
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Doctoral Dissertations Graduate School 

5-2018 

Electronic Functionalities in Two-Dimensional Layered Materials Electronic Functionalities in Two-Dimensional Layered Materials 

for Device Applications for Device Applications 

Akinola David Oyedele 
University of Tennessee, aoyedele@vols.utk.edu 

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss 

Recommended Citation Recommended Citation 
Oyedele, Akinola David, "Electronic Functionalities in Two-Dimensional Layered Materials for Device 
Applications. " PhD diss., University of Tennessee, 2018. 
https://trace.tennessee.edu/utk_graddiss/4883 

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee 
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F4883&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a dissertation written by Akinola David Oyedele entitled "Electronic 

Functionalities in Two-Dimensional Layered Materials for Device Applications." I have examined 

the final electronic copy of this dissertation for form and content and recommend that it be 

accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a 

major in Energy Science and Engineering. 

Kai Xiao, Major Professor 

We have read this dissertation and recommend its acceptance: 

Gong Gu, David G. Mandrus, Philip D. Rack, David Geohegan 

Accepted for the Council: 

Dixie L. Thompson 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



Electronic Functionalities in Two-Dimensional 

Layered Materials for Device Applications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Dissertation Presented for the 

Doctor of Philosophy 

Degree 

The University of Tennessee, Knoxville 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Akinola David Oyedele  

 

May 2018 

 



ii 

 

Dedication 
 

This dissertation is dedicated - 

To the glory of God,  

the giver of life and the source of wisdom. 

In loving memory of my father,  

Olufemi Buraimo Oyedele, 

who inspired and supported my interest in science. 

To my beloved mother,  

Olufunmilayo Florence Oyedele, 

for her ceaseless prayers and emotional kindness. 

To my partner,  

Adeola Idowu Adediran, 

for strong support since the beginning of this journey. 

To my son,  

Moyosore Olabomi Oyedele, 

for always being a source of joy. His arrival created an epiphany to embrace life’s 

 journey rather than focusing on the destination. Because, destination is an illusion. 

 The end of one journey is the beginning of another.  

 



iii 

 

Acknowledgments 

This dissertation is a result of the collective effort of many people without which it would not have 

been possible. First, I would like to wholeheartedly appreciate my advisor, Dr. Kai Xiao for his 

constant guidance and mentorship during my Ph.D. Dr. Xiao was particularly patient and displayed 

trust in my ability to hone the requisite skills needed for scientific investigations. He spent a 

significant amount of his time discussing my research results and helped me with feedbacks to 

improve my scientific communication. 

I would like to thank Dr. David Geohegan for supporting my research work at the Center for 

Nanophase Materials Science (CNMS), Oak Ridge National Laboratory and for his insightful 

discussions. Special thanks to my committee members; Prof. David Mandrus, Prof. Philip Rack 

and Prof. Gong Gu for spending their valuable time and giving me important suggestions on my 

dissertation. I would also like to thank - 

- Dr. Pushpa Raj Pudasaini, for his excellent collaboration, important scientific discussions 

and his moral and academic support.  

- Dr. Liangbo Liang, Dr. Shize Yang, Dr. Masoud Mahjouri-Samani, Dr. Alexandra 

Puretzky, and Dr. Kai Wang, for their insightful and rewarding collaborations. Dr. Liang 

performed density functional theory (DFT) calculations to support my experimental work. 

Dr. Yang carried out scanning transmission electron microscopy (STEM) investigation on 

my PdSe2 samples. And Dr. Puretzky, helped with the Raman and absorption spectroscopy 

measurements.  

- Dr. Christopher Rouleau, for always willing to lend a helping hand. Dr. Rouleau designed 

the JACS publication cover and provided technical support for the AFM and probe-station 

instruments I used during my dissertation work.  



iv 

 

- Alex Strasser and Yiyi Gu, who helped with some experiments. 

- Dr. Sanjib Das and Dr. Bin Yang, for their constant encouragement.  

- Ms. Tracy Whitaker and Ms. Kara Clayton, for enhancing my experience at CNMS.  

- Prof. Lee Riedinger, Dr. Mike Simpson, Wanda Davis, and Jessica Garner of the Bredesen 

Center for their moral and financial support. I worked with Prof. Riedinger as a teaching 

assistant for 4 years. The experience was valuable to hone my teaching skills.  

- Prof. Zheng Liu of NTU Singapore and Amanda Haglund for bulk material synthesis. 

- Dr. Xufan Li, Dr. Michael Stanford, and Jingjie Zhang for their nice collaboration.  

- Dr. Ilia Ivanov for Raman characterization.  

- Dr. David Keffer and Dr. Orlando Rios for their mentorship and collaborations on 

developing atomistic models for the determining the structures of complex materials. 

- My siblings, Kemi Idowu, Anu Oyedele, and Demilade Oyedele, for their understanding. 

- My friends, Uche Anozie, Christine Ajinjeru, Eva Mutunga, Michael Henderson, Emily 

Bean, Dr. Janet and Mark Cockrum, who made my stay in Knoxville worthwhile.  

- The Nigerian community in Knoxville for their loving support, – especially Dr. Femi & 

Remi Omitaomu and Mr. Shina Oshifala.  

- Dr. Tunde Alawode and Wole Okusaga for their friendship.  

- Liz Norred for her constructive feedback of the manuscript.  

- The staff of nanofabrication research laboratory, CNMS for the technical support during 

device fabrication. Special thanks to Kevin Lester, Dayrl Briggs, Dale Hensley, Dr. Ivan 

Kravchenko and Dr. Jason Fowlkes and Dr. Ming-Wei Lin for showing me how to fabricate 

devices.  



v 

 

This research was conducted at CNMS which is a DOE Office of Science User facility at 

ORNL. 

 



vi 

 

Abstract 

The rise of two-dimensional (2D) materials has enabled the realization of ultra-thin 

electronic devices with a broad range of applications in transistors, memory devices, 

photodetectors, chemical sensors, and electronic displays. The optoelectronic functionality 

displayed by this unique material class is determined by the underlying phenomena relating to their 

crystal structure, quantum confinement, and heterogeneities such as defects, dopants, and atomic 

interface in their heterostructures.  

The first part of this thesis highlights the effects of heterogeneities in tuning the electronic 

functionalities of 2D materials. For example, the presence of sharp atomic interfaces could 

introduce p-n junction rectifying behavior which is the fundamental unit of electronic devices.  

The second part introduces a novel 2D anisotropic material, palladium diselenide (PdSe2), 

with a unique pentagonal, puckered structure unlike most other 2D materials with hexagonal 

building blocks. PdSe2 displays a strong layer-dependent optical and electronic properties. Density 

Functional Theory (DFT) calculations and absorption spectroscopy reveal that PdSe2 exhibit a 

wide-tunable indirect bandgap from ~0 eV in bulk to 1.3 eV in monolayer. Also, the anomalous 

layer-dependent Raman peak shifts around 5 – 9 cm-1 from bulk to monolayer for PdSe2 confirms 

the strong interlayer coupling in PdSe2.  

The third section discusses the field-effect transistor (FET) device performance of PdSe2, 

which shows a characteristic high carrier mobility as high as 158 cm2V-1s-1 and air stability for 

wide-tunable electronic applications. Also, PdSe2 devices show temperature-dependent 

conductivity with observed metal to insulator (MIT) transition. 
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Finally, through plasma treatment, a new complementing metallic phase can be achieved 

from PdSe2 that forms a sharp atomic interface with negligible Schottky barrier heights. The phase 

transformation process is understood to be induced by the removal of selenium atoms. The entirely 

new material, Pd17Se15, with an electrically-conducting property, is used as a contact for PdSe2 

devices which resulted in the reduction of the Schottky barrier present at the metal-semiconductor 

interface. This realization is an important step in the quest to eliminate contact resistance in 2D 

electronic devices.  

The ease of manipulating the structure of 2D materials, coupled with ample device engineering 

opportunities, makes 2D materials viable candidates for future nano-electronics. 
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Chapter 1: Introduction 

1.1 Motivation 

The growth in the semiconductor industry has revolutionized various aspects of human lives 

through the development of ubiquitous technologies such as personal computers, electronic 

displays, and smartphones. The rapid adoption of these digital innovations is because of their 

efficiency, durability, scalability, and multi-functionality. If we look at the trends of electronic 

devices in the past half-decade, we’ll notice that we have made great progress in increasing their 

capabilities. For example, the smartphones of today are more powerful and faster than the 

computer used by NASA during the Apollo mission. This progress is because of the ability to 

miniaturize transistor circuits into smaller and smaller areas, leading to increased transistor density 

and consequently higher performance. Gordon Moore proposed an axiom, “Moore’s law”, that 

suggests that electronic devices double in speed and capability about every two years due to 

approximately doubling of the number of transistors integrated in a device.1 Indeed, every year, 

the electronics industry has come up with new, faster, smarter and better devices. However, we are 

approaching the limit of miniaturizing current silicon technologies, which raises the question, 

“how do we keep up with Moore’s law?” In addition to keeping with Moore’s law, changes in our 

society necessitates the development of electronic devices that can meet future demands. For 

example, the future of electronic devices is light-weight, transparent, cheaper, faster, smaller, 

scalable, efficient, foldable, tunable and flexible. Moreover, owing to the challenge of recycling 

electronic wastes, self-cleaning and dissolvable electronic materials are desired. Therefore, it is 

important to engineer current systems and explore new materials to develop next-generation 

devices that will meet the requirements for future electronic devices. 
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Two-dimensional (2D) layered materials represent an emerging class of nanomaterials which 

have characteristic mechanical and electronic properties that make them relevant for future 

electronic applications. 2D layered materials like graphene, MoS2 and black phosphorus are 

composed of atomically-thin layers with in-plane strong covalent bonds and separated by weak 

van der Waal forces, which makes it possible to isolate each layer with scotch tape. 2D materials 

have characteristic high crystallinity, lack dangling bonds, high optical transparency, and high 

mechanical flexibility which makes them interesting for electronic applications. Moreover, 2D 

materials can effectively deal with the short-channel effect problems that have limited the 

continuous scale of silicon technologies, while offering a route to expand the number of transistors 

in Integrated Circuits (ICs). Also, the 2D feature is unique in which charge carriers are restricted 

to the 2D space which allows for studying their electronic, physical and chemical properties due 

to quantum confinement. 2D materials can exhibit semiconductor, insulator, conductor, 

superconductor, magnetic, and thermoelectric behaviors, which are suitable not only to the 

semiconductor industry, but also in flexible electronics, superconductors, capacitors, batteries, 

thermoelectrics, piezoelectrics, and memory devices.  

For electronic applications, 2D semiconductors with wide tunability, high on/off ratio, high 

mobility, and air stability are desired for switching and logic applications. In the search for highly 

desirable 2D materials, graphene, MoS2, and black phosphorus have received a lot of attention. 

For example, graphene has gained prominence due to its high carrier mobility resulting from an 

effectively massless state of charge carriers,2 but its inherent lack of a band gap, and the inability 

so far to induce a sizable one, limits its application in electronics. This led to the exploration of 

transition metal dichalcogenides (TMDs) and other 2D materials beyond graphene.3 In this regard, 

MoS2 has attracted the most attention because of its moderate mobility and high current on/off 
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ratio in transistors, however, MoS2 possesses a limited band gap variation between ~1.2 – 1.9 

eV,4,5. Until the recent introduction of black phosphorus (BP), with a band gap variation from 0.3 

– 1.5 eV, materials with such a widely tunable band gap were difficult to find.6 BP has a 

honeycomb network similar to graphene, but is unstable in air. To this end, the aim of this thesis 

is to engineer existing 2D materials and explore new ones to achieve desired functionalities for 

electronic device applications. 

1.2 Objectives 

The main objectives of this thesis are as follows: 

1. To study the effects of heterogeneities on the optoelectronic functionality of 2D materials. 

2. To introduce wide-tunable electronics using novel 2D PdSe2 and examine the origin of its 

strong layer dependence on optical and electronic properties. 

3. To realize PdSe2 FET devices, and study their transport characteristics.  

4. To engineer phase of the PdSe2 to achieve a single-material device architecture.  

1.3 Organization of the thesis 

The thesis is organized in the following manner: 

• Chapter 2 reviews the status of 2D materials and their applications in electronic devices. A 

short review compares the structure-property relationships of hexagonal building blocks, 

such as graphene and pentagonal building blocks, like penta-graphene. In addition, an 

overview of noble transition metal dichalcogenides (TMDs) are presented, while 

highlighting the differences between TMDs with group-6 and -10 transition metals. Lastly, 

the properties of anisotropic 2D materials, such as BP and SnSe2 are summarized.  



4 

 

• Chapter 3 discusses the effect of sharp atomic interfaces on the electronic properties of 2D 

materials 

• Chapter 4 discusses the structure of novel pentagonal PdSe2 and the consequence of its 

strong layer interaction on optical and electronic properties from both experimental and 

theoretical perspectives. 

• Chapter 5 presents PdSe2 FET with ambipolar conduction, high carrier mobility, and air-

stability. In addition, the temperature dependent transport properties of PdSe2 are 

demonstrated with characteristic metal-insulator transition in few-layer systems.  

• Chapter 6 introduces the construction of single-material device to eliminate Schottky 

barriers present at the metal-active channel interface in transistors. Phase transformation of 

PdSe2 through Se- atoms removal achieved a metallic-PdSe2 phase that provide perfect 

ohmic contact with PdSe2 active-channel.  

• Chapter 7 highlights original contributions and gives recommendations for future work. 
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Chapter 2: Literature Review 

2.1 Introduction to 2D materials and their applications 

Two-dimensional (2D) materials7 have been identified as one of the top emerging 

technologies that will drive the fourth industrial revolution due to their remarkable physics and 

potential applications in flexible, ultra-thin and wearable electronics.8 Research on ultrathin two-

dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter 

physics, material science, chemistry, and nanotechnology since the discovery of mechanically 

exfoliated graphene in 2004, which displayed different properties from its 3D graphite 

counterpart9. The 2D materials platform offers unique access to novel physical, electronic, and 

chemical properties due to electron confinement in two dimensions. The large portfolio of 2D 

materials with attractive vibrational, electronic, magnetic, and topological properties makes them 

interesting for applications in electronics/optoelectronics, spintronics, piezoelectrics, 

thermoelectrics, electrocatalysis, photocatalysis, photovoltaics, batteries, supercapacitors, sensing 

platforms and emerging quantum devices as illustrated in Fig. 2.1.10 In particular, atomically-thin 

2D materials have become the focus of nanoelectronics research because of their intriguing 

mechanical and electronic properties. Their ultrathin nature makes them resilient to short channel 

effects while having high mechanical flexibility with the absence of dangling bonds.  

2.2 Graphene 

Graphene is the most studied 2D layered material partially because it is the first material 

to be realized in 2D and most importantly due to its remarkable properties, including ultrahigh 

room-temperature carrier mobility, quantum Hall effect, ultrahigh specific surface area, high 

Young’s modulus, excellent optical transparency, and excellent electrical and thermal 

conductivities.11 Graphene, shown in Fig. 2.2, is a one-atom thick, 2-D sheets of sp2-hybridized  
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Figure 2.1. Schematic diagram highlighting some applications of 2D materials. 
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Figure 2.2. Schematic diagram illustrating the crystal structure of graphene with a C-C interatomic 

distance of 1.42 Å. 
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carbon atoms arranged on a honeycomb structure made of hexagons with a C-C distance of ~ 1.42 

Å. Structurally, graphene can be stacked to form 3-D graphite with each layer separated by van 

der Waals forces, rolled to form 1-D-nanotubes having only hexagons, and wrapped to form 0-D-

fullerenes with the introduction of pentagons that create curvature defects.  Charge transport in 

graphene is characterized as ballistic, with nearly massless Dirac fermions traveling at ~ 1/300 of 

the speed of light 11, leading to electron mobility in excess of 105 cm2 V-1s-1 at room temperature 

12,13. The Dirac fermions behave in unusual ways when compared to ordinary electrons when 

subjected to magnetic fields, which results in new physical phenomena such as the anomalous 

integer quantum Hall effect (IQHE) that can be observed at room temperature. Besides the unusual 

properties, graphene can be chemically and/or structurally modified to change its functionality. 

Although the properties of graphene can be tuned via chemical and structural functionalization, 

the lack of sizeable bandgap limits its application logic devices. The new physics and phenomena 

discovered in graphene serves, however, as a foundation in the exploration of other ultrathin 2D 

nanomaterials for new physics and complementary functionalities.  

2.3 Transition Metal Dichalcogenides (TMDs) 

Beyond graphene, there is a wide spectrum of 2D electronic materials that range from 

insulators to semiconductors to metals and even to superconductors. Fig. 2.3 shows the selection 

of possible 2D layered materials from the periodic table. Prominent in the emerging class of 

atomically-thin 2D materials are the transition metal dichalcogenides (TMDs), with chemical 

formulas of MX2, where M represents the transition metal (e.g., Mo, W, Pd, Pt) and X represents 

the chalcogenide (e.g., S, Se, Te). TMDs exhibit a unique combination of atomic-scale thickness, 

direct bandgap, strong spin–orbit coupling and favorable electronic and mechanical properties, 

which make them interesting for fundamental studies and for applications in high-end electronics, 
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spintronics, optoelectronics, energy harvesting, and flexible electronics. TMD semiconductors, 

such as MoS2, WSe2, exhibit unique electrical and optical properties that evolve from the quantum 

confinement and surface effects that arise during the transition of an indirect bandgap to a direct 

bandgap.5 This tunable bandgap in TMDs is accompanied by a strong photoluminescence (PL) 

and large exciton binding energy, making them promising candidates for a variety of 

optoelectronic devices, including photovoltaics, photodetectors, light-emitting diodes, and photo-

transistors.14  

Apart from tuning the bandgap, the functionality of TMDs can be expanded by stacking 

together sheets of dissimilar 2D materials to achieve vertical heterostructures which allows for the 

realization of unique properties that cannot be obtained otherwise.15 For example, several new 

electronic/optoelectronic devices such as tunneling transistors, barristers, photodetectors, LEDs 

and flexible electronics can be created by exploiting novel properties such as band alignment, 

tunneling transports, and strong interlayer coupling in these vdW heterostructures.16-19 In addition, 

polymorphic phase transitions in van der Waals layered materials have received recent widespread 

interest due to their ability for tuning their structural and quantum states, which allows for 

investigating their novel topological and Weyl states, and applications in fields ranging from 

electronic and optical/quantum devices to electrochemical catalysis.20 For example, structural 

transformation of semiconducting 2H-MoS2 can achieve a metallic 1T phase, which can be used 

as the contact in homojunction devices to reduce Schottky barriers in metal-semiconductor 

interface.21 22The sheer number of the available 2D materials offers a diversified portfolio of new 

science and discovery at the fundamental atomic limit. 

MoS2 has been one of the most studied layered TMDs due to the wide-spread availability 
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Figure 2.3. Periodic table highlighting possible layered 2D materials. 
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of molybdenite and its tunable band gap of ~1.2 – 1.9 eV. It tackles the gapless problems of 

graphene, thus making it possible for MoS2 to be used in the next generation switching and 

optoelectronic devices. In contrast to graphene, each MoS2 layer consists of three atomic layers, 

in which Mo atoms are sandwiched between two S- layers, which are separated by van der Waals 

forces. One of MoS2 unique features is their capability to form different crystal polytypes. MoS2 

crystallizes with four different crystal structures, that is, 2H, 1T, 1T′, and 3R, depending on the 

different coordination models between Mo and S atoms and/or stacking orders between layers 

(Fig. 2.4). The 2H structure has an atomic stacking sequence (S−Mo−S′) ABA in a hexagonal 

closed packing symmetry and trigonal prismatic coordination. The 1T structure has an octahedral 

coordination with tetragonal symmetry in which each layer has an atomic stacking sequence of 

(S−Mo−S′) ABC. The distorted 1T (denoted as 1T′) structure also has an octahedral coordination, 

similar to that of the 1T structure, but it contains a superstructure in each layer. The 3R structure 

has an ABC-ABC stacking order where A, B, and C layers are in the same direction. It maintains 

broken inversion symmetry from monolayer to bulk, revealing strong valley and spin polarizations 

that are not achieved in natural 2H MoS2. The 2H-type MoS2 is dominant because it is 

thermodynamically stable in nature. In the manner of the 3R-structure, the 2H-MoS2 is found to 

be semiconducting. The T-phases are metallic, with the 1T’-MoS2 reported to be a Weyl semimetal, 

a quantum spin Hall insulator, and a superconductor. So far, MoS2 has achieved progress in 

nanodevices, stretchable electronics, energy conversion and storage and hydrogen evolution 

reaction (HER).23  

2.4 Noble Transition Metal Dichalcogenides (NTMDs) 

In exploring the layered 2D material landscape beyond graphene, extensive attention has 

been drawn to group-6 TMDs - MoS2, MoSe2, WS2, WSe2 - while TMDs with group-10 transition 
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Figure 2.4. Side and top view of the crystal structure of monolayer MoS2. 
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metals of Pd, Ni and Pt, have been under- or unexplored4,14,24-32. Only few reported experimental 

works are available on PtS2 and PtSe2 with no experimental evidence on the exfoliation of 

palladium dichalcogenides (PdX2)
33-36. Group-10 TMDs, such as PtS2 and PtSe2, have 

demonstrated high carrier mobility, widely tunable bandgap, and air-stability for electronic and 

optoelectronic applications. 33,37 They have shown strong interlayer coupling, with each layer 

exhibiting distinct layer-dependent electronic, optical, thermal, mechanical and vibrational 

properties. The strong interlayer interaction is due to the strong hybridization between the d-orbital 

of the transition metals and the p-orbital of the chalcogen atoms. This is in contrast with group-6 

TMDs (MoS2, WS2), which have weak interlayer interaction, thus, moderately layer-dependent 

bandgap.5,38 Group-7 TMDs such as ReS2, whose monolayer band gap is similar to its bulk 

counterpart due to the very weak interlayer interactions.39 The influence of the transition metal 

group on layer interactions has been established to be due to the strong dependence of the 

coordination structure of TMDs on the d-electron number of the transition metal.40,41  

Layered PtS2 and PtSe2 have a wide-tunable indirect bandgap of 0.25 eV – 1.6 eV, and ~0 

eV – 1.2 eV, respectively, from bulk down to monolayer, which covers a wide part of the 

electromagnetic spectrum from visible to mid-infrared.33,35 In addition, field-effect transistors 

based on PtS2 have shown high phonon-limited mobility ~1107 cm2/Vs at room temperature and 

high air-stability, which makes them interesting for electronic applications.33,42  Furthermore, few-

layer PtS2 has been used to fabricate phototransistors that show high photoresponsivity and 

photoconductive gain.37 Another case is few-layer PtSe2 infrared photodetectors with high 

photoresponsivity and fast response.35 Moreover, heterostructures of PtS2/PtSe2 built by the 

sequential sulfurization and selenization of Pt thin-films can be used to assemble photodiodes with 

high photoresponsivity, external quantum efficiency, and fast respond speed.43 Besides electronics 
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and optoelectronics, the existence of symmetry-protected type-II Dirac fermions have been 

predicted in bulk PtSe2.
44 This discovery leads to the realization of exotic physical properties, such 

as chiral anomaly.45 The origin of the fermions is understood to be related to the structural 

symmetry of PtSe2 (P3̅m1). Similarly, group-10 TMDs such as PtTe2 and PdTe2 have been 

proposed to be a type-II Dirac fermions.46   

2.5 Pentagonal building blocks of 2D materials 

The most dominant motif found as the basic building block in 2D materials is the 

hexagonal/honeycomb structure, which includes graphene, MoS2, and black phosphorus. These 

hexagonal lattices form a hexagonal tiling when projected to a plane, similar to honeycomb 

structures. Pure pentagonal tilings in 2D materials are rare and have only been recently predicted 

theoretically, but have remained unexplored experimentally.47-49 The pentagons are usually 

considered as topological defects or geometrical frustrations, as stated in the well-known “isolated 

pentagon rule” (IPR).50 Mathematically, pentagon tessellation has been a century-old problem 

because the internal angle of a regular pentagon, 108°, is not a divisor of 360°.  Triangles, squares 

and hexagons are the only regular shapes which tessellate by themselves. By relaxing some of the 

constraints on regular tilings, it has been found that there are in fact no more than 15 possible 

monohedral convex pentagonal tilings made of distorted pentagons.51 Out of these, only the Cairo 

pentagonal tiling has been found to exist in 2D materials. Unlike the hexagonal structure, most of 

the predicted pentagonal 2D materials, including penta-graphene and penta-SnS2, are buckled or 

puckered in a regular corrugated manner to maintain symmetry.  

2.5.1 Penta-graphene 

Penta-graphene, a 2D carbon allotrope, was recently proposed from first-principle 

calculations and confirmed to be thermodynamically and mechanically stable.47 Penta-graphene is 



15 

 

composed entirely of carbon pentagons which resembles the Cairo pentagonal tiling different from 

graphene which forms a honeycomb structure (Fig. 2.5). Penta-graphene consists of both sp3 and 

sp2 carbons which can withstand temperatures as high as 1000 K.47 Structurally, penta-graphene 

can be rolled to form pentagon-based nanotubes which are semiconducting, and can be stacked to 

achieve stable 3D twin structures. The unique atomic configuration coupled with the buckled 

structure results in a large band gap of ~3.25 eV, an unusual negative Poisson’s ratio and ultrahigh 

mechanical strength, which are interesting for flexible device applications. In addition, penta-

graphene demonstrates remarkably lower thermal conductivity (κ) compared to graphene due to 

the lower phonon group velocities and fewer collective phonon excitations.52 The extremely low 

κ makes penta-graphene a potential candidate for 2D thermoelectrics.  

2.5.2 Penta-SnX2 and others penta-2D materials 

The realization of unusual properties in penta-graphene inspired researchers to discover 

other new 2D pentagonal materials such as penta-SnX2, penta-CN2, penta-CB2, and penta-

BxNy.49,53 For example, penta-SnS2 is composed of pentagonal rings and has been theoretically 

predicted to be a room-temperature 2D quantum spin Hall (QSH) insulator with sizable and 

nontrivial band gaps (0.12 – 0.22 eV). Unlike the penta-SnX2 which display a square lattice, hexa- 

SnX2 2D crystals follow a symmetry group - P3̅m1 (point group D3D) and display the CdI2-type 

structure with a hexagonal lattice. Another example is the Si-based pentagonal monolayers p-SiX 

(X = C, and N) which are indirect semiconductors with band gaps of 2.35 and 4.98 eV, 

respectively.54 They have been reported to have high carrier mobilities (~ 2500 cm2V−1s−1) and 

mechanical flexibility which indicate that p-SiX can be used as flexible electronic devices.  
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Figure 2.5. (a) Crystal structure of penta-graphene which matches the Cairo pentagonal tiling 

illustrated in (b). 
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2.5.3 Pentagonal group-10 TMDs 

The first report on pentagonal structures in TMDs shows that unlike other 2D TMDs which 

adopt the ordinary 2H or 1T configuration, in PdS2 each Pd atom can only bind to four rather than six 

S atoms, leading to the formation of a novel pentagonal structure.36 This new PdS2-type structure is  

the most thermodynamically favorable with planar tetra-coordinate Pd atoms and covalent S−S bonds. 

Interestingly, PdS2 exhibits a wide-tunable bandgap from ~0 eV to 1.6 eV (bulk to monolayer) with 

large carrier mobilities. Similarly, PdSe2 has been predicted to have a pentagonal crystal structure of 

the PdS2-type with strong interlayer coupling and an extraordinarily high carrier mobility.55 As 

shown by the side view and projected top view of a 2D PdSe2 monolayer in Fig. 2.6a, it consists 

entirely of pentagonal rings with the vertices in a slightly asymmetrical boat conformation, which 

is similar to the puckered structure of BP (Fig. 2.6b) that has hexagonal rings.   Each Pd atom binds 

to four Se atoms in the same layer, and two neighboring Se atoms can form a covalent Se–Se 

bond. To the best of our knowledge, this pentagonal conformation has not yet been experimentally 

reported for any 2D materials structure, including graphene, other elemental 2D materials (also 

called Xenes), and TMDs. In general, the realization of these 2D buckled pentagonal materials 

with low symmetry could open the possibility for future optoelectronic, piezoelectric, spintronic, 

and valleytronic applications. 

2.6 Anisotropy in buckled and puckered 2D materials  

Owing to its high charge-carrier mobility at room-temperature, tunable direct-bandgap and 

unique in-plane anisotropic structure, black phosphorus (BP) has been received a lot of attention 

since its rediscovery early 2014.56 Like graphene and MoS2, black phosphorus has a hexagonal 
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Figure 2.6. (a) Side and top view of the crystal structure of PdSe2. (b) Puckered structure of black 

phosphorus.  
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crystal structure, however, it is buckled and corrugated differently along the x-y directions (Fig 

2.6b). Puckering in BP renders exotic properties of the in-plane anisotropic response to external 

stimulations which provides a new degree of freedom to explore in 2D materials. Bulk BP is a 

layered orthorhombic crystal structure with the space group Cmca (64) with individual layers stack 

together through vdW forces at a separation distance of 5.4 Å. Each BP monolayer is composed 

of parallel puckered double layers in which each phosphorus atom is covalently bonded to three 

other phosphorus atoms. Apart from its application in electronic and optoelectronic devices owing 

to its widely tunable band gap variation from 0.3 to 1.5 eV, BP has the lowest thermal conductance 

of layered materials (graphene, TMDs, h-BN) which makes it a promising thermoelectric 

nanomaterial.57 Also, BP belongs to a group of materials known as topological insulators with 

highly anisotropic magnetic properties, as both diamagnetic and paramagnetic behavior can be 

observed depending on the orientation in the magnetic field.58 In addition, theoretical studies 

predict that in-plane strains in monolayer BP could substantially modify its electronic band 

structure, thereby resulting in a dramatic and anisotropic change in the carrier mobility along the 

zigzag and armchair directions.59  

Recently, other buckled or puckered 2D materials with hexagonal structure have been 

theoretically and experimentally reported in elemental 2D materials (also called Xenes) such as 

silicene, germanene, and stanene.60,61 In contrast with an isotropic planar hexagonal structure, the 

buckling breaks the sublattice symmetry, enhances spin-orbit coupling, and allows tuning of a 

topological quantum phase transition.62 However, despite their potential importance for device 

applications, the realization of stable 2D buckled or puckered hexagonal structures of 2D elemental 

materials including BP, silicene, germanene, and stanene is still a great challenge for practical 

electronics. Other 2D materials with low-symmetry structures such as group-4 monochalcogenides 
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(SnS, SnSe), group-6 TMDs (MoTe2, WTe2) and group-7 TMDs (ReS2, ReSe2) have known 

anisotropy due to their asymmetrical, distorted octahedral phase, unlike counterpart hexagonal flat 

phase structures.63 The anisotropy introduces in-plane orientation-dependent electron and phonon 

properties, an additional degree of freedom which can be used to control device performance with 

crystal orientation for field‐effect transistors (FETs), photodetectors, thermoelectric and 

piezoelectric applications. 
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Chapter 3: Atomically-thin van der Waals Heterostructure Built via 

Dry-Transfer 

3.1 Introduction 

Most 2D materials display a layer-dependent electronic band structure, which allows for 

the tuning of their electronic properties by changing the number of layers. They are also known 

for their strong light-matter interactions, which are important for photonic and electronic 

applications64-66. The unique characteristics of these individual 2D materials can be further 

functionalized by stacking different crystals to form vertical heterostructures. These 

heterostructures, held together by van der Waals (vdW) forces, allow for the study of exciting 

interfacial phenomena between the constituents hetero-layers. For example, the interface of vdW 

heterostructures have exhibited interlayer exciton coupling due to their electron-hole correlation.67 

These interfaces are also great for charge carrier separation, which are the basis of photovoltaics, 

and phototransistors.68,69 Unlike traditional 3D systems, vdW heterostructures do not require that 

the lattice constants match due to the presence of atomically sharp interfaces15. As such, they allow 

for the matching of different 2D crystals to form atomically-thin heterostructures, which have 

found applications in 2D field effect transistors (FET), memory devices and light-emitting diodes 

(LED) applications17,19,67,70.  

In this work, we explore two vdW heterostructures based on exfoliated and CVD-grown 

few-layers InSe/WSe2 and MoSe2/black phosphorus, built via deterministic dry-transfer process. 

The heterostructures result in a type-II junction, which displayed a pronounced rectification 

behavior like that of conventional p-n junction diodes. The current rectification factor obtained is 

as high as ~102 in the InSe-WSe2 device. The electrical characteristics exhibited by the 

heterostructures can be further tuned via electrostatic gate-control. Our results demonstrate that 
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atomically-thin devices can form an important component of modern semiconductor devices, 

including diodes, bipolar transistors, photodiodes, light-emitting diodes, and solar cells.  

3.2 Deterministic dry-transfer method 

Various approaches have been utilized to make vdW heterostructures, which include ones 

built by sequential epitaxial chemical vapor deposition (CVD) or physical epitaxy71,72, and those 

mechanically-assembled via wet-transfer73 or dry-transfer methods74,75. The deterministic dry-

transfer method developed by Castellanos-Gomez et al74, is a flexible technique for heterostructure 

assembly, allowing for the control of stacking orientation with clean interfaces free from chemical 

contaminants. This technique is amenable to build heterostructures on both exfoliated and vapor 

deposited samples to form exfoliated-exfoliated and CVD-exfoliated heterojunctions. The transfer 

setup was replicated at CNMS for this dissertation work. Fig. 3.1 shows an optical image of the 

setup. The setup includes a Canon DSLR 500D camera with additional lenses to increase the power 

of the objectives. The camera is connected to a monitor for live viewing and it is equipped with a 

memory device for recording videos and photos. The stage is lit with a lamp for illumination. To 

ensure that 2D flakes can be transfer deterministically, with minimal wobbling, the setup has 

micromanipulators with magnetic base to control the stacking process. This all dry-transfer 

deterministic process was used to build InSe-WSe2 and MoSe2-BPh heterostructures, illustrated in 

the schematic shown in Fig. 3.2. The first step in the process is to exfoliate or deposit the bottom 

material on a desired substrate. Then, using a piece of Scotch tape, the top material is exfoliated 

on a transfer agent polydimethylsiloxane (PDMS) polymer. A glass slide is used as a mechanical 

support for the PDMS polymer, and to provide transparency that allows the transfer process to be 

seen through the aid of an optical microscope. Using the optical microscope, the alignment of the  
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Figure 3.1. Optical image of the deterministic dry-transfer setup. 
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Figure 3.2. Schematic illustration of the steps involved in the deterministic transfer of few-layers 

InSe onto a WSe2 flake. 
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top and bottom layer material can be precisely controlled to ensure that there is an overlapping 

region – vertical heterojunction - between the two materials. This allows for the characterization 

of the individual materials constituting the heterostructures as well as the junctions. The formation 

of a contamination-free heterostructure are very useful for making different high-performance 

electronic devices. 

3.3 Results 

The formation of heterojunctions requires understanding of the individual 2D material to 

create heterostructures with predefined qualities. This includes engineering their band alignment 

and interfacial properties. Here, we demonstrate atomically-thin p-n junctions built via 

deterministic dry-transfer method. Few-layer tungsten diselenide (WSe2) and black phosphorus 

(BPh) were selected as p-type materials due to their preferential hole conduction6,76, while few-

layer indium selenide (InSe) and monolayer molybdenum diselenide (MoSe2) were selected as n-

type materials due to their preferential electron conduction 4,77,78 to form InSe-WSe2 and MoSe2-

BPh heterostructures.  The heterojunctions formed at the interfaces are of type-II junction, with 

different band alignments. We observed a strong current-rectifying junction behavior in the 

heterostructures, with gate tunable electrical properties. Thus, providing a solid foundation for 

their incorporation of such heterojunctions in complex electronic circuitry, including logic gates, 

solar cells and amplifiers.  

 

3.3.1 InSe-WSe2 Heterostructure  

An InSe-WSe2 heterostructure was built using the dry-transfer method illustrated in Fig. 

3.2. As shown in Fig. 3.3a, few-layer WSe2 flake with ~7 nm thick was first exfoliated on to a  
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Figure 3.3. (a) Optical image of the first flake (few-layer WSe2) mechanically exfoliated on the 

Si/SiO2 substrate. (inset): The thickness profile of few-layer WSe2 corresponding to the white line 

in (2d). (b) Optical image after the transfer of the second flake (few-layer InSe) on the WSe2 flake 

to form a heterojunction. (b) Inset: The thickness profile of few-layer InSe corresponding to the 

red line in (2c). (c) The atomic force microscopy (AFM) image of the FET device. (d) Raman 

spectra for WSe2, the heterostructure, and InSe arranged in a stacking manner. 
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SiO2 substrate. Fig. 3.3b shows the optical image of the heterostructure after few-layers of InSe 

had been transferred on the WSe2 flakes. The WSe2 flake is indicated by the black dotted lines and 

the InSe flake is indicated by the red dotted lines. The inset image is the profile of the thickness of 

the InSe flake (~15 nm) was taken from atomic force microscopy (AFM) measurements shown in 

Fig. 3.3c. The Raman spectra of the few-layers WSe2, InSe, and the heterojunction are shown in 

Fig. 3.3d.  The Raman spectra of the heterojunction is a composite of the individual Raman spectra 

of InSe and WSe2. There is no visible new peak, which implies the formation of a contaminant-

free heterojunction device. The spectra obtained for the individual materials, InSe and WSe2, are 

similar to those reported in literature79,80. 

To characterize the electrical properties of the InSe-WSe2 heterostructure, a two-terminal 

field-effect transistor (FET) configuration was used as shown in Fig. 3.4a, with Ti/Au (5nm/30nm) 

metal contacts. Two parallel contacts were made on each of InSe and WSe2 to characterize their 

individual properties, while the nearest two contacts to the junction were used to characterize the 

performance of the heterojunction. The schematic of the suggested band alignment formed at the 

junction of this heterostructure is shown in Fig. 3.4b, illustrating the formation of a type-II 

heterojunction. The type of heterojunction formed is dependent on the electronic characteristics of 

the adjacent materials. A typical example is the p-n junction formed by stacking a p- and n-type 

semiconductors, which is the fundamental building block for most modern electronic devices. In 

conventional 3D semiconductor systems, the p-n junction is achieved by doping silicon to achieve 

either excess electrons or holes, thus constituting an homojunction (n-Si/p-Si). In 2D systems, 

however, doping is not required, as the crystals can be inherently p-, n-type or ambipolar. Thus, 

eliminating an additional processing step required for traditional 3D heterojunctions.  
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Figure 3.4. (a) Schematic of the WSe2-InSe heterojunction field effect transistor (FET) device. (b) 

The suggested band alignment for few-layer WSe2 and InSe flakes showing type-II heterojunction. 

(c) The transfer characteristics of the WSe2, InSe and WSe2-InSe FET device with 2 V source-

drain bias (in logarithmic scale). Inset: Schematic of the WSe2-InSe field effect transistor device. 

The left y-axis corresponds to the red (InSe- WSe2) curve, while the right y-axis corresponds to 

the blue (InSe) and black (WSe2) curves. (d) Output characteristics of the FET based on WSe2–

InSe heterostructures at different gate bias. (e-f) Output characteristics of InSe and WSe2, at 

various gate bias, showing symmetric behaviors. 
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The transfer characteristics of the InSe, WSe2 and the heterojunction device at a source-

drain bias of 2V are shown in Fig. 3.4c. The transfer curve of the InSe device, shown in the blue 

curve of Fig. 3.4c. highlights a predominant n-type behavior as expected, with current on/off ratio 

of 104 and mobility of 0.03 cm2V-1s-1. WSe2, on the other hand, shows an ambipolar behavior, with 

current on/off ratio of 104 and electron mobility of 0.09 cm2V-1s-1. The transfer characteristics of 

the heterojunction device displays an ambipolar transport with preferential electron conduction. 

As suggested by the band-alignment diagram in Fig. 3.4b, the offset at the conduction band in Fig. 

3.4b is much more than that at the valence band, suggesting that the junction will favor more 

electron transport than hole transport. This is because few-layer WSe2 exhibits an ambipolar 

characteristics.  Similar observations were made in other devices that were fabricated. The use of 

p-type WSe2, will reduce the electron transport in this heterostructure in favor of more hole 

transport. 

The output characteristics of InSe and WSe2 are shown in Fig. 3.4(e-f) in the supplementary 

information. The Ids-Vds curves at various gate bias show a symmetric characteristic behavior about 

the drain voltage. However, as shown in Fig. 3.4d, the atomically thin WSe2-InSe heterojunction 

displays a highly asymmetric current-voltage characteristic, typical of type II junctions with a 

rectification factor of about ~65. This value could be improved by using a preferentially p-type 

WSe2. The origin of this electrical rectification is the quantum tunneling charge transport across 

the atomically thin junction, rather than the semi-classical drift and diffusion of charge carriers 

through the depletion regions at junctions. This rectifying behavior, which allows for the selective 

flow of charge carriers in only one direction, is the basis of electronic devices. More so, owing to 

the atomically thin nature of 2D heterostructures, their electronic properties can be modified using 
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external field effect.  As shown in Fig. 3.4d, the rectifying behavior can be tuned with different 

gate bias.  

3.3.2 Black Phosphorus-MoSe2 Heterostructure 

Similar to WSe2, black phosphorus exhibits stronger hole conduction, which can be 

coupled with n-type MoSe2 to form a p-n junction. Fig. 3.5a shows the optical image of a few-

layer black phosphorus and monolayer molybdenum diselenide (MoSe2) heterostructure device 

formed using the dry-transfer technique. Monolayer MoSe2 was grown via chemical vapor 

deposition, while black phosphorus was mechanically exfoliated using a piece of Scotch tape. The 

black and red dotted lines in Fig. 3.5a are for the height profiles of black phosphorus (black) and 

MoSe2 (red) shown in Fig. 3.5b determined using AFM. The thickness of monolayer MoSe2 is 

~0.9 nm, while that of black phosphorus is ~37 nm. The strong photoluminescence peak at 1.53 

eV shown in Fig 3.5c. confirms the thickness of the MoSe2 flakes to be that of a single layer. 

Monolayer MoSe2 exhibits a direct band gap, with multilayers exhibiting an indirect band gap80. 

The Raman spectra of monolayer MoSe2, black phosphorus and the heterojunction are shown in 

Fig. 3.5d. A strong Raman peak at ~238 cm-1 can be observed for monolayer MoSe2, representing 

the A1g peak81. The peaks at ~360 cm-1, 437 cm-1 and 464 cm-1 for the few-layer black phosphorus 

represents the A1g, B2g and A2g peak vibrational mode, respectively82. The Raman spectra at the 

heterojunction is a result of the juxtaposition of the spectra from the individual material, as 

observed in the InSe-WSe2 heterostructure. The absence of other peaks in the heterostructure 

Raman spectra suggests that the junction formed is contaminant-free.  

The electrical characteristics was measured via a field-effect transistor (FET) architecture. 

Fig. 3.6a shows the optical image of the MoSe2-black phosphorus heterostructure. The transfer 

characteristics for the individual materials forming the heterostructure are shown in Fig. 3.6b, with 



31 

 

  

Figure 3.5. (a) Optical image of MoSe2-black phosphorus heterostructure. The inserted lines are 

where AFM heights profile in (b) were taken. The red and black profiles are for monolayer MoSe2 

and black phosphorus, respectively. (c) Photoluminescence spectra of monolayer MoSe2, with 

signature emission at ~1.53 eV. (d) Raman spectra of MoSe2 and black phosphorus and the 

heterostructure, showing the presence of individual peaks in the heterostructure formed. 
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Figure 3.6. (a) Optical image of MoSe2-black phosphorus heterostructure, with electrical contact 

of Ti/Au. (b) Transfer characteristics of monolayer MoSe2 and black phosphorus, showing 

predominant n-type and p-type behaviors, respectively. The left y-axis corresponds to the red 

(MoSe2) curve, while the right y-axis corresponds to the black (black phosphorus) curve. (c) 

Transfer curve of the heterostructure, displaying both n-type and p-type conduction typical of a p-

n junction. The left y-axis corresponds to the black (logarithmic scale) curve, while the right y-

axis corresponds to the red (linear scale) curve. (d) Output characteristics of the heterojunction 

with a rectifying behavior at different gate bias. Inset shows the output curve at zero gate bias. (e) 

Output characteristics of monolayer MoSe2 and (f) black phosphorus, at various gate bias, showing 

linear-symmetric behaviors.  
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black-phosphorus having an extraordinary hole mobility of around 336 cm2V-1s-1, and monolayer 

MoSe2 showing preferential electron conduction. The combination of this n-type MoSe2 and p-

type black phosphorus forms a p-n junction evident by the transfer characteristics of the 

heterojunction shown in Fig. 3.6c. The ambipolar characteristics of this heterojunction allows for 

both electron and hole conduction. The output curve at different gate bias for MoSe2 and black 

phosphorus are shown in Fig. 3.6(e-f) respectively. Both display a characteristic linear-symmetric 

behavior about positive and negative drain voltages. The output current-voltage characteristics of 

the heterojunction, shown in Fig. 3.6d, confirms the presence of the rectifying behavior at the 

junction, with carrier conduction preferential in one direction. The output curve at zero gate bias 

is shown as inset in Fig. 3.6d. The current rectification factor is ~4.5. Compared to the InSe-WSe2 

heretojunction, the rectification factor is smaller, which is thought to be due to the huge difference 

in the relative thickness of the black phosphorus (39 nm) in contrast of the monolayer MoSe2 (0.9 

nm). As a juxtaposition, InSe and WSe2 has comparative thickness of 15.7 nm and 7.0 nm, 

respectively.  

3.4 Conclusion 

We have demonstrated the rectifying behavior at the p-n junction formed by different 

heterostructures, namely WSe2-InSe and BPh-MoSe2 heterojunctions. The heterojunctions were 

formed by the stacking of two dissimilar materials by an all dry-transfer process, with the aid of a 

micromanipulator to ensure that the top layer material forms an overlap (a junction) with the 

bottom material. This method is amenable to both exfoliated and CVD-grown samples. The band 

alignment of the p-n junction formed is of the type II heterojunction. The transfer characteristics 

show InSe and MoSe2 with a predominantly n-type behavior, while WSe2 shows ambipolar 

behavior, and BPh displayed n-type behavior. The I-V curve at the atomically thin WSe2-InSe and 
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BPh-MoSe2 heterojunctions show gate-tunable rectifying behavior indicating the formation of p-

n junction. The rectification factor obtained for these heterojunctions is as high as 20. The formed 

atomically p-n heterojunctions could have potential applications in modern electronics and 

optoelectronics, ranging from rectifying diodes, to light-emitting diodes, solar cells, and 

photodetectors.  
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Chapter 4: Structural, optical, and electronic properties of layered 

2D PdSe2 

4.1 Introduction 

The emergence of 2D materials with unique structure and extraordinary electronic 

properties provides exciting opportunities for applications in nanoscale electronics.16 For example, 

graphene (whose crystal structure is shown in Fig. 4.1a) has gained attention due to its high carrier 

mobility resulting from an effectively massless state of charge carriers,2 but its inherent lack of a 

band gap, and the inability so far to induce a sizable one, limits its application in electronics. It 

would thus be desirable to realize a 2D system with a widely tunable band gap when targeting 

applications in nanoscale devices. This has led to the exploration of TMDs and other 2D materials 

beyond graphene.3 In this regard, MoS2 has attracted the most attention because of its moderate 

mobility and high current on/off ratio in transistors, however, MoS2 possesses a limited band gap 

variation between ~1.2 – 1.9 eV4,5.  

Until the recent introduction of black phosphorus (BP), with a band gap variation from 0.3 

– 1.5 eV, materials with such a widely tunable band gap were difficult to find.6 As shown in Fig. 

4.1b, BP has a honeycomb network similar to graphene, but is strongly puckered (that is, not 

ideally planar, but oscillating out-of-plane in a regular corrugated manner), rendering exotic 

properties of the in-plane anisotropic response to external stimulations, such as polarized light, 

electric field, applied strain.56,83,84 These anisotropies have their origins rooted in the puckering of 

the lattice structure, which provides a new degree of freedom to explore in 2D materials. Recently, 

other buckled or puckered 2D materials with hexagonal structure have been theoretically and 

experimentally reported in elemental 2D materials (also called Xenes) such as silicene, germanene, 

and stanene.60,61 In contrast with an isotropic hexagonal structure, the buckling breaks the  
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Figure 4.1. Polymorphism in 2D materials displayed across hexagonal flat graphene (a), 

hexagonal puckered black phosphorus (b), and pentagonal puckered PdSe2 (c). (d) Top and side 

view of the crystal structure of monolayer PdSe2 showing a puckered pentagonal configuration. 

The gray spheres represent the Pd atoms, while the yellow spheres represent the Se atoms. Dashed 

line indicates the unit cell. The vertical puckering distance, , is around ~1.6 Å. (e) Crystal 

structure of tri-layer PdSe2 with dashed line indicating the unit cell. 
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sublattice symmetry, enhances spin-orbit coupling, and allows tuning of a topological quantum 

phase transition.62 However, despite their potential importance for device applications, the 

realization of stable 2D buckled or puckered hexagonal structures of 2D elemental materials 

including BP, silicene, germanene, and stanene is still a great challenge for practical electronics.  

Furthermore, 2D materials with buckled or puckered pentagonal structure are another class of 

highly desirable 2D materials due to the low symmetry lattice structure. They have recently been 

theoretically predicted but have remained unexplored experimentally.47-49 The pentagons are 

usually considered as topological defects or geometrical frustrations as stated in the well-known 

“isolated pentagon rule” (IPR),50 but rarely found as basic building blocks in 2D materials.  

In this chapter, a new 2D material, atomically thin PdSe2 crystals (shown in Fig. 4.1c) with 

a novel puckered pentagonal structure is revealed. The puckered 2D PdSe2 flakes exhibit a widely 

tunable band gap that varies from metallic (bulk) to ~1.3 eV (monolayer). The top and side view 

of the crystal structure of monolayer and few-layer PdSe2 are shown in Fig. 4.1d, with the solid 

line showing the unit cell. Each layer has a Se-Pd-Se configuration, with each Pd atom located at 

the corners of a square and covalently bonded to four Se atoms, thereby forming a unique 

pentagonal structure that has only been predicted theoretically for graphene and few other 2D 

materials36,47,49. The bulk structure is made up of single layers of PdSe2 stacking along the c-axis 

and held together mainly by vdW forces (Fig. 4.1e). From the top view, we can see that the 

monolayer PdSe2 crystals are composed entirely of pentagonal rings, presenting an intriguing 

pattern that is known as the Cairo pentagonal tiling. This unique pentagonal structure has been 

predicted theoretically to be stable only for graphene and a few other 2D materials. In contrast to 

the structure of hexagonal 2D materials such as graphene, Xenes, and TMDs that have been 

reported experimentally, the PdSe2 monolayer structure features unusual planar tetra-coordination 
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of its Pd atoms, puckered pentagons with a vertical puckering distance, δ, of ∼1.6 Å, as well as 

Se–Se bonds. Since most of the reported 2D materials that have been reported experimentally 

exhibit a hexagonal structure, monolayer PdSe2 presents a unique opportunity to study novel 

phenomena in 2D pentagonal configurations.  

4.2 Growth and synthesis of bulk and few-layers PdSe2 

Bulk PdSe2 single crystals were grown by a self-flux method through melting 

stoichiometric amounts of Pd powder (99.98%, Alfa Aesar) and Se powder (99.94%, Alfa Aesar). 

The Pd and Se powders in an atomic ratio of Pd : Se = 1 : 6 were thoroughly mixed together and 

sealed in an evacuated quartz ampoule under a vacuum condition of 10−6 Torr and then placed in 

a one-zone thermal furnace (Fig. 4.2a). The furnace was slowly heated up to 850 °C and held for 

50 hrs and then allowed to cool to 450 °C at a rate of 3°C/hr, followed by cooling down to room 

temperature. Shiny single crystals of PdSe2 were obtained by cleaving the ingot, i.e., the product, 

which is composed of the PdSe2 flakes. The as-grown crystals are plate-like with a thickness 

around 4 mm (Fig. 4.2b). Fig. 4.2c shows the diffraction pattern where the diffraction peaks at 

23.1°, 41.5°, 50.1° and 64.9° which can be indexed to (002), (113), (213) and (400) plane 

reflections of PdSe2.
85. The strong and sharp (002) peak indicates that the (002) plane is the highly 

preferred orientation for the synthesized PdSe2. Bulk PdSe2 displays Pbca symmetry (point group 

D2h) with an orthorhombic lattice that contains four Pd and eight Se atoms in one unit cell.86 

Although the predicted interlayer binding energy of PdSe2 (190 meV/atom) is significantly 

higher than that of BP (40 meV/atom),36 PdSe2 mono- and few-layer structures were able to be 

isolated using micromechanical exfoliation by adhesive tapes, and as shown in Fig. 4.2(d-f), large 

areas (∼30 μm) were obtained. Interestingly, PdSe2 exfoliates primarily into regular rectangular  
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Figure 4.2. (a) Schematic of the thermal furnace used for the growth of PdSe2 bulk single crystals. 

(b) Image of the as-grown PdSe2 single crystals (~ 4 mm). (c) Powder XRD pattern of the as-

synthesized PdSe2 sample. (d-f) Optical images of single and few-layer PdSe2. (g-h) Atomic force 

microscopy image and height profile corresponding to image (f) and its inset. 
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shapes, allowing the identification of its crystalline orientation. The optical contrast being a 

function of thickness aids the identification of few-layer PdSe2. Thicker samples appear brighter, 

so monolayer and bilayer PdSe2 areas are more challenging to identify due to their low optical 

reflectance. The thickness of the monolayer crystals was verified from atomic force microscopy 

(AFM) to be ∼0.6 nm as shown in Fig. 4.2g. The thickness of multilayered PdSe2 crystals was 

inferred from AFM measurements and cross-calibrated by micro-Raman and micro-absorption 

spectroscopies. Due to tip-surface interaction effects, measuring monolayer flakes can give 

spurious measurement.64 For example, monolayer PdSe2 shown in the inset of Fig. 4.2f determined 

by Raman and optical contrast gave a measurement of 3.5 nm (Fig. 4.2h). To estimate the thickness 

accurately, the difference in the thickness of corresponding layers, i.e. the difference between 1 L 

and 2 L, 2 L and 3 L, and so (shown in Fig. 4.2g) was used. For accurate measurement, low-

frequency Raman87 measurements were carried out.  

4.3 Atomic structure of PdSe2 

The atomic structure of the PdSe2 flakes was characterized by scanning transmission 

electron microscopy (STEM). As-exfoliated PdSe2 flakes on silicon substrate were transferred 

onto TEM grids. Although large monolayer PdSe2 flakes can be exfoliated onto a substrate and 

transfer onto a TEM grid, it is hard to distinguish the pentagonal structure in the annular dark-field 

(ADF) image (Fig. 4.3a) due to the surrounding disordered region of the flakes, perhaps resulting 

from damage during transfer. The ADF intensity in the line profile corresponding to the red dashed 

line shows distinct intensity for Pd and Se columns. Although, the positions of atomic columns 

agree with the monolayer simulated model (Fig. 4.3b) sliced from bulk PdSe2, the intensity of the 

columns does not quite follow the ration between Pd and Se atoms. There are three explanations 

for this. One, single layer PdSe2 might exist on a substrate like SiO2 but is unstable in the free-  
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Figure 4.3. Atomic resolution structure of few-layer PdSe2 crystals revealed by Z-contrast STEM 

images (top row) and corresponding simulated images (bottom row) of PdSe2. (a, c) Single layer, 

(b, e) Even number of layers, (c, f) odd number of layers. Insets in (d-f) show atomic models of 

the corresponding STEM images. 
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standing form. Two, single layer PdSe2 is fragile and is easily damaged during transfer on the TEM 

grid. Three, the electron beam from STEM could easily damage single layer PdSe2 after transfer. 

Fig. 4.3(b-c) shows the ADF images of few-layer PdSe2 crystals, and although even and 

odd layer numbers appear very different in ADF due to symmetry differences, the patterns agree 

very well with the image simulations shown in Fig. 4.3(d-e), respectively. Bulk PdSe2 crystals 

exhibit Pbca space group symmetry and D2h point group symmetry. In contrast, thin flakes with 

either an odd or even number of layers belong to space group P21/c (No. 14) and point 

group C2h (2/m) with inversion symmetry or space group Pca21 (No. 29) and point 

group C2v (mm2) without inversion symmetry, respectively. The fast Fourier transform (FFT) 

patterns of single and few-layer PdSe2 in Fig. 4.4(a–c) show the rectangular structure distinct from 

the hexagonal structure of other TMDs. Each flake has an identical lattice structure with similar 

diffraction patterns of (020) and (200), confirming the crystallinity of each flake. Electron energy 

loss spectroscopy (EELS) of the few-layer PdSe2 flakes (Fig. 4.4(d-e)) shows characteristic peaks 

of Pd N, M edges and Se M edges. 

4.4 Electronic properties of PdSe2 

4.4.1 Density Functional Theory (DFT) calculations 

Plane-wave density functional theory (DFT) calculations were performed using the VASP 

package equipped with the projector-augmented-wave (PAW) method for electron-ion 

interactions88. The exchange-correlation interactions were considered in the generalized gradient 

approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE) functional89.  Van der Waals 

(vdW) interactions between the PdSe2 layers were included using the vdW density functional 

method optPBE-vdW (denoted as optPBE)90. For bulk PdSe2, both atoms and cell volume were 

allowed to relax (i.e., ISIF = 3) until the residual forces were below 0.001 eV/Å, with the cutoff 



43 

 

 

Figure 4.4. (a-c) The atomic resolution STEM images of PdSe2 monolayer, (b) even layer (c) and 

odd layer. Insets of these STEM images show the corresponding Fast Fourier Transformation 

diffraction patterns. Diffraction spots corresponding to two principle planes (020) and (200) are 

labeled. (d) A low-magnification STEM image of few-layer PdSe2 crystal. Inset shows the line 

profile of the red dash line in image which the layer thickness is determined to be 4L and 6L 

according intensity. (e) Electron energy loss spectroscopy of few-layer PdSe2, Pd N edge, Pd M 

edge and Se M edge are shown in the spectra. 
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energy at 350 eV and the 12×12×8 k-point sampling. The optimized bulk lattice constants obtained 

via optPBE are a=5.85 Å, b=5.99 Å and c=7.95 Å, in agreement with the experimental values 

(a=5.75 Å, b=5.87 Å and c=7.69 Å)55,85. Note that the out-of-plane direction is defined as the z 

axis. Other functionals implemented in VASP were also tested, including the local density 

approximation (LDA), PBE, the DFT-D2 approach of Grimme, vdW-DF, vdW-DF2, optB86b-

vdW, and optB88-vdW.  

Table 4.1. Optimized bulk PdSe2 lattice constants using different functionals with projector-

augmented-wave (PAW) pseudopotentials in the DFT package of VASP. The experimental values 

are also shown in the second column for comparison. 

Lattice 

constant 

Exp.    

value 

 

LDA PBE DFT-

D2 

Nonlocal van der Waals functionals 

vdW-

DF 

vdW-

DF2 

optPBE optB86b optB88 

a(Å) 5.75 6.11 5.79 6.20 5.90 6.01 5.85 6.22 5.85 

b(Å) 5.87 6.10 5.94 6.19 6.05 6.15 5.99 6.22 5.97 

c(Å) 7.69 6.12 8.48 6.21 8.47 8.34 7.95 6.23 7.63 

 

Table 4.1 lists the optimized bulk PdSe2 lattice constants using different functionals with 

projector-augmented-wave pseudopotentials in the self-consistent plane-wave DFT package 

VASP. Among studied functionals, optPBE and optB88 yield the best results compared to the 

experimental values. Though the structural parameters by optB88 are closer to experimental ones 

than optPBE, optPBE is found to be better for describing the electronic properties of bulk PdSe2. 

Compared to optB88 that predicts a negative electronic band gap -0.24 eV (i.e., the energy level 

of VBM is higher than that of CBM), optPBE yields a much smaller negative band gap -0.02 eV. 

According to our optical absorption measurements and prior experimental and theoretical 

works55,91,92, bulk PdSe2 is intrinsically semiconducting, though its band gap is relatively small 
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(about 0.2-0.4 eV). Therefore, optPBE seems an overall better choice, and it is used for describing 

the electronic, vibrational and Raman properties of PdSe2 system. Nevertheless, it still 

underestimates the band gap of bulk PdSe2. The PBE functional yields good description of the in-

plane lattice constants (a and b), while overestimates the lattice constant c, owing to the 

underestimation of the interlayer coupling. However, it gives a reasonable value of the band gap 

(0.37 eV). Consequently, PBE is also adopted to describe the electronic properties of PdSe2.   

It is interesting to note that functionals like LDA, DFT-D2 and optB86b yield a completely 

different structure, where the lattice constants in three directions are nearly the same (around 6.1-

6.2 Å). As the lattice in the c direction is decreased, the interlayer distance is shortened and Pd 

atoms form new bonds with Se atoms in the adjacent layers, and then the originally orthorhombic 

layered structure is transformed into the 3D pyrite structure85,91. Such structural transition was 

investigated previously by external pressure85. Because of the existence of two phases in PdSe2, it 

requires caution for choosing the proper functional for theoretical investigation.  

Furthermore, different functionals and pseudopotentials were tested in another DFT 

software, the self-consistent plane-wave Quantum Espresso93. Several vdW functionals with both 

projector-augmented-wave and norm-conserving pseudopotentials for bulk PdSe2 were 

considered. The non-local vdW functionals that we considered are vdW-DF, vdW-DF2, C09-DF, 

C09-DF2, optB86b, optB88 and revB86b90,94,95. For comparison, LDA, PBE and the semi-

empirical dispersion correction method DFT-D2 were also considered96. The bulk structures were 

relaxed to a force threshold 1×10-3 eV/Å and a pressure threshold 0.5 Kbar with 12×12×10 k-point 

sampling and 816 eV kinetic energy cutoff. The optimized lattice constants for bulk PdSe2 are 

listed in Table 4.2 and Table 4.3 for different pseudopotentials respectively.  
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Table 4.2. Optimized bulk PdSe2 lattice constants using different functionals with projector-augmented-wave (PAW) pseudopotentials 

in the DFT package of Quantum Espresso. 

Lattice 

constant 

LDA PBE DFT-D2 Nonlocal van der Waals functionals 

vdW-DF vdW-DF2 C09-DF C09-DF2 optB86b optB88 revB86b 

a(Å) 6.09 5.80 5.79 5.89 6.01 6.16 6.18 5.84 5.86 5.84 

b(Å) 6.10 5.95 5.92 6.05 6.16 6.17 6.17 5.95 5.99 5.96 

c(Å) 6.10 8.65 7.70 8.68 8.47 6.17 6.19 7.49 7.71 7.53 
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Table 4.3. Optimized bulk PdSe2 lattice constants using different functionals with Troullier-Martins type norm-conserving 

pseudopotentials in Quantum Espresso. 

Lattice 

constant 

LDA PBE DFT-D2 Nonlocal van der Waals functionals 

vdW-DF vdW-DF2 C09-DF C09

-

DF2 

optB86b optB88 revB86b 

a(Å) 6.10 5.79 5.78 5.90 5.79 6.21 6.22 5.79 5.79 5.79 

b(Å) 6.11 5.95 5.92 6.05 5.95 6.22 6.23 5.95 5.95 5.95 

c(Å) 6.11 8.72 7.77 8.64 8.68 6.21 6.22 8.68 8.72 8.69 

8.69 
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Similar to the results by VASP, different functionals and pseudopotentials by Quantum Espresso 

also yield different structures, including the orthorhombic layered structure and the 3D pyrite 

structure.  

The functionals of optPBE and PBE are two options that yield reasonable results for both 

electronic and structural properties. Unless mentioned otherwise, they are adopted throughout this 

thesis. Single- and few-layer PdSe2 systems were modeled by a periodic slab geometry with a 

vacuum region of at least 21 Å in the out-of-plane direction (z direction) used to avoid spurious 

interactions with periodic images. For the 2D slab calculations where 12×12×1 k-point samplings 

were used, all atoms were relaxed until the residual forces were below 0.001 eV/Å and in-plane 

lattice constants were optimized using the method of fixing the total volume (ISIF = 4 in VASP)97 

to avoid the collapse of the vacuum separation in the z direction. Our calculations find out that the 

in-plane lattice constants are thickness dependent, owing to the strong interlayer coupling and 

hybridization in PdSe2. For instance, the loss of the neighboring layers from bulk to monolayer 

leads to the in-plane lattice shrinking: a is reduced from 5.85 to 5.72 Å, and b reduced from 5.99 

to 5.93 Å, according to the optPBE calculations. Few-layer systems also exhibit the in-plane lattice 

reduction compared to the bulk, but the amplitude of the reduction decreases with the increasing 

number of layers. Note that the definition of the out-of-plane direction as the z direction is in line 

with the convention of International Crystallography Tables for the bulk, but it is not for NL PdSe2. 

Instead, according to the convention, for odd NL PdSe2, the out-of-plane direction should be along 

the x direction; for even NL PdSe2, the out-of-plane direction should be along the y direction. 

However, for simplicity and consistency, we chose the z axis as the out-of-plane direction for all 

thicknesses. As a result, the Raman mode symmetry notations in even NL are slightly different 
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from the convention: A2 and B1 are swapped. In this work, from bulk to even NL, the bulk B1g 

symmetry is reduced to B1 instead of A2. 

For the fully relaxed geometries, the dynamic matrix was then calculated using the finite 

difference scheme implemented in the Phonopy software to obtain phonon frequencies and 

eigenvectors98,99. Hellmann-Feynman forces in the supercell (2×2×2 for the bulk, while 2×2×1 for 

single- and few-layer systems) were computed by VASP for both positive and negative atomic 

displacements (δ = 0.03 Å) and then used in Phonopy to construct the dynamic matrix, whose 

diagonalization provides phonon frequencies and phonon eigenvectors (i.e., vibrations). Raman 

scattering calculations were then performed within the Placzek approximation. For the 𝑗-th phonon 

mode, Raman intensity is I ∝ 
(𝑛𝑗+1)

𝜔𝑗
|ei·�̃�·es

T|2, where ei and es are the electric polarization vectors 

of the incident and scattered lights respectively, and �̃� is the Raman tensor of the phonon mode100. 

𝜔𝑗 is the frequency of the 𝑗-th phonon mode, and 𝑛𝑗 = (𝑒ħ𝜔𝑗/𝑘𝐵𝑇 − 1)−1 is its Boltzmann 

distribution function at the given temperature 𝑇 = 300 K. The matrix element of the (3×3) Raman 

tensor �̃� of the 𝑗-th phonon mode is100-102 

�̃�𝛼𝛽(𝑗) = 𝑉0 ∑ ∑
𝜕𝜒𝛼𝛽

𝜕𝑟𝑙(µ)

3
𝑙=1

𝑁
µ=1

𝑒𝑙
𝑗

(µ)

√𝑀µ
,                                          (4.1) 

where 𝜒𝛼𝛽 = (휀𝛼𝛽 − 𝛿𝛼𝛽)/4𝜋 is the electric polarizability tensor related to the dielectric tensor 

휀𝛼𝛽, 𝑟𝑙(µ) is the position of the µ-th atom along the direction 𝑙, 
𝜕𝜒𝛼𝛽

𝜕𝑟𝑙(µ)
 is the derivative of the 

polarizability tensor (essentially the dielectric tensor) over the atomic displacement, 𝑒𝑙
𝑗
(µ) 

corresponds to the displacement of the µ-th atom along the direction 𝑙 in the 𝑗-th phonon mode 

(i.e., the eigenvector of the dynamic matrix), 𝑀µ is the mass of the µ-th atom, and 𝑉0 is the unit 

cell volume. For both positive and negative atomic displacements (δ = 0.03 Å) in the unit cell, the 



50 

 

dielectric tensors 휀𝛼𝛽 were computed by VASP103 at the experimental laser frequency 2.33 eV (532 

nm) and thus their derivatives were obtained via the finite difference scheme104. Based on the 

phonon frequencies, phonon eigenvectors and the derivatives of dielectric tensors, Raman tensor 

�̃� of any phonon mode can be obtained. In the experimental back-scattering laser geometry (i.e., 

the light travels in and out along the z direction, perpendicular to the sample plane), the electric 

polarization vectors of incoming and scattered light (ei and es) are in the x-y plane. Averaging over 

all possible in-plane polarizations, the Raman intensity of any given mode in the experimental 

unpolarized laser configuration is given by I ∝ 
1

4

(𝑛𝑗+1)

𝜔𝑗
|(|�̃�11|2+|�̃�12|2+|�̃�21|2+|�̃�22|2). Finally, 

based on the calculated Raman intensities I(𝑗) and phonon frequencies 𝜔𝑗, the Raman spectrum 

can be obtained after Lorentzian broadening. 

4.4.2 Phonon spectrum  

The dynamical stability of the single- and few-layer PdSe2 is confirmed by the absence of 

soft modes in the calculated phonon dispersions (Fig. 4.5(a-c)). Note that very small negative 

frequencies are still present in the calculated phonon dispersion of single-layer PdSe2, but by 

switching to the LDA functional they can be nearly eliminated, suggesting that such negative 

frequencies are likely not due to structural instability. 

4.4.3 Electronic band structure  

According to the calculated electronic band structures in Fig. 4.6(a-b), 1L PdSe2 exhibits 

1.3 eV indirect band gap and no band gap for the bulk. The 1.3 eV indirect band gap for a 

monolayer is quite close to its direct band gap (1.43 eV), making the PdSe2 monolayer promising 
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Figure 4.5. Calculated phonon dispersion spectrum of single-layer and few-layers of PdSe2. There 

are no noticeable soft modes in 1L PdSe2, while the small negative frequencies are probably due 

to the computational error. 
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Figure 4.6. Calculated electronic band structures of (a) 1L, (b) bulk, (c) 2L and (d) 3L PdSe2 by 

the PBE method. The dashed arrows indicate the lowest energy transitions between the valence 

band maximum (VBM) and conduction band minimum (CBM). The VBM is set at 0 eV. Inset of 

figure shows Brillouin zones of PdSe2 2D crystals with high-symmetry points labeled. 
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for optoelectronic applications. Similar indirect band gaps are observed in few-layer PdSe2 as well 

(Fig. 4.6(c-d)), indicating the intrinsic nature of this indirect band gap semiconductor compared to 

the indirect-to-direct band gap transition observed in other TMDs. The valence band maximum 

(VBM) is located between the high-symmetry Γ and X (0.5, 0, 0) points while the conduction band 

minimum (CBM) is located between Γ and M (0.38, 0.5, 0) points, suggesting that it is not located 

along the high-symmetry lines like the commonly studied TMDs (MoS2 family) and BP. For the 

PdSe2 systems, both the valence band edge and conduction band edge are contributed mostly by 

the Pd 4d-states and Se 4p-states, which indicates that the energy levels of both VBM and CBM 

(thus the band gap) are sensitive to the interlayer coupling and electronic hybridization. The inset 

of Fig. 4.6 shows the rectangular shape of the first Brillouin zone of PdSe2 2D crystals.  

4.5 Optical properties of PdSe2 

4.5.1 Absorption spectroscopy  

Owing to the indirect band gap nature of PdSe2, the photoluminescence signals are too 

weak to be effectively detected for experimental bandgap determination. Therefore, optical 

absorption measurements were carried out and Tauc plots were used to derive the band gaps from 

the absorption spectra as shown in Fig. 4.7. To measure the absorption spectra of the PdSe2 

crystals, a laser-driven light source (EQ-99-fc, Energetiq) was used (spot size at the sample was ~ 

2 μm). The transmitted light was captured with a long-distance microscope objective (50×, NA = 

0.5) and directed to a spectrometer (Spectra Pro 2300i, Acton) equipped with a CCD camera (Pixis 

256BR, Princeton Instruments). All the spectra were collected at room temperature. The 

absorbance (Abs) was calculated as Abs = log10(I0/I), where I and I0 are the light intensities 

transmitted through the sapphire substrate on and off a TMD crystal, respectively.  Since AFM do 

not give a precise number of layers, especially for atomically-thin samples, the number of layers,  
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Figure 4.7. (a) Plot of the absorbance versus the number of layers where the number of layers was 

determined by AFM. (b) Plot of absorbance with the number of layers determined based on 

absorbance measured at 800 nm that was used in the analysis of the bandgap. (c) Absorption 

spectra for the selected number of layers. (d-g) Tauc plots for 1, 4, 16 and 42 layers, respectively 

which demonstrates how the bandgap was extrapolated. (h) Band gaps extracted from the Tauc 

plots for various number of PdSe2 layers derived from the optical absorption spectra. (i) Band gaps 

obtained from first-principles calculations - PBE and optPBE shown in red and black dots, 

respectively. 
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N, were determined from the absorbance, Abs, as N = Abs/α, where α is the absorbance per one 

layer or the absorption coefficient. The absorbance of 30 different crystals versus the number of 

layers derived from AFM measurements is shown in Fig. 4.7a together with its linear fit, that 

allows one to determine the absorption coefficient, α=0.0134, and to find the number of layers 

based on the absorbance measured at 800 nm (Fig 4.7b). Figure 4.7c shows the absorption spectra 

of PdSe2 with various numbers of layers. Some of the Tauc plots, (ahu)1/r
 versus hν, where h

is the energy of the incident photons are shown in Fig. 4.7(d-g). Here, we used 2r , because 

PdSe2 is an indirect band gap semiconductor. The x-axis intercepts of the slope of the Tauc plots 

were used to derive the band gaps from the absorption spectra as shown in Fig. 4.7(d-g). 

Figure 4.7h shows the optical band gaps versus the number of PdSe2 layers. The large 

uncertainty in the band gaps (±0.2 eV) can be explained by a possible high amount of defects in 

the PdSe2 flakes. Another possible source of this uncertainty may be related to in-plane anisotropic 

absorption properties of PdSe2
17. However, this data shows a clear trend of decreasing band gap 

with increasing number of layers from ~1.3 eV (1L) to 0 eV (bulk) (within the uncertainty of ±0.2 

eV).  This trend is consistent with the first-principle calculations (Fig. 4.7d), although, the 

calculated band gap is generally smaller than experimental one because DFT tends to 

underestimate the band gap due to its limitation to describe the long-range many-body interactions. 

Therefore, the experimentally observed band gap dependence for the thicker layers may reflect the 

importance of the many-body effects. Therefore, both the absorption measurements and DFT 

calculations show a layer-dependent band gap that changes approximately from 0 eV (bulk) to 1.3 

eV (monolayer). Note that the changes of the PdSe2 band gap from bulk to monolayer are 

noticeably larger than those for MoS2.
5 Since Pd has more valence electrons than Mo (10 versus 

6), it is expected that interlayer Pd and Se atoms are more hybridized, and that the interlayer 
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coupling is stronger in this case.55 This effect contributes to the strong layer-dependent band gaps 

for PdSe2 and also for PtS(Se)2 within the same group.
33,34  

4.5.2 Raman spectroscopy 

High-resolution Raman measurements were performed using a Jobin-Yvon T64000 

spectrometer consisting of a double monochromator coupled to a third monochromator stage with 

1800 groves/mm grating equipped with a liquid nitrogen cooled charge-coupled device (CCD) 

detector. The high-intensity Raman spectra were measured in a custom high optical throughput 

micro-Raman setup using a 100x microscope objective with NA (numeric aperture) 0.9 (beam spot 

on the samples was ~1µm). In this case the scattered Raman light was analyzed by a spectrometer 

(Spectra Pro 2300i, Acton, f=0.3 m) that was coupled to a microscope and equipped with a 1800 

groves/mm grating and a CCD camera (Pixis 256BR, Princeton Instruments). Both high-intensity 

and high-resolution measurements employed a continuous wave solid-state laser (wavelength 532 

nm). All measurements were carried out under a microscope in backscattering geometry.  

As shown in Fig. 4.1d, the unit cell of bulk PdSe2 is orthorhombic with space 

group Pbca (No. 61, point group D2h). Unlike most well-studied hexagonal TMDs such as 

MoS2, the symmetry of bulk PdSe2 is comparable to BP, which is also orthorhombic (space group 

No. 64, point group D2h). As a result, symmetry assignments of phonon modes for PdSe2 resemble 

those for BP, and this indicates that 2D PdSe2 flakes should have unique anisotropy due to their 

in-plane low symmetry. The unit cell of bulk PdSe2 consists of two layers and 12 atoms, and thus 

there are 36 normal phonon modes at the Γ point whose irreducible representations are 

Γbulk = 3Ag + 3B1g + 3B2g + 3B3g + 6Au + 6B1u + 6B2u + 6B3u,                (4.2)                                                   
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where 3Ag, 3B1g, 3B2g, and 3B3g modes are Raman active. Raman intensity of a phonon mode is 

proportional to |ei·�̃�·es
T|2, where ei and es are the electric polarization vectors of the incident and 

scattered lights respectively, and �̃� is the Raman tensor of the phonon mode.105 It can be observed 

by Raman spectroscopy when |ei·�̃�·es
T|2 is not zero. For bulk PdSe2, with the out-of-plane direction 

defined along the lattice c (i.e., the z axis) based on the convention of International Tables for 

Crystallography, the calculated Raman tensors �̃� of Raman-active modes Ag, B1g, B2g and B3g 

are104  

�̃�(Ag)= (
𝑎 ∙ ∙
∙ 𝑏 ∙
∙ ∙ 𝑐

),                �̃�(B1g)= (
∙ 𝑑 ∙
𝑑 ∙ ∙
∙ ∙ ∙

), 

�̃�(B2g)= (
∙ ∙ 𝑒
∙ ∙ ∙
𝑒 ∙ ∙

),                �̃�(B3g)= (

∙ ∙ ∙
∙ ∙ 𝑓
∙ 𝑓 ∙

),                   (4.3)  

where a-f are major terms while other terms (denoted by “∙”) are either zero or negligible due to 

symmetry. Note that the calculated Raman tensors can also be qualitatively predicted by group 

theory analysis (see “Bilbao Crystallographic Server”).106,107  Raman-inactive modes have zero 

Raman tensors, thus always zero Raman intensities. Raman-active modes can also have zero 

intensities, depending on the laser polarizations. In the experimental back-scattering configuration, 

the electric polarization ei and es are in-plane (the x-y plane), and thus only Raman modes with 

non-zero Raman tensor elements �̃�11, �̃�12, �̃�21, or �̃�22 can show non-zero intensities. 

As shown in Fig. 4.8a, only Ag and B1g modes can be observed in the unpolarized Raman 

measurements. This is confirmed by the theoretical Raman spectra shown in Fig. 4.8b, where the 

bulk spectra (gray lines) exhibit five peaks. Although bulk PdSe2 has 3 Ag modes (Ag
1, Ag

2, Ag
3) 

and 3 B1g modes (B1g
1, B1g

2, B1g
3), our calculations found that the Ag

1 and B1g
1 modes are very  



58 

 

 

Figure 4.8. (a) Layer-dependent Raman spectra of PdSe2 from 1L to bulk measured for an 

excitation laser wavelength of 532 nm. (b) Corresponding calculated Raman spectra by the optPBE 

method. In both (a) and (b), the dashed lines indicate positions of the Raman peaks for bulk PdSe2. 

Note that the Ag
1-B1g

1 label means the overlapping of two close peaks: Ag
1 and B1g

1. For 

convenience, bulk notations of Ag
 and B1g are also used for other systems. (c) Atomic 

displacements (blue arrows) of six Raman modes in bulk PdSe2. (d) Comparison of the 

experimental (black) and theoretical (red) frequencies of Raman modes Ag
1-B1g

1, B1g
2 and Ag

3 at 

different thicknesses. Although the calculated frequencies are systematically smaller than the 

experimental ones, the trend of the frequency shift versus thickness agrees. 

  



59 

 

close to each other with a frequency difference of less than 2 cm–1, and subsequently a single mixed 

peak (denoted as Ag
1-B1g

1) appears around 145 cm–1 according to the measurements (around 134 

cm–1 according to the calculations). The rest of four peaks in Raman spectra of the bulk belong to 

Ag
2, B1g

2, Ag
3, and B1g

3, respectively, as highlighted by the vertical dash lines in Fig. 4.8(a-b). Note 

that the B1g
3 peak is weak and manifests as a right shoulder peak near the strong Ag

3 peak in the 

experimental spectra in Fig. 4.8a. For example, the deconvolution of Raman spectra of 2L sample 

clearly shows the presence of B1g
3 right next to the Ag

3 peak (see Fig. 4.9a). Detailed and strict 

symmetry assignments for all peaks are presented in Fig. 4.9b, but to further validate the peak 

symmetry assignments, polarized Raman measurements were carried out. As shown in Figure 

4.9(c-d), in both the experimental and simulated polarized Raman spectra of PdSe2, indeed only 

the three Ag peaks appear under z̅(x, x)z while the three B1g peaks appear under z̅(x, y)z because 

the Ag and B1g modes have dramatically different response behaviors to laser polarization due to 

their different Raman tensors. 

The atomic vibrations of these six Raman modes are illustrated in Fig. 4.8c. It is interesting 

to point out that all of them mainly involve the vibrations of the Se atoms (blue arrows in Fig. 4.8c). 

This can be ascribed to the unique structure in PdSe2 (Fig. 4.1d), in which each layer is actually a 

Se−Pd−Se trilayer with Pd atoms covalently bonded to four Se atoms on the top and bottom 

sublayers. It is also interesting to note that all five Raman peaks generally shift to higher frequency 

with the thickness reduction from bulk to 1L. Figure 3.8d shows both the experimental (black) and 

theoretical (red) frequencies of the Ag
1-B1g

1, B1g
2, and Ag

3 peaks at different thicknesses. Although 

the calculated frequencies are systematically smaller than the experimental ones (by about 9–20 

cm–1), the trend of the frequency versus thickness is similar. In addition, the significant shifts of 

Raman peaks around 5–9 cm–1 from bulk to 1L for PdSe2 are observed, which is different from  
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Figure 4.9. (a) Zoom-in Raman spectra for to see the presence of the B1g
3 shoulder peak near the 

Ag
3 peak. The line spectra of the Ag

3 and B1g
3 are fitted to the Raman spectra. (b) Calculated Raman 

spectra of PdSe2 via the optPBE method at different thickness. (c) Polarization Raman spectra for 

several layers (~20 layers) PdSe2 from experiment (d) bulk PdSe2 from theory under different laser 

polarization configurations: unpolarized, 𝑧̅(𝑥, 𝑥)𝑧, and 𝑧̅(𝑥, 𝑦)𝑧. Both Ag and B1g modes can be 

observed in the unpolarized spectra, only Ag modes can be observed under the parallel 𝑧̅(𝑥, 𝑥)𝑧 

polarization configuration, while only B1g modes can be observed under the perpendicular 𝑧̅(𝑥, 𝑦)𝑧 

polarization configuration. 
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the small shifts around 3–5 cm–1 observed in MoS2. This anomalous shift behavior is attributed to 

the strong interlayer coupling and hybridization in PdSe2, which also leads to the wide band gap 

variation as we discussed above. DFT calculations also indicate that the in-plane lattice constants 

decrease with decreasing thickness because of the strong interlayer interaction in PdSe2. For 

instance, the in-plane lattice parameters, a and b, are reduced by ∼2% and ∼1%, respectively, 

going from bulk to 1L PdSe2. Such a lattice contraction can stiffen the bonds and enhance the 

restoring forces (we refer to this as the “lattice shrinking effect”), which is one of the main factors 

responsible for the increasing peak frequencies from bulk to 1L. 

Table 4.4. Calculated frequencies of the bulk-related Raman modes for 1L, 2L and bulk PdSe2.  

Thickness 
Ag

1-B1g
1 frequency 

(cm-1) 

B1g
2 frequency 

(cm-1) 

Ag
3 frequency 

(cm-1) 

lattice 

optimized 

lattice 

fixed 

lattice 

optimized 

lattice 

fixed 

lattice 

optimized 

lattice 

fixed 

1L 140.59 133.56 208.66 207.22 239.42 235.28 

2L 138.36 135.40 207.03 205.66 237.23 234.92 

bulk 133.96 204.95 234.26 

 

By fixing the in-plane lattice constants of NL systems to the bulk values (i.e., excluding 

the lattice shrink effect), the frequencies are systematically lowered by up to 7 cm-1 (more details 

in Table 4.4). With the lattice shrink effect excluded, the amplitudes of the frequency shifts with 

the thickness are expectedly smaller, but the computed frequencies of most Raman modes still 

increase with the decreasing thickness (Table 4.4). This suggests the presence of other contributing 
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effects. It has been reported that larger force constants are present at the surface of the thin film 

due to the loss of neighboring layers, which is called the surface effect.108 Such effect grows 

stronger with the decreasing thickness owing to an increasing percentage of surface bonds relative 

to interior bonds. Consequently, the surface effect could result in the frequency increase of a 

Raman mode with the decreasing thickness, and it is responsible for the upshift of the characteristic 

E2g
1 mode with the decreasing thickness in group-6 TMDs like MoS2.

38,108-110 Similarly, the surface 

effect is also one of the factors accounted for the experimentally observed upshifts of Raman 

modes in PdSe2. Note that for the Ag
1-B1g

1 mixed peak, its experimental frequency shift as a 

function of the thickness (black in Fig. 4.8d) does not follow a strict monotonous trend. This could 

arise from the fact that it is the mixture of two peaks. It could also be due to the thickness effect, 

which has opposite influence on the frequency shift compared to the lattice shrink effect and 

surface effect discussed above. According to an intuitive harmonic oscillator model, the frequency 

of a phonon mode should decrease with the decreasing thickness due to the decreasing restoring 

force by the removal of layers, which is called the thickness effect.38,108 The lattice-shrink effect 

and the surface effect are competing with the thickness effect to affect the frequency trend as a 

function of the thickness, resulting in the non-strict monotonous upshifts of Raman modes in PdSe2 

in Fig. 4.8d. 

4.6 Summary 

In summary, a new member of the 2D materials family, single- and few-layer PdSe2 

crystals, was successfully fabricated and characterized. 2D PdSe2 exhibits an anisotropically 

puckered pentagonal structure that was revealed by atomic-resolution scanning transmission 

electron microscopy. The micro-absorption spectroscopy and first-principles band structure 

calculations showed a wide band gap variation from ~0 (bulk) to ~1.3 eV (monolayer) in this 
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material. The Raman active modes in PdSe2 were identified by polarized Raman spectroscopy and 

first-principles calculations, and strong interlayer interactions was revealed from the large layer-

dependent Raman peak shifts. In addition, in-plane anisotropic properties should be expected for 

this highly anisotropic material because of the low in-plane symmetry structure. 
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Chapter 5: Electrical transport properties of 2D PdSe2: high 

carrier-mobility and anisotropic behavior 

5.1 Introduction 

Lattice structure and symmetry are vital in determining materials’ fundamental properties. 

Most studied two-dimensional materials exhibit isotropic behavior due to high lattice symmetry; 

however, lowering the symmetry in 2D materials could induce interesting anisotropic properties 

of both scientific and technological importance. In this chapter, the anisotropic properties of 

semiconducting 2D PdSe2 with puckered pentagonal structure was first reported and exhibited 

strong in-plane anisotropic properties. Similar to BP, with puckered configurations but stable in 

air, the 2D PdSe2 flakes exhibit widely tunable device properties. Fabricated monolayer and few-

layer PdSe2 field-effect transistors display competitive performance including ambipolar charge 

carrier conduction with high electron mobility of ~ 158 cm2V-1s-1 as well as large on/off ratios 

(106).  

From electrical characterization using field-effect transistor (FET) architecture with two-

terminal, back-gate configuration, distinct layer-dependent properties were observed, in agreement 

with optical characterization studies. As the number of layers increases, the gate control becomes 

negligible in consonance with decrease in band gap. The electron on/off ratio decreases from ~106, 

for bilayer PdSe2, to ~101, for bulk PdSe2. While the on/off ratio decreases monotonically as the 

number of layers is increased, the electron mobility peak is at ~10L, similar to that observed in 

black phosphorus6. Interestingly, PdSe2 devices maintained their typical ambipolar behavior 

irrespective of the number of layers, though with an observed shift to become more n-type with a 

decrease in the number of layers. The semiconductor to semimetal transition from monolayer to 

bulk PdSe2 is a promising indication of the ability to fabricate single layer logical junction devices 
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using PdSe2 as both the channel and contact111, thus, eliminating contact resistance due to 

scattering and Schottky barriers at the contact interface with the semiconducting channel. Also, 

the device performance shows that PdSe2 is stable in air. The fabrication after two months for 10 

L and 46 L devices remain largely unchanged.   

5.2 Device fabrication and architecture 

To investigate the transport properties of 2D PdSe2, field-effect transistor (FET) devices 

were fabricated using a two-terminal, back-gate configuration as shown schematically in Fig. 5.1a. 

The fabrication process starts with exfoliating PdSe2 flakes onto a degenerately doped Si substrate 

coated with 280 nm SiO2. The details of the exfoliation method have been covered in the previous 

chapter. Electron-beam (e-beam) lithography is used to pattern source and drain metal contacts, 

using an e-beam resist (PMMA A495) to protect areas where metals aren’t desired. Metal contacts 

(5nm Ti/30 nm Au) are deposited using electron-beam evaporator in a vacuum of ~10-6 Torr at 

low rate in ~1 Å/s. After evaporation, lift-off of excess metal was done by sonicating the device in 

acetone followed by cleansing with IPA and DI water. A typical final optical image is shown in 

Fig. 4.1b for three devices with two contacts each. The devices were measured in a vacuum station 

equipped with BeCu probe tips. Devices were analyzed with Keithley 4200-SCS semiconductor 

analyzer.  

5.3 Layer-dependent ambipolar conduction, high mobility and air stability in PdSe2 

Figure 5.2a shows the plot of the drain current (Ids) as a function of back gate voltage (Vbg) 

for a typical 5 L PdSe2 device with 1.0 V drain bias. The linear behavior of the Ids–

Vds characteristics shown in Fig. 5.2(b) indicates good Ohmic contact at room temperature. The 

device exhibits ambipolar transport with a slight asymmetry between holes and electrons. For this 
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Figure 5.1. (a) Fabrication of PdSe2 FET: PdSe2 flake is first exfoliated onto the substrate before 

the deposition of electrodes. (b) Optical image of fabricated devices. 
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Figure 5.2. (a) Transfer curve of a typical ~5 L PdSe2 device, with both logarithmic and linear 

scales, showing ambipolar characteristics (b) Typical output curves showing linear characteristics 

at 295 K for 20 L at positive back voltages Vbg = 60 V ~ 0 V. (c) Drain-source current versus back 

gate voltage plot for PdSe2 with different number of layers at Vds = 1.0 V showing ambipolar 

behavior in all cases at room temperature, with logarithmic plot. (d) Thickness-dependent 

properties showing increasing off-current with thickness. (e) Electron and hole apparent mobility, 

and on/off ratio versus flakes thickness for PdSe2 devices measured at room temperature. Black 

line indicates mobility curve, while red line indicates on/off ratio curves. Data points in squares 

and circles represents electron and holes, respectively.  The electron mobilities are higher than 

hole mobilities, and thicker films consistently show lower on/off ratio than that of thinner flakes. 
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5 L device, electron-apparent field-effect mobility as high as 70 cm2 V–1s–1 was achieved at room 

temperature and an on/off ratio greater than 105. Overall, electron carriers have higher mobilities 

compared with holes. To elucidate the layer-dependent electrical properties of 2D PdSe2 crystals, 

the transfer characteristics for different numbers layers of PdSe2 were measured and are shown 

in Fig. 5.2c. Distinct layer-dependent properties were observed in agreement with optical 

characterization and electronic structure calculations of band gap variation. For example, as the 

number of layers increases, the gate control becomes negligible, which is consistent with a 

decrease in band gap. Also, as shown in Fig. 5.2d, the off-current in the channel increases with 

thickness, probably due to the presence of gate-uncontrollable channel in thick transistor channels. 

This is displayed in Fig. 5.2e, where the on/off ratio for electrons decreases from ∼106, for bilayer 

PdSe2, to ∼10, for bulk PdSe2. A similar trend also can be observed for the on/off ratio for holes. 

The low on/off ratio (<10) observed in bulk PdSe2 can be associated with a quasi-metallic 

behavior. While the on/off ratio decreases monotonically as the thickness is increased, the electron 

mobility peaks at ∼20 L, similar to that observed in BP.  

The statistical analysis for the mobility and on/off ratios of about ∼65 devices are presented 

in Fig. 5.3, showing an average electron mobility of ∼80 cm2 V–1 s–1 with the highest one ∼158 

cm2 V–1 s–1. Note that these values were measured without any materials treatment or device 

optimization, so perhaps with further device engineering, mobilities approaching the theoretical 

predicted value should be expected due to the low effective mass of noble transition metal 

dichalcogenides. Interestingly, the PdSe2 devices maintained their typical ambipolar behavior 

irrespective of the number of layers, with more symmetrical ambipolar behavior with increasing 

thickness, which is very promising for high-performance 2D logic circuits. The layer dependence 

of the semiconductor-to-quasi-metal transition in PdSe2 is also promising for fabricating single- 
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Figure 5.3. Statistical analysis of the performance of 65 devices based on (a-b) apparent mobility 

and (c-d) on/off ratio for electron and hole conduction, respectively. 
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material logic junction devices using 2D PdSe2 crystals for both the channel and contact. This 

would eliminate the contact resistance due to scattering and Schottky barriers at the contact 

interface with the semiconducting channel. It is important to note that unlike BP, PdSe2 remains 

stable (at least up to 60 days for the present measurements) after exposure to air as shown in Fig. 

5.4. 

The electrical characterization results presented above are all on 280 nm SiO2 substrates 

with Ti/Au metal contacts. The performance of 2D devices has been established to be influenced 

by their environment, namely, metal contacts and support substrates. Figure 5.5 summarizes the 

transfer characteristics of 20 L PdSe2 using different metal contact and support substrates. Fig. 

5.5(a-b) compares the performance when low-work function Ti is used compared to high work 

function metal, Pd. The field-effect electron mobility shows an enhancement by a factor of 3. This 

implies that the work function of Pd aligns better with the conduction band of 20 L PdSe2. 

Generally, for different thickness, samples with Pd contacts result in higher electron mobility, with 

a pronounced gain in thicker samples. For thinner PdSe2, the Ti/Au and Pd contacts have 

comparable electron mobilities, suggesting that Ti/Au is better suited for thinner devices. Also, 

bottom and top gate high dielectrics were used in place of SiO2 as shown in Fig. 5.5(c-d). The use 

of high dielectrics could help lower the operating voltages which is important for low-power 

electronics and wearables. The carrier mobility of PdSe2 is not affected by the substrate, with the 

value being the same for 280 nm SiO2 and 50 nmAl2O3. This is reasonable, as the role of high-

dielectric Al2O3 is to lower the sub threshold voltage from ~10 V to ~0.4 V. Similarly, ionic liquid, 

1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Hmim][TFSI]), was used as a 

top gate, achieving a lower subthreshold voltage. However, due to the increase in charge carrier  
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Figure 5.4. The transfer curve of pristine PdSe2 FET and the device after 60 days exposed in air 

for (a) 10 L (b) 46 L. 
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Figure 5.5. Transfer characteristics of 20 L PdSe2 (a) on 280 nm SiO2 with Ti/Au contacts (b) with 

high work-function, Pd metal contacts, (c) on 50 nm Al2O3 with Ti/Au contacts, and (d) with ionic-

liquid top gate. The voltage bias used in (a-b) is 1.0 V, and 0.1 V for (c-d). 
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injection in the channel as a result of the ionic liquid, the device performance was expected to be 

enhanced. Further studies still need to be carried out to understand the mechanism and results of 

carrier introduction into 2D PdSe2 semiconducting channel. 

5.4 Temperature-dependent properties in PdSe2 

Temperature dependence measurements were carried out on few-layer PdSe2 to understand 

the mechanism governing charge-carrier transport. The Ids–Vds output characteristics of 46 L 

device at different gate bias is shown in Fig. 5.6 at 300K (a) and at 16K (b). The linear behavior is 

maintained down to 16 K for hole carriers. The slight nonlinearity for the positive bias at 16 K 

suggests the presence of Schottky barrier at semiconductor-metal contact junction, which results 

in the increase of contact resistance for electrons carriers. Similar observations were made for 

thinner devices for both hole and electron carriers.  

Fig. 5.7a shows the temperature dependence of the carrier mobility in 10 L PdSe2 which is 

similar to that found in other layered materials; the carrier mobility decreases at temperatures 

higher than ~100 K and saturates (or decrease slightly) at lower temperature. The behavior of the 

mobility at low temperature is most likely due to the dominant charged impurity scattering 

mechanism. As the temperature increases, the mobility decreases due to phonon scattering, 

following a power law relation μ ~ T−γ, where γ is close to 0.24. The γ value for few layer PdSe2 

is notably smaller than values in other 2D materials such as monolayer MoS2 (γ ≈ 1.40; ref. 112), 

but agrees with that in few layer BP (γ ≈ 0.5; ref. 56) and monolayer MoS2 with double dielectric 

layers (γ ≈ 0.3; ref.113). The decrease in the value of γ with number of layers as shown in Fig. 5.7b 

may be attributed to the suppression of the homopolar phonon modes due to the strong interlayer  
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Figure 5.6. (a) Drain-source current (Ids) versus voltage (Vds) at negative back voltages Vbg = -60 

V ~ 0 V showing linear characteristics at 300 K. The inset shows a similar characteristic at positive 

back voltages Vbg = 60 V ~ 0 V, confirming the ambipolar characteristics of PdSe2.  (b) Ids - Vds 

characteristics at 16 K, for negative back voltages. Inset shows for positive back voltages. (All 

measurements were from a 46 L PdSe2). 
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Figure 5.7. (a) The electron apparent mobilities measured at different temperatures for PdSe2 

flakes with a thickness of 10 L. Below 100 K, the mobilities are independent of temperature, but 

above 100 K, the mobilities decrease with increasing temperature due to the phonon scattering, 

following a T−γ dependence with γ close to 0.24. (b) Log-log plot of mobility as a function of the 

temperature for different number of layers through two-terminal configuration. The power-law 

coefficient, γ is extracted from the slope of the graph, which reveals phonon scattering mechanism 

for few-layers, and scattering by charged impurities for several layers. (c) Plot of on/off ratio 

(rounded to the nearest tens) with temperature for 10 L and 46 L PdSe2. (d) Plot of temperature 

dependence of the two-terminal conductance at different gate voltages for 10 L device. (e-f) 

Conductance as a function of gate voltage for different temperatures for PdSe2 flakes with a 

thickness of 10 L and 46 L, respectively. The crossing around ~40 V for the 10 L device indicate 

the change in temperature dependence which is absent in the 46 L device. Inset shows the color 

plot of the conductance as a function of temperature and gate bias.  



76 

 

interaction in layered PdSe2. For several layer PdSe2, phonon modes have been fully quenched 

resulting γ ~ 0, making the dominant scattering mechanism charge impurity. This is due to the 

increase in charge carrier concentrations with number of layers. Further theoretical and 

experimental work is needed to clarify the detailed mechanism. 

In addition, an increase in current modulation up to >109 is observed for few-layer PdSe2 

as temperature is lowered (see Fig. 5.7c).  The plot of the temperature dependence of the two-

terminal conductivity at different gate bias for the 10 L device is shown in Fig 5.7d. With Vbg < 40 

V, the conductivity of the 10 L device decreases with decreasing temperature, indicating insulating 

behavior, whereas for Vbg > 40 V, the temperature dependence is reversed, showing metallic 

behavior. The crossover from insulating to metallic conductance is shown in more detail in Fig 

5.7e. Interestingly, this gate-bias induced metal-insulator transition (MIT) behavior was only 

observed in thinner devices (i.e., < 24 L). For thicker PdSe2 devices, the conductance always 

increases with increased temperature at all gate bias (Fig. 5.7f) suggesting there is no MIT in thick 

flakes of PdSe2. This MIT behavior could be a result of quantum interference effects of weak and 

strong localization. 

Strong localization occurs at the insulating state due to low carrier concentration, and weak 

localization occurs at the metallic state as a result of high carrier concentration. However, the 

conductivity of the 46 L device increases with temperature (insulator behavior) at all gate biases 

suggesting a threshold thickness for the transition (see inset of Fig. 5.7f for the color plot) which 

is estimated to be ~24 L. Strong electron-electron interaction has been suggested as the reason for 

the metal-insulator transition in low-disordered 2D systems, which arises as the system is quantum 

confined to two dimensions112. The strength of this correlation is characterized by the Wegner-

Seitz radius given as:  
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where nv is the number of degenerate valleys in the spectrum, aB
*  =  (4πɛ 2)/(m*e2) is the effective 

Bohr radius, with ɛ being the dielectric constant and m* is the effective electron mass. For a system 

in which rs << 1, the scaling theory of localization is valid. However, this is not true when rs ≫ 1 

which is a characteristic for strongly interacting systems. For monolayer MoS2
112 and ReS2

114, rs 

>> 1, similar to the values obtained for our PdSe2 samples (~ 6.3 for few-layer systems, and ~2.8 

for several-layer systems). This value was obtained considering the effective mass of electron m* 

= 0.28 – 0.52, while dielectric constant, ε, 1.7 times that of MoS2 (~12.5ε0)
115. This confirms that 

few-layer PdSe2 have stronger Coulomb interactions. Ioffe–Regel criterion predicts the existence 

of a MIT when kF·le satisfies the criterion kF·le~1, with the Fermi wave vector kF = (2πn2D)1/2, and 

mean free path of electrons le  =   kFσ/n2De2. According to this criterion, for kF·le ≫1 the phase is 

metallic whereas for kF·le≪1, the phase is insulating. For our devices, at the crossing point of Vg  

=  40 V (corresponding to n2D = 1.87 x 1012 cm-2), we have kF·le ~ 4.8, similar to that in few-layer 

MoS2 (~2.84)113. For thicker devices, kF·le is less than 1, showing a continuous insulating phase.   

5.5 Anisotropic properties of PdSe2 

PdSe2 has a unique structure that is anisotropic in-plane. This 

structural anisotropy translates to some very interesting orientation-dependent vibrational, optical 

and electrical properties. Here, directional characterization and analysis of the phonon, non-linear 

optical and electrical properties in PdSe2 are presented. Using polarization dependent Raman 

experiments coupled with Raman polarization modeling, under parallel laser configuration, the Ag 

and B1g Raman modes exhibit distinctly different polarization profiles, which enable their 
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differentiation. Also, second harmonic generation (SHG) was performed with SHG detection 

polarization parallel to the excitation laser polarization, showing a two-fold symmetry for even-

layered PdSe2. Lastly, a complementary radially contacted field effect transistor (FET) was 

fabricated in order to measure orientation-dependent electrical properties. Mobility and 

transconductance followed a sinusoidal-like dependence on orientation. Correlating these results 

show that Raman and SHG methods might be used as a nondestructive technique to orient PdSe2 

devices for optimum performance.  

5.6.1 Raman spectroscopy 

As discussed in chapter 3, Ag and B1g Raman modes can be observed in back-scattering 

Raman measurements, and their Raman tensors �̃� are 

�̃�(Ag) = (
𝑎 ∙ ∙
∙ 𝑏 ∙
∙ ∙ 𝑐

),                �̃�(B1g) = (
∙ 𝑑 ∙
𝑑 ∙ ∙
∙ ∙ ∙

).                                   (5.2)                                      

In the experimental back-scattering laser geometry (light Z in and Z out), the electric polarization 

vectors of the incident and scattered light ei and es are in-plane (the X-Y plane), and they are given 

by ei = (𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃, 0) and es =(𝑐𝑜𝑠𝛾, 𝑠𝑖𝑛𝛾, 0). Since Raman intensity 𝐼 ∝ |ei·�̃�·es
T|2, it follows that  

𝐼 ∝ |(𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃, 0) �̃� (
𝑐𝑜𝑠𝛾
𝑠𝑖𝑛𝛾

0
)|

2

.                                                        (5.3)                                      

Substituting the Raman tensors �̃� from Eq. 5.2 into Eq. 5.3, we have 

 𝐼(Ag) ∝ |𝑏|2 |
𝑎

𝑏
𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝛾 + 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝛾|

2

,   𝐼(B1g) ∝ |𝑑|2𝑠𝑖𝑛2(𝜃 + 𝛾).                  (5.4)  

 

In the parallel polarization configuration, 𝛾 = 𝜃, and thus 
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𝐼(Ag) ∝ |𝑏|2 |
𝑎

𝑏
𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃|

2

∝ |𝑏|2 |(
𝑎

𝑏
− 1) 𝑐𝑜𝑠2𝜃 + 1|

2

, 

𝐼(B1g)∝ |𝑑|2𝑠𝑖𝑛2(2𝜃).                                                        (5.5) 

On the other hand, in the cross-polarization configuration, 𝛾 = 𝜃 + 90°, which gives 𝑐𝑜𝑠𝛾 =

−𝑠𝑖𝑛𝜃 and 𝑠𝑖𝑛𝛾 = 𝑐𝑜𝑠𝜃. Subsequently, we have 

𝐼(Ag) ∝ |𝑏|2 |−
𝑎

𝑏
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃|

2

∝ |(𝑏 − 𝑎)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃|2 ∝
|𝑏−𝑎|2

4
𝑠𝑖𝑛2(2𝜃) 

𝐼(B1g) ∝ |𝑑|2𝑠𝑖𝑛2(2𝜃 + 90°) ∝ |𝑑|2𝑐𝑜𝑠2(2𝜃).                                       (5.6) 

According to Eq. 5.5, the Ag mode exhibits an intensity variation period of 180° under the parallel 

configuration, where the maximum intensity direction depends on the ratio of  
𝑎

𝑏
, as shown in Fig. 

5.8a. Similar results can be found for anisotropic black phosphorus.105,116 According to Eq. 5.6, 

the period of the Ag mode changes to 90° under the cross configuration (Fig. 5.8a). On the contrary, 

for the B1g mode, the intensity variation period is 90° under both polarization configurations. 

Nevertheless, there is a 45° phase difference between the two polarization profiles of the B1g mode, 

as illustrated in Fig. 5.8b. In short, under the experimental parallel laser configuration, the Ag and 

B1g Raman modes exhibit distinctly different polarization profiles (Fig. 5.8a), which enable their 

differentiation. 

As discussed in previously, bulk PdSe2 has 3 Ag Raman modes (Ag
1, Ag

2, Ag
3) and 3 B1g 

Raman modes (B1g
1, B1g

2, B1g
3), and they are still Raman active in NL systems. In addition, many 

Raman-inactive modes in the bulk become activated in few-layer systems due to symmetry 

reduction, giving rise to new peaks in few-layer samples. As shown in Fig. 5.9 for the LF Raman, 

Ag
1 (P5) and B1g

1 (P'5) modes are very close to each other and thus often appear as a single mixed 
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Figure 5.8. Theoretical polarization diagrams for (a) Ag symmetry and (b) B1g symmetry Raman 

modes of PdSe2 in parallel z(xx)z  and cross z(xy)z  polarization configurations. 
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Figure 5.9. The major Raman peaks for 2L PdSe2 measured in polarization configuration. Inserts 

show polar plots of Raman intensities versus polarization angles measured by rotating the sample. 
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peak around 146 cm-1 in unpolarized Raman measurements. Additional new Raman peaks are 

noticeable on the left of the Ag
1 peak (P5), with parallel polarization showing two-fold symmetry 

for the Ag peaks as expected from theory.  

5.6.2 Structure anisotropy characterized by second-harmonic generation (SHG)  

Nonlinear optics involves processes in which coherent light particles change their 

properties, such as their frequency, when they pass through an optical medium. For example, the 

frequency of a photon can double or triple, leading to the generation of second- or third-order 

harmonics, respectively. Second harmonic generation (SHG) is the basis of frequency doubling 

which is the phenomenon behind all-optical devices employing self-phase modulation and four-

wave mixing117. For a material to exhibit SHG, absence of inversion symmetry is required since it 

is a second-order parametric process. Atomically-thin 2D materials with nonlinear optical 

properties have potential in quantum applications for the generation and manipulation of non-

classical light118. 

For some 2D materials, SHG was observed in odd-layered TMDs, which disappears in 

even-layered TMD due to the restoration of inversion symmetry119. In contrast, due to the crystal 

structure of PdSe2, even layers lack inversion symmetry, which is absent in odd layers and bulk as 

described in chapter 3. Confocal laser scanning microscopy with wavelength ~800 nm was used 

to characterize the second harmonic response from PdSe2 with different thickness. As shown in 

the SHG spectra of Fig. 5.10a, SHG intensity shows up around half of the incident wavelength, 

which corresponds to frequency doubling. The intensity from even-layered PdSe2, shown in Fig. 

5.10b was more pronounced than that from odd-layers due to the non-centrosymmetric nature of 

their crystal structure. Figure 5.10c shows the optical image of a PdSe2 with even- and odd-number 

layer (4L on the left and 3L on the right) with the corresponding SHG intensity map shown in  
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Figure 5.10. (a) Second harmonic generation (SHG) spectrum from PdSe2 thin layers with 

different layer number (800 nm wavelength laser was utilized). b) The SHG intensity as a function 

of layer number. (c) Optical image of PdSe2 with 4L and 3L regions. (d) SHG map of the PdSe2 

crystal showing intense SHG signal for 4L part of the crystal and almost no signal for the 3L part. 

(e) Integrated intensity of the SHG spectrum (from 380 to 420 nm) versus a rotation angle relative 

to the laser polarization.  Two inserts show optical images of the PdSe2 crystal corresponding to 

0° (right) and 90° (top) crystal orientations relative to the laser polarization.  The blue line shows 

fit with A+Bcos2α where A=5925 and B=628. 
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Fig. 5.10d. The SHG map shows that the 4L part has a strong SHG signal with almost no signal 

observed from the 3L part. As shown in Fig. 5.10e the SHG polarization diagram can be fit with 

𝑐𝑜𝑠2𝛼, where 𝛼 is an angle between laser polarization and crystal orientation with its 0° position 

shown in Fig. 5.10c.  This two-fold symmetry displayed in even-layer PdSe2 is similar to that 

observed in black phosphorus.105,116 Note that in this case the SHG detection polarization is parallel 

to the excitation laser polarization. The presence of low-symmetry anisotropy in PdSe2 aids the 

rapid identification of crystal orientation from optical characterizations. 

5.6.3 Anisotropic electrical behavior of 2D PdSe2 

To probe the orientation-dependence of the electrical properties of PdSe2, angular 

transconductance and field effect mobility measurements were performed using a two-terminal 

probe configuration. Fig. 5.11a shows the optical image of a typical PdSe2 flake patterned with 

metal contacts at different angles. Fig. 5.11d shows the plot of transconductance and mobility as a 

function of angle. The transconductance (Gm = dIds/dVg) and field-effect mobility were estimated 

from the linear portion of the transfer curves measured. A clear dependence on crystallographic 

orientation is observed with a two-fold symmetry, similar to the anisotropy properties seen in the 

Raman spectroscopy and SHG experiments. The angular dependence is fit with a sinusoidal curve, 

with characteristic wavelength of π and a maximum at around 90°. The Gm ranges from 0.467 to 

0.622 µS and µFE from 169 to 180 cm2/Vs, which correspond to a ~ 33% and ~7% anisotropy in 

the transconductance and mobility, respectively. The discrepancy in the measurements might be 

as a result of the simple device structure used which can be affected by current spreading. The 

maximum electron mobility is achieved along the puckered axis as shown in the schematic and 

STEM image of Fig. 5.11(b-c). This puckered axis is similar to the arm-chair direction in black 

phosphorus, where effective electron mass is lowest. It’s expected that like black phosphorus, the  
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Figure 5.11. (a) Optical image of the device with the angular orientation. (b) Schematic of the 

crystal structure along the puckered axis. (c) STEM image showing the zigzag puckered structure. 

(d) Angular dependence transconductance and field-effect mobility.  
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driver of the anisotropy in electrical performance will be the difference in the effective mass along 

different angular orientations. Further studies are needed to provide a clearer understanding. 

Regardless, in order to achieve optimum electrical performance, devices should be constructed 

across the a-direction. 

5.6 Summary  

In summary, field-effect transistor (FET) devices of mono- and few-layer PdSe2 crystals 

were successfully fabricated and characterized. 2D PdSe2 exhibits an ambipolar characteristics, 

with decreasing relative n-type conduction with layer number. PdSe2 shows layer-dependent and 

tunable electrical properties with broad-range of applications including FET active channel, 

CMOS, digital inverters, comparators, and FET contacts. More importantly, PdSe2 exhibits a high 

carrier field-effect mobility ~158 cm2/Vs and high on/off ratio as high as 106. Unlike black 

phosphorus, PdSe2 is relatively stable in air, with little changes in device performance over a period 

of 60 days. Through device engineering, it was revealed that the performance of PdSe2 transistors 

can be optimized to achieve higher carrier mobilities with Pd metal contacts, and a low operating 

voltage using high dielectric substrates. Temperature-dependent studies reveal a metal-insulator 

transition in few-layer PdSe2 which is absent in several-layer systems. Finally, through Raman 

spectrocopy, SHG and angular-device characterization, the low-symmetry in PdSe2 was confirmed 

which can be used for the determination of the crystal orientation. The unique characteristics 

exhibited by this material will spark interest making it a promising candidate for 2D layered 

electronics. 
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Chapter 6: Vacancy-induced phase transition in layered PdSe2 

6.1 Introduction 

 Phase transformation has occupied an important subject/area in the field of material 

science, due to its ability to realize new phases and materials which can extend the knowledge of 

material properties and their capabilities. Through a change in temperature and pressure, 

conventional phase transitions have been observed between states of matter (including solid, liquid 

and gas) with corresponding structural and electronic changes. In two-dimensional layered 

materials, structural transformations have been reported to induce metal-insulator transition, 

charge-density waves, and superconducting states.20 Unlike monolayered graphene, hBN and 

black phosphorus, 2D materials which have a transition metal sandwiched between two chalcogen 

atoms exhibit structural polymorphs. For example, 2H-MoS2 which is semiconducting has shown 

a transformation to metallic 1T-MoS2 phase under electron-beam irradiation.120 This 2H/1T phase 

transition involves gliding atomic planes of Sulphur and/or molybdenum and requires an 

intermediate phase as a precursor.  Also, laser-induced phase patterning has been used to achieve 

metallic monoclinic 1T’-MoTe2 from semiconducting hexagonal 2H-MoTe2. However, the 

structural transformation is triggered by Te-vacancies.121 Identically, chalcogen vacancies have 

induced phase transformation of SnS2 to SnS, SnSe2 to SnSe and PdSe2 to Pd2Se3.
122,123 In addition 

to gliding of atomic planes, and chalcogen vacancies, electrostatic doping, strain and pressure can 

induce structural phase transition in layered TMDs.124-126  

Palladium diselenide (PdSe2) is a rediscovered 2D material that has garnered attention due 

to its unique pentagonal structure, strong interlayer interaction, excellent electronic properties and 

relative stability in air.127,128  PdSe2 belongs to group 10 transition metal dichalcogenide, with 

varying bandgap from ~0 – 1.3 eV depending on the thickness from bulk to monolayer.127 In 



88 

 

addition to its widely tunable electronic properties as a result of layer dependence, PdSe2 is rich in 

polymorphic phases which can provide an extra degree of freedom due to structural 

transformation. Known related phases of PdSe2 include: orthorhombic PdSe2, PdS-type tetragonal 

PdSe, cubic Pd17Se15, orthorhombic Pd7Se4, monoclinic Pd34Se11, monoclinic Pd7Se2, tetragonal 

αPd4Se, and trigonal Pd9Se2 with increasing relative Pd composition.129 Recently, J. Lin, et. al 

demonstrated that the removal of Se atoms in PdSe2 can result in the welding of two bulk 

monolayers to form novel-Pd2Se3 by electron irradiation.122 A loss of one-fourth of the Se atoms 

induced stronger interlayer interactions which results in the formation of Pd2Se3. Due to the many 

polymorphic phases, unlike most 2D TMDs, multiple PdSe2 relative phases can be achieved by Se 

atom removal. For example, hypothetically, a loss of ~50% of the original Se atoms should lead 

to PdSe or Pd17Se15.  

6.2 Phase-transition mechanism in PdSe2 

The ability of high-energy particles to induce atomic displacements in few-layer materials 

raises the possibility that layered PdSe2 could be controllably converted to one of more of its 

polymorphic phases. The shorter interlayer distance allows for an ease in atomic reconfiguration 

after removal of Se atoms. Atomic combination of atomic-resolution electron microscopy and ab 

initio calculations could reveal possible intermediate phases, as well as the final phases. Also, these 

methods could provide a detailed understanding of defect formation and interaction mechanisms, 

as well as phase interconversion pathways in PdSe2. Also, since the less Se-containing phases are 

metallic in nature, they can be used to design Ohmic contacts for semiconducting PdSe2 devices. 

In this experiment, argon plasma from Oxford’s reactive ion etching (RIE) metal etcher at 50W 

RF power was used, which has a corresponding etching rate of ~2 nm/sec. Pristine samples were 

protected using PMMA patterned through electron-beam lithography, which is then dissolved in 
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acetone and IPA after irradiation. Fig. 6.1a shows the optical image of ~40 nm pristine PdSe2 

before and after part of it was exposed to Ar+ plasma irradiation. The exposed area was etched 

down to ~10 nm, with visible difference in optical contrast. To investigate the properties of the 

irradiated regions in comparison with the pristine areas, Z-contrast atomic-resolution and cross-

sectional STEM and DFT calculations were used to identify the structure of the irradiated PdSe2, 

Raman spectroscopy was used to identify atomic vibrations, Nano-Auger electron spectroscopy 

was used to identify and quantify atomic composition, while electrical characterization was carried 

using a two-terminal field-effect transistor (FET) device configuration. 

6.3 Structural properties of PdSe2 and the new phase 

The atomic structure of the pristine and plasma-irradiated PdSe2 flakes were characterized 

by scanning transmission electron microscopy (STEM). Fig. 6.1b shows the SEM image of a 

typical sample after transferring on TEM grid. The left and right regions are the pristine and 

irradiated parts, respectively. A sharp interface between the two regions can be observed, which is 

made possible by the lithography patterning and covering of the pristine part with PMMA e-beam 

resist. Fig. 6.1c shows that the  atomic structure of the pristine region agree very well with the 

structures earlier reported.127 However, the atomic structure of the plasma-irradiated region 

deviated from that of the pristine region, indicating that the material has undergone phase 

transformation. The schematic of the phase transformation process is shown in Fig. 6.1d, where 

the pristine, PMMA-covered PdSe2 retains its structure. However, due to the Ar+ ion 

bombardment, a partial phase transformation takes place, which with a longer irradiation exposure 

result in a total conversion of the structure. The ADF images of the new phase appears very 

different from the few-layer PdSe2 crystals as shown in Fig. 6.1(e-f). The atomic structure 

observed is that of Pd17Se15 which agree well with the image simulations of shown in  
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Figure 6.1. (a) Optical image of ~40 nm thick PdSe2 before and after 10s argon plasma treatment. 

(b) Scanning electron microscope (SEM) image of pristine and irradiated PdSe2 on TEM grid. (c) 

Atomic resolution STEM image of pristine PdSe2. (d) Schematic diagram depicting the phase 

transformation process. (e-f) Atomic resolution structure of irradiated PdSe2 crystals revealed by 

Z-contrast STEM images and corresponding simulated images (g-h). Insets in (e) shows atomic 

models of the STEM image. 
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Fig. 6.1(g-h), respectively. Bulk Pd17Se15 crystals exhibit 𝑃𝑚3̅𝑚 space group symmetry 

and 𝑚3̅𝑚 point group symmetry. In contrast, with PdSe2 which has an orthorhombic lattice that 

contains four Pd and eight Se atoms in one-unit cell, Pd17Se15 is a cubic lattice in which its unit 

cell is almost 9 times that of PdSe2. Also, the new phase is isotropic in nature unlike anisotropic 

PdSe2 and has 0 eV bandgap. 

The phase transformation process is thought to be induced by the removal of Se atoms from 

the lattice due to Ar+ bombardment as previously reported for SnS(Se)2.
123 Similarly, the removal 

of Se atoms from the lattice of bilayer PdSe2 has been shown to lead to Pd2Se3 due to exposure to 

electron-beam.122 Therefore, with varying treatment method and parameters, PdSe2 can be 

transformed into new materials, especially since it has many rich phases, unlike most 2D materials. 

The phase transformation is aided by the short interlayer distance present in PdSe2, which induces 

a structural reconstruction after Se atoms removal. In addition to the phase transformation, the 

original material undergoes thinning as shown in Fig. 6.1d, reasonably due to the amount of Se 

atoms (about ~50%) that have been removed from the lattice.  

Fig. 6.2a shows a cross-sectional STEM examination of a partially-converted PdSe2. The 

new phase appears perpendicular to the etching direction. Fig. 6.2(b-c) shows the cross-sectional 

atomic structure of PdSe2 and Pd17Se15, respectively. The distinct interface of the phase 

transformation is shown in Fig. 6.2d. The possible reaction surface is shown in the schematics of 

Fig. 6.2e with Pd17Se15 having a different orientation from the original PdSe2 phase similar to that 

reported for SnS2 to SnS.123 The corresponding fast Fourier transform (FFT) patterns of the 

Pd17Se15 phase is shown in Fig. 6.2f which indicates the cubic structure with diffraction patterns 

of (220), (322̅̅̅̅ ) and (412̅̅̅̅ ), confirming the crystallinity of the new phase.  
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Figure 6.2. (a) Cross-sectional SEM image of the PdSe2/Pd17Se15 phase transformation. (b-c) 

Shows the atomic structure of PdSe2 and Pd17Se15, respectively, overlaid with their atomic models. 

(d) Cross-section STEM of the PdSe2/Pd17Se15 heterointerface with possible reaction surface 

schematically illustrated in (e). The FFT of the Pd17Se15 is shown in (f) with diffraction patterns 

of (220), (322) and (412). 
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6.4 Optical properties in PdSe2 and the new phase 

To understand the differences in the atomic vibrations between the pristine and irradiated 

PdSe2, Raman spectroscopy was carried out. Fig. 6.3a shows the obtained Raman spectra for the 

anti-stokes and stokes mode for a ~10 nm sample. The red and black curves represent the spectra 

for the pristine and irradiated samples, respectively. The three main peaks observed correspond to 

the Ag
1-B1g

1,Ag
2, and Ag

3 modes as defined for PdSe2 in ref [127]. The B1g
2 peak is visible in the 

spectra, although with a lower intensity due to the orientation of the crystal and its anisotropic 

nature. The B1g
3 peak is on the shoulder of the Ag

3 also with relatively lower intensity. There is no 

difference in the spectra of pristine PdSe2 and after irradiation in the high-frequency region (~ 

100cm-1 – 300cm-1) as shown in Fig. 6.3b. Also, there is no observed peak shift from statistically 

over 30 measured samples. Reports shows a similarity in the Raman peak which is corroborated 

by theoretical calculations.130  However, in the LF Raman region (< 60 cm-1), there is a significant 

difference (Fig. 6.3c): disappearance of some peaks, with new peaks appearing at a reduced 

intensity. Recent work on low-frequency PdSe2 shows each LF Raman peak could fit a model that 

accurately depicts the number of PdSe2 layers. The fact that LF Raman intensities in PdSe2 crystals 

are comparable to that of HF Raman makes it possible to characterize interlayer atomic vibrations 

in the breathing mode. The observed LF Raman peaks after irradiation deviates from the 

established model for PdSe2, thereby suggesting not only the thinning of the crystal but the creation 

of a new material. To understand better the phase transition mechanism, a reduced plasma power, 

25 W was used on a ~7 nm PdSe2 flake. Fig. 6.3d shows the Raman spectra in the LF region 

suggesting a mixed intermediate phase which is thought could be a result of incomplete conversion 

of the PdSe2 to Pd17Se15. 

Auger electron spectroscopy (AES) is a great tool to reveal atomic compositions especially  
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Figure 6.3. (a) Stokes and anti-Stokes Raman spectra of pristine and irradiated PdSe2 crystals 

with a focus on the high-frequency (HF) region (b), and low-frequency (LF) region (c) for ~10 

nm thick flake. (d) Raman spectra on ~ 7 nm thick flakes using a lower plasma power of 25 W, 

with treatment done at 3 sec intervals. 
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relating to vacancies and defects. Fig. 6.4a shows the scanning electron microscopy (SEM) image 

of a sample in which the left side has been exposed to Ar+ plasma, while the right part has been 

protected by PMMA through an electron-beam patterning fabrication process. The two red circles 

are where point-data from the nano-Auger was accumulated using a Survey Scan. Fig. 6.4 (b&d) 

show the survey spectra in both direct mode and derivative mode which indicates the presence of 

Pd, Se, C, Si, and O atoms. The Si atoms originate from the Si/SiO2 substrate used, while C atoms 

indicate the presence of carbon residues from the photolithography process. Gray scale maps for 

Pd, and Se are shown in Fig. 6.4c (top images).  The raw map data was processed this way: a 

smooth function was initially used on each map and then the contrast min/max were stretched to 

get a visually appealing image, and finally, the brightness was adjusted to minimize the noise level.  

Color maps and color-combined maps for Se + Pd was created from the individual maps:  Fig. 6.4c 

(bottom) shows color-combined maps made from the gray-scale images, with a more blueish 

composition in the irradiated area due to the relative presence of more Pd atoms. To analyze the 

composition of the atoms in each material with improved accuracy, a 2 µm x 1 µm area was chosen 

around where the point data were taken. This is slightly different from point-data in that the 

resulting composition is an average of the area contained within the defined area. Table 6.1 shows 

the average composition from the two areas, where the Se/Pd ratio of the irradiated area is lower 

than that of the pristine area. This shows that the irradiated area has experienced the removal of 

about half the selenium atoms, which is the main driver for the phase transformation similar to 

those observed in SnSe2.
123 It is important to note that the ratio for the irradiated areas is higher 

than expected. This is probably because the sensitivity factor was adjusted to match the pristine 

sample composition. Knowing that pristine PdSe2 has inherent Se vacancies, the Se/Pd ratio should 

be less than two, which when normalized will make the values of the Se/Pd for the irradiated  
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Figure 6.4. (a) Scanning electron microscope of irradiated and pristine regions of PdSe2 crystal. 

(b) Survey spectra in both direct mode and (d) derivative mode which indicates the presence of 

Pd, Se, C, Si, and O atoms. (c) top image: gray scale maps for Pd, and Se obtained from the 

atomic composition in the survey spectra. Bottom image: color maps showing an increase in 

relative Pd composition for the irradiated areas. 
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Table 6.1. Composition of atoms from the irradiated and pristine areas obtained from nano-Auger 

electron spectroscopy 

 

  

Surface composition (at.%) 

Area Pd Se C O Si Se/Pd 

(actual) 

Se/Pd  

(expected) 

Irradiated 20.7 22.0 51.7 2.2 3.3 0.941 0.882 

Pristine 20.7 41.4 37.6 0.1 0.2 2.0 2.0 
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close to the expected values. 

6.5 Improved contact resistance with PdSe2/Pd17Se15 heterojunction Field Effect 

Transistors (FETs) 

Using a two-terminal field-effect transistor (FET) configuration, the electrical properties 

of the new phase was studied. Fig. 6.5a shows that Pd17Se15 displayed a metallic behavior with no 

gate dependence with total resistivity of ~1.9 kΩ.μm. This is in agreement with previous studies 

conducted on the thin film and nanotube forms of Pd17Se15.
130,131 Furthermore, temperature-

dependence measurements shown in Fig. 6.5b corroborated the metallic property, with a decrease 

in electrical conductivity with temperature due to the increase in the frequency of collisions 

between electrons and metal ions, at high temperature in metals. Due to the metallic property of 

the new phase, PdSe2 devices can be designed with Pd17Se15 contacts. Figure 6.5c shows the optical 

image of a PdSe2 device with semiconducting channel, and the contact regions on the edges have 

undergone Ar+ plamsa-irradiation, with resulting Pd17Se15 phase. From Fig. 6.5d, the absence of 

gate dependence in the transfer characteristics of the contacts confirm metallic behavior, while the 

channel displayed a typical semiconducting behavior observed in layered PdSe2.
127 The calculated 

two-terminal FET mobility of the channel using the metallic PdSe2 is ~150 cm2V-1s-1 , a 1000% 

increase when compared to ~12 cm2V-1s-1 of similar thickness reported in Ref [127], in addition to 

the absence of hysteresis.  

To understand the origin of the improvement in device performance, temperature-

dependence electrical measurements were carried out to calculate the Schottky barrier at the 

Pd17Se15-PdSe2 compared to the traditional metal-PdSe2 interfaces. Fig. 6.5e shows Ids-Vds plots at 

different temperatures from 77K – 300K for zero gate voltage while Fig. 6.5f shows the 
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Figure 6.5. (a) Output characteristics of Pd17Se15 device showing no gate dependence at room 

temperature. (b) Temperature-dependent output characteristics displaying a decrease in 

conductivity with temperature. (c) Optical image of PdSe2 FET with Pd17Se15 edge contacts. (d) 

Transfer characteristics for the metallic contacts and PdSe2 semiconducting channel. (e) 

Temperature-dependent transfer characteristics. (f) The log(Ids) versus 1/T curves at different 

drain bias and the corresponding extracted slopes in (g). (h) Schematic diagram showing the 

absence of Schottky barrier in Pd17Se15/PdSe2 junction. 
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corresponding log(Ids) vs 1000/T plot at different voltage bias. The current-density of thermionic 

emission through a metal-semiconductor contact is 

𝐼𝐷𝑆 = 𝐴𝑇3/2exp [−
𝑞

𝑘𝐵𝑇
(∅𝐵 −

𝑉𝐷𝑆

𝑛
)] …                   ……..(6.1) 

where A is the Richardson constant, VDS is the applied voltage bias, T is the temperature, and kB 

is the Boltzmann’s constant. 

The plot of the slope from Fig. 6.5f is shown in Fig. 6.5g from where Schottky barriers are 

extracted as the intercept on the y-axis. Extracted Schottky barrier height ΦB values ~-1.85 meV – 

-2.71 meV, which is far less than ~62 meV obtained when traditional Ti/Au contacts were used. 

This shows that the improvement in the device performance was as a result of the reduction in 

Schottky barrier height as illustrated in the schematic of Fig. 6.5g. Near-zero Schottky barrier 

heights are desired in electronic devices to facilitate a faster collection of charge carriers. In Fig. 

6.5e the linear, symmetric nature of the output characteristics allude to the presence of ohmic 

contacts. For statistical purposes, several devices were fabricated with different thicknesses, with 

the Schottky barrier shown in Table 6.2. These near-zero values show the presence of ohmic 

contacts, which is much lower than values of 87.7 meV obtained when Ti/Au contacts were used 

for comparable channel thickness. The presence of Schottky barrier at the interface of metal-

semiconductor has been a key issue limiting electronic device performance. The ability and ease 

to achieve ohmic contacts with the use of phase-transformed Pd17Se15 for PdSe2, makes the latter 

a more interesting material for the electronic industry. 
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Table 6.2. Comparison of the Schottky barrier heights at the heterointerface of metal-PdSe2. 

 PdSe2 channel with Pd17Se15 

contact 

PdSe2 channel with Ti/Au 

contact 

Schottky barrier height 

(ΦB) 

Thickness of 

channel/contact 

3.52 meV 

7nm/4nm 

87.7 meV 

5 nm/ Ti (5nm) Au (30 nm) 

 5.81 meV 

7nm/4nm 

 

 -1.85 meV 

55 nm/30 nm 

62 meV 

23 nm/Ti (5nm) Au (30 nm) 

 -2.71 meV 

55 nm/30 nm 
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6.6 Summary  

In conclusion, a fast method was used for phase patterning of few-layer PdSe2 by Ar+ 

plamsa irradiation. Atomistic STEM and ab initio calculations were used to investigate the phase 

transformation of orthorhombic PdSe2 to cubic Pd17Se15. It was revealed that the loss of Se atoms 

due to sputtering by high-energy atoms caused the conversion. Although the high-frequency 

Raman spectra of both materials are similar, LF Raman spectra is a unique technique to 

differentiate between the two phases. This is because the new phase breathing modes deviates from 

the model developed to determine the interlayer vibrations in pristine PdSe2 crystals. Nano-Auger 

electron spectroscopy corroborates the chemical composition of the new phase with a loss of over 

50% of the Se atoms. Electrical measurements confirm the new phase to be metallic in nature, 

unlike semiconducting PdSe2. The Pd17Se15 was then used as a metallic contact to PdSe2 field-

effect transistors. The observed Schottky barrier present at the metal-semiconductor junction of 

2D materials were reduced because of the seamless electrical, physical and chemical 

connectivity between the contact and the channel. This lead to higher device performance, with 

mobility increasing by about 1000%. The metallic Pd17Se15 is an effective contact electrode 

with near zero Schottky barrier values of ~ -2.7 meV at zero gate bias compared to ~90 meV 

for traditional Ti/Au 3D metal contacts. This realization provides a pathway to design electronic 

devices with good ohmic contacts. 
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Chapter 7: Conclusion 

7.1 Major contributions of this thesis 

The major contributions of this thesis are as follows: 

1. Van der Waals (vDW) heterostructures of two dissimilar 2D materials was demonstrated 

using an all dry-transfer process. Gate-tunable rectifying behavior at the p-n junction was 

formed using WSe2-InSe and BP-MoSe2 heterostructures, with rectification factor as high 

as 20.  

2. This thesis demonstrates the isolation and optical and electronic characteristics of 

atomically thin palladium diselenide (PdSe2) crystals with a novel puckered pentagonal 

structure, experimentally revealed by atomic-resolution scanning transmission electron 

microscopy (AR-STEM). PdSe2 has a unique puckered lattice with planar tetra-coordinate 

Pd atoms and Se-Se bonds forming a unique pentagonal structure. It exhibits a widely 

tunable band gap that varies from semi-metallic (bulk) to ∼1.3 eV (monolayer) - a band 

gap variation wider than any previously reported for 2D materials55,132. Raman 

spectroscopy and first-principles calculations show a strong interlayer interaction in PdSe2 

revealed by the large, layer-dependent Raman peak shifts.  

3. Field-effect transistor (FET) device architecture was used to quantify and explore the 

performance of the 2D semiconductor material. FETs fabricated with conducting channels 

of few-layer PdSe2 display ambipolar charge carrier conduction which has applications in 

inverters and logic gate circuits. Also, the transistor displays a layer-dependent property in 

which the on/off ratio can be increased from 101 (bulk) to 106 (2L) PdSe2. With high 

electron field-effect mobility of ∼158 cm2 V−1 s−1, PdSe2 displays a useful property in 

designing novel electronic devices. In addition, PdSe2 FET exhibit a metal−insulator 
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transition (MIT) with transition at around gate voltage of ~40 V using traditional SiO2 

substrates. The use of high dielectric sapphire bottom gate and ionic liquid could be used 

to drive down the operating voltages of this devices to less than 1 V.  Overall, PdSe2 could 

become important for real-world applications due to their relative stability in air.  

4. Finally, to achieve optimum device performance, phase engineering was employed to tune 

the contact area of the FET to a metallic phase, thereby achieving desired ohmic contact. 

It has been established that the interface between the metal contact and 2D channel material 

must be carefully designed to eliminate or reduce large contact resistance, which is a result 

of the Schottky barrier present at the metal-semiconductor interface. The non-ohmic barrier 

could limit the flow of charge carriers, and cause undesired non-linear transport 

characteristics. Thus, contact engineering has gained a widespread interest in 2D material 

devices. Deliberate choice of metal contacts with Fermi levels that align well with either 

the conduction or valence band of the semiconductor material has been a route that has 

been explored. For example, low work-function Ti is typically used with MoS2 for electron 

conduction, while high work-function Pd and Au are necessary for hole conduction. 

Mismatches in the band alignment at the interface makes the use of homojunctions – 

contacts from the same material but with a different phase - a favorable route to eliminate 

contact resistance and achieve ohmic contacts. For example, semiconductor MoS2 have 

displayed lower contact resistance when matched with metallic 1T MoS2. The realization 

of metallic PdSe2 will facilitate the widespread adoption of PdSe2 in electronic devices. 

7.2 Recommendations for future work 

Based on the findings and discussion presented in this thesis, the following studies are 

recommended for future works: 
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1. Optimization of PdSe2 field-effect transistor (FET) performance 

To improve the prospects of 2D semiconductor technologies in future electronic devices, their 

performance must be comparable to or better than those obtained using silicon. Current 

technologies using silicon (Si) have been able to achieve mobility as high as ~1400 cm2V-1s-1 at 

room temperature. Previous work on PdSe2 have shown that we can realize up to ~220 cm2V-1s-1, 

which was achieved using a basic two-terminal configuration usually associated with high contact 

resistance. Therefore, there is need to explore, experimentally, the intrinsic carrier mobility of 

layered PdSe2 by using a four-terminal probe configuration to eliminate contact resistance 

associated with the two-terminal measurements. In addition, metallic Pd17Se15 can be used as 

interface contacts to reduce the Schottky barrier present at the metal-semiconductor junction. Also, 

to achieve an enhanced device performance, ionic gels can be used to increase carrier concentration 

in the semiconducting channel and high dielectric substrates can to reduce operating voltages. 

Lastly, using few-layer hexagonal boron nitride as a passivation/dielectric layer can help maintain 

device performance over an extended period. 

2. Single material homojunction devices 

Due to the widely tunable band gap of PdSe2 from semi-metallic to semiconductor behavior, 

PdSe2 can realize a stable, efficient single material device without the need for phase engineering, 

with both channel and contact materials made from layered PdSe2. Several layers of PdSe2 could 

form the electrical contact, with few-layer PdSe2 serving as the semiconducting channel. Similar 

device configuration has been predicted for the structural analogue of PdSe2
111. This should reduce 

contact resistance, and further optimize device performance.  
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3. 2D thermoelectric devices 

Previous report shows interestingly high Seebeck coefficients (>200 μV/K) and high electrical 

conductivity in 2D PdSe2.
1 From preliminary experiments conducted during this thesis, the 

electrical transport is mildly affected by temperature, suggesting a low thermal conductivity. These 

properties, in conjunction with the anisotropic characteristics in the electronic structure of PdSe2, 

suggests that exploring their applications in thermoelectric devices is a worthy venture. 133  

4. Exploring the few-layer properties of metallic-Pd17Se15.  

Since we can now realize Pd17Se15 from 2D PdSe2, the electrical, optical and structural 

properties of atomically-thin Pd17Se15 can be studied. Previous work on bulk Pd17Se15 shows a 

metallic characteristic, with superconductivity behavior below 2.2 K.134 Also, Pd17Se15 has shown 

great applications in electrocatalysis and solar cells.130,131  
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