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Abstract 
 
 

The accurate modeling and simulation of nuclear reactor designs depends greatly on the ability to 

couple differing sets of physics together. Current coupling techniques most often use a fixed-

point, or Picard, iteration scheme in which each set of physics is solved separately, and the 

resulting solutions are passed between each solver. In the work presented here, two different 

coupling techniques are investigated: a Jacobian-Free Newton-Krylov (JFNK) approach and a 

new methodology called Coarse Mesh Finite Difference Coupling (CMFD-Coupling). What both 

of these techniques have in common is that they are applied to the low-order CMFD system of 

equations. This allows for the multiphysics feedback effects to be captured on the low-order 

system without having to perform a neutron transport solve. 

 

The JFNK and CMFD-Coupling approaches were implemented in the MPACT (Michigan 

Parallel Analysis based on Characteristic Tracing) neutron transport code, which is being 

developed for the Consortium for Advanced Simulation of Light Water Reactors (CASL). These 

methods were tested on a wide range of practical reactor physics problems, from a 2D pin cell to 

a massively parallel 3D full core problem. Initially, JFNK was implemented only as an 

eigenvalue solver without any feedback enabled. However this led to greatly increased runtimes 

without any obvious benefit. When multiphysics problems were investigated with both JFNK 

and CMFD-Coupling, it was concluded that CMFD-Coupling outperformed JFNK in terms of 

both accuracy and runtime for every problem. When applied to large full core problems with 

multiple sources of strong feedback enabled, CMFD-Coupling reduced the overall number of 

transport sweeps required for convergence.  
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1.  Introduction 

Computer modeling and simulation have become extremely valuable tools in nuclear reactor 

design analysis. The ability to accurately predict reactor performance is crucial for improving the 

safety and economic viability of a design. However, nuclear reactors are extremely complex 

systems that involve a variety of different physics, making them rather difficult to model. To 

address this, the U.S. Department of Energy (DOE) created the Consortium for Advanced 

Simulation of Light Water Reactors (CASL), an Energy Innovation Hub tasked with developing 

advanced modeling and simulation capabilities for the nuclear industry. The suite of capabilities 

being developed is known as the Virtual Environment for Reactor Applications (VERA) [2] and 

includes chemistry, neutronics, thermal-hydraulics (TH), and thermo-mechanics components. 

Coupling these different sets of physics together poses a unique challenge because the solution of 

one component often relies on the solution of another, and vice versa.  

 

The ability to accurately predict coupled system behavior in a reasonable amount of time is 

critical for both steady state and transient calculations. The solution of a coupled multiphysics 

problem is most often solved using a fixed-point, or Picard, iteration in which each set of physics 

is solved separately, and the resulting outputs are passed between each solver. Generally, once 

two different codes are coupled into one, one set of physics is solved first while the other set of 

physics is solved only after convergence. These separate solvers treat one another as black boxes 

in that they only use information from the other as an input and do not share information 

between each other before convergence. In nuclear reactor applications, coupling neutronics to 

TH is no exception. A typical workflow is as follows: first, the neutronics equations are solved to 

calculate the fluxes in the problem, which in turn are used to calculate power. Then a TH solver 

takes these powers and uses them to determine the temperatures throughout the problem. These 

temperatures are then passed back to the neutronics solver where they are used to calculate new 

cross sections. This cycle continues until both the neutronics and TH solutions are stable. This 

Picard strategy is used for other forms of feedback as well. However, while this fixed-point 

method is easy to implement and solve, it can suffer from a slow convergence rate. There also is 

no guarantee that the solution will converge at all. This is due to the fact that only the local 

convergence within each solver is known and tested. The overall global convergence is not 
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actually known but is assumed from the local convergence of each solver. Therefore, it is 

possible under certain circumstances that global convergence is never reached, although each set 

of physics is locally converged.  

 

Therefore, it is desired to develop methods that couple these different sets of physics more 

tightly and there are alternatives to the Picard iteration that may offer improvements. Newton-

based iterative methods that utilize a Jacobian to provide gradient information have a quadratic 

convergence rate and are globally convergent [3]. Certain Newton-based methods avoid having 

to form the Jacobian, which is desirable when it is either expensive or impossible to compute. 

These methods are referred to as Jacobian-Free Newton-Krylov (JFNK) methods [4]. 

 

While JFNK has been extensively applied to accelerating the -eigenvalue problem [5] [6] [7] 

[8] [9] [10], less attention has been paid towards its coupling abilities. While both Xu [11] and 

Ward [12] use JFNK to couple the neutronics equations to different TH codes, the neutronics 

calculations are performed using a simplified nodal code, rather than a true transport code. 

Similarly, Kastanya [13] solves the coupled neutronics-TH equations, but uses a two-group 

neutron diffusion approximation and achieves only a slight improvement in performance. 

Herman [14] mentions in his work the coupling advantages of using JFNK, but remarks that it 

was not used for such a purpose, despite being implemented to solve the -eigenvalue problem. 

In research supported by CASL [15], the radiation transport equation was approximated using 

the  angular approximation which was then coupled to the TH equations. However, despite 

investigating different implementations of JFNK, the improvements relative to the Picard 

iteration were only modest. Although the computational gains were small, this work yielded 

results that showed promise for the efficacy of JFNK in coupled reactor problems. Unlike these 

previous implementations, a unique contribution of this work is the fact that the nonlinear JFNK 

solver will be applied on the low-order condensed Coarse Mesh Finite Difference (CMFD) 

equations in an attempt to further accelerate the solution. This method can also be implemented 

to solve the critical boron search problem and transient problems, in addition to being a -

eigenvalue solver.  
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Another alternative to the Picard iteration involves tighter coupling between CMFD and other 

sets of physics. This method was first investigated by Herman [14] and was implemented in a 

Monte Carlo code along with a machine learning algorithm to couple CMFD to a TH solver. 

This method was modified for application in a deterministic transport code and can be used to 

couple any source of feedback with CMFD. In this document, this method is referred to as the 

CMFD-Coupling technique. CMFD-Coupling performs iterations between the low-order CMFD 

solver and the feedback operator before passing the updated solution back to the transport solver.  

 

The objective of this work is to develop a multiphysics coupling strategy that increases the 

robustness of the solution while simultaneously reducing the number of transport sweeps 

required for convergence. This is achieved by implementing both a JFNK multiphysics solver 

and a CMFD-Coupling solver.  

 

The remainder of this dissertation is organized into five major chapters. Chapter 2 details all of 

the background information that is required for the implementation of JFNK and CMFD-

Coupling. First, the transport and CMFD equations are derived in detail in Section 2.1 and 

Section 2.2, respectively. Next, the nonlinear JFNK solver is derived along with all associated 

numerical solvers in Section 2.3. Finally, the various feedback models that were used in this 

work are outlined in Section 2.4. Chapter 3 outlines both the JFNK and CMFD-Coupling 

methodologies as well as details associated with their implementation. In Chapter 4, a series of 

smaller problems were explored and their results discussed to investigate the performance of 

JFNK as both a multiphysics solver in addition to an eigenvalue solver. CMFD-Coupling was 

also performed on these smaller problems in order to serve as a comparison against JFNK. 

However, in Chapter 5, CMFD-Coupling is tested on its own for a series of large scale full core 

problems. Both Watts Bar Unit 1 Cycle 1, and Cycle 2, are examined with different sources of 

multiphysics feedback enabled and their results discussed. Finally, the conclusions of this work, 

along with proposed work for the future, are given in Chapter 6. 
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2.  Background Information 

The following subsections review the fundamental mathematical and physical concepts required 

for implementing a CMFD accelerated transport solver. In addition, the algorithms embedded in 

the JFNK solver are outlined in detail. Lastly, the feedback models that are implemented in this 

work are discussed.  

 

2.1  High-Order/Low-Order Acceleration 

One method for accelerating the convergence of the neutron transport equation is to couple it to 

the neutron diffusion equation which is an approximation of the transport equation [16] [17]. 

These methods are known as High-Order/Low-Order (HOLO) Acceleration methods, or 

Moment-Based Acceleration methods. Recently, these methods have been given much attention 

and have been implemented successfully [18] [19] [20] [21] [22] [23] [24]. These methods work 

by solving the much simpler Low-Order (LO) diffusion equation and use its solution as an 

approximation to the High-Order (HO) transport equation solution. Acceleration is achieved by 

alternating between solving the HO transport equation and the LO diffusion equations, while the 

LO equations are chosen such that the HO and LO solutions are identical at convergence. This 

consistency is achieved by deriving the LO equations from the most recent HO transport sweep. 

Since the LO system of equations is much easier to solve and converges to the same solution, 

replacing every other HO solve with a LO solve reduces the total number of transport sweeps 

required to reach convergence. In addition to acceleration, the discrete consistency of the LO 

system can also be used to couple other physics [21]. 

 

The HOLO method that is most commonly implemented within the neutronics community is 

called Nonlinear Diffusion Acceleration (NDA), which is more commonly known as Coarse 

Mesh Finite Difference (CMFD). CMFD is applied to the HO Boltzmann transport equation 

which removes the angular dependence and leads to an angularly integrated scalar flux balance 

equation which is far less expensive to solve [19]. Additionally, CMFD is performed on a much 

coarser mesh than the HO problem, which makes the system of equations smaller and quicker to 

solve.  
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2.1.1 Derivation of HOLO from the Neutron Transport Equation 

The steady state continuous form of the Boltzmann neutron transport equation is given by 

 

 

1 

 

where  is the angular neutron flux, such that  is the number of 

neutrons passing through volume element  about , moving in solid angle  about direction 

, and with energies in  about . The variable  is the fission neutron energy distribution 

spectrum and  is the effective multiplication factor.  is the total macroscopic cross 

section,  is the macroscopic neutron production cross section, and                    

 is the macroscopic scattering cross section from direction  and energy  

to direction  and energy . Several approximations and substitutions can be made in order to 

make the transport equation easier to work with. First, the zeroth angular moment of the flux, 

also known as the scalar flux, is given by 

 

 2 

 

An approximation is also made by assuming that neutrons are scattered isotopically:  

 

 3 

 

Substituting Equations 2 and 3 into Equation 1 yields 
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4 

 

2.1.2 Multigroup Approximation 

In order to solve this equation for the dominant eigenvalue-eigenvector pair, ( ), some 

appropriate approximations must be made. The first of which is the multigroup approximation 

that discretizes the continuous energy variable, , into energy groups in which the multigroup 

cross sections are a constant for a given group, . These multigroup cross sections can be 

determined exactly for a given reaction type, , using 

 

 5 

 

However, the angular neutron flux, , is usually not known when making the 

multigroup approximation. Therefore an approximation is made assuming that  is 

separable: 

 

 6 

 

 is a weighting factor in energy and should be selected to represent the neutron energy 

spectrum of the problem. Even though this is usually not known prior to solving the problem, 

this separation approximation is valid for collapsing the continuous energy cross sections as long 

as  is reasonably consistent with the energy distribution in the problem. Substituting 

Equation 6 into Equation 5 removes the angular dependence, yielding  

 

 7 

 

Similarly, the multigroup scattering cross section is calculated using 
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 8 

 

The fission neutron energy distribution spectrum for a given group, , is given by 

 

 9 

 

Using these approximations with Equation 4 leads to the multigroup approximation of the 

transport equation given by 

 

 
10 

 

where 

 

 11 

 

and the multigroup scalar flux is given by 

 

 12 

 

2.1.3 The Discrete Ordinates Approximation 

The discrete ordinates approximation [25] discretizes the continuous angular variable . This is 

done using a quadrature, which approximates the definite integral of a function of angle as a 

weighted sum of the function at specific values, given by 
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 13 

 

where  are the quadrature weights. Rewriting Equation 10 at discrete angles yields 

 

 
14 

 

where  

 

 15 

 

Therefore, the multigroup scalar fluxes in Equation 12 are now represented as a weighted sum 

 

 16 

 

The discrete ordinates approximation is found to be accurate as long as a sufficient number of 

angles are used along with an appropriate choice of  and . Equation 14 is what will be 

referred to as the HO transport equation. 

 

2.2  Coarse Mesh Finite Difference 

CMFD is a type of NDA that utilizes second order multigroup diffusion equations on a spatial 

mesh that is coarser than the mesh used to solve the HO transport equation [14]. CMFD was first 

proposed by Smith in 1983 [26] and has been shown to reduce the number of transport sweeps 

by over a factor of 100 [17]. To apply CMFD, the HO equation must first be reduced to the easy 

to solve LO problem. This is done by using Equation 2 to take the zeroth angular moment of 

Equation 14, which results in the neutron continuity equation, 
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 17 

 

where the neutron current, , is defined as the first angular moment of the flux, 

 

 18 

 

The standard neutron diffusion approximation is made using Fick’s law, where the neutron 

current density is assumed to be proportional to the spatial gradient of the flux, 

 

 19 

 

where  is the standard neutron diffusion coefficient . Substituting Equation 19 into 

Equation 17 yields the neutron diffusion equation,  

 

 
20 

 

However, the diffusion approximation in Equation 19 can be improved by including a nonlinear 

drift term for the current [18], 

 

 21 

 

 is a consistency term that ensures the HO and LO problems are discretely consistent upon 

convergence. This term not only forces consistency, but also causes the acceleration to be 

nonlinear because it is defined as a function of HO quantities from Equation 21 
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Substituting Equation 21 into Equation 17 and moving the in-group scattering term, , 

to the left hand side yields the LO system to be used by CMFD: 

 

 
23 

 

With the HO and LO problems in hand, the CMFD algorithm is as follows: 

 

 1.   Start with an initial guess for both the eigenvector and eigenvalue,  and  
Do until converged 

 2.  Solve the HO equation (14) for  and  
 3.  Solve for  using Equation 22 
 4.  Solve the LO equation (23) for  and  
       End Do 
 

For now, the details of solving the HO and LO sets of equations have been overlooked, but these 

details will be examined in depth in the following sections.  

 

2.2.1 Method of Characteristics 

One of the neutron transport codes developed in CASL is Michigan Parallel Analysis based on 

Characteristic Tracing (MPACT) [27]. MPACT employs a 2D/1D approach to solving the 

neutron transport problem. The problem is broken up into a series of 2D axial planes whose axial 

transverse leakage is solved using a 1D axial calculation. Then each plane is solved 

independently using the Method of Characteristics (MOC), first proposed by J. R. Askew in 

1972 [28]. MOC is a general mathematical technique for solving first-order partial differential 

equations and is an attractive neutron transport technique because it avoids some of the  
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drawbacks associated with other methods; Monte Carlo methods are very time consuming for 

large problems in which fine flux details are required, and the execution times and memory 

requirements of the method of collision probabilities increases with the square of the number of 

mesh. In contrast, MOC is relatively simple to implement while computation time and memory 

requirements scale linearly with the spatial and angular detail of the problem [29]. MOC is 

implemented by solving the characteristic form of the Boltzmann neutron transport equation 

along discrete tracks, oriented at different angles that are traced over the explicit problem 

geometry. Every unique angle is given a weight and the average angular flux along each track is 

calculated. The solutions from each track are combined to produce a very accurate description of 

the flux distribution throughout the problem. 

 

To obtain the characteristic form of the transport equations, the spatial variable  from the HO 

equation, Equation 14, is transformed using a change of variables to represent the characteristic 

direction: 

 

 24 

 

where  is an arbitrary reference point and  is the characteristic segment length along the 

discreet direction . Substituting into Equation 14 yields 

 

 25 

 

where the right hand side has been rewritten as 
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Equation 25 can be solved analytically using the integrating factor  

 

 27 

 

resulting in 

 

 
28 

 

Therefore, Equation 28 with Equation 26 is the steady state solution of the characteristics form of 

the Boltzmann neutron transport equation with isotropic scattering. However, in order to solve it 

numerically, the problem space must be divided into discrete regions. To further simplify the 

problem, the material properties in a given spatial region are assumed to be constant. With this 

simplification, Equation 28 and Equation 26 can be rewritten to describe a point  along a single 

characteristic ray, , passing through a discrete region : 

 

 29 

 

 30 

 

where the incoming flux into a discrete region  is defined as 
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The outgoing flux leaving a discrete region is found by substituting the total characteristic track 

length, , into Equation 29: 

 

 31 

 

where 

 

  

 

The incoming and outgoing fluxes,  and  respectively, are coupled such that for 

two neighboring discrete regions  and , the outgoing flux in region  equals the incoming 

flux in region  along ray , for energy group , and in direction . 

 

To simplify the last remaining integral in Equation 29, it is assumed that the neutron source, , 

is constant within each discretized region. This assumption is called the flat source 

approximation. Applying the flat source approximation to Equation 29 allows for the remaining 

integral to be solved analytically, leading to: 

 

 32 

 

where the region averaged flat source, , is given by 

 

 33 

 

The scalar flux, , is defined as 
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The region averaged angular flux, , from Equation 34 is computed from   

 35 

 

where  represents the cross sectional area of the characteristic ray  and  is the 

segment averaged angular flux given by 

 

 36 

 

where  is from Equation 32. Therefore Equation 36 and Equation 32 must be solved at 

the endpoints of each characteristic ray in each discrete region in order to formulate the MOC 

solution for the flux: 

 

 37 

 

and  

 

 38 

 

2.2.2 Applying CMFD 

The first step in implementing CMFD is to condense the cross sections and fluxes from the fine 

HO transport mesh to the LO coarse mesh. These quantities can not only be collapsed spatially, 

but the group structure can also be condensed to simplify the LO problem even more. This is 

done by flux weighting the cross sections and summing over the groups to be collapsed: 
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 39 

 

where  is a given reaction type,  is the fine mesh region volume,  are the HO energy groups, 

and  are the CMFD energy groups. The scattering cross section is treated the same way except 

with an additional summation over the initial particle energy group 

 

 40 

 

In a similar fashion, the HO fine fluxes are volume weighted to collapse to the LO coarse fluxes  

 

 41 

 

In order to calculate the LO diffusion coefficient, the transport cross section is first flux weighted 

in space, 

 

 42 

 

and then this spatially collapsed transport cross section is used to flux weight the diffusion 

coefficient in energy: 

 

 43 

 

When expanding the coarse mesh fluxes back to the fine mesh fluxes the following discontinuity 

factor is used: 

 



16 
 

 44 

 

In order to get the neutron balance in a given mesh cell, , the volumetric integral is taken 

of Equation 23, leading to 

 

 

45 

 

where , , and  represent the thickness of cell  in the , , and  

directions, respectively. When coupling two neighboring coarse mesh regions, the volume 

integral is replaced with the surface integral over the cell boundary using the divergence 

theorem, 

 

 

46 

 

where the  superscripts correspond to the neighboring cell interfaces. An example of 

neighboring cells in the  direction is shown in Figure 1. 
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Figure 1.  Neighboring CMFD cell boundaries in the  direction 

 

The definition for the neutron current, , from Equation 21 is modified with the addition of 

finite difference approximations of the flux at the cell boundary using the flux in the neighboring 

cells: 

 

 

 

 

47 

 

The equation for the nonlinear diffusion coefficient correction factor, , is found by rearranging 

Equation 47. It is because of this reason that the two fluxes that multiply the  term are summed 

to avoid the potential of ever dividing by zero. It should be noted that the terms in Equation 47 

are from the solution to the HO problem. The single diffusion coefficient in Equation 21 has 

been replaced with the  term that represents the linear coupling between the current and flux: 
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48 

 

Substituting Equation 46 into Equation 45 yields the full 3D CMFD neutron balance equation for 

an interior cell: 

 

 

49 

 

After fully substituting Equation 47 into Equation 49, it can be rewritten in operator notation as 

 

 50 

 

where  is a matrix containing all of the diffusion streaming terms,  is a matrix containing all 

of the total cross section terms,  is a matrix containing all of the scattering terms, and  is the 

fission operator, or matrix,  which contains the fission neutron production terms. Equation 50 can 

be rewritten as a generalized eigenvalue problem given by 
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 51 

 

where  

 

 52 

 

This problem can be solved using a wide variety of numerical solvers, some of which will be 

described in the following section.  

 

2.3  Numerical Solvers 

In modern reactor simulation codes, the most widespread method used for solving the -

eigenvalue problem is the power method [30]. However, the power method can be very slow 

solving problems that are common in reactor core simulations. An alternative would be to solve 

for the eigenvalue using a Jacobian-Free Newton-Krylov method. Additionally, JFNK can solve 

for the eigenvalue while simultaneously solving coupled multiphysics problems.  

 

The following sections are devoted to reviewing the background details and formulation of 

numerical solvers used in this work. First the standard power method is outlined, followed by all 

of the necessary components to build up a Jacobian-Free Newton-Krylov solver.  

 

2.3.1 Power Method 

In order to solve the eigenvalue problem in Equation 51, an iterative method must be used. In 

reactor physics applications, the simplest and most common method used to find the eigenvalue-

eigenvector pair is the power method, or power iteration. In addition to its simplicity, the power 

method is an attractive option because it only converges to an eigenvector that corresponds to the 

largest, or dominant, eigenvalue, . In reactor applications, only the dominant eigenvalue leads 

to a physical answer: one where the flux distribution is non-negative everywhere throughout the 

problem [30]. The steps of the power iteration are shown in Algorithm 1. 
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Algorithm 1.  Power Method 
1. Select initial  and  
  
2.  Solve  for  

3.   

 

Upon convergence,  is the eigenvector that corresponds to the dominant eigenvalue . The 

convergence rate of the power iteration is linear and is determined by the ratio of the second 

largest eigenvalue, , to the dominant eigenvalue, known as the dominance ratio: . 

Therefore, the power iteration can converge very slowly if  [22]. In practical reactor 

applications, this is a common occurrence in physically large systems [31]. However, the 

dominance ratio of a problem can be reduced using an eigenvalue deflation method.  

 

The power iteration is also inefficient in solving problems that have a high scattering ratio in 

addition to a large dominance ratio. As a result, there are different methods that can accelerate 

the power method which are commonly used in reactor applications. However, these methods are 

not discussed here, because the goal of this work is to replace the power method with a JFNK 

method that solves the -eigenvalue problem. The different components needed for building a 

JFNK solver framework are examined in detail in the subsequent sections. 

 

2.3.2 Krylov Subspaces 

Many well-known modern iterative methods utilize Krylov subspaces: Arnoldi, Generalized 

Minimal Residuals (GMRES), Lanczos, Conjugate Gradients (CG), and Biconjugate Gradient 

Stabilized (BiCGSTAB) methods. Given a  matrix  and a vector  of dimension , then 

the th-dimensional Krylov subspace is defined as  

 

 53 

 

Krylov subspace methods project an -dimensional problem onto a lower-dimensional Krylov 

subspace. When solving a linear system of equations , where  is the solution vector, the 

residual for any approximate solution vector  is defined as 
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 54 

 

A property of Krylov subspace methods is that, for an initial approximation of the solution  

and residual , the solution vector  lies in the affine space given by 

 

 55 

 

Therefore, the goal of Krylov subspace methods is to generate a series of approximate solution 

vectors such that their corresponding residuals converge to zero [32]. When the residual reaches 

zero, then . In order for these methods to converge in a finite number of steps, it is 

required that the residuals be linearly independent.  

 

2.3.3 Arnoldi Iteration 

The Arnoldi iteration is an iterative method that uses Krylov subspaces to reduce a non-

Hermitian matrix, , to an upper Hessenberg form, , by a series of orthogonal similarity 

transformations: 

 

 56 

 

where  is an orthogonal matrix [33]. The step-by-step process is shown below in Algorithm 2. 

 

Algorithm 2.  Arnoldi Iteration 
1. , where  is arbitrary 
  
2.   
   
3.    
4.    
5.   
6.   
 

 



22 
 

The columns of the matrix  generated in the Arnoldi algorithm form an orthonormal basis for 

the Krylov subspace . Step 4 in the Arnoldi algorithm is where the vector  is orthogonalized 

to all the previous basis vectors using a standard Gram-Schmidt method. Therefore, the Arnoldi 

iteration can be thought of as the procedural formulation of orthonormal bases for successive 

Krylov subspaces. If  is the  matrix whose columns are the first  columns of , and  

is the upper-left  portion of  then  

 

 57 

 

Therefore, after  Arnoldi iterations, the th column of this matrix is 

 

 58 

 

The vector  comes from a recurrence relation involving itself and all of the previous Krylov 

vectors. However, when the Arnoldi iteration is performed for  iterations, the final vector 

 already lies in the Krylov subspace . As a result, orthogonalizing it to all of the previous 

Krylov vectors results in . Therefore, there is no  value or  vector to be 

calculated in steps 5 and 6 of the Arnoldi algorithm, and Equation 57 becomes Equation 56. 

 

2.3.4 GMRES 

One of the linear solvers used in this work is the Generalized Minimal Residuals (GMRES) 

method, which utilizes Arnoldi’s method to solve a linear system of equations  GMRES 

was first presented by Youcef Saad and Martin Schultz in 1986 [34]. The idea is that, after each 

Arnoldi iteration, a least squares problem is solved to determine the minimum 2-norm of the 

residual over the affine space  [35]. This is done in order to form a good approximate 

solution vector  without having to carry out the Arnoldi iteration to completion, i.e. . In 

GMRES the arbitrary vector  in Step 1 on the Arnoldi process is chosen to be the initial residual 

 such that the initial Krylov vector is given by 

 

 59 
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Since  from the Arnoldi iteration forms an orthonormal basis for the subspace , then any 

vector  in  can be written as  

 

 60 

 

where  is a -vector. Using Equation 57 and Equation 60 the residual  can be rewritten as 

 

 

 

 

 61 

 

Since the first column of  is defined by Equation 59, the residual  can be rewritten as 

 

 62 

 

 where  is the -vector:  

 

 63 

 

Substituting Equation 62 into Equation 61 yields 

 

 64 

 

Since the columns of  are orthonormal, the 2-norm of the residual becomes 

 

 65 
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Therefore, it is desired to solve for the vector  that minimizes Equation 65, or, in other words, 

to solve the least squares problem given by 

 

 66 

 

Since the Hessenberg matrix  is nearly upper triangular, solving the least squares problem via 

a QR factorization is relatively inexpensive. The algorithm used in this work to solve the least 

squares problem is a Householder QR factorization followed by back substitution. Once  is 

determined the approximate solution  is calculated using Equation 60. The steps of the 

GMRES algorithm are shown in Algorithm 3. 

 

Algorithm 3.  GMRES 
1.  
  
2.  Complete iteration  of Arnoldi iteration, Algorithm 2 
3.  Solve least squares problem  

4.   
 

It may have been noted by the reader that there is a potential breakdown of the Arnoldi iteration 

within GMRES at Step 6 of Algorithm 2, when . However, this only happens 

when the residual vector is zero for step . Therefore, if  is nonsingular, GMRES breaks down 

in the th iteration if and only if the approximate solution is exact, i.e.,  [36]. One of the 

drawbacks for GMRES is the fact that, in the th iteration, the Arnoldi procedure must 

orthogonalize the vector  to all  previous basis vectors, and as a result they must all be stored 

in memory. If the size of  is large, this could be computationally prohibitive. One possible 

solution is to restart GMRES after a certain number of iterations and use  as the initial guess 

for a new GMRES iteration.  

 

2.3.5 Newton’s Method 

Newton’s method, or the Newton-Raphson method, is an iterative method for finding the roots of 

a real-valued function, i.e.,  If the current root approximation is given by , and the 
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subsequent approximation is given by , then the method can be derived from a Taylor series 

expansion of  about : 

 

 67 

 

Since it is desired that as  gets large,  will approach zero, the right hand side of 

Equation 67 is set to zero and the higher order terms are ignored, leading to 

 

 68 

 

Solving for  yields Newton’s method: 

 

 69 

 

Provided the initial guess is sufficiently close to a root, Newton’s method has a quadratic 

convergence rate which is a desirable feature in numerical linear algebra. Newton’s method can 

also be extended to solve an -dimensional system of nonlinear equations, , where  is 

now a vector of length . This version of Newton’s method has the same form as Equation 69, 

but is usually written as the linear system 

 

 70 

 

where  and  is the Jacobian matrix  

 

 71 
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Therefore, the vector  is the solution to Equation 70 and is added to the current root 

approximation, , in order to obtain the approximation at the next step. The initial guess, , is 

typically set to zero since as the method converges,  should approach zero [4]. This process is 

outlined in Algorithm 4. 

 

Algorithm 4.  Newton’s Method 
1. Select  sufficiently close to a root 
  
2.  Solve  
3.   
 

Step 2 of Newton’s method can be solved using a wide variety of linear solvers, including a 

Krylov subspace method like GMRES. Although Equation 70 reduced a nonlinear system of 

equations to a series of linear equations, the Jacobian must be evaluated and stored at each 

iteration step. This can be prohibitively expensive or impossible if the derivatives aren’t 

available in a closed form. The next section looks at a way to approximate the Jacobian without 

sacrificing the quadratic convergence rate. 

 

2.3.6 Jacobian-Free Newton-Krylov Methods 

A Jacobian-Free Newton-Krylov (JFNK) method solves a nonlinear system of equations using 

Newton iterations without explicitly forming the Jacobian. It should be noted that in the Arnoldi 

iteration of GMRES, in Step 2 of Algorithm 2, the explicit elements of matrix  are not needed 

to be known; only the action of the matrix on a vector is required. Therefore, to avoid forming 

the Jacobian explicitly, a finite difference is used to approximate this matrix-vector product using 

 

 72 

 

where  is a small perturbation. The error in this approximation is proportional to . This is the 

basis for JFNK, whose full algorithm is shown in Algorithm 5. 
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Algorithm 5.  JFNK  
 Newton’s method 
1. Select  sufficiently close to a root 
  
  Solve  using GMRES 

2.   where  
   

  Arnoldi 

3.    
    
4.     
5.     
    Stop if  
6.    
7.    
8.   Solve least squares problem  

9.    
   
10.   
 

While JFNK has the obvious advantage of applying the quadratically convergent Newton’s 

method on a nonlinear system of equations without the need to form or store the Jacobian, it does 

have a drawback: it is only feasible on large scale problems with the use of an effective 

preconditioner [4]. Therefore the study of preconditioners will be a critical part of this work.  

 

2.4  Feedback Models 

Different forms of multiphysics feedback were tested in this work. These various feedback 

operators all change the cross sections of the problem, whether it is through changing the 

temperatures of the materials in the problem, or changing the material composition of the 

problem by altering the number densities of isotopes of interest. The following subsections 

discuss each of the multiphysics feedback operators that were tested in this work.  
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2.4.1 Thermal Hydraulic Feedback Model 

Within MPACT an internal Simplified TH solver was incorporated [37]. This model is 

‘simplified’ compared to CTF, which is the sub-channel TH code currently coupled to MPACT. 

CTF employs a two-fluid solution method over three different flow fields: fluid film, vapor, and 

liquid droplets [38]. While CTF delivers very detailed sub-channel results, the Simplified TH 

solver executes much faster, making it appropriate for certain applications. The node-based 

approach utilized by the Simplified TH solver is comparable to what many industry codes use 

today. 

 

The Simplified TH model approximates thermal hydraulic feedback using 1D conservation of 

mass and energy. The mass flow rate through a given flow region is approximated by assuming 

uniform flow throughout the entire problem. By default, a flow region is a full assembly. 

Therefore, the mass flow rate in a given region, , is given by 

 

 73 

 

where  is the cross sectional area of the flow region under consideration,  is the total 

cross sectional area of flow over the whole problem, and  is the total mass flow rate of the 

core.  

 

Once the neutronics calculation has been performed, the resulting flux distribution is used to 

calculate the power deposited in each flow region. These flow region powers, , are then used 

to calculate the outlet flow region enthalpies for a given axial region using 

 

 74 

 

where  and  are the outlet and inlet enthalpies, respectively, for that axial region. For the 

bottommost axial regions, the inlet enthalpy is calculated from the inlet coolant conditions. The 

outlet enthalpy for that flow region is then calculated using Equation 74, which is then used as 
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the inlet enthalpy for the above axial region. This process continues for all axial levels of the 

problem. Along the way, the average coolant temperatures and densities are calculated for each 

flow region. These values are then used to determine the fuel, gap, and cladding temperatures for 

each pin in the region. These temperatures are calculated using fuel temperature tables, which are 

described in more detail in the next section.  

 

2.4.2 Fuel Temperature Tables 

Accurately predicting the temperatures of the fuel is essential in reactor calculations since 

changes in the fuel temperatures lead to changes in the material cross sections. In order to 

capture this important phenomenon, tables can be generated that are used to calculate the fuel 

temperatures of a given problem. The fuel temperature tables in VERA were generated using the 

BISON fuel performance code [39]. BISON captures a number of important thermomechanical 

processes that impact the calculation of the fuel temperatures, such as fission gas release and the 

closure of the fuel-clad gap. A number of different fuel pins were simulated using BISON over a 

wide range of operating conditions. The results of these simulations were used to construct a 

table which could be used to lookup a fuel temperature, , as a quadratic function of power 

and burnup using 
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where  is the bulk coolant temperature,  is the local linear heat rate, and  and  

are both functions of burnup, , that are obtained from the temperature table. The cladding 

temperature, , is set to a value between that of the fuel and coolant temperatures using 

 

 76 

 

where  is set to 0.2 by default. Meanwhile the temperature of the fuel-clad gap is 

approximated as the fuel temperature.  
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2.4.3 Xenon-135 Feedback Model 

Xenon-135 is a fission product that builds up during reactor operation and has a large neutron 

absorption cross section. Therefore, the xenon concentration throughout the core has a significant 

impact on the result of the problem. Xenon-135 is produced both directly from fission and as a 

decay product of Iodine-135 via beta decay. The xenon decay chain is given by 

 

 77 

 

where the half-life of each decay is shown. Assuming the atomic number density of 135I, , 

changes only with additions from fission and losses from decay, the time rate of change of  is 

given by 

 

 78 

 

where  is the effective fraction of fission products that are 135I and  is the beta decay constant 

for 135I. Similarly, the time rate of change of the 135Xe atomic number density, , is given by  

 

 79 

 

where  is the effective fraction of fission products that are 135Xe and  is the beta decay 

constant for 135Xe. The first two terms of Equation 79 are the additions due to decay from 135I 

and fission, while the last two terms are the losses due to β-decay and neutron absorption. If a 

reactor is operated with a constant neutron flux for an extended period of time, the number 

densities of these fission product poisons will eventually saturate to equilibrium values. 

Therefore, to calculate the equilibrium xenon concentration, , the left hand sides of Equations 

78 and 79 are set to zero, and the coupled system of equations are combined to find 
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 80 

 

2.4.4 Critical Boron Search Feedback Model 

In Pressurized Water Reactors (PWR), boric acid is typically dissolved in the coolant to act as 

uniform excess reactivity control because boron has a large neutron absorption cross section. As 

the fuel depletes over time, the boron concentration in the coolant is reduced to compensate for 

the loss of reactivity. Therefore, in reactor analysis, it is often desired to calculate the soluble 

boron concentration that yields an eigenvalue of one. This operation is called a critical boron 

search. This process is relatively straight forward: if the dominant eigenvalue of the system is 

greater than 1.0 the soluble boron concentration is increased, while if the eigenvalue is less than 

1.0 the boron concentration is reduced. This process repeats until the boron concentration 

converges and the eigenvalue is exactly one.  

 

2.5  Summary 

In this chapter, the background information necessary for understanding the implementation of 

both JFNK and CMFD-Coupling was discussed. First the high-order transport equation was 

derived along with all of the approximations and discretizations that were applied in order to 

simplify its solution. Similarly, the low-order CMFD system of equations was derived in detail. 

Additionally the numerical solvers used in this work were derived and discussed in detail. 

Specifically, all of the fundamental algorithms required in the JFNK solver were presented. 

Finally, the various forms of multiphysics feedback implemented in this work were discussed. 

These include thermal-hydraulic, equilibrium xenon, and critical boron search feedback models. 

The next chapter explains, in depth, both the JFNK and the CMFD-Coupling methodologies. 
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3.  Methodology 

The methodology for multiphysics coupling methods considered in this work will now be 

described. First, the current multiphysics coupling method based on the Picard iteration will be 

discussed. Next, the two multiphysics coupling methods implemented in this research are 

described, including the JFNK coupling method and the CMFD-Coupling method. For JFNK, 

the differences between the eigenvalue implementation and the multiphysics coupling 

implementation are pointed out. Additionally, the preconditioners used to accelerate JFNK are 

discussed.  

 

3.1  Current Multiphysics Coupling  

The standard multiphysics coupling methodology used in the industry today employs a Picard, or 

fixed-point, iteration scheme. First, the individual physics are solved independently of the 

neutronics solver. With the feedback effects from these solutions now captured, the macroscopic 

cross sections are updated. Next the eigenvalue problem is solved using CMFD.  

 

The standard method for solving the -eigenvalue problem is the power iteration scheme 

outlined in Section 2.3.1. First the transport cross sections and transport fluxes are reduced to a 

low order CMFD system using the equations defined in Section 2.2.2. Then the CMFD system is 

solved using power iterations for updated flux and eigenvalue estimations. The second step of 

the power method process outlined in Algorithm 1 is solved using the GMRES iterative solver. 

This yields updated fluxes which are then used to calculate an updated eigenvalue. This process 

continues until the relative difference in successive eigenvalues is below a predefined tolerance. 

Upon convergence the coarse mesh fluxes are then projected back onto the fine transport mesh 

using Equation 44. 

 

With updated approximations of the transport fluxes and the eigenvalue from CMFD as a starting 

point, the neutron transport problem is solved. Once a transport solution is obtained, the fission 

source distribution is compared to the previous solution to determine convergence. If the 2-norm 

of the difference between successive fission source distributions is less than a defined 
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convergence criteria, typically 5x10-5, the fluxes are considered converged. Similarly, the 

eigenvalue calculated from the CMFD solve is compared to that from the previous iteration. If 

the eigenvalue difference is less than a defined convergence criteria, typically 1x10-6, the 

eigenvalue is considered converged. Once the fission source distribution and the eigenvalue are 

converged, the problem stops. Otherwise the solver loops back and solves the coupled set of 

physics again and the whole process repeats. A flowchart of this current coupling methodology is 

shown in Figure 2. 

 

3.2  JFNK Implementation 

JFNK was implemented in MPACT using the Portable Extensible Toolkit for Scientific 

Computation (PETSc) [40]. All PETSc routines support the Message Passing Interface (MPI) 

standard for message-passing communication. MPI is used to distribute matrices and vectors 

across multiple processors in order to utilize parallel computing. 

 

3.2.1 JFNK Convergence Criteria within PETSc 

Since the linear system being solved by GMRES within JFNK is of the form  given by 

Equation 75, the residual for the -th iteration is given by 

 

 81 

 

Within PETSc, the default convergence criterion of the linear GMRES solver is determined by a 

decrease of the residual norm relative to the right hand side: 
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Similarly, the default convergence criterion for the nonlinear Newton’s method within JFNK is 

determined by  
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Figure 2.  Flowchart of the Picard coupling technique 
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where  is the initial guess of the solution vector.  

 

3.2.2 JFNK Preconditioning  

In order to accelerate the convergence of JFNK, preconditioners are often used. Preconditioners 

speed up the JFNK method by reducing the number of linear iterations needed to reach 

convergence. A preconditioner is a matrix that, when properly chosen, efficiently clusters the 

eigenvalues of the system. For any nonsingular system given by , the system 
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has the same solution given a nonsingular preconditioner matrix . Applying the preconditioner 

in this fashion is called left preconditioning. If , applying the preconditioner is as difficult 

as solving the original system, while if , applying the preconditioner is trivial but does not 

do anything. Therefore, useful preconditioners lie somewhere between these two extremes, 

where  is similar to  but structured so that it is easily invertible. Similarly, right 

preconditioning can be used to transform the nonsingular system  into 
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where 
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While JFNK can use either right or left preconditioning, right preconditioning is most often used 

because left preconditioning alters the norm of the residual, which is how convergence of the 

linear solver is measured [4]. Therefore, only right preconditioning was examined in this work. 

As a result, the preconditioned linear system solved by GMRES within JFNK is given by 
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This is done using a two-step process by first solving  
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for  and then solving 
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for . Using right preconditioning, the Jacobian-matrix approximation from Equation 72 

becomes 
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While the usefulness of JFNK lies in its ability to not need an explicitly formed Jacobian, 

effective preconditioners typically require some knowledge of the Jacobian. However, the 

preconditioner can use a much simpler version of the Jacobian and can use approximations to 

make its formulation easier. 

 

3.2.3 JFNK Eigenvalue Implementation 

In addition to being used as a multiphysics coupling technique, JFNK can also be used as a 

method for solving the generalized eigenvalue problem given in Equation 51. Even though the 

eigenvalue problem is a linear problem, the nonlinear JFNK algorithm in Section 2.3.6 can be 

used to solve it. JFNK was first implemented as an eigenvalue solver without feedback enabled. 

This allowed for an easier initial implementation, as well as allowing for error checking against 

existing eigenvalue solvers already implemented. 

 

In order to replace the power iteration scheme described in Section 3.1 with a JFNK eigenvalue 

solver, Equation 51 must first be rewritten in residual form 

 

 91 
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where  is referred to as the residual equation. With Equation 91 in hand, the JFNK 

algorithm outlined in Section 2.3.6 can be used as an eigenvalue solver. The flowchart for the 

JFNK eigenvalue solver is the exact same as that shown in Figure 2, except now the ‘Solve 

CMFD’ block uses JFNK rather than the default power method.  

 

In addition, a preconditioner was investigated in order to determine its effects on convergence. 

Looking at Equation 91, the exact Jacobian would be given by 

 92 

 

However, since the migration matrix, , is sparse and easily invertible, the fission matrix, , 

term was neglected. Therefore, the preconditioner was simply chosen to be 

  

 93 

 

for all JFNK eigenvalue implementations.  

 

3.2.4 JFNK Coupled Multiphysics Implementation 

The JFNK eigenvalue solver described in the previous section can be extended to solving 

coupled problems. When coupling to the Simplified TH solver, solution vector, , now contains 

the fuel temperatures, , in addition to the fluxes, 

 

 94 

 

where the NF subscript refers to the total number of coarse mesh fluxes in the problem, and NT 

refers to the total number of fuel temperatures being solved for. With fluxes that are properly 

normalized, the eigenvalue can be calculated by summing the fission source over all regions, , 

given by 
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 95 

 

where  is the volume of region . In addition, the residual calculation must now account for the 

fuel temperature and eigenvalue residuals as well as the coarse mesh flux residuals, leading to 

the nonlinear system of equations given by 

 

 96 

 

The third equation from Equation 96, , can be eliminated by substituting the 

function evaluation of  from Equation 95 into the first equation: 

 

 97 

 

It should be noted that as JFNK is solving this coupled system, the fuel temperatures are updated 

with every linear GMRES iteration. Therefore the cross sections need to be updated as well in 

order to capture this temperature feedback on the fluxes. A flowchart of this JFNK coupling 

scheme is shown in Figure 3. 
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Figure 3.  Flowchart of the JFNK coupling technique 
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Because the coupled JFNK implementation incorporates TH feedback, Equation 75 is now 

represented in a block-matrix notation given by 

 

 98 

 

Therefore, when approximating the block-Jacobian to act as a preconditioner, the upper left 

portion is chosen to be the migration matrix, , as was previously discussed in Section 3.2.3. 

The lower right block of the Jacobian is simply the identity matrix, since the fuel temperature of 

a given region does not depend on the fuel temperatures of any other region. As discussed in 

Section 2.4.2, the fuel temperatures are calculated using a pre-calculated fuel temperature table. 

Since the local linear heat rate, , is a function of the flux solution, the lower left block of the 

Jacobian is obtained by taking the derivative of Equation 75. 

 

The upper right block of the Jacobian was never fully implemented into the preconditioner. 

While it may appear to be incomplete, the purpose of the preconditioner is to reduce the number 

of linear GMRES iterations required for convergence, and has no impact on the total number of 

nonlinear iterations or transport sweeps. Therefore, two different preconditioners were 

implemented in the coupled JFNK application: a Diagonal Preconditioner that contains only the 

diagonal  and  terms, and a Lower Triangular Preconditioner that includes the  term.  

 

This concludes the derivation for the JFNK approach. The next section will explain in depth the 

details of the CMFD-Coupling method.  

 

3.3  CMFD-Coupling Implementation 

As an alternative to the coupled JFNK implementation, a new technique called CMFD-Coupling 

was employed. The idea behind this alternative method is to solve the low-order CMFD 

eigenvalue system using the power method, but then apply the coupled physics feedback again 

before solving the MOC transport problem. The feedback effects of the coupled physics system 

are captured since the cross sections are updated within this loop. This process can be iterated 
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multiple times before a transport sweep is performed. A flowchart of this CMFD-Coupling 

scheme is shown in Figure 4. 

 

Two strategies were implemented to determine when MOC should be performed again. The first 

is a simple counter: the CMFD-Coupling loop is executed a set number of times before the 

transport solver. This method will be referred to as the CMFD-N implementation, where N is the 

number of CMFD-Coupling iterations completed before performing a full transport solve. The 

second method has the CMFD-Coupling loop iterate until the maximum difference in 

temperature between two successive iterations is below a certain threshold. This method will be 

referenced as , where  is the tolerance under which the maximum temperature 

difference between iterations must fall. Typical values for  ranged from 0.1 K for loose 

convergence and 0.001 K for very tight convergence.  

 

The default eigenvalue convergence criteria of 1x10-6 and the default fission source convergence 

criteria of 5x10-5 are kept the same. However, the differences are not taken between successive 

CMFD-Coupling iterations, but instead are taken between successive MOC iterations.  

 

3.4 Summary 

In this chapter, the different methodologies explored in this work were described in depth. First 

the current multiphysics coupling strategy, the Picard iteration, was discussed. Next the JFNK 

method was explored. The specifics of how PETSc implements JFNK were discussed before the 

details of the preconditioners used were examined. JFNK was implemented as both an 

eigenvalue solver as well as a coupled multiphysics solver. The details of both of these methods 

were laid out. Finally, the CMFD-Coupling method was discussed. The following chapter 

explores the application of all of these methods on a series of smaller problems. 
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Figure 4.  Flowchart of the CMFD-Coupling technique 
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4. JFNK Investigation 

As a proof of concept, two simplified reactor problems were developed: a multigroup infinite 

homogeneous medium problem, and a one-group, one-dimensional homogeneous slab problem. 

The one-dimensional slab problem looks at the potential impact of implementing a JFNK 

nonlinear solver on a problem with spatial dependencies while the infinite homogeneous problem 

examines the impact on a problem with an energy dependence. With information gained from 

these simplified problems, a 2D pin cell, 2D fuel lattice, a 3D fuel pin, and a 3D 7x7 fuel 

assembly were investigated. All of these problems model Pressurized Water Reactor (PWR) fuel. 

 

4.1  Infinite Homogeneous Medium 

The benefit of testing a method on an infinite homogeneous medium problem is that the problem 

has no spatial dependence. Instead, an energy dependence was incorporated through the use of a 

multigroup framework. Since the problem is thought of as an infinite material with constant 

properties, the cross sections are constant throughout the problem. With no spatial dependence of 

the problem, the neutron continuity equation in Equation 17 reduces to 

 

 99 

 

Because there is no spatial dependence, MOC-CMFD is not applicable and is replaced with a 

cross section table lookup. The cross sections were generated from 2D pin cell calculations at 

varying fuel temperatures from 565 K to 1500 K in five degree increments. These cross sections 

are then used in a table look up procedure. A linear interpolation was used to determine the cross 

section between data points.  The temperature feedback used in this problem was chosen using 

the solution of one of the 2D pin cell problems such that the problem would converge to a 

predetermined solution. Arbitrarily choosing the 1365 K case and using its eigenvalue leads to 

the TH feedback used: 
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 100 

 

While not a physically correct relationship, Equation 100 ensures that as the eigenvalue increases 

or decreases, the temperature follows suit. It also has the added benefit of knowing what the 

solution should converge to upon completion, allowing for error checking. The multigroup 

equation for calculating  is found from 

 

 101 

 

Equations 99, 100, and 101 form a nonlinear system of equations that can be solved using the 

JFNK method outlined in Algorithm 5: 

 

 102 

 

The third equation, , can be eliminated from Equation 102 by substituting the 

functional evaluation of  from Equation 101 into the first two equations: 

 

 103 

 

 Therefore, the solution vector of these equations is of the form 
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 104 

 

The iteration scheme for solving this infinite homogeneous medium problem is shown in 

Algorithm 6. 

 

Algorithm 6.  Infinite Homogeneous Medium Iterations 
1. Select appropriate , ,  
  
2.  Use table to look up cross sections at  
3.  Solve Equation 103 using JFNK for updated  and  

4.   
 

Steps 2 and 3 are repeated until the difference between sequential eigenvalues is sufficiently 

small. If the process of updating the cross sections through the table lookup is thought of as a 

surrogate for MOC, this iteration scheme is similar to the JFNK coupled multiphysics 

implementation described in Section 3.2.4. 

 

It is possible to accelerate the convergence of the temperature and multigroup fluxes if some 

information about the cross section dependence on temperature is used in the JFNK iterations. If 

Algorithm 6 is simply implemented as written, while Newton’s method within JFNK is iterating 

towards a solution, the cross sections are held constant. Even though the temperature is 

changing, the cross sections are not updated until after the JFNK solution has converged. This is 

analogous to the Picard iteration. In order to give Newton’s method the ability to update the 

cross sections, the cross section derivative with respect to temperature, , is calculated in 

Step 2 of Algorithm 6 at the current temperature using a forward finite difference approximation. 

These derivatives are then passed into JFNK and are used to linearly extrapolate the cross 

sections as the temperature is converging. The comparison of the convergence of these two 

methods is shown in Figure 5. 
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Figure 5.  Convergence of a table lookup (Algorithm 6) vs the addition of a linear update 

 

As seen in Figure 5, the inclusion of a linear update of the cross sections within the Newton 

iteration offers significant improvement. The linear update curve appears to have quadratic 

convergence while the table lookup only curve is linear. While this speedup appears to come 

without much effort, one must think of larger full-scale reactor problems. In this simple problem, 

there is only one material and therefore one temperature. Using this method on a full-core 

problem would be prohibitively expensive because one would have to store each cross section 

derivative for every flat source region in the problem. Therefore, an analysis was performed to 

determine how to achieve the most acceleration without the large memory requirements. 

 

First, to determine which of the cross sections had the largest impact on speedup, each was 

linearly updated individually, while the others were only updated outside of the JFNK iteration. 

The results from this test are given in Figure 6. The curves from Figure 5 were included in 

Figure 6 because they act as bounding limits for this study. It is clear from Figure 6 that updating 

, , and  has little, if any, effect on the convergence rate. Updating  however, has a 

very significant impact on the problem convergence. Therefore, only the absorption cross section 

update will be considered for the remainder of this section.  
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Figure 6.  Convergence plots for each cross section being linearly updated individually 

 

While removing the other linear cross section updates does relieve some of the memory burden, 

having to determine the absorption cross section derivative for every region in the core may still 

be too expensive. Therefore, a study was performed to determine how exact the absorption cross 

section derivatives need to be and what approximations could be made. The first approximation 

made removes the temperature dependence of the derivative and uses an average value per group 

instead. This was done by calculating  for all temperatures for each group. An average 

was then calculated by summing all of the derivatives for a given group and then dividing by the 

number of derivatives summed. This approximation is referred to as the Average Groupwise 

Derivative Approximation. The next approximation tested looked at removing the group 

dependence and only using a one-group temperature dependent derivative. The first step was to 

collapse the multigroup cross sections to a one-group cross section using Equation 39. Then 

 was calculated using a forward finite difference for a given temperature. This 

approximation is referred to as the One-Group Derivative Approximation. The final 

simplification examined involves combining the two previous approximations to remove both 

the temperature and group dependencies of the derivative. Like the One-Group Derivative 
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derivatives using a forward finite difference, which are then averaged together. Therefore, 

 becomes simply a constant value. This method is called the Average One-Group 

Derivative Approximation. Each of these different methods were implemented independently 

and their convergence plots are shown in Figure 7. 

 

 
Figure 7.  Convergence plots for different absorption cross section derivative approximations 

 

As seen in Figure 7, updating the absorption cross sections fully, shown as the Local Derivative 

Update, performed the best while the constant Average One-Group Derivative method 

performed the worst. However all possible approximations are improvements upon the method 

that only updates the cross sections after GMRES has converged. Therefore, depending on 

computational requirements, more than one of these approximations might be appropriate on 

largescale calculations.  
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the  dimension but is infinite in the  and  dimensions, thus removing their dependencies. The 

boundary conditions for this problem are those of a vacuum, meaning that there is no incident 

neutron flux on the edges of the problem. A depiction of this 1D slab problem is shown in  

Figure 8. The first step in solving the 1D slab problem is to simplify the multigroup MOC and 

CMFD equations to their 1D, one-group form.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  1D homogeneous slab problem showing MOC and CMFD meshes 

 

4.2.1 Simplified MOC Equations 

As outlined in Section 2.2.1, the transport equation in this work is solved using MOC. Since 

MOC already solves the transport equation along a 1D characteristic, the form of Equation 32 

does not change apart from losing the group subscript: 

 

 105 

 

It should be noted that since the slab is homogeneous, the cross sections do not vary as a function 

of flat source regions, , and as a result the cross sections are now constant values. Likewise, the 

definition of the region averaged source in Equation 33 becomes 

 

 

 

MOC mesh CMFD mesh 
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 106 

 

in 1D. In a similar fashion, the formula for the segment averaged angular flux in Equation 36 

becomes 

 

 107 

 

 while the region averaged angular flux from Equation 35 is now defined as  

 

 108 

 

since there is only one segment averaged angular flux per angle per region in 1D. The formula 

for the scalar flux in Equation 34 also loses the group subscript and becomes 
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To solve these 1D MOC equations for the flux and , a fixed-point power iteration is 

traditionally used. Note that the equation for the region averaged flat source, , depends on the 

scalar flux, , which in turn depends on the source . In order to break this recursive 

relationship, initial guesses are made for both the scalar flux and , and are used to create an 

initial guess for the source, 
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where the superscript indicates an iteration count. With an initial guess of the source, the 

outgoing angular fluxes are calculated using Equation 105 for each MOC region. Once the 

angular fluxes are calculated for each region at a given angle in the forward direction, the 
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process is repeated again in the reverse direction. With the incoming and outgoing angular fluxes 

known for each interface, the segment averaged angular flux is calculated for each segment using 

Equation 107 along with the initial source guess. Then the region averaged angular flux and the 

updated scalar flux are calculated using Equation 108 and Equation 109, respectively. Once the 

updated scalar fluxes are known for each discrete region, an updated  can be calculated from 
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where  is the thickness of region . For this simplified problem, the mesh is uniform so the  

subscript can be dropped. In the CMFD equations that are used to accelerate this MOC solution, 

the current, , is required. Therefore, the MOC solution is used to calculate the current at each 

boundary interface using a combination of Equation 18 and Equation 13: 
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However, this is only the current in the forward direction. To get the total current this quantity 

must be added to that computed in the reverse direction. These equations can now be used to 

form an iterative algorithm to solve for the scalar flux and eigenvalue. This process is commonly 

referred to as outer or source iterations, and is outlined step by step in Algorithm 7. However, as 

discussed in Section 2.1, performing Algorithm 7 by itself is extremely inefficient. Therefore 

CMFD was also implemented in the 1D one group slab problem.  

 

4.2.2 Simplified CMFD Equations 

The CMFD equations are also greatly simplified in 1D. The 3D CMFD neutron balance equation 

in Equation 49 becomes 
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Algorithm 7.  MOC Outer Iteration 
1. Select appropriate  and  
 Do until converged 
2.   
3.   

   (angle) 
4.    

   Forward Sweep 
5.    (vacuum BCs) 
    (region) 

6.     

7.     

8.     

9.     
10.     
11.     
12.     

   Backward Sweep 
13.    (vacuum BCs) 
    (region) 
    Repeat Steps 6-11 
14.     

15.   

 

where the region superscripts, , have been changed to subscripts to keep consistent with the 

MOC equations. The definition of the currents now comes from a simplified version of   

Equation 47: 

 

 114 
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The equation for the nonlinear diffusion coefficient correction factor, , is found by rearranging 

Equation 114, while the linear coupling term, , is now given by 

 

 115 

 

since the cross sections are constant between regions. Using Equation 114 to substitute into the 

left-hand side of Equation 113 yields 
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If Equation 116 is rearranged, it can be rewritten in operator notation as 
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where  is a tridiagonal matrix of the form 

 118 

 

and where 

 

 119 

 

and 
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 120 

 

Equation 117 can be solved using a variety of numerical solvers, including the ones described in 

Section 2.3. For simply accelerating the MOC solution, GMRES is used. Similar to what was 

done in Algorithm 7, the right-hand side of Equation 117 is set to a constant, calculated from an 

initial guess of the flux and . This puts it in the  form used in GMRES. Once GMRES 

has converged to a new estimate of the flux, the new estimate of  is calculated from      

Equation 111. This process is repeated until the difference between sequential iterations is 

sufficiently small. Upon convergence, the coarse CMFD fluxes are expanded back out to the fine 

mesh MOC fluxes using the factor calculated in Equation 44. These iterations are called inner 

iterations as they are performed within the outer MOC iterations. This iteration scheme is laid 

out in Algorithm 8. 

 

Algorithm 8.  CMFD Inner Iteration 
1. Select appropriate  and  
 Do until converged 

2.   

3.  Solve  for  using GMRES 

4.   

5.  
 

When used to accelerate the MOC solution in Algorithm 7, the CMFD iterations are put before 

Step 2 and replace the  update in Step 15. In very general terms, the MOC iteration generates 

the currents that are used in the CMFD iteration, which then gives MOC an updated flux and 

eigenvalue based on these currents. This process repeats until the fine mesh MOC flux and 

eigenvalue converge sufficiently. For this 1D slab problem with tight 1x10-10 convergence 

criteria, the speedup of this combined method is drastic, and is shown in Figure 9. 
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Figure 9.  Number of MOC iterations for straight MOC vs CMFD accelerated MOC 

 

It is obvious that CMFD should always be used in tandem along with MOC. It will now be 

investigated how well JFNK performs as a coupled multiphysics solver for this problem.  

 

4.2.3 Thermal-Hydraulics 

When coupling neutronics to thermal-hydraulics, most codes treat each set of physics as a black 

box. Typically, a neutronics code is used to calculate the fluxes in the problem, which in turn are 

used to calculate power. A TH code then takes these powers and uses them to determine the heat 

generated, and therefore the temperatures throughout the problem. These temperatures are then 

passed back to the neutronics code where they are used to calculate new cross sections. This 

cycle continues until both the neutronics and TH solutions are stable. However, the transport 

calculation in the neutronics code is very computationally expensive. Therefore it is desired to 

minimize the number of transport sweeps performed in a given problem. As seen in the previous 

section, CMFD is an acceleration technique that greatly reduces the number of transport 

calculations. Therefore, if the TH calculations could be performed in the CMFD iteration, then 

the temperatures would converge with the low-order diffusion solution and might help avoid 

some costly MOC iterations. Since the coupled neutronics-TH equations are nonlinear, JFNK is 

a good solution method candidate.  
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 ,  

For this problem, a simple 1D steady state heat conduction model was used for TH feedback. For 

this we assume a fuel pin geometry with a fixed surface temperature and constant thermal 

conductivity. Assuming no axial conduction, the average temperature at each location is given 

by: 

 

 121 

 

where  is the energy released per fission,  is the radius and  is the thermal conductivity of 

the material. The TH feedback can be thought of as a pin cell where the heat generated within 

each axial slice travels out towards the outer radius, , beyond which there is a constant surface 

temperature . A sketch of this layout is shown in Figure 10. Therefore, if the fluxes are known 

for each region, then they lead to a realistic description of the temperature in each region using 

Equation 121. Therefore, the TH problem treats the geometry different than the neutronics 

problem of Figure 8. These can be reconciled if one simply imagines the neutronics problem as a 

pin cell as well, but with a reflective boundary condition. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.  Geometry for TH feedback problem 
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The cross section update for this problem is performed using 

 

 122 

 

where  and  are the reference temperature and corresponding cross section, respectively. 

With Equations 121 and 122 in hand, the TH feedback can be implemented in the MOC-CMFD 

iteration before Step 2 of Algorithm 7. Therefore, new temperatures and cross sections are 

generated from the newly converged CMFD fluxes, which are then passed on to MOC. However, 

as discussed before, a more attractive option is to update the cross sections and temperatures 

along with the fluxes in JFNK.  

 

When performing the temperature updates in JFNK, these calculations are performed using the 

coarse CMFD mesh. Therefore, the temperatures must first be condensed from the fine MOC 

mesh to the coarse CMFD mesh. This is achieved using a straightforward average of the fine 

regions within a coarse mesh. When projecting the coarse temperature back onto the fine mesh, 

the temperature is assumed the same for every fine region within a coarse mesh. 

 

4.2.4 JFNK System of Equations 

 

The equation for the temperature-dependent eigenvalue is given by summing the fission source 

over all regions, , 
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Equations 117, 121, and 123 form a nonlinear system of equations that can be solved using the 

JFNK method outlined in Algorithm 5: 
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The third equation, , can be eliminated from Equation 124 by substituting the 

functional evaluation of  from Equation 123 into the first equation: 

 

 125 

 

Since the fluxes and temperatures are solved simultaneously in JFNK, the solution vector is of 

the form 

 

 126 

 

Therefore, in Step 2 and Step 3 of Algorithm 5, the residual   is evaluated using Equation 126, 

which performs the temperature and cross section update.  

 

4.2.5 Results 

The various coupling techniques outlined in Chapter 3 were applied to this 1D problem and 

compared against each other to assess their performance. Because it is the current default method 

implemented in MPACT, the Picard iteration scheme was implemented to serve as a control 

against which the other methods would be compared. The other methods applied were a coupled 

JFNK case as well as two different CMFD-Coupling cases: CMFD-2 and CMFD-10. CMFD-1 is 
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the same as the Picard implementation, where CMFD is performed and feedback is applied only 

once per MOC transport sweep. As a result, CMFD-2 adds the least amount of additional 

computational work to the problem while CMFD-10 adds nine additional CMFD-TH loops. A 

plot showing the eigenvalue residual as a function of MOC sweeps is shown for all four 

approaches in Figure 11 while a plot showing the 2-norm of the flux residual is shown in    

Figure 12. The convergence criteria for these cases were made extremely tight: 1x10-10 for both 

the eigenvalue and the 2-norm of the flux residual.  

 

 
Figure 11.  Convergence of eigenvalue for the 1D, one-group homogenous slab problem 

 
As seen in Figure 11 and Figure 12, the Picard approach takes 38 MOC iterations to converge, 

JFNK takes 40, and both CMFD-Coupling implementations take 39. It can be seen from     

Figure 12 that, with convergence criteria of 1x10-10 for both the eigenvalue difference and the   

2-norm of the difference in flux, the flux residual is the limiting factor for these problems.  

Figure 11 shows that, despite the eight extra CMFD-TH iterations, the CMFD-10 

implementation differs only slightly from the CMFD-2 case. Additionally, they are comparable 

to the Picard residuals until they begin to deviate significantly around MOC iteration 25. At a 

more realistic convergence criterion of 1x10-6, all methods take 20 iterations for the eigenvalue  
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Figure 12.  Convergence of the 2-norm of the flux difference for the 1D, one-group homogenous 

slab problem 

 

to converge. In Figure 12 it should be noted that the JFNK flux residual is consistently lagging 

behind the residuals of the other three cases. Also, similar to the eigenvalue convergence plot of 

Figure 11, the CMFD-2 and CMFD-10 flux differences are nearly identical. If a more realistic 

convergence criterion of 1x10-6 was used, the Picard, CMFD-2, and CMFD-10 implementations 

would have taken 22 MOC iterations to converge the fluxes while JFNK would have taken 24. 

 

When looking at Figure 11 and Figure 12 together, it is clear that performing the TH update 

within the JFNK iterations does not offer a significant speedup compared to the standard Picard 

iteration. Additionally, the CMFD-Coupling methods do not offer a speedup either, though they 

perform marginally better than JFNK. This could be due to the fact that this problem is too 

simple and easy to solve so the benefits of the alternative methods are not apparent. However, 

despite the additional MOC sweeps, the JFNK and CMFD-Coupling methods are more tightly 

coupled than the standard Picard method for multiphysics coupling. 
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4.3  2D PWR Pin Cell 

One of the simplest problems in reactor analysis is a 2D pin cell. While these problems tend to 

be small in size and fast to solve, they can offer significant insight into method development. 

Unlike the simplified problems discussed in the previous sections, this 2D pin cell has both a 

spatial and a multigroup energy dependence.  

 

4.3.1 Problem Description 

The pin cell model was CASL VERA Core Physics Benchmark Problem 1A [1], which is a 

single 2D Hot Zero Power (HZP) pin cell at Beginning of Life (BOL). Due to reflective 

boundary conditions, this 2D pin cell model can be thought of as being a single, infinitely tall 

fuel rod in a square coolant channel within an infinite array of pins. This simple model consists 

of four regions consisting of standard materials: a UO2 fuel pellet, a helium gap, a Zircaloy-4 

cladding, and borated water as the surrounding coolant and moderator. The operating conditions 

and input specifications are shown in Table 1. These input parameters were taken from the 

VERA Core Physics Benchmark Problem Specifications [1]. A 2D representation of the pin cell 

is shown in Figure 13. 

 

Table 1:  2D pin cell input specifications [1] 
Parameter Value 
Moderator Temperature 565 K 
Moderator Density 0.743 g/cc 
Fuel Temperature 565 K 
Fuel Density 10.257 g/cc 
Fuel Enrichment 3.10% 
Power 0.0%  
Boron Concentration  1300 ppm 
Pressure 2250 psia 
Pin Pitch 1.26 cm 
Fuel Radius 0.4096 cm 
Gap Thickness 0.0084 cm 
Clad Thickness 0.057 cm 
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Figure 13.  2D representation of a pin cell [1] 

 

4.3.2 JFNK Eigenvalue Solver Implementation 

As stated before, PETSc was used to implement JFNK in parallel within MPACT to solve the 

eigenvalue problem as described in Section 3.2.3. This 2D pin cell problem was executed on four 

processors in parallel, one for each coarse mesh quarter of the full geometry. A 51-group cross 

section library was used to capture the energy dependence of the problem. The results comparing 

the standard power method to both the preconditioned and unpreconditioned forms of JFNK are 

shown in Table 2. 

 

Table 2:  Results of the 2D pin cell JFNK eigenvalue problem 

Case Eigenvalue MOC 
Iterations 

JFNK GMRES 
Iterations Runtime (s) 

Power Method 1.1869334 39 - 6.16 
JFNK-Unpreconditioned 1.1869333 39 13345 18.38 
JFNK-Preconditioned 1.1869332 39 13647 20.03 

 

As seen in Table 2, both JFNK versions and the power method converge to the same eigenvalue 

while taking the same number of transport sweeps. However, both JFNK implementations took 

approximately three times longer to solve. This is due to the extra work required to carry out a 

JFNK solve. The size of the coarse mesh system for this problem is 204x204: the four coarse 

mesh regions multiplied by the 51 energy groups. For each of the 39 iterations during each of the 

JFNK solves, Newton’s method required only two steps to converge. However, each of those 

Newton steps took approximately 170 GMRES iterations to converge that step, almost the full 

size of the matrix.  
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Also it should be noted that while the goal of preconditioning is to reduce the total number of 

linear GMRES iterations, in this case, the addition of a preconditioner actually slightly increased 

the number of GMRES iterations. This is likely due to the fact that this 2D pin cell problem is 

highly unstable. This is evidenced not only by the large number of transport sweeps required for 

convergence, but also by the fact that, on average, 170 GMRES iterations were required for each 

nonlinear Newton step when the size of the entire system is 204.  

 

4.3.3 Coupled JFNK Implementation 

After using JFNK as an eigenvalue solver, the same methodology was reworked to incorporate 

the feedback effects from the TH solver within JFNK as described in Section 3.2.4. However, 

unlike the eigenvalue solver, the coupled implementation was not applied in parallel. Because of 

this fact, the 51-group library causes the problem to have very long runtimes. Alternatively, an  

8-group cross section library was used for the JFNK coupled cases instead. While the use of a 

few-group library will lead to solutions that may be inaccurate when compared to a library with a 

large number of energy groups, the purpose of this investigation is to assess the convergence 

behavior of JFNK when used to solve a coupled multiphysics problem. To that end, the 8-group 

library will be sufficient.  

 

This pin cell was modeled in full symmetry, with the CMFD portion being 32x32 and the 

additional TH portion being 4x4. With TH feedback now turned on, the problem was modeled at 

Hot Full Power (HFP) with a rated power of 0.268 kW and a flow rate of 0.00236 Mlbs/hr. This 

problem incorporated the two preconditioners discussed in Section 3.2.4 as well as no 

preconditioner. The results of these cases, as well as those for the standard Picard iteration, are 

shown in Table 3. 

 

Table 3:  Results of the coupled JFNK 2D pin cell problem 

Case Eigenvalue MOC 
Iterations 

JFNK GMRES 
Iterations Runtime (s) 

Picard 1.1702266 15 - 1.61 
JFNK-Unpreconditioned 1.1702266 15 426 2.53 
JFNK-Diag Preconditioner 1.1702266 15 199 1.67 
JFNK-LT Preconditioner 1.1702266 15 198 1.72 
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Turning TH feedback on for this problem is actually slightly misleading: since there is no axial 

or radial temperature gradient, the Simplified TH solver converges the temperatures during the 

first iteration, after which the problem becomes an eigenvalue search. Despite this, Table 3 still 

demonstrates the behavior of the block Jacobian preconditioners. As expected, the 

unpreconditioned version required the most GMRES iterations to converge, while the two 

preconditioners tested performed comparably to one another.  

 

It should be noted that the results of the coupled cases in Table 3 require significantly fewer 

transport sweeps than the eigenvalue cases shown in Table 2. This is due, in part, to the fact that 

the 51-group cross section library was replaced for the smaller 8-group library. This change 

greatly reduces the size of the coupled problem. Also, the addition of the TH feedback acts like a 

damping factor, easing the convergence of the problem. Additionally the runtimes for the 

coupled cases in Table 3 are comparable across all methods while the eigenvalue JFNK cases in 

Table 2 take significantly longer. This is again due to the smaller problem size as a result of 

using the 8-group library. The 1-2 second runtimes of the coupled cases are too short to establish 

any meaningful assessment of the methods tested. Therefore larger problems are tested in the 

following sections to gain additional insight.  

 

While it is possible to implement the CMFD-Coupling technique outlined in Section 3.3 to this 

coupled problem, it would be for nothing. As stated above, after the first iteration the problem 

becomes an eigenvalue problem. There is nothing to be gained by using the CMFD-Coupling 

technique since there is no significant TH feedback after the first iteration.  

 

4.4  2D PWR Fuel Lattice 

This 2D fuel lattice expands on the techniques used for the 2D pin cell case and now applies 

them to a problem with more radial variability. Additionally, this larger problem allows for the 

comparison of the normalized fission reaction rate distribution. These fission rates, when 

normalized, can be used to represent the pin power distribution.  
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4.4.1 Problem Description 

This 2D fuel lattice model was chosen to be CASL VERA Core Physics Benchmark Problem 2A 

[1], which is a single 2D HZP fuel lattice at BOL. The individual fuel pins within the problem 

are identical to the single pin cell case described in Section 4.3.1. These fuel pins are arranged in 

a 17x17 array along with 24 guide tubes and a central instrument tube with reflective boundary 

conditions on all sides. A 2D representation of the lower right quadrant of the fuel lattice is 

shown in Figure 14. 

 

 
Figure 14.  2D representation of 17x17 fuel lattice in quarter symmetry [1] 

This model consists of four standard materials: UO2 fuel, helium, Zircaloy-4 cladding, and 

borated water as the surrounding coolant and moderator. The operating conditions are the same 

as those shown in Table 1 with the addition of the guide tube and instrumentation tube 

specifications shown in Table 4. These input parameters were taken from the VERA Core 

Physics Benchmark Problem Specifications [1].  

 

4.4.2 JFNK Eigenvalue Solver Implementation 

Similar to the 2D pin cell eigenvalue problem, this fuel lattice was modeled in full symmetry and 

executed on four processors, where each processor handled a quarter of the lattice. This problem 

also used a 51-group cross section library. In addition, the approximate preconditioner in  
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Table 4:  2D fuel lattice input specifications [1] 
Parameter Value 
Inner Guide Tube Radius 0.561 cm 
Outer Guide Tube Radius 0.602 cm 
Inner Instrument Tube Radius 0.559 cm 
Outer Instrument Tube Radius 0.605 cm 
Tube Materials Zircaloy-4 
Assembly Pitch 21.50 cm 

 

Equation 93 was used such that the migration matrix, , is the preconditioner matrix. The size of 

the linearsystem for this problem is 16,524x16,524. The results comparing the standard power 

method to both the preconditioned and unpreconditioned forms of JFNK are shown in Table 5. 

 

Table 5:  Results of the 2D fuel lattice JFNK eigenvalue problem 

Case Eigenvalue MOC 
Its. 

PP 
RMS 

PP 
Max 

JFNK 
GMRES 

Its. 

Runtime 
(s) 

Power Method 1.1821254 10 - - - 33.25 
JFNK-Unpreconditioned 1.1821254 10 0.000% 0.000% 7548 45.43 
JFNK-Preconditioned 1.1821255 10 0.000% 0.000% 1738 36.78 

 

As seen in Table 5, both JFNK versions and the power method converge to the same eigenvalue 

while taking the same number of transport sweeps. Additionally, the pin powers throughout the 

problem were compared to those generated using the default power method. Both JFNK 

implementations converged to the same pin powers as evidenced by the nonexistent Root Mean 

Square (RMS) and max pin power differences. The power method resulted in the fastest runtime, 

while JFNK with preconditioning was only slightly slower. The case that implemented an 

unconditioned JFNK routine was significantly slower than the standard power method. This is 

because the total number of linear GMRES iterations required for convergence more than 

quadrupled for the unpreconditioned case. The average number of GMRES iterations performed 

per Newton step was 58 for the preconditioned case and 252 for the unpreconditioned case. For 

both the preconditioned and the unpreconditioned cases, Newton’s method required three 

iterations to converge during each of the ten outer iterations. 
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The results from this 2D fuel lattice case also reinforce some of the conclusions reached for the 

2D pin cell eigenvalue case in Section 4.3.2. In that section it was concluded that the 2D pin cell 

problem was highly unstable. The fact that a full symmetry 17x17 fuel lattice calculation took 

only 10 transport sweeps, while a singular pin cell took 39, helps to uphold that finding. In 

addition, the 204x204 pin cell case took an average of 170 GMRES iterations to converge, while 

the 16,524x16,524 fuel lattice took at most 252 GMRES iterations to converge. 

 

4.4.3 Coupled JFNK Implementation 

The same 2D fuel lattice was investigated at HFP with TH feedback enabled. The problem was 

modeled with a rated power of 0.0708 MW and a flow rate of 0.682 Mlbs/hr. The cases were 

executed in serial in full symmetry with an 8-group cross section library. The CMFD portion of 

the problem is 2592x2592 and the additional TH portion is 288x288. The results of the coupled 

JFNK solver are shown in Table 6 along with the standard Picard iteration case.  

 

Table 6:  Results of the coupled JFNK 2D fuel lattice problem 

Case Eigenvalue MOC 
Its. 

PP 
RMS 

PP 
Max 

JFNK 
GMRES 

Its. 

Runtime 
(s) 

Picard 1.1675591 8 - - - 23.76 
JFNK-Unpreconditioned 1.1675591 8 0.000% 0.000% 904 50.29 
JFNK-Diag Preconditioned 1.1675592 8 0.000% 0.000% 154 28.65 
JFNK-LT Preconditioned 1.1675592 8 0.000% 0.000% 154 28.92 

 

While all of the JFNK cases shown in Table 6 converge to the same eigenvalue and pin powers 

as Picard, they are all slower. The unpreconditioned case takes the longest by far because of the 

extra GMRES iterations needed for convergence. The cases that applied both forms of the 

preconditioner used the same number of GMRES iterations and essentially took the same amount 

of time to execute. Most importantly, the coupled JFNK solver did not reduce the number of 

MOC transport sweeps.  
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4.4.4 CMFD-Coupling Comparison 

As discussed in Section 3.3, two methods for controlling the CMFD-Coupling iteration scheme 

were developed. A number of different implementations were tried and their results are shown in 

Table 7. 

 

Table 7:  Various CMFD-Coupling results for the 2D fuel lattice problem 

Case Eigenvalue MOC 
Its. 

PP 
RMS 

PP 
Max CMFD Solves Runtime 

(s) 
Picard 1.1675591 8 - - 8 23.76 
CMFD-2 1.1675591 8 0.000% 0.000% 15 26.15 
CMFD-3 1.1675591 8 0.000% 0.000% 22 28.5 
CMFD-10 1.1675591 8 0.000% 0.000% 71 44.81 
ΔT<0.1 1.1675591 8 0.000% 0.000% 19 28.08 
ΔT<0.001 1.1675591 8 0.000% 0.000% 32 31.98 

 

Since the Picard iteration scheme is the same as CMFD-1, CFMD-2 was chosen as a solution 

method because performing the CMFD-TH loop one additional time per transport sweep 

introduces the least amount of additional work. Similarly, CMFD-3 was investigated to see what 

additional benefits, if any, are gained from looping between CMFD and the TH solver one 

additional time. CMFD-10 was considered as an extreme case in order to see if looping a large 

number of times offers any benefit in terms of transport iteration reduction. The  case 

was performed as a realistic maximum temperature difference threshold while the  

case was investigated as an extreme case, with intentions similar to those for CMFD-10.  

 

Table 7 shows all methods tested converging to the exact same eigenvalue and pin powers as the 

Picard method. The only variance between the methods is the total number of times CMFD is 

solved, which closely corresponds to the problem runtime. For this 2D fuel lattice, there is no 

obvious benefit to using either CMFD-Coupling or JFNK.  

 

4.5  3D PWR Fuel Pin 

In order to test the performance of JFNK on a 3D problem with little radial heterogeneity, a 

simple 3D fuel pin problem was created and tested.  
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4.5.1 Problem Description 

In order to create a 3D fuel pin problem, the 2D pin cell problem from Section 4.3.1 was used as 

a starting point. This 2D pin cell was then extended axially 250 cm. Since MPACT utilizes a 

2D/1D approach to solving the neutron transport problem, the problem is broken up into a series 

of 28 2D axial planes at differing heights. Each plane is solved independently using 2D MOC 

while their axial transverse leakage is solved using a 1D axial calculation. The problem also no 

longer has reflective top and bottom boundary conditions and instead has a vacuum boundary 

condition for both the top and bottom. The radial boundary condition is still reflective.  

 

4.5.2 JFNK Eigenvalue Solver Implementation  

Like the previous eigenvalue problems, the 3D fuel pin was modeled in full symmetry and used a 

51-group cross section library. However, this case was executed in parallel on 28 processors. The 

preconditioner used to accelerate convergence was chosen to be the migration matrix, . The 

size of the linear system for this problem is 5,712x5,712. The results comparing the standard 

power method to both the preconditioned and unpreconditioned forms of JFNK are shown in 

Table 8. 

 

Table 8:  Results of the 3D fuel pin JFNK eigenvalue problem 

Case Eigenvalue MOC 
Its. 

PP 
RMS 

PP 
Max 

JFNK 
GMRES 

Its. 

Runtime 
(s) 

Power Method 1.1729369 17 - - - 10.8 
JFNK-Unpreconditioned* 1.1729373 17 0.011% 0.016% 26383 166.42 
JFNK-Preconditioned 1.1729370 17 0.002% 0.003% 10721 25.15 

*Turning off GMRES restart was required for convergence 
 

Table 8 shows that all three methods converged to roughly the same eigenvalue and pin powers 

within the same number of MOC iterations. However, in order to get the unpreconditioned JFNK 

case to converge at all, the GMRES restart capability had to be turned off in PETSc. By default, 

PETSc restarts GMRES after 30 iterations in order to reduce the number of vectors stored in 

memory. Even without restarts, the unpreconditioned case leads to a worse estimate of the 

eigenvalue and pin powers when compared to the preconditioned case. Similarly, the 

unpreconditioned case took significantly longer to converge than the other two cases. However, 

while the preconditioned case offered a better solution estimate with a faster runtime when 
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compared to the unpreconditioned case, it was over two times slower than the standard power 

method.  

 

The preconditioned case required four nonlinear Newton steps to converge during the first outer 

iteration but required only three for each of the 16 other outer iterations. On average, each 

Newton iteration needed 206 GMRES iterations to converge. However, the unpreconditioned 

case required four Newton iterations four different times, helping to increase the total number of 

GMRES iterations even further. On average each Newton step required 480 GMRES iterations to 

converge.  

 

4.5.3 Coupled JFNK Implementation 

The same 3D fuel pin described in the previous sections was investigated at HFP with TH 

feedback enabled. The coupled problem was modeled with a rated power of 0.0669 MW and a 

flow rate of 0.00263 Mlbs/hr. These cases were executed in serial in full symmetry with an 8-

group cross section library. The CMFD portion of the problem is 896x896 and the additional TH 

portion is 112x112. The results of the coupled JFNK solver, along with the standard Picard 

iteration case, are shown in Table 9. 

 

Table 9:  Results of the coupled JFNK 3D fuel pin problem 

Case Eigenvalue MOC 
Its. 

PP 
RMS 

PP 
Max 

JFNK 
GMRES 

Its. 

Runtime 
(s) 

Picard 1.1544792 15 - - - 21.85 
JFNK-Unpreconditioned 1.1544996 15 0.173% 0.245% 31734 364.16 
JFNK-Diag Preconditioned 1.1544823 15 0.027% 0.040% 8592 111.51 
JFNK-LT Preconditioned 1.1544823 15 0.027% 0.040% 6300 86.18 

 

Both preconditioned cases converged to the same eigenvalue which differs from the Picard 

eigenvalue by only 0.31 percent mille (pcm). The unpreconditioned case, however, had an 

eigenvalue estimate which differed from the Picard eigenvalue by 2.04 pcm. In addition to the 

larger eigenvalue difference, the unpreconditioned JFNK case also had significantly worse 

estimates of the pin powers than the preconditioned cases when compared to the Picard case. 

These differences are likely caused by the fact that JFNK calculates the eigenvalue and fluxes 
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differently than Picard. It is expected that with tighter convergence criteria, the solutions should 

converge to the same answer. Without preconditioning, the coupled JFNK solver took over 16 

times longer to converge than the standard Picard iteration. This is due to the large number of 

linear GMRES iterations required to converge each nonlinear Newton step within JFNK. 

Including the block-diagonal preconditioner significantly reduces the total number of GMRES 

iterations performed and the addition of the lower left preconditioner block reduces this number 

even further. However, despite these reductions, all coupled JFNK implementations required 

significantly longer runtimes than Picard to converge. 

 

The eigenvalue difference between successive iterations is shown as a function of MOC iteration 

count in Figure 15. Likewise, the 2-norm of the fission source residual as a function of MOC 

iteration count is shown in Figure 16. As seen in Figure 15, the convergence of the eigenvalue 

remains roughly constant across all methods. The two preconditioned cases have the same 

convergence and follow very closely with the convergence of Picard. However, the 

unpreconditioned case differs only slightly. In Figure 16 the fission source residual of the 

preconditioned cases follow each other very closely. For the most part, all three coupled JFNK 

methods perform only slightly better than the Picard implementation over all MOC iterations. 

 

4.5.4 CMFD-Coupling Comparison 

As discussed in Section 3.3, two methods for controlling the CMFD-Coupling iteration scheme 

were developed. A number of different implementations were tried and their results are shown in 

Table 10. 

 

Table 10:  Various CMFD-Coupling results for the 3D pin cell problem 

Case Eigenvalue MOC 
Its. 

PP 
RMS 

PP 
Max 

CMFD 
Solves 

Runtime 
(s) 

Picard 1.1544792 15 - - 15 21.85 
CMFD-2 1.1544797 15 0.007% 0.012% 29 29.75 
CMFD-3 1.1544797 15 0.007% 0.012% 43 34.47 
CMFD-10 1.1544797 15 0.007% 0.011% 141 61.34 
ΔT<0.1 1.1544797 15 0.006% 0.010% 41 34.26 
ΔT<0.001 1.1544797 15 0.007% 0.012% 122 56.16 

 



72 
 

 
Figure 15.  Comparison of the eigenvalue differences for each coupled JFNK implementation 

applied to the 3D fuel pin problem 

 

 
Figure 16.  Comparison of the fission source differences for each coupled JFNK implementation 

applied to the 3D fuel pin problem 
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All of the various CMFD-Coupling approaches shown in Table 10 converge to the same 

eigenvalue. Similarly all of their calculated pin powers are very comparable. The only major 

difference between these methods when applied to the 3D fuel pin problem is the runtime, which 

is closely correlated to the number of CMFD solves required for convergence. When compared 

to Table 9 it is seen that all CMFD-Coupling strategies outperform every JFNK coupling 

technique in terms of eigenvalue and pin power accuracy as well as runtime. Even the CMFD-10 

and  cases, which were intended to be overkill, ran faster than all of the coupled 

JFNK strategies.  

 

The eigenvalue difference between successive iterations is shown as a function of MOC iteration 

count in Figure 17. Similarly, Figure 18 shows the 2-norm of the fission source residual as a 

function of MOC iteration count. Figure 17 shows that the eigenvalue convergence for all 

CMFD-Coupling strategies investigated follow the same trend. While these methods differ from 

the Picard convergence initially, all methods eventually line up and converge simultaneously. 

However, as seen in Figure 18, the fission source residual for all CMFD-Coupling strategies is 

universally lower than that for the Picard implementation. Despite the reduced fission source 

residual, there is no reduction in the number of MOC iterations required for convergence or the 

runtime.  

 

4.6  3D 7x7 Assembly 

In order to test JFNK on a problem similar to those found in real world applications, a 

miniaturized 3D assembly problem was tested.  

 

4.6.1 Problem Description  

This 3D 7x7 assembly is a miniaturized version of CASL VERA Core Physics Benchmark 

Problem 3A [1], which is a single 3D 17x17 HZP fuel assembly at BOL. This 7x7 version 

contains 40 fuel pins and nine guide tubes. Their configuration is shown in quarter symmetry in 

Figure 19. 
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Figure 17.  Comparison of the eigenvalue differences for each CMFD-Coupling implementation 

applied to the 3D fuel pin problem 

 

 
Figure 18.  Comparison of the fission source differences for each CMFD-Coupling 

implementation applied to the 3D fuel pin problem 
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Figure 19.  2D representation of 7x7 fuel assembly in quarter symmetry 

This problem uses the same input specifications as described in Table 1 and Table 4. Like the 3D 

pin cell problem described in Section 4.5, the active fuel height for this problem is 250 cm. This 

problem is broken up into a series of 35 2D axial planes at differing heights and was modeled in 

quarter symmetry with reflective radial boundary conditions.  

 

4.6.2 JFNK Eigenvalue Solver Implementation  

This 3D fuel assembly was executed in parallel on 35 processors to solve the eigenvalue 

problem. This problem also used a 51-group cross section library. In addition, the approximate 

preconditioner in Equation 93 was used such that the migration matrix, , is the preconditioner 

matrix. The size of the linear system for this problem is 28,560x28,560. The results comparing 

the standard power method to both the preconditioned and unpreconditioned forms of JFNK are 

shown in Table 11.  

 

Table 11:  Results of the 3D 7x7 fuel assembly JFNK eigenvalue problem 

Case Eigenvalue MOC 
Its. 

PP 
RMS 

PP 
Max 

JFNK 
GMRES 

Its. 

Runtime 
(s) 

Power Method 1.1082356 10 - - - 20.99 
JFNK-Unpreconditioned* 1.1082321 39 0.012% 0.048% 99676 828.18 
JFNK-Preconditioned 1.1082500 13 0.207% 0.312% 6224 28.99 

*GMRES restart of 500 was required for convergence 
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As seen in Table 11, the unpreconditioned and the preconditioned cases converged to 

eigenvalues within 0.35 and 1.44 pcm of the power method eigenvalue, respectively. However, 

the unpreconditioned case would not converge with the default GMRES restart capability in 

PETSc so the restart value was increased to 500 in order to have the problem converge. Turning 

off restarts entirely was not possible with such a large linear system due to memory constraints. 

Even with the larger restart value, the unpreconditioned case required 29 more transport sweeps 

than did the standard power iteration. While the preconditioned case performed better, it still 

required an additional three MOC iterations beyond what was required by the power method. 

Because of these additional transport sweeps, neither JFNK eigenvalue solver implementation 

was faster than the power method.  

 

The unpreconditioned case required at most 5 nonlinear Newton steps to converge a given 

iteration and as few as three. On average each of these Newton steps required 733 linear GMRES 

iterations to converge. The preconditioned case only required three Newton steps per iteration 

with an average of 160 GMRES per step.  

 

4.6.3 Coupled JFNK Implementation 

The 3D 7x7 fuel assembly was then investigated at HFP with TH feedback enabled. The coupled 

problem was modeled with a rated power of 2.945 MW and a flow rate of 0.1157 Mlbs/hr. These 

cases were executed in serial, in quarter symmetry, and with an 8-group cross section library. 

The CMFD portion of the problem is 4480x4480 and the additional TH portion is 392x392. The 

results of the coupled JFNK solver, along with the standard Picard iteration case, are shown in 

Table 12. 

 

Table 12:  Results of the coupled JFNK 3D 7x7 fuel assembly problem 

Case Eigenvalue MOC 
Its. 

PP 
RMS 

PP 
Max 

JFNK 
GMRES 

Its. 

Runtime 
(s) 

Picard 1.1000484 10 - - - 44.79 
JFNK-Unpreconditioned 1.1000559 9 0.059% 0.108% 32654 1652.17 
JFNK-Diag Preconditioned 1.1000596 9 0.092% 0.129% 1087 85.99 
JFNK-LT Preconditioned 1.1000596 9 0.092% 0.129% 1087 86.02 
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The unpreconditioned case converged to an eigenvalue that differed from the eigenvalue 

calculated using the standard Picard iteration by 0.75 pcm. Both versions of the preconditioned 

case converged to an eigenvalue that differed by 1.12 pcm from the Picard eigenvalue. The pin 

power differences for all three cases were comparable and were all reasonably close to the Picard 

case. All three JFNK implementations converged in one less MOC iteration than the Picard 

iteration. However, despite requiring one fewer transport sweep, all JFNK implementations took 

significantly longer to converge.  

 

The eigenvalue convergence behavior of all three JFNK implementations as well as the standard 

Picard method is shown in Figure 20. Similarly, the convergence of the 2-norm of the fission 

source residual as a function of MOC iteration is shown in Figure 21. Figure 20 shows that the 

eigenvalue convergence of the unpreconditioned JFNK case is more oscillatory than those for the 

other three cases. Both preconditioned cases follow the same trend, which follows closely with 

the Picard eigenvalue convergence until about the 7th MOC iteration, after which the JFNK 

methods converge faster. As seen in Figure 21, all three coupled JFNK implementations follow 

the same general fission source convergence. All three of these JFNK implementations fall 

below the 5x10-5 fission source convergence criteria one MOC iteration sooner than the Picard 

method.  

 

4.6.4 CMFD-Coupling Comparison 

As discussed in Section 3.3, two methods for controlling the CMFD-Coupling iteration scheme 

were developed. A number of different implementations were tried and their results are shown in 

Table 13. 

 

Table 13:  Various CMFD-Coupling results for the 3D 7x7 fuel assembly problem 

Case Eigenvalue MOC 
Its. 

PP 
RMS 

PP 
Max CMFD Solves Runtime (s) 

Picard 1.1000484 10 - - 10 44.79 
CMFD-2 1.1000486 9 0.006% 0.010% 17 61.13 
CMFD-3 1.1000485 9 0.007% 0.012% 25 71.54 
CMFD-10 1.1000485 10 0.012% 0.020% 91 128.86 
ΔT<0.1 1.1000489 10 0.002% 0.003% 29 76.17 
ΔT<0.001 1.1000485 10 0.012% 0.020% 83 122.41 
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Figure 20.  Comparison of the eigenvalue differences for each coupled JFNK implementation 

applied to the 3D 7x7 fuel assembly problem 

 

 
Figure 21.  Comparison of the fission source differences for each coupled JFNK implementation 

applied to the 3D 7x7 fuel assembly problem 
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All of the CMFD-Coupling approaches shown in Table 13 converge to within 0.1 pcm of the 

eigenvalue calculated using the Picard iteration. Similarly, all of the CMFD-Coupling 

approaches converged the pin powers remarkably well compared to those calculated using the 

standard Picard iteration. The CMFD-2 and CMFD-3 methods were the only cases to offer any 

reduction in the number of total MOC sweeps, while the others offered no change. Despite this 

fact, none of the CMFD-Coupling approached offered any speedup in terms of runtime.  

 

The convergence of the eigenvalue for these CMFD-Coupling cases is shown as a function of 

MOC iteration count in Figure 22. The 2-norm of the fission source residual as a function of 

MOC iteration count is shown in Figure 23. As seen in Figure 22, the eigenvalue residuals for all 

CMFD-Coupling strategies implemented are lower than that for the Picard method at 

convergence. Although only the CMFD-2 and CMFD-3 cases were completed after nine MOC 

sweeps, all CMFD-Coupling strategies have eigenvalue residuals below the 1E-6 convergence 

criteria in the 9th MOC iteration. In Figure 23, the fission source residuals for all CMFD-

Coupling implementations are universally lower than those for the Picard iteration scheme.  

 

 
Figure 22.  Comparison of the eigenvalue differences for each CMFD-Coupling implementation 

applied to the 3D 7x7 fuel assembly problem 
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Figure 23.  Comparison of the fission source differences for each CMFD-Coupling 

implementation applied to the 3D 7x7 fuel assembly problem 

 

4.7  Summary 

Both a JFNK based nonlinear solver and a new iteration strategy called CMFD-Coupling were 

successfully implemented and applied to various reactor problems. For the 1D, one-group 

homogeneous slab problem, neither coupling methodology performed better than the default 

Picard iteration, with JFNK performing the worst. When used as an eigenvalue solver, it was 

confirmed that preconditioning is a requirement for the viability of JFNK. However, even with 

appropriate preconditioning, it offered no improvement in reducing the number of transport 

sweeps required for convergence for any of the problems tested. In fact, the JFNK eigenvalue 

solver performed slower than the default power iteration for every test case.  

 

Similarly, when used as a TH coupling technique, JFNK was consistently slower than the Picard 

iteration. Again, preconditioners were found to be a crucial part of the implementation of JFNK 

as a coupled solver. While both the diagonal and the lower triangular preconditioners were 

effective in reducing the total number of linear GMRES iterations required for convergence, 

neither preconditioner preformed significantly better than the other. In the larger 3D fuel pin and 
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3D 7x7 fuel assembly problems, the eigenvalue and fission source residuals were consistently 

lower for the coupled JFNK cases than those for the Picard iteration.  

 

The five CMFD-Coupling techniques implemented were also consistently slower than the default 

Picard iteration. However, when compared to the JFNK coupling implementation, all CMFD-

Coupling strategies provided more accurate eigenvalue and pin power estimates. Additionally the 

runtimes for the CMFD-Coupling cases were generally faster than those for the JFNK coupled 

cases.  

 

Therefore, based on these results, JFNK will not be considered for the remainder of this 

document. However, because of its superior performance and its ability to run in parallel, 

CMFD-Coupling will be further investigated as a coupling strategy when applied to larger 

problems. 

 

  



82 
 

5.  CMFD-Coupling Investigations 

Since JFNK is no longer being considered as either a multiphysics coupling method or as an 

eigenvalue solver, larger problems are now investigated. Therefore, CMFD-Coupling is further 

evaluated as a multiphysics coupling technique. Because it was implemented in parallel, CMFD-

Coupling was used on a series of large scale full core problems. First, Watts Bar Unit 1 Cycle 1 

is investigated with various forms of feedback enabled and finally Watts Bar Unit 1 Cycle 2 is 

tested using the CMFD-Coupling method.  

 

5.1  3D Full Core Problem – Cycle 1 

In order to test CMFD-Coupling on a realistic problem that is of interest to reactor engineers, a 

large full core problem was modeled in 3D. This problem will demonstrate the performance for 

realistic problems that would be expected for real-world applications of the CMFD-Coupling 

method. 

 

5.1.1 Problem Description  

The 3D full core problem modeled is CASL VERA Core Physics Benchmark Problem 7 [1], 

which is a representation of Watts Bar Unit 1 Cycle 1. The problem consists of 193 

Westinghouse 17x17-type fuel assemblies at BOL with HFP conditions. Control rod banks, 

instruments, and radial support structures are included in the model. The core layout is shown in 

Figure 24. The core consists of three different fuel enrichments: 2.11%, 2.619%, and 3.10%. 

Some fuel assemblies contain burnable poison rods in the form of Pyrex rods of borosilicate 

glass. The layout of the fuel assemblies, burnable poisons, and control rods are shown in    

Figure 25 in quarter symmetry.  
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Figure 24.  Core geometry of VERA Core Physics Progression Problem 7 [1] 
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Figure 25.  Fuel loading, poison, and control bank layout in quarter symmetry [1] 

 

5.1.2 TH Feedback 

While the CASL VERA Core Physics Benchmark Problem 7 has equilibrium xenon and critical 

boron search feedback effects enabled, the same problem geometry was examined with only TH 

feedback enabled. Four different CMFD-Coupling methodologies were implemented in addition 

the standard Picard iteration: CMFD-2, CMFD-3, , and  and their results 

are shown in Table 14. 

 

Table 14:  CMFD-Coupling results for the 3D full core problem with TH feedback 

Method Eigenvalue MOC 
Iterations 

CMFD 
Iterations 

Runtime 
(h:mm:ss) 

Picard 1.1294727 12 12 0:48:55 
CMFD-2 1.1294568 19 37 1:32:08 
CMFD-3 1.1294482 15 43 1:30:29 
ΔT<0.1 1.1294547 12 59 1:47:53 
ΔT<0.001 1.1294476 13 264 4:59:17 

 

While the CMFD-2 case was intended to minimize the additional amount of work added to the 

Picard iteration, it took seven more MOC iterations to converge. Adding one additional CMFD-

TH loop in the CMFD-3 case helped reduce the number of transport sweeps relative to the 

CMFD-2 case but still required a larger number than Picard. While  was the only case 
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to match the number of Picard MOC iterations, it required an additional hour of compute time. 

The  case added a large amount of extra work and compute time with no reduction in 

the overall number of transport sweeps. The convergence of the eigenvalue for each of these 

CMFD-Coupling cases is shown as a function of MOC iteration count in Figure 26. The 2-norm 

of the fission source residual as a function of MOC iteration count is shown in Figure 27. 

 

 
Figure 26.  Comparison of the eigenvalue differences for each CMFD-Coupling implementation 

applied to the 3D full core problem 

 

Figure 26 shows that the eigenvalue residual of all cases follow roughly the same pattern until 

about the 10th MOC iteration, after which they begin to diverge from one another. At 

convergence, the Picard iteration has the lowest eigenvalue residual. When examining the fission 

course convergence in Figure 27, it is seen that both  cases have better convergence 

rates than Picard. Despite this fact, these cases do not perform better than the Picard iteration in 

terms of runtime or MOC iteration reduction.  
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Figure 27.  Comparison of the fission source differences for each CMFD-Coupling 

implementation applied to the 3D full core problem 
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the addition of TH feedback to this problem adds no significant computational burden. As a 

result, tighter coupling of CMFD with the TH solver has no benefit, as seen in Table 14. For that 

reason, other forms of feedback were considered in addition to TH: xenon feedback and critical 

boron search. These other sources of feedback were considered because they are commonly 

included in modern nuclear reactor analysis.  

 

5.1.3 Equilibrium Xenon 

The same 3D full core problem was retested with both TH and equilibrium xenon feedback 

enabled. The feedback effects from the xenon calculation are applied to the problem in the same 

fashion that TH feedback effects are applied: both feedback calculations are performed and their 
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problem with CMFD-Coupling are shown in Table 15. 
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Table 15:  CMFD-Coupling results for the 3D full core problem with TH and equilibrium xenon 
feedback 

Method Eigenvalue MOC 
Iterations 

CMFD 
Iterations 

Runtime 
(h:mm:ss) 

Picard 1.0931780 16 16 0:58:29 
CMFD-2 1.0931718 12 23 1:13:34 
CMFD-3 1.0931635 12 34 1:24:22 
ΔT<0.1 1.0931661 13 50 1:44:15 
ΔT<0.001 1.0931638 13 204 4:24:58 

 

As seen in Table 15, all of the CMFD-Coupling approaches reduced the total number of MOC 

iterations required for convergence. However, despite this fact, none of these methods have a 

faster runtime than the Picard iteration. The best performer was the CMFD-2 case that reduced 

the number of MOC iterations by four while increasing the number of CMFD iterations by only 

seven. Yet it still required an additional 15 minutes to converge. The convergence of the 

eigenvalue for these CMFD-Coupling cases is shown as a function of MOC iteration in      

Figure 28. The 2-norm of the fission source residual as a function of MOC iteration count is 

shown in Figure 29. 

 

 
Figure 28.  Comparison of the eigenvalue differences for each CMFD-Coupling implementation 

applied to the 3D full core problem with equilibrium xenon feedback enabled 
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Figure 29.  Comparison of the fission source differences for each CMFD-Coupling 

implementation applied to the 3D full core problem with equilibrium xenon feedback enabled 

 

Figure 28 shows the eigenvalue residual for the CMFD-2 case converging much faster than the 

others once the solution is close to the convergence criteria. In addition, all CMFD-Coupling 

cases converge the eigenvalue faster than the standard Picard iteration. When looking at Figure 

29 as well, it can be seen that all CMFD-Cases converge the fission source either as good as, or 

better than, the Picard iteration. The  case converges the fission source much faster 

than the other cases; however this does not translate into fewer transport sweeps. This is because 

these cases are eigenvalue limited, and the problem must continue until the eigenvalue difference 

reaches the convergence criteria. Therefore, even though the CMFD-2 case converges the fission 

source the same as Picard, it converges the eigenvalue much faster resulting in the greatest 

reduction in MOC iterations.  
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Unlike the eigenvalue problems performed earlier, critical boron search calculations adjust the 
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calculations more tightly using CMFD-Coupling. The results of modeling this problem with both 

TH feedback and a critical boron search are shown in Table 16. 

 

Table 16:  CMFD-Coupling results for the 3D full core problem with TH and critical boron 
search feedback 

Method Boron 
Concentration 

MOC 
Iterations 

CMFD 
Iterations 

Runtime 
(h:mm:ss) 

Picard 1147.07 14 14 1:08:23 
CMFD-2 1147.12 12 23 1:12:52 
CMFD-3 1147.11 11 31 1:15:59 
ΔT<0.1 1147.05 15 57 1:48:41 
ΔT<0.001 1147.1 9 245 4:36:52 

 

The addition of CMFD-Coupling reduces the number of MOC iterations for every case except 

the  case. The  case required the fewest number of MOC iterations to 

converge but took almost 3.5 hours longer than the Picard iteration. This is due to the significant 

increase in the number of CMFD iterations performed while converging the norm of the 

differences in temperature to less than 0.001 K. Similar to the problem with xenon feedback 

enabled, CMFD-2 performed the best in terms of overall runtime, but was still slightly slower 

than Picard. 

 

The eigenvalue convergence for these CMFD-Coupling cases is shown as a function of MOC 

iteration in Figure 30. The 2-norm of the fission source residual as a function of MOC iteration 

count is shown in Figure 31. As shown in Figure 30, every CMFD-Coupling implementation 

except for the  case greatly improved upon the eigenvalue convergence when compared 

to the Picard iteration. The behavior of the  case can be explained by the fact that, for 

the first four MOC iterations, there were multiple CMFD iterations for every MOC iteration. 

After that point, the temperature differences between successive MOC sweeps were less than   

0.1 K so a transport solve was performed without any CMFD-Coupling iterations in between. 

This is why the eigenvalue residuals begin to converge similarly to Picard after this point. In 

addition, the CMFD-2 and CMFD-3 cases smoothed out the convergence with respect to Picard. 

In Figure 31 it is seen that all cases had better fission source convergence than the standard  
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Figure 30.  Comparison of the eigenvalue differences for each CMFD-Coupling implementation 

applied to the 3D full core problem with critical boron search enabled 

 

 
Figure 31.  Comparison of the fission source differences for each CMFD-Coupling 

implementation applied to the 3D full core problem with critical boron search enabled 
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Picard iteration. Most of these cases were fission source limited, and so this improved 

convergence is why there is a reduction in the total number of MOC iterations as seen in      

Table 16. 

 

5.1.5 3D Full Core with All Feedback Enabled 

Finally, the CASL VERA Core Physics Benchmark Problem 7 was tested in full: with TH 

feedback, equilibrium xenon, and critical boron search enabled. This is typical of the simulations 

performed for reactor operation. However, unlike the previous problems, the  cases are 

ignored due to the fact that they were consistently ranked last in terms of runtime for completion. 

In their place an additional CMFD-5 case was tested. The results of these CMFD-Coupling 

implementations are shown in Table 17. 

 

Table 17:  CMFD-Coupling results for the 3D full core problem with TH feedback, equilibrium 
xenon, and critical boron search enabled 

Method Boron 
Concentration 

MOC 
Iterations 

CMFD 
Iterations 

Runtime 
(h:mm:ss) 

Picard 848.12 14 14 0:55:31 
CMFD-2 848.15 10 19 1:11:26 
CMFD-3 848.15 10 28 1:27:31 
CMFD-5 848.10 9 41 1:44:14 

 

All CMFD-Coupling techniques were shown to reduce the total number of MOC iterations. 

While the CMFD-5 case reduced the number of transport sweeps the most, it took the longest 

runtime to complete. Like the previous problems, the CMFD-2 case preformed the best in terms 

of runtime. However, it still took significantly longer to converge when compared to the Picard 

iteration. This is due to the fact that, while MOC was performed fewer times, the increased 

number of iterations through the CMFD-Coupling loop offset that gain. The convergence of the 

eigenvalue differences for these cases is shown in Figure 32. Similarly, the convergence of the 

fission source differences is shown in Figure 33. Figure 32 shows that the eigenvalue residual for 

all CMFD-Coupling cases is greatly reduced when compared to that for the Picard iteration. 

However the convergence of the fission source shows little to no improvement. It should be 

noted that while the Picard iteration is eigenvalue limited, all of the CMFD-Coupled cases are 

fission source limited due to the increased convergence of the eigenvalue.  
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Figure 32.  Comparison of the eigenvalue differences for each CMFD-Coupling implementation 

applied to the 3D full core problem with TH feedback, equilibrium xenon, and critical boron 
search enabled 

 

 
Figure 33.  Comparison of the fission source differences for each CMFD-Coupling 

implementation applied to the 3D full core problem with TH feedback, equilibrium xenon, and 
critical boron search enabled 
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5.2  3D Full Core Problem – Cycle 2 

The CASL VERA Core Physics Benchmark Problem 10 [1] was modeled to examine the 

potential improvements using CMFD-Coupling. This problem is geometrically the same as that 

described in Section 5.1 but at the start of the second cycle. This full core problem was depleted 

over the course of an 18-month fuel cycle. Once this depletion is completed, approximately one 

third of the fuel was removed from the problem and replaced with fresh fuel. The remaining fuel 

elements were rearranged to new locations to begin cycle two. This problem is modeled at HZP 

and therefore neither TH nor xenon feedback are enabled. However a critical boron search is still 

performed. Cycle two was examined because the current Picard methodology for solving this 

problem introduces large instabilities during convergence likely due to isotopic oscillations. The 

results for the Picard iteration scheme along with three CMFD-Coupling implementations are 

shown in Table 18. 

 

Table 18:  CMFD-Coupling results for Cycle 2 of the 3D full core problem with critical boron 
search enabled 

Method Boron 
Concentration 

MOC 
Iterations 

CMFD 
Iterations 

Runtime 
(h:mm:ss) 

Picard 1436.69 51 51 3:20:01 
CMFD-2 1436.69 35 69 3:44:19 
CMFD-3 1436.69 28 82 4:03:32 
CMFD-5 1436.69 22 106 4:44:59 

 

The instability of the Picard iteration is evidenced by the large number of transport sweeps 

required for convergence. All three CMFD-Coupling methods tested helped to reduce the total 

number of MOC iterations. However, this was accomplished at the cost of adding more CMFD 

iterations. Therefore, despite the significant reduction in the number of MOC sweeps, all CMFD-

Coupling cases had longer runtimes to convergence. Like in the previous problems, CMFD-2 

was the fastest case tested. A plot showing the convergence of the eigenvalue differences for 

these cases is shown in Figure 34. Likewise, a plot showing the convergence of the fission source 

differences is shown in Figure 35. 
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Figure 34.  Comparison of the eigenvalue differences for each CMFD-Coupling implementation 

applied to Cycle 2 of the 3D full core problem with critical boron search enabled 

 

 
Figure 35.  Comparison of the fission source differences for each CMFD-Coupling 

implementation applied to Cycle 2 of the 3D full core problem with critical boron search enabled 
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While Figure 34 shows large instabilities in the eigenvalue residual, it should be noted that these 

oscillations only begin to happen once the residual is below the 1x10-6 convergence criteria. 

Looking at Figure 35 it is seen that all cases are fission source limited. Every CMFD-Coupling 

case had fission source residuals that were improvements when compared to the Picard iteration 

scheme, but, as mentioned before, took significantly longer. 

 

5.3 Summary 

Various CMFD-Coupling strategies were successfully implemented and applied to 3D full core 

reactor problems. For the core problem at BOL, different sets of feedback were coupled to the 

neutronics problem to assess the performance of the CMFD-Coupling methods. When only 

coupled to the TH solver, all methods tested greatly increased the overall runtime with no 

reduction in the total number of MOC iterations. When equilibrium xenon feedback was 

included in addition to the TH solver, CMFD-Coupling offered a transport sweep reduction of 

25%. However, despite this reduction in the number of transport sweeps, the best performing 

method, CMFD-2, led to a 25% increase in runtime. The equilibrium xenon feedback solver was 

then replaced with the critical boron search solver. Again, the best performer was CMFD-2 with 

a 17% reduction in MOC iterations but with only a 6% increase in the overall runtime. Finally, 

all three sets of feedback were coupled to the low order CMFD equations. Again the best 

performing method was CMFD-2. It offered a 29% reduction in the total number of transport 

sweeps required while increasing the total runtime by 29%. When applied to the same full core 

geometry at the start of Cycle 2, CMFD-Coupling reduces the total number of transport sweeps 

for all strategies tested. The best performing case was CMFD-2, with a 31% reduction in MOC 

iterations with only a 12% increase in the overall runtime.  

 

Even though CMFD-Coupling reduced the number of MOC iterations in most of these cases, the 

overall increase in the number of CMFD iterations resulted in the increase in runtime.  
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6. Conclusions 

Two different multiphysics coupling methods were investigated that incorporate coupling to the 

low-order CMFD equations: JFNK and a new iteration strategy called CMFD-Coupling. JFNK 

incorporates the nonlinear Newton’s method along with a finite difference approximation to 

approximate the action of the Jacobian on a vector. This method combines multiple sets of 

physics in the same solution vector and solves the low-order coupled problem simultaneously. 

Conversely, the CMFD-Coupling method iterates between the CMFD solver and the 

multiphysics solvers multiple times before entering into a transport solve.  

 

Initially, JFNK was implemented as an eigenvalue solver, both preconditioned and 

unpreconditioned. It was found that, for JFNK to be computationally competitive with other 

methods, preconditioning was a necessity. However, regardless of preconditioning, JFNK 

offered no improvement in reducing the number of transport sweeps required for convergence 

for any of the problems tested. In fact, the JFNK eigenvalue solver performed slower than the 

default power iteration for every test case due to the extra computational requirements of the 

method. 

 

Before being applied to more sophisticated problems, JFNK was implemented as a coupled 

neutronics-TH solver for an infinite homogeneous medium problem. The MOC-CMFD 

neutronics solver was replaced with a cross section table lookup. The cross section table was 

generated from a series of 2D pin cell calculations at varying fuel temperatures. In order to 

maximize the effectiveness of JFNK on this problem, the cross sections within a given Newton 

step needed to be updated. This was done by calculating the cross section derivative with respect 

to temperature before each Newton step, and then using that value to linearly update the cross 

sections during each linear GMRES iteration. In addition to calculating the cross section 

derivatives fully, a series of three cross section derivative approximations were tested: one 

removed the temperature dependence, one removed the energy dependence, and one removed 

both, leading to a constant value. While all of these approximations performed worse than the 

fully calculated cross section derivative, they all performed better than the case in which the 

cross sections were not updated within each Newton step. This study showed that updating the 
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cross sections within JFNK, even approximately, is better than having them remain constant, 

which is what is done using a Picard iteration scheme.  

 

When used as a multiphysics coupling technique, JFNK and CMFD-Coupling, along with the 

standard Picard iteration, were applied to a series of simplified reactor problems with coupled 

TH feedback. A 1D one-group homogeneous slab, a 2D pin cell, a 2D lattice, a 3D fuel rod, and 

a 3D 7x7 assembly problem were investigated. Again it was realized that preconditioning is a 

crucial part of JFNKs implementation as a coupled solver. In all of the problems tested, JFNK 

was consistently slower than the Picard iteration and offered little to no improvement in the total 

number of transport solves required for convergence. However, in the larger 3D fuel pin and 3D 

7x7 fuel assembly problems, the eigenvalue and fission source residuals were consistently lower 

for the coupled JFNK cases than those for the Picard iteration. When the same five problems 

were solved with CMFD-Coupling instead of JFNK, some improvements were seen. When 

compared to the JFNK coupling implementation, all CMFD-Coupling strategies provided more 

accurate eigenvalue and pin power estimates. Additionally, the runtimes for the CMFD-Coupling 

cases were generally faster than those for the JFNK coupled cases. However, the CMFD-

Coupling runtimes were still slower than the default Picard iteration. This was due to the fact that 

the reduced number of transport sweeps was offset by an even larger increase in the number of 

CMFD iterations required for convergence.   

 

Because of its inferior performance when compared to CMFD-Coupling, JFNK was abandoned 

and was never attempted on problems coupled to physics other than TH. However, CMFD-

Coupling was applied in parallel to large 3D full core problems. These problems modeled both 

Cycle 1 and the start of Cycle 2 while coupling different combinations of TH, equilibrium xenon 

and critical boron search feedback. The best performing method on these problems was    

CMFD-2, in which the coupled physics and CMFD solvers are performed one additional time 

per transport sweep. For the problem at BOL, all methods tested greatly increased the overall 

runtime with no reduction in the total number of MOC iterations when coupled only to the TH 

solver. This increase in runtime was caused by the increase in the number of CMFD iterations 

performed along with no decrease in the number of MOC sweeps. However, when equilibrium 

xenon feedback was included in addition to the TH solver, CMFD-Coupling offered a transport 
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sweep reduction of 25%. Despite this reduction, there was still a 25% increase in runtime due to 

all of the additional CMFD iterations required. When the xenon solver was replaced with a 

critical boron search solver, CMFD-2 offered a 17% reduction in MOC iterations with a 6% 

increase in the overall runtime. When all three sets of feedback were applied at the same time, 

the use of CMFD-2 led to a 29% reduction in the total number of transport sweeps required 

while increasing the total runtime by 29%. The same problem at the start of Cycle 2 experiences 

xenon oscillations as the result of the isotopes buildup during the first cycle depletion. When 

CMFD-Coupling was applied to this problem with only critical boron feedback turned on, 

CMFD-2 led to a 31% reduction in MOC iterations with only a 12% increase in the overall 

runtime. 

 

While neither JFNK nor CMFD-Coupling offered any improvement in terms of runtime, they do 

offer limited improvements in the convergence of the eigenvalue and fission source residual. 

Therefore, the tighter coupling of feedback to the low-order CMFD equations does offer some 

benefits. Additionally, the implementation of CMFD-Coupling shifts the computational burden 

from the transport solver to CMFD. If any new developments lead to the significant acceleration 

of CMFD, CMFD-Coupling may become computationally cheaper than the Picard iteration 

scheme in terms of runtime.  

 

6.1 Future Work 

6.1.1 Stronger TH Feedback 

When coupled only to the TH solver, both JFNK and CMFD-Coupling offered no decrease in the 

transport iteration count. This was because the TH feedback in these cases was not very strong 

and did not add any MOC sweeps when compared to a non-coupled case. Therefore problems 

with stronger feedback effects should be further examined using both JFNK and CMFD-

Coupling. For example, Boiling Water Reactor (BWR) cases in which the void feedback is very 

strong lead to slow coupled convergence. These cases could potentially benefit from tighter 

coupling with JFNK or CMFD-Coupling.  
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6.1.2 Transient Problems 

All of the cases tested in this work were single state problems. During multistate time-dependent 

problems, such as transients, large feedback effects can occur over a short period of time 

requiring a large number of time-steps in order to accurately capture these feedback effects. 

Cases such as these might benefit from tighter multiphysics coupling using either JFNK or 

CMFD-Coupling and should be investigated. 

 

6.1.3 Adaptive Coupling 

For all of the problems in this work that were tested with CMFD-Coupling, the CMFD-Coupling 

was enabled for the entire duration of the problems execution. However, there may be problems 

that require tighter multiphysics coupling during only part of its execution. Therefore, methods 

should be developed for adaptively turning on the low-order coupling when it is needed, and 

avoiding the extra computational burden when it is not. The first step in this process would be 

identifying key parameters that would be used to trigger the low-order coupling. 

 

6.1.4 CMFD Acceleration 

The full core problems tested in this work benefited from the use of CMFD-Coupling in the form 

of reduced transport sweeps required for convergence. However, these problems also took longer 

to execute because of the larger number of CMFD iterations which offset the savings gained by 

the reduction in transport iterations. Essentially the computational burden was shifted from the 

transport solver to the low-order CMFD system. Therefore, if methods were developed for 

further accelerating the CMFD solution, the application of CMFD-Coupling might prove to be 

faster than the Picard iteration scheme. One possible method to be investigated is a multilevel 

CMFD scheme in which the low-order CMFD system is further reduced to an even coarser mesh. 

The idea being that this even smaller system would be used to further accelerate the CMFD 

solution. Another possible method for accelerating CMFD would be to collapse the group 

structure in addition to the spatial collapse. Though the equations in Section 2.2.2 include a 

group collapse, this is not done in practice within MPACT. Collapsing in energy will further 

reduce the size of the CMFD system, therefore requiring less computational expense to solve it.   
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