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Abstract

Lithium indium diselenide [LISe] is under development as a single crystal semiconductor de-

tector for neutron detection applications. Enriched in lithium-6, a neutron sensitive isotope,

this wide-band gap semiconductor possesses the inherent neutron-gamma discrimination

afforded by the thermal neutron capture reaction energy while providing distinct efficiency

advantages over lithiated conversion layer detectors. The overarching theme of this work

is to characterize the fundamental properties of this material to optimize its performance

in neutron detection applications. The work presented here includes the identification of

a suitable metallurgical contact for advanced detector fabrication, fundamental electronic

property characterization, and proof-of-principle fast neutron imaging performance. Can-

didate contact materials were deposited through radio frequency magnetron sputtering.

The primary metrics used to identify a robust contact were adhesion to the LISe surface

and current voltage characteristics. Among the numerous contacts investigated, indium

demonstrated the best adhesion properties. Its viability was demonstrated through the

fabrication of a pixelated thermal neutron imaging detector (LTNI). Charge generation,

transport, and trapping properties were investigated with emphasis on the stability of

these properties post-operation in high thermal neutron flux fields. Neutron and alpha

spectroscopy, photoinduced current transient spectroscopy, Raman spectroscopy, trap-

filled limited voltage, and photoconductivity measurements were used to probe the charge

transport and trapping mechanisms. Moderate transport properties were identified with

respect to comparable technologies. Defect studies demonstrated that the type and density

of defects strongly influenced performance of the detector. Encouraged by the performance

of LTNI, an imaging detector was fabricated by coupling a LISe crystal to a 256 × 256

channel Timepix Application Specific Integrated Circuit to maximize spatial resolution.
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The fast neutron spatial resolution for 9 MeV [electron-Volts] neutrons was investigated

via a knife edge experiment. The measured efficiency was in agreement with the Evaluated

Nuclear Data File cross-section database. The ultimate spatial resolution of the system was

determined as 1.55 millimeters via the 10-90% decrease in contrast of the one-dimensional

edge spread function. In conclusion, this material has been shown to exhibit suitable

properties warranting further development for high efficiency slow neutron applications

guided by the results of this work.
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Chapter 1

Introduction

1.1 Motivation

Neutron detection is an inherently difficult task due to the low probability of interaction

with matter. Despite this (and because of it), there are a wealth of applications for neutron

detection ranging from space exploration to national security to dosimetry. A perceived

shortage of 3He, the current gold standard for neutron detection, prompted a surge of research

and developmental of new detection materials. Increased efficiency, faster signals, better

neutron-γ discrimination, lower power, reduced cost, and more compact designs are among

the most coveted improvements. Among the myriad of applications, neutron radiography

is one of the most demanding due, in part, to the combination of high detection efficiency,

spatial resolution, and fast timing requirements. Consequently, significant effort has been

focused on the improvement of current detector technologies and new detection materials.

For a novel detector material or design, it is necessary to characterize their inherent

properties as a part of the vetting process. This work is dedicated to developing a

fundamental understanding of the ternary chalcogenide LiInSe2 (LISe) as neutron detection

material and provide a proof-of-principle for fast neutron imaging. LISe possesses inherent

advantages over similar detection materials due to the incorporation of neutron sensitive 6Li

into the bulk crystal. Its unique scintillation and semiconduction properties provide parallel

detector development avenues for a host of applications, especially where small detector sizes

are desirable.
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1.2 Novel Contributions

Future improvements in detector technology require an thorough understanding of the charge

carrier transport properties in order to hone the growth process and optimize detector

performance. Additionally, there is no data on the performance of LISe under high flux

irradiation and its resistance to radiation damage, which is an important factor in long-

term operation in commercial applications. Furthermore, commercialization requires the

identification of a robust ohmic contact that facilitates detector packaging. Finally, LISe is

capable of reducing integration time in neutron-imaging applications due to its inherent

detection efficiency, requiring further investigation into its fundamental capabilities and

limitations for radiography. This work seeks to fill these knowledge gaps and provide a

guiding direction for application-specific development of LISe.
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Chapter 2

Semiconductor Radiation Detectors

2.1 Theory of Operation

The development of solid state radiation detectors began, in earnest, in the mid-twentieth

century when van Heerden [1–3] expanded earlier works on gas ionization chambers [4] and

photoconduction [5–7]. Van Herdeen’s silver chloride crystal counters were the first devices

capable of particle detection. Shortly thereafter, a search for materials with similar properties

unearthed promising candidates, such as thallium bromide [8–11]. From there, developments

in crystal growth, pn junction detectors, and compound semiconductors spurred the evolution

of the robust array of semiconductor radiation detectors available today [12–15].

2.1.1 Metals, Insulators, and Semiconductors

Semiconductors occupy a gray zone between insulators and conductors defined by the

conductivity/resistivity, denoted as σ/ρ, of the material. Resistivity and its reciprocal,

conductivity, quantify a material’s ability to resist current flow when exposed to an external

potential. These properties are governed by the material’s electronic band structure, which

is defined by the relative distance between the valence and conduction bands in energy space.

The valence band, the outermost shell of electrons, is the highest energy state an electron

can occupy without an excitation source. The lowest unfilled state is the conduction band,

where electrons are only loosely bound to the nucleus and are generally free to drift and
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diffuse from atom to atom. As its name suggests, the conduction band allows electrons to

move or drift freely through a material. The forbidden region between these conduction

bands in ideal insulators and semiconductors is devoid of quantum states (Figure 2.1). This

space is characterized by the energy required to excite an electron from the top of the valence

band to the conduction band (band gap energy) and the energy where 50% of the energy

states are filled (Fermi level).

Lattice spacing and crystal structure dictate the size of the band gap. As such, both

pressure and temperature exhibit slight influences [17–19]. The distribution of electrons

within the available states in the conduction band is highly dependent on the thermal

energy available to excite electrons from the valence band into the conduction band, which

is described by the Fermi-Dirac distribution, f(ε),

f(ε) =
1

exp
(

(ε−EF )
kT

)
+ 1

(2.1)

where ε is the energy level in eV, k is the Boltzmann constant in eV/K, and T is the

absolute temperature in Kelvin. Consequently, the density of electrons in the conduction

Figure 2.1: Energy band diagrams for insulator, semiconductor, semimetal, and metal.
Insulators have a very large band gap resulting in low conducitivity (10−14 − 10−18 S/cm.
Semimetals and metals have negligible band gaps and high conductivity. Semiconductor
band gaps range from 1 to several eV allowing limited current flow under sufficiently large
voltages.The Fermi energy level, EF , is a theoretical energy level related to the density of
available states and the distributions of electrons within these states [16]

.
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band is directly proportional to temperature as shown in Equation 2.1, which is integral to

the performance and operation of semiconductor devices [20, 21].

2.1.2 Charge Carrier Generation, Transport, and Recombination

When discussing the nature of semiconductor devices, it is helpful to consider the distribution

and transport of electrons within the conduction band as a pair of charge carriers. An electron

excited into the conduction band always leaves behind a positively charged vacant state in the

valence band, which often referred to as a hole. Generation of the electron-hole pairs requires

an excitation source to transfer energy to the bound valence electron. Energy deposition and

subsequent excitation can occur thermally or via interactions with electromagnetic or particle

radiation, which will be further discussed in Chapter 3. Ionization energy (W ) represents

the average energy required to produce an electron-hole pair within a detection material.

Intuitively, this value should be proportional to the band gap of the material since it is the

minimum energy required to elevate an electron from the valence band to the conduction

band. There are inherent losses in the energy transfer process that limits the conversion

of deposited energy and the number of electron-hole pairs generated. Klein quantified the

dependence of ionization energy on band gap based on experimental data from a wide range

of semiconductor materials spanning 1-5 eV. The resulting phemonological model, as shown

in Equation 2.2, accounts for optical phonon losses [r(hωr)], residual kinetic energy of the

excited electron, and the band gap (EG) [17].

W =
14

5
EG + r(hωr), [0.5 ≤ r(hωr) ≤ 1.0eV ] (2.2)

The total charge generated by incident radiation, Q0, is dependent on the number of

charge carriers generated, N , and the elementary charge of an electron, q. For a given

energy deposition of E, we find that

Q0 = qN =
qE

W
(2.3)
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The proportionality of charge to energy in Equation 2.3 is the fundamental premise of

radiation detection. The dissociated electron-hole pairs are free to drift or diffuse separately

within their respective bands, giving rise to Equation 2.4,

σ = q(µee+ µhh) (2.4)

where q is the electronic charge, e and h are the density of electrons and holes, respectively,

and ue,h is the mobility of the charge carrier [22]. Charge-carrier mobility is a material-

dependent proportionality factor relating the drift velocity of a charge-carrier to the applied

electric field. Since the current flowing through a material is dependent on the drift velocity

of charge carriers as described by the Shockley-Ramo theorem [23, 24], the performance of

a semiconductor radiation detector is highly dependent on a large mobility [16].

Since electrons seek to occupy the lowest energy state, electron-hole pairs will recombine

when they are are within close proximity to one another such that, in an equilibrium state,

the recombination rate is equal to the generation rate. The charge-carrier lifetime, τ , is the

average time an electron or hole remains liberated before recombining with its counterpart

or becoming trapped. Due to inherent differences in free carrier concentrations for each

charge carrier, their mobility within their respective bands, and the relative concentration of

trapping sties, the lifetime of electrons and holes can differ by orders of magnitude. The mean

lifetime is composed of three components representing the different modes of recombination.

First, excess energy is emitted as a photon and/or as a phonon via lattice vibrations during

direct band-to-band recombination. Secondly, a three-body de-excitation process transfers

energy to another electron known as Auger recombination. Lastly, recombination is assisted

by an intermediate state within the forbidden gap via Shockely-Read-Hall recombination.

The relative size and prominence of these recombination modes are both highly dependent

on the direct/indirect nature of the band gap (τrad), the availability of free carriers (τAug),

and the density of intermediate, or trap, states (τSRH). Larger values of τ are desirable in

semiconductor radiation detectors, allowing charge to be collected before recombining [25].

6



2.1.3 Defects and Charge Trapping

Shockley-Read-Hall recombination is particularly important in radiation detection for both

semiconductors and scintillators, a related material-dependent phenomenon. In a perfect

crystalline lattice, these recombination sites, or trap states, are not present within the

forbidden gap. These sites exist due to local band bending at crystallographic defects within

the single-crystal lattice. The umbrella term defects covers a wide range of imperfections

that can exist, often categorized as point, line, planar, and bulk defects. While each of these

impact the behavior of a material, point defects are emphasized here for their influence at

the most fundamental level of semiconductor device operation.

Point defects encompass a range of defect types that involve a single or pair of lattice

sites. The primary defects impacting semiconductor device operation include vacancy,

interstitial, and substitutional defects. For a binary compound semiconductor, AB, as shown

in Figure 2.2, the absence of A or B in the crystalline lattice induces a strain on the bonds

surrounding the vacancy (VA/B), causing neighboring bonds to stretch thereby creating a

localized deviation in the electronic band structure.
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Figure 2.2: Binary compound semiconductor, AB, lattice with relevant point defects.
The vacancies (VA, VB), interstitials (Ai, Bi, Ci), substitutional defects (Cs), and antisites
(AB, BA) create localized perturbations in the electronic band structure leading to
intermediate states within the forbidden gap. These defect states act as charge carrier
traps and recombination centers.
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Interstitials (Xi) and substitutional (Xs) defects induce stresses on the nearby lattice.

Interstitial defects occupy a space within the crystallographic framework, but not on one

of the primary lattice positions of the pure material. Conversely, substitutional defects are

created when an atom occupies a lattice site that is typically occupied by another atom.

These defects can be caused from an impurity atom or by a displaced atom within the

lattice. The latter case gives rise to Frenkel pairs (adjacent interstitial-vacancy pairs) and

antisites (lattice atoms occupy their counterpart’s lattice position).

The influence of defect states depends on the size and charge of the displaced atom,

the lattice spacing, and the density of states in the valence and conduction bands. Charge-

carrier lifetime is a combination of the energy of defect states, their spatial distribution,

and their capture cross-section. The capture cross-section, σe/h, is temperature-dependent,

fundamental property that quantifies the probability that an electron or hole will be captured.

Defect states with very large capture cross-sections (> 10−16 cm2) for both electrons and

holes are primarily responsible for electron-hole pair recombination [25]. Conversely, defect

states that preferentially trap electrons or holes immobilize a free charge carrier such that it

is unavailable for recombination or collection via an electric field. These trap states are said

to be electrically active.

2.1.4 Defect States in Semiconductors and Scintillators

Here, it is important to introduce the analog to semiconductor radiation detectors, scintilla-

tors, since their operation depends on trap-assisted radiative recombination. Scintillation is

the process of photonic emission in the visible light range from radiative recombination

in these intermediate defect states. This holds true for inorganic scintillators, whereas

the scintillation mechanism in organic materials operate at a molecular level and not the

crystalline lattice [26]. Exemplary scintillation materials are transparent to their own

emission wavelengths and have very short recombination lifetimes, such that doping the

material with a specific impurity with a desired trap energy improves their performance.

Conversely, semiconductor detector performance is negatively impacted by trap states, as

they are an avenue for charge loss. Both detector types suffer from high concentrations of

single-carrier trap states [16].
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2.2 Device Fabrication and Charge Collection

Collecting the generated charge requires the application of an electrical potential to

the detector material in order to separate the electron-hole pairs before trapping or

recombination can occur. As these charges drift apart, their movement can be detected as

a transient current proportional to the number of charge carriers drifting within an applied

electric field. From Equation 2.3, the number of charge carriers available in the conduction

band is directly proportional to the energy deposited in the system. Detectors are typically

built in a planar configuration with electrical contacts on opposing faces of a semiconductor

slab although more sophisticated structures are used for particular detector materials and

applications [27].

2.2.1 Electrical Contacts

The electrical contacts can be ohmic (non-rectifying) or Schottky (rectifying), depending on

the detector material and its electronic properties. Contact material selection and deposition

is an important and difficult aspect of semiconductor device fabrication as it requires a

delicate balance of material compatibility and leakage current. Rectifying, often referred to

as blocking or non-injecting contacts, are typically used for low band-gap materials in order

to reduce leakage current. Leakage current is the steady-state flow of electrons in a material

under bias in the absence of an excitation source like ionizing radiation. Reducing leakage

current improves signal-to-noise ratio for radiation-induced currents thereby increasing

detector performance. Many detectors require leakage currents on the order of nA in order

to observed radiation-induced currents above the noise floor [26].

Depending on the semiconductor band gap and free carrier concentration, contacts can

range from completely ohmic to completely Schottky. Ohmic contacts have no influence

on the current flow through the detector, producing a current-voltage relationship that

follows Ohm’s Law (V = IR). Schottky contacts block current flow in one direction

by disallowing one charge carrier from entering the system, increasing the resistivity of

the integrated semiconductor-contact structure, which effectively reduces leakage current.
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This phenomenon is produced at the interface of the semiconductor heterojunction as the

electronic band structure of the two materials flex to accommodate one another [28].

The Schottky barrier is an energy disparity that exists between the two dissimilar

materials, and its height dictates the magnitude of the rectification. This effect plays an

important role in the development of junction-based detectors, which are not the focus

of this work ([26, 29, 30]). For wide-bandgap materials capable of operating at room-

temperature with minimal leakage current, ohmic and Schottky contacts are both widely

used, depending on the material. Ohmic contacts are preferred, assuming leakage current

is sufficiently suppressed, due to inherent limitations in current-voltage linearity over the

operational range and large contact resistance of Schottky contacts [16].

Robust ohmic contacts should be stable and provide minimal contact resistance.

Additionally, the contact material should strongly adhere to the detector material since

it is the interface between the semiconductor and the accompanying peripheral equipment

used to collect and interpret the response to incident radiation. For example, coupling of

semiconductor detectors to readout electronics is often achieved via wire bonding, a process

similar to welding where a thin wire is ultrasonically heated in direct contact with the

semiconductor contact [31]. Finding a suitable contact material that is ohmic and provides

sufficient adhesion to withstand wire bonding is often difficult in practice. The composition of

the wire and bond pad, temperature, and ultrasonic frequency play a role in the survivability

and longevity of the bond. Additionally, the amalgamation of the contact metal and the

wire has some influence on the electronic properties of the system due to complex interfaces

and the introduction of surface defects. These effects can be mitigated through the use of

very thick (≥ 1µm) contacts and elevated bonding temperatures to reduce the force and

sonication power required to complete the bond [31–33].

2.2.2 Carrier Drift and Charge Collection

Under the influence of the applied electric field, the electron and holes drift towards the anode

and cathode, respectively. The movement of these charges induces a reciprocal current on

the electrodes according to the Shockley-Ramo Theorem. This theorem relates the current,
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I, on an electrode to the charge, q, electric field, E, and the drift velocity of the charge

carrier, vd, as shown in Equation 2.5 [23, 24].

I = qEvd (2.5)

The drift velocity of a charge carrier is a function of the previously discussed charge-carrier

mobility, µe/h, and the electric field according to

vd = µE (2.6)

However, if the applied electric field is sufficiently high, the drift velocity begins to saturate

such that the drift velocity becomes [34]

vd =
µE

(1 + (µE
vs

)α)1/α
(2.7)

where vs is the saturation velocity and α is a constant. Figure 2.3 illustrates this effect. At

low electric fields, the relationship is linear until reaching a saturation velocity at high electric

fields, as seen for silicon. More complex semiconductor materials, like gallium arsenide, will

display a more complicated relationship between electric field and drift velocity.

Combining drift velocity with the trapping time constant of the material, τ , gives the

trapping length (µτE), sometimes referred to as schubweg, representing the average distance

between trapping events. Ideally, this value should be much larger than the distance between

the two electrodes, d, such that the probability of a charge carrier being trapped (or

recombining) is very low so that all charge generated by the incident radiation may be

collected.

Since the two charge carriers are independent of one another and exhibit their own

mobility and lifetime (trapping time), the current induced in the system will be different.

Assuming there is no trapping, the drift current density, J , can be given by

J = (qeµe + qhµh)E (2.8)
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Figure 2.3: Saturation velocity as a function of electric field for Si and GaAs for both
electrons and holes [29].

The ramifications of this relation is the dependence of the induced current on the slower

(less-mobile) charge carrier. Now the charge induced on the collecting electrode from the

charge generated by the incident radiation, Q0, at distance, x, from the anode as a function

of time, t, is given by the relation:

Q(t) = Q0

[
µeτeE

d

(
1− exp

(
− t

τe

))
+
µhτhE

d

(
1− exp

(
− t

τh

))]
(2.9)

Integrating Equation 2.9 over the total transit time, tr = d/vd, gives the Hecht relation:

Q

Q0

=

[
µeτeE

d

(
1− exp

(
− x

µeτeE

))
+
µhτhE

d

(
1− exp

(
− d− x
µhτhE

))]
(2.10)

where Q/Q0 is known as the charge collection efficiency, CCE, of the detector. From

Equation 2.10, it is clear that the significant differences in the electron and hole transport

parameters, µ and τ , creates a position dependency in the response function of the detector,

as shown in Figure 2.4. Charge-carrier mobility-lifetime products are usually much closer

than the three orders of magnitude shown in Figure 2.4, but the stark contrast effectively

illustrates the influence of the µτ product on charge collection efficiency.
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Figure 2.4: Charge collection efficiency as a function of position between the anode and
the cathode. The black traces show equivalent µτ products for electrons and holes. The
red trace illustrates a situation where one charge carrier (electrons) has a significantly larger
mobility-lifetime product than the other (holes).

Since semiconductor radiation detectors are predicated on accurately representing the

energy deposited within the device, materials with vastly different mobility-lifetime products

are undesirable, often requiring more sophisticated techniques to produce reliable results [27].

Intuitively, charge collection efficiency asymptotically approaches unity as you increase the

electric field due to a proportional decrease in the trapping length, which is important for

materials with poor charge transport properties. As a consequence, semiconductor radiation

materials have an operation voltage range known as the saturation region similar to the ion

saturation region in gas-filled detectors. For reference, widely used semiconductor materials

silicon and germanium have very large (µτ > 1 cm2/V ) mobility-lifetime products. Materials

like gallium arsenide (10−4cm2/V) and cadmium zinc telluride (10−2cm2/V) have electron

µτe products that are two order of magnitude larger than hole µτ products [16].

2.2.3 Charge Integration, Shaping, and Amplification

Charge drift induced currents are typically small for even large energy depositions. An

energy deposition of 1 MeV into a material with an electron-hole pair ionization energy of

10 eV generates 100,000 e-h pairs with a total charge of 16.2 fC. In order to detect this
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small charge, a charge sensitive preamplifier is required to integrate the current and convert

the current pulse into a voltage pulse. The time constant of the preamplifier must be long

compared the duration of the current pulse, which is equal to the transit time of the charge

carriers. Figure 2.5 depicts the typical processing chain for a planar detector configuration.

The rise time of the preamplifier output voltage signal is a combination of the rise time of the

preamplifier and the transit time of the charge carriers. The amplitude of the voltage pulse

is directly proportional to the charge generated by the incident radiation. The preamplifier

pulse is shaped and amplified by a linear amplifier preserving the functional relationship

between pulse height (amplitude) and radiation energy.

Pulse height spectra (PHS) built from the frequency distribution of accumulations of

thousands of voltage pulses can be used to identify the radiation source. The fidelity of

these spectra are dependent on the charge collection efficiency and charge carrier transport

properties of the detection material, the proportionality of the pulse processing chain, and

the system noise. Expanding on the charge collection efficiency discussion, a monoenergetic

particle depositing all of its energy within the bulk of the detection material uniformly

across the detector can produce the spectra shown in Figure 2.6. Higher mobility-lifetime

products, assuming all other parameters constant, produce larger voltage pulses, which

becomes increasingly important for low-energy radiation. While poor transport properties

are undesirable, energy calibrations can be used to compensate for the low-output pulses.

Dissimilarities in electron and hole transport properties present much more deleterious effects

for the spectroscopic capabilities of a given detector material as can be seen in Figure 2.6.

2.3 Summary

This chapter briefly covered the properties of semiconductor radiation detectors with a

specific focus on the role charge transport properties play in detector operation. In

the development of novel detection materials, these properties are often the first to be

studied in order to quantify their viability as radiation detectors. Even for well-developed

materials, significant research is directed towards improving the charge transport properties

or circumventing their contributions. Semiconductor radiation detectors occupy a significant
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Figure 2.5: Pulse processing chain for semiconductor radiation detectors operated in pulse
mode.
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Figure 2.6: Pulse height spectra for combinations of electron and hole transport properties.
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fraction of the radiation detection market for good reason. Due to direct charge readout and

the low conversion losses, these detectors can offer faster response times and greater energy

resolution, but the number of materials with adequate properties are limited. The pool

of detectors suitable for neutron detection for additional reasons explained in Chapter 3

providing the motivation for the investigation of novel, promising materials.
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Chapter 3

Neutron Detection and Radiography

3.1 Overview

This chapter focuses on the principles of neutron detection and radiography. The current

state-of-the-art of the field is discussed with special emphasis on the semiconductor detection

materials. First, the fundamental aspects of neutron interactions with matter are described

to provide context to the intricacies of building a detector to exploit those properties. The

fundamental limitations of current semiconductor detectors are discussed as they relate to

the application space of lithium indium diselenide.

3.2 Principles of Neutron Detection

3.2.1 Interactions with Matter

Radiation detection is predicated on the transfer of kinetic energy from the incident radiation

to the detection material, where the energy deposited is proportional to the detector response.

Among the four types of radiation, heavy charged particles (HCPs), electrons (β), photons

( X-rays and γ′s), and neutrons, only the latter interact exclusively with the nucleus. As

charged particles, HCPs and electrons interact heavily with the electron cloud via Coulombic

interactions, while uncharged X-rays and gamma rays interact with the nucleus and the

electron cloud through a variety of processes. Neutrons, however, must be detected indirectly
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through the products of their interactions, which are comprised mostly of scattering or

capture reactions depending on neutron energy. All interaction types are governed by the

probability of the interaction occurring as it traverses a specific material. The cross section,

σ, expressed in units of area, is a material and energy-dependent property quantifying the

probability of interaction in a given material. The conventional unit for cross section is

the barn (10−28m2), which is calculated on a per nuclei basis. The macroscopic cross

section, Σ, is the product of the cross section, σ, and the nuclear density in the material

yielding a probability of interaction per unit length traversed within the material. Each

interaction type has its own probability and associated cross section [26, 35, 36]. The details

of these interactions are more thoroughly discussed in Sections 3.3 and 3.4 according to their

importance in the detection process over specific energy ranges.

Neutron Energy

For the purposes of this work, neutrons are divided into two energy categories: thermal and

fast. In many applications, these major divisions are further reduced to subdivisions such

as cold and epithermal. Thermal, or slow, neutrons are typically called such because their

kinetic energy is in thermal equilibrium with their surroundings. At room temperature, a

true thermal neutron has an energy of 0.025eV (E = kT ). In this case, thermal neutrons

are defined as those with a kinetic energy below the cadmium cutoff of 0.5eV. The cadmium

cutoff is the energy where the immense neutron capture cross section falls off abruptly.

Compared to thermal neutrons, fast neutrons are significantly more difficult to detect since

the probability of interaction is inversely proportional to neutron energy.

Applications

A wide range of applications exist for neutron detection including reactor instrumentation,

particle physics, space exploration, special nuclear material accountability, and materials

science. The properties that make neutron detection difficult are precisely the same

properties that make them useful. Low interaction probabilities mean that they can pass

through very dense materials without interacting with the material, which is particularly
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useful for imaging the internal structures of materials that are opaque to conventional X-

ray and gamma imaging techniques. Neutron radiography is discussed more thoroughly in

Section 3.5. Other nuclear security applications include materials identification using fast

neutrons with systems such as the Fieldable Nuclear Material Identification System (FNMIS)

[37, 38]. The fundamental physics community use neutron detection to answer questions

about the fundamental structure and decay of nuclei with systems like the Versatile Array

of Neutron Detectors at Low Energy (VANDLE) [39].

3.3 Thermal Neutron Semiconductor Detectors

Thermal neutron detection has been a key area of research in recent years for its applications

in neutron science and imaging. Since neutrons are charge neutral, a material is required

to convert them to charged particles or gammas via a capture process, which can then be

detected. The products of thermal neutron capture reactions deposit their kinetic energy

into the bulk of the material as they slow down via Coulombic scattering [40]. The combined

kinetic energy of these capture reactions, known as the Q value, is the excess energy of the

unstable capture nucleus when it decays into the reaction products [41]. For instance, the

helium-3 thermal neutron capture reaction, a widely used neutron detection material, is:

3
2He + 1

0n→ 3
1H + 1

1p
Q−value
0.764MeV

In this reaction, the 0.764 MeV released is divided among the triton (31H) and proton (11p) with

0.191 MeV and 0.573 MeV, respectively. The division of energy is governed by conservation

of momentum such that the lighter product receives the most kinetic energy [26]. Large

Q-value reactions are desirable in neutron detection due to the larger signal produced within

the detection material. This section is dedicated to the various detection materials and

devices used in low-energy neutron detection with special focus on semiconductor materials.

3.3.1 Neutron Capture

There are several isotopes that are generally useful for detecting thermal neutrons. Helium-3

is currently the gold standard due to a variety of factors including its high capture cross
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section of 5333 barns [16]. However, in recent years, the threat of a shortage of 3He

has driven the development of new thermal neutron detectors. Additionally, as a gaseous

detector, 3He has its limitations in volumetric efficiency. Several other isotopes have large

thermal neutron capture cross sections as well, including 6Li (940 barns), 10B (3837 barns),

113Cd (20600 barns), 155,157Gd (60900, 254000 barns), 235U (583 barns), and 239Pu (748

barns). Cadmium and gadolinium have exceedingly large capture cross sections, but their

high Z values make them sensitive to gamma rays complicating neutron-gamma radiation

discrimination. Furthermore, uranium and plutonium boast substantial Q-values (201 and

160 MeV, respectively) representing an immense amount of energy carried by the reaction

products [16].

The lighter isotopes 6Li and 10B have much smaller Q-values in the 2-5 MeV range. The

thermal neutron capture reactions for both isotopes are commonly referred to as neutron to

alpha conversion reactions and can be visualized in Figure 3.1 [40]. While this nomenclature

persists, any of the heavy charged particles generated in the neutron capture are important

to detection. Due to their low Z-values and reasonably sized Q-values, they are inherently

excellent candidates for applications that require neutron-gamma discrimination. While 10B

has a thermal neutron capture cross section that is nearly four times larger than 6Li and

is more chemically stable, 6Li boasts a Q-value that is more than double that of boron-10.

Furthermore, the reaction products for the 6Li(n, α)3H reaction have larger ranges due to

their higher energies, which is important when considering thin film conversion layer device

configurations in addition to 3-D structures.

3.3.2 Device Architectures

Due to the inherent difficulty of detecting thermal neutrons, a number of device architectures

and variations on those architectures have been explored. Intuitively, one of the most

common solutions for incorporation of these neutron reactive isotopes is accomplished

through thin film deposition onto current technologies. While this method capitalizes on

previous technologies and a simplistic implementation method, certain limitations relating

to the geometry and range of the reaction products require more complex device structures

including micro-structures and 3-D configurations. Furthermore, pure lithium metal is highly
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Figure 3.1: Notional diagram of neutron to alpha conversion reactions in 6Li and 10B with
the reaction products [40].

reactive and poses a formidable obstacle in implementation as a neutron sensitive film. A

more stable compound like 6LiF is used to mitigate the issues, but not without drawbacks.

The addition of a higher Z material like fluorine reduces the range of the reaction products

limiting the thickness and efficiency of neutron reactive films [26]. In contrast, compound

semiconductors are currently under development that incorporate 6Li as a component in the

crystalline lattice of the semiconductor. Among these lithium containing chalcogenides such

as lithium indium diselenide (6LiInSe2), demonstrate promise as viable options for thermal

neutron detection [42]. Semiconductors that contain a neutron reactive material like 6Li

offer the benefit of capturing thermal neutrons throughout the bulk of the semiconductor.

3.3.3 Thin Film Coated Semiconductors

The general design of thin film coated semiconductor is illustrated in Figure 3.2. An incident

neutron is captured by the neutron reactive film generating two reaction products. To

conserve momentum, the two particles travel in opposite directions. One of these particles

must then travel through a dead layer into the active area of the semiconductor detector

where the generated charge carriers can be collected [40]. Now, there are some important

considerations that should be addressed. First, recognize that only one of the two particles

reaches the active volume of the detector.
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Figure 3.2: General design principle of thin film coated semiconductor thermal neutron
detector architecture. The incident neutron is captured and the reaction products are emitted
in opposite directions. Charge carriers are created in the active volume of the detector as
the reaction products undergo Coulombic scatting [43].
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Since the reaction products have a limited range in the film and the semiconductor,

it follows that the thickness of the film should not exceed the distance traveled by the

particle with the longest range. Otherwise, neutrons captured on the front face of the film

will lose all of their energy before reaching the active detector volume. Since the highest

capture probability is on the incident face of the detector, additional thickness only degrades

the efficiency. Even so, capture reactions that occur near the front-face of the detector

and emit the shorter range particle towards the semiconductor are undetectable. Since the

reaction products can be emitted at any angle respective to the plane of the detector, many

neutron captures go undetected as the reaction products never reach the semiconductor

bulk. Therefore, the probability (p) of one of the reaction products (subscript p) entering

the semiconductor is a function the capture position, x, and is described by the equation,

pp(x) =
Ω(x)

4π
=

2π

4π
(1− x

L
) =

1

2
(1− x

L
), x ≤ L (3.1)

where Ω(x) is the solid angle subtended by the detector and L is the average effective range

of the reaction products [40].

McGregor analyzed the effective range (L) of the reaction products within the film for

10B, 6Li, and 6LiF films. Additionally, he used the product ΣL to compare the relative

detection efficiency of each of the films where Σ is the macroscopic thermal neutron capture

cross section. This relation combines the effects of capture probability with the range of the

reaction products to give a general sense of the detection sensitivity of the film. For a given

lower level discriminator (LLD) of 300 keV, the range and L values are given in Table 3.1.

The LLD represents the minimum detectable energy that reaches the active volume of the

detector. This data demonstrate that 6LiF is comparable to 10B in terms of ΣL, but both

are outperformed by the pure lithium coating. Furthermore, for a front side irradiation, the

10B, 6LiF, and 6Li have maximum thermal neutron detection efficiency of 4%, 4.5%, 11.5%

at 2.4, 26, and 100µm thick, respectively [40].

Various methods have been employed to enhance the thermal neutron detection efficiency

for this class of detectors. When a neutron beam is incident on the detector, the rate of

reaction is highest where the beam enters the reactive film. Backside irradiation yields a
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Table 3.1: Thermal neutron capture products and ranges for various conversion materials.

FILM PRODUCT ENERGY (MeV) RANGE (µm) ΣL

α 1.777 3.5233 0.1762
10B α 1.470 2.6475 0.1324

(Σ = 500 cm−1) 7Li 1.015 1.0453 0.0523
7Li 0.840 0.8102 0.0405

6Li t 2.730 126.77 0.5522
(Σ = 43.6 cm−1) α 2.050 19.055 0.0830

6LiF t 2.730 29.239 0.1682
(Σ = 57.5 cm−1) α 2.050 4.5454 0.0287

slightly higher efficiency by allowing the beam to enter the reactive film at the film-detector

junction. However, the detector must be insensitive to neutrons in order to preserve the

incident neutron beam. For a given film thickness, the efficiency can be increased by changing

the angle of incidence creating a longer path for the neutron beam to pass through the film.

Consequently, there is a decrease in the area subtended by the beam on the detector, which

decreases the sensitivity. Therefore, tilting is only advantageous for the case in which the

detector is larger than the incident beam [40].

Unruh et al. demonstrated the viability of a 6LiF coated silicon detector for use in beam

port monitoring. This 5 x 5 pixelated sensor (0.25 cm2) was fabricated from 400 µm thick

n-type Si wafers (ρ > 10 kΩ− cm). The reactive film coating was deposited via physical

vapor deposition to a thickness of 1 µm, which corresponds to a thermal neutron detection

efficiency of 0.5%. With appropriate scaling factors, the 5 x 5 array recorded counts in a

2× 104 n cm−2s−1 flux to within 2% deviations [44].

Furthermore, the advantages of using a 6Li based converter layer were shown by Jakubek

et al. at CERN when applied to the Medipix-2 device. Medipix-2, a hybrid silicon pixel

detector with a 256 x 256 array of 55 µm pixels, was developed as an X-ray photon detector,

but can be used for neutron imaging when a reactive film is applied. In this case, the

silicon substrate was coated in powdered 6LiF suspended in a glue through an aerosol

spray. Once the glue evaporates, the film is approximately 95% 6LiF (3 mg/cm2) and has a

thermal neutron detection efficiency of 3%. Using a Cd plate, the spatial resolution of the

configuration was quantified using the full-width half maximum of the line spread function.
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In addition to 6LiF,10B, Cd, and Gd were also tested as a neutron conversion layer. The 10B

conversion layer demonstrated the best spatial resolution of 50 µm while the 6LiF converter

had a spatial resolution of 100 µm. However, the 6LiF converter showed a higher detection

efficiency of 3%, which was twice the efficiency of 10B. The remaining converters performed

poorly. Moreover, the 6LiF and 10B conversion film on the Medipix-2 device outperformed

both the 6Li-doped scintillation screen/CCD and imaging plate used at the Paul Scherer

Institut (PSI) in spatial resolution as illustrated in Figure 3.3 [43].

3.3.4 Microstructure Devices

Due to the limited geometrical efficiency of thin film coated detector designs, significant effort

has been focused on developing more complex 3-D configurations that incorporate 6Li into

the bulk of the semiconductor. Uher (2006) developed a 3-D Si thermal neutron detector by

etching 62µm deep and 50µm pitch pores into a 25 mm2 sample of Si (ρ = 5 kΩ− cm) and

filling them with 89% enriched 6LiF (Figure 3.4). The resultant pulse height spectrum shows

counts above the 2.73 MeV energy of the tritons from the 6Li(n, α)3H reaction, indicating

that the energy of both reaction products has been collected. However, the gain in full charge

collection of both reaction is counteracted by the reduced surface area available for reaction

[45]. Uher (2007) expanded on this work to characterize the detection efficiency of this 3-D

configuration via simulation and experimentation. Their results showed that the predicted

33% thermal neutron efficiency was valid for 3-D detectors. Additionally, they determined

that a detector of this type demonstrated nearly 100% charge collection efficiency down to

a pillar size of 30 µm [46].

Shultis and McGregor (2004) simulated various device configurations to compare the

efficiency of a perforated and a trench based design. They sought to identify the optimum,

feasible micro-structure architecture via Monte Carlo simulation. Their model consisted of

a Si p-v-n junction diode detector with deep (300 µm), columnar holes etched into the pn

junction side of the detector for the perforated design or a series of parallel trenches for the

trench design. These cavities were back filled with 6LiF or 10B nanoparticles. The simulations

demonstrated that 6LiF coated semiconductors generally produced higher detection efficiency

due to the longer ranges of its reaction products. The perforated design results indicated
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Figure 3.3: Comparison of thermal neutron images from different devices.

Figure 3.4: Illustration of the design principles of the 3-D neutron detector. Incident
neutrons that travel through the 6LiF reactive material are captured and emit their reaction
products in opposite directions, which deposit their energy into the bulk of the Si substrate
[45].
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that efficiencies greater than 20% can be achieved when limiting their data to feasible feature

sizes. Dry etching can produce a perforated sample with 30 µm holes. Additionally, it should

be noted that the efficiency can be maximized using a 20µm thick cap layer (6LiF ) on the

surface of the detector. Similarly, it was shown that the parallel trench design is capable of

reaching thermal neutron detection efficiencies of 30% or greater within the practical limits

of detector fabrication [47].

As micro-structure designs have evolved, they become exceedingly complex as is the

case with the sinusoidal device configuration reported by McGregor et al. (See Figure 3.5).

For a 100 µm deep structure yielded an average efficiency of 11.94 0.078%, which is less

than the predicted 13.65%. This is attributable to the difference in packing fraction of the

6LiF nanoparticles between simulation and experiment. Furthermore, as the width of the

trenches is decreased from the 25 µm reported above to 12.5 µm, the efficiency increases to

approximately 25% [47].

To further increase detection efficiency, detector stacking can be employed as reported

by Bellinger et al. A 10 kΩ− cm n-type Si wafer was prepared via a 45% KOH wet-etching

process to produce trenches 250 µm deep and 25 µm wide with a pitch of 50 µm. The trenches

were then back-filled with nanoparticle 6LiF powder via mechanical pressing. Using Silvaco,

it was demonstrated that the full charge integration time is approximately 10 µs. Figure 3.6

demonstrates the neutron and gamma ray response of the Micro-structure Semiconductor

Neutron Detectors (MNSD). Using a He-3 tube as a calibration device, the thermal neutron

detection efficiency was determined to be 42%, which is a marked increase over previous

designs. Additionally, the MNSD demonstrates high gamma ray rejection (Figure 3.6) [48].

Overall, the limited thermal neutron detection efficiency of planar thin-film coated

thermal neutron detectors can be increased by creating 3-D device structures. These

structures not only increase the total thermal neutron reactive volume, but also increase

the probability of the capture reaction products reaching the active volume of the detector

volume. As evidenced by the works presented, 6LiF is a popular thermal neutron reactive

material for these micro-structure devices due to the high Q-value of the 6Li(n, α)3H reaction,

the long range of the alpha and triton reaction products, and the chemical stability of the

6Li over the pure 6LiF.
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Figure 3.5: Magnified image of the sinusoidal micro-structure Si detector prior to backfilling
with 6LiF. The sinusoidal shape is achieved using inductively-coupled plasma reactive ion
etching (ICP-RIE) [47].

Figure 3.6: Measured neutron and Cs-137 gamma ray pulse height spectrum for the stacked
MNSD with 250 um deep trenches and 10 us charge integration time [48].
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3.3.5 Summary

Thermal neutron detection presents a unique challenge requiring development of novel

detection mechanisms. Some developments have their roots in modification of existing

semiconductor technologies while others probe the viability of a new class of semiconductors.

In order to detect a neutral particle like a neutron, a converter material is required to transfer

the neutron energy to reaction products like heavy charged particles through a capture

process. Among these candidate materials, 6Li and 10B are most promising due to their

low Z value and high Q value making pulse height rejection of gamma rays possible. 6Li

is often used due the longer range of the alpha and triton reaction products. The stable

compound 6LiF has become the reactive material of choice for many applications due to

its ease of implementation compared to pure, corrosive 6Li in both thin film coated and

micro-structure devices.

Thin film devices can reach neutron efficiencies of approximately 3%, but are limited

by the loss of one or both of the heavy charged particles. To mitigate this, 3-D micro-

structure devices employ perforations or trenches etched into the bulk semiconductor filled

with 6LiF nanoparticles to enhance the probability of collection of both reaction products

reaching thermal neutron detection efficiencies greater than 30%. Furthermore, a stacked

device configuration can push the thermal neutron detection efficiency over 40%.

Ideally, a high concentration of 6Li in the bulk of a semiconductor ensures a majority of

the Q-value energy from both reaction products will be deposited within the active volume

of the semiconductor. Lithium containing chalcogenide, 6LiInSe2, seeks to fill that void with

promising properties such as gamma ray rejection. Due to the inherently large content of

6Li in the composition, approximately 80% of the incident thermal neutrons are captured

by 6Li at a reasonable thickness of 0.5 mm. While the efficiency of the lithium indium

diselenide exceeds that of the coated and perforated devices, the charge carrier properties

are noticeably inferior to well-developed materials like Si. Recent developments in this area

provide encouraging results for devices that serve as both a complement to the widely-used

3He detector and novel solutions to unique challenges.
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3.4 Fast Neutron Detection

Thermal neutron detection, while more difficult than alpha, beta, X-ray, and gamma

detection, is feasible using the various thermal neutron capture reactions described in section

3.3. These reactions have relatively large cross sections and deposit large amounts of energy

into the bulk of the detection material. Conversely, fast neutron capture reactions have

much smaller cross sections. For neutron counting, fast neutrons may be converted to

heavy charged particles in the same manner as described previously by first thermalizing the

neutrons. Thermalization is the process of slowing neutrons down via scattering collisions

in a hydrogenous material. A single elastic scattering collision with a proton can completely

thermalize a fast neutron, regardless of energy. These scattering cross sections are much

larger than the fast neutron capture reactions. However, the initial energy of the fast neutron

cannot be derived since the number of collisions is unknown. Using a series of moderator

thicknesses, an approximate spectrum can be derived using unfolding techniques, but with

significant uncertainties [26].

Fast neutron spectroscopy is typically performed using detectors that rely on capture

and/or scattering reactions rather than thermalization. Among the capture reactions, the

3He(n, p) and 6Li(n, α) are most commonly used due to their large cross sections compared

to other materials. For energies between 4 and 10 MeV, the 6Li capture reaction has a

fairly uniform cross section of 1 barn, as shown in Figure 3.7. Detectors that fall under this

category include helium proportional counters, ionionization chambers and scintillators as

well as lithium based scintillators. Scattering based detector designs rely on the detection of

the recoil nuclear (typically protons). Proton recoil detectors include scintillators containing

hydrogen, gas proportional counters, and proton recoil telescopes [26].

The primary factors affecting performance are similar to those affecting thermal neutron

detection - efficiency and detector size limitations. Fehrenbacher et.al (1997) studied the

performance of a 6LiF converter layer on Si in a 5 MeV neutron field. Of note, it was shown

that a coated detector can be used in a higher energy field due to the thermalization of

back-scattered neutrons as well as direct capture reactions. The pulse height spectrum also

shows counts beyond the 5 MeV neutron energy. This is attributed to both reaction products
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Figure 3.7: Fast neutron capture cross sections for 3He(n, p) and 6Li(n, α).

reaching the active detector volume, which occurs, when the energy of the neutron is high

enough such that the reaction products move in the same direction as the incident neutron

[49]. As such, conversion layers configurations with both semiconductors and scintillators

are still important in fast neutron detection. Other detectors commonly used in fast neutron

detection include liquid organic scintillators in large volume applications, boron doped plastic

scintillators, and CLY C, which all have issues with gamma sensitivity [50].

3.5 Radiography

Neutron radiography and tomography have evolved as a powerful non-destructive technique

to probe the structure of matter. As a complementary analog to X-ray interrogation,

neutron imaging is useful for visualizing both static and dynamic systems containing

hydrogenous and/or other low-Z materials that are not efficiently interrogated via X-ray

imaging. Applications of these techniques have evolved to include organic and biological

systems and fuel cells [41, 51]. Additionally, fast neutron imaging has additional applications

in extremely dense materials impervious to other imaging techniques with significant interest

in nuclear security applications [52–54].
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3.5.1 Design Principles

A radiography system is typically comprised of an interrogation source, an imaging object,

and a neutron detector, as shown in Figure 3.8. The technique is predicated on the ability to

visualize interesting features in an imaging object based on the attenuation of the neutron

beam. Attenuation is the reduction in the impinging beam via interactions with the object

between the detector and the beam source.

This reduction in beam intensity from the source I0 to the detector I is given by the

relation

I = I0 exp(−Σt) (3.2)

where Σ is the macroscopic cross section and t is the thickness of the material and the beam

intensity are expressed in units of flux (n/cm2 − s). From Equation 3.2, it is clear that,

with sufficient neutron flux, small differences in material composition or structures can be

identified based on the local attenuation of the beam.

Radiography typically employs scintillating screens optically coupled to a charge-coupled

camera or a pixelated semiconductor detector to provide positive sensitive neutron intensity

information. From this information, a radiograph, like the one shown in Figure 3.9, can be

generated to provide a useful depiction of otherwise invisible structures.

Figure 3.8: Notional diagram of a neutron radiography system [55].

32



Figure 3.9: Comparison of neutron (left) and X-ray (right) radiographs of a pocket
dosimeter illustrating the complementary capabilities of each technique. The plastic (highly
hydrogenous) materials are clearly present in the neutron radiograph, whereas, the glass and
metal components are more defined in the X-ray image [55]

.
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3.5.2 Detector Considerations

As the application diversifies, the need for higher neutron detection efficiency, spatial

resolution, and temporal resolution has grown. Detection efficiency dictates the acquisition

time for a given imaging object and beam intensity. Larger efficiency allows for shorter

integration times for the same level of contrast. The spatial resolution is a quantity that

defines the finest structures the imaging system can resolve. Spatial resolutions of < 10µm

have been achieved for thermal neutron radiography using enriched 157Gd conversion screens,

but is not an easily scalable solution due to cost and scarcity [56]. For fast neutron

radiography, spatial resolution on the order of mm is desirable and has been achieved using

zinc sulphide scintillation screens, However, ZnS screens are limited in detection efficiency

due to the thickness limitations [57]. Many factors influence the spatial resolution including

the range of the reaction products within the detector to pixel size. Additionally, spatial

resolution and integration time can be inversely proportional for scintillation screens due to

internal light spreading effects.

3.6 Summary

Significant research has been devoted to the development of new imaging detectors with

increased efficiency and resolution to meet the needs of the nuclear security and safeguard

community to provide faster, more reliable safeguards inspection systems. The inherent

difficulties in thermal neutron detection have necessitated the continued investigation of novel

detection materials and device configurations to meet these demands. While a significant

fraction of the field is dedicated to the use of 6Li as a conversion material, there are few

materials that incorporate the neutron sensitive isotope within the bulk of the material so

detection efficiencies are limited by the range of the secondary particles. This work focuses

on the characterization and development of a novel semiconducting material, 6LiInSe2, to

determine if its semiconducting properties are sufficient to meet the growing demands of the

neutron detection and imaging field.
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Chapter 4

Lithium Indium Diselenide

The limitations of thin film and micro-structure thermal neutron detectors center on the

energy loss of the reaction products before reaching the active volume of the detector.

Including 6Li in the bulk of the semiconductor can vastly increase the thermal neutron

detection efficiency. Recently, research has been focused on developing lithium containing

chalcogenide crystals including LiInSe2, LiGaSe2, LiInTe2, and LiGaTe2. One of the most

promising of this new class of semiconductors is lithium indium diselenide (6LiInSe2), which

was first investigated in 1973 for its use in nonlinear optics [58]. Lithium indium diselenide,

or LISe for short, was first investigated as a neutron detector in 2005 by Bell et al. [59].

From this, a collaboration between Y-12 National Complex, Fisk University in Nashville,

TN, and Oak Ridge National Laboratory began developing the material for a variety of

compact detector applications resulting in a Research and Development 100 Award.

4.1 Growth

Various growth techniques have been implemented to reliably produce single crystal LISe

including horizontal and vertical Bridgman techniques [60, 61], gradient freeze technique [58],

and directional solidification [62]. For this research, the vertical Bridgman technique was

implemented at Fisk University as described by Tupitsyn et al. [60]. Synthesis begins with

the metal alloy LiIn in a 1:1 molar ratio with high purity. The precursor Li was enriched

to 95% 6Li through a vacuum distillation process developed and implemented at CNS Y-12
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National Laboratory [63]. The alloy is placed in a pyrolytic boron nitride crucible under 300

Torr of argon pressure and heated in a Se atmosphere to 940◦C.

The single crystalline material grown via the vertical Bridgman method was produced

at a growth rate of 5-10 mm/day [42]. LiInSe2 can have exhibit several different different

colors depending on growth parameters, where the predominant variants being yellow and

red, as shown in Figure 4.1a. Further delineations of color include dark red and greenish-

yellow. The color of the material provides some indications of the quality of the crystal

and it semiconducting properties as discussed in Section 4.2.2. Isaenko et al. noticed that

as-grown yellow crystals revert to a dark red color upon annealing in a Se atmosphere [61].

4.2 Material Properties

4.2.1 Crystal Structure

As a single crystalline material, LISe possesses an orthorhombic symmetry with lattice

parameters: a = 7.162, b = 8.543, and c = 6.769 Å for a crystal grown via the vertical

Bridgman-Stockbarger method.[60]. Additional first principle studies and experimental

(a) (b)

Figure 4.1: 6LiInSe2 crystal boules as grown via the vertical Bridgman method. The yellow
color predicts improved semiconductor properties compared to the red color [42].
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measurements have produced similar lattice parameters for this material [61, 64–73]. LISe, as

a ternary chalcopyrite, exhibits a wurtzite-derived βNaFeO2 structure belonging to the Pn2a1

space group [74]. Figure 4.2 depicts the ternary βNaFeO2 and binary wurtzite structures

[75].

4.2.2 Crystal Color and Defects

The aforementioned color disparity, as shown in Figure 4.1b, observed in LiInSe2 provides a

visual indication of crystal quality due to a strong correlation in electronic properties despite

consistent crystal structure. Color-related effects have been analyzed via experimental

and theoretical studies to understand the differences in electrical, optical, and vibrational

properties of LISe with varied, and sometimes conflicting, results. Weise et al. noted that the

deep red color was indicative of a Li deficient secondary phase LiIn5Se8 [76]. The lighter red

color, sometimes coexisting with the yellow color within a singular boule, is a solid solution

enriched in In2Se2 precipitates that form within the crystal creating a micro-heterogeneity

too small to be detected by conventional methods. Vasilyeva et al. demonstrated this

unique property through differential dissolution concluding that very small deviations from

stoichiometry within the melt during growth leads to an unstable LiInSe2 − In2Se3 system

[77]. These precipitates act as scattering centers severely impacting its optical and electronic

properties. The In2Se3 phase has a much smaller band gap (≈ 1.2 eV) compared to LiInSe2

(≈ 2.8 eV) creating a significant deflection of the energy bands and consequent charge loss.

Reddish crystal color has been attributed to point defects arising from Li deficiencies by

Isaenko et al.[78]. Conversely, Badikov et al. attributes the yellowish color to an abundance of

scattering centers [79]. Vijayakumar et al. similarly attributed the coloration to Li vacancies

(VLi), Se interstitials, and InLi antisite defects [69]. Ma et al. demonstrated that red crystals

suffered from a Se deficiency via the stoichemetric ratio Se/(Li+In) [80]. Laser-Induced

Breakdown Spectroscopy measurements, an optical emission spectroscopy technique used to

identify atomic constituents by the light emitted from a laser-generated plasma, performed

by Wiggins et al. identified the reddish color as Li rich compared to yellow crystals. Impurity

atoms of Na, Ca, and K were also identified within this material that tend to concentrate

in reddish portions of an analyzed sample. These impurities are an expected contaminate
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Figure 4.2: βNaFeO2 (left) and wurtzite (right) crystal structures. Substitutions of Li−Na,
In−Fe, and Se−O give the structure of ternary I−III−IV2 semiconductor LiInSe2. [75].
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from the 6Li enrichment process. Clearly, there is no consensus on the source of the color

distinction, but significant progress has been made in identifying the primary defects in LISe.

Photo-induced Current Transient Spectroscopy (PICTS), a technique further described

in Section 5.3.2, performed by Cui et al. identified six intrinsic defects for the yellowish

crystal. The charge carrier traps were categorized according to their location with respect

to the valence band, EV, and the conduction band, EC, due to the single polarity nature of

the PICTS measurement, as shown in Figure 4.3. Electron and hole trapping defects were

observed at EC - 0.22, 0.36, and 0.55 eV and EV + 0.19, 0.30, and 0.73 eV, respectively.

These defects were tentatively assigned to In and Se vacancies and various charge states of

the In-Li antisites [67]. Similarly, Kamijoh et al. identified Se vacancies at EC - 0.85 eV and

Li vacancies at EV + 0.89 eV for p-type LiInSe2.

Tangentially, Li et al. used Density Functional Theory (DFT) to investigate the role of

point defects and defect complexes on the color of the material. Through investigation of

the defect formation energies in both a Li-sufficient and Li-deficient growth environment,

this study concluded that point defects and defect complexes red shift the optical absorption

cutoff. Furthermore, the doubly-charged antisite defect InLi
2+ and the associated defect

complex InLi
2+ + 2VLi

– red shift the absorption edge 0.7 eV exhibiting close agreement

with the energy difference between the red and yellow crystals [81]. In summary, the color

differences in LISe are likely attributable to Li deficiencies leading to non-stiochiometric

precipitates and defect complexes. Consequently, these defects play a significant role in the

electronic properties and the performance of LiInSe2 radiation detectors.

4.2.3 Electrical Properties

LISe is a wide band gap (Eg > 2eV ) semiconductor making it an ideal candidate for room-

temperature radiation detection. As discussed in Section 2.1.1, a large band gap reduces the

leakage current of a detector allowing smaller signals to be detected at room-temperature.

Additionally, LISe exhibits high resistivity (ρ > 10 GΩ− cm) allowing the detector to be

operated in resistive mode (See Section 2.2.1) with ohmic contacts. Table 4.1 provides band

gap energies (Eg), dielectric constants (ε), and resisitivities (ρ) for LISe determined through

experimental and theoretical studies [60–62, 64, 67–69, 71, 72, 76, 82–85].
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Figure 4.3: Photo-induced Current Transient Spectroscopy measurements of yellow LiInSe2
demonstrating three electron and three hole-related defects [67].

Table 4.1: Band gap energy, dielectric constant (ε), and resistivity (ρ) for LiInSe2 from
various studies.

SOURCE Eg(eV ) ε ρ(Ω− cm) COLOR METHOD

Kamijoh et al. (1981) 1.88 9.4 2.67× 1011 red Experimental
Kamijoh et al. (1983) 2.06 8.1 red Experimental

Beister et al. (1991)
2.03 red Experimental
2.90 yellow Experimental

Weise et al. (1996) 2.85 Experimental
Eifler et al. (2000) 2.83 yellow Experimental
Li et al. (2009) 2.35 6.02 DFT
Petrov et al. (2010) 2.86 3.00× 1011 yellow Experimental
Li et al. (2011) 2.29 5.73 DFT
Tupitsyn et al. (2012) 2.85 6.50× 1011 yellow Experimental

Cui et al. (2013)
2.03 red Experimental
2.85 yellow Experimental

Vijayakumar et al. (2014) 9.8 3.43× 1010 yellow Experimental

Ma et al. 2015
1.98 red Experimental
1.685 8.5 DFT

Wiggins2016 2.99 yellow Experimental
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The band gap is strongly correlated with the material with yellow crystals (Eg ≈ 2.8 eV)

exhibiting band gap a 47% larger than red crystals (Eg ≈ 1.9 eV). While the band gap

energy has been heavily studied due to interest from the infrared optics community, charge

carrier transport properties have not received significant attention. Bell et al. investigated

the charge carrier mobility product by observing spectral features from neutron exposure as

a function of electric field. Using a variation of Equation 2.10, a combined electron-hole µτ

of 3× 10−6 cm2/V was calculated. The electron-hole pair ionization energy has yet to be

determined outside of the work presented in Chapter 6.

4.3 Detection

Due to the high Q-value, as described in Section 2.1 of the 6Li (n, α) 3H reaction and the

100% energy deposition of the reaction products within the active volume of the detector

[42]. When enriched to 95% 6Li, the 25% atom fraction of lithium in the composition can

reach a thermal neutron capture efficiency of 99% in a 5 mm thick sample, which more than

doubles the efficiencies of the most complex micro-structure detector designs. However, it

should be noted that 115In content of the crystal contributes to the thermal neutron capture

efficiency, which constitutes approximately 20% of the total capture efficiency. Therefore,

the total 6Li neutron capture efficiency is approximately 78% [86]. While 6LiInSe2 has some

relatively high Z components, it has demonstrated to have a limited response to γ rays such

that pulse height rejection is feasible in dual neutron γ fields [85].

4.3.1 Semiconductor Mode

LiInSe2 has been shown to respond toα particles, cold neutrons, and a moderated Pu/Be

neutron spectrum in semiconduction mode [42, 63, 86–90]. Figures 4.4a and 4.4b show

typicalα and neutron spectra for semiconducting LISe. The impact of charge transport

properties are evident in these spectra. Poor hole transport with respect to electrons is

evident from the broad response to thermal neutrons in Figure 4.4b and the absence of a

peak in theα spectrum when collecting holes only. The 4.8 MeV capture reaction should

result in a Gaussian distribution well separated from the noise floor. However, as shown
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in Figure 2.6, significant hole trapping and low hole mobility result in a neutron response

function dependent on the neutron interaction depth.

4.3.2 Scintillation Mode

LISe also belongs to a exclusive group of semiconducting materials possessing sufficient

scintillation properties to operate in both modes of detection. Wiggins et al. estimated the

yellow scintillating LISe light yield to be 4400 photons/MeV at a wavelength of 512 nm

by coupling the crystal to a Hamamatsu 6533 PMT. The decay-time components were

found to be 31 ns and 143 ns demonstrating a faster response than a comparably efficient

CLYC detector (400 ns) [85]. Unlike semiconducting LISe, scintillating LISe demonstrates

a narrow peak since scintillation yield is independent of charge carrier transport properties

[85]. Similarly, Lukosi et al. demonstrated ≈ 80% neutron absorption efficiency in a 960µm

thick LISe crystal compared to 11% efficiency for a 50µm thick ZnS(Cu):6Li scintillation

screen [88]. Dual scintillation and semiconduction operation was investigated by Burger et

al. demonstrating scintillation arriving 74 ns before the semiconduction signal as depicted in

Figures 4.5a and 4.5b. Furthermore, the energy resolution forα spectroscopy was improved

from 35% to 31% when summing coincident signals. These results prove scintillation occurs

(a) (b)

Figure 4.4: Early (a) α [63] and (b) neutron spectra [89] for LISe. The discrepancy in theα
spectrum for positive and negative bias indicates electron transport is significantly better
than hole transport for this material.
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coincidentally with semiconduction indicating radiative recombination has a strong effect on

the charge carrier transport properties.

4.3.3 Imaging

The aforementioned properties make LISe an interesting candidate for thermal and fast-

neutron imaging applications. As such, the thermal neutron imaging capabilities have

been investigated in semiconductor and scintillator modes [91–94]. As a part of the group

developing LISe for neutron imaging applications, I contributed significantly to the work

discussed in this section. It is presented here as a basis for the individual research discussed

in Chapter 6. Spatial resolution measurements (Figures 4.6a and 4.6b) for scintillating LISe

have demonstrated high spatial resolution and neutron absorption efficiency with a suitable

light yield. Images were generated by coupling LISe to an ANDORTM DW936 charge-coupled

device (CCD) at the CG-1D beamline at Oak Ridge National Laboratory (ORNL). Spatial

resolution was further improved, as high as 34µm, by reducing back scattering with an anti-

reflective backing (ARB) with the adverse effect of reducing light yield by a factor of 1.97. An

internal memory effect due to the activated 115In was not observed indicating this material

would be useful for dynamic imaging applications. While the scintillation mechanism has yet

to be identified, greenish-yellow regions of LISe have demonstrated significant increases in

light yield while exhibiting≈ 1% decrease in absorption efficiency. These results indicate that

(a) (b)

Figure 4.5: (a) Dual scintillation and semiconduction mode operation of LISe showing
simultaneous response to α particles. (b) Time of arrival of scintillation and semiconduction
signals. Scintillation signals arrive before semiconducting signals (95%) with a mean
difference of 74 ns.
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the increased brightness is a related to the scintillation activation site, which is a potential

improvement vector [88, 93].

Herrera et al. demonstrated sub-pixel spatial resolution, 0.34 mm, in a 4 × 4 pixel

(0.55 mm pitch) LISe imaging detector through the use of a super sampling technique where

multiply images are taken of the same object as it traverses the imaging plane in sub-pixel

steps. Encouraged by these results, LISe was coupled to a TimePix Application Specific

Integrated Circuit (ASIC) to decrease the pixel pitch to 55µm. Through slit (Figure 4.7a)

and Siemens star (Figure 4.7b) resolution tests, the ultimate edge resolution of 34µm was

found, while the high frequency resolution was determined to be on the order of 200µm.

High resolution images were acquired in a matter of minutes with the 10× 1011 n− cm−2s−1

flux available at the CG-1D beam line housed at ORNL High Flux Isotope Reactor. Further

improvements in performance are expected as the device fabrication and ASIC bonding

process is improved.
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(a) (b)

(c)

Figure 4.6: Cold neutron radiographs of (a) a thin gadolinium slit, (b) a Siemens star, and
(c) a 3D-printed Power TTM using scintillating 6LiInSe2 imaged at HFIR’s CG-1D beam line
[88, 93].

(a) (b) (c)

Figure 4.7: Cold neutron radiographs of (a)175µm slit, (b) a Siemens star, and (c) a 3D-
printed Power TTM using a pixelated (55µm) 6LiInSe2 detector coupled to a TimePix ASIC
imaged at HFIR’s CG-1D beam line [94].
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Chapter 5

Materials and Methods

5.1 Analyzed Samples

Due to the breadth of the studies discussed herein, it is important to clearly identify the

various samples used. Samples are identified according to the following defining parameters

- detector area and thickness, color, and high flux neutron exposure. Table 5.1 consolidates

the sample identities as well as the experiments performed on those samples. In all cases,

sample preparation remained consistent across all experiments, except for small changes for

specific applications discussed in Sections 5.3 and 5.4. Crystal substrates of various sizes

were cut from boules produced via the Vertical Bridgman technique detailed by Tupitsyn et

al.[60]. Diamond lapping pads were used to polish the samples to a near optical finish to

promote contact adhesion. A 5% bro-methanol etchant further reduced the surface roughness

and removed any surface defects generated by the polishing process. Finally, semiconductor

samples were metallized via RF magnetron sputtering in an AJA plasma sputtering chamber

at a pressure of 3-5 mTorr. For fundamental characterization studies, gold planar contacts

were deposited using a shadow mask configuration. In order to identify a robust, ohmic

contact, numerous contact metals were investigated. Further discussion may be found in

Section 5.2. For neutron imaging applications, substrates were patterned with pixelated

arrays using photolithography as thoroughly discussed by Herrera et al. [94].
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Table 5.1: Samples analyzed to characterize the electronic properties of LISe.

Sample
Area
(mm2)

Thickness
(µm)

Color Type
Irradiation
(n/cm2)

Study

L1 5× 5 300 - 1700 yellow semi - aCCE

L2 5× 5 532 yellow semi 1012

aCCE
bPICTS
cRaman
dPC
eVTFL

L3 4× 4 505 red semi -

bPICTS
cRaman
dPC
eVTFL

L4 4× 4 454 yellow semi -

bPICTS
cRaman
dPC
eVTFL

L5 6× 3 714 yellow scint 1012 eRaman
a Charge Collection Efficiency measurements
b Photo-Induced Current Transient Spectroscopy
c Raman Spectroscopy
d Photoconductivity
e Trap-Filled Limited Voltage
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5.2 Contact Study

Semiconductor device packaging requires a robust contact that possesses excellent adhesion

characteristics and appropriate electronic properties. As such, the development of any

novel semiconductor relies heavily on the identification of a suitable contact material and

deposition technique for both optimum performance characteristics and long-term operation

of the device. This becomes increasingly important for advanced detector designs beyond the

planar configuration. This study sought to identify a suitable Ohmic contact material with

sufficient adhesion to withstand ultrasonic wire bonding as a prerequisite to the development

and testing of the 16-channel LISe imaging detector reported on by Herrera et al. [91]. As

described in Section 2.2.1, ultrasonic wire bonding is a technique used to electrically connect

two components through an ultrasonic welding process. Preliminary studies showed that

gold contacts demonstrated sufficient Ohmic behavior, but as shown in Figure 5.1, wire

bonding failed due to poor contact adhesion. Several typical contact metals were deposited

onto non-detector grade LISe and examined for ohmic behavior and good adhesion.

5.2.1 Contact Deposition

Aluminum, gold, chromium, and titanium contacts were investigated due to their extensive

use in traditional wire bonding applications. Layered contacts employing a thin (< 250 nm)

adhesion layer of chromium or titanium were also investigated. The use of an adhesion

Figure 5.1: Preliminary testing of wire bonding on a LISe substrate with a pixelated array
of gold contacts.
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layer is widely used because Cr and Ti offer very good adhesion to a variety of substrates,

a hard protective buffer against the force of wire bonding, and stability against diffusion

[95]. Additionally, indium selenide (In2Se3) and pure indium (In) contacts were used due to

their incorporation in bulk LISe with the expectation of good adhesion while protecting the

single crystalline structure from surface defects. The surface of LISe was prepared through a

polishing and etching procedure that reduced the surface roughness to the nm scale. This was

done to promote adhesion and reduce the probability of non-uniform contact formation due

to large (> 1µm) substrate surface features. Contacts were deposited through the physical

vapor deposition (PVD) technique, radio frequency magnetron sputtering. Sputtering is

the process of bombarding a target material (e.g. Au, Ti, Al) with argon ions resulting in

ablated target atoms being accelerated towards the substrate surface. The inner chamber

of the AJA sputtering machine used in this study is shown in Figure 5.2. In order to

create uniform contacts, substrate rotation is used to eliminate the deleterious effects of

the mono directional deposition process. Similarly, the effects of in-situ and post-deposition

contact annealing, a technique that promotes the metallurgical bonding of contact to the

substrate, were also investigated. Contact deposition occurred at at the working pressure of

the sputtering chamber (30-50 mTorr).

Figure 5.2: Internal image of an AJA sputtering chamber with a bottom-up deposition
configuration. This system is equipped with a rotating substrate holder (top), quartz crystal
thickness monitor (left), and two source cathodes (bottom right).
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5.2.2 Contact Analysis

Electrical Characterization

Deposited contacts were characterized using current-voltage (IV) measurements to determine

the electrical behavior is Ohmic or Schottky. As a highly resistive material with an operating

voltage on the order of 150-700 V, the IV relationship was determined up to ±100 V and

examined for rectification. Due to an observed relaxation response, the positive and negative

voltage sweeps were acquired separately beginning at 0 V. The leakage current was measured

using a Keithley 6485 Picoammeter, which also supplied the external bias. Ten consecutive

current measurements were made at each voltage in order to decrease the noise at low currents

and ensure the crystal stabilized at each applied bias.

Adhesion

Initial adhesion testing employed the simple, but effective, tape test. Kapton tape was

applied directly to the contact surface and subsequently removed. Contacts that survived

the tape test procedure were then examined for wire bondability. An exemplar diagram of

a wire bond is shown in Figure 5.3, where the first bond is typically made on the elevated

bond pad surface of a die or printed circuit board (PCB). The second bond is then made

on the substrate surface. In this study, the relative elevation of the two bonds are inverse

due to the relatively large thickness of the LISe substrate and PCB design. Gold wire with

a diameter of 0.001” (1 mil) was chosen due to its stability over the cheaper, but effective,

aluminum wire often used in wire bonding applications. Gold wire, as a noble metal, does

not form an appreciable oxide layer that can sometimes lead to bond failure.

The bonding process occurs in several steps:

1. The gold wire is fed through a small capillary in the wedge tip outfitted with custom

groove designs to promote bonding.

2. The wedge is slowly lowered to a ”search height” just above the surface of the first

bond location. This height is typically 2-3 times the diameter of the wire.
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3. Bonding is initiated as the wedge tip is pressed against the bond pad while a clamp

secures the wire. This force applied by the wedge to the bond pad is variable and

depends on the contact material.

4. A transducer vibrates the wedge at an ultrasonic frequency while maintaining contact

between the wire and bond pad. The variable parameters, ultrasonic power and

sonication time, are used to optimize the bonding procedure.

5. Once the first bond is complete, the wedge makes a series of movements designed to

reduce the force applied to the first bond site while the second bond is performed.

6. Finally, the second bond is completed in the same manner as the first with an additional

shearing motion. Since the bond pad/contact materials are almost always different,

the force, power, and duration settings are often different from the first bond.

This is typically a trial and error process for each contact material, with careful

consideration of the fragility of the LISe substrates. Wire bond failure is typically evident

during the bonding process due to either contact liftoff (poor adhesion) or bond failure

(improper bond parameters). However, a pull test is required to ensure that the wire bond

is successful and not simply resting on the surface of the contact. A gentle pull on the apex

of the wire, as shown in Figure 5.3, is the final adhesion test.

Figure 5.3: Force diagram of the wire bonding process. Ultrasonic/thermosonic wire
bonding form a metallurgical joint by superheating the wire and bond pad through ultrasonic
vibrations.
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5.3 Characterization

Development of LISe for neutron detection and imaging applications, as with every new

detection material, requires a fundamental knowledge of the electronic properties of the

material. The fundamental properties, W-value and µτ product, are important to understand

the limitations of this material, while characterizing defects and the effects of radiation

damage are necessary for growth optimization and long-term stability. This section describes

the numerous studies performed on LISe to provide insight on the fundamental characteristics

of the material. The ionization energy per electron-hole pair, W, and the charge carrier

mobility-lifetime products, µτ , were investigated through charge collection efficiency (CCE)

techniques like alpha spectroscopy and preamplifier rise time studies. A highly irradiated

LISe sample was investigated to compare its post-irradiation operation properties to non-

irradiated samples using the aforementioned CCE studies, as well as additional defect studies.

Defect energies were characterized using photoinduced current transient spectroscopy. Trap

density was identified through trap-filled limited voltage (VTFL) measurements. Neutron and

alpha spectroscopy under various conditions were investigated to understand the emergent

polarization phenomenon exhibited by the irradiated LISe sample. Additionally, Raman

spectroscopy and temperature-dependent Photoconductivity measurements were used to

supplement these studies and identify differences as a function of color and irradiation.

5.3.1 Charge Transport Properties

Alpha and Neutron Spectroscopy

LISe samples were placed in a device under test (DUT) enclosure where the contacts were

electrically connected to processing electronics using a spring-loaded electrode on top and

conductive pad underneath. The bottom circuit board was outfitted with a 3-mm diameter

exposure port for α irradiation. The pulse processing chain consisted of a CAEN A1422

preamplifier with a gain of 8.4 V/pC, an ORTEC 572A Linear Amplifier with a shaping time

of 1µs and a gain of 100 for electrons and 250 for holes, and an ISEG NHQ High Voltage

Power Supply. The analog voltage pulses were digitized using an ORTEC 927 ASPEC MCA.

The experimental setup was calibrated with a diamond detector, where the rate of alpha

52



particles impinging the detector for the two 210Po sources used was 2.3 and 6.9 α/second.

Additionally, electron transient voltage pulses from the preamplifier were acquired using a

1.5 GHz Agilent Oscilloscope 54845A to directly measure the mobility and trapping time

constant of LISe.

The pulse processing chain for alpha and neutron spectroscopy measurements are depicted

in Figure 5.4. The small pulse amplitudes of holes inhibited effective acquisition of

transient voltage pulses from the preamplifier due to noise interference. Several experimental

measurements were conducted to quantify the influence of alpha exposure, the magnitude

of the applied bias, and diode wavelength on the observed charge collection and subsequent

polarization observed in the irradiated sample.

Due to the short range of α particles (24µm for 5.3 MeV α′s), the Hecht relation,

given in Equation 2.10, can be simplified for a single charge carrier since the majority of

the signal is generated by the charge carrier that is drifted towards the distance electrode

[23, 24]. Thus, electron/hole only charge collection can be accomplished by irradiating the

cathode/anode, respectively. This simplification makes it possible to determine the electron

and hole mobility-lifetime product separately, as shown in Equation 5.1. Since CCE is a

function of the applied electric field, E, µτ can be extracted from a fit of Equation 5.1 to a

plot, shown in Figure 5.5, of the charge collected, Q, where Q is defined as the peak of the

alpha spectrum.

CCE =
Q

Q0

=
(µτ)e,hE

d

(
1− exp

(
− d

(µτ)e,h

))
(5.1)

Separating the µτ product into its constituents requires a time-dependent analysis of the

charge collection process [96]. Applying the single carrier approximation to Equation 2.9,

Q(t) becomes

Q(t) = Q0
µτE

d

(
1− exp

(
− t
τ

))
(5.2)

At time t =∞,

Q(t =∞) =
Q0µτE

d
(5.3)
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Figure 5.4: Pulse processing chains for alpha and neutron spectroscopy (top) and alpha-
induced electron time-of-flight (ToF) measurements.
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Figure 5.5: Charge collection efficiency as a function of applied bias assuming no trapping.
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Therefore, Equation 5.2 can be expressed as

Q(t =∞)−Q(t) =
Q0µτE

d
exp (−t/τ) (5.4)

logQ(t =∞)−Q(t) = log

(
Q0µτE

d

)
− t/τ (5.5)

Thus, the charge carrier lifetime, τ , can be determined independently of the mobility by

applying Equation 5.5 to the integration of the drifting charge by the preamplifier, as shown

in Figure 5.6a. Given that the rise time of the preamplifier is much less (2 ns) than the

drift time of the charge carriers, the preamplifier rise time is equivalent to the transit time,

tr. Not only is this useful for determining τ , but also can be used to identify µ since tr is

proportional to the drift velocity, vd, as shown in Equation 5.6.

vd =
d

tr
= µE (5.6)

Due to the amplitude small pulses (4mV ) and high signal-to-noise ratio (SNR), 1,000

preamplifier pulses were acquired at each voltage between 100 and 500 in 25 V steps and

analyzed using MATLAB. Waveforms were collected at a 500 MHz sampling frequency by

triggering on the amplified preamplifier pulse since the preamplifier signals were too small

to reliably trigger acquisitions. The signals were then smoothed using a broad low-pass

filter to eliminate the high frequency noise component. Due to an effect known as time

jitter, caused by inconsistencies in oscilloscope triggering on the amplified current pulses,

the filtered pulses were aligned so that averaging the waveforms would not artificially inflate

tr. Once the waveforms were averaged for a given applied bias, the 10-90% rise time was

evaluated by first identifying the state levels, Q0 and Q(t = ∞), as shown in Figure 5.6b.

These measurements were performed on L1 as a function of thickness and L2.

Since L2 demonstrated polarization during the CCE measurements, long-term stability

measurements and combined α-n spectroscopy were performed to characterize this phe-

nomenon. Polarization is a process often observed in highly irradiated semiconductor

detectors where radiation induced damage create a time-dependent radiation response within

the detector. The effect of polarization on the CCE measurements was removed by switching
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(a)

(b)

Figure 5.6: (a) Current pulses captured from a CAEN A1422 charge-sensitive preamplifier
for LISe exposed to 5.31 MeV α-particles (210Po). Amplitude and rise time are expected to
increase with increasing electric field as dictated by the Hecht relation.(b) Rise time analysis
technique. An amplitude histogram (bottom) of the waveform defines the upper and lower
state levels in order to quantify the 10-90% rise time (top).

56



the applied bias between measurements and allowing the built up charge to detrap. This

typically occurs when a high charged-defect density creates a layer of charge, also known

as space-charge buildup, that opposes the applied electric field. This effect is analogous to

the formation of the depletion region in p-n junction detectors. A moderated plutonium-

beryllium (2 Ci) α-n source was used to characterize the response of L2 in a neutron-only

and mixed-α-n field to compare the charge collection of the 5.3 MeV α particles from 210Po

and the 4.78 MeV 6Li thermal neutron capture reaction, which are expected to have similar

peaks. The pulse processing chain shown in Figure 5.4 was used, but the amplifier gain was

reduced to ensure the spectrum remained within the dynamic range of the MCA. Additional

long-term stability measurements were made to understand how the α and neutron spectra

change as a function of time under bias and the effects of reverse biasing.

5.3.2 Defect Characterization

Photo-induced Current Transient Spectroscopy

Photo-induced Current Transient Spectroscopy (PICTS), a method for determining the

charge carrier trap energies, evolved from deep-level transient spectroscopy (DLTS). These

techniques probe deep-levels by filling the traps with charge carriers and observing the

detrapping lifetime as a function of temperature. While DLTS is a proven and powerful

technique for junction based semiconductors, it fails for high resistivity materials where

charge injection is more difficult [97]. PICTS overcomes this obstacle by using a pulse of

light to generate charge carriers in the material while under bias, filling the trap states with

drifting carriers. Once the traps are filled, the photocurrent saturates. The excitation source

has a relatively short penetration depth such that the majority of carrier drift is from only

one carrier. As the pulse cycles off, the photocurrent decays in two stages: (1) a rapid

decay due to free carrier recombination (0 to t0) and (2) a thermally stimulated release

of trapped carriers (t0 to t∞). Since a majority of these carriers are either electrons or

holes, this technique can differentiate electron and hole traps. The photocurrent difference

∆i12 = i(t1) − i(t2) as a function of temperature and emission rate, en, can be used to

determine the activation energy, EAct, of the charge carrier traps via the relation,
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en = e0T
2
m exp

(
−EAct
kTm

)
(5.7)

where e0 is the emission coefficient, Tm is temperature where ∆i12 peaks, and k is the

Boltzmann constant. The relationship between the photocurrent decay and temperature is

illustrated in Figure 5.7.

By varying the rate window and recording Tm, an Arrhenius plot can be constructed

where the slope is proportional to the EAct, as demonstrated in Figures 5.8a and 5.8b. The

rate window is inversely proportional to the initial delay, t1, such that t2 is dependent on

the selection of t1. The normalized two-gate method is used due to the strong temperature

dependency of µ [98]. Here, the PICTS signal, ∆i12, is normalized by the photocurrent

amplitude to reduce the sometimes overbearing shift in photocurrent as a function of

temperature. Therefore, the PICTS signal is the fractional decay of the photocurrent within

the selected rate window. Additionally, the emission rate, en, is then given by the relation

1

en
= τm =

t2 − t1
ln(t2/t1)

(5.8)

Figure 5.7: Transient current pulses (left) at increasing temperatures and the current
differential, ∆i, (right) at each of those temperatures. The peak corresponds to a specific
electrically active trap.
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(a)

(b)

Figure 5.8: (a) Simulated PICTS spectrum for a 0.5 eV trap for various correlator
delays/emission rates. (b) Arrhenius plot of the peak temperatures from (a) where the
slope is proportional to the activation energy, EAct, of the trap.
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PICTS measurements were performed on samples L2, L3, and L4, but only L2 produced a

sufficient response. Early attempts at this measurement used a SULA DLTS system designed

for lower resistivity materials like Si and GaAs. The amplification stages were not well suited

for LISe so a custom two-stage transimpedance amplifier (TIA) was built with a gain of 1000

including low-pass filtering. Similarly, the data processing software did not allow fine control

of the rate windows so a custom LabVIEW software was developed to collect and store raw

waveforms in list mode for offline processing in MATLAB. Photocurrent decay waveforms

were generated by pulsing a nine LED array of white light (emission spectrum shown in

Figure 5.9) at 5 Hz (50% duty cycle) while the crystal was biased at ±10 V. The crystal

was cooled in a JANIS VPF800 Cryostat to liquid nitrogen temperatures. To increase the

signal-to-noise ratio of the system, RG-174 cables were installed to reduce to the leakage

current as shown in Figure 5.10.

Photocurrent decay waveforms were collected continuously (1 MHz sampling frequency)

as the sample was heated at a rate of ≈ 4 K/min using a LakeShore 335 Temperature

controller. The decay profiles were averaged at every 1 K interval to reduce the overall noise

of the signal, then each average waveform was passed through a Fourier low-pass filter to

remove high frequency noise components. The normalized signals for electrons and holes

are shown in Figures 5.11a and 5.11b , respectively. Normalized two-gate PICTS spectrum

was extracted using a double-boxcar averaging technique, where the currents i1 and i2 are

computed by averaging the currents around t1 and t2. Since the decay current approaches

the noise floor as t increases, the width of the boxcar around t1 and t2 are proportional to

their magnitude. Finally, the PICTS spectral peaks were extracted to build the Arrhenius

plot depicted in Figure 5.8b. The validity of this process was verified by simulating the

photocurrent decay with a single trap at 0.5 eV. The results (EAct = 0.497eV ) are shown

in Figures 5.8a and 5.8b. The results are compared to a similar PICTS study by Cui et al.

[67].
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Figure 5.9: Wavelength spectrum of white light led array used for Photoconductivity and
Photoinduced Current Transient Spectroscopy measurements.

Figure 5.10: Leakage current in the JANIS VPF800 cryostat after various iterations. The
leakage current was measured with probe tips suspended in vacuum.
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(a)

(b)

Figure 5.11: Normalized photocurrent decay of L2 over the temperature range 90 K
to 330 K for (a) cathode and (b) anode illumination at a constant 10 V bias. (inset)
Photocurrent amplitude over the same temperature range.

62



Trap-filled Limited Voltage

Trap-filled limited voltage (VTFL) measurements, first described by Lampert [25], is

predicated on the current-voltage characteristics of a semiconductor. At low applied biases,

current density, J , is proportional to voltage according to Ohm’s law,

J =
I

A
=
qn0µV

L
(5.9)

where q is the charge of an electron, n0 is the thermal equilibrium free electron concentration,

and L is the distance between the electrodes. As the current and the free carrier density

increases, these free carriers begin to fill the charge carrier traps in perpetuity. Thus, the IV

relationship shifts from trap-dominated to trap-free as described by Child’s (Mott-Gurney,

for semiconductors) Law,

J =
9

8

εµV 2

L3
(5.10)

where ε is the dielectric constant. The transition point, as shown in Figure 5.12, is VTFL

and is given by,

VTFL =
qNtL

2

ε
(5.11)

where Nt is the trap density. VTFL measurements were performed on samples L2, L3, and L4

using the same methodology described in Section 5.2.2 to compare the relative trap density

of detector grade, non-detector grade, and irradiated LISe. VTFL was estimated from the

deviation from the power law (∝ V 2). Trap density, Nt, was calculated assuming a dielectric

constant of 8.5 as demonstrated in literature (see Section 4.2).

5.3.3 Miscellaneous Measurements

Raman Spectroscopy

Raman spectroscopy is a technique often used to examine the vibrational properties of a

material. Since the vibrational modes are related to the chemical and molecular bonds
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Figure 5.12: Space-charge limited current voltage relationship assuming a single,
exponentially distributed trap energy. The trap-filled limited voltage marks the beginning
of the Child’s Law (I ∝ V 2) regime indicating the current density is large enough to fill all
charge carrier traps [99].
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present, it can be used to identify certain materials. The fundamental principle of Raman

spectroscopy is the slight energy loss or gain of an incident light source due to interactions

with the vibrational modes of a material. A photon with energy, hν, impinges the target

where the oscillating electromagnetic wave induces a reciprocal oscillating molecular dipole

moment.

Raman scatter photons only comprise a very small fraction of the incident photons with

the majority being reflected or photoluminescence. Photoluminescence photons are emitted

when an incident photon is absorbed and the excited electron releases the absorbed energy in

the form of other photon PL peaks can appear in Raman spectra, but, unlike Raman peaks,

their energy is independent of the incident photon. Different wavelengths of light can be used

to discern Raman spectral peaks from photoluminescence since the Raman shift (energy lost

or gained) is constant, irrespective of the incident photon energy. Figure 5.13a illustrates the

Jablonski band diagram illustrating the energy loss/gain from Stokes/Anti-Stokes Raman

scattering.

Raman spectra for samples L2, L3, L4, and L5 were recorded with a Horiba Scientific

LABRAM HR Evolution. A 785-nm wavelength laser was projected onto the surface of the

samples. A 50x objective lens and 1800 gr/mm grating were used to focus the laser and

record the spectra. After a preliminary investigation, the spectrometer range was limited to

(a) (b)

Figure 5.13: (a) Jablonski energy band diagram describing the excitation/de-excitation
processes that can occur. Stokes/Anti-Stokes Raman shifts are a result of photonic energy
loss/gain from interaction with the vibrational modes of a crystalline structure, which are a
product of the chemical bonds within a material. Image courtesy Horiba. (b) Representative
Raman spectrum of LISe from literature [74].
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0-350 cm–1 as this region was found to be devoid of PL photons. The results were compared

against color and irradiation and to literature [68, 74]. An exemplar Raman spectrum from

Lorenz et al. is shown in Figure 5.13b.

Photoconductivity

As a supplement to PICTS, photoconductivity measurements were acquired as a function of

temperature for three photon sources - broad spectrum white light, UV (395 nm), and green

(520 nm). The spectrum for the white light is provided in Figure 5.9 with strong emissions

in the blue and green wavelengths. The photocurrent was recorded at a constant bias of

100 V continuously from 90-300 K in order to quantify the dependence of the PICTS decay

on the amplitude of the photocurrent. Samples L2, L3, and L4 were investigated to compare

the relative response to color and irradiation.

5.4 Fast Neutron Radiography

LISe has demonstrated promise in thermal neutron imaging. This section outlines the

expansion of the thermal neutron imaging work to fast neutron imaging in semiconductor

mode. As a proof-of-principle, the spatial resolution of the Timepix-coupled LISe detector

was investigated for monoenergetic fast neutrons. Section 5.4.1 covers the construction of the

Timepix module as detailed by Herrera et al. [94]. Section 5.4.2 describes the monoenergetic

fast neutron source at Edwards Accelerator Laboratory at Ohio University. Section 5.4.3

describes the experimental design and processing technique used to determine the spatial

resolution of the LISe detector.

5.4.1 Timepix Coupled Detector

The Timepix ASIC is a high spatial resolution charge readout chip originally developed for

medical X-ray and γ-ray imaging applications, although its been demonstrated for neutron

detection [43]. It is an evolution of the Medipix2 ASIC with additional read-out modes for

time-sensitive imaging applications like time-over-threshold and time to first detection. The

full ASIC is an array of 256× 256 pixels with dedicated preamplifiers and discriminators for
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each channel. The pixelated array spans 14.08 mm with each pixel occupying a 55µm×55µm

area. In Medipix mode, the ASIC operates as a simple single channel analyzer (SCA)

registering counts above a user-defined threshold. The ASIC is coupled to the LISe substrate

via a flip-chip bump bonding process performed by X-ray Imatek. Figures 5.14 and 5.15 show

the 9× 7× 0.5 mm3 LISe crystal bonded to the Timepix ASIC only covering a quarter of the

available pixels. The ASIC and detector module are coupled to the pulse processing module

(right in Figure 5.15) via a ribbon cable. A custom MATLAB-based graphical user interface

(XRI-GUI) was provided by X-ray Imatek (XRI) to control the detection module.

5.4.2 Edwards Accelerator Laboratory

Edwards Accelerator Laboratory at Ohio University is home to a 4.5-MV Tandem Van de

Graaff accelerator as depicted in Figure 5.16a. Equipped with a Peabody Scientific cesium

source, the facility is capable of accelerating 1H, 2H, Li, B, and C beams. The accelerated

beam is directed using a beam swinger, described in [100], toward two target rooms and time-

of-flight tunnel. The 30-m flight tunnel provides ToF capabilities for high energy resolution

neutron beams. The target source located at the end of the beam swinger, coupled with the

variety of beams available, allows the facility to generate continuous monoenergetic neutrons

up to 26 MeV [101]. Figure 5.16b shows the various monoenergetic neutron energy spectra

for the d(d,n) reaction measured 6.195 m from the center of a 3-cm diameter deuterium

gas cell. These spectra were acquired with the beam swinger at 0◦ with respect to the

time-of-flight tunnel demonstrating 1× 108 neutrons/(sr MeV µC) capabilities.

5.4.3 Spatial Resolution

Spatial resolution is a defining factor for imaging detectors as it succinctly quantifies

the smallest feature a device can resolve. For fast neutron imaging applications, spatial

resolutions on the order of millimeters are desirable for many applications. Knife-edge

resolution tests are one of the most widely used methods to quantify the spatial of an imaging

system due in part to its simplicity. The knife edge is a highly attenuating material with

a sharp, well-defined edge with sufficient size to shield part the detector from the incident
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Figure 5.14: (a) Computer-aided design (CAD) drawing of the Timepix-coupled LISe
detector. (b) LISe crystal coupled to Timepix ASIC via flip-chip indium bump-bonding
process by X-ray Imatek [94].

Figure 5.15: Timepix-coupled LISe module with readout electronics.
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FIG. 3: Experimentally-measured neutron spectra from the D(d, n) reaction.
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Figure 5.16: (a) Diagram of Edwards Accelerator Laboratory at Ohio University. (b)Source
spectra for the d(d, n) reaction at various accelerated deuteron energies [101].
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neutron (or photon) beam. The attenuating object must be positioned as close as possible to

the imaging plan (e.g., LISe surface) to reduce blurring effects from geometric unsharpness

of the beam.

Beam Divergence

”Geometric blur” emerges from a loss of contrast due to divergence of the interrogation

beam as shown in Figure 5.17. The degree of resolution degradation is a function of the

collimation of the system, which can be characterized by the source-to-target distance, L,

and the diameter of the collimation aperture, D. From Figure 5.17, it is clear to see that

the ratio L/D is equivalent to the ratio of the object-to-detector distance, l, to the geometric

blurring, d [102].

L

D
=
l

d
(5.12)

The geometric blurring and spatial resolution limit of the imaging system are additive in

nature so the ultimate resolution, Ut, has a lower bound for a given geometric configuration.

Increasing the source-to-target distance and/or decreasing the diameter of the collimation

aperture reduces geometric blurring, at the expense of neutron flux. Since flux from a point

source is governed by the inverse-square law, every 2-fold decrease in geometric blurring

reduces the geometric efficiency by a factor of 4 for a fixed object-to-detector distance. This

trade-off is best optimized according to the specific experimental requirements for acceptable

resolution and image acquisition time. Here, the detector was placed 4.1 m from the centerline

of the deuterium gas cell. The collimation port leading to the ToF tunnel has a diameter

of 20 cm giving an L/D ratio of 20.5, which is small for many neutron imaging applications.

The knife edge object, a 15×5×3cm3 copper block, was placed in contact with the detector

housing so d is the distance from the outside face of the aluminum enclosure to the front

surface of the LISe detector, or 2.1 cm. Thus, the expected geometric blurring is on the order

of 1 mm.
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Figure 5.17: Notional diagram of geometric blurring due to uncollimated neutrons. The
scale is exaggerated for clarity. For the knife edge test, L = 4.1 m, D = 0.2 m, l = 0.02 m,
and d is ≈ 1 mm.

Modulation Transfer Function

The Modulation Transfer Function (MTF) is a well-documented and extensively employed

method for quantifying spatial resolution across a broad spectrum of imaging systems. The

MTF of an imaging system is best described in terms of contrast as it relates the loss of

contrast, or blurring, to the spatial frequency of an imaged object. Contrast is a measure of

the intensity range of a given imaging system. Figure 5.18 illustrates the loss of contrast as

the spatial frequency of line pairs increases. This relationship between contrast and spatial

frequency comprises the theoretical framework of the MTF. A knife edge is an impulse input

into the MTF for a given detector since the system is given a sharp sub-pixel step change from

an open beam to a highly attenuated beam. The output of the MTF in the spatial domain

is visualized as image blurring. To obtain the MTF, the response of an imaging detector

perpendicular to the knife edge, known as the edge spread function (ESF), is extracted,

as shown in Figure 5.19. Differentiation of the ESF yields the line spread function (LSF),

which is Gaussian in shape. Both ESF and LSF have been used, historically, to quote

spatial resolution. The 10-90% rise in contrast in the ESF has been shown to approximate

the spatial resolution of a system. Similary, the full-width at half-maximum (FWHM) of

the LSF possesses some theoretical foundation as a metric for spatial resolution. However,

MTF, which can be obtained using a discrete Fourier transform of the LSF, provides the

most informative definition of spatial resolution due to its relevance to the spatial frequency

of an imaged object. From this measure, spatial resolution is often quoted at 10% of the

MTF, a value rooted in the Rayleigh Criterion for diffraction-limited circular aperatures

[103].
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Figure 5.18: Fundamental limitations of spatial resolution are dependent on the loss of
contrast as a function of spatial frequency. Courtesy Edmund Optics.
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Figure 5.19: Example of calculation of the Edge Spread Function and Line Spring Function
from a Knife Edge [103].
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5.4.4 Experimental Setup

For this investigation, a fast neutron energy of 9 MeV was desired so a deuteron beam and

target gas cell were chosen resulting in an approximate flux of 2× 108 neutrons/(MeVsrµC)

as shown in Figure 5.16b. The accelerator provided a steady beam current of 3.4µA during

operation. Due to flux and detection efficiency constraints, the parameters for operation were

derived for thermal neutron imaging application. As such, a constant 250 V bias was applied

to the detector during acquisition while a threshold of 4 mV was employed to maximize the

number of true fast neutron counts. Figures 5.20, 5.21, and 5.22 depict the beam swinger,

ToF Tunnel, and the detector setup. Sheets of cadmium foil were used to eliminate any

thermal neutrons from the source and down scattering from nearby walls.

Dark field measurements were acquired to identify ”hot” pixels, which are defined pixels

that recorded counts while the beam was off before and after neutron exposure. Since this

measurement spanned two days, four total dark field measurements were acquired. The

”hot” pixels identified in the dark field were masked during post processing. A 15 × 5 × 3

cm3 solid copper block was used to create the knife edge effect across the imaging plane

effectively attenuating the 9 MeV to 3% of the open-beam intensity. As a consequence of

low count rate, the edge spread function had to be constructed by summing pixel columns

perpendicular to the knife edge. The LSF was calculated by differentiating ESF in the typical

manner, then normalized. A spline interpolation fit was used to super sample the LSF for

the conversion to MTF. A discrete, fast Fourier transform (MATLAB fft) was applied to the

LSF to obtain the MTF where the final resolution was determined at the intersection of the

MTF and 10% threshold.
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Figure 5.20: Image of the beam swinger position at 0◦. The deuterium gas cell is mounte
d parallel with the flight tube allowing the accelerated deuteron to pass through the long
axis of the gas cell. The 20-cm collimation port on the right leads to the 30-m ToF tunnel.
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Figure 5.21: Image of the experimental setup with the detector. The collimation port and
detector were covered with a thin layer of Cd to eliminate moderated thermal neutrons.
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Figure 5.22: Image of the knife edge experiment where the top edge of the copper attenuator
was aligned to the centerline of the detector.
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Chapter 6

Results and Discussion

As the penultimate chapter, the results of the various studies are presented and discussed.

Section 6.1 provides an overview of the contact materials, structures, and deposition

techniques investigated in the search for a robust contact suitable for semiconductor

packaging. Section 6.2 details the study of the electronic properties of LISe and the

emergent polarization phenomenon observed in irradiated samples. Section 6.3 presents the

fast neutron radiography proof-of-principle studies outlining the total spatial resolution and

efficiency of the system. Congruently, these results represent a series of novel contributions

to the development of a promising neutron detection material that will influence future

development at the fundamental growth level and provide insight on the applicability of this

material for the varied uses of neutron detection and imaging.

6.1 Robust Wirebondable Contact

Through trial and error, RF magnetron sputtered indium contacts were shown to possess

ohmic current-voltage characteristics and excellent adhesion to LISe. The oft-used Cr/Ti

adhesion layers did not increase the survivability of sputtered contacts despite their well-

documented use in wire bonding applications. In thin layers, these materials are often useful

due to the strongly bonded oxide states and their resistance against deformation during wire

bonding. Due to the force required to create strong bond-wire connections, unprotected

substrate surfaces are prone to cratering, where the surface becomes visibly damaged.
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This surface damage creates defects and strongly increases the surface recombination rates.

Without the mechanically hard CrO/TiO interface states, thick films (≈ 1000 nm) are

employed to reduce surface damage.

When the aforementioned contact structures consistently failed, two contact materials,

In2Se3 and In, were identified as potential candidates. It was hypothesized that elementally

similar contacts would provide mechanically stable metal-semiconductor hetero-junctions.

However, In is a notoriously soft material with a low melting point, indicating it would

not perform well as an adhesion layer. While In2Se3 exhibited excellent adhesion, wire

bonding failed at the bond-wire interface. Thus, indium contacts were deposited with

the additional application of in-situ substrate heating at 350 K. The elevated substrate

temperature promotes metallurgical bonding at the substrate interface like post-growth

annealing. Figures 6.1a and 6.1b show the wire bonding for the In:LISe hetero-junction.

Table 6.1 catalogs the various materials and layers studied in the search for a mechanically

robust contact.

(a) (b)

Figure 6.1: (a) Initial successful wire bond with a final In thickness of 1000 nm deposited
via RF magnetron sputtering at 100 W and 75 ◦C. (b) Final successful wire bonding on the
LISe Thermal Neutron Imager (LTNI).
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IV measurements were taken for each of the contact materials, as described in Section

5.2. Ohmic behavior was observed for all materials, with a representative sample provided in

Figure 6.2a. The In:LISe heterojunction exhibited a slight rectifying behavior as illustrated

by the asymmetry of the leakage with respect to bias polarity. Further, the quality and

uniformity of the Au wire bond was investigated for the 16-channel LTNI by examining

pixel-by-pixel IV relationship. As shown in Figure 6.2b, slight differences in IV are observed

for each channel. The variation in IV is a combination of material inhomogeneities and the

repeatability of the wire bonding process. Nevertheless, the pixelated substrate was used to

demonstrate semiconductor-mode thermal neutron imaging capabilities for LISe as reported

in [104].

6.2 Fundamental Characterization

Understanding the fundamental charge carrier generation, transport, and recombination

properties drives the development of novel detection materials. Often, materials are

selected based on these properties, and then modified to suit specific detection applications.

Conversely, LISe was identified for its intrinsic neutron absorption efficiency. Consequently,

development of this material requires a well-defined growth-characterization feedback loop

to refine and optimize the crystal quality. This section details efforts to characterize LISe.

(a) (b)

Figure 6.2: (a) Representative IV characteristics of In, In2Se3, and Ti contacts on LISe.
(b) IV characteristics of all 16 pixels of LTNI showing slightly rectifying behavior.
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Table 6.1: Summary of adhesion test results for each of the investigated contact schemes.
The contact material and thickness, t, are described for the adhesion layer and bond layer.
For single layer contacts, the properties are listed under bond layer.

Adhesion Layer Bond Layer Annealing Adhesion Test
Material Thickness (nm) Material Thickness (nm) T (◦C) Time (hr) Tape Wirebond

- - Au 100 - - Fail Fail
- - Au 200 - - Fail Fail
- - Au 500 - - Fail -

Ti 50 Au 200 - - Fail -
Ti 200 Au 500 - - Fail -
Al 50 Au 25 - - Fail -
Al 100 Au 25 - - Fail -
Al 850 Au 25 - - Fail -
Al 1000 Au 25 - - Fail Fail
Ti 25 Au 25 - - Fail -
Ti 50 Au 50 250 2 Fail Fail
Ti 250 Au 400 400 0.08 Fail Fail
Ti 150 Au 150 400 2 Fail Fail
Ti 150 Au 200 275 0.08 Fail Fail
Cr 150 Al 150 275 2 Fail -

Al 200 275 2 Fail -
In2Se3 500 Au 500 - - Pass Fail

In 1000 75 0.08 Pass Pass
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6.2.1 Charge Generation and Transport Properties

Mobility-Lifetime Product

The charge-carrier mobility lifetime product, µτ , for samples L1 and L2 were determined

via fitting the Hecht relation to the CCE as a function of applied bias. The charge carrier

properties for sample L1 were investigated as a function of detector thickness. The fits of

Equation 2.10 for two thickness of L2 are shown in Figure 6.3a. Figure 6.3b illustrates the

relationship between (µτ)e and thickness. For an initial thickness of 1700µm, (µτ)e was

found to be 110× 106 cm2/V. As the sample was thinned through mechanical polishing, the

(µτ)e suffered proportionally to the thickness, x, according to the empirical fit,

(µτ)e = (1.67× 104 cm2/V)x2.65 (6.1)

At the minimum investigated thickness, 307µm, the (µτ)e was reduced to 3.8× 10−6 cm2/V.

The reduction of mobility-lifetime product is attributed to an increase in bulk defects

from the mechanical polishing process. An increase in defect density is correlated with

a proportional decrease in τ .

L2 α spectra for electrons and holes, the first of its kind reported, is shown in Figure 6.4a.

From the single-carrier approximation to the Hecht equation for charge collection efficiency,

it is reasonable to estimate that (µτ)h is a factor of 10 less than (µτ)e. Analysis of the CCE

curve for L2 yields a (µτ)e of 5.5× 10−6 cm2/V, which agrees well with L1 and Bell et al.

[59]. Further analysis of the preamplifier rise time for L2 and application of Equation 5.5, the

electron mobility and lifetime were determined separately. The measured µe was 122 cm2/Vs,

on par with other wide band gap materials. The irradiated sample demonstrated a trapping

time constant, τe, of 45 ns, which is attributed to the radiation-induced defects.

Preamplifier current pulses demonstrated a steady incline after the initial fast rise due

to charge drift through the bulk semiconductor. The slower, secondary rise is indicative of a

shallow carrier drift with a detrapping time constant of the same order of magnitude as the

charge integration time. Differentiation of the preamplifier pulses obviate the contribution of

detrapped charge to the overall signal, as shown in Figure 6.5. The effective detrapping time

constant (τD) denotes the emission rate of a charge-carrier trap, which is heavily dependent
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(a)

(b)

Figure 6.3: (a)Hecht fit to the peak α channel as a function of the external electric field
for two thicknesses of sample L1. (b) Electron mobility-lifetime product for sample L1 as a
function of sample thickness.
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(a)

(b)

Figure 6.4: (a) Exemplar α spectra for electron and hole-only collection. (b) Hecht fit
to the collected charge from α irradiation for electrons as a function of electric field. The
charge collected from holes did not exhibit behavior congurent with the Hecht relation.
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Figure 6.5: Differential charge pulse illustrating a shallow charge trap with a detrapping
time within the integration time constant of the preamplifier.

on the trap depth. Equation 6.2 describes τD as function of the integrated signal, where

V0 is the applied bias and tr is the transit time of the charge carriers, calculated from 10-

90% of the preamplifier pulse amplitude. This analysis found that τD was 870 ± 40 ns

[105], which is insufficient to manifest a strong impact on the observed charge collection for

thin samples. However, for thicker samples, the probability for multiple trapping-escaping

processes increases, which would lead to an increase in the effective detrapping time.

τD = τ

[
1

V0

dV (t)

dt

1

tr
− 1

]
(6.2)

Mean Ionization Energy

The W-value discussed in this section is a derivative of the mean ionization energy of

a semiconductor since it cannot be decouple from inherent charge losses in the system.

Therefore, it is important to note that this value is less indicative of the energy to electron-

hole pair conversion rate and more accurately described as an energy to collected charge

conversion efficiency. For many semiconductor materials, these values are equivalent. The

W-value for L1 was calculated from a linear fit to the W-value as a function of thickness. The
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relationship between the mean ionization energy and detector thickness follows the intuitive

relation between full charge collection and charge losses at defect sites. Figure 6.6 depicts this

linear relationship, where the zero-thicknesss W-value is 380 eV/eh pair. A similar W-value

of 370 eV/eh pair was observed for the irradiated L2. These values are significantly larger

than the empirical formula established by Klein et al. [17], which predicts a mean ionization

energy of 7.15 eV/eh pair. Large W-values are indicative of significant charge loss, effectively

lowering the maximum collectible charge, which can be partially attributed to the radiative

recombination mechanisms responsible for the scintillation properties of LISe. Combined

with the dual scintillation/semiconduction detection results discussed in Section 4.3.2, it is

clear that a majority of free carriers are trapped very close to the point of generation.

6.2.2 Polarization and Space-Charge Buildup

The preferential trapping at deep defect energies can strongly influence the charge uniformity

of a semiconductor. Deep unneutralized trapping centers may result in the formation

of an internal electric field that opposes the applied electric field. The so-called space-

charge buildup effect reduces the effective electric field seen by the free carriers. This

phenomenon results in a time-dependent detector response known as polarization. Previous

α spectroscopy measurements performed by both the University of Tennessee and Fisk

University cohorts have never demonstrated this effect. Post-irradiation, polarization was

observed in L2 during the CCE characterization study. As shown in Figure 6.7a, the α

spectral peak slowly drifted towards the noise floor while under bias. The polarization rate for

L2 was estimated to 0.05 fC/min (0.8 V/µm) for approximately 50 minutes at which the peak

drift stabilized. Electric field and source rate were found to influence the polarization rate.

Peak stabilization occurs when the trapping and detrapping rate of the deep traps responsible

for this effect reach an equilibrium. Figure 6.7b depicts the α-induced polarization rate of

L2 in the absence of an external field. A slight spectral shift to lower energies is observed

without the influence of bias stabilizing within a few days of α exposure.

Neutron-induced polarization was studied to understand the origin of this phenomenon

and gauge its effect on the long-term stability of LISe for constant operation applications. L2

was biased to 400 V (0.8 V/µm) and exposed to a moderated plutonium-beryllium (PuBe)
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Figure 6.6: Mean ionization energy per electron hole pair, W , as a function of thickness
for sample L1.

(a) (b)

Figure 6.7: (a) Time-dependent α peak channel and count rate used to quantify the
polarization rate of the irradiated sample L2. (b) Long term stability of L2 exposed to α
particles for 1 hour, 2 days, and 1 week with no applied bias.
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α-n source (2 Ci) for 18.5 hours while continuously recording spectra (acquisition time =

30 min). The initial and final spectra are plotted together in Figure 6.8a. The broad

neutron spectrum is a result of unequal transport properties of electrons and holes in LISe as

illustrated by the theoretical calculations shown in Figure 2.6. Polarization was not observed

in this neutron-only field, but 115In activation is clearly visible near the noise floor. It is

important to note that the ”knee” of the neutron spectrum corresponding to the 4.78 MeV

Q-value of 6Li thermal neutron capture appears at higher channels than equivalent energy

α exposure. In fact, estimating W for the neutron response yields a value (63 eV/e− h)

approximately six times smaller than the estimation from CCE measurements. Since α’s are

significantly less penetrating than neutrons, preferential trapping occurs near the exposed

electrode, creating a space-charge build up, which screens drifting charge carriers from the

applied electric field. This behavior is confirmed by mixed α-neutron field exposure, shown

in Figure 6.8b, where the high energy tail of the neutron spectrum is shifted to lower channels

in the presence of an α source.

Mitigation of the polarization effect is predicated on the immediate detrapping of trapped

charge-carriers via some external excitation. One such technique requires exposing the crystal

to sub-band gap energy photons, which excite the trapped charges from the lower energy

defect state back to their respective bands. The photon energy required to reverse this

process is indicative of the trap activation energy. Light-emitting diodes in the infrared,

blue, and green regimes were used to further investigate the cause of polarization. Low

energy infrared photons (1.32 eV) produced no change in the observed polarization rate or

spectral peak shift, presumably because the deep trap responsible is more than 1.32 eV from

the conduction and/or valence band. Higher energy blue photons shifted the electron and

hole α peak by 44%. The most interesting result of this study is the difference in peak shift

observed for green (1.98 eV) light. For electrons, the green-light induced peak shift is almost

equivalent to the shift observed for blue photons. Conversely, the observed shift from 2.36

eV photons for electron-only collection is only 9% compared to 44% for hole-collection. Since

electric field screening is caused by oppositely-charged, fixed charges, the deep electron trap

responsible for hole-only polarization is deeper than 1.98 eV.
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(a)

(b)

Figure 6.8: (a) Long term stability of the L2 neutron spectrum.(b)Neutron only and Mixed-
field α-neutron irradiation of L2 for electrons. The α spectrum is included in (a) for reference.
Note that (b) is a semi-logarithmic plot to emphasize the difference between mixed-mode
and pure neutron fields.
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6.2.3 Defect Characterization

To investigate the nature of neutron-induced electronic traps within L2, trap-filled limited

voltage (VTFL) measurements, as described in Section 5.3.2, were used to determine the

electrically active trap density, Nt. Similarly, photo-induced transient current spectroscopy

(PICTS) measurements, also described in Section 5.3.2, were used to determine trap

activation energies, EAct. For comparison, VTFL measurements were conducted on L2,

L3, and L4. The results, provided in Figure 6.9, indicate L2 has the highest trap density

(21× 109 cm−3) followed by L3 (14× 109 cm−3) and then L4 (8× 109 cm−3).

Previous experiments, discussed in Section 4.2.2, have determined the yellow color arises

in crystals with near stoichiometric compositions [71, 76]. The unbalanced composition in

the red crystals leads to deep trap sites, composed of Se vacancies, Li and In antisites,

interstitials, and secondary phase inclusions [67]. Neutron irradiation of L2 resulted in at

least 1012 lithium vacancies, not including secondary damage from the α and triton particle

tracks, greatly exceeding Nt observed using VTFL. The discrepancy may be attributed to

room temperature annealing effects and/or the production of non-electrically active traps.

Because the irradiated sample has an elevated trap density while retaining sufficient CCE

to generate spectra, it can be concluded that neutron irradiation, at these levels, does not

produce the detrimental traps observed in red, non-detector grade LISe.

Figure 6.9: Trap-filled Limited Voltage measurements for samples L2 (blue), L3 (green),
and L4 (red) used to determine the trap density. The log-log plot depicts the IV curve with
fits to Ohm and Child’s Law.
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PICTS spectra revealed five charge carrier traps in the irradiated L2 as shown in Figure

6.10. Linear fits to the Arrhenius plot, Figure 6.10, in accordance with Equation 5.7, were

used to determine the activation energy, EAct, and emission coefficient, e0. The results are

provided in Table 6.2 along with a comparison of previous PICTS results for yellow LISe

from Cui et al. [67]. Of the five defect energies identified in this work, four are in close

agreement with the values observed in [67]. Two defects at Ec - 0.36 eV and Ev + 0.30 eV

were not observed in L2, but it can be reasonably assumed that those peaks are convoluted

with the E1 and H1 contributing to the significant increase in uncertainty for those values

when compared to EA and HA. The final deep trap at Ev - 0.80 eV was not identified by

Cui et al., but the peak was present in their PICTS spectrum. It was excluded from their

analysis due to poor fitting parameters. The tentative defect assignments from Cui et al.

are supplied for reference. Additionally, Kamijoh et al. identified the deep trap H3 as a

lithium vacancy, while Cui et al. postulated that VLI would exhibit energy depths near

0.1 eV. Coupled with VTFL, these results suggest L2 polarization evolved from an increase

in electrically-active deep trap density during neutron irradiation since no new peaks were

observed in the PICTS spectra.

6.2.4 Miscellaneous Properties

Photoconductivity

In support of the use of the normalized two-gate method for PICTS analysis, the

photoconductivity of LISe was investigated for white, green, and ultraviolet lights. Due to

the low amplitude photocurrent within the temperature range, it was not possible to acquire

PICTS spectra with the monoenergetic green and UV illumination. Figure 6.11 illustrates

the photoconductivity for the dark condition and each of the light sources. The dark

conductivity predictably increases exponentially with temperature due to the exponential

relationship of free-carrier density as a function of temperature. All samples demonstrate

strong temperature dependence of mobility for all temperatures. At low temperatures, there

is an appreciable rise in conductivity, which is most pronounced for irradiated sample L2.
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Figure 6.10: Arrhenius plots of the peak temperature as a function of the emission rate
window, en, for five observed defect energies. (Inset) Comparison of PICTS spectra for
±10 V with an emission rate window of 198 s−1 and pulse width of 100 ms.

Table 6.2: Activation energy (EAct) and emission coefficient (e0) for defect sites in L2
compared to previous PICTS measurements reported by Cui et al. [67].

Cui et al. [67]

Defect EAct(eV ) e0 (K−2s−1) Defect EAct(eV ) e0 (K−2s−1) Assignment

E1* 0.21± 0.16 4× 105 EA 0.22± 0.02 5× 105-5× 106 VSe
0/+

– – – EB 0.36± 0.03 7× 108-7× 1010 InLi
0/+

E2 0.54± 0.03 2× 108 EC 0.55± 0.05 4× 107-2× 109 InLi
+/2+

H1* 0.15± 0.12 3× 105 HA 0.19± 0.03 3× 105-3× 108 VIn
0/–

– – – HB 0.30± 0.05 1× 107-5× 109 LiIn
0/–

H2 0.64± 0.10 4× 1010 HC 0.73± 0.03 5× 1011-5× 1013 LiIn
–/2–

H3 0.80± 0.15 4× 109 – – – VLi
0/–

*The shallow defects E1 and H1 identified in this study are likely convoluted with the additional defects
identified by Cui et al., contributing to the significantly larger uncertainty for those defects.
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Figure 6.11: Photoconductivity measurements of samples L2 (IRR), L3 (IC), and L4 (TP)
from 90 K to 330 K with a constant applied bias of ±100 V. PC for (top left) dark current
and (top right) white, (bottom left) green, and (bottom right) ultraviolet light. A strong
temperature dependence is observed for charge carrier mobility.
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Figure 6.12: Raman spectra for samples L2, L3, L4, and scintillating L5.

Raman Spectroscopy

Raman spectra of L2, L3, L4, and L5, shown in Figure 6.12, present as many as 14 Raman

active modes with the predominant peak located at 160.9 cm−1, which has been assigned to

the A1 symmetry of the Li-Se bond through the analysis of Raman spectra for LiBC2 (B

= In,Ga, C = Se, Te) crystals. The second largest peak at 70.6 cm−1 may be attributed to

the In-Se bond [68]. As such, the two irradiated samples L2 and L5 showed an inversion

of the dominant peaks indicating a Li-deficient state. Due to the significant difference in

atomic mass, it is reasonable to assume that VLi and Lii generated by primary knock-on

collisions comprise the majority of the increased defect density observed in L2. These results

may indicate that lithium vacancies are the primary cause for reduced charge transport

properties of Li-deficient red crystals and irradiation sample L2 with the caveat that In2Se3

precipitates dominate the properties of red crystals.

6.3 Fast Neutron Radiography

As a proof-of-principle, Timepix-coupled LISe was exposed to 9 MeV neutrons generated

from a d(d,n) reaction. A highly attenuating copper block was used to demonstrate the

spatial resolution via a knife-edge test. A series of 6470 frames (10 second exposure) were
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(a) (b)

Figure 6.13: (a) Dark field and (b) Knife edge images for the Timepix-coupled LISe sensor
for 9 MeV neutron exposure.

acquired over two days with a series of dark field (no beam) measurements taken at the

beginning and end of each measurement day. The total integrated charge from the Van de

Graaff accelerator was 108 mC for an average deuteron current of 3.35µA.

A 1 × 1 in2 stilbene scintillator mounted at 45◦ with respect to the beam axis recorded

1.21× 108 neutrons (3750 neutrons/second) over the course of the measurement in agreement

with the estimated 2× 108 neutrons/sr MeV µC provided in Figure 5.16b. At a distance

of 4.1 m from the source, the detector subtended a solid angle of 3.75× 10−6 sr yielding

an estimated neutron fluence of 3000 neutrons/second. With an expected efficiency of

2.7× 10−5 neutron−1, calculated from the numerous fast neutron interaction cross-sections

with Li, In, and Se (See Appendix A), the total expected counts was estimated to be 2000

neutrons for a 528µm detector thickness in an open beam. Figure 6.13a and 6.13b show the

accumulated images for the dark field and knife-edge experiments, respectively.

Due to limitations in the aligning process, the knife edge inadvertently covered 75%

(of the detector limiting neutron count rate. After masking the hot pixels, a total of 522

counts were recorded resulting in a measured efficiency of 2.68× 10−5 neutron−1 in close

agreement with the predicted value. Because of this and the low efficiency, the ESF was
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calculated by integrating pixel columns perpendicular to the knife edge. Figure 6.14 shows

the resulting one-dimensional profile. The profile for the open beam measurements at the

CG-1D beamline is included for reference. Both profiles have been normalized to show the

relative spatial response of an open beam for this detector. Due to time restrictions, it

was not possible to collect both for fast neutrons. A combination of low count rate and

knife-edge position make the calculation of MTF unreliable. The FWHM of the LSF much

narrower than expected due to the sharp drop off at the detector edge. However, the spatial

resolution can be estimated from the 10-90% intensity decrease observed in the ESF. Using

this measure, the spatial resolution was found to be 1.55 mm from the interpolated fit to

the ESF. These results are promising for future development of larger Timepix-coupled LISe

detectors to increase efficiency. Significant increases in efficiency will reduce the acquisition

time to achieve a desired spatial resolution while also improving contrast. Additionally, the

use of the time-of-flight pickoff to reduce the contamination of lower energy neutrons can

further reduce image unsharpness.

Figure 6.14: One-dimensional profiles for fast neutron knife edge and cold neutron open
beam measurements showing the relative response as a function of position along the vertical
axis of the detector.
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Chapter 7

Conclusions

A robust mechanical contact has been identified for advanced packaging requirements such as

pixelated detectors for neutron radiography. Due to its incorporation in the bulk of LISe, In

provides excellent adhesion properties and IV characteristics. Additionally, In contacts were

demonstrated as suitable bond pad material for ultrasonic wire bonding. The low melting

point of In alleviated the need for elevated substrate temperature for gold wire bonding.

Finally, a 16-channel pixel detector (LTNI) was fabricated and packaged. LTNI demonstrated

a sub-pixel spatial resolution prompting further development of LISe for neutron radiography.

The fundamental charge carrier properties of LISe have been determined. This work

provides novel insights into the fundamental strengths and limitations of this material as

they pertain to radiation detection. LISe’s performance is acutely influenced by sample

preparation and care must be taken to ensure good device performance as evidenced by

reduced charge transport for a mechanically thinned sample. High flux neutron irradiation

of LISe generated an anomalous detector performance. Investigation of this phenomenon

has shown that charge carrier traps created in the bulk of the semiconductor increases

the charge collection efficiency of LISe. Adversely, a polarizing effect and reduced µτe are

observed for this material. As a neutron detector, there is no observed degradation in

the neutron spectrum from high flux irradiation. The irradiated crystal also demonstrated

the unique ability to produce α spectra from hole collection. Polarization in LISe reduces

the charge collected for alpha exposures as a function of time under bias. Further, rate

of polarization is dependent on applied bias and (weakly) source rate. The improved
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charge collection efficiency for both holes and electrons despite reduced transport properties

could be attributed to the distribution of non-radiative and radiative traps post-irradiation.

These results could provide insight behind the mechanism that creates the semiconductor-

grade/scintillation-grade exclusivity for this material. Further studies are required to identify

the dominant scintillation mechanism. VTFL measurements showed an elevated trap density

in the irradiated sample with reference to the poorly semiconducting non-detector grade

sample demonstrating that trap type is a significant influence on the performance of the

detector. The types and emission rates of the traps probed via PICTS are consistent with

those previously observed for this material up 330 K. Finally, the observed polarization can

be reversed by exposing the material to photons with sufficient energy, but no effect is seen

for 1.32 eV photons hinting at the possibility of a very deep level near the middle of the band

gap. Raman spectra demonstrated a correlation between irradiation and the predominance

of the relative ratio of Li-Se and In-Se Raman vibrational modes indicating a Li-deficient

state. Further research is required to develop a full model of the defect distribution in LISe

and their influence on semiconduction and scintillation.

Finally, a knife-edge resolution test was performed on a Timepix-coupled LISe detector

for monoenergetic fast neutron irradiation at Edwards Accelerator Laboratory. A series

of 6470 frames were recorded at a exposure time of 5 seconds. The integrated image was

compressed into a single pixel row to compensate for detection efficiency and flux limitations.

The modulation transfer function was calculated to determine the spatial resolution. For 9

MeV quasi-monoenergetic neutrons, a spatial resolution of 1.55 mm was found. Further

improvements in the detector fabrication process and increase in detector thickness are

recommended to meet the requirements of fast neutron radiography. In conclusion, LISe

is a promising material for neutron detection and imaging applications exhibiting excellent

detection efficiency and sufficient detector performance.
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A Fast Neutron Reaction Cross-sections

A.1 Lithium

Figure A.1: Fast neutron reaction cross-sections for 6Li.

Figure A.2: Fast neutron reaction cross-sections for 7Li.
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A.2 Indium

Figure A.3: Fast neutron reaction cross-sections for 113In.

Figure A.4: Fast neutron reaction cross-sections for 115In.
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A.3 Selenium

Figure A.5: Fast neutron reaction cross-sections for 74Se.

Figure A.6: Fast neutron reaction cross-sections for 76Se.
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Figure A.7: Fast neutron reaction cross-sections for 77Se.

Figure A.8: Fast neutron reaction cross-sections for 78Se.
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Figure A.9: Fast neutron reaction cross-sections for 80Se.

Figure A.10: Fast neutron reaction cross-sections for 82Se.
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A.4 Total

The total macroscopic cross section, Σtot is calculated from the microscopic cross sections, σ,

density (ρ = 4.47 g/cm−3), molecular weight, (M = 279.07 g/mol), and isotopic composition

of LISe. The primary isotopes found in enriched LISe and their isotopic abundances are 6Li

(95%), 7Li (5%), 113In (4.3%), 113In (95.7%), 74Se (0.86%), 76Se (9.23%), 77Se (7.6%), 78Se

(23.69%), 80Se (49.80%), and 82Se (8.82%) where In and Se are in accordance with their

natural isotopic abundance. The total macroscopic cross section for each isotope, Σtot(X),

is given by

Σtot(X) = NXσtot (1)

where σtot is the summation of the neutron interaction cross-sections for isotope X, as shown

in Figures A.1 - A.10, which were acquired from the Evaluated Nuclear Data File [106–109].

The atomic density of each isotope in LISe, NX , is given by the equation

NX =
ρNA

M
[a/o(X)] (2)

where ρ is the density in g/cm3, NA is Avogadro’s constant (6.023× 1023 atoms/mol), M is

the total molar weight of the molecular species, and a/o(X) is the atom fraction of isotope

X in the molecular unit. LISe is composed of approximately 25% Li, 25% In, and 50% Se

so the isotopic abundances for each element is weighted according to these fractions to give

the atom fraction of each isotope with respect to LISe. Therefore, NX for each isotope is

N6Li =
(4.47 g/cm3) (0.6023× 10−24 atoms/mol)

279.07 g/mol
[(0.25) (0.95)]

= 2.29× 1021 atoms/cm3

(3)

N7Li =
(4.47 g/cm3) (0.6023× 10−24 atoms/mol)

279.07 g/mol
[(0.25) (0.05)]

= 0.12× 1021 atoms/cm3

(4)
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N113In =
(4.47 g/cm3) (0.6023× 10−24 atoms/mol)

279.07 g/mol
[(0.25) (0.043)]

= 0.10× 1021 atoms/cm3

(5)

N115In =
(4.47 g/cm3) (0.6023× 10−24 atoms/mol)

279.07 g/mol
[(0.25) (0.957)]

= 2.31× 1021 atoms/cm3

(6)

N74Se =
(4.47 g/cm3) (0.6023× 10−24 atoms/mol)

279.07 g/mol
[(0.25) (0.0086)]

= 0.04× 1021 atoms/cm3

(7)

N76Se =
(4.47 g/cm3) (0.6023× 10−24 atoms/mol)

279.07 g/mol
[(0.25) (0.0.923)]

= 0.45× 1021 atoms/cm3

(8)

N77Se =
(4.47 g/cm3) (0.6023× 10−24 atoms/mol)

279.07 g/mol
[(0.25) (0.076)]

= 0.37× 1021 atoms/cm3

(9)

N78Se =
(4.47 g/cm3) (0.6023× 10−24 atoms/mol)

279.07 g/mol
[(0.25) (0.2369)]

= 1.14× 1021 atoms/cm3

(10)

N80Se =
(4.47 g/cm3) (0.6023× 10−24 atoms/mol)

279.07 g/mol
[(0.25) (0.498)]

= 2.40× 1021 atoms/cm3

(11)
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N82Se =
(4.47 g/cm3) (0.6023× 10−24 atoms/mol)

279.07 g/mol
[(0.25) (0.0882)]

= 0.43× 1021 atoms/cm3

(12)

Finally, the macroscopic cross section at a given neutron energy can be calculated in the

following manner.

Σtot(LISe) = N6Li σtot(
6Li) + N7Li σtot(

7Li)

+N113In σtot(
113In) + N115In σtot(

115In)

+ N74Se σtot(
74Se) + N76Se σtot(

76Se)

+ N77Se σtot(
77Se) +N78Se σtot(

78Se)

+ N80Se σtot(
80Se) +N82Se σtot(

82Se)

(13)

In order for a neutron interaction to be detectable, the reaction products must deposit

enough energy into the detector to record a pulse above a given threshold. Absorption

reactions that produce heavy charged particles with sufficiently short ranges (less than the

dimensions of the detector) are generally detectable events. In elastic scattering reactions,

the energy transferred from the neutron (En) to the target nucleus (ER) is given by the

equation,

ER =
4A

(1 + A)2
(
cos2θ

)
En (14)

where A is the atomic mass of the target nucleus and θ is the scattering angle in the lab

reference frame. Therefore, the total energy transferred to the target nucleus is inversely

proportional to the atomic mass of the recoiling target nucleus. As such, little energy is

transferred to the In (Emax ≈ 0.035En) and Se (Emax ≈ 0.05En) isotopes. Conversely, an

incident neutron can transfer up to 48.98% and 43.75% of its kinetic energy to 6Li and 7Li

nuclei, respectively. Similarly, inelastic scattering reactions are only relevant for 6Li where

the recoiling nucleus decays into d+α. Thus, the detectable macroscopic cross-section, Σdet,
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is the summation of the subset of reactions that deposit energy within the detector volume,

as shown in Figure A.11. For 9 MeV neutrons from the d(d,n) reaction used in the fast

neutron imaging study in Section 6.3, the total and detectable cross sections are 0.0253 and

0.0157 cm−1, respectively.

Detection efficiency, ε, is a function of Σdet and the thickness of the sensor, d, as shown

in Equation 15.

ε = 1− exp (−Σdetd) (15)

Figure A.12 depicts the relationship between detector thickness and detection efficiency for

a monoenergetic 9 MeV neutron beam. For a 10 cm thick detector, the detection efficiency is

14.5%. For the 528µm thick detector used for the fast neutron studies, the total interaction

and detection efficiencies are 0.133% and 0.083%, respectively. Scattering reactions with In

and Se constitute the majority of the detection efficiency losses.
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Figure A.11: Total and detectable macroscopic cross section for LISe enriched to 95% 6Li
content. Detectable interactions include absorption interactions with heavy charged particle
products and scattering reactions with Li isotopes. The large peak in Σdet comes from the
elastic scattering reaction with 6Li and 7Li.

Figure A.12: Total and detectable interaction efficiency for LISe enriched to 95% 6Li
content. Detectable interactions include absorption interactions with heavy charged particle
products and scattering reactions with Li isotopes. Efficiency loss is attributed to the In and
Se scattering reactions.
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B Interdigitated Coplanar Readout

B.1 Theory of Operation

O. Frisch first introduced his unipolar charge sensing technique as a means to reduce the

contribution of slow-moving ions in gas-filled ion chambers. By placing a wire mesh grid (or

so-called Frisch grid) near the anode, only the electron drift near the anode would contribute

to the signal increasing resolution [110]. Luke et al. introduced the interdigitated coplanar

grid as a virtual Frisch grid, since placing an electrode within the bulk of a solid state

detector is challenging to say the least [111–113]. These techniques rely on the principles

of the Shockley-Ramo theorem, which dictates the movement of charge and the induced

current these moving charges create [23, 24]. He et al. provide an excellent review of the

underlying principles that drive unipolar charge sensing [27]. Several studies have employed

this technique to improve the energy resolution of the widely used γ-sensitive semiconductor

cadmium zinc telluride (CZT) due to the material’s poor hole transport [114–121]. In short,

the design consists of an anode with two sets of interdigitated strips as shown in Fig. B.1.

One grid is placed at slightly higher voltage (collecting grid) than the other (non-collecting

grid). At distances far away from the cathode, the electric field appears constant, but as

the charges drift closer to the anode, the weighting potential of the two electrodes diverge

quickly as seen in Fig. B.2a. Subtraction of these two signals produces a signal dependent

only on the more mobile electrons since all of the signal is produced very close to the anode

Figure B.1: Interdigitated coplanar readout contact design where blue and green ’digits’
are the collecting and non-collecting grids, red is the guard ring, and silver is the bare crystal.
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(See Fig. B.2b). This has the effect of increasing energy resolution at the cost of reducing

signal magnitude.

B.2 Simulations

Using Silvaco, the weighting potential for various strip widths and pitches have been

simulated to determine the optimum configuration [122]. These simulations demonstrate 95%

of the induced signal is generated within one strip pitch of the the anode, which agrees with

He [27]. It also demonstrates that the profile of the weighting potential is strongly dependent

on the strip pitch and only weakly dependent on the strip width. Figures B.2a-B.16b show

the three dimensional weighting potential in LISe where the collecting grid was biased at

+1 V with respect to the non-collecting grid. These simulations guide the design of the

interdigitated coplanar mask for LISe. There are trade offs to consider when implementing

this technique for single polarity charge sensing including interdigit capacitance and surface

leakage, dead layer thickness, and charge readout uniformity [123].

(a) (b)

Figure B.2: (a) Three-dimensional and (b) one-dimensional view of the weighting potential
within LISe for a interdigitated coplanar grid as simulated using Silvaco. The strips were
150µm wide with 100µm spacing and the collecting grid was biased at +1 V with respect
to the non-collecting grid.
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(a) (b)

Figure B.3: (a) Three-dimensional and (b) one-dimensional view of the weighting potential
within LISe for a interdigitated coplanar grid as simulated using Silvaco. The strips were
150µm wide with 125µm spacing and the collecting grid was biased at +1 V with respect
to the non-collecting grid.

(a) (b)

Figure B.4: (a) Three-dimensional and (b) one-dimensional view of the weighting potential
within LISe for a interdigitated coplanar grid as simulated using Silvaco. The strips were
150µm wide with 150µm spacing and the collecting grid was biased at +1 V with respect
to the non-collecting grid.
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(a) (b)

Figure B.5: (a) Three-dimensional and (b) one-dimensional view of the weighting potential
within LISe for a interdigitated coplanar grid as simulated using Silvaco. The strips were
250µm wide with 100µm spacing and the collecting grid was biased at +1 V with respect
to the non-collecting grid.

(a) (b)

Figure B.6: (a) Three-dimensional and (b) one-dimensional view of the weighting potential
within LISe for a interdigitated coplanar grid as simulated using Silvaco. The strips were
250µm wide with 175µm spacing and the collecting grid was biased at +1 V with respect
to the non-collecting grid.
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(a) (b)

Figure B.7: (a) Three-dimensional and (b) one-dimensional view of the weighting potential
within LISe for a interdigitated coplanar grid as simulated using Silvaco. The strips were
350µm wide with 100µm spacing and the collecting grid was biased at +1 V with respect
to the non-collecting grid.

(a) (b)

Figure B.8: (a) Three-dimensional and (b) one-dimensional view of the weighting potential
within LISe for a interdigitated coplanar grid as simulated using Silvaco. The strips were
250µm wide with 250µm spacing and the collecting grid was biased at +1 V with respect
to the non-collecting grid.
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(a) (b)

Figure B.9: (a) Three-dimensional and (b) one-dimensional view of the weighting potential
within LISe for a interdigitated coplanar grid as simulated using Silvaco. The strips were
350µm wide with 175µm spacing and the collecting grid was biased at +1 V with respect
to the non-collecting grid.

(a) (b)

Figure B.10: (a) Three-dimensional and (b) one-dimensional view of the weighting
potential within LISe for a interdigitated coplanar grid as simulated using Silvaco. The
strips were 450µm wide with 100µm spacing and the collecting grid was biased at +1 V
with respect to the non-collecting grid.
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(a) (b)

Figure B.11: (a) Three-dimensional and (b) one-dimensional view of the weighting
potential within LISe for a interdigitated coplanar grid as simulated using Silvaco. The
strips were 550µm wide with 100µm spacing and the collecting grid was biased at +1 V
with respect to the non-collecting grid.

(a) (b)

Figure B.12: (a) Three-dimensional and (b) one-dimensional view of the weighting
potential within LISe for a interdigitated coplanar grid as simulated using Silvaco. The
strips were 450µm wide with 225µm spacing and the collecting grid was biased at +1 V
with respect to the non-collecting grid.
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(a) (b)

Figure B.13: (a) Three-dimensional and (b) one-dimensional view of the weighting
potential within LISe for a interdigitated coplanar grid as simulated using Silvaco. The
strips were 350µm wide with 350µm spacing and the collecting grid was biased at +1 V
with respect to the non-collecting grid.

(a) (b)

Figure B.14: (a) Three-dimensional and (b) one-dimensional view of the weighting
potential within LISe for a interdigitated coplanar grid as simulated using Silvaco. The
strips were 550µm wide with 275µm spacing and the collecting grid was biased at +1 V
with respect to the non-collecting grid.
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(a) (b)

Figure B.15: (a) Three-dimensional and (b) one-dimensional view of the weighting
potential within LISe for a interdigitated coplanar grid as simulated using Silvaco. The
strips were 450µm wide with 450µm spacing and the collecting grid was biased at +1 V
with respect to the non-collecting grid.

(a) (b)

Figure B.16: (a) Three-dimensional and (b) one-dimensional view of the weighting
potential within LISe for a interdigitated coplanar grid as simulated using Silvaco. The
strips were 550µm wide with 550µm spacing and the collecting grid was biased at +1 V
with respect to the non-collecting grid.
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B.3 Shadow Mask Design and Readout Board

A shadow mask was designed in AutoCAD and manufactured via laser cutting a 1 cm2 thin

steel sheet with a width of 400µm and a pitch of 600µm covering a 5 × 5 mm2 area,

which is shown in Figure B.17. A 3rd generation device configuration was chosen, which

provides uniformity in the weighting potential to compensate for edge effects [121]. While

the geometric parameters of the shadow mask dictate some limitations of the individual

design, further tuning of the applied bias and ∆V between the collecting and non-collecting

grids can be used to optimize the performance of the energy resolution of the detector.

Furthermore, electron trapping can degrade the spectral performance of a detector through

a depth dependent charge collection efficiency effect. To combat this deleterious effect, only

a portion of the non-collecting grid’s signal may be subtracted, which effectively removes the

position dependency since the magnitude of the non-collecting grid signal is proportional to

the interaction depth. Additionally, a digital correction may be applied by also collecting

the cathode signal to determine the depth of interaction and applying a correction factor to

the collecting grid signal [118].

Using EAGLE, a detector board has been designed and fabricated as shown in Figure

B.18. The crystal will be mounted to the board via ultrasonic gold wire bonding. The anode

signals will be conditioned using two CREMAT CR-110 preamplifers. The signals will be

subtracted using a CAEN FAN IN/FAN OUT to invert the non-collecting grid signal, then

sum the two signals. The resulting unipolar signal is then passed to a CAEN DT5770

Desktop Digitizer. The detector is expected to exhibit improved spectral resolution.
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Figure B.17: CAD image of interdigitated coplanar grid shadow mask for physical vapor
deposition. The strips have a width of 400µm and a pitch of 600µm covering a 5 × 5 mm2

area.

Figure B.18: Printed circuit board for a coplanar readout design with a wire bonding
pads for the collecting grid, non-collecting grid, and guard ring designed in EAGLE and
manufactured by Sunstone.
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