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ABSTRACT 
Nanofabrication has come to prominence over recent years due to miniaturization of 

electronic devices as well as interesting physical phenomena that arise in material systems at the 

nanoscale. Particle beam induced processing enables additive as well as subtractive 

nanoprocessing techniques. Focused beam induced processing facilitates direct-write processing, 

thus making it a common technique for fabrication and synthesis on the nanoscale and is typically 

carried out with charged particles such as electrons or ion species, each of which offer distinct 

capabilities. This dissertation addresses several challenges which currently plague the focused 

beam-induced processing community and explores novel applications.  

 Chapter I explores laser based purification strategies for electron beam induced deposition. 

This addresses the challenge of material purity, which currently limits broader application of the 

nanofabrication technique. Chapter II covers advanced helium ion beam induced processing using 

a Gas Field Ionization source.  This chapter explores novel applications for the helium ion beam 

as well as the mitigation of helium-induced subsurface damage, which currently prevents 

ubiquitous adoption of the helium ion microscope as a nanofabrication tool. Chapter III studies 

defect introduction in 2D materials under helium ion irradiation, which proves to be an ideal 

nanoprocessing application for the helium ion beam.   
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INTRODUCTION  
Focused beam induced processing (FBIP) has emerged as a viable technique for materials 

processing and synthesis on the nanoscale. In the context of this dissertation, focused beam 

induced processing is defined a materials processing method which is initiated by exposure to a 

focused beam of charge particles. The emergence of focused beam induced processing has 

largely been motivated by the fundamental study of nanoscience. In particular relevance to this 

work, the processing of nanomaterials as well the downsizing of electrical circuits have played a 

crucial role in catalyzing the development of new FBIP techniques.  

FBIP techniques are typically carried out via irradiation with focused electrons or ions, 

each of which offer distinct capabilities. The focused electrons (or ions) are typically generated 

in scanning electron (or ion) microscopes. The scanning electron or ion microscope (SEM or 

SIM) uses a series of electrostatic lenses and apertures to focus the charged particles to a probe 

size of commonly < 10 nm. This enables direct-write materials processing or synthesis on the 

nanoscale.  FBIP techniques can be additive, subtractive, or induce some sort of alteration to the 

target material.  FBIP can also rely on a gas-assist for the processing technique or may solely be 

induced by ion-solid interactions between the charged particle and the target material. Gas-

assisted processes generally utilize a gas-injection system to locally inject a precursor molecule 

into the SEM or SIM chamber. Inelastic interactions of the electron (or ion) beam with the 

precursor molecule drives dissociation of molecule which chemically assisted the FBIP process1. 

This will be further discussed in this introduction. Alternatively, ion-solid interactions alone can 

be used to initiate a FBIP processing. Energetic particles can transmit energy to target atoms by 

means of nuclear or electronic energy loss. Nuclear energy loss occurs when the energetic 

particle interacts with the charged nucleus of an atom in an elastic manner. Electronic energy 

loss occurs with the energetic particle interacts with electrons resulting in an inelastic interaction. 

These energy loss mechanisms can be utilized in FBIP processes in a variety of different 

manners. Energy loss can be used to locally introduce heat into the system, generate defects in 

the target material, implant charged particles into the target material, and sputter target atoms, to 

name a few. A more comprehensive review on FBIP processes can be found in REFs2,3. 

This dissertation will largely focus on a number of FBIP processes utilizing focused 

electron (e-) and focused helium ion (He+) beams. The FBIP techniques include gas-assisted and 
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non-gas-assisted processes. Here background is provided on a number of processes which are 

relevant to this dissertation.  

Electron Beam-Induced Processing 

Focused electron beam-induced processing (FEBIP) may be thought of as the non-

invasive variant in comparison with focused ion beam-induced processing (FIBIP), owing to the 

fact that an electron has a much lower mass compared to all ion species and generally does not 

induce a large concentration of defects in the underlying substrate by knock-on collisions.  

Additive and subtractive processes with FEBIP are typically chemical-assisted techniques. 

Electron beam-induced deposition (EBID) is generally carried out by introducing a precursor gas 

into a scanning electron microscope (SEM) in close proximity to a substrate. The precursor gas 

then physisorbs onto the substrate and impinging primary electrons from the focused beam, and 

particularly secondary electrons generated from the substrate, cause the precursor molecule to 

dissociate through inelastic collisions with the electrons. Non-volatile dissociation by-products 

generated from the dissociation event condense on the substrate creating a direct-write deposit 

whose geometry is dictated by the focused beam’s raster pattern.  Incomplete dissociation of the 

precursor molecule (typically organometallic) results in unwanted ligands being incorporated 

into the deposits. This results in low purity deposits. A schematic of this process is shown in 

Figure 1a and reprinted from Ref4. 

Analogous to EBID, electron beam-induced etching (EBIE) can be carried out in a 

similar manner in which a precursor molecule is dissociated via an inelastic collision with an 

electron. In this case, the selected precursor dissociation by-products form a volatile compound 

with the substrate material, thereby removing or etching the substrate material. Of course, the 

precursor molecules are carefully selected with the proper chemistry to deposit a pattern of 

desired composition or generate an etchant of proper composition. Typically, CVD precursors 

are used as EBID precursor molecules, but recent work strives to create precursor molecules 

specifically tailored for FEBIP and FIBIP5,6. Additionally, high energy e— beams have been 

utilized to introduce defects into material lattices7, however defect introduction via electron 

beam irradiation at energies commonly available in SEMs is generally very low yield and will 

not be discussed further in this dissertation.  
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Figure 1. (a) EBID: the nonvolatile dissociation products form the deposit growing coaxially into 

the beam. Volatile fragments are pumped away. (b) EBIE: the surface adsorbed molecules 

dissociate under electron impact into reactive species and react to volatile compounds with the 

substrate material. Reprinted with permission from Ref4. Copyright 2008, American Vacuum 

Society.  

Ion Beam-Induced Processing 

FIBIP is very similar to FEBIP, however an ion species is generated and used for 

processing. Typical FIBIP either takes place in a dual-beam SEM or a focused ion microscope 

(FIM). The most elementary FIBIP technique is subtractive sputtering of a target material via 

bombardment with the ion species. This occurs when momentum transfer between the ion 

species and the target atoms are sufficient to eject the target atoms. The sputter rate will depend 

upon the primary ion beam energy, ion mass, target mass, and binding energy amongst other 

variables.  These solid-ion interactions are well studied as sputtering techniques are a common 

technique for thin film deposition. However, as the primary ion enters the substrate, a cascade of 

knock-on collisions occur which may introduce a high concentration of subsurface point defects, 

which may be undesired for some nanoscale direct-write processes. 

Analogous to EBID and EBIE, Ion beam-induced deposition (IBID) and etching (IBIE) 

can be used as additive and subtractive synthesis processes, respectively. Similar to the electron 

beam equivalent, these processes are carried out by injecting precursor molecules in close 

proximity to the substrate surface, where inelastic collisions with the primary ion beam and 
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generated secondary electrons dissociate the precursor molecule to form a non-volatile by-

product (IBID) or a by-product which forms a volatile compound with the substrate material 

(IBIE). Since the secondary electron yield (YSE) from the substrate is much greater for ion beams 

in comparison to electron beams, IBID and IBIE rates are generally greater than EBID and EBIE 

for comparable beam current. However, undesired subsurface substrate damage, “staining” from 

some metallic ion species (such as Ga+), and resolution limits provide restrictions for FIBIP. 

Helium Ion Beam Processing 

Ga+ ion beams, which utilize liquid metal ion sources (LMIS), have been the industry 

standard for FIBIP for a number of years, due to source stability and brightness. However, the 

LMIS typically results in a beam with a large emission angle (30o) and an energy spread on the 

order of 15 V. This results in a large amount of chromatic aberration and ultimately limits the 

resolution of the focused beam.  In recent years, He+ and Ne+ focused ion beam imaging and 

processing from the Gas Field Ion Source (GFIS) has emerged as a higher resolution variant, due 

to low energy spread, low beam convergence angle, and small wavelength (in comparison to e-).  

Helium ion beam synthesis and imaging has been used for a variety of applications such as 

nanolithography8, 2D material editing and defect manipulation9–12, nanopore synthesis for DNA 

sequencing13, selective lattice straining14, the direct-write deposition of high resolution 

nanowires15, high aspect ratio pillar deposition8, high resolution milling for fabrication of 

plasmonic nanostructures16–18, selective defect introduction10,12,19, and is being explored as a 

next-generation instrument for nanoscale circuit editing/debugging20,21.  Clearly, there are broad 

applications for He+ processing which are of general interest to the fields of materials science 

and nanoscience. Chapter II explores several applications for advanced focused beam induced 

processing utilizing He+. Chapter III will detail focused beam induced processing with the He+ 

beam geared specifically toward 2D materials. Each chapter and subsection provides additional 

relevant background information.  
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CHAPTER I  

LASER BASED PURIFICATION OF ELECTRON BEAM INDUCED 

DEPOSITS 
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1.1 Purification of Nanoscale Electron Beam Induced Platinum Deposits via 

Pulsed Laser Induced Oxidation Reaction 

 A version of this chapter was originally published by M. G. Stanford et al.: 

 

 Stanford, M. G.; Lewis, B. B.; Noh, J. H.; Fowlkes, J. D.; Roberts, N. A.; Plank, H.; 

Rack, P. D. Purification of Nanoscale Electron-Beam-Induced Platinum Deposits via a Pulsed 

Laser-Induced Oxidation Reaction. ACS Appl. Mater. Interfaces 2014, 6, 21256–21263. 

 

Michael G. Stanford and Brett B. Lewis conducted experiments reported in this 

manuscript. Michael G. Stanford conducted subsequent data analysis and characterization. All 

co-authors discussed the results and formulated the purification mechanism reported in the 

manuscript. Reprinted with permission. Copyright 2014 American Chemical Society. 

1.1.1 Abstract 

Platinum-carbon deposits made via electron beam induced deposition were purified via a 

pulsed laser induced oxidation reaction and erosion of the amorphous carbon to form pure 

platinum.  The purification proceeds from the top down and is likely catalytically facilitated via 

the evolving platinum layer.  Thermal simulations suggest a temperature threshold of ~ 485 K, 

and the purification rate is a function of the PtC5 thickness (80-360 nm) and laser pulse width (1-

100 μs) in the ranges studied.  The thickness dependence is attributed to the ~ 235 nm 

penetration depth of the PtC5 composite at the laser wavelength and the pulse width dependence 

is attributed to the increased temperatures achieved at longer pulse widths.  Remarkably fast 

purification is realized at cumulative laser exposure times of less than 1 second.    

1.1.2 Introduction 

Electron beam induced deposition (EBID) is a synthesis technique which is dictated by a 

focused electron beam and stimulates a localized reaction of precursor species1,3,22.  The result is 

a nanoscale synthesis technique which can conveniently grow materials “on-demand” via a 

prescribed electron beam raster sequence.  Significant advances have been made by elucidating 

the critical electron-precursor-solid interactions23–27 that occur in the EBID process, which has 
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enabled better control and higher resolution.  Thus, several applications have emerged for 

nanostructured materials grown via electron beam induced deposition, such as: specialized 

scanning probe tips28,29 , nanomagnetic logic and devices30,31, nanophotonics32,33, field emission 

emitters34,35, new sensor concepts exploiting nanogranular behavior36,37, maskless lithography38–

41, lithography mask editing42–45, superconducting nanostructures46,47, and electrical contacts on-

demand48 to name a few.   

While the field has experienced significant growth over the past decade, one of the main 

liabilities of focused electron (and ion) beam induced processing has been the inclusion of un-

wanted by-products into the deposits.  The by-product inclusion occurs because EBID is 

typically performed at room temperature and the standard chemical vapor deposition precursors 

utilized do not volatilize completely under the electron beam.  For instance, one of the most 

common precursors used is the trimethyl(methylcyclopentadienyl)platinum(IV)  (MeCpPtIVMe3) 

precursor which, depending on the electron beam parameters used, deposits PtCx material where 

5 ≤ x ≤ 849,50.  To address this limitation, several groups around the world have explored in-situ 

and ex-situ methods to purify EBID materials (see Botman for review1).  While not an 

exhaustive list, some approaches that have been used include: post-synthesis annealing51–53, more 

volatile precursors54–56, mixing reactive gases to stimulate by-product desorption57–59, in-situ 

substrate heating with reactive gases51,60, and post-electron irradiation with61,62 and without 

reactive gases63,64.   

Selective optical coupling of EBID deposits could enable photo-thermal purification to be 

achieved with minimal damage to surrounding features or substrates. For instance, we have 

investigated an in-situ synchronized pulsed laser-assisted electron beam induced deposition 

(LAEBID) process in which an intermittent pulsed laser was used to thermally assist the 

desorption of carbonaceous by-products from the MeCpPtIVMe3
65 and W(CO)6

66 precursors 

during growth.  To add to our understanding of conditions which affect the LAEBID process, 

here we investigate a post-growth laser annealing process.  Though similar to many of the post-

heating studies that have been performed, the optical coupling can be tuned to be minimally 

invasive to the substrate or devices due to small laser spot size and precise control of pulsing 

conditions which as we will show lead to a relatively short cumulative heating time. 
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In this study, we used an infrared laser delivery system integrated onto our dual electron-

ion beam system66 to irradiate PtCx (where x=5) deposits in the presence of a localized O2 flow 

from a gas-injection system (Figure 2a) (see methods for details).  As we will show, the laser 

irradiation couples to the PtC5 matrix and photo-thermally heats the deposit and stimulates a 

reaction of carbon with the localized flux of O2 molecules.  Converse to our in-situ synchronized 

process demonstrated previously65, no observable purification was accomplished without O2 

flow for the ex-situ laser anneal (see supporting information).  

1.1.3 Results and Discussion 

Figure 2b illustrates EDS measurements of a ~140 nm thick, 500x500 nm2 square pattern of 

PtC5 that was progressively laser irradiated with a 100 μs pulse width, 0.1% duty cycle and ~165 

W/cm2 optical power density under O2 flux.  Note that the laser exposure time (product of the 

processing time and duty cycle), is 0.1% of the actual processing times.  Clearly, the carbon peak 

(0.277 keV) in the 5 keV beam interaction region rapidly decreases with time and suggests the 

purification from the PtC5 deposit to pure platinum (in the detection limits of the EDS).  A small 

shoulder remains in this energy range but as described previously by ref61 the small residual peak 

can be attributed to the Pt-N peak.   Images of the progressive purification are presented in 

Figure 2c. The onset of platinum grain coarsening occurs rapidly (< 0.3 s laser exposure time) as 

the carbon is reduced and continues until carbon removal is complete at approximately 1.0 s. 

Peripheral nanoparticles appear around the edges of the deposits once exposed to the laser 

anneal. These particles are a result of peripheral deposition during the EBID process and can be 

minimized by careful selection of electron beam parameters during deposition67,68.  

Subsequent to the initial laser series, three laser conditions (1 and 10 μs at 1% duty cycle 

and 100 μs at 0.1% duty cycle) were used to simultaneously anneal 500x500 nm2 PtC5 EBID 

deposits of varying thicknesses (~80, 140, 260, 360 nm). Figure 3a illustrates the integrated and 

normalized carbon EDS peak of the PtC5 deposits as a function of the effective laser exposure 

time for 1 μs-1% duty cycle pulses (see supporting information for EDS spectra and estimated 

purification rates). Higher duty cycle was used for the lower pulse width to accelerate the 

purification.  Interestingly, the thick deposits (260 and 360 nm) were rapidly purified, whereas 

the thin deposits (80 and 140 nm) were unaffected by this laser treatment. Figure 3b illustrates 
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that the 10 μs-1% laser treatment purifies the PtC5 faster; however, thinner deposits again cure at 

slower rates than the thicker deposits. For deposits laser treated with the 100 μs-0.1% duty cycle 

conditions (Figure 3c), the anneal rate was effectively independent of initial deposit height, and 

very quick in comparison with 1 and 10 μs pulses.   

We entertained the possibility of both pyrolytic and photolytic mechanisms for 

purification of the PtC5. Figure 4 compares SEM micrographs, normalized to a constant laser 

exposure time, which demonstrate the purification progression as a function of deposit thickness 

and laser pulse width. All deposits shown were subjected to an exposure time of 0.1 s. As 

illustrated in Figure 3, the thicker samples are purified at a higher rate than the thinner samples 

for 1 and 10 μs pulse widths, whereas the deposits irradiated with 100 μs pulses are all 

effectively annealed. Hence, the increase in purification rate using 100 μs pulses is attributed to 

the thermal profile of the laser pulse which reaches higher temperature than the 1 and 10 μs 

pulses. We conclude that photolytic purification mechanisms are not dominant, as indicated by 

the differences in purification with varying pulse widths at a constant exposure time. 

Complementary EBID lines with variable thicknesses also clearly illustrate the thickness/laser 

pulse width dependence on the purification (see SEM images in supporting information). 

In order gain a better understanding of the laser annealing behavior, we estimated the 

optical and thermal properties of the PtC5 via a simple Maxwell-Garnett model of a Pt and 

amorphous carbon composite.  The refractive index (n) and extinction coefficient (κ) for PtC5 

material were estimated to be 1.88 and 0.31, respectively, thus the optical penetration depth 

((4πκ/λ)-1) was estimated to be ~ 235 nm for the PtC5 deposits. Details of the methods used for 

estimating the relevant PtCx material properties and a description of the subsequent finite 

difference numerical approximation method used to perform the thermal simulations may be 

found in the supporting information. Figure 5a illustrates simulated temperature profiles as a 

function of laser pulse width and different PtC5 thicknesses.   Clearly, the pulse width 

temperatures do not reach steady-state in the experimental pulse width range as the temperature 

for each thickness rises over the entire range studied.  Due to the PtC5 penetration depth, and low 

thermal conductivity, the thicker deposits are photo-thermally heated to higher temperatures 

relative to the optically thin deposits.  Also, optically transparent SiO2 is a good thermal insulator 
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and minimizes silicide formation relative to Si. These factors explain the faster annealing of the 

thicker deposits at short pulse widths.  

We attribute the photo-thermal purification of the PtC5 deposits to a basic reaction of the 

carbon matrix with the localized oxygen flux. Thus the process depends on both the temperature 

and oxygen concentration at the reaction front.  Clearly a threshold temperature must be reached 

in order to drive the reaction and erosion of the carbonaceous matrix. This is evident because the 

laser anneal processes which result in lower simulated temperature per pulse (i.e. thin deposits at 

short pulse widths) do not effectively remove the carbon, despite having the same exposure time. 

Thermal chemical erosion of amorphous hydrogenated carbon has been shown to have a 

threshold of approximately 650 K69.  Furthermore high purity Pt films via chemical vapor 

deposition (CVD) using the MeCpPtIVMe3 precursor can be grown as low as 475 K, however an 

interesting enhanced growth mode is observed at ~ 550 K which is driven by an autocatalytic 

oxidation decomposition reaction70.  Comparing the thermal simulations with our observable 

purification of the PtC5, reveals an erosion threshold of approximately 485 K for carbon in the 

PtC5 deposits.  The difference in the threshold temperature could be due to underestimating  

and/or overestimating n in our effective media approximation as there are different literature 

values in particular for amorphous carbon.   Additionally, and consistent with the autocatalytic 

CVD process, the purification may be facilitated by catalytic O2-Pt reactions whereby O2 

dissociatively adsorbs to create atomic oxygen, which is much more reactive and could lower the 

reaction temperature70–72.  The catalytic contribution will be considered more thoroughly in a 

future model description of the process, but recently it has been suggested in a thermally 

activated PtCx purification process in which an O2 flux is periodically pulsed73.  Qualitatively, 

the results indicate that the O2-carbon does not effectively react in the thin deposits at 1 μs pulse 

width, whereas 10 and 100 μs laser pulse widths can effectively induce carbonaceous erosion in 

all of the deposit thicknesses tested here because each exceed the temperature threshold.  

Figure 6a are SEM cross-sections of laser treated ~360 nm thick PtC5 deposits at 

different laser exposure times (10μs 1% DC) which illustrates the increase in the Pt layer 

thickness from the top-down (see supporting information for complementary images of the other 

laser conditions).  The asymmetric purification (left face favored purification) observed in 

Figure 6a is attributed to the geometry of the gas injection and laser delivery as both are 
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delivered from the left side of the SEM image.   Figure 6b plots the resultant Pt thickness versus 

the laser exposure time for each laser treatment. The estimates show that for the thick deposit, 

each laser condition converges towards the same thickness at 0.1 s exposure time, though 

difficult to conclusively measure because of the topology that develops.  This is consistent with 

the fact that each condition exceeds the activation temperature and while higher temperatures can 

accelerate the reaction rate, the oxygen flux eventually limits the extent of the reaction.  

Interestingly beyond ~ 10 nm the apparent growth rates diverge which we will address below.   

Mechanistically, the picture that emerges is that each laser pulse rapidly heats the deposit, 

which thermally stimulates the reaction of the amorphous carbon matrix with the O2 flux and to 

forms COx volatile by-products. Reduction of carbon in the PtC5 deposits causes an anticipated ~ 

70% volume reduction which is evident in Figure 2c and Figure 6a61. Due to the relatively high 

concentration of O2 impinging on the surface, an outer shell of pure Pt initially forms. After 

formation of the outer Pt shell, O2 must permeate through platinum grains and the nanoscale 

porosity that develops in order to sustain the purification process in the deposit interior.  As the 

pure platinum layer nucleates and grows, the optical coupling changes due to the optical and 

thermal properties of pure Pt.  Figure 5b shows simulated surface time-temperature profiles of 

progressively thicker platinum layers with the concomitant 70% reduction in the PtC5 layer due 

to the carbon loss for a deposit with a 360 nm initial thickness (surface time-temperature profiles 

for other thicknesses studied in this work are reported in supporting information). The inset 

illustrates the simulated temperature as a function of Pt layer thickness for the different original 

PtC5 thickness. An interesting interplay occurs as the platinum layer grows which varies for 

different original PtC5 thickness.   For the two optically thick PtC5 deposits, the growing Pt layer 

decreases the temperature over the entire Pt thickness range; however the surface temperature 

fluctuates.  At 10 nm the slight initial decrease is due to the high Pt reflectivity, which is partially 

compensated by the high absorption as the film thickness is close to the penetration depth of the 

915 nm radiation.  As the Pt layer increases beyond the penetration depth, the temperature 

further decreases due to the thermal mass of the additional Pt layer.  We suggest that the reduced 

growth rate beyond 10 nm for the 360 nm thick deposit noted in Figure 6b is due to the 

temperature difference at 1, 10 and 100 μs for the thicker Pt layers.   
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For the optically thin layers, as the thickness approaches the Pt penetration depth (~10 

nm), there is a positive feedback and the temperature supersedes the original surface temperature 

due to a significant increase in absorbance of the deposit.  As the Pt layer increases beyond the 

penetration depth, the temperature decreases similar to the thicker deposits due to increased 

thermal mass.     

To further illustrate the importance of the optical coupling, we also deposited 80 nm PtC5 

layers on top of thin Pt layers (5, 10, 20 nm) and irradiated the bi-layers with conditions (10μs 

and 1% DC) that otherwise do not purify the optically thin PtC5 layers (see supporting 

information).  As expected, the purification rate scaled with the Pt thickness as the enhanced 

optical coupling and reflectance associated with the pure Pt underlayer increases the temperature 

in the PtC5 layer which induces the combustion reaction of the O2 with the carbon matrix.  

Importantly in this case, the PtC5/Pt layer sequence reduces the reflectance and thus increases the 

overall temperature during the early stages of the purification.   

1.1.4 Conclusions 

In summary, we have demonstrated a new pseudo-in situ technique to purify the electron 

beam induced deposition of PtC5 deposits from the MeCpPtIVMe3 precursor.  At the 165W/cm2 

power density studied here, the temperature increases with laser pulse width.  Furthermore, the 

composite PtC5 material has an estimated absorption depth of 235 nm, thus the temperature is 

also sensitive to the deposit thickness.  A threshold temperature of ~ 485K was estimated via 

simulations, which is lower than previously determined amorphous carbon combustion with O2.  

The reduced threshold is either an artifact of our effective medium approximation or perhaps the 

process is catalytically assisted by dissociative adsorption of O2 into more reactive atomic 

oxygen.   A complex interplay ensues as the Pt layer grows which not only changes the optical 

coupling and thus the photo-thermal heating, but also the in- and out-diffusion of the oxygen 

reactant and COx product.   

As for our perspective on future work, we comment briefly.  To purify thicker deposits, a 

multilayer deposit/purification sequence may be required similar to what Mehendale et al60 

demonstrated for a heated substrate process. In the limit, we suggest that an atomic layer 

deposition-like (ALD) process could be viable.  While selective ALD deposits have been 
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demonstrated using EBID deposits to locally catalyze reactions39, a truly direct-write ALD 

process is envisioned.  Namely, the initial nanoscale half-reaction would be stimulated by the 

focused electron beam in the presence of the MeCpPtIVMe3 precursor to create thin PtCx patterns.  

Subsequently a synchronized laser pulse in the presence of oxygen would photo-thermally 

stimulate the carbon reduction half reaction to create pure nanostructures.   

1.1.5 Methods 

Electron beam induced deposition (EBID) was performed in an FEI Nova Nanolab 600 

Dual Beam system. Silicon substrates with a thermally grown 100 nm SiO2 oxide were plasma 

cleaned (XEI Scientific, Inc, Evactron) in the chamber for a minimum of 30 min prior to 

deposition. All PtC5 EBID structures in this study were grown with the MeCpPtIVMe3 precursor 

at a chamber pressure of ~1.2x10-5 mbar and the gas nozzle ~ 100 μm above the substrate. EBID 

pads were grown to varying thicknesses by changing the number of electron passes or loops 

(1000, 2000, 4000, and 8000 loops) in a 500 nm x 500 nm square pattern. The corresponding 

heights of these deposits are approximately 80, 140, 260, and 360 nm, respectively. Each pad 

pattern was deposited at 5 keV energy, 98 pA current, 10 μs dwell time, and a pixel pitch of 

13.55 nm (50% overlap). Subsequent to deposition, the chamber was pumped for at least 30 

minutes prior to laser annealing to minimize residual MeCpPtIVMe3 precursor in the chamber. 

A 915 nm wavelength 25 W multi-chip diode laser module (Oclaro, BMU25B-915-01) 

driven by an IXYS PCX-7410 pulsed diode laser driver was used to anneal the EBID deposits. 

The laser delivery system (OmniProbe, Inc.) was mounted ~ 38o relative to the substrate normal 

and precisely delivers a beam size of ~ 100 μm diameter, as schematically shown in Figure 2a.  

During laser irradiation, O2 gas was delivered to the area of interest with an OmniGIS I (Oxford 

Instruments) gas injection system, which was position 100 μm above the substrate and 200 μm 

from the center of the field of view. The gas temperature was set to 25 oC and the valve pulse 

rate was set such that the chamber pressure was 1.2x10-5 mbar. Due to the GIS needle position 

and the 100 μm laser spot size, large deposits within the entire laser spot can be annealed in a 

parallel manner.  If larger areas need to be purified, we envision that sequential stage motions 

could be implemented to raster the area of interest under the focused laser with an appropriate 

beam overlap strategy employed.  During this study, varying laser pulse widths (1, 10, and 100 
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μs) and duty cycles (0.1% and 1%) were used at a constant optical power density of ~165 

kW/cm2. Pulse width and duty cycle combinations were selected in such a way to provide 

adequate cooling time between pulses for the substrate to return to room temperature. Obviously 

the specific laser conditions are a function of the deposit and the substrate and thus different 

substrates will have different optimum conditions; thus, understanding both the laser absorption 

and the subsequent thermal diffusion is critical and for extremely delicate substrates, for instance 

membranes, thermal stresses need to be considered (see ref.65 for instance). More information on 

the laser delivery system can be found in ref.74. 

Energy dispersive x-ray spectroscopy (EDS) was performed with an EDAX Genesis X-

ray Microanalysis System also mounted on the dual beam system, thus the samples were not 

exposed to atmosphere. Each spectrum was recorded with beam conditions of 5 kV and 1.6 nA 

and a 30 second acquisition time. A 100 nm SiO2 coated silicon substrate EDS scan was used to 

determine background for data analysis and peak fitting (see supporting information for EDS 

analysis description). 
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1.1.6 Appendix 

1.1.6.1 Supporting Information 

O2  Versus no O2 Laser Anneal 

Figure 7 demonstrates the significance of the O2 flow to successfully purify PtC5 

deposits.  Here, we compare EDS plots of an annealed sample irradiated for 60s with the 100 μs 

and 0.1% duty cycle anneal with and without O2 flow at a chamber pressure of ~ 1x10-5 mbar.   

Clearly, with the O2 flux, the carbon content was effectively reduced to form a purified Pt 

deposit. Without the O2 flux (laser only at a chamber pressure of ~2x10-6 mbar), no observable 

purification was achieved. Therefore, we conclude that the purification process involves a 

photothermally stimulated reaction of O2 with the amorphous carbon matrix, which forms COx 

volatile by-products and reduces carbon content in the deposit.  

EDS Spectra and Quantitative Analysis 

Figure 8a-c displays EDS spectra for the 2000 pass (140 nm original height) PtC5 

deposits annealed under various laser conditions. These are examples of the raw EDS spectra 

used to determine the purity of the deposits. The carbon content, and hence purification, reported 

in Figure 3 of the main text was estimated by using a peak fitting technique. Specifically, a 

background EDS spectra of the SiO2 substrate was subtracted from each of the raw EDS spectra 

of the deposits. All EDS peaks (namely carbon (0.277 keV), oxygen (0.523 keV), silicon (1.74 

keV), and platinum (2.048 keV)) were then fit with a Gaussian curve: 

 

where xc is the center of the EDS peak, A is the amplitude, and w is the full-width at half-

maximum. Using equation 1, the area under the curve was taken to be a measure of elemental 

concentration. Due to difference in EDS yield between carbon and platinum, we report solely the 

normalized carbon content to give an indication of deposit purity. Hence, when the area of the 

carbon peak (0.277 keV) was reduced, this indicates purification of the deposit.  

Purification Rates Estimated from EDS (Figure 3) 

The slopes (instantaneous purification rate) of the normalized carbon intensity versus 

laser exposure time were measured for each film thickness and laser condition and are illustrated 
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in Figure 9 below.  The thickness dependence of the purification rate is clearly demonstrated in 

Figure 9a and b where the thicker PtC5 deposits purify to the EDS penetration depth first.  While 

variations in the instantaneous purification rates can be estimated for the 100 μs-0.1% DC 

anneals, the fluctuations are likely dominated by experimental error.  All of the thicknesses 

appear to purify at a similar rate of ~ 1100 %C/S.   

Anneal Progression 

Figure 10 is a compilation of scanning electron images of different thickness (50, 70, 95, 

and 150 nm) lines exposed at progressively longer exposure times and similar laser conditions as 

in Figure 3. EBID line patterns were deposited with 5 kV energy, 28 pA current, 3 μs dwell 

time, and a pixel pitch of 5 nm. A varying number of electron loops (10,000, 15,000, 20,000 and 

50,000) were applied to achieve heights of approximately 50, 70, 95, and 150 nm and widths of 

approximately 55 nm, 75 nm, 95 nm, and 115 nm, respectively. Figure 10 corroborates the EDS 

results for the square pattern EDS results in Figure 3; the thicker lines are preferentially purified 

for 1 and 10 μs pulse widths and 1% duty cycle, whereas all the lines are simultaneously purified 

at the 100 μs pulse width and 0.1% duty cycle.   

Thermal Simulations 

T(r,z,t) by finite difference numerical approximation method 

The heat equation as it pertains to the particular cylindrical geometry of interest here is; 

 

where cp is the heat capacity, ρ is the density, T(r,z) is the radial (r) and depth (z) dependent 

temperature, k(r,z) is the space–dependent thermal conductivity and Q(r,z,t) includes the applied 

laser pulse (J/m3 s).  The cylindrical coordinate θ is removed for symmetry reasons: cylindrical 

deposits were considered in numerical simulations as models for the square prism PtCx structures 

deposited in real experiments.  In the discussion of the numerical approximation used to estimate 

the time evolving temperature directly below, Q(r,z,t) is omitted for convenience and the details 

related to this term is presented later.  Applying the multi–variable product rule to equation [1] 

yields; 
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An explicit, time–marching, finite difference numerical approximation method was used to 

estimate the solution to equation [2] as a function of time and space.  A schematic of the 

numerical mesh used to solve the equation in space in shown in Figure 11.  A variable mesh 

spacing was imposed in both the radial and depth coordinates in order to yield a tractable 

simulation time because the ultraviolet laser absorption depth requires a very small mesh size 

(~10 nm) while, e.g., the large radial laser beam size used in experiments (104nm), requires a 

large maximum radius in order that the constant temperature boundary condition, imposed at the 

maximum radius, does not influence the final solution.  The small mesh size (~101nm) forces a 

very small time step so that the only reasonable method to reduce the total simulation time is to 

reduce the number of interior spatial nodes in the simulation domain. 

The mesh geometry shown in Figure 11a defines two basic geometrical elements within 

the simulation domain; (a) cylindrical elements at the (r = 0) mesh nodes and (b) annular disks at 

all other locations.  The indices in parentheses indicate the radial and depth coordinates, 

respectively (see Figure 11c).  In order to account for the spatial dependence of the thermal 

conductivity, simulation domain temperatures were estimated at intermediate mesh locations 

which correspond to the interfaces between the geometrical elements.  These interface 

temperatures were estimated by balancing the heat flux at the mathematical interfaces between 

the geometrical elements at each time step Δt; 

 

where –δr and +δr indicate opposing sides of the mathematical interface between elements.  In 

reference to the meshes in Figure 11b-c, this equation may be rewritten as; 

 

which rearranging, yields 
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for the temperature at the boundary between volume elements, but in terms of the primary spatial 

node positions.  In this way, the term including dk/dr in equation [2] may be neglected as it is 

inherently included by using equations [4] and [5].  Ultimately, this method was used to estimate 

the temperature change at the interior nodes with the annular disk geometry as shown in 

equation [6] as will be shown in steps below.  Alternatively, equation [2] may be recast in terms 

of the heat flux across the interfaces of each mesh element while inherently accounting for the 

temperature dependence of the thermal conductivity material property, e.g., using equation [7] 

below.  This form method was used for the case of the cylindrical elements located at (r = 0).   

Annular Disk geometry 

 

 

For example, at the (r = 0) nodes, equation [7] may be written as; 

Cylindrical geometry 

 

 

Taylor series expansions, truncated at the 3rd derivative, were then used to estimate the spatial 

derivatives required in equations [6] & [8] using the interfacial temperatures described by 

equation [5].  For example, the first derivative in the radial dimension was estimated for the 

annular disk geometry and cylindrical geometry using equations [9] and [10]; 

 

 

Multiplication of equation [9] by -Δr2
2, multiplication of equation [10] by Δr1

2 and then solving 

both equations simultaneously for the first derivative yielded; 

 

Inserting the interface temperatures into equation [11] gives; 
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Similarly, equation [12a] applies to the depth dimension; 

 

In a similar procedure, the second derivative may be estimated from equations [9] and [10]; 

 

and in the depth coordinate; 

 

An estimate of the temperature change for the annular disk geometry resulted from combining 

equations [5], [6], [12a], [13a] and [13b]; 

 

A forward differencing scheme was required to approximate the first derivative at the interior 

radial boundary node (r = 0) in order to retain numerical approximation accuracy in the absence 

of an internal nearest neighbor node.  In this case, the following truncated Taylor series 

equations used were; 

 

 

Multiplying equation [15] by -4 and then solving equations [15] and [16] for the first derivative 

yields; 

 

Inserting the relevant interface temperatures into equation [17] and rearranging gives; 
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Similarly, equation [18a] applies to the depth dimension; 

 

An estimate of the temperature change for the cylindrical element geometry resulted from 

combining equations [8], [13b] and [18a]; 

 

Constant temperature boundary conditions were applied at the maximum radius and maximum 

depth; 
 

An insulting boundary conditions was applied at (z = 0); 

 

Pulsed Laser Irradiation 

The laser beam intensity I (J/m2s) was included in the simulation using the following 

expression; 

 

where R is the thin film stack reflectivity, P(t) is the time–dependent laser beam power, σ 

determines the radius of the beam, and α(r,z) is material dependent absorption coefficient.  The 

reflectivity of the thin film stack was determined using Rouard’s method1 (Figure 12).  The 

optical constants of PtC5 were estimated using the Maxwell–Garnett effective medium 

approximation assuming that Pt was the inclusion phase and amorphous carbon the matrix 

constituient2. Pt occupies 14% of the available volume in PtC5 (based on ρPt=21.1 and ρa-C=1.25 
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g/cm3) with n=3.2 and κ=5.4 while n=1.5 and κ=0.2 for the a-C (amorphous carbon) matrix.  

Application of the Maxwell–Garnett effective medium approximation yielded n=1.87 and 

κ=0.31 for PtC5. The laser power was assumed to exhibit a linear rise (τrise) over the initial 250ns 

after initiating the laser pulse up to maximum power of 12W.  Beyond 250ns, the power was held 

constant over the complete temporal pulse width (τbeam) which was variable in this study from 

1μs to 100μs.  The beam power was set to zero immediately after τbeam.  The spatially dependent 

absorption depth; 

 

was calculated using electromagnetic simulations of the electromagnetic field propagation in the 

thin film stack using FlexPDE® a finite element numerical solver.  This additional simulation 

was necessary to account for a complex electric field absorption profile in the thin film stacks 

due to the multiple reflecting interfaces present.  The electric field distributed in the thin film 

stack was solved using two partial differential equations considering the real (Er) and imaginary 

(Ei) components of the electric field, respectively; 

 

 

A monochromatic plane wave was set to impinge at normal incidence to the stack surface where 

the stack depth coordinate was (z) and the electric field oscillated in the (x) coordinate.  The 

complementary magnetic induction in the (y) coordinate was then calculated from the solution of 

[24a] and [24b] using; 

 

 

The simulation domain consists of a vacuum region beginning at z = 0 and extending to a width 

equal to the wavelength of the incident light, e.g., 915nm.  The thin film stack begins at z = λ.   

The vacuum boundary condition was set to; 
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The tangential component of the electric field was continuous at the thin film stack interfaces as 

required by Maxwell’s equations.  The final film stack layer was the Si substrate.  Electric field 

profiles for a light wave with a 915nm wavelength irradiating the 80nm PtC5/ 20nmPt/ 

100nmSiO2/ Si stack is provided in Figure 13.  The non–reflecting boundary condition was 

imposed at this boundary in order to avoid artificial reflections back into the film stack; 

 

 

The time–averaged intensity in the film was estimated from the electric and magnetic fields; 

 

Intensity profiles in two experimentally relevant thin film stacks are shown in Figure 14.  These 

complex intensity profiles within the thin film stack layers were then fitted in each material 

region in order to derive a more accurate form of I(r,z), e.g., replacing equation [22], when 

necessary.  In the case of a buried Pt layer lying underneath the PtC5 deposit, intensity profiles 

diverged significantly from a simple prediction using, for example, the Beer–Lambert approach 

(dotted blue curve, Figure 14) where finite element simulations revealed that more absorption is 

expected in the PtC5 layer due to a relatively high reflectivity at the PtC5/Pt interface.  

Thermal Profiles 

Optical and thermal properties calculated using the Maxwell-Garnett model, described 

above, were used to simulate temperature profiles for the deposits of varying thicknesses. The 

volumetric reduction of deposits with carbon removal (~70%), and the nucleation of a pure Pt 

shell during the purification process was taken into effect to generate time-temperature profiles 

with varying pure Pt shell thickness. Figure 15 reflects the dynamic thermal profiles of the 

deposits during the purification process (as the pure Pt shell thickens). The complicated interplay 

between light absorption, light reflection, and the pure Pt shell thermal mass combine to result in 

a thermal profile which varies with the thickness of the outer Pt shell. As the shell becomes 

exceedingly thick, a larger thermal mass limits the maximum temperature achieved per pulse. 

The limited temperature, along with a relatively low gas diffusion coefficient in the pure Pt layer, 

act in concert to reduce the purification rate deep within the deposit.  
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Optical Coupling 

To illustrate optical coupling of the laser to the region of interest, 1 μm x 1 μm thin Pt 

boxes (which have a high absorption coefficient at 915 nm k- 5.4 and a penetration depth of ~ 

13.5 nm) were synthesized and then optically thin (~ 80nm) PtC5 layers were deposited half-on 

and half-off the Pt layers (see S10a for schematic). The thin Pt layers were synthesized via EBID 

patterning PtC5 on the Si/SiO2 substrate which was subsequently purified under electron-beam 

irradiation and 25oC O2 flux to achieve a pure Pt deposit. An 80 nm PtC5 EBID deposit was 

subsequently deposited half-on and half-off of the pure Pt deposit to test the effects of optical 

coupling to the underlying substrate (thin Pt vs. SiO2). Figure 16 demonstrates the preferential 

purification of the PtC5 deposit after 0.3 s exposure time with a 10 μs pulse width and 1% duty 

cycle as a function of the Pt substrate thickness (~5, 10, 20 nm). As the underlying pure Pt 

substrate increases in thickness, the preferential purification of the top PtC5 deposit increases. 

EDS spectra of this purification is demonstrated in Figure 17a. The visual increase in 

purification with underlying Pt thickness is because the photon penetration depth of 915 nm 

wavelength light in pure Pt is ~13.5 nm, therefore as shown in simulated time-temperature 

simulations (Figure 17b), the photothermal heating in the thicker Pt substrate is greater. Clearly, 

the high absorption of the underlying Pt layer causes a significant increase in photothermal 

heating of the deposit in comparison to the 80 nm deposit on SiO2. Substrate-dependent 

preferential curing may provide a method to use lithographically patterned thin films as 

nucleation sites for preferential or selective curing of EBID patterns using otherwise mild laser 

conditions. Figure 17c further illustrates the fraction of laser pulse time which exceeds the 

threshold temperature for an 80 nm PtC5 deposit, as a function of Pt coupling layer thickness. 

The underlying coupling layer significantly increases the time above threshold temperature for 

all pulse widths and accelerates the purification process. 

Deposit Cross-sections 

Figure 18 shows cross-section images of thick PtC5 deposits at a variety of times and 

laser conditions.  The purification of the PtC5 deposits during the laser-O2 anneal is a top-down 

process. As illustrated, oxygen molecules are necessary to react with the carbonaceous matrix in 

order for purification to occur. As the deposits are annealed, the outer surface of the deposit first 

reacts and densifies which creates a pure Pt shell. As the dense shell thickens, optical coupling is 
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enhanced up to the penetration depth which likely facilitates the diffusion of O2 into the deposit 

to enable further purification. Figure 6 (in the main text) illustrates the purification thickness 

versus laser exposure time for the 3 laser conditions attempted.  Clearly the purification rate 

(slope) decreases with increasing exposure time.  This is due to a combination of effects such as 

slower in- and out-diffusion of the reactants and products and as demonstrated in Figure 3 and 

discussed in the text, as the platinum layer thickens the temperature actually decreases due to the 

increased thermal mass of the Pt layer. In our experimental setup, the gas injection system was 

mounted at a high-angle port in the SEM chamber, and gas flux and the laser irradiation comes 

from the left side of the deposits with respect to the images reported here.  Clearly, the left side 

of the deposits purified at a higher rate than the right side since incident gas flux provides 

reactive species for purification. This is further proof of the necessity of O2 flux during the 

purification process and suggests an O2 mass transport limited regime. The laser conditions also 

had a noticeable effect on the progression of the deposit purification. Particularly profound is the 

morphology of the pure Pt for deposits annealed with 100 μs and 10 μs versus deposits annealed 

at 1 μs. The deposits annealed with 1 μs pulse width forms channels of pure Pt, as opposed to a 

smooth shell. This is likely because, shorter laser pulse widths (and lower temperatures) do not 

allow grain growth and coalescence of Pt grains to form the smooth Pt film. 
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1.1.6.2 Figures 

 

 
Figure 2. (a) Schematic of the laser annealing setup with approximately 100 μm laser spot size 

under O2 flow. (b) EDS measurements of a ~ 140 nm thick PtC5 EBID deposit annealed with 

100μs pulses at 0.1% duty cycle as a function of exposure times. (c) Images of laser annealed 

patterns at different exposure times. The deposit annealed for 0.1s exposure time was also cross-

sectioned and pictured here. 
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Figure 3. (a) Carbon content as a function of exposure time (duty cycle x process time, bottom 

axis) and process time (top axis) for 1 μs at 1% duty cycle, (b) 10 μs at 1% duty cycle, and (c) 

100 μs at 0.1% duty cycle. Initial pad thicknesses were ~ 80, 140, 260, and 350 nm thick, 

respectively. 
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Figure 4. Scanning electron images of PtC5 deposits of varying thicknesses and anneal pulse 

widths that were annealed for 0.1 s of laser exposure time. 
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Figure 5. (a) Time-temperature thermal profile for deposits of varying thickness (inset) irradiated 

with a 100 μs laser pulse. (b) Simulated thermal profiles of deposit surface as a function of pure 

platinum top layer thickness (which represents purification) for a deposit which was initially 360 

nm prior to annealing.  Inset figure displays the maximum temperature at the deposit surface as a 

function of Pt top layer thickness and original deposit thickness. 
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Figure 6. (a) Cross-section SEM images (at 52o) of a 360 nm thick PtC5 deposit annealed at 10 

μs pulse width, 1.0% duty cycle conditions at various exposure times (exposure times and 

superimposed edge positions are inset in images). (b) Purification depth as a function of 

exposure time for 1, 10, and 100 μs pulse width laser conditions with superimposed penetration 

depth of pure Pt (dotted line). 
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Figure 7. EDS spectra for ~80 nm thick (1000 pass) PtC5 deposit annealed for 60 s process time 

with 100 μs, 0.1% DC conditions with and without O2 flux. 

 

 

 

Figure 8. EDS spectra of ~PtC5 deposit grown with 2000 electron passes (originally ~ 140 nm) 

deposits purified with (a) 1 μs, 1% duty cycle, (b)  10 μs, 1% duty cycle, (c) 100 μs, 0.1% duty 

cycle laser conditions at varying exposure times. 
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Figure 9. Purification rates as a function of exposure time for deposits with different initial 

thickness (80 nm, 140 nm, 260 nm, 360 nm for the 1000, 2000, 4000, and 8000 pass deposits, 

respectively) for (a) 1 μs 1% duty cycle, and (b) 10 μs 1% duty cycle conditions. 
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Figure 10. Scanning electron micrographs of PtC5 line patterns annealed with 1 μs at 1% duty 

cycle, 10 μs at 1% duty cycle, and 100 μs at 0.1% duty cycle laser conditions at different 

exposure times. Lines have different initial thicknesses (50, 70, 95, and 150 nm increasing from 

left to right). 
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Figure 11. (a) 3D schematic of the computational simulation domain in r–z coordinates.  The 

simulation domain consists of both cylindrical and annular disk volume elements. (b) The 

primary mesh in the simulation domain is defined by the solid yellow grid points.  Temperature 

estimates are reported in the final simulation results at these points.  In addition, each mesh point 

has uniquely defined materials parameters including density, heat capacity, thermal conductivity 

and optical properties such as the real (n) and imaginary (κ) indices of refraction.  The volume 

element for each mesh node is defined by the surrounding midway points (open yellow circles) 

located between adjacent mesh nodes in both the (r) and (z) dimensions.  Distinct volume 

elements are indicated by the alternating shades of blue in the panel. (c) The index system shown 

in the magnified schematic of the simulation domain refers to the (radial,depth) coordinates, 

respectively.  Heat flux balances are calculated at mesh interfaces in order to account for variable 

material properties in the spatial coordinate and those locations are indicated by fractional 

indices. 
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Figure 12. Thin film stack optical properties calculated by Rouard’s method1.  The title included 

for both panels (a) and (b) indicates the topmost film–to–substrate in order of left–to–right.  (a) 

The reflectivity of the PtC5 surface as a function of the PtC5 film thickness, the transmission 

through the 100nm SiO2 film, and the total absorption in the stack are shown. (b) The reflectivity 

of the PtC5 surface as a function of buried Pt film thickness, the transmission through the 100nm 

SiO2 film, and the total absorption in the stack are shown. 
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Figure 13. Electric field distribution in the thin film stack structure at an arbitrary time.  The real 

component of the electric field (blue) is provided along with the imaginary component (black).  

The film widths were 915nm (vacuum), 80nm (PtC5), 20nm (Pt), 100nm (SiO2) and 500nm (Si). 
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Figure 14. The laser irradiance (intensity) in the thin film stack structure normalized to the 

incident intensity.  The blue curve shows the results for the 80nmPtC5/ 10nmPt/ 100nmSiO2/ Si 

substrate stack.  The dotted line is provided for reference and shows the intensity for the same 

stack but ignoring interface reflections.  Reflections from the PtC5/Pt and Pt/SiO2 interfaces lead 

to enhanced absorption in the PtC5 and Pt films, respectively, as is evident by comparing the 

solid and dotted blue curves; the intensity drop across these films is larger when considering 

these reflections.  The red intensity profile shows the case for light propagating through an 

80nmPtC5/ 20nmPt/ 100nmSiO2/ Si substrate stack.  For this case, less light is reflected at the 

initial, vacuum–PtC5 interface.  Yet, the absorption of light in the PtC5 is greater because the 

reflectivity at the PtC5/Pt interface is larger for the thicker, 20nm buried Pt layer, relative to the 

10nm layer. 
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Figure 15. Simulated thermal profiles at the deposit surface as a function of pure platinum top 

layer thickness (which is intended to emulate the deposit composition at various stages of 

purification).  Underlying PtC5 thicknesses are shown in light gray.  Care was taken to conserve 

the total Pt atomic content in order to capture the expected contraction of the deposit with 

increasing pure Pt layer thickness.  For example, the loss of carbon in the top layer as well as the 

density change between PtC5 and Pt were accounted for.   

 



38 
 

 

Figure 16. (a) Schematic of optical coupling in which PtC5 is deposited half-on an underlying 

pure Pt layer. Images of PtC5 deposits annealed for 30 s which demonstrates optical coupling to 

the underlying Pt layer of varying thicknesses. (b) 5 nm, (c) 10 nm, (d) 20 nm. (e) Image of PtC5 

deposit annealed under same condition on SiO2 substrate. 
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Figure 17. (a) Image and EDS spectra of preferentially cured deposit. Region 1 is the area in 

which the PtC5 overlaps the underlying Pt substrate. Region 2 is the area in which the PtC5 

deposit lies directly on top of SiO2. (b) Simulated thermal profiles of laser anneal for various 

deposit thicknesses as a function of laser pulse time. Threshold temperature is denoted in plot 

(dotted line). (c) Fraction of time above the threshold temperature for an 80 nm PtC5 deposit as a 

function of pure Pt under-layer thickness. 
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Figure 18. Scanning electron images of PtC5 patterns annealed with 1 μs at 1% duty cycle, 10 μs 

at 1% duty cycle, and 100 μs at 0.1% duty cycle laser conditions and then cross-sectioned. Times 

listed are laser exposure time during the anneal. 
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1.1.6.3 Tables 

Table 1. Various parameters used in the thermal simulation emulating PtC5 heating as well as 

parameters relevant to the simulation of electric field propagation and absorption in the 

Pt/PtC5/SiO2/Si multi–layers. 
 

units PtC5 Pt SiO2 Si 

thermal conductivity (k) W/m K 8.6 72 1 150 

heat capacity (cp) J/kg K 360 130 1000 800 

density (ρ) kg/m3 4550 21100 2600 2300 

real index of refraction (n)   1.87 3.18 1.62 3.63 

imaginary index (κ)   0.311 5.44 1x10-5 2.3x10-3 
 

laser beam diameter (FW90) μm 100 
   

laser wavelength nm 915 
   

laser power W 12 
   

laser ramp time (τramp) ns 250 
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1.2 Inert Gas Enhanced Laser-Assisted Purification of Platinum Electron-

Beam-Induced Deposits  

A version of this chapter was originally published by M. G. Stanford et al.: 

 

Stanford, M. G.; Lewis, B. B.; Noh, J. H.; Fowlkes, J. D.; Rack, P. D. Inert Gas Enhanced Laser-

Assisted Purification of Platinum Electron-Beam-Induced Deposits. ACS Appl. Mater. Interfaces 

2015, 7, 19579–19588. 

 

Michael G. Stanford and Brett B. Lewis conducted experiments reported in this 

manuscript. Michael G. Stanford conducted subsequent data analysis and characterization. All 

co-authors discussed the results and formulated the purification mechanism reported in the 

manuscript. Reprinted with permission. Copyright 2015 American Chemical Society. 

 

1.2.1 Abstract 

Electron beam-induced deposition patterns, with composition of PtC5, were purified 

using a pulsed laser induced purification reaction to erode the amorphous carbon matrix and 

form pure platinum deposits. Enhanced mobility of residual H2O molecules via a localized 

injection of inert Ar-H2 (4%) is attributed to be the reactive gas species for purification of the 

deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. 

The ex-situ purification reaction in the deposit interior was shown to be rate-limited by reactive 

gas diffusion into the deposit, and deposit contraction associated with the purification process 

caused some loss of shape retention. To circumvent the intrinsic flaws of the ex-situ anneal 

process, in-situ deposition and purification techniques were explored which resemble a direct 

write atomic layer deposition (ALD) process. First, we explored a laser assisted electron beam 

induced deposition (LAEBID) process augmented with reactive gas which resulted in a 75% 

carbon reduction compared to standard EBID. A sequential deposition plus purification process 

was also developed and resulted in deposition of pure platinum deposits with high fidelity and 

shape retention. 
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1.2.2 Introduction 

Focused electron-beam-induced processing (FEBIP) is capable of directly depositing and 

etching material with nanoscale resolution1,3,75. Electron-beam-induced deposition (EBID) 

occurs when a precursor species is decomposed by a focused electron beam, resulting in a 

condensed deposit and some volatile reaction byproducts. This technique enables 3-dimensional 

direct write of nanoscale structures via an intelligent control of the focused electron beam raster 

sequence. An improved understanding of the fundamental electron-precursor-solid interactions 

have led to advances in growth rate and resolution of the EBID process23–25,27
. These 

advancements have enabled the emergence of many applications for materials grown via the 

EBID technique such as direct write plasmonic structures32,76, field-emission emitters34,35, 

maskless lithography38–41, lithography mask editing42–44,45, scanning probe tips28,29, 

superconducting nanostructures77,78, electrical contacts48, and nanomagnetic logic30,31 to list a 

few. 

Although EBID has been used for the aforementioned applications, a major liability has 

been the inclusion of unwanted byproducts in the final deposit. Since EBID is typically carried 

out at room temperature using standard chemical vapor deposition precursors, the precursor 

ligands do not completely volatilize via electron stimulated reactions. This results in the 

inclusion of unwanted ligands and ligand fragments in the deposit79. In the case of the commonly 

used organometallic trimethyl(methylcyclopentadienyl)-platinum(IV) (MeCpPtIVMe3), 

incomplete volatilization during the EBID process results in the inclusion of methyl ligands and 

other carbon rich byproducts. Hence the final deposit is a PtCx material with 5 ≤ x ≤ 849,50, that 

consist of platinum nanoparticles embedded within a hydrogenated amorphous carbon matrix.  

Many purification techniques have been explored to address the EBID contamination issue with 

varying success75. Some of these approaches include post and in-situ electron 

irradiation61,62,80,81,82,83, use of more easily volatilized precursors84–86, post deposition 

annealing51–53, reactive gas co-flow57,59,87, and in-situ substrate heating51,60 to name a few. Martin 

et al. have recently demonstrated that inert gas flow can enhance electron-beam-induced etch 

rates of carbon, by increasing the flow of residual chamber reactive gases88.  

Recently, we have demonstrated enhanced purification of EBID deposits using an in-situ 

laser anneal technique. In this process, so-called laser assisted electron beam induced deposition 
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(LAEBID), synchronized laser pulses were used to intermittently assist in the thermal desorption 

of byproducts after each electron beam pass65. This method was successful in improving deposit 

purity as well as spatial resolution of the direct write EBID process, however LAEBID could not 

completely purify the deposits. To promote further purification of EBID patterns deposited from 

the MeCpPtMe3 organometallic precursor, we recently demonstrated an in-chamber pulsed laser-

induced oxidation purification process89. The process was able to fully purify deposits in a 

minimally invasive manner via a photothermal oxidation reaction. Adversely, a 70% volumetric 

reduction upon removal of carbonaceous byproducts resulted in a loss in precise shape retention 

and fidelity of deposits.  

To increase purity, shape retention, and fidelity of EBID deposits, here we have 

developed a laser-induced purification reaction using residual H2O molecules as a reactive gas 

species whose mobility to the EBID reaction zone is enhanced by a localized flow of Ar or Ar-

H2 (4%).  Furthermore, we explored in-situ strategies to deposit pure patterns which have cyclic 

deposition and purification steps. Specifically, we use an infrared pulsed laser delivery system 

mounted on a high angle port of a dual beam system to irradiate EBID deposits under a localized 

ambient of inert Ar-H2 (4%) or Ar gas. While initially we attributed the purification process to be 

due to a localized hydrogenation from the localized 4% H2, subsequent experiments 

demonstrated that a pure Ar flow also results in purification.  Thus, as described below, the 

enhanced reaction is attributed to enhanced surface diffusion of residual H2O molecules to the 

EBID deposit via the localized Ar gas injection.  The deposits are photothermally heated and 

facilitate the dissociation of the H2O molecules into O*, H*, and OH* radicals and the radicals 

subsequently react with the carbonaceous matrix in the PtCx to form volatile byproducts. Hence, 

hydrogenation and oxidation reactions are attributed with the removal of the carbonaceous 

matrix. We also demonstrate an in-situ reactive gas-assisted LAEBID process as well as a 

sequential deposition and purification technique. The later succeeds in depositing pure patterns 

with high shape retention and resembles a direct write ALD process with a first half-reaction 

driven by electron beam induced deposition and the second half-reaction driven by the 

photothermal hydrogenation reaction with the carbon byproducts.  In this work, the terminology 

“ALD” is not used to reflect that an exact monolayer of material is deposited per cycle. Rather 

“ALD” is used in the sense described by Kanarik et al.90 which states that the process benefits 
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from separate self-limiting half reactions with atomic-scale fidelity. Schematics illustrating the 

purification techniques studied here are shown in Figure 19.   

1.2.3 Results and Discussion 

Figure 21 displays the EDS spectra of EBID PtC5 deposits which were irradiated with 

the 165 W/cm2 optical power density, 10 μs pulse width, and 1% duty cycle laser conditions for 

0.3 s of laser exposure time.  Two conditions are compared where the deposits were laser 

annealed 1) in the presence of residual chamber gases at a chamber base pressure of 5.2E-6 

mbar, in which H2O is the dominant residual gas, and a 2) localized flow of inert Ar gas. Clearly, 

the deposit that was annealed under localized Ar ambient experienced greater reduction in 

carbon content. The localized Ar gas species is inert thus not suspected to contribute to the 

chemical etching of the carbonaceous matrix within the deposits, however inert gas flow has 

been shown to increase concentration of residual H2O adsorbates in the area of localized flux88. 

Hence, the purification mechanism envisioned is a multistep process where (1) Ar gas is locally 

injected by a GIS, (2) the localized Ar bombards substrate surfaces and enhances the H2O 

diffusion rate, (3) H2O diffuses onto the EBID deposit, and (4) thermal energy supplied by the 

laser facilitates the dissociation of H2O into radicals which react with the carbon matrix in PtC5 

deposits and forms volatile compounds which subsequently desorb.   

Residual H2O that contributes toward the thermally driven purification reaction have 

multiple possible origins from within the system. Specifically H2O molecules may be supplied 

from (1) outgassing of chamber walls, (2) outgassing of the substrate, or (3) from contamination 

in the inert gas line. Figure 21b compares residual gas analysis (RGA) taken of residual chamber 

gases and during localized Ar flow. Minimal differences in the chamber partial pressure of H2O 

(18 amu) molecules with and without localized Ar (20 and 40 amu) flow suggests that the H2O 

species which contribute toward the purification process are not delivered from the inert gas line. 

Inert gas flow localized to the substrate as well as non-localized flow should have similar effect 

at facilitating H2O outgassing at the chamber walls. Additional laser anneals of PtC5 deposits 

with non-localized Ar flow shows minimal purification (see supporting information), and thus 

rules out enhanced contribution from H2O from the chamber wall. Hence, we conclude that the 

localized Ar gas flux supplied from the GIS needle facilitates the localized enhanced surface 
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diffusion of H2O from the substrate, which is the dominant contributor toward the purification 

reaction.   

Figure 22 illustrates the integrated normalized carbon EDS peak for various PtC5 deposit 

thicknesses as a function of laser exposure (and process) time.  The deposits were irradiated with 

165 W/cm2 optical power density, 10 μs pulse width, and 1% duty cycle laser conditions in the 

localized Ar ambient. The PtC5 EBID deposits used in this study had a 500 x 500 nm2 area with 

variable deposit thickness (~25, 50, 90, and 240 nm by varying the number of EBID passes).  As 

shown previously89, laser annealing with no localized gas flow does not eliminate the carbon.  

We also demonstrated, for O2-laser annealing, that the PtC5 deposit purification as a function of 

total laser exposure time (duty cycle x process time) is highly dependent on the initial deposit 

thickness; thicker deposits anneal faster due to enhanced optical coupling of the laser to the PtC5 

(see supporting info of Ref 89 for detailed explanation of the role of these material parameters on 

the laser purification process). A similar behavior is demonstrated here, where the thicker 

deposits anneal at a faster rate due to enhanced photothermal heating of the deposit.   

The purification evolution as a function of depth into EBID deposits were examined in 

Figure 23. Specifically, 240 nm thick PtC5 deposits were irradiated with the 10 μs, 1% duty 

cycle pulsed-laser under flux from Ar inert gas. Deposit cross-sections are shown for 0.2 s and 

1.5 s laser exposure times.  For these exposure times, the purification front progresses into the 

deposit, but does not anneal the entire deposit. The proposed purification reactions upon the 

formation of radicals from H2O dissociation are as follows: 

 

 

for the (1) hydrogenation  and (2) oxidation purification reactions, respectively, where PtC5(H) 

denotes the hydrogenated PtC5 deposits. It is worth noting that a self-hydrogenation co-reaction 

may also play a role during purification due to residual hydrogen present in the amorphous 

carbon from the original EBID process.  Under laser-irradiation and applied heat, 

dehydrogenation of some ligands result in the hydrogenation and hence volatilization of other 

ligands producing CHx or COxHy by-products91
, thus possibly contributing a secondary role in the 

purification. Dehydrogenation of the amorphous carbon matrix can also result in the formation of 
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additional water molecules under oxygen flux, which may also be tertiary reactions contributing 

toward the overall purification reaction62. 

Figure 23b is a plot of the purified platinum thickness as a function of laser exposure 

time for the pulsed laser purifications.  To sustain the top-down subsurface purification reaction, 

the transport of the reactive gas to the reaction front is envisioned to occur via a two-step 

process, namely: (1) the reactive gas radicals adsorbs onto the purified Pt surface after thermal 

dissociation of H2O molecules and (2) subsequently diffuses to the purification front through the 

nanoscale porosity that develops. There is also likely purification contribution from H2O 

molecules which adsorb and diffuse into the deposit prior to dissociation.  Since Pt serves as a 

catalyst for many hydrogenation and oxidation reactions92,93, these species will readily chemisorb 

onto the deposit surface. Therefore, as the Pt surface layer thickens, diffusion of the reactive 

species to the purification front is expected to be the rate limiting transport mechanism.  

Recently, purification simulations interrogating the PtC5/O2 interaction have revealed that 

transport is dictated by the cyclic process of dissociation chemisorption/associative desorption on 

Pt surfaces coupled with O2 diffusion between Pt interactions94.  This combined process can be 

described using an effective diffusion coefficient which is typically much smaller than the 

diffusion of the gas alone. We suspect that the coupled diffusion process is similar for both 

reactive gas radicals active here, O and H. The inset plot in Figure 23b plots the purification 

depth squared as a function of laser exposure time. Since the diffusion depth of the reactive gas 

species into a material has a  dependence, the linearity (R2 = 0.9998) of the plot is consistent 

with a diffusion limited purification rate. Hence the diffusion limited purification rate reveals the 

need for in-situ deposition and purification processes for thick deposits because the time required 

for diffusion of reactive gas species into the interior of the deposit follows a squared dependency 

with the depth. 

Roberts et al. developed a pulsed-laser assisted process for in-situ purification of EBID 

deposits, namely Laser Assisted Electron-Beam-Induced Deposition (LAEBID)65,66. In this work, 

laser pulses were synchronized with EBID passes and the highest purity (~37 at% Pt) was 

achieved when the EBID layer thickness per laser pulse was approximately a monolayer of 

deposited material.   Importantly, the deposits were grown on a titanium film which facilitates 

the optically coupling and subsequent heating necessary for the thermally driven purification.  
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Nonetheless, even with a monolayer-by-monolayer purification approach, carbon content 

remained in the deposits (optimum purification realized ~ PtC2). To try promoting further 

purification, here we introduce a reactive gas to the LAEBID process. We envision the reactive 

gas assisted LAEBID process as a direct-write atomic layer deposition (ALD) process with an 

electron-beam dictated first half-reaction followed by a reactive gas purification second half-

reaction dictated by laser heating. Ar inert gas was injected simultaneous with the precursor gas 

to provide a co-flow (using two individual injection systems) of species necessary for deposition 

and purification, where once again, the Ar species increases the localized diffusion of H2O 

reactive to the deposit. Notably, subsequent studies revealed that precise synchronization and 

laser pulsing during the refresh time of the EBID layer is not necessary since the electron beam 

is only irradiating a single pixel while the laser pulse irradiates the entire deposit. This 

effectively gives refresh time for the other pixels, which have no interaction with the electron 

beam at that moment in time. Thus the results presented here were not synchronized with the 

refresh time.   

Figure 24a shows a SEM image of a deposit following reactive LAEBID (100 μs pulse 

width and 0.1% duty cycle).  The deposit demonstrates exceptional shape retention and 

smoothness.  In addition, a decrease in carbon content relative to standard PtC5 EBID resulted 

(Figure 24b). A variety of laser conditions were explored for the reactive LAEBID process in an 

attempt to promote further purification of the deposits. Changing the duty cycle from 0.1% to 

0.5% for 100 μs pulse width (red bars) resulted in a decrease in carbon content from 53 % 

(relative to standard EBID) to 38 % by providing a greater laser exposure time during deposition. 

To increase the laser exposure time relative to the EBID half-reaction, an additional 13 ms 

refresh time after each pass of deposition (yellow bars) was added to further purify the deposits. 

During the refresh time, the electron beam was blanked and only the laser anneal half-reaction 

occurs. The added refresh time resulted in a further reduction of carbon.  However, the increase 

in cumulative laser exposure also resulted in laser-assisted chemical vapor deposition (LCVD) in 

the laser irradiation area (~100μm) as shown in Figure 24b. Therefore, the deposit thickness 

evolves from a convolution of LAEBID and LCVD processes and results in a loss of deposit 

shape retention. Additional information on the competing LCVD phenomenon is detailed in the 

Supporting Information.   
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The reactive LAEBID process was also attempted with a pulse width of 10 μs and a 

variable duty cycle of 1, 3, and 6 % (blue bars). The 10 μs pulse width yields a lower maximum 

deposit temperature (~490 K) relative to the 100 μs pulse width (~600 K) due to the non-steady 

state behavior of the laser heating89.   Higher duty cycles can be tolerated at 10 μs, relative to 100 

μs, since less time is required for recovery to room temperature between pulses. Thermal pulse 

interactions are intentionally avoided in order to both simplify the interpretation of results and 

avoid a steady state temperature transient over the process time which can favor both LCVD and 

thermal drift.   

Increasing the duty cycle of the 10 μs pulses to 6 % resulted in a reduction in the carbon 

content of the deposit from 60 % to 25 % relative to standard EBID, which represents the highest 

purity obtained in our Pt LAEBID deposits that excludes LCVD effects.   Beyond 6 % duty cycle 

resulted in steady state heating and thermal drift during the LAEBID process. Summarily, 

reactive LAEBID realized a reduction in carbon content of 75 % relative to standard EBID, 

however complete carbon removal was not achieved. The challenges preventing complete 

purification are addressed below. 

To understand the effect that the MeCpPtMe3 precursor gas had on the photo-thermal 

half-reaction in the LAEBID process, standard EBID PtC5 patterns were grown and subsequent 

laser anneals were carried out with (1) the Ar inert gas flow alone, and (2) a co-flow of Ar 

reactive gas and MeCpPtMe3 precursor where the precursor nozzle was positioned at 

approximately 7  mm from the center of field of view and 5 mm above the substrate, sufficient to 

significantly decrease the MeCpPtMe3 flux as evidenced by a significant decrease in the EBID 

growth rate at this position. Figure 25 is a plot of the normalized carbon content of the laser 

annealed deposits as a function of laser exposure time irradiated with 100 μs pulse width and 

0.1% duty cycle pulses. Clearly, when annealed with the Ar flow alone, the purification rate is 

fast relative to the sample laser annealed with the precursor gas co-flow. It is therefore deduced 

that the presence of the precursor molecule attenuates the purification reaction, thus making 

complete carbon removal in the reactive gas assisted LAEBID process challenging. 

The schematics shown in Figure 26 illustrate a proposed mechanism for the laser-

annealing attenuation exhibited when a co-flow of reactive gas/precursor molecules is used. 

Figure 26a illustrates the common microstructure of PtC5 deposits, namely platinum nanograins 
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are embedded within an amorphous carbon matrix. In the presence of the Ar gas flux, residual 

H2O molecules adsorbed to the substrate exhibit enhanced diffusion rates which reduce the 

reactive gas replenishment time. Radicals created upon dissociation of H2O molecules, then react 

with the carbonaceous matrix through hydrogenation and oxidation reactions to reduce 

embedded carbon content. When a reactive and precursor gas co-flow is used (Figure 26c), the 

relative residence times of the gas molecules on a surface must be considered to realize the 

resultant equilibrium surface coverage.  Large molecules, such as the MeCpPtMe3 precursor used 

in this study, have longer residence times on the deposit surface than the dissociation H* and O* 

radicals.  As the schematic illustrates, the precursor molecules dominate the surface coverage on 

the deposit surface due to their long residence time (τ). This effectively lowers the coverage of 

the reactive gas by reducing available adsorption sites and attenuates the purification reaction. 

Understanding that the co-flow of precursor gas in the presence of reactive gas species attenuates 

the purification reaction helps explain why the complete LAEBID reaction is limited under laser 

conditions that would otherwise purify an EBID deposit.  This suggests that a pulsed gas 

procedure is necessary for the in-situ growth and purification of EBID deposits, similar to true 

atomic layer deposition (ALD) process. 

To circumvent the apparent gas competition issues with co-flow, a pulsed gas procedure 

was utilized in a sequential EBID deposition and subsequent laser anneal process.  Specifically, 

precursor gas was injected during the EBID half-reaction, which was subsequently pumped from 

the chamber. The precursor partial pressure introduced during this half reaction was ~ 9.0 x 10-6 

mbar. A 30 keV beam energy was used for EBID to prevent significant peripheral deposition, 

which is characteristic of a 5 keV beam with larger beam tails (see Figure 31).  Next, the Ar 

inert gas was injected at a partial pressure of ~1.2 x 10-5 mbar during the photo-thermally 

induced de-carburization second half-reaction to enhance diffusion of residual water molecules.  

Importantly, 10 μs pulse width and 1% duty cycle laser condition were used to anneal the deposit 

during each cycle, followed by several 100 μs pulse width smoothing pulses. The 10 μs pulses 

facilitate the de-carburization of the deposit, however, the relatively brief pulses prevent 

significant coalescence of the Pt, thus promoting deposit shape retention. Several 100 μs pulses 

are used to promote controlled coalescence after each purification cycle to reduce some deposit 

porosity whilst maintain shape retention. This cycle was repeated to build a pure deposit of 
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desired size and shape, as illustrated in Figure 27c. Unique to this process compared to a 

traditional surface reaction limited ALD processes, the number of monolayers deposited per 

cycle is dictated by EBID half-reaction, which makes sub-monolayer resolution possible.  The 

number of monolayers deposited per cycle largely effects the deposit characteristics as shown in 

the supporting information (Figure 31).  Due to the ~70% volumetric loss during the 

decarburization reaction, significant internal stresses will be exhibited in the deposits if many (> 

200) monolayers are deposited per cycle. Large internal stresses may cause the deposit to 

delaminate from the substrate (Figure 31c), hence there is an optimum number of monolayers 

per cycle that will result is an acceptable deposition rate whilst preventing significant internal 

stresses from building up during the purification cycle. Figure 27a displays a pattern deposited 

using five cycles and ~70 monolayers of deposition per cycle before 100 μs smoothing laser 

pulses were utilized to reduce porosity of the freshly deposited material from the cycle. Figure 

27b displays the deposit after the smoothing pulses were applied. The yellow dotted line denotes 

the EBID raster pattern. Clearly, precise shape retention is achieved using this sequential 

deposition technique. Figure 27c is a tilted scanning electron image (52o) of the deposit, and the 

total thickness of the purified deposit is estimated to be ~ 50 nm (consistent with the ~ 70% 

volume reduction experienced when purifying a PtC5 deposit). EDS spectra of sequential 

deposition patterns (supporting information Figure 31) reveal that the deposits are pure 

platinum. Hence the sequential deposition process can be utilized to direct write pure 

nanostructures. 

The throughput of the layer by layer process seems noticeably lower than that of a single 

EBID deposition followed by a subsequent reactive gas anneal, however the completeness of the 

anneal must be considered. Since the time for diffusion of a reactive gas species to deposit 

interior is proportional to the depth squared, it may be quite timely to anneal a single standard 

EBID deposit in its entirety and may result in the lack of shape retention. The throughput of the 

sequential layer by layer process also has a similar throughput to the completely insitu LAEBID 

process. This is because the deposition rate may be hindered in the LAEBID process because the 

elevated substrate temperature reduces gas residence time (for precursor and reactive gas 

species). To comment briefly, the throughput of the sequential layer by layer process could be 

improved with a smaller deposition chamber, similarly to an ALD system. This would increase 
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the pumping rates between cycles, enable a higher frequency cyclic process, and ultimately 

increase applicability of the process. 

1.2.4 Conclusions 

In conclusion, we have demonstrated a localized pulsed laser-induced purification 

reaction which can be used to purify PtC5 EBID deposits generated via electron stimulated 

reactions of the MeCpPtMe3 precursor. The reactive gas species was supplied by the thermal 

dissociation of residual H2O molecules in the chamber, where inert Ar gas was used to enhance 

H2O diffusion to the reaction zone.   We have also demonstrated two direct write pseudo atomic 

layer deposition processes. Specifically, we have presented a reactive gas assisted LAEBID 

process which is capable of depositing patterns from the MeCpPtMe3 precursor with much 

greater purity than standard EBID, by utilizing intermittent 915 nm annealing laser pulses and 

residual H2O molecules.  We have also demonstrated a sequential deposition process to 

circumvent gas competition for adsorption sites that appears ubiquitous with the LAEBID 

process.  The sequential deposition process utilized a pulsed gas strategy, similar to a traditional 

ALD process, however for this work, the first half reaction was dictated by electron beam 

irradiation and the second half reaction was dictated via a photothermally induced purification 

reaction. The sequential deposition process was successful in deposition of pure nanostructures 

with high shape retention and fidelity. 

As for our perspective on future development of this process, several parameters can 

surely be further optimized for higher efficiency and throughput. The 915 nm laser is largely 

transparent to oxide substrates as well as highly reflective on metallic substrates and deposits. 

Therefore photothermal heating from this laser system is often inefficient. We speculate that 

lasers in the visible spectrum will heat the substrate or deposits with greater efficiency, thus 

increasing the throughput of the in-situ and ex-situ annealing strategies of EBID deposits. In the 

gas co-flow LAEBID process, gas competition for adsorption sites between the reactive gas and 

precursor gas limits the deposit’s purity. This suggests that flux of the reactive gas is not 

sufficient in comparison to the precursor gas to enable complete deposit purification. A similar 

setup in an environmental SEM enables the use of pressure regimes (not possible in a standard 
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SEM) which may provide a gas mixture possible of facilitating complete purification in the 

LAEBID process.   

1.2.5 Methods 

1.2.5.1 Electron-Beam-Induced Deposition  

EBID was performed using an FEI Nova Nanolab 600 Dual Beam system on a Si 

substrate with a 200 nm thick thermally grown silicon oxide layer. The chamber was air plasma 

cleaned with an Evactron system, produced by XEI Scientific Inc., for a minimum of 15 minutes 

prior to deposition.  Unless noted, EBID was carried out by locally injecting MeCpPtMe3 

precursor in close proximity to the area of interest where the GIS needle was positioned ~100 μm 

above the substrate and ~ 200 μm from the center of the field of view. The MeCpPtMe3 crucible 

was heated to approximately 45oC to increase the vapor pressure of the precursor. The chamber 

pressure was ~ 1.0 x 10-5 mbar during injection of the MeCpPtMe3 precursor into the chamber 

with a base pressure of ~ 1.0 x 10-6 mbar.  Each pattern was deposited using 5 keV electron beam 

energy, 98 pA beam current, 10 μs dwell time, and a 13.6 nm pixel pitch. The number of EBID 

passes were varied (1000, 2000, 4000, and 8000) to create deposits that were approximately 25, 

50, 90, and 240 nm thick. 

1.2.5.2 Pulsed Laser Reactive Gas Anneal 

A 915 nm wavelength 25 W multichip diode laser module with model number BMU25B-

915-01, produced by Oclaro Inc., was used to anneal the deposits. This laser module was driven 

by an IXYS PCX-7410 pulsed diode laser driver. A laser delivery system, produced by 

Omniprobe, Inc. (an Oxford Company), was mounted on a high angle port in the SEM chamber 

at an angle of 52o relative to the substrate. This system enabled the simultaneous delivery of an 

approximately 100 μm diameter laser spot size with a Gaussian distribution to the EBID deposit 

in the SEM chamber. Inert Ar gas was delivered to the area of interest using an OmniGIS I gas 

injection system; the inert gas contained a small mixture of H2 gas (4 volume %). Subsequent 

comparisons with pure Ar gas, reveal that the H2 species have no observable contribution toward 

the purification process. The needle was positioned ~100 μm above the sample and ~200 μm 

from the center of field of view. The chamber base pressure before reactive gas flow was ~ 1.0 x 

10-6 mbar. The valve pulsing rates in the OmniGIS I, which ultimately control the reactive gas 
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flux, were set to achieve a chamber pressure of 1.2 x 10-5 mbar when the reactive gas was 

flowing, and the gas temperature was 25 oC. The needle configuration for deposition and the 

subsequent purification are illustrated in Figure 20. For this work, the optical power density of 

the laser was constant at ~165 kW/cm2. Laser pulse width and duty cycle were varied with the 

laser driver. Additional information on the laser delivery system can be found in reference95. The 

EBID and subsequent pulsed laser reactive gas anneal processes are illustrated in Figure 19a. 

1.2.5.3 Reactive Laser Assisted Electron-Beam-Induced Deposition 

Reactive laser assisted electron beam induced deposition (LAEBID) was carried out by 

performing EBID to deposit PtCx patterns while simultaneously irradiating the EBID deposit 

with the pulsed laser in a Ar inert gas co-flow, where the Ar once again increases flux of the 

reactive gas (H2O) to the deposit region. EBID was conducted using 5 keV electron beam 

energy, 98 pA beam current, 10 μs dwell time, and a 13.6 nm pixel pitch.  A schematic of this 

process is illustrated in Figure 19b. Some LAEBID deposits included an additional 13.6 ms 

refresh time after each EBID pass to lengthen reactive gas annealing time per pass. During the 

EBID pass, the laser was simultaneously pulsed with either 10 μs or 100 μs pulsewidths.  The 

irradiation duty cycle was varied over the range of 0.1% - 6% (see supporting information for 

more details and Figure 29 which shows a schematic illustrating a map of laser and EBID 

synchronization). For this work, the FEI GIS for the MeCpPtMe3 precursor gas as well as the 

OmniGIS I for the inert gas were opened concurrently to establish the co – flow regime.  The 

partial pressures of the Ar inert gas and MeCpPtMe3 precursor introduced into the chamber were 

approximately 1.10 x 10-5 mbar and 9.0 x 10-6 mbar, respectively. During the co-flow 

experiments, the precursor gas nozzle was retracted ~8 cm vertically and ~5 cm horizontally 

while the reactive gas GIS needle was positioned 100 μm above the sample and 200 μm from the 

center of field of view (see Figure 20).   By comparison, in the typical EBID experiment the 

precursor gas nozzle is located in the same close position.  Ultimately, this needle configuration 

significantly decreases the flux of MeCpPtMe3 precursor gas molecules relative to the reactive 

gas molecules to slow the EBID growth and enhance the purification of the deposits.  

1.2.5.4 Sequential or Layer-by-Layer EBID Plus Laser Reactive Gas Anneal 

As will be demonstrated, the co – flow of gases used in the LAEBID process, prohibit 

complete volatilization of unwanted byproducts in the final deposit.  To circumvent the issues of 
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the co-flow of precursor gas and reactive gas in the LAEBID process, a sequential deposition and 

purification process was also developed. In this process, precursor gas and Ar inert gas were 

injected (separately) into the chamber under standard EBID and laser annealing parameters. A 30 

keV beam energy and 150 pA beam current were used for deposition in this study to minimize 

peripheral PtC5 deposition on the substrate67,68. For the layer-by-layer process, an optimum EBID 

thickness per cycle was determined to be 70 nm (see supporting information Figure 31).  After 

the EBID cycle, the precursor gas was pumped from the chamber until a base pressure of ~2.0 x 

10-6 mbar was achieved and Ar inert gas was injected into the chamber to enhance flow rate of 

residual H2O to the deposit at a pressure of ~1.2 x 10-5 mbar. The pulsed laser system was then 

used to irradiate the sample with 10 μs pulses at 1% duty cycle for a total laser exposure time of 

3.0 s and equivalent process time of 5 minutes. After each cycle, the deposit was irradiated with 

several 100 μs laser pulses to initiate the coalescence of any disconnected Pt grains in the 

deposit.  This step was required to mitigate the evolution of porosity in the final morphology. For 

the sequential approach, the needles for the reactive gas and precursor gas were both positioned 

100 μm above the sample and 200 μm from the center of field of view (as shown in Figure 20). 

The sequential EBID + laser anneal process was repeated in order to create a pure deposit of 

desired size and shape and a schematic of this process is shown in Figure 19c. 

1.2.5.5 Energy Dispersive Spectroscopy (EDS) Analysis 

EDS spectra were recorded while irradiating the substrate with a 5 keV energy electron 

beam at a beam current of 1.6 nA. Analysis to determine the normalized carbon content of each 

spectra were conducted by first subtracting a background spectra of the underlying SiO2 

substrate. The Pt and C EDS signatures, located at 2.048 keV and 0.277 keV respectively, were 

then fit with a Gaussian curve of the form shown in equation 1:  

 

where xc is the center of the EDS peak, A is the amplitude, and w is the full-width at half-

maximum. The area under the curve was taken to be a measure of the elemental concentration of 

the deposit. Due to variability in EDS yield of the different elements, we solely report the carbon 

content normalized to a standard EBID deposit’s carbon content to give an indication of the 
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deposit purity. It is well known that the the Pt-N and C-K EDS peaks overlap. The Pt-N/Pt-M 

peak ratio was experimentally determined to be approximately 0.03 for our EDS system. This is 

notably lower than the Pt-N/Pt-M determined by other work to be 0.09, and is likely attributed to 

a difference in sensitivity of the lower energy portion for the detector. This proportionality 

constant was used to determine contribution of the Pt-N peak from the Pt-M peak located at 

2.048 keV.  The estimated contribution of the Pt-N peak was then subtracted from the EDS peak 

located at 0.277 keV to produce a more accurate estimate of the actual carbon EDS peak. 
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1.2.6 Appendix 

1.2.6.1 Supporting Information 

Purification Reaction with Localized and Non-Localized Gas Flow 

H2O is an abundant residual gas which has been shown to purify Pt EBID deposits62. 

Here we use inert Ar gas flow to enhance the surface diffusion of residual H2O molecules to 

facilitate the laser assisted purification reaction with the PtC5 EBID patterns.  The source of the 

residual H2O which contributes toward purification reactions may be (1) outgassing of chamber 

walls, (2) outgassing of the substrate, or (3) from contamination in the inert gas line. Figure 28a 

compares the EDS spectra of PtC5 deposits which were laser annealed under flux of localized 

and non-localized Ar gas, with 10 μs and 1% duty cycle laser conditions.  Clearly, the localized 

gas flux was more effective in purifying the deposits, as indicated by a significant reduction in 

the carbon content.  Figure 28b displays RGA spectra which show that the chamber gas 

composition was very similar for the two laser anneals.  Inert gas flow localized to the substrate 

as well as non-localized flow should have similar effect at facilitating H2O outgassing at the 

chamber walls. Minimal purification with non-localized Ar flux rules out enhanced contribution 

from H2O from the chamber wall. Figure 21 indicates that the inert gas line has minimal H2O 

contamination. We therefore conclude that the localized Ar gas flux supplied from the GIS 

needle facilitates the localized enhanced surface diffusion of H2O from the substrate. 

Reactive Gas Assisted LAEBID Synchronization 

Figure 29 illustrates the synchronization of the LAEBID process for 500 nm x 500 nm 

deposits for a single LAEBID pass, where a single pass consists of an electron beam raster 

sequence in which each pixel is serially addressed. Specifically, the schematics reported here are 

for LAEBID which utilized 10 μs laser pulse width at 1%, 3%, and 6% duty cycle. The electron 

beam was set to raster from the top left of the pattern to the bottom right, with an x- and y-axis 

pixel spacing of 13.55 nm and a 10 μs dwell time. In the schematic, the blue boxes represent 

pixels when the electron beam and laser pulses are irradiating simultaneously. All other white 

boxes represent pixels where the electron beam is on and no laser irradiation occurs. Importantly, 

during laser irradiation (blue pixels), the laser spot size is large enough that the entire deposit is 

simultaneously irradiated. The ratio of laser pulse on-time per LAEBID pass, as well as other 

experimental parameters for the LAEBID processes are reported in Table 2. In this table, 
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highlighted carbon content denotes that the deposit was compromised by laser induced chemical 

vapor deposition (LCVD), which deposits Pt in the entire laser spot size. Therefore, the most 

successful LAEBID conditions not convoluted with the LCVD reaction (10 μs, 6% DC) were 

able to deposit a pattern with only ~25 % of the carbon content of a standard EBID deposit 

(~55.7 at% carbon). It is also clear that there is a trend between Laser/Ebeam “on” time and the 

carbon content of the deposit. Longer laser exposures, or the H2O reactive gas anneal 2nd half-

reaction, enhance the final purity of the deposit. A large enhancement in material purity (just 

25% of carbon compared to standard EBID deposits) was able to be realized using the LAEBID 

process, and deposits exhibited high fidelity and shape retention.  

LCVD 

Figure 30a displays a LAEBID pattern deposited with synchronized 100 μs pulse width 

and 0.5% duty cycle laser pulses. Clearly, island thin film growth was initiated peripheral to the 

area patterned by the electron dictated 1st half reaction. This peripheral island growth is 

attributed to contributions from LCVD which are not prevalent at milder laser conditions. 

Previous simulations89 suggest that the SiO2 substrate reaches a surface temperature of 

approximately 300oC, which is similar to common substrate temperatures for Pt CVD and ALD 

processes96–98. Figure 30b displays an EDS spectrum for the LCVD region. There is no 

distinguishable carbon peak in the spectrum, as the slight low energy peak can be attributed to 

the Pt-N EDS peak. Thus we conclude that the reactive gas contributes to the CVD process and 

these conditions realize a simple pyrolytic dissociation of the precursor molecule. The onset of 

LCVD provides a temperature limitation for the LAEBID process. Specifically, the laser pulses 

must supply enough photothermal heat to facilitate the purification reaction of the amorphous 

carbon in the deposit, while remaining below the temperature threshold for the onset of LCVD 

platinum. A pulsed gas strategy, as opposed to gas co-flow, enables the use of laser conditions 

that are otherwise not feasible for the reactive gas assisted LAEBID process. 

Sequential or Layer-by-Layer EBID Details 

Figure 31a-c displays images of patterns deposited using the cyclic deposition technique 

with a different number of EBID monolayers deposited per cycle. This technique used a pulsed 

gas strategy where, (1) precursor gas was injected into the chamber for the electron beam 

dictated deposition 1st half-reaction, (2) the precursor was subsequently pumped from the 
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chamber and Ar inert gas was injected, and (3) diffusion enhanced residual H2O molecules 

facilitate the laser pulse dictated purification 2nd half-reaction. From these images (and 

complimentary EDS spectra, Figure 31d), it is clear that the process succeeds in depositing a 

controllable number of monolayers per cycle with high purity. This provides an extra degree of 

freedom over typical surface reaction limited ALD processes. Since multiple monolayers can be 

deposited per cycle with this cyclic deposition technique, the process time required for 

deposition of a purified pattern can be drastically reduced. However, thicker deposition per cycle 

can have adverse effects on the deposit’s uniformity and smoothness, as is clear by comparing 

Figure 31a and Figure 31c. It is worth noting that the peripheral deposition seen surrounding the 

deposits can be minimized by careful selection of electron beam parameters99
, and the growths on 

top of deposits in Figure 31a and Figure 31c are a result of an electron beam scanning artifact; 

neither of these issues are implicit with the cyclic deposition process in general. Converse to 

Figure 27, these patterns were deposited using a 5 keV beam energy, instead of 30 keV. This is 

responsible for the extensive peripheral or proximity deposition shown here. 

Smoothing pulses were used after each cycle of the sequential deposition process to 

reduce the porosity of the deposits. A deposit before and after twenty 100 μs smoothing pulses 

were applied is displayed in Figure 32a and Figure 32b, respectively. The smoothing pulses 

allow coalescence of the porous microstructure into a more continuous and smooth 

microstructure.  
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1.2.6.2 Figures 

 

Figure 19. Schematic of the (a) EBID + pulsed laser reactive gas anneal, (b) reactive laser 

assisted electron-beam-induced deposition, and (c) sequential or layer-by-layer EBID plus laser 

reactive gas anneal purification processes. 
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Figure 20. Schematic of deposition and annealing experimental setup from (a) tilted and (b) plan 

view. The laser delivery system, focused electron beam, precursor GIS, and reactive gas GIS 

converge to a single point. During reactive LAEBID processes the precursor GIS needle is in the 

“retracted” position (dotted red line) which is withdrawn to ~8 cm vertically and ~5 cm 

horizontally from the point of interest to reduce precursor flux at the substrate. During the 

sequential deposition plus annealing process the needles are configured in the as-shown inserted 

states. 
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Figure 21. (a) EDS spectra of Pt EBID deposits which were annealed with 10 us and 1% duty 

cycle laser conditions for a cumulative laser exposure time of 0.3 s. Spectra shown include an as-

deposited pattern, a deposit anneal under chamber ambiance, and a deposit annealed under 

localized Ar gas flow. (b) RGA spectra showing the residual chamber gas species present as well 

as during Ar flow. 
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Figure 22. (a) Carbon content, from EDS measurements, as a function of laser exposure time 

(duty cycle x processing time, bottom axis) and processing time (top axis) for 10 μs at 1% laser 

duty cycle. The deposit thicknesses were approximately 240 nm, 90 nm, 50 nm, 25 nm which 

correspond to 8000, 4000, 2000, and 1000 passes, respectively. Normalized carbon content of 1, 

is that of a standard PtC5 EBID deposit. (b) SEM images of an annealed deposit that was initially 

~ 90 nm as-deposited. Inset time reflects the total laser exposure time for each anneal. 
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Figure 23. (a) SEM cross section images of deposits annealed with reactive gas for 0.2 s and 1.5 

s of total laser exposure time. (b) Purification thickness from an originally ~ 240 nm thick PtC5 

deposit as a function of pulsed laser exposure time for a 10 μs, 1% duty cycle anneal while under 

Ar gas flow. Inset figure shows the plot and linear regression of purification thickness squared 

versus time which is consistent with a diffusion limited purification regime. 
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Figure 24. (a) SEM tilt image of a typical laser assisted electron beam induced deposition 

(LAEBID) pattern deposited with co-flow of hydrogen reactive gas. Specifically, this deposit 

was created 100 μs and 0.1% duty cycle laser conditions. The electron beam and gas conditions 

were as listed in the experimental details. (b) SEM image of a LAEBID pattern deposited with 

100 μs and 0.5% duty cycle laser conditions, which shows contribution from LCVD. The deposit 

retains shape with high fidelity. (c) Comparison of LAEBID patterns deposited with various laser 

and refresh parameters. Refresh denotes extra time between LAEBID passes to enhance the 

laser-on time relative to the EBID time. Additional process parameter information may be found 

in the supporting information. 
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Figure 25. Normalized carbon content for standard EBID deposits annealed in reactive gas only 

(black) and a co-flow with approximately equal localized pressure of reactive gas plus the 

organometallic MeCpPtMe3 precursor (red). Deposits were annealed with 100 μs, 0.1% laser 

duty cycle conditions. 
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Figure 26. Schematic of proposed purification retardation mechanism. (a) EBID PtC5 deposit is 

composed of Pt nanoparticles suspended with in an amorphous carbon matrix. (b) Under a flux 

of molecular H2O only, there are many adsorption sites for the purification reaction to occur. (c) 

With a co-flow of H2O and MeCpPtMe3, the MeCpPtMe3precursor gas dominates the surface 

coverage due to the long residence time and occupies many adsorption sites and reduces 

purification rate. 
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Figure 27. Sequential deposit fabricated from 5 cycles with approximately 70 monolayers 

deposited per cycle (a) before and (b) after 100 μs smoothing pulses were applied to reduce 

porosity of the deposit. Inset dashed square denotes original pattern shape prescribed by EBID 

raster sequence. c) SEM tilted image (52o) of the sequential deposit. 

 

 

Figure 28. (a) EDS spectra of Pt EBID deposits which were annealed with 10 us and 1% duty 

cycle laser conditions for a cumulative laser exposure time of 0.9 s. Spectra shown include a 

deposit annealed under localized Ar flow and a deposit annealed under non-localized Ar gas 

flow. The partial pressure of the Ar flow was approximately 1.0E-6 mbar for both anneals. (b) 

RGA spectra showing the chamber gases species present during both of the anneal processes. 
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Figure 29. Synchronization map of electron beam and laser pulses during the reactive gas 

assisted LAEBID process. EBID patterns were deposited using a raster scan. The beam scanning 

initiates in the bottom left corner and terminates at the top right corner.  Pixel spacing of the 

electron dwells are 13.55 nm in the x and y direction.  A blue pixel indicates that the electron 

beam and laser are both simultaneously on and importantly the laser is irradiating the entire box 

whereas the electron is addressing only single pixels.  A white pixel indicates that the laser is off 

during the 10 μs electron beam dwell on that pixel. The synchronization is shown for LAEBID 

with 10 μs laser pulses at (a) 1%, (b) 3%, and (c) 6% duty cycles. 
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Figure 30. (a) SEM image of LAEBID pattern deposited with 100 μs pulse width and 0.5% duty 

cycle synchronized pulsed laser. Island growth surrounding the deposit was induced by laser 

assist chemical vapor deposition (LCVD) of the precursor and reactive gas co-flow. (b) EDS 

spectrum of the LCVD platinum. 
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Figure 31. Images of patterns deposited using the cyclic deposition technique with (a) 50, (b) 

130, and (c) 230 monolayers per cycle. Each pattern was deposited using a total of 6 cycles. (d) 

EDS spectrum the 130 monolayer/cycle deposit. 
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Figure 32. Patterns deposited using the sequential method (a) before and (b) after twenty 100 μs 

laser smoothing pulses were applied. 
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1.2.6.3 Tables 

Table 2. Details and parameters of various LAEBID patterns. 

 
 

Pulse 
Width 
(μs)

Duty 
Cycle 
(%)

Inert 
Gas

Precursor 
Gas

Beam 
current 

(pA)

Beam 
energy 
(keV)

Dwell 
(μs)

Refresh 
(ms/Ebeam 

Pass)

Laser pulses 
per 

LAEBID 
pass

Laser On/ 
Ebeam On 
(per pixel)

Platinum 
Content 

(at%)
100 0.1 Ar MeCpPtMe 98 5 10 NONE 0.14 1.36 27.3
100 0.1 Ar MeCpPtMe 98 5 10 13.6 0.14 1.36 35.1
100 0.3 Ar MeCpPtMe 98 5 10 NONE 0.41 4.08 29.9
100 0.5 Ar MeCpPtMe 98 5 10 NONE 0.68 6.81 34.5
100 0.5 Ar MeCpPtMe 98 5 10 13.6 0.68 6.81 85.3
10 1 Ar MeCpPtMe 98 5 10 NONE 13.62 13.62 24.7
10 3 Ar MeCpPtMe 98 5 10 NONE 40.85 40.85 29.9
10 6 Ar MeCpPtMe 98 5 10 NONE 81.70 81.70 44.3

Laser Conditions Gas Conditions Electron Beam Conditions
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CHAPTER II 

ADVANCED ION BEAM INDUCED PROCESSING USING A GAS FIELD 

IONIZATION SOURCE 
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2.1 In situ Mitigation of Sub-Surface and Peripheral Focused Ion Beam 

Damage via Simultaneous Pulsed Laser Heating 

 A version of this chapter was originally published by M. G. Stanford et al.: 

 

 Stanford, M. G.; Lewis, B. B.; Iberi, V.; Fowlkes, J. D.; Tan, S.; Livengood, R.; Rack, P. 

D. In Situ Mitigation of Subsurface and Peripheral Focused Ion Beam Damage via Simultaneous 

Pulsed Laser Heating. Small 2016, 12, 1779–1787. 

 

Michael G. Stanford, Brett B. Lewis, and Vighter Iberi conducted experiments reported 

in this manuscript. Shida Tan and Richard Livengood conducted TEM measurements. Michael 

G. Stanford conducted subsequent data analysis, characterization, simulations, and wrote the 

manuscript. All co-authors discussed the results and formulated the mechanism for sub-surface 

damage mitigation. 

 

2.1.1 Abstract 

Focused helium and neon ion beam processing has recently been used to push resolution 

limits of direct-write nanoscale synthesis. The ubiquitous insertion of focused He+/Ne+
 beams as 

the next-generation nanofabrication tool-of-choice is currently limited by deleterious subsurface 

and peripheral damage induced by the energetic ions in the underlying substrate. Here, we 

demonstrate the in situ mitigation of subsurface damage induced by He+/Ne+ ion exposures in 

silicon via a synchronized infrared pulsed laser-assist process. The pulsed laser-assist provides 

highly localized in situ photothermal energy which reduces the implantation and defect 

concentration by greater than 90 %. The laser-assisted exposure process is also shown to reduce 

peripheral defects in He+ patterned graphene, which makes this process an attractive candidate 

for direct-write patterning of 2D materials.  These results offer a necessary solution for the 

applicability of high resolution direct-write nanoscale material processing via focused ion beams. 
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2.1.2 Introduction 

Focused ion beam induced processing of materials has long been the tool-of-choice for 

nanoscale direct-write additive and subtractive materials synthesis.4  Additive approaches 

involve the injection of precursor molecules which are locally adsorbed onto the substrate and 

dissociated by the primary ion beam and secondary electrons generated by the primary ion.  

Subtractive approaches include direct sputtering from the focused ion beam as well as gas-

assisted etching.  Liquid gallium sources have historically been the industry standard, however in 

recent years He+ and Ne+ focused ion beam imaging and processing from the Gas Field Ion 

Source (GFIS) has emerged as a higher resolution variant.  Helium ion beam synthesis and 

imaging has been used for a variety of applications such as nanolithography100, 2D material 

editing and defect manipulation9–12, nanopore synthesis for DNA sequencing13, selective lattice 

straining14, and is being explored as a next-generation instrument for nanoscale circuit 

editing/debugging.20,21  While the GFIS source provides higher resolution, the more ubiquitous 

application of helium and neon ion beam induced synthesis is still in question.  The main liability 

of nanoscale processing with a GFIS source is the notable sub-surface damage accumulation that 

occurs during irradiation of a substrate101–104, which ultimately limits the fidelity and resolution 

of direct-write processing capabilities.  While the distribution and concentration of defects and 

implanted species are a function of beam energy and ion/target type, the progression of defects 

ranging from dislocation bands to the coalescence of sub-surface He microbubbles, as a function 

of dose, was recently observed in the He+/Si system with transmission electron microscopy 

(TEM)102: 1x1015 ions/cm2 – dislocation bands, 1x1016 ions/cm2 – onset of amorphization, 1x1017 

ions/cm2 – coalescence of sub-surface He nanobubbles, 1x1018 ions/cm2 – coalescence of sub-

surface He microbubbles.   

Conveniently, the He+/Si system is well-studied as cavities formed via He+ implantation 

can getter metal impurities in silicon and extend the lifetime of semiconductor junctions.105 

Nanobubble formation and the subsequent cavity formation for post-implantation annealed 

He/silicon has been well-documented and shown to be a complex interaction of the generated 

vacancies and implanted helium ion distributions.106 The measurements and modeling of He and 

H implantation defect formation and temperature dependent recovery/diffusion has been recently 

reviewed in detail.107  Summarily, the He+ implantation damage profile in Si and subsequent 
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recovery kinetics can be categorized into a low-fluence and high fluence regime108  for implant 

energies on the order of tens of keV. The transition between the two regimes is an aerial dose on 

the order of 1x1016 ions/cm2 which for 20keV He+ in silicon yields a peak concentration ~ 

3.5x1020 He+/cm3.  Temperature programmed desorption of He in the low fluence regime has 

simple first order kinetics with a maximum desorption peak at ~ 300 oC, whereas higher fluence 

spectra have higher order kinetics with multiple temperature peaks.  In the low fluence regime 

for a 5x1015
 ions/cm2 dose and 20 keV He+ energy, the damage profile contains a peak in the 

helium concentration at ~ 200 nm deep into the silicon whereas the silicon vacancy concentration 

extends from the surface to ~ 70 nm deep.109,110 Time-dependent low-temperature annealing (250 
oC) reveals that helium diffuses towards the sample surface which temporarily fills vacancies in 

the near surface region before effusing out of the sample.  Higher temperature anneals (~600 oC) 

are required to totally annihilate the vacancies, which at low fluence do not coalesce to form 

voids or cavities.  

  At higher fluence (for instance 2x1016 He/cm2), the peak He+ ion concentration is again 

~200 nm deep and the vacancy concentration extends from the surface to ~ 100 nm deep.   

Electron microscopy does not reveal bubbling at this concentration, but rather a high density of 

extended defects peaking at ~130 nm deep – consistent with a SRIM/TRIM simulated peak in 

the displaced silicon atoms.  Annealing kinetics in the higher fluence regime is complicated by 

the strain fields produced by the higher concentration of vacancies and helium which interact to 

form higher order extended and more stable vacancies, He-vacancy complexes, and eventually 

helium bubbles.  Helium effusion from coalesced bubbles occurs at a higher activation energy 

(1.8 eV)111, which leads to the formation of stable empty cavities or voids embedded within the 

target material.  To mitigate the high-fluence damage regime, thermal energy must be sufficient 

to drive diffusion in order to avoid the critical helium and defect concentration levels that lead to 

irreparable void formation.   

Here we demonstrate an in situ pulsed laser-assisted focused ion beam approach in which 

an intermittent pulsed laser with an appropriate power density and duty cycle can photothermally 

mitigate undesired helium and neon ion-beam induced subsurface damage.  Specifically, during 

the focused ion beam exposure a pulsed laser (~100 μs pulse width) is periodically irradiated (~ 

1% duty cycle or 100 Hz frequency) onto the beam-exposed region and a fraction (depending on 
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the indices of refraction at the laser wavelength) of the laser light is absorbed which heats the 

substrate.  Clearly the damage mitigation is a function of the time-temperature profile of the 

pulsed laser heating.  We demonstrate the effects of total ion dose, photon/ion flux ratio, and ion 

energy in the He+/Si system and compare the effect of ion type in the Ne+/Si system.  Finally, 

He+ milled graphene channels are also compared with and without the laser-assist and lower 

defect concentrations were observed.  The pulsed laser-assisted ion exposure approach promises 

to enable a plethora of high-resolution ion beam nanomachining techniques where subsurface 

and peripheral damage cannot be tolerated. 

2.1.3 Results and Discussion 

Figure 33 is a schematic illustrating the pulsed laser delivery system which is mounted 

onto the gas field ion microscope. A) depicts a He+ exposure for the prescribed raster pattern 

whereas b) illustrates the relevant He+ and laser beam irradiation sequences where the focused 

helium ion beam is scanned and the pulsed laser is periodically exposed to the entire region.  The 

schematic cross section in Figure 33a demonstrates the simulated room temperature helium, 

vacancy and interstitial concentration profiles of a 1x1016 He+/cm2 dose overlaid on an 

experimental TEM image.  Simulation details can be found in experimental details, supporting 

information, and will be discussed further in this work.  The schematic cross-section in Figure 

33b illustrates the simulated concentration profiles resulting from the same dose with the 

photothermal laser-assist.  As illustrated, the in situ laser exposure intermittently heats the 

exposed region and facilitates helium and vacancy diffusion as well as interstitial-vacancy 

annihilation.  It is worth noting that the uncoupled simulation does not account for 

interstitial/vacancy annihilation, therefore the reported Si interstitial/vacancy concentrations 

represent the hypothetical maximums of each.  Figure 34 compares TEM cross section 

micrographs of a silicon sample exposed to variable He+ areal doses ranging from 1x1016 to 

1x1018 He+/cm2 without a-d) and with e-h) the simultaneous pulsed laser irradiation at a ion 

beam energy of 25 keV.  Examination of the TEM images a-d) demonstrate the typical damage 

accumulation noted in silicon102, namely a clear progression from vacancy and dislocation 

generation (as evidenced by the slight contrast in the 1x1017 He+/cm2 dose), amorphization 

(observed in the 5x1017 He+/cm2 dose), and helium bubble formation (noted in the 1x1018 
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He+/cm2 dose image d) and is accompanied by surface swelling at doses of 5x1017 He+/cm2 and 

1x1018 He+/cm2. See Supporting Information for high-resolution images of some of the defect 

signatures. Interestingly, the typical defect signatures are realized at slightly higher areal doses 

because the scanned ion width is less than the radial range of the beam (helium straggle at 25keV 

= 123 nm); thus the defect and implant concentrations are effectively smaller (detailed in 

Supporting Information). 

Simultaneous pulsed laser irradiation has a profound effect on the subsurface damage 

accumulation (Figure 34e-h), and significantly attenuates the onset of Si amorphization.  The 

averaged photon/ion flux used for this laser-assisted exposure was 1.3x106 photon/ion. The 

simulated temporal profile of the silicon surface temperature induced by a single laser pulse is 

illustrated in the Figure 33b inset where the maximum temperature reached is ~ 700 K.  Figure 

34 also shows high-resolution TEM images collected of He+ exposed Si without i) and with j) in 

situ laser-assist at an ion dose of 5x1017 He+/cm2, and clearly demonstrates a significant 

reduction in subsurface damage with the in-situ laser-assist. Specifically, near surface 

amorphization of the Si is obvious in Figure 34i when no laser assist is used. However, the Si 

maintains its near surface crystallinity when a laser assisted exposure technique is used, as 

shown in Figure 34j.  Figure 34k are selected area electron diffractograms (SAED) of an 

unexposed silicon region and a region exposed to a helium dose of 1x1018 He+/cm2 at a 

photon/ion flux ratio 5x higher (see Figure 34l where dashed circles denote the SAED regions) 

relative to the damage profile shown in Figure 34h.  Comparison of the SAEDs reveals that 

while defects remain, as evidenced by the distorted spots, the laser heating annihilates much of 

the damage accumulated during ion irradiation and the single crystal silicon is maintained.  

Atomic resolution TEM images which confirm the maintained crystalline structure of Si after a 

laser-assisted exposure can be found in Supporting Information Figure 38.  Another obvious 

signature of the irradiation damage at higher doses in silicon is the surface swelling observed in 

Figure 34 c,d.  The onset of the swelling is a signature of the crystalline to amorphous transition 

that occurs as the amorphous silicon density is reduced (increased free volume).  At higher doses 

(Figure 34d), the helium concentration increases and the bubble size increases which 

exacerbates the surface swelling (see references101,102).  Importantly, the higher photon/ion flux 
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ratio further reduces the ion damage and minimal surface swelling is observed even at the 1x1018 

He+/cm2 dose 

To demonstrate the influence of beam energy and ion species, Figure 35 illustrates TEM 

cross section images of without and with laser-assisted ion beam exposures into silicon samples 

for a-b) 15 keV He, 1x1018 He+/cm2 and d-e) 25 keV Ne+, 1x1016 Ne+/cm2. The photon/ion flux 

used was 1.3x106 photon/ion for the laser-assisted 15 keV He+ exposure.  The dashed line in 

Figure 35a is a trace of the amorphization zone of the equivalent 25 keV sample (Figure 34d).   

As evident in Figure 35a the amorphization zone is shallower at 15 keV because of the higher 

nuclear energy loss cross section at lower He+ energy.  Thus the peak implantation and defect 

concentrations at an equivalent ion dose is higher at 15 keV than 25 keV.  Therefore one expects 

that the laser-assisted defect mitigation will be less effective at lower beam energy.  Figure 35b 

and Figure 35c compare 15 keV and 25 keV regions, which have the same ion dose and 

photon/ion flux ratios and, as expected, the residual ion damage (swelling/surface protrusion) in 

the 15 keV sample is more severe.    

Figure 35 also compares TEM micrographs of 25 keV Ne+ exposures at 1x1016 Ne+/cm2 

dose without d) and with e) laser-assist during the exposure.  The mass of the Ne+ (20 amu) is 

much higher than He+ (4 amu) and consequently has a higher nuclear energy loss cross section 

and a significantly reduced implant range.  Thus, the number of silicon interstitials and vacancies 

generated are ~ 3.8x higher per ion and the reduced range results in a higher peak implant 

concentration for Ne+ relative to equivalent energy He+.  A comparison of Figure 35d and 

Figure 35f illustrates that at the exposure dose of 1x1016 He+/cm2 at 25keV, very little 

cumulative damage has occurred, whereas for Ne+ under identical conditions, full amorphization 

has occurred to a depth of ~ 100 nm.  Because the defect generation rate of Ne+ is significantly 

higher and the larger neon atom has a lower diffusion coefficient in silicon, a photon/ion flux 

12x higher was tested (1.6x107 photon/ion).  Figure 35e illustrates that while the amorphization 

region is significantly reduced, a higher photon/ion flux ratio is needed for the Ne+/Si system. 

As discussed above, post-annealing studies of helium implantation into silicon reveals that 

irreparable voids form at a critical exposure dose of ~1x1016 He+/cm2.  While the implanted 

helium can be driven out of the bubbles, voids/pores remain in the silicon.  Importantly, in these 

studies the implantation is over a large area and thus the helium and defect gradients and 
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subsequent transport are confined mostly to a single dimension along the implant axis.  However, 

in our reduced geometry a pseudo 2-dimensional diffusion gradient exists; diffusion in the z – 

coordinate as well and perpendicular to the long scan axis dominate mass flow. In order to 

mitigate void formation it is important to have appropriate laser conditions in which the 

implanted ions diffuse and vacancies/interstitials annihilate before this critical dose is reached.  

For example, comparable laser exposure after ion irradiation yields much less damage mitigation 

compared with the in situ process (see Supporting Information).  

The damage mitigation in the He+/Si system during ion irradiation is a complex process 

involving the distributions, diffusion and interaction of the implanted helium atoms, interstitial 

Si, and Si vacancies.  The helium, vacancy and interstitial concentration profiles of a 25 keV 

1x1016 He+/Si implantation dose is illustrated in Figure 33a.  Indeed, the helium distribution 

penetrates deepest into the silicon substrate relative to the interstitial silicon and silicon 

vacancies.  The process is further complicated by the fact that the He-Si vacancy interactions 

change with increasing dose.  For simplicity, we have modeled the uncoupled diffusion of the 

helium ions as well as silicon interstitials and vacancies to illustrate how the in situ laser 

irradiation affects the distributions and helps facilitate out-diffusion of helium. The Si vacancy 

and interstitials are thus reported as the maximum hypothetical concentrations, since the 

uncoupled simulation does not account for Si vacancy/interstitial annihilation.  The activation 

energies and pre-exponential factors for silicon vacancies (0.1 eV, 1.18x10-4 cm2/s )112, 

interstitials (1.37 eV, 1.58x10-1 cm2/s )112  and He (0.58 eV, 5.1x10-4 cm2/s )113 are assumed.  

In context to this work, the experimental results illustrated in Figure 34a-h reach a 

1x1016 He+/cm2 dose in ~1.78 s and thus the series in Figure 34e-h experiences ~178 laser 

pulses during the critical exposure dose of 1x1016 He+/cm2, where previous literature suggests 

defect concentration levels that lead to irreparable void formation105.  Figure 36 compares the 

simulated helium concentration profiles of an exposure dose of 1x1016 He+/cm2 for 15 keV a) 

without and b) with laser-assist as well as 25 keV c) without and d) with laser-assist.  Figure 36e 

compares the maximum implanted He concentration as a function of photon/ion flux for 15 and 

25 keV beam energy exposures at a dose of 1x1016 ions/cm2.  Clearly, higher photon/ion flux 

reduces the maximum concentration of implanted He by promoting diffusion. Interestingly, at 

low photon/ion flux, the implanted 15 keV He+ concentration is greater than that of 25 keV He+ 
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due to a smaller interaction volume. A crossover point in the implanted ion concentrations of the 

two beam energies occurs at ~1.3x106 photon/ion, beyond which the laser-assist is more 

effective reducing the He concentration for 15 keV He+. This is due to the first-order He 

desorption kinetics at the surface of the Si substrate as 15 keV He+ implantation is distributed 

more closely to the substrate surface than 25 keV He+.  The He concentration as a function of 

exposure dose during the exposure is inset in Figure 36e, which further illustrates the 

effectiveness of the pulsed laser in facilitating helium diffusion and thus mitigation of helium 

coalescence and bubble formation.  Also included in the inset of Figure 36e is a simulation for 

the 5x higher photon/ion flux ratio (6.6x106 photon/ion) for the exposure conditions shown in 

Figure 34l.  Over one order of magnitude reduction in the helium concentration is realized at a 

dose of 1x1016 He+/cm2, and extrapolating the diverging plots to higher dose clearly realizes 

higher concentration differences as dose increases.  Simulations of the laser-assisted vacancy and 

interstitial diffusion were also performed and are included in the Supporting Information.  The 

monovacancy activation energy yields very fast diffusion (even at room temperature) and thus, 

the simple model assumed here predicts almost complete out-diffusion of the vacancies.  

Conversely, the interstitial activation energy is relatively high, therefore interstitials realize very 

little laser assisted-diffusion.  The interstitial diffusion could feasibly be enhanced by achieving 

higher temperatures with the pulsed laser heating.  The observed photothermal defect mitigation 

is to be assumed dominated by vacancy diffusion to Si interstitials and subsequent interstitial-

vacancy recombination/annihilation.  The results are consistent with tight binding molecular 

dynamics simulations which reveal that at low temperature (< 1050 oC) vacancy diffusion 

dominates and interstitial-vacancy annihilation occurs with an activation energy of ~ 1.13 eV.112  

It is worth noting that while high photon/ion flux is apparently more effective at He out-diffusion 

for 15 keV He+ beams, the induced Si vacancy and interstitial concentrations are greater relative 

to the 25 keV He+ beam due to the reduced interaction volume. This accounts for the increased 

surface protrusion associated with amorphization of the Si exposed with 15 keV He+ (Figure 

35b) relative to 25 keV He+ (Figure 35c). 

Finally, we demonstrate anecdotally reduced defect generation by comparing 

progressively narrower channels cut into single layer graphene supported on Si via the He+ ion 

beam.  He+ induced defects in graphene has been previously reported12,114 and in particular the 
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proximal defect generation caused by backscattered ions.115  Recently, it was demonstrated that 

the contrast in HIM imaging of supported graphene can be used as an in situ visualization of 

conductance in graphene11 due to the positive charging and subsequent darkening of the image 

that occurs if inadequate conduction channels exist.  Figure 37 compares HIM and SEM images 

of identical confined channels that were cut into graphene with a helium ion beam with and 

without the pulsed laser-assist.  The confined channels were cut with dimensions of 150, 100, 50 

nm (from bottom to top).  Clear evidence of darkening is observed in the HIM image of the 50 

nm wide channel generated without the laser-assist which is consistent with proximal defect 

generation from backscattered ions and a lowering of the channel conductance (Figure 37a).  

Conversely, the 50 nm channel generated with the pulsed laser-assist does not darken (Figure 

37b), which suggests a high-conductance channel suitable to minimize positive charging in the 

HIM.  Figure 37e shows Raman spectra, using an excitation wavelength of 532 nm, of He+ 

exposures on graphene at a dose of 1x1014 He+/cm2 with and without laser-assist.  A dose of 

1x1014 He+/cm2 was used to emulate the low proximal dose delivered from backscattered ions in 

the periphery of the exposure pattern.  There is a clear reduction in the D peak intensity when 

simultaneous laser pulses irradiate the graphene during the exposure.  The reduction in the D 

peak is indicative of increased order in the graphene, fewer point defects, and hence greater 

conductivity.  Therefore, at high photon/ion flux, proximity damage associated with ion 

patterning can be healed in situ while still allowing the primary beam to pattern the material with 

a prescribed raster pattern, thus effectively increasing the patterning resolution.  Patterning 2D 

materials with greater photon/ion flux could serve as a method to further reduce undesired 

peripheral damage. Future work will focus on optimization of proximal laser-assisted defect 

mitigation of 2D materials patterned with He+ and Ne+ and their effects on device performance.   

2.1.4 Conclusions 

In summary, focused ion beam-induced nanoscale synthesis has played an important role 

in nanoscience and technology.  The impact that this technique will have in the future depends 

on improved ion source solutions that can extend the resolution towards the atomic scale.  

Beyond resolution, solutions to the deleterious peripheral damage induced during direct-write 

processes must be developed as defects introduced into device regions cannot be tolerated.  To 
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this end, we have demonstrated that a pulsed laser-assist can mitigate the damage introduced via 

focused helium and neon ion beam irradiation.  The damage mitigation is intuitively a function 

of the photon/ion flux ratio as well as a function of the ion beam energy and ion species.  

Ultimately, a balance in the damage creation and diffusion/recovery of the implanted ions, and 

vacancies and interstitials generated must be reached.  While at a fixed laser wavelength the 

pulse-width and duty cycle of the laser can be adjusted to modulate the effective photothermal 

load, a variable wavelength source is an intriguing option to optimize the laser-solid coupling to 

maximize the absorption and heating in the near surface region.  To this end, we are developing a 

multi-wavelength source which can be spectrally tuned across the visible spectrum to optimize 

the photothermal laser-assist process.  Furthermore, both laser-assisted focused ion beam-

induced deposition and laser-assisted focused ion beam gas-assisted etching will be investigated.  

It is believed that not only will the sub-surface damage be mitigated, but deposited material 

purity will be enhanced as we have demonstrated in laser-assisted focused electron beam induced 

deposition.65,116–118  Furthermore, it is expected that laser-assisted and gas-assisted etching, in a 

similar fashion as laser-assisted focused electron beam induced etching119 can realize higher 

etching rates.   

2.1.5 Methods  

2.1.5.1 Synchronized Laser Probe 

The laser delivery system95 utilizes a 915 nm wavelength 25 W multichip diode laser 

module (BMU25B-915-01, Oclaro Inc.) and is mounted on a high angle port (52o relative to the 

sample stage) on the helium/neon ion microscope (HIM/NIM). The laser probe was aligned such 

that the focal distance was confocal with the ion beam at a working distance of 7.5 mm with 

respect to the HIM pole piece. This setup enables delivery of a maximum power of ~165 

kW/cm2 with a laser spot size of ~100 μm. The small spot size enables highly localized pulsed 

heating that is confined spatially on the substrate as well as in the near-surface region. This 

minimizes thermal drift, which is associated with continuous heating, and makes in situ ion and 

photon irradiation possible with high spatial resolution.  
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2.1.5.2 Helium Ion Microscope/Patterning 

Scanning helium and neon exposures and imaging were performed with a Zeiss ORION 

Nanofab HIM/NIM.  An accelerating voltage of 25 keV was used for all imaging, whereas 

accelerating voltages of 15 and 25 keV were used for the patterned exposures.  Beam currents 

varied from 0.3 – 0.9 pA in order to modify the photon/ion flux ratio (see Supporting 

Information Table 3 for a summary of all experimental parameters).  A silicon substrate with a 

~3 nm native oxide layer was used for ion beam exposures and subsequent TEM imaging.  

A 100 nm x 1,000 nm rectangular pattern geometry was used for the ion beam exposures.  All 

patterns in this study were exposed with a 1 μs dwell time and a 1 nm pixel spacing.  Patterns 

were generated using a Fibics NPVE pattern generator as well the Zeiss Athena pattern 

generator.  During laser-assisted ion beam exposures, 100 μs laser pulses, driven at frequencies 

ranging from 100 – 200 Hz (1-2 % duty cycle), were synchronized to begin and end with the ion 

exposure patterns. The photon/ion flux ratio was carefully controlled by varying beam current, 

laser duty cycle, and refresh times. 

2.1.5.3 TEM Preparation and Imaging 

The ion beam exposure sites were characterized using a FEI Tecnai F20 TEM operating 

at 200 keV.  Samples were prepared using an FEI Strata 400 Dual Beam FIB/SEM.  The 

boundaries of the amorphous to crystalline regions are easily visible in bright field TEM due to 

differences in diffraction of electrons in the crystalline vs. amorphous regions.120 The electron 

beam diffraction pattern was studied to analyze the crystallinity of the ion implanted region 

annealed with in-situ laser.  

2.1.5.4 Simulations 

Simulations of the laser-induced heating effects as well as diffusion of implanted ions 

and point defects were performed using COMSOL Multiphysics 5.0, which is a commercial 

finite element method (FEM) software package. Specifically, a backward differentiation formula 

time-stepping method with strict time steps was used to generate the temporal temperature 

evolution for silicon during laser irradiation with the 915 nm laser. The temperature profile was 

used to determine the temperature dependent diffusion of implanted He interstitials, as well as 

silicon vacancies and interstitials generated by knock-on collisions with the energetic He+. The 

multifrontal massively parallel sparse direct solver was used for evaluation of the diffusion 
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equation and an open boundary was used at the substrate surface for Helium to mimic the low 

activation energy of the helium desorption. The diffusion simulations conducted were uncoupled, 

meaning that the diffusion of each defect type (He interstitials, Si interstitials, and Si vacancies) 

was independent of one another and does not account of defect interactions such as 

vacancy/interstitial annihilation. Additional simulation details can be found in the supporting 

information. 

2.1.5.5 Raman Spectroscopy of Graphene 

Confined channels were milled into CVD grown single-layer graphene, which was 

supported by a SiO2 coated Si substrate, with 25 keV He+. Raman spectroscopy was performed 

in a Renishaw inVia micro-Raman system using a 532 nm excitation laser. A 100X 

magnification objective was used for spectral acquisition with a 5 second acquisition time. Laser 

spot size was approximately 0.6 μm. Data analysis was conducted with WIRE v3.4 software. 

Raman spectra of the graphene prior to He+ exposure were consistent across the substrate, and 

suggest uniformity in the quality of the graphene.   
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2.1.6 Appendix 

2.1.6.1 Supporting Information 

Exposure Parameters 

For all He+ and Ne+ exposures, multiple parameters were used to control the photon/ion 

flux. The parameters include: laser duty cycle, ion beam current, and ion beam refresh time 

between patterning passes. Table 3 includes relevant parameters for all experiments, which have 

a critical effect on the evolution of the subsurface damage with ion exposure. Photon/ion flux is 

reported relative to conditions for a 1.3x106 photon/ion exposure. 

Simulation Details 

Laser Heating Simulation  

Simulations of the laser-induced heating effects were performed using COMSOL 

Multiphysics 5.0, which is a commercial finite element method (FEM) software package. The 

expression for heat delivered to the substrate from the laser is derived from the Beer-Lambert 

law: 

 

where Q0 is the optical power of the laser, Rc is the reflection coefficient, Ac is the absorption 

coefficient, G(x,y) is the 2-dimensional Gaussian laser profile, σx and σy are the 1/e radii of the 

Gaussian laser profile, and z is the depth from the substrate’s surface.  A linear 100 ns laser ramp 

time was assumed for this simulation and a laser pulse width of 100 μs was applied.  The 

following time dependent heat equation was used to simulate the heat transfer throughout the 

silicon substrate: 

 

where ρ is the material density, Cp is the heat capacity at constant pressure, u is the velocity 

vector for thermal transport, and κ is the thermal conductivity.  Convective heat transfer to the 

surrounding atmosphere was neglected since irradiation conditions were under high vacuum and 

T0 was defined as 293.15 K.  A backward differentiation formula time-stepping method with 

strict time steps was used to generate the temporal temperature evolution for silicon during laser 

irradiation.    
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Table 4 reports relevant simulation and material parameters used to simulate the temperature 

temporal evolution in a silicon substrate which is heated with 100 μs 915 nm laser pulse. The 1/e 

radii of the Gaussian shaped beam was treated as 45 μm along the x-axis and 60 μm along the y-

axis. This produces a beam diameter of 90 μm along the x-axis and 120 μm along the y-axis. 

This accounts for the angle of the port from which the laser is mounted in the chamber and 

results in an elongated spot. All other parameters listed are experimental or material parameters 

that are relevant to simulate the time-temperature profiles. 

A single 100 μs laser pulse heats the substrate to approximately 700 K and then rapidly 

decays to room temperature (RT).  All experimental laser conditions used for this study used a 

duty cycle of < 2%, thus each laser pulse returns to RT well before the subsequent laser pulse. 

This prevents thermal drift and additive heating effects. The profile inset in Figure 33 of the 

main text was used to calculate the temperature-dependent diffusion coefficients.  

SRIM/TRIM 

SRIM/TRIM Monte Carlo simulations were used to generate the subsurface ion 

implantation profiles, and our EnvizION variant103 was used to generate the vacancy and 

interstitial profiles.  In order to generate statistically accurate profiles, 500,000 ion trajectories 

were traced in a point source and the simulated implantation and defect profiles of the 1000 nm x 

100 nm exposure geometry were approximated by rastering the SRIM or EnvizION generated 

profiles (500,000 ions) over the entire 1,000 nm x 100 nm scan area.  The concentration of the 

central slice perpendicular to the long scanning axis was used as the distribution profiles of the 

implanted ions and defects.  

Diffusion Simulations 

COMSOL Multiphysics 5.0 was used to simulate the temperature-driven diffusion of 

implanted ions and point defects in silicon induced by the focused He+ beam exposures.  The 

diffusion coefficients of the aforementioned point defects were expressed as: 

 

where D0 is the diffusion prefactor, Ea is the activation energy, and T is the previously simulated 

time-dependent temperature profile in the near surface region of our substrate (T vs t profile is 

found in the inset of Figure 33).  Since ion exposures were conducted in a region much smaller 
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than the laser spot size and the simulated temperature difference over the implant range was 

negligible, the temperature was assumed to be spatially constant with only a time-dependence. 

The implantation and defect spatial profiles generated by SRIM/TRIM and EnvizION were 

imported as a source term and scaled to match the dose rate of experiments and synchronized 

with the appropriate number of laser pulses. The time-dependent diffusion expression was taken 

as:  

 

where D is the diffusion coefficient and f is the source term for defect generation. A generalized 

alpha time-stepping method was applied to the simulation with strict time steps. The multifrontal 

massively parallel sparse direct solver was used for evaluation and an open boundary was used at 

the substrate surface for Helium to mimic the low activation energy of the helium desorption. 

Damage Mitigation and Defect Signatures 

Figure 38 shows a comparison of a 5x1017 He+ exposure without (a) and with (d) the use 

of a laser-assist. Atomic resolution TEM images (b) and (c) show the regions denoted by the red 

and blue boxes in (a), respectively. In (b), it is clear that the region which experienced damage 

accumulation from the He+ irradiation underwent an amorphous transition, while the region not 

exposed to a large extent of damage accumulation remains crystalline. In comparison, there is no 

amporphization of Si in the near surface region when a laser assist was used (e). Figure 38c 

shows a TEM image taken from the core of the He+ irradiation induced amorphized Si. This 

region is characterized by high atomic disorder with no evidence of crystalline structure. In 

comparison, (f) shows the peak damage accumulation region of Si exposed with the laser-assist. 

Although noticeable defects are present, crystalline atomic structure is evident. This confirms 

that synchronized the laser-assisted exposure technique greatly mitigates the formation of 

subsurface damage. 

Figure 39 shows TEM images of the subsurface damage accumulation regions for a He+ 

exposure at a dose of (a) 5x1017 and (b) 1x1018 He+/cm2. In Figure 39a, amorphization of the Si 

is clear, and small nano-bubbles are visible. As the dose increases to 1x1018 He+/cm2, the bubbles 

expand with the accumulation of He and become more visible. 
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Scanning Dimension Effects 

Figure 40 shows the simulated cross-sectional concentration distribution of a-d) 

implanted He+, e-h) interstitial Si, and i-l) Si vacancies for a Si substrate irradiated with 25 keV 

He+
 at a dose of 1x1016 He+/cm2. The defect distributions are shown for different aerial square 

exposure patterns with side lengths of 10 nm (1st row), 50 nm (2nd row), 100 nm (3rd row), and 

200 nm (4th row). Clearly, as the side length of the square aerial exposure pattern increases, the 

maximum defect concentration also increases. This effect is summarized in Figure 41a, which 

plots the maximum defect concentration as a function of the side length of the square exposure 

pattern. The concentration of defects increases until the size of the exposure pattern reaches the 

lateral range of the defects generated for a single exposure pixel. The maximum defect 

concentration saturates once the exposed region exceeds the dimensions of the lateral range. A 

schematic of this concept is shown in Figure 41b, which illustrates that overlap stops once 

dimensions of the aerial dose pattern exceed the lateral range of defects generated. Hence, the 

pattern dimensions as well as the aerial dose and beam conditions have significant contributions 

to the maximum subsurface defect concentration when the pattern size is below the lateral range 

of defects generated. 

In-situ Anneal vs. Post Anneal 

Figure 42 displays SEM images comparing the effects of a laser post anneal relative to 

an in-situ laser assist during ion beam irradiation. Figure 42a, shows 5 patterns which were 

patterned with the ion beam and subsequently irradiated with the laser, whereas the patterns in 

Figure 42b were pattered and irradiated with the laser in-situ at a flux of 6.6x106 photon/ion. For 

comparison the bottom right pattern in Figure 42b was exposed to the same dose and 

experiences no in situ nor ex situ laser exposure.   Clearly an in-situ anneal (Figure 42b) is more 

effective at reducing subsurface damage in comparison with a pattern which experienced a post 

exposure anneal with the same laser exposure (16 min laser anneal process time, with 100 μs 

pulse width and 1% duty cycle). This is because for mitigation of void formation it is critical, 

where appropriate in situ laser exposure enables the helium atoms to diffuse and 

vacancies/interstitials annihilate before this critical dose is reached. Once a critical implantation 

concentration of ions and defects are reached, stable subsurface bubbles and defect clusters are 

formed which amorphize the silicon and require much higher activation energies to annihilate.  
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Silicon Interstitial Diffusion 

Figure 43a and Figure 43c show the distribution of Si interstitials generated from knock-

on collisions with 15 and 25 keV He+ at an aerial dose of 1E16 ions/cm3. Figure 43b and Figure 

43d show the Si interstitial profiles for exposures with a simultaneous pulsed laser 

synchronization of 100 μs and 1% duty cycle (1.3x106 photon/ion). The maximum interstitial 

concentration is shown as a function of the aerial exposure dose in Figure 43e. The thermal 

energy supplied from the pulsed laser system drives minimal diffusion of the interstitial Si, 

which has an activation energy of 1.37 eV and a diffusion pre-factor of 1.58x10-1 cm2/s.112  

To comment briefly, vacancy diffusion within the Si substrate has an activation energy of 0.10 

eV and a diffusion prefactor of 1.18x10-4 cm2/s. Therefore the vacancy mobility is much greater 

than that of Si interstitials at elevated temperature (~ 700 K). Vacancies can annihilate the 

interstitial Si. Hence the dominant mechanisms for in-situ defect healing under pulsed laser 

irradiation within the Si substrate include 1) the enhanced diffusion of implanted interstitial He+ 

and 2) the enhanced diffusion of vacancies which facilitates interstitial annihilation. 

Experimental and Simulation Comparison 

Figure 44 shows cross section TEM images of silicon exposed with a) 15 and b) 25 keV 

He+ to a dose of 5x1017 He+/cm2 with the synchronized laser assist. The images are 

superimposed onto the FEA simulation results to show the correlation between the predicted 

simulation He+ profile and the experimental profile.  
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2.1.6.2 Figures 

 

Figure 33. Schematic of helium ion exposures (a) without and (b) with pulsed laser-assist to 

photothermally enhance implanted ion diffusion and defect annihilation. Grey pixels in the raster 

pattern represent pixels irradiated solely with He+ whereas red pixels are simultaneously 

irradiated with the laser and He+. Cross-section TEM images illustrate the amorphized silicon 

region (a) and damage mitigated (b) by the in situ laser-assist.  Overlaid on the TEM images are 

calculated helium, vacancy and interstitial concentrations, illustrating photothermally enhanced 

diffusion of He+ and vacancies with the pulsed laser-assist strategy of a photon/ion flux of 

1.3x106. Inset in (b) is the simulated time-temperature profile of a single 100 μs laser pulse 

irradiated on Si. 
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Figure 34. TEM cross sections of 25 keV He+ exposures of varying dose (a-d) without and (e-h) 

with a pulsed laser-assist of 1.3x106 photon/ion flux. Exposure doses are inset in the images. 

High-resolution TEM images showing ion beam induced damage without (i) and with (j) laser-

assist for a dose of 5x1017 He+/cm2 collected from the regions denoted by hatched red boxes in 

(c) and (g), respectively. k) SAED patterns and (l) TEM cross section of an exposure of 1x1018 

He+/cm2 with 5 times higher (6.6x106) photon/ion flux than (h). Dashed circles denote where 

SAED was conducted. 
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Figure 35. TEM cross sections of 15 keV He+ exposure (a) without and (b) with laser-assist of 

1.3x106 photon/ion at a dose of 1x1018 He+/cm2. Dashed line in (a) denotes region amorphized 

by 25 keV He+ beam. (c) Reproduction of Figure 34h which shows a 25 keV exposure at a dose 

of 1x1018 He+/cm2 with a laser assist of 1.3x106 photons/ion for comparison purposes. TEM 

cross sections of 25 keV Ne+ exposure (d) without and (e) with laser-assist at a dose of 1x1016 

He+/cm2. (f) Reproduction of Figure 34a which shows a 25 keV He+ exposure at a dose of 1x1016 

He+/cm2 with a laser assist of 1.3x106 photons/ion for comparison purposes. 
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Figure 36. Simulated cross-section helium concentration profiles for 1x1016 He+/cm2 dose at 15 

keV He+ in silicon (a) without and (b) with laser-assist of 1.3x106 photon/ion. Cross-section of 

calculated helium concentration profiles for 1x1016 He+/cm2 dose at 25 keV He+ in silicon (c) 

without and (d) with laser-assist. (e) Plot of the calculated maximum He+ concentration as a 

function of photon/ion flux and implantation energy for a dose of 1x1016 He+/cm2. The 

photon/ion fluxes used for experimental exposures include 0, 1.3x106, and 6.6x106 photon/ion. A 

plot of the maximum He+ concentration as a function of aerial dose for each of the experimental 

exposure conditions is inset. 
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Figure 37. HIM images of channels milled into single layer graphene on SiO2 without (a) and 

with (b) laser-assist where the photon/ion flux was ~1.6x106. Scale bar is 500 nm. SEM images 

confirm the confined channels were cut at a width of ~ 50 nm both (c) with and without (d) laser-

assist. Scale bar is 200 nm. (e) Raman spectra of graphene as-receive and irradiated at a dose of 

1x1014 ions/cm2 with (red) and without (black) laser-assist. 
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Figure 38. (a) TEM image of a 5x1017 He+/cm2 exposure with no laser assist and a beam energy 

of 25 keV. High-resolution TEM images of the regions denoted by the red box (b) and the blue 

box (c) in image (a). These regions represent areas which borders the irradiation induced 

amorphous Si border and amorphous Si core respectively. (d) TEM image of a 5x1017 He+/cm2 

exposure with a laser assist of 1.3x106 photon/ion and a beam energy of 25 keV. High-resolution 

TEM images of the regions denoted by the red box (e) and the blue box (f) in image (d). 
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Figure 39. (a) Sub-surface damage accumulation region in Si of a (a) 5x1017 and (b) 1x1018 

He+/cm2 exposure with 25 keV He+ and no laser assist. Small nano-bubbles begin forming in (a) 

and expand to become clearly visible in (b) with an increase in exposure dose. 
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Figure 40. Simulated cross-sectional concentration distribution of (a-d) implanted He 

concentration, (e-h) interstitial Si, and (i-l) Si vacancies for a Si substrate irradiated with 25 keV 

He+
 at a dose of 1x1016 He+/cm2. The defect distributions are shown for different aerial square 

exposure patterns with side lengths of 10 nm (1st row), 50 nm (2nd row), 100 nm (3rd row), and 

200 nm (4th row). 

 



100 
 

 

 

Figure 41. (a) Maximum defect concentration as a function of side length of an aerial square 

pattern. All concentrations are simulated for a 1x1016 He+/cm2 exposure with 25 keV He+ in a Si 

substrate. (b) Schematic illustrating that when the aerial pattern dimensions reach the lateral 

range of the defects generated, saturation in maximum concentration occurs. 
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Figure 42. SEM images of 25 keV He+ patterns at a dose of 1x1018 ions/cm3 which were 

annealed in a (a) post He+ exposure anneal and (b) in-situ manner with 100 μs, 1% DC laser 

conditions. The right-most pattern in each image was irradiated with no synchronized laser 

exposure. 
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Figure 43. Cross section concentration profile of the Si interstitials generated from 15 keV He+ in 

silicon (a) without and with (b) laser-assist of 1.3x106 photon/ion. Cross section concentration 

profile of the Si interstitials generated from 25 keV He+ in silicon (c) without and with (d) laser-

assist. (e) Plot of the maximum Si interstitials concentration as a function of aerial dose for each 

of the exposure conditions. 
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Figure 44. TEM cross section of Si irradiated with (a) 15 keV and (b) 25 keV He+
 and 

synchronized laser superimposed onto simulations results. TEM cross sections are for a dose of 

5x1017 He+/cm2 whereas the simulations are for a dose of 1x1016 He+/cm2. 
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2.1.6.3 Tables 

Table 3. Relevant parameters for He+
 and Ne+ exposures as well as pulsed laser parameters. 

Figure 

Ion 

species 

Doses 

(ions/cm2) 

Beam 

energy 

(keV) 

Beam 

current 

(pA) 

Beam 

dwell 

time 

(μs) 

Pattern 

pixel 

spacing 

(nm) 

Laser 

pulse 

width 

(μs) 

Laser 

duty 

cycle 

Multiplicity 

(refresh) 

Relative 

photon/ion 

flux 

2A He 1.00E+16 25 0.9 1 1 x 1 N/A 0% 1 0 

2B He 1.00E+17 25 0.9 1 1 x 1 N/A 0% 1 0 

2C He 5.00E+17 25 0.9 1 1 x 1 N/A 0% 1 0 

2D He 1.00E+18 25 0.9 1 1 x 1 N/A 0% 1 0 

2E He 1.00E+16 25 0.9 1 1 x 1 100 1% 1 1 

2F He 1.00E+17 25 0.9 1 1 x 1 100 1% 1 1 

2G He 5.00E+17 25 0.9 1 1 x 1 100 1% 1 1 

2H He 1.00E+18 25 0.9 1 1 x 1 100 1% 1 1 

2I He 5.00E+17 25 0.9 1 1 x 1 N/A 0% 1 0 

2J He 5.00E+17 25 0.9 1 1 x 1 100 1% 1 1 

2L He 1.00E+18 25 0.9 1 1 x 1 100 1% 5 5 

3A He 5.00E+17 15 0.9 1 1 x 1 N/A 0% 1 0 

3B He 5.00E+17 15 0.9 1 1 x 1 100 1% 1 1 

3C Ne 1.00E+16 25 0.15 1 1 x 1 N/A 0% 1 0 

3D Ne 1.00E+16 25 0.15 1 1 x 1 100 2% 1 12 
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Table 4. Relevant parameters for simulation of laser heating on a silicon substrate. 

Simulation 

Parameters Value Description 

σx 0.045[mm] Laser 1/e radii- x 

σy 0.06[mm] Laser 1/e radii - y 

Rc 0.3226 

Reflection coefficient at 915 

nm 

Ac 

315.876 

[1/cm] 

Absorption coefficient at 915 

nm 

Q0 22[W] Laser power 

Pulse 100 [us] Laser pulse width 

Cp 

700 

[J/(kg*K)] Si heat capacity 

ρ 

2329 

[kg/m^3] Si density 

κ 

130 

[W/(m*K)] Si thermal conductivity 
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2.2 Laser Assisted Focused He+ Ion Beam Induced Etching with and without 

XeF2 Gas Assist 

A version of this chapter was originally published by M. G. Stanford et al.: 

 

 Stanford, M. G.; Mahady, K.; Lewis, B. B.; Fowlkes, J. D.; Tan, S.; Livengood, R.; 

Magel, G. A.; Moore, T. M.; Rack, P. D. Laser-Assisted Focused He + Ion Beam Induced 

Etching with and without XeF2 Gas Assist. ACS Appl. Mater. Interfaces 2016, 8, 29155–29162. 

 

Michael G. Stanford conducted experiments, analysis, and thermal simulations reported 

in this work. Brett B. Lewis also contributed to the collection of experimental data. Michael G. 

Stanford also wrote the manuscript. Kyle Mahady conducted Monte Carlo simulations. Tom M. 

Moore and Greg. A. Magel created the laser system utilized in this work. All co-authors 

contributed to manuscript revision. Reprinted with permission. Copyright 2017 American 

Chemical Society. 

2.2.1 Abstract 

Focused helium ion (He+) milling has been demonstrated as a high-resolution 

nanopatterning technique, however it can be limited by its low sputter yield as well as the 

introduction of undesired sub-surface damage. Here, we introduce pulsed laser and gas assisted 

processes to enhance the material removal rate and patterning fidelity. A pulsed laser-assisted 

He+ milling process is shown to enable high resolution milling of titanium while reducing sub-

surface damage in situ. Gas-assisted focused ion beam induced etching (FIBIE) of Ti is also 

demonstrated in which the XeF2 precursor provides a chemical assist for enhanced material 

removal rate. Finally, a pulsed laser-assisted and gas-assisted FIBIE process is shown to increase 

the etch yield by ~ 9x relative to the pure He+ sputtering process. These He+-induced 

nanopatterning techniques improve material removal rate, in comparison to standard He+ 

sputtering, whilst simultaneously decreasing sub-surface damage, thus extending the 

applicability of the He+ probe as a nanopattering tool. 
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2.2.2 Introduction 

Focused helium ions have been used for nanoscale synthesis in a variety of applications 

in recent years and offer an enhanced resolution relative to the standard liquid Ga ion source. 

This has resulted in synthesis of nanostructures with sub-10 nm resolution via deposition, 

etching, and lithography.121–123 However, due to low sputter yields of He+, patterning by material 

removal requires high doses which results in the formation of undesired sub-surface damage and 

He bubbling.102,124,125 This is undesirable for many applications and limits the effectiveness of 

focused He+ as a nanofabrication candidate. Therefore, for robust nanoscale synthesis with the 

helium ion microscope (HIM), processes should be developed which mitigate sub-surface 

damage as well as minimize the He+ dose required for processing. 

FIBIE, which utilizes a chemical assist, can be used to enhance the material removal rate 

relative to a standard sputtering process. Lower dose is required with the enhanced material 

removal rate thus reducing the extent of deleterious sub-surface damage. During FIBIE, a 

precursor gas is injected in close proximity to the substrate. The precursor gas physisorbs onto 

the substrate and establishes an equilibrium coverage. While rastering in a prescribed pattern, the 

He+ beam drives the dissociation of precursor molecules into radical species via collisions with 

primary and backscattered ions, generated secondary electrons, as well as target atoms that 

experience knock-on collisions. If the radicals generated from the precursor gas form a volatile 

compound with the substrate material, a chemical assist component can facilitate the sputtering 

component and enhance material removal. However, the etch rate during a FIBIE process can be 

restricted by a number of rate limiting mechanisms analogous to electron beam induced 

etching126. The volatile compounds may contain several precursor ligands necessitating relatively 

larger exposure doses to achieve volatile compound formation. The exposure dose is typically 

increased using additional charge exposure loops or larger per-pixel dwell times.  Additionally, 

volatile compounds may have a long residence time on the substrate surface after formation 

causing a reduction in the effective precursor gas surface coverage.  

FIBIE has been demonstrated with a number of primary ion beams, of which Ga+ is the 

most popular choice127. Precursor gases including XeF2
128–132, Cl2

129,130,133–137, O2
128,130, 

H2O130,138, NH3
130,137, Br2

130, and I2
131,139,140 have been used to chemically aid in material 

removal, to name a few.  The FIBIE process has also been shown to minimize the damage zone 
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induced by the ion beam in comparison to a standard milling process140. Therefore, He+ FIBIE is 

an exceptional candidate for high-resolution nanofabrication due to the reduced damage zone and 

enhanced etching rates associated with FIBIE as well as the impressive resolution of the He+ 

probe. 

In this work, we compare and contrast different He+ milling and etching processes of a 

Titanium thin film, including standard He+ sputter milling, in situ laser-assisted He+ milling, 

FIBIE with XeF2, and pulse laser-assisted FIBIE (LA-FIBIE). Schematics of the experimental 

setup as well as three of the aforementioned processes are shown in Figure 45a-e. Figure 45a-b 

is a schematic and digital image of the experimental setup, respectively, which illustrates that the 

ion, reactive gas, and pulsed laser all converge to common beam interaction region. For the laser 

system, light from a fiber-coupled semiconductor diode laser is transmitted through a single-

mode fiber in a vacuum-sealed probe that is mounted through a motorized nanomanipulator on a 

port of the helium ion microscope chamber (additional details can be found in the methods and 

supporting information). Figure 45c-e show schematics of standard He+ sputter milling, FIBIE 

with XeF2, and LA-FIBIE, respectively.  Ti was chosen as the model material system in this 

work as it is a standard refractory metal; Furthermore, XeF2 electron beam induced etching141 

and laser assisted electron beam induced etching has recently been explored119. First, we 

demonstrate that by synchronizing pulsed laser irradiation with a standard He+ milling process, 

sub-surface He+ swelling is significantly reduced and milling quality/fidelity is enhanced. FIBIE 

with XeF2 demonstrated high fidelity etching as well as a much greater etch yields as compared 

to that of a standard milling process. Finally, etch yields were further enhanced (by as much as 

9x relative to the standard He+ sputtering process) by synchronizing an in situ pulsed laser 

system with the FIBIE process (LA-FIBIE). Fine tuning of laser parameters, such as irradiance 

(kW/cm2) and duty cycle (pulse width x frequency), and He+
 beam parameters provide a method 

to fine tune Ti etch rates.  

Pulsed heating (in this work 0.1 – 3 % duty cycle) is used instead of continuous heating 

because continuous heating decreases the residence time of the precursor molecule and thus 

retards the chemical assist component; for instance for electron beam induced deposition, 

Mulders et al.142 showed that deposition rates were reduced for a number of precursors that were 

studied. Conceivably, a continuous wave irradiation could facilitate the ion milling process 
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(analogous to a stage heater), however, the pulsed laser results in rapid heating and cooling 

which allows the substrate to return to approximately room-temperature between pulses.  This 

minimizes sample thermal drift, which would limit the resolution of simultaneous processing 

with the He+ beam. Additionally, highly localized heating with the pulsed laser system occurs in 

the near-surface region of the substrate, which may be critical for processing a substrate with 

heat sensitive components. 

2.2.3 Results and Discussion 

Standard He+ milling of Ti was initially performed as a baseline study to compare with 

the subsequent photothermal and chemically assisted processes.  Figure 46a are scanning He+ 

micrographs, which show 50 x 500 nm channels which were milled into the Ti film using a He+  

beam with an acceleration voltage of 25 keV. The use of relatively large ion exposure doses 

reflects the relatively low sputtering yield when using He+.  Significant sub-surface damage and 

He bubble formation induced swelling outside of the exposure pattern boundary is observed with 

increasing milling dose. This proximity effect limits the use of He+ as a candidate for Ti milling, 

as well as many other materials.  

Figure 46b are scanning He+ micrographs of channels that were milled by He+ with the 

simultaneous pulsed laser assist process. The 785 nm pulsed laser conditions were: a 100 ns 

pulse width, 100 kHz frequency (1% duty cycle), and ~ 478 kW/cm2 irradiance (176 mW laser 

power) for the duration of the He+ milling processes.  The resulting channels exhibit much less 

swelling, which suggest less sub-surface damage143 compared with the standard room 

temperature milling processes (Figure 46a). High fidelity pattern transfer is feasible with the 

synchronized pulsed laser assist. Recent work has demonstrated that ~90% of sub-surface 

implanted He concentration can be thermally driven in/out via a pulsed laser assisted He+ 

exposure.143 Photothermal energy supplied from the laser drives diffusion of implanted He+ as 

well as recombination of vacancies and interstitials generated via interactions of the target 

material with the energetic ion (and subsequent knock-on atoms). The sputter yield (as measured 

by visual or SE detector endpoint monitoring – see Supporting Information) is also improved to 

approximately 0.045 atoms/ion with the laser assist, about 1.5x enhancement relative to ~ 0.03 

atoms/ion without a laser assist. Sub-surface damage and swelling can be further reduced by 
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controlling the photon/ion flux from the laser and ion beam143. Figure 46c is a scanning He+ 

micrograph which shows a channel which was milled with a laser assist of 300 ns pulse width at 

100 kHz frequency. The increase in duty cycle, from 1 to 3%, degraded the pattern transfer 

evidently due to Ti grain coalescence. Figure 46d displays the simulated peak Ti film 

temperatures per pulse for both cases.  Additional details on the thermal simulation can be found 

in the supporting information. Notably, a 300 ns laser pulse induces a temperature rise greater 

than 950 K.  This elevated temperature explains the Ti grain coarsening.  The increase in sputter 

yield during pulsed laser assist was unexpected considering the brief time available for thermal 

assist using 1% and 3% duty cycles.  The likely cause for the effective yield change could be the 

swelling component which narrows the channel and limits the escape angle for the sputtered 

target material.   

Analogous to a reactive ion etch, the chemical etching during FIBIE typically increases 

the material etching rate.  As a result, lower He+ doses are required per unit volume removed.   

Concurrently, the concentration of He+ induced sub-surface damage is reduced, minimizing 

swelling. Figure 47a-d show channels etched into the Ti film under increasing, and localized, 

XeF2 fluxes. The He+ dose was constant in these experiments (1x1019 He+/cm2). All experiments 

were conducted using a 25 keV acceleration voltage and a beam current ranging from 1.7-2.3 

pA. Additional experimental details can be found in the Methods section. The etch yield is 

clearly enhanced (~0.17 atoms/ion) with increasing XeF2 flux up to the highest XeF2 flux of 

1.5x1017 cm-2s-1 where the Ti film was completely etched through (Figure 47d). Increasing the 

XeF2 flux increases the equilibrium surface coverage and decreases the coverage time for the 

XeF2 molecules on the Ti surface. Both outcomes push the FIBIE process toward  a reaction rate 

limited (RRL) regime141 where etching efficiency is maximized.  Notably, surface swelling and 

sub-surface damage is minimized during the FIBIE process. 

The ion milling and chemically-assisted etching processes were simulated using the 

Monte Carlo simulation code EnvizION103,144 in order to elucidate the reduction in sub-surface 

damage observed during FIBIE. The Ti – Ti surface, and lattice binding energies of the Ti film, 

were varied to emulate the ion milling and chemically-assisted etching processes (see methods 

for additional details). Standard energetics are used for the ion milling while the surface and 

lattice binding energies are reduced to emulate the increased effective sputter yield for the 
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chemically assisted etching process. For instance, the simulated sputter yield for the typical Ti 

energetics generates a sputter yield of 0.036 atoms/ion, in good agreement with the 

experimentally observed value of 0.03 atoms/ion. The reduced energetics were tuned to increase 

the sputter yield to 0.16, which is in the same range of the chemically assisted Ti etching. The 

Monte Carlo simulation yields a “damage function,” which is defined as the cumulative number 

of damage events per lattice site. In addition, we store the nuclear energy deposited in the film by 

the He+ ions, and the He+ implantation concentration.  Figure 48a shows a cross-section of the 

damage function for the milling simulation (left) and the chemically-assisted etching simulation 

(right). For comparison, we found that a damage function of about 0.2 events/lattice sites drives a 

crystalline to amorphous transition which is observed in silicon102; this value is exceeded in the 

milling simulations up to 150 nm perpendicular to the long scan axis (x-axis in the simulations). 

Interestingly, the swelling observed in the milled Ti extends approximately 150 nm into the 

adjacent, unexposed film (Figure 46a), though the defect distribution is expected to be different 

in metallic Ti relative to the covalent silicon lattice.  Figure 48b shows the deposited nuclear 

energy for milling (left) and etching (right).  As with the damage function, we determined the 

deposited energy necessary for amorphization of Si. While Bohmayr et al. determined from 

simulations that Si amorphization occurs at a deposited nuclear energy of 12 eV/atom145, our 

simulations suggest an energy of about 5.5 eV/atom. This energy is exceeded by the milling 

simulation throughout most of the computational domain (or 150 nm perpendicular to the long 

scan axis), and for the chemically-assisted etching simulation is exceeded in a somewhat smaller 

region. Figure 48c illustrates the He+ ion implant concentration for milling (left) and chemically-

assisted etching (right). Both the damage function and the deposited energy scale linearly with 

the ion dose for both the chemically-assisted etching and milling simulation: the ratio of the 

damage function for the milling simulation to that of the etching simulation is 4:1, when 

averaged over the computational domain, reflecting the fact that the milling simulation has four 

times the ion dose. Thus, the reduction in sub-surface damage in the chemically-assisted etching 

simulations can be understood as a reduction in the ion dose needed to etch a channel compared 

with milling simulations. While the average ratio of the damage function (and deposited energy) 

between the milling and chemically-assisted etching simulations scales with the dose, there is 
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some observed sub-surface depth-dependence of these quantities (see supporting information for 

details).   

Previous results of CF4 reactive ion etching of Ti indicated that the final fluorine insertion 

of F +TiF3  TiF4 is the rate limiting step and importantly TiF3 is a stable solid which is not 

volatile.146,147  The focused electron beam induced etch (FEBIE) rate of Ti with XeF2 was shown 

to be enhanced by supplying in situ thermal energy from an infrared pulsed laser;119 the 

enhanced etch rate was attributed to photothermally enhanced: (1) Ti-F reaction, 2) TiF4 

desorption 3) increased XeF2 gas surface diffusion to the reaction zone and 4) increased TiFx 

surface diffusion from the reaction zone.  The thermal energy is expected to also increase the 

XeF2 desorption rate which would decrease the overall reaction, however the increasing etch rate 

mechanisms appears to over-compensate and result in a net increase in the etch rate compared to 

the un-assisted FEBIE process. Our proposed model is different than what was recently proposed 

for electron beam induced etching of diamond with an H2O precursor148.  Martin et al. correlated 

the anisotropic shape evolution of H2O/diamond etching to a process rate-limited by the electron 

stimulated desorption of the CO by-products.  Importantly they did not observe any rate or 

anisotropy difference with increasing temperature as would be expected by this athermal 

mechanism.  Clearly we observe a strong photothermal response and, due to the small 

polycrystalline grain size and sub-surface damage, no anisotropic surface evolution. 

The pulsed laser system was used to study the effects that in-situ thermal energy has on 

the FIBIE process. Figure 49a shows patterns etched into Ti with 25 keV He+ using the FIBIE 

process (top) and the LA-FIBIE process (bottom) at a dose of 1x1019 He+/cm2 for the FIBIE 

process and 7.0x1018 He+/cm2 for the LA-FIBIE process.  The LA-FIBIE process results in a 

greater etch yield than the FIBIE process, however there is some loss in the lateral resolution of 

the process due to overetching. Figure 49b shows the etch yield of the FIBIE and LA-FIBIE 

processes as a function of the He+ dwell time. The synchronized laser irradiance used for these 

experiments was 55.5 kW/cm2
 at a pulse width of 100 ns and a frequency of 50 kHz (0.5% duty 

cycle). Due to the thermal enhancements previously mentioned, the LA-FIBIE process results in 

a higher etch yield than the FIBIE process for all dwell times. As the ion dwell time is reduced, 

the etch yield increases for both processes due to an enhanced precursor coverage during the ion 
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beam dwell; at longer dwell times, the XeF2 precursor gets depleted and the chemical assist is 

limited by subsequent precursor adsorption and/or diffusion of the precursor to the reaction zone.  

In order to better understand the FIBIE regimes, we estimated the XeF2 localized flux and 

monolayer coverage time, and compared to our ion beam conditions in Table 5. The XeF2 flux 

for the He+ dwell time experiments was estimated to be 1.6x1017 cm-2s-1, in accordance to Ref149. 

This results in a XeF2 monolayer coverage time of approximately 8.4x103 μs assuming a unity 

sticking coefficient. This is much less than the loop time (ranges from 4x104 μs to 2x107 μs for 

the 100 ns to 50 μs dwell times), or time between subsequent exposures of the same pixel, during 

the patterning process for all He+ dwell times compared. Therefore, we conclude that there is 

sufficient time between pixel exposures to allow the XeF2 coverage to re-equilibrate. However, 

the number of ions that each Ti surface site is exposed to per patterning loop increases with 

increasing dwell time. For instance, at the 100 ns dwell time, each Ti surface site is exposed to 

just ~1.3 ions per pass. This inhibits the full depletion of the precursor species and results in a 

more RRL regime. In contrast, a 50 μs dwell time exposes each Ti surface site to ~640 ions per 

pass which severely depletes the local XeF2 coverage. The longer dwell time results in mass 

transport limited (MTL) etching behavior, and a reduction in the etch yield. Precursor diffusion, 

which can be thermally enhanced by the synchronized pulsed laser, can reduce the time required 

for XeF2 replenishment during the LA-FIBIE process. This along with enhanced reaction, 

byproduct desorption, and byproduct diffusion result in a greater etch yield for LA-FIBIE, in 

particular at longer dwell times (such as 50 μs) which are typically in the MTL regime. 

Thermal simulations were conducted to determine the photothermal heating of the pulsed 

laser induced heating of the Ti films.  Figure 50a shows the simulated temporal evolution of the 

surface temperature induced in the Ti film by a single 100 ns laser pulse at various laser 

irradiances on the 200 nm thick Ti on the thin SiNx. At the 55.5 kW/cm2 laser irradiance (Figure 

49), the Ti temperature is raised modestly to ~325 K. This indicates that relatively small amounts 

of thermal energy introduced during the LA-FIBIE process can affect the etch yield. Figure 50b 

is an Arrhenius plot of the natural log of the etch yield versus the inverse of the simulated 

temperature achieved by 100 ns laser pulses during the LA-FIBIE processes with varying laser 

irradiance (as shown in Figure 50a). From the slope of the Arrhenius plot the effective activation 

energy of the etch process is ~ 49 meV for a pulsed process with 0.5 % duty cycle, which is in 
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good agreement with laser-assisted electron beam induced etching enhancements119.  As the laser 

irradiance, and hence photothermal energy increases, etch yield is enhanced. However, 

increasing laser irradiance can significantly reduce the lateral resolution of the etch process 

(shown in Supporting Information).  The lower XeF2 flux of ~ 1.0x1017 cm-2s-1 in comparison to 

the data reported in Figure 49 is responsible for the lower etch yields. Figure 50c shows the 

effect of laser duty cycle on the etch yield. At low duty cycles (0.1 and 0.25%) there is little 

enhancement in the etch rate in comparison to a standard FIBIE process. However, the etch rate 

increases above 0.25% duty cycle until saturation occurs at a duty cycle of 1%. Operation at 

above 1% duty cycle does not allow sufficient time for the material to return to room temperature 

between subsequent laser pulses. This results in additive heating with each pulse and thermal 

“runaway”, which facilitates spontaneous decomposition of the XeF2 and spontaneous etching. 

This limits the spatial resolution of the etching process, although it remains confined to the 

dimensions of the laser spot; thus another application for the instrument used in these 

experiments might be larger area material removal via laser etching. Therefore, the synchronized 

laser conditions during the LA-FIBIE process, can be chosen to give highest spatial resolution 

(low laser irradiance and low duty cycle) or greatest etch rate (high laser irradiance and high duty 

cycle). 

2.2.4 Conclusions 

In summary, milling rate and fidelity enhancement with focused He+ are demonstrated in 

this work by several methods. First, synchronizing a pulsed laser with a standard He+ milling 

process increases the effective sputter yield of Ti while simultaneously reducing deleterious sub-

surface damage and swelling by the introduction of photothermal energy. FIBIE of Ti with the 

XeF2 precursor molecule was also demonstrated as a method to enhance material removal rate 

which also reduces the cumulative damage. Finally, laser assisted-FIBIE was introduced as a 

method to enhance etch yield in comparison to the standard room temperature FIBIE. These 

processes demonstrate important advancements in subtractive patterning techniques using the 

focused helium ion microscope. This increases its applicability as a robust high resolution 

nanomachining instrument. 
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2.2.5 Methods 

2.2.5.1 Helium Ion Beam 

A Zeiss Orion NanoFab helium ion microscope was used for all sputtering and etching 

experiments. Exposures were conducted with a He+ beam energy of 25 keV with a beam current 

ranging from 1.7 – 2.3 pA using the 20 μm aperture. A Fibics NanoPatterning Visualization 

Engine (NPVE) was used as the pattern generator. For all patterns, a constant pixel spacing of 

0.25 nm was used and the dwell times were varied from 100 ns to 50 μs. Experiments were 

conducted on a 30 nm thick SiNx membrane which was coated with 200 nm of Ti. This substrate 

was chosen to mimic some chip repair strategies of thinned backside edits; importantly the thin 

membrane geometry minimizes thermal conduction relative to bulk substrates.   

2.2.5.2 Gas Injection System 

An Oxford Instruments OmniGIS I gas injection system (GIS) was used to deliver XeF2 

in close proximity to the substrate. The needle was positioned ~100 μm above the substrate and 

~200 μm from the center of the ion beam field of view at an angle of 38o between the needle and 

the substrate.  The XeF2 precursor gas was cooled to 15oC prior to flow.  Gas fluxes were 

estimated by the method detailed in Ref 149. 

2.2.5.3 Laser Delivery System 

A small spot on the sample surface centered on the He+ ion beam was irradiated by a 785 

nm wavelength optical beam at incident optical powers up to 176 mW using a prototype laser 

delivery system provided by Waviks, Inc. (Dallas, TX). Light from a fiber-coupled 

semiconductor diode laser is transmitted through single-mode fiber and a miniature optical 

system in a vacuum-sealed probe that is mounted through a motorized nanomanipulator on a 

high-angle port on the helium ion microscope chamber. The single-mode system projects an 

approximately Gaussian elliptical laser spot onto the sample having full widths at 1/e2 irradiance 

along the minor and major axes of 7.7 μm x 13.1 μm at optimum focus. The nanomanipulator 

permits closed-loop submicron positioning of the laser spot on the sample surface under 

computer control, and is also used to perform focusing of the laser spot. Laser power, pulse 

length, and repetition rate are all adjustable under computer control. 
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Additional details on the laser delivery system and optical beam and pulse parameters can be 

found in the Supporting Information. 

2.2.5.4 Monte Carlo Simulation 

The ion milling and chemically-assisted etching process were simulated using EnvizION 

code103,144 to elucidate the reduction in sub-surface damage observed during FIBIE. This code 

uses a Monte-Carlo based method, similar to that of SRIM-TRIM150, to simulate the ion stopping 

and recoil process. This Monte-Carlo algorithm is coupled to a voxel based model of the target, 

which simulates the cumulative removal of material by sputtering, as well as the sub-surface 

damage. In order to emulate gas-assisted FIBIE, we adjusted the properties of the Ti substrate in 

order to increase the sputter yield: the surface binding energy was reduced from 4.89 eV to 0 eV, 

and the lattice binding energy was reduced from 3 eV to 1.5 eV. The surface binding energy is 

the energy threshold that displaced titanium atoms which have reached the surface must exceed 

in order to be sputtered; importantly only displaced atoms from ion or knock-on collisions are 

able exit the material while un-perturbed surface atoms remain. The lattice binding energy is the 

energy expended when a titanium atom is displaced from its position in the lattice. This change 

in the energetics increases the sputter yield to 0.16, which is in the same range as that observed 

for FIBIE in Figure 49b. We refer to simulations that use the reduced surface and lattice binding 

energies as “chemically-assisted etching” simulations, and those which use the higher values of 

the surface and lattice binding energies as “milling” simulations. 

We simulated a 15 nm by 1 nm line scan using the standard milling and chemically-

assisted etching energetics (where the x-axis is taken to be the scan axis). For both sets of 

simulations, we simulate the dose sufficient create a channel approximately 30 nm deep: 

11,250,000 ions for milling simulations, and 2,812,500 ions for chemically-assisted etching 

simulations (i.e., the milling simulation requires four times the ion dose). We measure the sub-

surface damage by with a so-called “damage function”, which we define as the cumulative 

damage events at a lattice site. A damage event consists of either a titanium atom being displaced 

from its position at the site (vacancy production), or a recoiling atom coming to rest at the site 

(vacancy elimination). We additionally study the nuclear energy deposited in the target by the 

He+ ions, defined as the energy lost due to elastic collisions between atoms per lattice site.  
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2.2.6 Appendix 

2.2.6.1 Supporting Information 

Laser Delivery System Details 

A prototype laser delivery system provided by Waviks, Inc. (Dallas, TX) was mounted on 

a high-angle port of the helium ion microscope at the Center for Nanophase Materials Sciences 

at Oak Ridge National Laboratory. The system consists of a 785 nm fiber-coupled semiconductor 

diode laser (Oxxius Model LBX-785-250-FC-SM-PP) connected with single-mode fiber through 

a vacuum feedthrough into a vacuum probe containing miniature lenses to image the fiber mode 

onto the sample. The vacuum probe is mounted through a 3-axis motorized nanomanipulator 

(Oxford Instruments OmniProbe 200) enabling 100 nm closed-loop encoder feedback control of 

laser spot position with computer control and storage of positions. A photograph of the laser 

delivery system including nanomanipulator, as installed onto the helium ion microscope, is 

shown in Figure 51. As shown, the prototype system includes two optical fiber channels for two 

separate laser wavelengths; only the 785 nm channel was used for these experiments. 

The focusing optics produce an approximately Gaussian circular laser spot on-axis having a 1/e2 

irradiance beam waist (radius) w0 at best focus of 3.85 μm, as measured using a laser beam 

analyzer. Because the angle of the laser port is 54 degrees away from the ion beam and sample 

normal, the laser spot on the sample surface is elongated in the y direction (along the plane of 

incidence) by a factor of (cos 54°)−1 or about 1.7 compared to the spot size in the x direction 

(normal to the plane of incidence), which was confirmed by marks made on samples at high laser 

powers. 

Including all optical coupling losses, the 785 nm laser power incident on the sample 

surface can be set under software control to a setpoint value as high as 176 mW, corresponding 

to a peak laser irradiance at the center of the Gaussian focused laser spot of 478 kW/cm2 at 

maximum laser power. The diode laser can be operated continuously (cw) at a setpoint power, or 

digitally modulated between zero output and the power setpoint with a rise time of under 2 ns, 

using a computer-controlled pulse generator for complete control of pulse duration and 

triggering. For the experiments reported here, unsynchronized periodic repetitive pulsing was 

used, with pulses as short as 100 ns and frequencies (pulse repetition rates) as high as 500 kHz, 

although these pulsewidths and frequencies are not limited by the apparatus. 
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LA-FIBIE Images 

Laser Power Dependence 

Figure 52 shows patterns milled into Ti using the La-FIBIE process with a 1 μs He+ 

dwell time, 100 ns laser pulsewidth, and 50 kHz laser frequency (0.5% duty cycle). Laser power 

was varied and the values are inset in the figure.  The laser powers of 79.0, 35.7, and 20.5 mW 

correspond to peak irradiance levels at the center of the Gaussian laser spot of 88, 44, and 26.4 

kW/cm2, respectively.  The dose for all patterns is approximately 7.5x1018 He+/cm2. At the 

lowest laser power studied (20.5 mW) pattern fidelity is good however the etch yield was lower 

(Figure 50 of manuscript). At greater laser power etch yield increased as described in the main 

text.  However, the higher yield associated with greater laser power promotes etching in 

peripheral regions around the intended patterned area and compromises the pattern fidelity.  

Duty Cycle Dependence 

Figure 53 shows the dependence of duty cycle on the La-FIBIE process. As duty cycle 

increases, there is an increase in etch yield (Figure 50 of manuscript) however at progressively 

higher duty cycle, the pattern fidelity is again compromised. 

Thermal Simulations 

Simulations of laser-induced heating of the Ti/SiNx substrate were performed using 

COMSOL Multiphysics 5.0, which is a commercial finite element method (FEM) software 

package. The expression for heat delivered to the substrate from the laser is derived from the 

Beer-Lambert law: 

 

where P0 is the optical power of the laser, R is the reflection coefficient, A is the absorption 

coefficient, G(x,y) is the Gaussian laser irradiance profile, wx and wy are the 1/e2 irradiance radii 

of the Gaussian laser profile in the x and y directions, respectively, and z is the depth from the 

substrate’s surface. wx and wy were experimentally determined to be 3.85 μm and 5.90 μm, 

respectively, as described above. A linear 10 ns laser ramp time was assumed for this simulation 

and the laser pulse width was varied depending upon the experiment. All absorption was 

assumed to occur in the Ti film, since the extinction coefficient for 785 nm photons in SiNx is 
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approximately zero. The following time dependent heat equation was used to simulate the heat 

transfer throughout the Ti and SiNx substrates substrate: 

 

where ρ is the material density, Cp is the heat capacity at constant pressure, u is the velocity 

vector for thermal transport, and κ is the thermal conductivity.  Convective heat transfer to the 

surrounding atmosphere was neglected since irradiation conditions were under high vacuum and 

T0 was defined as 293.15 K.  A backward differentiation formula time-stepping method with 

strict time steps was used to generate the temporal temperature evolution during laser irradiation.  
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Table 6 reports relevant simulation and material parameters used to simulate the temperature 

temporal evolution induced by the 785 nm laser pulse.  The Ti and SiNx heat capacitance and 

thermal conductivity were approximated for thin films in accordance to Refs151,152. 

Visual Endpoint Monitoring 

Visual endpoint monitoring (VEM) was used to monitor the progress of the milling or 

etching through the Ti, and hence the etch yield. VEM measures the cumulative current collected 

by the detector during a single loop of the patterning process and assigns the value to a unit 

which reflects the electron collection (y-axis). Therefore, the VEM signal decreases as effective 

secondary electron (SE) yield decreases. Since the underlying SiNx has a lower SE yield than the 

Ti substrate, the VEM plot demonstrably indicates when milling or etching through the Ti is 

complete and SiNx milling begins. As shown in Figure 54, there is a sharp decrease in the VEM 

signal once the Ti mill is complete. This method was used to precisely determine all etch and 

sputter yields. 
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2.2.6.2 Figures 

 

Figure 45. (a) Schematic of the focused ion beam induced etching (FIBIE) setup. The focused 

785 nm laser beam, focused He+ beam, and gas injection nozzle share a common confocal point 

on the Ti film surface. (b) In-chamber digital photograph of the experimental setup with the 

beam, laser probe, and gas sources indicated. The GIS needle is retracted in this image. (c) 

Schematic of a He+ milling process of Ti. (d) Schematic of a FIBIE process with the XeF2 

chemical assist. (e) Schematic of a laser assisted FIBIE process. 
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Figure 46. (a) He+ milling of a 200 nm thick Ti film at various doses ranging from 1x1018—

3.7x1019 He+/cm2. (b) in situ, pulsed laser assisted milling with a 478 kW/cm2 laser irradiance, 

100 ns pulse width and 100 kHz frequency. (c) in situ pulsed laser assisted milling with a 478 

kW/cm2 laser irradiance, 300 ns pulse width and 100 kHz frequency. (d) Finite-element 

simulation of the peak Ti film temperature induced by the 478 kW/cm2 laser irradiance as a 

function of time for 100 and 300 ns laser pulses. 
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Figure 47. Focused ion beam induced etching (FIBIE) of Ti film as a function of the localized 

etchant flux of (a) 0, (b) 9.7x1016, (c) 1.3x1017, and (d) 1.5x1017 XeF2 molecules-cm-2s-1. The 

FIBIE experiments were conducted using a 1 μs He+ dwell time, a 0.25 nm pixel pitch and an ion 

dose of 1x1019 He+/cm2. 
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Figure 48. Simulated cross sections of (a) the damage function (the number of damage events per 

lattice site), (b) the deposited nuclear energy per lattice site, and (c) the implanted He+ ion 

concentration. The left column corresponds to a milling simulation (11,250,000 ion dose), and 

the right to an “etching” simulation (2,812,500 ion dose).  Additional simulation parameters are 

listed as follows; 15 nm long line scan, 25 keV beam energy, 1 nm pitch, 2.4 pA current, and 

0.45 μs dwell time. 
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Figure 49. (a) Comparison of FIBIE process and LA-FIBIE process using a 50 μs He+ beam 

dwell time. (b) Titanium etch yield of the FIBIE and LA-FIBIE processes as a function of He+ 

beam dwell time.  LA-FIBIE was conducted with 100 ns laser pulses at an irradiance of 55 

kW/cm2 and a frequency of 50 kHz (0.5 % duty cycle). 
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Figure 50. (a) Simulated peak temperature as a function time for a 100 ns pulse at various laser 

irradiance. (b) Arrhenius ln(etch yield) vs 1000/T plots for the La-FIBIE process with varying 

laser irradiance. Each temperature corresponds to temperature achieved with a 100 ns pulse at a 

laser irradiance of 0, 55.5, 96.7, and 214 kW/cm2
. (c) Etch yield as a function of laser duty cycle 

(pulse width x frequency) for 100 ns laser pulses at 55.5 kW/cm2 irradiance. All etches 

conducted here used a constant 1 μs He+ dwell time (additional conditions can be found in Table 

5). 
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Figure 51. Photograph of the laser delivery system installed on a high angle port near the load 

lock of the Zeiss Orion NanoFab helium ion microscope. Optical probe (silver) mounted through 

the nanomanipulator (black) are indicated within the white ellipse. Only one of the two optical 

fibers was used in these experiments. 
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Figure 52. Patterns milled into Ti using the La-FIBIE process at varying synchronized laser 

powers (inset across the top). The laser pulsewidth was 100 ns and the frequency was 50 kHz 

(0.5 % duty cycle). 

 

 

 
Figure 53. Patterns milled into Ti using the La-FIBIE process at varying synchronized laser duty 

cycle, or frequency. The laser pulse width was held at a constant 100 ns and the frequency was 

varied from 25 – 500 kHz (0.25 – 5.0 % duty cycle) to control the duty cycle. 
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Figure 54. Visual endpoint monitoring of FIBIE (black) and LA-FIBIE (red) processes. Endpoint 

signal is an averaged greyscale value reflecting the number of secondary electrons collected at 

the detector after each patterning loop. The scale of the y-axis is in arbitrary units. Inset helium 

ion microscope images show how the mill progresses with the endpoint signal. 

 

0.00E+000 2.50E+018 5.00E+018 7.50E+018 1.00E+019
0

100

200

300

400

500
En

dp
oi

nt

Dose (ions/cm2)

 1us dwell_NoLaser
 1us dwell_Laser

Mill begins Penetration 
through Ti
terminates

Milling 
process 
terminates

Penetration 
through Ti
begins



130 
 

 

Figure 55. Average ratio of three measures of subsurface damage between the milling and 

etching simulations, as a function of depth within the target (see Figure 48). The average ratio for 

all of these measures over the whole computational domain is approximately four, reflecting the 

fact that the milling simulation has four times the ion dose of the etching simulation. 
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2.2.6.3 Tables 

Table 5. Estimated XeF2 and He+ parameters for FIBIE processes at varies He+ dwell times. All 

patterning was conducted with a 25keV He+ beam and a 0.25 nm pixel pitch. 
 

100 ns 1 us 10 us 50 us 

Localized XeF2 Flux 

(cm2s-1) 

1.6x1017 1.6x1017 1.6x1017 1.6x1017 

Monolayer coverage time 

(μs) 

8.4x103 8.4x103 8.4x103 8.4x103 

Refresh time (pass time) 

(μs) 

4x104 4x105 4.0x106 2.0x107 

Ions per pixel per pass 

(ions) 

1.1 10 110 530 

Ions per surface site per pass 

(ions) 

1.3 13 130 640 
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Table 6. Material and laser parameters for the thermal simulations. 

Simulation 

Parameters 

Value Description 

wx 3.85 [μm] Laser 1/e2 irradiance radius - x 

wy 5.90 [μm] Laser 1/e2 irradiance radius - y 

R 0.594 Reflection coefficient of Ti at 

785 nm 

A 5.58E5 [1/cm] Absorption coefficient of Ti at 

785 nm 

P0 176.2 [mW] Laser power 

Pulse varied [μs] Laser pulse width 

Cp(Ti) 522 [J/(kg*K)] Ti heat capacity 

ρ(Ti) 4506 [kg/m3] Ti density 

κ(Ti) 5.63 

[W/(m*K)] 

Ti thermal conductivity 

Cp(Si3N4) 710 [J/(kg*K)] SiNx heat capacity 

ρ(Si3N4) 3440 [kg/m3] SiNx density 

κ(Si3N4) 2.1 [W/(m*K)] SiNx thermal conductivity 
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2.3 Tungsten Diselenide Patterning and Nanoribbon Formation by Gas-

Assisted Focused Helium Ion Beam Induced Etching 
A version of this chapter was originally published by M. G. Stanford et al.: 

 

 Stanford, M. G.; Pudasaini, P. R.; Cross, N.; Mahady, K.; Hoffman, A.; Mandrus, D. G.; 

Duscher, G.; Chisholm, M. F.; Rack, P. D. Tungsten Diselenide Patterning and Nanoribbon 

Formation by Gas-Assisted Focused Helium Ion Beam Induced Etching. Small Methods 2017, 1, 

1600060. 

 

Michael G. Stanford conducted experiments and performed analysis reported in this 

work. Michael G. Stanford also wrote the manuscript. Kyle Mahady conducted Monte Carlo 

simulations. Nicholas Cross and Gerd Duscher perform scanning transmission electron 

microscopy. David Mandrus synthesized the WSe2. Pushpa Pudasaini conducted electrical 

measurements. All co-authors contributed to manuscript revisions. 

2.3.1 Abstract 

In this work, we introduce a gas-assisted focused helium ion beam induced etching 

(FIBIE) process, which accelerates direct-write patterning of WSe2 relative to standard ion 

milling. The etching process utilizes the XeF2 precursor molecule to provide a chemical assist for 

enhanced material removal relative to ion sputtering. The FIBIE process enables high fidelity 

patterning of WSe2 with doses 5x lower than standard He+ milling. This enables the formation of 

high-resolution WSe2 nanoribbons with dimensions less than 10 nm. The WSe2 nanoribbons 

demonstrate high Raman anisotropy and nanoribbon electrical measurements are reported for the 

first time. The normalized on-currents of field-effect transistors reveal that the electron and hole 

currents are both suppressed and scale with the nanoribbon width, with the electron transport 

experiencing more degradation.  However, on-currents of nanoribbons created by the FIBIE 

process remain orders of magnitude greater than nanoribbons formed by standard He+ milling. 

Scanning transmission electron microscopy and complementary Monte Carlo ion-solid 

simulations reveal that the reduced currents are due to ion-induced damage in the WSe2.   



134 
 

2.3.2 Introduction 

The focused helium ion microscope (HIM) has garnered much attention in recent years 

due to its high resolution imaging and nanoscale synthesis precision.153,154  The resolution of the 

He+ probe, which is less than 1 nm155, has enabled the formation of sub-10 nm nanostructures via 

deposition121, milling16,122,156, and lithography123, to name a few. However, the small mass of He+ 

results in a low sputter yield of target materials in comparison to other ions of larger mass, such 

as Ga+.157–159 Energy loss of 25 keV He+ occurs over a depth and lateral straggle extending 

hundreds of nanometers in typical target materials, and may result in the formation of extensive 

deleterious subsurface defects and substrate swelling.102,143 Beyond this, backscattered He+ 

(BSHe) and recoil atoms in peripheral regions around the intended exposed areas can limit the 

practical resolution of the patterning. This is particularly true when patterning 2-dimensional 

materials in which relatively small doses, which BSHe and recoil atoms are capable of delivering, 

can drastically change the material’s properties.115 For this reason, it is essential to minimize the 

He+ dose required for both subtractive and additive nanoscale processing techniques.  

Focused ion beam induced etching (FIBIE) can conveniently be used to etch a material in 

a direct-write manner dictated by the scanning pattern of the ion beam. To chemically assist the 

sputtering, a precursor gas is introduced into an ion microscope in close proximity to the 

substrate.  The molecules adsorb/desorb to establish an equilibrium coverage based on the 

localized flux and associated residence time, which is a function of gas-surface interactions and 

substrate temperature160. While adsorbed, the precursor gas can be dissociated into radical 

species via inelastic collisions with: 1) primary/backscattered ions, 2) target atoms that 

experience knock-on collisions, as well as 3) subsequent secondary electrons. With appropriate 

selection of the etchant precursor gas, the dissociated radical species form volatile byproducts 

with near-surface atoms of the substrate. The volatile byproducts desorb from the surface and are 

pumped out of the system. An added benefit of FIBIE is that ion-solid momentum transfer adds a 

sputtering component to the etch process, which results in higher etch yield when compared to 

electron beam induced etching. 

The HIM has shown potential to pattern and selectively introduce defects with high 

resolution into 2-D materials such as MoS2
9,161, MoSe2

162, WSe2
163, and graphene11,115,122,164–166. 

Of particular interest, transition metal dichalcogenide (TMD) nanoribbons have been theorized to 
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exhibit unique properties depending upon edge termination167–170. TMDs can be milled when 

suspended on a TEM grid, which conveniently reduces deleterious subsurface and peripheral 

damage which occurs on bulk/supported substrates. In this work, we developed a gas-assisted 

FIBIE process to etch WSe2 with XeF2 on a supported substrate and freestanding. WSe2 was 

chosen due to its ambipolar transport properties and previous work which details the effects of 

He+ irradiation on the behavior of WSe2
163.  Additionally, the tungsten metal is known to etch via 

electron beam induced etching using XeF2
171, thus the cation volatility should not limit the 

chemically assisted process.  As is the case for any focused or large area reactive ion etch 

process, the viability of the precursor enhancing the sputtering rate depends on the volatility of 

the cation and anion byproducts that form.  Conveniently most of the di-chalcogenide (Ch2) 

molecules are volatile as are several chalcogenide-halides and thus an appropriate precursor 

needs to form volatile TMD cation byproducts. During the FIBIE process, He+ irradiation drives 

the dissociation of XeF2 which generates fluorine radicals and volatile WFx and SeFx byproducts 

are subsequently formed, where the likely dominant byproduct stoichiometry is x = 6172. The 

etch yield achieved with the FIBIE process represents a significant increase over the sputter yield 

of the He+
 irradiation alone.  Importantly, the doses required to etch few-layer WSe2 minimizes 

subsurface damage and swelling compared to the ion milling counterpart. Using the gas-assisted 

FIBIE technique, we are able to form high resolution and high fidelity WSe2 nanoribbons 

(WNRs) with widths of less than 10 nm. The WNRs demonstrate high Raman anisotropy 

dependent upon the angle between the polarized light source and nanoribbon orientation.  The 

electrical transport measurements show degraded on-currents through the WNRs, which 

scanning transmission electron microscopy revealed is due to defects generated by the ion-solid 

interactions. Methods for future enhanced nanoribbon processing are discussed.   

2.3.3 Results and Discussion 

During focused ion beam milling, as well as gas-assisted FIBIE, the ion beam irradiates a 

specific array of pixels for a prescribed dwell time and fixed number of loops to realize the 

appropriate areal dose necessary to mill or etch the prescribed feature, respectively. These 

processes occur pixel-by-pixel over the entire patterned area. Figure 56a shows a simplified 

schematic of a typical milling procedure. The ion beam irradiates the target material for a 

prescribed dwell time, which causes sputtering of W and Se atoms, although the smaller mass 
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chalcogen (Se) atoms preferentially sputter at a greater rate9. The sputter yield is quite low 

however and, depending on the WSe2 layer thickness, may require doses exceeding 1x1018 

He+/cm2 to mill though a few-layer TMD flake. As illustrated in Figure 56b the gas-assisted 

FIBIE utilizes a XeF2 precursor gas which is locally injected to the beam interaction region with 

a gas injection system (GIS). Experimental details can be found in the experimental section. 

Importantly, XeF2 does not spontaneously173 etch WSe2, however, under He+ exposure, as shown 

in Figure 56c, XeF2 dissociates and fluorine radicals react and form volatile compounds with Se 

and W. These volatile species remain on the substrate for a residence time before desorbing from 

the surface. Conveniently, ion bombardment and secondary electron emission can reduce the 

residence time of the volatile compound and enhance the etch rate.  All the while, physical 

sputtering, which is exclusively operative in a standard ion mill, contributes to the overall 

etching.  Figure 56d shows an example of a pattern etched into few-layer WSe2 with the FIBIE 

process. Sub-10nm WNRs were created with a fraction of the dose (~20%) required for a 

standard milling process. Mechanistic details of the etch process are discussed in this work. 

Figure 57a shows milled patterns conducted on few-layer WSe2 (~ 24 nm thick) as a 

function of irradiation dose.  A dose approaching 3.2x1018
 He+/cm2 was required for complete 

milling of the WSe2, which was exfoliated onto a 290 nm SiO2 on Si substrate. The dose required 

to complete the etch process was determined based on the etch time from in situ videos of the 

process and visual endpoint monitoring of secondary electron generation. Areal dose was then 

calculated by multiplying the etch time by the beam current and dividing by the elementary charge 

and patterning area. Based on the areal dose, one can estimate the effective etch rate. The volume 

of WSe2 and SiO2 removed during the FIBIE process was estimated by multiplying the patterned 

area with the AFM determined thickness of the WSe2 flake and reflectometry determined thickness 

of the SiO2. The total atoms removed were estimated by multiplying the densities (9.32 g/cm3 and 

2.65 g/cm3 for WSe2 and SiO2, respectively) by the etched volume and then dividing by the 

molecular weight and Avogadro’s number. Finally, the sputter and etch yields were determined by 

dividing the estimated sputtered/etched atoms by the total number of ions (dose × patterning area), 

as determined by the endpoint monitoring process and in situ videos. For He+ milling of WSe2, the 

sputter yield was determined to be ~0.04 atoms/ion, which is approximately half of the sputter rate 

predicted by Monte Carlo simulations (0.097 atoms/ion).  At this low sputter yield, and hence high 
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dose, the underlying substrate experienced major subsurface damage and swelling.  This illustrates 

the need for a chemical assisted process to accelerate the etch rate and reduce the dose required 

for material removal. An important consideration during the FIBIE process is the precursor gas 

flux and coverage to the patterning region relative to the He+ beam current, dwell time, and loop 

time. At a given gas flux, if the He+ pixel dose (current × dwell time / area) is sufficiently large, 

the XeF2 species are depleted and the chemical assist is reduced in this mass transport limited 

regime; in this regime, the chemical enhancement depends on XeF2 replenishment from the gas 

flux and surface diffusion from the surrounding area.  Furthermore, if the byproduct residence time 

is long, the He+ beam can cause re-dissociation of the WF6 and SeF6 species which further reduces 

the etch rate126. In contrast, if the He+ dwell time is relatively short, and XeF2 coverage high, the 

etching regime operates in a reaction rate limited regime174. Figure 57b and Figure 57c show 

patterns etched into the WSe2 using the gas-assisted FIBIE process as a function of dose, with a 

30 μs and 100 ns He+ dwell time, respectively. These patterns have a constant pixel pitch of 0.25 

nm and the XeF2 chamber partial pressure for this study was approximately 6x10-6
 Torr, which 

equates to a localized flux of ~1.6×1017 cm-2s-1, calculated in accordance with 149.  The SE detector 

current and in situ SE videos during milling/chemically assisted etching gives signatures of when 

the WSe2 and SiO2 layers are etched and can be used to monitor the etch process175.  For instance, 

when complete etching of the WSe2 occurs the underlying SiO2 layer appears brighter due to its 

larger SE yield and when complete etching of the SiO2 occurs the underlying Si appears darker 

due to its smaller SE yield (additional details on visual endpoint monitoring and the etch process 

can be found in supporting information and experimental section). Using a 30 μs He+ dwell time, 

complete removal of the WSe2 occurs at approximately 1.5x1018 He+/cm2, however with a 100 ns 

dwell time, complete WSe2 removal occurs at approximately 5.0x1017
 He+/cm2; thus the 30 μs 

dwell time is mass transport limited and the 100 ns dwell time is more favorable for achieving a 

higher etch yield. Importantly, the WSe2 is completely etched with high fidelity at the lower dose 

and prevents the onset of surface swelling relative to the He+ milling. For a constant beam energy 

(25keV), pixel pitch (0.25 nm), current (1.7 pA), and gas chamber pressure (6x10-6 Torr) the etch 

yields as a function of dwell time are plotted in Figure 57d for WSe2 and SiO2. Gas-assisted FIBIE 

yields of 0.23 atoms/ion and 1.7 atoms/ion for WSe2 and SiO2, respectively, represent a significant 

enhancement over the He+ sputter yield (0.04 atoms/ion); this low sputter yield is consistent with 
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other He+-material’s sputter yields104,157,158,163. The slope of the curve in Figure 57d suggests that 

the etch yield is not saturated and could be enhanced further by a decreased dwell time, reduced 

current, or increased pixel pitch. Figure 57e shows the effect that pixel pitch has on the etch yield 

during the FIBIE process with a 100 ns He+ dwell time and all other parameters similar to Figure 

57d. As the pixel pitch increases to 8 nm, the FIBIE yields for WSe2 and SiO2 increase to 0.42 

atoms/ion and 2.8 atoms/ion, respectively. This etch enhancement is attributed to the effective 

increase in XeF2 coverage for each pixel during ion irradiation.  Saturation of the etch yields as 

pixel pitch increases suggests we have approached a reaction rate limited (RRL) regime. Thus an 

etch enhancement of ~10x is realized relative to the He+ sputtering. 

To better understand the FIBIE regimes, we estimated the XeF2 monolayer coverage time 

and compared it with the ion beam dwell time and loop time. The XeF2 flux in the experiments 

delivered to the working area was estimated to be 1.6x1017 cm-2s-1 (XeF2 chamber partial 

pressure ~ 6.0x10-6 Torr). Based on our standard etching conditions (25 keV, 1.7 pA, 100 ns 

dwell time, and 0.25 nm pixel spacing), the number of ions that each pixel is exposed to per pass 

is 1.1 ions or 1.3 ions on each WSe2 surface site. The time between subsequent exposures on the 

same pixel, or the loop time, is 4.0x104 μs, and the monolayer coverage time of XeF2 molecules 

(assuming unity sticking coefficient) on the substrate is approximately 8.4x103 μs. Therefore, 

there is sufficient time between pixel exposures for XeF2 to fully refresh. This data is 

summarized in Table 7. On the contrary, when a 30 μs dwell time is used, each pixel is exposed 

to 320 ions per pass (380 ions per surface site). Although the loop time is sufficiently long to 

ensure monolayer coverage between pattern passes, the large number of ions delivered to each 

surface site per loop quickly depletes the XeF2 coverage and results in a less efficient MTL 

regime. Clearly there is replenishment via surface diffusion and adsorption during the pixel dwell 

time as the etch efficiency is only 3x higher for the shorter dwell time; the effective etch yields 

are approximately 0.07 and 0.23 atoms/ion for 30 μs and 100 ns dwell times, respectively. 

Table 7 also compares the gas and ion beam regimes as a function of patterning pixel 

spacing. Specifically, the table compares a 0.25 nm and 4 nm pixel spacing for the 100 ns dwell 

time.  For a 4.0 nm pixel pitch, there are 4.9x10-3 ions per WSe2 surface site per pass. This 

condition is in an efficient RRL regime, and results in greater etch efficiency of approximately 

0.42 atoms/ion. However, considering that the He+ probe can be focused to a sub-nanometer size, 
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using a relatively large pixel spacing (e.g. 4 nm) can limit the resolution of the patterning process 

at the price of enhanced etching efficiently. This should be considered when high-resolution 

etching is desired.  

Suspended few-layer WNR arrays for STEM imaging were fabricated using the FIBIE 

process with a 100 ns He+ dwell time, and a 0.5 nm pixel pitch. The requisite dose to etch the 

suspended WSe2 layer was 3.0x1017 He+/cm2.  These conditions result in high resolution as well 

as a high etch yield.  Figure 58a shows a macro HAADF STEM image of a single ribbon, which 

was determined to be ~10 nm thick by Electron Energy Loss Spectroscopy (EELS).  This confirms 

that high-aspect ratio etching can be conducted using the FIBIE process. Figure 58b reveals that 

crystallinity is maintained across the width of the nanoribbon although some disorder is introduced 

into the crystal lattice. The high-resolution image in Figure 58c shows that only a small amorphous 

region and small edge roughness (< 0.5 nm) exists at the etched edge of the nanoribbon, indicating 

the sub-nanometer precision of the FIBIE process.  Edge termination is not obvious from the 

STEM which reveals a disordered edge region.  Furthermore, the multi-layer WSe2 may exhibit 

differing edge roughness/terminations for each layer. Figure 58d reports the Bragg spot width 

versus the distance from the edge of the WNR. The Bragg spot width is directly related to the 

disorder in the crystal lattice, where the spot width increases with increasing disorder. Additional 

information on the measurement procedure can be found in the Supporting Information. Figure 

58d indicates that some damage and point defects extend from the edge of the etched region for a 

distance up to ~ 120 nm, however distinct Bragg spots indicate that the ribbon lattice remains 

crystalline.  This lateral distance is surprising, considering the total thickness of the WSe2 and 

underlying amorphous carbon membrane is only ~ 25 nm.  This distribution of minor damage in 

the interior of the nanoribbon is attributed to interactions with scattered He+, displaced target atoms 

(vacancy production), or moving recoil atoms from the WSe2 or substrate coming to rest within 

the film (interstitial production or vacancy elimination, depending on whether the location where 

the recoil atom comes to rest was empty). Multiple studies have shown that sufficient damage in 

peripheral regions surrounding the intended ion-beam patterned geometry can be induced, which 

significantly alters the material’s optoelectronic properties11,115,176. Although defects are 

introduced into the crystal lattice during patterning, the FIBIE process results in a far smaller 
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distribution of damage in comparison to a standard He+ milling process, due to the major reduction 

in the dose required for WSe2 material removal.   

We study the subsurface and peripheral damage associated with etching via our 

EnvizION simulation code103,177–179. Figure 59a shows the deposited nuclear energy (log scale) 

at an equivalent areal dose of 3.0x1017 He+/cm2 and a 15 nm x 1000 nm scan for the x-y plane (at 

a depth of 10 nm) and Figure 59b shows the y-z plane (perpendicular to the scan axis at the x=0 

position).  For context, we note that Bohmayr et al.145 reports a nuclear energy density of ~12 

eV/atom is required for amorphizing silicon (which is close to our simulated estimates of ~5.5 

eV/atom for silicon). For the simulated thin membrane STEM sample, the nuclear energy loss is 

on the order of 0.3 eV/atom at a distance of 120 nm from the etch edge which is reasonable and 

consistent with the discernible damage observed in the STEM images. Therefore, an energy loss 

of 0.3 eV/atom is the threshold for discernable damage to the lattice.  Complementary 

simulations for a bulk substrate are also shown in Figure 59c) x-y plane and Figure 59d) y-z 

plane.  Comparing Figure 59a) and b) to c) and d) illustrates the enhanced nuclear energy loss 

and thus defects generated in bulk versus thin substrates.  The extended or bulk substrate causes 

more of the backscattered ion contribution to interact with the WSe2 layer and thus the nuclear 

energy loss at the same 120 nm distance from the etched edge is on the order of ~ 1-2 eV/atom. 

Damage in the WSe2 nanoribbons fabricated on a bulk substrate extends to a distance of ~155 

nm from the edge of the etched region, if a damage threshold of 0.3 eV/atom is assumed.   It is 

worth noting that the TMD damage on bulk substrates will depend on the material where high 

density and high Z-number materials will typically reduce the interaction volume and low 

density and low Z-number materials will lead to larger interaction volumes.   

Extended arrays of high-fidelity WNRs were fabricated on a SiO2/Si substrate using the 

FIBIE process with 100 ns dwell time and 0.25 nm pixel pitch He+ beam conditions. A high 

magnification SEM micrograph, shown in Figure 60a, of etched WNRs reveal that high fidelity 

patterns with smooth sidewalls can be fabricated.  The FIBIE process can be used to fabricate 

sub-10 nm highly aligned WNRs (as shown in Figure 60d).  Notably, high quality large WNR 

arrays with controllable aspect ratio and ribbon pitch can be fabricated on supported substrates.  

Recently, Wu et al.161 have demonstrated that MoS2 nanoribbons demonstrate highly 

anisotropic optical behavior. The optical anisotropy and enhanced intensity of the Raman modes 
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are attributed to anisotropy in optical absorption depending upon NR orientation and NR edges, 

which break up the translational symmetry of the crystal and relaxes selection rules, respectively. 

Figure 60b shows the Raman spectra of a 20 nm WNR array as a function of angle between 

polarization angle of the incident laser spot and the nanoribbon direction. As the angle increases 

from 0o to 90o the intensity of the E1
2g and A1g modes (which are indistinguishable in the spectra) 

decrease by a factor of 2.6 when normalized to the Si peak. The angular dependence of the 

Raman anisotropy of the E1
2g mode is shown in the inset of Figure 60b, which confirms that 

similar to MoS2 NRs, WNRs also exhibit high Raman anisotropy.  

Transport measurements of WNRs were collected in a bottom-gated field-effect transistor 

(FET) configuration. A schematic of the device structure is shown in Figure 61a. To fabricate 

the devices, 1 μm long WNR arrays were etched across the entire width of the WSe2 channel 

regions.  For comparison, WNRs were etched using the FIBIE process (FIBIE-WNR) as well as 

milled with no chemical assist (HIM-WNR). The details of the WNRs FET fabrication can be 

found in the experimental section. The etched regions were patterned in parallel, thus optimizing 

the total loop time of the process, which enhances the XeF2 coverage between successive passes. 

For all FIBIE-WNR devices reported here, the doses required to etch the WSe2 were 1-2x1017 

He+/cm2. However, a dose of ~ 3x1018 He+/cm2 was required to fabricate the HIM-WNR device. 

Figure 61b shows an SEM image of a device with a WNR array spanning the entire channel 

width. Inset images show the FIBIE-WNR and HIM-WNR arrays at higher magnification. 

Notably, the FIBIE-WNR array is smooth with well-defined sidewalls.  In comparison, the HIM-

WNR array has rough texture and sidewalls, presumably due to significant damage introduced 

into the WNR from the large milling dose required.  Additional images of the WNR devices can 

be found in the supporting information. Transfer curves comparing pristine WSe2 (solid curves) 

devices and the FIBIE-WNR and HIM-WNR (dotted curves) devices are shown in Figure 61c. 

Clearly, the FIBIE-WNR device can still be modulated by the bottom gate, but the carrier 

transport across the channel is suppressed beyond the simple reduction of the channel width. 

This is likely because edges of the WNRs, as well as defects induced by BSHe and recoil atoms in 

the ribbon, serve as scattering sites for charge carriers. However, the Ion/Ioff ratio for the FIBIE-

WNR is approximately 103 in comparison to 101 for a HIM-WNR device. This indicates that the 

extent of damage introduced into the WNR is far less for the FIBIE process, and illustrates 
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another advantage of the FIBIE process for nanoribbon formation in comparison to the standard 

ion milling process, which has historically been used. Figure 61d reports the ratio of ON state 

currents of WNR devices to that of few layer pristine WSe2 devices as a function WNR widths 

for both electron transport (red) and hole transport (black) with ± 60 V gate bias. Interestingly, 

electron transport is suppressed to a greater extent than hole transport for all WNR widths tested. 

In particular, the 120 nm wide WNR device experiences minimal reduction in the hole 

conduction (negative gate voltage) relative to the electron conduction. The preferential 

suppression of electron conductivity may arise from several mechanisms. Tungsten vacancies 

created in the ribbon during the FIBIE process may suppress electron conduction.  This vacancy 

would act as a highly localized p-type dopant and could act as a trap for electrons180.  Fluorine 

plasma processing has also been used to p-dope MoS2
181. The incorporation of F can induce 

charge transfer processes due to its strong electronegativity and behave as a p-type dopant. 

However, complementary EELS measurements (not shown) taken in the STEM show no 

indication of F doping within detectable limits. The narrower nanoribbons exhibit a greater 

suppression in hole and electron conductivity in comparison to thicker ribbons, and this trend is 

expected to continue for narrower nanoribbons than those reported here (see SI for 25 nm 

WNRs).  This is consistent with the greater number of edge states as well as increased damage 

induced within the nanoribbon from the FIBIE process.  While sub-10 nm resolution is 

demonstrated, drift correction strategies are necessary for generating larger area sub-10 nm 

nanoribbon arrays.  

He+ induced FIBIE enables high-resolution patterning of the WSe2 at higher etch rates 

and consequently lower doses.  Gas-assisted etch rates were enhanced as much as 10x at large 

pixel pitch relative to He+ milling.  However, for optimum resolution and etch rate, a 0.5 nm 

pitch was used to etch the nanoribbons which resulted in a 5x enhancement.  The enhanced etch 

rate and lower He+ dose significantly reduced the peripheral damage.  However, the amount of 

defects introduced into the lattice may still be too great for various optoelectronic applications.  

We have previously demonstrated that laser-assisted graphene nanoribbon patterning with the 

He+ beam can reduce the defect concentration and improve conductivity over a standard He+ 

milling process143. Alternatively, focused electron beam-induced etching (FEBIE) could be used 

to create nanoribbons with a minor reduction in resolution. FEBIE should result in a significantly 
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reduced defect concentration introduced into the nanoribbon lattice because electrons are not 

likely to generate lattice displacements due to their small mass. Therefore, laser-assisted FIBIE 

and FEBIE provide alternative nano-fabrication processes, which may reduce the defect 

concentration incorporated within the nanoribbons.  Finally, post-nanoribbon annealing in a 

selenium ambient could reduce the ion induced damage and number of selenium vacancies.   

2.3.4 Conclusions 

In conclusion, we have developed a focused ion beam induced etching process to pattern 

WSe2. This enables the direct-write formation of high-resolution nanostructures in WSe2 

including nanoribbons with a sub-10 nm width. For the XeF2 mediated FIBIE, lower doses are 

required to etch the WSe2 compared to standard He+ milling which enable the fabrication of 

WSe2 nanoribbons on supported substrates which reduces deleterious subsurface damage and 

surface swelling. STEM imaging reveals that the WSe2 nanoribbon edges have high-fidelity, 

however defects are generated up to 120 nm from the nanoribbon edge from the ion-solid 

interactions in the sample.  The fabricated WSe2 nanoribbons exhibit high intensity anisotropy of 

Raman modes. WSe2 nanoribbon field effect transistors were also fabricated and modulated via a 

bottom-gate bias. The gas-assisted FIBIE process should enable the simple chemical etching 

strategy for many 2D TMD materials and the reduction of He+ dose required to pattern few-layer 

TMDs can enable the formation of nanoribbons on supported substrates. Of particular interest, 

edge sites of TMD nanoribbons can exhibit ferromagnetic properties with zig-zag edge 

termination. This FIBIE as well as alternative laser-assisted FIBIE and electron beam induced 

etching processes should allow for further experimental studies of interesting magneto-opto-

electronic phenomena. 

2.3.5 Methods 

2.3.5.1 Focused Ion Beam Induced Etching 

Focused ion beam induced etching (FIBIE) was carried out using the Zeiss Orion 

Nanofab helium ion microscope. This system is equipped with an OmniGIS I gas injection 

system (GIS). The GIS system delivered precursor molecules into the chamber from a solid XeF2 

source. During the gas injection, the XeF2 source was cooled to 15oC in order to control vapor 

pressure. The GIS needle was positioned ~ 100 μm above the substrate and ~ 200 μm radially 

from the center of the microscope’s field of view. All FIBIE experiments were conducted with a 
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XeF2 partial pressure of ~ 5-6x10-6 Torr. Helium ions (He+) were generated with an acceleration 

voltage of 25 kV. The beam current was held constant for all exposures at 1.7 pA and was 

controlled by using a 20 μm aperture and changing the spot number keep a constant current. All 

exposure patterns where generated using the NanoPatterning and Visualization Engine (NPVE) 

pattern generator produced by Fibics Inc. 

Nanoribbons were fabricated using a parallel exposure strategy.  Each array consisted of 

multiple rectangular etch patterns with equal spacing, and during FIBIE each rectangular pattern 

would be exposed to a single pass before the next one would begin. A 100 ns He+ dwell time was 

used in order to work in a more reaction-rate limited regime. Visual endpoint monitoring was 

used to determine when the etch process was completed and the patterning was subsequently 

terminated to prevent severe over etching in the underlying SiO2. Addition details are provided 

for the visual endpoint monitoring in the following section. 

2.3.5.2 Visual Endpoint Monitoring  

In order to track the progress of the FIBIE process, videos were recorded and the detector 

secondary electron (SE) collection was monitored to reveal the doses required to mill through the 

WSe2 and underlying SiO2, as a method of visual endpoint monitoring (VEM). The contrast of 

the HIM image is dependent upon the material’s SE yield (γSE), among other factors such as 

sample geometry. Material with a greater γSE will emit more SEs under He+ irradiation and 

results in a higher brightness. Conversely, materials with a smaller γSE will emit less SEs and 

results in a lower brightness. Changes in the contrast of the HIM images during the FIBIE 

process were used to determine when material etching was complete. Frames of a typical video 

recorded during FIBIE are shown in the Supporting Information (Figure 62). The dose required 

to complete the etch process can be determined based on the etch time determined in the videos 

multiplied by the beam current and divided by the elementary charge and patterning area. 

The dose to completely mill through any portion of the pattern area and the dose to 

completely mill through the entire portion pattern area were recorded for all etching 

experiments. This dose was determined by the aforementioned endpoint monitoring of the 

secondary electron current traces and detailed image analysis of the frame-by-frame videos that 

were recorded. The dose values were averaged to determine the etch yield and the standard error 

was calculated and displayed as error bars in Figure 57. 
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2.3.5.3 WSe2 Field Effect Transistor Device Fabrication 

Single crystal WSe2 flakes were exfoliated onto SiO2 (290 nm)/Si (heavily doped Si 

which also serves as a bottom gate electrode) substrate from a bulk WSe2 single crystal by the 

‘Scotch tape’ micromechanical cleavage technique and were identified by their optical contrast. 

The thicknesses of the exfoliated WSe2 flakes were measured using an Atomic Force Microscope 

(AFM).  Standard e-beam lithography followed by e-beam evaporation was employed to create 

the source/drain electrodes for electrical measurements. The contacts consisted of Ti/Au (5/30 

nm) metals deposited and subsequently patterned via a lift-off process. The electrical 

characteristics of the fabricated WSe2 devices were measured using an Agilent semiconductor 

parametric analyzer (Agilent Tech B1500 A). 

All nanoribbon arrays were fabricated across the entire channel width of the device and 

with a length of 1 μm. The He+ beam conditions of 100 ns dwell time and 0.25 nm pixel pitch 

were used. Since all of the nanoribbons were patterned in parallel, this resulted in reaction rate 

limited etching. The XeF2 flux to the surface of the FET was approximately 1.6x1017 cm2 s-1 for 

all WNR fabrication. 

2.3.5.4 Raman Measurements 

Raman spectroscopy was performed in a Renishaw inVia micro-Raman system using a 

532 nm excitation laser. A 100 × magnification objective was used for spectral acquisition with a 

10 s acquisition time and three acquisitions were averaged together. The laser spot size was 

approximately 0.6 μm.  WSe2 nanoribbon arrays were incrementally rotated with respect to the 

polarization axis of the Raman instrument in order to observe the anisotropy of the E1
2g Raman 

peak. Data analysis was conducted with the WIRE v3.4 software. 

2.3.5.5 STEM Imaging 

All STEM microscopy was carried out using a Nion UltraSTEM 200 operating at an 

accelerating voltage of 200 kV.  Flakes of WSe2 were exfoliated from a bulk crystal on onto 

films on continuous α-carbon film grids.  The sample was baked at 160 oC in an inert atmosphere 

for 9 hours directly prior to imaging.  The few-layer WSe2 images consist of averaging 20 frames 

each 512 x 512 pixels with a 4 μs dwell time per pixel.   
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2.3.5.6 Monte Carlo Damage Simulations 

We study the subsurface damage associated with milling by means of our EnvizION 

simulation code103,177–179.  EnvizION simulates the ion stopping and recoiling process using a 

Monte-Carlo based method similar to SRIM-TRIM150, with compound energetics based on 

TRIDYN182,183. We simulated the average nuclear energy deposited per ion, measured as the 

density of nuclear energy lost in elastic collisions between ions/recoil atoms and target atoms.   

We simulate the three dimensional deposited nuclear energy as the average per ion of 10 million 

He+ ions, with an initial He+ energy of 25 keV, on a 10 nm layer of WSe2 on top of a 15 nm layer 

of carbon and on top of a bulk silicon substrate. To estimate the total subsurface damage, we 

then raster each of these profiles in a 15 nm by 1 μm in-plane (x-y) pattern, at density dose of 

3x1017 ions/cm2. Note that this method may over-predict subsurface damage particularly in the 

thin sample since cumulative sputtering is not taken into account: as material is removed, the 

WSe2 layer becomes thinner, which would tend to allow ions to pass more easily into the carbon 

layer, or out the other side of it. 
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2.3.6 Appendix 

2.3.6.1 Supporting Information 

Visual Endpoint Monitoring 

In order to track the progress of the FIBIE process, videos were recorded and monitored 

to reveal the doses required to mill through the WSe2 and underlying SiO2, as a method of visual 

endpoint monitoring (VEM). The contrast of the HIM image is dependent upon the material’s 

secondary electron (SE) yield (γSE), among other factors such as sample geometry. Material with 

a greater γSE will emit more SEs under He+ irradiation and results in a greater brightness. 

Conversely, materials with a smaller γSE will emit less SEs and results in a lesser brightness. 

Changes in the contrast of the HIM images during the FIBIE process were used to pinpoint when 

material etching was complete. Frames of a typical video recorded during FIBIE are shown in 

Figure 62. Dose required to complete the etch process can be determined by based on the etch 

time determined in the videos and factors such as beam current, pixel pitch, and dwell time. This 

method, along with AFM measurement of the WSe2 flake thickness, was used to determine the 

etch yields reported in Figure 57 of the main text.   

25 nm WNR Device Performance 

The pristine device (Figure 66c) had abnormally low electron conduction. Consequently, 

the measured WNRs exhibited an anomalously high IWNR/Ipristine and thus we did not include this 

in Figure 61 (however, the hole transport ratio follows the trend shown in Figure 61). 
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2.3.6.2 Figures 

 
Figure 56. Schematic of (a) a He+ milling process, (b) XeF2 gas injection, and (c) focused ion 

beam induced etching of WSe2. (d) SEM image of WSe2 nanoribbons created with the FIBIE 

process.  Scale bar is 40 nm. 
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Figure 57. (a) SEM image of He+ milling of ~24 nm thick WSe2 at doses ranging from 5x1017 – 

5x1018 He+/cm2. Scale bar is 400 nm. (b) FIBIE of WSe2 with He+ dwell time of 30 μs. (c) FIBIE 

of WSe2 with He+ dwell time of 100 ns. All patterns are 50 nm x 500 nm. (d) Etch yield of the 

FIBIE process as a function of dwell time for WSe2 as well as SiO2. (e) Etch yield of the FIBIE 

process at a constant 100 ns dwell time as a function of patterning pixel spacing. 
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Figure 58. HAADF STEM images of a WNR. (a) Macro image of a single ribbon. (b-c) High-

resolution images of the ribbon edge showing high crystallinity in close proximity to the etched 

surface. (d) Fourier transformations of 10 nm x 10 nm sub-areas were performed and the width 

of {110} type reflections were measured in units per nm. Six measurements from each sub-area 

were used to find the average spot width and standard deviation. We use this width as the 

measure of crystallinity.  The broadening of the reflection indicates that the crystal has been 

perturbed by the helium ion irradiation. After about 120 nm, the value of the unperturbed crystal 

is reached. 

 

10 nm  10 nm  2 nm  

(a) (b) (c) 

(d) 
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Figure 59. Simulated (a) aerial view (x-y plane) and (b) cross-section (y-z plane) of the deposited 

nuclear energy, associated with scanning a 25 keV He+ ion beam on a WSe2 layer occupying the 

top 10 nm, with a 15 nm thick carbon layer underneath. The equivalent areal dose is 3.0x1017 

He+/cm2. The simulation domain and He+ dose correspond to the experimental conditions used in 

Figure 58. Note that the plot is on a log scale. (c) Aerial view (x-y plane) and (d) cross-section 

(y-z plane) of the deposited nuclear energy into 10 nm of WSe2 on top of a bulk Si substrate.  

The scan parameters are 15 nm by 1 μm. 
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Figure 60. (a) SEM image of an array of 20 nm WNRs. (b) Raman spectra of WNR array 

normalized to the Si peak as a function of angle between polarization angle of the incident laser 

spot and the nanoribbon direction. The angular dependence of the Raman anisotropy of the E1
2g 

mode is shown in the inset. 

 



153 
 

 
Figure 61. (a) Schematic of WNR TFT from side and top view. (b) SEM image of a FET device 

fabricated with an array of WNRs which are 1 μm long. Scale bar is 3 μm. Inset are SEM images 

of WNR devices fabricated using standard He+ milling (HIM-WNR) and the FIBIE process 

(FIBIE-WNR). Scale bar is 300 nm. (c) Normalized channel currents as a function of gate bias 

(IDS vs VGS) for pristine WSe2 (solid curves) and HIM-WNR and FIBIE-WNR (dotted curves) 

devices. The effective channel width of FIBIE-WNR devices are normalized to fill factor. (d) 

Ratio of ON state currents of the FIBIE-WNRs to that of pristine WSe2 devices as a function 

WNRs widths for both electron transport (red) and hole transport (black). The ON state currents 

for electron are measured at +60 V gate bias, while for hole are measured at -60 V gate bias with 

1.0 V source-drain excitation. 
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Figure 62. Helium ion microscope images of frames from video recorded during FIBIE to 

monitor etch progress.  Timestamp of frames are used to determine etch dose and hence etch 

yield. 
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Figure 63. AFM image of flake where milling experiments were conducted. A thickness line 

profile is displayed which shows that flake thickness was approximately 24.15 nm. 
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Figure 64. Raman spectra for a pristine WSe2 flake as well as Raman spectra for 20 nm WNRs as 

different orientations to the polarized laser source axis. Significant Raman anisotropy is observed 

for the WNRs but not for the pristine WSe2. 
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Figure 65. SEM images of three FIBIE-WNR devices and a HIM-WNR device. The nanoribbon 

widths shown here are 120, 65, and 25 nm. 

 

FIBIE –WNR 25 nm FIBIE –WNR 65 nm 

FIBIE –WNR 120 nm HIM-WNR 65 nm 
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Figure 66. (a) SEM image of a WNR device composed of an array of 25 nm WNRs. (b) SEM 

image of the WNR array. (c) Transfer curve of the transistor before (pristine) and after the 

fabrication of the 25 nm aligned WNR array. 
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Figure 67. (a) 64 nm x 64 nm HAADF image analyzed for the disorder measurements.  The red 

square, 10nm x 10 nm, is arbitrarily placed and represents the sub-area used to find specific 

spatial information from within the total image. (b) Fast Fourier transforms FFT) of the sub-area 

with the -110 reflection circled and the red line marking the path of the intensity profile. (c) FFT 

Intensity profile. The width of these peaks are used as the measure of material order/disorder. 
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Figure 68. EELS from the WNR on amorphous carbon membrane. Integrating under the Se L2,3 

Edge we get that Se is 712 Se atoms/nm2 and Se in WSe2 with P6/mmc symmetry has a volume 

density of 65.9 Se atoms/nm3.  The layer density is 44.8 Se atoms/nm2. It was determined the 

WSe2 flake thickness shown in STEM images was approximately 10 nm. 
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2.3.6.3 Tables 

Table 7. Estimated XeF2 and He+ parameters for FIBIE processes with 30 μs and 100 ns dwell times with 

a 0.25 nm pixel pitch and for a FIBIE process with a 100 ns dwell time and a 4.0 nm pixel pitch. 

  30 us dwell, 

0.25 nm pitch  

100 ns dwell, 

0.25 nm pitch 

100 ns dwell, 

4.0 nm pitch  

Localized XeF2 flux 1.6x1017 cm2 s-1 1.6x1017 cm2 s-1 1.6x1017 cm2 s-1 

Monolayer coverage time 8.4x103 μs 8.4x103 μs 8.4x103 μs 

Refresh time (loop time) 1.2x107 μs 4.0x104 μs 1.6x102 μs 

Ions per pixel per pass 320 ions 1.1 ions 1.1 ions 

Ions per WSe2 surface site per pass 380 ions 1.3 ions 4.9x10-3 ions 

Ions per nm3 etched 730 ions 210 ions 120 ions 

 

 

Table 8. the doses required to etch through the WSe2 and SiO2 at various dwell times. These 

values were extracted by analysis of the VEM as well as correlation with recorded videos of the 

etch process. 

Dwell 

time 

WSe2 etch dose 

(He/cm2) 

SiO2 etch 

dose 

100 ns 5.50E+17 1.79E+18 

1 us 8.70E+17 2.23E+18 

10 us 1.80E+18 2.40E+18 

30 us 2.00E+18 2.80E+18 
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CHAPTER III 

 TUNABLE MATERIAL PROPERTIES VIA DEFECT ENGINEERING IN 

2D MATERIALS BY ION BEAM IRRADIATION 
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3.1 Focused Helium-Ion Beam Irradiation Effects on Electrical Transport 

Properties of Few-Layer WSe2: Enabling Nanoscale Direct Write Homo-

junctions 
A version of this chapter was originally published by M. G. Stanford et al.: 

 

 Stanford, M. G.; Pudasaini, P. R.; Belianinov, A.; Cross, N.; Noh, J. H.; Koehler, M. R.; 

Mandrus, D. G.; Duscher, G.; Rondinone, A. J.; Ivanov, I. N.; et al. Focused Helium-Ion Beam 

Irradiation Effects on Electrical Transport Properties of Few-Layer WSe2: Enabling Nanoscale 

Direct Write Homo-Junctions. Sci. Rep. 2016, 6, 27276. 

 

Michael G. Stanford conducted experiments and performed analysis reported in this 

work. Michael G. Stanford also wrote the manuscript. Pushpa Pudasaini fabricated electrical 

devices and performed characterization. Kyle Mahady conducted Monte Carlo simulations. 

Nicholas Cross and Gerd Duscher perform scanning transmission electron microscopy. David 

Mandrus synthesized the WSe2. All co-authors contributed to manuscript revisions. 

3.1.1 Abstract 

 Atomically thin transition metal dichalcogenides (TMDs) are currently receiving 

significant attention due to their promising opto-electronic properties. Tuning optical and 

electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by 

controlling the defects, is an intriguing opportunity to synthesize next generation two 

dimensional material opto-electronic devices. Here, we report the effects of focused helium ion 

beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high 

resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical 

transport measurements. By controlling the ion irradiation dose, we selectively introduce precise 

defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the 

material. Hole transport in the few layer WSe2 is degraded more severely relative to electron 

transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion 

beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in 
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few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-

electronic devices.  

3.1.2 Introduction 

Two-dimensional transition-metal dichalcogenides (TMDs) have recently garnered 

interest due to their novel electronic and optoelectronic properties and provide promise for next 

generation device technologies. TMDs belong to the MX2 family where M = W, Mo, or Nb and 

X = Se, S, or Te.184,185 Much of the interest in TMDs is fueled by the presence of a band gap, 

which enables the creation of atomically thin semiconductor devices that are otherwise difficult 

to fabricate from intrinsically gapless materials such as graphene.  

Single layer WSe2 has a direct band gap of ~1.67 eV186 and an indirect band gap of ~1.2 

eV187 in the bulk, which is in the visible spectrum. High quality WSe2 films can be easily 

fabricated by mechanical exfoliation from single crystal down to a single, or a few layers. 

Exfoliated WSe2 layers have been successfully used in thin-film transistors188, electrostatically 

gated light emitting diodes189,190, and electrostatically gated photodiodes191 to name a few. 

Chemical vapor deposition (CVD) growth has been used to create large area synthesis of TMD 

monolayers192 as well as lateral heterojunctions between TMDs of different composition.193 This 

advance has allowed the realization of devices with precisely controlled thicknesses to be 

functionalized by lateral junctions 193,194. 

Tuning of defects within TMD devices serves as an alternative method to vary electronic 

and optoelectronic properties. Irradiation with charged particle beams allows precise control of 

defect generation by altering beam conditions and exposure dose. Kim et al. demonstrated the 

use of a high energy proton beam to introduce trap states in the back gate dielectric of a MoS2 

thin-film transistor195. Tongay et al. have used α-particle irradiation to generate vacancies in 

TMDs, which introduce new emission peaks and enhance photoluminescence intensity196. Fox et 

al. have demonstrated the use of a focused helium-ion beam to pattern MoS2 as well as 

preferentially sputter sulfur atoms.197 The local tuning of opto-electronic properties of mono and 

few-layer TMDs can provide an excellent opportunity to realize sharp homo-junctions similar to 

conventional p-n, p-i-n, or p-n-p junctions, which are critical to many device architectures. The 

p-n junction diodes are particularly important because the built-in potential at the junction 

separates the photo-generated electron-hole pairs, which subsequently migrate to the respective 
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electrodes, leading to higher photo-current at zero bias. Both vertical and lateral, homo- and 

hetero- p-n junctions have been realized in many TMDs by chemical doping198,199, electrostatic 

doping189–191, and material engineering.193,200,201 However, chemical doping may require capping 

layers, or additional lithographic steps, adding complexity to device fabrication, whereas the 

electrostatic doping brings many challenges for nanoscale modification.  

In this study, we selectively introduced defects in few-layer WSe2, including chalcogen 

vacancies, by irradiation with a focused He+ beam. Signatures of induced disorder are apparent 

in the measured electronic and optoelectronic properties. Specifically, He+ irradiation of WSe2 

causes a semiconductor – insulator – metallic transition with increasing dose due to induced 

disorder and preferential sputtering of selenium atoms. Ambipolar conduction of WSe2 

transistors is quenched at an exposure dose of 1×1015 He+/cm2, thus the defects generated by He+ 

exposure effectively act as a highly tunable method to direct write n-type dopants. We have 

demonstrated selective He+ irradiation within a few-layer WSe2 flake as a novel method to 

introduce an optically active homo-junction, similar to a conventional p-n junction. 

3.1.3 Results and Discussion 

Figure 69a illustrates Raman spectra for exfoliated few-layer WSe2. The longitudinal 

acoustic (LA) mode at the M point of the Brillouin zone (LA(M)) is particularly interesting as 

this peak is associated with defect generation and disorder within the lattice,202,203 analogous to 

the D band in graphene. As the He+ irradiation dose increases, the intensity of the LA(M) peak 

increases and also shifts from ~118 cm-1 to 124 cm-1, thus indicating defect generation in the 

WSe2. A spatially resolved Raman map of the LA(M) peak intensity is shown superimposed on 

an optical micrograph in Figure 69b. The rise in intensity of the LA(M) peak confirms direct-

write defect generation in WSe2 by He+ irradiation. Figure 69c is a line plot of the LA(M) peak 

intensity across the WSe2 flake. The intensity of the LA(M) peak correlates with the irradiation 

dose and indicates that greater He+ doses introduces greater disorder within the flake. Due to 

resolution limits of micro-Raman, the generated exposure patterns were relatively large (> 4 μm) 

relative to the resolution limits of the He+ microscope (1 nm).  Thus, direct-write defect 

generation on the nanoscale straightforward, though proximal disorder from the backscattered 

ion beam, in the case of supported samples, must be considered115,11. Additional Raman spectra 

and peak assignments may be found in the Supporting Information. 
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Figure 70 shows HAADF STEM images of suspended few-layer WSe2 irradiated with 

various doses of He+. Figure 70a, shows that a dose of 2×1013 ions/cm2 has little effect on the 

single crystal structure of the exfoliated WSe2, which appears relatively free of point defects. As 

the dose increases to 1×1015 and 1×1016 ions/cm2 in Figure 70b-c, signs of disorder in the film 

become evident and result in a semi-crystalline WSe2 film. When the dose is increased to 1×1017 

ions/cm2 (Figure 70d), the films becomes significantly disordered. Additional STEM images can 

be found in the Supporting Information. Inset SAED patterns show broadening of diffraction 

spots with increasing He+ dose, however the position of the distinct spots did not change 

indicating that the overall orientation and phase of the WSe2 did not change. Results from Z-

contrast imaging and SAED both show a trend towards increasing disorder of the lattice structure 

as ion dosage is increased. This disorder can be considered an increased amount of point defects, 

consistent with the Raman spectra. However, only the 1×1017 He+/cm2 SAED pattern has 

significant contributions from random scattering events and broadened Bragg spots, which 

suggest increased disorder in the crystalline periodicity. This indicates a significant change in 

crystal structure with a 1×1017 He+/cm2 exposure dose. This is likely due to increasing selenium 

vacancies degrading short-range order in the material, which is confirmed by EDS chemical 

composition analysis detailed in Supporting Information, and agrees with previous work197. It is 

worth noting that backscattered He+ will have a negligible effect on the defect generation in the 

suspended WSe2, since the ions pass through the film and into vacuum. In contrast, substrate-

supported WSe2 will experience collisions from backscattered ions, which expedites the 

formation of the point defects.  

The effects of He+ irradiation on electrical transport properties of mechanically exfoliated 

few-layer WSe2 films were studied using a field effect transistor (FET) configuration. Figure 

71a shows a schematic of a WSe2 FET device on SiO2/Si substrate with symmetric Ti/Au 

contacts. Figure 71b is an optical image of a fabricated device. The AFM micrograph and height 

profile of one of the devices are shown in Figure 71c. Few-layer WSe2 FET devices with flake 

thicknesses ranging from 7 – 26 nm were used in this study. The devices were irradiated with 

different He+ doses ranging from 1x1013 to 1x1017 He+/cm2 with the Zeiss ORION NanoFab 

He/Ne ion microscope with the beam conditions as described in the experimental section. Figure 

71d shows the transfer curves at two different drain-source voltages (black curves for VDS = -0.1 
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V and red curves for VDS = -1.1 V) before (solid curves) and after (dotted curves) the He+ 

irradiation at a dose of 1.5×1015 ions/cm2. The measured transfer characteristics clearly show the 

ambipolar characteristics of the WSe2 FET device prior to He+ irradiation, consistent with 

previous reports.204,205 The source-drain current (IDS) increases with an increase in VGS both with 

positive and negative bias almost symmetrically reaching an ON state current >1 μA, leading the 

current ON/OFF ratio in excess of 106. The device after He+ irradiation (dotted curves) has a 

degraded hole conduction with a six orders of magnitude decrease in ON state current at negative 

gate bias, while the ON state current for the positive gate bias (electron conduction) decreases by 

approximately three orders of magnitude. For clarity, a single voltage sweep of the transfer curve 

(IDS vs VGS) was plotted, however we observed a small hysteresis both before and after He+ 

irradiation in WSe2 FET device (see Supporting Information file Figure 82). The field effect 

mobility of the pristine device (prior to He+ exposure) shows thickness dependence which agrees 

with the literature.1 The maximum field effect hole mobility of 64.13 cm2/Vs was determined for 

a 9 nm thick device (see Supporting Information Figure 83 for thickness dependent mobility). 

The field effect hole mobility of the same device after He+ ion irradiation was almost negligible 

(0.0052 cm2/V.s), while there is still small electron conduction. Furthermore, He+ irradiation 

effects as a function of WSe2 film thickness was also studied at a particular dose of 1 x 1015 

ions/cm2. I-V measurements reveal that irrespective to the WSe2 channel thickness, both hole 

and electron conductivity were suppressed. However, hole conduction decreased more than 

electron conduction, and it shows slightly n-type behavior (increase in channel current with the 

increase in gate voltage) (see Supporting Information file Figure 84). The 25 keV He+ used in 

this study is very energetic and easily penetrates the entire thickness of the few-layer WSe2 

channel. We performed EnvizION ion-solid Monte Carlo simulations illustrating the distribution 

of displaced atoms in WSe2 films of varying thickness (see Supporting Information file Figure 

85).  The thickest few layer films we tested were 26 nm thick and thus significantly thinner than 

the He+ penetration depth which has a peak implant depth of ~ 120 nm in bulk WSe2.  While the 

energy is slightly dissipated and thus the electronic and nuclear stopping power slightly changed 

from top to bottom, it is negligible and thus we expect a fairly uniform defect distribution within 

the material. 
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Figure 71e is a plot of the resistivity evolution of the mechanically exfoliated few-layer 

WSe2 on SiO2/Si supported architecture as a function of He+ dose. We observe three distinct 

regimes as a function of the He+ dose. The initial semiconducting nature of the material changes 

to insulating behavior with a two order of magnitude increase in resistivity at the He+ dose of 

~1×1014
 ions/cm2 and more than four orders of magnitude increase in resistivity at 1×1015

 

ions/cm2. As the dose increases, the resistivity of the device decreases sharply and reaches 

approximately two orders magnitude lower resistivity than the initial pristine device. At the 

highest dose, (1×1017 ions/cm2) the WSe2 device completely loses its semiconducting behavior 

(see the inset in Figure 71e) as the current is no longer sensitive to the gate voltage. Similar 

semiconductor-insulator-metal transitions have been previously reported for MoS2 layered 

materials with the He+ exposure.197 An increase in electrical resistivity in layered MoS2 due to 

high energy proton beam irradiation has also been reported195. The electrical resistivity changes 

of the proton-irradiated MoS2 was attributed to induced traps, including positive oxide-charge 

traps, in the underlying SiO2 gate insulator layer, and the trap states at the interface between the 

MoS2 channel and SiO2 layer. However, in contrast to proton irradiated MoS2 where the current 

recovered almost to its original values after five days, our He+ irradiated WSe2 devices do not 

recover even after a month (see Supporting Information file Figure 86).  

The observed electrical changes due to the He+ irradiation can be understood by 

considering the structural changes in the few-layer WSe2 under the He+ irradiation. EDS analysis 

(Figure 80) and a previous study197, show that He+ irradiation results in the preferential 

sputtering of chalcogen atoms. Density Functional Theory calculations suggests that chalcogen 

vacancies in TMDs result in unsaturated electrons which surround the transition metal atoms and 

act as electron donors206. In the case of MoS2, S vacancies act as deep donor states. These states 

demonstrate high electron mass and strong localization within a 3 Å radius surrounding the 

vacancy. This results in a nearest-neighbor hopping transport mechanism at room temperature. 

This is in stark contrast to delocalized electrons in the valence band which are dominated by Mo 

4d orbitals.  

 Analogously, Se vacancies in WSe2 act as electron donors, and thus an n-type dopant. 

When irradiated with relatively low He+ dose (1×1013 – 5×1015 ions/cm2), Se vacancies are 

formed through knock-on collisions. These vacancies create highly localized states which serve 
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as hole traps. This accounts for the reduced hole conduction in devices which were irradiated 

with He+. Since the near mid gap Se vacancy states are highly localized, electron conduction is 

not significantly enhanced by He+ irradiation and scattering at defect sites can explain the slight 

degradation in electron conduction and increased resistivity. Thus, direct-write introduction of Se 

vacancies through He+ irradiation serves as a method to selectively quench hole conduction 

while permitting electron conduction. At high He+ dose (> 1×1016 ions/cm2), selective Se 

sputtering greatly increases the W atomic percentage. This enables metallic bonding between 

neighboring W which increases electron delocalization, hence producing a large drop in 

electrical resistivity (Figure 71e). It is worth noting, oxygen substitution into Se vacancy sites 

under room temperature ambient conditions may occur, but the rate is slow without supplying 

additional thermal energy207. We conclude that oxidation of Se vacancy sites does not play a 

dominant role in influencing the electrical behavior of He+ irradiated WSe2 flakes, since device 

behavior shows minimal changes with time, and Raman spectra do not show signatures of 

oxidation208. 

The selective suppression of hole transport in ambipolar WSe2 flakes due to He+ 

irradiation can generate a homo-junction similar to a conventional p-n junction. The ability to 

quickly create this structures in a simple, robust, and tunable manner is critical to realizing many 

opto-electronics devices. Therefore, we selectively irradiated half of the channel area of WSe2 

FET devices. Figure 72a shows a schematic of an irradiated device, in which selective 

introduction of defects are used to create a homo-junction within the WSe2 flake. Figure 72b 

shows a spatially resolved Raman map of this device, which plots the integrated peak area ratio 

of the LA(M) peak (which is associated with He+ induced disorder) to the in-plane E1
2g main 

peak. It is clear that He+ irradiation successfully induced a junction within the material, as 

revealed by Raman, although the optical micrograph (see inset in Figure 72b) shows no visual 

signature of the irradiation. The electrical transfer characteristic curves of the corresponding 

device, before and after He+ irradiation, are shown in Figure 72c-d, respectively. Consistent 

with the previous observation, the hole transport in the material decreased by almost four orders 

in magnitude. For example, the device ON current was measured as 1.86 μA , at VDS = -1.1 V 

and VGS = -60 V, prior to He+ irradiation; whereas after He+ irradiation, the current was 

measured as 0.26 nA under the same measurement conditions. In contrast, the transistor ON 
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current, corresponding to the electron transport in the device, decreases by less than an order of 

magnitude. 

Figure 73a shows a Kelvin Probe Force Microscopy (KPFM) image of a WSe2 TFT with 

a homo-junction created within the flake by exposing half of the channel with a dose of 5x1014 

He+/cm2. The homo-junction is visible within the channel and the interface is sharp. The junction 

indicates clear band bending in the vacuum level and represents the difference in work function 

(Φ) of the exposed and pristine WSe2. It is worth noting that the scale of the surface potential is 

offset due to charging effects related to poor grounding of the device, therefore the magnitude of 

potential differences at the interfaces should be noted as opposed to the absolute magnitude. 

Figure 73b is a tapping mode topography AFM image of the same WSe2 device. The topography 

of the WSe2 flake shows no signs of surface alteration as a result of the He+ exposure. Hence, the 

structural integrity of the device remains intact, while the electronic structure is tuned by 

precisely controlling the exposure dose. Figure 73c illustrates a KPFM line scan, along the black 

dotted line in Figure 73a, which shows band bending across the WSe2 homo-junction. The work 

function difference between the exposed and pristine regions is ~55 mV for a junction created 

with a dose of 5x1014 He+/cm2. Figure 73d depicts a proposed band diagram of the homo-

junction created within the WSe2 device. The exposed region takes on n-type behavior, which 

limits hole transport, and is experimentally observed in the transport properties (Figure 72d). 

The electrical properties and hence band bending at the homo-junction is tunable by controlling 

He+ dose, as indicated by changes in transport properties with dose (Figure 71e). 

The photo-response of the lateral homo-junction created in layered WSe2 due to selective 

He+ irradiation was investigated by utilizing (exposing) a standard microscope white light 

source. Figure 74a shows a log plot for the current-voltage (IDS vs VDS) curves at zero gate bias 

of the homo-junction without (black) and with (red) white light exposure. Significant 

improvement in channel current is observed due to the built-in electric potential at the junction. 

A photovoltaic effect with open circuit voltage of 220 mV is observed (see Figure 74b), which 

is comparable with the lateral homo-junction9 and hetero-junction11,12 in mono and few-layer 

WSe2 and MoS2 devices, respectively. No significant photovoltaic effect is observed in the 

pristine WSe2 device without He+ irradiation (see the Supporting Information Figure 87). This 
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confirms the presence of homo-junction in few-layer WSe2 due to the selective defect 

introduction from irradiation with He+.  

To further investigate the effect of He+ irradiation on hole transport in few-layer WSe2, 

we also fabricated an asymmetric electrode (Pd in one and Ti/Au in the other) device with the 

favorable energy band alignment for hole collection by minimizing  the Schottky barrier between 

the valence band of the WSe2 and fermi level of Pd metal electrode. We carried out the electrical 

transport measurements before (Figure 75a and Figure 75c) and after (Figure 75b and Figure 

75d) He+ irradiation for two different ion doses (1×1014 ions/cm2 – upper panel and 1×1015 

ions/cm2 – lower panel, respectively). Preferential hole injection in the WSe2 channel is clearly 

observed in the asymmetric nature of IDS – VDS curves (see Figure 75a and Figure 75c) due to 

the Ohmic contact between the Pd electrode and valence band of WSe2 flake relative to the 

apparently small Schottky barrier for the Ti/Au contact. The hole transport is still significantly 

suppressed compared to electron transport (see Figure 75b and Figure 75d) in the WSe2 channel 

after He+ irradiation. For instance, the device ON current decreased from 30 nA (pristine device) 

to 10 pA at VDS = -1V and VGS = -60 V, due to He+ irradiation at the dose of 1×1015 ions/cm2.  

3.1.4 Conclusions  

In summary, we report the effects of focused helium-ions beam irradiation on opto-

electronic properties of few-layer WSe2 devices. Precise defects were selectively introduced in 

mechanically exfoliated few-layer WSe2 by controlled dose of He+ irradiation, and its effects on 

structural, optical and electrical properties were investigated via STEM, Raman spectroscopy, 

and transport measurements. With increasing dose, point defects and local disorder of WSe2 

flake were observed, thereby tuning the electrical transport of the material, and allowing control 

over semiconductor-insulator-metal like transitions with more than six order change in 

resistivity. Hole transport in WSe2 was significantly suppressed compared to electron transport 

for the same dose of He+ irradiation. This presents the unprecedented opportunity to create direct 

–write lateral junctions in the materials. By selective He+ irradiation, we demonstrate a lateral 

homo-junction, like a conventional p-n junction, with a calculated built-in potential as high as 

220 mV, which constitute an important advance towards two dimensional opto-electronic 

devices.   
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3.1.5 Methods 

3.1.5.1 Helium Ion Irradiation 

Helium ion exposures were performed with a Zeiss ORION Nanofab He/Ne ion 

microscope. An accelerating voltage of 25 keV was used for all exposures. Beam currents were 

varied from 0.3 – 6.0 pA in order to enable a large range of exposure doses (1×1012 – 1×1017 

ion/cm2). All patterns in this study were exposed with a constant 1 μs dwell time, whereas the 

pixel spacing was varied with the desired dose. For low dose exposures (< 1×1014 ions/cm2), 

larger pixel spacing (4 - 40 nm) with beam defocus was utilized to supply a uniform dose to the 

pattering area. For higher doses (> 1×1014 ion/cm2), a pixel spacing of 2 nm was used. Patterns 

were generated using Fibics NPVE pattern generating software and hardware scan controller.  

3.1.5.2 WSe2 Device Fabrication and Characterization   

Polycrystalline WSe2 was synthesized from a stoichiometric mixture of W (Alfa-Aesar, 

99.999%) and Se (Alfa-Aesar, 99.999%) powders. The starting materials were sealed in silica 

tubes under vacuum, and then slowly heated to 900 oC. The ampoules remained at 900 oC for 

seven days, and then were allowed to furnace cool to room temperature. Single crystals of WSe2 

were then grown using the polycrystals as starting material and iodine as a transport agent. The 

silica tubes containing phase-pure powder and iodine were sealed under vacuum and placed in a 

tube furnace with a 50 oC temperature gradient from the hotter end of the tube containing the 

charge (1050 oC) to the colder end where growth occurs (1000 oC). The iodine concentration 

within the tube was ~17.5 mg/cm3
.
 Crystals in the form of shiny silver plates with typical size 5 × 

5 × 0.1 mm3 grew over the course of 5 days. WSe2 flakes were exfoliated onto SiO2 (290 nm)/Si 

(heavily doped Si which also serves as a bottom gate electrode) substrate from a bulk single 

crystal by the ‘Scotch tape’ micromechanical cleavage technique and were identified by their 

optical contrast. The thicknesses of the exfoliated WSe2 flakes were measured using Atomic 

Force Microscope (AFM). Kelvin probe force microscopy (KPFM) measurements were 

performed using an Asylum Research Cypher AFM with a Pt-Ir coated cantilever. Standard e-

beam lithography followed by e-beam evaporation was employed to create the source/drain 

electrodes for electrical measurements. The contacts consisted of Ti/Au (5/30 nm) metals 

deposited and subsequently patterned via a lift-off process. The fabricated devices were 

subjected to He+ exposures with different doses ranging from 1x1012 to 1x1017 ions/cm2. The 
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electrical characteristics of the fabricated WSe2 devices before and after the He+ exposure were 

measured using an Agilent semiconductor parametric analyzer (Agilent Tech B1500 A).  

3.1.5.3 Raman Spectroscopy 

Raman spectroscopy and mapping were performed in a Renishaw inVia micro-Raman 

system using a 532 nm excitation laser. A 100X magnification objective was used for spectral 

acquisition with a 5 second acquisition time. Maps were generated using a 0.6 - 1 μm step size. 

Data analysis and maps were constructed with the WIRE v3.4 software. 

3.1.5.4 Energy Dispersive X-ray Spectroscopy 

Energy dispersive X-ray spectroscopy (EDS) was conducted in a Zeiss MERLIN 

Scanning Electron Microscope (SEM) equipped with a Bruker EDS system. For the EDS 

measurements, a map acquisition of the He+ irradiated WSe2 film was taken over a ~6 × 8 μm 

area with a 15 min collection time. A beam energy of 4 keV and beam current of 0.7 nA were 

used to excite the sample and generate the X-ray spectra. 

3.1.5.5 Microscopy 

Atomic resolution images of WSe2 were acquired using a Nion UltraSTEM100 scanning 

transmission electron microscope with fifth-order aberration correction.  STEM was operated at 

60 kV with a spatial resolution of 1.1 angstrom.  High angle annular dark-field (HAADF) Z-

contrast images of suspended WSe2 were recorded for regions exposed to He+ doses of 2×1013, 

1×1015, 1×1016, and 1×1017 ions/cm2. The WSe2 flake was exfoliated onto a holey silicon nitride 

membrane with 2.5 μm holes prior to exposure and imaging. SAED patterns were taken after 

imaging at the same locations with a Zeiss Libra 200MC operated at 200keV. 

  



174 
 

3.1.6 Appendix 

3.1.6.1 Supporting Information 

Raman Spectroscopy 

Table 9 lists the Raman peak assignments for few-layer WSe2. The spectra as a function 

of various exposure doses can be found in Figure 76. It is clear that He+ exposure causes a 

reduction in the E1
2g and A1g peaks, as well all multiplicity peaks. A sharp rise in the LA(M) 

peak is observed as the He+ exposure dose is increases. This is indicative of selective sputtering 

and defect introduction within the WSe2 flake. 

STEM 

Figure 77 displays high-resolution HAADF STEM images of suspended WSe2 that was 

irradiated with He+ doses from 2x1013 – 1x1017 ions/cm2. There is a significant increase in 

disorder with increasing He+ dose. Clearly, increasing dose introduces greater amounts of 

disorder and defects into the WSe2. An indexed SAED pattern is shown in Figure 78. Figure 79 

compares the Z-contrast STEM images, Fourier transformations of each respective Z-contrast 

image, and selected area electron diffraction patterns that correspond to each He+ dose which 

was studied. The Fourier transformations of the Z-contrast images agree well with SAED results. 

EDS 

Suspended WSe2 was irradiated with the 30 keV He+ beam at various doses (1x1015 – 

1x1018 ions/cm2) and is displayed in Figure 80a. Clearly a dose of greater than 5x1017 is 

sufficient to completely sputter away the entire WSe2 film. Signs of modification of the film are 

apparent with exposure down to a dose of 5x1016 ions/cm2.  Chemical composition analysis of 

the irradiated films were conducted using energy-dispersive X-ray spectroscopy (EDS). In order 

to qualitatively determine compositional changes in the WSe2 with He+ exposure, the relative 

peak ratios of W - M (1.774 keV) and Se - L  (1.379 keV) were compared and reported in Figure 

80b. With increasing He+ exposure, the W composition relative to Se increases. The chalcogen is 

preferentially sputtered since its atomic mass is nearly 3x less than that of W, and momentum 

exchange with the energetic He+ is sufficient to eject Se atoms. The preferential sputtering in 

essence enables selective doping of the WSe2, by creating direct-write chalcogen deficient 

regions.  
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Raw EDS spectra for WSe2 irradiated with He+ at doses from 1 x 1012 – 3 x 1017 ions/cm2
 

are shown in Figure 81a. The spectra were collected by taking an area scan over the entire 

region exposed by the He+ beam. At a dose of 5 x 1017 ions/cm2 the He+ irradiation completely 

sputters away the WSe2 films.  The reduction in overall intensity of the EDS spectra with 

increasing dose is due to material removal, thus making the EDS response weaker. The W/Se 

intensity ratio increases with increasing He+ dose due to preferentially sputtering of Se as shown 

in Figure 80b. Figure 81b-e show EDS area maps from which the raw spectra were acquired. 

Hysteresis on Transfer Curves 

 The transfer curves (IDS vs VGS) of all few layers WSe2 FET device were collected 

reversibly (double sweep) with the gate voltage ranging from -60 V to +60 V, at different source-

drain voltages (VDS). A small hysteresis on the measured channel current (IDS) was observed for 

the device before and after the He+ ion irradiation. A typical hysteresis collected in one of the 

device studied is shown below, however, transfers curves with a single voltage sweep were 

reported throughout the manuscript for clarity. 

Mobility Thickness Dependence 

Field effect mobility was extracted from FETs fabricated from various thicknesses of 

exfoliated WSe2 and reported in Figure 83. The maximum field effect mobility of 64.13 cm2/V.s 

for hole conduction for a device with a 9 nm WSe2 thickness was recorded. At greater 

thicknesses, the field effect mobility is significantly reduced. 

He+ Dose Effect on Electrical Transport Properties of Few Layers WSe2 as a Function of 

Thickness 

The He+ irradiation effect as a function of WSe2 film thickness was also studied at a 

common dose of 1 x 1015 ions/cm2. I-V measurements reveal that irrespective to the WSe2 

channel thickness, both hole and electron conductivity were significantly suppressed (hole 

conduction decreased more than electron conduction) and it shows slightly n-type behavior 

(increase in channel current with the increase in gate voltage). Prior to the He+ exposure, the ON 

state currents for both electron ( at + 60 V gate bias) and hole ( at -60 V gate bias) were on the 

order of 1 μA (normalized to channel W/L ratio). The field effect electron mobility in one of the 

pristine WSe2 FET devices prior to the He+ irradiation was measured to be 32.80 cm2/V.s, which 

decreased to 0.08 cm2/V.s after the He+ irradiation at a dose of 1 x 10 15 ions/cm2. It is worth 
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noting that a full channel exposure at this dose (1x1015 He+/cm2) results in insulating behavior of 

the film. Although the electron mobility was noticeable decreased, electron conduction after 

irradiation is still far greater than hole conduction. 

EnvizION Ion-Solid Monte Carlo Simulation 

EnvizION Monte Carlo simulations103 were conducted in order to determine atom 

displacements created by 25 keV energetic He+ in WSe2 (ignoring channeling effects). Figure 85 

shows cross-sections of WSe2 films of varying thickness which were exposed to a dose of 1x1015 

He+/cm2. Green pixels represent Se atoms, blue pixels represent W atoms, light green pixels 

represent displaced Se atoms, light blue pixels represent displaced W atoms, and red pixels 

represent unfilled vacancies created by sputtering events.  The distribution of defect sites are 

largely uniform over the exposed regions and appear to be independent of film thickness, since 

the films are much thinner than the penetration depth of 25 keV He+ in WSe2. Table 10 list the 

sputter yield and Se/W sputter ratio at the three WSe2 thicknesses which were simulated. The 

simulations support experimental findings which indicate the Se is preferentially sputtered in 

comparison to W under He+ irradiation.  

Device Aging  

Aging effects on a device exposed with a dose of 1x1014 ions/cm2 was measured over the 

course of 30 days and displayed in Figure 86. The transistor ON current, with a VDS = 1.1 V and 

VGS = 60 V, remained constant during this time period. The lack of ON current recovery suggest 

that stable defects were formed within the WSe2 flake and are not simply due to fixed oxide 

positive charge induced in the underlying substrate, which exhibits a recoverable ON current195. 

Photoresponse in Unexposed Device 

Figure 87 shows the output characteristics of pristine WSe2 devices under dark and light 

conditions. Unlike the devices which have a direct-write He+ exposed junction (Figure 74a), 

there is no open circuit voltage (VOC) under light conditions. Currents are slightly greater with 

light conditions due additional excited charge carriers, however there is no significant 

photovoltaic effect.   
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3.1.6.2 Figures 

 
Figure 69. (a) Raman spectra of WSe2 showing the LA(M) peak at ~ 118 cm-1. (b) Spatially 

resolved Raman map of the LA(M) peak superimposed onto an optical micrograph. Rectangular 

He+ exposures on the flake are denoted by inset dotted lines. (c) Normalized intensity of LA(M) 

mode along a line scan on the patterned WSe2 flake. 
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Figure 70. HAADF STEM images of suspended WSe2 which was irradiated with He+ at doses of 

(a) 2x1013, (b) 1x1015, (c) 1x1016, and (d) 1x1017 ions/cm2. Field of view is 16 nm. SAED 

patterns are inset for each exposed dose. 
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Figure 71. (a) Schematic of the WSe2 field effect transistor (FET) device irradiated with He+. (b) 

Optical micrograph of the WSe2 FET on SiO2/Si substrate. The scale bar is 10 μm. (c)  AFM 

micrograph of the fabricated WSe2 FET device. The inset represents the height profile along the 

dotted line shown in the Figure. (d) The transfer characteristics (IDS vs VGS) at two different 

drain-source voltages (black curves for VDS = -0.1 V and red curves for VDS = -1.1 V) before 

(solid curves) and after (dashed curves) He+ irradiation at a dose of 1.5x1015 ions/cm2 on WSe2 

channel region. The measured transfer characteristic clearly shows the ambipolar characteristics 

of the WSe2 FET device before He+ irradiation, while the device after He+ irradiation loses its p-

type characteristics.  (e) Double log plot of electrical resistivity as a function of He+ irradiation 

dose for mechanically exfoliated few layers WSe2 flakes on SiO2/Si substrate. Gradually 

insulating behavior arose with the initial increasing dose applied, while metallic behavior was 

observed with the further increase in dose applied. The gate tunability of the WSe2 device was 

completely reduced as seen in inset, at a dose of 1x1017
 ions/cm2. 
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Figure 72. (a) Schematic of the WSe2 field effect transistor (FET) device irradiated with He+

 over 

half of the channel length to induce a homo-junction. (b) Spatially resolved Raman map of He+ 

irradiated junction (1x1015 ions/cm2) on a WSe2 flake. Map shows ratio of integrated peak area 

of LA(M) (associated with defects) to the main Raman peak E1
2g. The inset in the upper left 

corner shows an optical micrograph of WSe2 device. The measured transfer characteristics of a 

WSe2 FET device (c) before and (d) after, He+ irradiation was used to create a homo-junction at 

a dose of 1x1015 ions/cm2. 
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Figure 73. (a) Kelvin Probe Force Microscopy (KPFM) image of a WSe2 TFT with symmetric 

Ti/Au electrodes in which half of the channel with exposed with a dose of 5x1014 He+/cm2. (b) 

Tapping mode AFM image of the same exposed WSe2 TFT, which shows no topographical 

evidence of exposure. (c) KPFM line scan, denoted by a black dotted line in (a), which shows 

band bending at the interface of exposed and pristine WSe2. (d) Band diagram of a WSe2 flake, 

which has a junction created by He+ exposure. 
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Figure 74. (a) The photoresponse of a device with the lateral homojunction created by a dose of 

1x1015 He+/cm2 in WSe2 at zero gate bias. The seimi-log plot of  IDS vs VDS with and without 

light exposure shows the photoresponse with noticable photovoltage as high as 220 mV. (b) 

Open circuit voltage extracted from devices under light condition as a function of He+ dose used 

to create the homo-junction. 
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Figure 75. The semi-log plot of output characteristics (IDS vs VDS) of asymmetric electrodes (Pd 

in one side and Ti/Au in other side) of few-layer WSe2 devices, before (left panel a & c) and 

after (right panel b & d) He+ irradiations at two different doses (1x1014 and 1x1015
 He+/cm2, 

respectively). Preferential hole injection in the WSe2 channel is clearly seen from the asymmetric 

nature of IDS – VDS curves (a & c) due to the ohmic contact between the Pd electrode and valence 

band of WSe2 flake and a possible Schottky barrier at Ti/Au contact. The hole transport is still 

significantly suppressed compared to electron transport (Fig. b and d) on WSe2 channel after the 

He+ irradiation. The images on the top of the Figure depict an optical micrograph (left) and 

schematic (right) of the device structure studied.  
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Figure 76. Raman spectra of few-layer WSe2 at various He+ exposure doses. 
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Figure 77. HAADF STEM images of suspended WSe2 which was irradiated with He+ at doses of 

(a) 2x1013, (b) 1x1015, (c) 1x1016, and (d) 1x1017 ions/cm2.  Images have 8 nm field of view. 
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Figure 78. Indexed diffraction pattern taken from WSe2 flake exposed with a dosage of 2x1013 

He+/cm2 



187 
 

 
Figure 79. Figure compares the changes in the WSe2 crystal structure when subjected to varying 

doses of ion irradiation.  This has been done by STEM Z-contrast imaging, Fourier 

transformations of each respective Z-contrast image, and selected area electron diffraction 

patterns that correspond to each region. Fourier transformations of the Z-contrast images agree 

well with SAED results. 
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Figure 80. (a) SEM image of a single layer WSe2 flake on a holey silicon nitride membrane. 

Inset doses denote the dose applied to each suspended region with units of ions/cm2. (b) Plot of 

the ratio of the relative peaks intensities of W – M and Se – L as a function of He+ dose. 
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Figure 81. (a) Raw EDS spectra for suspended WSe2 exposed with He+ of various doses. (b) 

SEM image of the exposed suspended flake on silicon nitride where regions 1-6 were exposed 

with doses of 1E12, 1E17, 5E16, 1E16, 1E15, and 3E17 respectively. (c-e) EDS maps of Se + 

W, only Se, and only W respectively. 
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Figure 82. The typical hysteresis in measured IDS vs VGS curves at VDS = 0.1 V, before (black) 

and after (red) He+ irradiation at the dose of 1.0 x 1015 ions/cm2. The corresponding leakage 

currents (doted lines) are also plotted in the same graph. 
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Figure 83. Field effect hole mobility extracted from the transfer characteristic curves for few-

layer WSe2 devices as a function of flake thickness. 

 



192 
 

 
Figure 84. Measured IDS vs VDS normalized to channel W/L ratio, for the different thickness of 

WSe2 flakes at three different gate voltages, (a) VGS = 60 V, (b) VGS = 0 V and (c) VGS = -60 V.  

All flakes were exposed in the channel region with a dose of 1x1015 He+/cm2. 

 

 

 
Figure 85. Using our EnvizION103 ion-solid Monte Carlo simulation we simulated  varying 

thickness WSe2 films (7, 16, and 26 nm) which were exposed with 25 keV He+ to a dose of 

1x1015 He+/cm2. In this simulation, the WSe2 is assumed to be amorphous with the 

stoichiometric W/Se ratio of 1/2 and using the bulk properties of crystalline WSe2.  The He+ was 

simulated as a 25 nm cylindrical beam. Green pixels represent Se atoms, blue pixels represent W 

atoms, light green pixels represent displaced Se atoms, light blue pixels represent displaced W 

atoms, and red pixels represent unfilled vacancies created by sputtering events. 
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Figure 86. Time dependence of transistor ON current at VDS = 1.1V and VGS = 60 V, for few-

layer WSe2 device irradiated with He+ ion dose at 1x1014 up to 30 days. No recovery on 

transistor ON currents has been observed by exposing the irradiated sample in ambient 

conditions. The red open circle represents the channel current prior to He+ exposure. 
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Figure 87. Photo-response of one of the pristine few-layer WSe2 device (without He+ irradiation) 

at various gate potentials. No significant photovoltaic effect has been observed in few-layer 

WSe2 device. 
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3.1.6.3 Tables 

Table 9. Raman peak assignments of few-layer WSe2. 

Peak (cm-1) Assignments209 

 119  LA(M) 

 138  A1g-LA 

 238  2LA(M) 

 250  E1
2g (in plane) 

 258 A1g (out of plane) 

 362 2E1g 

 373 A1g+LA 

 395 2A1g-LA 

 

 

Table 10. EnvizION Monte Carlo simulation sputter yields and Se/W sputter ratio for WSe2 of 

varying thicknesses. 

Thickness 

(nm) 

Yield 

(atoms/ion) 

Ratio (Se/W) 

7 0.1 3.9 

16 0.11 3.4 

26 0.11 3.5 
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3.2 High Conduction Hopping Behavior Induced in Transition Metal 

Dichalcogenides by Percolating Defect Networks: Toward Atomically Thin 

Circuits 
A version of this chapter was originally published by M. G. Stanford et al.: 

 

 Stanford, M. G.; Pudasaini, P. R.; Gallmeier, E. T.; Cross, N.; Liang, L.; Oyedele, A.; 

Duscher, G.; Mahjouri-Samani, M.; Wang, K.; Xiao, K.; et al. High Conduction Hopping 

Behavior Induced in Transition Metal Dichalcogenides by Percolating Defect Networks: Toward 

Atomically Thin Circuits. Adv. Funct. Mater. 2017, 1702829 (DOI: 10.1002/adfm.201702829). 

 

M.G.S, P.R.P., and P.D.R. conceived experiments and prepared the manuscript. M.G.S. 

conducted He+ exposures obtained Raman and PL data. P.R.P. conducted device fabrication and 

measured electrical properties. N.C. and G.D. carried out STEM imaging. E.T.G and A.B 

conducted analysis of STEM images. M.M.S, K.W, K.X, and D.B.G. synthesized the WSe2 and 

WS2. L.L and B.G.S. performed DFT modeling. All authors participated in the discussion of results 

and manuscript revisions. 

3.2.1 Abstract 

Atomically thin circuits have recently been explored for applications in next-generation 

electronics and optoelectronics and have been demonstrated with two-dimensional lateral 

heterojunctions. In order to form true 2D circuitry from a single material, electronic properties 

must be spatially tunable. Here, we report tunable transport behavior which was introduced into 

single layer tungsten diselenide and tungsten disulfide by focused He+ irradiation. Pseudo-metallic 

behavior was induced by irradiating the materials with a dose of ~1x1016
 He+/cm2 to introduce 

defect states, and subsequent temperature-dependent transport measurements suggest a nearest 

neighbor hopping mechanism is operative. Scanning transmission electron microscopy and 

electron energy loss spectroscopy reveal that Se is sputtered preferentially, and extended 

percolating networks of edge states form within WSe2 at a critical dose of 1x1016 He+/cm2. First-

principles calculations confirm the semiconductor-to-metallic transition of WSe2 after pore and 

edge defects were introduced by He+ irradiation. The hopping conduction was utilized to direct-
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write resistor loaded logic circuits in WSe2 and WS2 with a voltage gain of greater than 5. Edge 

contacted thin film transistors were also fabricated with a high on/off ratio (> 106), demonstrating 

potential for the formation of atomically thin circuits. 

3.2.2 Introduction 

Transition-metal dichalcogenides (TMDs) are layered materials that consist of stacked 

two-dimensional crystals held together by van der Waals interactions. An individual TMD layer 

consists of a X-M-X sandwich structure where X is a chalcogen, and M is a transition-metal atom 

typically of trigonal prismatic coordination for a 2H polytype210. TMDs have been shown to exhibit 

semiconducting properties and have recently been used to create high performance transistors211–

213 and optical devices184,189,190. Single-layer (1-L) TMDs also exhibit a direct bandgap, typically 

on the order of 1 - 2 eV depending upon the chemical composition187. 

Defects in TMDs can alter the electronic behavior and band structure in a wide variety of 

ways. Point defects (0-D), such as vacancies, have been studied extensively for the most commonly 

synthesized TMDs. For instance, intrinsic chalcogen vacancies in MoS2 exhibit hopping transport 

characteristics explained by the Mott formalism206. Mo vacancies can also induce p-type behavior, 

whereas S vacancies exhibit n-type behavior180. In WSe2 and MoS2, it was shown that chalcogen 

and transition-metal vacancies introduce mid-gap states into the material206,214,215, a behavior 

exhibited in many TMDs216.  

Line defects (1-D), have demonstrated interesting properties with implications on the 

electrical transport. Different types of 60o grain boundaries, in chemical vapor deposition (CVD) 

grown TMDs, behave as 1-D metallic wires214,217. It is also predicted that the majority of edge 

termination states behave metallically for MoS2
218,219. For a review of defect engineering in TMDs 

see ref 220.   

Point defects in TMDs can occur intrinsically; however, a variety of methods have been 

explored for their control. Nonstoichiometric growth techniques have been used to synthesize 

MoSe2 with Se vacancies approaching ~20%221.  Plasma treatment has the potential to introduce 

defects as well as to dope TMDs181,222–224. Electron beam irradiation has been used to introduce a 

variety of point and extended defects7,225. More recently, a focused helium ion beam has been used 

to introduce defects into MoSe2
226, MoS2

197, and WSe2
227, controllably tuning the materials’ 

properties. However, the mechanisms in which He+ irradiation altered electrical properties was not 
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thoroughly explored. Molecular dynamics simulations have demonstrated that defects can be 

introduced into the lattice of TMDs with a high degree of spatial control by tuning the He+ beam 

conditions228.  

In this work, a focused He+ beam was used to introduce defects into single layer WSe2. 

The extent of defects introduction was controlled by adjusting the He+ exposure dose from 1×1014 

to 1×1017 He+/cm2. We found that a dose of 1×1016 He+/cm2 induces metallic-like behavior in the 

WSe2 with transport properties independent of gate voltage. Temperature-dependent transport 

measurements reveal a thermally activated conductivity mechanism consistent with a nearest-

neighbor hopping mechanism. Scanning transmission electron microscopy (STEM) suggests that 

percolating defect networks are formed at a dose of 1×1016 He+/cm2, and Se is preferentially 

sputtered, resulting in the metallic-like behavior. Density functional theory (DFT) calculations 

were used to model various defect configurations, and confirm that pore and edge defects induced 

by the high He+ dose result in many in-gap states in WSe2, and the band gap of the defective system 

is effectively zero. We demonstrate that the metallic-like WSe2 and WS2 can be utilized to direct-

write logic gates on single TMD flakes and direct-write edge contacted transistors. Our results 

demonstrate a strategy for generating atomically thin circuitry and show potential for large scale 

processing via standard ion implantation or plasma exposure. 

3.2.3 Results and Discussion 

Back-gated, 1L, WSe2 field effect transistors (FETs) were fabricated on 290 nm SiO2/Si 

substrate as described in the Methods section. Figure 88a is an optical micrograph of a typical 

FET device. After fabrication, the channel of the FETs was irradiated with a focused He+ beam at 

the beam energy of 25 keV. The He+ has shown the potential to introduce defects into 2D materials 

with a high degree of precision115,159,229 by generating vacancies, adatoms, and interstitials within 

the material lattice via nuclear collisions.  First-principles studies of native defects reveal the 

following: (1) Chalcogen vacancies are the most energetically favored point defect; (2) Chalcogen 

interstitials experience an extremely low diffusion barrier and are thus expected to rapidly 

annihilate with vacancy sites; (3) It is energetically favorable for interstitial transition metal atoms 

to form a split-interstitial configuration230. Therefore, it is expected that most point-defects induced 

by He+ irradiation will be in the form of chalcogen vacancies, transition metal vacancies, or 

transition metal split-interstitials.  Minimal amounts of He are implanted within WSe2 since it is 
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1L thick, and 25 keV He+ has an interaction volume and peak implantation of hundreds of 

nanometers in typical 2D materials and substrates. Photoluminescence and Raman spectra as a 

function of He+ dose are reported in the Supporting Information and demonstrate a reduced PL 

intensity and quenching of the E1
2g and A1g peaks. Figure 88b shows the room temperature transfer 

curves for FETs in which the channel regions were exposed to varying He+ doses. The pristine 

WSe2 exhibits p-type behavior with an Ion/Ioff of 108. At a dose of 1×1014 He+/cm2, the device on-

current degrades as defects are introduced, and Ion/Ioff decreases from 108 to 105. Furthermore, at 

a dose of 1×1015 He+/cm2, the back gate modulation no longer has an effect on the device current, 

however at zero gate voltage the current is two orders of magnitude higher than the pristine/un-

exposed device. At a dose of 1×1016 He+/cm2, the gate modulation is also suppressed, and the zero 

gate voltage current is approximately 6 orders of magnitude higher than the pristine device. This 

result is indicative of charge carriers in the absence of a gate applied field. At a dose of 1×1017 

He+/cm2 and greater, the single layer material is mostly sputtered away, and no current flows. 

Several devices that demonstrate the same qualitative dose-dependent behavior were measured. 

Figure 88c summarizes the IExposed/IPristine ratio for devices exposed to varying doses of He+ at 10 

V and -60 V gate voltage,  which correspond to the devices “off” and “on” states, respectively. At 

VGS =  60 V, the devices exhibit decreasing current and increasing resistivity as the dose is 

increased to 1×1015 He+/cm2. The resistivity drops sharply at a dose of 1×1016 He+/cm2, the point 

at which metallic behavior is exhibited.  However, at VGS = 10 V, the current increases with 

increasing He+ dose over the entire range studied. This indicates that carrier concentration is 

increasing as a result of He+ exposure in the absence of gate induced carrier generation. 

To further characterize the conduction mechanism, temperature-dependent transport 

measurements were conducted on the 1×1016 He+/cm2 exposed WSe2 sample. Figure 88d shows 

the transfer curves ranging from room temperature to 77 K. The device on-current is largely 

independent of gate modulation for all reported temperatures, and there is a sharp decrease in the 

conductivity as the temperature decreases. This deviates from the standard metallic behavior where 

phonon-scattering is reduced at low temperature, thereby increasing conductivity. The 

temperature-dependent source-drain I-V characteristics of the device exhibit linear behavior and 

are reported in the Supporting Information. The sheet resistance (Rs) at room temperature is 

approximately 7.2×106 Ω/sq and increases to 3.2×109 Ω/sq at 77 K; For reference, the Rs for 
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graphene has a range from 102 – 106 Ω/sq231 at room temperature depending upon the synthesis 

technique. Figure 88e is the Arrhenius plot of the device conductance (G = I/V) at the measured 

temperatures. The behavior can be broken up into a high-temperature (295-125 K) and a low-

temperature regime (below 125 K). At high temperature, the transport exhibits an activation 

behavior associated with a nearest-neighbor hopping (NNH) transport mechanism for which the 

current is governed by Equation 1: 

       Eq. (1) 

The activation energy (Ea) was determined to be ~ 36.7 meV, a reasonable value for hopping 

transport reported in other 2D materials232. Below a characteristic crossover temperature (Tc) of 

125 K, the transport deviates from the Arrhenius behavior. At low temperature, variable range 

hopping (VRH), which has a T1/3 dependence, appears to dominate the transport mechanism over 

NNH. Due to the temperature range studied, we cannot accurately fit this portion of the plot. The 

VRH – NNH crossover transport is commonly associated with disordered semiconductors233, and 

has been previously observed in TMDs with intrinsic point defects206. However, the observed 

behavior differs from other reports due to the independence from gate modulation.  

To gain a better understanding of the origin of the He+ dose dependent transport behavior 

in the 1L WSe2, STEM images of exposed WSe2 were analyzed to reveal signatures of preferential 

Se sputtering. Figure 89a shows a STEM image of WSe2, which was exposed with a dose of 

1×1015 He+/cm2. A dose of 1×1015 He+/cm2 is reported here because He+-induced defects can easily 

be distinguished, although the WSe2 is still continuous. K-means cluster analysis, using a 

Euclidean metric on bond-lengths to a six-member neighborhood for each atom, was conducted 

on the STEM image and is reported in Figure 89b. This approach clusters each atom in the image 

based on the bond-length to six nearest neighbors (see details in Methods section234–236). This 

analysis allows automated detection of atoms in varying crystallographic configurations. For 

instance, pristine lattice atoms with a consistent periodic configuration are labeled blue; atoms 

neighboring single vacancies are labeled white; and atoms from heavily damaged regions with 

multiple neighboring vacancies are labeled green. Figure 89c shows the real space nearest 

neighbor distribution for all atoms in the image characterized as pristine (blue) by the k-means 

analysis. Since the lattice is pristine, all neighboring positions are equally occupied, as indicated 
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by their similar contrast at each point of the hexagon closest to the center of the image. The real 

space nearest neighbor distribution for atoms neighboring single vacancies (green) are reported in 

Figure 89d. Nearest neighbor atoms that occupied the downward facing trimer (indicated by inset 

red arrows) have fewer counts, as indicated by their lighter contrast. This suggests that atoms 

occupying these sites were preferentially sputtered by the He+ irradiation in comparison to the 

other nearest neighbors. Image analysis reveals that the preferentially sputtered atomic species are 

Se atoms. Therefore, He+ irradiation results in chalcogen deficiency in irradiated films although 

some metal atoms are also sputtered. Electron energy loss spectroscopy (EELS) analysis confirms 

the He+ irradiation creates Se deficiency within the flakes (see Supporting Information Figure 97).  

STEM images of the WSe2 were collected as a function of dose and reported in Figure 90a 

(doses are listed as insets). He+ irradiation introduces more structural defects into the lattice as a 

function of increasing dose. At 1×1014 He+/cm2, isolated, predominately Se vacancies are 

generated, which leads to carrier scattering and reduces the field effect mobility from ~ 16 cm2/Vs 

for a pristine device to ~1.5×10-2 cm2/Vs (Details of field effect mobility calculation can be found 

in the methods). Notably, at a dose of 1×1015 He+/cm2, the Se vacancy concentration increases to 

a point that the gate-independent NNH transport dominates the conduction relative to the p-type 

semiconducting behavior of the pristine and 1×1014 He+/cm2 samples. At a dose of 1×1016 He+/cm2, 

the defect density is an order of magnitude higher and defects begin coalescing into an extended 

network percolating throughout the material. Consequently, a greater density of Se vacancies 

lowers the activation energy and the hopping distance, thereby contributing to an increase in 

conductivity. A dose of 1×1017 He+/cm2 sputters much of the material leaving discontinuous 

patches. K-means cluster analysis results are reported in Figure 90b. Pristine lattice atoms with a 

periodic configuration of neighboring atoms are labeled as yellow; atoms neighboring vacancies 

(boundary atoms) are labeled as magenta; and atoms with little or no detectable periodicity are 

labeled as blue. The boundary states are isolated and reported in Figure 90c for clarity. At a dose 

of 1×1014 - 1×1015 He+/cm2, there are numerous boundary atoms surrounding pores and point 

defects, but they are largely isolated from each other. However, at a dose of 1×1016 He+/cm2, the 

boundary atoms form an extended percolating network in the single layer WSe2. It is worth noting 

that the defect concentration in the free-standing WSe2 induced by a particular He+ dose is slightly 

lower than the defect concentration that can be expected for material exposed on a bulk substrate. 
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This is because the primary He+ beam energy has a small interaction cross-section with the 

freestanding WSe2
228 and back-scattered He+ and recoil atoms contribute significantly toward 

defect introduction. For atomically thin free-standing material, the vast majority of He+ transmit 

or forward-scatter through the material, thus minimizing defects generated from backscattered 

He+. However, recoil atom cascades are still expected to significantly contribute toward defect 

production. For a more detailed description on how the underlying substrate effects the He+-

induced defect introduction, interested readers are referred to Ref 237.  

Unfortunately, this image analysis does not reveal a single dominant configuration for the 

edge termination in the percolating network. In context with previous reports, edge states behave 

metallically for most commonly occurring edge terminations218,219. Therefore, percolating 

networks of edge states surrounding pores are believed to behave as conductive nanowires and 

contribute to the high conductivity at 1×1016 He+/cm2. To confirm our analysis, first-principles 

DFT calculations were performed for different defect configurations, as shown in Figure 91. 

Pristine monolayer WSe2 has a direct band gap of ~1.55 eV at the K point, according to this level 

of DFT calculations. For the point defect which is predominately a Se vacancy induced by a low 

irradiation dose such as 1×1014 He+/cm2, this leads to two nearly degenerate in-gap bands above 

the Fermi level, which are almost dispersionless as their charge densities are well localized around 

the point defect site (Figure 91b)206,226. Thus the point defect lowers the carrier mobility and also 

the band gap to ~1.17 eV. Although it retains the semiconducting feature, the gap reduction 

indicates the decreased current on/off ratio, consistent with our experimental observation. With 

increasing irradiation dose, pore and edge defects are introduced according to the STEM images, 

giving rise to more in-gap bands. Our calculations suggest that many in-gap states are close to the 

Fermi level, effectively closing the band gap and rendering the system metallic. This can explain 

why the back gate modulation no longer has an effect on the device current at doses of 1×1015 and 

1×1016  He+/cm2, and the zero gate voltage current is much higher than that of the pristine device. 

In other words, both the circular edge surrounding the pore defect (Figure 91c) and the straight 

edge (Figure 91d) lead to metallic edge states that behave as conductive nanowires. However, 

isolated pores, which are prevalent with exposure to a dose of 1×1015 He+/cm2, do not coalesce 

into extended networks and result in lower conduction than material exposed to a dose of 1×1016 

He+/cm2.  Thus, conduction in the material results from percolating 1-D networks of edge states in 
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series with pockets of Se deficient material. The NNH temperature dependence is a result of the 

Se deficient material which acts as a bottleneck in the conduction path between high conductivity 

edge states, as NNH behavior has been demonstrated in TMDs with intrinsic point defects206.  

Since gate modulation has a minimal effect on the carrier concentration of the percolating 

defect networks, the NNH WSe2 can be utilized to direct write circuitry and logic gates onto a 

single flake. Figure 92a shows a proposed schematic for the structure of a resistor-loaded inverter 

device (circuit diagram is inset in Figure 92c). This logic gate is fabricated as a series of two 

devices. The channel between the first two electrodes is irradiated with a dose of 1x1016 He+/cm2 

in order to induce gate-independent NNH behavior. This region behaves as a resistor due to the 

linear I-V characteristics. The channel between the second and third electrodes is pristine WSe2. 

This device behaves as a standard p-FET with significant gate modulation. An optical micrograph 

of a fabricated invertor is displayed in Figure 92b. The input (Vin) – output (Vout) characteristics 

for a back-gated (SiO2) WSe2 invertor are shown in Figure 92c, and typical invertor behavior of a 

p-type device is exhibited. In this device, the NNH channel gives a resistance of approximately 5 

MΩ. Transfer curves and I-V characteristics of the transistor and resistor in the invertor structure 

are reported in the Supporting Information Figure 98 and Figure 99. In order to demonstrate the 

applicability of the NNH defect network in other TMDs, a similar resistor-loaded inverter was 

fabricated from single layer WS2. Input-output characteristics are shown in Figure 92d; notably, 

this device shows opposite input-output characteristics since the WS2 transistor exhibited n-type 

behavior. Similar to the WSe2 invertor, the resistor was direct-written with He+ irradiation into a 

single flake by inducing the NNH defect network. The voltage gain (dVout/dVin) in these devices 

is low since they were back-gated with relatively low-dielectric constant SiO2 (εr = 3.9). In order 

to improve invertor performance, a WSe2 invertor was top-gated with an ionic liquid (IL) (see 

supporting information for details) and is reported in Figure 92e. VDD was varied from 0.5 V to 

1.5 V, and Vout was consistently at the level of VDD for positive Vin, when the transistor was in an 

off state. As Vin is decreased to a threshold of -1 V, Vout rapidly switches to 0 V and displays ideal 

invertor characteristics. Figure 92f reports the voltage gain, which was greater than 5 for VDD 

equal to 1.5 V. This is a suitable value for implementation of these devices into electronic circuits 

where a gain greater than 1 is typically desired to drive the input of the next invertor in a circuit.  
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Furthermore, high conduction NNH behavior induced in the TMD flake can be utilized to 

create edge contacts for true 2D circuitry, which typically involves a CVD step with a seeding 

mechanism238,239. Figure 93a displays a schematic of an edge contacted transistor fabricated from 

NNH WS2 acting as the source and drain along with pristine WS2, which acts as the channel 

material. The Raman mapping of the WS2 2LA(M) peak in Figure 93b shows that a relatively 

sharp transition can be achieved between defective and pristine material. The 2LA(M) peak is 

clearly suppressed for the defective WS2. The transfer curve of the edge contacted device 

compared to that of a standard WS2 FET with a Ti/Au source-drain is shown in Figure 93c. The 

introduction of NNH WS2 edge contact results in a slight reduction in the on-current of the device; 

however, Ion/Ioff remain greater than 106. Total resistance of a device in its on-state, defined as 

intrinsic resistance plus contact resistance, increases from ~3.7 MΩ to ~14.4 MΩ after the addition 

of edge contacts. This is likely due to the intrinsic resistivity of the NNH WS2 and could be reduced 

by further optimizing the defect concentration. Hence, the induced NNH behavior in TMD flakes 

can serve as a method to write circuitry and logic devices into the material for atomically thin 

circuitry and edge contacted devices. The high conduction behavior induced by the formation of 

extended defect networks can likely be scaled-up via standard lithography of a blocking mask 

coupled with standard ion implantation or plasma processing. 

3.2.4 Conclusions 

We have demonstrated that extended networks of defects in WSe2 and WS2 can be utilized 

to induce high conductivity behavior. It is believed, from STEM image analysis, that this behavior 

arises from the Se deficiency and the formation of extended edge states that percolate throughout 

the material and behave as 1-D metallic nanowires. DFT simulations confirm that the metallic edge 

states can be introduced after irradiation. However, temperature-dependent electrical transport 

suggests that a nearest neighbor hopping transport mechanism is operative within the material, 

which deviates from standard metallic behavior. The NNH behavior is exhibited due to pockets of 

chalcogen deficient material which remains between metallic edge states. Networks of defects 

were induced within single flakes to direct-write inverter devices from WSe2 and WS2, devices 

that demonstrate a voltage gain suitable for electronic circuitry. The NNH material was also 

utilized to create edge contacts for a transistor that demonstrated an on-off ratio of greater than 
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106. This enables the formation of atomically thin circuitry without the need for seeding and a 

CVD step. 

3.2.5 Methods 

3.2.5.1 Material Synthesis 

Monolayer WSe2 crystals were synthesized on SiO2/Si substrates by a digital transfer 

growth method that combines pulsed laser deposition (PLD) and VTG processes240. We employ 

PLD to first deposit a uniform and precise amount of stoichiometric precursor nanoparticles onto 

a “source” substrate at room temperature. Specifically, SiO2/Si source substrates were placed d = 

5cm away and parallel to the WSe2 targets in a vacuum chamber. The WSe2 targets were prepared 

by pressing the stoichiometric powder and were ablated by an excimer laser (KrF 248 nm, 20 ns, 

1 Jcm-2) at 30o angle of incidence with a repetition rate of 1 Hz at the background gas pressure 200 

mTorr.  This material was then covered by a “receiver” substrate which is placed in contact and 

on top of the source substrate to form a confined growth system. The source substrate was placed 

in contact with a button heater at about 900 oC to evaporate the precursor materials on the source 

substrate. By controlling the background gas pressure, a temperature gradient was established that 

resulted in condensation of the evaporated precursor materials onto a receiver substrate and growth 

of WSe2 monolayer crystals. 

High-density WS2 monolayer crystals were directly grown on SiO2/Si substrates by 

chemical vapor deposition. The details were reported in a previous publication241. 

3.2.5.2 Helium Ion Irradiation 

He+ exposures were conducted in a Zeiss Orion NanoFab microscope. A constant beam 

energy of 25 keV was used for all exposures. All exposure patterns were generated using the 

NanoPatterning and Visualization Engine (NPVE) pattern generator produced by Fibics Inc. TMD 

field-effect transistors were irradiated after device fabrication. For STEM imaging, the WSe2 was 

transferred to a QUANTIFOIL holey carbon grid prior to He+ irradiation. 

3.2.5.3 Raman and Photoluminescence  

Raman spectroscopy and photoluminescence measurements were performed in a Renishaw 

inVia micro-Raman system using a 532 nm excitation laser. A 100 × magnification objective was 

used for spectral acquisition with a 10 s acquisition time, and three acquisitions were averaged 
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together. The laser spot size was approximately 0.6 μm.  Data analysis was conducted with the 

WIRE v3.4 software. 

3.2.5.4 Device Fabrication 

Single-layer WSe2 flakes were transferred onto SiO2 (290 nm)/Si (heavily doped Si, which 

also serves as a bottom gate electrode).  Standard e-beam lithography, followed by e-beam 

evaporation, was employed to create the source/drain electrodes for electrical measurements. The 

contacts consisted of Ti/Au (5/30 nm) metals deposited and subsequently patterned via a lift-off 

process. The electrical characteristics of the fabricated WSe2 devices were measured using an 

Agilent semiconductor parametric analyzer (Agilent Tech B1500 A). Field effect mobility was 

calculated using the following equation, μ = (L/W)*(1/CgVDS)*(dIDS/dVGS), where L is the channel 

length, W is the channel width, Cg is the gate capacitance (~12 nF/cm2), VDS is 1.1 V, and 

dIDS/dVGS is the slope from the linear portion of the IDS vs VGS curve. 

3.2.5.5 Scanning Transmission Electron Microscope Imaging 

All STEM microscopy was carried out using a Nion UltraSTEM 100 operating at an 

accelerating voltage of 100 kV.  Flakes of WSe2 were exfoliated from a bulk crystal onto films on 

continuous α-carbon film grids.  The 1L WSe2 images consist of averaging 20 frames each 512 x 

512 pixels with a 4 μs dwell time per pixel.  The EELS spectra were acquired with a Gatan 

Spectrometer “Enfina” fitted to the STEM.  

3.2.5.6 STEM Image K-Means Cluster Analysis 

Quantification of the STEM image data was broken down using the following workflow. 

First, each atom was located in the image using an atom finding algorithm previously described in 

Ref 35. Second, vectors describing local 6 member neighborhoods for each atom, based on the six 

closest atoms, were constructed. These distance vectors served as input into a k-means cluster 

algorithm, utilizing a Euclidian distance metric, with 1000 iterations to confirm minima 

convergence. Hierarchical cluster trees (dendrograms) were used to assess the most appropriate 

number of clusters, and ranges of 2-8 clusters were calculated and analyzed for each image.  

3.2.5.7 Density Functional Theory 

Plane-wave DFT calculations were performed using the VASP package242 equipped with 

the projector augmented-wave (PAW) pseudopotentials with a cut-off energy of 300 eV. The 

exchange-correlation interactions were considered in the generalized gradient approximation 



207 
 

(GGA) using the Perdew-Burke-Ernzerhof (PBE) functional243. Monolayer WSe2 was modeled by 

a periodic slab geometry with 18 Å vacuum separation used in the out-of-plane direction to avoid 

spurious interactions with periodic images. For the hexagonal unit cell of pristine WSe2, its 

optimized in-plane lattice constant is 3.32 Å and 24×24×1 k-point samplings were used in the 

Monkhorst-Pack scheme. To model the electronic properties of different defect configurations, the 

point Se vacancy, pores defect and edge defect were considered in a 5×5 supercell with 6×6×1 k-

point samplings used. All atoms were relaxed until the residual forces below 0.01 eV/Å. 
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3.2.6 Appendix 

3.2.6.1 Supporting Information 

Dose Dependent Transfer Curves 

Figure 94a-c reports the transfer curves for devices before and after they were irradiated 

with He+. Devices all display p-type characteristics with an on/off of greater than 107. 

Optical Properties of WSe2 

Figure 95a reports Raman spectra for the WSe2 as a function of He+ irradiation dose. The 

pristine material exhibits two strong characteristic peaks attributed to the E1
2g and A1g peaks. As 

the He+ dose increases, the peak intensities decrease, and at a dose of 5×1015 He+/cm2 and 

greater, the E1
2g and A1g peaks are quenched completely, due to defects and lattice distortions 

generated from He+ irradiation. The photoluminescence (PL) spectra of the irradiated WSe2 are 

shown in Figure 95b. The PL peak at ~1.6 eV is quenched rapidly at doses of 5×1014 He+/cm2
 

and greater, indicating that even relatively low doses introduce a sufficient number defects to 

quench emission. Similar quenching behavior has been observed for MoS2, where plasma was 

used to induce defects244. 

Temperature-Dependent Current-Voltage Characteristics 

Figure 96a and Figure 96b report the temperature dependent source-drain I-V 

characteristics of a pseudo-metallic device at VGS = 80V and -80V, respectively. 

Electron Energy Loss Spectra (EELS) 

EELS spectra shown in Figure 97, contain the selenium L2,3 ionization edge at 1436 eV 

and the W M4,5 edge at 1809eV.   With increasing dose, the selenium edge decreases while the W 

edge remains almost constant. Further analysis show that the Se signal is reduced by more than 

50% by irradiation with a dose of 1x1017 He+/cm-1.This indicates that the Se concentration is 

being reduced by interaction with the He+ beam. It is concluded that the He+ preferentially 

sputters the Se atoms in comparison to W consistent with ion-solid Monte Carlo simulations227. 

Inverter Device Characteristics 

Figure 98a-c shows the transfer curves and I-V characteristic for the transistor and 

resistor portion of the WS2 logic gate. This device was back-gated by SiO2, which has a 

relatively low dielectric constant. This explains the low voltage gain for the inverter. Figure 
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99a,b show the transfer curves and I-V characteristic for the transistor and resistor portion of the 

WSe2 logic gate. This device was top-gated with a high dielectric constant ionic liquid. 

Details of Ionic Liquid Gating 

1-hexyl-3-methylimidazolium bis(trimetheylsulfonyl)imide ([hmim][Tf2N]) was used as 

a high dielectric constant ionic liquid (IL) to gate the WSe2 inverter device. A droplet was placed 

on top of the inverter device in vacuum, and contacted with a prove tip. A schematic of this is 

shown in Figure 100. 
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3.2.6.2 Figures 

 
Figure 88. He+ dose dependent electrical properties. (a) Optical micrograph of a standard WSe2 

FET device. Scale bar is 10 μm. (b) Transfer curves for exposed FETs with VDS = -1.1 V. (c) Plot 

of the current ratio: current of the exposed device to current of pristine device at VGS = 10 and -60 

V. (d) Temperature-dependent transfer curves for WSe2 exposed with a dose of 1×1016 He+/cm2.  

(e) Arrhenius plot of the device current (IDS) and fitting results of nearest-neighbor hopping model 

with an activation energy (Ea) of 36.7 meV. 
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Figure 89. STEM image of exposed WSe2. (a) HAADF STEM image of WSe2 which was exposed 

with a dose of 1×1015 He+/cm2. Field of view is 32 nm. (b) STEM image local crystallography 

analysis using K-means clustering, on the six-nearest neighbor bond-lengths to each atom. Blue 

atoms represent a pristine lattice, white atoms are around point defects (light damage), and green 

atoms are extended defects (heavy damage). Nearest neighbor distribution in real space for (c) 

pristine (blue) and (d) lightly damaged (white) atoms in the lattice. Lightly damage cluster shows 

significantly lower counts for neighbors in ‘downward pointing’ trimer, which corresponds with 

preferentially sputtered Se. 

c d 

Distance (a.u) Distance (a.u) 

a b 

Pristine 

Analyzed Raw image 

Damaged 



212 
 

 

 
Figure 90. STEM images and analysis. (a) High angle annular dark field (HAADF) STEM 

images of WSe2 irradiated with varying doses of He+ (text inset in image). (b) K-means cluster 

analyzed STEM images. (c) Only the vacancy boundary atoms (magenta color in the mid row) 

from the STEM images (top row). 
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Figure 91. DFT results for pristine and defective single layer WSe2. Calculated electronic band 

structures of the 5×5 supercell with (a) no defect, (b) a point defect, (c) a pore defect, and (d) edge 

defect configurations. All band energies are aligned to the vacuum potential for direct comparison. 

The Fermi level is set at the valence band maximum for each system, as shown by the blue dashed 

line. The corresponding atomic structure for each configuration is shown above the band structure. 

The point defect in (b) corresponds to a single Se vacancy, which is indicated by the red dashed 

circle.  
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Figure 92. Atomic layer inverters. (a) Schematic of atomic layer inverter created by utilizing 

exposed and pristine material on a single flake. (b) Optical micrograph of a typical inverter 

device. Scale bar is 10 μm. (c) Input (Vin) – Output (Vout) voltage characteristics of a WS2 atomic 

layer inverter. Circuit diagram for device is inset. (d) Input (Vin) – Output (Vout) voltage 

characteristics of a WSe2 atomic layer inverter. (e) Input (Vin) – Output (Vout) voltage 

characteristics of a WSe2 atomic layer inverter which was gated with an ionic liquid. (f) Voltage 

gain (dVout/dVin) of inverter reported in figure (e). 
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Figure 93. Edge contacts for 2D devices. (a) Schematic of edge contact FET. Source and drain are 

fabricated from NNH WS2 (exposed to a dose of 1×1016 He+/cm2). The FET channel is pristine 

(unexposed) WS2. (b) Raman map of a WS2 flake plotting the intensity of the 2LA(M) peak. The 

WS2 flake was exposed to doses varying from 1x1014 – 1x1016 He+/cm2
 (inset).  Scale bar is 10 

μm. Raman map is overlaid on an optical micrograph. (c) Transfer curve for a standard WS2 FET 

compared with that of an edge contacted FET in which the source and drain were composed of 

NNH WS2. 
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Figure 94. Transfer curves for device before and after irradiation with the He+ beam. Doses range 

reported are (a) 1x1014 He+/cm2, (b) 1x1015 He+/cm2 and (c) 1x1016 He+/cm2. 

 

 

 
Figure 95. (a) Raman spectra for WSe2 as a function of He+ exposure dose. (b) 

Photoluminescence spectra for WSe2 as a function of He+ exposure dose. Log-scale spectra is 

inset. 
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Figure 96. Temperature dependent output curves with a VGS of (a) 80 V and (b) -80 V. The 

device was exposure with a dose of 1.0x1016 He+/cm2 prior to measurement. 

 

 

 
Figure 97. EELS spectra showing a decrease in the area under the selenium L2,3 edge with 

increasing He+ dose. This is directly correlated to the areal density of the specific element. 
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Figure 98. (a) Transfer curves for the WS2 transistor which was part of the logic gate. (b) 

Transfer curves of the metallic-like resistor portion of the inverter which demonstrates no effect 

of gate modulation. (c) I-V characteristic of the resistor. 

 

 

 
Figure 99. (a) Transfer curves for the WSe2 transistor which was part of the logic gate. The 

device was gated with a high dielectric-constant ionic liquid. (b) Transfer curves of the metallic-

like resistor portion of the inverter which demonstrates no effect of gate modulation. 
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Figure 100. Schematic of a WSe2 inverter device with IL gating. 
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CONCLUSION 
 

The results reported in this dissertation represent an advancement in the wide-spread 

applicability of focused beam induced processing techniques. Chapter I presented laser-assisted 

techniques to drive the purification of EBID deposits in the SEM chamber. It was demonstrated 

that O2 gas as well as inert gas flow can be utilized as a reactive gas in the purification process. 

An ALD-like process was created which resulted in the high-resolution deposition of pure Pt 

EBID deposits. 

Chapter II presented multiple processing techniques which expand the applicability of the 

focused He+ beam as a nanofabrication tool. A laser-assisted He+ exposure process was used to 

prevent the formation of subsurface damaged during He+ processing techniques. This solves a 

crucial problem which has plagued the He+ processing community. The focused He+ beam was 

also utilized in a laser-assisted etching (LAIBIE) process, which greatly increased the etch rate 

of Ti while maintaining nanoscale resolution. A similar focused He+ beam induced etching 

(IBIE) process was developed to etch WSe2. This enabled the formation of highly aligned 

nanoribbons with sub-10 nm resolution. WSe2 nanoribbon optical and electronic properties were 

reported for the first time. 

Chapter III reports the effects of focused He+ beam irradiation on opto-electronic 

properties of 2D materials, including WSe2 and WS2. Precise defects were selectively introduced 

in materials by controlled dose of He+ irradiation, and its effects on structural, optical and 

electrical properties were investigated via STEM, Raman spectroscopy, and transport 

measurements. With increasing dose, point defects and local disorder of WSe2 flake were 

observed, thereby tuning the electrical transport of the material. A nearest-neighbor hopping 

transport mechanism was demonstrated and enabled the direct writing of logic gates on a single 

layer of WSe2 and WS2 by defect engineering. 
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