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ABSTRACT 
 

The role of protein structural ensembles has been shown to be very important 

for different physical and chemical properties of proteins. The work presented in this 

dissertation explores two of these properties:  

i) Thermostability, by characterizing, at three different temperatures, the 

dynamics of aminoglycoside nucleotidyltransferase 4’ (ANT). This homodimeric 

enzyme detoxifies antibiotics. It possess two known variants, D80Y and T130K, with 

higher melting temperatures than the wild type. These mutations, however, would 

cause changes in the distributions of conformations in the ensemble and, 

consequently, on the dynamics of the protein. To test this hypothesis, the wild type 

and variants were examined by using molecular dynamics simulations and the results 

were compared with previous experimental information in order to characterize the 

similarities and differences between the, so-called, thermophilic and thermostable 

variants of this enzyme.  

  

 ii) Ligand binding: Since proteins are in general dynamic structures, it would 

be expected that the effectiveness of ligand binding varies as the protein’s 

conformation changes.  One of the most targeted protein family in the field of drug 

discovery/design is the G-Protein Coupled Receptor (GPCR) family. Over 30% of 

approved drugs target this family of proteins. This project examines, via in silico 

experiments, the differences in ligand binding between different conformations of 

GPCRs. To this end, GPCR ligand structures, actual binding (actives) and non-

binding (decoys) ligands, were obtained from public databases, and eight GPCRs 

structures were selected to generate 5,000 conformational states for each protein. 

Ensemble-based docking was performed on representative structures of these 5,000 

conformers and on a subset of 3,000 conformers from each of the eight proteins. 

Decoys and statistical analysis were incorporated in the docking simulations to test 

whether the sampled protein conformations can bind active ligands in greater 

numbers than the random selection from the pool of active and decoys. The results 
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show that some conformations bind more ligands than other conformations, random 

selection, or the crystal structure. Characterizing the entire ensemble of protein 

conformations can improve the number of bound active ligands identified 

computationally, compared to random selection of compounds or docking using only 

a single crystal structure. 
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INTRODUCTION  
 

Protein Structure Ensembles  
 

The structure-function relationship theory, in which the 3D structure of protein 

defines function, was bolstered by the availability of high-resolution structures of 

proteins. Since then, the idea that proteins can be defined by one unique structure, 

the “right folded state”, prevailed for a few decades. However, the idea of a 

relationship between energy-landscape and function was proposed by Frauenfelder 

in the 70's (Austin, Beeson, Eisenstein, Frauenfelder, & Gunsalus, 1975), when this 

group observed a correlation between the non-exponential kinetics of carbon 

monoxide and oxygen rebinding to myoglobin and the energy barrier produced by 

temperature and ligand concentration. Previous observations on myoglobin between 

the late 1880's and early 1920's, supported this concept, and protein dynamics as a 

factor affecting its function became more accepted. This led to the idea that structural 

states are in thermal equilibrium while at the same time solvent and ligands affect the 

energy landscape, and the population of conformational states (Frauenfelder, 

Fenimore, & McMahon, 2002; Loncharich & Brooks, 1990). These results on 

myoglobin and other proteins, e.g. Dihydrofolate Reductase, in which conformational 

substates modulate the transference rate of hydride (Thorpe & Iii, 2005), led to the 

idea that proteins exist as ensembles of similar structures. These transient 

microstates interconvert between each other, and the average of these conformers 

are resolved by high-resolution techniques, such as crystallography and NMR 

spectroscopy. The concept of native states as a set of structural conformations or 

microstates provide a basis to rationalize the physical-chemical properties of proteins 

such as stability, solubility, affinity, binding, and specificity/promiscuity for ligands as 

function of these structural ensembles. Thus, biological features of proteins are the 

result of an energy-weighted contribution from each conformer in the ensemble 

(Hilser, Garcia-Moreno E., Oas, Kapp, & Whitten, 2006).  
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The striking improvement of molecular dynamics (MD) simulations since the 

first reported work in the late 70's (McCammon, Gelin, & Karplus, 1977) has been 

due to the increase of computational power as well as improvement of potential 

energy functions. This allows the generation of conformational changes in proteins 

on time scales that go from femtoseconds to milliseconds. This range of timescales 

comprises atomic fluctuations, side chains rotations, loop motions, and large domain 

motions (Henzler-Wildman & Kern, 2007). The combination of all these motions at 

different time scales will result in many possible conformational structures, which will 

be part of the ensemble at particular conditions, e.g., temperature, salt concentration, 

protonation states, bound-ligand, free-ligand. Thus, MD simulations are tools 

employed to build ensembles of conformational states for any protein for which a 

structure in available.  

 

About the work developed in this dissertation  
  
Chapter 1 describes the work done on aminoglycoside nucleotidyltransferase 4’ 

(ANT) to study its thermostability. MD simulations at three temperatures were 

performed for the wild type and two variants, D80Y and T130K. The flexibility of the 

protein has been analyzed by applying principal component analysis (PCA) to the 

trajectories obtained from the MD simulations. PCA allows the deconvolution of the 

main modes of motion, thus, it is possible to find out which regions in the protein 

have the largest amplitude motions, their directions, and how these motions 

contribute to the formation of protein structure ensembles (Jing, Evangelista Falcon, 

Baudry, & Serpersu, 2017).  

 

Chapter 2 describes the development of a protocol to perform ensemble-

based docking on G-Protein Coupled Receptors (GPCRs) preventing false positives. 

This is particularly important in the field of drug discovery and design, because when 

a new potential drug is tested, this new molecule must be able to bind at least one of 

the conformers present in the population of the target protein’s structure. Otherwise, 
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the binding affinity may be too low to be effective under physiological conditions. Four 

GPCRs were used in a more exhaustive study of conformational selection. 

Conformations for each protein ensemble were generated via Coarse-Grained (CG) 

MD simulations. Molecular docking was then performed by using VinaMPI (Ellingson, 

Smith, & Baudry, 2013). The most important contribution of this project is the 

incorporation of the statistical concept of ‘outliers’ as a threshold to determine 

whether a conformational state is significant beyond random selection its capacity to 

be selected by the protein ligands. 

 

Chapter 3 proposes future directions in the field of drug discovery and design by 

using ensemble-based docking simulations as has been previously suggested 

(Evangelista et al., 2016). The formulation of a reliable protocol to perform such 

simulations becomes imperative in order to test not only the binding to target 

proteins, but also off-target proteins. This kind of in silico experiments can also be 

applied to predict adverse drug reactions.  
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CHAPTER I  
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 A version of this chapter was originally published by Xioamin Jing, Wilfredo 

Evangelista Falcón, Jerome Baudry, Engin Serpersu: 

 Xioamin Jing, Wilfredo Evangelista Falcón, Jerome Baudry, Engin Serpersu. 

“Thermophilic Enzyme or Mesophilic Enzyme with Enhanced Thermostability: Can 

We Draw a Line?” J. Phys. Chem. B, 2017, 121 (29), pp 7086–7094.   

DOI: 10.1021/acs.jpcb.7b04519 

This was a collaborative project between Dr. Engin Serpersu’s and Dr. Jerome 

Baudry’s laboratories. My contributions to this study include: 1) building and 

performing the computer simulations of this project. 2) Discussions of strategies and 

results with Dr. Baudry as well as the writing of the computational aspects of this 

study.  

Dr. Xiaomin Jing was a graduate student in Dr. Serpersu’s laboratory and performed 

all the experimental work done for this project.  

 

Abstract  
 
Aminoglycoside nucleotidyltransferase 4′ (ANT) is a homodimeric enzyme that 

modifies the C4′-OH site of aminoglycoside antibiotics by nucleotidylation. A few 

single- and double-residue mutants of this enzyme (T130K, D80Y, and D80Y/T130K) 

from Bacillus stearothermophilus show increased thermostability. Our main interest is 

to study the structural changes of this enzyme as result of mutations and variation in 

the temperature. Three systems were prepared based on the crystal structure of the 

mutant D80Y, WT and T130K. MD simulations on these three systems at 300K, 

322K, and 330K were performed for 100 ns each one, in total 900 ns of production 

time, i.e. three systems at three different temperatures.    

 

Introduction 
 
Thermophilic enzymes are exclusively produced by Archea and Bacteria inhabiting 

natural hot environments, such as volcanic pools, hot springs, or any other natural 
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hot environment. These organisms’ enzymes have a property called thermostability, 

namely, these enzymes can perform their activity at temperatures higher than 50 °C 

and up to 110°C. Due to this wide range of temperatures, such enzymes have been 

classified as thermophilic, performing their function in the at 50-80 °C range and 

hyperthermophilic in the 80-110 °C range, while regular enzymes, mesophilic, 

function in the 20-40 °C range (Danson, Hough, Russell, Taylor, & Pearl, 1996; 

Fields, 2001).  ANT belongs to the thermophilic category and has been isolated from 

mesophile bacteria, Staphylococcus aureus, in a genetic study (Lacey & Chopra, 

1973). Studies on induced thermostable variants and screening for aminoglycosides 

resistant mutants were developed in the 80's (Liao, McKenzie, & Hageman, 1986; 

Matsumura & Aiba, 1985), two single mutants were identified as thermophilic, D80Y 

and T130K; as well as the double mutant D80Y/T130K. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure I.1 Crystal Structure of variant D80Y. 
PDB structure with bound ligands (Pedersen, Benning, & Holden, 1995), chains are 
colored in green and cyan. MgATP analog (purple) and kanamycin A (red) are bound 
to the active site, which is formed at the interface of monomers. Residues D80 (blue) 
and T130 (yellow) are shown as ball and stick model.  
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      Methods 

Molecular Dynamics  

 

Systems were constructed based on the crystal structure of the D80Y species 

(Protein Data Bank ID: 1KNY) using Molecular Operating Environment (MOE, version 

2012, Chemical Computing Group, Ltd, Montréal, Canada). The co-crystalized ligand 

and cofactor were removed from the model such that the apo form of the wild type, 

and T130K species were built by performing the correspondent mutations on the 

crystal structure of D80Y. Each structure was explicitly solvated with the TIP3P water 

model in a cubic box of 8 nm x 8 nm x 8 nm. Periodic Boundary Conditions in all 

directions were applied with electrostatic type Fast smooth Particle Mesh Ewald 

(PME). A18,000-step energy minimization was performed using the steepest decent 

algorithm. Molecular Dynamics simulations were carried out using the Gromacs 4.6.1 

(Berendsen, Vanderspoel, & Vandrunen, 1995; Hess, 2008) simulation engine and 

the AMBER-f99sb (Hornak et al., 2006) force field. For each species at different 

temperatures, 300K, 322K, and 330K, a 50 ns equilibration with a 2fs integration 

timestep was performed in the isothermal-isobaric ensemble (NPT), and 1 bar 

pressure using the Nosé-Hoover temperature control  (Hoover, 1985; Nose, 1984) 

and the Berendsen weak coupling pressure control (Berendsen, Postma, van 

Gunsteren, DiNola, & Haak, 1984). Finally, a 100 nanoseconds production run was 

performed using the Panirello-Rahman algorithm (Parrinello & Rahman, 1981). 

Atomic coordinates of the trajectory were saved on disk every 5 ps. 

 
Principal Component Analysis 
 

The trajectories obtained from the production run were analyzed using a built-in 

Gromacs tool, Principal Component Analysis (PCA). This method allows identification 

of the main modes of motions in the protein, highlighting the different conformational 

changes in the molecule (Tournier & Smith, 2003). Since these main motions can be 

described by the first principal components, this method is also called “essential 
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dynamics” (Amadei & Limddrn, 1993). As a first step before applying this method, the 

trajectory has to be preprocessed; rotation and global translational motions must be 

removed by carrying out a coordinate root mean square best-fit to a reference 

structure, for instance, an average structure. Then, the coordinates as a function of 

time are stored in the matrix R with 3N rows containing the coordinates of the N 

atoms and M columns holding successive time points of the trajectory. Next, the 

covariance matrix C is calculated as in equation 1.1, for every atom from the group 

subject to analysis. Then, matrix C is diagonalized to obtain the set of eigenvectors V 

and their associated eigenvalues λi. 

 

𝐶𝐶 = 𝑅𝑅𝑅𝑅𝑇𝑇

3𝑁𝑁
        (1.1) 

 
diag(λ1, λ2, …,λn)  =  VTCV      (1.2) 
 
The 3N-6 eigenvectors in V describe the orthogonal concerted motions of the protein. 

The variance in the original data is given by the eigenvalues and the direction of this 

variance by their associated eigenvectors in equation 1.2. Thus, any conformation of 

the protein whose coordinates are in the cartesian space  

𝑅𝑅 (𝑟̅𝑟1, 𝑟̅𝑟2, … 𝑟̅𝑟𝑁𝑁)   maps onto a point 𝑄𝑄 (𝑞𝑞�1, 𝑞𝑞�2, … 𝑟̅𝑟3𝑁𝑁−6)   in the eigenvector space V. The 

qi coefficients are the projections of R onto the eigenvectors space. This is just a 

transformation of the coordinate system, thus, the original and projected coordinates 

hold back the same information. To map a particular point Q from the eigenvector 

space to the cartesian coordinate system R it is necessary to calculate the average 

structure <S> in the R space and add the appropriate linear combination of qi and the 

eigenvector basis  𝑣̅𝑣𝑖𝑖, as shown in equation 1.3 

 
𝑅𝑅 =< 𝑆𝑆 >  +  ∑ 𝑞𝑞𝑖𝑖. 𝑣̅𝑣1

3𝑁𝑁−6
𝑖𝑖=1         (1.3) 

 
In order to identify the main modes of motion in the protein, the eigenvalues should 

be sorted in descending order, then, plotting these eigenvalues against their indexes 

will commonly show that only the few first eigenvectors, those with the largest 

magnitudes, are responsible for the major motions in the protein. Therefore, the 
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variance of the protein structure and dynamics can be described by just a few modes, 

the motions along their associated eigenvectors dominate the dynamics of the protein 

and contain most of the global dynamic information. To capture conformational 

changes in the secondary or tertiary structure of the protein it is necessary and 

sufficient to analyze the Cα atoms of the molecule, those atomic coordinates as a 

function of time are stored in matrix R, as in the equation 1, which is used to generate 

the covariance matrix C. PCA was performed on the trajectory obtained from the MD 

simulations to identify the main dynamic modes for the three species, WT, T130K, 

and D80Y at three different temperatures: 300K, 322K, and 330K.  

 

Free Energy Landscape of the Structural Ensemble 
 

While it is true PCA identifies the main motions of the structures and how they vary 

with species and temperature, it is not enough to analyze how the protein structure 

ensemble changes as a result of mutations and/or increase of temperature. In order 

to examine the change in the ensemble of conformations a method to characterize 

the different conformations must be selected. Usually conformers can be 

characterized by using geometric parameters, distances, angles, root mean square 

deviations, etc., however, this kind of parameters usually misses changes in other 

regions of the protein that could define a new conformation (Hall, Kaye, Pang, 

Perera, & Biggin, 2007).  Principal components [v1,v2,…,vN], on the other hand, can 

detect concerted motions, even though they are not parallel or antiparallel, giving an 

appropriate representation of the protein dynamics. Thus, the full set of eigenvectors 

over the trajectory can describe the different conformations sampled during the MD 

simulation. In general, when a set of parameters S =[s1,s2,…,sn], at the temperature T, 

can depict a particular configuration of the system, it is possible to calculate the 

probability function P(s1,s2,…,sn,T) from a histogram of the MD trajectory for each 

combination of values of si at the temperature T. The free energy landscape (FEL) of 

a system like this is a potential of mean force (PMF), ∆𝑊𝑊(s1,s2,…,sn,T), (Grubmüller & 

Tavan, 1994; Rice & Gray Peter, 1965): 
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 ∆𝑊𝑊(s1,s2,…,sn,T) = − 𝑘𝑘𝛽𝛽 𝑇𝑇 �ln 𝑃𝑃(𝑠𝑠1,𝑠𝑠2,..,𝑠𝑠𝑠𝑠,𝑇𝑇) − ln(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚)�   (1.4) 
 
Where kβ is the Boltzmann constant, and Pmax the maximum probability in the 

distribution, which is included in the equation as subtracting to make sure that 

∆𝑊𝑊(s1,s2,…,sn,T) = 0 for the lowest free energy value. Although, the high-dimensional 

space S is needed to characterize protein conformations, it is possible to reduce 

these dimensions and only use those parameters that describe the majority of the 

change in the structure. Thus, in this particular case, given the first two eigenvectors 

[e1, e2], the projections of the data r onto them will  [v1,v2] will be employed as 

conformation coordinates at temperature T to calculate the probability function 

𝑃𝑃(𝑣𝑣1,𝑣𝑣2,𝑇𝑇) and PMF ∆𝑊𝑊(𝑣𝑣1,𝑣𝑣2,𝑇𝑇), Equation 1.5,  of the distribution of the conformers 

sampled by the MD simulations (Grubmüller & Tavan, 1994; Mu, Nguyen, & Stock, 

2005; Papaleo, Mereghetti, Fantucci, Grandori, & De Gioia, 2009).  

 
∆𝑊𝑊(𝑣𝑣1,𝑣𝑣2) = − 𝑘𝑘𝛽𝛽𝑇𝑇 �ln 𝑃𝑃(𝑣𝑣1,𝑣𝑣2,𝑇𝑇) − ln(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚)�    (1.5) 
 
From these equations, it is clear that low values of PMF, ∆W, correspond to high 

probability configurations, which implies that high probability regions in the 

conformational space are more stable thermodynamically than regions with low 

probability. Thus, for this particular case at a given temperature T, a free energy 

landscape can be generated as a function of the first two eigenvectors. Figure I.4 

shows the FEL for the three species at three different temperatures.  
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      Results and Discussion 
 

Principal Component Analysis of the MD trajectories 
 
Analysis of the 300K simulation data suggests that the global dynamics of D80Y is 

dominated by the first dynamic mode (Figure I.2 right panel), whereas at 322K and 

330K the first two modes both contribute significantly to the global protein dynamics.  

The dynamics of the WT and T130K species are mainly due to the contribution of the 

first two modes at all temperatures studied here as shown in Figure I.2 (left and 

middle panels), although the first mode of motion contributes more at 330K. The 

orientation and amplitude of the first two modes for WT, T130K, and D80Y at 300K 

are shown by vectors in Figure I.3 (left panel). The origin of these vectors indicates 

the region of the protein undergoing motion in those particular vectors’ direction. The 

left set in each set of these figures show the motion due to the first mode of the 

protein. The first mode corresponds to the same dominant movement in the three 

species: an open/close “breathing” motion. The difference between the dynamics of 

the three species at different temperatures originates from the second dynamics 

mode, the WT and T130K variants display similar contributions in magnitude, but the 

regions impacted by this mode are different as well as the direction of the motion 

(right sets in each panel of Figure I.3). The D80Y species, exhibit a significant 

contribution only at 322K and 330K from this mode of motion. These results suggest 

that the first mode of motion has the same direction at all temperatures for all the 

three species (left sets in each panel of Figure I.3). The difference seems to arise 

from the second mode, whose vectors have different origins and directions 

depending on the species (right sets in each panel of Figure I.3). For instance, at 330 

K, D80Y exhibits a very different second dynamics mode, magnitude and directions 

are different compared to those form WT or T130K species (right sets in the right 

panel of Figure I.3). These would suggest these point mutations, instead of causing 

local structural changes, actually affect the global dynamic properties of the enzyme, 

which in turn characterizes the mesophilic/thermophilic features of this protein.  
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Figure I.2. Principal modes of motion of ANT. 
Principal modes of motion projected onto the first 25 eigenvalues calculated from 
PCA in MD trajectories at different temperatures; Left to right are WT, T130K, and 
D80Y, respectively. Filled circles (blue), squares (green) and diamonds (red) 
represent 300K, 322K and 330K respectively. The insets show expanded regions of 
the several initial modes of motion. 
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a. At 300K   b.  322K    c. 330K 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure I.3. First and second mode of motion of the ANT structure. 
The arrows, obtained from PCA, represent the first (left panel) and second mode (right panel) of motions respectively. 
Top to bottom are:   WT, T130K, and D80Y. C-α atoms of Asp80 and Thr130 are represented by orange and purple 
spheres, respectively. 
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Free Energy Landscape  
 

In the previous section the first two modes of motions, PC1 and PC2, were used to 

characterize the directions and magnitude of the motion of the enzyme, the different 

values that these parameters can take are also useful to characterize the different 

conformational changes that ANT can adopt. These components are useful to obtain 

a two-dimensional free energy landscape according to Equation 1.5, at different 

temperatures and for each species analyzed here. Figure I.4 shows how different 

values of PC1 and PC2 lead to new conformational states of the protein, forming 

clusters of conformations more thermodynamically stable as temperature increases 

in the three species. The blue regions represent the most likely conformations at a 

particular temperature, intermediate states are cyan and green, while red regions are 

unaccessible states of the protein. WT at 330K shows that the most stable state is 

around PC1= PC2 = 0, the blue spot, thus the stable conformations are grouped in 

just one cluster, while at 322K, the breakup of the clusters is already noticeable, and 

at 330K there are already two main clusters containing the most stable conformations 

of the protein. The variant T130K, on the other hand, seems to have two clusters at 

300K, and this starts splitting into two diffuse clusters at 322K. Finally three less 

populated stable clusters seem to come up at 330K.  The D80Y species shows a 

specific behavior at 300K. There are three clusters, two of them well populated, the 

third one less populated, but still well defined. This pattern changes when 

temperature increases to 322K, with a single cluster centered at PC1 = PC2 = 0, very 

similar to that of WT at 300K. At 330K this same cluster is visible, centered at the 

same values of PC1 and PC2, with a slight variation at PC1 = 1.0 and PC2 = -1.0. In 

other words, for this variant, the number of clusters decreases as temperature 

increases and seems to be more stable at 322K than it is at 300K.  

 
Analyzing Figure I.4, to investigate the effect of the mutations at a given temperature, 

it appears that: at 300K the D80Y variant has three clusters, stable configurations, 

while T130K shows two stable clusters, and WT only one cluster representing 
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thermodynamically stable conformations, at this temperature all of those 

conformations in this cluster are thermodynamically stable. At 322K, the WT species 

shows a cluster of conformations that would be thermodynamically very stable (blue 

region), according to equation 1.5, however, there is a population of structures that, 

though less stable, are still part of the ensemble (cyan region in the panel). The 

T130K species displays one very populated cluster, however, there is also a nascent 

set of stable conformations that eventually could become populated if the MD 

simulations were longer. These two species, WT and T130K, seem to split the 

clusters with respect to their ensemble at 300K probably due to their melting 

temperatures being 314K and 322K, respectively. This implies that their structures at 

room temperature will undergo changes when temperature increases to 322K, 

forming other clusters. On the other hand, the cluster of stable structures is more 

spread out for D80Y, PC1’s range is [-5.0; 4.5] and PC2’s [-2.5; 2.5], suggesting that 

the transition between conformations happen through lower free energy barriers than 

in the other species.  

 

The situation at 330K is quite different, WT displays two well defined clusters, while 

the T130K species possess one very populated cluster with two additional less 

populated clusters, suggesting that this mutation enables the protein to keep one 

stable cluster while shaping two other sets of conformations that may become more 

populated as the sampling of the MD simulation increases. The case of D80Y is 

different; the mutation in this case enables the protein to keep a centered cluster very 

similar to that of WT’s at 300K. However, it also shows some nascent separation at 

PC1=1.8 and PC2= -1.8, which might be explained by the 329K melting temperature 

of this species.  
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WT 
 T = 300K   T = 322K    T = 330K 

 
T130K 

 
D80Y 
 

Figure I.4. Free energy landscape for the three species of ANT. 
Energy landscape along the first two modes of motion for each species at the three 
temperatures. Blue regions represent high-probability configurations, and therefore 
more thermodynamically stable conformations. Yellow and orange regions denote 
less populated configurations.  
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Conclusions 
 

Thermophilic proteins use different strategies to reach thermal adaptation. 

Comparisons between mesophilic and thermophilic proteins have been published, 

and difference between these enzymes have been attributed to side-chain hydrogen 

bonds, salt bridges, and internal hydrophobic packing (Dominy, Minoux, & Brooks, 

2004; Elcock, 1998; Missimer et al., 2007; Xiao & Honig, 1999). It has also been 

suggested that water-protein surface (Sterpone, Bertonati, Briganti, & Melchionna, 

2009) and protein conformational flexibility (Kalimeri, Rahaman, Melchionna, & 

Sterpone, 2013) are crucial factors for thermostability. There are also reports 

focusing on how the type of amino acids would strengthen local interactions and 

cause thermal stability. At this point, due to the diversity of these features, it is difficult 

to sketch out a common and unique mechanism that explains how thermophilic 

proteins keep their stability at temperatures above 300K. Our findings here suggest 

that mutations bring on global effects in the protein flexibility affecting the distribution 

of conformations in the ensemble. This change in the distribution is different for each 

species of ANT and does originate from changes of the global dynamics of the 

protein rather than from punctual, localized and specific non-bonded interactions. 

This would correlate with the idea that cooperative networks might be responsible for 

imposing restrictions to protein flexibility (Henzler-Wildman & Kern, 2007). In such 

case, residues D80 and T130 are critically positioned nodes of such a network. 
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CHAPTER II  
THE ROLE OF PROTEIN STRUCTURE ENSEMBLE IN GPCR-DRUG 

BINDING.  
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Abstract 
 
The development of structural biology has provided enough data to apply in silico 

molecular docking techniques in early stages of drug discovery, drastically reducing 

the cost and time involved in wet-lab experiments. This has been facilitated by 

completion of the Human Genome Project, which has uncovered many targetable 

and off-targetable receptors. In principle, docking techniques can not only be used in 

potential drug targets, but also to predict the interaction of drug candidates with 

possible off-target receptors. The goal of predicting adverse drug reactions (ADR) for 

novel drug candidates is becoming a realistic objective. In this work, we present the 

basis of a reliable framework for high-throughput ensemble-based docking which 

allows protein-drug interaction predictions with statistical significance and 

consequently reduces the amount of false positive and/or negative hits. Crystal 

structures and representative conformations of clustered trajectories for eight GPCRs 

were examined, four of these proteins were subjected to a subsequent screening on 

each conformational state of their respective trajectories; showing that virtual 

screening is more efficient, when it is performed on a dynamic ensemble of target 

conformations than on a single crystal structure. 
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Introduction 
 
In silico experiments on Adverse Drug Reaction 
 

Molecular docking has been a very helpful tool to analyze, validate, and predict 

binding of small molecules on proteins (Cerqueira et al., 2015; Taboureau, Baell, 

Fernández-Recio, & Villoutreix, 2012). Its utility has increased with the availability of 

super computers, protein structural data as well as the availability of large databases 

of small molecules. The conformational selection paradigm has been the scaffold for 

ensemble- docking under the premise that ligands will bind specific protein 

conformations other than the basal crystal or NMR structures (Ellingson, Miao, 

Baudry, & Smith, 2015; Evangelista et al., 2016; Meng, Zhang, Mezei, & Cui, 2011). 

In order to obtain these other conformations, molecular dynamics (MD) techniques 

are frequently employed to sample accessible states with a reasonable computing 

time. In addition, the same approach could be employed to identify, analyze, or 

dismiss off-target protein binding. Off-target proteins are responsible for adverse drug 

reactions (ADR) exhibiting moderate to lethal effects. However, ADR caused by a 

new drug candidate (Lounkine et al., 2012) typically appear at the pre-clinical or 

clinical trials, and in a significant number of cases, candidates have to be removed 

from the market due to reported ADRs (Bender et al., 2007; Pirmohamed, 

Breckenridge, Kitteringham, & Park, 1998).  Identifying off-target interactions in the 

early stages of the drug discovery process is hence an important goal, even though 

testing a very large number of proteins involved in the different metabolic pathways is 

almost impossible. However, a panel of 44 proteins (Bowes et al., 2012) has been 

proposed as responsible for about 75% of ADRs. This panel contains: 24 GPCRs, 

eight ion channels, six intracellular enzymes, three neurotransmitter transporters, two 

nuclear hormone receptors, and one kinase. Bowes' work implies that if a new 

potential drug is discovered or designed, it must not bind to, or have a very low 

affinity for these 44 proteins, in order to minimize the rise of ADRs. This set of 

proteins can be a very good starting point to predict toxicity in silico via ensemble-
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based docking simulations. However, this requires not only knowledge of the 3D 

structure of the receptors, but also of the ensemble of conformations for each of 

these proteins. Moreover, it also requires the design of a reliable procedure to 

measure the performance of the virtual screening. The most common statistical 

measures to identify the best receptor structures have been summarized and 

described by Huang et. al. (Huang & Wong, 2016). 

 

G-Protein Coupled Receptors 
 

Most of those 44 proteins do not have a complete experimental structure. The initial 

testing set in this work comprises the eight GPCR structures listed in Table 1. 

GPCRs, also named heptahelical receptors, seven-transmembrane (7-TM) receptors, 

or guanine-nucleotide-binding protein-coupled membrane receptors, are expressed 

in eukaryotic organisms, and control a high number of regulatory processes. Since 

GPCRs are located in the plasma membrane, they are accessible to not only their 

natural ligands, but also to drugs, both antagonists and agonists. An important 

characteristic of these proteins is the non-uniformity of expression in different cell 

types and tissues, which provides special model of selectivity (Insel, Tang, Hahntow, 

& Michel, 2007). These proteins are basically switches that activate various 

responses after receiving some stimulus. Once the ligand binds the receptor, a 

conformational change is performed and the GPCR will recruit, through structural 

changes in the intracellular domains, a G-Protein to the inner leaflet of the cellular 

membrane. This mechanism of signal transduction is crucial for many processes in 

different tissues. Their malfunction might result in different kinds of monogenic 

diseases, single defective genes in the autosomes, or genetic mutations (Insel et al., 

2007; Meyer, 2000). Alteration of GPCRs in number or structure/function will lead to 

disorder in cellular signal transduction: up-regulation/hypersensitivity, Down-

regulation/desensitization, or receptor gene mutation. This is why fine-tuning is 

crucial for GPCR’s functions and why it is one of the main targets of drugs. 
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To date, all published GPCRs structures share a common 7-TM α-helices domain, as 

shown on Figure II.1, and are located within the cellular membranes of different 

organs (Palczewski & Orban, 2013). In spite of their almost identical structure, there 

are several subtypes based on extracellular domain topology, on the type of G-

protein they activate, on activating ligands, on sequence similarity, or on function 

(Park, Lodowski, & Palczewski, 2008). 

 

Statistical Measurement of Performance 
 

In order to sample conformational states beyond the experimental structures 

obtained from the Protein Data Bank (PDB) (Berman et al., 2000), Coarse-Grained 

(CG) Molecular Dynamics (MD) simulations were ran to generate one microsecond 

trajectories for each of the eight GPCRs listed on Table 1. Docking calculations were 

then performed on representative clusters for each protein. In a second set of 

docking calculations, 3000 structures obtained from the trajectories for each protein, 

i.e. without structural clustering, were used in docking calculations. The total number 

of docking calculations on representative structures and full trajectories was about 

2.3 million and 127.5 million, respectively. 

 

Here, ensemble-based docking is used to screen many protein conformational states 

against a ligand library of binding molecules (actives) and theoretically non-binding 

molecules (decoys). The question that emerges is how to discriminate between 

snapshots with significant contribution to conformational selection against those with 

no significant contribution.  In this work, I propose a statistical metric identify receptor 

structures that significantly bind more active ligands than a random selection of 

ligands. This method is based on Exploratory Data Analysis, developed in 1977 by 

Tukey, to detect outliers based on the interquartile (IQR) values (Tukey, 1977).  

 

 

 



27 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure II.1. Crystal Structure of ADORA2A. 
Left Panel: In cyan, crystal structure of the ligand-bound form. PDB ID:3EML. In 
green, modeled structure with intracellular loop and C-terminal completed. 
 
Right Panel: Zoomed-in view of the binding site of the protein, in cyan, surface and 
ribbon representation; and the ligand in purple bond-stick representation, 4-[2-[(7-
amino-2-furan-2-yl[1,2,4]triazolo[1,5-a][1,3,5]triazin-5-yl)amino]ethyl]phenolthe, 
DrugBank ID: DB0877.  
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Methods 
 

Collecting Structural data 
 

GPCRs structures were downloaded from the RSCB Protein Data Bank, PDB IDs are 

listed in Table 1. Ligands structures, actives and decoys, were downloaded from 

DUD-E E (Mysinger, Carchia, Irwin, & Shoichet, 2012) for ADORA2A and ADRB2. 

CC-DD database (Gatica & Cavasotto, 2012) was used to obtain the ligands for 

CHRM2, HTR1B, HTR2B, OPRD1, and OPRK1, as summarized on Table II-1.  

 

Preparation of Protein Structures for MD Simulations  
 

The GPCR structures obtained from PDB are products of chimeric expression for 

crystallization, domains of the structures that did not belong to the WT GPCR 

sequence were deleted as well as co-crystallized ligands, and missing loops were 

modeled and built using MODELER 9.10 (Fiser, Kinh Gian Do, & Sali, 2000). In 

cases where the missing loop was in the opposite location of the binding site, in the 

inner side of the membrane, and the number of missing amino acids was more than 

20, these loops were not built. 

 

Sampling conformations via Coarse-Grained modelling & MD simulations  
 

In order to form an ensemble of GPCR structures, we sampled at least 5,000 

conformations for each protein belonging to one microsecond of MD simulation. To 

obtain this number of conformations in a reasonable computing time each protein 

was mapped to coarse grained (CG) models and placed in a bilayer membrane. The 

main components of the plasma membrane, as suggested by Leventis (Leventis & 

Grinstein, 2010), were included in both inner and outer leaflets: phosphatidylcholine 

(POPC), phosphatidylethanolamine (POPE),  phosphatidylserine (POPS), and 

cholesterol (CHOL) at 42%, 25%, 14%, and 19%, respectively.  Water and ions were 
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added to equilibrate the system using martinize.py v2.5 and insane.py scripts 

available at http://cgmartini.nl/index.php/tools2/proteins-and-bilayers  (Ingólfsson et 

al., 2014; Monticelli et al., 2008; Pierole & Marrink, 2013; Wassenaar, Ingólfsson, 

Böckmann, Tieleman, & Marrink, 2015) . Each of the systems, protein, membrane, 

ions, and water, was reduced from ~125,000 atoms to CG ~14,000 particles. Next, 

MD simulations were performed using Gromacs v5.1.0 (Berendsen, van der Spoel, & 

van Drunen, 1995) for 1µs, saving frames every 200 ps.  The setting parameters for 

the energy minimization, equilibration, and production time were used as in 

(Stansfeld et al., 2015). In order to select groups of similar structures from the 

trajectories,  Gromacs clustering tools and its built-in gromos method were used to 

build clusters based on the Root Mean Square Deviation (RMSD) of the backbone 

(Daura et al., 1999). The goal was to obtain a number of representative structures 

such that the docking calculations can be done in an affordable computing time on 

the Newton high performance computer cluster of The University of Tennessee, 

Knoxville. According to Table II-1, there is an average of 10,000 active and decoy 

small molecules per protein, thus, in order to generate 250,000 protein-ligand 

complexes in a reasonable time, about 25 clusters were calculated for each protein. 

Different RMSD thresholds were used to accomplish this purpose, for each protein 

given in Table II-1. Once the representative structures were identified, they were 

extracted from the trajectories using Gromacs tools, and back mapped to an all-atom 

model using Backward v0.1 (Wassenaar, Pluhackova, Böckmann, Marrink, & 

Tieleman, 2014). The second set of ensembles was composed of the all-atom 

models obtained from back-mapping the entire trajectory, 5,000 conformations, of the 

four proteins, ADORA2A, ADRB2, OPRD1, and OPRK1. These four proteins were 

selected because they have a greater number of significant frames in each subset 

analyzed after the docking on representative structures, except OPRK1, that has 

zero significant frames in the 1.0% subset, but it contains more representative 

structures than ADRB2 and OPRD1 in the other subsets (Table II-4). Thus, it was 

expected to get more significant frames for these proteins than for the other four 

proteins, HRH1, CHRM2, HTR1B, and HTR2B after the ensemble docking 

http://cgmartini.nl/index.php/tools2/proteins-and-bilayers
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calculations on their 600 ns trajectories. CG-MD and back-mapping, were performed 

on the Moldyn cluster at the UT/ORNL Center for Molecular Biophysics, Oak Ridge, 

Tennessee.  

 

Pre-docking preparation of receptors and ligands  
 

VinaMPI, a high throughput docking program efficient on supercomputers and 

developed in our laboratory (Ellingson, Smith, & Baudry, 2013), requires input files in 

PDBQT format for both protein and ligands, and scripts from AutoDockTools (ADT) 

v.1.5.6 (Sanner, 1999) were used to pre-process the conformations obtained from the 

MD simulations. This pre-processing includes removing any atom other than the 

protein’s and adding polar hydrogens atoms and Kollman charges. Ligands 

structures were pre-processed, adding hydrogens and charges, and rotamers were 

set according with the default method of ADT. The configuration files for the virtual 

screening, receptors and ligands lists, were produced with the Python scripts 

developed in the laboratory (Ellingson et al., 2013). 

Docking on representative structures of clusters  
 

The numbers of structures and ligands tested in this phase are listed in Table II-1. 

This phase of the project was performed on the Newton high performance computer 

cluster of The University of Tennessee at Knoxville. VinaMPI produced 2,292,040 

combinations of protein-ligand complexes, each complex containing between 1 and 

10 poses with corresponding calculated binding energies. The pose docked in the 

binding site with the most favorable binding free energy is selected as a hit.  

 

Docking on each frame of the trajectory 
 

Four proteins were selected for molecular docking and submitted for ensemble-based 

virtual screening to the super computer Titan at ORNL. The original idea was to use 

5,000 frames of each protein, the same number that was used to obtain the 
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representative structure after clustering, which were obtained after 1.0 us of CG-MD 

simulations, however, due to computing time limitations, only the first 3,000 

conformations were tested instead. To this end, these conformers were prepared in 

the same way as the representative structures from the previous section. VinaMPI 

generated 164 million protein-ligand complexes, each with 10 poses and their 

corresponding binding energy, again the pose with the lowest energy is counted as a 

hit.  

  

Statistical Measurement for Conformation’s Performance  
 

In order to establish a statistical threshold to decide whether docking results on a 

particular frame are statistically significant, i.e. if it is selected by active compounds 

beyond a random selection distribution, an outlier detection method was introduced 

in the analysis. The Intequartile method (Salgado, Azevedo, Proença, & Vieira, 2016; 

Tukey, 1977) defines the interquartile range (IQR) to set the lower and upper cut-off 

values Q1-1.5*IQR and Q3+1.5*IQR, respectively (see Figure left panel in II-2). 

Values below and above these thresholds are defined as outliers. An important 

feature of this method is that does not depend on the symmetry of the distribution, 

interqueatiles can be calculated on symmetrical and not symmetrical distributions. 

Thus, if the number of active ligands bound to a particular frame is higher than the 

upper cut-off, Q3+1.5*IQR, of a random distribution the docking results on this 

particular frame will be statistically significant and this frame will be counted as a 

“significant frame”. Values of this upper limit for each set of ligands belonging to their 

respective proteins are shows in Tables II-3 – II-5 in the appendix section of this 

chapter. For instance, the ligand library for ADORA2A comprises 844 actives and 

10,899 decoys. If 5% of this pool, e.g. 587 molecules, is randomly selected, after 

many assays, 42 actives and 522 decoys are expected in average, which then 

implies there is still a significant probability to obtain 50, 60, or 100 active compounds 

in any of the assays (Figure II.2, right panel). 
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Once the significant frames have been identified, their list of receptor-ligand 

complexes are merged together and ranked according to their binding energies. 

Then, duplicates of active ligands are removed from the list, leaving only those with 

the lowest free binding energy, ensuring that no duplicates are counted as number of 

hits in the ensemble.  

 

 

 
 
 

 
 
 
 
 
 
 

 
 
Figure II.2 Interquartile definition, and Probability distribution for random 
selection at 5.0% for ADORA2A.  
Left panel: Any set of data can be divided in four quartiles, containing 25% of the 
data each. The interquartile range is defined as IQR = Q3-Q1. 
Right panel: Random distribution for 5.0% (587 molecules, actives and decoys) of the 
ligands library of ADORA2A. After many assays, every time 587 molecules are 
selected from the library, in average 42 active ligands are obtained. The yellow-
colored part of the distribution corresponds to a statistical random result and only a 
number of actives > 59 (Q3 +1.5*IQR) would be deemed as statistical significant of a 
non-random result.  
 



33 
 

 
 
 
 
 
Table II-1 Set of GPCR proteins and their number of selected ligands for this work. 

Protein Name Gene 
name 

DUD-E CC-DD Clustering 
RMSD 

(A) 

Number 
of 

Clusters 

Number 
of 

Docking Actives Decoys Actives Decoys 

Adenosine receptor A2A ADORA2A 844 10899 443 17277 2 33 399262 

β2-adrenergic receptor ADRB2 447 15255 410 15990 2 18 298338 

Histamine H1 receptor HRH1  ------ ---------- 86 3354 2 21 75680 
Muscarinic acetylcholine receptor 
M2 CHRM2 ------ ---------- 126 4914 1.9 32 166320 

5-Hydroxytryptamine receptor 1B HTR1B ------ ---------- 113 4407 2.3 35 162720 

5-Hydroxytryptamine receptor 2B HTR2B ------ ---------- 227 8853 2 36 335960 

δ-type opioid receptor OPRD1 ------ ---------- 377 14703 1.75 32 497640 

κ-type opioid receptor OPRK1 ------ ---------- 307 11973 2.25 28 356120 
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Results and Discussion 
 

Docking on Clustered Structures 
 

The IQR method was applied on four subsets of the ranked list for each frame, and 

on the crystal structure: i.e. the top 0.5%, 1.0%, 5.0%, and 10.0% of compounds 

predicted to bind. Interestingly, ADORA2A showed a dramatic improvement in 

binding active ligands compared to the average of the random selection or crystal 

structure at any percentage, see Figure II.3. In any subset, the crystal structure binds 

less or about the same number than a random selection of compounds, while 

docking experiments bind, by far, more active ligands, this likely because of the 

number of significant frames found in each subset, 3, 4, ,8, and 16 for 0.5%, 1.0%, 

5.0%, and 10.0%, respectively, as shown in Table II-4. For instance, at 1.0% of the 

ranked list, the average of the random selection is 8 active compounds, while the 

ensemble binds 99 of them; on the other hand, in 5.0% and 10.0% subsets the 

enhancement reaches a remarkable 51% and 82% of the total active molecules, 

respectively, as shown by Table II-3. ADRB2’s crystal structure and ensemble bind 

more active compounds than random selection in any of the subsets as shown by 

Table II.2 and Figure II-3. However, the major enhance of the ensemble for this 

protein is achieved in the 10.0% subset, covering 17% and the total number of 

actives, Table II-3, in spite of there is just one significant frame at this percentage for 

this protein, Table II-4. 

 

OPRD1, whose ensemble binds more active ligands than expected from the random 

selection, and as many active ligands as the crystal structure at any of the 

percentages analyzed, e.g. in the 1.0% subset the average of random selection is 4 

actives, the docking experiments bound 13 active compounds.  In the 10% subset, 

the expected random selection is 38, while the ensemble binds 88 active ligands, 

covering only 23.3% of the total number of active ligands, see Table II-3. In each 
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case there is only one significant frame, Table II-4, and it is the same conformation at 

12.8 ns. OPRK1’s crystal structure and ensemble represent an interesting case, 

because the crystal structure binds less active ligands than a random selection in all 

the subsets; while the ensemble does not contain significant frames in the 1% 

subset, however, in the 5% and 10% subsets the ensemble binds at least three times 

the random selection with 2 and 3 significant frames, Table II-4, covering 14% and 

33%, respectively, of the total number of active compounds in the pool, as displayed 

by Table II-3.  

 
 

 
 

Figure II.3 Unique Actives docked in clustered conformations. 
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Table II-2 Number of unique active ligands selected via: Random Selection, docked in crystal structure, in 
representative structures of clustered frames, and in 3000 frames of 600 ns of MD trajectory. 

 
 
 
 
 
 
 
 
 

Protein 
Ligands 

             

Average of Actives in 
Random Selection 

Actives in Crystal 
Structure 

Unique Actives in 
significant frames in 

clustered data 

Unique Actives in 
significant frames in 600 

ns of trajectory 
Actives Decoys Total   0.5

% 
1.0
% 

5.0
% 

10.0
% 

0.5
% 

1.0
% 

5.0
% 

10.0
% 

0.5
% 

1.0
% 

5.0
% 

10.0
% 

0.5
% 

1.0
% 

5.0
% 

10.0
% 

ADORA2A 844 10899 11743 4 8 42 84 0 2 39 98 50 99 432 693 450 550 802 836 
ADRB2 447 15255 15702 2 4 22 45 9 14 53 96 9 12 42 76 56 80 267 392 

HRH1  86 3354 3440 0 1 4 9 3 6 19 26 0 6 0 16     

CHRM2 126 4914 5040 1 1 6 13 0 2 9 20 0 0 13 23     
HTR1B 113 4407 4520 1 1 6 11 0 0 4 13 0 0 0 0     
HTR2B 227 8853 9080 1 2 11 23 5 9 24 39 0 9 49 39     
OPRD1 377 14703 15080 2 4 19 38 8 17 53 85 7 13 56 88 79 125 243 276 

OPRK1 307 11973 12280 2 3 15 31 0 0 4 12 8 0 45 104 58 69 168 247 
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Table II-3. Percentage of the Total Number of Actives bound by the Crystal Structure, Representative 
structures, and ensemble from trajectory. 

  Percentage of Actives Bound by 
Crystal Structure  in each subset 

Percentage of Actives Bound by 
Cluster  in each subset 

Percentage of Actives Bound by 
Trajectory in each subset 

Protein Total 
of 

Actives 0.5% 1.0% 5.0% 10.0% 0.5% 1.0% 5.0% 10.0% 0.5 % 1.0 % 5.0 % 10.0 % 

ADORA2A 844 0.0 0.2 4.6 11.6 5.9 11.7 51.2 82.1 53.3 65.2 95.0 99.1 

ADRB2 447 2.0 3.1 11.9 21.5 2.0 2.7 9.4 17.0 12.5 17.9 59.7 87.7 

HRH1  86 3.5 7.0 22.1 30.2 0.0 7.0 0.0 18.6      

CHRM2 126 0.0 1.6 7.1 15.9 0.0 0.0 10.3 18.3      

HTR1B 113 0.0 0.0 3.5 11.5 0.0 0.0 0.0 0.0        

HTR2B 227 2.2 4.0 10.6 17.2 0.0 4.0 21.6 17.2        

OPRD1 377 2.1 4.5 14.1 22.5 1.9 3.4 14.9 23.3 21.0 33.2 64.5 73.2 

OPRK1 307 0.0 0.0 1.3 3.9 2.6 0.0 14.7 33.9 18.9 22.5 54.7 80.5 
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Table II-4. Number of significant frames found after docking on clustered data 
and trajectory for each subset. 

 
Number of Significant Frames in 

Cluster 
Number of Significant Frames in 

Trajectory 

Protein 0.5% 1.0% 5.0% 10.0% 0.5% 1.0% 5.0% 10.0% 

ADORA2A 3 4 8 16 166 187 508 817 
ADRB2 2 1 1 1 20 21 84 128 
HRH1  0 2 0 1   

  
  

CHRM2 0 0 1 1   
  

  
HTR1B 0 0 0 0         
HTR2B 0 1 3 1         
OPRD1 1 1 1 1 33 34 35 41 
OPRK1 2 0 2 3 71 23 40 70 

 

Clusters obtained from CG-MD simulations of HRH1, CHRM2, HTR1B, and HTR2B 
do have at least one subset, in which does not contain significant frames. They were 
discarded for ensemble docking on trajectory of 3,000 frames.  
 
Clusters obtained from ADORA2A, ADRB2, and OPRD1 have at least one significant 
frame in each subset; whereas, OPRK1 has none significant frames in 1.0% subset, 
however, this protein contains in total seven significant frames in the other subsets. 
These four proteins were then subjected to an ensemble docking on 3,000 
conformations of a 600 ns trajectory from CG-MD simulations.  
 
Number of significant frames of the four proteins selected for ensemble docking on 
the entire 600 ns trajectory increased remarkably compared to number of significant 
frames obtained in the representative structures of the clustered data.  
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Docking on non-Clustered Trajectory  
 
Docking experiments were performed on 600 ns of trajectory without structural 

clustering four proteins: ADORA2A, ADRB2, OPRD1, and OPRK1. In total, 3000 

conformations of each of these proteins were tested against their respective number 

of ligands according with Table II-2. The number of significant frames was 

dramatically increased with respect to the clustered data, i.e. in the 5.0% subset from 

only 8 significant frames to 500 as shown in Table II-4. This also leads to an increase 

in the number of unique actives docked in those significant frames, as shown in 

Tables II-2 and II-3, and Figure II.4. The ADORA2A’s ensemble showed again the 

best improvement of the ensemble-base docking with respect to a random selection 

or docking on the crystal structure at any of the percentages (see left upper panel in 

Figure II.4).  The hits obtained in each 0.5%, 1.0%, 5.0% and 10.0% cover the 53%, 

65%, 95%, and 99%, respectively, of the entire set of active ligands for this protein. 

This is pretty remarkable, since the ensemble binds a number of active ligands far 

higher than a random selection or the crystal structure, this is also due to the 

increase in the number of significant frames as shown in Table II-4. This implies that 

a new compound can be tested, and the probability to bind the protein will be 

assessed much better than using the crystal structure. The second case, ADRB2 

(right upper panel of Figure II-4) shows improvements in every subset respect to the 

crystal structure and up to 20 times with respect to a random selection. In 0.5% and 

1.0% subsets the conformational states provided by the non-clustered trajectory bind 

59% and 87% of total active molecules, 447, in the library for this protein, Table II-3. 

 

The hits obtained by the OPRD1’s ensemble are by far higher than a random 

selection and show also improvements with respect to the clustered conformations 

and crystal structure (left lower panel in Figure II-4). In each of the subsets the 

ensemble provided by the non-clustered MD simulations covers 21%, 33%, 64%, and 

73% of the entire ligands in the library for this protein, versus the 2%, 3%, 15%, and 
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23% covered by representative structures from the clustered simulation, Tables II-2 

and II-3.  

The OPRK1 ensemble (right lower panel in Figure II.4) binds many more actives than 

the crystal structure at any of the subsets, these subsets cover 19%, 22%, 54%, and 

80% of the active ligands library for this GPCR (Tables II-2 and II-3) which is quite 

remarkable if compared to the percentage of actives bound to the crystal structure or 

the representative structures provided by clustering. 

 

 

 

Figure II.4 Docking results on four GPCRS performed on frames from 600 ns of 
MD trajectory. 
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These results lead to the question, why are ensemble docking calculations more 

efficient for some GPCRs? The first explanation comes from the MD trajectories. 

Depending on the dynamics of each particular protein, the 600 ns of MD trajectory 

could sample a large variety of conformations, or not. One way to assess this is the 

atomic root mean square deviation values (RMSD) values of the whole structure in 

each case, shown in Figure II.5. This figure shows that OPRD1 does not display as 

much structural variation as the other three proteins, the highest volume for OPRD1 

is about 260 Å3, while ADORA2A or OPRK1 samples conformations with volumes 

about 500 Å3, generating less conformations potentially selected by ligands. This 

might explain why docking results from representative MD structures of this protein 

are very similar to results obtained using the crystal structure only, in all the subsets 

below 24%, (Table II-3). Docking results in the 10% subset for conformations in the 

trajectory identify 73% of the total actives for this protein. Less conformations 

sampled, less chances to be selected by ligands, implying that many compounds, 

about 27% of the total library for this GPCR, in the 10% subset of the ranking did not 

“find” the right conformation of the protein to form the complex. 

 

ADORA2A, ADRB2, and OPRK1, on the other hand, exhibits RMSD variations 

greater than OPRD1, hence, the MD is sampling more conformational states. This 

would explain why these three proteins are selected by more active molecules at any 

of the percentages analyzed, as more conformational states are sampled, more 

active compounds will bind the protein. ADORA2A results are particularly interesting, 

the ensemble provided by clustering includes 33 structures and 16 of them are 

significant (Table II-4), these conformers can bind 82% of the total active ligands in 

the 10.0% subset. Even better, the trajectory’s ensemble binds 99% of the total 

ligands library for this protein when the equivalent subset, 10.0%, is analyzed (Table 

II-3), and 817 significant frames were found in this subset. ADRB2’s ensemble 

coming from clustering is the least efficient of the four proteins, this ensemble’s 

efficiency is worse than the crystal structure. In the first two subsets, 0.5% and 1.0%, 

the ensemble built for this protein exhibit 6-times more selected active compounds 
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than a random selection, they only cover 12% and 17% of the entire library of active 

ligands for this protein. However, in the 10.0% subset, the ensemble obtained for this 

protein is the second most efficient, covering 87% of its ligands library (Table II-3), 

and up to 128 significant frames in the 10.0% subset. OPRK1‘s ensemble presents 

the highest variation in the RMSD values, Figure II.5, and bind even less active 

molecules than OPRD1’s ensemble for the 0.5%, 1.0%, and 5.0% subsets. Since the 

RMSD is higher in this case, it is supposed this structure is sampling more 

conformations, however, frames that were not significant in the mentioned subsets 

turned out to be significant in the 10.0% subset, reaching to cover 80% of the active 

molecules library for this GPCR, see Table II-3.    

 

RMSD is an indicator of flexibility of the whole protein, and the lack or abundance of 

dynamics in the structure might be crucial for GPCR and its affinity for ligands, as 

suggested by (Lebon, Warne, & Tate, 2012; Shahane, Parsania, Sengupta, & Joshi, 

2014). In general, there are several causes for variation of affinity between one 

GPCR and another, e.g. nature of residues in the binding site (Gether & Kobilka, 

1998), chemical nature of ligands, cell membrane constituents (Ghanemi, He, & Yan, 

2013). Small structural changes in the binding pocket could also be critical in the 

receptor function (Deupi & Kobilka, 2010). Thus, to get some insights about the 

possible contributions to the ligand binding of the volume of the binding site, binding 

site’s volume was calculated on the 600 ns trajectory for the four systems using the 

trj_cavity software (Paramo, East, Garzón, Ulmschneider, & Bond, 2014). The results 

(Figure II.6) show that while ADORA2A, ADRB2, and OPRK1 sample conformations 

with a larger binding site than in their correspondent crystal structures, OPRD1 

samples conformational states with a smaller cavity than in the crystal structure.  

 

Another interesting feature about ADORA2A is that the volume of the cavity changes 

from about 200 Å3 to 430 Å3 at 250 ns (upper left panel in Figure II.6). This difference 

in flexibility could have some contribution to the fact that ADORA2A’s ensemble can 

bind more active ligands than ADRB2 or OPRD1 ensembles in any of the analyzed 
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subsets shows in Table II-3. However, OPRK1 samples the same variation in the 

volume of the binding pocket, lower left panel in Figure II.6, but even in the 10.0% 

subset, this ensemble cannot bind as many ligands as ADORA2A’s ensemble does, 

and covers 80% of the total number of its active ligands in the library. Even though 

the binding site volume does not fully explain the difference in the number of ligands 

selecting these proteins, it might have some contribution to some of these cases. 
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Figure II.5 RMSD of the α-Carbons for the four GPCRs as function of 
simulation time. 

Figure II.6 Volume of binding site for each of the four systems as 
function of time. 
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Conclusions 
 

Ensemble-base docking as a tool for virtual screening has been shown to be a 

promising technique to predict protein-drug interactions. The results here show that 

ensemble-based docking on conformations from a trajectory of MD simulations leads 

to improvements in predicting ligand binding with respect to docking calculations on 

single crystal structures. Importantly, the procedure proposed here discriminates 

statistically between conformational states are selected by ligands above a random 

selection of compounds. Thus, prediction of ADR via ensemble-based docking is 

foreseen as a feasible method once structural significant species are identified. Still 

yet, its high computational cost might make this technique too much expensive for 

daily use, e.g. docking calculations on ADORA2A’s 3,000 conformations against 

about 11,7000 ligands required approximately 8 million hours-processors, which is 

still unaffordable for most of the laboratories working on drug discovery. As discussed 

in the previous section, active molecules will bind certain conformations more 

frequently than others. It is imperative to develop a reliable method to find those 

“magic snapshots” that will be selected by most of the compounds. So far, there are 

no reports of a trustworthy conformational coordinate that will allow us to cluster the 

whole set of conformations sampled by the MD simulation, such that the docking 

calculations be reduced, saving time, money, and extending the search space of off-

target proteins. This, however, will be an important future research direction, for rest 

of the proteins that have known active/decoys and experimental structure available 

and are part of the 44 protein panel relevant to ADRs, conformations selected by 

ligands will be identifiable by our statistical method.  
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Appendix 
 
Table II-5. Thresholds to determine outliers for ADORA2A and ADRB2 in random 
selection distributions. 
ADORA2A 

     Actives:  844 Decoys: 10899 Total: 11743 
#Percentage% 0.5 % 1.0 % 5.0 % 10.0 % 

 Expected sample 
size 59 117 587 1174 

 Expected Actives. 4 8 42 84 
 #Upper Value 

ITQ 9 17 59 107 
 

      
      ADRB2 

     Actives: 447 Decoys: 15255 Total: 15702 
#Percentage% 0.5 % 1.0 % 5.0 % 10.0 % 

 Expected sample 
size 79 157 785 1570 

 Expected Actives. 2 4 22 45 
 #Upper Value 

ITQ 7 11 35 63 
  

 
Table II-6. Thresholds to determine outliers for HRH1 and CHRM2 in random selection 
distributions. 
HRH1 

     Actives: 86 Decoys:  3354 Total: 3440 
#Percentage% 0.5 % 1.0 % 5.0 % 10.0 % 

 Expected sample 
size 17 34 172 344 

 Expected Actives. 0 1 4 9 
 #Upper Value ITQ 3 3 11 15 
 

      
      CHRM2 

     Actives: 126 Decoys:  4914 Total: 5040 
#Percentage% 0.5 % 1.0 % 5.0 % 10.0 % 

 Expected sample 
size 25 50 252 504 

 Expected Actives. 1 1 6 13 
 #Upper Value ITQ 3 6 13 23 
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Table II-7. Thresholds to determine outliers for HTR1B and HTR2B in random selection 
distributions. 
HTR1B 

     Actives: 113 Decoys:  4407 Total: 4520 

#Percentage% 0.5 % 1.0 % 5.0 % 
10.0 
% 

 Expected sample 
size 23 45 226 452 

 Expected Actives. 1 1 6 11 
 #Upper Value ITQ 3 6 12 20 
 

      
      HTR2B 

     Actives: 227 Decoys:  8853 Total: 9080 

#Percentage% 0.5 % 1.0 % 5.0 % 
10.0 
% 

 Expected sample 
size 45 91 454 908 

 Expected Actives. 1 2 11 23 
 #Upper Value ITQ 6 7 20 36 
  

 
 
Table II-8. Thresholds to determine outliers for OPRD1 and OPRK1 in random 
selection distributions. 

 
OPRD1 

     Actives: 377 Decoys:  14703 Total: 15080 

#Percentage% 0.5 % 1.0 % 5.0 % 
10.0 
% 

 Expected sample 
size 75 151 754 1508 

 Expected Actives. 2 4 19 38 
 #Upper Value ITQ 7 10 32 55 
 

      
      OPRK1 

     Actives: 307 Decoys:  11973 Total: 12280 

#Percentage% 0.5 % 1.0 % 5.0 % 
10.0 
% 

 Expected sample 
size 61 123 614 1228 

 Expected Actives. 2 3 15 31 
 #Upper Value ITQ 4 8 26 45 
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CHAPTER III   
OPPORTUNITY AND CHALLENGES OF ENSEMBLE-BASED 

DOCKING IN TOXICITY 
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Abstract 
 

The increase of computational power and production of data lead the scientific 

community to exponential progress in many fields of science. One of the most 

impressive advances comes from the increase of computational power through 

supercomputing. This has improved and expanded molecular simulations in structural 

biology. Nowadays it is possible to run long single molecular dynamics simulations, 

one microsecond, of about 100 thousands atoms in only 24 hours on a 

supercomputer. Similar improvements have been achieved in molecular docking; 

massive dockings can screen now millions of compounds in the same period of time. 

This represents an excellent opportunity to study and predict protein-drug interactions 

on a scale not reachable previously. However, this progress also brings a challenge; 

how to manage the immense amount of data generated by these simulations, and 

how to correlate this data with the experimental data. So far, techniques from data 

mining and machine learning have been useful in the integration and information 

crossing of all these sources. These techniques and the treatment of information will 

continue to be important and crucial for next years in order to get solutions and 

insights of many biological problems.  

 

 

Introduction 
 

Adverse Drug Reactions (ADR) can have different mechanisms: polymorphism in 

genes that code enzymes involved in drug metabolism (Meyer, 2000), immune and 

non-immune mechanisms producing hypersensitivity responses (Dao, Su, & Chung, 

2015; Riedl & Casillas, 2003), or other mechanisms reviewed elsewhere (Edwards & 

Aronson, 2000). However, in fine, the molecular mechanisms mediating ADR always 

involves protein-drug interactions. This represents the most difficult challenge in the 

drug design/discovery field. This is because any new drug candidate has a potentially 

high chance to bind any off-target protein. How to predict whether a drug candidate 
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will bind an off-target protein? An important advance was provided in 2012, when in 

vitro drug screening led to proposing a panel of 44 proteins as a set to test ADR 

(Bowes et al., 2012).  Even though this is great progress, it is still too expensive and 

time consuming to test the, typically thousands of, drug candidates against this panel 

of proteins. The alternative is, of course, in silico screening. However, this task faces 

a challenging biological fact, proteins do not exist in only one conformation, and 

actually, such a conformation might differ from the experimental structure obtained by 

NMR or X-Ray diffraction (Hilser, Garcia-Moreno E., Oas, Kapp, & Whitten, 2006). 

Thus, in order to examine whether any molecule would bind a particular protein, it is 

necessary to test as many conformational states as possible, providing better insights 

on the protein-drug/candidate interaction, as described in the previous chapter.  

Efforts to predict general protein-drug binding has been extensive, numerous 

software applications have been developed to this end, for example, Autodock, Vina, 

VinaMPI, Gold, Dock, and some others (Pagadala, Syed, & Tuszynski, 2017).  The 

current challenge is to use any of these applications to perform massive high-

throughput docking and build a reliable model to decide whether or not a molecule, 

potential drug candidate, will bind the protein. This is difficult, since at the molecular 

level there are many factors involved: protonation states of both ligand and receptor, 

contributions of solvent, conformational entropy, ligand’s flexibility, building of energy 

function, score function, etc. Additionally, one must consider how to rank the massive 

output obtained from these in silico experiments, and make sure that the data 

provided is reliable beyond the random distribution. The next sections will describe 

what I think the future directions on ensemble-based docking as virtual screening are, 

and their role in toxicity predictions, and addressing a particular challenge: how to 

share and learn from our and others experiences taking into account the increasing 

amount of information generated every day all over the world. The tools to handle this 

massive amount of information are data mining and learning machine technologies, 

whose principles and applications are also described.  

 

. 
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Current State of Ensemble-base Docking and ADR 
 

In silico experiments of protein-drug interactions have found their most common 

applications in docking simulations in which a protein is used in a structure-based 

approach to computationally identify the molecules from a collection predicted to 

have the most favorable binding energies, and hence to bind more strongly to the 

target. This is an approach used in the initial steps of drug discovery, where new 

hits/leads are needed. In silico screening thus helps to prioritize chemicals for 

experimental assays (Jorgensen, 2009). Our laboratory has also used this approach 

to identify compounds capable of modulating the interactions between proteins 

responsible for coagulation cascade, Factor Xa (FXa) and Factor Va (FVa). Drugs 

that inhibit enzymatic functions of FXa already exist, nonetheless, their safety profile 

is extremely narrow, and have shown to be difficult to use even in hospitals. This 

project has led to the discovery of novel molecules that can bind to FXa’s surface and 

modulate the interactions with FVa, without affecting FXa’s enzymatic functions 

(Kapoor et al., 2016). 

 

However, narrowing search space or validating potential drug candidates have only 

been the initial applications of docking. For a long time, the target-centric approaches 

ignored the physiological context and the cellular composition, which made docking 

calculations less useful, particularly when the predicted results were could not be 

validated by biochemical assays or pre-clinical and clinical trials (Iskar, Zeller, Zhao, 

van Noort, & Bork, 2012). Ensemble-based docking can now be part of a more 

integral pharmacological strategy, including high-throughput virtual screening of not 

just the many conformations of the target protein, but also of all the possible proteins 

responsible for a toxic response. For instance, during the latest Ebola outbreak, an 

integrated strategy was employed to seek a potential drug. Among 1,766 drugs 

approved by the FDA, 259 experimental drugs were screened looking for a potential 

compound that could inhibit Ebola virulence or replication. A protocol including three 

computational approaches was used: proteome-wide ligand binding site comparison 
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(Xie & Bourne, 2007), molecular docking, and MD simulations, resulting in 

identification of Indivinavir, a known HIV protease inhibitor, as a likely reducer of 

Ebola virulence, and some other anti-fungal and anti-viral drugs as potential RNA 

polymerase inhibitors (Z. Zhao, Martin, Fan, Bourne, & Xie, 2016). The same year 

another study predicted emodin-8-beta-D-glucoside from the Traditional Chinese 

Medicine Database as a potential inhibitor of viral protein 40 (VP40) from Ebola after 

an integrated work carried out using molecular docking, public databases of toxicity 

like Protox (Drwal, Banerjee, Dunkel, Wettig, & Preissner, 2014), and MD simulations 

to validate docking findings (Karthick et al., 2016). These experiences show that 

ensemble-based docking has already been used as part of an integrated set of 

computational tools to identify/propose compounds to treat a particular disease, 

either in repurposing FDA-approved drugs, or filtering experimental drugs that could 

result in adverse reactions.  

 

A different strategy to predict/test ADR is proposed by LaBute et.al (Labute et al., 

2014), in his work in which combined information from DrugBank (Law et al., 2014; 

Wishart, 2006), Side Effect Resource (SIDER) (Kuhn, Campillos, Letunic, Jensen, & 

Bork, 2010) and molecular docking were used to train a machine learning model with 

906 small molecules and 409 protein targets, resulting in predictions that are 

comparable in quality to those obtained using the same model over publicly available 

and experimentally-derived drug-protein interaction data. The combination of 

molecular docking software and machine learning systems has been also employed 

to integrate structure-based drug design and quantitative structure-activity 

relationships (QSAR) into a learning model to improve the performance of binding 

site recognition, using to this end 139 different kinases and 33 inhibitors. The 

inclusion of machine learning enhanced the binding prediction of the molecular 

docking software and therefore the identification of potential targets (Hsin, Ghosh, & 

Kitano, 2013). What these examples show is that machine learning methods are 

already part of different studies on the way to enhance not just molecular docking 

scores, but also to identify off-target proteins responsible for ADR. Currently, virtual 
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and experimental high-throughput screenings of chemical libraries have become the 

major tools not only to identify on-target hit compounds, but also off-target hits. 

Additionally, relatively new techniques have been incorporated to the pool of 

methods in drug discovery: next-generation sequencing to identify new targets, 

biomarkers, polypharmacology to identify networks by modulating multiple targets. 

Thus, effective drugs can be developed potentiating on-target hits and avoiding off-

target binding (Anighoro, Bajorath, & Rastelli, 2014; Taboureau, Baell, Fernández-

Recio, & Villoutreix, 2012). 

 
 

Integration of Molecular Tools and Databases 
 

The inclusion of MD simulations in a docking strategy could be an important 

contribution for drug discovery if it were less computationally expensive (H. Zhao & 

Caflisch, 2015). However, GPU technology makes MD simulations more affordable in 

terms of computing time (Kutzner et al., 2015; Salomon-Ferrer, Götz, Poole, Le 

Grand, & Walker, 2013). Thus, GPU-based MD software like Gromacs and Amber 

are already being used in research on different fields, such as solid-liquid phase 

transition (Nomura, Oikawa, Kawai, Narumi, & Yasuoka, 2014), MD simulations of 

the DNA duplex (Galindo-Murillo, Roe, & Cheatham, 2015), and protein folding 

(Bermudez, Mortier, Rakers, Sydow, & Wolber, 2016). GPU-based MD simulations 

will be extremely useful in validating findings from docking calculations in a faster 

way. Similarly, in the same way VinaMPI and VinaLC have boosted virtual screening 

in drug discovery through parallelization and scalability in clusters and super 

computers, it is expected that molecular docking software based on GPU technology 

will increase the performance of ensemble-base docking. In a similar field, there is 

already GPU-based docking software for protein-protein interactions, for instance, 

Megadock-GPU (Shimoda, Ishida, Suzuki, Ohue, & Akiyama, 2013), PIPER14 

(Landaverde & Herbordt, 2014). Nonetheless, there is not yet a GPU-based docking 

software for virtual screening of ligand libraries. Since ensemble-based docking is 
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now used not only to identify/validate on-target protein-ligand interactions, but also to 

identify possible off-target protein binding, developing this kind of software should be 

one of the top priorities in the field. The availability of GPU technology will make high-

throughput molecular docking more affordable, in contrast to the current situation 

where performing a virtual screening of thousands of compounds over thousands of 

conformational states, generating millions of receptor-ligand complexes, requires 

computational power only found in supercomputers.  

 

Developing a clustering method to find significant frames in the conformational space 

is still a pending task; an efficient conformation coordinate will characterize changes 

in the structure of the protein during the sampling process. This, of course, will 

reduce the search space for molecular docking calculations. Root Mean Square 

Deviation (RMSD) is the most common parameter to measure variations in the 

protein structure. Depending on the region or domain in the structure, the RMSD can 

be a measurement for any particular set of atoms, whether it’s the binding site, 

secondary structure, or the entire protein. Typically, C-α atoms are used as a metric 

to measure changes in the structure, however, this metric can miss some changes. 

For instance, two conformations of the same protein can exhibit a RMSD of 2.3 Å 

with respect to a reference structure. However, the first conformation could have 

those 2.3 Å of variation in a loop, while the second conformation gets the same 

RMSD due to an alpha helix domain 20 Å apart from the loop. Even though the 

RMSD values are identical, the conformational changes will originate from totally 

different conformations. Markov state models have been used to characterize protein 

conformations (Chodera & Noé, 2014; Lane, Bowman, Beauchamp, Voelz, & Pande, 

2011), and principal component analysis (Balsera, Wriggers, Oono, & Schulten, 

1996; Papaleo, Mereghetti, Fantucci, Grandori, & De Gioia, 2009; Sittel, Jain, & 

Stock, 2014), or some particular geometric parameter can also be used. Therefore, 

an appropriate conformational coordinate is necessary to reduce the number of 

conformational states subject of molecular docking, otherwise, this problem will stay 

intractable. 
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Progress in any field of science has been achieved due to the sharing of information. 

Biological sciences, in particular, have experienced rapid progress in different 

disciplines: structural biology, genomic, proteomic, genetics, drug discovery, 

simulation software, etc. Most of the databases and tools used to share and search 

data of interest are integrated by the National Center for Biotechnology Information 

(NCBI). On the other hand, some public databases, which are very important for 

research, are not part of NCBI: Protein Data Bank, The Cambridge Structural 

Database, Database of Useful Decoys-Enhanced (DUD-E), etc. Since this work is 

particularly interested in adverse drug reactions, I found particular interest and 

promise in some of these databases:  

 

DrugBank: Database of drug and drug targets with chemical and pharmacological 

information (Wishart, 2006).  

https://www.drugbank.ca/ 

 

DUD-E: directory of active ligands and decoy molecules for each ligand and their 

respective targets (Mysinger, Carchia, Irwin, & Shoichet, 2012). 

http://dude.docking.org/ 

 

SIDER: Information on marketed medicines and their adverse drug reactions; 

including side effect frequency, side effect classification, and in some cases drug-

target relations (Kuhn, Letunic, Jensen, & Bork, 2016).  

http://sideeffects.embl.de/ 

Two interesting initiatives, but apparently not well maintained sites are: 

 

PDBbind: Experimentally measured binding affinity data for protein-ligand complexes 

from the Protein Data Bank (Wang, Fang, Lu, Yang, & Wang, 2005). 

http://sw16.im.med.umich.edu/databases/pdbbind/index.jsp 

 

Platinum: Structural database of experimentally measured effects of mutations on 
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protein-ligand complexes (Pires, Blundell, & Ascher, 2015). 

http://biosig.unimelb.edu.au/platinum/ 

 

These databases contain important information for drug discovery research. 

However, besides the common format for structures of molecules, there is not a 

standard format to share other information related to protein-ligand complexes, such 

as affinity constants, dissociation constants or clinical and toxicity information. To 

integrate all these web servers is, of course, utopic. Nonetheless, it would be 

extremely helpful for the scientific community to define standard formats to share this 

kind of data. Moreover, since these databases only gather information, it is crucial to 

fill them with experimental and computational data, which assists investigators in the 

different stages of the drug discovery/design process, and even later, in the pre-

clinical and trial phases (Taboureau et al., 2012). Of particular importance is the 

expansion of the experimental data beyond the panel proposed by Bowes (Bowes et 

al., 2012). This will likely help in the identification of other proteins responsible for 

adverse drug reactions.  

 

For the scientific community to take advantage of the integration of all these different 

sources of information, it is necessary to use two essential technologies: data mining 

and machine learning. Data mining is the automatic harvesting of information from 

large databases in order to find unknown patterns or knowledge (Lavecchia, 2015). 

This usually leads to models to explain a particular phenomenon. However, when 

data increases in amount and type, the model needs adjustments and/or 

reformulations. Dealing with this kind of problem manually is time and resource 

consuming, Machine Learning is a technology that is capable of addressing these 

sorts of problems, this is a field of study that gives computer the ability to learn 

without being explicitly programmed (Samuel, 1959). As more data become 

available, machine learning can be used to process new types or data, making the 

machine learning more favorable than manual programming in terms of time, and 

consequently cost (Domingos, 2012). This technique has already been employed to 
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deal with increasing amounts of complex data in applications such as web searches, 

spam filters, stock trading, drug design, as well as in proteomics and genomics 

(Lavecchia, 2015; Li, Wu, & Ngom, 2016). 
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CONCLUSIONS 
 
Computational approaches have become an important tool to understand molecular 

mechanism of many properties in proteins. Particularly remarkable has been the role 

of MD simulations of full-atom models or coarse grained models. This technique 

combined with the use of supercomputers has increased our knowledge of protein 

dynamics and how different conformations of proteins coexist instead of only one 

single structure. This ensemble can also vary as interactions with other molecules 

occur. Chapter I presented a case, Aminoglycoside nucleotidyltransferase 4’, where 

changes in the environment modifies the structures distribution, e.g. as temperature 

is increased the distribution of conformational states changed. However, these 

changes are not trivial to identify. A reduction of dimensionality, via principal 

component analysis, was performed to characterize these modifications in the 

ensemble. Two main principal components were identified and used to characterize 

the protein structural ensemble. Potential of mean force, using the first two principal 

components as conformation coordinates, was then calculated to visualize a free 

energy landscape of the ensemble at three different temperatures, these energy 

landscapes show how the ensemble change as the temperature increases, or as 

point mutations are introduced in the system at a given temperature. The results also 

suggest that mutations bring on global effects in protein flexibility affecting the 

distribution of conformations in the ensemble. 

 

Chapter II describes the work done to build a reliable method to analyze results 

coming from ensemble-based docking calculations. The use of ‘outliers’, as defined 

by the Exploratory Data Analysis field, has been useful to discriminate conformations 

that are selected by more ligands than by a random selection. For this purpose four 

G-Protein Coupled Receptors were used as model systems, these four proteins have 

been reported as part of a set of 44 proteins responsible for about 75% of adverse 

drug reactions.  Ensembles of representative structures were examined as well as 

ensembles containing 3,000 conformations provided by coarse grained molecular 
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dynamics simulations. The results indicate that the method developed in this work is 

more efficient than a random selection in all the cases. Application of this method on 

docking results from representative structures produced a remarkable improvement 

respect to random selection or from using single crystal structure for two proteins. 

When this technique was performed on 3,000 conformations for each protein, results 

showed a dramatically improvement with respect to random selection, of using a 

single crystal structure, and docking on representative structures, correctly identifying 

up to 73%, 80%, 87%, and 99% of the chemicals that are known to bind these 

proteins off-targets, leading to adverse reactions.   

 

A review of the current state and future directions in the field of molecular docking 

and other resources as tools to predict adverse drug reactions is presented in 

Chapter III. The integration of data and algorithms has been a strategy that has 

allowed progress in numerous fields of biology. In particularly, public databases with 

information about drug toxicity are now available and they can be used together with 

structural biology data to speed up the prediction of such effects in the drug discovery 

process. Ensemble-based docking in this context represents not only an option to 

speed up the drug design/discovery process but a necessity. However, its high 

computational cost still makes this technique affordable only for laboratories with 

access to supercomputing resources and expertise. Additionally, the generation of 

such massive amount of data implies also innovation in other areas of science, such 

as data mining and machine learning. Proficiency in managing this amount data will 

determine the future of in silico prediction of adverse drug reactions.  
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