettenbach et al., 2011). Before cell abscission, Aurora B kinase acts 

as a negative regulator to delay abscission in presence of lagging chromatin at 

cleavage furrow (Bembenek et al., 2013; Steigemann et al., 2009). During abscission, 

Aurora B acts independent of the CPC complex and phosphorylates ESCRT-III protein 

Snf7 (CHMP4) to preclude formation of ESCRT-III filaments and complete abscission 

(Capalbo et al., 2012; Carlton et al., 2012; Manic et al., 2017; Steigemann et al., 2009). 

 

Execution of Cell Division Spatiotemporally Regulates Tissue Development 

Cytokinesis is the last step of cell division and required for cell proliferation. The 

mechanisms governing cytokinesis are well characterized in one-cell model systems 

such as yeast, in mammalian cultured cells and early zygotic cell division in C. elegans 

(D'Avino et al., 2015). Successful execution of cytokinesis relies on assembly and 

constriction of the actomyosin contractile ring, precise deposition of new plasma 

membrane in a spatiotemporal manner, as well as the coordination between cell 
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polarization and mitotic spindle orientation (D'Avino et al., 2015; Green et al., 2012; 

Pollard, 2017). Remarkably, in addition to the canonical function of maintaining cell 

proliferation, successful cytokinesis is also important for developmental regulation in 

eukaryotic organisms (Chen et al., 2013; Herszterg et al., 2014; Li, 2007). A much 

appreciated regulation of cytokinesis during development is asymmetric cell division in 

multiple epithelial/ neuroepithelial tissues. Any disruption of cytokinesis in these 

asymmetric divisions caused a variety of defects during lumenogensis (Herszterg et al., 

2013; Herszterg et al., 2014; Jaffe et al., 2008; Lujan et al., 2016; Morais-de-Sa and 

Sunkel, 2013; Zheng et al., 2010). Previous studies suggested that constriction of 

contractile ring during cytokinesis may provide mechanical tension to control adhesion 

and mechnotransduction between neighbor cells, which help tissue stabilization during 

development (Herszterg et al., 2014). Intriguingly, the midbody is consistently positioned 

and formed at the apical part after furrowing during asymmetric division, which is a 

primary observed feature of cytokinesis during epithelia development (Herszterg et al., 

2014). Therefore, execution of cytokinesis may directly regulate tissue morphogenesis 

by providing mechanical tension or position the midbody to further orchestrate 

developmental events. To fully understand the role of cytokinesis during development, 

further studies on the proper execution of cytokinesis in different tissues and cell types 

is needed. 

 

Midbody is Not Cellular Junk, but a Regulator of Developmental Events 

A commonly observed function of furrow symmetry in epithelial tissues is to control the 

positioning of midbody at the apical interface. It is still unknown what the functional role 
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of the midbody is at this position and if it is indeed linked to epithelial morphogenesis. 

We do know that the canonical function of the midbody is to recruit and orchestrate a 

large amount of proteins during the execution of abscission (Chen et al., 2009; Green et 

al., 2012; Skop et al., 2004). These midbody proteins have been categorized into 

microtubule-associated proteins, actin-associated proteins, membrane trafficking 

proteins, and a large number of kinases and phosphatases (Skop et al., 2004). The 

midbodies also contain different regions including the midbody ring and the midbody 

central core, which have been characterized by the presence of an electron-dense 

material (Konig et al., 2017; Mullins and Biesele, 1977). Another region is called the 

midbody flank, which is a tightly-packed and microtubule-based structure. A group of 

central spindle proteins, including Aurora B kinase, colocalizes with the midbody flank 

region (Dionne et al., 2015; Green et al., 2012). Generally, the midbody forms between 

daughter cells and is abscised after cell division (Dionne et al., 2015; Schiel et al., 2011; 

Schiel and Prekeris, 2013). Post abscission, the midbody is observed to be engulfed 

and inherited by one of the daughter cells post-asymmetric abscission. However, other 

studies in cancer and stem cells show that the midbody can also travel to non-parent 

cells or persist extracellularly after symmetric abscission, suggesting that it may carry or 

transport signals between cells (Crowell et al., 2014). Consistent with this idea, a 

number of other post-abscission functions of midbody have been elucidated from recent 

studies. Midbody can also travel to non-parent cells in different systems after 

abscission, which suggests that the midbody may deliver signals during tissue 

development (Crowell et al., 2014; Dubreuil et al., 2007; Kuo et al., 2011). Further 

studies in MDCK cells revealed more clearly the role of the midbody during apical 
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polarization and lumenogenesis. Apical membrane markers are delivered to the 

midbody through membrane trafficking during cytokinesis and establish an apical 

surface between two daughter cells (Schluter et al., 2009). Consistent with this idea, the 

midbody defines the site of polarization for dendrite extension in Drosophila neurons 

(Pollarolo et al., 2011). The midbody is also required for a polarizing cue in C. elegans 

embryos, which is necessary for dorsoventral axis formation (Singh and Pohl, 2014). 

Interestingly, the midbody also regulates cilium formation in MDCK cells (Bernabe-

Rubio et al., 2016). Although the midbody regulates pattern formation in various tissues, 

precise mechanism of the midbody in regulating these processes is largely unknown.  

 

In order to further understand patterns of cytokinesis during development as well as the 

functions of the midbody, we investigated cell divisions using the C. elegans embryonic 

invariant lineage in Chapter II. The digestive tract of C. elegans consists of the pharynx, 

intestinal tubes, and valve, all of which are linked and developed from a well-defined 

lineage of cells. These tissue-specific cell divisions have been spatiotemporally 

characterized based on the invariant embryonic lineage (the pharynx containing 80 

cells, the valve containing 6 cells, and the intestine containing 20 cells) (Asan et al., 

2016; Mango, 2007; Sulston et al., 1983). To obtain high-quality images of these 

complex structures, we developed several live imaging methods using the lattice light 

sheet microscope and high-resolution confocal microscope, which are described in 

Chapter III. The observations from the light sheet microscope provide us with 

impressive details of cell division and midbody formation, which uncovered a highly 

stereotyped midbody inheritance pattern and reproducible variations of furrow symmetry 
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during early cell divisions (Chen et al., 2014). During tissue morphogenesis, we 

observed an unexpected pattern of cytokinesis and striking midbody migration events in 

the developing intestine, pharynx, and neuronal sensory. Interestingly, the midbody 

flank marker Aurora B kinase AIR-2 migrates with midbodies and remains at apical 

surfaces in several tissues, while other midbody ring markers, including kinesin-6 ZEN-4 

and non-muscle myosin NMY-2, are internalized into the cytosol. Given the observation 

of this novel cytokinesis pattern and the localization of AIR-2 to apical structures, we 

also tested whether inactivation of midbody components proteins during development 

would have an effect on epithelial morphogenesis. Indeed, inactivation of temperature-

sensitive midbody proteins during morphogenesis disrupted the formation of these 

tissues. Therefore, cytokinesis may play an instrumental role during development, 

similar to the way spindle orientation and other features of cell division are known to 

contribute.  

 

Taken collectively, these findings suggest that cytokinesis is critical to faithful cell 

division. There are various cell cycle regulators playing roles in governing cytokinesis 

and the final abscission process, such as separase and Aurora B kinase. Additionally, 

our findings shed light on a novel pattern of midbody movement to apical surfaces after 

cell division, strengthening the role of cytokinesis in developmental events. However, 

despite our studies and other previous work that provides high-throughput data to 

uncover the mechanism of cytokinesis in multicellular tissues and investigates the 

potential role of the midbody in apical polarization and lumenogenesis, many questions 

remain unanswered. The collection of work provided here addresses a number of 
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questions regarding cytokinesis, abscission, and membrane trafficking in an organism at 

the one-cell stage and in the multicellular tissues of C. elegans, consisting of (1) 

protease activity of separase orchestrating cytokinesis through cleavage of a unknown 

substrate during exocytosis, which provides some clues for identifying separase’s 

substrate; (2) illustrating some variations of cytokinesis in the C. elegans embryonic 

lineage, including highly reproducible patterns of furrow symmetry, microtubule 

disassembly, etc.; (3) showing a striking midbody inheritance pattern in multiple tissues 

and suggesting that the midbody may contribute to apical surface construction; (4) 

showing the localization of Aurora B kinase AIR-2 at multiple apical surfaces post-

mitosis. Inactivation of AIR-2 impairs morphogenesis in several tissues, which implies 

that AIR-2 may have a post-mitotic role in the formation of tissues; (5) our live imaging 

approaches, including light sheet microscopy, provide incredible details of cell division, 

allowing us to observe the process of embryogenesis in C. elegans. Collectively, this 

study highlights how some conserved regulators are critical to the proper execution of 

cell division as well as the regulation of later tissue development, ultimately ensuring 

organismal viability. 
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This chapter contains one published manuscript (Bai and Bembenek, 2017b). 

My contribution included: (1) designing experiments, (2) performing experiments, (3) 

collecting data and data analysis, (4) creating figures and writing the manuscript, (5) 

addressing the reviewers’ comments and writing the rebuttal to the editor. Dr. Joshua N. 

Bembenek assisted with (1), (4) and (5). Only small revisions to the original figures have 

been made for the purposes of this dissertation.  

 

Abstract 

Separase cleaves cohesin to allow chromosome segregation. Separase also regulates 

cortical granule exocytosis and vesicle trafficking during cytokinesis, both of which 

involve RAB-11. We investigated whether separase regulates exocytosis through a 

proteolytic or non-proteolytic mechanism. In C. elegans, protease-dead separase (SEP-

1PD::GFP) is dominant negative. Consistent with its role in cohesin cleavage, SEP-

1PD::GFP causes chromosome segregation defects. As expected, partial depletion of 

cohesin rescues this defect, confirming that SEP-1PD::GFP acts through a substrate-

trapping mechanism. SEP-1PD::GFP causes cytokinetic defects that is synergistically 

exacerbated by depletion of the t-SNARE SYX-4. Furthermore, SEP-1PD::GFP delays 

furrow ingression, causes an accumulation of RAB-11 vesicles at the cleavage furrow 

site and delays the exocytosis of cortical granules during anaphase I. Depletion of syx-4 

further enhanced RAB-11::mCherry and SEP-1PD::GFP plasma membrane 

accumulation during cytokinesis, while depletion of cohesin had no effect. In contrast, 

centriole disengagement appears normal in SEP-1PD::GFP embryos, indicating that 

chromosome segregation and vesicle trafficking are more sensitive to inhibition by the 
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inactive protease. These findings suggest that separase cleaves an unknown substrate 

to promote the exocytosis of RAB-11 vesicles and paves the way for biochemical 

identification of substrates. 

 

Introduction 

Faithful cell division depends on coordinated regulation of chromosome segregation and 

cytokinesis. Chromosome segregation requires equal partitioning of sister chromatids 

that are duplicated and linked together by cohesin during mitotic S-phase (Onn et al., 

2008). At the onset of anaphase, the kleisin subunit of cohesin, SCC-1, is cleaved by 

the caspase-like cysteine protease separase, allowing sister chromatid separation (Hauf 

et al., 2001). Separase is a large protease with two sub-domains, the pseudo-protease 

domain (PPD) and active protease domain (APD) as well as an extended helical repeat 

region in the N-terminus (Boland et al., 2017; Lin et al., 2016; Luo and Tong, 2017; 

Viadiu et al., 2005; Winter et al., 2015). The canonical role of separase is to cleave 

SCC-1, which allows chromosome segregation during mitotic and meiotic anaphase in 

all eukaryotic organisms studied to date (Uhlmann et al., 2000). The proteolytic function 

of separase is required for several other cell cycle events in anaphase. In budding 

yeast, separase cleaves the kinetochore and spindle associated protein Slk19, which 

stabilizes the anaphase spindle (Sullivan et al., 2004; Sullivan et al., 2001). Additionally, 

separase cleaves the pericentriolar material proteins kendrin and pericentrin B to 

regulate centriole licensing in mammalian cells (Lee and Rhee, 2012; Matsuo et al., 

2012).  Interestingly, separase cleaves itself at multiple adjacent sites (Stemmann et al., 

2001; Waizenegger et al., 2002; Zou et al., 2002). The auto-cleaved fragments still 
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maintain catalytic activity, and self-cleavage plays important roles in controlling cell 

cycle progression, separase activity and chromosome segregation (Holland et al., 2007; 

Papi et al., 2005). These proteolytic functions stress the importance of identifying the 

distinct roles of separase and its substrates in both meiosis and mitosis.  

 

In addition to its roles as a protease, several non-proteolytic functions of separase have 

been identified. At anaphase onset, separase-dependent activation of the Cdc14 early 

anaphase release (FEAR) pathway initiates mitotic exit in budding yeast (Stegmeier et 

al., 2002). A protease dead separase mutant is still sufficient to initiate mitotic exit but 

cannot promote cohesin cleavage and spindle elongation (Sullivan and Uhlmann, 2003). 

Interestingly, Cdc14 has been shown to promote cytokinesis by regulating ER to bud 

neck trafficking of chitin synthase and directly dephosphorylating several bud neck 

targets (Chin et al., 2012; Jakobsen et al., 2013; Kuilman et al., 2015; Miller et al., 2015; 

Palani et al., 2012). Separase is also known to bind and inhibit CDK-1 in mammalian 

cells through an unstructured region between the catalytic and N-terminal domain (Gorr 

et al., 2005; Gorr et al., 2006; Hellmuth et al., 2015; Viadiu et al., 2005). Consistent with 

this, several studies have shown that expression of catalytically inactive separase can 

rescue multiple aspects of separase function (Gorr et al., 2006; Kudo et al., 2006). In 

oocytes, expression of inactive separase can rescue polar body extrusion, a highly 

asymmetric form of cytokinesis, after knockdown of endogenous separase (Kudo et al., 

2006). These earlier studies would suggest the hypothesis that protease dead separase 

might be capable of promoting the cytokinetic functions of separase. However, our 

unexpected observation that protease dead separase is dominant negative in C. 



18 
 

elegans suggests that it interferes with endogenous separase function (Mitchell et al., 

2014). This provides a novel opportunity to investigate the cellular functions that are 

affected by protease dead separase. 

 

Caenorhabditis elegans is a powerful model system for addressing fundamental cell 

cycle events. Oocytes mature and undergo fertilization every 25 minutes, then complete 

meiosis and initiate the mitotic cell divisions within an hour in utero, all of which can be 

imaged with relative ease (McCarter et al., 1999). In C. elegans, separase performs 

multiple functions during the oocyte-to-embryo transition in the first meiotic division and 

the mitotic metaphase-to-anaphase transition. Separase is essential for homologous 

chromosome disjunction through cleaving meiosis-specific kleisin subunit Rec8 (Siomos 

et al., 2001).  During anaphase I, separase cleaves the CENP-A related protein, CPAR-

1, which may regulate the metaphase-anaphase transition in C. elegans (Monen et al., 

2015). Separase is involved in centriole disengagement during male spermatocyte 

meiosis (Schvarzstein et al., 2013) and regulates the separation and duplication of 

sperm-derived centrioles in embryos at the meiosis-mitosis transition (Cabral et al., 

2013). During mitosis, separase cleaves the mitotic cohesin kleisin subunit SCC-1 to 

promote chromosome segregation (Mito et al., 2003; Siomos et al., 2001). Whether C. 

elegans separase has the same conserved non-proteolytic functions such as CDK-1 

inhibition is unknown, as is whether other protease dead separase mutants are 

dominant negative in other systems. 
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Our previous studies have defined an essential function for separase in the regulation of 

vesicle exocytosis during anaphase. Separase inactivation causes eggshell defects and 

cytokinesis failures, both of which are due to defects in vesicle trafficking. During 

anaphase I, separase localizes to cortical granules and is required for their exocytosis, 

which is necessary for eggshell formation (Bembenek et al., 2007). Simultaneously, 

separase localizes to the base of the polar body and is required for successful 

cytokinesis during polar body extrusion (PBE). RAB-11, a small GTPase that regulates 

trafficking at recycling endosomes and is essential for cytokinesis in several systems, is 

also found on cortical granules and the base of the polar body and is required for both 

events in anaphase I (Sato et al., 2008). Further study indicated that separase is also 

required for cytokinesis during mitosis (Bembenek et al., 2010). Interestingly, depletion 

of separase in C. elegans with RNAi enhanced the accumulation of RAB-11 positive 

vesicles at the ingressing furrow and midbody, suggesting a role of separase in 

exocytosis during cytokinesis (Bembenek et al., 2010). Furthermore, the role of 

separase in exocytosis is independent of its function in chromosome segregation as a 

unique hypomorphic mutant that maps to the N-terminal domain promotes mostly 

normal chromosome segregation, while cortical granule exocytosis (CGE) and 

cytokinesis remain severely affected (Bembenek et al., 2007; Bembenek et al., 2010). 

These studies demonstrate that CGE is under the control of the same cellular 

machinery that regulates membrane trafficking during polar body extrusion and mitotic 

cytokinesis. Separase has been also found in plant and mammalian systems to regulate 

membrane trafficking (Bacac et al., 2011; Moschou et al., 2014), suggesting that 

separase may have a conserved function in regulating membrane trafficking.  
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There are many open questions about the exact mechanism of how separase regulates 

RAB-11 vesicle exocytosis. Previous studies in mouse oocytes suggest that separase 

has a non-proteolytic role in polar body extrusion, and thus possibly in vesicle trafficking 

(Kudo et al., 2006). However, we recently reported the unexpected observation that 

SEP-1PD::GFP is dominant negative in C. elegans (Mitchell et al., 2014). Here, we 

investigated cellular phenotypes to understand what processes are impaired by SEP-

1PD::GFP in C. elegans and whether vesicle trafficking is affected. We used high-

resolution confocal microscopy to observe SEP-1PD::GFP phenotypes during meiosis I 

and mitotic cytokinesis. We show that SEP-1PD::GFP impairs both chromosome 

segregation and RAB-11 vesicle trafficking, but does not impact centriole 

disengagement. Depletion of the substrate, cohesin scc-1, substantially rescues 

chromosome bridging during anaphase in SEP-1PD::GFP embryos, consistent with the 

hypothesis that SEP-1PD::GFP prevents substrate cleavage. SEP-1PD::GFP also impairs 

vesicle exocytosis and genetically interacts with vesicle fusion machinery. Therefore, 

separase may also cleave a substrate to promote exocytosis during CGE and 

cytokinesis. 

 

Results 

SEP-1PD::GFP Inhibits Chromosome Separation 

To investigate the proteolytic functions of separase in C. elegans, we used the pie-1 

promoter for germline expression of a protease-dead separase (C1040S) fused to GFP 

(SEP-1PD::GFP) (Bembenek et al., 2010; Mitchell et al., 2014). We have devised two 

methods to propagate animals carrying the dominant negative protease dead separase 
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and have applied them to characterize the phenotype caused by stable expression of 

protease-dead separase (Mitchell et al., 2014). Depending on the experimental setup 

and desired genotype, our conditions lead to SEP-1PD::GFP expression from either one 

or two copies of the transgene in a wild type background with endogenous separase 

expression. We also characterized multiple independently generated homozygous SEP-

1PD::GFP transgenic lines obtained by microparticle bombardment to identify the most 

reproducibly behaved lines. Two lines (WH520 and WH524) behave as chromosomal-

integrated alleles with consistent expression of the protease-dead separase that lead to 

consistent phenotypes, while other lines were less consistent (Fig. A1). We used 

WH520 to characterize cellular phenotypes, which has nearly 100% embryo lethality 

after 5 generations off GFP RNAi (which we will call homozygous SEP-1PD::GFP) and 

about 70% lethality in F2 embryos using the backcross propagation strategy (labeled as 

SEP-1PD::GFP/+) (Fig. A1 B). In contrast, expression of SEP-1WT::GFP causes no 

lethality and can fully rescue mutant separase embryos (Bembenek et al., 2010; Mitchell 

et al., 2014). Therefore, expression of SEP-1PD::GFP in the wild type background with 

endogenous separase consistently causes embryo lethality. 

 

Separase is well known to cleave cohesin to allow chromosome segregation. We 

hypothesized that SEP-1PD::GFP is dominant negative in part because it may bind 

cohesin but would be unable to cleave it, thus preventing endogenous separase from 

cleaving cohesin and inhibiting chromosome separation. Separase has several 

conserved substrates that are found in C. elegans and mammalian cells, including 

cohesin. Prior to anaphase onset, SEP-1WT::GFP and SEP-1PD::GFP show identical 
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localization patterns and both show equivalent localization to chromosomes (Bembenek 

et al., 2010). However, in mitotic anaphase, when separase becomes catalytically active 

and would bind to substrates, SEP-1PD::GFP displays ectopic localization at centrioles 

and the central spindle where known substrates are cleaved by separase in other 

systems (Bembenek et al., 2010), consistent with the hypothesis that it has enhanced 

association with substrates. In order to investigate the effects of SEP-1PD::GFP on 

chromosome segregation, we compared embryos expressing H2B::mCherry to label the 

chromosome and homozygous SEP-1PD::GFP or SEP-1WT::GFP. We defined anaphase 

onset as the time point when the width of the chromosome signal increases due to 

spindle forces pulling sister chromatids apart, which always occurs very quickly after 

chromosome alignment on the metaphase plate in both SEP-1PD::GFP and SEP-

1WT::GFP. Consistent with our hypothesis, chromosome segregation during the first 

mitotic anaphase was significantly delayed in homozygous SEP-1PD::GFP compared to 

SEP-1WT::GFP embryos (Fig. 1.1 A-L). To ensure cell cycle timing was not dramatically 

altered, we quantified the time from nuclear envelop breakdown (NEBD) to furrow 

ingression in homozygous SEP-1PD::GFP embryos and did not observe a significant 

delay of global cell cycle events as compared with SEP-1WT::GFP (Fig. A1 C-H, p=0.54, 

t-test). 

 

Quantification of the distance that chromosomes separate after mitotic anaphase onset 

showed on average a 3.7 micron lag in separation over time in embryos expressing 

homozygous SEP-1PD::GFP (Fig. 1.1 M). Homozygous SEP-1PD::GFP embryos had 

some variation in the severity of segregation defects, from slight bridging (in 10/52 SEP-
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1PD::GFP embryos at 25 °C) to more severe bridging chromosomes (in 42/52 

homozygous SEP-1PD::GFP embryos at 25 °C) (Fig. 1.1 N), which was absent from WT 

(in 0/16 SEP-1WT::GFP embryos at 25 °C). Interestingly, the delayed chromosome 

separation was more severe at 25 °C than at 20 °C (Fig. 1.1 N & Movie 1), which is 

likely due to higher transgene expression (fluorescence intensity in the cytoplasm is 

twofold higher at 25 °C as compared to 20 °C). We also investigated chromosome 

segregation during anaphase I of meiosis. Interestingly, homozygous SEP-1PD::GFP 

embryos also displayed chromosome segregation defects during meiotic anaphase (Fig. 

1.2 A-H). We measured the delay in separation over time and observed a less severe 

but significant delay in chromosome segregation (Fig. 1.2 I). In addition, the bridging 

defects were not as severe as observed in mitosis (bridge observed in 0/8 SEP-

1WT::GFP embryos at 25 °C; in 7/15 homozygous SEP-1PD::GFP at 25 °C, Fig. 1.2 J & 

Movie 2). These data indicate that homozygous SEP-1PD::GFP impairs chromosome 

segregation during both meiosis and mitosis, likely due to impaired cohesin cleavage.  

If our hypothesis that cohesin cleavage is impaired by SEP-1PD::GFP is correct, we 

would expect that partial depletion of scc-1 by RNAi would alleviate the chromosome 

segregation defects. We carefully titrated the degree of RNAi depletion (feeding RNAi 

24 hours at 20°C and 25 °C) to achieve a mild level of scc-1 depletion to avoid causing 
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Figure 1. 1 SEP-1PD::GFP causes chromosome segregation defects during 

mitosis. 

Representative images of mitotic chromosome segregation in SEP-1WT::GFP expressing 

embryos (A-D, green) or homozygous SEP-1PD::GFP (green) embryos with slight bridging (E-H) 

and severe bridging (I-L) co-expressing H2B::mCherry (red). (M) Average distance between 

separating sister chromatids (as shown by arrowheads in B, F, J) during anaphase in SEP-

1WT::GFP (n=7) or SEP-1PD::GFP (n=9) embryos from metaphase to late cytokinesis . (N) 

Percentage of embryos displaying normal chromosome separation (blue), slight bridging 

chromosomes (red) or severe chromosome bridges (green) during the first mitosis in embryos 

expressing either SEP-1WT::GFP or SEP-1PD::GFP at the temperature indicated (n= number of 

embryos imaged). Insert shows H2B::mCherry images scored as normal, slight bridging and 

severe bridging. Scale Bars, 10 μm. P-values: * =<0.05; ****=<0.0001 (t-test). Error bars 

indicated standard deviation of the mean.  
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severe chromosome segregation defects due to loss of cohesin (Mito et al., 2003). At 

both 20°C and 25 °C, scc-1 RNAi causes only mild lethality in wild type (Fig. 1.3 A, B) 

but significantly rescues the homozygous SEP-1PD::GFP embryonic lethality from 100% 

down to 22% ± 10.34 at 25 °C (Fig. 1.3 B). Chromosome segregation defects were 

significantly alleviated after depletion of scc-1 (RNAi) in homozygous SEP-1PD::GFP 

embryos (Fig. 1.3 C-F). Homozygous SEP-1PD::GFP depleted of scc-1 also had normal 

kinetics of chromosome segregation in anaphase (Fig. 1.3 G) and much less severe 

bridging defects (28/42 normal, 9/42 slightly bridging, 5/42 severe bridges, Fig. 1.3 H). 

Therefore, reducing the amount of cohesin largely rescues the chromosome 

segregation defects caused by expressing SEP-1PD::GFP together with endogenous 

separase in C. elegans. Presumably this is because there is less substrate that must be 

cleaved, reducing the amount of cohesin that endogenous separase must cleave in the 

presence of SEP-1PD::GFP to allow chromosome segregation. These substrate binding 

may not be necessary for localization. These findings suggest that SEP-1PD::GFP acts 

as a substrate trapping enzyme and inhibits cleavage of cohesin to impair chromosome 

segregation, as expected from the known functions of separase. Additionally, the data 

consistent with our hypothesis that SEP-1PD::GFP inhibits substrate cleavage, causing a 

dominant phenotype.  
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Figure 1. 2 SEP-1PD::GFP causes chromosome segregation defects during 
meiosis I.  

Representative images of meiotic chromosome segregation in SEP-1WT::GFP (A-D, green) or 

homozygous SEP-1PD::GFP expressing embryos (E-H, green) co-expressing H2B::mCherry 

(red). Lower left insets show H2B::mCherry. (I) Average distance between chromosomes 

(indicated by arrowheads in B, F) during anaphase in SEP-1WT::GFP or homozygous SEP-

1PD::GFP. (J) Percentage of embryos displaying normal chromosome separation (blue), bridging 

chromosomes (red) during the anaphase I in embryos expressing either SEP-1WT::GFP or 

homozygous SEP-1PD::GFP (n= number of embryos imaged). Insets show examples scored as 

normal or bridging chromosomes during anaphase I. Scale Bars, 10 μm. P-values: * =<0.05; 

ns= not significant (t-test). Error bars indicated standard deviation of the mean. 
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Current studies indicate that separase cleaves substrates such as kendrin and cohesin 

to sever the physical link between centrioles (Matsuo et al., 2012; Schockel et al., 2011; 

Tsou and Stearns, 2006). We hypothesized that SEP-1PD::GFP may bind to potential 

substrates at the centrosome, delaying their cleavage by endogenous separase and 

inhibiting centriole disengagement. In order to investigate the effects of SEP-1PD::GFP 

on centriole disengagement, we compared embryos expressing SPD-2::mCherry (Peel 

et al., 2017) to label the centrioles and homozygous SEP-1PD::GFP or SEP-1WT::GFP 

(Fig. A2 A, B and Movie 3). We measured the signal intensity of separase in SEP-

1PD::GFP and SEP-1WT::GFP expressing embryos at the onset of furrow ingression, 

which is about the time that centrioles disengage in the AB daughter cell. Interestingly, 

SEP-1PD::GFP signal is significantly higher at the centriole and centrosome over time, 

relative to SEP-1WT::GFP embryos (Fig. A2 C). However, we did not observe any 

significant delays in disengagement of daughter centrioles in SEP-1PD::GFP embryos 

(Fig. A2 D). These data suggest that chromosome segregation is more sensitive to 

inhibition by the protease dead separase than centriole disengagement. Therefore, 

separase regulates multiple cell cycle events, which have different sensitivity to 

inhibition by protease dead separase. 

 

SEP-1PD::GFP expression impairs cytokinesis independent of cohesin 

In addition to the canonical function of separase in chromosome segregation, separase 

is required for cytokinesis by regulating vesicle exocytosis (Bembenek et al., 2010). If 

separase has a substrate that it must cleave in order to promote vesicle exocytosis  
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Figure 1. 3 Cohesin depletion rescues chromosome segregation defects caused 

by SEP-1PD::GFP. 

(A, B) Partial cohesin depletion significantly rescues the SEP-1PD::GFP embryonic lethality at 
both 20°C and 25 °C (n=singled worm number: total embryo count). (C-F) Chromosome 
segregation defects were significantly alleviated after partial depletion of scc-1 in homozygous 
SEP-1PD::GFP (green) embryos (DNA in red). (G) Distance between separating sister 
chromatids during anaphase in SEP-1WT::GFP or SEP-1PD::GFP control or with scc-1 (RNAi). 
(H) Percentage of embryos displaying normal chromosome separation (blue), slight bridging 
chromosomes (red) or severe chromosome bridges (green) during the first mitosis in embryos 
expressing SEP-1WT::GFP or SEP-1PD::GFP with and without scc-1 (RNAi) treatment (n= 
number of embryos imaged). Scale Bars, 10 μm. P-values: ** =<0.01; ***=<0.001; ****=<0.0001 
(t-test).  Error bars indicated standard deviation of the mean.  
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during cytokinesis, we postulated that SEP-1PD::GFP would inhibit this process similar to 

the way it impairs chromosome segregation. We tested whether homozygous SEP-

1PD::GFP embryos fail cytokinesis using live imaging. Interestingly, we found some 

homozygous SEP-1PD::GFP embryos with multipolar spindles, indicative of cytokinesis 

failure, in one cell through two cell stages (in 2/52 homozygous SEP-1PD::GFP embryos; 

0/70 SEP-1WT::GFP embryo; in 0/13 N2 at 25 °C. Fig. 1.4 A). Additionally, cytokinesis 

failures are sporadic and are often seen in older SEP-1PD::GFP but not SEP-1WT::GFP 

embryos, but are difficult to quantify accurately because cells that fail cytokinesis 

subsequently undergo multipolar division and cellularize. These data indicate that SEP-

1PD::GFP expression impairs cytokinesis, consistent with the hypothesis that it may 

inhibit cleavage of a substrate necessary for cytokinesis.  

 

Next, we analyzed the rate of furrow ingression to determine if there are additional 

defects during cytokinesis despite the low rate of cytokinesis failure. We generated 

homozygous SEP-1PD::GFP and SEP-1WT::GFP lines expressing mCherry fused to the 

pleckstrin homology domain of phospholipase C-delta (PH::mCherry for short) to 

observe the plasma membrane during cytokinesis (Kachur et al., 2008). We imaged 

furrow ingression in a single focal plane of the central spindle and midbody. We found 

that furrow ingression rate in homozygous SEP-1PD::GFP embryos was consistently 

slower compared with the SEP-1WT::GFP and AIR-2::GFP control (0.14 μm/second, n=8 

in homozygous SEP-1PD::GFP; 0.17 μm/second ± 0.01 n=10 in SEP-1WT::GFP, 

p=0.0004 (t-test), Fig. 1.4 B, D). We also measured the time from the initiation of furrow 

ingression until it completed, generating a smooth cell boundary. In SEP-1WT::GFP  
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Figure 1. 4 SEP-1PD::GFP causes cytokinesis defects. 

(A) Percentage of embryos displaying normal cell division (blue) and cytokinesis failure (red) 
during first mitotic division in N2 wild type, SEP-1WT::GFP or homozygous SEP-1PD::GFP. Right 
panels show examples scored as normal or cytokinesis failure. (B) Quantification of the furrow 
ingression rate in different genotypes. Depletion of SCC-1 in SEP-1PD::GFP embryos does not 
rescue the slower furrow ingression (p=0.29 (t-test), n= number of embryos imaged). (C) 
Quantification of the furrow ingression time in different conditions as indicated (n= number of 
embryos imaged). (D) Kymograph of the furrow region shows PH::mCherry (red) in SEP-
1WT::GFP, homozygous SEP-1PD::GFP, SEP-1PD::GFP; scc-1(RNAi) (time in seconds indicated 
below), or AIR-2::GFP (green) expressing PH::mCherry (red) and H2B::mCherry (red) with and 
without top-2 (RNAi) during cytokinesis. Distance between separating sister chromatids at 
similar times after anaphase onset is indicated by brackets, furrow SEP-1PD::GFP signal is 
indicated by arrowheads. Cohesin depletion rescues chromosome segregation, but not 
furrowing. The lower kymograph of an embryo treated with top-2 (RNAi) has chromatin in the 
path of the furrow without any change in furrow ingression. Scale Bars, 10 μm. Error bars 
indicated standard deviation of the mean. Each kymograph image is 6 seconds apart. P-values: 
***=<0.001; ****=<0.0001 (t-test). 
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cells, this process took 164 seconds ± 4 (n=15, Fig. 1.4 C). Since SEP-1WT::GFP does 

not label the midbody, we also imaged the midbody maker AIR-2::GFP together with 

PH::mCherry and found that our measurement of furrow completion timing was accurate 

(161 seconds ± 4, n=5, p=0.69 (t-test), Fig. 1.4 C, D). SEP-1PD::GFP, but not SEP-

1WT::GFP, is often colocalized with the plasma membrane during furrowing and remains 

at the midbody for an extended period of time, which could reflect enhanced association 

with a membrane substrate (Fig. 1.4 D). In homozygous SEP-1PD::GFP embryos, 

cytokinesis completion was significantly delayed relative to wild type embryos (203 

seconds ± 5; n=8, p<0.0001 (t-test), Fig. 1.4 C). Therefore, expression of dominant 

negative SEP-1PD::GFP specifically impairs furrow ingression and completion of 

cytokinesis. 

 

In several systems, lagging chromatin that becomes trapped in the midbody during 

cytokinesis triggers an “abscission checkpoint” pathway to prevent cytokinesis failure 

(Bembenek et al., 2013; Norden et al., 2006).  In human cells, chromatin bridges induce 

a delay in abscission but ultimately cells fail cytokinesis, which is observed when 

cohesin cleavage is impaired (Hauf et al., 2001). However whether this is also due to 

membrane trafficking defects is unknown. Several observations suggest that the 

cytokinesis defects in SEP-1PD::GFP embryos are different than those caused by other 

chromosome bridging conditions. First, more penetrant cohesin scc-1 RNAi causes 

severe chromosome segregation defects but no cytokinesis defects, suggesting that 

bridges resulting from the cohesin depletion do not cause cytokinesis failure in the 

embryo (Mito et al., 2003). In addition, we previously demonstrated that many different 
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types of chromosome defects such as decondensation or catenation cause severe 

bridging phenotypes but very rare cytokinesis failures due to the action of an abscission 

checkpoint pathway in C. elegans (Bembenek et al., 2013; Bembenek et al., 2010). 

Therefore, chromatin bridges do not cause cytokinesis defects in C. elegans, but elicit 

the abscission checkpoint, which reduces the failure rate. Consistent with this, we 

measured the furrow ingression rate in embryos with chromatin bridges after depletion 

of top-2 and observed normal ingression furrow rate (0.18 ± 0.01, n=10, p=0.40 (t-test), 

Fig. 1.4 B), suggesting the abscission checkpoint does not affect the rate of furrowing 

like SEP-1PD::GFP. Reports in other systems have indicated that the abscission 

checkpoint regulates other cytoskeletal regulators that function during cytokinesis 

(Agromayor and Martin-Serrano, 2013). Therefore, the abscission checkpoint is likely 

independent of separase-regulated cytokinesis events.  

 

Cohesin is the critical target of separase in chromosome segregation and is also found 

on the centrosome where it is cleaved during centriole licensing (Schockel et al., 2011). 

A function for cohesin during cytokinesis has not been previously reported. If cohesin 

were the relevant substrate involved in cytokinesis, even at a lower threshold, we would 

expect its depletion to reduce the amount of substrate necessary to be cleaved and 

alleviate the cytokinesis defects. However, while 70% of the SEP-1PD::GFP embryos 

treated with scc-1(RNAi) are rescued for the chromosome segregation defects (Fig. 1.3 

H), they still show slow furrow ingression and delayed closure of the furrow (Fig. 1.4 C). 

Partial depletion of scc-1 rescues the chromosome segregation defects but did not 

rescue the delay of furrow closure (200 seconds ± 4, n=7, p=0.69 (t-test), Fig. 1.4 C, D) 
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or the furrow ingression rate in homozygous SEP-1PD::GFP embryos (0.14 μm/second 

in homozygous SEP-1PD::GFP scc-1 RNAi; n=7, p=0.29 (t-test), Fig. 1.4 B). 

Interestingly, we found that cohesin depletion leads to higher accumulation of SEP-

1PD::GFP at the furrow and midbody in homozygous embryos (Fig. A3 A, B). This result 

suggests that SEP-1PD::GFP can compete with different substrates and when cohesin is 

depleted, it is more free to interact with a putative unknown substrate at the furrow and 

midbody. Therefore, the cytokinesis defects observed in embryos expressing SEP-

1PD::GFP does not occur in other chromosome bridging conditions and is not rescued 

by depletion of cohesin, suggesting that separase has a chromosome independent role 

in cytokinesis. 

 

We further investigated whether cohesin alleviates the cytokinesis defects caused by 

inactivating separase. We depleted separase by RNAi with and without cohesin 

depletion to determine whether cohesin depletion would impact the cytokinesis 

phenotype. To obtain consistent phenotypes, we carefully titrated the degree of RNAi 

depletion of cohesin and separase (feeding scc-1 RNAi 24 hours and sep-1 RNAi 

together with scc-1 RNAi for another 24 hours at 20°C). However, depletion of scc-1 did 

not affect the rate of cytokinesis failure after separase depletion (11/43 sep-1 (RNAi), 

12/42 sep-1; scc-1(RNAi), Fig. A3 D). We also depleted scc-1 in the hypomorphic 

separase temperature sensitive mutant (feeding scc-1 RNAi for 48 hours at 15 °C), sep-

1 (e2406) shifted to 25°C for 4-8 hours and saw no change in the rate of cytokinesis 

failure (3/10 control (RNAi); sep-1 (e2406), 4/15 scc-1 (RNAi); sep-1(e2406), Fig. A3 D). 

Therefore, cohesin depletion does not affect the cytokinesis defects caused by 
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disrupting separase function in three different conditions, suggesting that separase has 

another substrate besides cohesin that it cleaves in order to promote cytokinesis.  

 

SEP-1PD::GFP genetically interacts with essential exocytosis machinery 

Given that separase likely regulates cytokinesis by promoting RAB-11 vesicle 

exocytosis, we investigated whether SEP-1PD::GFP interferes with exocytosis. We first 

tested whether there was a genetic interaction between SEP-1PD::GFP and the t-

SNARE syx-4. SYX-4 is a core part of the exocytosis fusion machinery and is localized 

to the plasma membrane where it is required for cytokinesis in C. elegans (Jantsch-

Plunger and Glotzer, 1999). Therefore, we expected that combining SEP-1PD::GFP 

expression and depletion of syx-4 would greatly exacerbate the cytokinesis failure rate if 

they both inhibit exocytosis. syx-4 RNAi is inefficient and causes highly variable 

phenotypes compared with other genes (Jantsch-Plunger and Glotzer, 1999). We 

carefully calibrated RNAi treatment and determined that 30-36 hours feeding syx-4 

RNAi was an optimal intermediate condition, which caused minimal eggshell 

permeability and cytokinesis defects in wild type embryos. Consistent with our 

hypothesis, 30-36 hours feeding syx-4 RNAi synergistically enhanced embryonic 

cytokinesis defects in embryos expressing homozygous SEP-1PD::GFP (in 15/21 

cytokinesis failure, Fig. 1.5 B, C) as compared with wild type (in 0/23 SEP-1WT::GFP 

embryos; in 2/30 N2 embryos, Fig. 1.5 A, C, Movie 4). Therefore, SEP-1PD::GFP has a 

strong negative genetic interaction with syx-4(RNAi), consistent with the hypothesis that 

they both inhibit exocytosis during cytokinesis.  
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Figure 1. 5 SEP-1PD::GFP was enhanced by t-SNARE syx-4 depletion.  

(A) Representative images of mitotic cytokinesis in SEP-1WT::GFP (A, green) or homozygous 
SEP-1PD::GFP (B, green) embryos co-expressing PH::mCherry (red). (B) Representative 
images of mitotic cytokinesis failure in homozygous SEP-1PD::GFP; PH::mCherry expressing 
embryos with syx-4 (RNAi), resulting in a one cell embryo with a multi-polar spindle. (C) 
Percentage of embryos displaying normal cytokinesis (blue) or cytokinesis failure (red) in 
different conditions as indicated (n= number of embryos imaged). Scale Bars, 10 μm. 
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SEP-1PD::GFP inhibits RAB-11 positive vesicle trafficking during cytokinesis 

We next wanted to investigate whether the cytokinesis defects caused by SEP-

1PD::GFP expression were due to the inhibition of RAB-11 positive vesicle trafficking. 

Despite several attempts we were unable to generate viable lines homozygous for both 

SEP-1PD::GFP and RAB-11::mCherry, indicative of a negative genetic interaction. 

However, we could generate viable heterozygous SEP-1PD::GFP/+ and RAB-

11::mCherry/+ F1 animals that reproducibly expressed both transgenes in order to film 

F2 embryos. Since the protein in newly fertilized F2 embryos is synthesized by the F1 

maternal syncytial germline, each embryo will have the same cytoplasmic expression of 

SEP-1PD::GFP/+ and RAB-11::mCherry/+ despite having different genotypes. Although 

the cytokinesis phenotypes in SEP-1PD::GFP/+ expressing RAB-11::mCherry/+ are less 

severe than homozygous SEP-1PD::GFP, 30-36 hours feeding of syx-4 RNAi 

substantially increased the rate of cytokinesis failures (0/30 syx-4(RNAi); SEP-

1WT::GFP, 0/15 SEP-1PD::GFP/+, 5/23 syx-4(RNAi); SEP-1PD::GFP/+, Fig. 1.6 H and 

Movie 5). Mounting embryos on an agar pad or in hanging drop gave the same results 

after treating syx-4 RNAi in SEP-1PD::GFP compared with SEP-1WT::GFP embryos, 

indicating that indirect effects from mounting were not an issue. Therefore, syx-4 RNAi 

strongly exacerbates the cytokinesis defects in both heterozygous and homozygous 

SEP-1PD::GFP embryos, although the cytokinesis phenotypes are weaker in the 

heterozygous embryos.  

 

Next, we imaged RAB-11 vesicle trafficking during cytokinesis in SEP-1WT::GFP and 

SEP-1PD::GFP/+ embryos. RAB-11 generates exocytic vesicles from a centrosomal 
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compartment of recycling endosomes, and remains associated with those vesicles as 

they are transported to and exocytosed at the plasma membrane (Albertson et al., 

2005; Schiel et al., 2013; Skop et al., 2001). In SEP-1WT::GFP and SEP-1PD::GFP/+ 

embryos, RAB-11 is normally distributed at centrosomes and throughout the cytoplasm, 

indicating that early stages of vesicle trafficking are normal (Fig. 1.6 A, B). Interestingly, 

we found that the expression of SEP-1PD::GFP/+ resulted in increased and persistent 

accumulation of RAB-11 vesicles at the cleavage furrow and midbody compared to 

SEP-1WT::GFP expressing embryos, consistent with a defect in exocytosis at the plasma 

membrane (Fig. 1.6 A, B, G; Movie 6). The Golgi-associated GTPase, RAB-6, was 

shown to recruit separase to the cortical granule in C. elegans embryos (Kimura and 

Kimura, 2012). However, we did not observe the accumulation of RAB-6 at the 

ingressing furrow or midbody during cytokinesis in SEP-1PD::GFP/+ expressing embryos 

(Fig. 1.6 E, F). Therefore, SEP-1PD::GFP/+ interferes with RAB-11 trafficking during 

cytokinesis.  

 

Given that SEP-1PD::GFP expression combined with syx-4 (RNAi) enhances cytokinesis 

failure (Fig. 1.6 H), we hypothesized that they both inhibit RAB-11 vesicle exocytosis. 

To examine this further, we examined whether RAB-11 trafficking was more defective in 

SEP-1PD::GFP/+; syx-4 (RNAi) embryos, which might explain the increased cytokinesis 

failure. We imaged RAB-11 vesicles in embryos expressing both RAB-11::mCherry and 

SEP-1PD::GFP/+ with and without 30-36 hours feeding syx-4 RNAi treatment. Depletion 

of syx-4 caused a significantly higher accumulation of both RAB-11::mCherry and SEP-

1PD::GFP/+ at the ingressing furrow and midbody compared with untreated SEP-  
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Figure 1. 6 SEP-1PD::GFP inhibits RAB-11 positive vesicle trafficking during 
cytokinesis.  

(A, B) Representative images and kymograph of RAB-11::mCherry (red) trafficking to the furrow 
in SEP-1WT::GFP (green) or heterozygous SEP-1PD::GFP/+ (green). Arrowheads denote 
enhanced RAB-11::mCherry (grey) accumulation. (C, D) syx-4 (RNAi) enhances RAB-
11::mCherry (grey) in both SEP-1WT::GFP and SEP-1PD::GFP/+ at the furrow and midbody. (E) 
Kymograph of the furrow region showing that RAB-6::mCherry (red) and SEP-1WT::GFP (green) 
do not accumulate in the furrow. (F) Accumulation of heterozygous SEP-1PD::GFP/+ (green) is 
observed at the furrow and midbody, but not RAB-6::mCherry (red). (G) Quantification of 
separase and RAB-11 signals in the midbody during cytokinesis in different conditions as 
indicated. (H) The percentage of embryos displaying cytokinesis failure in heterozygous SEP-
1PD::GFP/+ (green) embryos expressing RAB-11::mCherry/+ (red) with indicated conditions. 
Scale Bars, 10 μm.  P-values: * =<0.05; **=<0.01; ****=<0.0001 (t-test). Error bars indicated 
standard error of the mean. Each kymograph image is 6 seconds apart. 
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1PD::GFP/+ embryos (Fig. 1.6 B, D, G; Movie 6). Unfortunately we could not assay RAB-

11 vesicle trafficking under the more severe condition of homozygous SEP-1PD::GFP; 

syx-4 (RNAi) which has a much higher cytokinesis failure rate, but we expect that RAB-

11 accumulation would be even greater. These data are consistent with the hypothesis 

that separase and RAB-11 are trafficked together on vesicles to the plasma membrane 

during cytokinesis, and that syx-4(RNAi) delays fusion of these vesicles. Finally, we 

examined whether cohesin would cause any change in RAB-11 vesicle trafficking. 

Given that partial depletion of scc-1 does not significantly change the rate of furrow 

ingression in SEP-1PD::GFP embryos (Fig. 1.4 B), we expected RAB-11 trafficking 

would also not be affected. Indeed, depletion of SCC-1 did not alter the accumulation of 

RAB-11 vesicles at the furrow in SEP-1PD::GFP/+ embryos, but rescued the 

chromosome segregation defect (p=0.90, t-test, Fig. 1.6 G). Importantly, we previously 

demonstrated that depletion of top-2, which causes severe chromosome bridging and 

activates the abscission checkpoint response in C. elegans, does not have any impact 

on RAB-11 trafficking (Bembenek et al., 2013; Bembenek et al., 2010). Therefore, the 

response to chromosome bridging during cytokinesis does not explain the defects in 

RAB-11 trafficking in SEP-1PD::GFP embryos. These results suggest that separase 

regulates cytokinesis by hydrolyzing an unknown substrate to regulate RAB-11 vesicle 

trafficking.  

 

SEP-1PD::GFP expression delays cortical granule exocytosis 

Separase and RAB-11 both localize to cortical granules while SYX-4 localizes to the 

plasma membrane to promote their exocytosis during meiosis anaphase I (Bembenek et 
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al., 2007; Jantsch-Plunger and Glotzer, 1999; Sato et al., 2008). This is an excellent 

cellular context to investigate exocytosis because separase can be observed directly on 

these large 1μm vesicles, which release contents required for eggshell formation during 

anaphase I. We investigated whether SEP-1PD::GFP also impairs CGE similar to its 

effects during cytokinesis. We analyzed whether embryos were permeable to dyes due 

to disrupted eggshell formation from lack of CGE, but did not observe significant 

permeability defects. This indicates that SEP-1PD::GFP expression does not completely 

inhibit CGE. To confirm localization, we filmed SEP-1PD::GFP/+ embryos expressing the 

cortical granule cargo, CPG-2::mCherry, during anaphase I. We observed that CGP-

2::mCherry localizes to cortical granules with both SEP-1WT::GFP and SEP-1PD::GFP/+ 

as expected (Fig. A4 and Movie 7). Interestingly, separase localizes to more vesicles 

than those labeled by CPG-2::mCherry, indicating that this cargo is only packaged into 

a subset of cortical granules (Fig. A4, Movie 7). This result is consistent with the 

heterogeneity of the cortical granule vesicle population observed by transmission 

electron microscope (Bembenek et al., 2007).  

 

Next, we investigated whether CGE was delayed in homozygous SEP-1PD::GFP 

embryos relative to SEP-1WT::GFP. We imaged anaphase I with H2B::mCherry and 

SEP-1::GFP to observe both chromosomes and cortical granules and quantified the 

time from anaphase onset until CGE completion during anaphase I. CGE was 

significantly delayed in homozygous SEP-1PD::GFP expressing embryos (198 seconds ± 

8, n=8) compared with SEP-1WT::GFP expressing embryos (136 seconds ± 5, n=7, 

p<0.0001, t-test) at 25 °C (Fig. 1.7 A-G and Movie 8). In addition, we observed that  
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Figure 1. 7 SEP-1PD::GFP expression delays cortical granule exocytosis.   

(A-F) Representative images of separase localization during anaphase I. Localization of SEP-

1WT::GFP (A, green) and SEP-1PD::GFP (D, green) to cortical granules indicated by white 

arrowheads (H2B::mCherry in red). CGE was delayed in homozygous SEP-1PD::GFP (E) 

compared with SEP-1WT::GFP (B) during late anaphase I. (F) SEP-1PD::GFP associated with the 

cortex for a longer time after CGE compared with SEP-1WT::GFP (C). (G) Quantification of 

anaphase onset to completion of CGE. SEP-1PD::GFP embryos take longer to finish CGE than 

SEP-1WT::GFP. (H-J) Colocalization of SEP-1PD::GFP (green) with PH::Cherry (red) at the 

plasma membrane after CGE. (K) Average time that SEP-1WT::GFP or SEP-1PD::GFP remains 

associated with the plasma membrane after CGE. (L) Ratio of plasma membrane to cytoplasmic 

SEP-1PD::GFP and SEP-1WT::GFP after onset of anaphase I. Scale Bars, 10 μm. P-values: * 

=<0.05; ***=<0.001; ****=<0.0001; ns= not significant (t-test). Error bars indicated standard error 

of the mean. 
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SEP-1PD::GFP remained associated with the plasma membrane for a longer time after 

CGE (736 seconds ± 22, n=11) compared with SEP-1WT::GFP (221 seconds ± 24, n=13, 

p<0.0001, t-test) (Fig. 1.7 H-K & Movie 9). Quantification of the plasma membrane 

localized signal shows that both SEP-1WT::GFP and SEP-1PD::GFP initially accumulate 

on the membrane to similar amounts, but SEP-1PD::GFP accumulates to a higher level 

and remains associated with the membrane for substantially longer (Fig. 1.7 L). These 

data are consistent with the hypothesis that SEP-1PD::GFP  may block cleavage of 

putative substrate involved in exocytosis and that it may remain bound to a substrate 

after exocytosis in the plasma membrane.  

 

SEP-1PD::GFP does not affect RAB-11 after cortical granule exocytosis  

RAB-11 localizes to cortical granules and is required for CGE (Sato et al., 2008). 

Therefore, we investigated whether SEP-1PD::GFP affects the dynamics of RAB-11 

during and after CGE. We filmed meiotic stage embryos expressing SEP-1::GFP/+ and 

RAB-11::mCherry and observed that RAB-11::mCherry localizes to cortical granules 

several minutes prior to anaphase (Sato et al., 2008), before either SEP-1WT::GFP or 

SEP-1PD::GFP/+ localize to cortical granules (Fig. 1.8 A, D). Just after anaphase onset, 

prior to exocytosis, both forms of separase fully co-localize with all RAB-11::mCherry 

labeled cortical granules prior to exocytosis (Fig. 1.8 B, E, G-I). Therefore, RAB-11 and 

separase are localized to the same population of CGs and are sequentially recruited to 

cortical granules through an orderly process leading to exocytosis in anaphase I (Movie 

9). After exocytosis, SEP-1PD::GFP/+ associated with the plasma membrane for an  
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Figure 1. 8 SEP-1PD::GFP does not affect RAB-11 after cortical granule exocytosis.  

Representative images of meiosis I in embryos expressing separase (green) and RAB-11 (red). 
(A, D) RAB-11 localizes to cortical granules several minutes prior to anaphase, before either 
SEP-1WT::GFP (B, green) or SEP-1PD::GFP/+ (E, green) localize to cortical granules. SEP-
1WT::GFP (B, green) and SEP-1PD::GFP (E, green) colocalize with RAB-11::mCherry (red) on 
the cortical granules in anaphase I. White arrowheads denote colocalization of separase and 
RAB-11 on cortical granules. (C, F) After exocytosis, SEP-1PD::GFP/+ associated with the  
plasma membrane while SEP-1WT::GFP and RAB-11::mCherry rapidly disappeared. (G-I) 
Surface plane of SEP-1WT::GFP (G) and RAB-11::mCherry (H) clearly shows their colocalization 
(merge in I) on cortical granules. (J) Working model of separase function in exocytosis during 
cytokinesis. Separase cleaves cohesin kleisin subunit SCC-1 during mitotic anaphase and 
promotes chromosome segregation. In cytokinesis, separase colocalizes with RAB-11 vesicles. 
SNAREs including SYX-4 promote vesicle fusion with target membrane. Our results suggest 
that separase cleaves an unknown substrate to promote exocytosis. Scale Bars, 10 μm. 
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extended time while RAB-11::mCherry rapidly disappeared (Fig. 1.8 F and Movie 10). 

This result suggests that SEP-1PD::GFP/+ does not require RAB-11 to remain 

associated with the plasma membrane, but might bind another unknown substrate. 

Therefore, RAB-11 and separase may function in parallel but independent pathways to 

promote exocytosis during anaphase.   

 

Discussion 

The mechanism by which separase regulates chromosome segregation is well known, 

while its function in exocytosis during CGE and cytokinesis needs to be elucidated. 

Here, we explore whether the proteolytic activity of separase is involved in its 

membrane trafficking roles. Utilizing our novel observation that protease dead separase 

is dominant negative, we provide data showing that it interferes with endogenous 

separase function during chromosome segregation and cytokinesis. Therefore, we 

hypothesize that separase uses its protease activity to cleave cohesin to allow 

chromosome segregation and to independently cleave multiple other substrates to 

promote several events during anaphase, including membrane trafficking during 

cytokinesis.  

 

During chromosome segregation, the well-established function of separase is to cleave 

the cohesin subunit SCC-1 during mitosis. Consistent with the hypothesis that SEP-

1PD::GFP impairs substrate cleavage by the endogenous separase, we observe 

chromosome segregation defects in SEP-1PD::GFP expressing embryos. Furthermore, 
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depletion of SCC-1 substantially recues mitotic chromosome segregation and embryo 

lethality caused by SEP-1PD::GFP. Previously, SCC-1 was not detected on 

chromosomes after prophase, suggesting that separase may not cleave cohesin to 

promote the metaphase to anaphase transition (Mito et al., 2003). However, our results 

are consistent with the hypothesis that separase is required to cleave whatever 

remaining cohesin is present on metaphase chromosomes for proper segregation to 

occur at anaphase onset. 

 

Whether separase has a substrate involved in exocytosis is unknown. However, we find 

that the protease-dead separase causes cytokinesis failure and inhibits RAB-11 vesicle 

exocytosis during mitotic cytokinesis. These data are consistent with a model whereby 

separase cleaves a substrate to promote exocytosis (Fig. 1.8 J), similar to its function 

during chromosome segregation. On its own, SEP-1PD::GFP does not cause a severe 

cytokinesis defect but synergistically inhibits cytokinesis when syx-4 is depleted, while 

chromosome segregation is more obviously defective. It is worth nothing that C. elegans 

centromeres are holocentric (Albertson and Thomson, 1982), meaning that cohesin 

must be cleaved along the entire chromosome instead of a point centromere as in other 

organisms and thus chromosome segregation could be more sensitive to delayed 

cohesin cleavage. We also did not observe significant defects in centriole 

disengagement. Given that RAB-11 and endosomes have been observed at centrioles 

in human cells (Hehnly et al., 2012), the enhanced centriole localization of SEP-

1PD::GFP may be related to membrane trafficking functions as well as substrates 

involved in disengagement. Therefore, separase likely cleaves substrates involved in 
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several different processes, but the effects imposed by SEP-1PD::GFP vary in different 

events.  

 

There are several possible explanations for these observations. The first is that our 

over-expression levels are not high enough to effectively block cleavage of a putative 

vesicle target, but is sufficient to inhibit chromosome segregation. This could be due to 

the affinity of separase toward different substrates. Alternatively, protease dead 

separase may bind to substrates and alter their function independently of cleavage, 

such as sequestering them from other interactions. Although the precise molecular 

effect of SEP-1PD::GFP on substrates may be unclear, our results suggest that 

substrates are involved in various cellular functions of separase including exocytosis. 

While substrate cleavage may be involved in exocytosis, delayed cleavage may not be 

sufficient on its own to block exocytosis in the presence of all other factors that promote 

exocytosis. Consistent with this, depletion of separase does not completely block 

centriole separation and other factors minimize the resulting phenotypes (Cabral et al., 

2013). Certainly the local environment at chromosomes, centrioles and vesicles is quite 

different. This could impact how stably separase can interact with substrates and thus 

how well SEP-1PD::GFP can inhibit substrate cleavage. Indeed, separase catalytic 

activity toward cohesin is much greater in the presence of DNA (Sun et al., 2009), while 

the fluid environment of a membrane may not have the same effect. The finding that 

separase is dramatically stimulated by DNA suggests that both cohesin and separase 

associate with DNA, increasing the local concentration of both to promote catalysis. We 

did not observe any loss of separase localization to chromosomes after cohesin 
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depletion, suggesting separase localizes to chromosomes independently of the 

substrate. In addition to substrate affinity, SEP-1PD::GFP may displace endogenous 

separase from chromosome more readily than it does in the membrane. Therefore, 

there may also be differences in the relative amounts of transgenic SEP-1PD::GFP to the 

amount of endogenous separase at different cellular locations. The relative amounts of 

endogenous vs. transgenic separase protein may also explain why we generally 

observed less severe meiotic phenotypes vs. mitotic phenotypes. Future studies will be 

required to resolve these issues.  

 

While separase is a protease, critical non-proteolytic functions of separase are required 

for mitotic exit. Previously, three C. elegans separase mutant alleles have been 

identified, all of which map outside of the protease domain (Richie et al., 2011). 

Interestingly, each of these mutants cause defects in cortical granule exocytosis and 

mitotic cytokinesis failure, but minimal chromosome segregation defects (Richie et al., 

2011). Furthermore, these mutants are rescued by loss of phosphatase 5 (pph-5), which 

might represent a signaling pathway that controls exocytosis (Richie et al., 2011). While 

our results suggest that separase has a substrate involved in exocytosis, we cannot rule 

out non-proteolytic functions that may also impact exocytosis. For example, Cdk5 is 

involved in the regulation of synaptic vesicle exocytosis via phosphorylation of munc18 

(Fletcher et al., 1999). Separase may regulate CDK or perhaps another signaling 

pathway to control exocytosis. Ultimately, separase may have both proteolytic and non-

proteolytic functions that collaborate to promote exocytosis during anaphase. This might 

be required to ensure that separase promotes exocytosis after a significant delay in 
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anaphase, which occurs during both meiosis and mitosis. Elucidating how the precise 

control of separase function leads to exocytosis during anaphase will be an important 

goal of future studies. 

 

Our observations show that RAB-11 is recruited to cortical granules much earlier than 

separase, which suggests an ordered recruitment of regulators to these vesicles prior to 

their exocytosis in anaphase. Defining the pathway and signals that control the timing 

sequence of this recruitment process will be important to better understand how the cell 

cycle and potentially other pathways coordinate vesicle trafficking during cell division. 

Whether the same process occurs during mitotic cytokinesis will require much better 

imaging conditions since the individual vesicles are small and dynamic as they move 

along the spindle. Interestingly, SEP-1PD::GFP associates with plasma membrane for an 

extended period of time after cortical granule exocytosis, however, RAB-11 does not. 

This indicates that RAB-11 is not required for SEP-1PD::GFP to remain associated with 

the plasma membrane and may not be the substrate of the separase during exocytosis. 

This result is consistent with previous observations that depletion of RAB-6, but not 

RAB-11, prevents recruitment of separase to cortical granules (Kimura and Kimura, 

2012). It is still possible that separase may cleave RAB-11 interacting proteins. This 

could indicate that separase affects a different step in exocytosis than the membrane 

docking and tethering functions mediated by RAB-11. For example, separase might 

cleave a substrate that allows vesicles to move forward in the exocytosis pathway, i.e., 

moving from a docked to a primed state (Wickner and Schekman, 2008). The timing 

when cortical granules undergo different steps of exocytosis in C. elegans is unknown, 
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but it is possible that the early steps are completed by the time that separase is 

completely transferred to vesicles in anaphase. Indeed, cortical granules in sea urchin 

have been shown to be in a “hemifusion” state and fertilization happens post anaphase 

in this organism (Wong et al., 2007). Separase may cleave RAB-11 interacting proteins, 

such as RAB-11 GEFs, to regulate RAB-11 activity during exocytosis (Sakaguchi et al., 

2015). Another possibility is that separase cleaves an inhibitor of exocytosis, such as 

the complexin protein that prevents SNAREs from completing vesicle fusion 

prematurely (Tang et al., 2006). Identifying a putative vesicle target that separase 

cleaves to promote exocytosis is a primary pursuit for future investigation. This may 

provide novel mechanistic insights into how a protease can promote exocytosis, which 

may also be applicable to membrane trafficking events independent of the cell cycle. 

 

Materials and Methods 

C. elegans Strains 

C. elegans strains were maintained with standard protocols, except for the modified 

procedures to maintain toxic transgenes (below). Strain information is listed in Table 1. 

Some strains used in this study were obtained from the Caenorhabditis Genetics Center 

(CGC). Strain RQ372 was gift from Dr. Risa Kitagawa. JAB18 was created by crossing 

WH520 males with OD56 hermaphrodites (Mitchell et al., 2014). JAB156 was generated 

by crossing WH520 males with EKM41 hermaphrodites, and subsequent generations 

were maintained on gfp RNAi. At F2 generation following the cross, L4 stage worms 

were singled from the original gfp RNAi feeding plates. We screened the F3 adults for 
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the presence of PH::mCherry transgenes by microscopy. Then approximately half of the 

PH::mCherry positive worms at L4 stage were moved to OP50 plates for 3-4 

generations, and screened for the presence of both transgenes. The protocol was 

repeated until double homozygous transgenic lines were obtained, after which the line 

was maintained on gfp RNAi. 

 

Propagation of the Protease Dead Separase Strains  

We demonstrated that SEP-1PD::GFP expression is dominant negative (Mitchell et al., 

2014). Using this mutant, we have devised two methods to propagate protease dead 

separase transgenic animals. One method is using SEP-1PD::GFP male worms to 

propagate the transgene by crossing with the unc-119 mutant hermaphrodites. The unc-

119 mutant contains a paralysis selection marker due to a neural defect. Crossing the 

SEP-1PD::GFP transgene with an unc-119 mutant rescues the movement defect of the 

F1 animals as the SEP-1PD::GFP construct contains wild type unc-119. The SEP-

1PD::GFP transgene is driven by the pie-1 promoter, which is only expressed in the 

female germline. Therefore, the SEP-1PD::GFP transgene can be propagated in male 

worms without deleterious effects and the hermaphrodite siblings can be assayed for 

phenotypes. This method reduces background mutations that might complicate 

phenotypic analysis and allows us to introduce the transgene into backgrounds that we 

cannot make homozygous. The second method is feeding gfp RNAi to eliminate SEP-

1PD::GFP transgene expression. After animals are transferred from gfp RNAi food onto 

regular bacteria food for 5-6 generations, the inherited RNAi will be lost and transgene 

expression will occur again.  
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RNAi Treatment 

The gfp and syx-4 RNAi feeding constructs were previously described (Bembenek et al., 

2010, Mitchell et al., 2014) and scc-1 RNAi was obtained from the Ahringer library 

(Fraser et al., 2000). To silence the target genes, L4 hermaphrodites were picked onto 

lawns of IPTG-induced RNAi feeding bacteria. In order to provide the optimal RNAi 

effect for target genes silencing, RNAi cultures were grown till log phase. Then the log 

phase RNAi bacteria were spread on plates containing NGM agar with 1 mM IPTG and 

the plates were incubated at 15 °C for 24-48 hours to optimally induce the T7 promoter 

expression (Grishok et al., 2005).  Worms were grown on RNAi plates at 20°C /25 °C for 

the amount of time indicated in the manuscript for different experiments. 

 

Microscopy 

For live imaging, young adult worms were dissected in M9 buffer and embryos were 

mounted on agar pads as previously described (Mitchell et al., 2014). For imaging of 

meiotic embryos, or potentially osmotic sensitive embryos, young adults were dissected 

and mounted in blastomere culture media by hanging drop to relieve mechanical and 

osmatic pressure (Edgar and Goldstein, 2012). Live cell imaging was performed on a 

spinning disk confocal system that uses a Nikon Eclipse inverted microscope with a 60 

X 1.40NA objective, a CSU-22 spinning disc system and a Photometrics EM-CCD 

camera from Visitech International. Images were acquired by Metamorph (Molecular 

Devices) and analyzed by ImageJ/FIJI Bio-Formats plugins (National Institutes of 

Health) (Schindelin et al., 2012, Linkert et al., 2010). 
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Statistics 

Quantification of SEP-1::GFP and RAB-11::mCherry at the midbody was performed in 

Image J by measuring the fluorescent intensity at the midbody in frames with the 

brightest signal shortly after furrow ingression was completed. Embryos were shifted to 

25 °C to improve signal, but caused abnormal aggregates of RAB-11::mCherry in some 

embryos, which were not included in the analysis. To account for variations in imaging 

and z-depth, we calculated the ratio of the intensity at the midbody relative to 

cytoplasm. Cytoplasm signal was determined by averaging the intensities from three 

separate regions in the same image. Statistical significance was determined by p value 

from an unpaired two-tailed t-test. P-values: ns= not significant; * =<0.05; **=<0.01, *** 

=<0.001; ****=<0.0001. Each dataset was evaluated by both of the Shapiro-Wilk and 

Kolmogorov-Smirnov normality tests and all data follow normal distributions. 
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Programmed Variations of Cytokinesis Contribute to Morphogenesis 

in the Caenorhabditis elegans Embryo 
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Abstract 

Cytokinesis is the final step of cell division involving several regulated steps including 

cleavage furrow specification and ingression, midbody formation and abscission. While 

the basic mechanisms have been intensely studied, how various aspects of cytokinesis 

are regulated and deployed in different cell division contexts during development is not 

well understood. To address this, we investigated cytokinesis in the invariant lineage of 

the C. elegans embryo. We observed several markers that label the furrow, central 

spindle and different structures within the midbody. We show that several parameters of 

cytokinesis are reproducibly altered in different stages of the lineage. During the first 

two divisions, cells undergo consistent patterns of furrow ingression asymmetry and 

midbody inheritance, suggesting specific regulation of these events. A dramatic shift in 
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cytokinesis is observed in several tissues during morphogenesis. In two lumen-forming 

tissues, the intestine and the pharynx, midbodies form after symmetric furrowing and 

migrate across the cell to the nascent apical midline. This midbody migration event 

coincides with previously characterized polarization events in these cells undergoing a 

mesenchyme to epithelial transition. Interestingly, midbody ring components are 

internalized, indicative of abscission completion, while other midbody components 

including the Aurora B kinase remain on the apical surface for an extended period after 

polarization. Finally, in cells that form amphid sensilla, we observe symmetrical 

cytokinesis and a midbody migration event that leads to a focal aggregation of AIR-2 

that coincides with apical surface markers. AIR-2 persists along the leading edge of 

extending dendrite structures well after cytokinesis is complete. Inactivating temperature 

sensitive cytokinesis mutants during morphogenesis causes defects in lumen formation 

and defective dendrite formation. These data suggest that the proper execution of 

cytokinesis, which shows surprising flexibility during development, and specific 

cytokinetic regulators such as AIR-2, may regulate the final interphase architecture of a 

terminally dividing cell during morphogenesis. 

 

Introduction 

Generation of a multicellular organism requires that carefully orchestrated cell division is 

integrated properly into different developmental processes. Cell division is required not 

only to generate new cells that organize into tissues, but also to dictate the size, 

position and timing that daughter cells are generated. Several aspects of cell division, 
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including spindle orientation and division symmetry are well known instruments of 

developmental programs (Siller and Doe, 2009). Proper regulation of cytokinesis, the 

final stage of division when daughter cells separate from each other, has long been 

recognized as critical for the completion of cell division. Roles for cytokinesis in 

regulating developmental events are emerging, but are much less understood (Chen et 

al., 2013; Herszterg et al., 2013; Li, 2007). We sought to investigate cytokinesis using 

the well-defined divisions of the invariant C. elegans embryo lineage, which has been 

completely described (Sulston et al., 1983). 

 

Cytokinesis is the final step of cell division and is normally a constitutive process 

defined by discrete steps that occur when cells exit mitosis (Oegema and Hyman, 

2006). During cell division, signals from anaphase spindle initiate ingression of the 

cleavage furrow (Bringmann and Hyman, 2005), which constricts the plasma membrane 

into the spindle midzone and leads to formation of the midbody. The midbody is 

membrane channel connecting daughter cells containing the spindle midzone 

microtubules and a defined organization of more than one hundred proteins that 

collaborate to execute abscission, the final separation of daughter cells (Green et al., 

2012; Hu et al., 2012; Skop et al., 2004). Many of the proteins that contribute to 

midbody formation and function have roles in the formation of the central spindle and 

the contractile ring (El Amine et al., 2013). In addition, vesicles are delivered to the 

midbody that contribute lipids as well as regulators of abscission (Schiel et al., 2013). 

Subsequently, the ESCRT machinery assembles, microtubules are cleared and 

membrane scission occurs (Guizetti et al., 2011; Schiel et al., 2011). Aurora B kinase is 
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required for the completion of cytokinesis, and also regulates the timing of abscission in 

response to chromatin bridges or developmental cues partly by regulating the ESCRT 

machinery (Carlton et al., 2012; Carmena et al., 2015; Mathieu et al., 2013; Norden et 

al., 2006; Steigemann et al., 2009). Substantial effort has been devoted to 

understanding factors that are required to assemble the midbody and the mechanisms 

of regulation and execution of abscission. In general, while mechanistic details are 

being elucidated, it is thought that these events occur through a standard, well-defined 

series of ordered events.  

 

Exceptions to such a clear linear view of cytokinetic events have long been known, but 

are considered to be specialized cases. The most extreme examples are cells that do 

not complete cytokinesis altogether and become polyploid, such as liver or intestinal 

cells (Fox and Duronio, 2013; Hedgecock and White, 1985; Lacroix and Maddox, 2012). 

Another well-known example is found in several systems where germ cells do not 

complete abscission and remain connected through ring canals, which can allow flow of 

cytoplasm into germ cells (Greenbaum et al., 2007; Haglund et al., 2011; Hime et al., 

1996; Maddox et al., 2005). Delayed abscission has also been observed in other cell 

types to keep daughter cells connected (McLean and Cooley, 2013; Zenker et al., 

2017). Other variations of cytokinesis include re-positioning of the cleavage furrow 

during anaphase to change the size and fate of daughter cells (Ou et al., 2010). The 

symmetry of furrow ingression is important in established epithelial tissue where the 

furrow constricts toward the apical side of the cell and must occur while appropriate 

cellular contacts are preserved (Herszterg et al., 2014). In Zebrafish neuroepithelial 
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divisions, asymmetrical furrowing positions the midbody at the apical domain, which is 

inherited by the differentiating daughter (Paolini et al., 2015). Therefore, there are a 

number of ways the standard pattern of cytokinesis can be altered and more 

investigation is required to understand what is the functional purpose of these changes 

and how they are achieved. 

 

Studies of abscission has driven renewed interest in the midbody that has led to insights 

into other functions it has in addition to abscission (Chen et al., 2013). In general, the 

midbody is cut off from each of the daughter cells that gave rise to it (Crowell et al., 

2014; Konig et al., 2017).  The midbody may then be engulfed by either cell or persist 

extracellularly, which can depend on cell type (Ettinger et al., 2011; Kuo et al., 2011; 

Salzmann et al., 2014). The midbody can also travel to non-parent cells, suggesting that 

it may carry or transport signals between cells (Crowell et al., 2014). Cancer cells or 

stem cells show distinct and consistent patterns of midbody inheritance (Kuo et al., 

2011). In dividing neuroepithelial cells, a stem cell marker is concentrated at the 

midbody and released into the lumen of the neural tube, which might provide signals 

during neuronal development (Dubreuil et al., 2007).  This has led to the hypothesis that 

the midbody provides cues that regulate cell fate, although a detailed mechanistic 

understanding of this has not been elucidated.  

 

A more clearly defined function for the midbody has been uncovered in cells that 

undergo polarization events after the completion of cytokinesis. For example, marine 
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darby canine kidney (MDCK) cells can establish apical basal polarity and organize into 

a simple epithelial lumen structure (Reinsch and Karsenti, 1994). Apical membrane 

markers are first delivered to the midbody during cytokinesis, establishing an apical 

membrane at the interface of the first two daughter cells (Schluter et al., 2009). Proper 

abscission and midbody positioning is required, in addition to proper spindle orientation, 

for MDCK lumen formation (Lujan et al., 2016; Reinsch and Karsenti, 1994). Polarized 

trafficking during cytokinesis has been shown to promote lumen formation in other 

systems as well. Abscission is also delayed in acentrosomal blastomeres of the mouse 

embryo to generate a MTOC that directs delivery of apical membrane markers to the 

plasma membrane (Zenker et al., 2017). The midbody has also been shown to define 

the site of polarization for dendrite extension in neurons (Pollarolo et al., 2011) and is 

required for a polarizing cue in the C. elegans embryo necessary for the establishment 

of dorsoventral axis formation (Singh and Pohl, 2014; Waddle et al., 1994). In addition, 

the midbody can play a role in cilium formation (Bernabe-Rubio et al., 2016). Further 

effort is required to understand how cytokinesis and the midbody regulates pattern 

formation in tissues.  

 

In order to further investigate patterns of cytokinesis during development, we examined 

the invariant C. elegans lineage. We find that cytokinesis follows a lineage specific 

pattern and that furrow symmetry and midbody inheritance is highly reproducible. 

During morphogenesis, we observe striking midbody migration events in the developing 

digestive and sensory tissues in C. elegans, likely before abscission. Interestingly, AIR-

2 migrates with midbodies and remains at several apical surfaces after internalization of 



62 
 

different ring components. Coordinated movements of midbodies and differential fates 

of midbody components are novel behaviors during cytokinesis and are programmed at 

specific divisions in the embryo. Additionally, inactivation of temperature sensitive 

midbody proteins disrupt proper formation of several tissues, indicating an important 

role for specialized cytokinesis during morphogenesis. 

 

Results 

Cytokinesis in the first two mitotic divisions  

In order to systematically examine cytokinesis during the stereotypical divisions of the 

C. elegans embryo, we observed different components that allow us to visualize the 

central spindle and cytokinetic furrow among other mitotic structures. We also chose 

markers that localize to the flank and ring sub-structures of the midbody (Green et al., 

2012). To observe the midbody flank region, we imaged the Aurora B kinase AIR-2, 

microtubules and the membrane trafficking regulator RAB-11 (Fig. 2.1 B-F, Q-U, Fig.2.3 

D-E and Movie S11). Endogenous AIR-2 can also be observed on the central spindle 

and midbody as expected (Fig. A5 A-E). We also imaged midbody ring markers 

including the non-muscle myosin NMY-2, and the centralspindlin component ZEN-4 

(Fig. 2.1 G-P and Movie S11). While the first mitotic furrow shows some variable 

asymmetry as previously demonstrated (Maddox et al., 2007), the midbody forms in a 

relatively central position between daughter cells (Fig. 2.1 B-C, G-H and L-M). AIR-

2::GFP and tubulin show the expected pattern of localization on the central spindle 

throughout furrowing (Fig. 2.1 B-C, Fig. 2.3 D-E and Movie S11). We confirm previous  
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Figure 2. 1 Cytokinesis in the first two mitotic divisions.  

(A) Illustration of the cytokinesis in the first two mitotic divisions and the behavior of midbody 
during the division. Cytokinesis in the one cell embryo labeled with (B-C) AIR-2::GFP (green) 
and PH::mCherry (magenta), H2B::mCherry (magenta). Aurora B shows the expected pattern 
on the central spindle during anaphase and furrowing, and remains on the midbody (white arrow 
head) until it is internalized by AB daughter cell during the second cell division (D). The furrow is 
highly asymmetric and initiates from the outside of the embryo and finishes in contact with EMS 
(D-E). The second midbody (red arrowhead) forms in a highly asymmetric position adjacent to 
EMS (E), and EMS engulfs the midbody instead of either of the AB daughter cells (F). Midbody 
ring markers NMY-2::GFP (green) myosin (G-K), ZEN-4::GFP (green) centralspindlin (L-P), 
membrane trafficking marker RAB-11 (green) small GTPase (Q-U) and PH::mCherry (magenta) 
as well as AIR-2::GFP (magenta in Q-U) all remain on the midbody until it is internalized into 
EMS like AIR-2. Scare Bar, 10 μm. 
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observations that the midbody from the first mitotic division is always inherited by the P1 

daughter cell (Fig. 2.1 A) (Bembenek et al., 2013; Singh and Pohl, 2014). The midbody 

microtubule signal diminishes 450s after furrowing onset, which is a general indicator of 

abscission timing (Fig. 2.3 E, L) (Green et al., 2013; Konig et al., 2017). AIR-2 is lost 

from the flank over time but can be observed on the midbody remnant even after it is 

internalized into P1 (Fig. 2.1 D-E and Movie S11). Additionally, each of the ring 

components behave similarly to AIR-2, as expected (Fig. 2.1 I-J and N-O). Therefore, 

AIR-2 and other ring components remain colocalized on the midbody throughout the 

final stages of cytokinesis and are reproducibly inherited by the P1 daughter cell, 

consistent with previous results (Bembenek et al., 2013; Ou et al., 2014; Singh and 

Pohl, 2014). 

 

During the second round of division, we observed substantial changes in the pattern of 

cytokinesis, beginning with furrow symmetry. During the AB daughter cell division, the 

furrow ingresses from only the outer surface until it reaches the opposite plasma 

membrane in contact with EMS. We calculated a symmetry parameter using the ratio of 

furrow ingression distance from each side of the furrow at completion (Maddox et al., 

2007). On average, the furrow symmetry parameter is 1.7 in the first division, while the 

AB furrow is 21.6 and the P1 furrow is 16.1, indicating a highly asymmetric furrow in the 

second division (Fig. 2.3 A-C). The central spindle is swept from the middle of the AB 

cell into contact with EMS during furrow ingression (Fig. 2.1 E, Movie S11). AIR-2 

localizes to the central spindle, then the midbody flank and remains associated with the 

midbody remnant after it is engulfed (Fig. 2.1 D-E, S-T and Movie S11). NMY-2 and 



65 
 

ZEN-4 also follow the expected pattern during cytokinesis and appear on the midbody 

that forms in contact with EMS (Fig. 2.1 I-J, N-O and Movie S11). Interestingly, the 

midbody from the AB cell division is invariably engulfed by EMS instead of either of the 

AB daughter cells (Fig. 2.1 F, K, P, U and Movie S11). The pattern of cytokinesis in the 

P1 daughter cell does not show any substantial change from the first division and the 

midbody is always inherited by EMS. Microtubules in the midbody flank disappear 480s 

after furrowing in both AB and P1 cell divisions, indicative of relatively fast abscission 

(Fig. 2.3 F-G and L). Therefore, a consistent pattern of cytokinesis is observed during 

the first two divisions, involving reproducible furrow ingression symmetry and midbody 

inheritance. Multiple mechanisms operating during cytokinesis must be properly 

regulated in order to achieve this highly reproducible pattern. While this analysis may 

reveal interesting information about the regulation of cytokinesis during the entire 

lineage, we focused next on novel cytokinesis patterns in three tissues during 

morphogenesis. 

 

Cytokinesis in the intestine epithelia 

During morphogenesis, cells undergo terminal divisions and start to form tissues by 

polarizing and changing shape. The intestine is a well-studied epithelial tube derived 

from the E blastomere that undergoes five well defined divisions (Leung et al., 1999). 

Around 280 minutes after the first cleavage the E8 to E16 division occurs, after which 

cells undergo epithelial polarization and subsequently organize into a tube (Leung et al., 

1999). Our observations demonstrate that these cells are performing the final stages of  
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Figure 2. 2 Cytokinesis in the intestine epithelia 

(A) Illustration of the cytokinesis in the intestinal E8-E16 mitotic divisions and the fate of 
midbody post mitotic division. Cytokinesis at the E8-E16 division. (B-D) Aurora B AIR-2::GFP 
(green) migrates with midbodies (labelled as 1-8) to midline and persists well after polarization 
is complete (rectangle box). (E) Kymograph of the single E8 cell division showing the midbody 
formation and migration to apical midline (time in minute: second indicated on left bottom). The 
E8 cell labeled with AIR-2::GFP (green) and PH::mCherry (magenta). Time in minutes indicated 
below. (F-H) NMY-2 (green) centralspindlin is midbody ring component that move to the midline 
but do not persist like AIR-2 (rectangle box). (I) Kymograph showing the single midbody 
migrating to midline. (J-K) High temporal resolution (10 seconds time interval) imaging of 
individual intestine cell indicated that midbody formed in the center of the cell, AIR-2::GFP (J) 
flank marker change the shape and migrate to midline of the apical and persist, as well as the 
ZEN-4 (K) rapid internalization to cytosol (time in minute: second indicated on right top). (L) 
Quantification of midline duration of different midbody components. (M-N) Illustration and 
Quantification of midbody flank length during different cell divisions. Scare Bar, 10 μm. Error 
bars indicated standard deviation of the mean. 
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cytokinesis as they undergo polarization, which has not been previously reported (Fig. 

2.2 A). Interestingly, the E8 cells undergo relatively symmetrical furrowing that produces 

a centrally placed midbody (Fig. 2.2, Fig. A 6 and Movie S12-13) with a 1.0 symmetry  

parameter (Fig 2.3 B, C). Therefore, unlike the AB division during the second mitosis, 

these cells have symmetrical furrowing. 

 

Strikingly, in the central gut cells (Ealp, Earp, Epla and Epra), we observe that the 

centrally located midbody from both left and right daughter cell pairs migrate across the 

width of the cell after furrowing has completed to the apical midline of the gut tissue, 

which completes in about 30 minutes after furrow ingression (Fig. 2.2 C, E, G, I, J, K, 

Fig. A6 B, D and Movie S12-13). The ring markers ZEN-4 and NMY-2 are quickly 

internalized (553±140 seconds and 545±179 seconds, respectively) after the midbody 

reaches the apical midline (Fig. 2.2 L and Movie S12-13). The flank maker AIR-2::GFP 

appears on the central spindle, remains on the midbody flank region and migrates on 

the flank of the midbody to the intestinal apical midline similar to the midbody ring 

components. Interestingly, AIR-2 and tubulin localize to an elongated midbody flank 

region through the entire migration process (Fig. 2.3 I, K-L). The ratio of the length of 

this midbody flank relative to the cell is 0.47 (average 4.6 μm / 9.8 μm) in the intestinal 

cell division, which is more than twice that of the early two cell divisions 0.17 (average 

9.3 μm / 53.4 μm) in P0 and 0.17 (average 7.7 μm/ 44.3 μm) in AB) (Fig. 2.2 M-N). 

Given that the flank region disappears after abscission has occurred in the one cell 

embryo, the persistence of an extended flank region observed with AIR-2 and tubulin in 

the gut cells suggests that the midbody migration event may occur prior to abscission.  
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Figure 2. 3 Variations of Cytokinesis during Different Mitotic Divisions 

(A-C) Quantification of furrow symmetry during first two cell divisions and intestinal cell division. 
The asymmetry parameter was measured as illustrated in 2-D images (A-B). (C) Quantification 
of furrow asymmetry parameter during different cell division. (D-L) tubulin dissembling in 
different mitotic divisions. (D) Tubulin TBB-1::mCherry (magenta) and AIR-2::GFP (green) show 
the localization on the central spindle during anaphase and furrowing in first cell division. (E) 
Kymograph showed the tubulin dissembling during cytokinesis in the first mitotic division. Time 
in seconds indicated below. (F) Tubulin TBB-1::mCherry (green) show the localization on the 
central spindle near the EMS cell cortex during highly asymmetric furrowing. (G) Kymograph 
showed the tubulin dissembling during cytokinesis in the AB cell division (insert is TBB-
1::mCherry only). Time in seconds indicated below. (H-J) Tubulin TBB-1::mCherry (magenta) 
and AIR-2::GFP (GFP) localize to an extended flank region around the midbody through the 
entire intestinal midbody migration process (arrowhead). (J) Tubulin and AIR-2 persist at the 
intestine midline after the E16 polarization (rectangle box). (G) Kymograph showed the tubulin 
dissembling during E8 cell Epra cell division and midbody migration to midline. The arrowhead 
indicated the extended flank region of tubulin. Time in seconds indicated below. (L) 
Quantification of tubulin dissemble time during different cell divisions. Scale Bar, 10 μm. Error 
bars indicated standard deviation of the mean. 
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In contrast to the midbody ring components, AIR-2 persists at the midline well after the 

time that ring components are internalized and polarization is complete (Fig. 2.2 D, E, L 

and Movie S12-13) colocalizing with the apical polarity marker PAR-6 (Fig A6 E-G). 

Endogenous AIR-2 can also be observed at the apical midline as expected (Fig. A5 F-

H).  High temporal resolution confocal imaging and lattice light sheet imaging of 

individual midbodies confirm the elongated AIR-2::GFP flank localization and 

persistence at the apical midline as well as the rapid internalization of ZEN-4::GFP after 

the migration event (Fig. 2.2 J-K and Movie S13-14). Therefore, E8 cells undergo an 

additional step during cytokinesis consisting of a midbody migration event instead of 

having an asymmetrical furrow lead to the formation of an apically localized midbody as 

observed in the AB cell division. In addition, different midbody components have 

different fates after this migration event, with ring markers being internalized while AIR-2 

remains at the apical surface. 

 

In other lumen forming systems, such as MDCK cells, RAB-11 vesicle trafficking during 

cytokinesis transports apical membrane components to the midbody to establish the 

apical membrane (Schluter et al., 2009). In C. elegans, RAB-11 endosomes control 

trafficking at the apical surface of the intestine throughout the life of the animal (Sato et 

al., 2014). We imaged RAB-11 during the E8-E16 division to examine when apical 

localization occurs. Interestingly, RAB-11::mCherry colocalizes with AIR-2::GFP once 

the midbody is formed, and migrates to the apical surface with the midbody (Fig. A6 H-

J). RAB-11::mCherry is also localized at spindle poles, as in other mitotic cells 

(Albertson et al., 2005), which also migrate to the apical surface (Feldman and Priess, 
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2012). Similar to AIR-2, RAB-11 remains localized to the apical surface and appears to 

remain at this position throughout the life of the animal (Fig. A6 J). These observations 

indicate that the apical localization of RAB-11 is established during cytokinesis in the 

E8-E16 division and is delivered at least in part by both the midbody and centrosome. 

Therefore, cytokinesis is programmed to occur in specialized way during the E8-E16 

division, which may contribute to intestinal epithelial polarization.  

 

Interestingly, the anterior and posterior pair of E16 cells (Ealaa, Earaa, Eplpp and 

Eprpp) undergo one last division to achieve the E20 intestine stage. In the four central 

E8 cells that do not divide again, the midbody migrates to the midline at E8-E16 as 

described above. However, the midbodies from the other four E8 cells (Eala, Eara, Eplp 

and Eprp), which undergo another division, did not migrate all the way to the midline 

and the AIR-2 signal disappeared quickly during E16 polarization (image not shown). 

Interestingly, during the terminal E16-E20 division, the midbodies of Ealaa, Earaa, 

Eplpp and Eprpp undergo the apical migration after symmetrical furrowing (Fig. A6 K-M 

and Movie S15). Further, the midbody ring components are quickly internalized while 

AIR-2 and RAB-11 remain at the apical surface during the E16-E20 divisions. 

Therefore, the midbody migration event in the intestine does not happen only during the 

polarization event that occurs during E8-E16, suggesting that it is specifically 

programmed to occur during the terminal divisions. It is interesting to note that post-

embryonic divisions in the intestinal cells occur without completion of cytokinesis 

leading to the formation of polyploid cells in the adult animal (Hedgecock and White, 
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1985). Therefore, cytokinesis in the intestinal lineage undergoes distinct regulatory 

phases at different stages of development. 

 

Cytokinesis in the pharynx 

Unlike the intestine, which originates from a single blastomere that undergoes a very 

well defined series of divisions, the pharynx has a more complicated structure, 

containing more than 80 pharyngeal precursor cells (PPCs) that arise from both AB and 

MS founder cells (Sulston et al., 1983). The PPCs organize into a double plate structure 

prior to the final division which occurs at around 310-325 minutes after the first cleavage 

and then polarize, undergo apical constriction to become wedge shaped cells that form 

a lumen by 355 minutes (Rasmussen et al., 2013; Rasmussen et al., 2012). To obtain 

optimal images of this large complex structure, we filmed at least a 15-micron Z-depth 

section of the embryo from both dorsal and ventral aspects with confocal microscopy 

(Movie S 16-17). We also filmed the whole embryos with lattice light sheet microscopy, 

which provides higher spatial resolution during the pharyngeal cell division (Movie S18). 

Similar to our observations in the intestine, PPCs are in the final stages of cell division 

as they polarize, which has not been previously described. PPCs undergo a symmetric 

furrowing event that yields a centrally placed midbody (Fig. 2.4 A-C, F, G-H, K, L-M, P 

and Movie S16-17). Also similar to the intestine, PPC midbodies migrate from their 

central position between daughter cells to the apical midline of the forming pharyngeal 

bulb (Fig. 2.4 D, F, I, K, N, P and Movie S16-17). In PPC terminal divisions, AIR-2::GFP 

appears as a midbody flank structure that migrates to the apical midline and persists at 

the apical surface after cyst formation (Fig. 2.4 D, E and Movie S16-17). AIR-2 partially  
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Figure 2. 4 Cytokinesis in the pharynx 

(A) Illustration of the cytokinesis in the pharyngeal mitotic divisions and the fate of midbody post 
mitotic division. (B-E) Cytokinesis in the pharynx. View of the AIR-2::GFP (green) in early and 
late stages of pharynx development (nuclei in magenta) from both ventral and dorsal views. 
AIR-2::GFP (D-E) flank marker change the shape and migrate to midline of the apical and 
persist. Time in minutes indicated below. (F) Kymograph showing the single midbody migrating 
to midline.  (G-J) ZEN-4 (green) centralspindlin and (L-O) NMY-2 (green) myosin are both 
midbody ring components that move to the midline. ZEN-4 does not persist at the apical midline 
like AIR-2, NMY-2 persists at the pharyngeal midline as AIR-2. (K, P) Kymograph showing the 
midbody ring markers ZEN-4::GFP and NMY-2::GFP remain on the single midbody and migrate 
to pharyngeal midline. Time in minutes: seconds indicated right bottom. Scale Bar, 10 μm. 
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co-localized with the apical polarity marker, PAR-6, after polarization (Fig. A7 G-I). We 

confirmed this localization with staining and show that endogenous AIR-2 can be 

observed on the apical surface of the pharynx (Fig. A5 I-K). ZEN-4::GFP appears on 

midbodies, migrates to the apical surface and is rapidly degraded, similar to the 

intestinal divisions (Fig. 2.4 J and Movie S16-17). Interestingly, NMY-2::GFP also labels 

the midbodies and moves to the apical surface, but persists at the apical surface during 

apical constriction (Fig. 2.4 O, P and Movie S16-17) (Rasmussen et al., 2012). Similar 

to AIR-2, RAB-11 and tubulin accumulate and remain localized to the apical surface 

after polarization (Fig. A7 A-F). Cytokinesis in the gut and pharynx show similar patterns 

where midbodies migrate to the apical midline and specific midbody components, 

especially AIR-2, remain localized at the cortex even after the midbody ring is removed. 

Therefore, cytokinesis may play an important function during epithelial morphogenesis 

of the digestive tract in C. elegans. 

 

Midbody components label dendrites of sensilla neurons 

  The C. elegans amphid sensilla is a sensory organ that contains 12 neurons with 

dendrites that extend processes through the cuticle and two sheath cells. During 

morphogenesis, amphid neurons bundle together, anchor at the tip of the animal and 

migrate back to extend dendrites (Heiman and Shaham, 2009). From the lineage of the 

12 sensilla neurons, there are 10 precursor cell divisions that occur between 280 and 

400 minutes after the first cleavage (Fig. 2.5 A). These terminal divisions including two 

daughter cell pairs (ADF/AWB and ASG/AWA) and several where one daughter 

differentiates into a sensilla neuron while the other daugher undergoes apoptosis (ADL,  
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Figure 2. 5 Midbody components label dendrites of sensilla neurons 

(A) Timeline of the cellular events during sensilla precursor cell division. (B) Illustration of 
cytokinesis in the sensilla mitotic divisions and the fate of midbody post mitotic division. (C-E) 
Cytokinesis in the sensilla. Multiple midbodies (arrowheads) forming in the anterior lateral region 
of the embryo flowed by migration of the midbodies into a cluster at the lateral sides of the 
embryos. Later AIR-2::GFP (green) persists in the clusters. (F-H) Midbody ring marker ZEN-
4::GFP (green) appears near the forming sensilla cluster, but rapidly internalized into cytosol 
and degraded. (G) NMY-2::GFP (green) and (G) PAR-6::GFP (green) localized to the cluster 
and persist at the tip of the dendrites (arrowheads). (I-K) After midbodies cluster, a focus of AIR-
2::GFP extend anteriorly until sensilla dendrite extension anchors at the tip of the animal. AIR-
2::GFP localized to the tip (red arrowheads) of the dendritic extension and labels a substantial 
portion of the dendrite. Insert is anterior view of sensilla neuron (K). Time in minutes: seconds 
indicated left bottom. Scale Bar, 10 μm. 
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ASE, ASK, ASI), or differentiates into another neuron (AWC, ASH, AFD, ASJ). Our 

observations show that these cells undergo a unique form of cytokinesis just before they 

undergo dendrite morphogenesis (Fig. 2.5 B). These cells undergo a symmetrical 

furrowing event before midbodies form centrally between the daughter cells (Fig. 2.5 C  

and Movie S19-20). A group of at least 6 daughter cell pairs divide initially forming 

multiple midbodies as observed with both confocal and lattice light sheet imaging (Fig. 

2.5 D and Movie S19-20). Interestingly, these midbodies migrate into a cluster at the 

extreme lateral sides of the embryo within 20 minutes. The midbodies migrate an 

average 3.4 microns to reach the cluster over a 60-minute time window after the 

appearance of the first midbody. After the initial clustering event, at least 4 more 

midbodies form and migrate to join the cluster (data not shown). Interestingly, AIR-

2::GFP, RAB-11 and tubulin persist in these clusters (Fig. 2.5 E, Fig. A8 A-F and Movie 

S19-20), while ZEN-4::GFP rapidly disappears after midbody clustering (Fig. 2.5 F and 

Movie S19-20). Endogenous AIR-2 can be observed in these lateral clusters (Fig. A5 L-

N). We observe PAR-6 at the tip of the sensilla cluster colocalized with AIR-2, indicating 

that it is the apical surface of these cells (Fig. 2.5 H, Fig. A8 J-L). In contrast to ZEN-

4::GFP, NMY-2::GFP migrates with the midbody to the cluster and persists at the very 

tip of the dendrites (Fig. 2.5 G and Movie S19-20). To our knowledge, this is the first 

detailed examination of the division and initial steps of organization of these neuronal 

cell precursors. 

 

After formation of the cluster, we observe this apical region extend anteriorly until the 

amphid bundle anchors at the tip of the animal. AIR-2 remains localized along a 
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substantial length of the dendritic extension, as does tubulin (Fig. 2.5 I-K, Fig. A8 G-I 

and Movie S21). Around 80 minutes after sensilla precursor cell division, most of the 

neuronal sensory neurons have formed and AIR-2::GFP can be clearly observed along 

the length of the dendrites. As the amphid dendrites extend, other foci of AIR-2 form 

within the anterior region of the embryo and migrate toward the tip until six sensilla 

appear at the anterior tip (Fig. 2.5 K inset, and Movie S21). Although the individual cell 

divisions cannot be easily discerned in this crowded anterior region, these data suggest 

that a number of sensilla in the tip of the animal form through a similar process. These 

results demonstrate that directly after cytokinesis a midbody migration event brings 

several midbody components to the apical tip of the amphid dendrites, which remain 

localized there as dendrite extension occurs. Therefore, the midbody migrates from its 

original position at the end of furrowing to the position of the apical surface in several 

developing tissues during morphogenesis. Interestingly, AIR-2 remains localized at the 

apical surface of these tissues well after cytokinesis has occurred. The neuronal cell 

polarization has been suggested to share mechanisms of epithelial morphogenesis 

(McLachlan and Heiman, 2013), suggesting that these modified cytokinesis events may 

play a role in cells that undergo epithelial polarization. 

 

Tissue Morphogenesis is Disrupted in Cytokinesis Mutants 

Given the pattern of cytokinesis during morphogenesis and the localization of AIR-

2::GFP to apical structures, we tested whether inactivation of AIR-2 in temperature 

sensitive mutant air-2 (or207 ts) embryos later in development would have an effect on 

epithelial morphogenesis. Although air-2 (or207 ts) mutants fail cytokinesis within  
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Figure 2. 6 Cytokinesis mutants have disrupted intestinal morphogenesis 

Temperature sensitive mutant air-2 (or207 ts) and zen-4 (or153 ts) had severe morphogenetic 
defects during intestinal development. (A) Illustration of the temperature shift strategy of the ts 
mutants. (B) The immunostaining of apical marker ERM-1 showed that in wild type embryos, 
ERM-1 (middle) enriched at the apical cell cortex of the hypodermis and at the midline intestinal 
primordium (dotted rectangle). Images of the color-coding depth of intestinal ERM-1 and nuclei 
show the detailed z-depth distribution of intestine primordium. (C-E) there were various defects 
in intestinal tubulogenesis in air-2 (or207 ts) embryos, including mispositioning (C-E), branches 
(C), discontinuous lumen (D) and broad lumen (E). (F) Quantification of air-2 (or 207 ts) and 
zen-4 (or 153 ts) embryos with morphogenesis defects. (G) Summary of the color-coding depth 
of intestinal ERM-1 shows wider z-depth distribution of ERM-1 in cytokinesis ts mutants than 
wildtype. 
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minutes after shifting to non-permissive temperature in one cell embryos (Severson et 

al., 2000), we did not observe significant cytokinesis failures in later development unless 

embryos were shifted for several hours. Therefore, we shifted air-2 (or207 ts) embryos 

around the E4 stage for 2.5-3 hours when they reach the bean stage (Fig. 2.6 A) and 

examined the apical Ezrin-Radixin-Moesin homologue (ERM-1) by staining (van Furden 

et al., 2004). In wild-type and air-2(or207 ts) embryos, ERM-1 was localized to apical 

surfaces of the intestine and pharynx (Fig. 2.6 B, Fig. A9 A, C). However, the intestine 

often had an abnormal position within the embryo, with broadened ERM-1 staining, and 

apical surfaces that were branched or discontinuous in air-2 (or207 ts) embryos (Fig. 

2.6 C-F, Fig. A9 B-C). Irregular localization of ERM-1 was also observed in comma 

stage air-2 (or207 ts) embryos, which were shifted for 4.5-5 hours (Fig. A9 B-C). The 

localization of other apical markers, such as PAR-3, DLG-1, IFB-2, were similarly 

disrupted (Fig. A9 D-I, DLG-1 and IFB-2 data not shown). 

 

To investigate whether other cytokinesis regulators also regulate later epithelial 

morphogenesis, we inactivated midbody ring marker MKLP-1/ZEN-4, in temperature 

sensitive mutants later in different tissue development to observe any effects on 

morphogenesis.  The zen-4 (or153 ts) embryos were shifted around the E4 stages for 

2.5-3 hours until they reached the bean stage. Cytokinesis failure was more penetrant in 

zen-4 (or153 ts) embryos shifted to nonpermissive temperature at around 300 cell-stage 

of development during the E8-E16 divisions (Fig. A9 J-K). ERM-1 staining showed that 

intestinal and pharyngeal tubulogenesis in zen-4 (or153 ts) embryos was disrupted at 

restrictive temperature (Fig. 2.6 F, G and Fig. A9 J-L). These observations suggested 
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that the cytokinesis may play an important function to ensure proper epithelial 

morphogenesis of the digestive tract in C. elegans. 

 

Additionally, we also detected whether the remodeling of microtubule (MT) cytoskeleton 

occurs normally in temperature sensitive mutants. The air-2 (or207 ts) embryos with 

expressing Tubulin::GFP were shifted around E4 stages until they reached the bean 

stage. High-laser-intensity images show the irregular tubulin distribution at the apical 

surface of intestine and pharynx tissues (Fig. A10 A-H). Previous studies identified that 

Aurora B kinase phosphorylates microtubule-depolymerizing enzyme KLP-7 to regulate 

MT growth (Han et al., 2015). Therefore, we decided to observe whether tubulin 

dynamics in air-2 (or207 ts) embryos was disrupted. Interestingly, we saw a localization 

of tubulin to an extended flank region around the midbody through the entire migration 

process and tubulin persists at apical surface after E16 polarization (Fig. A10 I-L). 

However, the tubulin localization on flank region disappeared in air-2 (or 207 ts) embryo 

(Fig. A10 M-N), but still accumulated at apical surface (Fig. A10 O-P). This suggests 

that AIR-2 may phosphorylate a putative substrate to stabilize the microtubule-

dependent midbody or central spindle structures during midbody movement to apical 

surface. 

 

We also investigated whether the developing sensory neurons formed normally in 

temperature sensitive mutants. C. elegans amphid neurons can take up lipophilic dyes 

such as DiI when they form properly and generate cilia that are exposed to the 

environment (Hedgecock and White, 1985; Perkins et al., 1986). We maintained 
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embryos at the permissive temperature (15 °C) and shifted them to non-permissive 

temperature at different embryo stages until they hatched and stained L1 larvae with 

DiI. This allowed us to rigorously test the role of AIR-2 in viability later in development 

as well as examine its role in sensilla development. As expected, 100% of wildtype 

embryos hatch under these conditions. In contrast, air-2 (or207 ts) embryos have only 

39.7% (27/68) hatching even when left at 15 °C, indicating that this mutant is sick even 

at permissive temperature. Shifting air-2 (or207 ts) embryos to non-permissive 

temperature around the E4 stage causes significantly more lethality (10-20% hatching), 

consistent with the penetrant cytokinesis failures and gut morphogenesis defects we 

observed (Fig. 2.6 and Fig. A10). Interestingly, we observe significantly higher lethality 

over basal rate at permissive temperature when we shift embryos up to the comma or 

later stages. The lethality in air-2 (or207 ts) embryos decreases to the same level as 

observed when kept at 15 °C when we shift at comma or later stage, consistent with an 

essential role of AIR-2 during the last cell divisions in the embryonic lineage. These data 

suggest that AIR-2 function is required, even after the time window when most 

embryonic cell divisions have completed and support an important post mitotic function 

during late development. For comparison, we examined zen-4 (or153 ts) mutants, which 

have much more severe and penetrant cytokinesis defects later during morphogenesis 

as compared with air-2 (or207 ts). In contrast to AIR-2 disruption we see almost 100% 

hatch rate of shifted embryos. Additionally, much less percentages of hatched zen-4 

(or153 ts) animals, which were shifted at comma or later stage, display the defects of 

neuronal DiI staining (Fig. 2.7 A) and other tissue morphogenesis (Data not shown).  
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Figure 2. 7 Cytokinesis mutants have disrupted sensilla neuron morphogenesis 

(A-E) The DiI dye process allowed visualizing neurite processes in live animals. (A) 
Quantification of DiI staining showed that around 40-60% of air-2 (or207 ts) and 20-30% of zen-
4 (or153 ts) hatched larva had DiI staining defects at different temperature shift conditions. For 
wildtype, amphid neuron cell bodies, amphid dendrites, and phasmid neurons were clearly 
visualized by DiI staining (B). (C-F) air-2 (or207 ts) larvae displayed variety of neurite defects, 
including No-DiI signal (C), Weak signal (D), Shape and positioning defects (E) and Diffused 
staining (F).  
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This suggests that AIR-2 may perform other important roles for morphogenesis in 

addition to cytokinesis. In addition to observing hatching rates, we used DiI staining to 

observe sensilla morphology. In wildtype, amphid neuron cell bodies, amphid dendrites, 

and phasmid neurons were clearly labeled by DiI and appeared normal as expected 

(Fig. 2.7 A, F). In air-2 (or207 ts) mutant embryos, we observed numerous defects in the 

subset of surviving embryos that did not fail to hatch and became L1 larvae. Animals 

with no observed DiI staining were more common under longer inactivating conditions 

and were not observed if animals were shifted after dendrite morphogenesis at the 

comma and two-fold stage (Fig. 2.7 A), indicating that AIR-2 function is required during 

the specialized cytokinesis events described above. Importantly, shifting the AIR-2 

mutant around the comma stage after the cytokinesis events are completed still caused 

significant defects in neuron shape, positioning and DiI staining intensity (Fig. 2.7 A). 

These data strongly indicate a post mitotic function for AIR-2 in dendrite morphogenesis 

well after the completion of cytokinesis. In contrast, zen-4 (or153 ts) ZEN-4 does not 

show the same defects when shifted after cytokinesis has completed, consistent with 

the observation that AIR-2 localization persists well after cytokinesis in the dendrite 

whereas ZEN-4 is internalized and degraded quickly after cytokinesis and cluster 

formation. Therefore, proper execution of cytokinesis and AIR-2 function especially are 

required late in embryo development for proper morphogenesis of the apical lumen of 

the gut and pharynx and proper formation of the sensilla neurons. 
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Figure 2. 8 Multiple microtubule-based organelles contribute to morphogenesis 

(A-C) spd-1 (oj5ts) alters AIR-2::GFP dynamics. Shifting spd-1ts to non-permissive temperature 
did not prevent AIR-2::GFP localization to metaphase plate (A, arrowhead), but prevents AIR-
2::GFP localization to the midbody (B). AIR-2::GFP localizes to the spindle poles after spd-1 
(oj5ts) shifted to the restrictive temperature (B, arrowheads). AIR-2::GFP still accumulates at the 
intestinal apical midline (C, arrowhead). (D-F) Centrosome marker γ-tubulin::GFP (green) and α-
tubulin::mCherry (magenta) colocalized at intestinal primordium (rectangle).  (G-I) γ-
tubulin::GFP (white arrowheads) and AIR-2::GFP (red arrowheads) migrate to apical midline 
simultaneously and persist at the tip of sensilla dendrite (I). (J) Quantification of AIR-2::GFP 
signal at intestinal apical midline after E16 polarization in both wildtype and spd-1 (oj5 ts) 
embryos. Time in minutes: seconds indicated left bottom. Scale Bar, 10 μm. 
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Multiple microtubule-based organelles contribute to morphogenesis 

Next, we asked whether the functions of midbody proteins in morphogenesis are 

affected by midbody formation during late terminal cell division. In our study, we have 

shown a stereotypical migration of midbodies during tissue formation. Our observations 

also identified the localization of AIR-2::GFP at the flank central spindle region and 

midbody during its migration. Intriguingly, AIR-2::GFP persists prominently at the apical 

surfaces of different tissues post division. To further investigate the functions of 

midbody and its migration during tissue morphogenesis, we decided to inactivate the 

microtubule binding and bundling protein SPD-1, which is the orthologue of PRC1 in C. 

elegans. Interestingly, disruption of SPD-1 in C. elegans does not invariably prevent 

cytokinesis in the first cell division and intestinal cell divisions, but perturbed the 

microtubule bundling and disorganized central spindles in these cells. To inactivate 

SPD-1 during intestinal division, spd-1 (oj5ts) embryos were shifted at E4 stage to E8 

prophase for live imaging (Fig. A11 A). As expected, the inhibition of SPD-1 during 

intestinal cell divisions prevent the recruitment of AIR-2::GFP to the midbody (Fig. 2.8 

A-B). Interestingly, AIR-2::GFP expressed in spd-1 (oj5 ts) mutants shifted to the 

restrictive temperature localizes primarily to the spindle poles instead of the midbody 

(Fig. 2.8 B). However, AIR-2::GFP still accumulates at the midline of intestinal 

primordium after moving there with the poles (Fig. 2.8 C). Quantification of AIR-2::GFP 

signals in the intestinal primordium midline shows that there is no significant reduction 

of AIR-2::GFP signal strength and duration in spd-1 (oj5ts) mutant compared with 

wildtype (Fig. 2.8 J). 
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Previous studies showed a novel patterns of midbody-centrosome collaboration pattern 

to regulate ciliogenesis in MDCK cells (Bernabe-Rubio et al., 2016). Additionally, 

various midbody proteins can also be found in centrosomes, which reach the apical 

base of the cilium (Fabbro et al., 2005; Ott, 2016; Smith et al., 2011). In C. elegans, the 

apical surface ultimately becomes elaborated with microvilli supported by PCM material 

donated by the centrosome during intestinal development, while the centrioles are 

discarded (Feldman and Priess, 2012; Yang and Feldman, 2015). Therefore, we 

propose a possible mechanism behind the re-location of AIR-2::GFP to spindle pole and 

their subsequent migration to the apical surface. We hypothesize that microtubule-

based organelles, like the midbody and centrosome, may collaborate each other to 

deliver identical signaling materials to initiate architectural arragement of apical 

surfaces. To delineate the relationship between these two organelles during intestinal 

development, we imaged embryos expressing both centrosome marker γ-tubulin::GFP 

and midbody marker AIR-2::GFP during the E8-E16 division. Interestingly, the data 

shows that centrosome and midbody migrate to apical midline simultaneously, and both 

γ-tubulin::GFP and AIR-2::GFP persist prominently at intestinal apical surface (Fig. A11 

B-D). Interestingly, the same migration pattern has also been observed in sensilla and 

pharynx tissues (data not shown), γ-tubulin::GFP persists at the tip of sensilla dendrites 

and pharyngeal apical surface (Fig. 2.8 G-I, Fig. A11 E-G). Our observations suggest 

that the centrosome might be a complementary machinery to direct the critical midbody 

passenger molecules, such as Aurora B kinase, to apical surface when spindle 

microtubules bundling was disrupted. Delineating the precise relationship between 

these two organelles and deciphering the regulatory process that leads to proper 
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cellular organizations underlying proper morphogenesis will be a major focus of future 

studies. 

 

Discussion 

Our results have revealed surprisingly complex and reproducible patterns of cytokinesis 

during the invariant embryonic divisions in C. elegans. The entire invariant lineage has 

been known for several decades and our results suggest that cytokinesis also follows a 

specific pattern during the lineage. We observe reproducible alterations to furrow 

symmetry, central spindle length, abscission timing, midbody movement and 

inheritance. The traditional view of the embryo lineage is that cells are born and 

subsequently undergo changes that produce the differentiated organization within a 

tissue. However, our data demonstrate that cells in multiple tissues are completing 

cytokinesis, and are thus in “C phase,” which has significant implications for 

understanding their behavior and regulation. Given that the entire cell is reconfigured 

during mitosis and cytokinesis is the transition period back into the interphase state, this 

is an ideal time window to reorganize cellular architecture.  

 

We observe consistent changes to the symmetry of furrow ingression where the first 

mitosis is relatively symmetric and the second mitosis is highly asymmetric. Previously, 

the furrow asymmetry in the first division was shown to be a consequence of 

asymmetric accumulation of contractile ring components during ingression (Maddox et 

al., 2007). The adhesion between cells may also reinforce this asymmetry to drive the 

highly asymmetric furrow observed in the second round of divisions (Padmanabhan and 
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Zaidel-Bar, 2017). Whether due to cell intrinsic or extrinsic factors, the asymmetric 

furrows have previously been postulated to drive efficient furrowing or help maintain 

proper cell-cell contacts during cytokinesis (Maddox et al., 2007; Morais-de-Sa and 

Sunkel, 2013). Our data suggest another hypothesis: the asymmetric furrow may be 

required for the AB midbody to be engulfed by EMS instead of either daughter cell. 

Given that the midbody has been proposed to deliver signals to cells that inherit it, it is 

worth noting that the MS cell collects up to four midbodies over time (Singh and Pohl, 

2014). Unexpectedly, we see relatively symmetric furrowing in several tissues later in 

morphogenesis. This is striking because an asymmetric furrow would be sufficient to 

position the midbody at the nascent apical surface. Given that the polarization 

mechanisms are not completely understood, for example the extracellular matrix 

component laminin is required in the pharynx but not the intestine (Rasmussen et al., 

2012), the symmetrical furrow followed by midbody migration may be important for 

defining the apical surface. Perhaps there is no good reference for such asymmetric 

furrowing prior to epithelial polarization that would allow cells in different locations to 

position the midbody through an asymmetric furrow mechanism. We hypothesize that 

lumen formation in the gut and pharynx is analogous to that described in MDCK cells 

with the formation of a midbody-derived apical-membrane initiation site with the addition 

of midbody migration for correct positioning of this domain (Li et al., 2014).  

 

The coordinated, directed movement of the midbody we observe in several tissues 

represents a new phenomenon during cytokinesis. Our data also suggest that 

abscission has not taken place before the midbody migrates. This would mean that the 
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two daughter cells polarize while connected at the midbody, which might facilitate their 

positioning. These data are somewhat different than what is observed in already 

polarized epithelia where the furrow constricts from the basal to the apical surface to 

position the midbody. It is tempting to consider that performing cytokinesis in this 

particular fashion has an important function in the polarization process. Since these 

cells are undergoing a mesenchymal to epithelial transition, it is interesting to consider 

whether cytokinesis may have some general function in executing this process. 

Previously, midbodies have been shown to reposition after forming under normal or 

mutant conditions (Bernabe-Rubio et al., 2016; Herszterg et al., 2013; Morais-de-Sa 

and Sunkel, 2013; Singh and Pohl, 2014), but this phenomenon is only appreciated in 

isolated cases and poorly understood. It will be important to investigate how the 

midbody moves to the apical surface after furrowing is completed. The entire cortex is 

controlled by several actin cytoskeletal regulators in order to perform cytokinesis 

(Jordan and Canman, 2012), perhaps this is also employed to control the movement of 

the midbody. 

 

In the tissues we investigated, the cells are undergoing their terminal cell division before 

morphogenesis, although some cells like those in the gut undergo post-embryonic 

divisions. These cells are also undergoing epithelial polarization and a mesenchymal to 

epithelial transition. After midbody movement, RAB-11, AIR-2 and possibly other 

molecules are recruited to the apical surface. Certainly these different tissues have 

unique gene expression programs, part of which might involve proteins delivered to the 

midbody and the apical surface. Interestingly, a transmembrane protein that binds to an 
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extracellular partner is expressed in the tip of the dendrites in amphid sensilla, which is 

required to maintain dendrite attachment at the tip of the embryo (Heiman and Shaham, 

2009). It is unknown how this protein localizes to the tip of the dendrite, one speculative 

possibility is that it could be delivered through cytokinesis-directed membrane 

trafficking. A stem cell marker protein is released in extracellular membrane particles by 

neuroepithelial cells from the cilium and midbody, showing a similarity between these 

two organelles (Dubreuil et al., 2007). Interestingly, the worm releases exosomes from 

the sensory cilia later in life for communication between animals (Wang et al., 2014a). 

Perhaps the initial secretory apparatus built during cytokinesis to promote cell division is 

recruited to the apical surface of these neurons to recruit machinery involved in 

exosome release. Further investigation is required to define the molecular contributions 

provided by the midbody to the apical surface of these tissues.  

 

Once the midbody moves to the apical surface, we observe that different components of 

the midbody have different fates. Typically, once the midbody is abscised from the cell, 

it is thought that most midbody proteins are discarded with the remnant. Strikingly, we 

observe Aurora B kinase remains at the apical surface well after other midbody 

components like ZEN-4 are removed. The limit of the resolution of light microscopy 

does not allow us to characterize in detail how this occurs. The most likely model is that 

the midbody is cut from the plasma membrane and flanking proteins like Aurora B, 

RAB-11 and microtubules are left behind. Among the many mitotic functions of Aurora 

B, it is a critical regulator of the timing of abscission (Mathieu et al., 2013; Steigemann 

et al., 2009). Based on our observations of microtubules at the central spindle and 
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midbody, abscission may occur after the midbody migration event, which might require 

Aurora B activity. Interestingly, inhibition of Aurora B kinase in mouse embryos caused 

the loss of midbody derived interphase bridges and a reduction of RAB-11 and cell 

adhesion molecules delivered to apical membranes (Zenker et al., 2017). Aurora B also 

regulates a number of cytoskeletal regulators during cytokinesis that control cell shape 

(Ferreira et al., 2013; Floyd et al., 2013; Goto et al., 2003; Kettenbach et al., 2011), and 

it will be interesting to determine whether any are involved with the events we observed. 

It is striking that in the intestine, the central spindle elongates dramatically as the 

midbody migrates. Along these lines, altered expression of the central spindle protein 

PRC-1 (the homologue of SPD-1) contributes to variant midzone microtubule density in 

different tissues in the Xenopus embryo, which correlates with changes to furrow 

ingression and midbody behavior (Kieserman et al., 2008). While we observe the 

centralspindlin component, ZEN-4, becoming internalized and degraded in the three 

tissues, it was previously implicated in morphogenesis of the epidermis and pharynx 

(Hardin et al., 2008; Portereiko et al., 2004; Von Stetina et al., 2017). It remains to be 

determined whether this role is related to the dynamics of cytokinesis, or a cytokinesis 

independent function of ZEN-4 as previously suggested. Therefore, further study will be 

required to understand the role of the central spindle components in the formation of the 

apical surface. 

 

In the sensilla, the centriole moves to tip of the dendrite to template the cilia that form 

sensory endings of these neurons (Dammermann et al., 2009; Nechipurenko et al., 

2017; Perkins et al., 1986). Interestingly, multiple central spindle proteins localize to the 
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base of cilia in Xenopus epithelial cells and are required for cilia morphology after the 

divisions are completed in C. elegans (Kieserman et al., 2008; Smith et al., 2011). In the 

apical membrane of the gut, gamma tubulin and other pericentriolar material is delivered 

from the centrosome, while the centrioles are discarded. The gut apical membrane 

ultimately becomes elaborated with microvilli (Feldman and Priess, 2012; Leung et al., 

1999). We also observed gamma tubulin at the apical surface of the pharynx and 

sensilla dendrites. Therefore, different material provided by the midbody and 

centrosome may contribute to the final architecture of the apical surface. Delineating the 

precise relationship between these two organelles and deciphering the regulatory 

process that leads to proper cellular organizations underlying proper morphogenesis will 

be a major focus of future studies. 

 

Materials and Methods 

C. elegans Strains 

C. elegans strains were maintained with standard protocols. Integrated C. elegans 

strains expressing midbody components proteins driven by pie-1 promoter are listed in 

Table 1. All temperature sensitive mutants were obtained from the Caenorhabditis 

Genetics Center.  

 

Embryo Preparation and Imaging 

For live imaging, young gravid hermaphrodites were dissected in M9 buffer containing 

polystyrene microspheres and sealed between two coverslips with vaseline  (Pohl and 

Bao, 2010). Live cell imaging was performed on a spinning disk confocal system that 
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uses a Nikon Eclipse inverted microscope with a 60 X 1.40NA objective, a CSU-22 

spinning disc system and a Photometrics EM-CCD camera from Visitech International. 

Images were acquired by Metamorph (Molecular Devices) and analyzed by ImageJ/FIJI 

Bio-Formats plugins (National Institutes of Health) (Linkert et al., 2010; Schindelin et al., 

2012). Whole embryo live imaging was performed on a lattice light sheet microscope 

created by Dr. Eric Betzig’s lab and Dr. Bi-Chang Chen’s lab (Chen et al., 2014). 

 

Immunostaining and DiI Staining Assay 

Freeze-crack methanol protocol was used in the study and the staining procedure is 

adapted from previous studies (Gonczy et al., 1999; Leung et al., 1999). 15-20 gravid 

worms were dissected in 15 l M9 on a subbed slide which were covered by 3% gelatin 

subbing solution. Place an 18 mm2 coverslip onto the drop and wick away the excess 

fluid with 3 MM Whatman paper. Freeze the slide on the metal block in -80 °C freezer 

for 5 minutes. Flick off the coverslip with a razor blade and plunge the slide into -20 °C 

methanol for 15 minutes or more. Rehydrate the slide in 1xPBS for 5 minutes. Incubate 

the slide with 50-100 l of primary antibody in PBS for 45 minutes at room temperature 

or 4 °C overnight in a wet chamber. Wash slides for 5 minutes in PBT (PBS-0.05% 

Tween 20), 5 minutes in PBS. Incubate the slide with 50-100 l of secondary antibody in 

PBS for 45 minutes at room temperature or 4 °C overnight in a wet chamber. 1:200-400 

dilutions of Alexa 588 and 468 secondary antibodies were used in the study. Wash slide 

2-3 times in PBS for 5 minutes, and mount the slides in 7-10 l mounting buffer. 

Immunostaining to AIR-2 was performed as described (Schumacher et al., 1998). 

Primary antibodies and (dilutions) used were anti-ERM-1 (1:150-200); P4A1/PAR-3 
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(1:200); DLG-1 (1:200); MH33 (1:150); AIR-2 (1:50). Immunostaining to the temperature 

sensitive mutants, two-cell stage embryos were dissected from gravid worms, mounted 

in 10 l of M9 buffer. All the processes were operated on the ice-bucket. The two-cell 

stage embryos incubated at 15 °C for 4~7 hours till specific stages, then the embryos 

were shifted to restrictive temperature (25 °C) for 2-4 hours and followed the freeze-

crack staining protocol described above. 

 

DiI staining in C. elegans 

DiI staining to the wildtype N2 and temperature sensitive mutants is adapted from the 

previous study (Tong and Burglin, 2010). The two-cell stage embryos incubated at 15 

°C for different time periods, then the embryos were shifted to restrictive temperature 

(25 °C) with 1:200 dilution of stock DiI dye solution containing 2 mg/ml DiI in dimethyl 

formamide for 18-24 hours. Transfer the hatched larvae to M9 and wash twice before 

transferring them onto agar pads with levamisole to visualize by confocal microscope.  

 

Temperature-Shift Experiments  

Temperature sensitive mutants were maintained at 15 °C. To perform terminal cell 

divisions temperature shifts on staged embryos, gravid adults were transferred to a 

dissection chamber (< 4 °C), which was precooled in ice bucket, with 20 μl of ice-cold 

M9 Buffer. Two-Cell stage embryos were quickly transferred via mouth pipette 

(Aspirator tube assemblies, Sigma) to hanging drop slides (Fisher) on ice. The slide was 

placed into a humidified chamber after collecting 20-30 two-cell embryos (process takes 
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5-10 minutes) at 15 °C. Embryos were incubated at 15 °C until the appropriate stages 

were reached and then shifted to 26 °C to inactivate cytokinesis regulator proteins. 

Incubation times were determined based on C. elegans embryonic lineage timing and 

adjusted according to our DAPI staining assay (data not shown), which define the stage 

of embryonic development based on the number of nuclei number and positioning of 

nuclei in embryos. The specific programs for each shift were listed below: E4-E8 shift: 

4.5 hours at 15 °C, 3 hours at 26 °C to reach the bean stage; 5 hours at 26 °C to reach 

the comma stage. E8-E16 shift: 6 hours at 15 °C, 2 hours at 26 °C to reach the bean 

stage; 4 hours at 26 °C to reach the comma stage. Comma/1.5 Fold shift: 10-11 hours 

at 15 °C, 18 hours at 26 °C to L1 larvae. 

 

Statistics 

Quantification of AIR-2::GFP at the intestinal apical surface was performed in Image J 

by measuring the fluorescent intensity in frames with the brightest signal after E16 cells 

polarized. To decrease the phototoxicity, embryos were imaged when E8 cells Eplp and 

Eprp start dividing. To account for variation in imaging and z-depth, we calculated the 

ratio of the intensity at the apical surface relative to intestinal cytoplasm.   
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CHAPTER 3 

 

 

 

 

 

Mounting Caenorhabditis elegans Embryos for Live Imaging during 

Early Embryonic Divisions and Morphogenesis 
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This chapter contains one publication.  

Bai X., Joshua N. Bembenek 2017. Orchestrating Early Embryonic Division (Bai and 

Bembenek, 2017a) 

This chapter will be submitted for publications 

Bai X., ….. 2018. The programmed Variations of Cytokinesis Contribute to 

Morphogenesis in the C. elegans Embryo. 

Bai X., ….2018. Mounting Caenorhabditis elegans embryos for live imaging during 

meiotic division. Methods paper.  

 

Bai X. will be considered the first author in all three publications. My contribution 

included: (1) designing experiments, (2) performing experiments, (3) collecting data and 

data analysis, (4) creating figures and writing the manuscript. Dr. Joshua N. Bembenek 

assisted with (1), (4). Dr. Bi-Chang Chen and Po-Yi Lee assisted with (1), (2), (3) and 

(4). Only small revisions to the original figures have been made for the purposes of this 

dissertation.  

 

Abstract 

Transparency of C. elegans embryos provides many benefits for imaging with light 

microscopy. To study the role of essential cell cycle regulators in early cell division and 

later developmental events, we have developed several methods for imaging C. 

elegans embryos using both high-resolution confocal microscopy and next-generation 
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lattice light sheet microscopy. In Chapter III, we described these live-cell imaging 

approaches to study cellular functions of the master regulators during sequential cell 

cycle events, including cortical granule exocytosis, meiotic division, and mitotic division 

in both one-cell stage embryo and multicellular tissues. Firstly, in order to image cortical 

granule exocytosis which occurs during anaphase I, we generated a mechanical and 

osmotic stress-free mounting method to avoid any external stress during filming the 

embryos without matured eggshell and permeable barrier. Additionally, we carefully 

characterized the spatiotemporal window of embryonic morphogenesis, which provides 

detailed timing windows to image the tissue-specific cell divisions from invariant lineage. 

Finally, this chapter also provides a brief process of analyzing the image data which 

were generated by lattice light microscope using Amira 3D software. 

 

Introduction 

Caenorhabditis elegans is a powerful model system for addressing fundamental cell 

cycle events. The observation of cellular processes within living cells (including 

oogenesis, fertilization, meiotic and mitotic cell division, and embryogenesis) can be 

performed with relative ease. C. elegans hermaphroditic adults contain a U-shaped 

gonad where the oocytes are produced in both proximal gonad arms (McCarter et al., 

1999). Interestingly, the hermaphrodite animals contain a spermatheca to produce 

sperm cells. When the oocytes mature, they move through the spermatheca to become 

fertilized (McCarter et al., 1999). Once sperm enters the oocyte, fertilization triggers 

anaphase onset during egg activation. Egg activation encompasses a large number of 

events including cortical granule exocytosis and progression through the cell cycle that 
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transforms the highly differentiated oocyte into a totipotent egg (Bembenek et al., 2007). 

Therefore, studying cortical granule exocytosis is an ideal way to learn more about how 

cells regulate secretion during anaphase.  

 

Cortical granule exocytosis (CGE) helps to rebuild the embryo’s extracellular 

environment and forms an impermeable layer responsible for blocking polyspermy 

(Wessel et al., 2001). The ovulated embryos are lack of matured eggshell and the 

impermeable barrier, which could cause mechanical and osmotic stress during imaging 

with a regular agarose pad. To avoid this limitation of imaging, we created several 

imaging methods to diminish external stress in filming the embryos without an 

impermeable barrier, such as dissection-hanging drop and immobilization methods. The 

dissection method involves mobilizing adult worms in a liquid medium. Dissection of 

animals is performed under a dissection microscope and requires experienced hand-

eye coordination to isolate the fertilized embryos before anaphase I (Bembenek et al., 

2007). However, only healthy fertilized embryos were collected by the dissection 

method. Therefore, an alternative immobilization method is used for observing oocytes 

to embryo transition in uterus. Anesthetic agents, such as levamisole, and agarose-

polystyrene nanoparticles, achieve immobilization. In this chapter, we evaluate the 

methods of hanging drop dissection and polystyrene beads to observe the dynamics of 

cell cycle regulators during sequential cell cycle events from oocyte maturation until 

later morphogenesis. Our techniques are relatively simple and avoid exposure of the 

worm to toxic substances, helping us understand the molecular mechanisms of egg 

activation during development. 



104 
 

C. elegans has unique advantages that make it well-suited for studying single cell 

division in multicellular tissues and observing the phenotype during later 

morphogenesis. Simplified anatomic structures, transparency of embryos, and 

essentially invariant development allowed the determination of the invariant embryonic 

cell lineage (Sulston et al., 1983). Such invariant embryonic lineage allows the 

characterization of cell cycle regulators at the level of single cells in different tissues. In 

this chapter, we also attempted to obtain the optimal images of several large complex 

structures, including developing intestine, neuronal sensilla, and pharynx. The usage of 

immunostaining and DAPI staining assays allowed us to streamline the determination of 

stages of developing embryos compared with the usage of Nomarski (DIC) microscopy 

only. We describe the preparation of agar mounts and other approaches for 

immobilizing embryos. We also carefully titrated the temperature shifting conditions to 

incubate staged embryos of various temperature sensitive mutants prior to performing 

standard 3D or 4D imaging. Lastly, Dr. Bi-Chang Chen and Po-Yi Lee helped us 

optimizing and analyzing the images captured by light sheet microscope with striking 

engineering software Amira 3D. This imaging analysis enables us to show the 

impressive details of cell division and midbody migration patterns in several complex 

tissues.  
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Methods and Protocols 

1) Hanging Drop Dissection and Mounting Method 

1.1) Worm culture for live cell imaging. Maintain C. elegans strains expressing the 

fluorescent proteins on OP50 plates at 20 °C with standard protocols. Some care must 

be taken to ensure that the worms are not starved for food. For imaging, select the 

healthy gravid worms from OP50 plates. Note: worm plates should not be overcrowded 

or contaminated. For live fluorescence imaging, worms are cultured at warmer 

temperatures (~ 25 °C) often have brighter fluorescence expression than worms 

cultured at lower temperatures (16-20 °C). The timing of meiotic cell cycle events can 

vary significantly with slight changes in maintaining temperature. We utilize both of 20 

°C and 25 °C as culture and live imaging temperatures.  

1.2) Prepare Blastomere Culture Medium (BCM). Dilute Inulin to 5 mg/ml in embryonic 

transfer water. Dilute PVP to 50 mg/ml in Schneider’s medium. Mix 8 ml Schneider’s 

medium, 1 ml 5 mg/ml Inulin, 1ml 50 mg/ml PVP, 100 µl BME vitamins, 100 µl Penicillin-

Streptomycin, 100 µl Lipid Concentration for 10 ml blastomere culture medium (BCM). 

Sterilize the BCM by syringe filter, and add 35 % heat-inactivated FBS to BCM before 

using.  

1.3) Prepare hanging drop slide. Melt the Vaseline with heat block; suck in 5 ml liquid 

Vaseline in 10 ml syringe. Leave the syringe with Vaseline at room temperature until 

Vaseline is completely solidified. Attach 23 G x 3/4” needle to the syringe tightly. Gently 

squeeze the Vaseline from syringe along the slide’s surface to create a circular 

chamber with a cut for releasing the osmotic and mechanical pressure.  
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1.4) Before the worms are cut open, we need to pick worms from OP50 plates and 

transfer them to clean NGM plates for removing the bacteria. Simultaneously, load 15 µl 

of BCM on the cover glasses. Gently pick one or two clean worms to the BCM, and 

dissect the worms under the dissection microscope. Suck the mother worm carcass to 

avoid a toxicity effect.  

1.5) Very gently attach the hanging drop slide on the cover glasses and gently tap the 

cover glasses by syringe.  

 

2) Immobilization of Worms Using Anesthetic Agents 

2.1) Maintain worms as described previously in 1.1). 

2.2) Prepare a 2% agarose solution in a microcentrifuge tube by dissolving 0.02g of 

agarose in 1mL M9. Maintain solution on a heat block to ensure the solution remains 

molten. 

2.3) Prepare molten Vaseline by thawing an aliquot of it a falcon tube inserted into a 

heat block. Prepare thawed levamisole aliquot by thawing tubes on ice.  

2.4) Preparing the agarose pad. Apply approximately 150μL of molten agarose to the 

slide situated between two slides wrapped in tape. Apply an additional slide over the 

molten agarose to form the agarose pad. Allow the agarose pad to cool and solidify. 

After the agarose pad has solidified, remove the top slide and prepare the pad for worm 

mounting. 
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2.5) Mounting worms. Apply 5μL M9 buffer with levamisole on the coverslip, transfer the 

gravid worms to buffer and wait for 1-2 minutes till worm immobilized. Gently placing 

over the agarose pad over coverslip will help immobilize the worms. Seal the edges of 

the coverslip with molten Vaseline. 

 

3) Immobilization of Embryos via Polystyrene Beads 

3.1) Maintain worms as described previously in method (1). 

3.2) Embryos were dissected from gravid hermaphrodites, mounted in 2.5 μl of an M9 

buffer suspension containing 20 or 25 μm polystyrene microspheres and sealed 

between coverslips with molten vaseline.   

 

4) Embryo Freeze-Cracking Method 

4.1) Dissect the gravid worms in the M9 buffer, transfer them to humid chamber till 

embryos reach specific stage.  

4.2) Freeze the metal block at -80 °C at least 30 minutes. 

4.3) Transfer the embryos with mouth pipette to a slide, and gently place over a 

coverslip on the slide. Transfer the slide to frozen metal block surface for 5-10 minutes, 

and flick off coverslip with a razor, and plunge the slide into -20 °C methanol for 15 

minutes. 

4.4) Rehydrate the slide with 1xPBS buffer for 5-10 minutes. 
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4.5) Incubate the slide with antibody buffer or mount the slide with mounting buffer with 

DAPI for further assessments.  

4.6) Seal slides with nail polish before imaging.  

 

5) Microscopy and Image acquisition 

5.1) Warm up the confocal microscope system. Before mounting embryos for imaging, 

everything should be ready to go, including warming up the imaging system, opening 

the imaging software, adjusting the imaging temperature, and the microscope pre-focus 

test. From the time the worm is dissected, there are only approximately three to five 

minutes until imaging needs to begin.  

5.2) Place a drop of oil on the 60x objective; place the hanging drop slide on an inverted 

microscope.  

5.3) Focus on the plane of the embryos with chromosomes and ensure that the 

embryos will not float in the BCM buffer. Make sure to start image acquisition of the 

embryos before anaphase I or other required stages.  

5.4) Program the image acquisition software to take GFP, RFP, DAPI, and DIC 

(optional) images of the embryos. For this experiment, we used MetaMorph to capture 

the images with 300 ms (conditional) exposure time for both GFP and RFP filter. To 

capture the single cortical granule during anaphase I, we used the single z-plane to 

track the cortical granule exocytosis process around the central focus point of the 

chromosome.  
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5.5) Images were taken every 3 seconds for anaphase I imaging. The exposure time 

can be adjusted according to the protein of interest and transgene expression in 

different strains. Note: the overexposure condition will be phototoxic to embryos. 

Therefore, the image conditions need to be optimized to allow the embryos develop 

properly. 

5.6) Acquire images till the embryos complete the cortical granule exocytosis and 

chromosome segregation as observed by the fluorescent signals labeled with marker 

proteins. The whole imaging process only takes 2 minutes or other time till acquired 

cellular events complete.  

5.7.1) Analyze the images using Fiji Image J software. Open the image series for any 

one of the wavelengths in Image J. 

5.7.2) Click on Image>Transform>Rotate the embryos to lateral view.  

5.7.3) Click on the ImageJ toolbar> Image> Adjust the brightness and contrast. 

 

6) Materials 

6.1) NGM media (2% agar, 3g/L NaCl, 2.5g/L peptone, 5 mg/ml cholesterol, I M 

KH2PO4, 1 M CaCl2, 1 M MgSO4, 2 mg/ml uracil). 

6.2) M9 liquid media (5g/L NaCl, 3 g/L KH2PO4, 6 g/L Na2HPO4). 

6.3) LB liquid media (10g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl). 

6.4) Blastomere Culture medium (Schneider’s medium (Gibco, 21720024), Inulin 

(Sigma-Aldrich I2255), Polyvinyl Pyrrolidone (Sigma-Aldrich, PVP40), BME vitamins 
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(Sigma-Aldrich B6891), Penicillin-Streptomycin (Gibco 15140-148), Lipid concentration 

(Gibco, 11905-031), Embryo transfer water (Sigma-Aldrich W1503), Heat Inactivated 

FBS (Gibco, 10082-147), Vaseline (Fisher Scientific, 18-999-1820). 

6.5) Spinning disk confocal system (Nikon Eclipse inverted microscope with a 60 X 

1.40NA objective, CSU-22 spinning disc system, Photometrics EM-CCD camera 

(Visitech International, UK). Images were acquired by Metamorph (Molecular Devices).  

6.6) ImageJ/FIJI Bio-Formats plugins (National Institutes of Health) (Schindelin et al., 

2012, Linkert et al., 2010). 

6.7) Microscope slides (Fisher Scientific 12-550-15), cover glasses squares (Fisher 

Scientific 12-540C). 

6.8) Polystyrene Beads, 2% volume, 0.1μm (Fisher Scientific, NC9081186). 

6.9) Fisherbrand Razor Blades (12-640), Vaseline (Fisher Scientific, 18-999-1820). 

6.10) Spinning disk confocal system (Nikon Eclipse inverted microscope with a 60 X 

1.40NA objective, CSU-22 spinning disc system, Photometrics EM-CCD camera 

(Visitech International, UK). Images were acquired by Metamorph (Molecular Devices).  

6.11) ImageJ/FIJI Bio-Formats plugins (National Institutes of Health) (Schindelin et al., 

2012, Linkert et al., 2010). 

6.12) Microscope slides (Fisher Scientific 12-550-15), cover glasses squares (Fisher 

Scientific 12-540C). 

6.13) Aspirator tube assemblies for calibrated microcapillary pipettes (Sigma A5177). 
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Representative Results 

Figure 3. 1 Making a standard hanging-drop and agar mount.  

(A-B) Aspirator tube assemblies, worm pick, and Vaseline syringes were used to dissect and 
collect embryos. (C) Use the Vaseline-filled syringe to make a circular chamber with a cut in the 
center of the coverslip for releasing osmotic and mechanical pressure. Dissect the worms under 
the dissection microscope. (D) Remove the mother worm carcass to avoid the toxicity effect. 
Very gently attach the hanging drop slide on the cover glasses and gently tap the cover glasses 
by syringe. (E-G) Representative images illustrating cortical granule exocytosis (green, 
arrowheads) and chromosome segregation (red, bracket) during anaphase I in SEP-1PD::GFP 
embryo. Data were collected with 60X lens and every 3 seconds. Images were rotated such that 
the posterior side is to the left. (H-K) Representative images of first mitotic division from 
metaphase (H-I) to cytokinesis (J-K) in the embryo expressing SEP-1PD::GFP. Hanging drop 
mounting will release mechanical and osmotic stress when imaging the embryos with RNAi 
treatment to eliminate the expression of core exocytosis machinery genes, which may cause 
permeable barrier defects, such as syx-4 RNAi. (H-I) Processes to make a standard agar mount 
for immobilizing worms using anesthetic agents, such as levamisole. Place three slides on the 
bench, with the outer two slides taped down to the bench. Drop molten agar on the center slide. 
Place the fourth slide onto the three original slides to compress over the agar. (J) 
Representative image of the syncytial germ line which generating oocytes that undergo 
ovulation into the spermatheca. Separase (green) localizes on cortical granules and 
chromosome (magenta) during anaphase I embryo (right).  
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Figure 3. 2 Timing the stage of embryonic development.  

Embryos were dissected from gravid hermaphrodites, mounted in 2.5 μl of an M9 buffer 
suspension containing 20 or 25 μm polystyrene microspheres and sealed between coverslips 
with molten vaseline.  (A-C) Both air-2 (or207 ts) and zen-4 (or153 ts) mutants had severe 
morphogenetic defects. (A-C) air-2 (or207 ts) and zen-4 (or153 ts) embryos elongated much 
slower than wild-type embryos and arrested before reaching two-fold elongation. Time in an 
hour: minute: second indicated on right bottom. (D-L) To carefully characterize the loss function 
of midbody proteins during morphogenesis, we designed temperature-shift strategy using DAPI 
staining assay to define the stage of embryonic development. The two-cell stage of embryos 
were maintained at 15 °C until specific stages, such as E2 metaphase, E2 anaphase, E4 S-
phase, E4 prophase, E4 metaphase, E8 S phase, E16, and E16 ventral enclosure which were 
listed as (D-L). Then, embryos were shifted to 25/26 °C to disrupt the functions of midbody 
proteins or cytokinetic proteins, which caused a variety of morphogenesis defects (data were 
shown in Chapter 2). The detailed timing for specific stages for wild-type (N2) and other 
temperature sensitive mutants are listed in Figure A12.  
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Figure 3. 3 Example of cytokinesis in intestinal cell divisions with lattice light 
sheet microscopy.  

The embryos expressing midbody flank marker AIR-2::GFP (green) with PH::mCherry 
(magenta). Images were captured by lattice light sheet microscopy every 90 seconds with 61 z-
planes. (A-C) Intestinal midbody migration from division positions to the intestinal apical surface, 
and AIR-2::GFP (green) persists at the apical midline. (D-F) Mirror-symmetric images of (A-C) 
after rotating the images 180 ° along x-axis using Amira 3-D software. (G-L) To emphasize the 
tissue-specific cell divisions (intestine G-I; pharynx J-L), Volume Edit tool was used to select the 
intestine (G-H) and pharynx regions (J-K) from whole embryos to emphasize the intestinal (I) 
and pharyngeal cell divisions (L).  
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Discussion 

A primary challenge for live imaging is to preserve the integrity and viability of embryos. 

In this chapter, we created some approaches to diminish external stress during filming 

embryos, including hanging drop and polystyrene beads mounting. We also utilized DIC 

microscopy for imaging the long-term morphogenesis process to avoid the excessive 

heating and phototoxicity from the laser source to embryos. Additionally, the 

transparency of C. elegans embryos benefits from the use of DIC microscopy to detect 

changes in cell shape, including cytokinesis. DIC also enables us to observe other 

cellular structures, such as the mitotic spindle, nuclear eyes, developing apical lumen 

and epidermal structures. Mounting C. elegans embryos on an agar pad provide a 

stable, long-term environment for DIC microscopic analysis of tissue morphogenesis. 

The utilization of specific proteins tagged with a fluorescent reporter complements DIC 

microscopy to visualize the cellular localization of these proteins and study the role of 

these proteins in cell division. To compromise the quality of imaging and phototoxicity of 

embryos during fluorescence imaging, we usually increase the CCD camera digital gain 

and lower the fluorescent intensity and duration of exposure. Our collaborator Dr. Bi-

Chang Chen provided deconvolution algorithms to reassign out-of-focus light, which 

reduced background and improved the quality of the captured images with lattice sheet 

microscopy. In the future, other extensions live imaging, such as live cell super-

resolution imaging microscopy, will be applied in our lab to study membrane trafficking, 

midbody migration and morphogenesis in C. elegans.  
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CONCLUSION 

The collection of work outlined here attempts to address some important questions 

regarding the functions of cell cycle regulators during cytokinesis and later 

developmental events. The first question of this work is whether the proteolytic activity 

of separase is involved in its membrane trafficking roles. Additionally, we tried to 

decipher how cytokinesis and other aspects of cell division control developmental 

events in several tissues. Lastly, this work suggests possible post-mitotic roles for the 

subcellular structure midbody/midbody remnant in C. elegans. Collectively, these 

studies provide insight into how the separase and other master cell cycle regulators 

control cytokinesis, cell division, and later developmental events to maintain invariant 

embryogenesis in C. elegans.   

 

Our lab and other colleagues found novel roles for separase in membrane trafficking 

and exocytosis during cortical granule exocytosis and cytokinesis in C. elegans 

(Bembenek et al., 2007; Bembenek et al., 2010; Richie et al., 2011). In this study, we 

aimed to investigate whether an unknown substrate of separase is involved in regulating 

exocytosis and how the proteolytic activity of separase controls exocytosis. To address 

these questions, we utilized several separase mutants and microscopy techniques to 

explore the cellular functions of separase in exocytosis and membrane trafficking. 

Intriguingly, our previous studies show that protease-dead separase (SEP-1PD::GFP), 

which contains a point mutation at the catalytic active site, is dominant negative and 

interferes with endogenous separase function during chromosome segregation and 

cytokinesis (Bai and Bembenek, 2017b; Bembenek et al., 2010; Mitchell et al., 2014). In 
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this study, we also observed that depletion of the cohesin subunit SCC-1 significantly 

rescues mitotic chromosome segregation defects and embryonic lethality in the 

embryos expressing protease-dead separase. Depletion of cohesin does not alleviate 

the cytokinesis defects caused by disrupting separase function. All of these 

observations suggest that separase has another substrate besides cohesin, the 

cleavage of which promotes exocytosis during anaphase. Chromosome segregation 

and cytokinesis are spatiotemporally related cell cycle events. In several systems, 

chromosome segregation defects (such as chromatin bridges) induce a delay in the 

physical abscission of daughter cells and cause failure of cytokinesis (Bembenek et al., 

2013; Hauf et al., 2001; Norden et al., 2006). Our data suggested that SEP-1PD::GFP 

blocked cleavage of an unknown substrate to interfere the exocytosis of RAB-11 

vesicles in anaphase rather than other chromosome bridging conditions.  

 

The protease activity of separase is to hydrolyze substrates, of which there are several 

in C. elegans, yeast, and mammalian cells (Lee and Rhee, 2012; Matsuo et al., 2012; 

Sullivan et al., 2004; Sullivan et al., 2001; Zou et al., 2002). Further studies are needed 

to identify the substrates of separase, which may be involved in the regulation of 

exocytosis during anaphase. Additionally, investigation of how the proteolytic activity of 

separase mediates exocytosis is also required for fully understanding of the molecular 

mechanisms of cell division.  
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RAB-11 performs multiple roles during the oocyte-to-embryo transition. The localization 

of RAB-11 moves through recycling endosome, cortical granules, and Golgi membranes 

after fertilization (Sato et al., 2008). After vesicles are delivered to plasma membrane, 

RABs recruit a number of effectors to promote vesicle tethering to promote the SNARE-

mediated fusion and later exocytosis (Wickner and Schekman, 2008). Our study 

showed that both SEP-1WT::GFP and SEP-1PD::GFP colocalize with RAB-11::mCherry 

in the cleavage furrow and cortical granules, implying that these two proteins may 

interact either directly or indirectly. We found that RAB-11 did not remain associated 

with the plasma membrane in SEP-1PD::GFP embryo after exocytosis, suggesting that 

RAB-11 may not be the substrate of separase during exocytosis (Bai and Bembenek, 

2017b). However, it is still possible that RAB-11 related proteins may interact with 

separase and be one of separase’s direct substrates. Further investigations with genetic 

interaction, biochemical, and super-resolution imaging assays are required to 

investigate the interaction between separase and RAB-11 or RAB-11 effectors, such as 

the newly found RAB-11 GEF protein REI-1 (Sakaguchi et al., 2015). Studying the 

molecular mechanism of the interaction between separase and other vesicle regulators, 

including RABs would help to determine whether separase affects a different step in 

exocytosis than the membrane docking or tethering functions. It would also provide 

insights into temporal regulation of separase during exocytosis, for example, separase 

may cleave an inhibitor of exocytosis at early steps. Therefore, identifying a putative 

vesicle target that separase cleaves to promote exocytosis is a critical step for future 

investigation.  
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Previous studies using genetic screens identified several separase mutations, which 

localize outside the protease domain. Despite the fact that none of these mutation sites 

are localized inside the protease domain, these amino acid substitution mutants cause 

defects in chromosome segregation, cortical granule exocytosis, and cytokinesis (Richie 

et al., 2011). These observations beg the question of whether the non-proteolytic 

domains coordinate with the proteolytic activity to regulate exocytosis? Genetic 

suppressors provide a powerful tool for exploring gene expression and interaction by 

mutagenizing a second mutations in the mutant under study. Our recent study to identify 

the suppressor of the separase non-proteolytic mutant (e2406) provided some ideas 

that the phosphatase 5 (PPH-5) and Heat Shock Protein-90 (HSP-90) might represent a 

signaling pathway that controls exocytosis (Melesse et al., 2018). This study may help 

to address another hypothesis that non-proteolytic functions of separase may also 

impact exocytosis through regulating the CDK or other signaling pathways. Additionally, 

the newly reported crystal structures of separase in C. elegans and other systems add 

strong structural information for studying the regulation between protease domains and 

other motifs in separase (Boland et al., 2017; Luo and Tong, 2017). Collectively, the 

study presented here provides novel insights into the molecular mechanism of how 

separase promotes exocytosis. Identification of a putative vesicle substrate that 

separase cleaves to promote exocytosis will be important goals of future investigation.  

 

Perhaps of all the work presented here, the most interesting findings are derived from 

the study of cytokinesis patterns during the invariant embryonic divisions in C. elegans. 

In Chapter 2, we carefully characterized several surprising phenomena during cell 
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division, which provide a novel case of cytokinesis in a multicellular context and open a 

new link between cell division and later development. The use of next-generation lattice 

light sheet microscopy enabled us to obtain the incredible details of cytokinesis during 

invariant embryonic divisions and showed a few novel lineage-specific cytokinesis 

patterns.  

 

Cytokinesis is one of the most dynamic cellular processes with dramatic changes in cell 

shape and reorganization of the cytoskeleton (D'Avino et al., 2015). Successful 

execution of cytokinesis requires multiple key mechanisms, factors, and signals to 

precisely control various cytokinetic events including positioning of the cleavage site, 

symmetry of ingression furrow, nascent membrane synthesis, midbody formation, and 

final abscission (D'Avino et al., 2015; Green et al., 2012; Pollard, 2017). Our study 

attempted to characterize lineage-specific cytokinesis patterns in C. elegans. First, we 

observed variations in furrow symmetry during the first two cell divisions. Symmetric 

furrow ingression has been observed during the first cell division, however we saw a 

significant change during AB cell division (during the second round of cell division). The 

cleavage furrow ingressed in an asymmetric fashion from one side of AB cell towards 

the EMS cell, and the midbody formed near the cortex of EMS cell. Remarkably, we 

observed symmetric furrows during cytokinesis in intestine, pharynx, and sensilla 

precursor cells, which is different from the highly asymmetric furrowing during AB cell 

division and cell divisions in other polarized multicellular tissues, such as various 

epithelial and vertebrate neuroepithelium (Das et al., 2003; Kosodo et al., 2004; Kosodo 

et al., 2008). In epithelial tissues, including the Drosophila embryonic ectoderm and 
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follicular epithelium, asymmetric furrowing is driven by the close attachment of 

contractile ring with apical junctions at the apical side (Guillot and Lecuit, 2013; Morais-

de-Sa and Sunkel, 2013).  In C. elegans, polarized distribution of the scaffold proteins 

Anillin and Septin, as well as the cytoskeleton motor protein Myosin II at an 

asymmetrical contractile ring, produce the cortical tension to control asymmetric 

furrowing (Maddox et al., 2007; Singh and Pohl, 2014). Despite the fact that asymmetric 

furrowing was considered a general property of dividing epithelial cells, symmetric 

furrow ingression did exist in some epithelial tissues, such as the Drosophila pupal wing 

(Herszterg et al., 2013). Perhaps, there is no good reference for symmetric furrowing 

prior to epithelial polarization that would position midbody to asymmetric apical surface, 

which is observed in our case.  

 

Another interesting feature of cytokinesis in epithelial tissues is that asymmetric 

furrowing results in midbody formation and positioning at the apical domain (Herszterg 

et al., 2013; Herszterg et al., 2014; Morais-de-Sa and Sunkel, 2013). Recent studies 

have characterized asymmetric furrow ingression during AB cell division in C. elegans 

(Singh and Pohl, 2014). Our data suggested that asymmetric furrowing is required for 

inheritance of the AB midbody by the EMS cell instead of either AB daughter cell. 

Strikingly, apical positioning of the midbody also occurs in epithelial tissues with 

symmetric furrow ingression, such as the Drosophila pupal wing (Herszterg et al., 

2013). The dividing pupal wing cells are extruded to reposition their geometrical center 

and help the midbody relocate at the apical domain. Probably the most interesting 

observation is that the midbody crosses the cell and to reach an apical position in 
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several tissues. Detailed analysis of abscission indicated that disassembly of the 

microtubule scaffold occurs prior to abscission in the early C. elegans embryo (Green et 

al., 2013; Konig et al., 2017). Additionally, the longer persistence of spindle 

microtubules suggests that abscission in these cells has not taken place until the 

completion of midbody migration and polarization of daughter cells to the apical domain. 

Collectively, further studies are needed to delineate how the midbody moves to apical 

surface after furrowing is completed but before abscission occurs. 

 

Notably, we observed coordinated and orientated midbody migration events to the 

apical position in three tissues. Although some midbody migration patterns have been 

shown in different cell models, the migration patterns are only appreciated in specific 

cellular cortexes and the molecular mechanisms are poorly understood (Bernabe-Rubio 

et al., 2016; Herszterg et al., 2013; Morais-de-Sa and Sunkel, 2013; Singh and Pohl, 

2014). In our study, the novel patterns of midbody migration and positioning are 

somewhat different from what has been observed in polarized epithelia with asymmetric 

and symmetric furrowing. Therefore, there may be other mechanisms and factors to 

regulate midbody migration in C. elegans. Recent studies in Drosophila identified that 

cadherin-catenin complex mediated recruitment of midbody to the apical side (Morais-

de-Sa and Sunkel, 2013). It is tempting to consider that apical junction (AJ) components 

may be delivered to the midbody region, where they coordinate with enriched F-actin 

around the midbody to drive midbody migration. Meanwhile, it is plausible to speculate 

that membrane trafficking machinery, such as RAB-11 positive vesicle trafficking, helps 

to deliver AJ components to the midbody region as previously reported in MDCK system 
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(Schluter et al., 2009). It is possible that cytokinetic regulators may also control midbdoy 

movement after symmetric furrowing is completed. Potential candidates in this 

regulation are tubulin, actin and a set of other cytoskeletal regulators, such as Rac- and 

Arp2/3- dependent regulators. Another surprising observation is that the midbody flank 

marker AIR-2::GFP consistently persisted at the extended central spindle region during 

the migration process; it is possible that Aurora B kinase may phosphorylate some 

putative targets at the central spindle to regulate movement of the midbody. Intriguingly, 

we observed that the central spindle protein ZEN-4::GFP was internalized to the cytosol 

after midbody movement. Other central spindle proteins, such as PRC-1 contribute to 

midzone microtubule density in Xenopus and are required for cilia morphogenesis in the 

worm (Kieserman et al., 2008; Smith et al., 2011). Additional evidence is recommended 

to define the role of different spindle regulators in midbody migration and their regulation 

of tissue morphogenesis. Lastly, much less is known about the functions of the midbody 

migration process. Perhaps the midbody movement may contribute to epithelial 

polarization or a mesenchymal-to-epithelial transition and initiating the nascent apical 

surfaces. Further studies could address these questions by damaging the midbody 

structure or blocking midbody migration. If our hypothesis is correct, then epithelial 

morphogenesis after either of these manipulations would be disrupted. Additionally, 

further work should target putative regulators, which are involved in the movement of 

the midbody, and their regulation in coordinating the formation of the contractile ring, 

symmetric furrowing, midbody migration, and midbody positioning during the 

mesenchymal-epithelial transition.  
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Although the mechanisms of midbody movement remain largely unknown, it is apparent 

that the midbody is delivered and positioned to apical surfaces in various epithelial 

tissues. The midbody has been long thought to be useless cellular junk, which was 

discarded and degraded by the cell after cytokinesis, hence the word remnant (Crowell 

et al., 2014; Schink and Stenmark, 2011). However, besides its canonical role in 

regulating abscission, a number of other surprising non-cytokinetic functions that come 

from recent midbody literature, such as the midbody helping to deliver the apical marker 

to the lumen sites in MDCK cells (Schluter et al., 2009). Physical removal of the 

midbody from the periphery of MDCK cells disrupted ciliogenesis (Bernabe-Rubio et al., 

2016). Additionally, extensive studies indicated that apical positioning of the midbody 

after cell division contributes to the epithelial architecture. Disruption of apical 

localization of the midbody under different mutant conditions would result in ectopic 

lumen formation, disturbing the overall epithelial architecture (Bryant et al., 2010; Jaffe 

et al., 2008; Li et al., 2014; Overeem et al., 2015; Schluter et al., 2009). The apical 

membrane initiation site (AMIS) is also guided by the midbody, which allows RAB-11 

endosomes to deliver cargo during lumenogenesis (Li et al., 2014). Another interesting 

study showed that the delivery of exogenous and ectopic midbodies to an apical 

structure induces a shift in localization of apical markers (Lujan et al., 2017). 

Collectively, all of these studies suggest that midbody might act as an active signal unit 

to regulate apical polarity and formation of apical surface. 

Numerous recent studies have recognized the potential roles of midbody post-

abscission. However, midbody fate post-abscission and the explicit function of the 

midbody or the midbody remnant during lumenogenesis remained unexplored. In our 
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study, we realized that the midbody flank structure persists for a long time at the apical 

surface instead of being degraded. Interestingly, after midbody movement, we observed 

RAB-11 and AIR-2 are recruited to apical surface, suggesting a role of the midbody or 

midbody remnant after cell division in polarity maintenance or regulating the apical 

surface through generating apical membrane.  

 

Other questions that must be answered so that we fully understand the function of the 

midbody are: 1) what regions of the midbody execute delivery of membrane 

components to target position and 2) which midbody proteins are involved in 

transportation? In our study, we observed that midbody ring markers, such as central 

spindle regulators MKLP-1/ZEN-4, were internalized into the cytosol and degraded 

quickly after cytokinesis. However, we were unable to delineate the details of how the 

midbody ring was severed and internalized due to the resolution limit of light 

microscopy. One hypothesis is that the midbody ring structure may be cut from the 

plasma membrane by the assistance of ESCRT proteins. However, the flanking 

proteins, such as Aurora B kinase and microtubules, somehow persist at apical surface 

after midbody movement. Structured illumination microscopy (SIM), and electron 

microscopy will be used to define the ultrastructural details of this process.   

 

Based on previous ultrastructural analysis of the midbody, we know that the midbody is 

a plastic proteinaceous scaffold. To date, about three hundred midbody proteins, 

including a large number of kinases and phosphatases, have been identified by mass 

spectrometry, immunostaining, and other biochemical assays (Chen et al., 2009; Huang 
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et al., 2015; Skop et al., 2004). If the midbody plays key signaling roles in maintaining 

epithelial polarity or initiating the architecture of apical surface, it would be of great 

interest to identify midbody-dependent signaling pathways post-mitosis. In our study, we 

observed an interesting pattern of Aurora B kinase during midbody migration and 

location on apical structure. Aurora B regulates a number of cytoskeletal regulators 

during cytokinesis that control cell shape (Ferreira et al., 2013; Floyd et al., 2013; Goto 

et al., 2003; Kettenbach et al., 2011), and it will be interesting to determine whether any 

are involved with the events we observed. Additionally, Aurora B specifically 

phosphorylates intermediate filaments at the cleavage furrow (Izawa and Inagaki, 2006; 

Kawajiri et al., 2003). Therefore, Aurora B kinase may rely on its phosphorylation to 

putative substrates to regulate cytoskeleton components during tissue morphogenesis. 

 

Given that the major components of a few signaling pathways have been identified in 

the midbody, it is likely that these pathways play some roles in post-mitotic midbody 

activity. For example, several key components of the Wnt signaling pathway, including 

catenin and Frizzled, localize and persist at the midbody (Fumoto et al., 2012; Kaplan et 

al., 2004). The Wnt signaling pathway is extensively studied for cell migration and stem 

cell fate specification through the asymmetric distribution of signaling components to 

activate downstream signaling (Clevers et al., 2014). Therefore, it is plausible to 

speculate that the midbody may recruit lipid-modified Wnt proteins to activate 

downstream signaling once the midbody reaches the apical surface to regulate apical 

membrane fusion or degradation of the midbody. Another interesting finding is that 

several receptors of stem-cell mesenchymal-related Chemokin signaling pathway have 
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been found in the midbody (Andreas et al., 2014; Cho and Kehrl, 2007; Dionne et al., 

2015; Naito et al., 2006). Chemokin signaling should be considered as a candidate 

pathway for the midbody to regulate the mesenchymal-to-epithelial transition in the 

intestinal or pharyngeal tissues that we observed. Lastly, a set of MAP kinases is 

associated with the midbody; however, the function and regulation of MAP kinase 

activity in midbody fate are not well understood (Kasahara et al., 2007; Willard and 

Crouch, 2001). Collectively, the post mitotic midbody may regulate fundamental 

biological events via many signaling components. However, the multiple functions of 

these signaling components in other cellular events become an arduous limit to 

specifically understand midbody-related signaling. For example, Aurora B kinase 

performs critical roles in chromosome segregation, cytokinesis, and other cellular 

events in the early embryo. Therefore, deciphering their midbody-specific roles requires 

an innovative and lineage-specific protein degradation system, which is suitable to 

inactivate midbody proteins such as Aurora B kinase during a specific cell division. 

 

We observed novel midbody migration events during neuronal precursor cell divisions. 

Not only would this add further support for the idea that our midbody migration pattern 

occurs during the terminal cell division in invariant lineage, but this would also highlight 

the possibility that midbody may deliver identical signaling components in different 

tissues. During epithelial and neuronal morphogenesis, the midbody plays an identical 

role to maintain tissue polarity(Li et al., 2014; Pollarolo et al., 2011; Singh and Pohl, 

2014), however neuronal sensilla have unique gene expression program compared with 

digestive tract tissues. For example, the extracellular matrix proteins, DEX-1 and DYF-7 
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are expressed at the tip of amphid dendritic tips to anchor the neuronal cells at the tip of 

the embryo (Heiman and Shaham, 2009). Interestingly, midbody formed in 

neuroepithelial cells release the stem cell marker Prominin in neural tube fluid, which 

potentially influences cell proliferation and differentiation (Dubreuil et al., 2007). 

Therefore, further study is required to define the molecular contributions provided by the 

midbody as well as midbody-dependent signaling pathways to different epithelial and 

neuronal-epithelial structures.  

 

In our study, we have shown a stereotypical migration pattern of the midbody and 

centrosome in different tissues and that centrosome marker gamma tubulin persists at 

the apical surface of the intestine, pharynx and sensilla dendrites. Therefore, multiple 

microtubule-based organelles may contribute to the final architecture of the apical 

surface. The centrosome and the midbody may work as supplementary machinery 

during ciliogenesis and establishing the architecture of apical surfaces. However, the 

interaction and precise coordination mechanisms between midbody and 

centrosome/centriole to control cellular organization and tissue morphogenesis remain 

to be elucidated. In stem cells, midbody inheritance depends on mother centriole 

inheritance (Kuo et al., 2011). RAB-11/FIP3 endosomes may play a critical role in the 

midbody-centrosome collaboration since RAB-11 positive vesicles accumulate around 

the centriole at metaphase, and translocate to the cleavage furrow during cytokinesis 

(Schiel et al., 2011; Schiel et al., 2012). This translocation may determine midbody fate 

during abscission. Inhibition of RAB-11 translocation may provide feedback signals to 

the centrioles or centrosome to activate these complementary roles in tissue 
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development. Therefore, additional studies, including comparative proteomic and 

transcriptomic analysis of the midbody and the centrosome in different tissues and cell 

types will be required to fully understand the roles of these organelles during 

development.  

 

Ultimately, we observed that AIR-2 localizes to the tip of the dendritic extension and 

labels a substantial portion of the dendrite post mitosis. Inactivation of Aurora B kinase 

post-mitosis disrupts tissue morphogenesis. Recent studies showed that inhibition of 

Aurora B kinase in mouse embryos caused the loss of midbody derived interphase 

bridges and significant reduction of RAB-11 and cell adhesion molecules during apical 

membrane formation. Additionally, loss of Aurora B kinase causes aberrant neuronal 

axon morphology, and overexpression of Aurora B causes extended axonal outgrowth 

in Zebrafish (Gwee et al., 2018). Therefore, these results implied that Aurora B kinase 

may regulate neuronal and epithelial development after abscission. As a component of 

the chromosomal passenger complex, Aurora B kinase requires other components, 

such as BIR-1 (Survivin), for its localization at cytoskeletal structures and chromosome 

in C. elegans (Adams et al., 2001). It is well studied that Aurora B specifically 

phosphorylates intermediate filament at the cleavage furrow (Izawa and Inagaki, 2006; 

Kawajiri et al., 2003). We also observed that inactivation of Aurora B kinase disrupts 

tubulin localization at the central spindle region during midbody movement. Therefore, 

Aurora B kinase may rely on its phosphorylation to putative substrates to regulate 

cytoskeleton components during tissue morphogenesis instead of CPC complex-
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dependent regulation. Identification of the phosphorylation substrates of Aurora B 

kinase at the apical surface after abscission will be a major focus of future studies.  

 

In conclusion, our study casts light on the protease activity of separase during 

exocytosis, suggesting that an unknown substrate might be involved in separase 

regulation of exocytosis and cytokinesis. Our observations of variations in cytokinesis in 

the C. elegans invariant lineage highlight the complexity of proper execution of 

cytokinesis and determination of cell fate. Additionally, the novel midbody inheritance 

patterns in different tissues scratches the surface of the post-mitotic function of the 

midbody and led us to postulate that the midbody can function as a transportation tool 

for the delivery of signaling molecules or proteins to nascent apical positions. More 

studies in this newly emerging field are needed to better understand the role of the 

midbody during development and the link between cell division and morphogenesis.  
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Figure A. 1 Testing different lines expressing SEP-1PD::GFP.  

(A) Embryonic lethality of homozygous SEP-1PD::GFP lines propagated off gfp (RNAi) for 5-6 
generations. Each data with error bars represents the average of embryonic lethality from 6-10 
singled worms (n=singled worm number: total embryo count). (B) Embryonic lethality in F2 
broods from heterozygous SEP-1PD::GFP/+ transgenic hermaphrodites from backcrossing 
propagation strategy (see Materials and Methods). The number of generations the strain was 
backcrossed is also indicated. (C) Nuclear envelope intact in prophase, (D) Nuclear envelope 
breakdown (NEBD), indicated by separase in the nucleus and H2B::Cherry nucleoplasmic 
signal dispersing in prometaphase, (E) Chromosome alignment in metaphase and (F) Initiation 
of furrow ingression as observed by DIC acquired simultaneously with the fluorescent images. 
(G) Timing from NEBD to metaphase in SEP-1WT::GFP and SEP-1PD::GFP embryos with and 
without scc-1 (RNAi) (n= number of embryos imaged). (H) Timing from NEBD to furrow 
ingression in SEP-1WT::GFP and homozygous SEP-1PD::GFP embryos with and without scc-1 
(RNAi) (n= number of embryos imaged). Error bars indicated the standard deviation of the 
mean. Red asterisks highlight the WH520 and WH524 which were used for analyzing the 
cellular phenotype.  
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Figure A. 2 SEP-1PD::GFP accumulated at centrosomes and centrioles, but does 
not inhibit disengagement in late anaphase.  

(A, B) Both SEP-1WT::GFP (green) or SEP-1PD::GFP (green) localize to centrioles (SPD-
2::mCherry, red) during the first mitotic division. SEP-1PD::GFP signal is more prominent and 
persistent at the centriole and centrosome, relative to SEP-1WT::GFP embryos. Right insets 
show SPD-2::mCherry (red) and SEP-1::GFP (green) at centrioles. (C) Quantification of 
separase signals in the centrosome during centriole disengagement in the AB cell as indicated 
by the arrowhead (n= number of embryos imaged). (D) Kymograph of SPD-2::mCherry (red) 
during centriole disengagement in both SEP-1WT::GFP and SEP-1PD::GFP (green), showing no 
delay in SEP-1PD::GFP expressing embryos (time in seconds indicated below). Each kymograph 
Image is 10 seconds apart. Scale Bars, 10 μm. P-values: ** =<0.01; ***=<0.001; **** =<0.0001 
(t-test) (n= number of embryos imaged). Error bars indicated standard deviation of the mean.  
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Figure A. 3 Depletion of cohesin enhances SEP-1PD::GFP accumulation in the 
furrow.  

(A) Kymograph of the furrow region shows SEP-1PD::GFP accumulation in the furrow and 
midbody in control and scc-1(RNAi) embryos. The arrows show SEP-1PD::GFP signal at the 
furrow and midbody. Each kymograph Image is 10 seconds apart. (B) Quantification of the SEP-
1PD::GFP signal indicates that cohesin depletion enhanced SEP-1PD::GFP accumulation in the 
furrow (p=0.0038, t-test) and midbody (p=0.0182, t-test) compared with control SEP-1PD::GFP 
embryos (n= number of embryos imaged). (C) Quantification of the furrow ingression time in 
different conditions as indicated (n= number of embryos imaged). (D) Percentage of embryos 
displaying normal cytokinesis (blue) or cytokinesis failure (red) in different conditions as 
indicated (n= number of embryos imaged). Scale Bars, 10 μm. P-values: * =<0.05; **=<0.01 (t-
test). Error bars indicated standard deviation of the mean. 



153 
 

 

 

Figure A. 4 Both SEP-1WT::GFP  and SEP-1PD::GFP/+ co-localized with cortical 
granule marker CPG-2::mCherry during cortical granule exocytosis.  

Both SEP-1WT::GFP (A-C, green) and SEP-1PD::GFP/+ (D-F, green) colocalize with CPG-
2::mCherry (red) at cortical granules. Cortical granules viewed from the surface plane of the 
embryo (G-I) and magnified images of CGs (B, E) show that CPG-2, a cargo protein that should 
be in the lumen of the vesicle, appears to be surrounded by separase signal, which is likely 
associated with the vesicle membrane. Scale Bars, 10 μm. 
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Figure A. 5 Immunostaining of endogenous Aurora B kinase in C.elegans 
embryos. 

Immunostaining of Aurora B kinase (green) with DAPI (magenta) staining in wildtype shows the 
same localization pattern of AIR-2 at central spindle and midbodies during the early cell 
divisions (A-E) as well as apical surfaces of intestine (F-H, rectangle), pharynx (I-K, dotted 
circle) and sensilla (L-N, arrowheads). Scale Bar, 10 μm. 
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Figure A. 6 Cytokinesis in the intestine epithelia 

Cytokinesis in the E8-E16 division. (A-C) Cytokinesis at the E8-E16 division. Midbody ring 
marker ZEN-4::GFP (green) with tubulin TBB-1::mCherry migrates with midbodies (labeled as 1-
8) to midline and persists well after polarization is complete (rectangle box). Time in a minute: 
second indicated on the left bottom. (D) Kymograph of the single E8 cell division showing the 
midbody formation and migration to apical. The E8 cell labeled with ZEN-4::GFP (green) and 
TBB-1::mCherry (magenta). Time in minutes indicated below. (E-G) Apical structure marker 
PAR-6::mCherry (magenta) and AIR-2::GFP (green) colocalized at apical midline (rectangle). 
(H-I) RAB-11::mCherry (green) and AIR-2::GFP (magenta) migrate with midbodies (labeled as 
1-8) to midline and persists well after polarization is complete (rectangle). Time in a minute: 
second indicated on the left bottom. (K-M) Terminal E16-E20 division, four midbodies (labeled 
as 1-4) follow the apical migration pattern like E8-E16 and AIR-2::GFP persist post-migration 
process. Scale Bar, 10 μm. 
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Figure A. 7 Cytokinesis in Pharynx 

(A-C) RAB-11::mCherry (magenta) and (D-F) tubulin TBB-1::mCherry (magenta) remain co-

localized with AIR-2::GFP (green) to apical surface and appears to remain at pharyngeal bulk 

throughout the life of the animal (dotted circle). (G-I) AIR-2::GFP (green) also partially co-

localized with PPCs apical surface marker PAR-6::mCherry (magenta) at pharyngeal bulk 

(dotted circle). Scale Bar, 10 μm. 
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Figure A. 8 Midbody components label dendrites of sensilla neurons 

(A-C) RAB-11::mCherry (magenta) and (D-F) tubulin TBB-1::mCherry (magenta) remain co-

localized with AIR-2::GFP (green) at the forming sensilla neurons (dotted circle). (G-I) a focus of 

AIR-2::GFP (green) extends anteriorly until sensilla dendrite extension anchors at the tip of the 

animal, where co-localized with tubulin TBA-1::mCherry (magenta) (dot line). (J-L) After the 

dendrite extension to the tip of animal, PAR-6::mCherry (magenta) (arrowhead)was observed to 

localize at the anchor of the dendrite and partially overlaps with AIR-2::GFP (green). Scale Bar, 

10 μm. 

 



159 
 

Figure A. 9 Cytokinesis mutants have disrupted intestinal and pharyngeal 
tubulogenesis 

(A-C) The immunostaining to apical marker ERM-1 (green) showed that in wild-type (A) 
embryos at comma stage, ERM-1 enriched at the apical cell cortex of the hypodermis and at the 
midline of pharyngeal-intestinal primordium. (B) There were various defects, including a broad 
lumen, branches and discontinuous lumen in intestinal and pharyngeal tubulogenesis in air-2 
(or207 ts) embryos. (C) Images of the color-coding depth of ERM-1 and nuclei show the 
detailed z-depth distribution of intestine-pharyngeal primordium. (D-I) The immunostaining to 
apical marker PAR-3 showed that in wild-type embryos, PAR-3 (green) enriched at the apical 
cell cortex of intestine, and pharynx primordium. (G-I) various defects were observed in 
intestinal and pharyngeal tubulogenesis in air-2 (or 207 ts) embryos, including discontinuous 
lumen (G), broad lumen (H), branches (I) and abnormal positioning (G-I). (J-L) There were 
various defects, including a broad lumen, branches and discontinuous lumen in intestinal and 
pharyngeal tubulogenesis in zen-4 (or153 ts) embryos. Right inserts show the images of the 
color-coding depth of ERM-1 and nuclei.  Scale Bar, 10 μm. 
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Figure A. 10 Cytokinesis mutants have disrupted remolding of microtubule 
structure at the apical surfaces. 

(A-H) There are mild positioning defects of tubulin TBA-1::GFP (green) at intestinal and 
pharyngeal lumen in air-2 (or207 ts) (E-H) compared with wild-type (A-D). (I-J) TBA-1::GFP 
localized at the flank region of central spindle and midbody during migration to apical surface. 
(K-L) TBA-1::GFP persists prominently at the intestinal apical surface post cell division. 
However, the localization of tubulin TBA-1::GFP (green) disappeared at a flank region near 
midbody in air-2 (or207 ts) embryos at the restrictive temperature (M-N). However, the absence 
of tubulin at flank region did not affect the persistence of tubulin at intestinal primordium post 
division (O-P). Scale Bar, 10 μm. 
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Figure A. 11 Multiple microtubule-based organelles contribute to morphogenesis 

(A) Illustration of the temperature shift strategy of the spd-1 (oj5 ts) mutants. (B-D) Centrosome 
marker γ-tubulin::GFP (green) and α-tubulin::mCherry (magenta) colocalized at intestinal 
primordium (rectangle) and (E-G) pharyngeal primordium (dotted circle). Scale Bar, 10 μm. 
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Figure A. 12  Quantification of DAPI staining assay of embryonic development. 

Details quantification of developmental stages under the different temperature shift conditions in 
wildtype (N2), EU630 air-2 (or 207 ts), and WH12 spd-1 (oj5 ts) mutant embryos.  
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Table A1. Strains used in this study. 

 

  

Strain Genotype 

N2 Bristol (wild-type) 

WH416 unc-119(ed3) iii; ojis58[sep-1::gfp; unc119(+)] 

WH520 unc-119(ed3) iii; ojis71[sep-1(pd)::gfp; unc119(+)] 

WH521 unc-119(ed3) iii; ojis72[sep-1(pd)::gfp; unc119(+)] 

WH522 unc-119(ed3) iii; ojis73[sep-1(pd)::gfp; unc119(+)] 

WH523 unc-119(ed3) iii; ojis74[sep-1(pd)::gfp; unc119(+)] 

WH524 unc-119(ed3) iii; ojis75[gfp::sep-1(pd); unc119(+)] 

WH525 unc-119(ed3) iii; ojex87[sep-1(pd)::gfp; unc119(+)] 

RQ372 unc-119(ed3) iii; ojis58[sep-1::gfp; unc119(+)]; itis37 [ppie-
1::mcherry::his-58 (paa64); unc-119(+)] iv 

JAB18 unc-119(ed3) iii; ojis71[sep-1(pd)::gfp; unc119(+)]; itis37 [ppie-
1::mcherry::his-58 (paa64); unc-119(+)] 

OD366 unc-119(ed3) iii; itis151[pso33; pcpg-2::cpg-1sigseq::mcherry-tev-
stag::cpg-2; unc-119(+)] 

EKM41 unc-119(ed3) iii; ltis44 [pie-1p-mcherry::ph(plc1delta1); unc-
119(+)] v 

JAB156 unc-119(ed3) iii; ojis71[sep-1(pd)::gfp; unc119(+)]; ltis44 [pie-1p-
mcherry::ph(plc1delta1); unc-119(+)] v 

JAB145 unc-119(ed3) iii; ojis58[sep-1::gfp; unc119(+)]; ltis44 [pie-1p-
mcherry::ph(plc1delta1); unc-119(+)] v 

JAB20 
 

unc-119(ed3) iii; ojis58[sep-1::gfp unc119(+)]; itis151 [pso33; 
pcpg-2::cpg-1sigseq::mcherry-tev-stag::cpg-2; unc-119(+)]; ltis37 

[paa64; pie-1p::mcherry::his-58; unc-119 (+)] 

JAB174 unc-119(ed3) iii; ojis58[sep-1::gfp; unc119(+)]; bssi15 [pko109: 
spd-2p-spd-2-mcherry-spd-2 3'-utr; unc-119(+)] i 

JAB175 unc-119(ed3) iii; ojis71[sep-1(pd)::gfp; unc119(+)]; bssi15 [pko109: 
spd-2p-spd-2-mcherry-spd-2 3'-utr; unc-119(+)] i 

WH408 sep- 1(e2406ts)/ht2[qis48] 

OD56 unc-119(ed3) iii; ltis37 [pie-1p::mcherry::his-58 (paa64); unc-
119(+)] 
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Table A1. Continued 

Strain Genotype 

N2 Bristol (wild-type) 

EKM48 unc-119(ed3) iii; ojIs51 [Ppie-1::GFP::air-2;  unc-119(+)] 

EKM50 unc-119(ed3) iii; ojIs51 [Ppie-1::GFP::air-2;  unc-119(+)]; ItIs37 
[Ppie-1::mCherry::his-58 (pAA64); unc-119(+)] iv; ItIs44 [Ppie-

1::mCherry::PH (PLC1delta1); unc-119(+)]v 

EKM51 unc-119(ed3) iii; ojIs51 [Ppie-1::GFP::air-2; unc-119(+)]; ItIs37 
[Ppie-1::mCherry::his-58 (pAA64); unc-119(+)] iv 

EKM52 unc-119(ed3) iii; ojIs51 [Ppie-1::GFP::air-2; unc-119(+)]; ItIs44 
[Ppie-1::mCherry::PH (PLC1delta1); unc-119(+)] v 

JAB23 unc-119(ed3) iii; ojIs51 [Ppie-1::GFP::air-2; unc-119(+)]; weIs21 
[pJA138 (pie-1::mCherry::tub)] 

JAB60 unc-119(ed3) iii; ojIs51 [Ppie-1::GFP::air-2; unc-119(+)]; 
pwIs476 [Ppie-1::mCherry::rab-11] 

JAB116 unc-119(ed3) iii; weIs21 [pJA138 (Ppie-1::mCherry::tub)]; unc-
119(+)]; zuIs45 [nmy-2::NMY-2::GFP; unc-119(+)] v 

NWG002 unc-119(ed3) iii; ItIs44 [Ppie-1::mCherry::PH (PLC1delta1); 
unc-119(+)]v; zuIs45 [nmy-2::NMY-2::GFP; unc-119(+)] v 

JAB24 zen-4(or153ts) iv; xsEx6 [zen-4::GFP; rol-6 (su1006)]; unc-
119(ed3) iii; weIs21 [pJA138 (pie-1::mCherry::tub)] 

JAB34 zen-4(or153) iv; xsEx6 [zen-4::GFP; rol-6 (su1006)]; unc-
119(ed3) iii; ItIs44 [Ppie-1::mCherry::PH (PLC1delta1); unc-

119(+)] v 

JAB32 unc-119(ed3) iii; ddIs26 [Ppie-1::mCherry::T26E3.3; unc-
119(+)]v; ojIs51 [Ppie-1::GFP::air-2; unc-119(+)] 

EU630 air-2(or207) i. 

EU716 zen-4(or153) iv. 

WH12 spd-1 (oj5) i 

WH421 unc-119(ed3) iii; ojIs51 [Ppie-1::GFP::air-2;  unc-119(+)];spd-1 

(oj5) i. 

JAB52 unc-119(ed3) iii; ruls32III;dd156[tbg-1::GFP;unc-119(+)]; 

ruls32[Ppi-1::GFP::His-58; unc-119(ed3); weIs21 [pJA138 (pie-

1::mCherry::tub)] 
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