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ABSTRACT 

It is important to get a deeper understanding of instantaneous driving behaviors, especially 

aggressive and extreme driving behaviors such as hard acceleration, as they endanger traffic 

efficiency and safety by creating unstable flows and dangerous situations. The aim of the 

dissertation is to understand micro-level instantaneous driving decisions related to lateral 

movements such as lane change or lane keeping events on various roadway types. The impacts of 

these movements are fundamental to microscopic traffic flow and safety. Sufficient geo-

referenced data collected from connected vehicles enables analysis of these driving decisions. 

The “Big Data” cover vehicle trajectories, reported at 10 Hz frequency, and driving situations, 

which make it possible to establish a framework. 

The dissertation conducts several key analyses by applying advanced statistical modeling 

and data mining techniques. First, the dissertation proposes an innovative methodology for 

identifying normal and extreme lane change events by analyzing the lane-based vehicle 

positions, e.g., sharp changes in distance of vehicle centerline relative to the lane boundaries, and 

vehicle motions captured by the distributions of instantaneous lateral acceleration and speed. 

Second, since surrounding driving behavior influences instantaneous lane keeping behaviors, the 

dissertation investigates correlations between different driving situations and lateral shifting 

volatility, which quantifies the variability in instantaneous lateral displacements. Third, the 

dissertation analyzes the “Gossip effect” which captures the peer influence of surrounding 

vehicles on the instantaneous driving decisions of subject vehicles at micro-level. Lastly, the 

dissertation explores correlations between lane change crash propensity or injury severity and 

driving volatility, which quantifies the fluctuation variability in instantaneous driving decisions. 
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The research findings contribute to the ongoing theoretical and policy debates regarding 

the effects of instantaneous driving movements. The main contributions of this dissertation are: 

1) Quantification of instantaneous driving decisions with regard to two aspects: vehicle motions 

(e.g., lateral and longitudinal acceleration, and vehicle speed) and lateral displacement; 2) 

Extraction of critical information embedded in large-scale trajectory data; and 3) An 

understanding of the correlations between lane change outcomes and instantaneous lateral 

driving decisions. 
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CHAPTER 1 INTRODUCTION 

In 2015, the lane change crashes account for 4.6% (451,000) of all reported single and two-

vehicle crashes that occurred in the United States. Resulting from these crashes were 678 deaths, 

representing 1.6% of the fatalities in 2015. Although such crashes do not account for a sizable 

portion of all roadway crashes, the decrease in such crashes can still have substantial benefits 

regarding social cost. Figure 1.1 shows the examples of lane change crashes. 

Previous studies have shown evidence that a lane change crash is correlated with various 

factors, such as driving and vehicle factors [1-8]. Variability in instantaneous driving decisions 

could be the contributor to unsafe events. Since a lane change or lane keeping event is an 

operation that a driver may show high variation in instantaneous driving decisions, i.e., abrupt 

acceleration or hard braking, it is very important to get an in-depth understanding of 

instantaneous lateral driving behaviors, especially aggressive or extreme driving behaviors. 

Sufficient geo-referenced data embedded in connected vehicles enable the analysis. 

 

 
Figure 1. 1 Examples of lane change related crashes 

 

The dissertation aims to establish a framework to get an in-depth understanding of 

instantaneous lateral driving decisions using sufficient geo-referenced trajectories data collected 

from connected vehicles. The dissertation proposes a way to extract key information from public 
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data set for conducting driving behavior analysis. Six main research questions are explored in 

this dissertation are: 

1) How to take advantage of massive transportation data? 

2) How to understand and measure instantaneous driving decisions from two aspects: 

vehicle motion and lateral displacement? 

3) How to identify normal and extreme lane change events using massively connected 

vehicle data? 

4) How the surrounding vehicles influence the instantaneous driving decisions of the subject 

vehicle? 

5) What are the correlates of lateral shifting volatility which quantifies the variability in 

instantaneous lateral displacement? 

6) What are the correlates of lane change crash propensity with driving volatility which 

quantifies the fluctuations in instantaneous driving decisions? 

The results indicate different potential applications, including adding driving assistance 

functions to current onboard driving assistance system to help drivers to make informed driving 

decisions, updating current traveler information system, helping the vehicle and accessory 

design, and providing insights to transportation managers and policy makers regarding safety 

outcome.  

Two major data sources are used for analysis: 1) Safety Pilot Model Deployment Data 

(SPMD), and 2) SHRP 2 Naturalistic Driving Study (NDS) Data. While the dissertation focuses 

on micro-level instantaneous driving decisions, the key extracted variables will be vehicle speed, 

lateral displacement, longitudinal and lateral acceleration. 
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This dissertation contains six parts. Following this chapter, the second chapter quantifies 

driving volatility in instantaneous lateral driving decisions and proposes an innovative 

methodology to identify extreme lane change maneuvers. The third chapter proposes a 

measurement called lateral shifting volatility to quantify the variability in instantaneous lateral 

displacement and the correlates of shifting volatility are explored. The fourth chapter analyzes 

the “Gossip effect” which captures the peer influence of surrounding vehicles on the 

instantaneous driving decisions of subject vehicles at micro-level. The fifth chapter continues to 

investigate the effects of instantaneous driving decisions on the occurrence of a lane change 

crash, which is under-explored in previous studies. With the micro changes of the instantaneous 

driving decision, the dissertation examines relations between safety outcome with driving 

volatility which quantifies variability in instantaneous driving decisions. The last chapter 

summarizes the key conclusions of the dissertation. A wide conceptual framework is developed. 

Figure 1.2 shows the detailed information of conceptual framework. The framework emphasizes 

the analysis of lane change identifications and distributions of instantaneous lateral driving 

decisions. The main contributions of the dissertation are: 1) Quantification of instantaneous 

driving decisions with regard to two aspects: vehicle motions (e.g., lateral acceleration and 

vehicle speed) and lateral displacement; 2) Extraction of critical information embedded in large-

scale trajectory data; and 3) An understanding of the correlations between lane change outcomes 

and instantaneous lateral driving decisions. 
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Figure 1. 2 Conceptual framework 
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CHAPTER 2 IDENTIFYING AND ANALYZING EXTREME LANE CHANGE EVENTS 

USING BASIC SAFETY MESSAGES IN A CONNECTED VEHICLE ENVIRONMENT 
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This chapter presents a modified version of a research paper by Meng Zhang and Asad J. 

Khattak. The paper was presented (TRB 18-04734) at the 97th Annual Meeting of Transportation 

Research Board in Washington, D.C., in January 2018. And this chapter was submitted to 

publication review at Journal of Transportation Research Part C: Emerging Technologies. 

 

ABSTRACT 

Traffic congestion and safety are challenging problems in the United States and cost an estimated 

one trillion dollars annually. The United States can potentially reduce dangerous situations and 

unstable flows caused by aggressive or extreme behaviors through a deeper understanding of 

driving behaviors and extracting useful information from emerging connected vehicle data. 

Because lane changes are fundamental maneuvers for traffic flow and safety, this study focuses 

on microscopic instantaneous driver-level decisions in situations where drivers make lane change 

maneuvers on various roadway types, especially extreme lane change events. The study analyzes 

a sub-sample of 1,940,678 Basic Safety Messages (BSMs) recorded from 192 randomly-selected 

trips (10 minutes or longer) from 64 drivers. The BSMs come from connected vehicles 

participating in the Safety Pilot Model Deployment program in Michigan. Since BSMs describe 

vehicle operation and performance, lane changes are identified from multiple criteria including 

vehicle position (i.e., a sharp change in distance between a vehicle’s centerline and the lane 

boundaries) and lane crossings recorded by onboard units (i.e., when a vehicle crosses a lane 

marker). Extreme lane change events were then identified as those where lateral acceleration 

exceeds the 95th percentile threshold between the initiation and the end of the lane change 

maneuver. A total of 654 lane changes and 128 extreme lane changes were identified in the data. 

On average, the test vehicles generated 3.4 lane changes (0.67 extreme lane changes) every 20 
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minutes. Modeling results show that subject drivers are likely to make more lane changes if an 

object is present in the travel path or the relative speed vis-a-vis the front vehicle is low. Based 

on the analysis of data, connected vehicle technologies can generate early warnings to help 

drivers make more informed driving decisions that avoid potential risks in extreme lane changes. 

 

2.1 INTRODUCTION  

Traffic congestion and safety are social concerns as they result in enormous economic and social 

costs annually [9]. A deeper understanding of instantaneous driving behaviors, especially 

aggressive or extreme driving behaviors (e.g., hard accelerations or fast lane changes), is critical 

as they endanger occupants of vehicles by creating dangerous situations and unstable flows. 

Sufficient geo-referenced data embedded in connected vehicles enable the analysis. As the 

impact of the lane change is fundamental to microscopic traffic flow and safety, the aim of this 

study is to understand and model normal and extreme lane change behaviors, which can form the 

basis for generating alerts and warnings that can reduce the impacts of such behaviors. 

Specifically, this study focuses on microscopic driver-level instantaneous decisions regarding 

situations where drivers make extreme lane change maneuvers on various roadway types. 

This study proposes an innovative methodology to identify extreme lane change events 

using Basic Safety Messages (BSMs) data sent, at a frequency of 10 Hz, by participating 

vehicles and received by roadside equipment in the Safety Pilot Model Deployment (SPMD) 

program in Ann Arbor, Michigan. As BSMs provide sufficient temporal and spatial resolution of 

lane-based vehicle position (e.g., distance of vehicle centerline relative to left and right boundary 

of travel lane), onboard device records of lane crossing (e.g., a vehicle is meeting and crossing 

the lane marker) and motion (e.g., speed and acceleration), it is possible to identify lane change 
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maneuvers and harness useful information about extreme lane change events. Since some lane 

change maneuvers are relative safe and which might not need additional warning or control 

assistance, this study is trying to extract critical information of extreme lane change maneuvers 

embedded in BSMs. Therefore, in real driving environments, alerts and advanced warnings of 

extreme lane change events could help drivers make informed driving decisions to avoid hazards 

generated by vehicles or driving environments [10-12], through the applications of vehicles-to-

vehicle (V2V) and vehicle-to-infrastructure (V2I) technologies. In summary, the objectives of 

this study are to: 

1) Identify lane change maneuvers based on multiple criteria, such as sharp change in 

vehicle distance (e.g., from zero to lane width) relative to the boundary of travel lane might be an 

indicator of a lane change. 

2) Quantify extreme lateral driving behaviors (e.g., hard accelerations) by establishing 

varying thresholds of lateral acceleration under different speed ranges. 

3) Recognize extreme lane change events, which are those where lateral acceleration 

between consecutive 0.5 time stamps exceeds the 95th percentile threshold at the initiation and 

the end of the lane change maneuver. These extreme events form the basis of generating 

warnings or control assists provided to drivers achieving safer lane change under connected 

vehicles; and 

4) Explore the correlates of lane change events. For this purpose, information of driving 

environment, such as relative distance or speed to front vehicles, is extracted from the data for 

modeling relationships. 
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2.2 LITERATURE REVIEW 

Previous studies have developed and implemented algorithms to identify lane changes based on 

different data sources, including traffic simulation, driving simulator, instrumented vehicles, and 

naturalistic traffic recordings. As different input variables reflecting patterns of lane change were 

available in diverse data sources, the methods of lane change identification vary widely [13]. 

These key input variables include heading angle [14, 15], path-curvature [14], yaw rate [16, 17], 

lane index [18, 19], vehicle lateral position [15, 20-22], steering wheel angle [21, 23], image 

processing technologies [24], and onboard device records of lane crossing [25]. 

Bogard and Fancher proposed two methods to identify lane change events using GPS 

data and path-curvature data [14]. They noticed heading angles collected from GPS data can be 

one indicator of the lane change event. They proposed that sharp changes in angles are due to 

lane change while smooth changes in heading angles are due to curvatures. Besides heading 

angle, path-curvature data also reports vehicle yaw acceleration, which can be used for lane 

change identification. They calculated the heading corners and fitted reference line between 

heading corners and calculating the difference between the heading angle peak and the reference. 

A lane change event is identified if the calculated values exceed the defined thresholds. Notice 

the noisy-sine-wave-like yaw rate signal during a lane change, Miller and Srinivasan identified 

lane change events of heavy trucks based on yaw rate [16]. 

A lane change event can be regarded as a function of the characteristics of origin and 

target lane. Knoop et al. identified lane change events based on the loop detectors placed on each 

lane of a three-lane freeway about 100 meters apart [19]. Since a vehicle can be identified 

repeatedly from one detector to the next detector, a lane change event will be recognized if a 
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vehicle is re-identified at a downstream detector in another lane. But this method is useful under 

uncongested traffic conditions where the vehicle speed is high. 

Vehicle trajectory data obtained from naturalistic traffic recording can be used for lane 

change identification. Thiemann at al. proposed a smooth algorithm to identify lane change 

events using NGSIM data [18]. The critical variable used in the analysis is the lane index that the 

vehicle is currently occupying. A lane change event is identified when the lane index is found to 

change between two consecutive time points. Similarly, R Chen at al. identified lane change 

events based on the lane change signal recorded by the onboard lane tracking system [25]. A lane 

change event is triggered when the vehicle center line meets and crosses the lane boundary. The 

onboard device also reports the confidence level of the lane tracking system for correct distance 

evaluation. 

If road geometry information is readily available, one can easily identify lane change 

events by comparing a single trajectory with the existing road geometry. Xuan and Coifman 

established a reference trajectory to present roadway geometry using vehicle trajectory 

information collected from DGPS (Different Global Positioning System) [20, 22]. They 

proposed that a sinusoidal wave showed in the mean of lateral distance to reference trajectory 

indicating a lane change. Table 2.1 summarizes key input variables and identification methods 

used for the lane change. 

While previous studies have developed methodologies to identify lane changes, the value 

of data embedded in the connected vehicle has not been fully harnessed, especially for extreme 

lane change identification and analysis. Although roadside-based warnings, such as warnings of 

lane merge or lane division at a fixed point (e.g., ½ mile before an Exit), can be given to drivers 

for safer driving, the fixed warning points cannot capture the complexity of drivers’ lane change 
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behaviors during an entire trip. Given sufficient geo-referenced data collected from connected 

vehicles, it is possible to identify and analyze extreme lane change events in real-life driving 

environments and develop the basis for providing instantaneous feedback about extreme lane 

change behaviors, so they can avoid future high-risk lane change situations. 

 

Table 2. 1 Key input variables for lane change identification used in selected studies 
Author Data source Key input variables and Identification methods 

Bogard and Fancher [14] / 

1999 

Instrumented 

vehicle 

1) GPS data: analyzing figure of heading angle vs. time → sharp 

changes in heading angle due to lane change;  

2) Path-curvature: heading angle, yaw acceleration 

Miller and Srinivasan [16] / 

2005 

Instrumented 

vehicle 
Yaw rate → a sine-wave in yaw rate indicating a lane change 

Thiemann et al. [18] / 2008 
Naturalistic 

driving recording 

Vehicle width, lane index and vehicle position → lane index is 

found to change between two continuous time stamps 

Knoop et al. [19] / 2012 
Naturalistic 

driving recording 

Loop detectors record time, lane index, vehicle speed, vehicle 

length → a vehicle was re-identified at a downstream detector in 

another lane, indicating a lane change 

Xuan and Coifman [20, 

22]/ 2006,2012  

Instrumented 

vehicle 

Vehicle lateral position → mean of lateral distance to established 

reference trajectory shows a sinusoidal wave 

Salvucci et al. [26] / 2002 Driving simulator Participants’ verbal protocol and experimenter’s judgment 

R Chen at al. [25] / 2015 
Naturalistic 

driving recording 

Records of lane crossing → vehicle centerline meets lane marker 

as vehicle crosses the lane 

Wang and Coifman [24] / 

2007 

Naturalistic 

driving recording 

Employing Vehicle Re-identification (VRI) image processing 

technologies 

 

2.3 METHODOLOGY 

2.3.1 Data source 

The data used in this study are BSMs sent by participating vehicles and received by roadside 

equipment in the Safety Pilot Model Deployment (SPMD) program in Ann Arbor, Michigan. 

The field test contains 75 miles of instrumented roadway installed with approximately 26 

roadside equipment [27], which enables the communication with appropriately equipped 

vehicles. This study uses BSMs archived in Driving Dataset for analysis, which is available to 

the public through the Research Data Exchange website (RDE, available from: https://www.its-

rde.net/) managed by the U.S. Department of Transportation (USDOT). This study uses Driving 

https://www.its-rde.net/
https://www.its-rde.net/


 

12 

 

Dataset catalogs BSMs data obtained from 64 vehicles equipped with Data Acquisition Systems 

[28] – developed by Virginia Tech Transportation Institute (VTTI). 

Three files are involved in the Driving Dataset: 1) The HV Primary file, which describes 

the subject vehicle’s operation and performance, including geographic coordinates based on 

position (e.g., latitude and longitude), lane-based vehicle position (e.g., distance of vehicle 

centerline to the left or right boundary of travel lane), motion (e.g., heading, speed, and 

acceleration), status of a vehicle’s components (e.g., lights, wipers, brakes, and turn signals), 

driving contexts (e.g., time and lane width), onboard device records of lane crossings (e.g., lane 

cross aborted, and a vehicle meets and crosses the boundary of travel lane), and fidelity of 

tracking lane boundary correctly; 2) The HV Radar file, which describes the objects in front of 

the subject vehicle, including type of front surrounding objects, and relative distance or speed to 

front surrounding objects; and 3) The DAS2 Trip Summary file, which provides a list of 

summary measures for each trip, such as trip duration and average speed. The data elements 

were collected at a frequency of 10 Hz. More information about other variables in driving data is 

available in SPMD Sample Data Handbook [29]. 

The whole data set contains two months (April 2012 and October 2013) of subject 

vehicle operations data with 83,384,195 records generated from 14,315 trips by 64 vehicles. 

Since a frequency of 10 Hz results in the data set being very large, this study randomly selected 

three trips (minimum trip duration is longer than 10 minutes) from each vehicle for analysis due 

to computational limitations. The final data contains 1,940,678 BSMs records from 192 trips by 

64 vehicles. To investigate the influence of driving environment on lane change events, this 

study links the information of surrounding vehicles, e.g., relative distance or speed, to the subject 

vehicle trajectory data for final analysis. Figure 2.1 (a) shows the spatial distribution of vehicle 
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trajectories for 192 trips. These trips cover major road networks in Ann Arbor, Michigan. Most 

trips were generated in Ann Arbor, and some long trips reached Chelsea, Farmington Hills, 

Canton, and Toledo. The data was verified and error-checked for outliers using descriptive 

statistics. Note, there are reported errors of GPS data; as the rule used for identifying lane change 

event is based on the relative distance to the lane boundary, the measurement errors can be 

eliminated. 

Figure 2.1 (b) presents the conceptual framework of this study, which indicates the input 

variables for each step. The major objective is to identify lane change maneuvers and quantify 

extreme lateral driving behaviors to recognize extreme lane change events embedded in BSMs in 

a connected vehicle environment. The relationship between speed and lateral acceleration is 

investigated to establish a varying threshold of extreme lateral driving behavior at various speeds 

[30]. By identifying extreme lane change behaviors in real-time, the risks posed to other drivers 

can be identified and communicated. Also, the driver can be provided instantaneous feedback 

(warnings or control assists), through applications of V2V and V2I. Such information can help 

them make more informed decisions regarding avoiding high-risk lane change situations. 
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a) Spatial distribution of vehicle trajectories (192 trips) 

 

 

b) Conceptual framework 

Figure 2. 1 Distribution of vehicle trajectories and cconceptual framework 
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2.4 IDENTIFICATION OF EXTREME LANE CHANGE EVENTS 

2.4.1 Identification of lane change events 

The identification of lane changes in this study is based on onboard tracking systems recording a 

vehicle’s crossing lane marker information (shown in Figure 2.2) and patterns of changes in the 

vehicle lateral displacement embedded in lane-based vehicle position, as a lane change is 

triggered when the vehicle centerline meets and crosses the lane boundary. Key variables used to 

determine a lane change includes: 

1) Records of the vehicle meeting and crossing the lane boundary,  

2) Lane-based vehicle position: distance of vehicle centerline to the left or right boundary 

of travel lane,  

3) Tracking fidelity, i.e., that the vehicle-based vision is providing correct data for 

tracking lane markers, values from 0-1024 (thus the fidelity increases 100/1024 = 0.0977% with 

a unit increase in its value),  

4) Records that a lane crossing was aborted (shown in Figure 2.2 (c)), and  

5) Records that a vehicle crosses a lane successfully (shown in Figure 2.2 (a)). 

The proposed algorithm contains two parts to identify lane change events. In part 1, when 

the onboard device provides records that a vehicle crosses a lane successfully (shown in Figure 

2.2 (a)), a lane change maneuver is easy to be identified. An acceptable valid lane change is 

triggered when: no records of lane cross aborted, records of vehicle meets and crosses the 

boundary of the travel lane, the fidelity of tracking lane marker is larger than 30% [25], and 

records of the vehicle crossing the lane successfully.  

In part 2, when a driver has made a lane change but the onboard device does not provide 

records that the vehicle crossed a lane successfully, as shown in Figure 2.2 (b), this study 
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captures these lane change maneuvers based on patterns of change in vehicle distance relative to 

lane boundary, such as sharp change in distance, from the minimum (approximated to zero) to 

the maximum (approximated to lane width), is an indicator of a lane change maneuver. Figure 

2.2 (e) and (f) show detail patterns of the real-time vehicle distance relative to lane boundary for 

left and right lane change, separately. 

A left lane change is coded to have occurred when the distance of the vehicle centerline 

to the left boundary of travel lane decreases to a minimum (approximately equal to 0 - distance 

to dash marker of lane 1) just before the vehicle centerline meets the left side marker, and then 

suddenly increases to a maximum (approximately equal to the lane width - distance to yellow 

marker of lane 2) just after the vehicle centerline crosses the left-side marker. Also, this left-side 

marker of the old lane (lane 1) becomes the right-side marker of the new lane (lane 2). The 

change in distance relative to the right boundary is opposite to the procedure described above. 

 Therefore, an acceptable valid lane change event based on lane-based vehicle position is 

triggered when: no records of lane cross aborted, records of vehicle meeting and crossing the 

boundary of travel lane, the fidelity of tracking lane marker to be larger than 30%, and the 

vehicle follows the lane-based vehicle position rules shown in Figure 2.2 (e) and (f). Similarly, a 

right lane change can also be identified. 

Note that, a lane change is triggered when the vehicle centerline meets and crosses the 

lane marker. Although the lane change maneuver can be identified, it is hard to get the exact 

initial and end points of a lane change. As shown in Figure 2.2 (g), the data set provides the 

initial (point B) and end (point C) time points representing the time stamps that the vehicle is 

occupying the lane boundary. However, a real lane change maneuver should start earlier than 

time point B and end later than time point C. Since this study is only interested in identifying 
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normal and extreme lane change events from thousands of lane crossing records, the 

identification of the real initial and end point of a lane change will not be involved. This study 

assumes the lane change maneuver starts one second earlier (point A) before the vehicle meets 

lane boundary and ends one second later (point D) after the vehicle departs from the lane 

boundary. Therefore, time point A and D is recognized as the initial and end point of a lane 

change, separately. All the analysis in this study is based on patterns of lane change recognized 

between the defined initial (point A) and end (point D) point. 

In addition, the method is relying highly on the onboard device tracking of lane makers, 

so these identified lane changes are limited to specific locations with relatively clear lane 

markers, thus this study did not account for lane changes occurring in the intersection. However, 

the onboard tracking system may record boundary crossing when a vehicle makes a turn (e.g., at 

intersection or junction), shown in Figure 2.2 (d). A sharp change in heading will occur when a 

vehicle makes a turn; this study eliminated such situations based on the vehicle heading 

information. While other studies recommend that the intersection angle should not be skewed 

from 90 degrees by more than 15 to 20 degrees [31, 32], this study excluded the turning behavior 

if the change in vehicle heading is larger than 70 degrees during a turning maneuver. In addition, 

not all boundary crossings will result in lane change events. As shown in Figure 2.2 (c), a vehicle 

can abort a lane change by crossing back over, which is also excluded in this study. Therefore, 

the lane change is clearly identified on relatively straight roadways (when the angle of a curve is 

larger than 70 degrees) and where the lane markers are clear in this study. Figure 2.3 shows a 

flow chart for the onboard tracking system based on an identification algorithm.  
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1) Onboard tracking system records of a vehicle’s crossing lane marker information         3) The initial and end point of a lane change 

    

2) Different patterns of lane change events 

Figure 2. 2 Lane change identification criteria 
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Figure 2. 3 Flow chart of identifying lane change events. 

**: Figure 2.2 (e) and (f) showed detail patterns of lane-based vehicle positions 

 

2.4.2 Extreme lane change events  

Calculation of lateral acceleration 

To identify extreme lateral driving, the relationship between speed and lateral acceleration was 

visualized. A vehicle’s lateral acceleration based on lateral displacement (lane-based vehicle 

distance of the vehicle centerline to the boundary of travel lane) needs to be calculated. Note that 

a vehicle’s lateral acceleration is unavailable in the data set; also, the calculated value only 

captures a vehicle’s lateral acceleration on relatively straight roadways, which is acceptable 

given the lane change focus of this study. Since the onboard device records the distance of 

vehicle centerline to the lane boundary at a rate of 10 Hz (0.1 second), the lateral displacement of 
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vehicle centerline from (𝑖 − 1)𝑡ℎ 0.1 second to 𝑖𝑡ℎ 0.1 second can be calculated. The equations 

used to calculate lateral speed and acceleration are as follows: 

 

𝑉𝑖
𝐿𝑎𝑡𝑒𝑟𝑎𝑙 =

∆𝐷𝑖−1,𝑖

∆𝑇𝑖−1,𝑖
=

𝐴𝑏𝑠(𝐴𝑏𝑠(𝐷𝑖
𝑙𝑒𝑓𝑡

) − 𝐴𝑏𝑠(𝐷𝑖−1
𝑙𝑒𝑓𝑡

))

𝑇𝑖 − 𝑇𝑖−1
 (1) 

𝐴𝑖+1
𝐿𝑎𝑡𝑒𝑟𝑎𝑙 =

∆𝑉𝑖+1,𝑖 

∆𝑇𝑖+1,𝑖
=

𝑉𝑖+1
𝐿𝑎𝑡𝑒𝑟𝑎𝑙 − 𝑉𝑖

𝐿𝑎𝑡𝑒𝑟𝑎𝑙

𝑇𝑖+1 − 𝑇𝑖
 (2) 

 

Where: 

𝑉𝑖 = Lateral speed at the 𝑖𝑡ℎ 0.1 second; 

𝑇 = Time stamp of 0.1 second, 𝑇 = 0, 0.1, 0.2, 0.3,  

𝑖 = Index for time stamp, 𝑖 = 2,3,4,5, 

𝐴𝑏𝑠(𝐷𝑖) = Distance of vehicle centerline to the left boundary of travel lane at the 𝑖𝑡ℎ 0.1 

second. As the BSM dataset reports 𝐷𝑖 in negative values (e.g., -1.711 m), the absolute 

values of 𝐷𝑖 were taken for the calculations; 

∆𝐷𝑖,𝑖−1 = Absolute value in lateral displacement of vehicle centerline during (𝑖 − 1)𝑡ℎ 0.1 

second to 𝑖𝑡ℎ 0.1 second; 

𝐴𝑖+1 = Lateral acceleration when lateral speed changes from 𝑉𝑖 to𝑉𝑖+1; 

 

Figure 2.4 (left side) presents time series examples of lateral speed, and acceleration calculated 

based on Equations 1 and 2. There are clear fluctuations in lateral speed and lateral acceleration. 

To smooth out some fluctuations (remove noise), this study applies a 10-point moving average (a 

time window of 10 data points, representing one second) to calculate lateral acceleration, shown 
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in Figure 2.4 (right side). The fluctuations in lateral speed and acceleration are reduced after 

smoothing the data. 

 

 
Figure 2. 4 Time series of lateral speed and lateral acceleration for a sample trip 

 

Extreme lateral driving events 

In order to understand patterns of instantaneous lateral acceleration decisions, this study 

visualizes the distribution of lateral acceleration across different speed ranges, shown in Figure 

2.5. The figure shows that high speed (> 55 mph) is associated with relatively small lateral 

acceleration, indicating that lateral acceleration decreases when speed is high. As vehicles with 

high speed should overcome high air resistance [33], the maneuverability of vehicles would be 

low. Figure 2.5 also indicates a nonlinear relationship between speed and lateral acceleration.  
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 Previous studies have proposed methods, such as giving a cut-off value of acceleration as 

a threshold to distinguish extreme driving and calm driving [34-37]. However, Figure 2.5 reveals 

obvious variations of lateral acceleration across different speed ranges in the real driving 

environment, this study uses an innovative method to quantify extreme lateral driving events [30, 

33, 38]. A speed-based method was used. Instead of using a given cut-off value of acceleration 

as a threshold, the new cut-off value of acceleration changes along with speed. The detail steps 

of identifying extreme lateral acceleration events are given below: 

• In order to show the magnitude of lateral acceleration under different speed situations, 

this study first splits speed into different bins with a 0.5 mph of bandwidth. For example, 

“bin=1” refers to BSMs records whose speeds were reported between 0 and 0.5 mph. The 

maximum speed of 192 trips was about 96 mph, so more than 182 speed groups (>192 

bins) are generated. 

• Each speed bin would generate a corresponding distribution of lateral acceleration. This 

study used the 95th percentile value of lateral acceleration in each bin as the threshold 

[38]. Specifically, within one speed bin, if the lateral acceleration of one BSM (0.1 

seconds) is higher than the 95th percentile value of acceleration, this BSM will be 

identified as an extreme lateral acceleration event. 

Figure 2.5 also presents thresholds (edge of the band) for identifying extreme lateral driving 

patterns for all speed ranges. The thresholds vary across the different speed ranges. The red 

points present extreme lateral acceleration events, which indicates the subject vehicle is volatile 

at these timestamps. Notably, the quantification of the extreme instantaneous driving behavior is 

defined in a broad relative level, that is the volatile behaviors are these timestamps where the 

accelerations are much higher or lower than the normal situations within each speed group, as 
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shown in Figure 2.6. Therefore, these extreme lane change maneuvers identified in this study are 

relative aggressive compared to normal lane change maneuvers. Warnings can be generated if 

there are more than five continuous BSMs (> 0.5 seconds) that have lateral accelerations larger 

than the 95th percentile threshold, indicating an extreme lateral driving event. 

 

 
Figure 2. 5 Distribution of vehicle speed and lateral acceleration 

 

 
Figure 2. 6 Volatile driving behavior 
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Extreme lane change events 

Based on the above discussion, extreme lane change events are identified, which are those where 

lateral acceleration between consecutive 0.5 time stamps exceeds the 95th percentile threshold at 

the initiation and before the end of the lane change maneuver. Figure 2.7 (a) presents a sample of 

identified extreme left lane change events. During the left lane change (blue color), an extreme 

lateral driving event (five continuous BSMs that the lateral acceleration exceeds the thresholds) 

is identified. Note, the lateral acceleration of some time stamps also exceed the 95th percentile 

threshold but not continued to 0.5 seconds, these will not be recognized as extreme driving 

events (“noise” shown in Figure 2.7 (a)). 

 Figure 2.7 (b) visualizes a trip with the patterns of lateral acceleration, locations of 

identified lane change events (1 and 2), and extreme lane change events (3 and 4). As expected, 

driving near city areas is more volatile than driving near rural areas based on magnitudes of 

lateral accelerations.  

Figure 2.7 (c & d) visualizes distributions of total lane change and extreme lane change 

events in ArcGIS and Google Earth, respectively. The identified “hot spot” locations of extreme 

lane change events have the potential applications to improve the traffic safety through proper 

roadway design, since the subject vehicle might make an extreme lane change event due to the 

improper roadway design. Figure 2.7 (e) also presents an example of specific warnings or control 

assists that could be applied in real driving environments when extreme left lane change event is 

recognized. If the host vehicle (blue car) makes an extreme left lane change with hard braking at 

the curve, a sideswipe crash warning or control assist can be provided to the red car. After the 

host vehicle (blue car) makes a successful left lane change and continues to accelerate hard, a 

warning  to the yellow car can be provided. 
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Figure 2. 7 Visualization of lane change and extreme lane change events in space and 

applications of warnings and control assists 
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2.4.3 Results of identified lane change events 

Figure 2.8 presents the distribution of identified lane change events. A total of 654 lane change 

events were identified from 1,557 meeting and crossing lane marker events generated from 192 

trips by 64 vehicles. Not all drivers provided turn lights to inform their lane change behaviors 

(424 out of 654). Notably, 128 extreme lane change events were identified. As the trip duration 

of many trips were less than 15 minutes, the majority of lane change frequencies are less than 3 

per trip. High frequencies of lane change events are found in high average travel speed range. 

Drivers might expect to achieve high speed through lane change maneuvers, especially when 

there are vehicles with low speeds in front in their travel lane. 

 

 
Figure 2. 8  Distribution of lane change frequency 

 

This study uses a confusion matrix to validate the performance of lane change 

identification algorithms. Four trips were randomly selected whose number of lane change 

events were larger than 5 for validation. These trips were visualized on Google Earth to compare 
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the actual number of lane change events and algorithm-based identified number of lane change 

events. The sensitivity (true positive rate, the proportion of lane change events that are correctly 

identified) and specificity (true negative rate, the proportion of non-lane change events that are 

correctly identified) were calculated for evaluation. The higher the sensitivity and specificity, the 

better the performance [39]. Given the value of sensitivity (0.889) and specificity (0.909), it 

seems the identification method performed well for a lane change with sufficient lane change 

signals occurring on a relatively straight roadway (curve angle < 20 degrees), where the lane 

markers are clear. The lane changes identified incorrectly, were due to the unclear lane markers, 

low quality of data, and were near intersections. 

This study also calculates the average distance and duration for normal and extreme lane 

change events. As expected, the average distance and duration of extreme lane change events are 

higher than normal lane change events, however, the average speed of extreme lane change 

events is lower than the normal lane change events, which indicates the subject vehicle might 

make an extreme lane change with higher acceleration in short distance and duration, as a result, 

it might be more dangerous than the normal lane change event. 

  

2.5 CORRELATES OF LANE CHANGE EVENTS 

After identifying lane change events, it is important to understand these events. Considering the 

count nature of lane change event frequency, a Poisson regression model is estimated. The 

probability of trip i having 𝑦𝑖 lane change or extreme lane change events is written as: 

 

𝑃(𝑦𝑖) =
𝑒𝑥𝑝 (−𝜆𝑖)𝜆𝑖

𝑦𝑖

𝑦𝑖!
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Where:  

𝑃(𝑦𝑖) is the probability of trip i having 𝑦𝑖 lane change or extreme lane change events, 𝑖 =

1, 2, … , 𝑛; 

𝜆𝑖 is the expected number of lane change or extreme lane change events. 

 

In Poisson regression models, the relationship between frequency of lane change or extreme lane 

change events generated by trip i and explanatory variables is assumed to be given by: 

  

λ𝑖 = 𝐸𝑋𝑃(𝛽𝑋𝑖) 

 

Where: 

𝑋𝑖 are explanatory variables (e.g., driving speed); 

𝛽 are estimated coefficients of explanatory variables. 

 

Descriptive statistics 

Table 2.2 shows the statistical description of variables at the trip level. Since the study explores 

the relationship between lane change events and surrounding objects, there exist four trips 

without surrounding objects. Therefore, they are exclusive in the final analysis. Finally, 188 trips 

with the influence of surrounding objects are used for analysis. On average, each trip generates 

3.5 lane change events (1.7 left and 1.8 right). Of these, there are 0.68 extreme lane change 

events (0.25 left and 0.43 right) per trip. The average trip duration is 20.5 minutes. Note, that in 

one trip (maximum travel speed 81.7 mph) generated 28 lane change events for 47 minutes 

duration while 53 (out of 188) trips did not generate any lane change events. 
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Modeling results - trip level 

Table 2.3 shows the final modeling results for correlates of the number of lane change events. 

Variables in the model specification were eliminated using backward stepwise variables 

selection method (at 10% level), as they only explain little variations in the data [40]. Both 

models have shown the reasonable goodness of fit. Note that these models were limited to a 

lower sample size and related explanatory variables, the estimation results might change when 

more data is used. Notably, the results revealed that the maximum speed during a trip and long 

trip duration are associated with more lane change events. The results of surrounding objects 

show interesting results. The number of right/left side objects are associated with less lane 

change events, but the number of lane change events is high when there are front objects in the 

travel path. The subject vehicle makes less lane change events along with the increase in relative 

speed to front object, indicating the subject does not need to make a lane change to achieve the 

satisfied speed. For extreme lane change events, only maximum speed, season and trip duration 

have shown statistically significant correlations. Similarly, the subject vehicle makes more 

extreme lane changes along with the increases in the maximum speed during a trip. Note that 

these models were limited to a lower sample size and related explanatory variables, the 

estimation results might change when more data is used. 
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Table 2. 2 Data descriptive of variables at trip-level (N=188) 

Variables N Mean 
Std. 

Dev. 
Min Max 

Lane change 

behavior 

Total number of identified lane change 188 3.468 4.622 0 28 

Number of identified left lane change 188 1.670 2.403 0 13 

Number of identified right lane change 188 1.798 2.531 0 16 

Total number of identified aggressive lane 

change 
188 0.681 1.154 

0 
8 

Number of identified aggressive left lane change 188 0.250 0.553 0 3 

Number of identified aggressive right lane 

change 
188 0.431 0.859 

0 
7 

Total number of aborted line crossing 188 5.261 6.886 0 37 

Trip 

attributes 

Trip duration (min) 188 20.522 11.409 10.833 56.413 

Average speed (mph) 188 42.743 16.279 6.338 75.739 

Maximum speed (mph) 188 64.950 14.356 45.012 96.109 

Vehicle 

maneuvering 

ABS state 188 0.657 0.471 0.000 1 

Brake (engaged) (%) 188 18% 0.129 0% 59% 

Headlight (engaged) (%) 188 17% 0.336 0% 100% 

Stable control (engaged) (%) 188 18% 0.386 0% 100% 

Vehicle wiper (engaged) (%) 188 3% 0.176 0% 100% 

Total Number of turn signal 188 2.245 3.682 0 23 

Number of left turn signal 188 1.255 2.018 0 12 

Number of right turn signal 188 0.989 1.873 0 12 

Contextual 

factors 

An exit on the left side (engaged) (% *1000) 188 9% 0.242 0% 127% 

An exit on the right side (engaged) (% *1000) 188 36% 0.466 0% 237% 

Season (1-spring, 0-autumn) 188 0.487 0.437 0 1 

Darkness 188 0.080 0.253 0 1 

Rush hour 188 0.540 0.460 0 1 

Average Lane width (m) 188 3.391 0.654 0 4.845 

Average distance to left lane marking (m) 188 -1.848 0.486 -3.364 0 

Average distance to right lane marking (m) 188 1.698 0.453 0 2.555 

Surrounding 

objects 

Percentage of time with surrounding objects (%) 188 19% 0.108 1% 70% 

Average number of front objects 188 0.704 0.473 0.016 2.984 

Percentage of time with front vehicle in path (%) 188 52% 0.205 2% 100% 

Average of surrounding object on right side 188 1.567 0.248 1.000 2.649 

Average of surrounding object on left side 188 1.506 0.256 1.107 2.622 

Average relative speed to front object(m/s) 188 -0.152 0.601 -2.108 2.557 

Average relative distance to front object (m) 188 36.300 16.362 9.226 78.910 

Percentage of time in freeway (%) 188 37% 0.332 0% 100% 
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Table 2. 3 Poisson model for frequency of normal and extreme lane change events 

Variables (Dependent variable = Number of lane change events at 

trip level) 

Normal lane change model Extreme lane change model 

Poisson model 
Poisson model - 

stepwise 
Poisson model 

Poisson model – 

stepwise 

β eβ β eβ β eβ β eβ 

Trip 

attributes 

Trip duration (min) 0.033*** 1.034 0.033*** 1.034 0.032*** 1.032 0.029*** 1.029 

Average speed (mph) 0.014 1.014 - - 0.008 1.008 - - 

Maximum speed (mph) 0.027*** 1.028 0.027*** 1.028 0.033*** 1.033 0.030*** 1.031 

Vehicle 

maneuvering 

Brake (engaged) (%) 1.479** 4.386     0.271 1.311 - - 

Vehicle wiper (engaged) (%) -0.129 0.879 - - 0.171 1.187 - - 

Contextual 

factors 

An exit on the left side (engaged) (% *1000) 0.736*** 2.087 0.715*** 2.044 0.513 1.670 - - 

An exit on the right side (engaged) (% *1000) 0.012 1.012 - - 0.309 1.361 - - 

Season (1-spring, 0-autumn) -0.089 0.915 - - -0.597** 0.550 -0.591*** 0.554 

Darkness 0.641*** 1.898 0.605*** 1.831 0.580 1.786 - - 

Rush hour 0.151 1.163 - - 0.023 1.023 - - 

Average Lane width (m) -0.270** 0.763 -0.195* 0.823 -0.511* 0.600 - - 

Average distance to left lane marking (m) -0.496*** 0.609 -0.411*** 0.663 -0.598* 0.550 - - 

Surrounding 

objects 

Average of front object 0.340*** 1.405 0.312*** 1.366 0.340 1.405 - - 

Percentage of time with front vehicle in path (%) 0.548** 1.729 0.454* 1.575 0.802 2.231 - - 

Average of surrounding object on right side -0.404* 0.667 -0.442** 0.643 -0.669 0.512 - - 

Average of surrounding object on left side -0.502** 0.605 -0.413** 0.662 -0.646 0.524 - - 

Average relative speed to front object(m) -0.166** 0.847 -0.156** 0.856 0.066 1.068 - - 

Average relative distance to front object (m/s) 0.005 1.005 - - -0.001 0.999 - - 

Percentage of time in freeway (%) -0.367 0.693 - - -0.143 0.867 - - 

Constant -1.712** 0.181 -0.858* 0.424 -1.734 0.177 -2.930*** 0.053 

Summary 

statistics 

Sample size 188 188 188 188 

Adjusted R2  0.269 0.264 0.180 0.152 

Log likelihood at β -491.747 -495.008 -190.408 -196.946 

Prob. > χ2 0.000 0.000 0.000 0.000 

Notes:  “***“means statistical significant associations were found (at 1% level); “**“means statistical significant associations were 

found (at 5% level); “*“means statistical significant associations were found (at 10% level). 

Adjusted R2 refers to 1 – (Log Likelihood at β/Log Likelihood at 0); 
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2.6 LIMITATIONS 

The data used for analysis are BSMs data collected from vehicles by roadside equipment 

participating in SPMD. Data acquisition system (DAS) devices are used to collect data from 

connected vehicles. Although these devices are expected to provide highly accurate data, there 

still might be some unknown measurement errors in the data set. The methods of identifying lane 

change events and the calculation of lateral acceleration are highly reliant on the quality of 

reported lane marker tracking data. The accuracy of the lane-based position will influence the 

results directly as errors existed in GPS data. To eliminate the influence of GPS errors, this study 

removes cases with low tracking fidelity. In addition, since the rule used for identifying lane 

change events is based on the relative distance to the lane boundary, therefore, the GPS errors 

can be eliminated. In sum, the influence is minor based on the validation results on Google 

Earth. 

 Another limitation is that some high influencing factors, such as traffic density, are not 

involved in the analysis. For example, more abrupt lane changes might result from high traffic 

density. An additional limitation is the selected data used for analysis. Due to computational 

limitations, only a sub-sample data from 192 trips are used for analysis. 

 

2.7 CONCLUSIONS 

This study contributes to understandings of normal and extreme lane change behaviors by 

interpreting connected and automated vehicle data. A deeper understanding of these behaviors 

can form the basis for generating alerts and warnings that can reduce the impacts of extreme lane 

change events. The proposed lane change methodology uses multiple indicators that include: 

1) Vehicle position, i.e., a sharp change in the distance of vehicle’s centerline relative to 

lane boundaries. 
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2) Lane crossings recorded by an onboard unit, i.e., when a vehicle occupies then crosses a 

lane marker. Complementing this are data recorded by the onboard unit when a vehicle 

aborted a lane change.  

3) The lane marker tracking data quality, as indicated by a fidelity variable.  

 

The methodology and connected vehicle data used identified 654 lane changes for all 192 trips, 

and showed an average of 3.5 lane changes per trip. Plotted trajectories of selected trips on 

Google Earth validated these lane changes. 

 Analysis of the data showed that lateral accelerations are higher at lower speeds, but get 

lower as speeds increase. This relationship formed the basis for the investigation of extreme lane 

changes. In this study, lateral accelerations in the 95th percentile at the initiation and before the 

end of a lane change maneuver were considered extreme lane changes. The data showed 128 

extreme lane changes (0.68 extreme lane changes per trip). Poisson regressions identified the key 

causes of lane changes. These causes included existing objects in the travel path, small speed 

differences with the front object, higher maximum speed during the trip, darkness, and exiting on 

the left side of the travel direction. 

Based on analysis of this data, warnings that help surrounding drivers adjust their 

behaviors in order to accommodate extreme behavior by the host vehicle driver can be generated. 

The application of connected vehicle technologies will help proximate vehicle drivers make 

more informed decisions and avoid drivers who are undertaking high-risk lane changes. 

Connected vehicle technology can warn the host vehicle driver if their frequency of extreme lane 

change behaviors during a trip is relatively high so that they are encouraged to make smoother 

lane changes during the remainder of their trip. Predicting extreme lane change behaviors in real-

time for the host driver is challenging and needs further research. In addition, researchers can 
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visualize the “hot spot” locations of extreme lane change events in Google Earth using connected 

vehicle data, which may indicate when the subject vehicle might make an extreme lane change 

event due to improper roadway design. We can consider improved roadway design or proper 

warnings at these “hot spots” locations. 
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CHAPTER 3 WHAT IS THE LATERAL SHIFTING VOLATILITY OF LANE 

KEEPING BEHAVIORS 
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This chapter is a revised version to be submitted by Meng Zhang, Asad Khattak, and Zachary 

Roberts 

 

ABSTRACT 

Roadway and lane departure crashes represent a sizable portion of all roadway crashes, which 

results in large portion of social cost. Advanced technology such as onboard lane keeping 

warning systems is developed to prevent these crashes. To get an in-depth understanding of lane 

keeping behaviors, this study explores the relationship between driving situations and lateral 

shifting volatility, which quantifies the fluctuation in instantaneous lateral displacement, by 

analyzing a sub-sample of 1,550,107 Basic Safety Messages (BSMs) records sent by vehicles, at 

a 10 Hz frequency, and received by roadside equipment. There were 192 randomly selected trips 

(10 minutes or longer) from 64 drivers. The trajectories’ data come from connected vehicles 

participating in the Safety Pilot Model Deployment (SPMD) program in Michigan. The BSMs 

describe vehicle operation performance measures, e.g., relative distance from vehicle centerline 

to lane boundaries; thus, a measure called lateral shifting volatility, which quantifies fluctuation 

in lateral displacement, is developed. The study uses the coefficient of variation (COV), defined 

as the ratio of standard deviation to mean, to quantify shifting volatility. To explore the 

correlation between shifting volatility and different driving situations, a linear regression model 

is estimated in this study. The modeling results show that the subject vehicle is more volatile 

when traveling at high speeds and when the vehicle keeps a low space gap with the vehicle in 

front of it. These results provide insights on how lane departure warning systems can help drivers 

make informed lane departure decisions in a connected vehicle environment. 
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3.1 INTRODUCTION 

Lane departure crashes, including single-vehicle, head-on, and sideswipe crashes, provide a 

tremendous opportunity to increase roadway safety through intelligent transportation systems 

technology. According to the statistics from Federal Highway Administration (FHWA), there are 

18,275 fatalities, which represents 54% of traffic fatalities in the United States, resulted from 

lane departure annually between 2013 and 2015 [41]. 

Until lane keep assist and full autonomy become commonplace on roadways, the best 

solution for reduction of crashes and crash severity is to provide drivers with lane departure and 

blind-spot warnings. A 2016 Insurance Institute for Highway Safety (IIHS) study reveals that 

lane departure warning can reduce the rate of lane departure crashes by 11% and lower injury 

rates by 21%. Unfortunately, many drivers still see these warnings as an annoyance and 

deactivate them [42]. This highlights the importance of being able to predict driver behavior and 

deploy targeted warning systems that can keep drivers alert and responsive, without excessive or 

unnecessary activation frequency. Additionally, once connected and automated vehicles (CAVs) 

begin to share the roadways with conventional, human-driven vehicles, it will be helpful for 

these vehicles to be able to better predict the likelihood of another vehicles’ failure to maintain 

their lane. 

This study aims to develop a measure called shifting volatility to quantify the variability 

in instantaneous lateral displacement, which is the unique aspect of this study. Previous studies 

applied different measurements to describe driving behaviors. Liu and Khattak proposed a new 

measurement named “driving volatility” to quantify the extreme driving decision at micro-level 

based on vehicle motion, e.g., the distribution of vehicle acceleration and speed [10]. To explore 

the volatile driving decision, this study proposes the shifting volatility measured by coefficient of 



 

38 

 

variations (COV), defined as the ratio of standard deviation to mean, to quantify fluctuations in 

the instantaneous lateral displacement [43]. The sufficient geo-referenced trajectories data 

collected from connected vehicles enable the analysis. These data are Basic Safety Messages 

(BSMs) sent by vehicles (reported at 10 Hz) and received by roadside equipment participating in 

the Safety Pilot Model Deployment (SPMD) program in Michigan. These BSMs describe a 

vehicle’s performance, e.g., relative distance from vehicle centerline to lane boundary, which 

makes it is possible to measure the shifting volatility. 

In summary, the key objectives of this study are: 1) develop a measure called shifting 

volatility to quantify the variability in the instantaneous lateral displacement; and 2) explore the 

correlates of shifting volatility with different driving situations. 

 

3.2 LITERATURE REVIEW 

Previous studies identified three primary factors, including trajectory based, driver based sensors 

and external sensors, for lane departure prediction. A trajectory based system would model lane-

keeping ability based on attributes embedded in current vehicle trajectory, such as speed, 

acceleration (lateral and longitudinal), steering angle, yaw, etc. [44-46]. Driver based factors use 

sensors to determine a driver’s attentiveness based on eye tracking, biometrics, facial emotion or 

reaction, etc [45, 47-49]. External sensors contain environmental conditions such as weather, 

lane geometry, vehicle targets, pedestrian targets, and other features that could serve as 

distractions or otherwise affect a driver’s ability to maintain their lane [45, 47]. These factors 

show potential for recognizing the likelihood of a lane departure event. 

The most traditional method of predicting lane departures is to look at the trajectory of 

the vehicle relative to the boundary and model the likelihood of a lane departure. Lee, et. al. 
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studied lane change characteristics as a baseline to determine what a typical to severe lane 

change looks like. The authors concluded that turn signal use represented only about 44% of 

intentional lane changes and that the mean duration is 9.61 seconds from tangent to tangent, with 

some variation depending on the type of roadway. The steering angle is also reasonably 

predictable based on the situation, which can be determined by surrounding vehicles, but 

averages a peak of 8.11 degrees. These characteristics can be used to discern when a lane change 

that has been initiated is intentional [46]. McCall also looked at lane position prior to a lane 

change event. In this study, a time from initiation to crossing the boundary represented 

approximately 2 seconds. However this lane change is measured to a different end point [44]. 

Roadway departure crashes are most frequently a result either directly or indirectly of 

human error, including driving too fast under different weather conditions, inattention, 

impairment, or other means of failing to maintain control of the vehicle. Based on path alone, it 

is difficult to determine the intention of a driver being approaching the boundary of a lane or 

roadway. Driver intentions have been measured by several studies. McCall used driver facial 

analysis to model driver intent. A relationship was established between head motion and lane 

change intention using Bayesian learning. The author was able to observe that lane change intent 

could be identified 0.5s earlier when using data from head motion versus vehicle path alone [50]. 

Distraction is another predictor in lane departures due to human behavior. In a 2011 study of 

roadway departure crashes, Lord et. al. found that 92 of the 394 roadway departure crashes 

(23%) were the result of a distracted driver [47]. Edwards, et. al. also looked extensively at 

driver behavior and determined that among behavioral factors considered, an overlapping 

secondary task was the single highest predictor of maximum lane deviation variance in test cases 

[45]. Hallmark, et. al. could show that the more time drivers spent looking ahead at the roadway, 
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the less likely a roadway departure event was to be captured in the data [51]. However, Sayer, et. 

al. collected random samples of drivers during warning and no-warning time periods and 

concluded that warnings were no more likely to be issued when engaged in a secondary task than 

when not [49]. 

Nodine, et. al. analyzed naturalistic data for various near-crash factors, and found that 

secondary tasks were distracting drivers during 52% of sensor alerts. This same study also found 

that the application of sensor based warning systems could reduce the rate of lane-change and 

road departure risk events by 33% and 19%, respectively [48]. Navarro, et. al. echoed this 

finding in a 2016 study, showing that a lane departure warning device significantly improved 

steering reaction time during a distraction task by approximately 0.3 seconds [52]. Although 

more difficult to detect with non-intrusive measures, driver fatigue could also be representative 

of inattention. Moller, et. al. identified “microsleep” events were a high predictor of lane 

departure risk. These events were significantly more likely to occur in the afternoon, versus 

morning or mid-day [53]. 

Driver reaction to lane-keeping warning systems is also an important consideration. 

Sayer, et. al. found that the presence of warning systems cut the number of lane departures in 

half, from 14.6 departures per 100 vehicle miles to 7.6. The duration of lane departure also 

dropped from a mean of 1.98 seconds to 1.66 seconds. Additionally, a 12.6% increase in the 

number of lane changes made indicates that these systems empower drivers with an added 

feeling of security [49]. To the contrary, Nodine, et. al. found that the presence of lane assist 

warning devices had no effect on drivers’ attention to the roadway, noting that drivers had their 

eyes focused on something besides the roadway immediately prior to 6% and 7% of alerts given 

with alerts un-equipped and equipped, respectively [48]. The downsides to installing a lane 
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departure warning system may be miniscule, as Navarro, et. al. indicated in their 2016 study that 

the existence of a lane departure warning system did not negatively affect driver behavior in the 

instance of a missed warning [52]. 

Driver behavior is also affected by external agents. Roadway characteristics have been 

shown to be predictors of road departure crashes. Lord, et. al. found that shoulder type was 

correlated with run-off-the-road crashes in Texas. 52% of road departure crashes were found to 

have occurred on surfaced shoulders. This characteristic is overrepresented in the crash data, as 

only 43% of vehicle miles occurred on surfaced shoulder roadways. Nodine, et. al. found that 

64% of near-miss road departures occurred to the left of the traveled way [48]. Sayer, et. al. 

similarly found that when testing response to lane departure warnings, 69% of these warnings 

were issued to the left side of the road [49]. 

Some data exists to indicate that location of other vehicles on the roadway also plays a 

role in driver awareness of lane position. Sayer, et. al. concluded that the average duration of a 

lane departure in the opposite direction of an adjacent vehicle increased due to the presence of 

the vehicle. The average duration with no vehicle present was 1.80 seconds and was 2.28 

seconds with a vehicle present. The authors went on to find that when an adjacent lane was 

occupied, drivers moved away from the vehicle on average 27 cm (10.6 in) to the left or 10.7 cm 

(4.2 in) to the right, in the opposite direction from the adjacent vehicle [49]. Drivers may treat 

adjacent vehicles similarly to roadside obstacles. When a potential conflict is known, it could 

increase driver attentiveness, as Hallmark, et. al. showed that roadside barriers reduced the 

likelihood of a roadway departure to the right, as did chevrons, raised pavement markers and 

other forms of curve delineation [51]. 
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Potential for bias in these studies could arise from the fact that the simulation and 

naturalistic data all came from participants that knew they were being observed. Additionally, 

studies that identify characteristics that do not play a role in lane departures are not likely to be 

published, unless they are isolated characteristics in a larger study with more attention-grabbing 

results. Gaps in the research include a lack of focus on how lane departure probabilities can be 

affected by target vehicles in the front and rear. Data also appears to be limited with respect to 

driving situation and lane departure. 

 

3.3 METHOD 

3.3.1 Data and conceptual framework 

This study creates a unique data set by combing multiple data sources: 1) Basic Safety Messages 

(BSMs) collected from Safety Pilot Model Deployment (SPMD) in Ann Arbor, Michigan, and 2) 

Roadway information extracted from OpenStreetMap. 

 

Basic Safety Messages (BSMs) 

The data used for analysis are BSMs, reported at a 10Hz frequency, sent by vehicles and 

received by roadside equipment participating in the Safety Pilot Model Deployment (SPMD) in 

Ann Arbor, Michigan. These BSMs data are obtained from Research Data Exchange (RDE, 

available from: https://www.its-rde.net/), maintained by the US Department of Transportation. 

This program provides different types of data, including contextual data and vehicle-based data. 

The vehicle operation data archived in the Driving Dataset are used for analysis, which is 

collected from vehicles equipped with Data Acquisition System (DAS) – developed by Virginia 

Tech Transportation Institute (VTTI). 

https://www.its-rde.net/


 

43 

 

The Driving Dataset contains three sub-files: 1) trajectory data of subject vehicle 

(reported at 10 Hz frequency), which describes the subject vehicle’s operation and performance, 

including lane-based vehicle position (e.g., the distance of vehicle centerline to the boundary of 

travel lane), geographic position (e.g., latitude and longitude), vehicle motion (e.g., speed and 

acceleration), onboard device records of lane tracking information (e.g., vehicle meets and 

crosses the lane boundary), driving context (e.g., time stamp), and vehicle performance 

information (e.g., lights, wipers and brakes). Given the high-resolution of lane-based vehicle 

position, it is possible to capture the vehicle shift displacement from the lane center; 2) trajectory 

data of surrounding vehicles (reported at 10 Hz frequency), which describes the relative distance 

and speed  to surrounding vehicles; and 3) trip summary of subject vehicle (aggregated trip 

level), which contains the trip-level information, such as trip duration and distance. More 

detailed descriptions of variables involved in the dataset can be found on the SPMD Sample Data 

Handbook [29]. 

 Since a 10 Hz reporting rate results in a sizable dataset, this study randomly selects three 

trips with travel time being longer than 10 minutes for analysis. Thus, this study get 192 trips 

from a total of 14,315 trips which representing 83,384,195 driving records. As this study 

explores the fluctuation in lateral shifting relative to the travel lane centerline, the aborted lane 

change and successful lane change records are removed from the data set [54]. After data 

cleaning and error check, this study finally gets 1,550,107 driving records for analysis. 

 

Roadway information from OpenStreetMap 

Since the driving behavior might vary from freeway to local roadway due to different driving 

situations, e.g. vehicle speed, this study also links the roadway information extracted from 
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network shape file maintained by OpenStreetMap to these trajectories data. This study extracts 

the roadway information by visualizing the network shape file of Ann Arbor city and these 

vehicles’ trajectories in ArcGIS, as shown in Figure 3.1 (a).  This study links each trajectory 

point to the closest roadway to get its roadway information, as shown in Figure 3.1 (b). From the 

most to least important, the OpenStreetMap classifies the roadway into: motorway, primary, 

secondary, tertiary, unclassified, residential, and service road. As motorway is equivalent to the 

freeway and the primary road are often used to link larger towns, indicating high speed limits, 

therefore, this study re-codes the roadway into two categories: 1) freeway with related high 

speed – reported as motorway and primary road, and 2) local roadway with related low speed – 

others, e.g., secondary road. The freeway average speed is 62 mph (show a peak at 75 mph) 

while average speed of local roadway is close to 28 mph (show a peak at 40 mph), which 

indicates the classification defined in this study is reasonable. 

 

 
  (a)                                                                                                 (b)  

Figure 3. 1 Link vehicle trajectories to roadway 
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New user-defined variables 

Since the lane keeping behavior might vary under different driving situations, e.g. congestion vs. 

non-congestion, this study explores the effects of different driving situations on lane keeping 

behaviors. As the GPS data does not report the exact driving situations, this study creates the 

user-defined driving situations to indicates different driving situations. Based on the information 

of roadway types, subject vehicle speed and space gaps to front vehicle in the travel path, nine 

driving situations are created: 

1) Type 1: freeway, congested (speed <= 40 mph), & short space gaps (space <= 10 m); 

2) Type 2: freeway, congested (speed <= 40 mph), & long space gaps (space > 10 m); 

3) Type 3: freeway, non-congested (speed > 40 mph), & short space gaps (space <= 10 m); 

4) Type 4: freeway, non-congested (speed > 40 mph), & long space gaps (space > 10 m); 

5) Type 5: local, congested (speed <= 20 mph), & short space gaps (space <= 10 m); 

6) Type 6: local, congested (speed <= 20 mph), & long space gaps (space > 10 m); 

7) Type 7: local, non-congested (speed > 20 mph), & short space gaps (space <= 10 m); 

8) Type 8: local, non-congested (speed > 20 mph), & long space gaps (space > 10 m); 

9) Type 9: others, e.g., no front vehicle. 

This study uses the 40 mph and 20 mph as the congestion threshold for freeway and local 

roadway separately. As the duration of congested period are triggered when the vehicle average 

speed of weekday peak time drops below 45 mph, therefore, this study uses 40 mph (close to 

mph) to define the congestion threshold for freeway. Given the common speed limit of local 

roadway is between 35 and 40 mph, this study defines the congestion threshold for non-freeway 

as 20 mph which is also in the range of school zone speed limit, indicating it is a lower speed 
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area. Figure 3.2 shows the conceptual framework which indicates the response variable and key 

independent variables involved in this study.  

 

 
Figure 3. 2 Conceptual framework 

 

3.3.2 Lateral shifting volatility 

The critical part of this study is to develop a measurement to understand the variability in 

instantaneous lateral driving decisions from the aspect of lateral displacement. To explore the 

volatile driving decision, this study proposes the shifting volatility measured by coefficient of 

variations (COV), defined as the ratio of standard deviation to mean, to quantify fluctuations in 

the instantaneous lateral displacement [43]. The sufficient geo-referenced trajectories data 

collected from connected vehicles enable the analysis. Since the right and left shifting volatility 

might be different, two types of shifting volatility are measured in this study. The formulas for 

COV calculation are shown below: 
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Right side: 𝐶𝑂𝑉𝑟𝑖𝑔ℎ𝑡 =
𝑆𝑡𝑑. 𝐷𝑒𝑣.𝑟𝑖𝑔ℎ𝑡

𝑀𝑒𝑎𝑛𝑟𝑖𝑔ℎ𝑡
 (1) 

Left side: 𝐶𝑂𝑉𝑙𝑒𝑓𝑡 =
𝑆𝑡𝑑. 𝐷𝑒𝑣.𝑙𝑒𝑓𝑡

𝑀𝑒𝑎𝑛𝑙𝑒𝑓𝑡
 (2) 

 

3.4 RESULTS 

3.4.1 Descriptive statistics 

Table 3.1 shows the descriptive statistics for key variables used for modeling at the aggregated 

trip level. After delete missing data and error check, 167 trips are used for analysis. On average, 

the right shifting volatility is 0.867, while the left shifting volatility is a little higher which is 

0.883. On average, nearly 51% of time that the subject vehicle is following a front vehicle in the 

travel path. The average number of vehicles on the right or left side is 1.5. The average speed is 

0.15 m/s lower than the front vehicle. As mentioned above, this study separates the driving 

environment into nine categories to get an in-depth understanding of driving situation. In 

freeway, 9.2% of time that the subject vehicle can maintain relative satisfied speed and keep 

proper space gaps with front vehicle. Nearly 1.4% of time that subject vehicle follows a front 

vehicle with short space gaps (<= 10 m), while 1.2% of time the speed is lower than 40 mph, 

indicating the speed of subject vehicle is restricted which is recognized as a congested driving 

environment in freeway. Note, there is 0.2% of time that the subject vehicle can keep relative 

high speed but the subject vehicle still keeps close to the front vehicle, which indicate a relative 

dangerous situation. 2.4% of time that the subject vehicle is under congested environment (speed 

lower than 40 mph) while keeps far away from the front vehicle, indicate a conservative driving 

behavior of subject vehicle. In local roadway, 25.6% of time that the subject vehicle can 

maintain the relative satisfied speed with proper space gaps with front vehicle. However, there is  
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Table 3. 1 Descriptive statistics 

Variables N Mean Std.Dev. Min Max 

Shifting 

volatility 
Cov_right  167 0.867 0.186 0.231 1.330 

Cov_left  167 0.883 0.212 0.171 1.839 

Vehicle 

maneuvering 
ABS state 167 0.626 0.480 0.000 1.000 

Brake (engaged) (%) 167 18.5% 13.0% 0.0% 58.7% 

Headlight (engaged) (%) 167 19.4% 35.1% 0.0% 100.0% 

Stable control (engaged) (%) 167 19.5% 39.5% 0.0% 100.0% 

Vehicle wiper (engaged) (%) 167 3.6% 0.187 0.0% 100.0% 

Contextual 

factors 
An exit on the left side (engaged) (% *1000) 167 8.5% 0.227 0.0% 127.0% 

An exit on the right side (engaged) (% 

*1000) 167 35.1% 44.3% 0.0% 236.0% 

Season (1-spring, 0-autumn) 167 0.471 0.436 0 1 

Darkness 167 0.077 0.251 0 1 

Rush hour 167 0.564 0.455 0.000 1.000 

Surrounding 

objects 
% of time with front vehicle in path (%) 

167 51.7% 0.204 3.0% 100.0% 

Average of surrounding object on right side 167 1.558 0.232 1.077 2.649 

Average of surrounding object on left side 167 1.501 0.259 1.107 2.622 

Average relative speed to front object(m) 167 -0.154 0.594 -2.108 2.557 

Subject vehicle 

driving 

environment 

% of time in: freeway, speed <= 40 mph & 

distance to front vehicle < =10 m 167 1.2% 0.037 0.0% 22.5% 

% of time in: freeway, speed <= 40 mph & 

distance to front vehicle > 10 m 167 2.4% 7.0% 0.0% 56.8% 

% of time in: freeway, speed > 40 mph & 

distance to front vehicle <=10 m 167 0.2% 1.3% 0.0% 16.4% 

% of time in: freeway, speed > 40 mph & 

distance to front vehicle > 10 m 167 9.2% 13.6% 0.0% 61.9% 

% of time in: local, speed <= 20 mph & 

distance to front vehicle <= 10 m 167 8.4% 10.0% 0.0% 74.0% 

% of time in: local, speed <= 20 mph & 

distance to front vehicle > 10 m 167 3.2% 3.4% 0.0% 20.2% 

% of time in: local, speed > 20 mph & 

distance to front vehicle <= 10 m 167 0.9% 3.1% 0.0% 28.8% 

% of time in: local, speed > 20 mph & 

distance to front vehicle > 10 m 167 25.6% 18.1% 0.0% 85.8% 

Others, e.g., no front vehicle 167 48.9% 0.213 2.3% 100.0% 
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still 0.9% of time that the subject vehicle can maintain proper speed but follow the front vehicle 

with low space gaps. 

 

3.4.2 Model results 

Table 3.2 shows the modeling results for testing the correlation of right shifting volatility and left 

shifting volatility with related contributing factors. The goodness-of-fit is reasonable for right 

side shifting volatility model, while not significant for left side shifting volatility model. 

Therefore, the interpretation is mainly based on the results of right side shifting volatility model. 

As expected, the various driving situations have shown significant correlations with right side 

shifting volatility (at 5% level) and the signs of estimated parameters are expected. Note, the 

analysis is applied at the aggregated trip level; thus, variables significant at the aggregated trip 

level might not be necessary significant at the disaggregated level. 

 The modeling results shows that most of subject vehicle driving situations are statistically 

significantly associated with lower shifting volatility, compared with the based condition of the 

subject vehicle being traveling with proper speed but keeping low space gaps in freeway. 

Traveling with low speed and keeping high space gaps in local roadway has the lowest 

association with the shifting volatility. The modeling results also show that the shifting volatility 

is statistically significantly higher during autumn and non-peak hour period. No significant 

correlations are found regards to vehicle maneuvering and surrounding objects. 

The magnitudes and signs of the estimated coefficient in subject vehicle driving 

environment are of interests. The presence of front vehicle and the subject vehicle speed are key 

contributing factors to lateral shifting volatility in the resulting model. Compared to the base 

condition of subject vehicle traveling at freeway with relative high speed (>40 mph) and short 

space gaps with front vehicle (<=10 m), the subject vehicle is less likely to be volatile in lateral 
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shifting, especially when the subject vehicle traveling at local roadway with low speed but still 

be far away from the front vehicle (type 6). Under type 6 driving situation, although the subject 

vehicle is traveling under the congested environment at local roadway, the driver still keeps large 

space with the front vehicle, which indicates the subject vehicle can decelerate and come to a full 

stop with enough space; as a result, they might be less likely to be involved in a risk situation as 

they are less volatile. A logical explanation for this is that the characteristics that increase driver 

comfort levels, including long distance to front vehicle, cause the driver can maintain a relative 

low heightened awareness and focus. Rush hour is associated with lower shifting volatility. 

Under rush hour period, the subject vehicle is traveling with low speed and surrounded with 

more surrounding vehicles, which is similar to the type 1, type 2, type 5 or type 6 situations; 

thus, the subject vehicle might be less volatile.  

These findings have potential implications regarding associations of subject vehicle 

driving environment with lateral shifting volatility as previous studies indicates that high 

volatility is associated with a higher chance of crash. The onboard device can record the 

historical lane keeping behavior of the subject vehicle, then the corresponding shifting volatility 

for each subject driver can be computed and be compared with other drivers. Thus, the driver 

with high shifting volatility record will receive warnings or control assistance to help them make 

informed lane departure decisions to avoid high risk situations, such as lane departure crashes. 
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Table 3. 2 Linear regression modeling results  

Variables 

Shifting volatility 

(right) 

Shifting volatility 

(left) 

β P value β 
P 

value 

Vehicle 

maneuvering 
Brake (engaged) (%) -0.072 0.542 0.011 0.940 

Vehicle wiper (engaged) (%) 0.009 0.908 0.023 0.807 

Contextual factors An exit on the left side (engaged) (% *1000) -0.003 0.965 0.058 0.453 

An exit on the right side (engaged) (% *1000) 0.032 0.322 0.020 0.610 

Season (1-spring, 0-autumn) -0.098 0.005** 0.004 0.931 

Darkness -0.052 0.421 0.130 0.099* 

Rush hour -0.077 0.033** 0.047 0.279 

Surrounding 

objects 

Average of surrounding object on right side 0.010 0.882 0.015 0.858 

Average of surrounding object on left side -0.056 0.364 0.047 0.530 

Average relative speed to front object(m) -0.018 0.473 0.040 0.193 

Subject vehicle 

driving 

environment (base: 

Type 3: % of time 

in: freeway, 

speed > 40 mph & 

distance to front 

vehicle <=10 m) 

Type 1: % of time in: freeway, speed <= 40 

mph & distance to front vehicle < =10 m 
-1.770 0.144 1.356 0.353 

Type 2: % of time in: freeway, speed <= 40 

mph & distance to front vehicle > 10 m 
-2.407 0.033** 0.702 0.604 

Type 4: % of time in: freeway, speed > 40 

mph & distance to front vehicle > 10 m 
-2.416 0.031** 1.216 0.366 

Type 5: % of time in: local, speed <= 20 mph 

& distance to front vehicle <= 10 m 
-2.393 0.030** 1.400 0.291 

Type 6: % of time in: local, speed <= 20 mph 

& distance to front vehicle > 10 m 
-3.027 0.013** 1.733 0.233 

Type 7: % of time in: local, speed > 20 mph & 

distance to front vehicle <= 10 m 
-1.780 0.137 1.409 0.329 

Type 8: % of time in: local, speed > 20 mph & 

distance to front vehicle > 10 m 
-2.207 0.045** 1.173 0.375 

Type 9: others, e.g., no front vehicle -2.401 0.029** 1.267 0.338 

Constant 3.382 0.002** -0.509 0.699 

Statistic summary Sample size 167 167 

Prob. > F 0.016** 0.630 

Adjusted R2 0.090 0.000 

 

 

3.5 LIMITATIONS 

Several variables in the data were missing or otherwise unusable. Cruise control data did not 

appear reliable. Several periods of sensor failures were observed within trips. Some effort was 

made by the author to identify scenarios that were more likely to result in missing data, but with 

the limited variables available during this failure periods, this proved difficult. These missing 

data periods appeared to be random, but if they were related to specific circumstances within 

trips, potential for the introduction of considerable error would exist. Additionally, the amount of 
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environmental data was limited, resulting in difficulty eliminating environmental effects from 

biasing the results. 

 

3.6 CONCLUSIONS 

This study proposes a measure called shifting volatility to quantify the variability in 

instantaneous lateral displacement. Correlations between lateral shifting volatility and related 

factors are analyzed, specifically between lateral volatility and driver comfort. Using sufficient 

trajectory data called BSMs collected from vehicles participating in Safety Pilot Model 

Deployment (SPMD) in Michigan, this study measures shifting volatility by quantifying the 

fluctuations in instantaneous lateral displacement through the coefficient of variation (COV), 

defined as the ratio of standard deviation to mean. 

The resulting model identifies relationships that could inform roadway agencies of 

characteristics that could help reduce the number of roadway departure crashes, as well as give 

them a better understanding about when a driver is most likely to cause a lane departure crash. 

Based on the model, roadway type, vehicle speed and distance to front target vehicle correlate 

with lateral shifting volatility. The results reinforce the importance of driving situations in areas 

prone to roadway departure crashes. Additional lane departure warning system deployments may 

glean some more useful information. These results indicate that lateral volatility, which could 

potentially lead to a lane departure, is at its greatest risk when the subject vehicle is driving at 

relative high speeds and keeps low space gaps with the vehicle in front of it.  
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CHAPTER 4 GOSSIP PATTERNS IN INSTANTANEOUS DRIVING DECISIONS 

DURING CAR FOLLOWING EVENTS 
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This chapter is a revised version to be submitted by Meng Zhang, and Asad Khattak 

 

ABSTRACT 

This study proposes a new concept called “Gossip effect” to capture the peer influence of 

surrounding vehicle on the instantaneous driving decisions of subject vehicle. This study 

analyzes the two-step driving decision procedure is: 1) micro-level driving decision defined by 

acceleration and deceleration, and 2) aggregated event-level driving decision captured by subject 

vehicle making a lane change or not during a car following event. The unique aspect of this study 

is that it establishes a new framework to understand the naturalistic instantaneous driving 

decision of subject vehicle under car following scenario, which considers the psychological 

factors, using high resolution geo-referenced trajectory data. The data used for analysis are Basic 

Safety Messages (BSMs) sent by vehicle, at a 10 Hz frequency, and received by roadside 

equipment participating in the Safety Pilot Model Deployment (SPMD) program in Ann Arbor, 

Michigan. These BSMs describe a vehicle’s operation and performance such as vehicle speed, 

acceleration, relative distance and speed to front vehicle, which enables the analysis of driving 

decision at the micro-level. A sub-trajectory data representing 1,940,678 BSMs records from 192 

trips by 64 vehicles is used for analysis. This study further explores the correlations of driving 

decisions with driving situations. The results show that the subject vehicle averagely is more 

likely to accelerate as front vehicle to achieve relative high speed. However, they are less likely 

to accelerate as front vehicle under complex and congested driving situations. 
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4.1 INTRODUCTION 

To understand and model group behaviors and peer influence, the study explores the roles of 

psychological and sociological factors. Each driver, as an integral part of a network of vehicles, 

is assumed to obey simple rules: a) attempt to maintain internal consistency, by executing the 

optimum policy consistent with his/her utility measures, and b) simultaneously strive to attain 

social consensus. An indicative example of peer influence can be expressed by the acceleration 

probability of a subject vehicle when surrounding vehicles are speeding up. The subject vehicle 

might follow the decision of surrounding vehicle but still keep the internal cognitive equilibrium 

in order. On the other hand, given the scenario that surrounding vehicles are decelerating, the 

subject vehicle might decelerate as s/he may suppose that there is some trouble ahead, such as a 

crash or police control. However, the reason that the subject vehicle makes the deceleration 

decisions is only because s/he wants to demonstrate that s/he is not a “worse” driver than the 

others. Studies have tried to explore the psychological point of view for car following models 

[55]. 

Given the front vehicle in the travel path has more influence on subject vehicle, this study 

aims to explore the peer influence of front vehicle on the driving decisions of subject vehicle. A 

new “Gossip” concept which capture thus peer influence is proposed. The original gossip 

concept refers to people can spread information by talking to other people. This sort of 

information propagation can be applied to instantaneous driving decisions, that is the driving 

decisions of subject vehicle can be influenced by front vehicles. In addition, a two-step driving 

decisions procedure is analyzed: 1) micro-level driving decision defined by vehicle acceleration 

and deceleration, and 2) aggregated event-level driving decision captured by subject vehicle 

making a lane change or not during a car following event. While the driving decisions are 



 

56 

 

correlated with surrounding driving situations, this study also extracts different driving situation 

based on relative distance and speed to each surrounding vehicle information embedded in 

massive trajectory data to explore their correlation with driving decisions. 

 

4.2 METHOD 

4.2.1 Data source and conceptual framework 

Basic Safety Messages (BSMs) 

The data used for analysis are Basic Safety Messages (BSMs) archived in Driving Dataset 

collected through the Safety Pilot Model Deployment (SPMD) program in Ann Arbor, Michigan. 

The field test includes 75 miles instrumented roadway and 26 roadside unites are installed, which 

are able to communicate with vehicles equipped with data acquisition systems (DAS). These data 

is available to public via the Research Data Exchange (RDE, available from: http://www.its-

rde.net/) maintained by the U.S. Department of Transportation. These BSMs are sent by vehicles, 

at a 10 Hz frequency, and collected by the roadside equipment participating in the SPMD 

program.  

Two sub-dataset archived in Driving Dataset are used for analysis: 1) HV_Primary, 

which describes the operation and performance of subject vehicle (reported at 10 Hz frequency), 

including geographic position (e.g., latitude and longitude), vehicle motion (e.g., speed and 

acceleration), onboard device records of lane tracking information (e.g., vehicle meets and 

crosses the lane boundary, and distance between vehicle centerline to lane boundary), and 

driving context (e.g., time stamp), and 2) HV_radar, which describes the information of 

surrounding vehicles (reported at 10 Hz frequency), including relative distance and speed to each 

http://www.its-rde.net/
http://www.its-rde.net/
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surrounding vehicle at each time stamp. More detailed descriptions of variables involved in the 

dataset can be found on the SPMD Sample Data Handbook [29]. 

 Given high-resolution of GPS data, the whole data set contains 83,384,195 records 

generate from 14,315 trips by 64 vehicles, which is very large. Due to the computational 

limitations, this study randomly select three trips (trip duration is longer than 10 minutes) from 

each driver for analysis. Therefore, this study gets 1,940,678 BSMs records from 192 trips by 64 

vehicles. Since this study focuses on peer influence of front vehicle on the subject vehicle, this 

study only extracts scenario where a subject vehicle is following a front vehicle. In addition, this 

study aggregates the raw data every 1 second to address the common noise problems of GPS 

data. Finally, this study gets 13,458 records representing 224 hours of car following scenario for 

analysis. 

 

New defined driving situations 

While the driving behavior is highly correlated with surrounding driving situation, this study also 

extracts driving situations information embedded in trajectory data. As shown in Figure 4.1, 

different driving situations can be identified based on the location of surrounding vehicles. The 

driving decision of subject vehicle is assumed to be different when subject vehicle keeps far 

away from and close to the surrounding vehicle. In order to differentiate the congested and non-

congested driving situations, this study use gaps equals to 10 meters as the congested threshold 

which indicates whether the subject vehicle has enough space to operate the vehicle. Based on 

the information of number of vehicles and relative distance to front vehicle in the travel path, on 

the right and left side, eight driving situations are created: 
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• Type 1: F=1 (distance to front vehicle <= 10m), L=1 (distance to left side vehicle: lon <= 

10), R=1 (distance to right side vehicle: lon <= 10) 

• Type 2: F=1 (distance to front vehicle <= 10m), L=1 (distance to left side vehicle: lon <= 

10), R=0 (distance to right side vehicle: lon > 10) 

• Type 3: F=1 (distance to front vehicle <= 10m), L=0 (distance to left side vehicle: lon > 

10), R=1 (distance to right side vehicle: lon <= 10) 

• Type 4: F=1 (distance to front vehicle <= 10m), L=0 (distance to left side vehicle: lon > 

10), R=1 (distance to right side vehicle: lon > 10) 

• Type 5: F=0 (distance to front vehicle > 10m), L=1 (distance to left side vehicle: lon <= 

10), R=1 (distance to right side vehicle: lon <= 10) 

• Type 6: F=0 (distance to front vehicle > 10m), L=1 (distance to left side vehicle: lon <= 

10), R=0 (distance to right side vehicle: lon > 10) 

• Type 7: F=0 (distance to front vehicle > 10m), L=0 (distance to left side vehicle: lon > 

10), R=1 (distance to right side vehicle: lon <= 10) 

• Type 8: F=0 (distance to front vehicle > 10m), L=0 (distance to left side vehicle: lon > 

10), R=1 (distance to right side vehicle: lon > 10) 

 

  
Figure 4. 1 Definition of driving situations 
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4.2.2 Model Structure 

This study explores how the driving decision of front vehicle influences the driving decisions of 

subject vehicle. Four driving decisions are proposed in this study: 1) Front vehicle accelerate, 

and subject vehicle accelerate; 2) Front vehicle accelerate, and subject vehicle decelerate; 3) 

Front vehicle decelerate, and subject vehicle accelerate; and 4) Front vehicle decelerate, and 

subject vehicle decelerate. Considering the multinomial nature of driving decisions, this study 

applies multinomial logit model. In the multinomial logit model, the probability of each driving 

decision can be written as: 

 

Pr(𝑌 = 1) =
exp (𝑋𝛽(1))

exp (𝑋𝛽(1)) + exp (𝑋𝛽(2)) + ⋯ + exp (𝑋𝛽(𝑛))
  (1) 

Pr(𝑌 = 2) =
exp (𝑋𝛽(2))

exp (𝑋𝛽(1)) + exp (𝑋𝛽(2)) + ⋯ + exp (𝑋𝛽(𝑛))
 (2) 

……  

Pr(𝑌 = 𝑖) =
exp (𝑋𝛽(𝑖))

exp (𝑋𝛽(1)) + exp (𝑋𝛽(2)) + ⋯ + exp (𝑋𝛽(𝑛))
 (3) 

 

Where, 

𝑌 is the driving decision of subject vehicle; 

𝛽(𝑖) is a set of estimated coefficients for the ith driving decision, i=1,2,3,4. 

𝑋 is a vector of explanatory variables, such as driving environment; 
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4.3 RESULTS 

4.3.1 Distribution of subject vehicle motion 

Figure 4.2 shows the distributions of subject vehicle acceleration, speed and distance to front 

vehicle. While the front vehicle has more influence on the driving decisions, which is captured 

by acceleration and deceleration, of subject vehicle in the longitudinal direction, the longitudinal 

acceleration is considered in this study. The red points indicate the acceleration of subject 

vehicle is over the 95th percentile value, which is volatile [56]. The figure shows that the 

longitudinal acceleration is volatile when distance to front vehicle is short, which indicates the 

subject vehicle is more likely to be aggressive, as shown in Figure 4.2 a (red points). Figure 4.2 

(b) represents the changes in subject vehicle acceleration based on the speed difference with 

front vehicle. It shows that the subject vehicle is more likely to accelerate when front vehicle’s 

speed is higher, while the subject vehicle is less likely to accelerate when front vehicle’s speed is 

much higher. The results indicate that the influence of front vehicle decrease along with the 

increase in the speed difference (Vf-Vs) between front vehicle and subject vehicle. Overall, the 

driving decision is highly influenced by front vehicle, which is analyzed in this study. 

 



 

61 

 

         
 

 
 

Figure 4. 2 Distributions of speed, acceleration and distance to front vehicle

a) 
b) 

c) 
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4.3.2 Gossip patterns in instantaneous driving decisions 

Figure 4.3 shows the driving decisions distributions of subject vehicle based on speed difference 

with front vehicle (a & c) and front vehicle acceleration (b & d). As this study focuses on the 

peer influence of front vehicle driving decision on subject vehicle driving decisions, more 

attention is paid to Figure 4.3 (b & d). On average, the subject vehicle is more likely to follow 

the driving decisions (b & d) of front vehicle but not the driving status (a & c) of front vehicle. It 

shows that the subject vehicle is more likely to accelerate as the front vehicle (21.54%), 

especially when the speed of front vehicle is higher (75.94%), which indicates that a higher 

speed front driver who is accelerating has more influence on the driving decisions of the subject 

vehicle. It is expected as the subject vehicle might want to accelerate to achieve a high speed as 

front vehicle. To differentiate car following model and the gossip concept, this study compares 

the General Motors (GM) car following model with gossip concept, as shown in Table 4.1. The 

common GM car following model explores the driving decisions of subject vehcile based on 

perception (speed differnce with front vehicle). This study investigates the driving decisions 

based on the decisions of front vehicle.  
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Table 4. 1 Comparision between General Motors (GM) car following model with gossip concept 
  GM Car following model Proposed gossip concept 

Similarities 

Following front vehicle Following front vehicle 

Influence on decision of subject 

vehicle 

Influence on decision of subject 

vehicle 

Differences 

Perception (e.g., speed difference) to 

decision, 

Ẍn+1(t + ∆t) = α[Ẋn(t)-Ẋn+1(t)] 

Social influence on acceleration 

decisions – decision to decision, 

r̅i(t + ∆t) =
1

|Ni(t)|
∑ r̅j(t + ∆t)

j∈Ni(t)

 

Theoretical-physics driven 
Theoretical-peer influence + data-

driven 

Lane change not integrated in decision 

(separate model) 
Lane change integrated in decision 

Subject vehicle should keep safe gaps 

with front vehicle 

Driving decisions under naturalistic 

driving environment 
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                                 a) Total cases                                                                                 b) Cases that front vehicle speed is higher 

 

                 
                                 c) Total cases                                                                                 d) Cases that front vehicle speed is higher 

Figure 4. 3 Subject vehicle driving decision based on relative speed to front vehicle (a & b) and front vehicle acceleration (c & d) 
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4.3.3 Descriptive statistics 

Table 4.2 shows descriptive statistics of key variables used for analysis. This study defines four 

types of driving decisions: 1) Front vehicle accelerate, and subject vehicle accelerate; 2) Front 

vehicle accelerate, and subject vehicle decelerate; 3) Front vehicle decelerate, and subject vehicle 

accelerate; and 4) Front vehicle decelerate, and subject vehicle decelerate. On average, nearly 

56% of time that the subject vehicle follows the driving decision of front vehicle. Of these, 

32.8% of time subject accelerates as front vehicle while 23.5% of time they decelerate as front 

vehicle, which indicates subject vehicle is more likely to follow the acceleration decision of front 

vehicle. Nearly 44% of time that subject vehicle does not follow the driving decision of front 

vehicle. Of these, 24.5% of time subject vehicle accelerates but front vehicle decelerates, which 

is higher than the time (19.2%) subject vehicle decelerates while front vehicle accelerates. On 

average, the subject vehicle keeps proper distance with front vehicle. Most of the time, the 

subject vehicle stays relative far away (distance to front vehicle is longer than 10 m) from the 

front vehicle (91.4%), while only 8.6% of time following the front vehicle closely. Of these 

following close to front vehicle driving situations, 6.9% of time there is no right or left side 

vehicles. Table 4.2 also shows the driving decisions of subject vehicle under two scenarios: front 

vehicle speed is higher and front vehicle speed is lower. On average, the subject vehicle is more 

likely to accelerate as front vehicle when front vehicle speed is higher (43.5%) compared with 

front vehicle speed is lower (22.8%). 
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Table 4. 2 Descriptive statistics of key variables 

Variable 

Total data 

(N=13,458) 

Partial data 

  
Front vehicle 

speed is higher 

(N= 6,478) 

Front vehicle 

speed is lower 

(N=6,971) 

Mean 
Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Min Max 

Follow front vehicle driving decision 0.563 0.496 0.586 0.493 0.542 0.498 0 1 

Subject 

vehicle 

driving 

decision  

Front vehicle acc. & subject 

vehicle acc.  
0.328 0.469 0.435 0.496 0.228 0.420 0 1 

Front vehicle acc. & subject 

vehicle dec.  
0.192 0.394 0.188 0.391 0.196 0.397 0 1 

Front vehicle dec. & 

subject vehicle acc. 
0.245 0.43 0.226 0.418 0.262 0.440 0 1 

Front vehicle dec. & 

subject vehicle dec. 
0.235 0.424 0.151 0.358 0.314 0.464 0 1 

Driving 

situation 

Type 1: F=1 (<= 10m), L=1 

(lon <= 10), R=1 (lon <= 

10) 

0.001 0.039 0.001 0.037 0.002 0.040 0 1 

Type 2: F=1 (<= 10m), L=1 

(lon <= 10), R=0 (lon > 10) 
0.006 0.076 0.005 0.069 0.007 0.083 0 1 

Type 3: F=1 (<= 10m), L=0 

(lon > 10), R=1 (lon <= 10) 
0.01 0.099 0.009 0.093 0.011 0.104 0 1 

Type 4: F=1 (<= 10m), L=0 

(lon > 10), R=1 (lon > 10) 
0.069 0.253 0.052 0.222 0.084 0.278 0 1 

Type 5: F=0 (> 10m), L=1 

(lon <= 10), R=1 (lon <= 

10) 

0.004 0.06 0.002 0.050 0.005 0.068 0 1 

Type 6: F=0 (> 10m), L=1 

(lon <= 10), R=0 (lon > 10) 
0.04 0.196 0.036 0.186 0.043 0.204 0 1 

Type 7: F=0 (> 10m), L=0 

(lon > 10), R=1 (lon <= 10) 
0.066 0.249 0.054 0.225 0.078 0.269 0 1 

Type 8: F=0 (> 10m), L=0 

(lon > 10), R=1 (lon > 10) 
0.804 0.397 0.841 0.366 0.770 0.421 0 1 

Note: F=1 (<= 10m) referes to subject vehicles keep 10 meters away from front vehicle, 

L=1 (lat <= 5, lon <= 10) refers to there is a left surrounding vehicle whitin a 10 meter range, 

R=1 (lat <= 5, lon <= 10) refers to there is a right surrounding vehicle whitin a 10 meter range. 

 

As mentioned early, this study explores two-step decisions from micro-level and aggregated 

event-level. This study further explores the driving decisions at the aggregated car following 

events level, that is a vehicle can make a lane change or continue to follow front vehicles. The 

lane change behaviors can be identified based on method proposed in Chapter 2. Table 4.3 shows 

the descriptive statistics for subject vehicle makes a lane change and continues to follow front 

vehicle. The average speed of subject vehicle who makes a lane change (15.48 mph) is higher 
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than these who continue to follow front vehicle (14.10 mph), which indicates the subject vehicle 

might want to achieve high speed by making a lane change. 

 

Table 4. 3 Descriptive statistics for comparison between lane change and non-lane change event 

Variables N Mean Std.Dev. Min Max 

Subject vehicle 

makes a lane 

change 

Front vehicle speed (mph) 59682 15.482 10.59 0 26.47 

Subject vehicle speed 

(mph) 
59682 15.751 10.66 0 36.81 

Speed difference (mph) 59682 -0.269 2.805 
-

22.583 
15.86 

Subject vehicle 

continues to 

follow front 

vehicle 

Front vehicle speed (mph) 134588 14.102 10.12 0 39.9 

Subject vehicle speed 

(mph) 
134588 14.386 10.14 0 41.99 

Speed difference (mph) 134588 -0.284 2.916 
-

26.789 
15.86 

 

4.3.4 Modeling results 

Table 4.4 shows the multinomial logit modeling results using total data and separated data (front 

vehicle speed is higher and front vehicle speed is lower). Although the goodness-of-fit is on the 

low side, most variables have shown significant correlation with the response variables. The 

correlations of driving decision differ under two scenarios: front vehicle speed is higher and front 

vehicle speed is lower. 

In the total data model, the signs and magnitudes of constant value indicate that the 

subject vehicle is more likely to accelerate as front vehicle or the subject vehicle accelerates but 

front vehicle decelerates, compared to the base of subject vehicle decelerating as front vehicle. It 

seems the subject vehicles are more likely to accelerate, especially when front vehicle is 

accelerating, which indicates that the acceleration decisions of front vehicle have a larger 

influence on the driving decision of subject vehicle. The total data model also indicates that the 

subject vehicle is less likely to decelerate when front vehicle is accelerating, compared with 
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subject vehicle decelerating as front vehicle. The driving performance or operation of subject 

vehicle is restricted when front vehicle is decelerating, therefore, the subject vehicle might need 

to decelerate to avoid a crash with front vehicle. 

 The results of driving situations from total data model shows that comparing to base of 

type 8 driving situation which indicates that subject vehicle keeps relative far away from the 

front vehicle and without surrounding vehicle, the subject vehicle is less likely to accelerate as 

front vehicle, especially when the distance to front vehicle is lower (<=10 m) and surrounded 

vehicles on left and right sides, which indicates a complex and congested driving situation. One 

possible reasons might be that the subject vehicle might be distracted when driving situation is 

more complex, therefore, the subject vehicle is less likely to accelerate as front vehicle. 

 The results of separated model show interesting results. The signs and magnitudes of 

constant values indicates that comparing to the base of subject vehicle decelerating as front 

vehicle, the subject vehicle is more likely to accelerate and less likely to deceleration when front 

vehicle speed is higher, while opposite when front vehicle speed is lower. The results are 

consistent with the expection line. In real driving environment, drivers might want to achieve 

relative high speed, therefore, they are more likely to accelerate as high speed front vehicle. 

Similarity, the subject vehicle is less likely to accelerate as front vehicle under complex and 

congested driving situations not matter front vehicle speed is high or not. 
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Table 4. 4 Multinomial Logit modeling results for driving decisions 

Variables (response variable = driving decisions) 
Total data 

Separated data 

Front vehicle speed is 

higher 

Front vehicle speed 

is lower 

β P-value β P-value β P-value 

Front vehicle acc. & subject vehicle acc. 

Driving 

situation 

Base: Type 8: 

F=0 (> 10m), 

L=0 (lon > 

10), R=1 (lon 

> 10) 

Type 1: F=1 (<= 10m), L=1 (lon <= 10), 

R=1 (lon <= 10) 
-1.800 0.005*** -2.513 0.025** -1.119 0.158 

Type 2: F=1 (<= 10m), L=1 (lon <= 10), 

R=0 (lon > 10) 
-1.080 0.000*** -1.295 0.002*** -0.830 0.043** 

Type 3: F=1 (<= 10m), L=0 (lon > 10), 

R=1 (lon <= 10) 
-1.163 0.000*** -1.378 0.000*** -0.857 0.01*** 

Type 4: F=1 (<= 10m), L=0 (lon > 10), 

R=1 (lon > 10) 
-0.449 0.000*** -0.599 0.000*** -0.118 0.306 

Type 5: F=0 (> 10m), L=1 (lon <= 10), 

R=1 (lon <= 10) 
-0.925 0.012** -0.028 0.966 -1.466 0.019** 

Type 6: F=0 (> 10m), L=1 (lon <= 10), 

R=0 (lon > 10) 
-0.199 0.089* 0.161 0.430 -0.388 0.023** 

Type 7: F=0 (> 10m), L=0 (lon > 10), R=1 

(lon <= 10) 
-0.184 0.052* -0.119 0.469 0.003 0.980 

Constant 0.414 0.000*** 1.127 0.000*** -0.269 0.000*** 

Front vehicle acc. & subject vehicle dec. 

Driving 

situation 

Base: Type 8: 

F=0 (> 10m), 

L=0 (lon > 

10), R=1 (lon 

> 10) 

Type 1: F=1 (<= 10m), L=1 (lon <= 10), 

R=1 (lon <= 10) 
-0.733 0.169 -0.270 0.704 -1.659 0.118 

Type 2: F=1 (<= 10m), L=1 (lon <= 10), 

R=0 (lon > 10) 
-1.070 0.002*** -1.225 0.02** -0.966 0.035** 

Type 3: F=1 (<= 10m), L=0 (lon > 10), 

R=1 (lon <= 10) 
-0.497 0.032** -0.387 0.264 -0.626 0.054* 

Type 4: F=1 (<= 10m), L=0 (lon > 10), 

R=1 (lon > 10) 
-0.513 0.000*** -0.442 0.009* -0.515 0.000*** 

Type 5: F=0 (> 10m), L=1 (lon <= 10), 

R=1 (lon <= 10) 
-0.455 0.227 0.018 0.981 -0.467 0.300 

Type 6: F=0 (> 10m), L=1 (lon <= 10), 

R=0 (lon > 10) 
-0.220 0.106 -0.239 0.345 -0.100 0.542 

Type 7: F=0 (> 10m), L=0 (lon > 10), R=1 

(lon <= 10) 
0.051 0.619 0.059 0.749 0.139 0.270 

Constant -0.143 0.000*** 0.269 0.000*** -0.420 0.000*** 

Front vehicle dec. & subject vehicle acc. 

Driving 

situation 

Base: Type 8: 

F=0 (> 10m), 

L=0 (lon > 

10), R=1 (lon 

> 10) 

Type 1: F=1 (<= 10m), L=1 (lon <= 10), 

R=1 (lon <= 10) 
-15.234 0.978 -15.853 0.988 -14.429 0.978 

Type 2: F=1 (<= 10m), L=1 (lon <= 10), 

R=0 (lon > 10) 
-1.249 0.000*** -2.379 0.002*** -0.747 0.048** 

Type 3: F=1 (<= 10m), L=0 (lon > 10), 

R=1 (lon <= 10) 
-1.040 0.000*** -1.318 0.002*** -0.843 0.008*** 

Type 4: F=1 (<= 10m), L=0 (lon > 10), 

R=1 (lon > 10) 
-0.479 0.000*** -1.043 0.000*** -0.164 0.142 

Type 5: F=0 (> 10m), L=1 (lon <= 10), 

R=1 (lon <= 10) 
-1.510 0.003*** -14.393 0.981 -1.095 0.032** 

Type 6: F=0 (> 10m), L=1 (lon <= 10), 

R=0 (lon > 10) 
-0.175 0.161 -0.003 0.990 -0.178 0.246 

Type 7: F=0 (> 10m), L=0 (lon > 10), R=1 

(lon <= 10) 
-0.175 0.083* -0.234 0.209 -0.060 0.622 

Constant 0.123 0.000*** 0.507 0.000*** -0.128 0.000*** 

Base: Front vehicle dec. & subject vehicle dec. 

Statistical 

summary 

Sample size 13458 6478 6971 

Likelihood at 0 -18402.032 -8417.422 -9557.123 

Likelihood at β -18336.766 -8369.340 -9525.897 

Prob. > χ2 130.530 96.160 62.450 

Pseudo R2 0.004 0.006 0.003 
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4.5 CONCLUSIONS 

This study contributing by establishing a new framework to understand the instantaneous driving 

decisions of subject vehicle in car following scenario. A “Gossip” concept which captures the 

peer influence of surrounding vehicles on instantaneous driving decisions of subject vehicle is 

proposed. Instead of exploring the driving decision of subject vehicle from perception aspect 

(speed difference with front vehicle), this study analyzes the instantaneous driving decisions 

under naturalistic driving environment from decision to decision aspect. In addition, a two-step 

driving decision procedure is analyzed: 1) micro-level driving decisions, which defined by 

acceleration and deceleration, and 2) aggregated event-level driving decisions, which captured 

by subject vehicle making a lane change or continuing to follow front vehicle during a car 

following event. The sufficient geo-reference trajectory data collected from connected vehicle 

enables the analysis. 

 To explore correlations of driving decision, this study also creates new variables which 

define different driving situations based on relative distance and speed to front vehicles. The 

modeling results shows that, on average, the subject vehicles are more likely to accelerate as 

front vehicle to achieve relative high speed. However, they are less likely to accelerate as front 

vehicle when the driving situation is more complex and congested, compared with related non-

congested driving situation. 
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CHAPTER 5 THE ROLE OF DRIVING VOLATILITY ON THE OCCURRENCE OF A 

LANE CHANGE CRASH OR NEAR CRASH  
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This chapter is a revised version to be submitted by Meng Zhang, and Asad Khattak 

 

ABSTRACT 

This study investigates relationships between lane change or merge related crashes or near 

crashes and driving volatility, which quantifies variability in instantaneous driving decisions, by 

analyzing 1,026 lane change or merging related events along with corresponding naturalistic 

driving trajectory data (30 seconds duration) collected from the Strategic Highway Research 

Program-Naturalistic Driving Study. The study measures driving volatility by analyzing 

fluctuations in longitudinal and lateral accelerations (reported at 10 HZ) archived in the 

trajectory data. A measure called the coefficient of variation, defined as the ratio of standard 

deviation to mean, is used to quantify the volatility of driving behavior in this study. The crash 

outcome contains three categories: baseline, i.e., not a crash (58%), near crash (19%) and crash 

(23%). To account for the multinomial nature of crash outcomes and capture the unobserved 

heterogeneity in the data due to unobserved factors, a rigorous multilevel mixed-effect 

multinomial logit regression model is estimated in this study. The modeling results show that 

high lateral driving volatility is associated with higher chances of lane change or merge related 

crashes or near crashes. Furthermore, the chances of a crash or near crash are higher when a 

driver makes a lane change or merging maneuver under free flow conditions when a leading 

vehicle is present. These results have the potential to be used in lane change or merge warning 

systems that help drivers make more informed lane change or merging decisions in a connected 

vehicle driving environment. 
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5.1 INTRODUCTION 

The lane change or merging event is a common phenomenon in traffic flow and it can endanger 

the stable traffic flow and result in safety outcome. In 2015, the lane change or merging crashes 

accounted for 4.6% (451, 000) of all single- and two- vehicle crashes. Of these, 1.6% are fatal 

while 2.9% are injured [57]. Although such crashes do not account for a sizable portion of all 

roadway crashes, the decrease in such crashes can still have substantial benefits regarding social 

cost. 

Previous studies have shown evidence that a lane change or merging related crash is 

correlated with various factors, such as driving and vehicle factors [1-8]. Variability in 

instantaneous driving decisions could be the leading contributor of unsafe events. Since a lane 

change or merging related event is an operation that a driver may show high variation in 

instantaneous driving decisions, i.e., abrupt acceleration or hard braking, it is very important to 

get an in-depth understanding of effects of these instantaneous decisions on the occurrence of a 

lane change or merging related crash, which is under-explored in previous studies.  

The objective of this study is to explore the correlation between the propensity of a lane 

change or merging related crash or near crash and driving volatility which quantifies the 

variability in instantaneous driving decisions, as well as the traffic parameters (e.g., traffic flow 

density). The critical part is the measurement of variability in the instantaneous driving decision. 

Liu and Khattak proposed a concept called “driving volatility” to quantify extreme driving 

behavior by analyzing the distributions of acceleration and speed [10]. With sufficient trajectory 

data collected from Strategic Highway Research Program (SHRP 2) Naturalistic Driving Study 

(NDS), this study uses fluctuations in longitudinal and lateral acceleration (reported at 10 HZ) to 

measure driving volatility, that is a measure called coefficient of variation (COV), defined as the 
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ratio of standard deviation to mean, is used to quantify the volatility of driving behavior [43]. To 

sum, two key questions to be answered in this study are: 

1) How will the driving volatility be measured through the analysis of longitudinal and 

lateral acceleration? 

2) What are the correlates of a lane change or merging related crash propensity with 

driving volatility? 

 

5.2 LITERATURE REVIEW 

Lane change decisions and execution 

Many previous studies put efforts on the development of mathematical models to model or 

simulate lane change behavior, or study the relationship between lane change and traffic flow. 

For example, macroscopic models are developed to study various traffic flow characteristics in 

the lane change, including the exchange rate of flows between lanes [58, 59], and frequency of 

lane change maneuvers [60]. With the development of microscopic traffic simulation tools, lane-

changing behavior attracted more attention at the micro level. Lane change is usually classified 

as either mandatory (MLC) or discretionary (DLC). But they are modeled based on the three 

steps: 1) necessity checking of a lane change; 2) choosing target lane; and 3) gap acceptance 

decision. Rule-based models [28] and discrete choice-based (DCB) models [61] were the most 

two popular models. In addition, some studies focused on the impacts of lane change on traffic 

state or delay. The adverse impacts of lane change on traffic flow are recognized in previous 

studies [62, 63]. Wang et al. explored the mechanism underlying the delays by using vehicle 

trajectory data extracted from the video. Results show imbalance impacts of the lane change; that 
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is vehicles complete their lane change maneuver and return to steady state quicker when 

following an entering vehicle than when following an existing vehicle [63]. 

Although many lane change models are developed, the majority of existing models 

mainly focus on decision making part of a lane change. Another critical process, the lane change 

execution, which happens after drivers have decided to change lane and find an acceptable gap, 

is analyzed by few studies. The duration of lane change execution is explored. Toledo and Zohar 

estimated lane change duration for passenger cars and trucks respectively by applying an 

algorithm [64]. Moridpour et al. studied driver behavior in lane change execution and proposed a 

model for lane change execution behavior, but only the longitudinal movement of the vehicle is 

considered in this study [65]. Since a lane change related event is a relative lateral movement, 

this study will involve the instantaneous lateral driving decision in the analysis. 

 

Lane change related crashes 

Studies also analyzed the lane change related crashes. Chovan et al. found that a lane change 

related crash occurs commonly when a subject vehicle makes a lane change and hits another 

vehicle on the adjacent lane driving with similar speed [1, 2]; sideswipe crashes account for the 

highest percentage in these lanes change related crashes. Some studies compared the propensity 

of a lane change related crash occurring at the center lane with right or left side lane [2]. The 

influence of real-time traffic flow and geometric factors were analyzed. They reported that traffic 

flow related variables are statistically associated with a lane change related crash, while speed or 

occupancy related variables are not significant. Chen et al. focuses on the effects of the lane-

specific real-time traffic factors and found that the propensity of a lane change related crash is 
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associated with average flow into the target lane at the first downstream station and flow ratio at 

the second downstream [3]. 

 Some studies conducted depth analysis regarding the correlation between lane change, 

short-term traffic flow, and the lane change related crash. Using loop detector data, Park and 

Ritchie observed high variation in speed during a lane change and proposed that the propensity 

of a lane change crash may increase along with the increase of variations in vehicle speed [66]. 

But the results were not validated by using real crash data. 

 

Previous studies have analyzed lane change decisions and lane change related crashes separately. 

These studies indicate the occurrence of a lane change related crash is associated with various 

factors, such as traffic flow parameters. In addition, the important role of driving decision in lane 

change behavior is recognized in previous studies. A lane change event is a relative micro driver 

level maneuver, however, to the best of our knowledge, the in-depth understanding of 

instantaneous lateral driving decision during a lane change maneuver is still under-discussed. In 

order to fill the gap, this study analyzes the correlates of lane change or merging related crash (or 

near crash) propensity with driving volatility which quantifies variability in instantaneous 

driving decisions; which is also under-explored in previous studies. Given the sufficient 

naturalistic trajectory data and lane change or merging related event summary data maintained 

by SHRP 2 NDS, the analysis is possible. A unique aspect of this study is the in-depth 

understanding of variability in instantaneous longitudinal and lateral driving decisions prior to 

the occurrence of a lane change or merging related crash or near crash by estimating a rigorous 

statistical modeling using merged data collected from the naturalistic driving environment. 
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5.3 METHOD 

5.3.1 Data source 

The data used for analysis is the Second Strategic Highway Research Program (SHRP 2) 

Naturalistic Driving Study (NDS) data set. Approximately 3,400 participants driver participated 

and over 4,300 years of naturalistic driving data between 2010 and 2013 collected from six sites 

around the United States, such as Seattle, Washington; Tampa, Florida; and Buffalo, New York. 

The data is collected from over 3,300 participant vehicles equipped with a data acquisition 

system (DAS). The data elements include four video view (driver’s face, driver’s hand, forward 

roadway, rear roadway), vehicle network information (e.g., speed, brake, accelerator position), 

and information from additional sensors (e.g., forward radar, accelerometers). The data used in 

this study are on-board sensor trajectory data (30 seconds duration) and event summary data set 

provided by Oak Ridge National Labs (ORNL). A total of 9,593 trips (events) made by 1,580 

drivers representing 2,190,316 driving records are provided. Nearly 90 variables (17 in trajectory 

data set while 76 in event summary data set) are involved in the two data sets and the 

corresponding key example variables are listed:  

1) On board sensor trajectory data: participantID, longitudinal and lateral acceleration 

(reported at 10 HZ), and vehicle speed (reported at 1 HZ); and  

2) Event summary data: participantID, nature of crash outcome (crash, near crash and 

baseline, e.g., not a crash), pre-incident maneuver (e.g., lane change), location (e.g., 

intersection), situational factors (e.g., free flow) and roadway geometric (e.g., grade 

down). More detail information is available in the description of SHRP 2 NDS data 

sets [67]. 
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Since this study focuses on these lateral movement related events, this study extracts 

these events based on the rule such as the pre-incident maneuver is reported as changing lane or  

merging. After data cleaning and error check, a total of 1,026 lane change or merging related 

events representing 255,720 driving records are selected for analysis. The data is error-checked 

and validated using descriptive statistics. 

Figure 5.1 shows the final data structure and conceptual framework. These trajectories 

driving records are aggregated to the trip level and then are linked to the event summary file 

based on the same variable (“participantID”) within two data sets. The trajectory data is used to 

calculate the driving volatility of each trip based on fluctuations in longitudinal and lateral 

acceleration. More detailed calculation rule is shown in the following context. Note that the 

nature of crash outcome contains three categories as reported by the description of SHRP 2 NDS 

data sets [67]: 

• Baseline event: refers to the “normal” driving event which is not a crash event. These 

baseline events are randomly selected through a sample stratified by participant and the 

proportion of time driven. Note the driving time only includes driving speeds above 5 

mph in order to avoid the time influence of long stopping and to concentrate on the risk 

periods [67]; 

• Near crash event: refers to a non-crash event but a rapid evasive maneuver is needed by 

the subject vehicle, or another vehicle, pedestrian, cyclist, or animal, to avoid a crash. 

The definition of a rapid evasive maneuver is base on vehicle control inputs, such as the 

steering, braking, or acceleration; 

• Crash event: refers to the contact between subject vehicle with a moving or fixed object 

at any speed which results in the measurable transfer or dissipation in kinetic energy. 
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These crashes also include situations that the subject vehicle strikes another vehicle, 

pedestrian or cyclist, animal, roadside barrier or object on or off the roadway, as well as 

non-premeditated departures of the roadway where at least one tire leaves the paved. 

 

 
Figure 5. 1 Data structure and conceputal framework 

 

5.3.2 Driving volatility 

The understanding of variability in the instantaneous driving decision during a lane change or 

merging related event is a critical part of this study. Previous studies have proposed methods, 

such as giving a fixed cut-off value of acceleration as the threshold, to differentiate aggressive 

driving and calm driving [34-37]. In fact, the acceleration ability is associated with driving 

speed. The higher in speed, the lower in acceleration ability due to aerodynamic resistance. 

Noticing the variation in acceleration across different speed ranges, Liu and Khattak analyzed the 

relationship between speed and acceleration and proposed a speed-acceleration based method to 

measure driving volatility [10]. However, due to the insufficient driving records of vehicle speed 

(reported at 1 HZ) in SHRP 2 NDS trajectory data for each lane change or merging event, this 

study uses fluctuations in longitudinal and lateral acceleration to measure the driving volatility. 
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Thus, a measure called coefficient of variation (COV), also defined as the ratio of standard 

deviation to mean, is used to quantify the variability in instantaneous driving decisions [43]. 

COV is a standardized measure of relative dispersion in statistics [68]. Since the different 

patterns in longitudinal and lateral acceleration or deceleration, four types of driving volatility 

are measured in this study. The formulas for COV calculation are shown below: 

 

Longitudinal − acceleration: 𝐶𝑂𝑉𝑎𝑐𝑐𝑥
=

𝑆𝑡𝑑. 𝐷𝑒𝑣.𝑎𝑐𝑐𝑥

𝑀𝑒𝑎𝑛𝑎𝑐𝑐𝑥

 (1) 

Longitudinal − deceleration: 𝐶𝑂𝑉𝑎𝑐𝑐𝑥
=

𝑆𝑡𝑑. 𝐷𝑒𝑣.𝑑𝑒𝑐𝑥

𝐴𝑏𝑠(𝑀𝑒𝑎𝑛𝑑𝑒𝑐𝑥
)
 (2) 

Lateral − acceleration (right side): 𝐶𝑂𝑉𝑅_𝑎𝑐𝑐𝑦
=

𝑆𝑡𝑑. 𝐷𝑒𝑣.𝑅_𝑎𝑐𝑐𝑦

𝑀𝑒𝑎𝑛𝑅_𝑎𝑐𝑐𝑦

 (3) 

Lateral − acceleration (left side): 𝐶𝑂𝑉𝐿_𝑎𝑐𝑐𝑦
=

𝑆𝑡𝑑. 𝐷𝑒𝑣.𝐿_𝑎𝑐𝑐𝑦

𝐴𝑏𝑠(𝑀𝑒𝑎𝑛𝐿_𝑎𝑐𝑐 )
 (4) 

 

5.3.3 Model structure 

After measuring driving volatility, this study estimates rigorous statistical model to investigate 

the correlates of crash propensity with related factors, especially the driving volatility. Three 

multinomial scales: 1- baseline (not a crash); 2 - near crash; and 3 - crash, are used in the crash 

outcome as the response variable. Considering the hierarchical data structure of lane change or 

merging related events (shown in Figure 5.2) that these events are nested in the drivers and 

accounting for unobserved heterogeneity due to unobserved factors, a multilevel mixed-effect 

multinomial logit model is estimated. The multilevel multinomial logit model is a mixed 

Generalized Linear Model with linear predictors ηij
(m)

 [69]: 
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ηij
(m)

= 𝛼(𝑚) + 𝜷(𝑚)′𝒙𝑖𝑗 + ξj
(m)

+ δij
(m)

  Equation (1) 

And multinomial logit link: 

 

P(Yij = m|xij, 𝛏j, 𝛅ij) =
exp{ηij

(m)
}

1+∑ exp{η
ij
(l)

}𝑀
𝑙=2

  Equation (2) 

Where, 

m = 1, 2, . . . ,M denotes the response category (crash outcome); 

Yij = the crash outcome of jth event generated by ith, taking value from {1, , . . . ,M}; 

ηij
(m)

 = linear predictor; 

𝒙𝑖𝑗 = a set of explanatory variables, such as driving volatility; 

𝜷(𝑚) = a coefficient set of explanatory variables, m = 2, 3, . . . ,M; 

𝛼(𝑚) = Constant term, m = 2, 3, . . . ,M; 

j = 1, 2, . . . , J denotes the cluster (driver); 

i = 1, 2, . . . , nj denotes the subject (lane change or merging event) of jth cluster. 

𝛏j and 𝛅ij are sets of random errors capturing the unobserved heterogeneity at cluster (driver) and 

subject (lane change or merging event) level, respectively; ξj
′ = (ξj

(2)
, … , ξj

(M)
)

′

~𝑁(𝟎, 𝚺𝜉); 

δij
(m)

= (δij
(2)

, … , δij
(M)

~𝑁(𝟎, 𝚺𝛿); 

 

The likelihood of model (1)-(2) are calculated by utilizing the conditional independence 

from the assumptions: 
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L(θ) = ∏ ∫ ∏ {∫ P(Yij = m|xij, ξj, δij)𝑓(δij)𝑑δij}
𝑛𝑗

𝑖=1
𝐽
𝑗=1 𝑓( ξj)𝑑ξj  Equation (3) 

Where θ′ = (𝛼(2), … , 𝛼(𝑚), 𝜷(2), … , 𝜷(𝑚), 𝚺𝜉 , 𝚺𝛿). The coefficients are estimated using 

maximum likelihood method. A likelihood ratio test is applied to compare the multilevel mixed-

effect multinomial logit model with traditional multinomial logit model. 

 

 
Figure 5. 2 Data structure 

 

5.4 RESULTS 

5.4.1 Driving speed, longitudinal and lateral acceleration 

Figure 5.3 presents the distribution between driving speed, longitudinal acceleration, and lateral 

acceleration using limited available records, reported at 1 HZ. The results are consistent with the 

previous study [10]. The longitudinal and lateral acceleration ability decrease along with the 

increase of vehicle speed (shown in Figure 5.3 a and b). There is a relative rhombus relationship 

between longitudinal and lateral acceleration, as shown in Figure 5.3 (c). Figure 5.3 (a) shows 

interesting results regarding magnitudes in longitudinal acceleration and deceleration. There are 

many variations in longitudinal deceleration, while the longitudinal acceleration is much more 

stable. Generally, when a subject vehicle is approaching the front vehicle whose speed is lower, 

the subject driver might need to make a hard braking in order to avoid the collision with the front 
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vehicle. Note that there is no lateral deceleration. Therefore, the positive and negative value in 

lateral acceleration represent acceleration to the right and left side, respectively. 

 

 
Figure 5. 3 Relationship between speed, lateral acceleration and longitudinal acceleration 

 

5.4.2 Descriptive statistics 

Table 5.1 shows descriptive statistics of key variables in lane change or merging related baseline 

event (not a crash), near crashes and crashes. A total of 1,026 lane change or merging related 

events are selected for analysis. Of these, 22.7% events result in the crashes, 19.3% are near 

crashes and 58% are baseline events. On average, there is no much difference in volatility 

between longitudinal deceleration and lateral acceleration, with a value close to 1. The volatility 

of longitudinal acceleration is lower with a value 0.83. 

Nearly 46.7% of drivers are making the lane change or merging under free flow without 

leading traffic condition, only 5.7% of them will make a lane change or merging under stable 
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flow with maneuverability or speed restriction; where they might not make a lane change or 

merging maneuver as they are besieged by surrounding vehicles. Subject drivers are more likely 

to make a lane change or merging when the grade is level (89.3%). 

 

Table 5. 1 Descriptive statistics of lane change or merging events using NDS data (N=1026) 

Variables N Mean 
Std. 

Dev. 
Min Max 

Crash 

propensity 

Not a crash (baseline) 1026 0.580 0.494 0 1 

Near crash 1026 0.193 0.395 0 1 

Crash 1026 0.227 0.419 0 1 

Driving 

volatility 
𝐶𝑂𝑉𝑎𝑐𝑐𝑥

 1026 0.830 0.319 0.293 3.464 

𝐶𝑂𝑉𝑑𝑒𝑐𝑥
 1026 0.940 0.402 0.075 3.351 

𝐶𝑂𝑉𝑅_𝑎𝑐𝑐𝑦
 1026 1.081 0.416 0.197 4.314 

𝐶𝑂𝑉𝐿_𝑎𝑐𝑐𝑦
 1026 0.945 0.417 0 4.268 

Roadway 

design 

Divided (median strip or barrier) 1026 0.358 0.480 0 1 

No lanes 1026 0.111 0.314 0 1 

Not divided (center 2-way left turn 

lane) 
1026 0.060 0.238 0 1 

Not divided (simple 2-way traffic 

way) 
1026 0.426 0.495 0 1 

One-way traffic 1026 0.045 0.207 0 1 

Traffic density Free flow, no lead traffic 1026 0.467 0.499 0 1 

Free flow, leading traffic 1026 0.263 0.441 0 1 

Flow with some restrictions 1026 0.177 0.382 0 1 

Stable flow, maneuverability or 

speed restricted 
1026 0.057 0.231 0 1 

Others, e.g., unstable flow 1026 0.036 0.187 0 1 

Location Intersection or junction 1026 0.557 0.497 0 1 

Alignment Straight roadway 1026 0.861 0.347 0 1 

Grade Level 1026 0.893 0.310 0 1 

Dip or grade down 1026 0.036 0.187 0 1 

Grade up or hillcrest 1026 0.071 0.257 0 1 
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5.4.3 Modeling results 

Crash propensity 

Table 5.2 shows the modeling results of the multilevel mixed-effect multinomial logit model, 

including fixed effects and random effects, for the crash or near crash propensity of the driver 

involved in a lane change or merging event. The modeling results quantifying the effects of 

driving volatility as well as traffic flow parameters on driver crash propensity. The reported 

likelihood ratio test of multilevel model vs. regular model indicates significant variability 

between drivers to favor a multilevel mixed-effect multinomial logit model at 95% confidence 

level. As expected, most explanatory variables have shown significant correlations with crash 

propensity at 95% confidence level and the signs of coefficients are expected. Although the 

explanatory variables are significant at the event level, the correlates may vary across different 

drivers. 

 

5.4.4 Discussion of key variables 

Driving volatility 

Compared with base level (baseline event, such as the normal lane change or merging event), 

volatile driving behavior captured by high driving volatility (e.g., hard braking) is associated 

with higher chances of a crash or near crash. More attention should be paid to the volatility of 

longitudinal deceleration, as it has shown much high magnitude with a positive sign in 

coefficient. High volatility might due to the high-speed subject vehicle is approaching the low-

speed front vehicle in a relatively short distance, thus the subject vehicle has to make hard 

braking in the longitudinal direction, or make abrupt lateral acceleration to avoid the collision 

with the front vehicle or to achieve the satisfied speed through changing lanes. Further study is 
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needed when detailed data regarding the driving environment is available. If proper warning 

(e.g., relative distance and speed warning) could be provided to subject or front drivers to help 

them to adjust their driving behaviors under a connected vehicle driving environment, a crash or 

near crash might be avoided; this can be beneficial for connected vehicles at Level 1 or 2 

automation, as the driver assistance system could help the execution of acceleration or 

deceleration using information about the driving environment, such as relative distance and 

speed to front vehicle in this case. 

The subject vehicle with high volatile behavior in lateral acceleration to the left side is 

more likely to be involved in a crash or near crash, compared to right side. Generally, the speed 

on the left side lane is higher than the speed on the right side lane, the subject vehicle might need 

to make a more abrupt acceleration in short time to make a successful lane change or merging. 

The coefficient of the driving volatility of longitudinal acceleration shows abnormal signs. High 

volatility in longitudinal acceleration is marginally significantly associated with the lower chance 

of a near crash, while it is not significantly correlated with a crash event. The odds of a near 

crash for the driving volatility of lateral acceleration to the left side are -73% ([exp(β)-1]*100%), 

compared with the base condition (normal lane change or merging). 

 

Driving situational factors 

The effects of driving situational factors are also explored. Compared with base condition (free 

flow with no leading vehicle), although subject vehicle makes less lane change or merging 

maneuver under free flow with no leading vehicle or under stable flow with speed restriction, the 

chance of a crash or near crash is higher. The results are consistent with the expected line. Speed 

restriction indicates the subject vehicles are besieged by surrounding vehicles with relatively 
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short distance, thus they are more likely to be involved in a crash or near crash when making a 

lane change or merging maneuver due to high chance of exposure to other vehicles. Note that 

stable flow with maneuverability or speed restricted is associated with higher chance of a near 

crash than a crash. Restricted speed indicating low speed, the subject vehicle can make a full stop 

easily when making a lane change or merging under that situation, as a result, a crash can be 

avoided. 

 

Roadway geometric and design factors 

Some crashes or near crashes can be caused by roadway geometric and design. The chance of a 

crash or near crash is higher when the grade is down compared to when the grade is upgrade. 

The subject vehicle will obtain a large additional acceleration, as a result, the speed of the subject 

vehicle increases and it is hard to make an instant full stop when making a lane change or 

merging. Therefore, the chance of a crash or near crash is higher. 

The subject vehicle driving in the divided roadway or in not divided way (center 2-way 

left turn lane) are less likely to be involved in a crash or near crash, compared with driving in the 

roadway without lanes. The traffic condition might be more complex in no lane roadway, such as 

vehicles might not follow the roadway rules, therefore, the chance of a crash or near crash is high 

when driving on roadway without lanes. Unexpected, the straight roadway is associated with the 

high chance of a crash or near crash, compared with base (e.g., curve). 

 

Location factors 

Besides above mentioned explanatory variables, this study also untangles the effects of location 

attributes. Intersection or junction are associated with the high chances of a crash or near crash.  
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Table 5. 2 Multilevel mixed-effect multinomial logit modeling results for lane change or 

merging related crash propensity (N=1,026) 

Variables (base: Not a crash) 
Near crash Crash 

β P-value β P-value 

Driving 

volatility 

𝐶𝑂𝑉𝑎𝑐𝑐𝑥
 -1.322 0.062 * 0.871 0.154  

𝐶𝑂𝑉𝑑𝑒𝑐𝑥
 10.742 0.000 *** 9.338 0.000 *** 

𝐶𝑂𝑉𝑅_𝑎𝑐𝑐𝑦
 2.323 0.008 *** 3.824 0.000 *** 

𝐶𝑂𝑉𝐿_𝑎𝑐𝑐𝑦
 7.154 0.000 *** 7.811 0.000 *** 

Roadway design  

Base: No lanes 

Divided (median strip or 

barrier) 
-1.956 0.024 ** -2.822 0.001 *** 

Not divided (center 2-way 

left turn lane) 
-2.413 0.053 * -3.652 0.003 *** 

Not divided (simple 2-way 

traffic way) 
-1.171 0.108  -1.729 0.010 *** 

One-way traffic -0.949 0.417  -1.475 0.192  

Traffic density  

Base: Free flow, 

no lead traffic 

Free flow, leading traffic 1.414 0.013 ** 0.569 0.299  

Flow with some restrictions 2.845 0.000 *** 1.648 0.035 ** 

Stable flow, maneuverability 

or speed restricted 
4.784 0.000 *** 2.523 0.036 ** 

Others, e.g., unstable flow 4.582 0.001 *** 1.896 0.207  

Location Intersection or junction 2.473 0.000 *** 2.647 0.000 *** 

Alignment Straight roadway 1.496 0.052 * 1.843 0.014 ** 

Grade  

Base: Dip or 

grade down 

Level -4.342 0.002 *** -4.756 0.000 *** 

Grade up or hillcrest -4.828 0.003 *** -4.837 0.002 *** 

Constant 
-

17.938 
0.000 *** 

-

19.233 
0.000 *** 

Random effect 

parameter 

(Driver) 

Variance 10.558      

Residual 4.776      

Summary 

statistics 

Sample size 1026 

Likelihood at 0 -995.329 

Likelihood at β -488.955 

Prob. > χ2 0.000*** 

Likelihood ratio test: 

Multilevel vs. mlogit 
0.000*** 

Notes: STATA software (gesm program) was used; 

*** - means statistical significant associations were found (at 1% level);  ** - means statistical significant 

associations were found (at 5% level); * - means statistical significant associations were found (at 10% level). 
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Given the complexity of the driving environment and high exposure in the intersection, the 

subject vehicle might be more likely to have a collision with another vehicle when making a lane 

change or merging. 

 

5.5 LIMITATIONS 

This study has explored various factors, such as driving volatility, situational factors and 

roadway geometric, that can lead to  the occurrence of a lane change or merging related crash. 

However, some other factors, especially distance to surrounding vehicles and number of 

surrounding vehicles, might be highly correlated with lane change crash propensity are not 

analyzed due to the limited data. Therefore, the explanatory power of the modeling part will be 

restricted to these selected independent variables.  

Currently, the driving volatility is quantified only based on acceleration, while the vehicle 

speed is not involved given low report frequency (reported at 1 HZ). In fact, the acceleration 

ability will vary along with different speed range [10]. Speed-based driving volatility should be 

considered when data is available. Although, the GPS data is guaranteed given the advanced data 

collection techniques, there still exist measurement errors. Since the distributions of key 

variables, such as longitudinal and lateral acceleration, are in the reasonable ranges based on 

results of descriptive statistics, the influence of measurement errors could be eliminated. 

Another issue will be the accuracy in some critical variables, such as nature of the crash 

outcome. For example, The researcher reports a near-crash based on a rapid evasive maneuver by 

subject vehicle. However, this identification is subjective as they highly rely on the judgment of 

the researchers. 
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5.6 CONCLUSIONS 

Previous studies have investigated the causes of dangerous lane change or merging events 

because they are a key threat to smooth traffic flow and safety. However, the correlation between 

the occurrence of a lane change or merging related crash or near crash and driving volatility, 

which quantifies the variability in instantaneous driving decisions, is under-explored. With 

sufficient trajectory data provided by SHRP 2 NDS, this study investigates the relationship 

between the occurrence of a lane change or merging related crash or near crash with driving 

volatility as well as traffic flow parameters. This study is timely and unique as it links variability 

in the instantaneous driving decisions with crash outcomes in a naturalistic driving environment. 

This study’s further contributions include using a unique and rich database and rigorous 

statistical model to quantify the correlations between lateral and longitudinal driving volatility 

with the risk of lane change or merge related crashes, which should be useful to researchers and 

practitioners. 

Using a unique data set from naturalistic driving trajectory data and event summary data, 

maintained by SHRP 2 NDS, this study quantifies the variability in instantaneous driving 

decisions for 1,026 naturalistic trajectories. The study uses the Coefficient of Variation (COV) to 

measure driving volatility. By considering the hierarchical data structure and accounting for 

unobserved heterogeneity due to unobserved factors, a multilevel mixed-effect multinomial logit 

model is estimated in order to explore the correlations between lane change or merge related 

crash propensity with driving volatility as well as traffic parameters. What follows is a 

summarization of key findings. 

• Volatile driving behavior (captured by high lateral driving volatility) is more likely to 

result in the occurrence of a lane change or merging related crash or near crash. 



 

91 

 

• The chances of a crash or near crash are higher when a driver who makes a lane change 

or merge related event under free flow with a leading vehicle, under stable flow with 

speed restrictions, when the grade is lower, at intersections, or on a relatively straight 

roadway. 

• A subject vehicle driving on a divided roadway or a roadway with a center 2-way left 

turn lane is less likely to be involved in a crash or near crash than a vehicle driving on a 

roadway without lanes. 

 The results have potential applications for the improvement of lane change or merging 

safety. The study provides insights on lateral driving volatility. Analysis found that high 

magnitude with a positive sign is in the coefficient of lateral driving volatility, indicating that 

reducing the variability in instantaneous driving decisions by the subject vehicle can improve 

safety. The results could be helpful for developing connected vehicles at Level 1 or 2 automation 

because critical information, such as relative distance from and speed of the front vehicle, can be 

detected and transferred by driver assistance systems which in turn helps subject vehicles make 

informed driving decision, such as safer merging maneuver at merging ramps [70]. In addition, 

alerts and warnings can be issued to surrounding vehicles (in the front or to the side) to adjust 

their driving behavior in order to avoid a collision with the subject vehicle in a connected vehicle 

environment. Note that some volatile lane change maneuvers happen because of the surrounding 

driving environment or geometric design, such as a short ramp. The subject vehicle has to 

accelerate harder to make a successful merging on a shorter ramp. We should pay more attention 

to ramps in which many subject drivers make volatile merging maneuvers. The roadway 

manager might need to redesign the ramp in order to ensure less volatile merging maneuvers. Of 
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course, researchers should further analyze the relationship between driving volatility with the 

surrounding driving environment and geometric factors. 
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CHAPTER 6 CONCLUSIONS 

This dissertation aims to explore automobile driver behaviors at a micro-level with concern to 

the instantaneity of lateral driving decisions by integrating and mining massive vehicle trajectory 

data. With advanced technology, massive vehicle driving data is available to public. Critical 

information embedded in the “Big Data” can be extracted and analyzed to improve transportation 

performance such as safety and mobility. The dissertation is timely given the high attention 

given to GPS data in recent years and it is necessary for the development of new methodology 

for extracting key information from “Big Data”. 

The geo-referenced vehicle trajectory data, reported at a 10 Hz frequency, describes a 

vehicle’s position, motion and surrounding driving situations at the very detail micro-level, 

which makes it is possible to analyze the micro-level driving behavior, especially aggressive or 

extreme driving behaviors (e.g., hard accelerations or fast lane changes), from the massive GPS 

data. Since the lane change is fundamental to microscopic traffic flow and safety, a study was 

conducted to understand normal and extreme lane change behaviors, which can form the basis 

for generating alerts and warnings that can reduce the impacts of such behaviors. Using the high-

resolution driving data, the study proposed an innovative methodology to identify normal and 

extreme lane change maneuvers. The lane changes are identified based on multiple criteria, 

including vehicle position (i.e., a sharp change in distance of a vehicle’s centerline relative to 

lane boundary) and lane crossings recorded by onboard units (i.e., when a vehicle crosses a lane 

marker). Extreme lane change events are then identified as those where lateral acceleration 

exceeds the 95th percentile threshold at the initiation and before the end of the lane change 

maneuver. The results show that the test vehicles averagely generated 3.4 lane changes (0.67 

extreme lane changes) with trip duration averaging 20 minutes. Based on the analysis of this 



 

94 

 

data, warnings can be generated to help surrounding drivers adjust their behaviors to 

accommodate extreme behavior by the host vehicle driver. 

Given the large portion of lane departure crash, the onboard lane keeping warning system 

is developed to prevent these crashes. Therefore, a study of understanding instantaneous lane 

keeping behaviors was conducted. A measure called lateral shifting volatility, which quantifies 

fluctuation in lateral displacement, is developed in the study. The study also explores the 

influence of driving situation on shifting volatility. The results show that the subject vehicle is 

more volatile when traveling at high speeds and when the vehicle keeps a low space gap with the 

vehicle in front of it. The shifting volatility information can be applied in onboard driving 

systems to help drivers make informed lane departure decisions. 

While driving behavior is influenced by surrounding vehicles, a study explores the peer 

influence of front vehicle on instantaneous driving decision of subject vehicle is conducted. A 

“Gossip” concept is proposed to capture the peer influence and a two-step driving decision 

procedure are analyzed: 1) micro-level driving decision defined by vehicle acceleration and 

deceleration, and 2) aggregated event-level driving decision captured by subject vehicle making 

a lane change or not during a car following event. This study further explores the correlations of 

driving decision with various driving situations. The results show that the subject vehicle is 

averagely more likely to accelerate as front vehicle to achieve high speed, however, they are less 

likely to accelerate as front vehicle when the driving situation is more complex and congested. 

This study establishes a new framework to understand the driving decisions during car following 

events. 

Since the variability in instantaneous driving decisions could be the leading contributor of 

unsafe events, a study was further conducted to explore the correlations between the occurrence 
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of a lane change or merging related crash with the instantaneous driving decisions, which is 

under-explored in previous studies. The results show that high lateral driving volatility is 

associated with a higher chance of the lane change or merging related crashes or near crashes. 

Furthermore, the chances of a crash or near crash are higher when a driver makes a lane change 

or merging maneuver under free flow conditions with a leading vehicle present, compared with 

no leading vehicle. 
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