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Abstract 

Falls are the leading cause of fatal and nonfatal injuries in elderly people, resulting in 

approximately $31 billion in medical costs annually in the U.S. These injuries motivate balance 

control studies focused on improving stability by identifying prevention strategies for reducing the 

number of fall events. Experiments provide data about subjects’ kinematic response to loss of 

balance. However, simulations offer additional insights, and may be used to make predictions 

about functional outcomes of interventions. Several approaches already exist in biomechanics 

research to generate accurate models on a subject-by-subject basis. However, these representations 

typically lack models of the central nervous system, which provides essential feedback that 

humans use to make decisions and alter movements. Interdisciplinary methods that merge 

biomechanics with other fields of study may be the solution to fill this gap by developing models 

that accurately reflect human neuromechanics.  

Roboticists have developed control systems approaches for humanoid robots 

simultaneously accomplishing complex goals by coordinating component tasks under priority 

constraints. Concepts such as the zero-moment point and extrapolated center of mass have been 

thoroughly evaluated and are commonly used in the design and execution of dynamic robotic 

systems in order to maintain stability. These established techniques can benefit biomechanical 

simulations by replacing biological sensory feedback that is unavailable in the virtual environment. 

Subject-specific simulations can be generated by synthesizing techniques from both robotics and 

biomechanics and by creating comprehensive models of task-level coordination, including 

neurofeedback, of movement patterns from experimental data.  
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In this work, we demonstrate how models built on robotic principles that emulate decision 

making in response to feedback can be trained by biomechanical motion capture data to produce a 

subject-specific fit. The resulting surrogate can predict a subject’s particular solution to 

accomplishing the movement goal of recovering balance by controlling component tasks. This 

research advances biomechanics simulations as we move closer towards the development of a tool 

capable of anticipating the results of rehabilitation interventions aimed at correcting movement 

disorders. The novel platform presented here marks the first step towards that goal, and may benefit 

engineers, researchers, and clinicians interested in balance control and falls in human subjects. 
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Chapter 1: Introduction  
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1.1 Project Summary 

Falls are a leading cause of injury worldwide in the elderly population and people with 

conditions impacting neuromuscular control. This research aims to deepen fundamental 

understanding of the relationship between neurological control and balance recovery in human 

subjects. Balance is the most basic part of any coordinated movement in order to minimize risk of 

falling and subsequent injury. Therefore, it is necessary to accurately represent the complex decision 

making and execution that the human body displays in maintaining stability in a variety of situations. 

Simulations can be used to facilitate investigations on a subject-by-subject basis, and can provide 

insight into rehabilitation techniques by predicting clinical outcomes. Differences from person to 

person can dramatically impact the efficacy of prescribed interventions, so there is significant burden 

on researchers to provide accurate subject-specific modeling and simulation. A combination of 

techniques from the fields of biomechanics, robotics, and control systems engineering with in vivo 

experimental methods has been shown to provide quantifiable data related to human movement 

control and coordination. This information can be used to: investigate gaps in understanding of how 

the body’s neuromuscular system makes decisions regarding stability; model an individual’s loss of 

balance and predict his/her response; and simulate interventions aimed at improving stability in the 

virtual space, in silico. This research project seeks to: 1) link control systems and open-source 

software to simulate balance recovery in neuromechanical systems; 2) identify differences in 

coordination strategy employed by subjects that recover balance after a single step versus those that 

require multiple steps; 3) generate predictive simulations of subject-specific balance recovery. 



3 

 

1.2 Research Significance  

This project is significant to advancing knowledge and understanding in more than one field 

of science and engineering. It bridges gaps existing between the experimental approaches used by 

physicians, physical therapists, and rehabilitation scientists and the computer simulation approaches 

used by engineers, mathematicians, and computer scientists. The proposed activities have combined 

techniques across different fields of study in order to create a new tool set for the evaluation of human 

movement control. This project is transformative because 1) simulations are be based on optimal, 

subject-specific models rather than generic, one-size-fits-all models, producing the best possible 

results for individual subjects and 2) a quantitative basis to discover effective treatments is enabled, 

providing evidence-based knowledge about which treatment options work best in which subjects. 

Although the described activities focus on neuroscience and rehabilitation, these activities may 

impact other areas, including ergonomics, sports performance, and injury prevention. 

1.3 Research Innovation 

This project advances discovery and understanding for the study of human balance and 

coordination, which is integral to fall risk detection and prevention. A set of models representing the 

experimental data have been generated which can now be used in other unique research studies. The 

described activities enhance the infrastructure for scientific investigation of neuromuscular disorders 

by further developing the computational and theoretical framework and tools for next-generation 

research and education. Results have been disseminated broadly through SimTK.org, a community-

building website with over 10,000 members (more than 5,000 of whom will be directly impacted by 

the proposed activities). Its potential widespread use could benefit society by advancing core medical 

technology, enabling new discoveries in the neuroscience and medical rehabilitation communities. 
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In the spirit of National Science Foundation topic areas, one such discovery may be a fundamental 

theory of physically-interactive motor control. A step toward such discoveries is identifying effective 

rehabilitation strategies for patients that do not respond to traditional training as well as those with 

other movement disorders. 

1.4 Research Methods 

The objective of this research is to develop a novel platform for emulating subject-specific 

human balance recovery by simulating the coordinated neuromechanical response to include 

somatosensory informed decision making. To do this, we paired OpenSim [1] and MATLAB ® 

(MathWorks, Natick, MA, USA) two widely used software packages with unique advantages and 

limitations. This was done by bridging the gap between the two programs using C++ code to access 

OpenSim’s API through MATLAB’s native compiler. In this way, we had access to the extensive 

computational toolbox and robust control system design in MATLAB, in addition to the 

musculoskeletal models and biomechanical analysis functions of OpenSim. The resulting tool was 

used to investigate human balance recovery in the following three studies: 

1.4.1 Specific Aim I: Synthesis of biomimetic stepping response to prevent falls 

after support surface perturbations 

Goal: The purpose of specific aim I was to answer the following questions: 

1) How accurate are in silico human balance recovery trials that use humanoid robotics 

principles to model and replace somatosensory feedback compared to experimental 

trials? 

Methods: To accomplish this study, a novel forward-dynamics simulation platform was 

developed to model human balance recovery after experiencing support surface 

perturbations. Zero-Moment Point (ZMP) and capture point calculations were selected as 
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replacements for the feedback system that replaces sensory information in determining 

where and when to step in order to prevent a fall. 

Significance: This work produced a computational tool that can be used in a wide array of 

moment analysis studies to investigate the relationship between identifying potential 

dangers and generating a coordinated response. 

1.4.2 Specific Aim II: Development of neuromechanical models and evaluation of 

differences between single and multiple steppers 

Goal: The purpose of specific aim II was to answer the following questions: 

1) Can subject-specific models of balance recovery neuromechanics be developed for 

cohorts with different stability metrics? 

2) What are the differences in coordinated response between single and multiple steppers 

during balance recovery? 

Methods: To accomplish this study, surrogate response surface models of 15 subjects (5 

young, single steppers; 5 elderly single steppers; 5 elderly multiple steppers) were 

generated from experimental motion capture data. Each model represented the subject’s 

complete response from decision to execution of a step. The models were compared across 

cohorts to identify statistical differences in chosen coordination patterns. 

Significance: This study identifies areas for targeted improvement efforts in subjects that 

have lower levels of stability. 
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1.4.3 Specific Aim III: Evaluation of the predictive accuracy of subject-specific 

simulations of whole-body, step recovery strategies to prevent falls 

Goal: The purpose of specific aim III was to answer the following questions: 

1) With what percent accuracy can trained models predict response outcomes in subject-

specific simulations? 

Methods: To accomplish this study, the generic balance recovery platform developed in 

specific aim I was merged with the subject-specific surrogate models developed in specific 

aim II. The model was trained using the K-fold cross validation technique in order to 

determine the accuracy of predictive simulations given new perturbation inputs. 

Significance: This work produces a comprehensive platform for rapidly and efficiently 

modeling specific subjects and predicting their balance recovery coordination within a 

percent accuracy envelope. 
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Chapter 2: Literature Review 
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2.1 Background 

Chronic medical conditions create significant physical, psychological, and financial 

burdens on those affected. Of the various types of disorders, musculoskeletal diseases have been 

estimated to affect the largest proportion of the United States population. For the year 2011 the 

Medical Expenditures Panel Survey of the US Department of Health and Human Services reported 

126.6 million adults affected by musculoskeletal conditions, which accounts for a staggering $874 

billion in cost of treatment and lost wages (5.7% GDP) [2].  

Advances in research methods and 

technology have created new platforms for the 

analysis of human movement. There are now 

sophisticated equipment setups that include high 

precision motion capture [3]–[6], EMG signal acquisition [7], and force data collection [8], [9]. 

Although our understanding of biomechanical systems is improving due to this increase in the 

amount of information that can be characterized, the underlying neural control mechanisms are 

still not fully understood. This is particularly true in the case of neurodegenerative diseases 

resulting in loss of normal musculoskeletal function since experimental design parameters are 

often limited by the progression of deterioration. In order to define the mechanisms that drive 

physical activity, novel assessment tools must be developed. 

2.1.1 Simulation in biomechanics 

Simulations provide an alternative or complementary method for evaluating complicated 

systems as compared to traditional experimentation. The primary strengths of simulations include 

the high volume of trials that can be completed in a short amount of time, as well as the diminished 

Simulations of human movement 

still lack the necessary models of 

somatosensory and proprioceptive 

feedback to investigate 

neurodegenerative conditions. 
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costs. Simulations can be broadly divided into two categories: data-tracking and predictive. The 

first approach involves minimizing the error between the position of simulated points on the human 

body and their corresponding points from motion tracking data. The second approach requires the 

definition of some output parameter and the minimization of a performance variable, such as 

energy expenditure, in order to achieve the desired results [10]. 

These types of simulations have been used to help analyze the mechanics of various 

situations, including non-contact injuries [11], blunt force impacts and vehicular collisions [12]–

[14], and balance control strategies and fall dynamics [15], [16], in order to predict outcomes and 

develop counter-strategies from the clinical, rehabilitation, and manufacturing stand points. The 

described circumstances are challenging to evaluate since they are aimed at understanding and/or 

preventing injuries. Simulation techniques provide an avenue by which we can study scenarios 

that would otherwise be too difficult or dangerous to recreate in the lab setting.  

Similarly, some data cannot be easily collected through traditional experimentation, e.g. 

muscle forces and joint torques, although they are essential to understanding the human body 

system. Simulating movement by tracking motion capture data has proven to be a powerful tool in 

determining such quantities [17]–[19]. However, this method has its limitations because following 

previously recorded point trajectories means that the system cannot react to changes in scenario 

for which there is no existing data. 

Predictive simulations offer a potential solution to various unanswered questions in the 

field of biomechanics. Virtually any conceivable scenario can be evaluated through proper task 

definition and simulation architecture. Previous work has already demonstrated this utility in 

calculating movement patterns of simple (1-3 DOF) models [10], anticipating gait adaptations in 
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changing environments [20], evaluating patient-specific gait modifications [21], and predicting 

surgical outcomes [22]. 

2.1.2 Operational space and prioritized task control 

The results of predictive simulations can be improved by synthesizing methods from other 

fields of study into biomechanical models. Operational space control, which is generating 

movement by relating body movement spaces and forces to one another, is a widely-used 

methodology in the field of robotics [23]–[25]. For robotic manipulators, it allows tasks to be 

carried out by coordinating motions between body linkages while considering the constraints 

added by shifting frames of reference. In humanoid robotics, the need to control multiple, complex 

tasks simultaneously led to the development of prioritized task control [26]–[28]. Systems with 

increasing complexity can efficiently carry out desired tasks while maintaining body integrity, e.g. 

joint limitations, velocity and acceleration constraints, etc. Assigning tasks to be carried out within 

a designated hierarchy prevents unexpected 

interference among tasks which gives this method 

a distinct advantage in controlling multibody 

systems with multiple operational goals.  

Previous work [28] showed that a simulated humanoid robot can accomplish specified 

tasks by following such a set of linear controls for accelerations and forces. A set of N prioritized 

task points were defined over the body with corresponding task objectives, i.e. desired locations 

in the ground frame of each task point, which are fixed to separate task bodies. The N tasks are 

prioritized into a multi-task control structure which is calculated as in Equation 1: 

 

Disciplinary overlap between 

robotics, control systems 

engineering, and biomechanics 

could significantly improve 

subject-specific simulations. 
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Where Γ [Gamma] represents the prioritized torque control vector to be applied to the joints on the 

body; J*T
k|prec(k) [subscript k|prec(k)] is the transpose of the support-consistent constrained Jacobian 

associated with the kth task; and Fk|prec(k) [subscript k|prec(k)] is a force based on acceleration-level 

control incorporating gravity and Coriolis/centrifugal compensating terms [28]. 

The support-consistent constrained Jacobian matrix is calculated using the aggregate of 

null space matrices for all tasks preceding k, ‘prec(k)’. That is to say, for the first task: 

 

Where J1 [subscript 1] is the Jacobian matrix of body to which task 1 is fixed, Ns [subscript s] is 

the null space matrix of the support body (or bodies) that is in contact with the ground, and S is a 

selection matrix that identifies which bodies are currently functioning as support. For inferior 

tasks, i.e. k greater than 1, the null space term becomes a combination of prior null spaces: 

 

Where (*) indicates that a value is constrained by the support null space and (¯) is a mass constraint 

that limits movement based on the inertial properties of the system. 

The force (F) formulation is dependent on the acceleration level control output (aref 

[subscript ref]) from each task’s controller which designates the required vector to accomplish 

each task in priority order, as well as the dynamically consistent generalized inverse of the current 

task’s Jacobian matrix (Λ [gamma]).  The equation includes compensating terms for centrifugal 

(µ [mu]) and gravity (p) forces acting on the body: 

 



12 

 

Constraining elements of lower priority tasks in Equation 1 to operate within the null 

spaces of higher priority tasks prevents each subordinate task from interfering with the system 

achieving any defined previously. In doing so, Γ [Gamma] becomes a [q x 1] torque vector that 

drives the whole-body system made up of q joints to move in such a way that it will accomplish 

all defined tasks, so long as they are feasible under the burden of constraints placed by all prior 

tasks. 

2.1.3 Applications to biomechanical simulations 

Previous work [22] has shown that operational space prioritized task control can be adapted 

to execute under the OpenSim-MATLAB interface developed in [29], thereby creating a novel, 

closed-loop control system that accurately predicts balance recovery. The closed-loop controller 

serves as a way to include neurological feedback, such as stretch reflexes, to existing mechanical 

models.  

Research on the underlying mechanisms of goal achievement and balance control have 

been explored previously using the task based robotics approach [30]–[33]. Figure 1 gives a 

conceptual flow diagram of the methodology used. In [30] multiple tasks were successfully 

implemented on musculoskeletal simulations where control of the center of mass through a series 

of objective locations was accomplished while maintaining < 10mm position error. Surrogate 

subject-specific models were developed in [31]–[33] in order to compare the OpenSim-MATLAB 

platform’s performance to data collected experimentally. Response surfaces (RS) were fit to the 

data in order to compare the subjects’ and simulations’ responses to the same perturbation 

requiring a coordinated balance control effort. The results showed that the simulation data  
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Figure 1: Flowchart showing synthesis of techniques across multiple fields of study. Experimental 

motion capture data provides the basis for subject-specific surrogate modeling, which informs 

control strategy and decision making. Robotic task-based prioritization implements control outputs 

as biomechanical simulations of human movement. 
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generated by the closed-loop controller could accurately predict subjects’ response, and that the 

system itself did not pollute the data set with unnecessary noise [34]. 

While the methods described above have been used to evaluate balance control in specific 

subjects, these techniques have not yet been extended to include scenarios involving loss of 

balance that require expanding the base of support by taking a step in human systems. The 

literature shows that closed-loop control of balance recovery is feasible, therefore, the overall goal 

of the proposed work is to expand, improve, and apply this closed-loop framework in order to 

synthesize subject-specific balance recovery by predictive simulation. 

2.1.4 Modeling decision making using robotics concepts 

This section was originally published by Nicolas A. Vivaldi, Jeffrey A. Reinbolt, and Rod S. 

Barrett: 

Vivaldi, N.A., Reinbolt, J.A., and Barrett, R.S. Using zero-moment point to predict single versus 

multiple step recovery from forward loss of balance. 8th World Congress of Biomechanics, Dublin, 

Ireland, July 8-12, 2018. 

This section was accepted for presentation at the 8th World Congress of Biomechanics in 

Dublin, Ireland in July 2018. Nicolas Vivaldi conducted the investigation and wrote the abstract 

with feedback from Dr. Reinbolt and Dr. Barrett. Dr. Barrett provided the experimental data used 

for analysis. 

Protective stepping is a natural response for preventing falls. Successful balance recovery 

is complex, and sometimes multiple steps are necessary [35]. In silico simulations could play a 

critical role in falls prevention since they can be used to investigate scenarios that are difficult to 

analyze experimentally [36]. It is a challenge to model the feedback-driven decision-making 



15 

 

processes involved in executing stepping response(s) in simulations of balance recovery [37]. In 

robotics Zero-Moment Point (ZMP) is used to measure stability [38] for AI decision-making 

regarding balance (for the complete formulation please see Chapter 3). We determined the utility 

of replacing biofeedback with ZMP by identifying differences in outcome measures between three 

cohorts: older multi steppers (OMS), older single steppers (OSS), and younger single steppers 

(YSS). 

We used experimental data collected at 200 Hz from 14 subjects standing with feet 

shoulder width apart, tilted forward via cable in parallel with the floor until 20% of body weight 

was recorded by a series-connected load cell [35] (Figure 2). Subjects were then released and 

instructed to take a single step. We calculated the ZMP using pelvis residual forces and moments 

taken from inverse dynamics and body kinematics. We reported  

stepping foot overtaking the forward component of the ZMP as a percentage of the step movement 

to normalize results across trials. Distance between the step foot placement at contact and ZMP 

was also calculated. 

OMS brought the stepping foot past the ZMP later during balance recovery (92.9% ± 6.2) 

as shown in Table 1. Both single stepper cohorts overtook the ZMP with at least 20% of the step 

left to complete (older: 80.4% ± 1.9; younger: 73.8% ± 18.3). The OMS cohort was compared by 

t-test to both OSS and YSS and was statistically different at a 5% significance level with p = 0.0049 

and p = 0.0317, respectively. OSS compared to YSS was not statistically different at this 

significance level. OMS had less than half the distance between step placement and ZMP as 

compared to single steppers.  
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Figure 2: Depiction of the experimental setup before (left) and after (right) cable release with 

ground frame axis shown. The ZMP location is marked by the blue cylinder. 

 

Table 1: Reports the results for subjects in each cohort. The instance where stepping foot overtakes 

ZMP is given as a percentage of step motion. Displacement between ZMP and step foot at the 

conclusion of the motion is reported in centimeters. 

 

Cohort Subject % Step Mean Displacement (cm) Mean (cm) 

Older Multi 

Steppers 

1 93.4 

92.9 ± 6.2 

15.8 

12.8 ± 6.0 

2 92.4 18.7 

3 81.7 17.4 

4 100.0 2.7 

5 96.9 9.1 

Older Single 

Steppers 

6 81.8 

80.4 ± 1.9 

21.5 

30.4 ± 5.7 

7 77.4 29.8 

8 79.4 38.4 

9 80.5 27.9 

10 83.0 34.3 

Younger 

Single 

Steppers 

11 81.0 

82.9 ± 2.6 

32.5 

25.2 ± 6.4 
12 84.4 30.5 

13 86.3 18.0 

14 79.8 19.8 
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In humans, somatosensory feedback provides recognition of failure to recover balance by 

single step and results in multiple steps. Simulations can be improved by modeling the recognition 

and adaptation process using a threshold trigger in lieu of biofeedback. ZMP is well suited to for 

this, since measures of swing foot position in relation to ZMP can predict when multiple steps are 

necessary. In future work, we will use ZMP to smoothly transition between control strategies for 

predicting single versus multi step responses. 

2.1.5 Identifying potential coordination strategies for balance recovery 

This section was originally published by Nicolas A. Vivaldi and Jeffrey A. Reinbolt: 

Vivaldi, N.A. and Reinbolt, J.A. Identifying novel strategies for controlling step response during 

balance recovery simulations. 8th World Congress of Biomechanics, Dublin, Ireland, July 8-12, 

2018. 

This section was accepted for presentation at the 8th World Congress of Biomechanics in 

Dublin, Ireland in July 2018. Nicolas Vivaldi conducted the investigation and wrote the abstract 

with feedback from Dr. Reinbolt. 

To reduce the incidence of falls worldwide, coordinated balance recovery simulations may 

offer new insights, but they need to be controlled in a complex, variable environment (e.g., 

perturbation, decision making, step response) [29], [37]. Center of mass (CoM), extrapolated 

center of mass (xCoM) [39], and Zero-Moment Point (ZMP) [38] are well-known in biomechanics 

and robotics and may fill this control strategy gap. We aimed to identify the relationships between 

these three measures and experimentally observed balance recovery to determine the best 

physiologically-consistent control strategy for simulations. 
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We collected experimental data at 250 Hz from 2 subjects (female 25 yrs | 1.72 m | 68.0 

kg; male 25 yrs | 1.79 m | 84.5 kg) standing on one foot (Figure 3) during random anterior or 

posterior perturbation trials (6, 12 cm | 40 cm/s). We performed inverse kinematics, inverse 

dynamics, and body kinematics for each trial using OpenSim [1] and MATLAB® batch scripts. 

We calculated the ZMP using pelvis residual forces and moments and xCoM using an inverse 

pendulum model with the foot as the reference frame origin pivot point and the CoM as the mass 

load. We fit polynomial models (ranging linear to quintic) to determine the best fit (using R-

squared values) between the three biomechanical or robotic measures and balance recovery after 

forward and backward loss of balance (Figure 4). 

A combination of biomechanical and robotic measures using higher degree polynomial 

models fit the experimental data better with higher R-squared values (Figures 3 and 4). The CoM 

allowed the best overall fit to the step recovery in the ±X-direction (0.67 ≤ R2 ≤ 0.71). For posterior 

perturbations without stepping, the ZMP allowed best, but marginal, fit in the Z-direction (R2 = 

0.21). For anterior and posterior perturbations with stepping, the xCoM allowed the best fit for the 

Z-direction (R2 = 0.93) and Y-direction (R2 = 0.25). 

For generating simulations to study falls and fall-related injuries, we identified 

relationships using CoM, xCoM, and ZMP that may be used to control balance recovery 

simulations. Although one control strategy would be the simplest design, balance simulation is a 

complex, dynamic control problem that may benefit from hybrid control strategies using 

biomechanics and robotics measures. The stepping response can be controlled using the CoM (X-

direction), xCoM (Y-direction), and ZMP (Z-direction); using other fits (sinusoidal, Fourier) did 

not change this control strategy ranking. 
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Figure 3: Depiction of before and after 12 cm posterior perturbation and subsequent step response. 

CoM, xCoM, ZMP, and swing foot locations were reported as displacements from the stance foot 

for model fitting. 

 

 

Figure 4: CoM plotted against swing foot for x-direction displacement. Data was separated by 

perturbation (anterior, posterior) and recovery (step, no step). Polynomial fits of order 1 to 5 were 

calculated for each control, perturbation, recovery, and direction. 
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2.1.6 Preliminary findings: ZMP based control of step response 

This section was originally published by Nicolas A. Vivaldi and Jeffrey A. Reinbolt: 

Vivaldi, N.A. and Reinbolt, J.A. Synthesis of subject-specific, task-level stepping response for 

predicting balance recovery. 26th Congress of the International Society of Biomechanics, 

Brisbane, Australia, July 23-27, 2017. 

This section was accepted for presentation at the XXVI Congress of the International 

Society of Biomechanics in Brisbane, Australia in July 2017. Nicolas Vivaldi conducted the 

investigation and wrote the abstract with feedback from Dr. Reinbolt. 

Fall related injuries motivate balance control studies focused on identifying prevention 

strategies for reducing the number of fall events. Experimental methods provide data about 

subjects’ kinematic response to a loss of balance. However, simulations can offer additional 

insights, and may be used to make predictions about functional outcomes of various interventions. 

To make these predictions, simulations require accurate musculoskeletal modeling and robust 

control-system architecture. Several approaches already exist in biomechanics to generate accurate 

models on a subject-by-subject basis. Moreover, roboticists have developed control systems 

approaches for humanoid robots simultaneously accomplishing multiple complex tasks, including 

balance control [40]. Predictive subject-specific simulations of balance recovery can be generated 

by synthesizing approaches from both fields of study and creating surrogate models of task-level 

coordination from experimental data. 

Related to fall prevention, roboticists use ZMP to maintain dynamic stability during 

inherently unstable tasks, such as stepping and gait. In human balance recovery, stepping is one of 

the primary reflexes used when it becomes impossible to keep the center of mass (CoM) over the 
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base of support (BoS) [41]. The step(s) redefine the area of the BoS in the horizontal plane to 

maintain control of the CoM, thereby preventing a fall. 

In this study, we investigated the potential of using the ZMP approach for simulating 

human balance recovery during single-leg stance in response to perturbations at the BoS. 

Specifically, we examined support surface perturbations large enough to destabilize the subject 

(and model) to the point of making it impossible to recover balance without stepping. Our goal 

was to determine whether the ZMP approach could control the task-level motion of the model to 

generate a predictive, closed-loop simulation of stepping response that matches the subject’s own 

balance recovery. 

Experimental motion data was collected (female 25 yrs | 1.72 m | 68.0 kg) during 

perturbation from single-leg stance. An OpenSim 3D model with 17 degrees of freedom was scaled 

to match the subject. Trials in which a step was necessary to recover balance after perturbation 

(anterior | 6 cm | 40 cm/s) were identified and inverse kinematics determined model kinematics by 

matching the recorded marker trajectories. Body kinematics determined the body segment center 

of mass positions during the motion. The experimental positions of the CoM, swing foot, and torso 

were represented by surrogate second-order polynomial response surfaces in the anterior, vertical, 

and lateral directions, which defined these bodies’ predicted motions. Proportional-integral-

derivative (PID) controllers were used to calculate the task vectors needed to move the model by 

reducing errors between surrogate response surfaces and predicted body kinematics. The CoM 

horizontal plane position was controlled to be above the ZMP position, while vertical position 

followed its surrogate response surface. ZMP position was calculated from residual forces and 
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moments acting on the pelvis. Robotic control systems generated prioritized joint torques 

necessary for synthesizing the subject-specific stepping response. 

The simulations resulted in a predicted stepping response to perturbation at the BoS (Figure 

5a). CoM position was predicted well with the smallest RMS error (0.6 cm in the horizontal plane) 

among the 3 tasks. The ZMP control played a crucial role in the predicted CoM position. The 

largest RMS error (3.4 cm) was observed for the swing foot’s vertical position, which undergoes 

the largest accelerations of any of the bodies during the stepping response (Figure 5b). 

ZMP control with surrogate response surfaces is an effective approach for simulations 

predicting task-level stepping response during balance recovery. This preliminary work sets the 

foundation for the research described here, in that it serves as a proof of concept for merging 

robotics techniques with biomechanical simulations in order to replace biological feedback 

systems. The work described hereafter highlights the development of subject-specific, predictive 

simulations using this methodology. 
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Figure 5: (a) Comparison of experimental (green) and predictive simulation (red); (b) root-mean-

square (RMS) error between experiment and predictive simulation task body center of mass 

positions. 
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Chapter 3: Aim I - Synthesis of Biomimetic Stepping Response to Prevent 

Falls after Support Surface Perturbations 
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3.1 Abstract 

 Human balance control is a complicated process involving sensory inputs, propagation of 

neural signals, and musculoskeletal actuation. Because balance is a necessary part of the majority 

of movements that people use on a daily basis, it is essential for biomechanics researchers to fully 

understand the relationships between each component system that generates motion outputs. 

Modeling and simulation tools are highly valuable in that regard, as they can be used to calculate 

data that cannot be recorded in the lab setting (i.e. individual muscle forces, neuromechanical 

predictors, theoretical stability points, etc.). The purpose of Aim I is to develop and test a novel 

computational simulation platform that is capable of discerning between appropriate approaches 

to balance recovery given different disturbance conditions. The system will synthesize approaches 

from biomechanics, robotics, and control systems in order to simulate human model reactions to a 

loss of balance in the forward direction. The goals are 1) for the system to identify instances where 

limb articulation is sufficient to maintain balance, and carry out a coordinated movement to prevent 

falling over, and 2) for the system to detect an impending fall and step to recover balance. We 

compared the system’s synthetic response to experimental balance data to determine whether or 

not the outputs are realistic. 

3.2 Introduction 

3.2.1 Human balance and falls 

The link between biomechanics, the central nervous system, and sensory feedback requires 

further investigation in order to shed light on the fundamental principles of coordination that drive 

human movement. The majority of human movement is goal oriented, with maintaining balance 

chief among the tasks involved [42]. At its core, balance control is a self-preservation process 
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using sensory input to protect the body from harm by anticipating and preventing falls [43]. 

However, falls are a leading cause of both fatal (646,000) and nonfatal (37.3 million) injuries 

worldwide [44]. Research into individual shortcomings in balance and subsequent falls is limited 

due to the inherent danger of injury, especially in cohorts that include known fallers. A novel, 

quantitative tool set must be developed in order to expand falls research and improve functional 

outcomes of intervention strategies. 

3.2.2 Simulations advance balance research 

Simulations of human balance control and recovery may play a critical role in falls research 

by allowing investigators to safely assess individuals in silico while also identifying key 

relationships between the biological and mechanical processes involved that are difficult to 

evaluate experimentally [45]–[48]. Furthermore, simulations are capable of making predictions on 

a subject-specific basis that may give insight into the effects of interventions [20], [22], [37]. As a 

whole, simulations have proven to be effective tools for biomechanics research [49]–[53]. 

However, for the majority of simulations there is a gap where only the biomechanical and 

neuromuscular factors are characterized, not the cognitive inputs. Concepts from robotics and 

control systems can be used to fill the gap and improve the accuracy and quality of predictions. 

3.2.3 Protective stepping response to loss of balance 

Stepping is the one of the natural responses to perturbations that would otherwise cause a 

fall [54]–[57]. Tactile and visual feedback inform the brain and central nervous system as to the 

state of balance which in turn generate voluntary and involuntary control responses to regain 

stability [58]–[62]. Modeling the decision and execution processes involved in determining the 

appropriate step/no step response requires feedback and trigger systems to be included in the 
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simulation architecture. For this purpose, a hybrid approach to modeling from multiple fields of 

study would benefit system design. 

3.2.4 Interdisciplinary approach to balance recovery research 

The field of humanoid robotics is rapidly expanding with advanced mechanical constructs 

and artificial intelligence. Various systems now exist that are capable of analyzing inputs to 

emulate decision making and self-regulate coordination to mimic human responses [63]–[66]. 

Robotics concepts have started to make their way into biomechanics research with promising 

results [67]–[69]. However, disjointed approaches leave room for improvement of human subject 

simulations based on principles of robotic control. Here, we propose a novel system for simulating 

three-dimensional (3D) balance recovery from single leg support capable of discerning appropriate 

instances for taking a step based on a synthesis of prioritized task control [28], extrapolated center 

of mass (xCoM) stability criteria [39], and zero-moment point recovery determination [38]. 

3.3 Methods 

3.3.1 Experimental data 

We collected experimental data at 250 Hz from 2 subjects (female 25 yrs | 1.72 m | 68.0 

kg; male 25 yrs | 1.79 m | 84.5 kg) standing on one foot (single-leg support) (Figure 6, left) during 

random support surface perturbation trials (6, 12 cm | 40 cm/s) in the posterior direction. The 

perturbations were introduced via the CAREN (Computer Assisted Rehabilitation Environment) 

system (Motekforce Link, Amsterdam, The Netherlands) which served as the support surface in 

each trial. Subjects were instructed to keep their arms crossed over their chest and to maintain 

balance (with or without stepping), and the free swing foot was lifted to a minimum of 10 cm  
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Figure 6: Experimental data collection setup (left). Subjects were instructed whether to stand on 

one or two legs via directions on the screen. CAREN support surface perturbation was triggered 

after a randomized time interval. OpenSim scaled model (right). Models were scaled to the 

subject’s body dimensions. Inverse kinematics was carried out on marker trajectory data to 

determine joint angle changes through time. 
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above the support surface. Marker trajectory data was recorded using VICON (Oxford, UK) t40 

cameras and filtered with a low-pass cutoff frequency of 6 Hz. 

We used OpenSim’s inverse kinematics (IK) tool in order to process the raw marker 

trajectory (.trc) files. Inverse kinematics minimizes the sum of the squared errors between the 

experimental marker locations (xi
exp) and the scaled model’s markers (xi(q)) in the ground reference 

frame at each time step by calculating the joint angles (q) that align the bodies in the “best match” 

position. This is done iteratively according to user defined weights (wi, ωj) applied to each marker 

in order to assign differing levels of importance to the position matching, which in turn affects the 

calculated joint angles.  

 

The output of the IK routine is a motion file (.mot) that when paired with the model of the subject 

in OpenSim shows their movement during that trial. 

With this data we used OpenSim’s body kinematics (BK) analysis tool. The BK tool 

calculates the position and velocity of each body’s center of mass, as well as the whole-body CoM. 

This provides data on limb coordination and establishes a measure of comparison between the 

experimental and simulated data sets. 

3.3.2 MATLAB-OpenSim simulation framework 

We expanded the platform that was developed in [29] for merging the open-source 

biomechanics software OpenSim [1] with the computational software MATLAB ®. This was 

accomplished using MATLAB’s mex function, which allows users to compile C++ code in 

MATLAB as an s-function which then joins the long list of processes already housed in the 
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program’s toolboxes. The resulting system laid the groundwork for closed-loop, forward dynamics 

simulation by consolidating biomechanical analyses, computational integration, and continuous 

feedback into one schematic. The loop begins with the initial states of the model, and determines 

the positional error between task points and their respective desired locations. The error signals 

are used as inputs to proportional-integral-derivative (PID) controllers that calculate the 

acceleration vectors necessary to move each task point to its desired location. Each acceleration 

vector is used by the OpenSim API in calculating the necessary joint torques to accomplish each 

task. Figure 7 gives a flow chart describing the process. 

Forward dynamics are used to compute accelerations from the calculated joint torques.  

 

Where [M(q)]-1 [superscript -1] is the mass matrix inverse; τ are the joint torques; C, G, and F are 

Coriolis and centrifugal forces, gravitational forces, and external forces, respectively. This process 

applies the accelerations at each generalized coordinate (q) and the movement in each time frame 

is appended at the end of the motion file. 

3.3.3 Zero-moment point 

As its name suggests, the zero-moment point is the point on the ground about which the 

sum of the moments is zero about the two non-vertical, ground frame axes. Roboticists use ZMP 

calculation to locate the mathematically ideal tracking point for a system’s center of mass during 

dynamic movement. Theoretically, above this point the CoM would not experience any net 

moments that would destabilize the system. Figure 8 shows an experimental balance recovery trial 

[41] with the subject’s calculated ZMP location. 
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Figure 7: Flow chart of MATLAB-OpenSim platform. Beginning with a biomechanical model, 

the system outputs a motion file that is generated by using a closed-loop control system to 

minimize positional error between tasks and desired locations iteratively in time. 

 

 

 

Figure 8: Side and front view of step response after forward loss of balance. Zero-moment point 

is displayed as a blue cylinder. The center of mass (green sphere) in human balance recovery 

closely follows the ZMP trajectory during stepping. ZMP is the point about which x and z moments 

sum to zero. 
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As the figure depicts, living systems also make use of ZMP for stability, although the brain 

interprets somatosensory feedback to generate musculoskeletal response rather than performing 

spatial calculations. However, the parallel exists allowing ZMP to be exploited for simulations as 

shown in [68], [70]. ZMP location was calculated by adding the residual moments acting on the 

free-floating pelvis body (Mpelvis) to the cross product between the residual forces acting on the 

pelvis (Fpelvis) and its location in the ground frame (rpelvis), and finding the moment arms that relate 

the vertical force to the x and z moments [71]: 

 

3.3.4 Prioritized task control 

Previous work [15] has shown the efficacy of adapting robotic prioritized task control for 

use in simulations of human subjects. The benefit of this approach is that complicated whole-body 

goals, such as balance control/recovery, can be decomposed into component tasks, which can then 

be assigned rank relative to each other. This technique has been  thoroughly explored for use with 

simulations of humanoid robots [28], and can be adapted for in silico musculoskeletal simulations 

of human subjects. Here, we identified three tasks for balance control and subsequent recovery 

after sufficiently large perturbations in priority order: (1) center of mass, (2) stepping foot, and (3) 

posture. Figure 9 shows the task points (green markers) as defined on the single support model. 

As previously stated, each task is assigned a rank relative to the others; Table 2 describes the 

hierarchy, as well as the task definition for each point. Proportional-Integral-Derivative (PID)  
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Figure 9: Task point definitions across the single-support model. Each task is fixed within its 

respective body's frame (e.g. Task #2 remains at the same position on the left foot relative to its 

frame of reference).  

 

Table 2: Task prioritization hierarchy and definitions of behavior during balance recovery 

simulations. Locations are displayed in Figure 9, above. 

Priority Name Location Description 

1 CoM Whole-body CoM Stay above the ZMP 

2 Step foot Left calcaneus CoM Step to recover balance (if necessary) 

3 Posture C7 Vertebrae Stay above the CoM 

 

 

  



34 

 

controllers calculate the acceleration vector necessary to minimize the error between each task 

point and its desired output. Within this framework, the joint torques necessary to accomplish each 

task, without letting lower priority tasks interfere with tasks above are calculated for each time 

step of a forward dynamics simulation following the process described in [15], [28]: 

 

Λ [lambda], the support (s) operational space (mass/inertia) matrix, is formulated from the 

Jacobian matrix of the support body (in this case the right foot), Js [subscript s], and the inverse of 

the system mass matrix, M(q). It is used in Equation 7 to calculate the dynamically consistent 

generalized inverse of the support Jacobian, which is needed to find the support null space (Ns 

[subscript s], Equation 8) that is necessary for limiting movements to a feasible space. 

 

In Equation 9, we calculate the constrained projection (*) of the inverse inertia matrix, ϕ [phi], 

where S is a selection matrix identifying which joints, q, are available to generate torques for 

driving movement. 

 

Equation 10 gives the formula for the generalized inverse of SqNs [subscript q][subscript s], which 

is used to implement velocity constraints as well as to project each task Jacobian into the support-

consistent space (Equation 11).  

 

Equations 11 – 15 describe the process of calculating joint torques for accomplishing task 1, 

limited by the support space and system inertia. J1* [subscript 1], the support-consistent reduced 
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Jacobian described previously, is calculated using J1 [subscript 1], the station Jacobian at task point 

1. 

 

For each task, Λ* [lambda] is the dynamically consistent generalized inverse of the task station 

Jacobian. 

 

Compensating terms must be included in the calculation in order to account for additional forces 

that affect the body’s movement. µ* [mu] is the compensating term for Coriolis and centrifugal 

forces, formulated using b, the vector of inertial forces across the body multiplied the full system 

Jacobian.  

 

p* is the gravity compensation term where g is the gravitational vector [0 -9.81 0]. 

 

Finally, the torque vector for accomplishing task 1, Γ1 [gamma][subscript 1], is computed using 

the results of the above equations, and the acceleration vector output by the task 1 PID controller, 

aref [subscript ref]. 

 

Subsequent tasks must be limited to the prioritization hierarchy so as not to interfere with higher 

tasks. To do this we limit the support-consistent reduced Jacobian used in Equation 15 by imposing 

the null space of preceding tasks. As an example, the formulation of the task 2 support-consistent 

reduced Jacobian is given in Equations 16 – 18. 
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Calculations from Equations 12 – 15 are then repeated using J2|1* [subscript 2|1]. The full process 

is again repeated until the torque vectors from each task are calculated then summed to give the 

whole-body torque vector for coordinated movement (Equation 19). 

 

3.3.5 Biomimetic decision making 

Task 2 described in Table 2 defines the motion of the step foot with the condition to only 

step if necessary. Humans do not always require a step to recover balance, and for simulations to 

be accurate a trigger is needed to model the decision making and execution process that 

differentiates balance control (postural adjustments and limb movement) from balance recovery 

(stepping). We used extrapolated center of mass (xCoM) as this trigger: 

 

Where x is the current position of the CoM and l and g are the leg length and gravity term, 

respectively. This is based off the inverse pendulum model described in [39]. When perturbed, the 

projection of the model’s xCoM on the ground translates forward. In the event that the xCoM 

remains inside the base of support, task 2 is defined as “no task” so that the foot can be manipulated 

to compensate for CoM inertia. When the xCoM leaves the base of support, it becomes impossible 

to recover balance based on the limited torque output of each joint. Therefore, in this case task 2 

is defined as stepping to the point of maximum forward displacement of the xCoM from the CoM. 
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3.3.6 Simulation 

Generic step response was simulated using the MATLAB-OpenSim platform with the 

prioritized task control and biomimetic decision making described above. The simulated model 

was perturbed using the same 6 and 12 cm posterior perturbations that subjects experienced in the 

experimental data collection trials. 5 contact points were modeled by Hunt-Crossley Force spheres 

placed at the toe, midfoot, and heel of the (right) support foot. This simulated frictional forces 

between the right calcaneus and the model’s translatable support platform to perturb its stance. 

Each simulation was compared from quiet standing before perturbation to the time frame prior to 

contact between the step foot and ground. 

3.4 Results 

3.4.1 Response to 6 cm perturbation 

The 6 cm perturbation did not provide sufficient disturbance to force the xCoM outside of 

the base of support. Of the three experimental trials that also had a 6 cm perturbation, one trial 

(subject 2, trial 31) did not produce a step response. Figures 10 – 12 compare the CoM task point 

trajectories plotted against time normalized to percentages of the movement. Each vector 

component (X, Y, or Z) is the displacement in that direction between the task point and the support 

foot. Figures 35-40 describing step foot and posture trajectories can be found in the Appendix A1. 

3.4.2 Response to 12 cm perturbation 

Due to the movement of the xCoM relative to the base of support, the generic response met 

the criteria for engaging task 2 as a step. Based on movement patterns, the generic response 

matched most closely with subject 1, trial 46. Figures 13 – 15 compare the CoM task point  
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Figure 10: Plot of center of mass x-direction displacement from the support foot after 6 cm 

perturbation. 

 

 

Figure 11: Plot of center of mass y-direction displacement from the support foot after 6 cm 

perturbation. 

 



39 

 

 

Figure 12: Plot of center of mass z-direction displacement from the support foot after 6 cm 

perturbation. 

 

 

Figure 13: Plot of center of mass x-direction displacement from the support foot after 12 cm 

perturbation. 
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Figure 14: Plot of center of mass y-direction displacement from the support foot after 12 cm 

perturbation. 

 

 

Figure 15: Plot of center of mass z-direction displacement from the support foot after 12 cm 

perturbation. 
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trajectories plotted against time normalized to percentages of the movement. Figures 41-46 

describing step foot and posture trajectories can be found in Appendix A2. 

3.5 Discussion 

The purpose of Aim I was two-fold: to design a prioritized task based controller capable of 

differentiating between instances of stepping and not stepping using principles of humanoid 

robotics, and to compare the synthesized motion output to experimental data. With regard to the 

first goal Aim I succeeded. When exposed to a 6 cm perturbation the controller was capable of 

generating a coordinated response that prevented it from losing balance. On the other hand, when 

a 12 cm perturbation was introduced, the system successfully recognized an impending loss of 

balance due to the movement of the xCoM. At that time, the task definition of priority 2 changed 

and a step was initiated in order to biomimetically expand the base of support in order to stabilize 

the CoM. In both cases, the zero-moment point served as the CoM tracking task which provided 

sufficient agreement with CoM trajectories observed in experimental data. 

Biological systems are noisy, and as such no two trials will be exactly the same, even in 

the same subject. This is shown in the variation between trials for both subjects 1 and 2 in the task 

point trajectory plots. One limitation of this system is that due to the intensive calculations used to 

determine response, the output will remain consistent for a given input (i.e. multiple simulations 

using 6 cm perturbation will yield the same no step coordination output, as would a 12 cm 

perturbation input produce the same step output). However, it is useful to identify concepts such 

as ZMP and xCoM that can be used in a cross-disciplinary fashion in order to replace biological 

feedback that is not present in silico. Moving forward, these techniques will be refined to make 

this platform more clinically relevant. 
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By comparing task point trajectories, it can be shown that the generic controller produces 

movement patterns that are consistent to what we have observed experimentally. This is 

particularly clear when comparing the generic response to 6 cm perturbation with subject 2’s trial 

31 (Figure 16). The coordination patterns are not identical, but he platform decision making 

framework and calculated movement pattern agree with the balance response displayed 

experimentally. Similarly, the step response to a 12 cm perturbation compares favorably with 

subject 1’s trial 46 (Figure 17). Although there is variation in the human responses that is not 

present in the simulations, both generic outputs are well within the range of our observations. 

Simulating generic responses is a crucial milestone to generating subject-specific simulations 

because it provides a basis from which the artificial intelligence can be molded to match a unique 

individual. Without the ability of the controller to emulate decision making on its own, we would 

be unable to support the arguments supporting predictive simulations presented in Chapter 5. The 

controller can be improved further by optimizing PID gains in order to produce the desired 

responses. Purposefully including latency, or adding noise to the task signals, could be one method 

of modeling abnormal movements in unhealthy subjects. 

In Chapters 4 and 5, we will explore techniques for improving these simulations in order 

to expand the scope of their impact. The generic responses generated here in Aim I will serve as a 

baseline for the following studies. New experimental and computational tools will be merged with 

the designed system in order to alter the model’s parameters for the purpose of 1) making the 

simulated response for a particular trial subject-specific, and 2) generalizing the model based on 

multiple trials to generate predictions of movements. 
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Figure 16: Time lapse showing 0 - 100% of response movement. (Above) Generic prioritized task, 

biomimetic decision, forward dynamics simulated response after 6 cm posterior perturbation. 

(Below) Subject 2, trial 31 response. 
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Figure 17: Time lapse showing 0 - 100% of response movement. (Above) Generic forward 

dynamics simulated response after 12 cm posterior perturbation. (Below) Subject 1, trial 46 

response. 
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Chapter 4: Aim II - Development of Neuromechanical Models and Evaluation 

of Differences Between Single and Multiple Steppers 
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4.1 Abstract 

 Advances in biomechanical modeling and simulation have significantly improved research 

and functional outcomes of human movement studies. However, biomechanics research remains 

generalized by population (e.g. athletes, elderly, impaired) and subject-specific models have not 

been widely adopted. Advantages of subject-specific models include capturing unique cause-and-

effect relationships for individuals that would otherwise be overlooked within populations. Here, 

we present a novel method for generating subject-specific models of human movement that can be 

produced rapidly and can accurately represent any level of physical fitness. We use these models 

to compare differences in task coordination between three cohorts of different balance recovery 

ability. 

4.2 Introduction 

4.2.1 Balance control and protective stepping 

Balance control is a fundamental task that requires limb and postural adjustments in 

response to somatosensory, visual, and vestibular feedback [72], [73]. Under normal 

circumstances, healthy individuals are able to regulate balance by coordinating limb articulation 

[74], [75]. However, after a sufficiently large perturbation the brain’s recognition of an imminent 

fall triggers a protective step which expands the base of support to enclose the projection of the 

body’s center of mass (CoM) on the ground [76]–[78]. For some, multiple steps may be necessary 

in order to decelerate the CoM enough to recover balance, which in turn reduces the overall chance 

of successfully recovering [79]–[81]. Differences between single and multiple steppers’ 

coordination strategies and neuromechanics should be evaluated in addition to physical fitness, in 

order to determine whether or not correctable shortcomings exist. These concepts are difficult to 
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investigate experimentally, but their principles may be uncovered through complementary 

modeling and simulation [82], [83]. 

4.2.2 Task-based movement 

Coordinated whole-body movements can be broken down into component tasks. Humans 

do not consciously think about individual task definitions, but they drive movement nonetheless 

(i.e. stay balanced, do not get hurt, grab object, etc.) [84]–[86]. Task separation in operational 

space control is a widely used concept for generating movements in robotic systems [87]–[89], but 

the concepts can be adapted for evaluating human subjects for clinical purposes. In particular, by 

separating out the component tasks of a step balance recovery (CoM control, step trajectory, and 

posture) we can compare single and multiple steppers to identify specific differences in their 

response strategies. The purpose of Aim II is to develop subject-specific surrogate models of single 

and multiple steppers task-space response to forward loss of balance, and to identify differences 

in balance recovery strategy. 

4.3 Methods 

4.3.1 Experimental data 

We used experimental data collected at 200 Hz from 15 subjects standing with feet 

shoulder width apart, tilted forward via cable in parallel with the floor until 20% of body weight 

was recorded by a series-connected load cell [35]. Subjects were then released and instructed to 

take a single step, though some needed to take multiple steps in order to prevent a fall. 36 degree 

of freedom models were scaled to each subject in OpenSim by iteratively changing a scale factor 

in order to minimize the positional error between marker locations on the subject using a static 

standing trial and on the model in silico. Inverse kinematics was used to calculate joint angles at 
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each time step from the marker trajectory recordings. Body kinematics was used to find component 

bodies’ center of mass and velocities. We calculated the ZMP using pelvis residual forces and 

moments taken from inverse dynamics and body kinematics.  

4.3.2 Task space surrogate response surfaces 

For this study we were interested in comparing step response between the three cohorts 

present in the experimental data set: older multiple steppers (OMS), older single steppers (OSS), 

and younger single steppers (YSS). As such, three tasks were defined for the purpose of developing 

a model of the balance coordination: the center of mass tracking the zero-moment point, the 

stepping foot movement, and posture orientation. Previous work has shown the benefits of 

modeling individual tasks as they relate to each other [33], [34], [70]. This was done here by 

defining vectors between the CoM and the ZMP, stepping foot, and posture as shown in Figure 18, 

using the same task point definitions described in Table 2. 

Surrogate response surfaces are modeling tools used to define the operational space that a 

task occupies. Response surfaces are powerful tools because they are subject-specific and represent 

the subject’s actual movement during a given trial thereby incorporating all neural control 

including reflexes and proprioception. The surrogate models are formulated by decomposing the 

task vectors, V1, V2, and V3 into component x, y and z parts. Each vector shares CoM as its origin 

point. One of the benefits of using this type of model is that parameter definitions are flexible to 

the point that any task could be selected as the origin relating vectors. However, for this 

investigation we selected CoM due to its status as primary (rank 1) task in our prioritization 

hierarchy in prior and future simulations. Stabilizing the CoM over ZMP is the primary task, so 

V2 and V3 response surface models are calculated as 3D quadratic fits of the x, y, and z  
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Figure 18: Definition of task vectors for step trials. Task 1 defines vector V1 between whole-body 

center of mass and zero-moment point. Task 2 defines vector between whole-body center of mass 

and the center of mass of the step foot body (calcaneus). Task 3 defines vector between whole-

body center of mass and the posture (C7 vertebrae). 
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displacements as a function of the x and z displacement of the CoM from the ZMP. The 

formulation is as follows: 

 

Where A is a matrix representing the system of linear equations that defines a quadratic equation 

with the x and z components of task vector V1 as inputs, and each row of A is a time frame of the 

movement. 

 

The standard formulation for a system of linear equations, A, where the output, x, is dependent on 

a vector of coefficients, b. Coefficients for each component of V2 and V3 are calculated by 

substituting the vector component into Equation 21 for x and solving for b. Using the x component 

of V2 as an example: 

 

 

The b vector of coefficients defines a surface representation of the x-direction space occupied by 

the body of V2, the step foot, during the balance recovery motion. This is done for x, y, and z of 

both V2 and V3 in order to have a mathematical picture of the subject’s exact response. The 

maximum and minimum x and z component of the composite V1 including all subjects’ data was 
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used to define vectors X and Z, equally distributed vectors encompassing the task spaces of all 

trials. X and Z provide inputs to the surface function by creating a mesh grid. The equation used 

to plot the surfaces for visual representation is given in Equation 23. 

 

Where S2x [subscript x] is the surrogate response surface for the x component of task vector 2. The 

coefficients define the response space and the surfaces are plotted for the same corresponding X 

and Z displacements for consistency in comparison. 

4.4 Results 

4.4.1 Traditional biomechanical measures of balance recovery 

 Tables 3 and 4 summarize the data of each subject’s balance recovery trial as standard 

measures used in biomechanics research. Researchers are typically interested in step length, 

forward lean angle, and center of mass height as they each contribute to the overall braking forces 

produced when the step foot comes in contact with the ground, as well as the forward momentum 

changes at that time that determine stability. 

4.4.2 Surrogate response surface models 

 Figures 19-21 and Figures 22-24 display the surrogate models of step foot response and 

posture response to CoM-ZMP displacement, respectively. Each plot represents data taken from 

all subjects belonging to a single cohort. These surrogate models define the operational space that 

is required by each subject in each cohort in responding to loss of balance. For x and z-direction 

displacement of CoM from ZMP, that is error between center of mass location and the stability 

point defined by the vector normal to the ground originating at the zero-moment point, each  
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Table 3: Table reporting traditional measures of the biomechanics of forward loss of balance: step 

length, forward lean, and center of mass height. Step length is reported both as a distance from 

both the ZMP and the plant foot. Forward lean angle is measured from the vertical y-axis (Fig. 18) 

to the posture task point using the subject’s CoM as the origin point of rotation. 

COHORT SUBJECT 

STEP 

LENGTH                                        

FROM  

ZMP (CM) 

STEP 

LENGTH                                     

FROM PLANT 

FOOT (CM) 

FORWARD 

LEAN  

ANGLE 

(DEG) 

COM 

HEIGHT 

(CM) 

OMS 

1 15.8 61.4 23.8 98.0 

2 18.7 56.3 11.0 100.6 

3 17.4 51.9 10.8 89.9 

4 2.7 49.1 22.7 95.5 

5 9.1 41.6 7.0 89.7 

OSS 

1 21.5 59.7 2.5 86.3 

2 29.8 74.8 11.4 96.9 

3 38.4 87.2 4.7 94.4 

4 27.9 60.8 6.5 85.9 

5 34.3 78.8 5.3 92.9 

YSS 

1 32.5 79.1 5.5 92.3 

2 30.5 76.1 4.6 92.3 

3 43.5 74.3 4.9 93.9 

4 18.0 55.9 6.1 102.3 

5 19.8 67.8 14.7 104.9 

 

Table 4: Mean and standard deviation for biomechanical measures of balance recovery of each 

cohort displayed in Table 3. 

COHORT 

STEP LENGTH                                        

FROM 

ZMP (CM) 

STEP LENGTH                                     

FROM PLANT 

FOOT (CM) 

FORWARD 

LEAN 

ANGLE (DEG) 

COM 

HEIGHT 

(CM) 

OMS 12.7 ± 6.0 52.1 ± 6.7 15.1 ± 6.8 94.7 ± 4.3 

OSS 30.4 ± 5.7 72.3 ± 10.6 6.1 ± 3.0 91.3 ± 4.4 

YSS 28.9 ± 9.3 70.6 ± 8.2 7.2 ± 3.8 97.1 ± 5.4 
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Figure 19: Surrogate response surface models of step foot x direction task space from OMS cohort 

trials. 

 

 

Figure 20: Surrogate response surface models of step foot x direction task space from OSS cohort 

trials. 
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Figure 21: Surrogate response surface models of step foot x direction task space from YSS cohort 

trials. 

 

 

Figure 22: Surrogate response surface models of posture x direction task space from OMS cohort 

trials. 

 



55 

 

 

Figure 23: Surrogate response surface models of posture x direction task space from OSS cohort 

trials. 

 

 

Figure 24: Surrogate response surface models of posture x direction task space from YSS cohort 

trials.  
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surrogate model extrapolates the subject-specific position of task points for step and posture, 

relative to the primary task point, CoM. 

4.5 Discussion 

4.5.1 Instability projections of surrogate models 

Figures 19-24 depict the surrogate response surface models for the three cohorts’ step and 

posture x-direction responses to forward loss of balance after cable release (Figures 47-52 in 

Appendix B1 give the y-direction responses; Figures 53-58 in Appendix B2 give the z-direction 

responses). In the case of both tasks, the older multiple stepper cohort surrogates occupy 

significantly more operational space than the older or younger single stepper groups, which are 

fairly similar. The curvature of the OMS surrogate surfaces and the greater space occupied 

indicates that for the same range of displacements of the center of mass from the zero-moment 

point, in the x and z-directions, OMS display significantly more variability in step foot trajectory 

and posture orientation. The steeper gradients visualized by the response surfaces correspond to 

greater degrees of instability for those subjects. Using the surrogate models, task point trajectories 

can be extrapolated past the observed range of motion, defining stable regions.  

4.5.2 Biomechanically consistent differences between cohorts 

Tables 3 and 4 report biomechanical measures associated with balance and falls research 

that are prevalent in clinical studies. As reported, the OMS cohort takes shorter steps than the 

single stepper groups. When related to the ZMP location the steps are approximately half as long 

as the others’. This task coordination, coupled with nearly double the amount of forward lean, 

produces a net moment about the step foot that cannot be overcome and results in additional steps. 

Similarly, fundamental balance mechanics shows that lowering the center of mass during recovery 
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improves stability due to the enhanced ability to generate lateral ground reaction forces [90]–[92]. 

The more unstable cohort, OMS, had on average 5 cm higher CoM at the completion of the first 

step. 

4.5.3 Surrogate models in biomechanics simulations 

Surrogate response models are powerful tools for improving simulations because they 

represent observed responses in the lab setting. The influence of sensory input, such as visual 

interpretation or joint pain, cannot be dissociated from the surrogate model, and are therefore 

integrated into the model fit. Previous work has shown that prioritized task-based simulations of 

subject-specific responses can be modeled using surrogate response surface models as the tracking 

objective for controllers determining spatial error between the task vectors [33], [70], [93]. 

However, in all previous studies a single surrogate from a single trial response was used for each 

simulation. Replicating subject trial data is an important milestone for this research, but the end 

goal is to make subject-specific predictions. The surrogate response surface method employed here 

will be further developed in Chapter 5 in order to model a subject’s complete neuromechanical 

coordination for the purpose of simulating predictive responses to external perturbations.  
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Chapter 5: Aim III - Evaluation of the Predictive Accuracy of Subject-Specific 

Simulations of Whole-Body, Step Recovery Strategies to Prevent Falls 
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5.1 Abstract 

 The relationship between sensory feedback, neurological interpretation, and mechanical 

output in human subjects is not fully understood. However, in order to uncover principles of 

movements in healthy and impaired subjects, it is necessary to model each aspect of the biological 

systems that contribute to motion development. The complicated transformations between 

perception and execution are difficult to model by existing means, so novel tools are necessary in 

order to enhance simulation research. Here, we present a novel approach to modeling subject-

specific neuromechanical coordination over multiple trials, in order to complete models of 

complete feasible operational space given particular initial states and inputs. We show that 

surrogate models of balance recovery response can be used to make predictive simulations that 

accurately reflect the same decision making and movement coordination displayed by the subject 

in the experimental lab setting. 

5.2 Introduction 

5.2.1 Factors impacting human balance 

Human movement is an intricate mechanical output that is the result of several distinct 

biological processes working synergistically [94]–[96]. Despite the importance of each phase, few 

tools exist in biomechanics research that are capable of modeling and simulating the complete path 

from signal to movement with feedback. It is becoming increasingly important to represent 

external factors associated with changes in motion due to the significant impact they can have, 

specifically when designing interventions for movement disorders [97]. More than half of the 

United States’ population is affected by some type of musculoskeletal disease, which results in 

approximately $882 billion in treatment costs and lost wages [2]. The prevalence of movement 
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disorders, and its forecasted growth due to the aging population, necessitates improved evaluation 

techniques that can be tailored to individual subjects for making recommendations in the clinical 

setting. 

5.2.2 Simulation of dynamically changing tasks 

Predictive simulations in biomechanical studies have improved in recent years due to novel 

modeling techniques for replicating the characteristics of human movement [20], [98], [99]. 

Estimates of various fundamental activities, including gait and balance recovery, have been 

developed by minimizing an objective function under some set of constraints [10], [20], [21], [37], 

and have yielded promising results. While these simulations are able to accurately generate 

movement patterns that compare well to observed experimental data, they do not typically account 

for somatosensory or proprioceptive feedback, such as joint pain or fear of falling, that would 

normally influence a subject’s voluntary and involuntary processes for selecting movements [100], 

[101]. External stimuli that may negatively influence the optimal solution, are unaccounted for in 

such cases. Furthermore, research into motor control has shown that muscle redundancy generates 

a large set of coordination patterns for producing any given movement, with the optimized motion 

pattern included [102], [103]. At its core, human movement is a series of tasks designed and 

executed in order to accomplish some goal with intermediate aims, e.g. stand and walk from point 

A to point B; move quickly but do not get hurt, with sensory inputs and a desire to protect the body 

directly influencing real-time decision making [104]–[106]. Goal dependent voluntary changes in 

coordination and the inherent noise of biological systems makes it unlikely that neuromechanical 

outputs target some optimal performance in situations where an immediate response is more 

important than an efficient one.  
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Research suggests that rather than minimizing effort, humans minimize spatial error 

between the control point and its goal [107]. This concept is supported by research showing 

subjects’ coordination patterns as being dependent on initial conditions and target articulation 

position, as well as changes in sensory inputs [108]–[111]. Previous research has implemented this 

theory in generating subject-specific simulations of balance recovery [34], [93]. Novel modeling 

techniques are therefore necessary in order to fill this gap and generate true subject-specific 

simulations that reflect the complete neuromechanical input and output processes of motion. 

Here, we present a novel method of simulating subject-specific neuromechanical 

coordination using compound surrogate response models. The proposed method is tested using 

balance recovery data collected after forward and backward support surface perturbation during 

single support in human subjects. This technique synthesizes the prioritized task-control with 

decision making strategies described in Chapter 3 with the surrogate response models introduced 

in Chapter 4. 

5.3 Methods 

5.3.1 Experimental balance recovery data 

Balance recovery data was collected by recording marker trajectories with a Vicon Camera 

system at 250 Hz with one subject (female 25 yrs | 1.72 m | 68.0 kg) standing on one foot (Figure 

6, left) during random support surface perturbation trials (6, 12 cm | 40 cm/s) in the anterior and 

posterior directions. There was no prior training, and the subject was not aware of the magnitude 

or direction of the perturbation in advance. The perturbations were introduced via the CAREN 

system. Subjects were instructed to keep their arms crossed over their chest and to maintain balance 

(with or without stepping), and the free swing/step foot was lifted to a minimum of 10 cm above 
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the support surface prior to introduction of the perturbation. Marker trajectory data was filtered 

with a low-pass cutoff frequency of 6 Hz. Of 96 trials from which data was collected, 10 trials 

involved strictly anterior and posterior perturbations (no translation in the z-direction). These trials 

were used to develop the compound surrogate model for the subject. 

5.3.2 Compound surrogate response model 

 The surrogate response surface approach described in Chapter 4 was improved to define 

multiple trials in order to complete the model of a specific subject’s neuromechanics. The 

technique used is modeled after K-Fold Cross Validation. A conceptual diagram of K-fold Cross 

Validation is shown in Figure 25. 

 In this system, the trials are made up of the body kinematics data that is used to generate 

individual surrogate response surfaces. Ten trials met the criteria for inclusion, so a 10-Fold Cross 

Validation was performed. Each training set consisted of 9 trials, while the 10th trial was withheld 

for testing. The testing input used was the perturbation associated with the withheld trial (posterior 

or anterior, 6 or 12 cm). The data compiled from the nine trials in the training set was used to 

define task vectors between the whole-body center of mass and three task points. Figure 26 

describes the set up. 

 Both center of mass location and posture were fit with quadratic response surfaces using x 

and z-direction displacement from the plant foot as inputs. For the complete formulation see 4.3.2. 

Following results reported in [68] the step foot trajectory was fit with a quintic polynomial. The 

quintic fit more accurately represented the plateau effect of maintaining the step foot at 10 cm 

above the ground during single support, and stepping when perturbed past the bounds of the base 

of support. 
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Figure 25: Depiction of K-Fold Cross Validation. In each iteration (K) a subset consisting of one 

trial is withheld from the modeling process (testing subset). The remaining N – 1 trials are used to 

build the model and train the system (training subset). The system is tested using the inputs that 

originally generated the test set. The output is compared to the test set in order to determine how 

well the model predicts the subject’s response. The power behind this technique is that each trial 

is guaranteed use in both testing and training. 

 

 

Figure 26: Definition and formulation of surrogate response surface. Task vectors were defined 

between CoM and plant foot (V1), CoM and step foot (V2) and CoM and posture (V3). Quadratic 

surfaces were used to model CoM and posture movement while a quintic fit was applied to the 

step foot.  
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5.3.3 Prioritized task simulation of compound surrogate models of 

neuromechanics 

 Aim III is the culmination of work from Aims I and II. Here we synthesize the improved, 

compound surrogate response surface models for representing a specific subject’s 

neuromechanical balance recovery coordination ability in 3D space with the robust control system 

architecture, biomimetic decision making, and prioritized task-based simulation. Figure 27 

describes the flow of data through the system. Each trial from the 10-trial data set is used once as 

a testing set and compared to the simulated prediction. For comparison, following procedures used 

in previous studies of biomechanical stepping response, for comparison of the simulation to the 

experimental testing set, the time frame of both motions was limited to before the perturbation to 

the instant before contact was made between the step foot and the ground. 

5.4 Results 

The test sets and the corresponding predicted responses were compared qualitatively to 

determine whether the correct directional response was generated, and numerically to determine 

percent error between prediction and experiment. Figure 28 shows the end frame of a predicted 

movement (blue) and the experimental data used as the test set (green) for Trial 64 from the data 

set. Figures 29-31 display the corresponding task point trajectories for the center of mass, step 

foot, and posture as percentages of the total movement response. Finally, Table 5 displays the 

percent error of the predicted response’s x, y and z components for each task. The plots for the 

remaining trial data can be found in Appendix C, Figures 59-82. 
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Figure 27: Flow diagram describing system process. Initial states inform original task locations. 

Errors between task locations and compound surrogate models drive PID calculation of 

acceleration vector to move task points to desired positions by prioritized task calculation. Output 

movement prediction is compared to the testing subset movement. 
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Figure 28: Depiction of the lateral (top) and front (bottom) view of the predicted response (blue) 

to the 12 cm perturbation experienced by the subject in Trial 0064 and their experimental response 

(green). The predicted response was generated using the compound surrogate response surface of 

the other nine trials in the training set, while the experimental response was withheld in the testing 

set.  
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Figure 29: Displacement of center of mass in the x-direction from its initial position. Test line 

(green) represents experimental data collected from the subject during Trial 0064. Prediction line 

(blue) represents the system response to the same perturbation input. 

 

 

 

Figure 30: Displacement of step foot in the x-direction from its initial position. Test line (green) 

represents experimental data collected from the subject during Trial 0064. Prediction line (blue) 

represents the system response to the same perturbation input. 
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Figure 31: Displacement of posture in the x-direction from its initial position. Test line (green) 

represents experimental data collected from the subject during Trial 0064. Prediction line (blue) 

represents the system response to the same perturbation input. 
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Table 5: Table listing percent error values for each component of the three predicted task points 

located in the ground frame compared against the experimental data. Trial 64, displayed in Figures 

28-31 above, was withheld from task point location mean calculation (bottom row) in order to 

remove outlier percentage error values. Mean error for all tasks in a single trial is diplayed in the 

right column. 

 TASK POINT LOCATION PERCENT ERROR  

 Center of Mass Step Foot Posture  

TRIAL X Y Z X Y Z X Y Z 
TRIAL 

MEAN 

0010 -4.52 1.50 -5.84 -11.97 1.00 -61.30 -5.64 0.36 -2.41 -9.87 

0018 -1.12 2.12 -6.76 -5.18 6.90 -64.57 -8.14 0.76 -2.37 -8.71 

0063 -0.33 1.35 -6.61 -7.71 13.31 -37.98 -6.29 0.29 -8.10 -5.79 

0075 -0.33 0.50 -6.90 -10.42 12.89 -9.01 -3.21 1.59 -15.48 -3.37 

0077 -54.76 0.20 -13.61 -20.39 81.69 -6.14 -93.98 1.21 -23.37 -14.35 

0085 -10.31 0.99 -2.36 -4.14 8.01 -24.62 -1.56 1.85 -22.38 -6.06 

0064 -70.60 0.76 -7.87 -1173.7 9.43 -6.49 -118.1 0.66 -10.62 -152.9 

TASK

MEAN 
-11.89 1.11 -7.01 -9.97 20.63 -33.94 -19.80 1.01 -12.35  
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5.5 Discussion 

5.5.1 Overview of results 

Despite positional errors exceeding 10 cm in some trials, the predicted responses based off 

compound surrogate response surface representations of the subject’s neuromechanical response 

to varying perturbation directions and magnitudes showed good agreement with the coordination 

patterns displayed in the lab setting. No individual prediction exceeded a mean absolute percent 

error of 15% (not including Trial 0064). Using just nine trials per training set resulted in average 

absolute percent error below 35% for each directional component of the coordinated task 

responses.  

It should be noted that due to the step foot x-direction percent error of Trial 0064, it was 

withheld from the mean calculations. However, as displayed in Figures 28-31 the Trial 0064 

prediction mimicked the experimentally observed motion, despite lagging behind and generating 

larger percent error values as compared to other trials. Figures 32-34 display the x-direction task 

response predictions from Trial 0064 in relation to the standard deviation about the mean for the 

subset of posterior perturbations. Despite the lag and large percent error, the predicted movement 

response remains within one standard deviation of the mean for center of mass and posture tasks, 

and two standard deviations for step. In Trial 0008 the subject started from an unstable 

configuration, creating a no solution singularity in the Jacobian matrix calculations. For this 

reason, Trial 0008 was not tested, although the response data was used for training the surrogate 

models. Trials 0046 and 0072 were used for both testing and training, however, the predicted 

responses did not produce steps. This gives the system an overall misclassification error percentage 

of 22%. The remaining trial data given in the Appendix C provides supporting evidence of this 
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Figure 32: Predicted (Trial 0064) center of mass movement (blue) in the x-direction as a 

percentage of step response. Shaded (green) region represents one standard deviation about the 

mean experimental center of mass trajectory for all posterior perturbation trials. Both predicted 

and experimental trajectories are reported as displacements from the base of support (right, plant 

foot). 
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Figure 33: Predicted (Trial 0064) step foot movement (blue) in the x-direction as a percentage of 

step response. Shaded (green) region represents two standard deviations about the mean 

experimental step foot trajectory for all posterior perturbation trials. Both predicted and 

experimental trajectories are reported as displacements from the base of support (right, plant foot). 
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Figure 34: Predicted (Trial 0064) posture movement (blue) in the x-direction as a percentage of 

step response. Shaded (green) region represents one standard deviation about the mean 

experimental posture trajectory for all posterior perturbation trials. Both predicted and 

experimental trajectories are reported as displacements from the base of support (right, plant foot).  
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platform’s ability to discern the correct response to an input anterior or posterior perturbation, and 

the coordinate body movements so as to match the strategy that would be employed by the same 

subject in vivo.  

5.5.2 Controller performance 

The platform itself may be improved in order to generate more accurate predictions. The 

separate proportional, integral, and derivative gains of each tasks’ controller may be optimized in 

order to maximize agreement between simulations and experimental data. Furthermore, gain 

optimization in the control system architecture may reduce lag time resulting in delayed responses 

compared to experimental observations (as shown in Figure 28). Further research into subject-

specific optimal control will be required for future iterations of this system and research aims 

investigated. 

5.5.3 Challenges and recommendations 

 Only anterior and posterior perturbations were considered for this study. Due to limited z-

direction displacement of the center of mass, the z surrogate models generate limited change in 

task positioning as there is significantly more data points in each compound surrogate 

corresponding to little or no z-direction movement. The z surrogates should improve with the 

inclusion of lateral, medial, and diagonal perturbation data, which would better define the 

operational space relationship between each task. Increasing the data set would likely also improve 

tracking accuracy overall between all tasks and directions. 

Stepping research as it pertains to falls places a premium on the first step taken, due to 

significantly higher risk of falling as multiple steps are used. For this reason, biomechanists and 

clinical researchers typically focus analysis efforts on the time span from perturbation to step 
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contact. Similarly, we limited our analysis of both the predicted movements and the experimentally 

collected data to the time from perturbation to before first contact between the step foot (heel or 

toe) and the platform body. The simulation does not recognize double support, and does not include 

routines for weight acceptance and transfer that follow touch down. Future work will bridge this 

gap in order to predict multiple step placements and address parallel studies’ aims in gait and other 

double support movements.  
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Chapter 6: Conclusion 
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 In the work presented here, we developed a control systems approach for replacing 

biological feedback mechanisms with computational information modeled after humanoid 

robotics. In Aim I, as well as in preliminary research, we demonstrated to the efficacy of a 

synthesized approach, merging these techniques for planning movement strategy with prioritized 

task execution, at generating expected responses for human balance recovery simulations. 

Utilizing the described control scheme and three tasks, the platform was able to respond 

appropriately to small and large perturbation inputs and remain balanced. 

 Clinically, subject-specific treatment and rehabilitation strategies are becoming more 

prevalent. In order to improve functional outcomes, it is necessary to develop new computational 

toolsets for generating complementary simulations. These simulations may play a crucial role in 

patient care in the near future, as they are easily manipulated to uncover biomechanical and 

neurological relationships that are not made apparent through traditional data collection and 

observation. This places a heavy burden on simulators, as the models must be both accurate and 

comprehensive. That is, full representations of signal-to-movement output pathways must be 

developed rapidly and reliably. 

 In Aim II, we demonstrated the power of surrogate response surface models in meeting this 

need for balance recovery research. The surrogate model represents actual movements recorded in 

vivo, therefore it encompasses all decision making and execution processes involved in producing 

the complex multifaceted response. This is particularly important for balance recovery and falls 

research, as identifying different data relationships may lead to new approaches in training 

strategies for improving stability in at-risk groups, such as the older multiple stepper cohort 

evaluated here. Furthermore, exploring concepts from multiple fields of study and providing 
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interdisciplinary innovations is of great benefit. This work sought not only to develop novel 

evaluation methods for falls research, but also to promote cross disciplinary research by 

demonstrating the unique products of studies that approach biomechanical systems from multiple 

angles. 

The novel platform developed in Aim III is the first of its kind for predicting subject-

specific response to destabilization by modeling that subject’s chosen neuromechanical 

coordination as recorded in the lab setting. While the predictions are not perfect, recommendations 

for improving accuracy include optimization of controller gains and expansion of the training data 

set. This work used a simplified model of balance recovery which included only three subtasks: 

center of mass control, step foot response, and posture alignment. However, the operational space 

task-prioritization described in Aim I is limitless in the number of tasks that can be represented 

and coordinated. Future versions of the system may improve upon the results given here by 

defining additional tasks at the knee and hip in order to track a larger array of task point trajectories. 

Likewise, only the step response task was altered over the course of any given simulation trial in 

order to change the task definition from balance control (via limb articulation) to balance recovery 

(e.g. taking a forward or backwards step). The prioritization hierarchy is flexible in that any task 

definition can be made higher priority than any other task. To take this concept a step further, 

future work will need to explore dynamically changing the prioritization hierarchy during 

simulated response in order to determine its effect on movement output. 

 The system concept developed and validated in Aim III is a first step towards 

comprehensive predictive simulation of specific subjects. While on a trial-to-trial basis the 

accuracy of the system’s prediction was always above 80%, the minimum accuracy across testing 
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sets dropped off into the 60% range. Recommendations for improving the system response have 

been discussed above, and it is reasonable to expect predictive accuracies consistently above 90% 

before making clinically relevant claims. For comparison, the United States Food and Drug 

Administration assigns a “High Quality” level of evidence rating for Phase III drug and medical 

device testing where success rates are >80% at follow-up in at least two double-blinded studies 

[112], [113]. However, the performance of the system as described here contributes to the 

argument that simulation in research, rehabilitation, and clinical practices shows significant 

promise for expanding and improving. 

 The platform described here is novel technology for making subject-specific predictive 

simulations. Despite the focus of this dissertation being on applications to balance recovery 

research, there are no limits on task-based prioritization in terms of number of tasks defined, and 

compound surrogate response modeling can be applied to any set of task vector definitions. This 

means that although balance recovery was studied here, any movement goal (e.g. gait, sit-to-stand, 

throwing, jumping, etc.) can be modeled and simulated so long as subtasks can be appropriately 

defined and controlled. For these reasons this work may have far reaching applications in other 

areas of human movement science and research. Furthermore, this modeling technique can be used 

for any subject, healthy or impaired, greatly expanding the range of application and significance 

of the predictions. The inherent flexibility in choice of tasks and control strategies will allow this 

system to be used for a number of investigations across fields in the future.  

 Future work involving this platform will address double-support contact between both feet 

and the ground, as this changes the support Jacobian which is the basis for the prioritized task 

simulations. Double-support is also a fundamental part of other movement goals, and will need to 
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be included in order to generate predictive simulations of other activities. Optimizing controller 

gains and the prioritization hierarchy will also contribute to more accurate representations of 

subjects. The end goal for this system is to fine tune it as a comprehensive representation of an 

impaired subject’s neuromechanics. Changes can then be made to the surrogate models, 

controllers, priorities, or the musculoskeletal model itself that reflect rehabilitation techniques used 

clinically. Based on its ability to predict subject-specific movement coordination, the platform 

would simulate and predict what changes would occur due to the intervention. In this way 

clinicians may evaluate personalized care routines prior to implementation, thereby identifying the 

best strategies ahead of time and improving functional outcomes. Future work will continue 

towards this goal and eventually test this platform against clinical data to determine how well it is 

able to predict success rates for a wide range of musculoskeletal disease and movement disorder 

treatments.  
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Appendix A 

A1: Response to 6 cm perturbation 

 

 

Figure 35: Plot of step foot x-direction displacement from the support foot (6 cm perturbation). 

 

 

Figure 36: Plot of step foot y-direction displacement from the support foot (6 cm perturbation). 
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Figure 37: Plot of step foot z-direction displacement from the support foot (6 cm perturbation). 

 

 

Figure 38: Plot of posture x-direction displacement from the support foot (6 cm perturbation). 
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Figure 39: Plot of posture y-direction displacement from the support foot (6 cm perturbation). 

 

 

Figure 40: Plot of posture z-direction displacement from the support foot (6 cm perturbation). 
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A2: Response to 12 cm perturbation 

 

 

Figure 41: Plot of step foot x-direction displacement from the support foot (12 cm perturbation). 

 

 

Figure 42: Plot of step foot y-direction displacement from the support foot (12 cm perturbation). 
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Figure 43: Plot of step foot z-direction displacement from the support foot (12 cm perturbation). 

 

 

Figure 44: Plot of posture x-direction displacement from the support foot (12 cm perturbation). 
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Figure 45: Plot of posture y-direction displacement from the support foot (12 cm perturbation). 

 

 

Figure 46: Plot of posture z-direction displacement from the support foot (12 cm perturbation). 
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Appendix B 

B1: Surrogate response surfaces for step foot y and z components 

 

Figure 47: Surrogate response surface models of step foot y-direction task space from OMS cohort 

trials. 

 

Figure 48: Surrogate response surface models of step foot z-direction task space from OMS cohort 

trials. 
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Figure 49: Surrogate response surface models of step foot y-direction task space from OSS cohort 

trials. 

 

 

Figure 50: Surrogate response surface models of step foot z-direction task space from OSS cohort 

trials. 
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Figure 51: Surrogate response surface models of step foot y-direction task space from YSS cohort 

trials. 

 

 

Figure 52: Surrogate response surface models of step foot z-direction task space from YSS cohort 

trials. 
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B2: Surrogate response surfaces for posture y and z components 

 

Figure 53: Surrogate response surface models of posture y-direction task space from OMS cohort 

trials. 

 

 

Figure 54: Surrogate response surface models of posture z-direction task space from OMS cohort 

trials. 
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Figure 55: Surrogate response surface models of posture y-direction task space from OSS cohort 

trials. 

 

 

Figure 56: Surrogate response surface models of posture z-direction task space from OSS cohort 

trials. 
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Figure 57: Surrogate response surface models of posture y-direction task space from YSS cohort 

trials. 

 

 

Figure 58: Surrogate response surface models of posture z-direction task space from YSS cohort 

trials. 
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Appendix C 

C1: Trial 0010 

 

Figure 59: Depiction of the lateral (top) and front (bottom) view of the predicted response (blue) 

to the 6 cm anterior perturbation experienced by the subject in Trial 0010 and their experimental 

response (green).  
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Figure 60: Displacement of center of mass in the x-direction from its initial position. Test line 

(green) represents experimental data collected from the subject during Trial 0010. Prediction line 

(blue) represents the system response to the same perturbation input. 

 

 

Figure 61: Displacement of step foot in the x-direction from its initial position. Test line (green) 

represents experimental data collected from the subject during Trial 0010. Prediction line (blue) 

represents the system response to the same perturbation input. 
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Figure 62: Displacement of posture in the x-direction from its initial position. Test line (green) 

represents experimental data collected from the subject during Trial 0010. Prediction line (blue) 

represents the system response to the same perturbation input. 
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C2: Trial 0018 

 

Figure 63: Depiction of the lateral (top) and front (bottom) view of the predicted response (blue) 

to the 12 cm anterior perturbation experienced by the subject in Trial 0018 and their experimental 

response (green).  
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Figure 64: Displacement of center of mass in the x-direction from its initial position. Test line 

(green) represents experimental data collected from the subject during Trial 0018. Prediction line 

(blue) represents the system response to the same perturbation input. 

 

 

Figure 65: Displacement of step foot in the x-direction from its initial position. Test line (green) 

represents experimental data collected from the subject during Trial 0018. Prediction line (blue) 

represents the system response to the same perturbation input. 
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Figure 66: Displacement of posture in the x-direction from its initial position. Test line (green) 

represents experimental data collected from the subject during Trial 0018. Prediction line (blue) 

represents the system response to the same perturbation input. 
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C3: Trial 0063 

 

Figure 67: Depiction of the lateral (top) and front (bottom) view of the predicted response (blue) 

to the 6 cm anterior perturbation experienced by the subject in Trial 0063 and their experimental 

response (green).  
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Figure 68: Displacement of center of mass in the x-direction from its initial position. Test line 

(green) represents experimental data collected from the subject during Trial 0063. Prediction line 

(blue) represents the system response to the same perturbation input. 

 

 

Figure 69: Displacement of step foot in the x-direction from its initial position. Test line (green) 

represents experimental data collected from the subject during Trial 0063. Prediction line (blue) 

represents the system response to the same perturbation input. 
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Figure 70: Displacement of posture in the x-direction from its initial position. Test line (green) 

represents experimental data collected from the subject during Trial 0063. Prediction line (blue) 

represents the system response to the same perturbation input. 
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C4: Trial 0075 

 

Figure 71: Depiction of the lateral (top) and front (bottom) view of the predicted response (blue) 

to the 6 cm posterior perturbation experienced by the subject in Trial 0075 and their experimental 

response (green).  
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Figure 72: Displacement of center of mass in the x-direction from its initial position. Test line 

(green) represents experimental data collected from the subject during Trial 0075. Prediction line 

(blue) represents the system response to the same perturbation input. 

 

 

Figure 73: Displacement of step foot in the x-direction from its initial position. Test line (green) 

represents experimental data collected from the subject during Trial 0075. Prediction line (blue) 

represents the system response to the same perturbation input. 
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Figure 74: Displacement of posture in the x-direction from its initial position. Test line (green) 

represents experimental data collected from the subject during Trial 0075. Prediction line (blue) 

represents the system response to the same perturbation input. 
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C5: Trial 0077 

 

Figure 75: Depiction of the lateral (top) and front (bottom) view of the predicted response (blue) 

to the 12 cm posterior perturbation experienced by the subject in Trial 0077 and their experimental 

response (green).  
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Figure 76: Displacement of center of mass in the x-direction from its initial position. Test line 

(green) represents experimental data collected from the subject during Trial 0077. Prediction line 

(blue) represents the system response to the same perturbation input. 

 

 

Figure 77: Displacement of step foot in the x-direction from its initial position. Test line (green) 

represents experimental data collected from the subject during Trial 0077. Prediction line (blue) 

represents the system response to the same perturbation input. 
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Figure 78: Displacement of posture in the x-direction from its initial position. Test line (green) 

represents experimental data collected from the subject during Trial 0077. Prediction line (blue) 

represents the system response to the same perturbation input. 
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C6: Trial 0085 

 

Figure 79: Depiction of the lateral (top) and front (bottom) view of the predicted response (blue) 

to the 6 cm anterior perturbation experienced by the subject in Trial 0085 and their experimental 

response (green). 
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Figure 80: Displacement of center of mass in the x-direction from its initial position. Test line 

(green) represents experimental data collected from the subject during Trial 0085. Prediction line 

(blue) represents the system response to the same perturbation input. 

 

 

Figure 81: Displacement of step foot in the x-direction from its initial position. Test line (green) 

represents experimental data collected from the subject during Trial 0085. Prediction line (blue) 

represents the system response to the same perturbation input. 
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Figure 82: Displacement of posture in the x-direction from its initial position. Test line (green) 

represents experimental data collected from the subject during Trial 0085. Prediction line (blue) 

represents the system response to the same perturbation input. 
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