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Abstract 

 Microbial ecology is a diverse field, with a broad range of taxa, habitats, and trophic 

structures studied. Many of the major areas of research were developed independently, each with 

their own unique methods and standards, and their own questions and focus. This has changed in 

recent decades with the widespread implementation of culture-independent techniques, which 

exploit mechanisms shared by all life, regardless of habitat. In particular, high-throughput 

sequencing of environmentally isolated DNA and RNA has done much to expand our knowledge 

of the planet’s microbial diversity and has allowed us to explore the complex interplay between 

community members. Additionally, metatranscriptomic data can be used to parse relationships 

between individual members of the community, allowing researchers to propose hypotheses that 

can be tested in a laboratory or field setting. However, use of this technology is still relatively 

young, and there is a considerable need for broader consideration of its pitfalls, as well as the 

development of novel approaches that allow those without a computational background or with 

fewer resources to navigate its challenges and reap its rewards. To address these needs, we have 

developed targeted computational approaches that simplify next-generation sequencing datasets 

to a more manageable size, and we have used these techniques to address specific questions in 

environmental ecosystems. In a dataset sequenced for the purpose of identifying ecological 

factors that drive Microcystis aeruginosa to dominate cyanobacterial harmful algal blooms 

worldwide, we used a targeted approach to predict replication and lysogenic dormancy in 

bacteriophage. We used RNA-seq data to characterize viral diversity in the Sphagnum peat bog 

microbiome, identifying a wealth of novel viruses and proposing several host-virus pairs. We 

were able to assemble and describe the genome of a freshwater giant virus as well as that of a 

virophage that may infect it, and we used our techniques to describe its activity in publicly 

available datasets. Lastly, we have extended our efforts into the realm of medicine where we 

showed the influence exerted by the mouse gut microbiome on the host immune response to 

malaria, identifying several genes that may play a key role in reducing disease severity. 
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Part I: Literature Review: Microbial Ecology in the Age of Next-Generation Sequencing 
and the ‘omics data revolution 

Abstract 

 Microbial ecology is a diverse field, with a broad range of taxa, habitats, and trophic 

structures studied. Many of the major areas of research were developed independently, each with 

their own unique methods and standards, and their own questions and focus. This has begun to 

change in recent decades with the widespread implementation of culture-independent techniques, 

which exploit mechanisms shared by all life, regardless of habitat. In particular, high-throughput 

sequencing of environmentally isolated DNA and RNA has done much to expand our knowledge 

of the planet’s microbial diversity and has allowed us to explore the complex interplay between 

community members. Additionally, metatranscriptomic data can be used to parse relationships 

between individual members of the community, allowing researchers to propose hypotheses that 

can be tested in a laboratory or field setting. However, use of this technology is still relatively 

young, and there is a considerable need for broader consideration of its pitfalls, as well as the 

development of novel approaches that allow those without a computational background or fewer 

resources to navigate its challenges and reap its rewards. In this review, I place microbial 

ecology in a historical context and explore the development of modern sequencing technologies 

and analysis software as they relate to the limitations and challenges in the field. I also elaborate 

on recently developed concepts used in the application of these technologies to build 

mathematical models for the prediction of dynamics in microbial communities.  

Introduction 

 Microorganisms represent the most abundant form of life on this planet by far, both in 

number and in overall biomass, dominated primarily by prokaryotes (Whitman et al., 1998). As 

the first form of cellular life to evolve, prokaryotes have come to colonize and thrive, in one 
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form or another, in every known habitat on Earth, from the human gut to environments with 

extremes in temperature, pH, salinity, and radiation (Rothschild & Mancinelli, 2001, 

Hatzenpichler, 2012, Kruger et al., 2013, Stevenson et al., 2015). Their success, abundance and 

longevity is due in large part to their ability to rapidly adapt to change, enabled by high mutation 

rates and frequent interspecies transfer of genetic information. Upon encountering unfavorable 

conditions, many can form protective coatings, spores, or reduce metabolic processes to such an 

extent that they can survive for decades (Driks, 1999, Jones & Lennon, 2010). In order to take 

advantage of nearly any form of nutrition available, microbes have evolved a diverse array of 

metabolic functions, including catabolism of dozens of distinct glycan molecules in the human 

gut (Koropatkin et al., 2012), degradation of complex branching carbohydrates such as 

lignocellulose (Tuomela et al., 2000), and remediation of contaminants through heavy metal 

reduction (Lovley, 1993, Valls & De Lorenzo, 2002, Anderson et al., 2003). Even the seemingly 

more mundane and well-studied microbial functions, such as photosynthesis, still have a 

profound impact on the planet, oxygenating the earth’s atmosphere in eons past (Pufahl & Hiatt, 

2012) and sustaining primary production in the oceans today (Longhurst et al., 1995). 

Understanding this impact on their environment, their interactions with other microbes, and the 

drivers and trajectories of their evolution forms the basis of microbial ecology. 

While microbes were initially studied as a direct result of their impact on human health, a 

subset of researchers examined their contribution to biogeochemical processes in the 

environment, recognizing their contribution to communities of larger organisms. Researchers 

during the early 19th century identified microbial hydrogen and ammonia oxidation that could be 

slowed or stopped experimentally by increasing the temperature or lowering the pH (de 

Saussure, 1804, Schloesing & Muntz, 1877). However, the true importance of microbes in large-
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scale chemical transformations would not be appreciated until the work of Dr. Sergei 

Winogradsky. Unlike previous efforts showing general processes exclusively in soil, 

Winogradsky was able to modify pure culture techniques for the growth of soil organisms to 

point out individual bacteria responsible for biochemical transformations. This work led to the 

discovery and isolation of Beggiatoa, a sulfur-oxidizing soil bacterium which would serve as 

Winogradski’s model organism for many years (Winogradsky, 1887). Subsequent studies 

resulted in the discovery of the phototrophic purple-sulfur bacteria (Winogradsky & Brock, 

1889), the elucidation of the two-step nitrification process (Winogradsky, 1890), the 

demonstration of nitrogen-fixation by a Clostridium species (Winogradsky, 1928), and iron 

cycling in soil. However, Winogradsky’s contribution to the burgeoning field of microbial 

ecology is best realized in a simple invention. A glass tube containing a column of soil and water 

with a natural consortium of resident microbes that form complex, stratified communities based 

on oxygen concentration and nutrient flow, the “Winogradsky column” represents several tenets 

that its inventor believed were fundamental to studying environmental microbes:  

1.) Microbes are best described residing in their natural habitat, for which artificial 

media is a poor and disruptive substitute that favors the growth of a small subset of 

generalist microbes. 

2.) While pure culture is an extremely valuable technique, axenic culture removes 

competitive pressure and interspecies interaction from the organism which will have 

a profound impact on its physiology. 

3.) Community dynamics, while complex and difficult to parse, are fundamental to the 

overall function of the community. 
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These ideas provide insight into microorganisms as populations, members of communities, and 

moving parts of ecosystems, and they have formed the core of microbial ecology as study as 

transitioned from the soil ecosystems studied by Winogradsky to marine, freshwater, deep sea, 

polar, and host-associated environments. 

 Early studies of microbial ecology incorporated a mix of in situ methods, such as the 

Winogradsky column, pure culture in vitro methods that were developed in parallel with studies 

of pathogenic bacteria, and enrichments, which use added or restricted nutrients and incubation 

conditions to select for microbes with desirable traits. These methods were often combined with 

the use of stains and microscopy to visualize microbes based on physiological criteria, such as 

cell wall composition, viability, and content.  The development of the electron microscope in the 

1930s massively improved the capacity to detect cell structure and together, visualizations 

enabled by microscopy would form the basis for microbial classification and early attempts at 

phylogenetic reconstruction. Subsequent development of more sophisticated technologies, such 

as flow cytometry (Fulwyler, 1965), would lead not only to the novel organisms like 

Prochlorococcus, but also allow researchers to begin quantifying their presence in the oceans 

and infer their impact on the environment (Chisholm et al., 1988). Researchers quickly 

recognized the limitations in relying on abundance alone and simultaneously developed 

techniques to quantify ecosystem activities. The development of electrode probing technologies 

allowed researchers to measure physiochemical characteristics of sampling environments, 

determining pH, O2 and CO2 concentrations, and salinity (Kerridge, 1925). Another such method 

involves seeding in situ microbial samples with known quantities of radioactive or stable 

isotopes and determining the quantity of isotope either ends up as microbial biomass or 
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metabolic byproduct, enabling researchers to quantify biochemical rates and, in some cases, 

identify which organisms carry out the process (Boschker et al., 1998, Radajewski et al., 2000).  

 While these methods have proven very powerful over the decades, allowing many 

researchers to lay the foundation for microbial ecology through the isolation of novel organisms 

and the elucidation of major nutrient cycles, they are not without their limitations. Even with the 

more advanced forms of isolation and culturing, such as single cell sorting and high-throughput 

screening of culture media by robots, it is predicted that only a small fraction of the global 

microbial diversity has been successfully cultured (Stewart, 2012). Inference of microbial 

evolutionary histories through morphology and functional capability is challenging, as the 

traditional perception of the biological species concept does not apply to organisms that 

reproduce asexually (Mayr, 1982). This also limits the information obtained from enzyme assays 

and stable isotope probing, as only net activity across the whole community is determined rather 

than the contribution of each member.  

Evolution of Molecular Biology in Ecology 

 Much of this began to change in the 70s with the advent of DNA sequencing. The 

recognition of DNA as the universal hereditary molecule by Avery, McCarty, and MacCleod 

(Avery et al., 1944), which was confirmed in 1952 (Hershey & Chase, 1952), and then quickly 

followed by the discovery of the molecular structure of DNA by James Watson and Francis 

Crick (Watson & Crick, 1953) enabled future researchers to begin work developing the 

technologies that could determine and manipulate the genetic sequence of an individual 

organism. A significant step forward was made when researchers used chemically modified 

nucleotides to generate DNA sequences as long as 2000 bases (Sanger & Coulson, 1975). This 

began the first steps towards characterizing the genetic material of full genes and genomes. The 
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first full genome to be sequenced was that of the bacteriophage φX174 (Sanger et al., 1977). The 

original incarnation of this technology incorporated radioactive nucleotide labels, which were 

later replaced with fluorescent labels and full automation (Smith et al., 1986, Prober et al., 

1987), enabling the sequencing of much larger genomes, starting with Saccharomyces cerevisiae 

(Feldmann et al., 1994). The power of these technologies would spark the interest that would 

later start the Human Genome Project.  

However, through these methods, sequencing genomic content required a concentrated 

and pure source of the target length of DNA, as any contaminant disrupts base detection and 

renders the sequence unreadable. To generate enough genetic material for sequencing, Sanger 

sheared the original bacteriophage genome into smaller pieces using restriction endonucleases, 

inserted the fragments into bacterial plasmids, and transformed them into Escherichia coli, 

forming a genomic clone library. The plasmid could then be amplified inside the bacterium and 

extracted for sequencing later. As this technology was developed to overcome the low 

concentration of target DNA, it would later be adapted for the study of uncultured environmental 

organisms (Handelsman et al., 1998). Genomic DNA would be extracted from whole soil 

samples, sheared, and transformed into E. coli, which could then be sequenced or screened for 

the production of novel metabolites (Rondon et al., 2000, Gillespie et al., 2002, Knietsch et al., 

2003). Subsequent modifications of the plasmids used in cloning would result in the 

development of the Bacterial Artificial Chromosome, which allowed for insertion and 

transformation of much larger pieces of genetic material, as much as 350,000 base pairs, and 

enabled researchers to examine the genetic causes of human disease (O'Connor et al., 1989, 

Shizuya et al., 1992, Stone et al., 1996, Shizuya & Kouros-Mehr, 2001). The idea of collecting 
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the community level genetic material as a “metagenome” would form the basis for later culture-

independent studies of environmental microbes. 

 Much of the sequencing and cloning work done today would not be possible without the 

development of the Polymerase Chain Reaction (PCR) by Kary Mullis (Saiki et al., 1988). PCR 

is an in vitro technique that mimics the natural process of DNA replication in an ordered and 

predictable series of cycles. A DNA sequence of interest is targeted using a pair of RNA primers 

specifically coded to amplify the intended region, a biochemical process which is carried out by 

a high temperature-stable DNA polymerase and a collection of spare ATP molecules and single 

nucleotides. The process generates millions of copies of the target DNA, enabling researchers to 

target specific regions of DNA from pure culture and generate enough genetic material for 

sequencing. This is frequently used in medicine for diagnosis of infectious disease and genetic 

disorders such as Sickle Cell Anemia (Saiki et al., 1985, Pozio & La Rosa, 2003, Sachse & 

Hotzel, 2003). In many cases, PCR is used to amplify a gene conserved across multiple microbial 

taxa where Sanger sequencing would not be appropriate. The differences in sequence between 

individuals in a community can be separated via gel electrophoresis to predict ecosystem 

diversity and generate community fingerprints (Fischer & Lerman, 1979, Fischer & Lerman, 

1980, Muyzer et al., 1993).  

 Just as more powerful and refined microscopy enabled researchers to attempt to 

reconstruct the phylogeny of bacterial species using morphology and function, the combination 

of PCR and Sanger sequencing allowed researchers to look to genetic sequences to infer 

evolutionary history. Prior to the advent of whole genome sequencing, taxonomic classification 

of novel organisms and phylogenetic inference were both determined by calculating the inherited 

traits shared between individuals, and since physiology of prokaryotes is so radically distinct 
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from eukaryotes, the two were not comparable by conventional means of taxonomy (Sneath & 

Sokal, 1973). However, as DNA is the material passed on from parent to progeny, regardless of 

sexual or asexual behavior, it stands as a strong candidate for inference of evolutionary 

relationships. In order to determine the phylogenetic relationships between all of the major 

branches of life, Carl Woese and George Fox constructed the first tree of life using the 

nucleotide sequence of the ribosomal small subunit RNA molecule (Woese & Fox, 1977). This 

gene proved an ideal candidate for the task, as it was highly conserved across all forms of 

cellular life, short enough to be Sanger sequenced, but long enough to provide large-scale 

phylogenetic resolution across major taxa. The result was the first full tree of life to be calculated 

from real biological data, which grouped all cellular organisms into three distinct domains: 

Eukaryota, Bacteria, and Archaea. Beyond its use in the full tree of life, the 16S small subunit 

ribosomal RNA molecule in prokaryotes would later be employed as a universal marker gene for 

their respective domains in community level studies by using PCR primers that hypothetically 

amplified any rRNA molecule in the sample (Eden et al., 1991, Jiang et al., 2006). Amplicons 

from these primer sets could then be inserted into plasmids to form clone libraries that contain 

information about microbial diversity and abundance from the amplified sample (Kowalchuk et 

al., 1997, Rondon et al., 2000, Manichanh et al., 2006). 

Currently Available Molecular Technologies 

 Sanger sequencing proved to be a very powerful technique, especially when the need for 

a high concentration of a single sequence was made much easier with PCR, allowing researchers 

to quickly determine a sequence from pure culture. However, even with the benefits of PCR and 

full automation, the process was slow and sequencing full genomes required extensive work 

mapping the genomic space before sequencing could begin. Its use in community level 16S 
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rRNA sequencing and metagenomics was limited as well, as costs could be prohibitively 

expensive for hundreds of representatives. Indeed, early work by national laboratories on the 

Human Genome Project was quickly surpassed by privately funded labs using the recently 

developed paired-end shotgun whole genome sequencing (Roach et al., 1995, Lander et al., 

2001). This approach involved shearing the extracted genomic DNA and cloning fragments into 

plasmids and yeast artificial chromosomes (Hsiao & Carbon, 1979), followed by sequencing and 

assembly via computer algorithm (Venter et al., 2001).  Despite major concerns that 

computational assembly would introduce too much potential for error in the output sequences, 

the approach rapidly became the new standard as the assembly algorithms improved (Myers et 

al., 2000, Batzoglou et al., 2002).  

This success would be further bolstered by the development of high-throughput short 

read sequencing technologies, such as pyrosequencing, which determined DNA sequences as 

they were synthesized by pyrophosphate reactions (Nyren et al., 1993, Ronaghi et al., 1998, 

Margulies et al., 2005). These new methods allowed researchers to sequence entire bacterial 

genomes in a single methodological run, whereas Sanger sequencing could require dozens of 

separate reactions preceded by the long process of whole genome mapping. They also 

revolutionized the process of metagenomic sequencing, as both 16S rRNA amplicon libraries 

and shotgun metagenomes could be sequenced directly without the need for one sequence per 

run, and eliminating the need for clone libraries in community-level metagenomics (Brulc et al., 

2009, Fierer et al., 2012). While pyrosequencing is still in use, it has largely been replaced by 

Illumina™ dye sequencing, which operates under similar principles as Sanger sequencing by 

incorporating color labeled terminal nucleotides that are read by a laser-equipped computer, only 

on a much larger, 2-dimensional scale rather than in microfluidics (Canard & Sarfati, 1994). This 
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modern iteration of high-throughput sequencing (often termed “next-generation sequencing”, 

regardless of actual generation) generates reads that are considerably shorter than Sanger’s 

method, but in such high volume that the limited length is hypothetically overcome. The sheer 

volume of information obtained from Illumina™ sequencing is often enough to cover the whole 

genomes of larger organisms in a single run over a few days, and has allowed some researchers 

to begin probing environmental ecosystems for the rarest community members (Caporaso et al., 

2011, Schloss et al., 2011, Segata et al., 2011). 

 In parallel with the development of high-throughput sequencing of metagenomic and 

community-level 16S rDNA libraries, sequencing of mRNA transcripts and small RNAs has 

seen a burst in activity with the widespread adoption of Illumina™ technology. As RNA is not 

sequenced directly, it was not possible until the discovery of the enzyme reverse-transcriptase 

from retroviruses (Baltimore, 1970, Temin & Mizutani, 1970). This enzyme transcribes an RNA 

template into DNA, and when adapted for use in molecular biology, allowed for the development 

of reverse transcriptase quantitative PCR, microarray technology, and RNAseq (Adams et al., 

1991, Freeman et al., 1999, Wang et al., 2009). However, it was not until the invention of 

pyrosequencing that RNAseq yielded enough reads to be considered reliable, allowing 

researchers to begin determining the transcriptional regulation patterns of whole populations of 

individual organisms. Still relatively young, the field of metatranscriptomics, sequencing 

transcripts from a complex microbial community, has yet to fully mature to incorporate the 

standards and practices that have been developed for metagenomic and 16S sequencing datasets 

(Schloss & Handelsman, 2005, Schloss et al., 2011). However, as transcripts are very unstable in 

vivo and represent at least a precursor to true cellular activity, RNAseq data obtained from 
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microbial communities can potentially ignore organisms that are abundant but dormant and do 

not contribute to community activity (Bernstein et al., 2002).  

 Where metagenomes represent the metabolic and functional potential of a community, 

and the metatranscriptomes represent the transcriptional regulation and potential activity of a 

community, metaproteomes seek to describe the abundances of different proteins within a 

sample. In this technique, proteins are extracted from a sample and separated via 2D gel 

electrophoresis, after which they are sequenced and characterized using mass spectrometry 

(Anderson & Anderson, 1998, Blackstock & Weir, 1999). While this technology has the 

potential to more directly address the true activity of microbes in a community, limitations in the 

available tools and caveats in data interpretation hold it back. Proteomic methodologies often 

favor proteins in higher abundance, and proteins produced by the rare microbiota are frequently 

lost in the analysis (Wang et al., 2016). In addition, the reduced phylogenetic resolution in amino 

acid sequences limits researchers’ ability to distinguish between highly conserved proteins. 

Interpretation of protein abundance as potential enzymatic activity can often be misleading, as 

different proteins can have radically variable half-lives depending on the cell state and 

requirements for post-translational modifications influence active and inactive protein states 

(Petrov et al., 2013). That being said, proteomes of individual organisms, often paired with 

genomic data, have done much to advance understanding of cell physiology (Washburn et al., 

2001, Anderson & Anderson, 2002, Rual et al., 2005), and future developments in the 

technology and approaches have the potential to revolutionize the study of complex microbial 

communities. 

 Just as chemists have employed mass spectrometry in the identification of proteins in a 

given culture or environmental sample, others have used a similar method to characterize and 
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quantify the total available pools of nutrients and metabolic products, called the metabolome. 

The metabolic profile can be used to gain insight into ongoing metabolic processes inside a pure 

culture or a complex community. As with proteomes, this method suffers from difficulty in data 

interpretation, as it can be difficult to distinguish whether observed metabolite abundances are 

due to changes in influx or efflux. These studies appear to work best when used in time course 

experiments that track metabolites during the course of the cell cycle, usually in combination 

with genomic or transcript sequencing (Oliver et al., 1998, Tweeddale et al., 1998, Fiehn, 2001, 

Fiehn et al., 2001, Goodacre et al., 2004). Used together, the collection of metagenomics, 

metatranscriptomics, proteomics, and metabolomics form a unique field within cell biology 

known as systems biology, which models the abundance of genes, transcripts, proteins, and 

metabolites as part of a complete system in an attempt to understand how it functions.  

Evolution of Information Technologies 

 The discovery of the structure of DNA and the subsequent development of sequencing 

technology produced a new series of challenges to researchers interested in genetics. While 

researchers would eventually determine the nature of codons and the genetic code in translation 

(Crick et al., 1961, Gardner et al., 1962, Wahba et al., 1963), and the use of DNA sequence in 

phylogenetic inference is described above, analysis of sequences by hand was challenging and 

time-consuming. The field of genetics quickly resorted to modern computers to assist in large-

scale sequence analysis, leading to the development of a number of software tools, the most 

important of which in microbial ecology are covered here. 

Determining the similarity or relatedness of two DNA or amino acid sequences requires 

that they be aligned, identifying a corresponding start point between them and aligning shared 

nucleotide bases or amino acids, marking gaps or polymorphisms where they appear. The first 
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quantitative attempt to accomplish this was proposed by Needleman and Wunsch in 1970 

(Needleman & Wunsch, 1970). This method for global alignment of two sequences was quickly 

replaced by a more sensitive and general method for local alignment, incorporating calculations 

for gaps (Smith & Waterman, 1981). However, both of these methods calculate optimal 

alignments between two sequences, and as such were very slow and computationally intensive 

for the time, making larger scale alignments against databases of reference sequences 

impractical. In order to address this problem, other researchers designed a compromise; an 

algorithm that operated under a significantly reduced number of steps, and thus much faster, but 

that produced less than optimal alignments and was prone to false positives. This was referred to 

as the Basic Local Alignment Search Tool (BLAST), which quickly became a staple of modern 

bioinformatics, now forming the base of the National Center for Biotechnology Information 

(NCBI) (Altschul et al., 1990). The simplicity and speed of this tool has led many to rely on it 

exclusively for homology determination of unknown sequences, but as it was only designed for 

sequence alignment based on similarity, homology can often be inferred incorrectly. While more 

reliable alignments can be calculated for smaller collections of sequences using software like 

MUSCLE (Edgar, 2004), the need for fast alignments to probe the rapidly growing sequence 

databases makes them impractical. One method rising in popularity is the Hidden Markov Model 

algorithm implemented in the HMMER software package (Finn et al., 2015), which builds 

alignments and detects homology by comparing scores from query sequences with a null model. 

The result is a more reliable homology assignment that is considerably quicker than the Smith & 

Waterman method, and which has been employed for searches on both the Pfam and InterPro 

sequence databases (Finn et al., 2016, Finn et al., 2017). 
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 Another key piece of software developed soon after sequencing was the sequence 

assembler, which first reached widespread use with the development of pairwise shotgun 

genomic sequencing mentioned above (Myers et al., 2000, Venter et al., 2001). These algorithms 

take sequencing reads and align them together to form longer contiguous sequences, also known 

as contigs, based on overlap, usually by constructing a DeBrujin graph to score alignments and 

optimize contig building (Good, 1946). The most recent iterations of these algorithms are 

designed primarily to deal with one of the two major problems with traditional assembly: 1.) 

reduce the size, complexity, or length of time necessary to assemble sequences, or 2.) improve 

the quality of assembly by compensating for assembler’s tendency to assemble reads that should 

not be connected. These incorrect assemblies, known as chimeras, are especially problematic in 

metagenomic sequencing datasets where multiple organisms possess genes with highly 

conserved regions, leading to frequent chimeric assembly. Recent assemblers, such as SPAdes 

and SOAPdenovo, have been developed with quality control checks to account for single 

nucleotide polymorphisms (SNPs) that can confound assemblies and contig quality checks to 

reduce the frequency of chimeric assemblies (Bankevich et al., 2012, Xie et al., 2014). 

 The use of high-throughput sequencing to generate large 16S and 18S rRNA datasets has 

proven to be a remarkably useful tool for characterizing the diversity of microbial communities 

and the abundance of individual taxa. However, the sheer number of reads generated from 

sequencing runs, in addition to some methodological concerns has posed a number of challenges 

for researchers using this method. As the 16S rRNA molecule is conserved amongst all bacteria 

and exhibits high similarity across even the most distantly related taxa, phylogenetic 

identification of each individual sequence is not necessary when many sequences are almost 

entirely identical. This has led to the development of multiple computational algorithms, such as 
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mothur and QIIME, that cluster rRNA reads into Operational Taxonomic Units (OTUs) based on 

similarity (Sneath & Sokal, 1973), picking a representative sequence from the bin for 

identification (Schloss et al., 2009, Caporaso et al., 2010). However, since the determination of 

similarity needed to distinguish between different clusters is largely up to the user, this has 

brought into focus the scale of similarity needed to distinguish between different taxa, all the 

way down to individual species and strains (Gevers et al., 2005, Doolittle & Papke, 2006, 

Koeppel et al., 2008). A recent survey examining OTU clustering across multiple environments 

determined that OTUs are largely consistent, regardless of ecosystem, and that the method had a 

much greater impact on results (Schmidt et al., 2014). Today, improvements in DNA extraction 

and sequencing depth have allowed researchers to begin to explore the diversity and activity of 

the rare microbiome, low-abundance microbes in the community that appear to have a profound 

impact on overall ecosystem function (D Ainsworth et al., 2015, Jousset et al., 2017). 

 Even with the speed and capacity of modern computers and development of advanced 

algorithms that improve the computational efficiency of bioinformatic tasks, the sheer amount of 

sequencing data produced per unit cost has grown exponentially, whereas progress in the cost 

and capability in computing has remained largely the same (Figure 1.1).  Some researchers have 

resorted to high-performance computing, or supercomputing, which massively scales up 

conventional computing processes to run dozens of processes simultaneously. However, 

supercomputers can be prohibitively expensive to both purchase and maintain, and thus they are 

often shared across a broad user base, limiting the time and resources each individual user has 

access to. These tools often also require a significant degree of skill in navigating complex 

computational tasks, in which biologists are not often trained. The need for user-friendly, but  
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Figure 1.1. Cost of Sequencing versus Moore’s Law. The cost of determining one megabase 

(Mb; a million bases) of DNA sequence of a specified quality versus the hypothetical data 

reflecting Moore's Law, which describes a long-term trend in the computer hardware industry 

that involves the doubling of 'compute power' every two years. Technology improvements that 

'keep up' with Moore's Law are widely regarded to be doing exceedingly well, making it useful 

for comparison (Wetterstrand K. Data available at www.genome.gov/sequencingcostsdata). 
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powerful, computational resources have led to the development of server-based software tools, 

such as the Galaxy portal, Rapid Annotations using Subsystems Technology (RAST), and 

metagenomics RAST (MG-RAST). RAST in particular enables users to annotate entire genomes 

over the course of 1-2 days without sacrificing accuracy to save computational power (Aziz et 

al., 2008). MG-RAST is an adaptation of the RAST server-based model of gene annotation 

applied to focus on short read shotgun metagenomic sequencing datasets, and has recently been 

reworked to allow analysis of short read metatranscriptome datasets as well (Meyer et al., 2008). 

Further adaptations of this model also exist for more specific purposes, such as VIROME 

and MetaVir. As the sequences of viruses are often radically different from cellular organisms as 

described below, and since they are generally poorly represented in reference databases, the 

server-based tool VIROME queries short read shotgun metagenomic sequencing datasets against 

a specialized database using predicted open reading frame translations to reduce the sequence 

divergence often observed in viral nucleotide sequences (Wommack et al., 2012). MetaVir, on 

the other hand analyses contig sequences submitted by the user to identify viruses from much 

longer and more informative stretches of genetic material. MetaVir examines the orientation of 

open reading frames and kmer frequencies to evaluate the quality of viral metagenome contigs, 

identify viral sequences, and compare abundances between libraries (Roux et al., 2014). 

All of these technologies have been used in one form or another to advance the field of 

microbial ecology by discovering novel microbes, characterizing the functional potential of old 

ones, and by describing community diversity and expression patterns. Additionally, the 

combination of multiple techniques can be used to describe individual organisms and ecosystems 

in a more holistic context, allowing researchers to gain a more complete picture as to how 

microbial communities function. However, it must be noted that these methods are ultimately 
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tools whose primary benefit in describing microbial communities is to propose novel hypotheses 

and make predictions that can be subsequently tested in laboratory and field settings.  
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Part II: Linking Sequencing data to Microbial interactions 

Life after sequencing: how do we interpret results from ‘omics data? 

 The techniques and technologies for determining the functional potential, transcriptional 

regulation, protein abundance, and metabolite pools within microbial communities, holistically 

termed Systems Biology, has caused radical shifts in the way the ecology of microbes is studied. 

The individual fields of microbial ecology, generally separated by environment, have seen 

traditional techniques that were originally developed for the unique requirements of their 

ecosystems either replaced or augmented by systems biology approaches, breaking down the 

boundaries between disciplines. The universality of the central dogma of biology across all life 

has allowed researchers to apply analyses that bridge the gaps between ecosystems and explore 

the ecological factors that govern all microbial communit ies. However, while researchers can 

generate molecular sequencing data very quickly and cheaply, and many tools exist to process 

the information such that analysis is possible, best practices in interpretation and application of 

the results are an open question. The first wave of studies incorporating large sequencing 

datasets in unexplored microbial communities generally focus on the low-hanging fruit, namely 

description of community composition and functional potential. In many cases this is a necessary 

step to lay a strong foundation for future research and has led to important discoveries, including 

the SAR11 clade, one of the most abundant bacterial populations in the global oceans (Morris et 

al., 2002). It should be noted, as mentioned above, that ultimately the methods mentioned here 

are tools built for the purpose of proposing new hypotheses describing the facets of microbial 

ecosystems, and thus descriptive studies must serve to address relevant ecological questions. The 

purpose of this review is to discuss applications of systems biology approaches, primarily 

focusing on 16S, metagenomics, and metatranscriptomics datasets, to the study of host-microbe 

interactions. 
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To move beyond cataloguing microbial community members and into the realm of 

predicting relationships between them, there is a need to define their activity using molecular 

sequencing so that they can be compared between organisms, samples, and datasets. As 

sequencing datasets are generated from PCR amplification reactions and sequences are read from 

within lanes on a sequencing flow cell with a maximum red capacity, abundance of genes or 

transcripts within a dataset must be treated as relative, where each represents a fraction of the 

total number generated (Margulies et al., 2005). As a result, sequencing depth has become a 

primary concern in all applications because highly abundant oligonucleotides in the sample can 

dominate results, obscuring unique patterns in abundance or expression (Hewson et al., 2009). In 

general, this problem limits comparison of organism or transcript abundance only between 

samples within a sequencing run, so long as data is normalized to account for differences in 

sequencing depth. One proposed solution is to introduce internal standards to sequencing that 

improve the reproducibility and allow researchers to estimate absolute abundance. Building a 

mock community sample containing 16S rRNA genes at known concentration has enabled 

researchers to monitor and quantify the impact of amplification to output sequencing datasets 

(Parada et al., 2016). A similar approach in metatranscriptomics involved the addition of a 

plasmid expressing a gene at known quantities within samples, which could then be measured 

and used to calculate the absolute abundance of the environmentally isolated transcripts (Gifford 

et al., 2011). While these methods have yet to be applied broadly across microbial community 

analyses, they pose important considerations in the interpretation of data, which must be 

considered when attempting to elucidate relationships between microbes. 
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Network analysis: statistical and mathematical prediction of host-microbe interactions 

 Assuming organismal or transcript abundance can be determined, how can this 

information be used to predict relationships? One potential route is co-occurrence, which stands 

as an ecologically relevant set of patterns that reflects coexistence and diversity maintenance 

within a community (HilleRisLambers et al., 2012). Studies of co-occurrence in microbial 

communities can be applied in multiple ways, including early presence-absence studies, which 

have been used to determine whether population distribution is random or subject to species 

interaction (Stone & Roberts, 1990). The developments in high-throughput sequencing methods 

allow researchers to apply co-occurrence theory using correlation coefficients to predict 

coexistence and competitive exclusion (Kittelmann et al., 2013). Correlations have similarly 

been used to develop network analyses, drawing maps that connect different microbes based on 

symbiotic or predatory relationships (Fuhrman & Steele, 2008, Williams et al., 2014). More 

refined implementations of these methods have incorporated mathematical modeling elements to 

account for delayed responses to changes between organismal abundances (Parada & Fuhrman, 

2017). However, every case mentioned here studying microbial communities relies on 

metagenomes, and compares the relative abundance of genes and organisms, rather than activity. 

While this approach can potentially yield meaningful microbial relationships, microbial activity 

represents a more realistic predictor of physiological response. A recent study incorporated time 

course metatranscriptomes to predict virus host pairs in marine systems with significant success, 

posing a method that may better represent the innate physiology for such analyses 

(Moniruzzaman et al., 2017).   
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Lysogeny: prediction of alternative viral survival strategy 

 One of the confounding factors representing a major gap in attempts to model viral 

dynamics is lysogeny, where an infecting virus eschews replication and lysis of the host cell in 

favor or integrating into the host genetic material and remaining dormant, called a prophage. An 

intact prophage replicates along with the host cell, providing protection from infection by other 

lytic phage in order to ensure its own survival. The components that facilitate lysogeny and 

dictate the decision to integrate, rather than lyse the host, have been studied primarily in the 

Lambda phage, which infects Escherichia coli (Oppenheim et al., 2005). Additionally, a recent 

study was able to determine population-level peptide communication in Bacillus SPbeta group 

phage that regulates the lytic-lysogenic decision (Erez et al., 2017). However, outside of these 

well studied systems, lysogeny is poorly understood despite mounting evidence that large 

portions of environmental and host-associated bacteria are lysogenized (Beres & Musser, 2007, 

McDaniel et al., 2008, Waller et al., 2012, Waller et al., 2014). This is in part due to the 

difficulty inherent to the study of lysogeny, which is compounded by the incredible diversity in 

phage populations. We believe that the answer to some of these questions lies in 

metatranscriptomics data, as expression of prophage genes is necessary to maintain a stable 

lysogenic relationship and protect against superinfection (Kourilsky, 1975, Abedon, 1992, 

Abedon, 1999). In addition, viral transcripts are strong evidence of activity, as free virus particles 

possess no metabolism and do not transcribe genes. Further elucidation of lytic-lysogenic 

decision making strategies shared amongst broad environmental taxa will aid in future model 

development. 
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Chrysoschromulina parva Virus: a case study in culture-based viral ecology 

 While modeling and statistical methods for linking viruses to hosts have proven useful, 

ultimately all relationships predicted will require experimental testing, either in situ or culture-

based, to reject or refine the proposed hypotheses. One specific example of this concept in action 

is the recently discovered giant virus infecting the freshwater haptophyte Chrysochromulina 

parva (CpV), the genome of which is presented in the following chapters (Mirza et al., 2015). 

Until recently, giant viruses have been frequently observed in electron micrographs, but were 

assumed to be bacteria due to their size (Wilhelm et al., 2016, Wilhelm et al., 2017). The 

discovery of Mimivirus infecting Acanthamoeba, and the close relatives discovered since, show 

that giant viruses are radically different from the conventional model of viruses, possessing 

hundreds of genes, many of which are responsible for functions previously only found in cellular 

life (Filee et al., 2008), including translational machinery and auxiliary metabolic functions. As 

giant viruses have been implicated both in human disease (Popgeorgiev et al., 2013, Yolken et 

al., 2014) and the collapse of harmful algal blooms (Schroeder et al., 2003, Gastrich et al., 

2004), there is a desperate need for further expansion of known physiology and diversity. As the 

first freshwater representative of the algal Mimiviruses to be isolated and maintained in culture, 

CpV stands as an important model virus for the future study of Mimiviruses ecology and 

physiology in freshwater ecosystems.  

Conclusion 

The following chapters present the application of high-throughput transcript sequencing 

and statistical approaches to predict relationships between microbes, viruses, and their respective 

hosts in a broad array of environmental ecosystems. While environments, microbial community 
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constituents, represented taxa, and specific conclusions between chapters are largely unrelated, 

the work described here is linked by the following goals to: 

1.) develop targeted approaches that allow researchers to reduce the size and complexity 

of the notoriously large high-throughput sequencing datasets in order to propose 

hypotheses that can be tested in a field or laboratory setting and,  

2.) discover or predict the relationships between microbes and their hosts, with a 

particular focus on viruses. 

Within this body of work, we discovered transcriptional patterns, consistent across 

temporal and geographic scales, that suggested rampant bacteriophage lysogeny occurs during 

Microcystis aeruginosa blooms in the Chinese hypereutrophic Lake Tai. As viral mRNA 

molecules for DNA viruses are only produced during active infections, lytic or lysogenic, the 

data shown here represents strong evidence for a relationship between virus and host. The results 

we obtained further suggest a series of viral expression markers that could be used to further 

predict lytic and lysogenic activity in Microcystis phage. As lysogeny often protects the host 

from subsequent infection by other lytic phage, these observations may provide an explanation 

for Microcystis success as a bloom former and its ability to defy Hutchinson’s paradox of the 

plankton and the kill-the-winner-hypothesis (Hutchinson, 1961, Thingstad & Lignell, 1997). We 

used the same technology to explore the viral diversity and activity in the microbiome of 

Sphagnum peat bog environments. We applied a pipeline in development to characterize viruses 

from multiple taxa and we were able to identify a broad diversity of both DNA and RNA viruses, 

and predict the hosts of many of the identified viruses. We also sequenced, assembled, and 

annotated the genomes of the Chrysochromulina parva Virus and its virophage, in which we 
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observed a versatile giant virus clearly originating in an emerging clade within the NCLDV 

group. Subsequent examination of CpV activity using transcript sequences from freshwater 

ecosystems revealed significant activity in Lake Tai, China during the Microcystis bloom in 2013 

and a strong correlation between virus and virophage expression. Lastly, to determine the 

contribution of the gut microbiome to malaria resistance in mice, we isolated and sequenced the 

bacterial community and mouse metatranscriptomes. During our analysis, we were able to 

identify multiple genes potentially involved in the interface between gut microbes and their host 

that may contribute to resistence to infection by Plasmodium. Altogether this body of work 

establishes a collection of powerful methods for targeting specific organisms and activities in 

diverse microbial ecosystems, and proposes hypotheses that advance the understanding of the 

environments studied herein.  



27 
 

CHAPTER II: 

MOLECULAR PREDICTION OF LYTIC VS LYSOGENIC STATE FOR MICROCYSTIS 
PHAGE: METATRANSCRIPTOMIC EVIDENCE OF LYSOGENY DURING LARGE 

BLOOM EVENTS 
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Publication Note 

This chapter is a version of a peer-reviewed article previously published in PLoS ONE 12(9): 
e0184146 by Joshua M.A. Stough, Xiangming Tang, Lauren E. Krausfeldt, Morgan M. Steffen, 
Guang Gao, Gregory L. Boyer, and Steven W. Wilhelm. 

My contribution to this work was the experimental conceptualization, data processing and 
analysis, and primary authorship and editing of the manuscript.  
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Abstract 
Microcystis aeruginosa is a freshwater bloom-forming cyanobacterium capable of producing the 

potent hepatotoxin, microcystin. Despite increased interest in this organism, little is known about 

the viruses that infect it and drive nutrient mobilization and transfer of genetic material between 

organisms. The genomic complement of sequenced phage suggests these viruses are capable of 

integrating into the host genome, though this activity has not been observed in the laboratory. 

While analyzing RNA-sequence data obtained from Microcystis blooms in Lake Tai (Taihu, 

China), we observed that a series of lysogeny-associated genes were highly expressed when 

genes involved in lytic infection were down-regulated. This pattern was consistent, though not 

always statistically significant, across multiple spatial and temporally distinct samples. For 

example, samples from Lake Tai (2014) showed a predominance of lytic virus activity from late 

July through October, while genes associated with lysogeny were strongly expressed in the early 

months (June – July) and toward the end of bloom season (October). Analyses of whole phage 

genome expression shows that transcription patterns are shared across sampling locations and 

that genes consistently clustered by co-expression into lytic and lysogenic groups. Expression of 

lytic-cycle associated genes was positively correlated to total dissolved nitrogen, ammonium 

concentration, and salinity. Lysogeny-associated gene expression was positively correlated with 

pH and total dissolved phosphorous. Our results suggest that lysogeny may be prevalent in 

Microcystis blooms and support the hypothesis that environmental conditions drive switching 

between temperate and lytic life cycles during bloom proliferation. 

Introduction 

 Viruses are one of the most potent drivers of nutrient cycles, horizontal gene transfer, and 

microbial evolution in aquatic ecosystems (Brussaard et al., 2008, Weitz & Wilhelm, 2012). 
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Bacteriophage play an important role in microbial communities by lysing primary producers and 

heterotrophic bacteria, releasing nutrients from biomass (Wilhelm & Suttle, 1999). Moreover, 

due to their density-dependent infection, viruses are thought to reduce the competitive 

advantages of some of the most prolific organisms – the “kill-the-winner” hypothesis (Thingstad 

& Lignell, 1997). Phage genomes also can encode auxiliary metabolic genes that serve to 

augment host metabolism during infection, considerably altering the functional potential of entire 

populations within the microbial community (Thompson et al., 2011, Roux et al., 2016).  Despite 

their recognized importance, much of the potential of viruses remains uncharacterized, 

highlighting a crucial need for examination of the role they play across ecosystems. 

 Microcystis aeruginosa has repeatedly been identified as a nuisance bloom-former in 

freshwater systems over the last several decades (Harke et al., 2016). It has come to the forefront 

of public attention as the primary agent in blooms worldwide and for its ability to produce a 

potent hepatotoxin, originally known as “Fast-Death Factor” (Bishop et al., 1959), but now 

known as microcystin (Carmichael, 1996, Brittain et al., 2000). Recent impacts include the 

shutdown of the public water supply to the City of Toledo (Ohio) during the Microcystis bloom 

in 2014 (Steffen et al., 2017), and the considerable accumulation of toxic algal biomass in Lake 

Tai, China (Taihu in Chinese) (Qin et al., 2010, Krausfeldt et al., 2017). While significant strides 

have been made describing the ecology (Brunberg, 1999, Steffen et al., 2012, Steffen et al., 

2015), physiology (Kromkamp et al., 1988, Shen et al., 2011, Harke et al., 2017), and genetics 

(Kaneko et al., 2007, Steffen et al., 2014, Yamaguchi et al., 2015) of Microcystis, little is known 

about the effect of phage on Microcystis ecology. To date, only 11 viruses infecting M. 

aeruginosa have ever been brought into culture (Tucker & Pollard, 2005, Yoshida et al., 2006, 

Hargreaves et al., 2013, Ou et al., 2013, Watkins et al., 2014, Mankiewicz-Boczek et al., 2016), 
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of which only 2 have sequenced genomes (Yoshida et al., 2008, Ou et al., 2015), and each of 

these isolates has subsequently been lost to science. Microcystis phage Ma-LMM01, classified as 

an unassigned myovirus, has been the best studied. The availability of Ma-LMM01’s full 

genome sequence has led to analyses of distribution (via PCR and qPCR-based techniques) and 

some characterization of its genetic regulation (Yoshida-Takashima et al., 2012, Rozon & Short, 

2013). 

Ma-LMM01 appears to have been host specific in lab studies, targeting M. aeruginosa at 

the strain level (Yoshida et al., 2006). This has led to the hypothesis that phage play a role in 

modulating dominant strains during blooms (Yoshida et al., 2008). Ecologically, one gene from 

this virus (gp91), encoding a viral tail sheath and present in the genomes of both Microcystis 

phages Ma-LMM01 and MaMV-DC (Yoshida et al., 2008, Ou et al., 2015), has been used via 

qPCR to suggest Microcystis-specific phage particles can be present at concentrations >10,000 

mL-1 of lake water (Takashima et al., 2007, Rozon & Short, 2013).  These virus densities and a 

projected high level of host specificity suggest the potential for long-term predator-prey 

coevolution between virus and host, a trait generally associated with temperate phage (Bobay et 

al., 2013).  They also suggest that bloom events of susceptible Microcystis cells should quickly 

succumb to phage infection (Thingstad & Lignell, 1997).   

Beyond an ability to infect and lyse Microcystis, the Ma-LMM01 genome encodes 

machinery necessary for lysogeny and induction, including 3 transposases, a serine recombinase, 

and 2 prophage anti-repressors. In addition, one transposase (gp135) and the recombinase 

(gp136) make up a 2-gene mobile genetic element called IS607, originally identified in 

Helicobacter pylori, and has led some to hypothesize that these genes further act independently 

as a transposon (Kersulyte et al., 2000, Kuno et al., 2010). Although there is an absence of 
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lysogenic activity with Microcystis observed in the laboratory, expression of these genes has 

been documented in environmental samples (although they were not tied to lysogeny, Steffen et 

al., 2015).  Taken together, the presence of lysogeny-associated genes within Microcystis and the 

implied protection against superinfection might explain how this genus can come to dominate 

freshwater ecosystems and escape Hutchinson’s Paradox of the Plankton (Hutchinson, 1961) or 

the “kill-the-winner” phenomenon (Thingstad & Lignell, 1997). 

During analyses of metatranscriptomic data from Microcystis blooms in Lake Tai, we 

observed expression of phage-encoded lysogeny-associated genes that negatively correlated with 

expression of genes consistent with lytic infection and phage replication. Regulation of these 

putative lysogenic genes appears to be strongly associated with specific environmental 

conditions in the water column. Based on these observations, we hypothesize that phage 

lysogenize the Microcystis bloom community in a manner that is constrained by nitrogen and 

phosphorus availability.  

Materials and Methods 

Sample collection and Survey of Environmental Conditions 

 Samples were obtained from Lake Tai over the course of five months during the M. 

aeruginosa bloom in 2014 and have been used in conjunction with several other experiments 

(e.g., Krausfeldt et al., 2017). Surface water samples were collected monthly from June to 

October from 11 different locations across the lake (Table 2.1). From all stations and dates 35 

samples were selected (based on the quality and quantity of extracted RNA) were submitted for 

RNA-seq. Samples from Lake Tai (25-180 mLs) were collected on 0.2-μm nominal pore-size 

Sterivex™ (EMD Millipore Corporation, Darmstadt, Germany) and preserved for transport by 

adding ~ 2 mL of RNAlater (ThermoFisher Scientific, Waltham, MA).   
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 Water column depth and Secchi depth (SD) were measured using a water depth gauge 

(Uwitec, Austria) and Secchi disk, respectively. Water temperature, electrical conductivity (EC), 

pH, dissolved oxygen (DO) and phycocyanobilin (PC) were measured in situ using a 

multiparameter water quality sonde (YSI 6600 V2, Yellow Springs Instruments Inc., USA). 

Total nitrogen (TN),  total dissolved nitrogen (TDN), ammonium (NH4), nitrate (NO3), total 

phosphorus (TP),  total dissolved phosphorus (TDP), orthophosphate (PO4), total dissolved 

solids (TDS), and chlorophyll a (chl a) were all measured according to standard methods (Jin & 

Tu, 1990). 

 Cyanobacterial toxins were determined using liquid chromatography coupled with mass 

spectroscopy as previously described (Boyer, 2007). Fourteen common microcystin congeners 

were determined by reverse phase liquid chromatography (microcystins RR, dRR, mRR, hYR, 

YR, LR, mLR, dLR, AR, FR, LA, LW, LF, WR and R-NOD) using a Waters ZQ4000 mass 

spectrometer coupled with a photodiode array spectrometer.   Microcystins were all quantified 

against a microcystin-LR standard, and their presence confirmed using diagnostic ADDA UV 

signatures. We also looked for anatoxin-a (ATX), homoanatoxin-a, cylindrospermopsin (CYL) 

and deoxycylindrospermopsin in these extracts using HPLC coupled with mass selective 

(LCMS) or tandom mass (LC-MS/MS: Waters TQD) detection, and quantified against respective 

standards.  Method detection limits were dependent on the volume filtered, ranging from 0.1-0.3 

μg MC-LR / L and were less than 0.01 μg/L for anatoxin-a, cylindrospermopsin, and their 

variants. 

RNA Extraction and Sequencing 

Total RNA was extracted using the MOBIO PowerWater (now Qiagen DNeasy PowerWater) 

DNA isolation kit for Sterivex (Qiagen, San Diego, CA) modified and optimized for RNA 
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isolation. RNA concentration and purity were determined using a NanoDrop™ ND-1000 

spectrophotometer. Extracted RNA was tested for DNA contamination by running a polymerase 

chain reaction using universal bacterial 16S rDNA primers 27F and 1522R (sensitivity ~ 10 gene 

copies per sample). The On-Spin Column DNase I Kit (MO BIO Laboratories) was used for 

DNA removal, with the modification that DNase was allowed to sit for up to 30 min to increase 

the efficiency of DNA removal. Purified RNA samples were shipped to the Hudson Alpha 

Institute Genomic Services Laboratory (Huntsville, AL) for rRNA reduction, using the Ribo-

Zero Gold Epidemiology rRNA removal kit, and sequencing on the Illumina HiSeq™ platform 

using a paired-end 125 bp flow cell. 

RNA-seq Data Processing 

Raw sequences were processed using the CLC Genomics Workbench v. 9.5.4 suite 

(QIAGEN, Hilden, Germany). Bases below 0.03 error score cutoff were trimmed. Samples were 

subjected to a subsequent in silico rRNA reduction using the SortmeRNA 2.0 software package 

(Kopylova et al., 2012).  Filtered paired-reads were competitively mapped to cyanobacterial and 

phage genomes (S2) with a 0.9 read-length fraction and 0.9 identity-fraction cutoffs. Transcripts 

were enumerated as read pairs mapped within the open reading frames of individual genes, and 

counts normalized by library size (unless noted). Paired reads with ends mapping to different 

genomes were not included in downstream analyses or counts.  Sequence information has been 

deposited in MG-RAST database under the study Lake_Taihu_metatranscriptome_project 

(sample IDs in Table 2.1).  

Phylogenetic Analysis 

 Reference sequences from Proteobacteria, Cyanobacteria, and phage identified by 

sequence alignment as IS607 regions in (Kuno et al., 2010) were downloaded from NCBI ( 
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Table 2.3). IS607 reference sequences were aligned in MEGA 7.0.14 software (Kumar et al., 

2016) using the MUSCLE algorithm (Edgar, 2004) and this alignment was then used to generate 

a maximum likelihood tree with a Shimodaira-Hasegawa-like approximate likelihood ratio test 

branch validation using PhyML (Guindon et al., 2010). The reference sequences were then 

aligned with RNA-seq reads mapping to the Ma-LMM01 IS607 region in HMMER v. 3.1 

(hmmer.org). Reads from the alignment were placed the reference tree using pplacer (Matsen et 

al., 2010). Quantity of reads placed on the tree was visualized as branch width using the guppy 

software package (Matsen & Evans, 2013). 

Statistical Analysis 

 Microcystis phage Ma-LMM01 gene read counts were log2(x+10) transformed and 

Pearson correlation values were calculated in R Statistics (R Core Team, 2015) using the Hmisc 

R package (Harrell Jr., 2016). Mapped read counts per gene were normalized to expression of M. 

aeruginosa NIES-843 rpoB (as a proxy for host cell density) and plotted using the SigmaPlot 

software package (Systat Software, Chicago, IL). Whole genome expression was determined by 

counting reads mapped within gene regions on the Ma-LMM01 reference genome, which were 

normalized by library size, square root transformed, and used to generate a Bray-Curtis 

dissimilarity matrix and non-metric multidimensional scaling (nMDS) plots in the PRIMER7 

software suite (Clark & Gorley, 2015). Associated environmental variables were correlated with 

Bray-Curtis dissimilarity distributions and plotted as vectors on the nMDS. The relationship 

between environmental variables and expression of the phage genome was determined using the 

BEST analysis  (Clark & Gorley, 2015). The co-occurrence of expression of whole genome 

expression was grouped using the CLUSTER function using the Pearson correlation coefficient 
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as the index of association with a 0.1 p-value cutoff. The results of this analysis were visualized 

in a dendrogram, all in PRIMER7.  

Results 

Differential Expression of Genes from Microcystis-infecting phage 

 Normalized expression of the Ma-LMM01-like tail sheath (gp091), transposase (gp135), 

and site-specific recombinase (gp136) observed in Lake Tai are shown in Figure 2.1. Of the 35 

samples, 2 (T07_9 and T08_9) exhibited negligible expression of phage and host genes and have 

been removed from subsequent analyses. In the remaining 33 samples, 16 showed more 

abundant expression of gp091 relative to gp135, with a ratio ranging from 1.21 to 79-fold, 

implying that lytic infection was dominant. These samples were collected during the earlier 

months (June and July) of the bloom season, with the exception of T09_1, T10_7, and T10_9, 

which were collected during September and October. The remaining samples showed expression 

of the gp135 and gp136 to be greater than the expression of gp091, implying the Microcystis 

community was, at least to some degree, lysogenized. These samples primarily occurred during 

the months of August, September, and October. Statistically, sample location within the lake did 

not relate to expression patterns, with each station exhibiting periods with dominance of lytic or 

putative-lysogenic transcripts almost in equal measure across all five months. Tail sheath 

expression was significantly and negatively correlated with both transposase (Figure 2.2, 

Pearson’s ρ= -0.53, p = 0.0017) and recombinase abundance (not shown, ρ= -0.57, p = 0.0001). 

Transposase and recombinase were very highly correlated (ρ= 0.98, p > 10-8, R = 0.986 on a 

linear function fit), suggesting tightly coordinated co-expression.  
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Figure 2.1. Lytic and lysogenic gene expression by station. Spatial and temporal gene expression 

of lytic and lysogenic genes from Microcystis-phage in Lake Tai.   Expression of the Microcystis 

phage Ma-LMM01 phage viral tail sheath (gp091, black), transposase (gp135, red), and 

recombinase (gp136, blue) normalized by expression of Microcystis aeruginosa RNA 

polymerase B (rpoB) observed in the Lake Tai dataset. 
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Figure 2.2. Tail sheath, transposase, and recombinase coexpression. Co-expression of genes 

associated with putative lytic and lysogenic infections in Lake Tai. A. Scatterplot comparing 

expression of Ma-LMM01 viral tail sheath (gp091, x-axis) to viral transposase (gp135, y-axis). 

Expression values are absolute read abundance log2 normalized and demonstrate the negative 

relationship between the putative lytic (gp091) and lysogenic (gp135) infection markers.  B. 

Scatterplot comparing expression of Ma-LMM01 recombinase gene (gp136, x-axis) to viral 

transposase (gp135, y-axis), both putative markers of lysogenic infection of Microcystis.  
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Microcystis-phage genome expression 

 As a proxy for in situ expression of all Microcystis phage genes, we recruited 

environmental transcripts to the Ma-LMM01 genome. Results observed from samples collected 

in Lake Tai, and organized by hierarchical clustering, are represented in Figure 2.3. Each of the 

genes for both datasets generally fell into one of three major clusters. The first cluster includes 

all the genes potentially involved in lysogeny, including all three transposases (gp031 and 

gp032– collapsed in branch A, gp135), the serine recombinase (gp136), and two hypothetical 

proteins (gp171, gp067).   

The second cluster is predominantly made up of genes involved in phage packaging and 

cell lysis. It contains 60 genes, including 2 encoding lysozymes (gp069 – collapsed in branch W, 

and gp095 – collapsed in branch X) and the genes for DNA terminase (gp118 - collapsed in 

branch DD), DNA primase (gp134 - collapsed in branch AA), and a putative Fe/S 

oxidoreductase (gp128 - collapsed in branch AA), which are the only ORFs with functions 

assigned. These genes exhibit high correlation values (ρ ≥ 0.7), of which 48 are significantly co-

expressed (p ≤ 0.1) with at least one other gene.  

The third cluster is the largest, and is made up of genes whose products are associated with 

nucleotide metabolism, DNA replication, and the structural components of the phage. It is made 

up of 112 genes including the viral tail sheath (gp091, collapsed in branch T), phage-encoded 

RecA (collapsed in branch S), the phycobilisome degradation protein NblA (collapsed in branch 

N), and a rIIA-like protein (collapsed in branch P). Viral tail sheath expression was highly 

correlated with genes gp088 and gp092, which were predicted by protein size to encode viral tail 

tube proteins. Genes gp086 and gp087 also clustered with the tail sheath, which are believed to 

encode major head proteins for the phage particle.  
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Figure 2.3. Ma-LMM01 whole genome coexpression. Cluster analysis of statistically co-

expressed Microcystis-phage gene expression (based on Ma-LMM01 genome) in Lake Tai.  

Individual branches represent genes correlated with the expression of others. Transcript sets are 

collapsed and labeled with a letter where expression patterns were statistically indistinguishable 

(see Table 2.4 for genes contained in collapsed branches). 
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Environmental Drivers of Phage Gene Expression 

 A non-metric multidimensional scaling (nMDS) plot of the Bray-Curtis dissimilarity 

analysis of phage genome expression in Lake Tai is shown in Figure 2.4.  Samples were 

distributed in a continuum across the x-axis, forming two primary clusters where phage gene 

expression was at least 60% similar. The position of samples along the x-axis corresponds 

significantly to the ratio of tail sheath to transposon (gp135) expression (a similar trend was 

observed when the ratio of tail sheath to recombinase (gp136) expression is plotted on the 

samples, data not shown). Vectors for environmental variables are plotted on the nMDS, 

showing that pH (towards lysogenic) and concentration of total dissolved solids (towards lytic) 

contributed most significantly to position along the x-axis. Total dissolved nitrogen and 

phosphorous also contributed to position along the x-axis, driving the position of samples 

towards greater expression of lytic genes or putative lysogenic genes, respectively. The dissolved 

oxygen concentration and water temperature also contributed, though more significantly to 

position along the y-axis. The BEST analysis of environmental variable contribution to 

expression of the entire phage genome confirmed these associations, and determined that water 

temperature, pH, and concentration of total dissolved solids, phosphorous, nitrogen, and oxygen 

concentrations were responsible for 33% of the variation in gene expression (p = 0.05). Phage 

gene expression was not correlated to toxin concentration (gp091: microcystin μg/L, ρ= -0.19, p 

= 0.2956; gp135: microcystin, ρ= 0.29, p = 0.099; gp136: microcystin, ρ= 0.25, p = 0.1623). 

Discussion 

 We surveyed community metatranscriptomes from natural populations of M. aeruginosa 

at “bloom densities” to describe the physiology and ecology of Microcystis, and in the process 

identified active phage infections by the Microcystis phage Ma-LMM01. We have analyzed 
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Figure 2.4. Environmental contribution to whole genome expression. A. Non-metric 

multidimensional scaling plot of Bray-Curtis dissimilarity between Microcystis-infecting phage 

whole genome expression for Lake Tai. Read abundance was normalized by library size and 

square root transformed. Ellipses represent minimum similarity between samples at the 40%, 

60%, and 80% levels. Symbols have been colored based on the log2 transformed gp091:gp135 

expression ratio to denote lytic (black) vs lysogenic (red) dominated states.  Environmental 

variables identified in the BEST analysis have been correlated (Pearson) with similarity between 

samples and plotted as vectors, indicating the direction on the 2-dimensional plane with which 

they correlated.  
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these data in light of available nutrient concentrations, toxin levels, and environmental conditions 

to predict how lake chemistry and climate influenced Microcystis phage gene expression. Our 

observations suggest that expression across the entire phage genome appears to have switched 

between the expression of genes involved in active viral replication (i.e., the lytic cycle), and the 

expression of genes that have been proposed to allow the phage to integrate into the host genome 

(i.e., lysogeny). Lastly, we found that the expression of phage genes appears to have been 

strongly associated with total dissolved solids and pH as well as the availability of nutrients, 

specifically the relative abundance of nitrogen and phosphorous. These observations have given 

rise to three distinct hypotheses: 1.) These correlations and co-occurrences are the product of 

random chance; 2.) The pattern of gene expression represents a novel physiological interaction 

(the purpose of which is currently unclear) between this phage and its host and was independent 

of lysogeny; 3.) The results indicate that Microcystis phage were actively switching between 

lytic and lysogenic cycles. We address these conclusions below within the context of factors that 

drive freshwater microbial communities.  

 The possibility that observed patterns in phage gene expression were the result of random 

chance is not supported by our analyses. The observation of similar expression patterns across 

Lake Tai suggests the mechanism by which Microcystis-infecting phage regulate gene 

expression has been largely conserved and is important for this virus’s survival. Previous 

attempts to describe Ma-LMM01 transcriptional regulation in the laboratory relied on ORF 

orientation in the virus genome sequence, which yielded two general groups of genes: an “early” 

gene region containing 144 genes that were suggested to be responsible for nucleotide 

metabolism and genome replication, and a late gene region, encoding the remaining 40 genes, 

believed to encode phage structural components (Yoshida et al., 2008).  A subsequent study used 
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q-rtPCR in culture to measure transcripts of the viral tail sheath (gp091), a putative late gene, and 

the gene for the phycobilisome degradation protein (NblA), a putative early region gene 

(Yoshida-Takashima et al., 2012). They observed a temporal separation of expression between 

the two genes and hypothesized that the larger gene regions were consistent with early/late phage 

gene expression, a regulation strategy observed in other cyanomyoviruses (Clokie et al., 2006).  

The disconnect between the regions identified by Yoshida and colleagues with our clustering is 

not surprising: in dealing with natural populations (unlike lab studies), we were most likely 

dealing with non-synchronous infections.  Indeed, that there are statistically relevant 

relationships within the expression data suggests there are strong environmental controls on lytic 

vs lysogenic decisions.  

 A second potential explanation for our observations, that switching between expression 

states is unrelated to lysogeny, remains plausible. Much of the gene expression we attributed to 

genome integration originates in the virus’ three putative-transposases (gp031, gp032, gp135) 

and the recombinase (gp136), all of which have some homologues in different strains of M. 

aeruginosa and other cyanobacteria. Transposase gp135 belongs to a potential family of mobile 

elements, IS607, which was originally identified in Helicobacter pylori (Kersulyte et al., 2000). 

IS607 representatives encode a corresponding serine recombinase (gp136 in Ma-LMM01) and 

together, this gene pair is widespread amongst sequenced cyanobacteria (Kuno et al., 2010). 

While these genes can be phylogenetically resolved across the length of the insertion sequence, 

determining the genomic origin of short sequencing reads is more challenging. Our pplacer 

phylogenetic tree (Figure 2.5) demonstrates the majority of reads were identified as viral in 

origin, but the dearth of sequenced phage genomes related to Ma-LMM01 makes it difficult to 

evaluate the consistency of IS607 in viruses. Additionally, the IS607 encoded serine recombinase 
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is atypical in structure amongst other similar enzymes. The DNA-binding and catalytic domains 

are flipped in orientation, resulting in a recombinase that acts via a modified mechanism, leading 

to a significant reduction in insertion site specificity (Boocock & Rice, 2013). At the outset, it is 

not known how this would influence activity of the insertion sequence in the context of viral 

infection, nor how it could play a role in lysogeny, but we speculate that decreased binding 

specificity might better allow integration of the virus into the notoriously plastic M. aeruginosa 

genome (Kaneko et al., 2007, Steffen et al., 2014). It should also be noted that the presence of 

insertion sequences in phage genomes are very rare, as they can negatively impact virus survival 

(Sakaguchi et al., 2005). 

 That observed shifts in Microcystis-phage gene expression represent active genome 

integration (lysogeny) are the most consistent with our observations and those in other systems.  

Moreover, that this process is tied to nutrient availability in the water column gives this 

observation significant ecological relevance.  The formation of a lysogen would explain why 

putative lysogenic genes are conserved in the phage genome in a variety of geographic locations 

(Steffen et al., 2015). There is a broad literature suggesting that phage have adapted to replicate 

or integrate depending on the conditions that favor the growth or senescence of their particular 

host (Miller & Day, 2008, Paul, 2008, Payet & Suttle, 2013, Brum et al., 2016). Nutrient 

availability has long been associated with the formation of prophage in environmental systems, 

though it is generally thought to inhibit induction indirectly by limiting the material available to 

produce viral progeny, rather than by direct sensing for lysis-lysogeny decision making 

(McDaniel & Paul, 2005). In better characterized phage-host systems, such as Lambda phage, 

the richness of the growth medium modulates signals in host metabolism that influence the lysis-

lysogeny decision (Wilson et al., 2002). Unfortunately, our ability to determine the mechanism 
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Figure 2.5. Phylogenetic distribution of IS607 reads. Bootstrapped phylogenetic tree of the 

mobile element IS607 where branch widths indicate abundance of Lake Tai dataset reads 

mapping to that branch. Branches belonging to the Microcystis phage are colored red. 
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of action from metatranscriptomic data is limited, and the lack of similarity to better 

characterized phage systems, such as Lambda phage, makes comparisons with Microcystis phage 

difficult to draw at this time. This is further complicated by the current unavailability of 

Microcystis-infecting phage for controlled studies. That said, it is clear from the consensus of the 

scientific community that we cannot discount the importance of this (and similar) environmental 

molecular studies (Simmonds et al., 2017). 

That Microcystis blooms can proliferate to massive densities (Steffen et al., 2014) and yet 

somehow escape infection by the community of abundant phage (Long & Short, 2016) remains a 

perplexing ecological problem. This may be explained by the ability to resist infection by lytic 

viruses due to lysogen-induced resistance to superinfection. Indeed, while many observations lie 

in contrast, other studies that have suggested a “Piggyback-the-winner” model (Knowles et al., 

2016), which proposes that the spread of viral genomic material is best served by lysogenizing 

rapidly growing host cells that can persist at high densities. Clues to how this occurs 

mechanistically may lie in the uncharacterized genes coexpressed with the transposase and 

recombinase, namely gp171 and gp067. While neither of these genes have close hits in the NCBI 

database, their implied relationship with the putative lysogenic genes suggests involvement in 

prophage maintenance. However, without culture work to identify their function, this remains 

speculation.  

 We observed that Microcystis phage gene expression could consistently be detected in 

Microcystis blooms and that a dramatic shift expression of lytic vs lysogenic gene groups was 

tied to environmental cues.  Although the cause and effect of these cues needs further study, we 

hypothesize that Microcystis-infecting phage may actively integrate into the host genome – a 

state that can be distinguished from the lytic cycle via the relative transcription of gp091 and 
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gp135. While these new observations need continued validation and a better resolution of 

mechanistic controls, this study demonstrates that phage may have a strong influence population 

dynamics of this harmful bloom forming species.  

  



49 
 

Acknowledgments 

We gratefully acknowledge Taihu Laboratory for Lake Ecosystem Research (TLLER), Jingchen 

Xue and Dr. Keqiang Shao for helping with sample collection and water chemical analysis. We 

also thank Drs. Gary LeCleir, Hans Paerl, Silvia Newell, Mark McCarthy, Guangwei Zhu, 

Boqiang Qin and Ferdi Hellweger for assistance and valuable discussions.  

  



50 
 

Chapter II Appendix 

Table 2.1. Name, date, time, and location of each of the samples taken from Lake Tai and used 

for metranscriptomic sequencing. Also recorded is the environmental data collected for each 

sample, including water temperature during sampling (WaterTem °C), electric conductivity 

(EC), concentration of total dissolved solids (TDS), salinity (Sal), pH, nephelometric turbidity 

unit (NTU), YSI chlorphyll (YSI-CHL), phycocyanin (PC), dissolved oxygen (DO), Secchi 

depth (SD), depth of the lake at the sampling site (WaterDep), total nitrogen concentration (TN), 

total dissolved nitrogen concentration (TDN), ammonium concentration (NH4), total 

phosphorous concentration (TP), total dissolved phosphorous (TDP), phosphate concentration 

(PO4), and chlorophyll A concentration (CHLa). 

 Sample 
Name 

MG-RAST 
Sample ID 

Date Time Latitude Longitud
e 

WaterTem(ºC) EC(μS/cm) TDS(g/L
) 

Sal(‰
) 

T06_1 mgm4663025.3 6/7/2014 9:12 120.1906
7 

31.51317 24.80  670 0.437  0.33  

T06_2 mgm4663263.3 6/7/2014 17:26 120.2205
5 

31.41747 27.87  712 0.439  0.33  

T06_3 mgm4663272.3 6/7/2014 16:47 120.2294
5 

31.39438 26.87  689 0.433  0.32  

T06_4 mgm4663273.3 6/7/2014 8:34 120.1879
6 

31.43609 23.72  637 0.424  0.32  

T06_5 mgm4663274.3 6/7/2014 9:49 120.1163
8 

31.44719 25.31  632 0.408  0.30  

T06_7 mgm4663278.3 6/7/2014 12:11 120.1801
7 

31.33833 25.32  608 0.392  0.29  

T06_9 mgm4663280.3 6/7/2014 11:07 119.9450
0 

31.3145 26.45  699 0.442  0.33  

T07_1 mgm4664215.3 7/3/2014 13:17 120.1906
7 

31.51317 26.03  620 0.359  0.29  

T07_2 mgm4664214.3 7/3/2014 12:31 120.2205
5 

31.41747 27.26  665 0.415  0.31  

T07_3 mgm4664209.3 7/3/2014 17:53 120.2294
5 

31.39438 27.96  691 0.425  0.32  

T07_4 mgm4664210.3 7/3/2014 8:42 120.1879
6 

31.43609 24.64  647 0.423  0.32  

T07_5 mgm4664213.3 7/3/2014 13:46 120.1163
8 

31.44719 25.24  590 0.382  0.28  

T07_6 mgm4664212.3 7/3/2014 14:38 120.0281
7 

31.45001 26.69  558 0.351  0.26  

T07_8 mgm4664211.3 7/3/2014 14:54 120.0318
2 

31.39761 27.85  570 0.352  0.26  

T07_9 mgm4664208.3 7/3/2014 15:22 119.9450
0 

31.3145 26.14  602 0.383  0.28  

T08_1 mgm4664613.3 8/14/201
4 

8:00 120.1906
7 

31.51317 26.70  543 0.342  0.25  

T08_2 mgm4664610.3 8/14/201
4 

6:50 120.2205
5 

31.41747 26.47  557 0.352  0.26  

T08_4 mgm4664609.3 8/14/201
4 

7:30 120.1879
6 

31.43609 26.70  557 0.351  0.26  
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Table 2.1. Continued. 

 Sample 
Name 

MG-RAST 
Sample ID 

Date Time Latitude Longitud
e 

WaterTem(ºC) EC(μS/cm) TDS(g/L
) 

Sal(‰
) 

T08_5 mgm4664612.3 8/14/201
4 

8:30 120.1163
8 

31.44719 26.65  552 0.348  0.26  

T08_8 mgm4664608.3 8/14/201
4 

9:30 120.0318
2 

31.39761 26.61  467 0.294  0.22  

T08_9 mgm4664611.3 8/14/201
4 

10:00 119.9450
0 

31.3145 26.68  517 0.326  0.24  

T09_1 mgm4664691.3 9/9/2014 14:15 120.1906
7 

31.51317 27.37  542 0.337  0.25  

T09_3 mgm4664695.3 9/9/2014 18:14 120.2294
5 

31.39438 27.60  524 0.324  0.24  

T09_4 mgm4664697.3 9/9/2014 13:52 120.1879
6 

31.43609 27.41  532 0.331  0.24  

T09_5 mgm4664692.3 9/9/2014 14:43 120.1268
4 

31.44614 28.25  515 0.315  0.23  

T09_6 mgm4664696.3 9/9/2014 15:12 120.0281
7 

31.45001 27.38  470 0.292  0.21  

T09_7 mgm4664694.3 9/9/2014 16:57 120.1801
7 

31.33833 27.12  482 0.301  0.22  

T09_8 mgm4664690.3 9/9/2014 15:33 120.0318
2 

31.39761 27.55  486 0.301  0.22  

T10_1 mgm4663615.3 10/8/201
4 

8:15 120.1906
7 

31.51317 21.29  492 0.344  0.26  

T10_2 mgm4663618.3 10/8/201
4 

13:30 120.2205
5 

31.41747 21.91  473 0.327  0.24  

T10_3 mgm4663619.3 10/8/201
4 

13:15 120.2294
5 

31.39438 22.71  469 0.319  0.24  

T10_4 mgm4663617.3 10/8/201
4 

7:45 120.1879
6 

31.43609 20.69  475 0.337  0.25  

T10_6 mgm4663620.3 10/8/201
4 

9:30 120.0281
7 

31.45001 21.47  512 0.357  0.27  

T10_7 mgm4663630.3 10/8/201
4 

11:45 120.1801
7 

31.33833 22.20  467 0.321  0.24  

T10_9 mgm4663634.3 10/8/201
4 

10:30 119.9450
0 

31.3145 21.70  479 0.322  0.25  
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Table 2.2. Environmental data collected for each sample, including pH, nephelometric turbidity 

unit (NTU), YSI chlorphyll (YSI-CHL), phycocyanin (PC), dissolved oxygen (DO), Secchi 

depth (SD), depth of the lake at the sampling site (WaterDep), total nitrogen concentration (TN), 

total dissolved nitrogen concentration (TDN), ammonium concentration (NH4), total 

phosphorous concentration (TP). 

 Sampl
e 
Name 

pH NTU YSI-
CHL(μg/
L) 

PC 
(cells/mL
) 

DO(%
) 

DO(mg/L
) 

SD(cm
) 

WaterDep(
m) 

TDN 
(mg/L
) 

NH4 
(mg/L
) 

TP 
(mg/L) 

TN 
(mg/L
) 

T06_1 8.19  13.3  15.2  2831  113.9  9.43  40 2.0  2.50  0.077  0.092  2.97  

T06_2 8.77  26.4  45.1  11107  128.7  10.08  15 1.2  1.83  0.076  1.176  17.23  

T06_3 9.08  10.0  22.4  5050  145.0  11.56  40 1.8  1.99  0.071  0.515  9.39  

T06_4 8.35  19.5  6.7  7456  106.7  9.01  45 2.4  2.09  0.068  0.136  3.55  

T06_5 7.94  18.1  11.1  1374  54.4  4.46  30 2.8  3.89  0.827  0.728  10.77  

T06_7 8.31  21.8  4.8  2125  113.5  9.31  30 2.6  1.79  0.076  0.077  2.38  

T06_9 8.18  23.2  17.0  2516  90.4  7.26  20 1.5  3.18  0.928  0.215  4.02  

T07_1 8.75  20.8  5.0  2482  106.7  8.64  30 2.4  1.40  0.084  0.0602  1.78  

T07_2 8.90  143.
8  

17.4  62212  98.3  7.79  0 1.5  1.17  0.119  0.2333  4.21  

T07_3 9.73  24.6  7.6  10098  145.0  11.34  30 2.1  1.04  0.055  0.0940  1.94  

T07_4 9.03  39.4  5.9  9534  99.9  8.29  30 2.7  1.06  0.138  0.2292  4.94  

T07_5 8.99  25.3  13.0  2304  76.0  6.24  30 3.2  2.78  0.338  0.1216  3.30  

T07_6 9.01  21.0  15.9  7035  136.0  10.91  40 2.0  4.07  1.313  0.1744  4.86  

T07_8 9.11  18.5  4.0  6043  113.9  8.93  60 2.5  4.62  1.304  0.1739  5.24  

T07_9 8.93  33.4  9.0  1425  47.5  3.84  30 1.8  4.20  1.672  0.2273  4.66  

T08_1 9.57  57.9  12.0  22185  82.6  6.60  35 2.5  0.71  0.094  0.162  1.38  

T08_2 8.98  51.5  8.0  18561  29.1  2.33  40 1.5  1.35  0.652  0.203  2.40  

T08_4 9.38  37.7  10.8  21232  92.3  7.38  50 2.9  0.53  0.063  0.152  1.55  

T08_5 9.38  71.3  18.6  36136  58.0  4.64  25 3.1  1.29  0.283  2.132  21.52  

T08_8 9.32  41.3  12.7  21316  84.7  6.79  40 2.7  1.63  0.606  0.324  2.72  

T08_9 9.20  45.0  12.0  2159  36.9  2.95  32 2.2  2.97  1.155  0.343  3.73  

T09_1 10.0
3  

28.2  21.6  10618  126.2  9.98  40 2.6  0.52  0.070  0.1704  1.33  

T09_3 9.96  31.4  10.6  8714  121.6  9.57  30 2.2  0.58  0.109  0.4505  4.52  

T09_4 9.60  33.2  12.5  9345  117.9  9.32  40 3.0  0.53  0.087  0.2040  1.39  

T09_5 9.76  881.
9  

82.6  239256  67.7  5.27  0 2.7  1.31  0.363  11.686
0  

48.17  

T09_6 9.88  27.3  15.3  32381  139.5  11.03  20 2.2  1.22  0.423  1.7083  17.79  

T09_7 9.94  25.0  12.6  15009  159.0  12.63  30 3.1  0.67  0.162  4.2445  39.33  

T09_8 9.98  57.6  17.7  29456  151.5  11.94  20 2.7  1.17  0.123  0.6253  7.01  
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Table 2.2. Continued. 

 Sampl
e 
Name 

pH NT
U 

YSI-
CHL(μg/L
) 

PC 
(cells/mL
) 

DO(%
) 

DO(mg/L
) 

SD(cm
) 

WaterDep(
m) 

TDN 
(mg/L
) 

NH4 
(mg/L
) 

TP 
(mg/L
) 

TN 
(mg/L
) 

T10_1 9.38  34.2  34.2  4989  68.6  6.07  30 2.4  0.77  0.097  0.141  1.37  

T10_2 10.0
5  

48.5  15.3  4267  32.1  2.81  25 1.5  0.64  0.123  1.199  12.66  

T10_3 9.94  79.1  23.2  43149  76.8  6.60  20 2.3  0.58  0.086  1.925  20.86  

T10_4 9.52  43.1  13.0  8814  103.2  9.25  30 2.8  0.66  0.140  0.137  1.24  

T10_6 9.17  23.1  22.9  3006  97.6  8.61  40 2.0  2.56  0.550  0.182  2.92  

T10_7 9.77  47.0  20.5  13945  32.8  2.85  25 3.1  0.62  0.131  1.905  20.34  

T10_9 9.21  85.9  31.3  15407  21.9  1.93  10 2.0  2.10  0.382  0.374  3.87  
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Table 2.3. Environmental data collected for each sample, including total dissolved phosphorous 
(TDP), phosphate concentration (PO4), and chlorophyll A concentration (CHLa). 

Sample Name TDP (mg/L) PO4 (mg/L) CHLa (μg/L) 

T06_1 0.028  0.005  40.18  

T06_2 0.029  0.006  959.76  

T06_3 0.027  0.005  370.29  

T06_4 0.027  0.009  54.01  

T06_5 0.093  0.069  368.28  

T06_7 0.010  0.012  27.34  

T06_9 0.093  0.061  48.21  

T07_1 0.0200  0.006  18.75  

T07_2 0.0167  0.003  119.33  

T07_3 0.0193  0.013  46.87  

T07_4 0.0183  0.004  319.92  

T07_5 0.0364  0.021  38.13  

T07_6 0.0745  0.054  40.62  

T07_8 0.0779  0.058  42.41  

T07_9 0.1283  0.101  15.25  

T08_1 0.080  0.050  74.58  

T08_2 0.037  0.019  71.61  

T08_4 0.037  0.015  89.22  

T08_5 0.061  0.036  3257.60  

T08_8 0.188  0.162  100.72  

T08_9 0.138  0.112  21.11  

T09_1 0.0746  0.060  57.14  

T09_3 0.0667  0.053  249.59  

T09_4 0.0686  0.058  50.89  

T09_5 0.0343  0.059  16182.00  

T09_6 0.0487  0.029  3414.96  

T09_7 0.0452  0.027  1204.72  

T09_8 0.0800  0.058  307.12  

T10_1 0.064  0.054  32.6  

T10_2 0.056  0.044  1037.9  

T10_3 0.032  0.021  1622.1  

T10_4 0.055  0.044  29.7  

T10_6 0.098  0.082  37.5  

T10_7 0.037  0.026  1507.6  

T10_9 0.073  0.058  97.5  
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Table 2.4. Statistics from mapping metatranscriptomic reads to reference genomes from each of 

the Lake Tai samples. Cells show the total number of reads mapped to each of the given 

genomes during competitive read mapping with a 0.9 similarity and a 0.9 length fraction cutoff. 

Organism M. a NIES-843 M. a NIES-
2549 

M. a NIES-
2481 

M. p FACHB-
1757 

Cyanothece sp. 
PCC7424 

Phage 
LMM01  

Phage MaMV-
DC 

S. elongatus 
PCC6301 

Accession AP009552 CP011304 CP012375 CP011339 CP001287 AB231700 KF356199 AP008231 

T06_1 Reads 2473749 1509966 1227663 2304363 37536 9660 11392 21183 

T06_2 Reads 6838254 2350396 2407783 5756943 3043 19598 23946 1576 

T06_3 Reads 6270643 2758914 2564920 5397864 3137 11938 14618 1251 

T06_4 Reads 5501927 3028906 2569714 4839264 4755 32807 41931 4395 

T06_5 Reads 6830252 3606800 3399024 7152728 2022 24223 30434 1101 

T06_7 Reads 3317484 1908777 1608661 2949165 5585 5361 6759 979 

T06_9 Reads 4178215 2405015 2050113 3823548 5202 21325 27033 3449 

T07_1 Reads 2138281 1102837 938708 1774927 9008 3303 3510 10539 

T07_2 Reads 5707816 2768949 1776582 5311607 1001 7305 8526 973 

T07_3 Reads 4349279 1691464 1582329 3563322 2788 7434 8523 1711 

T07_4 Reads 5635475 2780756 2481940 5481052 4052 4956 5704 2256 

T07_5 Reads 5900773 3033124 2791331 5299654 1166 20886 24705 1070 

T07_6 Reads 4995064 2396600 2091117 4201333 9762 14531 17239 6277 

T07_8 Reads 6779750 2949575 2673246 6333455 3472 16875 19140 2201 

T07_9 Reads 40590 31045 32837 55249 50741 49 34 60581 

T08_1 Reads 5105630 2633705 3210020 5269680 6720 7276 6911 5947 

T08_2 Reads 5150118 2394107 2969943 5942550 4190 4151 2591 3519 

T08_4 Reads 3938926 1783820 2427106 3944607 6654 7162 7317 7191 

T08_5 Reads 4741519 2174513 2646983 5801168 2490 3784 2424 2380 

T08_8 Reads 4797307 1902221 2283664 4892917 2718 2699 1593 2694 

T08_9 Reads 99338 76684 76165 99170 36441 68 42 30176 

T09_1 Reads 1958698 950902 975932 1975702 71688 8140 9436 21297 

T09_3 Reads 3628908 1662078 1813394 3352006 12997 2607 2653 6990 

T09_4 Reads 3830668 2483296 2237795 3756592 24964 6512 7015 14943 

T09_5 Reads 5866740 2354633 2914317 6822543 1933 7594 5634 1648 

T09_6 Reads 5239495 2109641 2384288 6530059 3357 7539 4709 2704 

T09_7 Reads 5194491 2722388 2597321 5562852 4549 3436 2255 1325 

T09_8 Reads 6099883 2112075 2207356 5914912 2584 5601 4210 1752 

T10_1 Reads 4781943 1230389 1201007 2542002 16099 3544 2866 20623 

T10_2 Reads 7156145 2344360 2239095 4880539 4181 10471 8621 2500 

T10_3 Reads 5109756 2561678 2413870 5769641 4453 6644 6558 1516 

T10_4 Reads 5277495 1831066 1903650 4341048 6420 7541 5581 5104 

T10_6 Reads 3487391 1393729 1435160 3427383 18629 3980 2356 21352 

T10_7 Reads 9440537 4806299 4334415 8935964 22798 57073 66796 29297 

T10_9 Reads 2352506 1092228 1020823 2163627 11213 11454 13012 15502 
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Table 2.5. Reference sequences used in Figure 2.5 and their accession numbers. 

Organism Accession Number 

Microcystis aeruginosa NIES-90 AB543092 

Microcystis aeruginosa NIES-90 AB543095 

Nodularia spumigena CCY9414 CP007203 

Trichodesmium erythraeum IMS101 CP000393 

Moraxella bovoculi strain 33362 CP011379 

Helicobacter pylori jhp1409 AF189015 

Cyanothece sp. PCC 7822 CP002198 

Dactylococcopsis salina PCC 8305 CP003944 

Halothece sp. PCC 7418 CP003945 

Arthrospira platensis YZ CP013008 

Rivularia sp. PCC 7116 CP003549 

Cyanothece sp. PCC 7424 CP001291 

Microcystis aeruginosa NIES-2481 CP012375 

Microcystis aeruginosa NIES-2549 CP011304 

Gloeocapsa sp. PCC 7428 CP003646 

Chamaesiphon minutus PCC 6605 CP003600 

Stanieria cyanosphaera PCC 7437 plasmid pSTA7437.01 CP003654 

Microcystis aeruginosa NIES-112 AB543093 

Microcystis aeruginosa NIES-604 AB543094 

Microcystis panniformis FACHB-1757 CP011339 

Microcystis aeruginosa RM6 AB543096 

Microcystis Phage Ma-LMM01 AB231700 

Microcystis Phage MaMV-DC KF356199 
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Table 2.6. Branches collapsed in Figure 2.3. Each of the collapsed branches is identified by the 

letter from Figure 2.3, and beneath are listed the genes whose expression patterns were 

statistically indistinguishable by hierarchical clustering. 

Collapsed 
Branch 

Gene 
Code 

Gene 
Code 

Gene 
Code 

Gene 
Code 

Gene 
Code 

Gene 
Code 

Gene 
Code 

Gene 
Code 

Gene 
Code 

Gene 
Code 

Gene 
Code 

Gene 
Code 

Gene 
Code 

A gp031 gp032 
           

B gp146 gp147 gp15 
          

C gp138 gp151 
           

D gp027 gp043 
           

E gp154 gp066 gp150 gp068 gp155 
        

F gp047 gp158 
           

G gp152 gp052 gp058 
          

H gp061 gp054 gp055 
          

I gp007 gp022 
           

J gp040 gp044 gp179 gp163 gp041 gp030 gp164 gp162 gp161 gp122 gp124 gp123 gp160 

K gp059 gp075 
           

L gp016 gp029 
           

M gp023 gp024 
           

N nblA gp063 
           

O gp159 gp026 gp034 gp172 gp175 gp184 gp013 gp028 gp131 gp174 gp177 gp004 gp021 

O (cont.) gp014 gp181 nrdA gp170 gp176 gp180 gp178 gp003 gp173     

P gp060 gp020 gp045 rIIA gp025 gp072 gp009 gp084 
     

Q gp017 gp183 gp019 gp039 gp165 gp051 gp168 gp169 gp166 gp167 
   

R gp073 gp116 
           

S nrdB recA gp088 
          

T gp091 gp092 gp086 gp087 gp085 gp081 gp083 
      

U gp137 gp141 
           

V gp078 gp129 
           

W gp065 gp069 
           

X gp010 gp099 gp064 gp098 gp080 gp095 
       

Y gp012 gp079 
           

Z gp035 gp133 
           

AA gp076 gp097 gp096 gp128 gp053 gp036 gp134 gp074 gp130 
    

BB gp125 gp126 
           

CC gp101 gp094 gp113 gp114 gp120 gp093 gp112 
      

DD gp100 gp103 gp106 gp089 gp108 gp102 gp118 gp0109 gp115 gp111 gp117   

DD 
(cont.) 

gp105 gp107 gp119           
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CHAPTER III: 

NOVEL VIRUSES WITHIN SPHAGNUM PEAT IDENTIFIED BY HIGH-
THROUGHPUT TRANSCRIPT SEQUENCING DATA 
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Abstract 

Sphagnum peat bogs play an important role in global carbon storage, while also 

representing significant sources of economic and ecological value. Despite recent efforts to 

describe microbial diversity and metabolic potential of the Sphagnum microbiome, very little is 

known about the viral constituents of the community. Moreover, previous studies have focused 

on metagenomic sequencing to describe the resident Sphagnum microbes, restricting information 

to relative abundance and functional potential, rather than microbial activity. In this study, we 

used metatranscriptomics to describe the diversity and activity of viruses infecting hosts within 

the Sphagnum peat bog microbiome. Six Sphagnum tissue samples were obtained from peat bogs 

in Northern Minnesota and total RNA was extracted and sequenced. Metatranscriptome libraries 

were assembled and contigs screened for the presence of conserved viral marker genes. Using 

the phage major capsid protein, gp23, as a phylogenetic marker for phage, we identified 33 

contigs representing phage strains active in the community. Similarly, RNA-dependent RNA 

polymerase and the NCLDV major capsid protein were used as markers for single-stranded RNA 

viruses and giant viruses, respectively. In total 114 contigs were identified as originating in 

currently undescribed ssRNA viruses, 22 of which represent near-complete RNA virus genomes 

encoding multiple genes. An additional 64 contigs were identified as being from novel giant 

viruses, many of which with significant similarity to the recently discovered Klosneuviruses, and 

7 contigs were identified as putative virophage. Quantitative information from sequence read 

mapping was used to generate correlation co-occurrence networks with expression of host 

housekeeping gene rpb1. Clusters of co-expression were used to predict virus-host relationships, 

identifying 11 potential partnerships or groups. Together, our methods offer new tools for the 

identification of virus diversity in understudied clades, and suggest viruses play a considerable 

role in the ecology of the Sphagnum microbiome. 



61 
 

Introduction 

Peat bogs represent one of the most significant biological carbon sinks on the planet, 

storing an estimated 25% of all terrestrial carbon in the form of partially decomposed organic 

matter. This accumulation of carbon is achieved through much slower rates of respiration and 

decomposition, due in large part to the low pH, nutrient-poor, and anaerobic environments 

created by the dominant moss population (van Breemen, 1995, Lamers et al., 2000), of which the 

genus Sphagnum is most prevalent (Turetsky, 2003, Turetsky et al., 2012). As these 

environmental conditions favor the growth of Sphagnum over vascular plants, primary 

production is dominated by the moss, which further retards decomposition due to production of 

antimicrobial compounds such as sphagnic acid (Verhoeven & Liefveld, 1997, Freeman et al., 

2001, Mellegard et al., 2009) and sphagnan (Stalheim et al., 2009, Hajek et al., 2011). Despite 

this, Sphagnum and other peat mosses cultivate a diverse, symbiotic microbiome that appears to 

abate nutritional gaps for the moss and generally contribute to the unique biogeochemical 

characteristics of the peatland ecosystem (Lin et al., 2014, Leppanen et al., 2015, Kostka et al., 

2016). In addition to their value as reservoirs for microbial diversity, the partially decomposed 

organic matter, known as Sphagnum peat, serves as an important economic resource for use in 

horticulture. Many peat bogs have begun to experience stress due to anthropogenic disturbances 

such as climate change (Dudova et al., 2013, Ireland et al., 2014, Swindles et al., 2015, Galka et 

al., 2017). As such, the Sphagnum microbiome is of considerable interest in peatland 

conservation and the ecosystem’s services to the surrounding environment. 

While some work has been done characterizing the microbes that colonize Sphagnum 

biomass using rRNA sequencing, very little is currently known about the ecological factors that 

define community structure. Studies suggest that subtle differences in pH and available nutrients 
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manipulated by different Sphagnum species and strains create distinct microbial consortia 

specific the moss host (Opelt et al., 2007, Bragina et al., 2013, Leppanen et al., 2015), while 

others observe a more homogenous community (Bragina et al., 2012), highlighting a need for 

further study. Culture-dependent experiments isolating endophytic bacteria indicates Sphagnum 

cultivates symbionts with antifungal activity (Opelt & Berg, 2004, Opelt et al., 2007) and 

nitrogen fixation (Leppanen et al., 2015), which may be passed on vertically to the moss progeny 

(Bragina et al., 2013). Though environmental conditions and host-microbe symbiotic interactions 

are fundamental to the structure and function of microbial communities, the influence of virus 

populations on the Sphagnum microbiome remains almost entirely unexplored. Viruses are the 

most abundant biological entities on Earth, and play important roles in global ecosystems by 

driving the evolution of their hosts through predator-prey interactions and horizontal gene 

transfer (Brussaard et al., 2008). In addition, viruses lyse single-celled primary producers and 

heterotrophs, releasing bioavailable nutrients tied up in the biomass of prokaryotes and 

eukaryotic protists (Jover et al., 2014). Viruses also act as a top-down control on the composition 

and evenness of microbial communities by targeting hosts that reach higher cell densities, a 

phenomenon referred to as the “kill-the-winner” model (Thingstad & Lignell, 1997). 

 As culturing viruses requires hosts that can be grown in a lab, environmental viruses are 

poorly understood and represented in reference databases. Previous efforts to describe 

environmental viromes have focused on DNA sequencing through metagenomics, usually by 

filtering virus particles based on size and density, followed by high-throughput sequencing. 

While this method has proven very powerful, rapidly expanding available reference material for 

bacteriophage (Roux et al., 2016, Simmonds et al., 2017), it leaves the considerable diversity of 

RNA viruses largely untapped (Steward et al., 2013). Moreover, selecting for viruses based on 
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size filters out giant viruses that have been shown to be both environmentally relevant and 

phylogenetically informative (Yutin et al., 2009, Wilhelm et al., 2017). In addition, 

metagenomic sequencing limits observations to relative abundance of virus particles, such that 

inferences on viral activity require tenuous assumptions. The advent of high-throughput RNA 

sequencing offers viral ecologists the opportunity to study active infections in the environment, 

as viruses only produce transcripts inside a host, while also capturing fragments of RNA virus 

genomes. Moreover, when sequencing is of sufficient depth and multiple samples are collected 

with spatial and temporal variability, these data present an opportunity to develop hypothetical 

relationships between virus and host markers (Moniruzzaman et al., 2017). 

 In this study, we analyzed metatranscriptomes from the microbial community inhabiting 

the Sphagnum peat bogs of northern Minnesota, with the goal of describing the active viral 

constituents of the Sphagnum microbiome. Using marker genes conserved within several viral 

taxa, we identified an active and diverse bacteriophage population, largely undescribed in 

previous studies. We also identified a diverse consortium of “giant” viruses and potentially 

corresponding virophage, including several viruses closely related to the recently discovered 

Klosneuviruses (Schulz et al., 2017), actively infecting hosts in the environment. Finally, a 

number of novel positive-sense ssRNA viruses, some of which have been assembled into near 

complete genomes, were observed. With this information in hand we developed statistical 

network analyses to relate co-expression of viral marker genes with housekeeping genes from 

potential hosts, proposing several virus-host groups that can be further tested in a laboratory 

setting. Together, these results demonstrate new potential model systems to study virus-host 

interactions in the peat bog ecosystem, and provide insight into the significant viral influence on 

the Sphagnum microbiome. 
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Materials and Methods 

Sample collection and Survey of Environmental Conditions 

Triplicate individual plants of Sphagnum magellanicum and Sphagnum fallax were 

collected on August 2015 from the SPRUCE experiment site at the S1 bog on the Marcell 

Experimental Forest (U.S. Forest Service http://mnspruce.ornl.gov/). The S1 Bog is an acidic and 

nutrient-deficient ombrotrophic Sphagnum-dominated peatland bog (surface pH≤4.0) located 

approximately 40 km north of Grand Rapids, Minnesota, USA (47◦30.476′ N; 93◦27.162′ W; 418 

m above mean sea level) (Wilson et al., 2016, Hanson et al., 2017, Warren et al., 2017). To 

characterize the Sphagnum virome, Sphagnum samples were collected as previously described. 

Briefly, randomly collected photosynthetically active Sphagnum stems (phyllosphere) were 

cleaned from unrelated plant debris, and frozen immediately on dry ice. Frozen samples were 

overnight shipped to the Georgia Institute of Technology for DNA and RNA extraction. 

RNA Extraction and Sequencing 

One gram of Sphagnum phyllosphere tissue was ground with a mortar and pestle under 

liquid nitrogen. The fine powder was transferred to 10 extraction tubes and total RNA was 

isolated using the PowerPlant RNA Isolation Kit with DNase according to the manufacturer's 

protocol (MoBio Laboratories, Carlsbad, CA, USA). DNA-depleted RNA was quantified using 

the Qubit RNA HS Assay Kit (Invitrogen, Carlsbad, CA, USA) and quality was assessed on the 

Agilent 2100 BioAnalyzer using the Agilent RNA 6000 Pico Kit (Agilent Technologies). 

Additionally, the absence of DNA contamination was confirmed by running a polymerase chain 

reaction using universal bacterial 16S rRNA primers 515F and 806R. Finally, RNA samples 

without detectible DNA contamination and exhibiting an RNA integrity number (RIN) > 6 were 

pooled. RNA samples were shipped to the Department of Energy Joint Genome Institute for 
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rRNA depletion, cDNA library preparation, and sequencing on the Illumina™ HiSeq2000 

platform using a single-end 250bp flow cell. 

RNA-Seq Data Processing 

Raw sequences were downloaded from the Department of Energy Joint Genome Institute 

server and processed using the CLC Genomics Workbench v. 10.0.1 (QIAGEN, Hilden, 

Germany). Reads below a 0.03 quality score cutoff were removed from subsequent analyses, and 

the remaining reads were trimmed of any ambiguous and low quality 5’ bases. Samples were 

subjected to a subsequent in silico rRNA reduction using the SortmeRNA 2.0 software package 

(Kopylova et al., 2012). Filtered paired reads were de novo assembled with cutoffs of 300 base 

minimum contig length and average coverage of 2, leaving a total of 705,526 contigs across all 

samples. Full RNA-seq libraries have been made publicly available on the JGI website under 

accession number Gp0146911. 

Screening Assemblies for Marker Genes 

 To identify contigs specific to the NucleoCytoplasmic Large DNA Virus (NCLDV) 

clade, contig libraries were screened for the presence of 10 genes previously identified as core 

NCLDV genes (Table 3.1) as previously described (Moniruzzaman et al., 2017, Stough & 

Wilhelm, 2017). Briefly, contig libraries were queried against NCVOG protein databases for 

each of the 10 marker genes in a Blastx search with a minimum e-value cutoff of 10-3. Resulting 

hits were then queried against the refseq protein database and only contigs with top hits to virus 

genes were used in subsequent analyses. A similar method was used to identify virophage 

transcripts, where the virophage major capsid protein and packaging ATPase genes were used as 

markers. 
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 Contigs derived from ssRNA viruses were identified by screening the contig library for 

RNA-dependent RNA Polymerase (RDRP). A BLAST database of RDRP sequences was 

downloaded from the pfam database (Finn et al., 2016) under code pf00680. Contigs were 

aligned using blastx with a minimum evalue of 10-4. Hits were queried against the refseq protein 

database and only hits to viral RDRP genes were retained for downstream analyses. 

 To identify RNA virus genome fragments, contig libraries were screened as described 

above using a core set of genes observed in RNA viruses (Table 3.2). BLAST databases for core 

RNA virus genes were constructed from reference sequences downloaded from pfam. Query 

sequences were then cross-referenced to identify contigs with hits to multiple RNA virus core 

genes. Only contigs > 1000 bases with at least one viral RDRP region were retained for further 

analysis. ORFs were predicted on these putative partial genomes using the CLC Genomics 

Workbench. Features on the partial genomes were predicted using the Pfam HMM domain and 

the NCBI Conserved Domain Database searches (Finn et al., 2015, Marchler-Bauer et al., 2015). 

Genome architecture was visualized using the Illustrator for Biological Sequences (IBS) 

software package (Liu et al., 2015). 

Phylogenetic Analysis 

 Reference sequences for viral marker genes were downloaded from the InterPro and 

RefSeq databases (Finn et al., 2017). Reference sequences were aligned using the MUSCLE 

alignment algorithm (Edgar, 2004) in the MEGA v7.0.26 software package (Kumar et al., 2016). 

Maximum likelihood phylogenetic trees were constructed in PhyML (Guindon et al., 2010) with 

the LG substitution model and the aLRT SH-like likelihood method. Selected contigs assembled 

from the metatranscriptomes were translated into proteins according to the reading frame of the 

top BLAST hit. Translated proteins were placed on the reference trees in a maximum likelihood 
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framework in pplacer (Matsen et al., 2010). Trees with abundance data were visualized using the 

iToL web interface (Letunic & Bork, 2016). 

Statistical Analysis 

 Quality filtered and trimmed reads were stringently mapped to the selected contigs (0.97 

identity fraction, 0.7 length fraction) in CLC Genomics Workbench 10.0.1. Expression values 

were calculated as a modification of the TPM metric. Read counts were normalized by contig 

length in kb to determine the reads per kilobase (RPK) values for every contig within each 

library. These RPK values were then summed and divided by 1 million, to determine the 

sequencing depth scaling factor for each library. TPM for a contig was calculated by dividing its 

RPK value by the scaling factor for the library. 

Expression values for contigs were imported into the PRIMER7 (Clark & Gorley, 2015) 

statistical software package and log2 transformed. Group average hierarchical clustering was 

performed using Pearson’s correlation coefficient as the index of association. The SIMPROF test 

(Clarke et al., 2008) was used to determine the statistical significance level of resulting clusters 

(alpha = 0.05, 1000 permutations). Statistically significant clusters with at least one viral contig, 

one rpb1 contig and less than 10 total members were visualized and annotated in Cytoscape 3.5.1 

(Shannon et al., 2003). 

Results 

Identification of Resident Phage Populations 

To identify active bacteriophage in the peat bog metatranscriptomes, we screened contig 

libraries for the presence of four conserved phage genes: myovirus major capsid protein (gp23), 

phage portal protein (gp20), ribonucleotide reductase (rnr), and the lambda repressor (recA). 

Reads were mapped back onto conserved gene contigs, counted, and normalized for contig 
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length and library size. Across all six Sphagnum tissue samples, 33 contigs were identified as 

transcripts encoding major capsid protein originating from bacteriophage, while only 6 contigs 

were identified from the three other marker genes. Concurrent with this, more reads were 

mapped to gp23 contigs than the other marker genes combined, the most abundant of which were 

the three ribonucleotide reductase contigs.  

To determine the phylogeny of the gp23 contigs, we placed them on a maximum 

likelihood tree constructed using reference sequences downloaded from the InterPro database 

(Figure 3.1). Out of the 33 contigs, 18 are grouped in the Eucampyvirinae subfamily with 

Campylobacter viruses CP220 and PC18, while the rest are spread amongst the other Myovirus 

taxa, predominantly the Tevenvirinae.  Gb0139905 contig 77559 was the most abundant, with 

consistently high expression across all samples, whereas other contigs dominate within one or 

two samples. Of the 6 contigs identified using the other 3 viral marker genes, one was identified 

as a potential gp20 homologue, originating within Myoviridae with Clostridium virus phiCD119 

as the closest relative (Figure 3.2).  Two contigs were identified as recA contigs, likely 

originating in myovirus and siphovirus relatives (Figure 3.3), as were the remaining three contigs 

identified as ribonucleotide reductase transcripts (Figure 3.4). 

Novel ssRNA virus diversity and abundance 

 To determine RNA virus diversity within the Sphagnum microbiome, we screened the 

metatranscriptome libraries for contigs with homology to positive-sense ssRNA virus RNA-

dependent RNA polymerase. Contigs were placed on a reference RDRP tree to determine their 

phylogenetic identity (Figure 3.5). 114 contigs were identified as originating in RNA viruses, the 

majority of which belonged to the currently unassigned Barnaviridae and Astrovirus-like 

families. Additionally, a large number of Picornaviruses were observed, most of which were 
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Figure 3.1. Phylogenetic placement of identified phage major capsid protein contigs on a 

Myovirus gp23 maximum likelihood reference tree. Node support (aLRT-SH statistic) >50% are 

shown. Contig abundance (log2 transformed TPM) within each of the six samples is shown in the 

heatmap surrounding the tree. 
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Figure 3.2. Phylogenetic placement of identified phage portal protein contigs on a gp20 

maximum likelihood reference tree. Node support (aLRT-SH statistic) >50% are shown. 
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Figure 3.3. Phylogenetic placement of identified lambda repressor contigs on a RecA maximum 

likelihood reference tree. Node support (aLRT-SH statistic) >50% are shown.  
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Figure 3.4. Phylogenetic placement of identified phage ribonucleotide reductase contigs on a 

maximum likelihood reference tree. Node support (aLRT-SH statistic) >50% are shown. 
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closely related to the unclassified marine Aurantiochytrium single-stranded RNA virus, and 

Secoviridae plant viruses. Lastly, several contigs were closely related to the Nidovirales clade, 

which generally infect animal species. 

Among these, 22 contigs were found to be near complete ssRNA virus genomes (based 

on content and size), encoding multiple viral genes in addition to RDRP. Gene regions were 

identified and annotated using the NCBI conserved domain and PFam HMM search tools, and 

the full RDRP sequence was used to construct a maximum likelihood phylogenetic tree (Figure 

3.6).  Of the partial genomes observed, only 2 were missing conserved Rhv structural genes, and 

only one was missing the RNA virus Helicase. The majority of these contigs fall under the 

Picornavirales order, which also included some of the most complete viral genomes. As was 

observed with the shorter RDRP contigs above, most of the Picornavirus contigs were most 

closely related to either the unclassified marine species, or members of the Secoviridae clade, 

whose membership includes the Parsnip yellow fleck virus. A number of partial Picornavirus 

genomes were also identified as members of the Dicistroviridae. Outside the Picornavirales, 

most contigs clustered closely with the unassigned Astrovirus-like Phytophthora infestans RNA 

virus. In order to determine the relative abundance of RNA virus genomes in the peat bog 

samples, we mapped reads back to contigs and calculated TPM values to account for contig 

length and library size. The most abundant contig across all samples was 

Gb0139905_contig_3964, which was most closely related to the Rotifer birnavirus. All other 

contigs appear to be abundant prominently in one or two samples, and absent or in low 

abundance in the others, with no patterns of abundance apparent. 
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Figure 3.5. Phylogenetic placement of identified ssRNA virus RNA-dependent RNA polymerase 

contigs on maximum likelihood reference tree. Branch width represents the number of contigs 

placed on the reference branch. Node support (aLRT-SH statistic) >50% are shown.  
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Activity of giant viruses in the Sphagnum microbiome 

 To identify active infections by giant viruses, we screened contigs libraries for the 

presence of 10 genes conserved amongst most NCVLDs. Of the 10 markers used, only the giant 

virus major capsid protein was detected in the metatranscriptome. 64 contigs were observed with 

homology to MCP, representing every known group of NCLDVs (Figure 3.7). Out of the 64 

MCP contigs, 46 were placed within the Mimiviridae taxa. Most of these (25 contigs) are closely 

related to the recently discovered Klosneuviruses, with the Indivirus and Catovirus representing 

the most significant source of diversity in these samples. The next most abundant group were the 

“extended Mimiviridae” (7 contigs), species with known similarity to Mimiviruses that infect 

eukaryotic algae, and the Asfarviridae (6 contigs) which are primarily represented by the African 

swine fever Virus. Potential relatives of the giant virus outliers, Pandoravirus and Pithovirus, 

were not observed, and the Iridoviriae were poorly represented (1 contig). Using the virophage 

MCP and packaging ATPase as markers, we identified 7 contigs as transcripts originating in 

putative virophage, all of which were phylogenetically placed amongst freshwater isolates 

(Figure 3.8). 

 As described above, reads were mapped back onto contigs to determine the relative 

abundance of transcripts in the samples. As was observed with the other major viral taxa 

described, the majority of contigs were most abundantly expressed in one or two samples and 

present at very low levels in the rest. The most abundant MCP contig in the samples was 

Gb0139903 contig 73240, most closely related to Megavirus chilensis, which was the most 

highly expressed contig across all samples. Four other contigs (Gb0139907 contig 110585, 

Gb0139905 contigs 55722 and 141177, and Gb0139906 contig 119519) were highly expressed 

across all six samples. 
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Figure 3.6. Phylogeny, genome architecture, and abundance of partial ssRNA virus genomes. 

Tree represents phylogenetic placement of RDRP gene regions from partial ssRNA virus genome 

contigs on a maximum likelihood reference tree. Node support (aLRT-SH statistic) >50% are 

shown. Center panel represents genome architecture determined by conserved domain search and 

ORF prediction. Length of contigs and gene regions is measured in kb. Heat map in right panel 

shows abundance of reads mapped to partial genome contigs in log2 TPM from each of the 6 

metatranscriptome libraries. 
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Figure 3.7. Phylogenetic placement of identified NCLDV major capsid protein contigs on a 

maximum likelihood reference tree. Node support (aLRT-SH statistic) >50% are shown. Contig 

abundance (log2 transformed TPM) within each of the six samples is shown in a heatmap 

surrounding the tree. 
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Figure 3.8. Phylogenetic placement of identified virophage A.) major capsid protein and B.) 

ATPase contigs on a maximum likelihood reference tree. Node support (aLRT-SH statistic) 

>50% are shown. 
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Prediction of virus-host pairs 

 By comparing expression of viral marker genes to rpb1 expression by cellular organisms, 

we predicted potential virus-host groups in the Sphagnum peat bogs. Figure 3.9 shows networks 

containing at least one virus and one host, where co-occurrence and correlation were observed in 

more than one sample. A total of 11 virus-host groups were detected, spread across the major 

viral taxa detected in this dataset. Four relationships were predicted from bacteriophage gp23 

abundance, the simplest of which was a Tevenvirinae phage-Proteobacteria pair with a moderate 

correlation. The other 3 relationships are more complicated, containing multiple potential hosts 

and, for the largest predicted group, multiple viruses. Correlation coefficients for the phage-

bacteria clusters were lower than was observed in the other major viral taxa, with low to 

moderate correlations between viruses and bacteria. Higher correlation values were observed, but 

they are restricted to bacterium-bacterium interactions.  

We observed 3 predicted RNA virus-host clusters, all of which contained multiple hosts grouped 

with a single virus. Most of the predicted hosts are most closely related to plants, with multiple 

predicted animal hosts, primarily fish species. Correlation coefficients observed in these 

relationships are generally higher than was observed in the phage-host clusters, but with fewer 

clusters overall. The 4 predicted NCLDV-host clusters were the most highly correlated and the 

most complex. Predicted hosts are highly varied, ranging from diatoms to animals, though all 

virus members were placed either within Mimiviridae or the extended Mimivirus group. MCP 

contigs originating in close relatives of the recently discovered Klosneuviruses are present in 

both the 7- and 8-member clusters, in addition to a pair of contigs most closely related to 

Aureococcus anophagefferens Virus (AaV). An additional 15 statistically significant clusters 
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Figure 3.9. Correlation co-occurrence network analysis of conserved viral gene and host RNA 

polymerase (Rpb1) expression for A.) bacteriophage (Gp23), B.) ssRNA viruses (RDRP), and 

C.) NCLDVs (NCLDV MCP). Nodes in red represent virus contigs and blue nodes represent 

potential hosts. Host taxa were determined by best BLAST hit in a blastx search of the NCBI nr 

database. Nodes are connected by edges colored according to the Pearson correlation coefficient 

values between to contigs. Only relationships with contigs expressed in more than one sample 

are shown. 
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across all three viral taxa were observed where the virus and host were present in only one 

sample (not shown). 

Discussion 

In this study, we used community metatranscriptome data from Sphagnum tissue to 

describe the diversity and activity of the resident virus populations. We identified a considerable 

volume of novel viruses from multiple taxa, most of which are poorly represented in the 

literature and reference sequence databases. We used read mapping to quantify the relative 

abundance of viral transcripts and describe viral infections active when samples were taken. 

Lastly, we compared expression of viral transcripts to that of potential hosts, using correlation 

co-occurrence networks to predict potential hosts for the observed novel virus populations. 

Together, our results suggest that Sphagnum peat bogs represent a significant and largely 

untapped source of viral diversity. Viruses were highly active across all samples, some with 

individual viruses exhibiting abundant activity in single locations while others were more 

widespread. Our observations were based on RNA sequencing data, and thus most certainly do 

not represent a full accounting of the viruses present in the community. Metatranscriptomic data 

however allows us to distinguish active virus populations at the time of sampling. In addition, as 

viruses only transcribe their genes during infection, virus and host transcripts are expected to co-

occur, and it is possible that the abundance of transcripts could be used to predict natural hosts of 

viruses observed in the ecosystem which can be tested in a laboratory or field setting. Ultimately, 

this study identifies from within a complex community a number of candidate virus-host model 

systems for future study. 
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Viral diversity and activity in Sphagnum peat 

 Out of the 10 genes used to screen the metatranscriptomes for giant virus sequences, only 

MCP transcripts were detected, suggesting that other genes were likely expressed at much lower 

levels. This is not surprising given the number of capsid proteins needed for viral replication, and 

indeed this transcriptional pattern was previously observed in marine systems by Moniruzzaman 

et al. (2017). Additionally, the RNA-seq dataset used in that study was poly-A selected, 

enriching for eukaryotic transcripts, and thus coverage of eukaryotic virus gene expression 

would be much higher than in the Sphagnum metatranscriptome. That we observed MCP 

expression in abundance suggests a significant number of infections occurred at the time of 

sampling. Another point to note is the diversity; 64 distinct MCP genotypes were observed, 

which is incredibly high when compared to one recent survey that identified 30 novel MCP 

transcripts from multiple environmental datasets (Wilhelm et al., 2016), and another which 

observed 107 NCLDV sequences in 16 publicly available environmental metagenomes (Kerepesi 

& Grolmusz, 2017). Most of the MCP contigs identified here were placed in clusters around a 

small number of virus relatives, highlighting the under-sampled diversity of giant viruses in the 

literature, poor representation in reference databases, and the considerable diversity present in 

Sphagnum peat bogs. Similarly, a broad range of virophage transcripts were detected, indicating 

a significant response to infections by giant viruses in the system. Virophage are even more 

poorly represented in reference material, such that every available reference sequence is shown 

in Figure 3.9 and the novel sequences described here expand known representatives by more 

than half. All of the virophage observed in the Sphagnum microbiome are phylogenetically 

placed amongst freshwater isolates, and those that have been cultured infect the Mimiviruses and 

members of the extended Mimiviridae.  
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As was observed with the giant viruses, most RNA virus contigs were placed in clusters 

with a single represented species, suggesting a significant degree of uncharacterized diversity. 

This is not entirely surprising, as RNA viruses are expected to make up as much as half of the 

virus particles in the Earth’s oceans, and yet they are almost as poorly understood and 

represented in sequencing databases as giant viruses (Steward et al., 2013). This is in large part 

due to difficulty in detecting and quantifying the very small RNA virus particles (Tomaru & 

Nagasaki, 2007, Miranda et al., 2016), and the inability to detect their genetic material in 

metagenomes (Steward et al., 2013). As such, recent attempts to use metatranscriptomes to 

describe environmental RNA viruses have proven successful, not only identifying marker gene 

fragments in datasets, but assembling complete and near-complete genomes (Miranda et al., 

2016, Moniruzzaman et al., 2017). Similarly, we were able to assemble and identify 22 near-

complete RNA virus genomes, where completeness is determined primarily by size and the 

presence of the 6 core genes. As there are currently only 265 sequenced genomes within the 

Picornavirales, most of which grouped within the Picornaviridae, this represents a sizeable 

increase in the known diversity of ssRNA viruses, especially within the unassigned and 

unclassified taxa. 

Given the importance of bacteria in the Sphagnum microbiome (Kostka et al., 2016), the 

relatively low abundance of active bacteriophage in our samples was a surprise. Marker genes 

for identifying bacteriophage were chosen based on their conservation across phage taxa and 

their success in other environmental datasets. Gp20 (phage portal protein) and Gp23 (major 

capsid protein) have been shown previously to be highly conserved and effective for 

phylogenetic assignment of members of the Myoviridae (Dorigo et al., 2004, Comeau & Krisch, 

2008, Roux et al., 2012). RecA (lambda repressor) is conserved across all three bacteriophage 
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taxa and could illuminate lysogeny, and ribonucleotide reductase (RNR) has been used as an 

effective marker for screening novel viruses from marine sequencing datasets (Sakowski et al., 

2014). As such, we only identified 39 bacteriophage contigs using these markers, 33 of which 

were from Gp23. This may represent a similar pattern to the giant viruses above, where 

transcripts encoding structural proteins are much more abundant than other genes and sequencing 

lacked the depth to detect them. For the purpose of discovering novel phage species, DNA 

sequencing through metagenomics may prove more successful.  

 Most virus transcripts exhibited high abundance in one or two Sphagnum bog samples 

while low (or absent) in others, suggesting potential “boom-bust” infection dynamics previously 

observed in algal giant viruses (Short, 2012). In contrast, 5 MCP contigs and 2 RNA virus 

contigs were similarly expressed across all six samples at similar levels, consistent with a slow 

and persistent rate of infection observed in marine systems (Moniruzzaman et al., 2017), but not 

yet described in freshwater or terrestrial ecosystems.  

Virus-host predictions 

As viruses produce transcripts only when actively infecting a host, positive correlation 

and co-occurrence between virus and host transcripts is expected, and might be used to predict 

host-virus relationships, provided an appropriate transcriptional proxy for growth and activity is 

available (Moniruzzaman et al., 2017). In this study, we used the eukaryotic RNA-polymerase 

gene rpb1 as a marker for abundance and activity in potential hosts, as it has been previously 

described as one of the more consistently expressed eukaryotic genes in marine systems, scaling 

well with the activity of the organism (Alexander et al., 2015). We used NCLDV MCP 

abundance as a proxy for giant virus production, Gp23 for phage production, and RdRP for RNA 

virus production, as transcription is necessary for the assembly of new virus particles and 
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transcript abundance in some appears to be closely linked to viral replication (Moniruzzaman et 

al., 2017).  

Correlation and co-occurrence matrices, clustered into groups by similarity and tested 

with the SIMPROF permutation test yielded 11 predicted groups of viruses and hosts. In giant 

viruses, several of the initial networks produced in the analysis included multiple bacterial 

species picked up in the RNA polymerase screen. As we have no reason to believe bacterial 

species are infected by NCLDVs, they were removed from the final virus-host groups. It is likely 

these predictions represent a confounding relationship between prokaryotes and potential 

eukaryotic hosts, observed in network analyses for all three viral taxa described here, where a 

beneficial interaction results in an indirect correlation with viral infection. Indeed, previous use 

of this method in marine systems showed a similar phenomenon, where an algal Mimivirus and a 

known host were grouped with a fungal species and another virus (Moniruzzaman et al., 2017). 

Even after the removal of bacterial species from the predicted groups, some remain complicated 

with multiple viruses and potential hosts, which may be explained by a broader host range 

amongst giant viruses enabled by the expansion of genetic material and increased independence 

from host machinery. Similar complicated relationships were observed amongst RNA viruses, 

though these are more tenuous, as we are unable to distinguish whether sequencing reads 

originated transcripts or genomic material. 

All together, we have identified a considerable amount of viral diversity from several 

major viral taxa active within a poorly understood microbial ecosystem. As they were identified 

from transcript sequencing data, the viruses described here likely only represent a fraction of the 

whole virus community, which may be elucidated through further culture-independent work. We 

have also used transcript abundance within a statistical framework to predict several host-virus 
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relationships which can be sought out and tested in culture. These results establish an important 

and much needed foundation for future research into the microbial ecology in Sphagnum peat 

bogs. 
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Chapter III Appendix 

Table 3.1. NCLDV most highly conserved clusters of orthologous genes used to screen transcript 
libraries. 

NCVOG Product 
NCVOG0249 A32 virion packagaing ATPase 
NCVOG0262 VLFT-like transcription factor 
NCVOG0024 Superfamily II Helicase II 
NCVOG1117 mRNA capping enzyme 
NCVOG0023 D5 helicase-primase 
NCVOG0276 ribonucleotide reductase small subunit 
NCVOG0271 RNA polymerase large subunit 
NCVOG0274 RNA polymerase small subunit 
NCVOG0038 B-family DNA polymerase 
NCVOG0022 Major Capsid Protein 
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Table 3.2. Conserved RNA virus genes and their respective Pfam designations.  

Gene Pfam 
CRPV capsid 08762 
VP4 11492 
RNA-Dependent RNA Polymerase 00680 
Peptidase C3 00548 
Rhv 00073 
RNA Helicase 00910 
Peptidase C3G 12381 
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CHAPTER IV: 

GENOME OF CHRYSOCHROMULINA PARVA VIRUS AND ITS CONSTITUENT 
VIROPHAGE 
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Abstract 

Giant viruses represent an increasingly important viral clade that is frequently involved in the 

top-down control of single-celled eukaryotic algae populations in marine ecosystems across the 

globe. Despite increased interest in giant viruses with the discovery of Mimivirus, little is known 

about their physiology and ecology. In this study, we characterize the genome and functional 

potential of a virus capable of infecting the freshwater haptophyte Chrysochromulina parva, 

originally isolated from Lake Ontario. CpV is a member of the nucleocytoplasmic large DNA 

virus (NCLDV) group, and possesses a 437 kb genome encoding 503 ORFs with a GC content of 

25%. Phylogenetic analysis of core functional genes places CpV amongst an emerging group of 

algae-infecting Mimiviruses informally referred to as the “extended Mimiviridae”, making it the 

first to be isolated from freshwater ecosystems. During sequencing, we also captured and 

described the 22.7 kb genome of a virophage that appears to “infect” and exploit the activity of 

CpV to replicate. The virophage genome encodes 19 predicted ORFs, including all of the 

currently described core genes necessary for function, as well as several genes implied in genetic 

modification. Lastly, we used the obtained CpV and virophage reference sequence to recruit 

reads from available environmental metatranscriptomic data in order to estimate their activity in 

freshwater ecosystems. We observed moderate levels of virus and virophage transcript 

abundance in samples obtained during the Microcystis aeruginosa bloom in Lake Tai, China in 

2013, with a spike in activity in one sample. In all, these results highlight the importance of giant 

viruses in the environment, and establish a foundation for future research on the physiology and 

ecology CpV as a model system for algal mimivirus dynamics in freshwater ecosystems. 



93 
 

Introduction 

Viruses are the most abundant biological particles on Earth, and play important roles in 

global ecosystems by driving the evolution of their hosts and biogeochemical cycling (Brussaard 

et al., 2008). The vast majority of currently described viruses are smaller than 200 nm, with 

genomes encoding the minimal functions necessary for replication and evasion of host defenses. 

As such, it came as a great surprise when the Mimiviruses were discovered infecting 

Acanthamoeba species, whose size and complexity rival that of many bacteria (Raoult et al., 

2004). Radically different from the conventional model of viruses, the members of this novel 

lineage possess hundreds of genes, many of which are responsible for functions previously only 

found in cellular life (Filee et al., 2008), including translational machinery and auxiliary 

metabolic functions. Together, these unusual features allow giant viruses to replicate largely 

independent of host machinery, blurring traditional boundaries between cellular life and viruses 

(Yutin et al., 2009, Claverie & Abergel, 2010). Indeed, while thought to originally be bacteria, 

Mimiviruses were shown to be physically larger members of a more diverse viral group, 

generally referred to as the Nucleocytoplasmic Large DNA Viruses (NCLDVs). Despite 

dramatic variety in genome content and preferred hosts, giant viruses appear to share a common 

evolutionary ancestor, sparking heated debate over whether this family constitutes a new domain 

of life (Boyer et al., 2010, Yutin et al., 2014). The study of giant viruses has also led to the 

discovery of virophage, small viruses that rely on NCLDV machinery to replicate, usually at the 

expense of the “host” giant virus (La Scola et al., 2008, Gaia et al., 2014). 

While the excitement over giant viruses has led to a considerable amount of speculation 

and debate over their origin and the definition of life, relatively few have been isolated and 

described. Only a handful of giant viruses have sequenced genomes, making proper analysis of 
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evolutionary history and impact on global ecosystems challenging. These difficulties are 

compounded by the lack of comparable genetic references in public databases, leaving as much 

as 93% of the genes unidentifiable (Philippe et al., 2013). As giant viruses have been implicated 

both in human disease (Popgeorgiev et al., 2013, Yolken et al., 2014) and the collapse of 

harmful algal blooms (Gastrich et al., 2004), there is a desperate need for further expansion of 

known physiology and diversity. Indeed, some researchers have attempted to address this using 

the Acanthamoeba host as bait to isolate novel strains from multiple environmental systems with 

some success (Boyer et al., 2009, Legendre et al., 2014, Legendre et al., 2015). However, it has 

been hypothesized that the high degree of independence from host cell machinery, combined 

with phagocytosis as the mechanism of entry, may permit giants to infect a much broader range 

of hosts than other viruses (Koonin & Yutin, 2010). Concurrent with this, a sub-family of 

Mimiviruses is emerging, often called the extended Mimiviridae, whose members infect single-

celled eukaryotic algae but are phylogenetically distinct from the Phycodnaviridae 

(Moniruzzaman et al., 2014). As such, this novel taxon may represent a source of viral diversity 

that is not only evolutionarily informative for the study of giants, but also environmentally 

relevant. Recently, a giant virus was isolated infecting the freshwater algae Chrysochromulina 

parva in Lake Ontario. Initial sequence analysis of conserved NCLDV genes amplified from 

culture indicated a close phylogenetic relationship with the extended Mimiviridae, primarily 

Phaeocystis globosa Virus (PgV) and Chrysochromulina ericina Virus (CeV), making it the first 

algal Mimivirus described in freshwater ecosystems (Mirza et al., 2015).  

In this study, we sequenced and characterized the genome of the Chrysochromulina 

parva Virus (CpV). During sequencing, we also captured and characterized the genome of a 

putative virophage that we predict exploits the infection cycle of CpV to replicate. We used 
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genomic sequences obtained here to screen publicly available metatranscriptomic datasets 

isolated from freshwater ecosystems in multiple locations and time points for the presence and 

activity of CpV, observing significant activity in Lake Tai, China (Taihu in Chinese). Given the 

virus was originally isolated in Lake Ontario, this suggests that close relatives within the algae-

infecting Mimiviridae may be globally distributed and active players in freshwater ecosystems. 

This study further establishes a foundation for future research with CpV, which may serve as a 

useful model system for freshwater algal Mimiviruses. 

Materials and Methods 

CpV propagation and purification 

 Viruses infecting the Prymnesiophyte algae Chrysochromulina parva CCMP 291 were 

originally isolated in 2011 (Mirza et al, 2015) and have been maintained in the laboratory. To 

produce virus genomic material for sequencing, CpV lysates were generated from a series of 150 

and 500 mL mid-log phase C. parva batch cultures grown at a constant temperature of 15°C, 

with a12 h light-dark cycle at approximately 23 μE m-2 s-1 in DY-V medium (Anderson, 2005). 

The resulting lysates were filtered through 47 mm diameter, 0.50 μm pore-size borosilicate glass 

microfiber Advantec® filters (Life Science Products, Inc.) followed by filtration through 47 mm 

diameter, 0.22 μm pore-size PVDF Durapore® membranes (EMD Millipore). The filtered 

lysates were then concentrated approximately 200-fold via ultracentrifugation using a SW32Ti 

rotor (Beckman Coulter) as previously described (Short et al., 2011). After ultracentrifugation, 

the pelleted material was resuspended in 10 mM Tris-Cl (pH 8.5), pooled, and stored at 4°C.  

Filtered and concentrated lysates were further purified using Optiprep™ (Iodixanol, 

MilliporeSigma Canada Co.) step gradients. Four-step gradients were created using Optiprep™ 

solutions diluted in ultrapure H2O to final concentrations of 40%, 35%, 30%, and 25% v/v, 
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whereby 2.50 mL of each step was bottom loaded in 13.2 mL Ultra-Clear™ ultracentrifuge tubes 

(Beckman Coulter Canada, LP) starting with the 25% solution and ending with the 40 % solution 

following Moniruzzaman et al. (2014). Three mL of concentrated lysate was then loaded on the 

top of the gradient which were ultracentrifuged in a SW40Ti rotor (Beckman Coulter) for 14 h 

45 min at 39,000 rpm. Following ultracentrifugation, visible bands formed approximately one-

third of the distance from the top of the tube, and 1.50 mL of this band and immediately 

surrounding gradient medium was collected by aspiration and stored at 4°C.   

CpV DNA extraction and purification 

 Nucleic acids were extracted from gradient-purified bands using a QIAamp® MinElute® 

Virus Spin Kit (Qiagen) following the manufacturer’s recommendations with the following 

modifications: each MinElute column was loaded with lysed material twice, and 50 μL of Buffer 

AVE (RNase-free water with 0.04 % Sodium azide) was used during each elution step. To 

further concentrate purified genomic DNA, ethanol precipitation was conducted by mixing 

pooled, extracted DNA with 0.1 x volume of 3M NaOAc and 3 x volume absolute ethanol 

followed by incubation at -20 °C overnight. Precipitated DNA was then collected by 

centrifugation for 1 h at 14,000 x g at 4°C, the supernatant was decanted, and the DNA pellet 

was washed twice with ice-cold 70% ethanol. After being left to dry at room temperature, the 

DNA pellet was resuspended with MilliQ H2O, and was stored at -20 °C. DNA concentration 

was quantified using an Invitrogen® Qubit® 3.0 Fluorometer and dsDNA HS Assay kit (Thermo 

Fisher Scientific). In total 100 μL of DNA at a concentration of approximately 5 ng μL-1 was 

submitted to HudsonAlpha Institute for Biotechnology for sequencing.  
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Quality control and assembly 

Raw sequences were imported into the CLC Genomics Workbench v. 10.0.1 (QIAGEN, 

Hilden, Germany) and processed for quality control. Reads below 0.03 quality score cutoff were 

removed from subsequent analyses, and the remaining reads were trimmed of any ambiguous 

and low quality 5’ bases and only reads at the full length were retained for assembly. Quality 

controlled reads were then assembled using the SPAdes 3.10.1 assembler with 9 iterative kmer 

assemblies (kmers 21, 33, 55, 65, 77, 85, 99, 113, 127) and the careful option turned on for 

contig correction. Scaffolds with length >5000 bp were then imported into CLC Genomics 

workbench for contig quality assessment and analysis. Quality controlled reads were mapped 

onto scaffolds with high stringency (> 0.7 length fraction, > 0.97 similarity fraction) to determine 

coverage. In order to reduce scaffolds to only those viral in origin, scaffold libraries were aligned 

to the NCBI 16S rRNA database and hits were removed from future analyses. The remaining 

scaffolds were blasted against a protein database containing sequences from all currently 

sequenced giant virus genomes. Open reading frames were predicted using CLC Genomics 

workbench and coding sequences were imported into BLAST2GO for functional identification. 

Phylogenetic Analysis 

 Reference amino acid sequences for viral marker genes were downloaded from the NCBI 

refseq database. These reference sequences were aligned with CpV coding sequence translations 

using the MUSCLE alignment algorithm (Edgar, 2004) in the MEGA v7.0.26 software package 

(Kumar et al., 2016). Maximum likelihood phylogenetic trees were constructed in PhyML 

(Guindon et al., 2010) with the LG substitution model and the aLRT SH-like likelihood method. 

Trees were edited in MEGA. Whole genome alignments were performed using the BLAST Ring 

Image Generator (BRIG) (Alikhan et al., 2011). 
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Environmental Quantification and Statistical Analysis 

 Quality filtered and trimmed reads were mapped to the CpV (0.8 identity fraction, 0.5 

length fraction) and CpVV (0.7 identity fraction, 0.5 length fraction) genomes in CLC Genomics 

Workbench 10.0.1. Expression values were normalized per million reads within each library. 

Expression values were imported into the R statistical software package (R Core Team, 2015) 

and correlations were calculated using the hmisc package (Harrell Jr., 2016). Data were 

visualized in SigmaPlot v.12.5 (Systat Software, Inc.).  

Results 

Assembly and annotation of CpV 

 Sequencing yielded 26,745,770 reads for genome assembly, which was reduced to 

26,729,526 after quality control. The genome of Chrysochromulina parva Virus was stringently 

assembled using SPAdes with read correction and post-assembly scaffold checking. The result 

was 1099 scaffolds over 5000 bp in length, which were screened for the presence of NCLDV 

core genes. The best result was a 437,255bp scaffold with an average coverage of 127.44 and a 

GC content of 25%, encoding 503 predicted open reading frames. In functional and taxonomic 

assignments of predicted ORFs (Figure 4.1), more than half had top BLAST hits to NCLDV 

genes, the vast majority of which were from Phaeocystis globosa Virus (PgV), although a few 

showed similarity to members of the Phycodnaviridae and the recently discovered Hokovirus 

(Schulz et al., 2017). The remaining genes with taxonomic assignments were split primarily 

amongst eukaryotes and bacteria, with a handful originating in viruses and virophage, and 165 

genes with no BLAST hits. Phylogenetic analysis of 3 core NCLDV genes (Figure 4.2) yielded 

similar results, with PgV identified as the closest relative for all three. The remaining 7 of the ten 

predicted “core” NCLDV genes (Supplemental Material) also exhibited similar phylogeny with 

only two exceptions. The CpV RNA polymerase small subunit was most closely related to  
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Figure 4.1. Best BLAST hits of CpV predicted open reading frames against A.) NCLDVs, other 

viruses, virophage, and the three domains of life. B.) Specific NCLDV representatives. PgV – 

Phaeocystis globosa Virus, CeV – Chrysochromulina ericina Virus, OLPV – Organic Lake 

Phycodnavirus, CroV – Cafeteria roenbergensis Virus, PpV – Pyramimonas pouchettii Virus, 

YSLV – Yellowstone Lake Phycodnavirus, PBCV – Paramecium bursaria Chlorella Virus, OtV 

– Ostreococcus tauri Virus, AtCV – Acanthamoeba turfacea Chlorella Virus, HKV – 

Hokovirus. 
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Figure 4.2. Maximum-likelihood phylogenetic trees of A.) A32-like virion packaging ATPase, B. 

Major capsid protein, and C.) B-family DNA polymerase. Node support (aLRT-SH statistic) 

>50% are shown. 
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Organic Lake Phycodnavirus 1, but with PgV as the next closest relative, and Superfamily II 

Helicase II protein was placed close to a poxvirus, but with extended Mimiviridae member 

Aureococcus anophagefferens Virus (AaV) as the next closest relative. 

Information on functional annotation is limited, as 320 of the 503 ORFs have no 

predicted function (Figure 4.3). The remaining ORFs include the expected virus structural 

components, such as Major Capsid Protein (CpV_105, CpV_177), virion construction (A32-like 

packaging protein; CpV_098), viral transcriptional regulation (late transcription factor VLTF3; 

CpV_176), and DNA replication genes were observed, including replication factor C, DNA 

polymerase, DNA Helicase, Mismatch repair factor (MutS7 and MutS8), and ribonucleotide 

reductase. CpV also encodes a large contingent of genes with predicted DNA modification 

activity, including 14 DNA methyltransferases and a histone acetyltransferase. The genome 

features a group of 5 eukaryotic E3 ubiquitin ligases, 3 of which are clustered together in one 

location on the genome (CpV_167, CpV_169, CpV_171).  

Funtional potential and phylogeny of CpVV 

 The Chrysochromulina parva Virus Virophage was assembled along with the “host” 

virus genome using SPAdes. The CpVV contig is 22,761 bases long with a GC content of 37.8% 

and ~42,000x average coverage. The coverage is the highest in the assembly, at 6 fold higher 

than the next highest contig, and 1000 fold higher than the vast majority of contigs. Open reading 

frames were predicted in CLC Genomic Workbench and features were predicted in BLAST2GO. 

CpVV encodes 19 ORFs (Figure 4.4), of which 8 have predicted functions and 1 has a conserved 

domain of unknown function. 2 of the predicted open reading frames encode predicted packaging 

ATPases, each of which is phylogenetically distinct. CpVV_08 is most closely related to the PgV 

virophage, as is observed with many of the other predicted ORFs, whereas CpVV_05 is more 
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Figure 4.3. CpV ORF prediction and whole genome alignment. Outer ring – ORF prediction and 

top BLAST hit (Red arrows – NCLDV, Blue arrows – Bacteria, Orange arrows – Eukaryotes, 

Green arrows – Viruses). Second outermost ring in green – whole genome alignment with CeV 

where color gradient represents sites similar to CeV. Third outermost ring in red – whole genome 

alignment with PgV where color gradient represents sites similar to PgV. Innermost ring in black 

– GC content. Genome is presented as circular for convenience. 
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closely related to the environmental assembly known as Dishui Lake Virophage. However, 

BLAST results of CpVV_05 show top hits to ATPase genes encoded in members of the 

Phycodnaviridae, namely Paramecium bursaria Chlorella Virus. The genome also encodes a 

minor capsid protein (CpVV_11), and a major capsid (CpVV_0012) which appears to be related 

to the environmental assembly known as the Yellowstone Lake Virophage. Despite the similarity 

to YSLV7, PgVV is the top BLAST hit to both capsid proteins and CpVV_03. It should also be 

noted that the MCP, mCP, ATPase and CpVV_03 are all in similar genomic locations to their 

corresponding ORFs in PgVV (Figure 4.5). CpVV_0017 encodes a hypothetical protein with 

similarity to the Qinghai Lake Virophage gene QLV_03, and CpVV_18 shows similarity to 

mobile elements present in Guillardia theta, Muricauda sp., and Tetrahymena thermophile 

genomes. Outside of expected virophage genes, CpVV also encodes a predicted HNH Homing 

Endonuclease and DNA-methyltransferase, the top hits for both of which are bacterial. One 

additional open reading frame encodes a protein with predicted E3 ubiquitin ligase activity.  

Environmental abundance of CpV and CpVV 

 To determine whether CpV and CpVV genes are expressed in currently available 

environmental metatransciptomes, reads from these datasets were mapped to the CpV and CpVV 

genomes with a minimum length cutoff of 0.7 and similarity fractions of 0.8 and 0.5, 

respectively. In every metatranscriptome dataset, a considerable number of reads were mapped to 

the short non-coding regions on the ends of the CpVV genome, and as such were not included in 

the abundance estimates shown here. Of the datasets mapped, metatranscriptomes sequenced 

from Microcystis aeruginosa blooms in Lake Tai, China during 2013 showed a moderate level of 

activity with good coverage of both CpV and CpVV genomes across all of the samples with a 

spike in activity in the SL48086 sample (Figure 4.6), however transcript abundance was too low 
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Figure 4.4. Maximum-likelihood phylogenetic trees of A.) virion packaging ATPase, B.) Major 

capsid protein. Node support (aLRT-SH statistic) >50% are shown. 
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Figure 4.5. Genome architecture of CpVV (top) and PgVV (bottom). Synteny between virophage 

shown by connecting red lines. 
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to discern distinct transcriptional patterns from more than one sample. Comparison of the 

number of reads mapped to the genome of CpV to CpVV showed transcript abundance was 

highly correlated (Figure 4.6b; r = 0.82, p = 0.0005).  

Discussion 

 In this study, we determined the genome sequence and functional potential of the 

Chrysochromulina parva Virus and its corresponding virophage. We also used currently 

available environmental metatranscriptomic data to estimate the activity of CpV and its 

virophage in freshwater ecosystems. The genome content suggests CpV is a versatile giant virus 

with a close evolutionary relationship with the marine algal mimiviruses PgV and CeV. As with 

many giant viruses, CpV possesses a mosaic arrangement of genes originating in viruses and all 

three domains of life, as well as a contingent of genes of unknown origin or function. However, 

the similarity of CpV to closely related marine algal mimiviruses suggests efforts to sample the 

diversity of NCLDVs may be filling many of the gaps in sequenced representatives. CpV shares 

a similar genome size, GC%, and content with PgV and CeV, who make up top Blast hits for 

more than half of the predicted open reading frames. In support of this close evolutionary 

relationship, CpVV also appears to exhibit similar gene content and synteny with PgVV. Beyond 

what is shared with its marine relatives, both CpV and CpVV appear to have incorporated a 

number of genes predicted to have originated in the cellular host, which may serve roles in 

genetic regulation and protection from host defenses.  

 The first group of genes unique to CpV is a large collection of genes involved in DNA 

modification, including 13 DNA methyltransferases, a histone demethylase, a histone acetyl 

transferase, and at least 8 restriction modification systems. In addition, the virophage also 

appears to encode a DNA methyltransferase, likely horizontally transferred either from CpV or  
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Figure 4.6. Relative abundance of CpV and CpVV in Lake Tai during the M. aeruginosa bloom 

during 2013. A.) Reads per million mapped to CpV and CpVV genomes within each sample. B.) 

Reads per million mapped to CpV plotted against reads per million mapped to CpVV, with 

Pearson correlation coefficient and p-value.  
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the cellular host. Methyltransferases have been indicated in the physiology of giant viruses for 

some time, as Chlorella viruses have long been shown to exhibit heavily methylated genomes 

encoding large numbers of methylation genes accompanied by an unexpected contingent of 

corresponding restriction endonucleases (Nelson et al., 1998, Etten & Meints, 1999). DNA 

methyltransferases have been observed in the genomes of other giants as well, though not nearly 

as many and generally not accompanied by R-E systems. In both cases, as with CpV and CpVV, 

the purpose of these functional genes is unknown, though the similarity to epigenetic regulation 

of transcription in cellular organisms is apparent (Bird, 2002). Of similar interest is the presence 

of putative histone modification enzymes, histone demethylase (CpV_120) and histone 

acetyltransferase (CpV_503). As it is extremely unlikely that the viral genome is packaged 

bound to histones, the most obvious purpose of these two genes, assuming they were properly 

identified, is to manipulate the host’s transcriptional regulation (Kouzarides, 2007). 

 While DNA modification machinery is frequently observed amongst NCLDVs (Santini et 

al., 2013, Moniruzzaman et al., 2014), though not always as densely, CpV also possesses a 

cluster of 6 E3-ubiquitin ligases, all eukaryotic in origin and most grouped within 1kb of one 

another. Similar RING-finger E3-ubiquitin ligases have been observed in several Mimiviruses 

(Iyer et al., 2006), they are generally fewer in number and spread throughout the genome. Only 

Aureococcus anophagefferens Virus (AaV) appears to have a similar group of coding sequences 

(Moniruzzaman et al., 2014). While function of these proteins in NCLDVs has yet to be 

validated in culture, they are hypothesized to inhibit host cell defenses (Iyer et al., 2006, 

Chaurushiya et al., 2012). The presence of E3-ubiquitin ligase coding sequence in CpVV appears 

to be entirely new. Activity by virophage generally occurs at the expense of growth by the “host” 

virus (Fischer & Suttle, 2011, Fischer, 2012), but contribution of an active, functional Ub-ligase 
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might serve to further protect the corresponding giant virus from host defenses, potentially 

challenging the antagonistic nature of the virophage. Indeed, as the virophage particle was likely 

packaged within the CpV virion before DNA extraction and sequencing as was also observed in 

PgVV (Santini et al., 2013), CpVV may also rely on successful infection by its “host” virus to 

spread and replicate. 

 To further explore the ecological role CpV and its virophage may play in freshwater 

ecosystems, we mapped currently available metatranscriptome reads isolated and sequenced 

from M. aeruginosa blooms in Lake Erie and Lake Tai, China during the years 2013 and 2014. 

While most of the datasets showed a complete absence of activity by CpV, expression was 

detected in Lake Tai during the 2013 bloom across all samples. Reads mapping to CpVV 

cooccurred with its “host” in all samples, exhibiting a high correlation. Considering that the 

metatranscriptomes used here were isolated from microbial communities dominated freshwater 

cyanobacteria, and were not poly-A selected, activity by CpV must have been very considerable 

to be detected. Additionally, as infection cycles in the environmental datasets are not 

synchronized, the relationship between CpV and its corresponding virophage must be very close 

to be observed through a noisy dataset. As CpV was originally isolated from Lake Ontario, 

Canada (Mirza et al., 2015), it is likely that the virus and virophage observed here in Lake Tai 

are close relatives. Despite potential differences in physiology however, these results suggest that 

closely related freshwater algal Mimiviruses are globally distributed and environmentally 

relevant. 

 Altogether, the results here suggest that CpV represents an abundant and active member 

of the extended Mimiviridae with a unique functional potential. As the first freshwater 

representative of the algal mimiviruses to be isolated and maintained in culture, CpV stands as an 
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important model virus for the future study of mimivirus ecology and physiology in freshwater 

ecosystems. Its virophage, though similar to PgVV, offers a unique opportunity to study the 

emerging taxon of giant virus-infecting-viruses in culture, as well as a significant expansion to 

the currently underrepresented virophage diversity. 
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CHAPTER V: 

FUNCTIONAL CHARACTERISTICS OF THE GUT MICROBIOME IN C57BL/6 MICE 
DIFFERENTIALLY SUSCEPTIBLE TO PLASMODIUM YOELII 
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Abstract 

C57BL/6 mice are widely used for in vivo studies of immune function and metabolism in 

mammals. In a previous study, it was reported that when C57BL/6 mice purchased from different 

vendors were infected with Plasmodium yoelii, a causative agent of murine malaria, they 

exhibited both differential immune responses and significantly different parasite burden. These 

patterns were reproducible when gut contents were transplanted into gnotobiotic mice. To gain 

insight into the mechanism of resistance, we removed whole ceca from mice purchased from two 

vendors, Taconic Biosciences (low parasitemia) and Charles River Laboratories (high 

parasitemia), to determine the combined host and microflora metabolome and 

metatranscriptome. With the exception of two Charles River samples, we observed ≥90% 

similarity in overall bacterial gene expression within vendors and ≤80% similarity between 

vendors. In total 33 bacterial genes were differentially expressed in Charles River mice (p-value 

< 0.05) relative to the mice purchased from Taconic. Included among these, fliC, ureABC, and 

six members of the nuo gene family were overrepresented in microbiomes susceptible to more 

severe malaria. Moreover, 38 mouse genes were differentially expressed in these purported 

genetically identical mice. Differentially expressed genes included basigin, a cell surface 

receptor required for P. falciparum invasion of red blood cells. Differences in metabolite pools 

were detected, though their relevance to malaria infection, microbial community activity, or host 

response is not yet understood. Our data have provided new targets that may connect gut 

microbial activity to malaria resistance and susceptibility phenotypes in the C57BL/6 model 

organism. 
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Introduction 

Since its development in the 1940’s, the C57BL/6 inbred mouse strain has become one of the 

most widely used murine genetic backgrounds for diverse biomedical research. The strength of 

these inbred mice as model organisms is their reproducibility, allowing independent researchers 

to carry out experiments on genetically identical mice (Silver, 1995). Use of this inbred strain 

became so widespread it was selected as the first murine genome to be sequenced (Waterston et 

al., 2002). However in recent years, attention has been drawn to the split in the strain’s ancestral 

line during the 1950’s when mice were separately bred and maintained by the National Institutes 

of Health (NIH) and Jackson Laboratory, now known as C57BL/6N and C57BL/6J, respectively 

(Bailey, 1978, Altman & Kats, 1979). Concern has arisen over use of these divergent substrains 

interchangeably as model organisms following multiple reports of changes in behavior (Crawley 

et al., 1997), differential tolerance to ethanol (Khisti et al., 2006, Green et al., 2007), deletion of 

the gene encoding nicotinamide nucleotide transhydrogenase (nnt) in the C57BL/6J lineage 

(Freeman et al., 2006), and discovery of multiple SNPs between derived mouse genomes 

(Mekada et al., 2009). The importance of these strains to the scientific community has led to 

major efforts to describe the genomic (Simon et al., 2013) and regulatory (Keane et al., 2011) 

differences between the various lineages, and catalogue them for proper selection of model 

organisms (Grubb et al., 2014).  

 While the genetic differences and the resulting phenotypic alterations between the major 

C57BL/6 lineages may be increasingly considered by researchers during experimental design, 

only recently can this be said for their “second genome”: the microbiome. The importance of 

tissue-associated microbial symbionts to mammalian metabolism and immunity has become well 

established. Gut microbial communities in particular make up the majority of the microbial 
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consortia and diversity in the body (Savage, 2002), and play an important role in early post-natal 

development of the immune system, protection from gut pathogens, and host metabolism. 

Members of the taxa Firmicutes and Bacteroidetes dominate intestinal communities, largely 

responsible for the catabolism of hundreds of different glycans indigestible by mammalian 

enzymes, giving the host access to otherwise recalcitrant nutrients (Backhed et al., 2005). The 

resulting pool of monosaccharides are fermented to short-chain fatty acids, which not only 

provide energy for the host, but have been shown to influence immune function. Acetate and 

butyrate, influenced by dietary fiber content, can signal through G-protein-coupled receptors 

expressed on CD4+ T helper cells resulting in the regulation of cytokine expression and 

resolution of intestinal inflammation (Kau et al., 2011). Indeed, just as immune cells use 

receptors to detect infection and tissue damage signals, it is apparent that the same receptors are 

used in different combinations to detect beneficial microbial activity and prevent harmful 

response (Swiatczak & Cohen, 2015). Despite the profound influence that even subtle changes in 

gut community composition and activity can have on host physiology, the impact of the gut 

microbiome on mice used as model organisms remains poorly understood. 

 It was recently shown that when C57BL/6 mice purchased from different vendors were 

infected with malaria parasite Plasmodium yoelii, they exhibited significantly different parasite 

burdens and immune responses. This was confirmed to be the result of microbial interaction with 

the mouse host when both resistant and susceptible phenotypes were reproduced via fecal 

transplant to gnotobiotic mice (Villarino et al., 2016). Subsequent sequencing of 16S rRNA gene 

libraries obtained from the transplanted gut microbiomes showed conservation in gut microbial 

community composition within, but major differences between, samples obtained from mice 

from different vendors. To elucidate the mechanisms underlying microbiome-mediated 
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resistance to malaria, the cecum microbial and host metatranscriptome was sequenced. 

Significant differences were observed in both host and bacterial transcription patterns. 

Additionally, the metabolic profiles of cecum whole tissue samples were determined and 

analyzed. Overall differences in individual metabolite concentrations call into question the 

interchangeable use of mice from different sources. These data begin to elucidate factors that 

may influence susceptibility to P. yoelli infection, and these results also provide further evidence 

that caution is needed when comparing results from experiments using mice from separate 

C57BL/6 sublineages and/or vendors.  

Materials and Methods 

Mice and Infections 

Female C57BL/6 mice were purchased from Taconic Biosciences (Hudson, NY) and 

Charles River Laboratories (Wilmington, MA). Mice were housed and maintained at University 

of Tennessee animal care facility under biosafety level 2 conditions. Mice were fed NIH-31 

Modified Open Formula Mouse/Rat Irradiated Diet (Envigo 7913; Envigo, Indianapolis, IN) and 

provided autoclaved municipal tap water to drink. To verify vendor-dependent malaria disease 

severity, mice were infected with 105 Plasmodium yoelii parasitized red blood cells (pRBCs) via 

tail vein injection after a two-week acclimation period upon arrival at the animal care facility. 

Parasite burden was determined from thin blood smears. Blood samples were obtained by 

performing tail snips. Slides were fixed with methanol, followed by Giemsa stain (Thermo 

Fisher Scientific) diluted 1:20 in ddH20 for 30 min. Percent parasitemia was calculated as the 

percent of total RBCs that contain a blood stage parasite averaged from the counts RBCs within 

a 10x10 grid from five microscope fields (1000x) per sample. All studies were performed in 

accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals 
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of the National Institutes of Health and approved by the University of Tennessee Institutional 

Animal Care and Use Committee. 

Gut Microbiome Sampling 

As sampling directly from gut tissue is destructive, mice used for microbiome sampling 

were not used to track parasite burden. To limit potential variation in gut microbial communities 

and to ensure that the disease severity phenotype was consistent, mice used for microbiome 

sampling were purchased in the same batch as those used for tracking disease progression. Six 

mice from each vendor (Taconic Biosciences and Charles River Laboratories) were acclimated 

for two weeks upon arriving at the animal facility. After acclimation the mice were sacrificed 

and a necropsy performed. Whole ceca were removed, weighed, and immediately flash frozen in 

liquid nitrogen and stored at -80 °C. Cecum samples were divided in half for metabolomics 

analysis and metatranscriptome sequencing. 

RNA extraction and Sequencing 

Total RNA was isolated from whole ceca using the MOBIO Power Microbiome™ RNA 

extraction kit. RNA concentration and purity was determined using a NanoDrop ND-1000 

spectrophotometer. Measurements were taken three times to account for variability in the 

readings. Extracted RNA was tested for DNA contamination by running a polymerase chain 

reaction using universal bacterial 16S rRNA primers 27F and 1492R. DNA contamination was 

removed with the MOBIO RTS DNase kit. 12 purified RNA samples were shipped to the 

Hudson Alpha Institute Genomic Services Laboratory (Huntsville, AL) for rRNA reduction and 

sequencing on the Illumina™ HiSeq platform using a paired-end 100bp flow cell. 
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Metabolite extraction and analysis 

Contents were removed from ceca placed in 1.5 mL centrifuge tubes and suspended in 

1.3 mL of extraction solvent (40:40:20 HPLC grade methanol, acetonitrile, water with 0.1% 

formic acid) kept at 4°C. Extraction proceeded for 20 min at -20°C before samples were 

centrifuged for 5 min (16.1 rcf) at 4˚C and supernatants were transferred to new vials. The 

remaining cecal contents were resuspended in 200 μL of cold (4˚C) extraction solvent. The 

extraction was again allowed to proceed for 20 min at -20°C before being centrifuged for 5 min 

(16.1 rcf) at 4°C. These supernatants were also transferred to the vials and another 200 μL of 

extraction solvent was added to the pelleted cell for a final wash by repeating the previous 

extraction once more. The vials containing all of the combined extraction supernatants were 

placed in a nitrogen drying apparatus until all the extraction solvent had been evaporated. The 

residual solid was resuspended in 300 μL of sterile water and transferred to 300 μL autosampler 

vials. Samples were immediately placed in a 4˚C autosampler for mass spectrometric analysis. 

A 10 μL injection of each sample was separated through a Synergi 2.5 micron Hydro-RP 

100 Å, 100 x 2.00 mm LC column (Phenomenex, Torrance, CA) maintained at 25°C. The mass 

spectrometer and chromatographic separation were performed similar to a reported method (Lu 

et al., 2010). The eluent was introduced into the mass spectrometer via an electrospray ionization 

source in negative mode before entering an Exactive Plus orbitrap mass spectrometer (Thermo 

Scientific, Waltham, MA) through a 0.1-mm internal diameter fused silica capillary tube. The 

samples were run with a spray voltage of 3 kV, a nitrogen sheath gas flow rate of 10 units, a 

capillary temperature set at 320°C, and an AGC target set to 3e6. The samples were analyzed in 

full scan mode with a resolution of 140,000 and a scan window of 85 to 800 m/z for from 0 to 9 

min and 110 to 1000 m/z from 9 to 25 min. Solvent A consisted of 97:3 HPLC grade 
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water:methanol, 10 mM tributylamine, and 15 mM acetic acid. Solvent B was HPLC grade 

methanol. The mobile phase gradient from 0 to 5 mins was 0% B, from 5 to 13 min was 20% B, 

from 13 to 15.5 min was 55% B, from 15.5 to 19 min is 95% B, and from 19 to 25 min was 0% 

B while maintaining a constant flow rate of of 200 μL/min. 

Data Processing 

Raw sequences were downloaded from the HudsonAlpha Institute server and checked for 

quality using FastQC application (Babraham Institute, Cambridge, England). Unless noted, all 

bioinformatics and statistical software were used at default settings.  Samples were subjected to a 

subsequent in silico rRNA reduction using the SortmeRNA 2.0 software package (Kopylova et 

al., 2012). Since RNA was extracted from whole cecum tissue and would contain mRNA of 

murine origin, processed reads were paired and mapped to the Mus musculus reference genome 

using the CLC Genomics Workbench v8.5 (Waltham, MA). Mouse reads were annotated and 

further analyzed in CLC. Unmapped reads were assumed to originate from the gut microbiome 

and were uploaded to the Metagenomics RAST server (MG-RAST) (Meyer et al., 2008) for 

alignment and identification. All sequencing data were submitted to the Short Reads Archive 

(SRA) under accession code SRP075802.  

For metabolome data, .raw files generated by Xcalibur were converted to the open-source 

mzML format (Martens et al., 2011) via the ProteoWizard package (Chambers et al., 2012). 

MAVEN software (Clasquin et al., 2002) (Princeton University) was used to automatically 

perform non-linear retention time correction for each sample. Metabolites were manually 

identified by m/z (± 5 ppm) and retention time for each sample using MAVEN to calculate 

associated peak areas. Relative concentrations (i.e., in the absence of internal standards for all 

metabolites) were normalized by mass of the processed tissue sample. Fold changes were 
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calculated and the data were transformed and clustered using Cluster software (de Hoon et al., 

2004). Heat maps were generated from clustered data using Microsoft Excel software.  

Statistical Analysis 

Microbial transcript abundances annotated from the SEED Subsystem database 

(Overbeek et al., 2005) (evaluated as raw read counts) were exported from the MG-RAST server 

and normalized by library size. Normalized gene expression data and relative metabolite 

concentration were log transformed, and used to generate a Bray-Curtis dissimilarity matrix and 

non-metric multidimensional scaling plots in the PRIMER7 software suite (Clark & Gorley, 

2015).  PRIMER7 was also used to perform ANOSIM tests comparing overall expression and 

metabolite profiles. Differences in individual gene expression, between gut microbial 

communities from the two vendors, were determined using the edgeR Bioconductor package in 

R Statistics software (Robinson & Smyth, 2007, Robinson & Smyth, 2008, Robinson et al., 

2010, McCarthy et al., 2012, Zhou et al., 2014). Differential expression of individual mouse 

genes between vendors was determined using the edgeR test implemented in CLC Genomics 

Workbench. Figures were generated using SigmaPlot (Systat Software, Inc.). As p-values from 

statistical tests were false discovery rate adjusted for multiple comparisons, a p-value cutoff of 

0.1 was used to provide thorough detailing of differences between mouse substrains that may be 

useful to researchers. Additionally, Cohen’s d effect size (Cohen, 1988) was calculated for each 

gene from relative transcript abundances. All significantly different genes and metabolites are 

presented with their p-values, fold changes, and effect sizes in Table 5.1. 
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Results 

Differential susceptibility to P. yoelii 

C57BL/6N mice from Taconic and Charles River were infected with P. yoelii pRBCs. 

Parasitemia in Taconic mice peaked 13 days post-infection at ~15% and was cleared by 23 days 

post-infection (Figure 5.1). Charles River mice exhibited higher parasite burden, peaking at 

~60% parasitemia 19 days post-infection and delayed clearance (day 29 post-infection) 

compared to Taconic mice. These data are consistent with previous observations that showed P. 

yoelii infection of C57BL/6 mice from Taconic and Jackson Laboratories had lower parasitemia 

than C57BL/6 mice from Charles River, National Cancer Institute, and Envigo (formally Harlan) 

(Villarino et al., 2016).  

Transcriptome results 

Ribosomal RNA reduction, cDNA synthesis, and sequencing on the Illumina™ HiSeq 

yielded a total of 294 million paired-end 100bp reads across 12 samples. An average of 43.8% of 

reads were removed during in silico rRNA reduction using SortMeRNA. One of the Taconic 

samples exhibited much higher attrition, with 73.2% of its reads removed. As a result, the 

number of reads annotated from this sample were a full order of magnitude lower than the other 

samples, so it was removed from further analyses because of dissimilarity. Reads passing quality 

control were mapped to the mouse genome and subsequently used to determine murine 

transcriptional patterns. The remaining reads were uploaded to MG-RAST for characterization of 

microbial transcriptional patterns. The quality control pipeline removed an average of 14.6% of 

reads due to read quality, artificial duplication, and estimated sequencing error. An average of 

2.1 million reads per sample were annotated as microbial transcripts and divided into functional 

categories.  
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Figure 5.1. C57BL/6 mice from Taconic exhibit reduced parasitemia compared to mice from 

Charles River. Mice were infected with 105 P. yoelii pRBCs.  Percent parasitemia was 

determined on the indicated days. Data (mean±s.d.) are cumulative results (n=7-8 mice per 

group) from two independent experiments.  
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Community Structure and Function 

The phylogenetic composition of the cecal microbial community as determined by 

metatranscriptomic analysis is represented in Figure 5.2. The microbial community 

transcriptional profile is dominated by the bacterial phyla Firmicutes and Bacteroidetes, the reads 

from which make up an average of 90.1% ± 6.3 of each sample. The next most abundant source 

of transcripts originate in Proteobacteria at 3.2% ± 0.20 of reads, followed by Actinobacteria, 

1.7% ± 0.16, and Fusobacteria, 0.53% ± 0.03. Within the phylum Bacteroidetes, families 

Bacteroidaceae and Porphyromonadaceae are most prevalent, 46.7% and 51.1% of the phylum 

respectively. The Firmicutes portion of the community is split predominantly between orders 

Lactobacillales and Clostridiales, 8.9% and 82.5% of the phylum respectively. The MG-RAST 

pipeline identified 0.04% ± 0.007 of the reads as being of viral origin, all of which were 

bacteriophage. Archaea made up 0.24% ± 0.009 of the transcripts, with the Euryarchaeota 

dominating at 92.3% of the Archaeal reads.  

Non-metric multidimensional scaling plot of Bray-Curtis dissimilarity analysis is represented in 

Figure 5.3. Sample Taconic 6 was left out of this analysis due to significant dissimilarity caused 

by methodology that skews the plot. Overall bacterial transcript abundances in the 5 Taconic and 

6 Charles River samples are at least 80% similar. With the exception of two Charles River 

samples (designated by asterisks in Figure 5.3), mouse groups cluster with at least 85% similarity 

and as high as 98%. These two samples more closely resemble expression profiles of the Taconic 

gut communities. As mice from these two substrains are so closely related, some overlap within 

the internal variation of the mouse groups was to be expected. However, ANOSIM analysis 

comparing overall expression of bacterially-derived transcripts determined that community  
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Figure 5.2. Relative abundance of Bacterial phyla and total Archaea, Eukarya, and virus reads. 

Read counts normalized by library size from the samples in each group. Blue bars represent 

abundance in mice purchased from Taconic Biosciences. Red bars represent abundance in mice 

purchased from Charles River Laboratories. Error bars represent standard deviation. Data (mean 

± s.d.) are from n=5 Tac and n=6 CR mice.  
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Figure 5.3. Non-metric multidimensional scaling of Bray-Curtis similarity matrix comparing 

overall abundances of bacterially derived transcripts. Blue points represent samples isolated from 

Taconic Biosciences mice. Red points represent samples isolated from Charles River 

Laboratories mice. Ellipses represent lines of 80, 85, and 90% similarity between samples. 

Asterisks designate two Charles River samples addressed in text. 
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expression between mouse groups was statistically different (p = 0.048).  

In general, the distribution of sequences within SEED Subsystem categories were 

consistent between the two mouse groups (Figure 5.4). Combining 11 metatranscriptomes, the 

most abundant functional groups are Carbohydrate Metabolism (19.5%), Protein Metabolism 

(14.0%), and Amino Acid Metabolism (7.7%). A significant portion (13.3%) of the sequences 

are categorized as clustering-based subsystems, whose functions are bioinformatically identified, 

but not yet experimentally validated. An unpaired t-test comparing normalized expression of 

individual Level 1 SEED Subsystem categories between the two treatment groups yielded 

significant (p < 0.05), or trending towards significant (p < 0.08), differences in Protein 

Metabolism (p = 0.029), Cell Wall and Capsule synthesis (p = 0.053), Motility and Chemotaxis 

(p = 0.047), Sulfur Metabolism (p = 0.038), Iron Acquisition and Metabolism (p = 0.077), 

Secondary Metabolism (p = 0.059), and Potassium Metabolism (p = 0.014). 

Differentially Expressed Bacterial Genes 

To determine whether specific transcripts significantly differed in expression between the 

resistant and susceptible phenotypes, statistical analysis of differential gene expression of 

bacterially derived transcripts was performed using the edgeR Bioconductor package. A total of 

60 bacterial genes were differentially expressed (p ≤ 0.1), 33 of which with false discovery rate 

(FDR) adjusted p-values less than 0.05 and 11 with p-values less than 0.001 (Figure 5.5). Of 

these, 51 of 60 genes were overrepresented in Charles River mice compared to Taconic. The 

majority of differentially expressed genes are involved in energy, amino acid, and carbon 

metabolisms. Overexpressed in Charles River mice were transcripts encoding FliC, the flagellar 

body protein, which is heavily proinflammatory. Only three genes were determined to be 

significantly overrepresented in resistant mice purchased from Taconic Biosciences. All  
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Figure 5.4. Relative abundance of SEED subsystems functional categories. Read counts 

normalized by library size from samples within each group. Blue bars represent abundance in 

mice purchased from Taconic Biosciences. Red bars represent abundance in mice purchased 

from Charles River Laboratories. Data (mean ± s.d.) are from n=5 Tac and n=6 CR mice. 

Asterisks indicate functional categories significantly different (p < 0.05) or trending towards 

significant (p < 0.8) in a comparison via unpaired Student’s t-test. 
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statistically significant bacterial genes, with the exception of three, exhibited an effect size 

greater than 0.8, the value typically used as the cutoff for a strong effect. 

Differentially Expressed Mouse Genes 

 Since sequencing also yielded mouse transcripts within the samples, differential gene 

expression amongst the murine transcripts was also analyzed. Fold change in gene expression 

and FDR adjusted p-values from the exact test are presented in the volcano plot in Figure 5.6. 

Twenty genes were differentially expressed with a p-value less than 0.1, 12 of which had p-

values less than 0.05. Of these, 11 genes were significantly overrepresented in Charles River 

mice and one in Taconic mice. The overrepresented transcripts in Charles River mice include 

Galectin-9 (LGALS9), which is an important immune signaling molecule (Merani et al., 2015), 

and Basigin (bsg), a cell surface receptor whose expression is required for infection of RBCs by 

the human malaria parasite Plasmodium falciparum (Crosnier et al., 2011). All statistically 

significant mouse genes exhibited an effect size greater than 1.0, with the lowest being 1.1 

Metabolite Pools 

 Relative metabolite concentrations were normalized by mass of the processed tissue 

sample, and these data were used to calculate fold change and cluster analyses. Comparison of 

normalized metabolite abundances determined that differences in the metabolome of Charles 

River and Taconic mice were present (p = 0.082). Normalized abundance of significantly 

different metabolites are presented in Figure 5.7.  Of the 129 metabolites detected in the samples, 

36 were found in significantly higher relative concentrations in Charles River mice, and two 

(NADH and N-acetyl-L-alanine) were found in higher concentrations in Taconic mice (p < 0.1). 

All statistically significant metabolites exhibited an effect size greater than 1.0, with the lowest 

being 1.17. The majority of significant metabolites were nucleotides, amino acids, or the  
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Figure 5.5. Volcano plot showing degree of differential expression of bacterially-derived genes 

in Charles River Laboratories mice compared to Taconic Biosciences. Log-transformed fold 

change in expression is plotted on the x-axis and log-transformed false discovery rate-adjusted p-

values plotted on the y-axis. The red horizontal line represents the 0.1 p-value cutoff. Empty 

triangle: fliC (Flagellin). 
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Figure 5.6. Volcano plot showing degree of differential expression of mouse-derived genes in 

Charles River Laboratories mice compared to Taconic Biosciences. Log-transformed fold change 

in expression is plotted on the x-axis and log-transformed false discovery rate-adjusted p-values 

plotted on the y-axis. The red horizontal line represents the 0.1 p-value cutoff. Empty square: bsg 

(Basigin). Empty triangle: lgals9 (Galectin-9). 
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substrates involved in the biosynthesis of these compounds. While a number of additional 

transcripts and metabolites were differentially abundant between mouse substrains, we have 

restricted our discussion to only those where a mechanism influential in gut microbial symbiosis, 

immune regulation, and malaria infection are clear. 

Discussion 

 Previous studies have demonstrated that the microbiome of C57BL/6 mice can modulate 

the severity of Plasmodium infections in mice (Villarino et al., 2016). The resistant and 

susceptible phenotypes were not only reproducible across cohorts, but transmissible as part of 

cecal transplants to germ-free mice. Differences in parasite burden and bacterial community 

composition of Taconic and Charles River mice in the current study were consistent with 

previous research. Taconic mice exhibited significantly lower peak parasite burden and 

recovered from infection more quickly than Charles River mice. These findings strongly suggest 

that, as with our previous study, differences in parasite burden are the result of some currently 

unidentified interaction between the host and the gut microbiota, rather than the effects of 

epigenetic regulation, genetic or environmental effects. However, differential expression of 

mouse genes and differential abundance of metabolite pools are purely associative until further 

gut transplant studies are carried out. 

Phylogenetically, the vast majority of transcripts were produced by bacteria, with Bacteroidetes 

and Firmicutes the most abundant among them. And while reliance on transcript abundance as an 

indicator of community composition is tenuous, the data are consistent with 16S rRNA and 

metagenomic studies of both mice and humans (Backhed et al., 2005, Ley et al., 2006, Sekirov et 

al., 2010). Overall, community composition inferred from transcript abundance did not differ at 

the phylum level between mice from the two vendors sampled. However,   
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Figure 5.7. Heatmap representing metabolite abundances normalized to sample tissue mass and 

log transformed. Metabolites displayed are significantly different with a p-value cutoff of 0.1. A: 

five columns represent metabolite abundances for each of five Taconic Biosciences mice.B: six 

columns represent each of the six Charles River mice.  C. Columns represent the mean 

abundances for Taconic (A) and Charles River (B). 
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relevant differences in community functional profiles from overall expression patterns suggest 

that the factors involved in affecting host phenotype may exist at a finer scale.  

Within the context of our study neither Archaea nor viruses make up a significant portion 

of transcriptional activity, although their contribution cannot be discounted. Previous studies 

have also shown their abundance is lower than their bacterial counterparts (Hoffmann et al., 

2013); however, it is likely that this community was not sequenced deeply enough to detail their 

role. Viruses in particular may require targeted approaches to better resolve their influence on 

community dynamics and host phenotype. The role of phage populations may be limited to top-

down control of the bacterial community with no direct influence over host cells (Ogilvie & 

Jones, 2015). 

 Differential bacterial gene expression in the cecum, in part, reflects differences in 

microbial community composition between mouse strains that are often used interchangeably in 

research and provides important targets to unveil the mechanism underlying resistance to 

malaria. Overrepresentation of transcripts encoding flagellin in Charles River mice suggests a 

mechanism that may involve indirect modulation of the immune system by the gut microflora. 

Flagellin is the principal protein component of the bacterial flagellum, encoded by the gene fliC. 

While the majority of the gut microbial diversity is capable of producing flagella, flagellin levels 

are generally low in the healthy gastrointestinal tract (Verberkmoes et al., 2009). Increased 

flagellin expression can be associated with mucosal barrier breakdown and inflammation 

(Sanders, 2005, Gewirtz, 2006). It has been hypothesized that anti-flagellin antibodies down-

regulate fliC expression in resident non-pathogenic microbes (Cullender et al., 2013) and this 

prevents colonization by potential pathogens (Ghose et al., 2016). However, it is currently 

unclear whether local stimulation of innate and adaptive immune response in the gut via Toll-like 
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receptor 5 (TLR5) (Gewirtz et al., 2006) is relevant to the immune response to Plasmodium 

infection. 

Differential regulation of murine gene expression between groups of mice purchased 

from different vendors is compelling evidence of non-genomic C57BL/6N strain divergence. Of 

particular interest is the overrepresentation of basigin (BSG) in Charles River mice and its 

possible involvement in malaria resistance. Also referred to as CD147 or EMMPRIN 

(extracellular matrix metalloprotease inducer), basigin is a cell surface receptor in the 

immunoglobulin superfamily. It is commonly expressed on many tissue types and is involved in 

a wide variety of biological functions, such developmental processes, nutrient transport, and 

inflammation (Xiong et al., 2014, Hahn et al., 2015). The basigin gene, bsg, can encode four 

different variants through alternative splicing, each of which is expressed in different tissues 

(Liao et al., 2011). Subsequent assembly and analysis of Basigin transcripts from our dataset 

identified that the vast majority of reads encoded isoform Bsg-2, the most abundant and best 

characterized isoform in human and mouse tissue. While basigin is involved in many processes, 

it became relevant to human health when it was found to induce expression of matrix 

metalloproteases, which can promote tumor cell development, invasion, and metastasis (Hahn et 

al., 2015). Perhaps more relevant to the current work, a recent study identified Bsg-2 as a key 

receptor for reticulocyte-binding protein homologue 5 (PfRh5), the parasite ligand required for 

erythrocyte invasion by Plasmodium falciparum (Crosnier et al., 2011). In total these 

observations results in the new hypothesis that decreased expression of basigin isoform Bsg-2 in 

Taconic mice may contribute to their malaria resistance.  

Another overrepresented transcript in Charles River mice encodes the β-galactoside-

binding protein galectin-9. Galectins bind specifically to glycosylated proteins and are typically 
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involved in cell signaling and regulation. As a result, dysfunction of galectin activity and 

expression is closely linked to cancer development (Thijssen et al., 2015) and autoimmune 

disorders (Blidner et al., 2015). As a ligand for the type-I glycoprotein Tim-3, galectin-9 

modulates the innate immune response to viral infection by inducing apoptosis in infected T cells 

(Merani et al., 2015). Dysfunctional expression and activation of the Tim-3 signaling molecule 

has been linked to CD4+ and CD8+ T cell “exhaustion” in chronic HIV (Jones et al., 2008) and 

hepatitis C (Golden-Mason et al., 2009) infection. It is possible that underrepresentation of 

galectin-9 in Taconic mice may improve T cell response to Plasmodium infection. However, 

interest in galectin proteins as important immune signaling molecules has emerged only recently. 

As the regulation of these proteins is poorly understood, the mechanism by which the gut 

microbiota may influence galectin expression is unclear. 

 As part of our analysis we mapped both transcripts and metabolite data (p ≤ 0.1) onto 

microbial metabolic pathways to identify biological processes that may link the two. However, 

we were unable to find connections beyond two or three features within any pathway. This may 

be due to the relatively low transcript coverage of the vast metabolic capabilities of the 

microbiome, but is likely also related to the transient nature of gut contents and the constant flux 

of new material combined with the temporal disconnect between transcriptional and metabolic 

responses. Additionally, it can be difficult to determine whether differential relative 

concentrations of specific molecules are the cause or result of physiological change. However, 

the presence of significant differences in specific gut metabolites, as well as relevant difference 

in overall metabolite pools, between C57BL/6N mice is of serious concern to those that rely on 

them for reproducibility. Previous work has also shown that the murine microbiome can alter the 
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concentration of circulating metabolite in the host (Villarino et al., 2016), further complicating 

the comparison of results between vendors and substrains.  

 This study identified key differences in the gene expression of both the microbial and 

murine components of the gastrointestinal tract, including the cell surface receptor basigin, as a 

potential link between the gut microbiome and the previously observed malaria resistance. 

Differential expression of the immune signaling protein galectin-9 was also noted, and this 

alteration may play a role in regulation of the differential immune response observed in the prior 

study. Additionally, a relevant difference in the overall metabolome and significant differences 

in multiple individual metabolites were observed. While the differences in gene expression and 

metabolism we observed provide evidence against the interchangeability of mice obtained from 

different vendors, they shed new light on potential avenues for investigation into the effects of 

the microbiome on the severity of malaria.   



138 
 

Acknowledgements 

This work was supported by NIH Grant 1R21AI113386 and funds from the Kenneth & Blaire 

Mossman endowment to the University of Tennessee. 

  



139 
 

Chapter V Appendix 

Table 5.1. Significantly differentially expressed mouse and bacterial genes (p ≤ 0.1), log Fold 

Change, and False Discovery Rate Adjusted p-values. 

Source Gene Name Gene Product logFC FDR Effect 
Size 

Bacteria GATM glycine amidinotransferase 10.56203129 9.48E-07 1.3052741 
 

SpeA arginine decarboxylase 7.074700747 3.60E-05 1.5428224 
 

NuoM NADH-quinone oxidoreductase 
subunit M 

6.231465975 0.000180273 1.4258402 
 

TusE/DsrC tRNA 2-thiouridine synthesizing 
protein E 

8.902038577 0.000200091 1.6800906 
 

PurT phosphoribosylglycinamide 
formyltransferase 2 

7.283113669 0.00039202 1.4756676 
 

DsrB sulfite reductase beta subunit 8.385858709 0.000427852 1.6403626 
 

NuoN NADH-quinone oxidoreductase 
subunit N 

6.573771144 0.000530932 1.624988 
 

UreC urease subunit alpha 4.7696686 0.000557846 1.440464 
 

Buk butyrate kinase 2.102034749 0.000614343 1.6461527 
 

FTCD glutamate formiminotransferase / 
formiminotetrahydrofolate 
cyclodeaminase 

6.359338898 0.000614343 1.2068993 

 
GdhA glutamate dehydrogenase (NADP+) 1.18441685 0.000614343 2.1202833 

 
NuoK NADH-quinone oxidoreductase 

subunit K 
7.370181564 0.002263382 1.6583615 

 
GlpQ/UgpQ glycerophosphoryl diester 

phosphodiesterase 
4.062422123 0.002263382 1.0715194 

 
UreA urease subunit gamma 5.435311192 0.003406626 1.3049208 

 
GlcD glycolate oxidase -2.368672855 0.00412958 1.2855642 

 
RegX3 two-component system, OmpR 

family, response regulator RegX3 
5.529495891 0.00467813 1.0360145 

 
NuoB NADH-quinone oxidoreductase 

subunit B 
3.953272974 0.005621745 1.5099251 

 
NuoL NADH-quinone oxidoreductase 

subunit L 
4.01725117 0.005621745 1.275322 

 
UreB urease subunit beta 4.46892511 0.006184066 1.6861034 

 
IolB 5-deoxy-glucuronate isomerase 5.954879914 0.006332655 1.4514659 

 
FliC flagellin 1.233262625 0.006332655 2.108153 

 
PTS-Aga-EIIC/AgaW PTS system, N-acetylgalactosamine-

specific IIC component 
4.802058041 0.007779713 1.6118904 

 
SerC/PSAT1 phosphoserine aminotransferase 1.074156786 0.008473378 1.8291656 

 
GlpC glycerol-3-phosphate dehydrogenase 

subunit C 
6.354592197 0.009210915 1.5117792 
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Table 5.1. Continued. 

Sourc
e 

Gene Name Gene Product logFC FDR Effect 
Size 

Bacteria SDHA/SDH1 succinate dehydrogenase 
(ubiquinone) flavoprotein subunit 

-4.432885653 0.009210915 0.4563344 
 

GctA glutaconate CoA-transferase, subunit 
A 

7.53547712 0.009404321 1.0240919 
 

NuoH NADH-quinone oxidoreductase 
subunit H 

4.523208595 0.013254562 1.3783323 
 

Ptb phosphate butyryltransferase 2.124189103 0.016398458 1.4304567 
 

YgeU/XdhC xanthine dehydrogenase iron-sulfur-
binding subunit 

2.154890651 0.018858598 3.3008939 
 

Eda 2-dehydro-3-deoxyphosphogluconate 
aldolase / (4S)-4-hydroxy-2-
oxoglutarate aldolase 

1.082844645 0.022255509 2.1391447 

 
E3.2.1.24 alpha-mannosidase -1.291538009 0.025748223 2.0848625 

 
ALAS 5-aminolevulinate synthase 5.379671095 0.03089919 0.5861588 

 
DsrA sulfite reductase alpha subunit 6.39127666 0.048137885 0.9054653 

 
Cgn Cingulin 2.881220804 0.05284059 1.6751635 

 
MmsA/IolA/ALDH6A1 malonate-semialdehyde 

dehydrogenase (acetylating) /  
methylmalonate-semialdehyde 
dehydrogenase 

-2.060221714 0.05284059 1.2174738 

 
ATPF1A/AtpA F-type H+-transporting ATPase 

subunit alpha 
0.844771592 0.05284059 1.3782354 

 
RP-S15/MRPS15/RpsO Small Subunit Ribosomal Protein 1.062973115 0.061089357 1.6536516 

 
PatA putrescine aminotransferase 2.222866162 0.061196835 1.5502705 

 
ITPK1 inositol-1,3,4-trisphosphate 5/6-

kinase / inositol- 
tetrakisphosphate 1-kinase 

3.690990259 0.068577927 0.6381211 

 
NuoA NADH-quinone oxidoreductase 

subunit A 
3.840319059 0.069622603 1.2586251 

 
LYS1 saccharopine dehydrogenase (NAD+, 

L-lysine forming) 
1.148515411 0.072628937 1.1809167 

 
CheV two-component system, chemotaxis 

family,  
response regulator CheV 

1.137598186 0.072628937 1.7032707 

 
ABC-2.A ABC-2 type transport system ATP-

binding protein 
1.268058818 0.072628937 1.1852107 

 
Enr 2-enoate reductase -1.816291338 0.072628937 1.9947845 

 
PsaA photosystem I P700 chlorophyll a 

apoprotein A1 
3.908347932 0.074550244 0.8354202 

 
DapD 2,3,4,5-tetrahydropyridine-2-

carboxylate N- 
succinyltransferase 

1.972015719 0.076022433 1.4479565 

 
ALDO fructose-bisphosphate aldolase, class 

I 
-1.702917526 0.076022433 1.4723451 

 
MDH1 malate dehydrogenase 2.622145266 0.083780158 1.2696492 

 
RP-S6/MRPS6/RpsF Small subunit ribosomal protein S6 0.849315223 0.08574694 2.3462309 
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Table 5.1. Continued. 

Sourc
e 

Gene Name Gene Product logFC FDR Effect 
Size 

Bacteria ATPF1B/AtpB F-type H+-transporting ATPase 
subunit beta 

0.738843482 0.08574694 1.3055021 
 

NadX aspartate dehydrogenase -2.056355974 0.08574694 1.9236227 
 

PanE/ApbA 2-dehydropantoate 2-reductase -1.862885298 0.08574694 1.5857412 
 

Eno enolase 0.677777702 0.08574694 1.0884583 
 

ArgG/ASS1 argininosuccinate synthase 0.921274891 0.08574694 1.163186 
 

FabB 3-oxoacyl-[acyl-carrier-protein] 
synthase I 

3.561095503 0.08574694 1.1025828 
 

TatC sec-independent protein translocase 
protein TatC 

-1.55099591 0.08574694 2.0887403 
 

KdsA 2-dehydro-3-deoxyphosphooctonate 
aldolase  
(KDO 8-P synthase) 

1.547237925 0.087896354 1.3833127 

 
FucK L-fuculokinase 3.481884866 0.089880237 1.5672104 

 
ABC.PE.S peptide/nickel transport system 

substrate-binding protein 
0.835541407 0.089880237 2.2754899 

 
Fhs formate--tetrahydrofolate ligase 0.703741962 0.094662643 1.4771 

Mouse Ahcyl2 adenosylhomocysteinase 6.11069988 7.54438E-05 3.0206194 
 

Bsg Basigin 5.021955403 0.002347438 1.2340425 
 

Rsrp1 Arginine/serine-rich protein 1 -3.492567218 0.002347438 1.9022358 
 

Ndufa7 NADH dehydrogenase 1 alpha 
subcomplex subunit 7 

3.823154723 0.015297121 3.1831989 
 

Cyp2c55 Cytochrome P450 2C55 2.962176928 0.018513833 3.4631036 
 

Gsdmc4 Gasdermin-C4 6.062150002 0.025095072 2.7076045 
 

Ndufb8 NADH dehydrogenase 1 beta 
subcomplex subunit 8 

13.81400494 0.025095072 1.1636012 
 

Hmgcs2 Hydroxymethylglutaryl-CoA 
synthase 

3.469436143 0.042944276 2.7083165 
 

Rpl38 60S Ribosomal protein L38 7.647852391 0.042944276 1.5492865 
 

Azin1 Antizyme Inhibitor 1 6.290758297 0.043120905 2.1475965 
 

Hadhb Trifunctional enzyme subunit beta 10.51963033 0.043120905 2.2005213 
 

Psmb4 Proteasome Subunit beta type-4 3.343521152 0.065559612 2.54816 
 

H3f3a Histone H3.3 4.133121776 0.090810428 1.4220731 
 

Lgals9 Galectin-9 5.108298738 0.090810428 2.1805035 
 

Arpc1a Actin-related protein 2/3 complex 
subunit 1A 

4.444238214 0.093437914 1.5775638 
 

Hist1h4h Histone H4 3.780447723 0.093437914 2.4061417 
 

Ndufs4 NADH dehydrogenase iron-sulfur 
protein 4 

3.810497174 0.093437914 2.9942464 
 

Pcca Propionyl-CoA carboxylase alpha 
chain 

6.612551547 0.093437914 1.9207781 
 

Pnkd Probable Hydrolase PNKD 6.633368035 0.093437914 2.6403529 
 

Slc25a20 Mitochondrial carnitine/acylcarnitine 
carrier protein 

-2.961285001 0.093437914 1.3733935 
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Table 5.2. Fold Change and Cluster Analysis p-values for individual metabolites. 

Compound Pathway Fold Change p value Effect Size 
cysteine Amino Acid 4.264451517 0.048392497 1.482565924 

leucine/isoleucine Amino Acid 2.436147564 0.022166626 1.743857484 

aspartate Amino Acid 2.007974347 0.009882875 2.078749142 

methionine Amino Acid 1.891779813 0.075978816 1.224121478 

histidine Amino Acid 2.261762804 0.063734379 1.305951153 

phenylalanine Amino Acid 1.64334625 0.07620887 1.22177407 

tyrosine Amino Acid 1.814098773 0.047735051 1.400186304 

Xanthurenic acid Amino Acid Metabolism 2.110636707 0.030706401 1.542142043 

N-Acetyl-L-alanine Amino Acid Metabolism 0.384640226 0.011383081 1.917705446 

glycerate Amino Acid Metabolism 6.255104016 0.011354755 2.228397124 

Cysteate Amino Acid Metabolism 2.585023342 0.079345053 1.23520779 

N-acetyl-glutamate Amino Acid Metabolism 2.81404649 0.083747638 1.2273061 

uracil Nucleotide 10.66350413 0.070807952 1.319535042 

thymine Nucleotide 7.113874218 0.085233507 1.232174327 

guanine Nucleotide 5.704544345 0.089711477 1.200954906 

thymidine Nucleotide 12.31455573 0.043687853 1.535083428 

cytidine Nucleotide 2.073567308 0.010745541 2.103744183 

uridine Nucleotide 8.48703799 0.044962788 1.533516235 

dTMP Nucleotide 2.916461634 0.050213852 1.476807495 

CMP Nucleotide 1.710297432 0.026978638 1.716741428 

NADH Nucleotide 0.341028811 0.006417009 2.121411393 

adenosine Nucleotide 2.302531269 0.061374337 1.298884329 

inosine Nucleotide Metabolism 5.002214937 0.059828075 1.392609086 

hypoxanthine Nucleotide Metabolism 5.085169781 0.027413684 1.749107264 

deoxyuridine Nucleotide Metabolism 10.38925436 0.051010272 1.472521792 

xanthosine Nucleotide Metabolism 7.301096662 0.052336967 1.459539016 

dCMP Nucleotide Metabolism 2.092157232 0.014158991 2.06543616 

pyruvate Glycolysis/TCA cycle 3.501114712 0.0031527 2.829660522 

a-ketoglutarate Glycolysis/TCA cycle 2.272752652 0.064501908 1.312544356 

trehalose/sucrose Carbon Metabolism 3.461951999 0.065543262 1.322667299 

nicotinate Vitamin 2.054801917 0.029668976 1.7110114 

biotin Vitamin 2.415017868 0.088746356 1.20510263 

4-Pyridoxic acid Vitamin Metabolism 2.554636577 0.064361789 1.356401173 

Cholic acid Bile Acid 3.786874682 0.026447811 1.694773436 

Taurine Bile Acid Biosynthesis 1.655596046 0.001840094 2.926294892 

FMN Oxydative Phosphorylation 2.718121434 0.096874767 1.17243847 

sn-glycerol-3-phosphate Glycerolipid Biosynthesis 4.255672265 0.098616854 1.166615844 
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Table 5.2. Continued. 

Compound Pathway Fold Change p value  Effect Size  
1-Methyladenosine Other 3.51953833 0.083512912 1.226670205 

2-Hydroxy-2-methylbutanedioic 
acid 

Other 3.169547335 0.068111382 1.284917215 
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CHAPTER VI: 

CONCLUSION 
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While jumping between disparate microbial communities and environments, the work 

described here is unified behind the themes of 1.) developing targeted approaches that allow 

researchers to reduce the size and complexity of the notoriously large high-throughput 

sequencing datasets in order to propose hypotheses that can be tested in a field or laboratory 

setting and 2.) discovering or predicting the relationships between microbes and their hosts, with 

a particular focus on viruses. As a whole, this work has established a firm foundation for future 

refinement of these methods and application to as yet unexamined microbial communities.  

Building off of previous studies suggesting the strong influence of viral activity on 

Microcystis aeruginosa blooms (Steffen et al., 2015, Steffen et al., 2017), we used currently 

available metatranscriptome sequencing data isolated from the hypereutrophic Lake Tai, China 

to search for Microcystis-specific viruses and characterize their activity during cyanobacterial 

blooms. During this study, we discovered transcriptional patterns, consistent across temporal and 

geographic scales, that suggested rampant lysogeny occurs during bloom season. These results 

further suggest a series of viral expression markers that could be used to further predict lytic and 

lysogenic activity in Microcystis phage. As lysogeny may protects the host from subsequent 

infection by other lytic phage, these observations may provide an explanation for Microcystis 

success as a bloom former and its ability to defy Hutchinson’s paradox of the plankton and the 

kill-the-winner-hypothesis (Hutchinson, 1961, Thingstad & Lignell, 1997). 

While the microbial diversity in cyanobacterial blooms is relatively well described, study 

of the microbiome of Sphagnum peat bog environments is in its infancy (Kostka et al., 2016). As 

the viral constituents of these ecosystems are almost entirely unknown, we applied a pipeline in 

development to characterize viruses from multiple taxa using currently available 

metatranscriptome sequencing isolated from Sphagnum tissue in Northern Minnesota. In this 
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study, we were able to identify a broad diversity of both DNA and RNA viruses. As viral mRNA 

molecules are only produced during active infections, we were also able to use the relative 

abundances of viral transcripts to build correlation co-occurrence networks in order to predict the 

hosts of many of the identified viruses. This viral diversity and these predicted relationships now 

stand as proposed hypotheses that can be tested in future, substantially simplifying a complex 

microbial community into a group of potential model systems for the study of virus host 

interactions in Sphagnum. 

One such example of a potential model system in freshwater ecosystems is the 

haptophyte Chrysochromulina parva, its virus CpV and virophage CpVV. To lay the foundation 

for future culture-based studies, we sequenced, assembled, and annotated the genomes of CpV 

and CpVV. Therein we observed a versatile giant virus clearly originating in an emerging clade 

within the NCLDV group. CpV possessed an expanded potential for the genetic and regulatory 

modification of its host, with corresponding capabilities in its virophage. Subsequent 

examination of CpV activity using currently available metatranscriptome sequencing data from 

freshwater ecosystems revealed significant activity in Lake Tai, China during the cyanobacterial 

bloom in 2013. These results suggest that CpV is globally distributed and an important 

contributor to freshwater ecosystems. 

Lastly, in order to determine the contribution of the gut microbiome to malaria resistance 

in mice, we isolated and sequenced the bacterial community and mouse metatranscriptomes. 

During our analysis we were able to identify multiple genes potentially involved in the interface 

between gut microbes and their host that may contribute to resistance to infection by 

Plasmodium. These results also have significant implications in the selection of mouse strains for 

scientific research, as even genetically identical mice can have radically different phenotypes 
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depending on the activity of their gut microbes. Altogether this body of work establishes a 

collection of powerful methods for targeting specific organisms and activities in diverse 

microbial ecosystems, and proposes hypotheses that advance the understanding of the 

environments studied herein. 
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