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ABSTRACT 
Ocular infections with Herpes Simplex virus (HSV) can have damaging consequences 
one of which is the loss of vision due to a chronic inflammatory reaction. T cells of the 
Th1 subset appear to be the main orchestrators of the inflammatory reaction. Certain 
components of the host immunity help to suppress the severity of lesions. My research 
focuses on one such protective component - CD4 regulatory T cells (Treg). We showed 
that Treg can initially function to suppress lesion development but this function can be 
lost and become pro-inflammatory. This provided the challenge of why this so-called 
plasticity occurred and how might it be prevented from developing. I was able to show 
that inhibiting the epigenetic modification occurring within the Foxp3 gene curbed the Treg 
plasticity. This reversal of plasticity was sufficient to enhance the control of SK lesion 
severity. 

Another focus of my research was to find ways to rebalance immune subsets in 
SK lesions. We pioneered a new approach which exploited different metabolic 
requirements for the pro-inflammatory and regulatory T cells in lesions. Pro-inflammatory 
T cells such as Th1 use glucose for its function, whereas Treg rely on fatty acid oxidation 
and to a lesser extent on glucose. Using 2-Deoxyglucose which inhibits glucose 
utilization, the pro-inflammatory Th1 were affected but not Treg thereby reducing lesion 
severity. It was important not to impair glucose utilization when replicating virus was 
present since this could result in virus spreading to the brain to cause encephalitis.   

We also evaluated if Treg were involved in repairing SK lesions. We could show 
that Treg within the cornea made a tissue repair molecule called Amphiregulin peaking 
during lesion development. This expression of Amphiregulin was partly dependent on the 
cytokines IL-18 and IL-12 which acted together to induce the expression of Amphiregulin. 
Moreover, enhancing the levels of IL-18 in the cornea using an expression plasmid helped 
resolve SK lesion severity, an effect which correlated with increased Amphiregulin 
expression by Treg. 

In conclusion, my studies revealed several innovative approaches which might be 
moved to the clinic to help minimize the consequence of an important cause of human 
blindness. 
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Herpes simplex virus Infection 
 

Herpes viruses are a group of large enveloped DNA viruses that contribute to one 
of the most common virus infections in the world. Herpes simplex virus belongs to the 
alpha herpes virus subfamily which primarily targets neurons for their long-term residency 
.  While Herpes Simplex Virus type 1 (HSV-1) is often transmitted and associated with 
facial lesions or cold sores, type 2 (HSV-2) is sexually transmitted and usually shows 
genital lesions . Herpes simplex viruses develop an intricate relationship with the host 
and upon infection the virus replicates in the mucosal epithelia while gaining access to 
the sensory ganglion to set up latency. Periodically, the virus reactivates in the sensory 
ganglion and sheds back to the mucosal surface causing lesions. Although there are 
multiple reasons for why and when the virus reactivates, dysregulation of immune 
signaling has been implicated to be one of the mechanisms involved . With HSV-1 
infection, reactivation of virus in the trigeminal ganglion can lead to three main outcomes 
depending on the location of shedding. 1. Virus can shed to the oral mucosa to cause 
cold sores. 2. Virus can shed to the cornea to cause keratitis 3. Rarely virus can enter the 
brain to cause encephalitis .  
Herpes stromal keratitis  

With more than 500,000 people infected with ocular herpes, Herpes stromal 
keratitis (SK) is one of the leading causes of infectious blindness in developed countries 
. Stromal keratitis in humans is usually a consequence of an overt immune inflammatory 
response to repeated virus reactivation episodes in the cornea resulting in the corneal 
tissue damage. Both primary infection and reactivation mouse models have provided 
valuable information on mechanisms involved in SK pathogenesis. In the primary infection 
mouse model the initial phase of virus replication results in a robust immune response 
that results both in viral clearance as well as triggering a chronic inflammation that causes 
tissue damage .  The innate and adaptive immune contributions to SK are briefly 
described below.  
Innate immune responses 

Innate immune responses are critical for the control of virus replication in the 
cornea. Various innate immune cells such as dendritic cells, macrophages, natural killer 
cells, neutrophils and monocytes have been identified during the acute phase of infection. 
Viral components trigger innate immune cells to secrete various inflammatory 
components that include various cytokines like IFN-α/β, IL-1β, IL-6 and TNF-α and 
chemokines such as MIP-1α, MIP-1β, MIP-2 and MCP-1. Together, these molecules help 
clear virus but in doing so they also bring in more inflammatory cells of both innate and 
adaptive immune origin that contributes to tissue damage . Defects in these innate 
immune responses results in uncontrolled virus replication and often lead to virus induced 
encephalitis as observed in humans and mouse models .  
Adaptive immune responses 

The initial wave of innate immune responses causes the release of various 
chemokines and activation of adaptive immune cells, mainly T cells and B cells. Although, 
the contribution of B cell responses to SK lesion severity is not yet clear, B cells play a 
protective role by controlling virus replication. Thus, B-cell deficient mice were shown to 
be more susceptible to virus induced encephalitis compared to wild type animals . The 
SK lesion is mainly orchestrated by T cells, particularly CD4 T cells . CD8 T cells appear 
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to be more relevant in the trigeminal ganglion where they play a protective role and may 
help sustain latency . Thus mice showing defective CD8 T cells responses show 
increased susceptibility to HSV infection which can result in the encephalitis . On the 
contrary, CD4 T cells that are primary orchestrators in corneal inflammation, play a helper 
hand in TG .  

 
CD4 T cells 

 
Upon antigen presentation by antigen presenting cells (APC), naive CD4 T cells 

quickly differentiate into at least four T cell subsets (lineages) depending on the cytokine 
environment. For example, IL-12 induces IFN-gamma secreting Th1, IL-6 and TGF-beta 
induces IL-17A secreting Th17 cells, IL-4 induces IL-4 secreting Th2 cells and TGF-beta 
induces Foxp3 expressing regulatory T cells (Treg) .  Various transcription factors are 
associated with and are critical for the differentiation of individual T cell subsets. For 
instance the transcription factor T-bet mediates the differentiation of Th1 cells, the 
transcription factor RORgt for the differentiation of Th17 cells, the transcription factor 
GATA3 for the differentiation of Th2 subsets and the transcription factor Foxp3 for Treg 
differentiation. While Th1, Th17 and Th2 subset of T cells have pro-inflammatory 
functions, Treg play an anti-inflammatory role, however, functional and phenotypic 
plasticity within lineages do exist . Both Th1 and Th17 cells were shown to orchestrate 
lesion development by inducing the recruitment of inflammatory innate immune cells such 
as neutrophils and macrophages to cause tissue damage. In contrast, Treg play a 
protective role. For instance, depletion of Treg or reduction in their function results in 
increased lesion severity .  
Regulatory T cells 

Regulatory T cells (Treg) are a subset of T cells that have both anti-inflammatory 
and tissue reparative properties. Treg are characterized by their expression of the 
transcription factor Foxp3 which is critical for maintenance of the anti-inflammatory 
functions that include expression of surface molecules such as CTLA-4, GITR, OX-40, 
NRP-1, CD39, Lag-3, CD25, secretory molecules such as IL-10, ROS TGF-beta, 
granzymes, and IL-35 . Based on their developmental origin, Treg can be classified into 
natural Treg (nTreg) if they derive from the thymus or referred to as induced Treg (iTreg) 
if the Treg originate in the periphery. While the expression of molecules such as 
Neuropilin-1, Helios, IKAROS and IL-2ra (CD25) has been associated with nTreg in an 
unimmunized host, inflammation drives the expression of these molecules (CD25, Nrp1, 
Helios etc.) in iTreg. Another significant difference between nTreg and iTreg is in their 
differential CpG DNA methylation pattern within the Foxp3 gene locus especially in the 
intron-2 region also referred to as Treg Specific Demethylated Region (TSDR) . While, 
the TSDR is methylated in the iTreg population, TSDR stays demethylated in the nTreg. 
Thus the methylation status of TSDR acts as a good marker to distinguish nTreg and 
iTreg population. . TSDR methylation patterns are not only important to distinguish Treg 
populations but also indicate the stable nature of Foxp3 gene expression and thus the 
maintenance Treg specific anti-inflammatory functions. For instance, Treg that have a 
methylated TSDR (iTreg), lose their Foxp3 expression when exposed to pro-inflammatory 
cytokines and attain the characteristics of effector T cells (Th1/Th17/Th2). However, Treg 
whose TSDR region is demethylated (nTreg) are resistant to such plasticity . Hence, 
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approaches that inhibits the methylation or promotes demethylation of TSDR region may 
enhance the stability of Treg and can be likely useful to control SK.   

Besides anti-inflammatory functions, Treg also perform tissue reparative functions 
to maintain tissue homeostasis. Studies on various tissues such as intestines, skin, lungs 
and muscles have shown that Treg can be involved in tissue repair and promote wound 
healing . Although the complete list of tissue repair molecules secreted by Treg is yet to 
be identified, two molecules were shown to initiate the tissue reparative process are 
Amphiregulin (Areg) and Jag-1.  While the role of Jag-1 signaling in cornea and other 
tissues remain elusive, Areg has long been studied for its role wound healing in various 
tissues. However, the role of Treg in promoting tissue repair or wound healing during HSV 
induced damage is currently being studied.  

 
Host-Immune metabolism 

 
Few if any viruses kill all the hosts they infect but instead cause a broad range of 

consequences. The outcome is affected by properties of the virus itself, the 
circumstances of infection (such as dose and route of delivery) and several variables 
within the host which include genetics, age, and previous experience with other agents 
and the makeup of microbes that inhabit the gut and other locations .  A poorly studied 
variable that could affect the outcome of virus infections is host metabolism, the topic of 
this brief review. We strive to answer a number of questions and speculate if manipulating 
the metabolic status of infected persons could be a useful strategy to shape the 
consequences of a virus infection.  
Some lessons to be learned 

Immunologists rediscovered their biochemistry of metabolism quite recently and 
several informative reviews have been written . Basically, cellular components of both 
innate and adaptive immunity adopt different primary means of generating energy and 
biosynthetic products to support their immune functions. In addition, activated cells 
responding to immune stimuli reprogram their metabolism and use different pathways 
compared to those adopted by resting cells.  As elegantly recounted  by Luke O’Neil, 
there are six major metabolic pathways which immune cells differentially employ to sub-
serve their functions . These pathways include glycolysis, oxidative phosphorylation, 
pentose phosphate pathway, fatty acid oxidation, fatty acid synthesis and amino acid 
metabolism. To date, most investigations have focused on pathways that provide cells 
with energy, biosynthesis, and redox balance. For instance, naïve T cells, memory T cells 
and some T cells with regulatory function (Treg) require few nutrients and all use oxidative 
phosphorylation (oxphos) supported by oxidation of fatty acids to supply their energy. 
However, activated immune cells that are involved in pathogen clearance and 
inflammation, such as CD4, CD8 T cells and M1 type macrophages, derive their energy 
mainly from glucose via aerobic glycolysis . These effectors also take up amino acids, 
such as glutamine, to generate intermediates which enter the tricarboxylic acid cycle. This 
generates products that include coenzymes and fatty acids which provide metabolic 
precursors for energy and biosynthesis (see Fig 1.1).  Hence, nutrient availability and how 
they are used by an immune cell becomes a critical issue which helps determine the 
efficacy of an immune response.  A major interest has been to explore how manipulating 
the balance of oxphos and glycolytic metabolism can be used to shape the course of 
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immune events in autoimmunity and cancers , but few studies have related metabolic 
events to the outcome of infectious diseases. We demonstrate that host metabolism can 
have a major effect on virus infections and speculate about the value of metabolic profiling 
to predict the outcome of infections.  
Does nutrient availability influence the outcome of virus infection? 

It seems logical to assume that malnutrition could affect the outcome of a virus 
infection and observations have linked starvation, obesity or dietary deficiencies to 
changes in responses to some virus infections . However, at least with human virus 
infections, the cause and effect evidence is scanty and usually provides no mechanistic 
explanation for observed changes in susceptibility. It is known that nutritional effects such 
as increased sugars and fat intake can change the number and function of immune cell 
types , but how this relates to the expression of virus infection requires further 
investigation. One of the more complete studies on nutritional consequences to infections 
was reported by the Medzhitov group . They evaluated the effects of calorie deprivation 
and supplementation on the outcome of some viral and bacterial infections in mice. They 
showed that deprivation increased susceptibility to a neurotropic strain of influenza virus, 
yet increased resistance to bacterial infections. In addition, force-feeding with extra 
glucose saved the mice from virus infection, but made them more susceptible to bacteria. 
They associated these effects with glucose metabolism, since inhibiting glucose utilization 
with 2-deoxy glucose (2DG) led to virus-induced lethality, but survival from bacterial 
infection. This outcome did not correlate with effects of 2DG on immune responsiveness, 
but was attributed to effects on ER stress responses in the brain to virus–induced 
interferon induction. This uncontrolled ER stress response resulted in neuronal apoptosis 
through induction of a pro-apoptotic protein - CHOP. Thus, inhibition of glucose utilization 
during virus infection led to CHOP dependent death of mice. Additionally, in a system 
using poly (I:C) to mimic a virus infection, animals treated with 2DG also succumbed to a 
similar ER stress mediated apoptotic response in the CNS .  

Another example where inhibition of glucose utilization led to severe 
consequences was observed following ocular HSV infection in mice . When treated with 
2DG during acute infection, the majority of animals developed lethal encephalitis and 
virus was present in the CNS. The outcome was proposed to result from inadequate 
control of virus replication at the infection site because of suppressed innate immunity, 
along with less efficacious CD8 T cell control of virus in the local nerve ganglia.  

There are situations where impaired glucose utilization can limit the damage 
caused by a virus infection. Such a circumstance was observed where virus caused tissue 
lesions by an immunopathological mechanism . Accordingly, animals ocularly infected 
with HSV develop chronic inflammatory lesions of stromal keratitis (SK) and express mild 
hyperglycemia. However, if given 2DG when lesions were initiating these were minimized 
and animals recovered. This 2DG therapy appeared to act by inhibitory effects on the 
lesion orchestrating pro-inflammatory T cells, but spared the function of the anti-
inflammatory Treg population known to constrain SK severity .  
 Another nutritional situation suspected to influence viral pathogenesis is protein 
deprivation.  For example, mice fed a low protein diet experienced increased mortality to 
influenza, LCMV as well as Sendai virus infections . The diet was associated with higher 
viral titers and reduced numbers and function of virus specific CD8 T cells and NK cells. 
In addition, total number of IFN-γ, TNF-α and IL-2 producing memory CD8 T cells were 
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reduced likely accounting for less protection from reinfection . More studies are needed 
at a mechanistic level to explain how protein deprivation results in heightened 
susceptibility to virus infection.  

Other essential components of nutrition are fatty acids, but few studies have linked 
lipid availability, or its utilization, to effects on viral pathogenesis. One study in mice did 
associate a diet rich in omega-3 fatty acids (considered anti-inflammatory) with increased 
susceptibility to influenza virus infection . The outcome was associated with reduced NK 
cell and neutrophil responses as well as reduced CD8 T cell activity which together 
resulted in diminished antiviral and immunopathological responses in the lungs. The 
dietary intake of both saturated and polyunsaturated fatty acids are also likely to affect 
virus infections. Saturated fatty acids are usually pro-inflammatory, whereas some 
polyunsaturated fatty acids and short chain fatty acids are usually anti-inflammatory . In 
one study, mice unable to use long chain polyunsaturated fatty acids, because the 
receptor-Fatty acid binding protein 5 (FABP5) was genetically deleted, became more 
susceptible to influenza infection . Although such animals controlled virus replication more 
effectively, the increased disease severity was attributed to more severe inflammatory 
responses in the lungs involving increased numbers of macrophages, neutrophils and 
pro-inflammatory T cells. Since FABP5 is also robustly expressed on other cell types such 
as lung epithelial cells and fibroblasts  in addition to immune cells, a direct link between 
FABP5 knockdown and immunopathology still needs to be formally demonstrated.  

Another potential mechanism, by which the dietary intake and utilization of fatty 
acids affect the antiviral response, is their surprising influence on the persistence of CD8+ 
resident memory T cells (TRM). In fact, a key metabolic difference between the two 
subsets of memory cells (central vs TRM) is the source of fatty acids they use to power 
fatty acid oxidation. While central memory T cells rely on cell intrinsic lipolysis to generate 
intracellular fatty acids , resident memory T cells take up fatty acids from the environment 
. Thus, knockdown of FABP5, or inhibition of fatty acid-oxidation in vivo with the drug 
etomoxir, resulted in a significantly reduced TRM response in the skin following dermal 
infection with vaccinia virus . Exactly how inhibition of FABP5 or etomoxir treatment led 
to the reduced TRM response requires further study. 

 The effect of dietary components on the expression of a virus infection is likely to 
be mediated at least in part by the balance of microbes in the gut. This balance can 
influence numerous systemic diseases that include cancers, autoimmunity and allergies, 
as well as responses to infections and vaccines. For example, dietary intake which 
favored the dominance of a particular species of Clostridium was protective against 
severe influenza virus infections in mice . The proposed mechanism involved was 
breakdown by Clostridia species of naturally occurring compounds called flavonoids 
(commonly found in certain foodstuffs like cranberries) to produce the metabolite 
desaminotyrosine (DAT). This molecule was proposed to enter the lungs and protect 
against influenza infection by enhancing type I IFN signaling . However, if levels of DAT 
were elevated once infection was already underway then the outcome was 
immunopathology and lethality. Thus, timing is relevant since some nutrients that 
potentially prevent virus infections might make matters worse if given at a different time.  
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What effect do metabolic diseases have on virus infections? 
Based on the evidence presented above, one might expect that metabolic 

diseases should influence susceptibility to virus infections, but the issue is far from settled. 
Most reports focus on diabetes with some associating human diabetes with increased risk 
to influenza infection , but others finding no such association . Diabetic patients also have 
additional conditions not involving glucose metabolism, such as physical changes in 
several organs that could influence susceptibility to infection. The issue of relating 
metabolic changes in diabetes to susceptibility to virus infection should be resolvable 
using animal models of diabetes. The favored models have been induction of insulin 
dependent type one diabetes in mice using the drug streptozotocin, as well as a leptin 
receptor deficient mouse model which spontaneously develops a type two form of 
diabetes . Multiple observations indicate that diabetes in both models increased 
susceptibility to influenza ; but how this occurs and if it is the direct consequence of altered 
glucose metabolism remains unclear. Direct effects of hyperglycemia are perhaps 
unlikely, at least if the Medzhitov observations are generalizable. Thus in those studies, 
supplementing glucose levels made mice more resistant to influenza infection . It is 
possible that the increased susceptibility of diabetic mice to virus infections has non-
metabolic explanations. These could  include reduced antigen presentation , structural 
changes in the lung such as collapsed alveolar epithelia, increased vascular permeability 
, changes in fat tissues and effects on the gut microbiota . Thus, ascribing a cause for the 
increased susceptibility will be challenging.  

The other metabolic disease with apparent association with susceptibility to virus 
infections is obesity with obese patients being prone to influenza-related hospitalizations 
and death. In fact, obese patients have many changes which could make them 
susceptible to infection. These include hyperglycemia, dyslipidemia, excess 
glucocorticoids and hyperinsulinemia , but how these signs might explain virus 
susceptibility is uncertain. Mouse models are being used to resolve the issues which 
include diet induced obesity (DIO) mice which suffer greater mortality during both primary 
and secondary influenza infections. In this instance, the reduced resistance was attributed 
to higher antigen specific CD8 T IFN-gamma responses that mediated lung 
immunopathology . Defective memory responses were advocated to explain susceptibility 
to secondary challenge . In obese mice, influenza infections may be more severe as a 
consequence of reduced wound healing of the lungs  . However how metabolic events 
that occur during obesity explain increased viral susceptibility needs further study 
especially to identify the mechanisms involved. 
Can metabolism be manipulated to influence the outcome of virus infection? 
            As mentioned before, the idea of manipulating metabolic events to counteract 
diseases has so far focused on cancer and autoimmunity. However, metabolic 
manipulation to control some virus disease syndromes is ripe for the taking although the 
topic at present largely represents unharvested fruit. We already discussed the potential 
of manipulating glucose metabolism since immune cells with different functions may differ 
on how they use glucose. Hence targeting glucose metabolism represents an approach 
to rebalance immune responsiveness. So far, the completed studies have focused on 
preventing glucose metabolism of aerobic glycolysis using 2DG therapy, but other 
approaches should be explored. For example, a potential target in the glucose 
metabolism field is the gene PFKFB3 (encoding 6-phosphofructo-2-kinase/fructose-2,6-
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biphosphatase3) involved in glycolysis. Type I IFN driven expression of PFKFB3 is 
responsible for the hyperglycolytic state and the antiviral function of macrophages . 
Accordingly, inhibition of macrophage PFKFB3 resulted in poor control of RSV infection 
in mice . Expression of PFKFB3 may also be needed for T cell activation and pro-
inflammatory function . In consequence, if a convenient way is found to increase PFKFB3 
this could be a useful therapy against many virus infections.  

Another potential approach to strengthen immunity against multiple viruses could 
be to augment the expression and activity of Hypoxia inducible factor 1a (HIF-1a). This 
molecule activates several glycolytic genes that include Glut1, PFKFB3, PGK1 and 
PKM2. Small molecule activators of HIF-1a are already available but these may not have 
been tested for antiviral effects. However, a recent study has shown that genetic ablation 
of VHL, a negative regulator of HIF-1a, selectively in CD8 T cells provided more effective 
control of chronic LCMV. However, increased mortality occurred which was associated 
with the enhanced function of immunopathological CD8+ T cells Thus, as with HSV 
pathogenesis, timing of procedures that modulate metabolism can be a critical issue . An 
alternative to targeting glucose for metabolic therapy is to use the amino acid glutamine 
which as mentioned before provides an alternate source of energy. Recently, a report 
showed that glutamine supplementation acted to stabilize HSV latency in mice .  Thus, 
reactivation from latency was inhibited in mice fed glutamine, an outcome correlated with 
enhanced HSV specific CD8 T cell responses. Such responses act to prevent neurons in 
local nerve ganglia from replicating virus .  

The hot topic of immune exhaustion might also benefit from therapies that target 
metabolism. Several chronic viral infections remain uncontrolled because their T cells fail 
to function adequately . Recently, it became evident that antiviral exhausted CD8 T cells 
displayed extensive mitochondrial changes that included elevated mitochondrial ROS 
production and reduced levels of PPARα co-activator 1α (PGC1α), a key transcriptional 
regulator controlling energy metabolism and mitochondrial biogenesis. Conceivably, 
these metabolic consequences could be reversed chemically which should be a far more 
economical approach than counteracting exhausted T cells with monoclonal antibodies 
(Fig 1.2).  
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Figure 1. Metabolic differences in immune cells with effector functions versus cells 
with regulatory or memory functions.  
(1) Effector immune cells take up glutamine and glucose to generate ATP  and 
intermediates for amino acids and fatty acid synthesis (2) Regulatory and memory 
immune cells take up less glucose and glutamine molecules but instead take up more 
fatty acids that power mitochondria to generate ATP.  Dominant metabolic pathways are 
shown in solid lines; less critical or studied pathways are shown in dotted lines.  
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Figure 2. Proposed model of link between nutrition and immune responses to virus 
infection.  
Both Hyper-nutrition and malnutrition have effects on immune function. Thus malnutrition 
can suppress immune functions and increase susceptibility to infections. Hyper-nutrition 
or dysregulated nutrition may cause overt immune responses and cause 
immunopathology. Thus, optimal nutritional and metabolic homeostasis is an important 
part of appropriate immune function and good health. 
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THE PLASTICITY AND STABILITY OF REGULATORY T CELLS DURING VIRAL-

INDUCED INFLAMMATORY LESIONS 
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Abstract 
 

Ocular infection with Herpes Simplex Virus causes a chronic T-cell mediated 
inflammatory lesion in the cornea. Lesion severity is affected by the balance of different 
CD4 T-cell subsets with greater severity occurring when the activity of regulatory T-cells 
is compromised. In the present report, fate-mapping mice were used to assess the 
stability of Treg function in ocular lesions. We show that cells that were once FoxP3+ 
functional Treg may lose FoxP3 and become Th1 cells which themselves could contribute 
to lesion expression. The instability mostly occurred with IL-2 receptor low Treg and was 
shown to be in part the consequence of exposure to IL-12.  Lastly, in-vitro generated iTreg 
were shown to be highly plastic and capable of inducing SK when adoptively transferred 
into Rag1-/- mice, with 95% of iTreg converting into ex-Treg in the cornea. This plasticity 
of iTreg could be prevented when they were generated in the presence of Vitamin-C and 
Retinoic acid. Importantly, adoptive transfer of these stabilized iTreg to HSV-1 infected 
mice more effectively prevented the development of SK lesions than did the control iTreg. 
Our results demonstrate that CD25lo Treg and iTreg instability occurs during a viral 
immuno-inflammatory lesion and that its control may help avoid lesion chronicity. 

 
Introduction 

 
Ocular infection with herpes simplex virus type 1 (HSV-1) can result in a chronic 

immuno-inflammatory reaction in the cornea, which represents a common cause of 
human blindness . Studies in animal models have revealed that stromal keratitis (SK) 
lesions are orchestrated mainly by IFN-γ–producing CD4+ T cells (Th1) cells . The lesions 
are less severe and can even resolve if regulatory T cells (Treg), such as CD4 Foxp3 T 
cells, dominate over the proinflammatory CD4 T cell subsets . Lesions become far more 
severe if Treg are depleted prior to infection or even if suppressed in the face of ongoing 
infection . Thus lesions can be limited in severity if Treg function is optimized. Recent 
studies on some experimental models of autoimmunity have revealed that the function of 
Treg may be unstable in the face of an inflammatory environment . In fact Treg may lose 
their regulatory function and even take on proinflammatory activity and contribute to lesion 
expression. So far it is not known if Treg plasticity happens during a viral immune-
inflammatory lesion and if the event helps explain why lesions become chronic and 
eventually fail to resolve. This issue is evaluated in the present report using a fate 
mapping mouse model system.   

Reasons for plasticity are thought to be the consequence of either epigenetic 
modifications or posttranslational modifications . Several studies have shown that DNA 
demethylation of the Foxp3 conserved noncoding sequence 2 (CNS2), also named Treg-
specific demethylated region (TSDR), is critical for stable expression of FoxP3 . 
Demethylation of CpG motifs allows critical transcription factors, such as Foxp3 itself and 
Runx1–Cbf-β complex, to bind to the TSDR region and keep the transcription of Foxp3 
active in the progeny of dividing Treg . Another layer of epigenetic control involves the 
acetylation of the Foxp3 gene, which enforces FoxP3 expression and stability . Several 
other external stimuli such as proinflammatory cytokines can also influence Treg stability 
either by influencing the epigenetic status of the FoxP3 gene or by making 
posttranslational modification . Accordingly, activation of Treg in the presence of IL-6 
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leads to a STAT3-dependent decrease in Foxp3 protein and message accompanied by 
increased DNA Methyltransferase 1 (DNMT1) expression. These effects lead to 
methylation of the TSDR region of the Foxp3 gene, as well as reduced acetylation of 
histone 3 at the upstream promoter region of the gene . Another important cytokine that 
influences Treg stability is IL-2 . Accordingly, several recent studies correlate robust 
surface expression of the high affinity IL-2 receptor (CD25) with enhanced Foxp3 
expression, suppressive function, and stability of the Treg phenotype . 

In this report we use fate mapping mice to show that Treg plasticity occurs in a 
virus induced inflammatory reaction and might contribute to stromal keratitis lesion 
severity and chronicity by secreting proinflammatory cytokine IFN-γ. This plasticity of Treg 
occurred more readily in the CD25lo population of Treg and was in part due to 
proinflammatory cytokine IL-12. Additionally, we also show that iTreg are highly plastic in 
the SK microenvironment. Lastly of therapeutic interest we could limit iTreg plasticity both 
in-vitro and in-vivo by generating induced Treg in the presence of Vitamin C and Retinoic 
acid. Moreover these stabilized iTreg could reduce SK lesions more effectively compared 
to unstable iTreg when adoptively transferred to HSV infected mice. All these results 
suggest that stabilizing Treg might represent a process to be targeted to minimize lesion 
expression and their chronicity. 

 
Results 

 
Treg lose FoxP3 expression in the cornea after ocular HSV-1 infection and acquire 
a Th1 cell phenotype 

To directly examine Treg plasticity in the cornea after HSV-1 ocular infection in-
vivo, FoxP3Cre-GFP: Rosa26lsl-Td-Tomato mice (now referred to as fate mapping mice 
(FM mice)) were used. These mice allow Treg fate mapping and the ability to distinguish 
between cells that currently express from the cells that once expressed FoxP3 but now 
lack its expression (ex-Treg). FM mice have cells that can be distinguished by flow 
cytometric analysis into three main T cell populations that participate in SK lesions. 
Accordingly, Treg are (CD4+ GFP+ Tomato+), ex-Treg are (CD4+ Tomato+ GFP-) and 
lastly effector CD4 T cells are (CD4+ Tomato- GFP-) (Supplementary figure S2.1). It was 
evident that after HSV-1 ocular infection of FM mice that some of the Treg lineage cells 
in the cornea lost their GFP expression indicating their likely loss of Treg function. Such 
ex-Treg accounted for 38% of the total Treg population at day 8, 60% at day 15 and 35% 
at day 21 pi (Figure 2.1A). Curiously, the peak numbers of ex-Treg were evident in day 
15 pi samples, which is the usual time when lesions are at their peak (Figure 2.1B). 

To quantify the cytokine producing abilities of these ex-Treg, single cell 
suspensions of 3-4 collagen-digested pooled corneas from ocularly HSV-1 infected FM 
mice were stimulated at different times pi with PMA/ionomycin, followed by an intracellular 
cytokine detection assay. As shown in figure 2.1C at days 8 and 21 pi 33% of the ex-Treg 
became IFN- γ producers but at day 15, which is the peak of the disease, 80% of the ex-
Treg were IFN-γ producers. Additionally, similar to ex-Treg numbers, the IFN- γ producing 
ex-Treg cells peaked at day 15 pi. Of particular interest, the percentage of exFoxp3 cells 
was increased particularly in the corneas (approx. 50%), as compared to DLN and spleen 
(approx. 19% and 25% respectively) at day 15pi (Supplementary figure 2.2A). The 
frequencies of IFN- γ produced by exFoxp3 cells were also higher in corneas (approx. 80 
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%) as compared to DLN and spleen (approx. 7% and 16% respectively) when measured 
at the same time pi (Supplementary figure 2.2B). Furthermore, intracellular cytokine 
production by corneal cells stimulated with a UV-inactivated viral Ag revealed a high 
percentage of ex-Treg (approx. 22%) that were HSV-specific Th1 cells at day 15pi (Figure 
2.1E). All these results indicate that a substantial proportion of corneal Treg convert into 
Th1 ex-Treg after HSV-1 ocular infection. Of interest, some of the ex-Treg were HSV 
antigen specific indicating that such ex-Treg may have derived from the HSV specific 
Treg population. 
CD25lo Foxp3+CD4+ Treg generate ex-Treg during HSV-1 induced inflammation 

Several reports suggest that Treg are comprised of Foxp3-stable CD25hi and 
Foxp3-unstable CD25lo populations. These reports also show that CD25lo Treg have 
defective suppression, express less Foxp3 expression and had a moderately less 
demethylated TSDR compared to the CD25hi Treg. Similarly, in our system we could 
show that HSV-1 immune FACS sorted CD25lo Treg at day 15pi were less suppressive. 
and had a moderately less demethylated TSDR as compared to the CD25hi Treg (Figure 
2.2A and B). Additionally, CD25lo Treg also showed less Foxp3 expression as compared 
to the CD25hi Treg, as measured by MFI (Figure 2.2C). These results led us to 
hypothesize that CD25lo Treg might be the main population that harbored uncommitted 
Treg in SK lesions. To evaluate if such CD25lo Treg were unstable in-vitro, CD4+ GFP+ 
T cells were sorted into CD25lo and CD25hi cells with purity >95% (Supplementary figure 
2.3) from HSV-1 infected FoxP3-GFP mice at day 15pi and stimulated with anti-
CD3/CD28+IL-2 (control) or CD3/CD28+IL-12 for 5 days. As shown in figure 2.2D, in the 
presence of pro-inflammatory cytokines IL-12, 25% of the CD25lo, but only 10% of the 
CD25hi Treg lost FoxP3 expression. However, in the control cultures that received IL-2 
alone, minimal loss of FoxP3 expression was observed (approx. 10%). These results 
indicate that pro-inflammatory cytokine IL-12 can promote the conversion of antigen 
experienced CD25lo Treg into ex-Treg.   

To evaluate FoxP3 stability of the two CD25lo and CD25hi Treg populations in 
vivo, FACS sorted HSV-1 immune Thy1.2 CD25lo and CD25hi Treg (gated on GFP+ 
cells) from FM mice were adoptively transferred into congenic Thy1.1 mice and these 
were infected via the footpad with HSV-1 24 hours later. The recipient mice were analyzed 
for the presence of donor T cells in the popliteal lymph node (PLN) and spleen at day 5 
pi by reacting with anti-CD4 and anti-Thy1.2. As is evident from Figure 2.2E, 50% of the 
donor CD25lo Treg lost GFP expression and converted into ex-Treg. This compared to 
only 16.4% in the donor CD25hi Treg in the PLN of recipient animals (Figure 2.2E).  
Similar results were found in the spleen (data not shown).   

To determine if ex-Treg could be derived from activated conventional T cells that 
transiently express Foxp3 or if ex-Treg could be converted back into Treg. The same 
experimental setup as above was used. Accordingly, similar numbers of FACS sorted 
effector T cells or ex-Treg cells from immunized FM mice were adoptively transferred into 
congenic Thy1.1 mice and these were infected via the footpad with HSV-1 24 hours later. 
The recipient mice were analyzed for the presence of donor T cells in the PLN and spleen 
at day 5 pi by reacting with anti-CD4 and anti-Thy1.2. As is evident from figure 2.2F, none 
of effector T cells or the ex-Treg cells showed any conversion into Treg. This suggests 
that transient upregulation of FoxP3 on effector T cells is not contaminating the ex-Treg 
population and that the ex-Treg population does not convert back into Treg during HSV-
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1 induced inflammation. Taken together, our results show that HSV-1 immune CD25lo 
Treg showed defective suppression, had a partially methylated TSDR and were highly 
unstable cells that convert to ex-Treg under inflammatory conditions. 
CD25lo Treg were increased in the cornea after HSV-1 ocular infection  

To determine if the population of unstable CD25lo Treg increased in the cornea 
after HSV-1 ocular infection, FoxP3-GFP mice were ocularly infected with HSV-1 and 
corneas were collected, collagen digested and the recovered cells reacted with anti-CD4 
and anti-CD25 antibodies at days 8, 15 and 21 pi.  As shown in figure 2.3A, the frequency 
of CD25lo Treg remained stable over time, but the numbers of CD25lo Treg increased as 
the disease progressed and reached a peak at day 15 pi. These results suggest that 
unstable CD25lo Treg population is present in the cornea at different days post infection 
and could contribute to the generation of ex-Treg in corneal lesions. 
Ex-Treg are pathogenic and can cause SK 

Previous results showed the presence of ex-Treg, Treg as well as conventional 
effector T cells in corneal lesions. To measure and compare the pathogenicity of ex-Treg, 
Treg and CD44hi T effectors, ex-Treg, CD25hi Treg and CD44hi FoxP3- T effectors were 
FACS sorted from DLNs and spleens of day 15 post infected FM mice. Equal numbers of 
each cell population were then transferred into T cell and B cell deficient Rag1-/-, which 
were infected ocularly 24h later with HSV-1.  The recipients were monitored clinically over 
the next 10 days.  Because HSV-1 infected Rag1-/- mice usually develop lethal herpetic 
encephalitis, infected recipient mice were given a source of anti-HSV-1 antibody (human 
IVIG) 2 days after infection, which allows mice to survive beyond day 6 pi and ensures 
optimal HSK development in surviving mice .  Using this protocol our results showed that 
CD44hi T effectors and ex-Treg induced similar levels of SK severity (lesion score < 2.5) 
at day 10 pi (Figure 2.4A), while the control animals that received no cells or CD25hi Treg 
showed minimal lesions. In addition, T effectors and ex-Treg cells in subpools of collagen- 
digested corneas produced similar levels of IFN-γ (approx. 70%) as seen by the ICS 
assay after PMA/ionomycin stimulation (Figure 2.4B), while the control animals that 
received CD25hi Treg showed minimal IFN-γ production (approx. 15%). These results 
demonstrate that ex-Treg cells can function as pathogenic effector cells producing IFN-γ 
in the cornea and that these ex-Treg can induce SK with a similar severity to that caused 
by CD44hi T effector cells. 
iTreg covert into ex-Treg and induce SK disease in Rag1-/- recipients 

Previous reports show that naive T cells converted in-vitro into iTreg cells by TCR 
stimulation in the presence of IL-2 and TGF-β had methylated CpG sites in the FoxP3 
CNS2 region, but could lose Foxp3 expression rapidly . However, whether or not FoxP3 
instability of in-vitro induced iTreg results in pathogenic ex-Treg during HSV-1 infection 
remains to be substantiated.  To test this possibility iTreg were generated from sorted 
naïve CD4+T cells from FM mice by stimulating them with anti-CD3/CD28 in the presence 
of IL-2 and TGF-β for 5 days. Tomato+ GFP+ iTreg cells were then FACS sorted and 
adoptively transferred into T cell and B cell deficient Rag1-/- mice 24 hours after ocular 
infection with HSV-1. Recipients were monitored clinically over the next 10 days. These 
mice were also given IVIG at day 2pi to protect them from lethal encephalitis as described 
in the previous section. At day 10 pi typical HSK lesions (score ≥2.5) were evident in the 
iTreg recipients at the time of sacrifice whereas only minimal lesions were evident at the 
same time in control animals that were infected but received no cell transfer (Figure 2.5A). 



 26 

More importantly, 95% of the cells recovered from the corneas of the iTreg recipients lost 
FoxP3 expression and converted into ex-Treg in the SK lesions (Figure 2.5B). Moreover, 
26% of the infiltrating CD4 T cells in the cornea produced IFN-γ as measured by the ICS 
assay after PMA/ionomycin stimulation (Figure 2.5C). This supports the notion that the 
iTreg had converted into Th1 cells in the SK microenvironment. Taken together our data 
show that iTreg were highly unstable and could convert into Th1 ex-Treg in an SK 
inflammatory micro- environment and that these cells contributed to SK expression.  
iTreg generated in the presence of Vitamin C and RA were highly stable and 
resistant to conversion into ex-Treg. 

A previous report had indicated that iTreg generated in the presence of Vitamin C 
and RA could substantially stabilize FoxP3 expression both in-vitro and in- vivo . This 
occurred in part by demethylating the TSDR region of the Foxp3 locus. Similarly, we could 
show that iTreg generated in the presence of Vitamin C + RA had an almost completely 
demethylated TSDR region (90%), whereas, in the control iTreg (without Vitamin C + RA) 
the TSDR was only minimally demethylated (12%) (Figure 2.6A). Furthermore, to show 
that Vitamin C + RA could stabilize iTreg in the face of inflammatory cytokines in the SK 
system, splenocytes from DO11.10 RAG2-/- animals (ova peptide specific and 98% naïve 
CD4+ T cells) were cultured in the presence of Treg differentiating conditions (anti-
CD3/CD28 stimulation +IL-2 and TGF-β) either in the presence or absence of Vitamin C 
+ RA. After 5 days of culture a few cells were harvested and cell numbers that expressed 
Foxp3 were recorded. The remaining cells were exposed either to IL-2 or IL-12 (Th1 
condition) or IL-6 and TGF-beta (Th17 conditions) for an additional 3 days. FoxP3 
expression was analyzed again at this time point and the % Foxp3 expression lost was 
calculated. In these experiments, IL-2 alone led to minimal loss of Foxp3 expression 
(approx. 8%), whereas exposure to IL-12 and IL-6 +TGF-β resulted in a significant loss 
of Foxp3 expression (approx. 30%) in control iTreg. In contrast, iTreg generated in the 
presence of Vitamin C + RA were significantly more stable and lost minimal (5-10%) 
Foxp3 expression when exposed to either Th1 or Th17 differentiating conditions (Figure 
2.6B).  

To evaluate in vivo stability of Foxp3 expression of iTreg cells generated in the 
presence of Vitamin C + RA, naive CD4+ T cells from FM mice were cultured in the 
presence of Treg differentiating conditions (anti-CD3/CD28 stimulation +IL-2 and TGF-β) 
either in the presence or absence of Vitamin C + RA. The control iTreg and Vitamin C + 
RA generated iTreg were adoptively transferred into congenic, HSV-1 ocularly infected 
Thy1.1 mice at 72hpi. Recipient mice were then analyzed for the presence of donor T 
cells in the DLN and spleen at day 15 pi by reacting with anti-CD4 and anti-Thy1.2. As 
evident from Figure 2.6C, 26-28% of the donor control iTreg lost GFP expression and 
converted into ex-Treg. This compared to a loss of only 3-7% in the recipients of Vitamin 
C + RA generated iTreg.  

These results demonstrate that HSV-1 induced inflammation and pro-inflammatory 
cytokines IL-12 and IL-6 could promote the conversion of iTreg into ex-Treg and this 
conversion could be markedly inhibited when iTreg were generated in the presence of 
Vitamin C and RA. 
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Vitamin C+ RA stabilized iTreg more efficiently suppress SK lesions than do control 
iTreg 
To evaluate if iTreg populations stabilized in vitro by induction in the presence of Vitamin 
C + RA were more effective at controlling SK lesions than un-stabilized iTreg, adoptive 
experiments were performed. The donor cell populations used to generate the both 
stabilized iTreg and control unstable iTreg were from DO11.10 RAG2-/- (OVA specific) 
mice as described in materials and methods. These mice were used because they 
provide a highly enriched naïve CD4 T cell population . Groups of Balb/c mice received 
the adoptive transfer 3 days after ocular infection and disease severity were followed until 
termination on day 15 pi. As shown in Figure 2.7A mice that received the stabilized iTreg 
population expressed significantly reduced lesions compared to those that received no 
iTreg. Similarly, mice that received the stabilized iTreg population showed a trend of 
reduced lesions compared to those that received unstable control iTreg population 
although no significance was achieved. Additionally, there were 1.8 fold reduced number 
of CD4+T cells and Th1 cells infiltrating the cornea in the mice that received the stabilized 
iTreg compared to those that received no iTreg (Figure 2.7B). Taken together, our data 
demonstrate that stabilized Vitamin C +RA generated iTreg were better at suppressing 
SK lesions compared to un-stabilized control iTreg. 

 
Discussion 

 
In this report, using fate mapping mice, we showed that Treg present in the cornea 

during a viral induced inflammatory reaction are unstable and can become ex-Treg with 
a Th1 phenotype. We also showed that the CD25lo Treg were highly plastic and 
converted into ex-Treg more readily than the stable CD25hi Treg subpopulation. 
Interestingly, the unstable CD25lo Treg were present in the cornea and this population 
increased with the progression of disease and followed the same pattern as the 
appearance of ex-Treg. The pro-inflammatory cytokine IL-12 and IL-6 was in part 
responsible for the generation of ex-Treg during SK development. Furthermore, ex-Treg 
displayed equivalent disease causing potential as effector T cells when cells were 
adoptively transferred in HSV-1 infected Rag1-/- animals. We also showed that the 
population of Treg generated in vitro from naïve CD4 T cells were highly unstable when 
transferred into lymphopenic Rag1-/- recipients with almost 95% of the iTreg converting 
into ex-Treg. Finally, we could show that Treg generated in-vitro in the presence of 
Vitamin C and RA produced a population with increased stability when exposed to an 
inflammatory environment either in-vitro or in-vivo. More importantly, the stabilized iTreg 
population was more efficient at reducing SK lesions as compared to control unstable 
iTreg when adoptively transferred in day 3 HSV-1 infected mice. Taken together our 
results demonstrate that instability of Treg function occurs in the inflammatory 
environment of a virus-induced lesion and that the converted ex-Treg can also participate 
in tissue damage, an event that may help explain chronicity. 

It is becoming increasingly evident that diverse environmental stimuli can affect 
Treg stability acting by modulating epigenetic programing or posttranslational 
modifications . For example, proinflammatory cytokines such as IL-12, IL-6 and IL-1β 
could trigger a signaling pathway through their receptors on Treg. This could cause a loss 
of Foxp3 expression by several mechanisms. Thus, IL-1β induces the ubiquitinase 
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enzyme Stub1 that permits the ubiquitination of FoxP3 and its degradation . In addition, 
IL-6 leads to a STAT3-dependent decrease in Foxp3 protein and mRNA accompanied by 
increased DNMT1 expression. This effect results in methylation of the TSDR region of 
the Foxp3 gene, as well as diminished acetylation of histone 3 at the upstream promoter 
region of the gene . Additionally, IL-12 can activate the IL-12R-β2/STAT4-mediated 
signaling pathway, which causes the polarization towards the Th1 type Treg and loss of 
FoxP3 expression . In our report we showed that IL-12 and IL-6 could cause the loss of 
FoxP3 expression especially in CD25lo Treg and iTreg populations. A cytokine that has 
been shown to stabilize Treg is IL-2 by signaling through the IL-2R (CD25) on the Treg 
cells . Accordingly, several recent studies in mice and humans showed that robust CD25 
expression on Treg correlated with enhanced FoxP3 expression, suppressive function 
and stability of the Treg phenotype . Similarly, we observed that the CD25lo population 
of Treg in SK system were less suppressive and were highly unstable with 50% of them 
losing FoxP3 expression when adoptively transferred into HSV-1 footpad infected WT 
mice.  

An interesting observation was that CD25lo Treg infiltration into the cornea 
mirrored the appearance of ex-Treg which could mean that the ex-Treg generated in the 
cornea were derived mainly from the CD25loTreg population. However, some question 
whether ex-Treg observed in some autoimmune settings represent the loss of Foxp3 by 
bonafide Treg, or whether they represent conventional proinflammatory T cells that 
transiently induced endogenous FoxP3 and so induced FoxP3-Cre recombinase, leading 
to activation of the lineage tracer (Tomato) expression. We favor the notion that in our 
system of SK the ex-Treg represents true ex-Treg and not proinflammatory T cells that 
transiently expressed FoxP3 based largely on the results of adoptive transfer 
experiments. Accordingly, adoptive transfer of Foxp3-CD4+ T cells from FM mice into 
HSV-1 infected WT mice did not show any conversion to ex-Treg (Figure 2.1F), thus 
showing that T conv cells transiently expressing FoxP3 did not occur in our system or that 
the transient expression of Foxp3 was not enough to induce FoxP3-Cre recombinase. In 
addition, adoptive transfer of FACS sorted CD25lo Treg from HSV-1 infected FM mice 
into Thy1.1 mice that were infected with HSV-1 in the footpad showed conversion of these 
Treg into ex-Treg. This would support the idea that the conversion of Treg to ex-Treg is 
occurring in the infectious disease system we investigated. 

Explanations for Treg plasticity include epigenetic and posttranslational 
modifications . Accordingly, demethylation of CpG islands in the TSDR region of the 
Foxp3 locus is considered a hallmark of Treg stability and functionality . Demethylation of 
the CpG islands in the TSDR region ensures that critical transcription factors such as 
Foxp3 and Runx1–Cbf-β complex, to bind to the TSDR region and maintain Foxp3 activity 
in the progeny of dividing Treg . Epigenetic regulation of stable Foxp3 expression is also 
regulated by FoxP3 acetylation . Previous reports show that the TSDR region is 
demethylated in thymic Treg expressing Foxp3, but in iTreg TSDR region is fully 
methylated making them unstable . We could also show that iTreg have a fully methylated 
TSDR and displayed plasticity when adoptively transferred in Rag1-/- mice. Moreover, 
almost 95% of these iTreg lost FoxP3 expression and became ex-Treg with the Th1 
phenotype. Post-translation modifications that regulate Treg plasticity include 
phosphorylation and ubiquitination of FoxP3  and these events are being further explored 
in our system. 
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It is important from a lesion management perspective to find appropriate measures 
to limit or prevent Treg plasticity. Approaches under consideration include agents that 
cause demethylation of the TSDR region of the FoxP3 gene such as Azacytidine, which 
was investigated for its effects on SK lesion severity . The results showed that Azacytidine 
therapy after disease process had been initiated effectively diminished lesions. Other 
agents that prevent methylation of the TSDR region or promote acetylation of the FoxP3 
gene may also show therapeutic promise to contain Treg plasticity . Vitamin C induces 
CNS2 demethylation in iTreg in a ten-eleven-translocation 2 (Tet2)/Tet3-dependent 
manner to increase the stability of Foxp3 expression . Similarly, RA also has a stabilizing 
effect on Foxp3 protein expression. It acts by suppressing IL-1 receptor upregulation, and 
accelerating IL-6 receptor downregulation along with increasing histone acetylation of the 
FoxP3 TSDR without affecting the methylation status of the TSDR region .  

In the present communication we explored the value of Vitamin C and RA and 
could show that iTreg generated in the presence of Vitamin C and RA were more stable 
both in-vitro and in-vivo. Accordingly, when iTreg were adoptively transferred into WT 
HSV-1 ocularly infected mice at day 3 pi (a time at which levels of pro-inflammatory 
cytokines is high in the DLN), almost 30% of these iTreg lost Foxp3 expression. In 
contrast when iTreg were generated in the presence of Vitamin C and RA conversion was 
minimal (3-7%). Similar stabilizing effects were observed when iTreg generated with 
Vitamin C and RA, were exposed to proinflammatory cytokines IL-6 or IL-12 in-vitro. 
Moreover, these results might also explain previous findings that adoptive transfer of 
iTreg before infection effectively controlled SK lesion development yet transfers given 
later when the proinflammatory cytokines such as IL-6 were highly elevated were without 
notable lesion control . Our current finding explains this phenomenon since many iTreg 
converted and become ex-Treg without regulatory activity. Interestingly, we could stop 
this plasticity by generating iTreg in the presence of Vitamin C + RA and more importantly 
adoptive transfer of stabilized Vitamin C+ RA generated Treg suppressed SK lesions 
more efficiently than the control unstable iTreg when transferred to day 3 HSV-1 infected 
mice. It remains to be evaluated if Vitamin C + RA could stabilize CD25lo Treg and if the 
combination of Vitamin C and RA treatment in-vivo might hold promise as a therapeutic 
means of controlling virus induced inflammatory lesions. 

Our results indicate that conversion of Treg or iTreg into Th1 cells may have a 
critical role in the severity of viral induced inflammatory lesions. Blocking pathways to 
prevent the conversion of these Treg into pathogenic T cells could represent a useful 
approach to control an important cause of human blindness. 

 
Materials and methods 

Mice 
Female 6 to 8 week old C57BL/6 and Balb/c mice were purchased from Harlan Sprague 
Dawley Inc. (Indianapolis, IN). CD45.1 congenic (B6.SJL-Ptprca Pepcb/BoyJ), Rag1-
deficient (B6.129S7-Rag1tm1Mom/J) and B6 ROSA26-Td Tomato reporter mice were 
purchased from Jackson Laboratory. Foxp3-GFP-Cre mice were provided by Dr. Jeffery 
Bluestone (San Francisco, CA). To generate Treg fate mapping mice Foxp3-GFP-Cre 
were crossed with B6 ROSA26-Td Tomato mice. Foxp3-GFP (C57BL/6 background) 
mice were a kind gift from M.Oukka (Brigham and Women’s Hospital, Harvard Medical 
School), BALB/c DO11.10 RAG2 -/- mice were purchased from Taconic and kept in 
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pathogen free facility where food, water, bedding and instruments were autoclaved. All 
mice were housed in facilities at the University of Tennessee (Knoxville, TN) approved by 
the American Association of Laboratory Animal Care. All investigations followed 
guidelines of the Institutional Animal Care and Use Committee. 
Ethics Statement 
This study was carried out in strict accordance with the recommendations in the Guide 
for the Care and Use of Laboratory Animals of the National Institutes of Health. The 
protocol was approved by the University of Tennessee Animal Care and Use committee 
(protocol approval numbers 1253-0412 and 1244-0412). All procedures were performed 
under tribromoethanol (avertin) anesthesia, and all efforts were made to minimize 
suffering. 
Virus 
HSV-1 strain RE Tumpey and HSV-1 KOS was propagated in Vero cell monolayers 
(number CCL81; ATCC, Manassas, VA), titrated, and stored in aliquots at –80°C until 
used. Ultraviolet (UV) inactivation of the HSV-1 RE virus was performed for 10 minutes. 
Corneal HSV-1 Infection and Scoring 
Corneal infections of mice were performed under deep anesthesia. The mice were lightly 
scarified on their corneas with a 27-gauge needle, and a 3-μL drop that contained 104 
plaque-forming units of HSV-1 RE was applied to one eye. Mock-infected mice were used 
as controls. These mice were monitored for the development of SK lesions. The SK lesion 
severity and angiogenesis in the eyes of mice were examined by slit-lamp biomicroscopy 
(Kowa Company, Nagoya, Japan). The scoring system was as follows: 0, normal cornea; 
+1, mild corneal haze; +2, moderate corneal opacity or scarring; +3, severe corneal 
opacity but iris visible; +4, opaque cornea and corneal ulcer; and +5, corneal rupture and 
necrotizing keratitis. 
Flow Cytometric Analysis 
At day 15 pi, corneas were excised, pooled group-wise, and digested with liberase (Roche 
Diagnostics Corporation, Indianapolis, IN) for 45 minutes at 37°C in a humidified 
atmosphere of 5% CO2. After incubation, the corneas were disrupted by grinding with a 
syringe plunger on a cell strainer and a single-cell suspension was made in complete 
RPMI 1640 medium. The single-cell suspensions obtained from corneal samples were 
stained for different cell surface molecules for fluorescence-activated cell sorting (FACS) 
analyses. All steps were performed at 4°C. Briefly, cells were stained with respective 
surface fluorochrome-labeled Abs in FACS buffer for 30 minutes, then stained for 
intracellular Abs. Finally, the cells were washed three times with FACS buffer and 
resuspended in 1% paraformaldehyde. The stained samples were acquired with a FACS 
LSR II (BD Biosciences, San Jose, CA) and the data were analyzed using FlowJo 
software (Tree Star, Inc., Ashland, OR). 
To determine the number of IFN-γ producing T cells, intracellular cytokine staining was 
performed. In brief, corneal cells were either stimulated with Phorbol myristate acetate 
(PMA) (50ng) and Ionomycin (500ng) for 4 hours in the presence of brefeldin A (10 μg/mL) 
or stimulated with UV-inactivated HSV-1 RE (1 MOI) overnight followed by 5 hour 
brefeldin A (10 μg/mL) in U-bottom 96-well plates. After this period, Live/Dead staining 
was performed followed by cell surface and intracellular cytokine staining using Foxp3 
intracellular staining kit (ebioscience) in accordance with the manufacturer's 
recommendations.  
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Reagents and antibodies. 
CD4 (RM4-5), IFN-γ (XMG1.2), CD25 (PC61, 7D4), CD44 (IM7), Foxp3 (FJK-16S), anti-
CD3 (145-2C11), anti-CD28 (37.51), GolgiPlug (brefeldin A) from either ebiosciences or 
BD biosciences. PMA and Ionomycin from sigma. Cell Trace Violet and Live/Dead Fixable 
Violet Dead Cell Stain Kit from Life Technologies. Recombinant IL-2, IL-12, IL-6 and TGF-
b from R&D systems.  
TSDR assay 
A quantitative real-time PCR method was used as described by Floess et al., 2007 . 
Briefly, two subsets of Treg (CD4+ Foxp3+ GFP+ CD25lo and CD4+ Foxp3+ GFP+ 
CD25hi) from HSV-1 ocularly infected Foxp3-GFP male mice (day 15 pi) or iTreg 
generated with or without the supplementation of Vitamin C +RA from naïve CD4 + T cells 
isolated from the spleens of Foxp3 GFP male mice as described above (2 × 105 each) 
were sorted and processed using the EZ DNA Methylation-Direct kit (Zymo Research) 
according to the manufacturer’s protocol. Purified bisulfite-treated DNA was used in a 
quantitative PCR reaction. Primers and probes sequences used were the following: 
forward primer, 5′-GGTTTATATTTGGGTTTTGTTGTTATAATTT-3′; and reverse primer, 
5′-CCCCTTCTCTTCCTCCTTATTACC-3′. Probe sequences were: methylated (CG) 
probe, 5′-TGACGTTATGGCGGTCG-3′; and unmethylated (TG) probe, 5′-
ATTGATGTTATGGTGGTTGGA-3′. PCR was performed with 10 µl Universal Master Mix 
II (Applied Biosystems), 1 µl eluted DNA, primer/probe mix, and enough water to bring 
the total volume to 20 µl. Final concentration of primers were 900 nM and concentration 
of probes were 150 nM. Reactions were run for 10 min at 95°C for 10 min and 50 cycles 
of 95°C for 15 s and 61°C for 1.5 min (7500 Real-Time PCR System; Applied Biosystems). 
Percent demethylation was calculated using the formula percent demethylation = 100/[1 
+ 2(CtTG−CtCG)], where CtTG represents the threshold cycle of the TG (unmethylated) 
probe and CtCG represents the threshold cycle of the CG (methylated) probe . 
T cell isolation, sorting and adoptive transfer experiments 
Single-cell suspensions were obtained from DLNs and the spleens from footpad or ocular 
HSV-1 infected mice at day 5 and day 15 pi respectively. Splenic erythrocytes were 
eliminated with red blood cell lysis buffer (Sigma-Aldrich). To purify the peripheral CD4+ 
T cell subpopulation obtained from FM mice, pooled spleen and DLN cells were isolated 
using a mouse CD4+ T cell isolation kit according to the manufacturer's instructions 
(Miltenyi Biotec, Auburn, CA). Cells were then stained and subject to FACS sorting. The 
purity of all the sorted cells was >95%. The sorted cells were subsequently used for 
adoptive transfer experiments. 

For adoptive transfer experiments in Balb/c mice, splenocytes isolated from 
DO11.10 RAG2 -/- mice were used as a precursor population for the induction of Foxp3+ 
in CD4+ T cells as described elsewhere . Briefly, (1×106/ml) splenocytes after RBC lysis 
and several washings were cultured in RPMI media containing rIL-2 (100 U/ml) and TGFβ 
(5ng/ml) in the presence or absence of Vitamin C and RA with plate bound anti-CD3/28 
Ab (1 µg/ml) for 5 days at 37°C in a 5% CO2 incubator. After 5 days, a few cells were 
characterized for Foxp3 intracellular staining (ebioscience staining kit) analyzed by flow 
cytometry. Based on the frequency of Live Foxp3+ cells generated in the different cultures 
conditions 10 x 106 Vitamin C + RA stabilized iTreg or control unstable iTreg were 
adoptively transferred i.v into HSV-1 infected Balb/c mice at day 3 pi. 
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Administration of IVIGs 
Intravenous immunoglobulins (IVIGs; Gammagard Liquid) was obtained from Baxter 
(Deerfield, IL). Rag1-/- mice were intraperitoneally injected with IVIG (3.75 mg per mouse) 
at day 2 after infection. The dose of IVIG was chosen to be 3.75 mg per mouse, based 
on previous studies . 
In vitro Treg and Treg stability assays 
Splenocytes isolated from DO11.10 RAG2 -/- or Foxp3 GFP mice were used as a 
precursor population for the induction of Foxp3+ in CD4+ T cells. Briefly, 1×106 

splenocytes after RBC lysis and several washings were cultured in 1ml RPMI media 
containing rIL-2 (100 U/ml) and TGFβ (5ng/ml) in the presence or absence of Vitamin C 
and RA with plate bound anti-CD3/28 Ab (1 µg/ml) for 5 days at 37°C in a 5% CO2 
incubator. After 5 days, samples were characterized for Foxp3 intracellular staining 
(ebioscience staining kit) or GFP expression (Foxp3 GFP mice) analyzed by flow 
cytometry. Treg were either sorted (TSDR methylation analysis) or cultured in 96-well 
round bottom plate in the presence of IL-2 (100U/ml) or IL-12 (5ng/ml) or IL-6 (25ng/ml) 
+TGF-b (1ng/ml) for 3 days followed by flow cytometry analysis of Live CD4+ Foxp3+ 
cells.  
In vitro suppression assay 
To measure the suppressor function of CD25lo and CD25hi Treg, FACS sorted CD25lo, 
CD25hi GFP+ cells and naïve CD4+ cells (CD62L+ CD44-) from DLN and spleens (day 
15 pi) of HSV-1 ocularly infected FM mice were cultured with anti-CD3 (1 μg/well) and 
anti-CD28 (0.5 μg/well) antibodies in a U-bottom 96-well plate. The suppressive capacity 
of the subsets of Treg was measured by co-culturing Treg and T conventional cells 
(Tconv) at different ratios (Treg/Tconv, 1:1 to 1:8). After 3 days of incubation, the extent 
of CTV dilution was measured in CD4+ cells by flow cytometry. Percent suppression by 
different subsets of Treg was calculated by using the formula 100 − [(frequency of cells 
proliferated at a particular Treg/effector T cell ratio)/(frequency of cells proliferated in the 
absence of Treg)]. 
Statistical Analysis 
Statistical significance was determined by Student t test unless otherwise specified. A P 
value of <0.05 was regarded as a significant difference between groups: *P ≤ 0.05, **P ≤ 
0.01, ***P ≤ 0.001. GraphPad Prism software (GraphPad Software, Inc., La Jolla, CA) 
was used for statistical analysis. 
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Figure 2.1. Kinetic analysis of ex-Treg in the corneas of HSV-infected mice.  
FM mice were infected ocularly with 1× 104 PFU of HSV, and at each time point (d8, 15 
and day 21) three to four corneas were collected, pooled, and digested with Liberase and 
analyzed for various cell types. A) Representative FACS plots, frequencies and average 
numbers of corneal ex-Treg cells at each time point pi. B) Intracellular staining was 
conducted to quantify Th1 and Th17 ex-Treg cells by stimulating them with 
PMA/ionomycin. Representative FACS plots, frequencies and average numbers of ex-
Treg cells producing IFN-g or IL-17A after stimulation with PMA/ionomycin. Plots shown 
were gated on ex-Treg cells. C) For quantification of Ag-specific ex-Treg cells, corneal 
single cell suspensions were stimulated for 16 h with UV-inactivated HSV-KOS, with the 
addition of brefeldin A for the last 5 h of stimulation. Representative FACS plots shown 
are gated on ex-Treg cells. The level of significance was determined by a Student t test 
(unpaired). Error bars represent means ± SEM (n = 8 – 10 mice). Experiments were 
repeated at least three times. P≤0.0001(****), P≤0.01(**), P≤0.05(*). 
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Figure 2.2. CD25loFoxp3+CD4+ Treg are unstable Treg cells that convert into ex-
Treg in an inflammatory environment.   
(A-E) FM mice were infected ocularly with 1× 104 PFU of HSV. DLNs and spleens were 
collected at day 14 pi and CD25lo and CD25hi Treg cells were sorted. A) An equal 
number of each population (1 x 105 cells) was cultured with CTV-labeled sorted effector 
T cells (Treg/Teff, 1:1) in the presence of anti-CD3 and anti-CD28 antibodies. 
Representative histograms show the extent of CTV dilution at a 1:1 Treg/Teff ratio. Bar 
graphs show the percent suppression of CD25lo Treg and CD25 Treg at 1:1 ratio to Teff. 
B) Demethylation of TSDR region at Foxp3 locus of the sorted CD25lo and CD25hi Treg 
was determined as described in materials and methods. C) Bar graph shows the MFI of 
FoxP3 expression on CD25lo and CD25hi Treg. D) Sorted CD25lo and CD25hi Treg were 
exposed to 100U/ml IL-2 or 5ng/ml IL-12 or 25ng/ml IL-6 and 1ng/ml TGF-beta for 3 days. 
Cells were measured for ex-Treg cells before exposure and after exposure. Histograms 
represent the frequency of Foxp3 lost by CD25lo and CD25hi Treg exposed to different 
conditions. E) Sorted CD25lo and CD25hi Treg were adoptively transferred into HSV-1 
footpad infected congenic Thy1.1 mice at 24hpi and transferred cells were analyzed for 
ex-Treg. Representative FACS plots show the frequency of ex-Treg after adoptive 
transfer. Plots are gated on CD4+Thy1.2+Tomato+ cells. F) Sorted effector T cells and 
ex-Treg from immunized FM mice were adoptively transferred into HSV-1 footpad 
infected congenic Thy1.1 mice at 24h pi and transferred cells were analyzed for Treg. 
Representative FACS plots show the frequency of Treg after adoptive transfer. Plots are 
gated on CD4+Thy1.2 + cells. Each experiment was repeated at least two times with at 
least 3 mice per group. Statistical significance was calculated by one-way ANOVA with 
Tukey multiple-comparison test. P≤0.01(**), P≤0.05(*).  
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Figure 2.3. Unstable CD25lo Treg increase with the progression of disease.  
Foxp3 GFP mice were infected ocularly with 1× 104 PFU of HSV and at each time point 
(d8, 15 and 21) three to four corneas were collected, pooled, and digested with Liberase 
and analyzed for CD25lo Treg. A) Representative FACS plots, frequencies and average 
numbers of corneal CD25lo Treg cells at each time point pi. The level of significance was 
determined by a Student t test (unpaired). Error bars represent means ± SEM (n = 8 – 10 
mice). Experiments were repeated at least three times. P≤0.05(*). 
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Figure 2.4. ex-Treg are pathogenic in-vivo. 
FM mice were infected ocularly with 1× 104 PFU of HSV. DLNs and spleens were 
collected at day 15 pi and ex-Treg and CD44hi FoxP3- T effectors cell were FACS sorted. 
Rag1-/- were ocularly infected with HSV-1 and were divided into groups. One group of 
mice received 5 x 105 ex-Treg cell at 24hpi. One group of mice received 5 x 105 CD44hi 
FoxP3- T effectors cell 24h pi and one group received no cells. All mice were treated with 
IVIG at day 2 pi. A) SK lesion severity at day 10 after infection is shown. B) Mice were 
sacrificed on day 10 after infection, and corneas were harvested and pooled group wise 
for the analysis of various cell types. Intracellular staining was conducted to quantify Th1 
cells by stimulating them with PMA/ionomycin. Representative FACS plots, frequencies 
and average numbers of CD4 T cells producing IFN-γ after stimulation with 
PMA/ionomycin. Plots shown were gated on CD3+CD4+ T cells. Data compiled from two 
separate experiments consisting of 3-4 animals in each group. The level of significance 
was determined by a Student t test (unpaired). Error bars represent means ± SEM. 
P≤0.01(**). 
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Figure 2.5. iTreg are pathogenic in-vivo.  
(A) Naive CD4 T cells purified from FM mice were cultured (1x106 cells/well) with 100U/ml 
IL-2, 5ng/ml TGFβ and 1µg/ml anti-CD3/CD28, for up to 5 days. Foxp3 GFP+ Tomato+ T 
cells (iTreg) were FACS sorted. Rag1-/- were ocularly infected with HSV-1 and were 
divided into two groups. One group of mice received 5 x 105 iTreg cells at 24h pi and one 
group received no cells. All mice were treated with IVIG at day 2 pi. A) SK lesion severity 
at day 10 after infection is shown. B) Mice were sacrificed on day 10 after infection, and 
corneas were harvested and pooled group wise for the analysis of various cell types. 
Intracellular staining was conducted to quantify Th1 cells by stimulating them with 
PMA/ionomycin. Representative FACS plots show frequency of ex-Treg and CD4 T cells 
producing IFN-g after stimulation with PMA/ionomycin. Plots shown were gated on 
CD3+CD4+Tomato+ T cells. Data compiled from two separate experiments consisting of 
3-4 animals in each group. The level of significance was determined by a Student t test 
(unpaired). Error bars represent means ± SEM. P≤0.05(*). 
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Figure 2.6. Vitamin C + RA generated iTreg are highly stable.  
(A) Naive CD4 T cells purified from Foxp3 GFP male mouse were cultured (500,000 
cells/well) with 100U/ml IL-2, 1µg/ml anti-CD3/CD28, 5ng/ml TGFβ and in the presence 
or absence of Vitamin C and RA for up to 5 days. Foxp3 GFP+ T cells were FACS sorted. 
Demethylation of TSDR region at Foxp3 locus was determined as described in Materials 
and methods. B) Splenocytes from DO11.10 RAG2-/- animals were cultured in the 
presence of 1µg/ml anti-CD3/CD28, 100 U/ml IL-2, 5ng/ml TGF-β in the presence or 
absence of Vitamin C and RA for 5 days. Then exposed to 100U/ml IL-2 or 5ng/ml IL-12 
or 25ng/ml IL-6 and 1ng/ml TGF-beta for another 3 days. Cells were measured for Live 
CD4+ Foxp3+ cells before exposure and after exposure. Bar graphs show the frequency 
of Foxp3 lost by cells of control and Vitamin C and RA induced iTreg exposed to different 
conditions. C) Naive CD4 T cells purified from FM mice were cultured (1 x 106 cells/well) 
with 100U/ml IL-2, 1µg/ml anti-CD3/CD28, 5ng/ml TGFβ and in the presence or absence 
of Vitamin C and RA for 5 days. Cells Control iTreg and Vitamin C + RA generated Treg 
were adoptively transferred into HSV-1 ocularly infected congenic Thy1.1 mice at 72hpi 
and transferred cells were analyzed for ex-Treg cells. Representative FACS plots show 
the frequency of ex-Treg after adoptive transfer. Plots are gated on 
CD4+Thy1.2+Tomato+ cells. Each experiment was repeated at least two times with at 
least 3 mice per group. Statistical significance was calculated by one-way ANOVA with 
Tukey multiple-comparison test P≤ 0.0001(****),P≤0.001 (***),P≤0.01(**), P≤0.05(*). 
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Figure 2.7. Vitamin C+ RA generated Treg suppress SK lesions better than control 
iTreg.  
Balb/c mice ocularly infected with 1x105 PFU of HSV-1 were divided into groups. One 
group of mice received stabilized Vitamin C + RA generated iTreg (10 x 106) at day 3 after 
infection. One group of mice received control unstable iTreg (10 x 106) at day 3 after 
infection, and one group of mice received no transfer of cells. Disease severity and 
immune indicators in the cornea were evaluated at day 15 after infection. A) SK lesion 
severity at day 15 after infection are shown. B) Mice were sacrificed on day 15 after 
infection, and corneas were harvested and pooled group wise for the analysis of various 
cell types. Intracellular staining was conducted to quantify Th1 cells by stimulating them 
with PMA/ionomycin. The bar graph represents total numbers of corneal infiltrating CD4+ 
T cells, and Th1cells of mice that received no transfer, control iTreg or Vitamin C + RA 
generated iTreg. Each experiment was repeated at least two times with at least 8 mice 
per group. Statistical significance was calculated by one-way ANOVA with Tukey multiple-
comparison test. Error bars represent means ± SEM. P≤0.05(*) 
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Figure S2.1. Analysis of corneal CD4 T cells. 
Graph shows frequencies of ex-Treg, Treg and T effectors in ocularly HSV-1 infected 
FM mice at day 8 pi (left) and ex-Treg and Treg frequency after gating on Tomato+ 
cell (right). 
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Figure S2.2. ex-Treg in lymphoid tissues and cornea after ocular HSV-1 infection. 
(A) Graph shows ex-Treg frequencies in DLN, spleen and corneas of day 15 ocularly 
HSV-1 infected FM mice. B) Intracellular staining was conducted to quantify Th1 ex-Treg 
cells by stimulating them with PMA/ionomycin. Graph shows frequency of IFN-γ 
producing ex-Treg in DLN, spleen and cornea of day 15 HSV-1 infected FM mice. 
Statistical significance was calculated by one-way ANOVA with Tukey multiple -
comparison test. Error bars represent means ± SEM. P≤ 0.0001(****), P≤0.05(*). 
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Figure S2.3. Purity of sorted CD25lo and CD25hi Treg cells.  
Flow cytometric analysis of CD4 and CD25 expression by cells from spleen and lymph 
nodes of day 15 ocularly HSV-1 infected FM mice before FACS purification (left) and after 
purification (right). 
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CHAPTER 3 
AZACYTIDINE TREATMENT INHIBITS THE PROGRESSION OF HERPES 

STROMAL KERATITIS BY ENHANCING REGULATORY T CELL FUNCTION 
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Abstract 
 

Ocular infection with Herpes Simplex Virus type 1 (HSV-1) sets off an inflammatory 
reaction in the cornea which leads to both virus clearance as well as chronic lesions that 
are orchestrated by CD4 T cells. Approaches that enhance the function of regulatory T 
cells (Treg) and dampen effector T cells can be effective to limit Stromal Keratitis (SK) 
lesion severity. In this report, we have explored the novel approach of inhibiting DNA 
methyltransferase activity using 5-Azacytidine (cytosine analog) to limit HSV-1 induced 
ocular lesions. We show that therapy begun after infection when virus was no longer 
actively replicating resulted in the pronounced reduction in lesion severity with markedly 
diminished numbers of T cells and non-lymphoid inflammatory cells along with reduced 
cytokine mediators. The remaining inflammatory reactions had a change in ratio of CD4 
Foxp3+Treg to effector Th1 CD4 T cells in ocular lesions and lymphoid tissues with Treg 
becoming predominant over the effectors. In addition, compared to controls, Treg from 
Aza treated mice showed more suppressor activity in vitro and expressed higher levels 
of activation molecules. Additionally, cells induced in vitro in the presence of Aza showed 
epigenetic differences in the Treg Specific Demethylated Region (TSDR) of Foxp3 and 
were more stable when exposed to inflammatory cytokines. Our results show that therapy 
with Aza is an effective means of controlling a virus-induced inflammatory reaction and 
may act mainly by the effects on Treg. 

 
Introduction 

 
Once a viral infection becomes established its removal largely depends on the 

activity of T lymphocytes. Multiple functional subsets of T cells can participate with the 
outcome dependent on the nature of the virus, its location in the body and the types of T 
cells that become activated and expanded by the infection (1,2). Chronic tissue damaging 
inflammatory reactions can occur when elimination of infection is difficult to achieve, or 
the balance of T cell responsiveness emphasizes pro-inflammatory cells that contribute 
to tissue damage (3). For example, in stromal keratitis (SK) resulting from ocular infection 
by herpes simplex virus (HSV), a chronic inflammatory reaction occurs in the corneal 
stroma which is orchestrated mainly by pro-inflammatory CD4 Th1 and Th17 T cells (4-
6). The lesion is less severe and can even resolve if regulatory T cells (Treg), such as 
Foxp3+ CD4 T cells, dominant over the other pro-inflammatory CD4 T cell subsets (7-
11). Accordingly, therapies aimed at increasing Treg numbers and/or improving their 
regulatory activity is of high relevance. 

It is becoming evident that the balance between inflammatory and regulatory T 
cells is not fixed, but can change as a consequence of one or the other cell type changing 
in number or altering their functional activity (12). For example, functional changes were 
observed in vitro when Treg were exposed to some inflammatory mediators (13,14). 
Similar functional changes may occur during auto-inflammatory lesions in vivo with Treg 
losing their regulatory activity (15,16). Of more concern, these Treg may change and take 
on a pro-inflammatory function and then contribute to the severity of tissue damage (15-
18). The changes in functional phenotype that occur is likely explained by epigenetic 
changes that affect expression of the Treg transcription factor Foxp3 (19,20). These 
epigenetic changes usually occur in the highly conserved intron-2 also known as Treg 
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specific demethylation region (TSDR), which harbors cytosine-phospho-guanine (CpG) 
sites subject to methylation (21,22). Thus, when TSDR is demethylated the transcription 
factors Ets-1 and Creb can bind and act as enhancers for the continuous transcription of 
the Foxp3 gene (23,24). However, when the TSDR is methylated, the enhancer activity 
is diminished and only transient expression of Foxp3 occurs. Consequently, for the stable 
expression of the Foxp3 gene, demethylation of TSDR is required (25,26). In fact, natural 
Treg that derive from the thymus are stable and their TSDR is invariably demethylated 
(22). In contrast, in vitro or in vivo induced Treg have a TSDR which is methylated and 
such cells show plasticity of both phenotype and function (22,25,27,28).  

Approaches to promote the stability of induced Treg are to block TSDR methylation 
or to generate Treg that have a demethylated TSDR profile. The later can be achieved 
by inhibiting DNA methyltransferase as occurs when 5-Azacytidine (Aza) is used for 
therapy (22,25,61). This FDA approved drug is used to treat myelodysplastic syndrome 
(29), and is also an effective therapy against some inflammatory disease models (30-32). 
The treatment has also been proposed to act by increasing the potency of the Treg 
response (31-33), and we further evaluate this notion using an infectious disease model 
of inflammation.  

In this report, we show that the therapeutic administration of Aza was highly 
effective at suppressing the severity of ocular immuno-inflammatory lesions that result 
from corneal infection with HSV. The beneficial outcome of the Aza therapy appeared to 
be the consequence of restricted infiltration of pro-inflammatory immune cells to the 
cornea. The cells that did enter had increased number of Treg in comparison to CD4+ 
gamma interferon-producing (IFN-γ+) effector T cells.  This increased representation of 
Treg in Aza treated animals was also evident in the blood and lymphoid tissues. 
Significant differences in suppressive efficacy of Treg from control and treated groups 
was also observed, with Treg from Aza treated animals being more suppressive, a 
property explained at least in part by higher expression levels of Reactive Oxygen 
Species (ROS) and activation markers. Furthermore, Treg generated in vitro in the 
presence of Aza expressed a fully demethylated TSDR and these cells also displayed 
enhanced suppressive activity which correlated with enhanced ROS production and 
activation markers. Overall, our results emphasize that the epigenetic modifying drug Aza 
may represent a novel approach to control HSV-1 induced ocular immuno-pathological 
lesions, the most common infectious cause of blindness in humans in the USA.  

 
Results 

 
Azacytidine reduces SK lesion severity and diminishes pro-inflammatory cytokines 
and chemokines after HSV-1 infection 

To assess the efficacy of Aza on the extent of ocular lesions caused by HSV 
infection, animals were given either Aza or PBS (control) daily starting day 5 post infection 
(pi). This is the time point when there is at best minimal replicating virus detectable in the 
infected corneas and early inflammatory reactions start to become evident (36). Animals 
were examined at intervals to record the severity of SK lesions. The results were clear 
cut with animals receiving Aza therapy showing significantly (P < 0.001) reduced SK 
lesion severity compared to PBS treated control animals (Fig. 3.1A) Treatment effects 
were first evident by day 10, and by day 15, 10% of Aza-treated animals showed a lesion 
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score of ≥ 3 compared to 60% in control PBS treated animals (Fig. 3.1B). This pattern of 
reduced inflammatory reaction in Aza treated animals was also evident in histological 
sections of corneas taken from animals terminated at day 15pi (10 days after treatment) 
(Fig.3.1C).  

At the termination of the experiments on day 15 pi, pools of 4 corneas were 
collected and processed to identify their cellular composition by FACS analysis. There 
was a reduction in inflammatory cell numbers including neutrophils (>500 fold), 
macrophages (10 fold), and CD4 T cells (> 10 fold) in Aza treated animals compared to 
controls (Fig 3.2A-C). In separate experiments of the same design, pools of corneas were 
processed to quantify mRNA of selected cytokines (IL-1β, TNF-α, IL-6 and IL-12) and 
chemokines (CCL3, CCL2, CXCL1and MMP1) by quantitative real time PCR (Q-RTPCR). 
As shown in Fig 3.3, those treated with Aza showed a reduction in the level of several 
pro-inflammatory cytokines and chemokines compared to controls. However, there was 
also a reduction in the expression levels of anti-inflammatory IL-10 and TGF-b (Fig 3.3), 
likely explained by reduced numbers of infiltrating immune cells. Taken together, our 
results show that daily administration of Aza, 5 days after virus infection significantly 
diminished HSV-1 induced immunopathology.  
Aza treatment changes the balance of Treg to Th1 effectors 

Since it is known that the outcome of SK lesion severity is dependent on the ratio 
of Treg to Th1 (37), the ratio of the cell types was compared in corneas, blood and DLN 
in Aza treated and control infected animals. Pools of corneas were collected at 15 days 
p.i from Aza treated and control animals and the infiltrating cell population was recovered 
after collagen digestion. These cells were then stimulated in vitro for 4 hours with PMA 
and ionomycin and the CD4 T cells were enumerated that were either IFN-γ producers or 
expressed the transcription factor Foxp3. (Fig. 3.2D). Changes in representation of the 
two cell types occurred as a consequence of Aza therapy. Thus in the corneas of Aza 
treated animals, the ratio favored Foxp3+ CD4 T cells to Th1 cells being around 2:1, but 
in controls the ratio was around 1:7 (Fig.3.2E). Approximately, 7% of the total CD4 T cells 
in the corneas of control animals expressed Foxp3, but in Aza treated animals around 
35% were Foxp3+ cells (Fig. 3.2D). As with the corneas, blood from Aza treated mice 
displayed an increased Treg frequency with 12% of the CD4 T cells being Foxp3+ 
compared to only 5% in PBS treated controls at day 15pi (Fig. 3.4A). The total number of 
CD4 T cells (per 1 million cells) in the blood was decreased by 2-fold in the Aza treated 
animals (Fig. 3.4B). Although less in magnitude similar reduction in Th1 frequency and 
number (Fig. 3.4D,E) along with changes in Treg to Th1 ratio occurred in the DLN at day 
15pi (Fig. 3.4F). The number of total CD4 T cells and Treg cells in the DLN of the Aza 
treated animals were reduced by 1.8 and 1.4 fold respectively (Fig. 3.4C,G). Reduction 
in Treg numbers may be as a consequence of reduced inflammatory response. 
Additionally, single cell suspensions of DLNs isolated at day 15 pi from control and Aza 
treated animals were stimulated overnight with UV-inactivated HSV-1 followed by ICS 
assay to measure antigen specific Th1 responses. Results indicated that there was more 
than 2-fold reduction in frequency and number of Th1 cells (CD4+ IFN-γ+ cells) in DLN 
samples from Aza treated animals that were specific for HSV-1 (Fig. 3.4H). In conclusion, 
upon Aza treatment there was a change in the balance in CD4 T cell responses with an 
increased representation of Treg which could in part contribute to the reduced lesion 
severity. 
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Azacytidine increased Treg suppressive function and activation markers  
Since Aza treatment of HSV ocularly infected mice resulted in diminished lesions 

and increased representation of Foxp3+ CD4 T cells, the question arose as to whether or 
not the Treg population showed any changes in regulatory function in response to Aza 
therapy. To measure the suppressive activity, Foxp3 GFP mice were infected with HSV-
1 and Foxp3+ T cells were recovered by FACS sorting from the pools of DLN and spleens 
of control and Aza treated animals at day 15 pi. Equal numbers of Foxp3+ T cells were 
cultured at different ratios with naïve responders stimulated with anti-CD3/CD28. The 
results indicate that Treg from HSV-1 infected Aza treated mice displayed more 
suppressive activity against stimulated naïve responders (>20 fold at 1:8 ratio) compared 
to Treg from infected controls (Fig.3.5A). Suppression with Treg from Aza treated animals 
could be observed in cultures with 1 Treg to 16 responders, whereas with control Treg a 
ratio of 1 to 4 was needed to demonstrate significant levels of suppression (Fig. 3.5B).  

To provide an explanation for the greater suppressive activity of cells from Aza 
treated infected animals, a number of measurements were made. To determine if 
differences in IL-10 production was an explanation, DLNs from Aza treated and control 
animals were isolated at day 15 pi and 1 million single cell suspensions were stimulated 
with PMA/Ionomycin and supernatants were compared for levels of IL-10 using ELISA. 
No significant differences were detectable between the cells from Aza treated and control 
groups (data not shown). Comparisons were also made between Treg in control and Aza 
treated animals for activation markers as well as ROS production, since the latter has 
been advocated to be involved in suppressive activity (38). In the DLNs from Aza treated 
animals isolated at day 15 pi, Treg displayed only a modest increase in expression 
(ranging from 1.3 to 1.6 fold) of activation markers. These included CD25, OX40, GITR, 
CD103, FR4 and CD44 on Foxp3+ CD4 T cells (Fig. 3.5C). Differences between the two 
Treg populations were greatest in the case of expression of intracellular ROS. Thus the 
Treg in DLN from Aza treated animals had around 3-fold increase in ROS activity as 
compared to the cells from controls (Fig. 3.5D,E). Additionally, expression of genes 
involved in ROS production i.e NOX-2 and NCF-1 genes (components of NADPH oxidase 
complex) (39) were also increased 3 and 2.5 fold respectively in the Treg of Aza treated 
compared to control animals, as measured by QRT-PCR (Fig. 3.5F). The expression of 
IL-10 and TGF-beta was also measured in Treg from Aza treated and control animals 
using QRT-PCR. The results indicate similar expression levels of IL-10 and TGF-beta in 
both samples (Fig. 3.5G). Based on the above results, we could show that Aza treatment 
protected the phenotype and function of Treg cells. In conclusion, Treg show enhanced 
suppressive activity after Aza treatment and this may be explained at least in part by their 
increased activation markers and ROS producing ability.  
Effect of Azacytidine on the lesion severity was dependent on the presence of Treg 

Since Aza treatment reduced lesion severity which correlated with changes in Treg 
number and function, experiments were done to determine the outcome of Aza treatment 
wherein Treg were depleted prior to infection. Depletion was achieved by administration 
of mAb against the IL-2 receptor (CD25) given on day 0 of infection. The depletion 
procedure, as measured at day 15 pi, was shown to be around 50% effective at reducing 
total Foxp3+ T cells in DLN (Fig. 3.6A). SK lesion severity was measured at day 15 pi and 
the results indicate that Aza treatment to Treg intact animals led to reduced lesion severity 
with an average SK score of 1.7. This compared to an average score of 3.1 in the control 
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groups. However, in animals depleted of Treg and Aza treated, the inhibitory effects on 
SK severity were no longer apparent with an average score of 3.8 (Fig. 3.6B). To measure 
any effect of Aza therapy on the magnitude of CD4 Th1 response, the numbers of IFN-g 
producing CD4 T cells in the DLNs at day 15pi were measured. Unlike in Treg intact 
animals where Aza treatment resulted in reduced effector T cells numbers, Aza treatment 
to Treg depleted animals displayed no significant difference in effector responses 
compared to PBS treated controls. (Fig. 3.6C).  

Next, to evaluate the effect of Aza on proliferation of Treg and effectors, DLN were 
isolated at day 15pi from Treg depleted and control animals treated with or without Aza. 
Single cell suspensions were stained for CD4, Foxp3 and Ki-67 (proliferation marker). 
Results indicated that after Aza treatment, the proliferation of effector T cells was reduced 
by 1.5 fold in the Treg intact animals compared to the untreated controls. Whereas, Aza 
treatment in Treg depleted animals resulted in a 1.5-fold increase in the proliferation of 
effector T cells compared to untreated controls (Fig. 3.6D), the proliferation of Treg were 
unchanged after Aza treatment in both cases (Fig. 3.6E). Consistent with the role of Treg 
in controlling effector cell proliferation, Aza treatment in the Treg depleted animals 
increased the proliferation of effector cells, whereas in the presence of Treg Aza 
treatment led to reduced proliferation. Accordingly, our results imply that Aza may act 
preferentially on the Treg subset that likely express high level of CD25.  
Azacytidine promotes differentiation and stability of Treg in vitro 

To evaluate the direct effect of Aza on Treg and T effectors (Th1), in vitro 
differentiation experiments were performed. For this purpose, naïve splenocytes from 
DO11.10 RAG2-/- animals (ova peptide specific and 98% naïve CD4+ T cells) were 
cultured in the presence of Treg differentiating conditions (IL-2 and TGF-β) as well as in 
the presence or absence of graded amounts of Aza (from 1 µM to 15 µM). The results 
show a dose dependent enhancement in Treg differentiation compared to control cells 
without Aza with the maximal effect evident at 5µM (Fig. 3.7A). This dose yielded an 
approximately 2-fold increase in the frequency of Foxp3+ CD4 T cells induced in cultures 
(Fig. 3.7B). Similarly, when naïve DO11.10 RAG2-/- splenocytes were cultured in the 
presence of 5µM Aza and Th1 differentiating conditions (IL-12 and anti-IL-4), Aza 
increased the frequency of IFN-g by 2-fold (Fig 3.7C). To provide a possible explanation 
for the Aza enhancement effects on Treg induction, experiments were done to record 
epigenetic changes in the TSDR region of Treg induced in the presence or absence of 
Aza. Although, Aza might affect the global methylation status of several other genes with 
CpG sites such as Gitr, Ctla4, Ikzf4 and CD25 (27), the methylation status of only the 
TSDR region of Foxp3 gene was evaluated, as this region is known to be an indicator of 
Treg stability and function (25-27, 55,56). Naïve CD4 T cells isolated from Foxp3 GFP 
mice were differentiated into Treg in the presence or absence of Aza (5µM) and equal 
numbers of Foxp3 GFP+ cells were harvested 5 d post culture by FACS sorting. The DNA 
was bisulfite converted after which the TSDR region was PCR amplified, cloned and 
sequence analyzed for methylated CpG sites. Dramatic differences were evident between 
cells induced in the presence or absence of Aza. In the presence of Aza, the TSDR region 
was demethylated about 80%. In contrast, without Aza the TSDR was only minimally 
demethylated (about 5%) (Fig. 3.7D). These methylation differences could have 
consequences in terms of Treg stability.  
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Since the Treg induced in the presence of Aza displayed a demethylated TSDR 
region, the effects of exposing the Treg population induced in the presence or absence 
of Aza to inflammatory cytokines which are known to destabilize Treg were measured 
(25,40). The two Treg populations were harvested and Foxp3 expression was determined 
following exposure for 3 days to IL-2 or IL-12 (Th1 condition) or IL-6 and TGF-b (Th17 
conditions). In agreement with previous reports (41), IL-2 alone under non-stimulating 
conditions did not cause a change of Foxp3 expression. However, exposure to IL-12 for 
3 d resulted in loss of Foxp3 expression in around 40% of cells. In contrast, the Treg 
induced in the presence of Aza lost only 20% of their Foxp3 expression after exposure to 
IL-12. Similar differences, but less in magnitude, were observed when the two populations 
were exposed to Th17 conditions (IL-6 and TGF-b). In those experiments, control induced 
Treg lost around 25% of their Foxp3 expression whereas Aza induced Treg lost around 
12% (Fig. 3.7E). In conclusion, Treg induced in vitro in the presence of Aza had TSDR 
that was demethylated and such cells were more stable in the presence of inflammatory 
cytokines (IL-12 or IL-6) than were Treg induced without Aza.  
Aza promotes Treg suppressive function and activation markers 

To evaluate if enhanced Treg stability may lead to enhanced Treg function, 
experiments were done to measure functional differences in Treg induced in vitro in the 
presence or absence of Aza. For these experiments, naïve CD4 T cells isolated from 
Foxp3 GFP mice were used. The Foxp3 GFP+ cells were harvested 5 d post culture, 
FACS sorted and in vitro suppression assays were performed.  Equal numbers of Foxp3+ 
T cells were cultured at different ratios with naïve responders stimulated with anti-
CD3/CD28. The results indicate that Treg differentiated in the presence of Aza showed 
more than 2 fold higher suppressive activity compared to that of control Tregs (Fig. 3.8 
A,B). In separate experiments, Treg were differentiated in the presence or absence of 
Aza (5µM) to yield a similar frequency of Foxp3+CD4 T cells between the two groups 
(high concentration of TGF-b) (Fig. 3.8C). The expression of ROS and the activation 
markers was compared. The Treg generated in the presence of Aza displayed around 
1.3-1.8 fold increase in the expression of CD25, GITR, FR4, OX40 and ROS compared 
to that of control Treg (Fig. 3.8D,E). In conclusion, exposure of Aza during Treg induction 
resulted in enhanced Treg suppressive function which could be partly explained by 
enhanced activation markers and ROS production in vitro. 

 
Discussion 

 
Ocular infection with HSV sets off an inflammatory cytokine reaction in the cornea 

which leads to both virus clearance as well as chronic lesions that are orchestrated by 
CD4 T cells (4,36). Approaches that enhance the function of Treg cells and dampen 
effector T cells can be effective to limit SK lesion severity (7-10). In this report, we have 
explored the novel approach of inhibiting DNA methyltransferase activity using 5-
Azacytidine (cytosine analog) to limit HSV induced ocular lesions. We show that therapy 
begun after infection when virus was no longer actively replicating resulted in the 
pronounced reduction in lesion severity with markedly diminished numbers of 
inflammatory T cells and non-lymphoid inflammatory cells along with reduced cytokine 
mediators. The remaining inflammatory reactions had a change in ratio of CD4 
Foxp3+Treg to effector Th1 CD4 T cells in ocular lesions with Treg becoming predominant 
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over the effectors. We also show that a consequence of Aza therapy was an increased 
suppressive activity of Treg, an effect which correlated with their increased expression of 
ROS. Hence treatment with Azacytidine during early stages of lesion development 
represents an effective and novel therapy for a lesion that is a common cause of human 
blindness (42).   

Our results clearly showed markedly reduced lesions in response to HSV-1 
infection in Aza treated animals. In the model we used, SK lesions are 
immunopathological and are orchestrated mainly by IFN-g producing CD4 T cells. 
However, the tissue damage is mediated largely by neutrophils and to lesser extent 
macrophages which are recruited to the corneal site of inflammation by signals generated 
by the T cells (43,44). In consequence, the inhibitory effects of Aza might be directed 
against multiple cell types in the SK response. In fact, some reports have indicated that 
Aza therapy can inhibit the generation of neutrophils (45) and pro-inflammatory (M1) 
macrophages (46), but we argue that the anti-inflammatory effects of Aza in the SK 
system may be explained mainly by its effects on T cells, particularly Treg. Thus whereas 
all cell types were reduced in number in Aza treated animals, there was a differential 
effect on Th1 effectors and Treg. In fact, in treated animals the ratio of Treg to Th1 cells 
was increased substantially in corneal lesions (a change from 1:7 to 2:1) and similar but 
less dramatic changes of ratios occurred in the blood and DLN. Our results indicate that 
the ratio change may be more the consequence of direct effects on Treg rather than on 
T effectors. In fact, our working hypothesis is that Aza serves to stabilize, expand or 
change the regulatory potency of Treg and this acts to inhibit the function or perhaps 
transport of effectors to the corneal site of inflammation. Support of these ideas came 
from the observation that antigen specific effectors were reduced in number in the DLN 
of Aza treated animals, an effect likely the consequence of enhanced Treg function. Thus 
we observed that Treg induced in the presence of Aza had significantly enhanced 
suppressive activity in vitro compared to cells from control animals. 

With regard to why the Treg from Aza treated animals were more suppressive 
compared to Treg from control animals, we could show that the activation markers such 
as CD25, GITR, OX40 and FR4 levels along with ROS were significantly increased as a 
consequence of Aza therapy. A possible involvement of ROS activity in Treg function was 
noted in models of autoimmune arthritis and colitis, where inhibition of ROS producing 
enzyme system, such as NCF-1 or NOX2, led to loss of Treg suppressor function, 
enhanced effector responses and aggravated inflammatory lesions (51-53). Conceivably, 
increased ROS expression by Treg makes them more inhibitory against T effectors by 
inducing T cell death (57,58).  However, since Aza induces DNA demethylation across 
several genes leading to their increased transcriptional activity, whether or not changes 
in ROS expression is the most critical event that explains why Treg after Aza treatment 
were more effective to control the inflammatory reactions in the SK system needs further 
study. One line of studies we are pursuing is that the promoter, or the intron regions, of 
the Treg associated genes such as CD25, GITR, NCF-1 and NOX-2 might be 
hypomethylated upon Aza treatment which leads to their increased gene expression.  

An alternative potential explanation for increased Treg representation over Th1 
effectors in Aza treated animals could be that Aza might render Treg resistant to the 
destabilization effects of pro-inflammatory cytokines that are highly expressed at the 
lesion and DLN sites (36,59). Although this destabilization phenomenon was not 
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evaluated in vivo, we could show that Treg induced in vitro in the presence of Aza, but 
not control Treg, displayed enhanced stability when exposed to the pro-inflammatory 
cytokines IL-12 and IL-6. The increased stability was explained likely by epigenetic 
differences caused by Aza therapy which inhibited DNA methyltransferase that were 
induced as downstream signaling events of pro-inflammatory cytokines. Such events 
result in methylation of the TSDR and only transient Foxp3 expression (25,60). Evidence 
for epigenetic differences in the TSDR region between Treg generated in the presence 
or absence of Aza were shown by in vitro studies. Thus Treg generated in the presence 
of Aza had a demethylated TSDR region and showed stability when exposed to pro-
inflammatory cytokines, unlike the non Aza exposed Treg which had a methylated TSDR 
and lost Foxp3 expression in the presence of pro-inflammatory cytokines.  

The final line of evidence implicating Treg as a critical cell type affected by Aza 
therapy came from the observation that the anti-inflammatory effects of Aza were blunted 
if Treg were depleted from animals prior to infection and subsequent Aza therapy. This 
observation also makes it unlikely that Aza acts to cause suppressed lesions via direct 
inhibitory effects on effector T cells or on non-lymphoid inflammatory cells such as 
neutrophils. Supporting this notion, no inhibitory effects of Aza on effectors were observed 
in vitro and in fact when Aza was present during in vitro induction, both Treg and Th1 
cells were increased in frequency. This observation that Aza therapy did not limit the 
lesion severity and effector responses when Treg were depleted came as a surprise, 
since the anti-CD25 mAb depletion procedure was only around 50% effective at depleting 
Treg. However, the depletion procedure is known to preferentially deplete Treg with high 
expression of the IL-2 receptor (CD25) (54,62) and this population is likely the one from 
which antigen specific induced Treg are generated and which regulate the effectors 
involved in SK. In fact, in prior studies, we had shown that anti-CD25 depletion results in 
enhanced effector function along with more severe lesions of SK (47). Moreover, some 
studies have shown CD25 hi Treg are in fact the precursors of antigen-specific Treg (48-
50), but we lacked the necessary reagents to formally demonstrate the antigen specific 
Treg in our system. Nevertheless, Treg without HSV antigen specificity can also express 
modulatory effects in the SK system (7), although their CD25 expression level has not 
been evaluated. Overall, we take our observations to indicate that Aza therapy acts to 
stabilize and increase the regulatory function of Treg, an effect which likely acts in 
lymphoid tissue as well as at the corneal inflammatory site to limit the magnitude of 
effector T cell responses.  

In conclusion, our results are consistent with the observation that inhibiting DNA 
methyltransferase activity through the use of Azacytidine plays a role in influencing the 
expression of SK lesions. The mechanisms involved to explain the outcome were 
multiple, and involve a change in the balance between effector and regulatory T cells. We 
anticipate that inhibiting DNA methyltransferase, could represent a useful approach to 
control an important cause of human blindness. 
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Materials and Methods 
 

Mice and Virus 
Female C57BL/6 mice and congenic Thy1.1+ mice were purchased from Harlan 

Sprague-Dawley, Inc. (Indianapolis, IN), Foxp3-GFP (C57BL/6 background) mice were a 
kind gift from M.Oukka (Brigham and Womens hospital, Harvard Medical School), BALB/c 
DO11.10 RAG2-/- mice were purchased from Taconic and kept in pathogen free facility 
where food, water, bedding and instruments were autoclaved. All the animals were 
housed in American Association of Laboratory Animal Care–approved facilities at the 
University of Tennessee, Knoxville, Tennessee. All investigations followed guidelines of 
the Institutional Animal Care and Use Committee, and adhered to the ARVO Statement 
for the Use of Animals in Ophthalmic and Vision Research. HSV-l RE strain was used in 
all procedures. Virus was grown in Vero cell monolayers (American Type Culture 
Collection, Manassas, VA), titrated, and stored in aliquots at −80°C until used.  
HSV-1 ocular infection and clinical scoring 

Corneal infections of C57BL/6 and Foxp3 GFP mice were conducted under deep 
anesthesia induced by intra peritoneal (i.p) injection of tribromoethanol (Avertin). Mice 
were scarified on cornea with a 27-gauge needle, and a 3 µl drop containing 1x105 PFU 
of HSV in 3 μl volume was applied to the eye. The eyes were examined on different days 
post infection (dpi) with a slit-lamp biomicroscope (Kowa Company, Nagoya, Japan), and 
the clinical severity of keratitis of individually scored mice was recorded as previously 
described (34). Briefly, the scoring system was as follows: 0, normal cornea; +1, mild 
corneal haze; +2, moderate corneal opacity or scarring; +3, severe corneal opacity but 
iris visible; +4, opaque cornea and corneal ulcer; +5, corneal rupture and necrotizing 
keratitis.  
Aza Administration 

The 5-Azacytidine (MP BIOMEDICALS) was dissolved in PBS and administered 
intraperitoneally at 2mg/kg starting from day 5 post infection until day 14 after infection. 
The control group either received an equal volume of PBS or left untreated. The dose of 
Aza was chosen based on our preliminary studies (data not shown) and previous reports 
(35). Most of the experiments were repeated at least three times.  
Histopathology 

Eyes from control and TCDD treated mice were extirpated on day 15 pi and snap 
frozen in OCT compound (Miles, Elkart, IN). Six micron thick sections were cut, air dried 
in a desiccation box. Staining was performed with hematoxylin and eosin (Richard Allen 
Scientific, Kalamazoo, MI). 
Flow Cytometric Analysis 

At day 15 pi, corneas were excised, pooled group-wise, and digested with liberase 
(Roche Diagnostics Corporation, Indianapolis, IN) for 45 minutes at 37°C in a humidified 
atmosphere of 5% CO2. After incubation, the corneas were disrupted by grinding with a 
syringe plunger on a cell strainer and a single-cell suspension was made in complete 
RPMI 1640 medium. The single-cell suspensions obtained from corneal samples were 
stained for different cell surface molecules for fluorescence-activated cell sorting (FACS) 
analyses. Draining cervical lymph nodes were obtained from mice sacrificed at 15 days 
post infection and single cell suspensions were used. Blood samples were collected at 
intervals from Aza treated or control C57BL/6 Foxp3-GFP mice (HSV infected) to record 
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the percentage of CD4+ T cells that were Foxp3 positive. All steps were performed at 
4°C. Briefly; cells were stained with respective surface fluorochrome-labeled Abs in FACS 
buffer for 30 minutes, then stained for intracellular Abs. Finally, the cells were washed 
three times with FACS buffer and resuspended in 1% paraformaldehyde. The stained 
samples were acquired with a FACS LSR II (BD Biosciences, San Jose, CA) and the data 
were analyzed using FlowJo software (Tree Star, Inc., Ashland, OR). 

To determine the number of IFN-γ producing T cells, intracellular cytokine staining 
was performed. In brief, corneal cells were either stimulated with PMA (50ng) and 
Ionomycin (500ng) for 4 hours in the presence of brefeldin A (10 μg/mL) or stimulated 
with UV-inactivated HSV-1 RE (1 MOI) overnight followed by 5 hour brefeldin A (10 
μg/mL) in U-bottom 96-well plates (6). After this period, Live/Dead staining was performed 
followed by cell surface and intracellular cytokine staining using Foxp3 intracellular 
staining kit (ebioscience) in accordance with the manufacturer's recommendations.  
Reagents and antibodies. 

CD4 (RM4-5), CD45 (53-6.7), CD11b (M1/70), Ly6G (1A8), F4/80 (BM8), IFN-γ 
(XMG1.2), CD103 (M290), CD25 (PC61, 7D4), GITR (DTA-1), FR4 (eBio12A5), CD44 
(IM7), OX40 (OX-86), annexin-V, Foxp3 (FJK-16S), anti-CD3 (145-2C11), anti-CD28 
(37.51), GolgiPlug (brefeldin A) from either ebiosciences or BD biosciences. Phorbol 
myristate acetate (PMA) and Ionomycin from sigma. Cell Trace Violet, Live/Dead Fixable 
Violet Dead Cell Stain Kit and CMH2DCFDA from Life Technologies. Recombinant IL-2, 
IL-12, IL-6 and TGF-b from R&D systems.  
Quantitative PCR (qPCR) 

At day 15 post ocular infection with HSV-1, the corneas were isolated and four 
corneas were pooled per sample/group. Regulatory T cells and effector cells were FACS 
sorted using Foxp3 GFP mice. Total mRNA from corneal and sorted T cell populations 
was isolated using mirVana miRNA isolation kit (Ambion). cDNA was made with 500ng 
of RNA (corneal samples) and entire RNA (isolated T cells) by using oligo(dT) primer and 
ImProm-II Reverse Transcription system (Promega). Taqman gene expression assays 
for cytokines (IL-10, TGF- β, IL-1β, TNF-α, IL-6, IL-12), chemokines (CCL3, CXCL1, 
CCL2, and MMP1) and NADPH oxidase components (NCF-1, NOX2) were purchased 
from Applied biosystems and quantified using 7500 Fast Real-Time PCR system (Applied 
Biosystems). The expression levels of different molecules were normalized to β-actin 
using ΔCt calculation. Relative expression between control and experimental groups was 
calculated using the 2-ΔΔCt X 1000 formula.  
Depletion of regulatory T cells in vivo 

C57BL/6 mice were given i.p injection of 500 µg of Anti-CD25 monoclonal antibody 
(clone: PC61 rIgG1,BioXcell, West Lebanon, NH, USA) or control rat IgG1 (BioXcell) on 
same day of infection (day 0). Depletion efficiency was quantified by measuring 
percentage of Foxp3+ CD4 T cells after 15 days post infection.  
Purification of CD4+ T cells. 

CD4+ T cells (total or naïve) were purified from single cell suspension of pooled 
draining cervical lymph nodes (DLNs) and spleen from HSV-infected or naïve Foxp3 GFP 
and Thy1.1+ B6 (H-2b) mice using a mouse total or naïve CD4+ T cell isolation kit 
according to the manufacturer's instructions (Miltenyi Biotec, Auburn, CA). The purity was 
achieved at least to an extent of 90%. For methylation studies and suppression assays, 
Treg cultures were sorted based on foxp3 GFP using FACS sorter to achieve high purity.  
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In vitro suppression assay. 
Treg suppression assay was done as previously described (9). Briefly, Foxp3-GFP 

mice infected with HSV-1 were divided into multiple groups. Mice in one group were 
injected with Aza on day 5 p.i., and control groups were injected with PBS. At day 15 p.i., 
single-cell suspensions from draining cervical lymph nodes (DLN) and spleen were 
prepared and CD4+ Foxp3+ T cells were sorted on a FACSAria cell sorter to 99% purity. 
To measure the suppressor function of Treg differentiated in vitro, naïve CD4 T cells from 
Foxp3 GFP mice were differentiated to Tregs in the presence or absence of Aza and 
Foxp3 GFP+ cells FACS sorted. CD4+ Foxp3+ T cells were then cultured with anti-CD3 
(1 μg/well) and anti-CD28 (0.5 μg/well) antibodies and cell Trace violet (CTV) labeled 
naïve CD4+ Thy1.1 responder cells (purified by a Miltenyi biotech kit) in a 96-well round 
bottom plate. The suppressive capacity of Tregs was measured by coculturing Tregs and 
T conventional cells (Tconv) at different ratios (Treg/Tconv, 1:1 to 1:16). After 3 days of 
incubation, the extent of CTV dilution was measured in Thy1.1 CD4+ cells by flow 
cytometry. Percent suppression by Tregs was calculated by using the formula 100 − 
[(frequency of cells proliferated at a particular Treg/effector T cell ratio)/(frequency of cells 
proliferated in the absence of Tregs)]100 . 
In vitro Treg and Th1 differentiation and Treg stability assays 

Splenocytes isolated from DO11.10 RAG2 -/- or Foxp3 GFP mice were used as a 
precursor population for the induction of Foxp3+ in CD4+ T cells as previously described 
(8). Briefly, 1×106 splenocytes after RBC lysis and several washings were cultured in 1ml 
RPMI media containing rIL-2 (100 U/ml) and TGFβ (1-5ng/ml) in the presence or absence 
of various concentrations of Aza (1-15µM) with plate bound anti-CD3/CD28 Ab (1 µg/ml) 
for 5 days at 37°C in a 5% CO2 incubator. After 5 days, samples were characterized for 
Foxp3 intracellular staining (ebioscience staining kit) or GFP expression (Foxp3 GFP 
mice) analyzed by flow cytometry. Treg were either sorted (TSDR methylation analysis) 
or cultured in 96-well round bottom plate in the presence of IL-2 (100U/ml) or IL-12 
(5ng/ml) or IL-6 (25ng/ml) +TGF-b (1ng/ml) for 3 days followed by flow cytometry analysis 
of Live CD4+ Foxp3+ cells.  

For Th1 differentiation, splenocytes from DO11.10 RAG2 -/- mice were stimulated 
with plate bound anti-CD3/CD28 Ab (1 µg/ml) in the presence of recombinant mouse IL-
12 (5-10ng/ml) and anti-IL-4 (10 µg/ml) and in the presence or absence of varying 
concentrations of Aza (1-15µM). After 5-days samples were re-stimulated with 
PMA/Ionomycin and analyzed for the production of IFN-γ by intracellular cytokine staining 
kit (BD biosciences) using flow cytometer.  
TSDR methylation assay 

Foxp3 GFP+ Cells were FACS sorted and genomic DNA was isolated (Qiagen) 
and was bisulfite-converted with an EZ DNA Methylation-Direct kit according to the 
manufacturer's protocol (Zymo Research). TSDR region (corresponding to Foxp3 
conserved noncoding sequence 2) was PCR amplified using primer sequences 5′-
GGGTTTTTTTGGTATTTAAG-3′ (forward) and 5′-CCTAAACTTAACCAAATTTT-3′ 
(reverse). PCR products were sub-cloned into pGEM-T Easy vectors (Promega) and 
transformed into bacterial clones. Plasmid DNA samples from each bacterial colony were 
sequenced separately at the UTK core facility (at least 10 sequences per sample). 
Detection of intracellular redox state 
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Single suspension of cells from draining lymph nodes (DLNs) from both Aza 
treated and control HSV-infected C57BL/6 or in vitro differentiated Tregs were incubated 
with 1µM of CM-H2DCFDA (6- chloromethyl-2′,7′-dichlorodihyrofluorescin diacetate, 
acetyl ester) for 30 min at 37oC, followed by washing with PBS and surface staining for 
live CD4+ CD25+ cells. Oxidation of dye was detected by FITC fluorescence.  
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Figure 3.1. Therapeutic administration of Aza diminishes SK severity. 
C57BL/6 animals infected with 1 x 104 PFU of HSV-RE were given either Aza or PBS 
from day 5 pi to day 14 pi. The disease progression was analyzed throughout time in a 
blinded manner using a scale described in materials and methods. (A) Kinetics of SK 
severity is shown. The progression of SK lesion severity was significantly reduced in the 
group of mice treated with Aza as compared with control mice. (B) Individual eye scores 
of SK lesion severity on day 15 pi. (C) Eyes were processed for cryo-sections on day 15 
pi. Hematoxylin and eosin staining was carried out on 6-μm sections and pictures were 
taken at different microscope augmentations at ×20 magnification. Data represents the 
mean ± SEM of more than 3 independent experiments (n=10 mice/group). All the data 
were analyzed with student’s t test and Mann-Whitney U test. P≤0.001(***) 
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Figure 3.2. Aza administration diminishes infiltration of both lymphoid and non-
lymphoid cells.  
C57BL/6 animals infected with 1 x 104 PFU of HSV-RE were given either Aza or PBS 
from day 5 pi to day 14 pi. (A) Representative FACS plots showing frequency of 
neutrophils (CD45+CD11b+Ly6G+) infiltrating the cornea at day 15 p.i (B) Representative 
histogram showing the number of neutrophils and macrophages (CD45+CD11b+F4/80+) 
infiltrating the cornea at day 15 p.i (C) Representative FACS plots and histogram 
depicting the frequencies and number of total CD4+ T cells infiltrating the cornea at day 
15 p.i (D) Pool of corneas were stimulated with PMA/Ionomycin, representative FACS 
plots showing Treg (CD4+ Foxp3+) and Th1 (CD4+ IFN-g) cells in the cornea at day 15pi 
cells were gated on CD4+ T cells (E) Histogram representing ratio of Treg to Th1 in the 
cornea at day 15pi. Data are the combination of atleast 3 independent experiments and 
show mean values ± SEM (n = 3). The level of significance was determined by Student’s 
t test (unpaired). P≤ 0.0001 (****), P≤0.001(***), P≤0.01(**), P≤0.05(*). 
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Figure 3.3. Effect of Aza treatment on cytokines and chemokines in the corneas of 
HSV-1 infected animals 
C57BL/6 mice infected with 1×104 PFU of HSV-1 RE were given AZA once daily starting 
from day 5 until day 14 post infection. Mice were sacrificed at day 15 post infection and 
corneas were collected for measuring relative fold change in the mRNA expression using 
QRT-PCR of various cytokines and chemokines (TNF-a, IL-1b, IL-6, IL-12, IL-10, TGF-b 
MIP-1(CCL3), KC(CXCL1), MCP1(CCL2), MMP1) in pooled corneal samples each 
consisting of four cornea in control and Aza treated animals. Data represents means ± 
SEM from two different independent experiments (n = 3/group) The level of significance 
was determined by Student’s t test (unpaired). P≤0.001(***), P≤0.01(**), P≤0.05(*). 
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Figure 3.4. Aza administration changes the balance towards Tregs in the blood and 
draining lymph nodes 
C57BL/6 or Foxp3 GFP mice infected with 1×104 PFU of HSV-1 RE were treated with 
Aza once daily starting from day 5 until day 14 post infection and terminated at day 15 
p.i. (A) FACS and histograms showing frequency of Tregs (Foxp3 GFP+) cells in blood 
gated on CD4+ T cells. (B) Histogram representing the total number of CD4 T cells per 1 
million of cells recorded in the blood. (C) DLN from day 15pi were stimulated with 
PMA/Ionomycin and histogram showing the total number of CD4 T cells (D) 
Representative FACS plots showing frequency of Treg (CD4+ Foxp3+) and Th1 (CD4+ 
IFN-g) (E) Histogram representing number of Th1 cells in DLN (F) Histogram representing 
the ratio of number of Treg to Th1 in DLN (G) Histogram representing number of Treg 
cells in DLN (H) DLN were stimulated with UV-inactivated HSV-1, representative FACS 
plots and histogram showing frequency and number of antigen specific Th1 (CD4+ IFN-
g+) gated on live population. Data represents means ± SEM from three different 
independent experiments (n = 3/group) and the level of significance was determined by 
Student’s t test (unpaired). P≤ 0.0001 (****), P≤0.01(**), P≤0.05(*). 
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Figure 3.5. Aza treatment increases suppressor activity of Tregs 
(A-B) Foxp3-GFP mice infected with HSV-1 were treated with Aza on day 5 p.i. until day 
14 p.i. CD4+ Foxp3+ T cells were sorted at day 15pi and equal number (1 x 105cells) 
were cultured with CTV-labeled CD4+ CD25− Thy1.1 responder cells (Treg/Tconv, 1:1 to 
1:16) in the presence of anti-CD3/CD28 antibodies. (A) Line graphs showing the percent 
suppression of Tregs from control and Aza treated groups at different ratio of naïve 
responders. (B) Representative FACS plots showing the extent of CTV dilution at a 1:8 
Treg/effector T cell (Teff) ratio. Each experiment was repeated at least two times with at 
least 3 replicates per group. Statistical significance was calculated by one-way ANOVA 
with Tukey's multiple-comparison test P≤0.0001(****), P≤0.01(**), P≤0.05(*). (C) C57BL/6 
mice infected with 1×104 PFU of HSV-1 RE were treated with Aza once daily starting from 
day 5 until day 14 post infection and terminated at day 15 p.i. Histogram showing the 
proportion Tregs in DLN expressing CD25, GITR, FR4, OX40, CD103 and CD44 at day 
15pi gated on CD4+ Foxp3+ cells Data represent means ± SEMs of at least two 
independent experiments and the level of significance was determined by Student’s t test 
(unpaired) P≤0.05(*). (D-E) DLNs from C57BL/6 HSV-1 infected control and Aza treated 
animals were isolated at day 15pi and stained with ROS indicator dye CM-H2DCFDA. (D) 
Representative FACS plot showing the expression of CM-H2DCFDA (E) Histogram 
showing MFI of CM-H2DCFDA from control and Aza treated mice gated live CD4+ CD25+ 
T cells. (F) Foxp3 GFP+ T cells were FACS sorted from HSV-1 infected control and Aza 
treated Foxp3 GFP mice and mRNA expression levels were measured by QRT-PCR. Bar 
graphs representing relative expression levels of Nox-2 and NCF-1 genes. (G) Bar graphs 
representing relative expression levels of TGF-b and IL-10 genes. Relative expression 
was calculated compared to expression of beta-actin. Data represents means ± SEM from 
two independent experiments (n = 3/group). The level of significance was determined by 
Student’s t test (unpaired) P≤0.01(**), P≤0.05(*). 
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Figure 3.6. Depletion of CD25+ cells during Aza treatment did not ameliorate lesion 
severity 
C57BL/6 mice infected with 1×104 PFU of HSV-1 RE were given either anti-CD25 
depleting antibody (PC61) or control (IgG) antibody on day 0 and given either AZA or 
PBS daily starting from day 5 until day 14 post infection and were terminated at day 15 
p.i (A) Histogram showing 50% reduction in Foxp3+ CD4+ T cells in DLN of Treg depleted 
animals compared to control animals at day 15p.i (B) Individual eye scores of SK lesion 
severity on day 15 pi. (C) DLNs were isolated and single cell suspensions stimulated with 
PMA/Ionomycin and representative histogram showing number of Th1 (CD4+ IFN-g+) in 
DLN. (D,E) DLNs were isolated and single cell suspensions were surface stained for CD4 
and intracellular stained for Foxp3 and Ki-67. (D) Histogram showing proliferation of 
effector T cells (CD4+ Foxp3- ) (E) Histogram showing proliferation of Treg (CD4+ 
Foxp3+). Experiments were repeated at least two times and the level of significance was 
determined by Student’s t test (unpaired) and Mann-Whitney U test. Error bars represent 
mean ± S.E.M. P≤ 0.0001 (****), P≤0.001(***), P≤0.01(**), P≤0.05(*).  
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Figure 3.7. Aza promotes stability of Tregs in vitro (A-C) Splenocytes from DO11.10 
RAG2−/− mice were cultured (1 million cells) in the presence of 1 μg/ml of anti-CD3/CD28 
antibody with either Treg or Th1 differentiating conditions.  (A,B) Treg differentiation was 
performed in the presence of 100 U/ml of recombinant IL-2, 1ng/ml TGF-β and varying 
concentrations of Aza (1µM-15-µM). After 5 days of culture, cells were analyzed for the 
expression of CD4 and Foxp3. Dose-response curve for Foxp3 induction with various 
concentrations of 5-Azacytidine (Aza) were indicated. (A) Line graph representing the 
Live CD4+ Foxp3+ cells at various concentrations of Aza. (B) Representative FACS plots 
showing Foxp3 expression in cells differentiated under Treg differentiating conditions in 
the presence or absence of 5µM Aza (C) Representative FACS plots showing the 
expression of IFN-g in cells differentiated under Th1 differentiating conditions (5ng/ml IL-
12 and 10µg/ml anti-IL-4) in the presence or absence of Aza 5µM (D) Naive CD4 T cells 
purified from Foxp3 GFP male mouse were cultured (1 million cells) with 100U/ml IL-2, 
1µg/ml anti-CD3/CD28, 5ng/ml TGFβ and in the presence or absence of Aza (5µM) for 
up to 4 days. Foxp3 GFP+ T cells were FACS sorted. Methylation status of CpG motifs 
of the Foxp3 locus was assessed by bisulfite sequencing as described in Materials and 
methods. Numbers above boxes (1–10) indicate the 10 CpG islands in CNS2 of the Foxp3 
locus (TSDR), from 5′ to 3′. Data are from one experiment with at least 10 bacterial 
colonies containing the plasmid encoding TSDR region were sequenced and average 
values were represented (E) Splenocytes from DO11.10 RAG2−/− animals were cultured 
in the presence of 1µg/ml anti-CD3/CD28, 100 U/ml IL-2, 5ng/ml TGF-β in the presence 
or absence of Aza (5µM) for 5 days. Later, exposed to 100U/ml IL-2 or 5ng/ml IL-12 or 
25ng/ml IL-6 and 1ng/ml TGF-beta for another 3 days. Cells were measured for Live 
CD4+ Foxp3+ cells before exposure and after exposure. Histogram represents the 
frequency of Foxp3 lost by cells of control and Aza induced iTreg exposed to different 
conditions. Experiments were repeated at least three times. The level of significance was 
determined by Student’s t test (unpaired) and error bars represent mean ± S.E.M. P≤ 
0.0001 (****), P≤0.001(***), P≤0.01(**), P≤0.05(*). 
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Figure 3.8. Aza promotes Treg suppressive function (A) Naive CD4 T cells purified 
from Foxp3 GFP mice were cultured (500,000 cells/well) with 100U/ml IL-2, 1µg/ml anti-
CD3/CD28, 5ng/ml TGFβ and in the presence or absence of 5µM Aza for up to 5 days. 
Foxp3 GFP+ T cells were FACS sorted and in vitro Treg suppression assay was 
performed on both control iTreg and Aza iTregs. CD4+ Foxp3+ T cells were sorted and 
equal number of cells (1 x 105) were cultured with CTV-labeled naïve CD4+ Thy1.1 
responder cells (Treg/Tconv, 1:1 to 1:8) in the presence of anti-CD3/CD28 antibodies. (A) 
Representative histograms showing the extent of CTV dilution at 1:8 Treg/effector T cell 
(Teff) ratio. (B) Bar graphs showing the percent suppression by Treg at 1:8 ratio. (C-D) 
Splenocytes from DO11.10 RAG2−/− mice were cultured in 1µg/ml anti-CD3/CD28, 100 
U/ml IL-2, 5ng/ml TGF-β in the presence or absence of Aza (5µM). After 5 days of culture, 
cells were either measured for intracellular Foxp3 expression or surface stained with ROS 
indicator dye CM-H2DCFDA for measuring ROS expression. (C) Representative FACS 
plots showing the similar Foxp3 expression (gated on Live CD4+ T cells) (D) 
Representative FACS plots and histogram showing ROS expression (CM-H2DCFDA) in 
cells induced in the presence or absence of Aza (5µM). (E) Representative bar graph 
showing expression of CD25, GITR and FR4 in the Treg induced cells in the presence or 
absence of Aza (5µM). Data represent means ± SEMs of and representative of two 
independent experiments with n=3/group. Statistical significance was calculated by 
Student’s t test (unpaired) (P≤0.01(**), P≤0.05 (*)). 
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CHAPTER 4 
ROLE OF IL-18 INDUCED AMPHIREGULIN EXPRESSION BY TREG ON VIRUS 

INDUCED LESIONS  
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Abstract 
 

This report deals with the possible mechanism by which regulatory T cells contribute to 
the control and resolution of inflammatory lesions in the cornea caused by herpes simplex 
virus (HSV) infection. Our results demonstrate that the expression of the IL-18R by 
regulatory T cells (Treg) was a pivotal event that influenced lesion pathogenesis. The 
engagement of IL-18R with its cytokine ligand resulted in Amphiregulin expression a 
molecule associated with tissue repair. In support of this scheme of events, lesion severity 
became more severe in animals unable to express the IL-18R because of gene knockout 
and were reduced in severity when IL-18 was overexpressed in the cornea. These 
changes in lesion severity correlated with the frequency of Treg that expressed 
Amphiregulin. Additional experiments indicated that IL-12 and IL-18 acted synergistically 
to enhance Amphiregulin expression, an event partly dependent on P38 MAPK activity. 
Thus, overall our results imply that Treg participate in controlling the severity of SK and 
contribute to tissue repair by converting into cells that produce Amphiregulin. 

 
Introduction 

 
Viruses may cause disease in many ways but few do so solely by their uncontrolled 

replication . More often lesions are the consequence of host inflammatory reactions to the 
infection and this can lead to chronic tissue damage. Resolving chronic reactions is 
problematic and these may persist even after the inciting virus is no longer replicating. 
Resolution of chronic lesions may require a change in the balance of cellular participants 
along with a change in the cytokines that dominate lesions . Cell types involved in limiting 
tissue damage include CD4 T cells that express the Foxp3 transcription factor (regulatory 
T cells -Treg) . Such Treg express a range of regulatory functions and can act against 
several targets in inflammatory responses . Indeed, there is a spectrum of Treg in terms 
of functional activities and the spectrum may differ according to location in the body and 
the stage of lesion development . Additionally, Treg function may be unstable and under 
some circumstances the cells lose their regulatory activities and may even take on a pro-
inflammatory role in tissues . An objective for control of chronic infections is to expand 
and maintain subsets of Treg with functions that counteract tissue damaging events and 
even contribute to lesion repair.  

The idea that Treg can participate in the repair of damaged tissues was realized 
recently, but so far has received limited investigation. A critical report on the reparative 
function of Treg came from studies on a muscle damage model , where the Treg 
population present during muscle lesion repair was dominated by cells which produced 
Amphiregulin (Amp) . Amp is a ligand for the epidermal growth factor receptor expressed 
mainly on epithelial cells and stem cells and its binding can result in the activation of 
downstream signaling kinases resulting in growth, proliferation and migration of cells . 
The mechanism that drives the expression of Treg reparative molecules such as Amp 
involves cytokines produced by innate immune cells or epithelial cells. For instance, both 
IL-33 and IL-18 were shown to cause the expression of Amp by Treg . However, whereas 
the participation of IL-33 in tissue repair has been well established , the role played by IL-
18 needs to be further substantiated.  
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IL-18 is a member of the IL-1 family and is mainly produced at barrier tissues and 
inflammatory sites when a variety of cell types, which includes epithelial and innate 
immune cells, are exposed to microbial products . Whereas, some reports advocate a 
pathogenic role of IL-18 during infections and autoimmunity , others demonstrate a tissue 
protective role such as occurs following intestinal and ocular injury . One potential 
mechanism for the tissue protective function of IL-18 involves Treg. Thus, expression of 
the IL-18 receptor (IL-18R) on Treg appeared necessary for their suppressive function . 
However the role of IL-18 induced signaling events in Treg involved in the tissue repair 
process requires to be clarified.  

The present report focuses on events that result in the expression of IL-18R and 
how it’s binding to IL-18 results in Amp expression in Treg. We also explored the 
participation of IL-18 and Amp expression by Treg during the course of an inflammatory 
response caused by herpes simplex virus (HSV) infection in the mouse cornea. We 
demonstrate that when lesions were at their peak the majority of Treg in the cornea 
expressed IL-18R along with several suppressive markers compared to Treg in lymphoid 
organs. The expression of IL-18R was independent of TCR stimulation but was 
dependent on the pro-inflammatory cytokine IL-12. IL-12 signaling in Treg resulted in 
reduced expression of the enzyme DNA methyltransferase 3a (DNMT3a), which 
correlated with enhanced expression of the IL-18R. Thus, knockdown of DNMT3a in CD4 
T cells expanded the Treg population that became IL-18R expressers. In fact, IL-18 
signaling led to the expression of Amp and, together with IL-12, synergistically enhanced 
the expression of Amp. Moreover, IL-18R knockout animals displayed enhanced corneal 
lesion severity and had far fewer Treg that were Amp producers. In contrast, 
overexpression of IL-18 caused reduced lesion severity, an effect which correlated with 
higher numbers of Amp expressing Treg. Taken together, our results indicate that IL-18 
plays a tissue protective role in the cornea during SK acting via effects on Treg. This 
effect occurred by binding to the IL-18R and induced the expression of the tissue repair 
molecule - Amp. Consequently, IL-18 therapy could represent a valuable strategy to 
shorten the duration of chronic inflammatory reactions to a viral pathogen.  

 
Results 

 
Treg in cornea upregulate IL-18R and Amp expression 

To evaluate the phenotypic and functional status of Treg at different locations after 
HSV infection, single cell suspensions of pooled corneas and individual DLN were 
collected at 15 days post infection (pi) and the cell populations were analyzed by flow 
cytometry for multiple phenotypic markers. Day 15 pi is the time when lesions caused by 
HSV in the cornea are fully developed and the inflammation is at its peak. Differences 
between the two populations were evident. While the majority of the Treg in corneas 
displayed activation and functional suppressive markers (which included Ki-67, CD44, 
GITR, OX40, Helios, Nrp1, CD25, CTLA-4) only a minority of the Treg in DLN expressed 
those markers (Fig 4.1A). Additionally, a higher proportion of corneal Treg expressed IL-
33R (ST2) and IL-18R compared to the DLN Treg (Fig 4.1B). Since, the expression of IL-
18R in the corneal Treg was greater than ST2, we focused on the potential relevance of 
IL-18R. We could show that around day 15pi 80% of corneal Treg expressed IL-18R 
compared to about 46% which expressed ST2 (Fig 4.1C).  
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The expression of the tissue repair molecule Amp was also measured in day 15 
samples. About 50% of the corneal Treg were shown to express Amp, whereas less than 
25% of DLN Treg were Amp positive (Fig 4.1D). Curiously, about 70% of the corneal Treg 
expressing Amp were also IL-18R positive (Fig 4.1E). Collectively, these data indicate 
that the Treg in the cornea are functionally more activated than the Treg in lymph nodes, 
and the expression of IL-18R by corneal Treg might play a role in driving the production 
of Amp. 
IL-18R and Amp expressing Treg increase with duration of lesion development 

To evaluate the potential relevance of IL-18R and Amp expression on Treg 
following ocular infection, corneas were isolated at different time points pi that included 
the time of early lesion development (D8), its peak (D15) and the time when most lesions 
were decreased in severity (D21). The isolated corneal cells were stimulated with 
PMA/Ionomycin followed by the ICS assay to enumerate Treg that expressed IL-18R 
and/or Amp. At day 8, approximately 60 % of the Treg population expressed IL-18R. This 
increased to about 80% by day 15pi. By day 21, the Treg that expressed IL-18R was 
reduced to about 60% (similar differences in number were also observed) (Fig 4.2A). In 
the case of Amp expressing Treg, at day 8 approximately 30% of corneal Treg expressed 
Amp, but Amp expressing Treg increased to about 50% by day 15 and remained the 
same at day 21 (Fig 4.2B). Whereas at day 15 the majority of Amp expressors were IL-
18R positive, by day 21 the majority of Amp expressors no longer expressed IL-18R (Fig 
4.2C). The results indicate that the population of IL-18R expressing Treg changes during 
the course of infection. The high frequency of Amp expressing Treg (IL-18R pos & neg) 
when lesions were declining might mean that such cells were participating in lesion repair.  
IL-12 and IL-18 synergistically induce the expression of IL-18R and Amp 

To account for the observed changes in Treg phenotype over time, various 
cytokines were measured by multiplex assay and ELISA in the corneas at different time 
points pi. While, cytokines such as IL-12, IL-6, TNF-α and IL-1β peaked at day 8 pi (Supp 
Fig. 4.1A), the levels of IL-18 peaked at day 15 pi and this was followed by a modest 
reduction at day 21pi (Fig 4.3A). We hypothesized that the expression changes in one or 
more of these cytokines might have influenced the expression of the IL-18R on Treg. To 
evaluate this, Treg were differentiated in vitro (iTreg) from naïve CD4 T cells isolated from 
uninfected C57BL/6 animals. Of note, a low percentage of those iTreg expressed the IL-
18R (<5%). This iTreg population was used as the cell source to test the effects of 
changing the cytokine environment on the expression of the IL-18R. The population was 
stimulated with IL-2 in the presence or absence of different inflammatory cytokines known 
to be present in corneal lesions and anti-CD3+anti-CD28 to mimic TCR stimulation. These 
cytokines included IL-2, IL-18, IL-6, IL-12, IFN-g and IL-33 and after 5 days of exposure, 
the proportion of Treg that expressed IL-18R and Amp was measured. Surprisingly, of all 
the cytokines tested, only IL-12 caused a significant increase (from 3% to 20%) in the 
frequency of IL-18R positive Treg compared to controls (Fig 4.3B, Supp Fig 4.1B). Of 
note, stimulation with anti-CD3+CD28, or IL-18 alone, did not influence the frequency of 
Treg that expressed IL-18R (Fig 4.3B). However, when a combination of both IL-12 and 
IL-18 cytokines was used to stimulate Treg, the number of cells that became IL-18R 
positive was increased to 60%, well beyond the increase caused by IL-12 stimulation 
alone (20%) (Fig 4.3B). Additionally, while IL-12 alone stimulation did not increase the 
number of Treg that also expressed Amp, the combination of IL-12 and IL-18 caused a 
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large percentage of cells (approximately 4-fold) to become Amp positive (Fig 4.3C). Thus, 
the cytokines IL-12 and IL-18, whose levels were maximal in the cornea at day 8 and day 
15 pi respectively, appeared to act synergistically to induce the expression of IL-18R and 
Amp by Treg.  
DNMT3a can regulate the expression of Amp in CD4 T cells via IL-18R  

To evaluate the potential mechanism by which IL-12 could induce the expression 
of IL-18R, the levels of STAT4 and DNMT3a enzymes were measured in Treg generated 
in vivo. This analysis was chosen since, previous observations with Th1 cells indicated 
that IL-12 stimulation induced STAT4 mediated down-regulation of DNA 
methyltransferase-3a (DNMT3a) . This resulted in demethylation of the IL-18R gene and 
hence the expression of IL-18R . In these experiments, iTreg were exposed to IL-2 with 
or without IL-12 for 3 days after which the levels of STAT4 phosphorylation were 
measured using flow cytometry. Additionally, mRNA levels of DNMT3a were quantified 
by QRT-PCR. The results showed that Treg exposed to IL-12 alone significantly induced 
the phosphorylation of STAT4 (Fig 4.4A), but reduced DNMT3a mRNA levels (Fig 4.4B) 
compared to Treg stimulated with IL-2 or IL-18 alone. However, Amp mRNA levels 
increased when exposed to IL-18 or IL-12 and IL-18 combined, but remained unchanged 
by exposure to IL-12 or IL-2 alone (Fig 4.4B).  

To evaluate if DNMT3a could influence IL-18R and subsequently Amp expression 
in vivo, corneal lesion responses was compared following HSV infection in DNMT3a KO 
and WT animals. Pools of corneas were stimulated with PMA/Ionomycin at day 15pi and 
the proportion of Treg that expressed Amp was measured. The results indicate that the 
frequencies and numbers of Amp producing Treg and effector T cells were higher (2-3 
fold) in the corneas of DNMT3aKO animals compared to the control animals (Fig 4.4C). 
In addition, the frequency and numbers of Amp expressing IL-18R pos Treg were higher 
in DNMT3a KO compared to WT animals (Fig 4.4D). Taken together, the results indicate 
that DNMT3a may negatively regulate IL-18R expression and subsequently Amp 
expression.  
Amp induction by IL-12 and IL-18 is P38 MAP kinase dependent 

To evaluate the possible mechanism by which IL-18 induced Amp expression, a 
lead was taken from previous studies on Th2, Th1 or NK cells where P38 MAP Kinase 
was involved in IL-18 induced expression of IL-5 and IFN-γ respectively . The levels of 
phosphorylated P38 MAP kinase (p-P38) were compared between IL-18R positive and 
negative Treg isolated from the DLN of day 15pi animals. As shown in Fig 4.5A, IL-18R 
positive Treg had 2-fold higher expression of p-P38 compared to IL-18R negative cells. 
Experiments were also done on in vitro generated Treg wherein iTreg were exposed to 
IL-2 in the presence or absence of IL-12, or IL-18, or together for 30 minutes followed by 
measurement of p-P38. As shown in Fig 4.5B, exposure of IL-12 and IL-18 together 
enhanced the expression of p-P38, while the levels of p-P38 remained unchanged when 
exposed either to IL-12 or IL-18, or IL-2 alone (Fig 4.5B). To evaluate whether activation 
of P38 MAP kinase was essential for IL-12 and IL-18 induced Amp expression, Treg were 
exposed to IL-12 and IL-18 for 5 days in the presence or absence of various doses of 
SB203580, a specific inhibitor of mitogen-activated protein kinase p38. The results 
indicated that SB203580 dose dependently inhibited Amp expression (Fig 4.5C) without 
influencing the survival of Treg (data not shown). Since IL-18 also induces NF-kB along 
with P38 MAPK, NF-kB was also inhibited using a cell permeable inhibitor (SN50) at 
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various concentrations. However, NF-kB inhibition did not influence Amp expression in 
Treg (Supp fig 4.1C). These data indicate that IL-12 and IL-18 induced Amp expression 
in Treg may require MAP kinase P38 phosphorylation.  
IL-18 signaling is critical for controlling lesion severity 

To further evaluate a role for IL-18 in driving the expression of Amp in vivo, IL18r1 
knockout mice (IL-18R KO) were used wherein a subunit of the receptor-IL18R1 was 
deleted. Both WT (C57BL/6) and IL-18R KO mice were ocularly infected with HSV-1 and 
lesion severity was compared. The results indicate that IL-18R KO animals displayed 
enhanced lesion severity when compared to WT animals at day 8pi (Fig 4.6A). Pools of 
corneas were collected and evaluated from both groups to measure the frequency and 
number of Amp expressing Treg in the cornea. It was evident that the Treg population 
that was Amp positive was significantly decreased in the IL-18R KO populations (Fig 
4.6B). Of note, no significant differences in the number and frequency of Th1 and Amp 
expressing Treg was observed in the DLN of WT and IL-18R KO animals (Fig 4.6C). In 
addition, the knockout of IL-18R did not influence the expression of various activation 
markers on Treg in the DLN that included GITR, CTLA4 and CD25 (Fig 4.6D). Together, 
these data indicate that the lack of IL-18R signaling can result in enhanced tissue damage 
and this was accompanied by a diminished number of Treg that expressed Amp.  
Over-expression of IL-18 diminishes SK lesions and expand Amp Treg  

Finally, the therapeutic potential of IL-18 in driving the generation of Amp 
expressing Treg in the cornea was evaluated. For this, an IL-18 overexpressing plasmid 
which was previously shown to inhibit the development of SK lesions in mice , was used. 
C57BL/6 animals were ocularly injected with the IL-18 overexpressing plasmid 4 and 2 
days before ocular infection with HSV. Control animals received empty vector at the same 
time points. As reported previously , animals that received the IL-18 plasmid showed 
significantly reduced (p<0.01) SK lesions at day 15pi compared to controls (Fig 4.7A). 
Single cell suspensions of corneas were stimulated with PMA/Ionomycin at day 8 to 
compare with empty plasmid recipients the numbers of Treg that were Amp positive. As 
a consequence of IL-18 plasmid exposure all cell types was reduced in number. However, 
the frequency of Amp expressing Treg and effector CD4 T cells (CD4+ Foxp3-) were both 
significantly increased at day 8pi (Fig 4.7B) compared to the empty plasmid control group. 
Collectively, these data indicate that IL-18 may play a tissue protective role during ocular 
lesions and it may be acting by inducing the expression of Amp in Treg.    

 
Discussion 

 
Stromal keratitis is an inflammatory reaction that occurs in the cornea in response 

to HSV infection. Lesion severity is known to be influenced by the relative abundance of 
the pro-inflammatory, mainly CD4 type Th1 cells, and regulatory T cells . The later cell 
type appears to limit tissue damage caused by the activities of Th1 cells along with the 
cells recruited to the cornea such as neutrophils and macrophages . Currently, it is not 
clear how Treg exert their anti-inflammatory function, or if they actively contribute to tissue 
repair. However, the results in this report support the idea that the expression of the IL-
18R by Treg is a relevant event and that the engagement of IL-18R with its cytokine ligand 
results in the expression of Amphiregulin, a molecule associated with tissue repair in 
several situations . Our results also show that when Treg were unable to express IL-18R, 
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SK lesions became more severe and that overexpression of IL-18 in the eye using an 
expression plasmid was an effective means of limiting lesions. The later outcome 
correlated with the increased proportion of Treg that were Amp producers. Thus, overall 
our results imply that Treg participate in controlling the severity of SK and contribute to 
tissue repair by converting into cells that produce Amphiregulin.  

Past studies had clearly associated the presence of Treg with diminished tissue 
damage caused by ocular infection with HSV . Treg may express numerous regulatory 
functions and it is not clear which ones participate in limiting the corneal damage caused 
by the effects of T cells and other inflammatory cells. In addition to constraining the pro-
inflammatory activities of several cell types, evidence accumulates from studies in other 
systems that Treg may also participate in the repair of tissue damage . Tissue repair is a 
particularly relevant topic with an organ whose function is totally dependent on 
maintaining tissue clarity along the visual axis from the cornea to the retina. Thus, it would 
be valuable to discover how any cell type could orchestrate repair of the damaged cornea. 
Corneal tissue repair involves numerous events and one of these could be Amphiregulin 
production . Amphiregulin engages the epidermal growth factor receptor expressed on 
corneal epithelial cells and stem cells and causes cell proliferation, differentiation, and 
migration to participate in tissue repair . Several cell types, such as innate lymphoid cells 
and mast cells can mediate repair of some tissues via their production of Amp , but neither 
of these cell types are prominent in corneal lesions. However, Treg are numerous in 
corneal lesions and, as was recently shown in repairing muscle and lung lesions , these 
Treg were in large part Amp-producers, unlike Treg at other non-inflamed sites. These 
observations on repairing muscle and lung inspired the present investigations to 
determine how Treg could participate in corneal repair in response to a chronic viral 
induced inflammatory event. 

 Our studies revealed that an essential event leading up to Amp production by Treg 
was expression of the IL-18R and engagement by its cytokine ligand IL-18. Previous 
studies by Rudensky and colleagues had noted that a consequence of triggering the IL-
18R on Treg was their conversion to become Amp producers .  Of many cytokines 
evaluated for inducing Amp, only IL-18 and IL-33 were effective. Our studies focused on 
the IL-18R since Treg that expressed this receptor were around two-fold more frequent 
that those that expressed the IL-33R. We could demonstrate that the frequency of Treg 
that expressed IL-18R increased as lesions progressed but then declined after lesions 
diminished. This raised the question of what caused Treg to express IL-18R. Many 
cytokines were tested but IL-12 appeared to be the most likely candidate. Prior studies 
had shown that IL-12 is prominently expressed during SK lesion development, perhaps 
driven by viral components with TLR ligand activity  or by produces released by damaged 
cells. In addition to IL-12, we also showed that IL-12 along with IL-18 appeared to act 
together to cause more Treg to become IL-18R and Amp expressers but the detailed 
mechanism that explained this apparent synergism needs further study.  

The mechanism by which IL-12 caused the expression of IL-18R was associated 
with STAT4 phosphorylation and down regulation of DNMT3a gene expression. Previous 
results supported a role for DNMT3a in controlling IL-18R gene expression with it acting 
by methylating the promoter region . Additionally, the knockdown of DNMT3a in CD4 T 
cells led to the enhancement of Amp and IL-18R expressing Treg in the cornea. Hence, 
inhibitors targeting DNA methyltransferases such as 5-Azacytidine could have potential 
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therapeutic implications to enhance both the suppressive function and tissue reparative 
function of Treg. In fact, we recently observed that 5-Azacytidine therapy did inhibit the 
progression of SK and acted by enhancing the activity of Treg . However, it remains to be 
evaluated whether 5-Azacytidine treatment was also associated with an increased 
expression of IL-18R and Amp by Treg. Another mechanism by which IL-18 induced Amp 
expression was activation of P38 MAPK kinase. Thus inhibition of MAP kinase activity 
using a specific inhibitor led to a dose dependent reduction in Amp expression in the 
presence of IL-18. These data did not come as a surprise since P38 MAPK activity is 
known to be required for IL-18 induced Th2 cytokines (IL-4 and IL-13) in basophils and 
IFN-gamma in NK and Th1 cells . Hence, it is possible that IL-18 and P38 MAPK play a 
cell specific role in orchestrating the production of cell specific cytokines.  

A critical event for Treg to become Amp-producers and contribute to lesion 
resolution was the expression of IL-18R. Thus knockout mice unable to express IL-18R 
developed more severe SK lesions than did intact control animals and a major 
consequence of IL-18R KO was a significant reduction in the frequency of Treg that 
produced Amp. Since the IL-18R KO could still produce IL-33, this might argue that if the 
IL-33/IL-33R axis is also involved in Amp expression its role is likely to be minor.  

A final approach which implicated a critical role for IL-18 in controlling lesion 
severity involved using an expression plasmid encoding IL-18. As reported previously , 
use of this plasmid inhibited the severity of SK lesions and in the present study we could 
show that a consequence of IL-18 plasmid therapy was expansion of the Treg population 
that were Amp producing cells. However, since IL-18 can have effects on immune cells 
other than Treg such as neutrophils and macrophages , studies using IL-18R flox and 
Amphiregulin flox mice are needed to further depict the role of IL-18 induced Amp 
expression by Treg. 

In conclusion, our results strongly support the idea that the ongoing events that 
occur during HSV–induced ocular lesions serve to cause Treg to express IL-18R and this 
event is necessary to subsequently express Amp, a molecule involved in tissue repair. 
So far we have been unable to fully verify the concept since we lack access to mice which 
lack expression of Amp specifically in Treg. However, preliminary studies on mice with 
developing lesions given the Amp protein via the subconjunctival route have resulted in 
diminished lesions and such studies are still ongoing.   

 
Materials and Methods 

 
Mice and Virus 
C57BL/6 mice (Female) were purchased from Envigo, Inc. (Indianapolis, IN), IL-18R 
Knockout, CD4 Cre mice were purchased from Jackson and DNMT3a flox mice were a 
kind gift from Dr.Igor Nasonkin (University of Pittsburg Medical center) all were kept in 
pathogen free facility where food, water, bedding and instruments were autoclaved. CD4 
cre mice were bred with DNMT3a flox mice and cre mice homozygous for flox was used 
for the experiments as DNMT3aKO. All the animals were housed in American Association 
of Laboratory Animal Care–approved facilities at the University of Tennessee, Knoxville, 
Tennessee. All investigations followed guidelines of the Institutional Animal Care and Use 
Committee, and adhered to the ARVO Statement for the Use of Animals in Ophthalmic 
and Vision Research. HSV-l RE strain was used in all procedures. Virus was grown in 
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Vero cell monolayers (American Type Culture Collection, Manassas, VA), titrated, and 
stored in aliquots at −80°C until used.  
HSV-1 ocular infection and clinical scoring 
Ocular infections with HSV-1 was done as previously described . Briefly, mice were kept 
under deep anesthesia by administering an intra peritoneal (i.p) injection of 
tribromoethanol (Avertin). Later, the mice eyes were scarified with 27-gauge needle and 
and a 3-µl drop containing 1 x 104 plaque-forming units (PFU) of HSV-1 RE was applied 
to the eye. The eyes were examined on different days after infection for the development 
of clinical lesions by slit-lamp biomicroscope (Kawa Co., Nagoya, Japan), and the clinical 
severity of keratitis of individually scored mice was recorded by a blinded observer. The 
scoring system was as follows: 0, normal cornea; +1, mild corneal haze; +2, moderate 
corneal opacity or scarring; +3, severe corneal opacity but iris visible; +4, opaque cornea 
and corneal ulcer; +5, corneal rupture and necrotizing keratitis. 
Flow Cytometric Analysis 
Flow cytometric analysis on tissue and lymph node samples were described previously . 
Briefly, cornea were excised at indicated time points, pooled and digested with liberase 
(Roche) for 45 minutes at 37°C in a humidified atmosphere of 5% CO2. Single cell 
suspensions were made by grinding the digested tissue and stained for different cell 
surface molecules for fluorescence-activated cell sorting (FACS) analyses. Draining 
cervical lymph nodes were isolated from mice at indicated time points and single cell 
suspensions were used for FACS analyses. To determine the Amp producing T cells, 
single cell suspensions were stimulated with PMA (50ng) and Ionomycin (500ng) for 3 
hours in the presence of brefeldin A (10 μg/mL) in U-bottom 96-well plates . After this 
period, Live/Dead staining was performed to gate out the dead population followed by cell 
surface and intracellular cytokine staining using Foxp3 intracellular staining kit 
(ebioscience) in accordance with the manufacturer's recommendations. The stained 
samples were acquired with a FACS LSR II (BD Biosciences, San Jose, CA) and the data 
were analyzed using FlowJo software (Tree Star, Inc., Ashland, OR).  
Reagents and antibodies. 
All the staining CD4 (RM4-5), CD45 (53-6.7), CD11b (M1/70), Ly6G (1A8), F4/80 (BM8), 
IFN-γ (XMG1.2), CD25 (PC61), CD44 (IM7), Foxp3 (FJK-16S), anti-CD3 (145-2C11), 
anti-CD28 (37.51), IL-18Ra (P3TUNYA) phosphor p38 (4NIT4KK) from Thermofisher. 
Phorbol myristate acetate (PMA) and Ionomycin from Sigma. Live/Dead staining kit (Life 
Technologies), anti-mouse Amphiregulin (R&D), GolgiPlug (brefeldin A) and Stat4 
(pY693) from BD biosciences. Recombinant mouse IL-2, IL-12, IL-6, IFN-γ, IL-33, IL-18, 
Amphiregulin and TGF-β from R&D systems. P38 inhibitor-SB202190 (Tocris) and NF-
kB inhibitor-SN50 (emdmillipore).  
In vitro Treg differentiation and Treg cultures  
Treg were generated in vitro as previously described .  Briefly, 1×106 naïve CD4 T cells 
were cultured in the presence of plate bound anti-CD3/CD28 Ab (1 µg/ml) and complete 
RPMI media containing rmIL-2 (100 U/ml) and TGFβ (5ng/ml) for 5 days at 37°C in a 5% 
CO2 incubator. After 5 days, Foxp3, IL18Ra and Amp expression was determined by flow 
cytometry as described above. For inducing IL18Ra expression, in vitro generated Treg 
were cultured with either IL-12 (5ng/ml) or IL-18 (100ng/ml) orIL-33 (100ng/ml) or IFN-
gamma (10ng/ml) or IL-6 (25ng/ml) for 24 hours. For Amp induction experiments, iTreg 
cells were cultured in the presence of IL-12 (5ng/ml) or IL-18 (100ng/ml) or together. For 
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P38 MAPK inhibitor experiments, iTreg were cultured in the presence of IL-12 (5ng/ml) 
and IL-18 (100ng/ml) in the presence or absence of SB 202190 (P38 inhibitor) at doses 
indicated. After 5 days cells were re-stimulated with PMA/Ionomycin and analyzed for 
Amp expression using flow cytometer.  
Quantitative PCR (qPCR) 
Taqman gene expression assays for DNMT3a from Applied Biosystems were performed 
on iTreg populations using 7500 Fast Real-Time PCR system (Applied Biosystems) as 
described previously .  
Cytokine level measurements 
Corneas were pooled (3 corneas per sample) and collected in PBS containing anti-
protease cocktail. Corneas were homogenized with tissue homogenizer (Kontes Pellet 
Pestle mortar). Levels of IL-18 were measured using Mouse IL-18 ELISA (R&D); other 
cytokines were measured using multiplex analysis (Eve technologies). 
Purification of CD4+ T cells 
Naïve CD4+ T cells were purified using a mouse naïve CD4+ T cell isolation kit (Miltenyi 
Biotec, Auburn, CA). The purity was achieved at least to an extent of 90%. 
Over-expression plasmid preparation 
IL-18 over expression plasmid was kindly provided by Dr. Seong Kug Eo, Chonbuk 
National University and empty plasmid (PCDNA3.1) from Thermosfisher. Plasmid was 
cloned and purified using Qiagen Maxi kit and 5 µg/eye was administered at 4 and 2 days 
before infection.  
Statistical Analysis 
The statistical significance between the 2 groups was determined using unpaired, 1-tailed 
Student’s t test. For experiments involving more than 2 groups, 1-way ANOVA with 
Tukey’s multiple comparison tests was used to calculate the level of significance. 
GraphPad Prism software (GraphPad Software, La Jolla, CA, USA) was used to calculate 
the statistical significance. 
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Figure 4.1. Corneal Treg have higher functional markers including IL-18R and 
Amphiregulin.  
C57BL/6 animals were infected with 1 x 104 PFU of HSV-RE and at day 15 pi, of individual 
draining Lymph nodes (dLN) and pooled corneas were stained for flow cytometric 
analysis. (A-B) Representative histograms depicting the expression of markers related to 
Treg (CD4+ Foxp3+) function and activation on corneal Tregs  and dLN Tregs (blue). (C) 
Representative flow plots showing the expression of IL-18R and ST2 (IL-33R) on corneal 
Treg at day 15pi.  (D-E) Single cells suspension of dLN and cornea were stimulated with 
PMA/Ionomycin, (D) representative flow cytometry plots and histogram showing the 
Amphiregulin (Amp) expression in corneal and dLN Treg. (E) Representative flow 
cytometry plots showing the IL-18R expression on Amphiregulin (Amp) expressing Treg 
(gated on live cells). Data represents the mean±SEM of 3 independent experiments (n=3 
mice/group). P≤0.01 (**). 
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Figure 4.2. IL-18R and Amphiregulin expression on Treg change over the course of 
infection.  
C57BL/6 animals were infected with 1 x 104 PFU of HSV-RE and at various time points 
post infection (Day 8, 15, 21) single cell suspension of pooled corneas were stimulated 
with PMA/Ionomycin. (A-C) Representative Flow cytometry plots and bar graphs showing 
frequency and number of (A) IL-18R expressing Treg or (B) Amphiregulin (Amp) 
expressing Treg or (C) both IL-18R and Amp expressing Treg. Data represents the 
mean±SEM of 3 independent experiments (n=3 mice/group). P≤ 0.0001 (****), 
P≤0.001(***), P≤0.01 (**), P≤0.05(*). 



 92 

Figure 4.3. IL-18 and IL-12 synergistically induce the expression of Amphiregulin 
in Treg.  
(A) C57BL/6 animals were infected with 1 x 104 PFU of HSV-RE. Bar graphs showing IL-
18 protein levels in the corneas at various time points post infection (Day 0, 8, 15, 21) 
quantified by ELISA. (B, C) iTreg were differentiated from naïve CD4 T cells followed by 
culturing with either IL-2 alone or with IL-2 in combination with indicated cytokines for 5 
days. Representative flow cytometry plots and bar graph showing frequency of (B) IL-18R 
expressing or (C) Amphiregulin (Amp) expressing Treg (gated on live CD4+ Foxp3+). 
Data represents the mean±SEM of 2 independent experiments for (A) or at least 3 
independent experiments for (B,C) where n= 3-4 samples/group). P≤ 0.0001 (****), 
P≤0.001(***),P≤0.05(*). 
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Figure 4.4. DNMT3a may regulate IL-18R expression in Treg. 
(A,B) iTreg were differentiated from naïve CD4 T cells followed by culturing with either IL-
2 alone or with IL-2 in combination with indicated cytokines for 5 days. (A) Representative 
flow cytometry plots and bar graphs showing phosphorylated STAT4 levels in Treg (gated 
on live CD4+Foxp3+). (B) Representative line graph showing relative gene expression 
levels of DNMT3a and Amp compared to beta-actin, quantified by QRT-PCR. (C, D) WT 
(DNMT3a flx/flx) and DNMT3a KO (CD4 Cre+DNMT3a flx/flx) mice were ocularly infected 
with HSV-RE and at day 8pi corneas were collected. Single cell suspensions of pooled 
corneas were stimulated with PMA/Ionomycin followed by ICS assay. (C) Representative 
flow cytometry plots and bar graph showing the frequency and number of Amphiregulin 
expressing Treg (gated on Live CD4+ Foxp3+) and effector T cells (gated on Live CD4+ 
Foxp3-). (D) Representative flow cytometry plots and bar graphs showing frequency and 
number of Treg double positive for IL-18R and Amp. Data represents the mean±SEM of 
3 independent experiments where n= 3 samples/group. P≤ 0.0001 (****),P≤0.01 (**), 
P≤0.05(*). 
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Figure 4.5. IL-12 and IL-18 induced Amphiregulin expression may be P38 MAPK 
dependent.  
(A) C57BL/6 animals were infected with 1 x 104 PFU of HSV-RE and dLN were isolated 
at day 15pi. Representative flow cytometry plots and bar graph showing gating strategy 
and MFI of phosphorylated P38 in IL-18R high and IL-18R low Treg (gated on Live 
CD4+Foxp3+) in dLN. (B) iTreg were differentiated from naïve CD4 T cells followed by 
culturing with either IL-2 alone or with IL-2 in combination with indicated cytokines for 30 
minutes. Representative histograms and bar graphs showing phopsho-P38 levels and 
phosphor-P38 MFI respectively. (C) iTreg were cultured with IL-12 and IL-18 for 5 days 
in the presence or absence of P38 inhibitor SB 202190 at different concentrations and 
DMSO as control. Representative flow cytometry plots and bar graph showing the 
frequency of Areg expressing Treg. Data represents the mean±SEM of 3 independent 
experiments where n= 3 samples/group. P≤ 0.0001 (****),P≤0.01 (**), P≤0.05(*). 
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Figure 4.6. IL-18R KO animals show higher lesion severity and reduced Amp Treg 
in cornea.  
(A-D) WT(C57BL/6) and IL18RKO animals were infected with 1 x 104 PFU of HSV-RE (A) 
line graph showing comparison of SK lesion severity scores at different time points day 5 
and day 8 post infection between WT and IL18RKO. (B-C) Representative FACS plots 
and histogram showing frequency and number of Treg, Amp Treg cells in cornea (B) and 
Amp Treg and Th1 cells  in DLN (C) at day 8 pi. (D) Histogram showing MFI of key 
suppressor molecules CTLA4, GITR and CD25 in DLN of WT and IL18RKO animals at 
day 8pi. Data represents the mean±SEM of 3 independent experiments where n= 8 
samples/group (A), n= 3 samples/group (B-D). P≤0.01 (**), P≤0.05(*). 
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Figure 4.7. IL-18 expression plasmid increases the resolution of SK lesions and 
Amp Treg in cornea.  
(A-B) C57BL/6 mice were ocularly infected with HSV-1 after administering IL-18 
expressing plasmid 4 and 2 days before infection. (A) SK lesion severity scores as 
measured at day 15pi. (B) Representative FACS plots and bar graph showing Amp 
expressing Treg and Amp expressing effector T cells at day 8pi. Data represents the 
mean ± SEM of 3 independent experiments, where n=8 samples/group (A) and n=4 
samples/group (B) P≤0.01 (**), P≤0.05(*). 
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Figure S4.1.  
(A) C57BL/6 animals were infected with 1 x 104 PFU of HSV-RE. Bar graphs showing IL-
12, IL-6 and IL-33 protein levels in the corneas at various time points post infection (Day 
0, 8, 15, 21) quantified by multiplex assay. (B) iTreg were cultured with IL-2 alone or in 
combination with either IFN-g, IL-6 or IL-33 for 5 days. Representative flow cytometry 
plots and bar graph showing frequency of IL-18R expressing Treg. (C) iTreg were cultured 
with IL-12 and IL-18 for 5 days in the presence or absence of NF-kB inhibitor SN50 at 
different concentrations and DMSO as control. Bar graph showing the frequency of Areg 
expressing Treg. Data represents the mean±SEM of 3 independent experiments where 
n= 3-5 samples/group.  
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CHAPTER 5 
MANIPULATING GLUCOSE METABOLISM DURING DIFFERENT STAGES OF 
VIRAL PATHOGENESIS CAN HAVE EITHER DETRIMENTAL OR BENEFICIAL 

EFFECTS 
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Abstract 
 

This report deals with physiological changes and their implication following ocular 
infection with herpes simplex virus (HSV). This infection usually results in a blinding 
inflammatory reaction in the cornea orchestrated mainly by pro-inflammatory CD4 T cells 
and constrained in severity by regulatory T cells (Treg). In the present report, we make 
the unexpected finding that blood glucose levels change significantly during the course 
of infection. Whereas levels remained normal during the early phase of infection when 
the virus was actively replicating in the cornea, they increased around two fold during the 
time when inflammatory responses to the virus was occurring. We could show that 
glucose levels influenced the extent of induction of the inflammatory T cell subset in vitro 
that mainly drives lesions, but not regulatory T cells. Additionally, if glucose utilization was 
limited in vivo as a consequence of therapy in the inflammatory phase with the drug 2DG, 
lesions were diminished compared to untreated infected controls. In addition, lesions in 
2DG treated animals contained less pro-inflammatory effectors. Glucose metabolism also 
influenced the acute phase of infection when replicating virus was present in the eye. 
Thus, therapy with 2DG to limit glucose utilization caused mice to become susceptible to 
the lethal effects of HSV infection, with virus spreading to the brain causing encephalitis. 
Taken together, our results indicate that glucose metabolism changed during the course 
of HSV infection and that modulating glucose levels can influence the outcome of 
infection, being detrimental or beneficial according to the stage of viral pathogenesis.  

 
Introduction 

 
Virus infections cause tissue damage in several ways one of which is to induce an 

inflammatory reaction orchestrated by T cells that respond to viral antigens. One such 
example is the blinding immuno-inflammatory reaction called stromal keratitis (SK), which 
occurs in the cornea of the eye following infection with herpes simplex virus (HSV) (1, 2). 
In such reactions, the pro-inflammatory effector T cells may be more tissue damaging if 
regulatory components of immunity, such as certain cytokines or cells with regulatory 
functions, are deficient (3-6). Thus, one aim of therapy with these usually chronic tissue 
damaging lesions is to shift the balance of different components involved in the immune 
response to the infection. Few if any effective therapies are readily available to achieve 
this objective. However, recent studies in the field of cellular metabolism have drawn 
attention to the fact that nutrient uptake and their utilization may differ among cell types 
involved in immune responses (7-9). Moreover, it has become evident that manipulating 
metabolic pathways represents a potential means of rebalancing immune responses and 
this approach is being mainly explored in the cancer and autoimmunity fields where the 
imbalance largely involves different subsets of T cells (10-14).   

Application of the metabolic reprogramming approach has focused on 
manipulating glucose and fatty acid metabolism, which can show major differences 
between immune cells involved in reactions (15). However, few if any studies so far, have 
focused on infectious diseases, but this topic is highly relevant since many chronic tissue 
damaging infections are not subject to control by effective vaccines, or by readily 
acceptable (or affordable) means of therapy. In fact, targeting metabolic events 
represents a logical approach to pathogen control since many cause major changes in 
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metabolism not only in cells they infect, but also impact on the function of distant 
uninfected organs such as the liver, kidney, cardiovascular system and even the brain 
(16). Some of the general physiological consequences of systemic infections has been 
highlighted by recent studies (16, 17). However, the general topic of how virus infections, 
particularly those that cause local infections, influences physiological responses is still 
poorly understood. Our present studies record some metabolic consequences of local 
infections in the eye with HSV. 

Our results show that ocular HSV infection in mice led to increased fed and fasted 
blood glucose levels at the time when virus no longer persists in ocular tissues. In 
addition, CD4 T cells from infected mice showed increased glucose uptake both at the 
corneal lesion site and in the draining lymph node. The CD4 T cells from HSV infected 
animals were highly metabolically active and displayed increased glucose uptake in vitro 
compared to T cells from naïve animals. In vitro experiments also indicated that the 
effector function of inflammatory T cells was dependent on glucose concentration. 
Moreover, inhibition of glucose uptake by 2DG limited the differentiation of effector T cells 
in vitro. In contrast, regulatory T cells (Treg) were unaffected by 2DG in vitro. Finally, and 
of potential therapeutic relevance, in vivo administration of 2DG resulted in diminished 
SK lesions, a consequence of reduced effector T cell responses. Taken together, we 
show that local infection with HSV results in changes in glucose homeostasis causing 
increased blood glucose levels, which may act to stimulate the generation and 
sustenance of inflammatory CD4 effector T cells, which, in the special environment of the 
eye, can result in damaging consequences. Although changes in blood glucose levels 
were not evident during the acute phase of ocular infection, therapy with 2DG during that 
phase resulted in death from herpes encephalitis in many animals. Possible explanations 
for these findings are discussed. 

 
Results 

 
HSV-1 infection increases blood glucose levels 

To ascertain if ocular infection with HSV led to changes in glucose metabolism, 
blood glucose levels were measured in control and infected animals up to 15 days post 
infection (pi), the time when inflammatory responses to the ocular infection were at their 
peak. Elevated blood glucose levels were not observed in the initial period after infection 
when replicating virus was present in the eye. However, a moderate increase (about 1.5 
to 2 fold) in blood glucose levels occurred in samples from days 8, a time when ocular 
inflammatory lesions first become evident in the corneal stroma, as well as at day 15 pi 
(Fig.5.1A). However, at the latter time point the effect was more variable and differences 
were not significant in some experiments. At day 15, comparisons of blood glucose levels 
were also made between infected and uninfected animals following a 16-hour fasting 
period. Once again glucose levels were significantly higher (p<0.01) in the infected 
animals compared to uninfected controls in both the fed and fasting states. (Fig. 5.1B).  

Previous studies indicated that low-grade inflammation can affect systemic 
glucose levels by inducing gene expression changes in the liver (25, 26). Accordingly, 
pro-inflammatory cytokine levels in the serum were measured at different time points pi. 
The results indicated that IL-6, TNF-α and IFN-γ cytokine levels were significantly 
increased in serum samples of day 4 pi animals compared to uninfected controls (Fig. 
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1C). Measurement of gene expression changes in the liver at different time points pi 
indicated a significant increase in the expression of genes in the signaling pathways of 
pro-inflammatory cytokines at day 8 pi (about 3 fold) which included Il6ra, Tnfr2, Ifngr1 
and Stat3 (Fig. 5.1D). A recent report suggests that systemic inflammation suppressed 
CYP7A1 (Cholesterol 7 alpha-hydroxylase), the rate-limiting enzyme of the bile acid 
biosynthesis in the liver (25). This led to the accumulation of intermediate metabolites of 
the mevalonate pathway, resulting in stabilization of RHOC, a small GTPase induced by 
inflammation. The outcome was fasting hyperglycemia. We also quantified the expression 
of both CYP7A1 and RHOC in the liver at day 8 pi the time when blood glucose was at 
its peak. While the expression of CYP7A1 was significantly reduced, the expression of 
RHOC was higher in the livers at day 8 pi (Fig. 5.1E).  These data indicate that ocular 
infection with HSV-1 results in a change in glucose metabolism likely by effects on the 
liver mediated by responses to inflammatory cytokines.  
CD4 T cells display enhanced glucose uptake and glycolysis  

As the inflammatory response in the eye to HSV infection is mainly orchestrated 
by CD4+ T cells (1), changes in glucose uptake and glycolytic events was measured in 
CD4 T cells of animals with SK lesions and compared to CD4 T cells in uninfected 
animals. The first series of experiments compared glucose uptake in control uninfected 
and animals with lesions (day 15 pi), following the administration of a fluorescently labeled 
glucose analog 2-NBDG (2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) Amino)-2-
Deoxyglucose). One hour later, the draining lymph nodes (DLN) were collected and the 
fraction of CD4+ T cells that took up 2-NBDG was measured by flow cytometry. The 
results indicated that the CD4+ T cells from mice with ocular lesions had significantly 
more cells (approximately 6-fold) that took up the glucose compared to uninfected 
controls (Fig. 5A, B). Of note, compared to uninfected animals, CD4+ T cells from infected 
mice contained 4-fold more cells with the effector memory phenotype and 7-fold more 
cells that produced IFN-γ when stimulated in vitro with PMA and Ionomycin (Supp. Fig. 
S5.1). The glucose uptake receptor GLUT1, as measured by flow cytometry was also 
increased in CD4 T cells at day 15 pi compared to cells from uninfected controls (Fig. 
5.2C).   

Given that the CD4+ T cells from infected animals exhibited enhanced glucose 
uptake, a second set of experiments measured if these CD4+ cells also had changes in 
glucose metabolism. This was done using seahorse technology by determining the 
extracellular acidification rate (ECAR), which serves as an indicator of lactate production 
and glycolytic activity (21). CD4+ T cells isolated from the DLN of infected animals (day 
15 pi) had a higher basal and maximal glycolytic rate (>3-fold) compared to CD4+ T cells 
from uninfected animals (Fig. 5.2D). Of note, measurements of basal oxygen 
consumption rate (OCR), which serves as an indicator mitochondrial respiration (21), 
indicated that the ratio of OCR to ECAR was significantly reduced (p<0.05) in cells from 
infected animals. This result may indicate cellular preference for glycolysis over 
mitochondrial respiration (Fig. 5.2E). These results imply that upon infection with HSV-1, 
CD4+ T cells increase glucose uptake and glucose utilization (glycolysis), which might be 
supported by higher glucose levels observed in animals with inflammatory lesions.  
Treg and effector cells differentially use glucose 

Since different T cell subsets participate in SK reactions (1), it was of interest to 
determine the type of T cell subset in which changes in glucose metabolism was 
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occurring. The focus was on CD4 effector and regulatory T cells since these are the two 
major subsets which influence the extent of SK lesions (3, 4). The two cell types were 
isolated from the DLN of day 15 infected mice, separating them based on their expression 
levels of the IL-2 receptor CD25 with cells that were CD25+ taken to be mainly Treg. Thus 
in separate experiments, we could show that on average ~93% of the CD25+ T cells were 
Foxp3+ on day 15 pi, The CD4+CD25- population was considered to be predominantly 
effector T cells (Supp. Fig. S5.2). The uptake of 2NBDG was significantly higher in the 
CD25- population (mainly effector T cells) as compared to the CD25+ population (mainly 
Treg) (Fig 5.3A).  

Since, the mTOR pathway is also involved in the control of glucose uptake and 
glycolysis in T cells (27), mTOR activity was compared in the two subsets. This was done 
by measuring the phosphorylation of S6 kinase (a component of the mTOR down-stream 
signaling cascade) (28). Higher glucose uptake in the CD25- CD4 effector population was 
also associated with higher mTOR activity compared to the activity of the CD25+ CD4 
Treg population (Fig. 5.3B).  

To further determine if glucose requirements differed between the Th1 effector and 
Treg subsets, experiments were done in vitro to generate Treg and Th1 populations from 
naïve DLN populations. The populations obtained were approximately 80% enriched for 
each subset. After 5 days, levels of glycolysis were compared in the two populations by 
using a glycolysis stress test which measures extracellular flux analysis (ECAR). As 
shown in Fig 5.3C, the basal ECAR levels were elevated in the Th1 population compared 
to the Treg population (2.8-fold). In addition, the glycolytic capacity, as measured by an 
increase in ECAR levels following inhibition of ATP synthase (using oligomycin) (21), was 
around 3 fold higher in Th1 compared to the Treg cells (Fig. 5.3C). Accordingly, the two 
major populations of CD4 T cells involved in SK lesions had distinct differences in glucose 
metabolism, a pattern of events noted in some autoimmune and neoplastic diseases (11, 
13).   
Glucose availability affects Th1 differentiation in vitro   

To begin to approach the question of the potential relevance of raised glucose 
levels during the inflammatory response to HSV infection, in vitro experiments were done 
to measure the influence of glucose levels on the efficiency of Th1 and Treg cell 
differentiation, cell types critically involved in SK reaction (1, 4). For this naïve CD4 T cells 
were TCR stimulated under either Treg or Th1 inducing conditions after which the effect 
of supplementing cultures with different concentrations of glucose was measured. Levels 
of glucose evaluated varied from below physiological levels to hyperglycemic (0.5mM to 
20mM). As shown in the Fig 5.4A, B, increasing glucose levels elevated the magnitude 
of Th1 responses, but had no significant influence on Treg responses, as noted previously 
(29, 30). Curiously, increasing glucose from physiological levels (about 5mM) to that 
observed in vivo in the infected mice at day 8 pi (maximum of 10mM) led to a significant 
increase (P<0.05) in Th1 differentiation. (Fig. 5.4C). The above observation supports the 
hypothesis that, a two-fold increase in the physiological levels of glucose in the periphery 
might be relevant in terms of enhancing the generation of Th1 cells in vivo.  
Inhibition of glucose utilization using 2-deoxyglusose inhibits the glycolysis 

To further measure the influence of glucose levels during the inflammatory 
response to HSV infection, experiments were done in vitro to measure the effect of the 
molecule 2DG, which inhibits glucose utilization and hence glycolysis. Naïve CD4 T cells 
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were activated in the presence of 2DG for 72 hours followed by measurement of basal 
glycolysis using extracellular flux analysis The data indicated a 3-fold reduction in basal 
ECAR levels indicating a decrease in basal glycolysis in cells activated in the presence 
of 2DG when compared to control activated cells (Fig. 5.5A). Of note, no difference in cell 
death was observed at the concentration of 2DG used (data not shown). Collectively, the 
above results support the hypothesis that activated T cells upregulate glycolysis which 
can be inhibited by 2DG.  

Additional experiments were done to measure the expression of key genes 
involved in the glycolytic pathway both in the presence or absence of 2DG. Naïve CD4 T 
cells were activated in vitro by stimulating them with anti-CD3/CD28 for 24 hours and the 
effect of 2DG (250µM) on gene expression changes was recorded. Compared to naïve 
CD4 T cells, activated CD4 T cells expressed higher levels of several genes involved in 
glycolysis. These included Hexokinase-1 (2-fold), Hexokinase-2 (20-fold) and Glut1 (4-
fold) (Fig. 5.5). However, when CD4 T cells were activated in the presence of 2DG, the 
genes involved in glycolysis remained at the levels or even below those observed in non-
activated control cells. (Fig. 5.5B). The presence of 2DG in the cultures also served to 
switch off the raised mTOR activity, as measured by levels of phosphorylated S6 kinase 
using flow cytometry (Fig. 5.5C).  

To measure the effect of inhibition of glycolysis on differentiation of the two CD4 T 
cell subsets of interest (Th1 and Treg), naïve CD4+ T cells were cultured in Treg or Th1 
differentiating conditions for 5 days in the presence or absence of 2DG (250µM). 
Although, the differentiation of Treg was unaffected at the dose of 2DG used, a 20-fold 
reduction in the numbers of Th1 cells induced was observed in the presence of 2DG (Fig. 
5.6). These results support the above findings that effector T cell use glycolysis to a higher 
extent than Treg. The results may also mean that 2DG therapy could be therapeutically 
useful against SK by inhibiting T effectors but leaving Treg function intact. This notion is 
tested in the next section. 
Inhibition of glucose utilization limits SK lesion severity and diminishes effector T 
cell responses 

To measure the therapeutic potential of 2DG against SK, HSV infected animals 
were given daily administrations of either 2DG or PBS (control) starting at day 5 pi. This 
is the time point when there is at best minimal replicating virus detectable in the infected 
corneas and early inflammatory reactions start to become evident. Animals were 
examined at day 15 pi to record and compare the severity of SK lesions. The results were 
clear cut with animals receiving 2DG therapy showing significantly reduced SK lesion 
severity (P<0.01) compared to PBS treated control animals (Fig. 5.7A). At day 15 pi, 
around 12% of 2DG treated animals showed a lesion score of ≥ 3.0 compared to 50% in 
control treated animals. At the termination of experiments on day 15 pi, pools of corneas 
were collected and processed to identify their cellular composition by FACS analysis. 
There was a reduction in the number of total CD4 T cells (~10 fold) infiltrating the corneas 
of 2DG treated animals compared to control animals (Fig. 5.7B).  

In parallel experiments of similar design, pools of corneas, DLN and spleen were 
collected at 15 days pi from 2DG treated and control animals. Single cell suspensions 
were stimulated in vitro with PMA and ionomycin to activate T cells and to record the 
numbers of cells that were either IFN-γ producers or expressed the transcription factor 
Foxp3. In the corneas, the number of CD4 T cells expressing IFN-γ was reduced 
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approximately 8-fold in 2DG compared to untreated controls (Fig. 5.7C). In the DLN and 
spleen, 2DG treatment resulted in reduced frequency and numbers of IFN-γ producing 
CD4 T cells by about 2-fold. Although the frequency of Tregs in the DLN remained the 
same, their number decreased significantly.  This might be explained by reduced 
inflammatory responses in treated animals. However, the number and frequency of Treg 
in the spleens of 2DG treated animals remained unchanged (Fig. 5.7D).  

Taken together, our results indicate that daily administration of 2DG starting at day 
5 pi significantly diminished HSV-1 induced immunopathology along with a reduction in 
effector T cell numbers in both the cornea and lymphoid organs, which could in part 
contribute to reduced lesion severity.  
Inhibiting of glucose utilization is lethal in the acute phase of HSV infection 

Although, we found no evidence for hyperglycemia in the acute phase of HSV 
infection, experiments were done to measure the effects of 2DG therapy at the time when 
virus was actively replicating in the infected cornea. Animals were ocularly infected with 
HSV-1 and were either treated daily with 2DG or PBS control, starting from the day of 
infection. Under the infection conditions used, HSV infection of untreated animals failed 
to cause detectable illness or signs of encephalitis. However, in the 2DG treated animals 
around 40–50% (in three separate experiments) of 2DG treated animals developed 
encephalitis and most had to be terminated by day 10 pi (Fig. 5.8A). By 8 days pi, affected 
animals became lethargic, lost weight, showed ruffled fur and hunched appearance along 
with signs of incoordination. Brains were collected from encephalitic 2DG treated animals, 
to quantify levels of virus present. High virus levels of HSV were detectable (>4 log) in 
brain homogenates in all animals that showed signs of encephalitis by day 10 pi (Fig. 
5.8B). These animals also had detectable virus in ocular swabs at day 6 pi which is one 
day beyond the time when virus is regularly present in untreated infected animals. 
Additionally, levels of virus in ocular swabs were around tenfold higher than in untreated 
mice (Fig. 5.8C). Of note, virus could not be detected in the brains at day 10 pi or in the 
ocular tissue at day 6 pi in the control animals when infected with the same dose of virus 
that caused encephalitis in the 2DG treated animals.  

The reduction in antiviral inflammatory cells or mediators could explain the 
increased viral burden in the animals treated with 2DG. To test this possibility, pools of 
corneas were isolated from animals treated with 2DG or PBS controls at day 2 pi and 
were evaluated for the abundance of macrophages and neutrophils. In addition, the 
effector function of macrophages and neutrophils was measured by the expression of 
pro-IL-1β using flow cytometry. While the number and frequency of pro-IL-1beta 
expressing neutrophils remained unchanged with 2DG treatment (Supp. Fig S5.3), the 
frequency and the number of pro-IL-1beta expressing macrophages in the cornea were 
significantly reduced in 2DG treated animals (>3-fold) (Fig. 5.8D). This might account for 
the failure to stop the spread of virus to the CNS. To assess if molecules involved in 
antiviral responses were affected upon 2DG treatment, the expression of IFN-β, IL-1α 
and TNF-α genes was determined in the corneas of both control and 2DG treated animals 
at day 2pi. The results indicated no significant differences in the expression of these 
molecules (Fig. 5.8E). Taken together, the increase in viral load in the cornea as well as 
the failure to stop the spread of virus to the brain could be in part explained by reduction 
in the innate effector function of macrophages which also require glucose for their function 
as demonstrated in the next section.   
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2DG reduces the macrophage activation in the presence of LPS 
Macrophages are reported to play an important role in early stages of infection by 

controlling HSV-1 replication and dissemination within the TG (31). Hence, effects of 2DG 
on macrophage activation were measured using LPS stimulation of bone marrow derived 
macrophages (BMDM). BMDM’s were stimulated with LPS in the presence or absence of 
2DG (250µM) for 24 hours, followed by measurement of pro-IL-1β expression using flow 
cytometry. The results indicated that stimulation of macrophages with LPS in the 
presence of 2DG resulted in a 2-fold reduction in both the frequency of macrophages 
expressing pro-IL-1β and expression of pro-IL-1β per cell basis (MFI) as compared to 
LPS stimulation alone (Fig. 5.8F), supporting the previous reports (32). In conclusion, 
inhibition of glucose utilization in macrophages inhibited the effector function of 
macrophages, which might partially explain the high viral burden in the animals treated 
with 2DG. 

Discussion 
 

Inflammatory reactions are likely to be prolonged and cause excessive tissue 
damage when the activity of the principal orchestrators, usually either CD4 or CD8 T cells, 
are not constrained by inhibitory molecules or by cells that function as regulators (3-6). 
This is the state of affairs in the viral infection model we have used in this report wherein 
CD4 T cell driven inflammatory reactions in the eye cause a chronic vision-impairing 
lesion called stromal keratitis. The challenge with SK is to understand the events that 
result in lesions and to find therapies that limit the severity and duration of ocular damage. 
In the present report, we make the unexpected finding that blood glucose levels change 
significantly during the course of infection. Whereas levels remained normal during the 
early phase of infection when the virus was actively replicating in the cornea, they 
increased around two fold during the time when inflammatory responses to the virus was 
occurring. We could show that glucose levels influenced the extent of induction of the 
inflammatory T cell subset in vitro that mainly drives SK lesions, but not regulatory T cells. 
Additionally, if glucose utilization was limited in vivo as a consequence of therapy in the 
inflammatory phase with the drug 2DG, lesions were diminished compared to untreated 
infected controls. In addition, lesions in 2DG treated animals contained less pro-
inflammatory effectors. Glucose metabolism also influenced the acute phase of infection 
when replicating virus was present in the eye. Thus, therapy with 2DG to limit glucose 
utilization caused mice to become susceptible to the lethal effects of HSV infection, with 
virus spreading to the brain causing encephalitis. Taken together, our results indicate that 
glucose metabolism changed during the course of HSV infection and that modulating 
glucose levels can influence the outcome of infection, being detrimental or beneficial 
according to the stage of viral pathogenesis. 

Few reports have noted any changes in blood glucose levels in response to virus 
infections except in experimental situations where infection can set off diabetes mellitus 
(33, 34). Moreover, in the situation we described the mild hyperglycemia was absent 
during the time when virus was actively replicating in the eye or elsewhere in the body. 
Instead, the hyperglycemia only occurred during the inflammatory reaction to the virus, 
which in the case of HSV ocular infection becomes a vision-impairing lesion referred to 
as stromal keratitis. Moreover, SK is a local lesion in the eye accompanied by an 
inflammatory response in the innervating trigeminal ganglion (35). Two relevant questions 
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emerge. These are, what accounts for the mild hyperglycemia and does the event have 
any consequence.  

With regard to causation, the likeliest explanation could be the production of factors 
from the inflammatory site that caused the liver to change its level of glucose production. 
Candidates could include hormones, cytokines, or the release of lipid mediators from 
inflammatory cells (36-39). In a complex model of sustained inflammation induced by 
LPS, elevated blood glucose levels were observed and these were shown to be mediated 
by TNF-α (25). This cytokine acted on the liver to suppress the expression of the bile acid 
biosynthesis enzyme CYP7A1 that normally functions to influence glucose production by 
acting on the hepatic mevalonate pathway, resulting in the inhibition of insulin signaling 
(25). In our system, components of the virus with Toll-like receptor components would 
likely not be involved since virus is absent in the blood stream especially at the time of 
raised glucose levels. However, we did observe increased blood levels of some cytokines, 
which included TNF-α, IL-6 and IFN-γ at day 4 pi, as well as an increase in the expression 
of their receptors in the liver at day 8 pi. Moreover, we could show that animals with high 
blood glucose levels had reduced levels of CYP7A1, which could mean that the 
mechanism inducing the hyperglycemia was similar to that described by the Medzhitov 
group (25). Additional experiments are underway to further evaluate potential 
mechanisms that could cause raised glucose levels in our system, which differs from the 
systemic model used by the Medzhitov group (25) in being only a local inflammatory 
lesion in a small organ, the eye.  

The second question about the hyperglycemia observed was the issue of its 
potential relevance. Two lines of indirect evidence implied that the effect could have 
relevance. Firstly, the change of glucose levels was about two-fold and whether this 
change in glucose concentration was potentially meaningful was tested in an in vitro 
induction system. In this system, the levels of CD4 Th1 effector cells generated from 
naïve precursors were compared using media with controlled concentrations of glucose. 
Curiously increasing the glucose concentrations from physiological levels to the levels 
observed in infected animals significantly increased the number of effector Th1 cells 
induced and had no effect on the levels of Treg induction, confirming the previous 
observations (29, 30). This could mean that the 2-fold increase in blood glucose observed 
in vivo might also serve to enhance Th1 differentiation, but further studies are needed to 
verify this possibility. 

Another indirect approach also indicated that the change in glucose levels might 
help drive the inflammatory T cell response. Accordingly, when glucose utilization was 
suppressed by treating mice with 2DG from the time of onset of ocular inflammation, SK 
lesions were significantly reduced in magnitude. Along with this, the composition of the 
cellular constituents involved in ocular lesions was markedly changed with reduced 
numbers of CD4 effectors. Other reports have also shown that 2DG therapy (13, 14) can 
control both auto-inflammatory lesions and GVHD inflammatory reactions. However, in 
these inflammatory models, therapy with 2DG alone was usually non-effective and 
additional antimetabolite therapies such as metformin (13) and 6-Diazo-5-oxo-L-
norleucine - DON (14) were needed to be used in combination to counteract lesions. The 
fact that 2DG alone was highly effective therapy against SK, could relate to the less 
chronic nature of the SK lesion since viral antigen does not persist to drive lesions. 
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However, in the autoimmune disease and GvHD system the inflammatory cells in the 
lesions are under consistent activation.  

One issue yet to be explained was the discrepancy with the dose of 2DG used to 
achieve therapeutic effects in vivo with that found to selectively inhibit inflammatory T cell 
responses in vitro. However, we could not measure the absolute concentrations of 2DG 
in the blood and DLN after in vivo administration, and it is well known that 2DG is rapidly 
metabolized in vivo (40).  Another perplexing issue was the observation that 2DG could 
inhibit the effects of glucose in vitro when the later was far in excess of 2DG 
concentrations. Some data from studies with yeast at least partially explain such 
observations. Thus 2DG may inhibit the function of glucose transporters (41) and it is 
conceivable that 2DG has additional off target effects not mediated by glucose itself (42). 
These issues needs to be further clarified.  

Another unexpected observation made in this report was the dramatic 
consequence of 2DG therapy administered during the acute phase of ocular HSV 
infection. In such experiments, many of the animals succumbed to lethal consequences 
with virus spreading to and replicating in the CNS. Herpetic encephalitis (HSE) is a very 
rare outcome of HSV infections in adult humans unless they are genetically compromised 
in some immune component (43-46). In animal models for HSV infection, HSE is a more 
common event and can occur at higher doses of infection, or with some virulent strains 
of virus, or if animals have one of several defects of either innate or adaptive immunity 
(22, 47-50). We strongly suspect that the lethal consequences of HSV infection in 2DG 
treated mice could be the result of impaired function of a protective component of innate 
immunity. So far we have minimal support for this idea, but could show that the number 
of IL-1b expressing macrophages but not neutrophils was reduced at the site of infection 
as a consequence of 2DG therapy. In addition, that animals can suffer lethal 
consequences when treated with 2DG as was noted with another viral model (16). 
Accordingly, with influenza, the lethal effects were attributed to the increased expression 
of the ER-stress-induced transcription factor CHOP protein and its target gene Gadd34 
in the hindbrains of mice treated with 2DG. The increased expression of CHOP protein 
caused apoptosis of neurons leading to neuronal dysfunction and death. This 
phenomenon has yet to be evaluated in our HSE model, but we suspect to find differences 
since HSV replication occurs in the CNS and can be very destructive resulting from both 
direct viral and immune-pathological destructive events (22, 48, 49).  

This study is one of the first to evaluate the use of a drug which influences 
metabolic processes used by different immune components responding to an infection. 
We show that modulating the main energy generating component of inflammatory T cells 
has value to modulate the extent of viral immune inflammatory lesions. In our system, the 
effect was particularly effective since 2DG therapy inhibited pro-inflammatory T effectors 
but had no direct effect on cells such as Treg that play a protective function in SK lesions. 
Our results also indicate that using metabolic modifying drugs should be used with caution 
especially during virus infections. Thus when 2DG therapy was used when the virus was 
still replicating, the viral replication was enhanced and this could have had lethal 
consequences as a result of virus spreading to the brain.  
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Materials and Methods 
 

Mice and Virus 
Female C57BL/6 mice were purchased from Harlan Sprague-Dawley, Inc. 

(Indianapolis, IN), BALB/c DO11.10 RAG2-/- mice were purchased from Taconic and kept 
in pathogen free facility where food, water, bedding and instruments were autoclaved. All 
the animals were housed in American Association of Laboratory Animal Care–approved 
facilities at the University of Tennessee, Knoxville, Tennessee. All investigations followed 
guidelines of the Institutional Animal Care and Use Committee, and adhered to the ARVO 
Statement for the Use of Animals in Ophthalmic and Vision Research. HSV-l RE strain 
was used in all procedures. Virus was grown in Vero cell monolayers (American Type 
Culture Collection, Manassas, VA), titrated, and stored in aliquots at −80°C until used.  
HSV-1 ocular infection and clinical scoring 

Corneal infections of C57BL/6 were conducted under deep anesthesia induced by 
intra peritoneal (i.p) injection of tribromoethanol (Avertin). Mice were scarified on cornea 
with a 27-gauge needle, and a 3 µl drop containing 1x104 PFU of HSV-1 was applied to 
the eye. The eyes were examined on different days post infection (dpi) with a slit-lamp 
biomicroscope (Kowa Company, Nagoya, Japan), and the clinical severity of keratitis of 
individually scored mice was recorded as previously described (18). Briefly, the scoring 
system was as follows: 0, normal cornea; +1, mild corneal haze; +2, moderate corneal 
opacity or scarring; +3, severe corneal opacity but iris visible; +4, opaque cornea and 
corneal ulcer; +5, corneal rupture and necrotizing keratitis. The naïve-uninfected mice 
were scarified on cornea with a 27-gauge needle without addition of any virus.   
2DG Administration 

The 2-deoxy-glucose (2DG) (sigma) was dissolved in PBS and administered 
intraperitoneally at 500mg/kg twice a day starting from either day 0 or day 5 pi until day 
14 after infection. The control group either received an equal volume of PBS or left 
untreated. The dose of 2DG was based on preliminary dose titrations.  
Blood Glucose and cytokine quantification 

Blood glucose levels were measured from tail blood at different time point pi using 
Bayer Contour glucose meter and compared to naïve un-infected animals. For Fasting 
blood glucose levels animals were fasted for 16 hours in a clean cage with water followed 
by measurement of glucose levels in the blood from tail. For cytokine measurements, 
serum was isolated from the blood collected using Retro-orbital bleeding. At least 10 
mouse cytokines were profiled using a multiplex platform and data were extracted based 
on cytokine-specific standards by Eve Technologies (Calgary). Five independent serum 
samples were used from mice at different time points pi. Serum from control uninfected 
after 4 days of scarification was used as control.   
Flow Cytometric Analysis 

At day 15 pi, corneas were excised, pooled group-wise, and digested with liberase 
(Roche Diagnostics Corporation, Indianapolis, IN) for 45 minutes at 37°C in a humidified 
atmosphere of 5% CO2. After incubation, the corneas were disrupted by grinding with a 
syringe plunger on a cell strainer and a single-cell suspension was made in complete 
RPMI 1640 medium. The single-cell suspensions obtained from corneal samples were 
stained for different cell surface molecules for fluorescence-activated cell sorting (FACS) 
analyses. Draining cervical lymph nodes were obtained from mice sacrificed at 15 dpi and 
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single cell suspensions were used. All steps were performed at 4°C. Briefly, cells were 
stained with respective surface fluorochrome-labeled Abs in FACS buffer for 30 minutes, 
then stained for intracellular Abs. Finally, the cells were washed three times with FACS 
buffer and resuspended in 1% paraformaldehyde. The stained samples were acquired 
with a FACS LSR II (BD Biosciences, San Jose, CA) and the data were analyzed using 
FlowJo software (Tree Star, Inc., Ashland, OR). To determine the number of IFN-γ 
producing T cells, intracellular cytokine staining was performed. In brief, corneal cells 
were either stimulated with PMA (50ng) and Ionomycin (500ng) for 4 hours in the 
presence of brefeldin A (10 μg/mL) in U-bottom 96-well plates (18). After this period, 
Live/Dead staining was performed followed by cell surface and intracellular cytokine 
staining using Foxp3 intracellular staining kit (ebioscience) in accordance with the 
manufacturer's recommendations. Dead cells were gated out using Live/Dead staining. 
Cells are mentioned as Th1 if they are CD4+ IFN-γ+ and Treg if they are CD4+ Foxp3+.   
For 2-NBDG uptake in vivo, mice were injected i.v. with 100 μg 2-NBDG/mouse diluted 
in PBS to either naïve C57BL/6 animals or day 15 pi animals. 15 min following the 
injection cervical DLNs were collected and single cell suspensions were stained as 
described above and analyzed using flow cytometry (19).  
Reagents and antibodies. 

CD4 (RM4-5), CD45 (53-6.7), CD11b (M1/70), Ly6G (1A8), F4/80 (BM8), IFN-γ 
(XMG1.2), CD25 (PC61), CD44 (IM7), Foxp3 (FJK-16S), anti-CD3 (145-2C11), anti-
CD28 (37.51), GolgiPlug (brefeldin A) and anti-pro-IL-1 beta (NJTEN3) from either 
ebiosciences or BD biosciences. Anti-Mouse phospho-S6 Ribosomal (D57.2.2E) from 
Cell signaling and hGlut1 from R&D. Phorbol myristate acetate (PMA) and Ionomycin 
from sigma. Live/Dead staining kit and 2-NBDG from Life Technologies. Recombinant IL-
2, IL-12, IL-6 and TGF-b from R&D systems. Glucose free RPMI media (life technologies) 
was prepared using dialyzed FBS and glucose (sigma) was added at concentrations (0.1-
20mM).  
Quantitative PCR (qPCR) 

At day 2 post ocular infection with HSV-1, the corneas were isolated and two 
corneas were pooled per sample/group. Naïve CD4 T cells or cells activated in vitro with 
or without 2DG were taken at least 100,000 cells/sample. Total RNA from corneal and 
isolated T cell populations was isolated using mirVana miRNA isolation kit (Ambion).  
Liver (£30mg) was isolated at day 0, day 4, day 8 and day 15 pi and total RNA was 
extracted using RNeasy® Fibrous Tissue Mini Kit (Qiagen) as per manufacturer's 
recommendation. cDNA was made with 500ng of RNA (corneal samples) and entire RNA 
(isolated T cells) by using oligo(dT) primer and ImProm-II Reverse Transcription system 
(Promega). Taqman gene expression assays for Glut-1 (SLC2A1), HK1 (Hexokinase 1), 
HK2 (Hexokinase 2), Il6ra, Tnfrsf1b, Stat3, Ifngr1, Cyp7a1, Rhoc, Il1a, Ifnb, Tnfa and Il1b 
were purchased from Applied biosystems and quantified using 7500 Fast Real-Time PCR 
system (Applied Biosystems). The expression levels of different molecules were 
normalized to β-actin using ΔCt calculation. Relative expression between control and 
experimental groups was calculated using the 2-ΔΔCt X 1000 formula.  
Purification of CD4+ T cells. 

CD4+ T cells (total or naïve) were purified from single cell suspension of pooled 
draining cervical lymph nodes (DLNs) and spleen from HSV-infected or naïve C57BL/6 
mice using manufacturer's instructions (Miltenyi Biotec).  
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In vitro Treg and Th1 differentiation  
For glycolysis measurements using seahorse extracellular flux analyzer, naïve 

CD4 T cells were used in Treg and Th1 differentiation. For experiments evaluating the 
effects of glucose concentrations or effects of 2DG, splenocytes from naïve DO11.10 
RAG2 -/- mice were used as a precursor population for the induction of Treg and Th1 
cells as previously described (18). Briefly, 1×106 splenocytes after RBC lysis and several 
washings or 1 million naïve CD4 T cells were cultured in 1ml glucose sufficient RPMI 
media or glucose free-RPMI media (dialyzed serum) containing rIL-2 (100 U/ml) and 
TGFβ (1-5ng/ml) in the presence or absence of various concentrations of Glucose (0.5-
20mM) with plate bound anti-CD3/CD28 Ab (1 µg/ml) for 5 days at 37°C in a 5% CO2 
incubator. After 5 days, samples were characterized for Foxp3 intracellular staining 
(ebioscience staining kit) analyzed by flow cytometry. For Th1 differentiation, cells were 
cultured in the presence of recombinant mouse IL-12 (5-10ng/ml) and anti-IL-4 (10 µg/ml). 
After 5-days samples were re-stimulated with PMA/Ionomycin and analyzed for the 
production of IFN-γ by intracellular cytokine staining kit (BD biosciences) using flow 
cytometer. 250µM-2DG dose was chosen based on the preliminary dose response 
experiments and previous reports (20). 
OCR and ECAR measurement 

OCR and ECAR values were measured using a Seahorse XF24 metabolic 
analyzer. Briefly, total CD4 T cells were purified from either infected or naïve female B6 
mice or Treg/Th1 cells were differentiated and expanded from naïve CD4 T cells in vitro 
as described above. 1×106 cells per well were plated on XF24 plate (Seahorse 
Bioscience) pre-coated with 0.5 mg/ml poly-D lysine (Sigma). Cells were maintained in 
RPMI media (corning) supplemented with 1mM sodium pyruvate (Sigma) and 10% FBS. 
Before analyzing, cells were spun down and 530ul of XF media (with or without glucose) 
was added to each well, followed by incubation for 30 minutes in CO2-free incubator at 
37°C. Seahorse analyzer was then run per manufacture’s protocol with oligomycin (1uM), 
FCCP (1uM), and antimycin A (1uM) injected through ports A, B, and C respectively for 
mitochondrial stress test and glucose (10mM), oligomycin (1uM) and 2DG(10mM) for 
glycolysis stress test (21). 
Viral Plaque Assay 

Virus titers were measured in the brain and corneas of HSV infected mice as 
described previously by others (22). Virus titers in all samples were measured using 
standard plaque assay as described previously (22, 23). 
Cell Culture 

Female C57BL/6 mice were used at 8–16 weeks of age. BMDMs were generated 
as described previously (24) and grown in RPMI 1640 with 10% FCS. The media was 
supplemented with macrophage-colony-stimulating factor (10 ng/ml). Cells were 98% 
pure for macrophages (CD45+ CD11b+ F4/80+) and plated out on day 10 at 100,000 
cells/well and stimulated with LPS (20ng/ml) for 24 hours.  
Statistical Analysis 

Statistical significance was determined by either Student's t-test (comparing two 
groups) or One-way ANOVA (comparing three or more groups). A P-value of <0.05 was 
regarded as a significant difference between groups: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. 
GraphPad Prism software (GraphPad Software, Inc., La Jolla, CA) was used for statistical 
analysis. 
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Figure 5.1. Blood glucose levels increase upon infection with HSV-1.  
C57BL/6 animals were either infected with 1 x 104 PFU of HSV-RE or left alone. (A,B) 
Blood glucose levels were measured at time points indicated post infection. (A) Line graph 
showing kinetics of blood glucose levels (fed state) in control, day 4, day 8 and day 15 pi. 
(B) Histogram showing fed state and fasting state blood glucose levels at day 15 pi. (C) 
Line graph showing changes in serum cytokine levels at different time points pi. (D) Line 
graph showing changes in gene expression in the liver at different time points pi. (E) 
Histogram representing the expression of CYP7A1 and RHOC in liver of naïve and day 8 
pi animals. Data represents the mean ± SEM of more than 8 independent experiments 
for A, B (n = 5-8 mice/group) and 2 independent experiments for C-E (n=4-5 mice/group). 
Data were analyzed with One-way ANOVA for A, C & D  compared to the control or 
student’s t-test for B & E. P≤ 0.0001 (****), P≤0.001(***), P≤0.01(**), P≤0.05(*). 
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Figure 5.2. Glucose uptake in CD4 T cells increases at day 15 post infection. 
(A-E) C57BL/6 animals were either infected with 1 x 104 PFU of HSV-RE or left 
uninfected. (A, B) At day 15 pi animals showing SK lesions and naïve un-infected animals 
were administered with 2-NBDG (i.v) and glucose uptake by CD4 T cells was measured 
in DLNs. (A) Representative FACS plots and histogram (MFI) showing the 2-NBDG 
uptake by CD4 T cell from day 15 pi or naïve animals. For fluorescence minus one (FMO), 
mice were not injected with 2-NBDG. Cells were gated on live CD4+ T cells (B) Histogram 
number of CD4 T cells in DLNs with 2-NBDG uptake. (C) DLN from naïve and day 15 pi 
were stained with CD4 and Glut1 or Isotype. Representative FACS plots with Isotype 
control and Histogram (MFI) showing GLUT-1 expression by CD4 T cells. Cells were 
gated on live CD4+ T cells (D, E) Total CD4 T cells were purified from naïve and day 15 
pi mice showing SK lesions and equal number of cells were used of extracellular flux 
analysis (D) Line graph showing changes in Extracellular acidification rates (ECAR) by 
CD4 T cells following addition of glucose, oligomycin and 2DG and Histograms showing 
basal glycolysis, glycolytic capacity (E) Histogram showing the ratio of OCR to ECAR. 
Data represents the mean ± SEM of more than 3 independent experiments for A-C (n=3-
5 mice/group) and 2 independent experiments for D & E (n=5 replicates/group). All the 
data were analyzed with student’s t test. P≤ 0.0001 (****), P≤0.01(**), P≤0.05(*) 
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Figure 5.3.  CD4 T cells from infected and naïve animals have different glucose 
metabolism. 
(A) C57BL/6 animals were infected with 1 x 104 PFU of HSV-RE and at day 15 pi animals 
showing SK lesions were administered with 2-NBDG (i.v) and glucose uptake by different 
CD4 T cell subsets was measured in DLNs. Representative FACS plots and histogram 
(MFI) showing the 2-NBDG uptake in Live cells of Treg (CD4+CD25+) cells and Teff 
(CD4+CD25-) cells as measured in DLNs at day15 pi. (B) DLNs at day 15 pi were 
stimulated PMA/Ionomycin followed by ICS assay. Representative FACS with Isotype 
control and histogram (MFI) of S6P in Treg (CD4+ Foxp3+) and Th1 (CD4+ IFN-γ+) cells. 
Dead cells were gated out using Live/Dead staining. Data represents the mean ± SEM of 
more than 3 independent experiments (n=3-5 mice/group) (C) Naive CD4 T cells purified 
from C57BL/6 mice were cultured in either Treg or Th1 differentiating conditions. After 5 
days, equal number of cells were used of extracellular flux analysis. Line graph showing 
changes in extracellular acidification rates (ECAR) by CD4 T cells following addition of 
glucose, oligomycin and 2DG and Histograms showing basal ECAR and glycolytic 
capacity. Data represent the mean values ± SEM of two independent experiments of n = 4. 
The level of significance was determined by Student’s t test (unpaired). P≤ 0.0001 (****) 
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Figure 5.4. Increasing glucose levels increases Th1 but not Treg differentiation. 
Splenocytes from DO11.10 RAG2−/− mice were cultured (1 million cells) in the presence 
of 1 μg/ml of anti-CD3/CD28 antibody with either 100 U/ml of recombinant IL-2, 1ng/ml 
TGF-β (Treg differentiating conditions) or IL-12 (5ng/ml), anti-IL-4 (10 μg/ml) (Th1 
differentiating conditions) with increasing concentrations of glucose(0.5mM-20mM) in 
glucose free conditions (A) Histogram showing frequency of IFN-γ during Th1 
differentiation or (B) Foxp3 expression during Treg differentiation with increasing glucose 
concentrations (C) Representative FACS plots and histogram showing IFN-γ expression 
under Th1 differentiating conditions in the presence of glucose concentrations (5mM and 
10mM). Cells were gated on live CD4+ T cells. Data represents means ± SEM from three 
independent experiments (n = 3/group). The level of significance was determined by 
Student’s t test (unpaired) P≤0.05(*). 
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Figure 5.5. 2DG inhibits the metabolic reprogramming of CD4 T cells following 
activation. 
(A) Naive CD4 T cells purified from C57BL/6 mice were cultured (500,000 cells/well) with 
100U/ml IL-2, 1µg/ml anti-CD3/CD28 and in the presence or absence of 250µM 2DG for 
3 days followed by extracellular flux analysis. Line graph showing changes in Extracellular 
acidification rates (ECAR) by CD4 T cells following addition of oligomycin and Histograms 
showing basal ECAR levels. (B) Naive CD4 T cells purified from C57BL/6 mice were 
cultured (100,000 cells/well) with 1µg/ml anti-CD3/CD28 and in the presence or absence 
of 250µM 2DG for 24 hours followed by gene expression analysis by QRT-PCR compared 
to beta-actin. Histogram representing expression of genes involved in glucose 
metabolism such as HK1, HK2 and Glut1 in naïve, activated and Activated in the presence 
of 2DG (2DG). (C) Naïve CD4 T cells were cultured (100,000 cells/well) with 1µg/ml anti-
CD3/CD28 in the presence or absence of 250µM 2DG for 24 hours followed by 
measurement of Phosphorylation of S6 using flow cytometry. Representative FACS plots 
and histogram (MFI of S6P) of live CD4 T cells. Data represents means ± SEM from two 
independent experiments (n = 3/group) and the level of significance was determined by 
Student’s t test (unpaired) for A & C and One-way ANOVA for B. P≤ 0.0001 (****), 
P≤0.001(***), P≤0.01(**), P≤0.05(*). 
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Figure 5.6. Effect of 2DG treatment on glycolysis and T cell differentiation. 
Splenocytes from DO11.10 RAG2−/− mice were cultured (1 million cells) in the presence 
of 1 μg/ml of anti-CD3/CD28 antibody with either 100 U/ml of recombinant IL-2, 5ng/ml 
TGF-β (Treg differentiating conditions) or IL-12 (5ng/ml), anti-IL-4 (10 μg/ml) (Th1 
differentiating conditions) with or without 2DG (250µM). After 5 days of culture, cells were 
analyzed for the expression of IFN-g and Foxp3 on CD4 T cells. Representative FACS 
plots and histogram showing the frequency of Th1 and Treg. Cells were gated on live 
CD4+ Foxp3+ T cells (Treg) and live CD4+ IFN-g + T cells (Th1). Data represents means 
± SEMs of three independent experiments with n=3/group. Statistical significance was 
calculated by Student’s t test (unpaired) P≤ 0.0001 (****). 
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Figure 5.7. Therapeutic administration of 2DG diminishes SK severity. 
C57BL/6 animals infected with 1 x 104 PFU of HSV-RE were given either 2DG or PBS 
from day 5 pi to day 14 pi. The disease progression was analyzed in a blinded manner 
using a scale described in materials and methods. (A) Individual eye scores of SK lesion 
severity on day 15 pi. (B) Representative histogram showing the number of total CD4+ T 
cells infiltrating the cornea at day 15 p.i (C) Pool of corneas were stimulated with 
PMA/Ionomycin, representative histogram showing the number of  Th1 (Live CD4+ IFN-
g) cells in the cornea at day 15 pi. (D) DLN and Spleen were stimulated with 
PMA/Ionomycin, representative FACS plots and histogram showing frequency and 
number of Treg (live CD4+ Foxp3+) and Th1 (live CD4+ IFN-g). (E) Histogram 
representing Treg to Th1 ratio in the spleen at day15 pi. Data represents the mean ± SEM 
of more than 3 independent experiments (n=3-10 mice/group). All the data were analyzed 
with student’s t test. P≤ 0.0001 (****), P≤0.001(***), P≤0.01(**). 
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Figure 5.8. 2DG administration during early HSV infection is lethal. 
C57BL/6 animals infected with 1 x 104 PFU of HSV-RE were given either 2DG or PBS 
from day 0 pi to day 15 pi. (A) Survival of 2DG and control treated was established over 
15 days. (B) Brains were harvested from 2DG treated and control mice at day 10 pi and 
homogenized, centrifuged, and the supernatants were tested for virus titers using plaque 
assay. (C) The presence of virus in the cornea was measured at day 6 pi by swabbing 
the HSV infected eye with a sterile swab and assaying for the virus by plaque assay. (D) 
Corneas were isolated at day 2 pi from control and 2DG treated animals and inflammatory 
macrophages (CD45+ CD11b+ F4/80+ Pro-IL-1b+) were identified using flow cytometry. 
Representative FACS plots and histogram showing MFI of pro-IL-1b, frequency and 
number of inflammatory macrophages in corneas of 2DG treated and control animals at 
day 2 pi. (E) Corneas were isolated from control and 2DG treated animals at day 2 pi and 
RNA was isolated followed by gene expression analysis by QRT-PCR. Histogram 
representing the gene expression of IL-1α, IFN-β and TNF-α.  (F) Bone marrow derived 
macrophages (BMDM) were differentiated from naïve bone marrow progenitor cells (as 
described in materials and methods). BMDMs were stimulated with LPS (20ng/ml) in the 
presence or absence of 2DG (250µM) for 24 hours. Representative FACS plots and 
histogram showing frequency of BMDM expressing Pro-IL-1b (CD45+ CD11b+ F4/80+ 
Pro-IL-1b+). Data represents mean values ± SEM (n = 4–8 mice/group) for A-F. 
Experiments were repeated at least three times. The level of significance was determined 
by Student’s t test (unpaired). P≤ 0.0001 (****), P≤0.01(**), P≤0.05(*). 
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CHAPTER 6  
HEXOKINASE II MAY BE DISPENSABLE FOR CD4 T CELL RESPONSES AGAINST 

A VIRUS INFECTION. 
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Abstract 
 

Activation of CD4 T cells leads to their metabolic reprogramming which includes 
enhanced glycolysis, catalyzed through hexokinase enzymes. Studies in some systems 
indicate that the HK2 isoform is the most up regulated isoform in activated T cells and in 
this report the relevance of this finding is evaluated in an infectious disease model. 
Genetic ablation of HK2 was achieved in only T cells and the outcome was evaluated by 
measures of T cell function. Our results show that CD4 T cells from both HK2 depleted 
and WT animals displayed similar responses to in vitro stimulation and yielded similar 
levels of Th1, Treg or Th17 subsets when differentiated in vitro. A modest increase in the 
levels of proliferation was observed in CD4 T cells lacking HK2. Deletion of HK2 led to 
enhanced levels of HK1 indicative of a compensatory mechanism. Finally, CD4 T cell 
mediated immuno-inflammatory responses to a virus infection were similar between WT 
and HK2 KO animals. The observations that the expression of HK2 appears non-essential 
for CD4 T cell responses against virus infections is of interest since it suggests that 
targeting HK2 for cancer therapy may not have untoward effects on CD4 T cell mediated 
immune response against virus infections.  

 
Introduction 

 
Recently it has become evident that cells of the immune system show distinct 

differences in the metabolic pathways they use [1,2]. This opens up the prospect of 
manipulating metabolism to shape the nature of immunity. A well-studied metabolic 
difference between cell types has been the glucose metabolic pathway by which T cells 
mainly derive their energy [3]. Thus, some subsets of T cells generate their ATP mainly 
by oxidative glycolysis, whereas others mainly use mitochondrial respiration [4]. With 
regard to oxidative glycolysis, the process is critically influenced by enzymes which 
include at least 4 hexokinase isoforms to generate glucose 6-phosphate from glucose 
(the first rate limiting step of glycolysis). Of the 4 isoforms, mainly two, HK1 and HK2, are 
expressed by T cells [5,6]. In addition, when T cells are activated, as occurs in some 
autoimmune diseases, the fold change in expression of HK2 far exceeds that of HK1 
when compared to resting cells [6,7]. Moreover, HK2 has two tandem catalytically active 
domains whereas HK1 has only one catalytically active domain [8]. Taken together this 
could mean that HK2 may be more relevant than HK1 for T cell function, although this 
possibility has not been substantiated, particularly in vivo.  

In an attempt to evaluate if HK2 is more relevant than HK1 in activated T cells, we 
bred appropriate mice strains that would delete HK2 specifically in T cells from the onset 
of the development. We could readily show that overall CD4 and CD8 T cell numbers 
were unaffected by HK2 deletion and that the function of CD4 T cells in vivo in a virus 
immunopathology model was basically unchanged. Nevertheless, some modest 
differences in responsiveness were shown in vitro such as proliferative responses to T 
cell receptor stimulation. However, overall the absence of HK2 had no major effect on 
CD4 T cell functions. Moreover, expression of HK1 was upregulated in the absence of 
HK2 which was likely compensating for HK2 deletion. The systemic deletion of HK2 in 
adult mice does not elicit adverse physiological consequences but inhibits tumor 
development in mouse models of cancers, where HK2 is highly expressed compared to 
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normal cells [9]. The results presented here suggest that the systemic deletion of HK2 will 
not interfere with the immune response towards such tumor cells. 

 
Results and discussion 

 
As mentioned, previous studies showed that in activated T cells HK2 is up-

regulated more than other hexokinases which could mean it is more relevant for T cell 
function. We confirmed this observation using real time PCR showing that upon TCR 
activation of CD4 T cells, the expression of HK2 was up-regulated 25-40 fold compared 
to naïve cells, whereas HK1 was up-regulated only about 3 fold (Fig 6.1B). However, the 
absolute expression level of HK1 in activated cells was still higher than HK2. The other 
isoforms HK3 and HK4 were barely detectable either in resting or activated T cells. Of 
note, resting T cells showed only minimal levels of HK2, whereas, the expression of HK1 
was readily detectable (Fig. 6.1A).  

To ascertain if the dramatic up regulation of HK2 in activated T cells had 
physiological relevance compared to other hexokinases, mice were bred to delete the 
expression of the HK2 isoform specifically in T cells. The deletion was achieved by 
breeding CD4 Cre mice to HK2 flox/flox and homozygous pups (HK2 KO) were raised to 
maturity to evaluate and compare T cell responses to HK2 flox/flox animals (WT). The 
deletion of HK2 was confirmed by the absence of HK2 expression in enriched CD4 T cell 
populations after TCR stimulation in vitro as measured by RT-PCR (Fig. 6.1C). 
Interestingly, deletion of HK2 also resulted in elevated levels of HK1 mRNA (~3 fold) in 
resting cells. Additionally, the expression of HK3 also increased although levels were still 
minimal (Fig. 6.1C). These results were unexpected, since deletion of HK2 in several 
tumors did not result in elevated HK1 [9] indicating that T cells might depend less on HK2 
and have compensatory mechanisms distinct from cancer cells.   

Experiments were also done to measure the impact of HK2 deletion in T cell 
development and function. HK2 deletion showed no major effect on CD4 T cell 
development, as the number of single positive (SP) CD4 and Treg in the HK2 KO and WT 
mice in both the thymus and spleen showed no statistically significant differences (Fig. 
6.2A, C). The number of SP CD8 T cells was only minimally increased in the thymus and 
not in the spleen. However, no significant difference in expression of TCR beta on SP 
CD8 T cell thymocytes was observed (Fig. 6.2B). Hence, HK2 might be dispensable for 
CD4 T cell development. It remains to be known why HK2 deletion has resulted in minimal 
changes in CD8 T cell numbers in the thymus. Curiously the deletion of HK2 in some 
other tissue does have consequences to their development. These tissues include heart, 
muscle and adipose tissue [10,11].  

Additional experiments were done to measure the functional and metabolic 
consequences of HK2 deletion. Isolated CD4 T cells from KO and WT were TCR 
stimulated in vitro and responses were compared. Some modest differences were 
observed. Thus KO CD4 T cells generated approximately 1.5 fold greater proliferative 
responses to TCR stimulation compared to WT T cells (Fig. 6.3A). However, the response 
to activation measured by induction of phosphorylated AKT and the phosphorylation of 
S6 kinase (indicative of mTOR activity) revealed no significant differences between WT 
and KO cells (Fig. 6.3B, C). In addition, no significant differences were observed when 
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cells from KO and WT were differentiated in vitro into Th1, Th17 and Treg populations 
(Fig. 6.3D).  

The explanation for the higher proliferative response in KO CD4 T cells was not 
resolved but it could relate to suppressive effects that HK2 may have on mitochondrial 
function. Thus, activated T cells from HK2 KO animals displayed around 2-fold higher 
mitochondrial ROS (mROS) production without affecting cellular ROS levels (Fig. 6.4A, 
B).  Also, the increased mitochondrial ROS is associated with only moderate increase in 
mitochondrial membrane potential as measured my MitoTracker Red CM-H2Xros with 
little or no change in mitochondrial mass as measured by MitoTracker green (Fig 6.4C). 
This is in line with the observation in some cell lines and neurons that HK2 binds to 
mitochondria via voltage-dependent anion channels and control mitochondrial function by 
inhibiting mROS generation [12,13]. Moreover, T cells that lack the ability to generate 
mROS display reduced proliferation and activation [14]. In conclusion, deletion of HK2 
induced mROS which might have led to a modest increase in the proliferation of CD4 T 
cells. Since intact mitochondrial function is critical for effective memory T cell responses 
[15], the effects of HK2 deletion on established memory T cells needs to be evaluated 
using an inducible Cre system in adult mice with existing memory responses. 

With regard to metabolism, activated CD4 T cells from WT and HK2 KO mice 
showed similar levels of glycolysis and glycolytic capacity as measured by extracellular 
flux analysis (Fig. 6.4D). These data likely mean that the absence of HK2 was being 
compensated by other hexokinase isoforms. This finding was in contrast to the findings 
in some cancer cells where, deletion of HK2 did result in reduced proliferation and 
glycolysis [9,16]. Although, the mechanistic reasons for such disparities were not 
evaluated in this report, we speculate that HK1, whose levels were elevated in the 
absence of HK2 could compensate for the function that HK2 was performing in activating 
CD4 T cells.  

Finally, the effects of HK2 deletion on the outcome of CD4 T cell function in vivo 
were assessed. Age and sex matched WT and HK2 KO animals were ocularly infected 
with HSV-1 and the severity of lesions of stromal keratitis were compared. The results 
revealed no significant differences in responses in the two groups. Thus lesions were of 
comparable severity and the number of T cells present in lesions was basically the same 
including the proportion of infiltrating Th1 and Treg. (Fig. 6.5A-C). Similar to the in vitro 
data, the number and frequency of Treg and IFN-γ producing CD4 T cells in the DLN 
were not significantly different, despite some increased proliferation of both of CD4 T cell 
subsets (effectors and regulators) as measured by Ki-67 staining (Fig. 6.5D, E). 
Conceivably, the disparity between increased proliferation, yet similar inflammatory 
reactions could mean that some of the proliferating T cells of HK2 KO animals were 
undergoing apoptosis, an issue that is being further evaluated. Of note, the frequency 
and the number of CD44 and CD62L expressing CD4 T cells in the DLN at day 15 pi 
remained unchanged (Fig. 6.6A).  To measure if HK2 deletion had an effect on HSV-1 
specific CD8 T cell responses (a CD4 helper cell dependent response)[17], a well-
established footpad immunization model was used [18]. Cell suspensions of draining 
lymph nodes were stimulated with a gB peptide, which is the immuno-dominant peptide 
recognized by B6 mice [19]. The results, measured by the ICS assay for HSV specific 
IFN-gamma producing CD8 T cells, revealed no significant differences in responses by 
WT and HK2 KO animals (Fig. 6.6B). In addition since HK2 deletion was done using CD4 
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Cre mice, CD8 T cells and some subsets of APC would also be deficient of HK2. However, 
such potential effect did not affect the outcome of a virus specific CD8 T cell response.  
Concluding Remarks 

Our finding that HK2 function can be dispensed with for CD4 T cell function could 
come as welcome news to the cancer therapy field. Thus for some cancers targeting HK2 
with inhibitory drugs is an objective [20]. Our results would argue that such therapy may 
not be accompanied by negative effects on CD4 T cell functions which are necessary for 
anti-microbial protection and in some cases for anti-tumor effects as well. 

 
Materials and Methods 

Ethics statement 
This study was carried out in strict accordance with the recommendations in the Guide 
for the Care and Use of Laboratory Animals of the National Institutes of Health and 
guidelines of the Institutional Animal Care and Use Committee, and adhered to the ARVO 
Statement for the Use of Animals in Ophthalmic and Vision Research. The protocol was 
approved by the University of Tennessee Animal Care and Use committee (IACUC) 
(protocol approval numbers 1244). All procedures were performed under 
Tribromoethanol (Avertin) anesthesia, and all efforts were made to minimize suffering.  
Mice and Virus 

Female C57BL/6 mice were purchased from Harlan Sprague-Dawley, Inc. 
(Indianapolis, IN), CD4 Cre mice (C57BL/6 background) mice were purchased from 
Jackson laboratories and HK2 flox/flox (C57BL/6 background) were a kind gift from Dr. 
Nissim Hay (University of Illinois, Chicago)[9]. CD4 Cre mice were bred to HK2 flox/flox 
mice and the pups that were positive for Cre and homozygous for HK2flox/flox (confirmed 
by genotyping) were used as HK2 KO and mice that were homozygous for only 
HK2flox/flox and negative for Cre were used as WT controls for all the experiments. HSV-
l RE strain was used in all procedures. 
HSV-1 ocular infection and clinical scoring 

Corneal infections of 5-6 week old mice were conducted as previously described 
[21]. Briefly, mice were anesthetized by intra peritoneal (i.p) injection of Tribromoethanol 
(Avertin). Mice were scarified on cornea with a 27-gauge needle, and a 3 µl drop 
containing 1x104 PFU of HSV in 3μl volume was applied to the eye. The eyes were 
examined on different days post infection (dpi) with a slit-lamp biomicroscope (Kowa 
Company, Nagoya, Japan), and the clinical severity of keratitis of individually scored mice 
was recorded as previously described [21].  
Footpad Infection with HSV-1 

Footpad infections on WT and HK2 KO (5-6 week old) animals were done as 
previously described [22]. Briefly, mice were deep anesthetized as described above and 
30μl of 4x105 PFU HSV-1 KOS was subcutaneously injected in each hind footpad. Mice 
were sacrificed 4 days post infection and the draining popliteal lymph nodes for isolated 
for ICS assay.  
Flow Cytometric Analysis 

The single-cell suspensions obtained from corneal samples, draining cervical 
lymph nodes, Thymus and Spleen were stained for different cell surface molecules for 
fluorescence-activated cell sorting (FACS) analyses as described previously [23]. 
Proliferation assays were performed using Cell Trace Violet (CTV) labelled naïve CD4 T 
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cells (2 X 105 cells/well) from WT and HK2 KO stimulated with plate bound anti-CD3/CD28 
Ab (1 µg/ml or 5 µg/ml) for 3 days. Naïve CD4 T cells (2 X 105 cells/well) were stimulated 
for 72 hours in the presence of IL-2 and later labelled with MitoSOX (5µM), CM-H2DCFDA 
(1.25µM), MitoTracker Red CM-H2Xros (100nM) or MitoTracker green (100nM) and 
incubated for 30 min followed by live/dead staining and cytometric measurement. For 
HSV-1 specific CD8 T cells responses, 1x106 single cell suspensions popliteal lymph 
node were stimulated in a 96 well U-bottom plate. Cell were either left unstimulated or 
stimulated with SSIEFARL peptide (1μg/ml), for 5 h at 37°C in 5% CO2 in the presence 
of Brefeldin A (10μg/ml) followed by ICS assay.  
Reagents and antibodies. 

CD4 (RM4-5), IFN-γ (XMG1.2), CD25 (PC61, 7D4), CD44 (IM7), Annexin-V, 
Foxp3 (FJK-16S), anti-CD3 (145-2C11), anti-CD28 (37.51), GolgiPlug (Brefeldin A) from 
either ebiosciences or BD biosciences. P-AKT (S473-SDRNR) from ebiosciences and P-
S6 (S235/236-D57.2.2E) from cell signaling. Phorbol 12-myristate 13-acetate (PMA) and 
Ionomycin from sigma. Cell Trace Violet, Live/Dead Fixable Violet Dead Cell Stain Kit, 
MitoTracker Red CM-H2Xros, MitoTracker Green, MitoSOX and CM-H2DCFDA from Life 
Technologies. Recombinant IL-2, IL-12, IL-6 and TGF-b from R&D systems. Glucose free 
RPMI media (life technologies) was prepared using dialyzed FBS. HSV-1 gB498–505 
peptide (SSIEFARL) was from Genscript. 
Quantitative PCR (qPCR) 

Taqman gene expression assays for HK1 (Hexokinase 1), HK2 (Hexokinase 2), 
HK3 (Hexokinase 3) and HK4 (Hexokinase 4) from Applied Biosystems were performed 
on using 7500 Fast Real-Time PCR system (Applied Biosystems) as described previously 
(18). 
Purification of CD4+ T cells. 

Naïve CD4+ T cells were purified using a mouse naïve CD4+ T cell isolation kit 
(Miltenyi Biotec, Auburn, CA). The purity was achieved at least to an extent of 90%.  
In vitro Treg, Th17 and Th1 differentiation assays 

Naïve CD4 T cells were isolated from splenocytes of WT and HK2 KO mice as 
described above. Th1, Th17 and Treg cells were differentiated as described previously 
with some modifications [21,24]. Briefly, 1×106 cells were cultured with plate bound anti-
CD3/CD28 Ab (1 µg/ml) containing either Treg differentiating conditions: rIL-2 (100 U/ml) 
and TGFβ (5ng/ml) or Th1 differentiating conditions: IL-12 (5ng/ml) and anti-IL-4 (10 
µg/ml) or Th17 differentiating conditions: IL-6 (25ng/ml) and TGFβ (5ng/ml) with anti-IL-4 
(10 µg/ml) and anti-IFN-γ (10 µg/ml) for 5 days at 37°C in a 5% CO2 incubator. After 5 
days, samples were re-stimulated with PMA and Ionomycin to measure Foxp3 
expressing, IFN-γ and IL-17A producing CD4 T cells using flow cytometry.  
OCR and ECAR measurement 

Naïve CD4 T cells from WT and HK2 KO were activated for 3 days in the presence 
of anti-CD3/CD28 (1 µg/ml). 1×106 cells per well were plated on XF24 plate (Seahorse 
Bioscience). ECAR values were measured for glycolysis stress test using a Seahorse 
XF24 metabolic analyzer as previously described [23]. 
Statistical Analysis 

Statistical significance was determined by Student's t-test. A P-value of <0.05 was 
regarded as a significant difference between groups: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. 
GraphPad Prism software (GraphPad Software) was used for statistical analysis. 



 135 

References 
 

1. Buck MD, O’Sullivan D, Pearce EL (2015) T cell metabolism drives immunity. Journal 
of Experimental Medicine 212: 1345-1360. 

2. O'Neill LA, Kishton RJ, Rathmell J (2016) A guide to immunometabolism for 
immunologists. Nature Reviews Immunology. 

3. Palmer CS, Ostrowski M, Balderson B, Christian N, Crowe SM (2015) Glucose 
metabolism regulates T cell activation, differentiation, and functions. Frontiers in 
immunology 6. 

4. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, et al. (2011) Cutting 
edge: distinct glycolytic and lipid oxidative metabolic programs are essential for 
effector and regulatory CD4+ T cell subsets. The Journal of Immunology 186: 3299-
3303. 

5.  Marjanovic S, Eriksson I, Nelson BD (1990) Expression of a new set of glycolytic 
isozymes in activated human peripheral lymphocytes. Biochimica et Biophysica Acta 
(BBA)-Gene Structure and Expression 1087: 1-6. 

6.  Gerriets VA, Kishton RJ, Nichols AG, Macintyre AN, Inoue M, et al. (2015) Metabolic 
programming and PDHK1 control CD4+ T cell subsets and inflammation. The Journal 
of clinical investigation 125: 194-207. 

7. Shi LZ, Wang R, Huang G, Vogel P, Neale G, et al. (2011) HIF1α–dependent glycolytic 
pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg 
cells. Journal of Experimental Medicine 208: 1367-1376. 

8. Ardehali H, Yano Y, Printz RL, Koch S, Whitesell RR, et al. (1996) Functional 
Organization of Mammalian Hexokinase II RETENTION OF CATALYTIC AND 
REGULATORY FUNCTIONS IN BOTH THE NH-AND COOH-TERMINAL HALVES. 
Journal of Biological Chemistry 271: 1849-1852. 

9. Patra KC, Wang Q, Bhaskar PT, Miller L, Wang Z, et al. (2013) Hexokinase 2 is 
required for tumor initiation and maintenance and its systemic deletion is therapeutic 
in mouse models of cancer. Cancer cell 24: 213-228. 

10.Fueger PT, Heikkinen S, Bracy DP, Malabanan CM, Pencek RR, et al. (2003) 
Hexokinase II partial knockout impairs exercise-stimulated glucose uptake in oxidative 
muscles of mice. American Journal of Physiology-Endocrinology and Metabolism 285: 
E958-E963. 

11.Katzen HM, Schimke RT (1965) Multiple forms of hexokinase in the rat: tissue 
distribution, age dependency, and properties. Proceedings of the National Academy 
of Sciences 54: 1218-1225. 

12.Cheung EC, Ludwig RL, Vousden KH (2012) Mitochondrial localization of TIGAR 
under hypoxia stimulates HK2 and lowers ROS and cell death. Proceedings of the 
National Academy of Sciences 109: 20491-20496. 

13.da-Silva WS, Gómez-Puyou A, de Gómez-Puyou MT, Moreno-Sanchez R, De Felice 
FG, et al. (2004) Mitochondrial bound hexokinase activity as a preventive antioxidant 
defense steady-state ADP formation as a regulatory mechanism of membrane 
potential and reactive oxygen species generation in mitochondria. Journal of 
Biological Chemistry 279: 39846-39855. 



 136 

14.Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, et al. (2013) Mitochondria are 
required for antigen-specific T cell activation through reactive oxygen species 
signaling. Immunity 38: 225-236. 

15.van der Windt GJ, O’Sullivan D, Everts B, Huang SC-C, Buck MD, et al. (2013) CD8 
memory T cells have a bioenergetic advantage that underlies their rapid recall ability. 
Proceedings of the National Academy of Sciences 110: 14336-14341. 

16.Anderson M, Marayati R, Moffitt R, Jen YJ (2016) Hexokinase 2 promotes tumor 
growth and metastasis by regulating lactate production in pancreatic cancer. 
Oncotarget. 

17.Kumaraguru U, Suvas S, Biswas PS, Azkur AK, Rouse BT (2004) Concomitant helper 
response rescues otherwise low avidity CD8+ memory CTLs to become efficient 
effectors in vivo. The Journal of Immunology 172: 3719-3724. 

18.Bonneau R, Jennings S (1989) Modulation of acute and latent herpes simplex virus 
infection in C57BL/6 mice by adoptive transfer of immune lymphocytes with cytolytic 
activity. Journal of virology 63: 1480-1484. 

19.Hanke T, Graham FL, Rosenthal KL, Johnson DC (1991) Identification of an 
immunodominant cytotoxic T-lymphocyte recognition site in glycoprotein B of herpes 
simplex virus by using recombinant adenovirus vectors and synthetic peptides. 
Journal of virology 65: 1177-1186. 

20.Ros S, Schulze A (2013) Glycolysis back in the limelight: systemic targeting of HK2 
blocks tumor growth. Cancer discovery 3: 1105-1107. 

21.Varanasi SK, Reddy PB, Bhela S, Jaggi U, Gimenez F, et al. (2017) Azacytidine 
treatment inhibits the progression of Herpes Stromal Keratitis by enhancing regulatory 
T cell function. Journal of Virology 91: e02367-02316. 

22.Bhela S, Mulik S, Reddy PB, Richardson RL, Gimenez F, et al. (2014) Critical role of 
microRNA-155 in herpes simplex encephalitis. The Journal of Immunology 192: 2734-
2743. 

23.Varanasi SK, Donohoe D, Jaggi U, Rouse BT (2017) Manipulating Glucose 
Metabolism during Different Stages of Viral Pathogenesis Can Have either 
Detrimental or Beneficial Effects. The Journal of Immunology: ji1700472. 

24.Jones LL, Alli R, Li B, Geiger TL (2016) Differential T Cell Cytokine Receptivity and 
Not Signal Quality Distinguishes IL-6 and IL-10 Signaling during Th17 Differentiation. 
The Journal of Immunology 196: 2973-2985. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 137 

APPENDIX 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 138 

Figure 6.1. HK2 is up regulated upon CD4 T cell activation. 
(A) Naive CD4 T cells purified from C57BL/6 mice were cultured (100,000 cells/well) with 
1µg/ml anti-CD3/CD28 for 24 hours followed by gene expression analysis by QRT-PCR 
compared to beta-actin. Bar graph representing expression of HK1, HK2 and HK3 in 
naïve and activated cells. (B) Bar graph of fold change in gene expression in activated 
cells compared to naïve cells (C) Naïve CD4 T cells were purified from WT and HK2 KO 
mice were activated anti-CD3/CD28 for 24 hours. Bar graph representing gene 
expression of HK, HK2 and HK3 compared to beta-actin. Data represents means ± SEM 
from two independent experiments (n = 3/group) P≤ 0.0001 (****), P≤0.001(***),P≤0.05(*). 
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Figure 6.2. T cell specific HK2 deletion is dispensable for T cell development. 
Thymus and spleens from 5-6 week old naïve WT and HK2 KO animals were isolated. 
(A) Representative FACS plots and bar graph showing the frequency and number of total 
thymocytes, CD4+ CD8- T cells, CD4- CD8+ T cells, CD4+CD8+ T cells and CD4+CD8- 
Foxp3+ Treg cells in Thymus. (B) Representative FACS plot showing the TCR-beta 
expression gated on CD8+ CD4- T cells in the thymus. (C) Representative FACS plots 
and histogram showing the frequency and number of CD4+ CD8- T cells, CD4- CD8+ T 
cells and CD4+CD8- Foxp3+ Treg cells in Spleen.  Gated on live cells.  Data represents 
the mean ± SEM of more than 2 independent experiments (n=3 mice/group). P≤0.001(*) 
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Figure 6.3. HK2 deletion increased CD4 T cell proliferation. 
(A-C) Naïve CD4 T cells from WT and HK2 KO mice were CTV labelled and activated for 
72 hours. (A) Representative FACS plots and bar graph indicating CTV dilution (as a 
measure of proliferation) gated on live CD4 T cells. Representative FACS plots and 
Histogram representing the levels of (B) phosphorylated–AKT and (C) Phosphorylated-
S6 kinase. (D) Naïve CD4 T cells from WT and HK2 KO mice were cultured in the 
presence Treg or Th1 or Th17 differentiating conditions for 5 days followed by re-
stimulation for 4 hours with PMA/Ionomycin. Histogram showing frequency of Th17, Th1 
cells and Treg cells. All the measurements were made on live CD4 T cells. Data 
represents means ± SEM from two independent experiments (n = 3/group) P≤0.001(***) 
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Figure 6.4. HK2 deletion in T cells had minimal effect on T cell glycolysis and T cell 
differentiation in vitro. 
(A-C) Naïve CD4 T cells from WT and HK2 KO mice were activated for 72 hours. (A) 
mROS (MitoSOX high) producing cells, (B) Cellular ROS (CM-H2DCFDA) producing cells 
and (C) Mitrochondrial membrane potential (MitoTracker Red CM-H2Xros) and 
mitochondrial mass (MitoTracker Green). Data represents means ± SEM from three 
independent experiments (n = 3/group). FMO, fluorescence minus one. (D) Naïve CD4 T 
cells were purified from WT and HK2 KO mice and cultured with 1µg/ml anti-CD3/CD28 
for 72 hours. Line graph showing changes in Extracellular acidification rates (ECAR) 
following addition of glucose, oligomycin and 2DG and bar graph showing basal 
glycolysis, glycolytic capacity. n = 6-8/group. 
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Figure 6.5. HK2 deletion displayed similar CD4 T cell responses upon ocular 
infection with HSV-1. 
WT and HK2 KO animals were infected with 1 x 104 PFU of HSV-RE. (A) Individual eye 
scores of stromal keratitis lesion severity on day 15 pi. (B) Representative histogram 
showing the number of total CD4+ T cells infiltrating the cornea at day 15 p.i (C) Pool of 
corneas were stimulated with PMA/Ionomycin, representative histogram showing the 
number of  Th1 (Live CD4+ IFN-γ) cells and Treg (Live CD4+ Foxp3) cells in the cornea 
at day 15 pi. (D) DLN were stimulated with PMA/Ionomycin, representative FACS plots 
and histogram showing frequency and number of Th1 (live CD4+ IFN-γpos) and Treg (live 
CD4+ Foxp3pos). Gated based on the Unstimulated control.  (E) Representative FACS 
plots and histogram showing frequency of proliferating (Ki-67pos) effector (Live CD4+ 
Foxp3neg) and regulatory T cells (Live CD4+ Foxp3pos). Gated based on the Isotype. Data 
represents the mean ± SEM of more than 3 independent experiments (n=3-10 
mice/group). P≤0.05(*). 
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Figure 6.6. HK2 deletion in T cells had minimal effect on the expression of CD44 
and CD62L on CD4 T cells after infection. 
Representative FACS plots and bar graphs showing the frequency and number of 
activated (CD44+CD62L-), naïve (CD44-CD62L+) and memory CD4 T cells 
(CD44+CD62L+) in the DLN of WT and HK2 KO animals at day 15pi. Data represents 
means ± SEM from three independent experiments (n = 3/group). 
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CHAPTER 7 
CONCLUSIONS AND FUTURE DIRECTIONS 
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Herpetic stromal keratitis is the most common cause of infectious blindness in humans. 
Adaptive immune responses dominated by Th1 cells drives the immunopathology in the 
cornea whereas regulatory T cells (Treg) play a protective role. Thus approaches that 
rebalance the Treg to effector T cell ratio to emphasize Treg can have potential clinical 
benefits. However, the protection offered by Treg is often incomplete since they lose their 
regulatory functions, resulting in more severe lesions. Hence, we sought to trace the fate 
of the Treg phenotype and functionality after infection with HSV-1. Results indicated that 
upon ocular infection with HSV-1, Treg may become unstable and take on an effector 
phenotype. Thus about 50% of the Treg in the cornea that once expressed Foxp3 now 
became IFN-gamma or IL-17A expressing effector cells.  The functional and phenotypic 
plasticity of Treg was observed predominantly by Treg that expressed low levels of the 
receptor for IL-2 (CD25). This plastic nature of CD25 low Treg can be explained by 
methylation changes which occurred in their TSDR region.  The CD25 low Treg 
expressed a methylated TSDR region whereas CD25 hi Treg had a demethylated TSDR. 
Inhibiting methylation changes using DNA methyltransferase inhibitor-5-Azacytidine 
rescued the unstable Treg and the Treg population showed enhanced 
immunosuppressive functions. Consequently, treating animals with 5-Azacytidine from 
the time when lesions commenced resulted in reduced lesion severity.  

We also show that Treg in the cornea are not only important for immune 
suppression but also are key components of tissue repair. Thus Treg in the cornea 
secreted a key tissue repair molecule called Amphiregulin (Amp). We identified that IL-
18, a pro-inflammatory cytokine, can induce the expression of Amphiregulin by Treg. 
Moreover, enhancing levels of IL-18 in the cornea using an expression plasmid resulted 
in the increased representation of Amp Treg and more effective lesion control. Together 
these observations explain that enhancing Treg function and stability can be useful for 
better lesion control and repair.  

Another novel approach to rebalance the Treg to effector ratio is by targeting their 
metabolic requirements. Results from our studies and others indicate that effector T cells, 
but not Treg mainly rely on glucose utilization for their function. Thus, inhibiting glucose 
utilization using 2-deoxy glucose (2DG) diminished the effector T cell responses, leaving 
Treg function intact and able to reduce lesion severity. However, when glucose utilization 
was inhibited from the time of infection, anti-viral immune responses, both innate and 
adaptive, were inhibited resulting in uncontrolled virus replication and death of animal. 
These observations highlight the importance of metabolic requirements especially 
glucose utilization by immune cells on the outcome of virus infection.   

While our studies identified several new ways to control HSV induced 
immunopathology, future studies must focus on evaluating the effects of these inhibitors 
locally rather than systemic administrations. Local administration could reduce the off-
target effects and unnecessary complications. Although the role of Amp in corneal tissue 
repair has been identified, the role of Treg specific Amp expression in cornea remains to 
be established. Thus, mice that lack Amp specifically in Treg could be used to evaluate 
such a role. In the current study, we highlighted the role of glucose utilization by immune 
cells during virus infections. However, future studies must focus on the understanding 
how other host metabolic pathways such as fatty acid and amino acid metabolism 
influence immune responses and thus the outcome of HSV infection.  
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Manipulating metabolism represents a viable new approach to control some virus 
infections. We have argued that metabolic differences between individuals can be one 
factor that explains the variable outcome of a virus infection. We also argue that 
manipulating metabolic events could be useful to influence the outcome of some virus 
infections. We also anticipate that the consequences of infection in each person may 
differ because of differential metabolic changes ongoing during infection. Should this be 
true then performing metabolic profiles on sick or perhaps even normal persons might 
help predict the outcome of their infection. If abnormal profiles are detected, especially in 
early infections or in uninfected persons as part of a personalized medicine workup, 
targeted therapies might be developed that restore normalcy.  Finally, metabolic 
manipulation may find a place during vaccination. Accordingly, if optimal immunity 
depends on the magnitude of one or another component of immune memory, metabolic 
supplements might be used that shape induction of the required type of memory cells. 
We speculate that an approach worth exploring is to administer polyunsaturated fatty 
acids such as linoleic acid, a known FABP5 activator, at the vaccination site which would 
favor the expansion of TRM cells over the central memory population, a situation 
beneficial for mucosal infections. Just a note of caution: what is good to stop viruses may 
act in an opposite way against bacteria. 
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