
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

12-2017

Almost Symmetries and the Unit Commitment
Problem
Bernard Albert Knueven
University of Tennessee, bknueven@vols.utk.edu

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Knueven, Bernard Albert, "Almost Symmetries and the Unit Commitment Problem. " PhD diss., University of Tennessee, 2017.
https://trace.tennessee.edu/utk_graddiss/4835

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Bernard Albert Knueven entitled "Almost Symmetries
and the Unit Commitment Problem." I have examined the final electronic copy of this dissertation for
form and content and recommend that it be accepted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy, with a major in Industrial Engineering.

James Ostrowski, Major Professor

We have read this dissertation and recommend its acceptance:

John E. Kobza, Michael A. Langston, Oleg Shylo

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Almost Symmetries and the Unit

Commitment Problem

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Bernard Albert Knueven

December 2017

Acknowledgments

I would like to express my deepest gratitude to my advisor, Professor James Ostrowski, for all his

support and guidance. He and Professor Olga Brezhneva played a pivotal role in my returning to

graduate school. I would like to thank Dr. Jean-Paul Watson for the opportunity he provided me

to work at Sandia National Laboratories, and for ensuring my time in Albuquerque, NM was both

productive and enjoyable. I would also like to thank Professors Oleg Shylo, John E. Kobza, and

Michael A. Langston for serving on my thesis committee.

I would like to express my appreciation to the University of Tennessee, the National Science

Foundation, and the U.S. Department of Energy, for providing funding for my graduate studies

and the work in this thesis.

Finally, I would like to thank all the wonderful friends I have made these past four years: Mike

Hare, Tony Rodriguez, Whitney Forbes, Amelia and Derek McIlvenna, Bryan Arguello, Alegria

Salazar, Bismark Singh, Austin Love, Magen Shedden, Terry Hendersen, Christopher Muir, Ethan

Deakins, Jonathan Schrock, and Jillian Blueford. I have benefited greatly from their friendship and

encouragement.

ii

Abstract

This thesis explores two main topics. The first is almost symmetry detection on graphs.

The presence of symmetry in combinatorial optimization problems has long been considered an

anathema, but in the past decade considerable progress has been made. Modern integer and

constraint programming solvers have automatic symmetry detection built-in to either exploit or

avoid symmetric regions of the search space. Automatic symmetry detection generally works

by converting the input problem to a graph which is in exact correspondence with the problem

formulation. Symmetry can then be detected on this graph using one of the excellent existing

algorithms; these are also the symmetries of the problem formulation.

The motivation for detecting almost symmetries on graphs is that almost symmetries in an

integer program can force the solver to explore nearly symmetric regions of the search space.

Because of the known correspondence between integer programming formulations and graphs, this

is a first step toward detecting almost symmetries in integer programming formulations. Though

we are only able to compute almost symmetries for graphs of modest size, the results indicate

that almost symmetry is definitely present in some real-world combinatorial structures, and likely

warrants further investigation.

The second topic explored in this thesis is integer programming formulations for the unit

commitment problem. The unit commitment problem involves scheduling power generators to

meet anticipated energy demand while minimizing total system operation cost. Today, practitioners

usually formulate and solve unit commitment as a large-scale mixed integer linear program.

The original intent of this project was to bring the analysis of almost symmetries to the

unit commitment problem. Two power generators are almost symmetric in the unit commitment

problem if they have almost identical parameters. Along the way, however, new formulations for

power generators were discovered that warranted a thorough investigation of their own. Chapters 4

and 5 are a result of this research.

iii

Thus this work makes three contributions to the unit commitment problem: a convex

hull description for a power generator accommodating many types of constraints, an improved

formulation for time-dependent start-up costs, and an exact symmetry reduction technique via

reformulation.

iv

Table of Contents

1 Introduction 1

1.1 Integer Programming . 1

1.1.1 Symmetry in Integer Programming . 5

1.2 Graph Automorphism . 9

1.2.1 Computational Complexity . 9

1.2.2 GI – A brief algorithmic history . 11

1.2.3 nauty – No AUTomorphisms, Yes? . 13

1.2.4 saucy – A worthy competitor emerges . 14

1.2.5 Bliss, Traces, and conauto . 15

1.3 Almost Symmetries in Graphs . 15

1.4 The Unit Commitment Problem . 16

2 Detecting Almost Symmetries of Graphs 19

2.1 Introduction . 20

2.1.1 Preliminaries . 20

2.1.2 Contribution . 22

2.1.3 Motivation . 23

2.1.4 Literature Review . 23

2.2 Algorithmic Overview . 24

2.2.1 Eliminating mappings . 25

2.2.2 Branching . 31

2.2.3 Bounding . 32

2.2.4 An Algorithm . 32

2.3 Implementation . 34

v

2.4 Computational Results . 35

2.4.1 Branching Strategy . 36

2.4.2 Heuristics . 40

2.5 Conclusion . 42

3 The Ramping Polytope and Cut Generation for the Unit Commitment Problem 48

3.1 Introduction . 49

3.2 The Unit Commitment Problem . 50

3.2.1 3-bin Formulation . 51

3.2.2 The Feasible Dispatch Polytope . 54

3.2.3 Packing Dispatch Polytopes . 55

3.3 A Cutting-Plane Procedure for the 3-bin Formulation 57

3.3.1 From Dispatch Polytope Space to 3-bin Space 59

3.3.2 A Cut-Generating Linear Program . 60

3.3.3 Implementation . 61

3.3.4 Computational Experiments . 63

3.3.5 Initial Results . 65

3.3.6 High Wind Instances . 66

3.3.7 Observed Cuts . 67

3.3.8 Reflections . 69

3.4 Conclusion . 70

4 A Novel Matching Formulation for Startup Costs in Unit Commitment 71

4.1 Nomenclature . 72

4.1.1 Indices and Sets . 72

4.1.2 Parameters . 72

4.1.3 Variables . 73

4.2 Introduction . 73

4.3 Unit Commitment Formulation . 75

4.4 Startup Cost Formulations . 76

4.4.1 Formulations from the Literature . 76

4.4.2 Novel Formulations . 78

4.5 Dominance Hierarchy of Startup Cost Formulations 80

vi

4.6 Computational Experiments . 82

4.6.1 CAISO Instances . 84

4.6.2 FERC Instances . 86

4.6.3 Statistical Analysis . 90

4.7 Discussion . 90

4.8 Conclusions . 92

5 Exploiting Identical Generators in Unit Commitment 93

5.1 Nomenclature . 94

5.1.1 Indices and Sets . 94

5.1.2 Parameters . 94

5.1.3 Variables . 94

5.2 Introduction . 95

5.3 Unit Commitment Formulation . 97

5.4 Disaggregating Solutions . 100

5.4.1 Extended Formulation (EF) . 102

5.4.2 3-Bin for Fast-Ramping . 103

5.5 The Potential Impact and Benefit of Aggregation . 105

5.6 Computational Experiments . 107

5.6.1 CAISO Instances . 109

5.6.2 Ostrowski Instances . 112

5.7 Conclusion . 113

6 Conclusions 114

6.1 Detecting Almost Symmetries of Graphs . 114

6.2 The Unit Commitment Problem . 115

6.3 Future Work . 116

Bibliography 118

Appendices 133

A Detailed Computational Results for Chapter 2 134

B Code Structure for FindAlmostSymmetry 150

vii

C Constrained Minkowski Sums of Polyhedra 152

A The Extended Formulation . 154

D Specification of UC formulations 158

A One Binary Formulation (1-bin) . 159

B Strengthened One Binary Formulation (1-Bin*) . 159

C Three Binary Formulation (3-bin) . 160

D Startup Type Indicator Formulation (STI) . 160

E Matching Formulation (Match) . 160

F Extended Formulation (EF) . 161

E Detailed Computational Results for Chapter 4 162

A Computational Results . 162

A.1 CAISO Instances . 163

A.2 FERC Instances . 168

B Statistical Analysis . 176

B.1 Gurobi 7.0.1 . 176

B.2 CPLEX 12.7.1.0 . 178

C Summary . 180

F Aggregation/Disaggregation Details 181

A Nomenclature . 181

A.1 Indices and Sets . 181

A.2 Parameters . 181

A.3 Variables . 182

B Unit Commitment Formulation . 183

C Disaggregating the Extended Formulation . 184

D Disaggregating the 3-bin polytope . 187

D.1 Generator Production Cost Function . 188

D.2 Generator Startup Costs . 189

D.3 Disaggregating schedules . 190

D.4 Disaggregating Power and Reserves . 195

D.5 Disaggregating Piecewise Linear Production Costs 198

viii

E Full Formulations . 201

E.1 Three Binary Formulation . 201

E.2 Aggregation Formulation . 202

G Additional Computational Tests for Chapter 5 207

A Symmetry Breaking Inequalities . 207

B Computational Results . 208

B.1 CAISO Instances . 209

B.2 Ostrowski Instances . 209

Vita 211

ix

List of Tables

2.1 DegreeDiffElim for graph in Figure 2.1 at root node 26

2.2 Computational Results . 37

2.3 edgeUse branching vs. strong branching at root node 41

2.4 edgeUse branching robustness, selected instances . 43

2.5 % gap reduced for heuristics . 46

2.6 Time in seconds for heuristics . 47

3.1 3-bin UC Formulation Problem Size . 64

3.2 Winter System: Cut Generation LP Sizes . 64

3.3 Summer System: Cut Generation LP Sizes . 64

3.4 Initial Computational Results . 65

3.5 High Wind Computational Summary, Solved Instances 65

3.6 High Wind, Harder Instances . 66

3.7 High Wind, Timed Out Instances . 67

4.1 Size of the Formulations . 82

4.2 Summary of computational experiments for CAISO instances using Gurobi 84

4.3 Summary of computational experiments for CAISO Instances using CPLEX 84

4.4 Computational results for CAISO instances: Relative Integrality Gap (%) 86

4.5 Summary of computational experiments for FERC Instances using Gurobi 87

4.6 Summary of computational experiments for FERC Instances using CPLEX 88

4.7 Computational results for FERC instances: Relative Integrality Gap (%) 89

5.1 Ostrowski Instances: Generator Performance Data 108

5.2 Ostrowski Instances: Generator Cost Data . 109

5.3 Ostrowski Instances: Number of Generators of Each Type 109

x

5.4 Ostrowski Instances: Demand (% of Total Capacity) 110

5.5 CAISO: Selected Generator Performance Characteristics 110

5.6 Computational Results for CAISO UC Instances . 111

5.7 Computational Results for Ostrowski UC Instances 112

6.1 Almost Symmetry in the CAISO Generators . 116

A.1 edgeUse branching robustness, additional instances 141

A.2 Computational Results – three children per node . 149

E.1 Gurobi Computational Results for CAISO Instances: Wall Clock Time 163

E.2 Gurobi Computational Results for CAISO Instances: Nodes Explored 165

E.3 CPLEX Computational Results for CAISO Instances: Wall Clock Time 166

E.4 CPLEX Computational Results for CAISO Instances: Nodes Explored 167

E.5 Computational Results for CAISO Instances: Relative Integrality Gap (%) 168

E.6 Gurobi Computational Results for FERC Instances: Wall Clock Time 170

E.7 Gurobi Computational Results for FERC Instances: Nodes Explored 171

E.8 CPLEX Computational Results for FERC Instances: Wall Clock Time 173

E.9 CPLEX Computational Results for FERC Instances: Nodes Explored 174

E.10 Computational Results for FERC Instances: Relative Integrality Gap (%) 175

E.11 Results of the Wilcoxon signed-rank test for Gurobi computational experiments . . . 177

E.12 Results of the Wilcoxon signed-rank test for CPLEX computational experiments . . 179

G.1 Additional Computational Results for CAISO UC Instances 208

G.2 Additional Computational Results for Ostrowski UC Instances 209

xi

List of Figures

2.1 A graph with almost symmetry . 21

2.2 FixedDegElim example . 27

2.3 RefineByMatching example . 30

2.4 Scaling on various problems . 36

2.5 Random branching (box plot) vs. edgeUse branching (�, number of nodes on right)

vs. local branching (×, number of nodes on left), selected instances 39

3.1 Visualization of the cut-generation procedure . 62

A.1 Detailed scaling on various problems . 135

A.2 Random branching (box plot) vs. edgeUse branching (�, number of nodes on right)

vs. local branching (×, number of nodes on left), additional instances 144

xii

Chapter 1

Introduction

In this chapter, we introduce some foundational concepts, and discuss the motivations for the

work presented in subsequent chapters. We present some background on integer programming and

methods for symmetry handling in integer programming. We then turn to the study of almost

symmetries and their potential applications in optimization. Finally, we consider the preceding in

the context of a real-world scheduling problem, namely the unit commitment problem.

1.1 Integer Programming

Integer programming (IP) is a broad modeling paradigm for optimization problems which allows

the practitioner to model objects that by their nature come in discrete quantities. Such objects

could be the number of workers a company hires to complete a certain task, or whether a power

generator is on or off. Modeling flexibility can be further extended by mixing integer and continuous

variables, for example, if a power generator is on, its power output may be allowed to vary between

two specified quantities.

Put most broadly, an integer program is an optimization problem of the following form:

min f(x, y)

subject to g1(x, y) ≤ 0

...

gm(x, y) ≤ 0

x ∈ R
n, y ∈ Z

p,

(1.1)

1

where f, g1, . . . , gm : Rn+p → R are arbitrary functions. When n = 0, i.e., there are no continuous

variables, this is sometimes called a pure integer program, otherwise it is called a mixed integer

program. If one of the functions f, g1, . . . , gm is nonlinear, then (1.1) is called a mixed integer

nonlinear program (MINLP). If all the functions f, g1, . . . , gm are linear (or really, affine), then

(1.1) is called a mixed integer linear program (MILP). Conforti et al. [21] provide a thorough

overview on integer linear programming; for a recent overview on MINLP, see [150]. A historical

perspective on integer programming is given by Jünger et al. [72].

This dissertation will only concern itself with mixed integer linear programs. When all the

functions in (1.1) are linear, we usually write the objective function and constraints in a matrix-

vector form:

min cTx+ hT y

subject to Ax+Gy ≤ b

x ∈ R
n, y ∈ Z

p,

(1.2)

where c ∈ R
n, d ∈ R

p, A is an m×n matrix, G is an m×p matrix, and b ∈ R
m. We further assume

that all entries in these vectors and matrices are rational.

Assuming the feasible region is bounded in the y variables, an obvious solution method for

(1.2) is to enumerate the space in the y variables. For fixed y, (1.2) is a linear program, so it is

known to be solvable in polynomial time [80, 76]. (See Bertsimas and Tsitsiklis [10] for a thorough

introduction to linear programming.) Notice, however, that even if y is restricted to be a vector in

{0, 1}p (that is, y is restricted to be a binary vector), this involves solving 2p many linear programs.

A slightly more sophisticated enumeration technique, known as branch-and-bound, relies on the

some simple observations. Consider the problem (1.2), where we have relaxed the integer y variables

to be continuous:

min cTx+ hT y

subject to Ax+Gy ≤ b

x ∈ R
n, y ∈ R

p.

(1.3)

Problem (1.3) is said to be the linear programming relaxation (LP relaxation) for problem (1.2).

Let ẑR be the optimal objective value to the relaxed problem (1.3) and z∗ be the optimal objective

2

value to the original problem (1.2). Since (1.3) is a relaxation of (1.2), we know ẑR ≤ z∗. Further,

any integer feasible solution to (1.2) with objective value zI has the property z∗ ≤ zI .

A few things become apparent from this paradigm. First, we may get very lucky and the

optimal solution we found for (1.3), (x̂R, ŷR), may have the property that ŷR ∈ Z
p. In this case

we know (x̂R, ŷR) is the optimal solution for (1.2). If conversely the solution (x̂R, ŷR) has some

component of y, ŷRi , that is not integer, we can build a “divide and conquer” strategy for solving

(1.2). We create two subproblems (called branching), one with yi ≥
⌈
ŷRi
⌉
added to the constraints

and the other with yi ≤
⌊
ŷRi
⌋
added to the constraints. (Here �·� and �·	 are the ceiling and floor

functions, respectively.) This process is then iteratively repeated, the which builds the so-called

branch-and-bound tree. Whenever a subproblem has an integer solution for its relaxation, we

update the incumbent value zI (if it’s improving), and by the earlier bounding logic we need not

branch anymore at this subproblem. Similarly, if for some subproblem we have ẑR > zI , no further

branching on this subproblem can result in a better solution. The hope in using the branch-and-

bound procedure is that complete enumeration in the y variables will not be required to find and

prove an optimal solution. This however is not guaranteed, and perhaps more importantly, an

exponential number of subproblems (in p) may have to be considered.

While today, with cheap parallel computing power that can be purchased on-demand, the

branch-and-bound approach at least seems feasible, it was surely not sixty years ago, when transistor

computers were just starting to supplant vacuum tube computers. It was in this environment that

Ralph Gomory developed his cutting plane method for integer linear programs [63, 64], which today

are known as Gomory cuts. Gomory demonstrated that given an optimal solution (x̂R, ŷR) to (1.3),

if said optimal solution had some fractional y components, one can generate a cut, which is a new

constraint αTx+γT y ≤ β which “cuts off” the current fractional solution (x̂R, ŷR), while not cutting

off any integer solutions. That is, αT x̂R + γT ŷR > β, and the sets {x ∈ R
n, y ∈ Z

p | Ax+Gy ≤ b}
and {x ∈ R

n, y ∈ Z
p | Ax+Gy ≤ b, αTx+ γT y ≤ β} are equal. The problem (1.3) can then be re-

solved with the addition of this new constraint. (Note that both in this and the branch-and-bound

context, adding a new constraint and re-solving a linear program is usually much easier than the

original problem. This is because the dual simplex method can be used with the previous basis to

find a new solution.) This process can be iteratively repeated until the solution is integer in y.

Gomory showed that his cutting plane approach terminated in finite time, and certainly did

not have the potential issue of subproblem explosion that branch-and-bound poses. Much of the

subsequent research in integer programming has been focused on efficient and new cut generation.

3

That being said, Gomory’s cutting plane algorithm is not a polynomial-time algorithm for general

integer linear programs (an exponential number of cuts may have to be generated); further, after

several iterations, numerical stability issues often arise when implemented using finite precision

arithmetic [22, 24].

However, the branch-and-bound paradigm and the cutting-plane approach are not mutually

exclusive. Both commercial (CPLEX [69], Gurobi [66], Xpress [37]) and non-commercial (SCIP [93],

CBC [43]) MILP solvers implement an algorithmic framework know as branch-and-cut. This

combines the branch-and-bound and cutting-plane approaches by generating cuts as branch-and-

bound progresses, with the hope of tightening the LP relaxations for the subproblems. Modern

MILP solvers often expend significant computational effort at the initial LP relaxation generating

cuts before beginning to branch.

Thus, advances in integer programming the past sixty years have generally fallen into one of

the following categories: (i) valid cut generation, so as to tighten the LP relaxation bound, (ii)

heuristics, so as to find good incumbent solutions early, (iii) improved branching strategies, with

the hope of limiting the number of subproblem solves, (iv) reformulations, either to strengthen the

LP relaxation or eliminate redundancies in the search space. Note that these can be application

specific, as the techniques developed in this dissertation are, or general. A complete overview of the

history on integer linear programming is impossible to give here, so the interested reader is again

referred to the excellent texts [72, 21].

Often the goal when attempting to reformulate a problem is to find a reformulation such that

ẑR = z∗ for arbitrary objective functions. Put another way, to find new variables and constraints

such that conv{(x, y) ∈ R
n × Z

p | Ax+Gy ≤ b} = {(x, y) ∈ R
n × R

p | Ax+Gy ≤ b}, that is, the
extremal points of the polytope are integer. If the all the extreme points of the polytope are integer

in the y variables, we describe it as an integer polytope. A reformulation with extra variables and/or

constraints is usually called an extended formulation. Such a reformulation is always possible, for

example, all of the integer points my be enumerated and mapped to a simplex of appropriate

dimension. Hence the goal with reformulations is to find a compact reformulation, i.e., one that

does not add too many additional variables and constraints. More precisely, a compact extended

formulation is one that is polynomial in the size of the problem’s input.

However, if the problem is known to be NP-hard, then finding a compact extended formulation

is equivalent to proving P = NP. (In fact, this technique has often been used for flawed proofs of

P = NP [137].) A common technique therefore is to find some substructure whose formulation can

4

be tightened without spending one’s time on a Millennium Prize Problem. Such is the approach

applied to the unit commitment problem (UC) in Chapters 3 and 4. (We will outline the unit

commitment problem in Section 1.4.) Chapter 5 also proposes a reformulation approach, however

its technique exploits symmetries that exist in the problem structure, a topic we now turn to.

1.1.1 Symmetry in Integer Programming

The presence of symmetry in integer programs has long been an issue for practitioners, though much

progress has been made in recent years. Symmetry occurs when two or more sets variables in the

problem (1.2) are equivalent – that is, they can be interchanged without changing the problem. Such

situations arise naturally in problems of practical interest. For example, in a scheduling problem,

there may be identical machines or identical jobs, which will create symmetry in ILP formulations of

the problem. Such symmetries confound the branch-and-bound process by forcing the consideration

of identical solutions, as they cannot be pruned by bound nor with cuts that tighten the convex

hull. We give a high-level review of this topic here, for a more complete overview the interested

reader is referred to the excellent monographs [118, 97].

One approach to symmetry handling in ILP is reformulating or modifying the formulation of the

problem in such a way as to eliminate or at least mitigate the symmetry. Sometimes, alternative

formulations of a problem may avoid symmetry entirely [59, 31, 32, 153, 154, 155, 105]. Other

times, it may be possible to add inequalities to the problem formulation that break the symmetry.

In the simplest case, it may be possible to impose hierarchical constraints on the equivalent integer

variables. That is, if y1 and y2 are equivalent, the constraint y1 ≥ y2 cuts off all solutions where

y2 > y1. So long as interchanging y1 and y2 has no effect on the feasibility or objective value,

such a cut is valid – in the sense that while it may cut off some optimal solutions, it leaves some

equivalent optimal solution in place.

Usually the symmetries in a problem are not so simple. Interchanging the value of two

variables may necessitate interchanging the value of other variables. Such relationships may be

more difficult to describe using linear inequalities. For specific problems, it may be possible to

define relatively simple inequalities to break symmetry [132, 106, 142, 107, 30, 87]. All known

methods of general symmetry breaking using linear inequalities, however, require inequalities that

are exponential in quantity to completely remove the problem symmetry. Further, the simplest

of these, the lexicographic constraints, require coefficients that are exponential in scope when

expressed as linear constraints. Kaibel and Pfetsch [75] investigate the polyhedral structure for some

5

classes of symmetry-breaking inequalities, the associated polytopes of which are called orbitopes.

Further, they provide an exponential class of symmetry-breaking inequalities, with a polynomial-

time separating algorithm. Kaibel et al. [74] extends this by considering these inequalities implicitly

in the branch-and-bound tree, as opposed to in the problem formulation, to fix additional variables

during search.

Another approach for symmetry handling is borrowed from convex optimization. If we have K

identical variables w1, . . . , wK , we create a new aggregate variable W = w1+ . . .+wK , replace each

wi with W/K, and eliminate some now redundant constraints. This procedure is known as orbital

shrinking. For a convex problem, this reformulation is exact, and optimal solution for the original

problem can be constructed by considering w∗
i = W ∗/K, for optimal W ∗ in the aggregated model.

For models with discrete variables, such a reformulation is not usually exact, but is a relaxation.

Fischetti and Liberti [41] introduce orbital shrinking for discrete problems and investigate the

strength of the derived bounds. Fischetti et al. [42] develop a framework that allows one to use

orbital shrinking to solve a discrete problem exactly using a benders-type approach verify the

feasibility of solutions proposed by the shrunk model. However, while their approach works well

on pure-integer problems, it is not clear it can be used as a practical method for mixed integer

problems. Chapter 5 shows that under certain conditions, orbital shrinking can be done exactly for

MILP formulations of the unit commitment problem. As we will see, having strong formulations is

a necessary condition to do exact orbital shrinking in the mixed-integer case.

For the remainder of this section we will assume the reader has some basic knowledge of group

theory and graph theory. Herstein [68] and Dummit and Foote [33] are excellent references for

group theory; West [156] for graph theory. Godsil and Royle [60] provides a concise treatment of

both topics.

As their names suggest, both orbitopes and orbital shrinking rely on the idea of an orbit from

group theory. For the purposes of exposition it will be useful to constrain ourselves to the pure

integer setting. Consider a pure integer program of the form

min cTx

subject to Ax ≤ b

x ∈ Z
n,

(1.4)

6

where c ∈ R
n, b ∈ R

m, and A is an n × m matrix. We consider the so-called ground set In =

{1, . . . , n}, that is, the indices of the vector x. A permutation π is a bijective function π : In → In;

the set of all such permutations form the symmetric group Sn under function composition. That

is, for two elements π1, π2 ∈ Sn, π1 ◦ π2 ∈ Sn is defined by (π1 ◦ π2)(i) = π1(π2(i)). A permutation

π ∈ Sn acts on a vector a ∈ R
n by permuting its components by index. As an example, let n = 3,

and let π(1) = 2, π(2) = 1, and π(3) = 3. Then the action of π on the vector a = [a1, a2, a3]
T , is

denoted π(a), and

π

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
a1

a2

a3

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎣
a2

a1

a3

⎤⎥⎥⎥⎦ . (1.5)

In a similar fashion, for σ ∈ Sm and π ∈ Sn, define A(π, σ) to be the matrix formed by permuting

the rows of A by σ and the columns of A by π. The formulation group GLP for the problem (1.4) is

GLP = {π ∈ Sn | π(c) = c, ∃σ ∈ Sm such that σ(b) = b and A(π, σ) = A}. (1.6)

The group GLP does not contain all the symmetries of the problem, but it does have the distinct

advantage of being (relatively) easily computable. (In general, GLP is a subgroup of the problem

symmetries; i.e., there may be redundant variables or constraints in the formulation that break

the formulation symmetry.) The generators and orbits of the group GLP can be calculated via

a bijective transformation to a graph with colored edges and vertices [139]. Programs such as

nauty [103] or saucy [29] can then be used to calculate the generators and orbits for the associated

graph. In this way formulation symmetry can be detected automatically based upon the input, as

opposed to in an ad-hoc manner than relies on the modeler.

The two main methods for exploiting general formulation symmetries are isomorphism

pruning [95, 96] and orbital branching [123]. Isomorphism pruning relies on the formulation

symmetry to derive isomorphism classes of subproblems, and then ensures that only one subproblem

of each class is explored. The numerically unstable lexicographic constraints mentioned before are

enforced implicitly in the tree; subproblems which violate a lexicographic inequality are pruned.

In Margot’s original formulation, this requires rigid branching rules to ensure validity. In the

context of constraint optimization, this restriction is not a problem, but modern ILP solvers have

sophisticated strategies for selecting a branching variable, often with the hope of changing the

bound so as to cut off more of the search space. Flexible isomorphism pruning [121] overcomes this

7

issue by imposing a lexicographic ordering based on the previous branching decisions, allowing for

the solver to chose the branching variable based on other criteria.

As its name suggests, orbital branching exploits the group theory concept of an orbit. In general,

for a set S ⊆ In, the orbit of S under the group G is

orb(S,G) = {S′ ⊆ In | ∃π ∈ G such that π(S) = S′}. (1.7)

In particular, if j ∈ orb({i},GLP), then this implies i ∈ orb({j},GLP), and we describe the

associated variables xi and xj as co-orbital. That is, two objects (in general) are said to be

co-orbital is there is a mapping from one to the other under the group in question. In this sense

the orbits of the group GLP encode the variables of (1.4) that are equivalent.

Orbital branching then relies on a relatively simple observation. Suppose for a moment all the

variables in (1.4) are binary. Then for some set of indices O ⊆ In,

∑
i∈O

xi ≥ 1 or
∑
i∈O

xi ≤ 0 (1.8)

is a valid branch. If O happens to be an orbit of GLP , then all the variables xi for i ∈ O are

equivalent. A representative index i∗ can be chosen arbitrarily, and this branch can be strengthened

to

xi∗ = 1 or
∑
i∈O

xi = 0. (1.9)

A basic implementation of orbital branching just relies on the root node symmetries GLP ,
but Ostrowski et al. [123] also explore updating the formulation group as branching decisions

are made and variables are fixed. Constraint orbital branching [122] extends the idea of branch

strengthening to arbitrary branching constraints, again exploiting the orbits to select only one

representative for the left branch.

Chapter 2 explores on the idea of almost symmetry in graphs. This is a natural place to begin

the exploring the idea of almost symmetry in integer programs – that is, mappings π and σ that

almost preserve optimality and feasibility. It is likely that the presence of such near symmetries has

a similar affect on the branch-and-bound process as exact symmetries, but they are undetectable,

in general, by current software. Chapter 2 takes a small step in this direction by considering almost

symmetries on simple, undirected graphs. In particular, we seek to modify the given graph no

more than a fixed amount, such that the number of orbits is minimized. In certain contexts, such

8

modifications amount to creating a relaxed version of (1.4) with fewer orbits. The orbital branches

for this relaxed problem then are stronger than the unmodified problem. With this in mind we now

turn to the question of finding symmetries on graphs, to properly place in context finding almost

symmetries on graphs.

1.2 Graph Automorphism

The problem of finding the symmetries of a graph is the graph automorphism problem. First, we

need to dispense with a few definitions. A graph G is an ordered pair comprising of a set of vertices

V and a set of edges E, which are unordered two-element subsets of V . At times we will refer to

this as the graph G(V,E). Elements of E will be denoted {u, v}, for u, v ∈ V , and we say that u

and v are adjacent. The degree of a vertex v ∈ V is the number of edges incident to v, and we write

d(v). All the graphs considered in this thesis are simple, that is, they have no loops or multiple

edges.

Two graphs G(V,E), G′(V ′, E′) are isomorphic if there is a bijection π : V → V ′ such that

{u, v} ∈ E if and only if {π(u), π(v)} ∈ E′. We write G ∼= G′. Put another way, two graphs are

isomorphic if there is a bijection between their vertices that preserves adjacency.

An isomorphism from a graph onto itself is called an automorphism. For a graph G, we denote

the set of all automorphism as Aut(G). The set Aut(G) is a group under function composition,

and when V = {1, . . . , n}, we have that Aut(G) is a subgroup of Sn. The set Aut(G) is always

non-empty, as the identity map which just sends vertices to themselves is a valid automorphism.

A graph G(V,E) is said to be colored if it has associated functions cV : V → X, and cE : E → Y ,

where X and Y are some set. For each v ∈ V , we say v is colored cV (v), and similarly for each

e ∈ E, we say e is colored with cE(e). For a graph G(V,E) with associated coloring cV and

cE , Aut(G(V,E), cV , cE) is a subgroup of Aut(G(V,E)) containing the automorphisms that map

vertices to vertices of like color and edges to edges of like color.

Additionally, for this section we will assume the reader is familiar with some foundational ideas

from complexity theory. West [156, Appendix B] provides a high-level overview.

1.2.1 Computational Complexity

The graph isomorphism problem (GI), that is, determining whether an isomorphism exists between

to given graphs, is obviously in NP. However, GI is also not know to be in P, and neither it is

9

know to be NP-complete. The NP-completeness of GI is considered unlikely. Recently, Babai [3]

presented a quasi-polynomial time algorithm for GI. The following result of Mathon [100] shows

checking and counting are polynomial-time reducible to each other.

Theorem 1.1. The following problems are polynomial-time equivalent:

• isomorphism recognition for two graphs G1 and G2 (GI),

• isomorphism map from G1 onto G2, if it exists,

• number of isomorphisms from G1 onto G2,

• order of the automorphism group of G,

• generators of the automorphism group of G,

• automorphism partition of G.

Further, Goldreich et al. [61] show that GI is not NP-complete under a widely-believed

computational complexity assumption (namely, that the polynomial-time hierarchy is infinite,

see [138] for an overview). Since GI is not known to be in P nor known to be NP-complete,

the problems listed in Mathon’s theorem above are said to be GI-complete. Further we can say a

problem is GI-hard if there is a polynomial-time reduction from GI to that problem. An example

of a related problem that is GI-hard but not known to be GI-complete is graph canonization, which

is the problem of finding a canonical form for a given graph G. Formally, let G denote a class of

graphs closed under isomorphisms. The function CF : G → G is a canonical form for G if:

• For G ∈ G, CF (G) ∼= G;

• For G,G′ ∈ G, G ∼= G′ if and only if CF (G) = CF (G′).

Notice the usefulness of this definition. For a database of graphs stored in a canonical form, testing

to see if a new graph Ĝ is already in the database is as “easy” as computing its canonical form

and testing for equality, as opposed to testing for isomorphism between Ĝ and each graph in the

database. Similarly a canonical form can be used to remove isomorphs from a collection of graphs.

No polynomial-time algorithm is know for GI, and the fastest running time algorithm provided

by Babai et al. [4] has stood for the last three decades at eO(
√
n logn). As mentioned before, Babai

[3] claims to have a quasi-polynomial time algorithm for GI, but at the time of writing this result

10

has not been peer-reviewed. It is known that finding a canonical labeling of a uniformly chosen

n-vertex random graph can be done in O(n2) time [5]. This helps to illuminate the fact that many

algorithms for computing graph canonization, isomorphism, and/or automorphism seem to behave

very well in practice; see nauty and Traces [103], saucy [77], Bliss [73], and conauto [89], among

others.

1.2.2 GI – A brief algorithmic history

The proceeding is not meant to be a complete overview of proposed algorithms to solve GI. Indeed

for many decades it has been a favorite area of research for algorithm designers, to the extent that

even as early as 1976 it was described as a “disease” [135]. To date there have been at least a

few hundred published algorithms [103]. However, this does lay the groundwork for the successful

algorithms that would follow the “individualization-refinement” paradigm, namely nauty and its

compatriots mentioned above.

The graph isomorphism problem became of practical interest to chemists in the 1960s as a way

of comparing two chemical structures [152, 112, 148, 91]. To test two n-vertex graphs G and G′ for

isomorphism, using a “dumb” enumerating algorithm would require checking |Sn| = n! possibilities.

Sussenguth [148] states a general principle for reducing the number of possibilities, which underlies

the research at the time:

If graph G is isomorphic to graph G′, the subset of nodes of G which exhibit some

property must correspond to that subset of nodes of G′ which exhibit the same property.

This principle provides a powerful method for eliminating potential isomorphisms. The “properties”

Sussenguth refers to became known in the literature as vertex invariants. A vertex invariant is any

property of a vertex that does not change under automorphisms of G. A simple vertex invariant

is degree, but just about any vertex property will do. For example, Sussenguth uses the shortest

cycle containing the vertex.

However, this method for partitioning the vertices is often not enough to sufficiently narrow

the search space. To address this Parris and Read [126] introduced and Corneil and Gotlieb [23]

further developed a procedure for refining the partitions. Of particular importance is that any

refinement of a partition is also invariant under automorphisms. Notice that a partition of vertices

can be defined using a coloring of the vertices, whereby each partition is assigned a different color.

Corneil and Gotlieb [23] give an algorithm for what would become known in the literature as color

11

refinement. Put simply, the logic of color refinement is this: if two vertices i and j currently have

the same color, assign them different colors if for some color k, i and j have a different number

of neighbors of color k. We stop when no further refinement is possible, that is, when every two

vertices of the same color have the same number of neighbors of each color. Such a coloring is called

stable or equitable. Notice that if all vertices start with the same color (i.e., are just partitioned

trivially), then the color refinement algorithm will at least partition the vertices by degree. They

further prove that such a refinement scheme is invariant under automorphism, provided the initial

partition (or coloring) is invariant under automorphism.

Corneil and Gotlieb [23] then provide necessary and sufficient conditions for isomorphism using

this refinement technique. In particular, given a coloring which is equitable, choose a color k with

more than one vertex and “individualize” a vertex i by giving it a new color and “refining” until

the coloring is equitable again. This process can be continued until the coloring is discrete, that is,

each vertex has its own color. This is the heart of the individualization-refinement paradigm that

would be most successful at providing efficient solutions to GI.

Corneil and Gotlieb [23] conjectured that the algorithm they provide for graph isomorphism

produces a canonical form. Unfortunately this turned out to be incorrect. Their algorithm

individualizes each vertex in a given color class k, but only uses this information to further partition

that color class, and conjecture that the resulting partition form the orbits of Aut(G). In general

this is not true, see [99]. All successful algorithms that followed employed some sort of branching

at the individualization stage.

Arlazarov et al. [1] provide a correct algorithm for finding a canonical labeling of a graph;

further, their algorithm performs the strongest on strongly regular graphs. They do not consider

vertex-invariants in their study; however their algorithm could be extended to use invariants. Their

method to find a canonical labeling uses the adjacency matrix A and constructs a new adjacency

matrix Ã which is lexicographically maximal relative to permutations of the matrix, that is

Ã = lex max
π∈Sn

πAπ−1.

It is clear that G̃, the graph whose adjacency matrix is Ã, is a canonical form for G. The authors

prove the maximal form (as defined above) for an adjacency matrix is monotonic, and use this fact

to recursively construct Ã from the top left corner, proceeding down the diagonal using a tree.

They note that in the case when G is complete so that Sn = Aut(G) (here |G| = n), the tree

12

constructed needs n! leaves to compute Ã. To combat this the authors define a “heuristic” which

computes elements of Aut(G) as the tree is explored, so that symmetric regions of the search space

can be pruned. They show that in the case when G is complete this heuristic allows the reduction

of the search tree to n leaves, though they note that in the case when |Aut(G)| = 1 time is wasted

in futilely attempting to find elements of Aut(G). Finally it is shown in this process computes

the orbits of Aut(G) as a side effect. Having defined a valid algorithm for graph canonization, it

could be used to test two graphs for isomorphism, in addition to finding the orbital partitions of

both graphs. Finally, it is worth noting that this approach (finding a lexicographically maximal

incidence matrix) for the graph canonization problem is NP-hard [25].

In the next section we will see how nauty was able to leverage the best ideas in the two

algorithms outlined above.

1.2.3 nauty – No AUTomorphisms, Yes?

Despite the algorithmic flurry of the preceding decade and a half, nauty [101], was the first algorithm

that could successfully handle both structurally regular graphs and graphs with large automorphism

groups. When introduced nauty could successfully handle some graphs on thousands or more

vertices on the hardware of the time. The algorithm finds a canonical labeling of a vertex-colored

graph and finds the generators of its automorphism group.

The refinement procedure used by nauty is nearly identical to the one presented by Corneil

and Gotlieb [23]. The main difference is that McKay [101] provides a proof that the refinement

procedure used by nauty produces a canonical coloring; that is, two isomorphic graphs G(V,E)

and G′(V ′, E′) are colored so that if φ is an isomorphism from G to G′, for every v ∈ V , φ(v) has

the same color as v. Very broadly, this is achieved by ensuring that the creation of new colors

and selecting the current refinement color are done in a way that is label invariant or isomorphism

invariant, namely by using degree information.

Having a label invariant refinement procedure in hand allows us to write down an algorithm for

canonical labeling. For each vertex not in its own color class, individualize that vertex by giving

it a new color. Refine until an equitable coloring is achieved and repeat until all vertices are in

their own color class (that is, the coloring is discrete). The leaves of this search tree will then be

canonically labeled versions of the graph, and by returning the lexicographically smallest, we have

a canonical labeling procedure! Moreover, for many graphs for which |Aut(G)| is small, the search

tree will be of a manageable size.

13

To address the cases when |Aut(G)| may be larger, like the algorithm of Arlazarov et al.

[1], nauty exploits automorphisms of the graph found during the search to prune. The tree is

constructed depth-first so that as automorphisms are discovered at the leaves other parts of the

search space may be pruned by automorphism.

It should be noted that for some graphs, namely those that have a high degree of regularity,

the refinement procedure defined above is not very powerful. To that end nauty provides no less

than a dozen vertex-invariants to provide an initial partition. The choice of which vertex-invariant

to use, if any, is left up to the user. For more details the reader is referred to [102].

Finally, it has been shown that there exists class of graphs for which nauty has exponential

running time [108]. However, in most circumstances nauty performs exceptionally well. Because

of this, after its introduction nauty would be the program of choice for computing canonical forms

and automorphisms for the the next several decades. For a deeper overview of nauty the reader is

referred to [67, 103].

1.2.4 saucy – A worthy competitor emerges

In 2004, motivated by the study of symmetry in boolean satisfiability, saucy was introduced

by Darga et al. [28]. Unlike nauty, saucy simply finds the generators of the automorphism group

for the input graph; it does not compute canonical forms. The first enhancement of saucy was

the use of sparse data structures. The performance improvement from this alone prompted McKay

to release a version of nauty for sparse graphs. The major enhancement, however, in the initial

release of saucy is in the refinement procedure. Since the authors of saucy were interested in sparse

graphs, they take advantage of this fact to avoid unnecessary work during refinement. Specifically,

for each vertex v they keep track of the colors it is connected to. Thus when attempting to refine

a color, they need only attempt to use the other colors its vertices are connected to. If the graph

is sufficiently sparse this can have a dramatic effect on run time – in their experiments the refining

operation was over 80% of the execution time for symmetry detecting engines. As expected this

tweak to the refinement procedure does produce impressive speedups on sparse graphs; however,

on dense graphs the resulting overhead is prohibitive.

Another enhancement to saucy was introduced in [29] which delinked it algorithmically from

nauty and other canonical labeling tools. The modification to saucy in Darga et al. [29] can

sometimes detect symmetries at non-leaf nodes by assuming that most symmetries are sparse

themselves, that is, they move very few vertices. This change and subsequent improvements made

14

saucy’s search for symmetries resemble that of the search of a SAT solver for satisfying assignments.

The details of this are beyond the scope of this thesis; the interested reader is referred to [78].

1.2.5 Bliss, Traces, and conauto

The introduction of saucy set off renewed interest in research in developing efficient software for

graph automorphism. Soon after saucy’s appearance Bliss was introduced in Junttila and Kaski

[73]. Bliss is algorithmically similar to nauty, with some enhancements in data structures and a

heuristic which incrementally computes leaf certificates. In some cases this allows pruning of the

tree before the refinement procedure is complete. Traces, which also computes canonical labels

and automorphisms, introduced a new search paradigm by using a modified breadth-first strategy.

Since automorphisms can only be detected at leaf nodes, Traces forms and “experimental path”

to a leaf so automorphisms can still be used to prune the search space. The interested reader is

referred to [127, 103]. The initial release of conauto only tested two graphs for isomorphism, and

used automorphisms detected along the way to prune the search space [90]. It did not compute the

full automorphism group of a graph nor the canonical form; however a subsequent release added

the ability to compute the full automorphism group [89].

1.3 Almost Symmetries in Graphs

Chapter 2 attempts to use the essential idea of vertex invariants and refinement to narrow the search

space for almost symmetries. To be specific, k-almost symmetries are “almost-automorphisms”

which are permitted to map up to k edges to non-edges. One simple vertex invariant for k-almost

symmetries is the degree difference must be no more than k. Another is that automorphisms must

map neighbors to neighbors, so a matching problem is formulated and solved to determine if this

is possible with no more than k edge deletions. By doing this process iteratively we can eliminate

certain k-almost symmetries.

Chapter 2 then poses the following problem: given a graph G and budget k, compute a

subgraph of G by removing no more than k edges with the most symmetry. Specifically, we seek to

minimize the size of the orbital partition of G’s vertices after modification. In certain contexts this

corresponds to a relaxation of the integer program (1.4), and techniques such as orbital branching

or isomorphism pruning could be used to quickly solve the resulting relaxed problem and provide

a valid lower bound.

15

However, as we will see, the problem of finding such a subgraph is very computationally

challenging, though we were able to compute almost symmetries for graphs with a few hundred

vertices and a low budget k. This does not bode well as a procedure for quickly finding lower

bounds for difficult combinatorial problems, but perhaps some clever heuristics could be developed

in the future. Promisingly, almost all of the graphs examined exhibited some non-trivial almost

symmetry, so it is certainly a phenomenon that occurs in real-world problems.

1.4 The Unit Commitment Problem

Chapters 3, 4, and 5 are concerned with the unit commitment problem (UC). The unit commitment

problem is that of scheduling (i.e., committing) power generating units so as to meet energy

demand while minimizing operational costs. Unit commitment is a problem faced by electrical

systems operators daily, with the potential for huge economic impacts. O’Neill [117] estimates

that a 1% savings in electrical energy production is worth $10 billion annually. Further, the

necessity of bringing increasing levels of renewable energy online in the coming decades will create

new challenges for system operators. By their nature, most renewable energy sources are non-

dispatchable and not fully predicable, which necessitates using more sophisticated optimization

methods. We introduce the unit commitment problem here, but postpone a full literature review

for Chapter 3.

Put more formally, for a set of generators G and a discretized time horizon T = {1, . . . , T}, the
unit commitment problem is

min
∑
g∈G

cg(pg) (1.10)

subject to
∑
g∈G

pgt = Dt ∀t ∈ T (1.11)

pg ∈ Πg ∀g ∈ G, (1.12)

where cg(·) is the production cost function for a power vector pg for generator g, Dt is the power

demand at time t, and Πg is the set of feasible dispatch vectors for generator g. Unit commitment

is often formulated and solved as a MILP. Generators usually have technical constraints and non-

convex startup costs which necessitate introducing integer variables to describe Πg and cg. In

general, unit commitment is an NP-hard problem [151].

16

Beside the system demand constraints (1.11), the unit commitment problem is totally

decomposable by generator. One avenue of research in MILP formulations of UC has been in

reformulating Πg and cg to tighten their linear relaxations. Chapters 3 and 4 contribute to this line

of research. Chapter 3 provides a large, but polynomial, extended formulation for Πg and cg that

is integral for any reasonable generator parameters. Because the formulation is so large, Chapter

3 exploits the decomposability of UC by considering a cut-generating linear program for each

generator g to tighten-up the description of Πg in the master MILP. Chapter 4 introduces a tighter

formulation for time-dependent start-up costs; for reasonable objective functions the formulation

introduced is experimentally as tight as the larger ideal formulation.

The structure of UC also makes exact and almost symmetry detection straightforward. Two

generators can create formulation (almost) symmetry for UC whenever they have (almost) identical

parameters. If generators g1 and g2 are identical, one way to exploit this symmetry is using orbital

shrinking. That is, instead of representing the output of identical g1 and g2 using the sets Πg1

and Πg2 , we represent their combined output using one set Πg1,g2 , using half the variables and

constraints. We can treat the cost functions similarly. Chapter 5 explores this idea.

One interesting consequence is that the strong formulations developed in Chapters 3 and 4 are

required to perform this reduction in an exact way. Note that Πg, in general, is a mixed-integer

set. Consider then the feasible region from problem (1.2)

S = {x ∈ R
n, y ∈ Z

p | Ax+Gy ≤ b}, (1.13)

and its continuous relaxation

P = {x ∈ R
n, y ∈ R

p | Ax+Gy ≤ b}. (1.14)

We say that the mixed-integral polytope P has the mixed-integer decomposition property (MIDP)

if for any positive integer k and for any (x, y) ∈ kP with y ∈ Z
p
+ (i.e., (x, y) ∈ kS), there exists

(x1, y1), . . . , (xk, yk) ∈ P with y1, . . . , yk ∈ Z
p
+ such that (x, y) = (x1, y1) + · · ·+ (xk, yk).

The MIDP is interesting the context of UC, because when the formulations for Πg and cg have

the MIDP, we know identical generators can be represented using orbital shrinking. This makes

the mixed-integer formulation for UC smaller, and as we will see in Chapter 5, also allows the

representation of many feasible solutions in one shrunk solution. In turn, the resulting branch-

and-bound tree may be smaller, as certain classes of mutually non-dominating solutions can be

17

considered in one subproblem. Hence, even with the sophisticated automatic symmetry-detection

techniques described earlier, the reduced model can perform significantly better computationally.

We have the following remark.

Remark 1.1. If the polytope P has the MIDP, then P is integer in y.

The proof of Remark 1.1 is exactly as the pure-integer case, which can be found in Schrijver [140,

§22.10].
Remark 1.1 demonstrates the need strong formulations for generators in order express them

exactly using aggregation, and more generally, we need strong formulations when hoping to use the

orbital shrinking technique exactly. Even then it may not be sufficient to ensure a decomposition

exists. In the case of UC though, Chapter 5 shows the formulation presented in Chapter 3 has the

MIDP, and under certain conditions the new start-up cost formulation introduced in Chapter 4

does as well. This implies we can exploit the generator symmetry in UC using the MIDP of

these formulations to construct (possibly many) exact optimal solutions to the original problem.

Additionally, it should be possible to exploit generator almost symmetry in a similar fashion, using

orbital shrinking and the decomposability of these new formulations to arrive at almost optimal

and/or almost feasible solutions to large-scale UC instances.

18

Chapter 2

Detecting Almost Symmetries of

Graphs

This chapter and Appendices A and B are based on a paper published by Ben Knueven, Jim

Ostrowski, and Sebastian Pokutta:

Knueven, B., Ostrowski, J., and Pokutta, S. (2017). Detecting Almost Symmetries of

Graphs. Mathematical Programming Computation, to appear.

Authors Ostrowski and Pokutta posed the question. Authors Knueven and Ostrowski developed the

algorithmic framework. Author Knueven developed the software and conducted all computational

experiments. Author Knueven wrote the manuscript and created all the tables and figures. Authors

Ostrowski and Pokutta edited the manuscript.

In this chapter we present a branch-and-bound framework to solve the following problem: Given

a graph G and an integer k, find a subgraph of G formed by removing no more than k edges

that minimizes the number of vertex orbits. We call the symmetries on such a subgraph “almost

symmetries” of G. We implement our branch-and-bound framework in PEBBL to allow for parallel

enumeration and demonstrate good scaling up to 16 cores. We show that the presented branching

strategy is much better than a random branching strategy on the tested graphs. Finally, we

consider the presented strategy as a heuristic for quickly finding almost symmetries of a graph

G. The software that has been written as part of this chapter has been issued the Digital Object

Identifier DOI: 10.5281/zenodo.840558.

19

2.1 Introduction

Two graphs are isomorphic if there is a bijection between their vertices that preserves adjacency;

such a bijection is called an isomorphism. An isomorphism from a graph onto itself is called an

automorphism, and the set of all automorphisms of a given graph G, denoted Aut(G), forms a

group under composition.

The Graph-Isomorphism problem is that of determining the existence (or not) of an

isomorphism between two input graphs. It is a notorious problem in complexity theory, as no

polynomial time algorithm is known, and at the same time Graph-Isomorphism is generally

not believed to be NP-complete [61]. Babai recently presented a quasi-polynomial time algorithm

for Graph-Isomorphism [3]. It is well-known that Graph-Isomorphism and the problem of

determining the orbits of Aut(G) (Automorphism-Partition) are polynomial time equivalent

[135, 100].

Recent results have demonstrated the hardness of various robust or approximate versions of

Graph-Isomorphism [88, 2, 116]. All these are either NP-hard [88, 2] or believed to be NP-hard

[116]. However, there has been little study of the computational feasibility of such problems. In

this chapter we propose and implement a branch-and-bound algorithm for solving a robust version

of Automorphism-Partition.

2.1.1 Preliminaries

We need to first lay out some notation that we will use in this chapter. Given an undirected graph

G = (V,E) (later we always write G(V,E)), for some set of edges F ⊂ E, we define the graph

(G− F) := (V,E \ F), that is, (G− F) is the graph G with the edges in F removed. We may also

use the notion V (G) to refer to the vertices of the graph G and E(G) to refer to the edges of G.

Definition 2.1. For an n-vertex graph G, a permutation π : V (G) → V (G) is an automorphism

of G if for every {u, v} ∈ E(G), {π(u), π(v)} ∈ E(G) and for every {u, v} /∈ E(G), {π(u), π(v)} /∈
E(G).

Definition 2.2. For a graph G(V,E), the mapping σ : V (G) → V (G) is a k-almost symmetry of

G if there exists a set of edges ED ⊆ E with |ED| ≤ k such that σ is an automorphism for the

graph (G− ED). We denote the set of k-almost symmetries of G as ASk(G).

20

3 2

4 5

6

1

Figure 2.1: A graph with almost symmetry

The 0-almost symmetries are exactly the automorphisms of G. We have the following motivating

result courtesy of [35]; an examination of the proof of Theorem 1 in [35] shows that only edge

deletions are used.

Theorem 2.1. For an n-vertex graph G and k ≥ �n−1
2 	, it holds |ASk(G)| > 1, that is, there

exists a non-trivial k-almost symmetry.

Example 2.1. Consider the graph shown in Figure 2.1 from [52]. The permutation (25)(34) is a

1-almost symmetry of the graph because it is an automorphism of G−{{4, 6}}. The permutations

(16)(24) and (35) are also 1-almost symmetries, as seen by removing edge {1, 5}.

From this example we also obtain the following remark.

Remark 2.1. For k ≥ 1, the set of k-almost symmetries is not necessarily a group.

To this end, consider the permutation (35) ◦ (25)(34) = (2345). Enumerating all 7 possibilities

shows that (2345) is not a 1-almost symmetry of the graph. Since there is no group structure

to be exploited during the search for almost symmetries, intuitively the problem of finding

almost symmetries seems much harder than that of finding symmetries. Indeed, one of the main

contributions of McKay’s venerable nauty program [101] for graph isomorphism and automorphism

is its ability to prune symmetric regions of the search space as symmetries on the graph are detected.

However, without a group structure the underlying theory developed by McKay falls apart.

It will be helpful to tie our definition of k-almost symmetry to the notion of α-automorphism

from [116]. First consider α-isomorphism between two graphs G and H:

Definition 2.3. For non-empty n-vertex graphs G and H, and 0 ≤ α ≤ 1, a permutation

π : V (G)→ V (H) is an α-isomorphism if

|{{u, v} ∈ E(G) : {π(u), π(v)} ∈ E(H)}|
max{|E(G)|, |E(H)|} ≥ α. (α-ISO)

21

In this definition, α is a lower bound on the ratio of edges that get mapped to edges. O’Donnell

et al. [116] proved, assuming Feige’s R3XOR hypothesis [38], that given two (1 − ε)-isomorphic

graphs, finding a (1 − r(ε))-isomorphism is NP-hard (for some function r(ε) → 0 as ε → 0+).

Arvind et al. [2] have shown that finding a permutation π which maximizes α is NP-hard. An

α-automorphism is an α-isomorphism from a graph to itself:

Definition 2.4. For a non-empty n-vertex graph G, and 0 ≤ α ≤ 1, a permutation π : V (G) →
V (G) is an α-automorphism of G if

|{{u, v} ∈ E(G) : {π(u), π(v)} ∈ E(G)}|
|E(G)| ≥ α. (α-AUT)

While it is beyond the scope of this chapter to address the complexity question of k-almost

symmetries, we do note that the k-almost symmetries of G are
(
1− k

|E(G)|
)
-automorphisms of

G, since at most k edges get mapped to non-edges under a k-almost symmetry. Similarly any

α-automorphism of G is a �(1− α)|E|	-almost symmetry of G.

2.1.2 Contribution

We present an algorithm capable of finding the k-almost symmetries of a graph G. However, we

will be more interested in the following related problem for a given graph G(V,E) and budget k:

γGk = min{|orbAut(G′)(V (G′))| : G′ = (G− ED), ED ⊆ E, |ED| ≤ k}, (2.1)

where orbΓ(X) for some set X and group Γ is the orbital or automorphism partition of X under

Γ’s action on X, and |orbΓ(X)| is the number of orbits. Notice in this framework Aut(G′) will be

a subset of the k-almost symmetries on G; further it will be a subset with a group structure. Put

another way problem (2.1) is that of finding the subgraph G by removing at most k edges in such

a way that the number of orbits is minimized. It is in this sense that we provide an algorithm for a

generalized version of Automorphism-Partition. We present a branch-and-bound algorithm for

solving (2.1) with a branching strategy that we show is much better than random, and is in fact

by one measure often the best branching choice available. Additionally we show that with some

modifications the branch-and-bound strategy presented can be used as an effective heuristic, and

we demonstrate the robustness of our branching strategy.

22

2.1.3 Motivation

In integer programming (IP), it is well known that the presence of symmetry, if not properly

addressed, can confound the branch-and-bound process. The authors hypothesize that a large

amount of almost symmetry can have a similar effect by causing “almost symmetric” regions of the

search space to be considered. While we will not address the question of almost symmetry in IP

directly, it is worth noting that all the methods in the literature for dynamic symmetry breaking

in IP rely on insights from symmetry detection on graphs [95, 96, 123]. We restrict ourselves to

edge-deletions because they have a natural IP corollary. Suppose we have the following IP:

max
x∈{0,1}n

{
1Tx | Ax ≤ 1

}
, (2.2)

where A ∈ {0, 1}m×n and 1 is the appropriately-sized vector of 1’s. Then there is a one-to-

one correspondence between the symmetries of the formulation of (2.2) and the bipartite graph

G(A) = (N,M,E) where the partite set N represents the columns of A and the other partite set

M represents the rows of A, and an edge is between a vertex i ∈ N and j ∈M if and only if aij = 1

(see [123] for more details). An edge deletion in G(A) therefore represents changing a 1 to a 0 in the

constraint matrix A, leading to a relaxation of (2.2). Similarly an edge addition would result in a

restriction of (2.2). Our method presented here also works for edge additions by simply considering

the complement of G. Therefore, a natural starting point for the study of almost symmetry in IP

is the detection of almost symmetries on graphs.

2.1.4 Literature Review

There have been several efforts for detecting near, fuzzy, or almost symmetries in graphs. Buchheim

and Jünger present an integer programming approach in [15] which allows for the possibility of

edge deletions and additions. They consider rotational and reflective symmetries separately and

attempt to find a rotational or reflective symmetry that minimizes the number of edge modifications.

Computational results are presented on graphs with no more than two dozen vertices. With

advancements in MIP solvers since publication their method may be applicable to larger graphs

today.

Markov [98] considers almost-symmetries on colored graphs, where some “chameleon” vertices

are allowed to be mapped to vertices of any color. They extend the common graph automorphism

23

algorithm used by nauty [103] and saucy [29] to consider these chameleon vertices. However, no

computational results are presented.

Fox, Long, and Porteous provide a heuristic method for finding near symmetries under edge

contractions [44]. They modify color refinement to look for possible edge contractions as nauty

individualizes vertices. Additionally, their heuristic looks to minimize the number of fixed vertices

under some near symmetry group, with online heuristic detection for when a vertex may be axial

under a reflective symmetry. The heuristic is implemented and shown effective for graphs with a

hundred vertices and edges and no more than 5 flaws.

The remainder of this chapter is outlined as follows. In Section 2.2 we discuss the details of the

branch-and-bound framework for detecting almost symmetries in graphs. Section 2.3 gives some

implementation details. Accompanying computational results are in Section 2.4, along with some

natural extensions. Finally we draw some conclusions in Section 2.5.

2.2 Algorithmic Overview

We will assume throughout that we are solving the problem of finding almost symmetries on an

n-vertex graph G(V,E) for a budget k of edge deletions. We maintain two sets throughout:

• A set ED of deleted edges;

• A set EF of fixed edges.

We construct a search tree T , where each node A ∈ T is uniquely represented as a tuple (ED
A , EF

A).

Disjunctions are created by taking an edge e ∈ E(G) \ (EF
A ∪ ED

A) and in one branch adding e to

ED
A , and in the other adding e to EF

A . We reach a leaf whenever |ED
A | = k or EF

A = E(G) \ ED
A .

Let GA = G−ED
A for some node A. We see then, if we completely expand the tree T to its leaves,

ASk(G) =
⋃

A∈T Aut(GA). We say A′ is a child of A if ED
A ⊆ ED

A′ and EF
A ⊆ EF

A′ . While the tuple

(ED
A , EF

A) completely describes the node A of the tree, for convenience we will describe a node as

the 4-tuple (GA, PA, E
F
A , kA), where kA = k − |ED

A | (the residual budget), and PA is an n-vertex

graph. PA encodes those pairwise permutations or mappings that have not been proved impossible

in A’s children. Specifically for an edge {i, j} ∈ PA and some child A′ of A, a permutation mapping

vertex i to vertex j in V (G) may exist in Aut(GA′).

It is worth noting that the lack of group structure (Remark 2.1) necessitates storing possible

k-almost symmetries as an n-vertex graph as opposed to a vertex partition. In particular, for

24

vertices u, v, w, the existence of k-almost symmetries σ, π such that σ(u) = v and π(v) = w does

not guarantee the existence of a k-almost symmetry mapping u to w. Notice, however, that each

k-almost symmetry is in some group, and hence has an inverse which will also be a k-almost

symmetry, allowing us to use an undirected graph. At the root node R we initialize R = (∅, ∅)
and PR to be the complete graph with self-loops, representing that no edges have been deleted,

no edges have been fixed, and we have not yet eliminated any permutations as not being k-almost

symmetries, respectively. We note also that PA allows us to write down an additional stopping

condition: If at some node A all that is left in PA are the self-loops, then no additional k-almost

symmetries can be found.

Our strategy for controlling the size of the tree is essentially this: at each node A we check

necessary conditions for a kA-almost symmetry mapping i to j for each {i, j} ∈ E(PA). Any such

{i, j} that does not satisfy the given necessary conditions is removed. However, since we will only

test local consistency, the remaining edges in PA need not represent actual kA-almost symmetries

of the graph GA. As laid out in Section 2.2.3, PA will also provide us a lower bound on the number

of possible orbits in any of A’s children. Finally, sufficiency is captured by nauty, which at node A

computes the automorphisms on the graph GA, and hence the k-almost symmetries at this node.

2.2.1 Eliminating mappings

We present three approaches for proving that two vertices of G are not k-almost symmetric. The

first two are an extension of simple vertex invariants to the k-almost symmetry case, and the third

makes use of the fact that neighbors must be mapped to neighbors, and dominates the other two,

at an additional computational cost. For the discussion of all three, suppose we are at some node

in the tree denoted by (GA, PA, E
F
A , kA), as described above.

The first approach, listed in Algorithm 2.1, is based on the following simple fact.

Fact 2.1. If two vertices’ degrees differ by more than kA, then they are not symmetric in any of

node A’s children.

If the graph has a good amount of irregularity then Algorithm 2.1 will be rather effective. Also

note that as edges are deleted and kA is decreased this becomes more powerful, and hence this is

run at the root node and after every edge deletion.

25

Algorithm 2.1 (DegreeDiffElim) Eliminates mappings between vertices whose degree difference
is more than kA.

procedure DegreeDiffElim(GA, PA, kA)
for all {i, j} ∈ E(PA) do

if |dGA
(i)− dGA

(j)| > kA then
remove edge {i, j} from E(PA)

Table 2.1: DegreeDiffElim for graph in Figure 2.1 at root node

vertex v dGR
(v) PR(v)

1 2 {1, 2, 3, 4, 5, 6}
2 3 {1, 2, 3, 4, 5, ��6}
3 2 {1, 2, 3, 4, 5, 6}
4 3 {1, 2, 3, 4, 5, ��6}
5 3 {1, 2, 3, 4, 5, ��6}
6 1 {1, ��2, 3, ��4, ��5, 6}

Example 2.2. Consider the graph from Example 2.1, and suppose k = 1 and we are at the root

node R, so PR is the complete graph with self-loops. See Table 2.1 for how Algorithm 2.1 updates

PR.

The second approach, listed in Algorithm 2.2 is based on another simple observation.

Fact 2.2. For i ∈ V , define dEF
A
(i) to be the number of fixed edges incident to i. For i, j ∈ V , if

dEF
A
(i) > dGA

(j), then i and j are not symmetric in any of node A’s children.

Since i has more fixed neighbors than j has neighbors, this is just a restatement of the fact that

vertices of different degrees cannot be symmetric. While this is useless at the root node, it becomes

more and more powerful as edges are fixed, and so is run after every edge fixing.

Algorithm 2.2 (FixedDegElim) Eliminates mappings between vertices where one’s fixed degree
exceeds the other’s degree.

procedure FixedDegElim(GA, PA, E
F
A)

for all {i, j} ∈ E(PA) do
if dEF

A
(i) > dGA

(j) then

remove edge {i, j} from E(PA)

Example 2.3. Picking up where Example 2.2 left off, suppose we are at the node A, where ED
A = ∅

and EF
A = {(1, 2), (1, 5)}, represented by the graph in Figure 2.2. In this case since dEF

A
(1) = 2

and dGA
(6) = 1, Algorithm 2.2 allows us to rule out a mapping between vertex 1 and vertex 6 and

updates PA accordingly.

26

3 2

4 5

6

1

Figure 2.2: FixedDegElim example: Edges (1,2) and (1,5) are fixed

The last, and most powerful method for testing the feasibility of a mapping comes from the

observation below.

Fact 2.3. For graph G, if a permutation π ∈ Aut(G) maps vertex i to vertex j, it must map

neighbors of i to neighbors of j.

Its extension to the almost-symmetry case is outlined in Algorithms 2.3 and 2.4. We use these

to check the feasibility of such a mapping with kA edge deletions.

Let us begin with Algorithm 2.3. We construct a bipartite graph as follows. First, create two

partite sets, the left one being NGA
(i) \ {j} and the right one being NGA

(j) \ {i}, and label their

associated vertices ui for u ∈ NGA
(i)\{j} and vj for v ∈ NGA

(j)\{i} to distinguish them from the

vertices in GA. (We leave j and i out of these partite sets since a mapping from i → j implies a

mapping from j → i.) Add to the left partite set kA+max{dGA
(j)−dGA

(i), 0} vertices labeled ×j ,

and to the right partite set add kA +max{dGA
(i)− dGA

(j), 0} vertices labeled ×i, so as to create

two equal-sized partite sets. The weight of the edge between ui and vj is the minimum number of

edges that need to be deleted so that u→ v. If we have already determined u � v, we set this to

+∞ to represent that the matching cannot happen (it suffices to set it to (2kA+1)). It is important

to note here that in actuality this weight is only considered to be half the degree difference between

u and v (since everything else is multiplied by 2 – which is done so all values remain integer). This

is because any edge deletion also lowers some other vertex w’s degree by 1. If w is a neighbor of i

or j this may “help” it with its matching. Since an edge deletion only has two endpoints it suffices

to consider 1
2 the degree difference. Suppose WLOG dGA

(u) > dGA
(v) and u is independent of

(N(i) \ {j}) ∪ (N(j) \ {i}) (that is, u has no neighbors in (N(i) \ {j}) ∪ (N(j) \ {i})). Then we

know such a w does not exist, so any edge deletions from u will count only once. Hence we multiply

by 2 in this case (recalling everything is doubled). Second, each vertex ui is connected to at least

kA vertices of the type ×i. These edges represent the deletion of edge {i, u} and so get weight 2

27

Algorithm 2.3 (BuildCostMatrix) Creates the bipartite graph for testing the map between
neighbors.

function BuildCostMatrix(i, j, GA, PA, E
F
A , kA)

for all u ∈ N(i) \ {j} do
Create vertex ui

for all v ∈ N(j) \ {i} do
5: Create vertex vj

if dGA
(i) < dGA

(j) then
Exchange i and j

degDiff← dGA
(i)− dGA

(j)
Create kA + degDiff copies of vertices ×i and kA copies of ×j

10: for all u ∈ NGA
(i) \ {j}, v ∈ NGA

(j) \ {i} do
Draw an edge between ui and vj ,
if {u, v} ∈ PA then

if dGA
(u) > dGA

(v) and u independent of (N(i) \ {j}) ∪ (N(j) \ {i}) then
wui,vj ← 2(dGA

(u)− dGA
(v)) 	 Cost of mapping u→ v

15: else if dGA
(v) > dGA

(u) and v indep. of (N(i) \ {j}) ∪ (N(j) \ {i}) then
wui,vj ← 2(dGA

(v)− dGA
(u))

else
wui,vj ← |dGA

(u)− dGA
(v)|

else
20: wui,vj ← +∞ 	 We have already determined u � v

for all u ∈ NGA
(i) \ {j}, ×i do

Draw an edge between ui and ×i,
if {i, u} ∈ EF

A then
wui,×i

← +∞ 	 Edge {i, u} ∈ E(GA) cannot be deleted
25: else

wui,×i ← 2 	 Edge {i, u} ∈ E(GA) can be deleted

for all v ∈ NGA
(j) \ {i}, ×j do

Draw an edge between vj and ×j ,
if {j, v} ∈ EF

A then
30: wvj ,×j ← +∞ 	 Edge {j, v} ∈ E(GA) cannot be deleted

else
wvj ,×j

← 2 	 Edge {j, v} ∈ E(GA) can be deleted

for all ×i, ×j do
Draw an edge between ×i and ×j with w×i,×j ← 0.

35: return the constructed graph as an assignment matrix

28

Algorithm 2.4 (RefineByMatching) Eliminates mappings by attempting to map neighbors to
neighbors.

function RefineByMatching(GA, PA, E
F
A , kA)

for all e ∈ E(GA) do
edgeUse(e) = 0

for all {i, j} ∈ E(PA) do
5: CostMatrix← BuildCostMatrix(i, j, GA, PA, E

F
A , kA)

cost, deleteEdges← HungarianSolve(CostMatrix)
if cost > 2kA then

remove edge {i, j} from E(PA)
else

10: for all e ∈ deletedEdges do
edgeUse(e)← edgeUse(e) + 1

return edgeUse

or +∞ if through branching the edge {i, u} has become fixed. A similar process occurs for each

vj . Finally these “deletion” nodes ×i and ×j all have weight 0 between them since not deleting an

edge from i or j is free.

Now we turn to Algorithm 2.4. For each edge {i, j} ∈ E(PA) we use Algorithm 2.3 to construct

a weighted bipartite graph based on the neighbors of i and j, and the number of edge deletions

allowed. The Hungarian Algorithm [85, 114] is used to a find minimum cost perfect matching.

From the solution we determine when an edge {ui,×i} or {vj ,×j} is in the optimal assignment.

The former corresponds to the deletion of edge {i, u} in GA, the later to the deletion of edge {j, v}.
Finally we determine if the cost is more than 2kA, in which case we eliminate the mapping i→ j,

and if not, we increment edgeUse based on the deleted edges.

Based on the preceding discussion, we arrive at the following:

Theorem 2.2. Algorithm 2.4 is valid, that is, for a given node (GA, PA, E
F
A , kA), if Algorithm

2.4 deletes edge {i, j} from PA, then i and j are not symmetric in any of its children. Further,

Algorithm 2.4 dominates Algorithms 2.1 and 2.2, in that any mapping deleted by either Algorithm

2.1 or 2.2 is also deleted by Algorithm 2.4.

Proof. Assume there exists a permutation π ∈ ASk(G) such that π(i) = j. Thus in some child

node we must have d(i) = d(j), with fewer than kA edge deletions. Since this implies the existence

of π−1 such that π−1(j) = i, we exclude j from N(i) and i from N(j) to avoid double counting; we

represent these edge deletions explicitly with the nodes ×i and ×j . Since any permutation must

move neighbors to neighbors, for some I ⊆ N(i)\{j} and J ⊆ N(j)\{i}, π : I → J bijectively. Such

subsets are given to us by a feasible assignment; we need now consider the edge deletions implicit in

29

64

34

×5

15

0

25

2

1

×4
0

2

2

Figure 2.3: RefineByMatching example: Edges with weight +∞ have been excluded for clarity.

such an assignment. For each u ∈ I let Ru be a set of edge removals needed so that d(u) = d(π(u))

(note: |Ru| ≥ |dGA
(u) − dGA

(π(u))|). Let R = {Ru1 , Ru2 , . . . , Ru|I|}. We need to prove then that

any edge e occurs at most twice in such a list; further if dGA
(u) > dGA

(π(u)) and u is independent

of (N(i) \ {j}) ∪ (N(j) \ {i}), any edge occurs at most once. For contradiction suppose such an

edge e occurred m times in R. Since I has distinct vertices and J has distinct vertices, if m > 2

then e has more than two endpoints, a contraction. Similarly suppose dGA
(u) > dGA

(π(u)) and

u independent of (N(i) \ {j}) ∪ (N(j) \ {i}). At least (dGA
(u) − dGA

(π(u))) edges in Ru have an

endpoint at u. Therefore at least (dGA
(u)− dGA

(π(u))) many edges appear only once in R by the

independence of u. Hence, assuming a minimum matching, line 6 of Algorithm 2.4 will return at

least twice the minimal number of edge removals needed for i→ j.

The last part follows from noting that any feasible solution will be at least 2|dGA
(i)− dGA

(j)|
and that if dEF

A
(i) > dGA

(j) then in a perfect matching one of the fixed neighbors of i must be

matched to one of the vertices ×i.

Example 2.4. Continuing where Example 2.3 left off, we have the graph shown in Figure 2.2.

Suppose kA = 1 and PA is as follows:

1 : {1, 2, 3, 5}
2 : {1, 2, 3, 4, 5}
3 : {1, 2, 3, 5, 6}
4 : {2, 3, 4, 5}
5 : {1, 2, 4, 5}
6 : {3, 6}

and suppose we enter the for all loop on line 5 of Algorithm 2.4 with {i, j} = {4, 5} ∈ PA.

Algorithm 2.3 constructs the bipartite graph shown in Figure 2.3. We see by inspection that the

30

minimum cost perfect matching has cost 4 > 2kA, so mapping {4, 5} can be deleted.

Finally, we note that in spite of Theorem 2.2, Algorithms 2.1 and 2.2 are still useful. A worst-

case complexity bound on both is O(n2), whereas assuming HungarianSolve is implemented

efficiently (i.e., O(n3)), Algorithm 2.4 may need O(n2(n+ kA)
3) time.

2.2.2 Branching

As mentioned above, at a given node (GA, PA, E
F
A , kA), an edge e ∈ E(GA) \ EF

A is selected for

branching. Two children are created based on the selection of e, one where e is deleted (added to

ED
A) and kA is decreased, and the other where e is added EF

A .

We use the following rule for selecting e using the edgeUse array collected in Algorithm 2.4.

Our first choice for a branching edge e will be a maximal element of this array. The hope is that in

the deletion child, an edge that is “getting in the way” of symmetry is deleted. Conversely, in the

child where the edge is fixed it is expected that such an edge will cause PA to lose several edges at

the next pass of Algorithm 2.4. Computational experiments (Section 2.4) show this to be a much

better rule than random branching, and is in fact often among the best edges to branch on. If

no such maximal edge is found, we fall back to the rule of branching on the first edge found in

E(GA) \ EF
A . If it happens that E(GA) \ EF

A = ∅, this node is pruned.

We know that any automorphism maps edges to edges and non-edges to non-edges. Therefore

if we have determined that two vertices are fixed with respect to automorphisms in all this node’s

children, we get the following helpful observation.

Observation 2.1. If NPA
(i) = {i} and NPA

(j) = {j}, we need not branch on edge {i, j}.

Since i can only be mapped to i and j to j, then {i, j} will always be mapped to itself, whether

it is an edge or non-edge. The preceding discussion is summarized in Algorithm 2.5.

Algorithm 2.5 (FindBranchEdge) Selects an edge to branch on.

function FindBranchEdge(GA, PA, E
F
A , edgeUse)

if max(edgeUse) > 0 then
return argmax(edgeUse)

for all {i, j} ∈ E(GA) \ EF
A do

5: if NPA
(i) �= {i} or NPA

(j) �= {j} then
return {i, j}

return prune 	 If here either E(GA) \ EF
A = ∅ or all edges satisfy Remark 2.1

31

2.2.3 Bounding

Bounding is done in two ways. First, after an edge is deleted we compute the symmetries of

the modified graph GA. The number of orbits in the orbital partition gives an upper bound on

the solution value, since this is a feasible solution for (2.1). Lower bounding is done using the

information in PA. For a lower bound using PA, we can partition V (= V (G) = V (GA) = V (PA))

using the following rule:

Two vertices in V can belong to the same partition if there exists an edge between them

in PA.

The set of all such partitionings of V represent all possible orbital partitions at this node. Therefore

in order to generate a valid lower bound we would need the minimum of such partitionings. This

leads to the following observation.

Remark 2.2. Partitioning V as described above is the same as vertex coloring PA’s complement,

PA.

Since finding the chromatic number of a graph [55] and approximating the chromatic number of a

graph [39] are both NP-hard, we settle for a “bad” lower bound on the partition size, namely we use

the size of a greedily constructed independent set for PA. This has the merit though of only requiring

O(n) time. Defining χ(G), α(G), and ω(G) to be the chromatic number, independence number, and

clique number of G, respectively, we know from basic graph theory χ(PA) ≥ ω(PA) = α(PA) ≥ |I|,
for any independent set I. Therefore we have the following bounding procedure:

After any call to Algorithms 2.1, 2.2, or 2.4, compute the size of a maximal independent

set of PA. If this is greater than or equal the current incumbent, we prune.

2.2.4 An Algorithm

We now tie together the preceding discussion in Algorithm 2.6 that solves (2.1) using a depth-first

search. The routines HungarianSolve, ComputeAutomorphisms and GreedyIndependent-

SetSize are treated as a black-box. We similarly assume PopFromStack and AppendToStack

manage NodeStack.

Theorem 2.3. Algorithm 2.6 is valid.

32

Algorithm 2.6 (FindAlmostSymmetry) Solves (2.1)

function FindAlmostSymmetry(G, k)
initialize PR ← {complete graph with self-loops}; ED

R ← ∅; EF
R ← ∅

initialize delChild ← true
initialize incumbentValue ← |V (G)|; incumbentSolution ← ∅

5: initialize NodeStack ← { (PR, E
D
R , EF

R , delChild) }
while NodeStack �= ∅ do

(PA, E
D
A , EF

A , delChild) ← PopFromStack

GA ← G− ED
A .

kA ← k − |ED
A |

10: if delChild then 	 This node is either root or has a new edge in ED
A

orbitNum ← ComputeAutomorphisms(GA)
if orbitNum < incumbentValue then

incumbentValue ← orbitNum; incumbentSolution ← ED
A

if kA = 0 or |EF
A | = |E(GA)| then

15: prune 	 (Delete this node and go to line 6)

DegreeDiffElim(GA, PA, kA)
else 	 This node has a new edge in EF

A

if |EF
A | = |E(GA)| then

prune

20: FixedDegElim(GA, PA, E
F
A)

lowerBound ← GreedyIndependentSetSize(PA)
if lowerBound ≥ incumbentValue then

prune

while PA is changed by RefineByMatching() do
25: edgeUse ← RefineByMatching(GA, PA, E

F
A , kA)

lowerBound ← GreedyIndependentSetSize(PA)
if lowerBound ≥ incumbentValue then

prune

branchEdge ← FindBranchEdge(GA, PA, E
F
A , edgeUse)

30: 	 Once we have arrived here all the bounding we can do is done
if branchEdge = prune then

prune
	 Else we will create the children

AppendToStack(PA, E
D
A , EF

A + branchEdge, false) 	 Edge fixing child
AppendToStack(PA, E

D
A + branchEdge, EF

A , true) 	 Edge deletion child

35: return incumbentValue, incumbentSolution

33

Proof. This follows from Theorem 2.2. If we exclude the logic which prunes by bound (lines 21-23,

26-28) and collected the permutations computed in line 11 we find all the k-almost symmetries of

G.

2.3 Implementation

In this section we discuss some of the implementation choices made and libraries used; however,

the interested reader is referred directly to the source code for details. C++ is used throughout.

PEBBL is a general-purpose parallel branch-and-bound framework written in C++ [34]. PEBBL

allows the easy implementation of a parallel branch-and-bound algorithm provided the user already

has a serial implementation in mind (such as Algorithm 2.6). PEBBL is therefore used for tree

management. PEBBL has many user-configurable options, in particular the user can specify the

search order to be breadth-first, depth-first, or the default best-first, which in the minimization

case will select a problem with the lowest bound. One particularly powerful feature of PEBBL is its

ability to exploit parallelism during the ramp-up phase. Ramping-up occurs when the number of

active nodes in the search tree is smaller than the number of available processors. During ramp-

up, before parallel enumeration begins, PEBBL has all threads synchronously explore the same

nodes of the branch-and-bound tree near the root node. This allows the programmer to exploit

parallelism that may be present within each node using MPI communication. Since the running

time of the Hungarian Algorithm is O(n3), a parallel version of Algorithm 2.4 is used during ramp-

up. Lines 5-6 are parallelized; we do an MPI reduce operation to collect PA or edgeUse. Notice in

RefineByMatching we only use edgeUse if PA does not change, so it does not need to be reduced,

and we only need to reduce PA if it does change, in which case we will call RefineByMatching

again and not use edgeUse. Since we would expect PA to be fairly dense high in the tree this

is helpful. Once cross-over occurs and PEBBL is doing parallel enumeration the serial version of

Algorithm 2.4 is used.

A C implementation of the Hungarian Method from [146] is used for HungarianSolve, which

itself is an enhancement of the implementation provided by the Stanford GraphBase [83]. This

code was slightly modified to avoid redundant memory allocation/deallocation in the second for

all loop of Algorithm 2.4, and thus is included with the source code.

Finally, nauty 2.5r9 [103] is used as the implementation of ComputeAutomorphisms in

Algorithm 2.6, with canonical labeling turned off. nauty’s packed graph format is used for graph

34

representation. GreedyIndependentSetSize uses the standard greedy procedure to construct

an independent set and returns the cardinality of the constructed set. OpenMPI was the MPI

implementation used for all tests.

2.4 Computational Results

All computational experiments were done on a Dell PowerEdge T620 with 2 Intel Xeon E5-2670

processors and 256GB of memory running Ubuntu 14.04.2. Hyper-threading was enabled for a total

of 16 cores and 32 threads. Random graph instances from [104] and DIMACS coloring instances

from [26] were analyzed. Coloring instances that already exhibited large amounts of symmetry (i.e.,

γG0 ≤ 1
2 |V (G)|) were excluded from testing. The test set was further reduced by only selecting a

subset of the Leighton graphs. All times are wall-clock times reported by PEBBL.

The results of the main experiment are reported in Table 2.2. γGk (equation (2.1)) was computed

for each graph, incrementing k. A wall clock limit of 60 minutes was used, and k was no longer

incremented after hitting the time limit. We also report on the size of the automorphism group

for the optimal subgraph G′, labeled |Aut(G′)|. Note that for presentation reasons, we sometimes

scale this value by a constant. Since PEBBL’s parallel search is non-deterministic, each experiment

is repeated five times, and the average search time is reported. If every run timed-out we report

that with a †. On instances where at least one repetition timed-out we report the best objective

value of a solution found across all five. An asterisk indicates that we were not able to prove the

objective value optimal in any of the five repetitions. For conciseness some levels of k are excluded.

All 32 available threads were used for this test, and PEBBL’s best-first search was used to explore

the tree.

From the objective value in Table 2.2 we can see that for many of the structured graphs, many

fewer edges than Theorem 2.1 requires need be removed to induce a non-trivial k-almost symmetry.

Additionally there is often a commensurate increase in group size as the number of orbits decreases.

Inducing symmetry on random graphs is more difficult, as is to be expected given Theorem 2 in [35]

(the bound from Theorem 2.1 is tight in the limit for random graphs).

We also examined how the algorithm scales. Given the results in Table 2.2 some easier instances

were selected and ran with a varying number of threads up to 32. Note that the system used only

has 16 cores, so linear speedup cannot be expected past that even in the ideal case. The results

35

Figure 2.4: Scaling on various problems

are in Figure 2.4. We can see good scaling through 8 cores on the test examples, starting to taper

off at 16 cores. Individual test cases are detailed in Appendix A.

2.4.1 Branching Strategy

We compare the branching strategy dictated by edgeUse (edgeUse branching) against selecting a

random eligible edge to branch on. We also consider a “local branching” rule, in which after we

have done all the valid refining that can be done at a node, we select the branching edge by doing an

additional single pass at RefineByMatching with k = 1. Several easy instances from above were

tested using a single thread. Each random branching trial was replicated 50 times, and compared

to the edgeUse branching strategy and the local branching strategy. The results are summarized

in the graphs in Figure 2.5, where the box-plots are the random branching trials, the red square

with the text on the right represents the edgeUse branching strategy, and the blue × with the text

on the left represents the local branching strategy. We show four examples here, the remaining are

available in Appendix A. The edgeUse branching strategy laid out in Section 2.2.2 was always at

least as good (and often much better) than random in the examples tested, and in addition was

always better than the local branching strategy. While the local branching strategy was sometimes

36

Table 2.2: Computational Results

games120.col n = 120 e = 638

k 0 1 2 3 4 5 6 7 8 9
γG
k 119 118 117 114 113 112 112 111 111 112*

|Aut(G′)| 2 4 8 8 16 48 48 16 16 48*

seconds 0.0 0.0 0.1 0.2 0.2 0.4 2.3 27.8 896.9 †

miles250.col n = 128 e = 387

k 0 1 2 3 4 5 6 7
γG
k 108 106 104 102 100 99 97 97*

|Aut(G′)|/107 0.26542 3.1851 6.3701 12.740 203.84 1019.2 815.37 6115.3*

seconds 0.0 0.2 0.3 0.8 3.1 57.6 844.8 †

miles500.col n = 128 e = 1170

k 0 1 2 3 4 5 6 7 8
γG
k 114 113 111 110 109 108 107 106 107*

|Aut(G′)|/106 0.82944 1.6580 3.3178 6.6355 46.449 92.897 185.79 53.084 371.59*

seconds 0.0 0.1 0.2 0.4 1.5 14.7 186.1 1868 †

miles750.col n = 128 e = 2113

k 0 1 2 3 4 5 6 7 8
γG
k 122 121 120 119 118 117 116 115 115*

|Aut(G′)| 96 288 576 1152 2304 4608 9216 18432 18432*

seconds 0.0 0.1 0.3 0.5 1.4 9.1 86.3 849.1 †

miles1000.col n = 128 e = 3216

k 0 1 2 3 4 5 6 7
γG
k 123 122 121 120 119 118 118 119*

|Aut(G′)| 72 144 288 576 1152 2304 2304 1152*

seconds 0.0 0.1 0.2 0.5 2.2 33.5 416.9 †

miles1500.col n = 128 e = 5198

k 0 1 2 3 4 5
γG
k 102 101 100 99 98 97*

|Aut(G′)|/1012 0.11466 0.80263 3.2105 4.5865 19.263 57.790*

seconds 0.0 0.8 2.6 40.0 913.5 †

le450 5b.col n = 450 e = 5734

k 0 13 14 15 16 17 18 19
γG
k 450 450 450 450 450 450 450 449*

|Aut(G′)| 1 1 1 1 1 1 1 2*

seconds 0.0 1.1 1.2 1.6 2.0 5.0 564.1 †

le450 15b.col n = 450 e = 8169

k 0 1 2 4 5 7 8 10 11 14 15 16 17
γG
k 450 450 449 449 448 448 447 447 446 446 445 445 446*

|Aut(G′)| 1 1 2 2 6 6 24 24 120 120 720 720 120*

seconds 0.0 0.1 0.2 0.4 0.5 0.8 0.9 1.1 1.2 8.3 19.7 93.2 †

le450 25b.col n = 450 e = 8263

k 0 1 2 3 4 5 6 7 8 9 10
γG
k 450 450 449 449 449 448 448 447 447 447 447*

|Aut(G′)| 1 1 2 2 2 6 6 12 12 12 12*

seconds 0.0 0.1 0.2 0.3 0.6 0.7 0.9 1.6 7.1 43.8 †

37

Table 2.2: (continued)

ran10 100 a.bliss n = 100 e = 502

k 0 6 7 8 9 10 11 12
γG
k 100 100 99 99 99 99 99 100*

|Aut(G′)| 1 1 2 2 2 2 2 1*

seconds 0.0 0.0 0.1 0.4 2.8 22.8 372.0 †

ran10 100 b.bliss n = 100 e = 464

k 0 3 4 7 8 9 10 11 12
γG
k 100 100 99 99 99 99 98 98 100*

|Aut(G′)| 1 1 2 2 2 2 3 3 1*

seconds 0.0 0.0 0.0 0.2 4.0 11.1 116.6 1924.3 †

ran10 100 c.bliss n = 100 e = 525

k 0 5 6 7 8 9 10 11 12 13
γG
k 100 100 99 99 99 99 99 98 98 100*

|Aut(G′)| 1 1 2 2 2 2 2 6 6 1*

seconds 0.0 0.0 0.0 0.1 0.5 2.3 9.1 117.5 1712 †

ran10 100 d.bliss n = 100 e = 514

k 0 1 7 8 9 10 11 12
γG
k 100 100 100 99 99 99 99 100*

|Aut(G′)| 1 1 1 2 2 2 2 1*

seconds 0.0 0.0 0.1 0.9 5.2 25.8 560.3 †

competitive with edgeUse branching, in other cases it does worse (in a few instances significantly

so) than the random branching mean.

In order to test the strength of edgeUse branching, we test it against strong branching at

the root node. Strong branching is implemented at the root node by considering the number of

permutations refined in the “edge fixing” child for every edge in the graph G. We then rank the

potential edge branches by the number of permutations removed by RefineByMatching for the

candidate edge in the edge fixing child node. The results are presented in Table 2.3, where we

present the ranks in percentiles. Instances which are solved at the root node are discarded. In

particular, in the column labeled “edgeUse branch percentile rank” we give the percentage of edges

with a worse score than the edgeUse branch. In the column labeled # refined by edgeUse branch
refined by strong branch we

present the ratio of permutations refined by the edgeUse branch against the permutations refined

by the strongest branch. Hence, if this is 1, that means the edgeUse branch is as good as the strong

branch. First, we can see based on the edgeUse branch percentile rank that it is often in the top

1% of possible edge choices based on our strong branching score, and in only 6 of the 99 cases is it

below the 80th percentile. Turning to the ratio, we see that in 59 of the 99 cases edgeUse branching

selects an edge with the highest rank. However, in 18 of the 99 cases the edgeUse branch is 80%

worse by score than the strong branch. Note that deciding an edgeUse branch is a linear check

after RefineByMatching, whereas strong branching is a potentially O(m · n2(n + k)3) check

at the root node (where n is the number of vertices and m is the number of edges in the graph

38

Figure 2.5: Random branching (box plot) vs. edgeUse branching (�, number of nodes on right)
vs. local branching (×, number of nodes on left), selected instances

39

G). In this light, edgeUse branching seems both practical and effective for selecting a disjunction.

Additionally, these results (along with the results in Section 2.4.2) verify the notion that the edges

that end up being deleted in the matchings are often those that are “in the way” of symmetry.

We also demonstrate the robustness of edgeUse branching. Recall, for a given node, edgeUse

branching selects the most frequently deleted edge in the refinement. To test the robustness we

examine how the ranking changes after branching and refining. In particular, how often is the

second place edge chosen for branching in the child problems? If it has a high rank, this suggests

that (1) our choice of edge is somewhat insensitive to changes in the graph, and (2) we may be

able to get away with refining less frequently, while still maintaining the strength of our branching

strategy. If its rank is 1, then this is the exact edge we branched on in the child problems. The

tests were all done on one thread, and the results are reported in Table 2.4. We report the rank

in the child (Rank) of the second most frequently deleted edge in the parent refinement, and the

percentage of nodes in the tree where it has a given rank (% of Nodes) for selected instances.

(The other instances tests are reported in Appendix A.) As we can see, it is often the case that

the next edge selected for branching is that with second rank in the parent node. Note that as

implemented, we refine as much as possible at each node to attempt to lift the bound, so it may

be computationally advantageous to refine less frequently, at the possible cost of more nodes, while

not losing much in the strength of our branching decisions. In Appendix A we present additional

computational results that attempt to exploit this using a modified branching strategy.

2.4.2 Heuristics

To exploit almost symmetries in a problem such as (2.2), it is not necessary to compute the optimal

group of k-almost symmetries. Toward that end, we examine how well both edgeUse branching

and local branching work as a heuristic for the problems in Table 2.2 by just diving left and never

creating the edge fixing child. That is, we consider Algorithm 2.6 with line 33 excluded.

All heuristic tests were done on a single thread. The main result is in Table 2.5, where we

compare the optimality gap closed by both the edgeUse branching and local branching rule, where

the optimality gap closed is defined as

optimality gap closed :=
γG0 − λG

k

γG0 − γGk
, (2.3)

40

Table 2.3: edgeUse branching vs. strong branching at root node

games120.col n = 120 e = 638

k 1 2 3 4 5 6 7 8 9
edgeUse branch percentile rank 99.9 49.4 99.8 100 100 99.2 1.0 99.2 94.9

refined by edgeUse branch
refined by strong branch

1.0 0.0 0.50 1.0 1.0 0.185 1.0 0.033 0.020

miles250.col n = 128 e = 387

k 1 2 3 4 5 6 7
edgeUse branch percentile rank 99.8 99.4 94.8 83.0 94.9 85.5 82.6

refined by edgeUse branch
refined by strong branch

1.0 0.812 0.342 0.094 0.345 0.214 0.279

miles500.col n = 128 e = 1170

k 1 2 3 4 5 6 7 8
edgeUse branch percentile rank 99.9 99.9 100.0 99.9 99.9 99.7 99.9 100

refined by edgeUse branch
refined by strong branch

1.0 1.0 1.0 1.0 0.692 0.850 0.857 1.0

miles750.col n = 128 e = 2113

k 1 2 3 4 5 6 7 8
edgeUse branch percentile rank 99.9 99.8 99.7 1.0 99.9 99.9 96.7 99.8

refined by edgeUse branch
refined by strong branch

1.0 1.0 1.0 1.0 1.0 0.900 0.500 0.916

miles1000.col n = 128 e = 3216

k 1 2 3 4 5 6 7
edgeUse branch percentile rank 99.9 99.9 99.8 99.9 100 99.9 99.9

refined by edgeUse branch
refined by strong branch

1.0 1.0 1.0 1.0 1.0 1.0 1.0

miles1500.col n = 128 e = 5198

k 1 2 3 4 5
edgeUse branch percentile rank 99.9 100 99.9 99.9 99.9

refined by edgeUse branch
refined by strong branch

1.0 1.0 1.0 1.0 1.0

le450 5b.col n = 450 e = 5734

k 18 19
edgeUse branch percentile rank 87.5 78.8

refined by edgeUse branch
refined by strong branch

0.030 0.019

le450 15b.col n = 450 e = 8169

k 2 3 4 5 6 7 8 9
edgeUse branch percentile rank 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

refined by edgeUse branch
refined by strong branch

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

k 10 11 12 13 14 15 16 17
edgeUse branch percentile rank 99.9 99.9 99.9 99.9 99.9 100 100 99.9

refined by edgeUse branch
refined by strong branch

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

le450 25b.col n = 450 e = 8263

k 2 3 4 5 6 7 8 9 10
edgeUse branch percentile rank 99.9 100 99.9 100 99.9 99.9 100 100 100

refined by edgeUse branch
refined by strong branch

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

41

Table 2.3: (continued)

ran10 100 a.bliss n = 100 e = 502

k 7 8 9 10 11 12
edgeUse branch percentile rank 100 96.4 84.7 91.2 93.0 91.6

refined by edgeUse branch
refined by strong branch

1.0 0.130 0.250 0.276 0.219 0.093

ran10 100 b.bliss n = 100 e = 464

k 4 5 6 7 8 9 10 11 12
edgeUse branch percentile rank 99.6 99.6 100 100 95.0 68.5 72.7 83.1 96.7

refined by edgeUse branch
refined by strong branch

1.0 1.0 1.0 1.0 0.297 0.102 0.102 0.095 0.179

ran10 100 c.bliss n = 100 e = 525

k 6 7 8 9 10 11 12 13
edgeUse branch percentile rank 99.5 99.8 92.0 97.2 79.7 89.5 97.1 95.6

refined by edgeUse branch
refined by strong branch

1.0 1.0 0.036 0.666 0.101 0.098 0.343 0.238

ran10 100 d.bliss n = 100 e = 514

k 8 9 10 11 12
edgeUse branch percentile rank 99.2 85.8 69.6 97.7 99.2

refined by edgeUse branch
refined by strong branch

0.364 0.175 0.081 0.454 0.692

where λG
k is the objective value of the heuristic solution, and γGk , γG0 are the optimal values from

Table 2.2. Recall that γG0 is the number of vertex orbits in the graph G, so we measure performance

relative to this trivial solution. That is, a value of 0% means λG
k = γG0 , i.e., no improvement in

objective value, and a value of 100% means λG
k = γGk , i.e., the heuristic found a globally optimal

solution. For k such that γG0 = γGk we show a “–”. Timing results are reported in Table 2.6. As

we can see, for games120.col and the miles graphs, the performance of the edgeUse branching

dive is not impressive, especially for larger values of k. That being said, for the le450 and random

graphs it perpforms better, and usually either finds the optimal objective value or is only one away.

Turning to the local branching heuristic, we see the situation is exactly reversed from before. The

local branching dive is able to do well with games120.col and the miles graphs, whereas it is not as

successful finding the little almost symmetry in the le450 and random graphs. Both heuristics can

be run usually in under a few seconds for graphs of this size, with the exception being le450 5b.col

for large values of k, which is a graph with least almost symmetry examined. Overall the edgeUse

branching heuristic performs the best, usually capturing a solution that is within 50% of optimal

with only a few seconds of computational effort on a single thread.

2.5 Conclusion

In this chapter we presented and tested a branch-and-bound algorithm for solving a generalized

version of Automorphism-Partition. We provide a branching strategy which is much more

effective at controlling the size of the tree, compared to random branching, even on random graphs,

42

Table 2.4: edgeUse branching robustness, selected instances

games120.col,
k = 7

Rank % of Nodes

1 56.54%
2 16.02%
3 4.70%
4 3.24%
5 2.51%
6 2.05%
7 1.71%
8 1.33%
9 1.41%
10 1.00%
11+ 9.48%

miles750.col,
k = 5

Rank % of Nodes

1 85.56%
2 1.88%
3 0.09%
4 0.10%
5 0.12%
6 0.63%
7 1.42%
8 0.98%
9 0.66%
10 0.64%
11+ 7.92%

43

Table 2.4: (continued)

le450 25b.col,
k = 9

Rank % of Nodes

1 72.43%
2 0.31%
3 0.14%
4 0.05%
5 0.10%
6 0.09%
7 0.08%
8 0.04%
9 0.11%
10 0.22%
11+ 26.41%

ran10 100 a.bliss,
k = 10

Rank % of Nodes

1 76.81%
2 0.37%
3 0.17%
4 0.28%
5 1.24%
6 3.07%
7 3.26%
8 3.15%
9 0.92%
10 0.04%
11+ 10.70%

44

and provide computational evidence that it is relatively robust. The branching strategy presented

can often be used heuristically to find a non-trivial set of almost-symmetries (i.e., not Aut(G)) in

a relatively short time period by diving left. Finally, we demonstrated that parallel enumeration is

effective in speeding up the wall-clock solution times for our implementation.

45

Table 2.5: % gap reduced for heuristics

edgeUse branching heuristic:

Graph / k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

games120.col 100% 100% 100% 17% 14% 14% 0% 13%
miles250.col 0% 75% 33% 25% 22% 0%
miles500.col 0% 67% 50% 60% 50% 43% 38%
miles750.col 0% 50% 67% 75% 60% 50% 43%
miles1000.col 0% 0% 33% 50% 40% 60%
miles1500.col 0% 50% 33% 25%
le450 5b.col – – – – – – – – – – – – – – – – – –
le450 15b.col – 100% 100% 100% 100% 100% 100% 100% 100% 100% 75% 100% 100% 100% 80% 80%
le450 25b.col – 100% 100% 100% 50% 50% 67% 67% 67%

ran10 100 a.bliss – – – – – – 100% 100% 100% 100% 100%
ran10 100 b.bliss – – – 100% 100% 100% 100% 100% 100% 50% 50%
ran10 100 c.bliss – – – – – 100% 100% 100% 100% 100% 50% 50%
ran10 100 d.bliss – – – – – – – 0% 0% 0% 0%

Local branching heuristic:

Graph / k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

games120.col 100% 100% 40% 100% 86% 86% 75% 75%
miles250.col 0% 25% 50% 38% 44% 45%
miles500.col 0% 0% 25% 40% 33% 29% 25%
miles750.col 0% 50% 67% 50% 40% 50% 57%
miles1000.col 0% 0% 33% 50% 60% 80%
miles1500.col 0% 50% 67% 75%
le450 5b.col – – – – – – – – – – – – – – – – – –
le450 15b.col – 100% 100% 100% 50% 100% 100% 67% 67% 67% 50% 50% 50% 50% 40% 40%
le450 25b.col – 0% 0% 0% 0% 0% 0% 0% 0%

ran10 100 a.bliss – – – – – – 0% 0% 0% 0% 0%
ran10 100 b.bliss – – – 0% 0% 100% 0% 0% 0% 0% 0%
ran10 100 c.bliss – – – – – 0% 100% 100% 100% 100% 50% 50%
ran10 100 d.bliss – – – – – – – 0% 0% 0% 0%

46

Table 2.6: Time in seconds for heuristics

edgeUse branching heuristic:

Graph / k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

games120.col 0.1 0.1 0.1 0.2 0.7 0.9 1.1 1.2
miles250.col 0.0 0.0 0.1 0.1 0.1 0.3
miles500.col 0.0 0.0 0.1 0.1 0.1 0.2 0.2
miles750.col 0.0 0.1 0.1 0.1 0.2 0.3 0.3
miles1000.col 0.0 0.1 0.2 0.2 0.3 0.4
miles1500.col 0.2 0.5 0.7 1.0
le450 5b.col 0.6 0.9 1.3 1.4 1.8 1.9 2.2 2.4 2.4 2.7 2.9 3.2 3.3 3.8 4.7 6.3 19.6 51.0
le450 15b.col 0.4 0.8 0.9 1.2 1.2 1.4 1.7 1.8 1.9 2.2 2.4 2.4 2.8 2.9 3.2 3.2
le450 25b.col 0.3 0.7 0.8 0.9 1.2 1.2 1.3 1.7 1.7

ran10 100 a.bliss 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.4 0.7 0.9 0.7
ran10 100 b.bliss 0.0 0.0 0.0 0.0 0.1 0.1 0.3 0.6 0.7 0.9 0.8
ran10 100 c.bliss 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.5 0.8 0.8 0.8 1.1
ran10 100 d.bliss 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.4 0.8 0.8 0.8

Local branching heuristic:

Graph / k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

games120.col 0.1 0.1 0.1 0.2 0.6 1.0 1.1 1.2
miles250.col 0.0 0.0 0.1 0.1 0.2 0.3
miles500.col 0.0 0.0 0.1 0.1 0.1 0.2 0.2
miles750.col 0.0 0.1 0.1 0.2 0.2 0.3 0.4
miles1000.col 0.0 0.1 0.2 0.2 0.3 0.5
miles1500.col 0.2 0.5 0.9 1.0
le450 5b.col 0.7 1.0 1.4 1.6 1.8 2.0 2.0 2.4 2.5 2.5 3.4 3.1 3.3 3.8 4.6 6.4 19.5 35.3
le450 15b.col 0.4 0.7 0.9 1.0 1.1 1.4 1.5 1.9 2.0 2.0 2.4 2.5 2.8 2.5 3.0 3.2
le450 25b.col 0.3 0.6 0.9 0.9 1.0 1.1 1.4 1.5 1.6

ran10 100 a.bliss 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.4 0.6 1.0 0.9
ran10 100 b.bliss 0.0 0.0 0.0 0.0 0.1 0.1 0.3 0.6 0.9 1.0 1.0
ran10 100 c.bliss 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.5 0.9 0.9 1.0 0.9
ran10 100 d.bliss 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.4 0.8 0.9 1.0

47

Chapter 3

The Ramping Polytope and Cut

Generation for the Unit Commitment

Problem

This chapter and Appendix C are based on a manuscript prepared for publication by Ben Knueven,

Jim Ostrowski, and Jianhui Wang:

Knueven, B., Ostrowski, J., and Wang, J. (2017). The Ramping Polytope and Cut

Generation for the Unit Commitment Problem. Submitted.

Authors Ostrowski and Wang discovered the extended formulation. Authors Knueven and

Ostrowski developed the proof of Theorem 3.1. Author Knueven proposed and developed the cut-

generation procedure. Author Knueven drafted the manuscript and conducted all computational

experiments. Author Ostrowski edited the manuscript. A preprint of this paper is available

at http://www.optimization-online.org/DB_FILE/2015/09/5099.pdf.

In this chapter we present a perfect formulation for a single generator in the unit commitment

problem, inspired by the dynamic programming approach taken by Frangioni and Gentile. This

generator can have characteristics such as ramp up/down constraints, time-dependent start-up

costs, and start-up/shut-down limits. To develop this perfect formulation we extend the result of

Balas on unions of polyhedra to present a framework allowing for flexible combinations of polyhedra

using indicator variables. We use this perfect formulation to create a cut-generating linear program,

similar in spirit to lift-and-project cuts, and demonstrate computational efficacy of these cuts in a

utility-scale unit commitment problem.

48

3.1 Introduction

The unit commitment problem (UC) is that of scheduling generators to meet power demand, and has

been one of the great successes of mixed-integer programming models. The Midwest Independent

Transmission System Operator (MISO), recipient of the Edelman Award in 2011, reports annual

savings of over $500 million by using integer programming to optimize UC in place of Lagrangian

relaxation [16]. Because of the scales involved, a 1% savings in energy markets results in translates

to a $10 billion annual savings [117].

The unit commitment problem is nearly decomposable as generators are only linked through

the demand constraint. Therefore most improvements in unit commitment models are a result of

studying the properties of an individual generator’s feasible region. Frangioni and Gentile [46]

provide a dynamic programming model for an individual generator with ramping constraints.

Inspired by their dynamic programming model, we construct a compact extended formulation

for a single generator, which can be used to model generators within a unit commitment MIP

model. During the drafting of this chapter, we learned that Frangioni and Gentile independently

discovered a similar perfect formulation for a single thermal generator [48, 49]. The formulation

developed can be used to model any properties of a generator that are polyhedrally representable

when the commitment status is fixed. We use this extended formulation to create a cut-generating

linear program that can be used to strengthen the linear programming (LP) relaxation for MIP

formulations of UC and/or as a callback in the MIP solver.

The rest of the chapter is outlined as follows. In Section 3.2 we review the current state of

the unit commitment problem, including the typical 3-binary formulation used in state-of-the-art

models, and introduce the extended formulation. In Appendix C, we prove the integrality of this

extended formulation by revisiting a classic result of Balas [6, 7], and do so in more general terms

than we strictly require. In Section 3.3 we use the results of the preceding sections to develop a

cut-generating linear program for a ramping-constrained generator, and we present computational

experiments based on a utility-scale unit commitment problem. Finally, in Section 3.4 we draw

conclusions and discuss possible directions for future research.

49

3.2 The Unit Commitment Problem

We begin by providing an overview of the unit commitment problem. For a set of generators G
and T time steps, we formulate the unit commitment problem as follows:

min
∑
g∈G

cg(pg) (3.1a)

subject to
∑
g∈G

pgt ≥ Lt, ∀t ∈ [T] (3.1b)

∑
g∈G

p̄gt ≥ Lt +Rt, ∀t ∈ [T] (3.1c)

pg, p̄g ∈ Πg ⊂ R
T , ∀g ∈ G, (3.1d)

pg is the power output vector of generator g, cg(pg) is the cost of the vector pg, and p̄gt is the

maximum power available from generator g at time t. Lt is the electricity load at time t, while Rt

is the spinning reserve requirement at time t. For convenience let [T] := {1, . . . , T}. Πg represents

the often non-convex technical constraints on production and commitment of generator g, such

as minimum up/down times, ramping rates, time-dependent start-up costs, etc. As mentioned

above, most research in improving unit commitment models has focused improving the modeling of

individual generators, i.e., (3.1d) above. The justification for this line of research is that tighter MIP

formulations for Πg increase the linear programming bound for (3.1), which will in turn decrease

the enumeration necessary to solve UC.

Most of the literature modeling individual generators followed Garver’s [56] general structure,

using three different types of binary variables to describe the status of a generator at a given

time: one variable indicating if the generator is on, another indicating if is turned on, and the last

indicating if generator is turned off. Models of this type are referred to as 3-binary models, or

3-bin models. An alternative 1-binary model (e.g., see [17]), or 1-bin model, considers the variables

indicating if the generator is turned on/off as superfluous, rewriting each constraint using only

variables that represent if the generator is on at a given time period. The hope in this reduction is

that fewer binary variables will lead to smaller branch-and-bound trees and smaller computation

times. However, moving to a smaller formulation comes with a cost of weaker inequalities. A

convex hull description for a simplified generator using the 1-bin formulation is given by Lee et al.

[86], showing that the convex hull has exponentially many constraints. Yet, the same simplified

generator’s production region has a linearly-sized convex hull when using the 3-bin model [94, 133].

50

The simplified generator considered by Rajan and Takriti [133] only models on/off status,

minimum/maximum power, and minimum up/down times. For this reason, several recent results

have strengthened the 3-bin model with additional generator characteristics. A common extension

is to the case when ramping constraints are considered. Ramping constraints represent the fact that

generators, in general, cannot vary their power output dramatically from one time period to the

next. Polynomial classes of strengthening inequalities for the 3-bin model with ramping are given

by Ostrowski et al. [119]; Damcı-Kurt et al. [27] build on this by providing exponential classes

of such strengthening inequalities along with a polynomial separation algorithm. Additionally,

Damcı-Kurt et al. [27] provide a convex hull description for the ramp-up and ramp-down polytopes

in two time periods. Pan and Guan [125] extend this by intersecting these two polytopes into an

integrated ramping polytope for three time periods.

A convex hull description for the 3-bin model with the addition of start-up and shut-down power

is proved by Gentile et al. [58]. The same authors extend this in Morales-España et al. [109] by

separating power from energy (often assumed to be the same since almost all UC models operate

on a one-hour time interval). This allows for the modeling of a generator’s output below economic

minimum when starting up and shutting down, while still maintaining integrality.

Our model moves away from the standard 3-bin polytope by considering on-off intervals. To

demonstrate the relationship between the proposed formulation and the classical formulations, we

first review the standard 3-bin model typically used to represent Πg and cg(·). Then we turn our

focus toward the dynamic programming method for optimizing over a single generator laid out

by Frangioni and Gentile [46]. Indeed using their dynamic programming procedure allows one

to optimize a convex function over the unit commitment polytope (with ramping constraints) in

polynomial time. It should not be surprising then to find polynomial-sized extended formulations

for Πg (although this is by no means guaranteed, see [137]). Additionally, the formulation derived

can be trivially extended to model other generator characteristics, provided the constraints on the

generator are represented with a polytope when the commitment status is fixed.

3.2.1 3-bin Formulation

We now describe the typical 3-bin formulation for the feasible region Πg with cost function cg(·).
Consider the binary vectors ug, vg, wg ∈ {0, 1}T , where ugt is the commitment status of the generator

at time t, vgt indicates if the generator was started up at time t, and wg
t indicates if the generator was

shut down at time t. Suppose UT and DT are the minimum up and down time for the generator.

51

We first consider the logical constraints [56]:

ugt − ugt−1 = vgt − wg
t , ∀t ∈ [T], (3.2)

and the minimum up/down time constraints [133]:

t∑
i=t−UT+1

vgi ≤ ugt , ∀t ∈ [UT g, T] (3.3)

t∑
i=t−DT+1

wg
i ≤ 1− ugt , ∀t ∈ [DT g, T]. (3.4)

Rajan and Takriti [133] showed that (3.2 – 3.4) along with the variable bound constraints give a

convex hull description for the minimum up/down time polytope.

Next we consider constraints on the generation limits. Let P and P represent the minimum

and maximum feasible power output when on, RD and RU represent the maximum ramp-down

and ramp-up rates, and SD and SU represent the maximum shut-down and start-up levels. First

we note that when a generator is on it must be operating within its specified limits

P gugt ≤ pgt ≤ p̄gt ≤ P
g
ugt , ∀t ∈ [T]. (3.5)

We note if RUg, RDg ≥ (P
g − P g) and SUg, SDg ≥ P

g
, that is, there are no real ramping and

start-up shut-down constraints, then the formulation given by (3.2 – 3.5) is perfect for this simple

generator. However, most generators are not so simple, and have ramp-up constraints:

p̄gt − pgt−1 ≤ RUgugt−1 + SUgvgt , ∀t ∈ [T], (3.6)

and ramp-down constraints:

p̄gt−1 − pgt ≤ RDgugt + SDgwg
t , ∀t ∈ [T]. (3.7)

For reference later, define:

Πg
3-bin := {(pg, p̄g, ug, vg, wg) ∈ R

5T
+ | (3.2− 3.7); (ug, vg, wg) ∈ {0, 1}3T } (3.8)

52

and

RΠg
3-bin := {(pg, p̄g, ug, vg, wg) ∈ R

5T
+ | (3.2− 3.7); (ug, vg, wg) ∈ [0, 1]3T }. (3.9)

That is, Πg
3-bin is the feasible set for the technical constraints for generator g, and RΠg

3-bin is its

continuous relaxation. We will colloquially refer to Πg
3-bin and RΠg

3-bin as being in “3-bin space”,

dropping the g when it is implied by context.

Now we consider the cost function cg(·). Typically cg(pg) = cgf (u
g) +

∑
t∈[T] c

g
p(p

g
t), where

cgp(·) is convex and either quadratic or piecewise linear in the power output, and cf (·) is the fixed

commitment costs and start-up/shut-down costs, and as such is a function of the indicator variables.

First, we consider cgp(·). We assume that cgp(·) is convex and piecewise linear where 1P
g
, . . . , LP

g

represent the upper breakpoints for power available at marginal costs 1cg, . . . , Lcg with 1cg < . . . <

Lcg. Define 0P
g
= 0. We use the standard convex piecewise formulation by introducing new

variables lpgt , representing the power generator g produces at time t at marginal cost lcg, along with

the constraints

0 ≤ lpgt ≤ lP
g −l−1P

g
, ∀l ∈ [L], ∀t ∈ [T] (3.10a)

pgt =
L∑
l=1

lpgt , ∀t ∈ [T]. (3.10b)

We can then represent cgp(·) linearly as
∑

t∈[T]

∑
l∈[L]

lcg lpgt . Now consider cgf (·). Typically the start-

up cost is an increasing function of how long the generator has been off. For simplicity we will only

consider two start-up types, hot (H) and cold (C). A start-up is said to be hot if the generator

has been off for less than DT g
C time periods. We formulate the start-up costs as in Morales-España

et al. [111]; namely, let Hδgt ,
Cδgt ∈ {0, 1} represent a hot and cold start-up, respectively. Then we

may write Hδgt ,
Cδgt in terms of the start-up and shut-down variables vgt , w

g
t :

Hδgt ≤
DT g

C−1∑
i=DT

wg
t−i, ∀t ∈ [DT g

C , T] (3.11a)

Hδgt +
Cδgt = vgt , ∀t ∈ [T]. (3.11b)

Thus, if Ucg is the fixed cost of running the generator, and Dcg is the cost of shutting down the

generator, then we can represent cgf (·) linearly as
∑

t∈[T](
Ccg Cδgt +

Hcg Hδgt +
Ucgugt +

Dcgwg
t).

If the ramping constraints (3.6) and (3.7) are irredundant, then it is well known that

conv(Πg
3-bin) �= RΠg

3-bin (where conv(S) is the convex hull of the set S). Recently, Damcı-Kurt

53

et al. [27] characterized separately the ramp-up and ramp-down polytopes for when T = 2, and

Pan and Guan [125] fully characterized conv(Πg
3-bin) for T = 3. In the next section we will develop a

new extended formulation for Πg, which can be used to generate valid inequalities for conv(Πg
3-bin).

3.2.2 The Feasible Dispatch Polytope

The feasible dispatch polytope describes the possible generator outputs given that the generator’s

on/off status has been fixed. Let D[a,b] ⊂ R
2T represent the set of all feasible production schedules

assuming that the generator is only (and continuously) on during the time interval [a, b]. For any

(p[a,b], p̄[a,b]) ∈ D[a,b], p
[a,b]
t represents the power produced by the generator at time t (note that

p
[a,b]
t = 0 for all t not in the interval [a, b]), and p̄

[a,b]
t represents the maximum power available at

time t. We can write D[a,b] as

D[a,b] = {(p[a,b], p̄[a,b]) ∈ R
2T
+ |A[a,b]p[a,b] + Ā[a,b]p̄[a,b] ≤ b̄[a,b]} (3.12)

for A[a,b], Ā[a,b] ∈ R
m×T and b̄[a,b] ∈ R

m. For our purposes, D[a,b] is defined by max/min power and

ramping constraints, and is obviously bounded. The methods described in this chapter then can be

used to extend D[a,b] to accommodate any number of services so long as D[a,b] remains a bounded

polyhedron.

To demonstrate, consider the most common description of D[a,b] found in the power systems

literature, which deals with the following types of constraints: minimum/maximum output,

maximum ramping, and start-up/shut-down levels. The constraints defining the polytope D
[a,b]
typical

are:

p
[a,b]
t ≤ 0 ∀t < a and t > b (3.13a)

p̄
[a,b]
t ≤ 0 ∀t < a and t > b (3.13b)

−p[a,b]t ≤ −P ∀t ∈ [a, b] (3.13c)

p
[a,b]
t ≤ p̄

[a,b]
t ∀t ∈ [a, b] (3.13d)

p̄
[a,b]
t ≤ min(P , SU + (t− a)RU,SD + (b− t)RD) ∀t ∈ [a, b] (3.13e)

p̄
[a,b]
t − p

[a,b]
t−1 ≤ min(RU,SD + (b− t)RD − P) ∀t ∈ [a+ 1, b] (3.13f)

p̄
[a,b]
t−1 − p

[a,b]
t ≤ min(RD,SU + (t− a)RU − P) ∀t ∈ [a+ 1, b]. (3.13g)

54

Constraints (3.13a) and (3.13b) specify that the generator does not output power nor provide

reserves while off; (3.13c) specifies the minimum level of power output when the generator is on.

(3.13d) ensures the power available is at least the power committed. Constraint (3.13e) enforces

the upper bound on the power output at time t. This ensures the generator does not produce more

power than its maximum output P , the power level it could ramp up to by time t (SU+(t−a)RU),

or ramp down from at time t (SD+(b− t)RD) to reach shut-down status. The ramp up constraint

(3.13f) ensures the power jump between times t − 1 and t is no more than RU or that which we

could ramp back down to in the remaining time (SU +(b− t)RD−P). The ramp down constraints

(3.13g) work symmetrically.

We will let T be the set of all feasible continuous operating intervals for the generator. Recalling

UT and DT are the minimum up and down time for the generator, T contains all intervals [a, b]

where 1 ≤ a ≤ a + UT ≤ b ≤ T . T also contains cases when the generator has been turned on

prior to time one and cases where the generator will be on past time T . To account for this, we

let the interval [0, b] represent cases where the generator was already on before the planning period

and is turned off at time b. It is not necessary for b + 1 to be larger than UT . Similarly, we let

the interval [a, T + 1] represent the case where the generator continues to be on after the planning

period, where the actual shut-down time is undetermined. Note all polytopes D
[a,b]
typical are nonempty

for [a, b] ∈ T . Frangioni and Gentile [46] develop a dynamic-programming approach for scheduling

a single generator in polynomial time by combining the polytopes D
[a,b]
typical such that the intervals

only overlap in feasible combinations. We will use the polytopes D
[a,b]
typical in a similar fashion to

develop an extended formulation for the ramping polytope.

3.2.3 Packing Dispatch Polytopes

To develop the extended formulation, we construct an interval graph from T , where two intervals

[a, b], [c, d] are defined to overlap if [a, b+DT] ∩ [c, d +DT] �= ∅. That is, G = (V,E) has V = T
and edges between two vertices if they overlap, is an interval graph by construction, and hence G

is a line graph. We now consider packing the vertices of G, that is, selecting a subset of VP ⊆ V

such that for any u, v ∈ VP , (u, v) /∈ E. If we use variables γ ∈ {0, 1}|T | to indicate whether a

vertex (interval) is in the packing or not, then it is well known (since G is a line graph) that the

clique inequalities (along with non-negativity) give a convex hull description of the vertex packing

55

problem. That is, the vertices of

Γ =

⎧⎪⎨⎪⎩
∑

{[a,b]∈T | t∈[a,b+DT]} γ[a,b] ≤ 1 t ∈ [T]

γ[a,b] ≥ 0 ∀[a, b] ∈ T
(3.14)

are binary and represent all feasible vertex packings. Using the dispatch polytopes developed in

Section 3.2.2, we can write down an extended formulation for a ramping-constrained generator.

Theorem 3.1. The polytope

D :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A[a,b]p[a,b] + Ā[a,b]p̄[a,b] ≤ γ[a,b]b̄
[a,b] ∀[a, b] ∈ T (3.15a)∑

[a,b]∈T
p[a,b] = p (3.15b)

∑
[a,b]∈T

p̄[a,b] = p̄ (3.15c)

(p[a,b], p̄[a,b]) ∈ R
2T
+ ∀[a, b] ∈ T (3.15d)∑

{[a,b]∈T | t∈[a,b+DT]}
γ[a,b] ≤ 1 t ∈ [T] (3.15e)

γ[a,b] ≥ 0 ∀[a, b] ∈ T (3.15f)

is a compact (polynomial-sized in T) formulation for a ramping-constrained generator, and the

vertices of D have integer γ.

Proof. Proof. See Appendix C.

Remark 3.1. Not dispatching the generator in time period [0, T+1] corresponds to having γ[a,b] = 0

for all [a, b] ∈ T .

Linear generation costs c ∈ R
T and fixed start-up (and shut-down) costs w ∈ R

|T | can be

modeled by optimizing the linear function c�p + w�γ over D. This formulation does not concern

itself with time-dependent start-up costs. These can be easily added by considering additional

indicator variables ζ[c,d] which represent the generator being off from time c to d, and construct a

set of feasible off intervals T ′ similar to the construction of T . Recall Cc and Hc are the cost of a

cold and hot start, respectively. When Hc ≥ Cc/2, we can replace (3.15e) above with

∑
{[a,b]∈T | t∈[a,b+DT]}

γ[a,b] +
∑

{[c,d]∈T ′ | t∈[c+DT,d]}
ζ[c,d] = 1 t ∈ [T] (3.16a)

ζ[c,d] ≥ 0 ∀[c, d] ∈ T ′, (3.16b)

56

and the ζ[c,d] variables are in the objective function with the appropriate objective value.

However, when Hc < Cc/2, a formulation discovered by Frangioni and Gentile [48, 49] must be

considered. It uses the following shortest path formulation in place of the packing formulation in

(3.15e) and (3.15f) above

∑
{[c,d]∈T ′ | t=d+1}

ζ[c,d] =
∑

{[a,b]∈T | t=a}
γ[a,b] t ∈ [T] (3.17a)

∑
{[a,b]∈T | t=b+1}

γ[a,b] =
∑

{[c,d]∈T ′ | t=c}
ζ[c,d] t ∈ [T] (3.17b)

∑
{[a,b]∈T | a=0}

γ[a,b] +
∑

{[c,d]∈T ′ | c=0}
ζ[c,d] = 1 (3.17c)

∑
{[a,b]∈T | b=T+1}

γ[a,b] +
∑

{[c,d]∈T ′ | d=T+1}
ζ[c,d] = 1 (3.17d)

γ[a,b] ≥ 0, ∀[a, b] ∈ T , ζ[c,d] ≥ 0, ∀[c, d] ∈ T ′. (3.17e)

Call the resulting polytopeD′, that is, equations (3.15a - 3.15d) with (3.17). We note that Frangioni

and Gentile [49] provide a proof of the integrality of D′, building it up one dispatch polytope at

a time, which also proves Theorem 3.1. It essentially relies on the fact that each of the combined

polytopes are integer in their respective variables, and share only one variable with the other

polytopes. In a similar fashion the results outlined in Appendix C prove the integrality of D′ in the

γ, ζ variables. Both proofs rely on the underlying integrality of the polytopes relating the indicator

variables; the one presented in this chapter also provides an interesting geometric interpretation of

the result, whereas that in Frangioni and Gentile [49] is a bit more generalizable.

Both convex hull descriptions are large, and are unlikely to be computationally effective within

the problem (3.1). Preliminary computational experiments in Frangioni and Gentile [49] bear this

out. As such, instead of using (3.15) directly to represent Πg in the unit commitment problem

(3.1), we will use (3.15) to develop a procedure for generating cuts based on the polytope D similar

in spirit to lift-and-project cuts [8].

3.3 A Cutting-Plane Procedure for the 3-bin Formulation

The basic logic of the proposed approach is as follows. Let Dg be the feasible dispatch polytope

for generator g. The LP relaxation for (3.1) when the extended formulation is used to represent

57

each generator is

LPx∗EF = min
∑
g∈G

cg(pg) (3.18a)

subject to
∑
g∈G

pgt ≥ Lt, ∀t ∈ [T] (3.18b)

∑
g∈G

p̄gt ≥ Lt +Rt, ∀t ∈ [T] (3.18c)

(pg, p̄g) ∈ Dg, ∀g ∈ G. (3.18d)

On the other hand, define the LP relaxation for (3.1) with the typical 3-bin formulation as

LPx∗3-bin = min
∑
g∈G

cg(pg) (3.19a)

subject to
∑
g∈G

pgt ≥ Lt, ∀t ∈ [T] (3.19b)

∑
g∈G

p̄gt ≥ Lt +Rt, ∀t ∈ [T] (3.19c)

(pg, p̄g) ∈ RΠg
3-bin, ∀g ∈ G. (3.19d)

Because the extended formulation is at least as tight as 3-bin, we have LPx∗EF ≥ LPx∗3-bin. However,

as mentioned above, because representing Dg requires O(T 3) variables whereas RΠg
3-bin needs only

O(T) variables, the problem (3.18) is likely to be much more computationally difficult than (3.19).

In the MIP context, this not only slows down the root-node solve time, but also subsequent node

resolves in the branch-and-bound tree.

We propose a cutting-plane procedure attempts to ameliorate the computational issues of

solving (3.18) while still maintaining the strength of its LP bound. In particular, given a solution

to (3.19), for each g ∈ G we can lift generator schedules (pg∗, p̄g∗) ∈ RΠg
3-bin to the “Dg-space.”

If (pg∗, p̄g∗) ∈ Dg, then we do nothing. On the other hand, if (pg∗, p̄g∗) /∈ Dg, we can calculate a

separating cut, project the cut back into 3-bin space, add it to the problem (3.19), and then resolve.

Repeating this process iteratively until (pg∗, p̄g∗) ∈ Dg for all g ∈ G allows us to calculate LPx∗EF

while decomposing the difficult constraints Dg into individual easier separation subproblems for

each g ∈ G. Further, we can stop at any point and possibly obtain a better LP bound than LPx∗3-bin.

That is, for each g ∈ G let Cg be the feasible region for a (possibly empty) set of cuts generated

58

from Dg. Consider the following linear program:

LPx∗3-bin+C = min
∑
g∈G

cg(pg) (3.20a)

subject to
∑
g∈G

pgt ≥ Lt, ∀t ∈ [T] (3.20b)

∑
g∈G

p̄gt ≥ Lt +Rt, ∀t ∈ [T] (3.20c)

(pg, p̄g) ∈ RΠg
3-bin ∩ Cg, ∀g ∈ G. (3.20d)

Then we have LPx∗EF ≥ LPx∗3-bin+C ≥ LPx∗3-bin, where we achieve equality on the left if we add every

possible separating cut, and we have equality on the right if we add no cuts. As is well known,

in practice is it often not desirable to add every possible cut, so we add cuts heuristically (in this

work, we do only one round of cuts for a given LP relaxation). Finally, note that the discussion

above not only applies to the root node of the branch-and-bound tree, but also at any subsequent

node subproblem.

3.3.1 From Dispatch Polytope Space to 3-bin Space

Recalling the typical 3-bin formulation described in Section 3.2.1 and the new extended formulation

developed in Sections 3.2.2 and 3.2.3, we see how these formulations can be “connected” through

a linear transformation, which will be the basis for our cut-generation routine.

Dropping the superscript g for a moment to focus on one generator, recall equation (3.15).

Although it is clear from the formulation of D how to project it on to the space of (p, p̄) variables,

by using a linear transformation we can project D into 3-bin space, that is, the space of the

(p, p̄, u, v, w) variables from Section 3.2.1. Of course, p and p̄ remain the same, and we can link γ

and (u, v, w) as follows:

∑
{[a,b]∈T | t∈[a,b]}

γ[a,b] = ut t ∈ [T] (3.21a)

∑
{[a,b]∈T | t=a}

γ[a,b] = vt t ∈ [T] (3.21b)

∑
{[a,b]∈T | t=b+1}

γ[a,b] = wt t ∈ [T]. (3.21c)

59

Notice by adding the constraints (3.21) to the formulation of D (3.15), for a given 3-bin solution

(p∗, p̄∗, u∗, v∗, w∗) ∈ RΠ3-bin, either the system of equations defined by (3.15), (3.21), p = p∗, p̄ = p̄∗,

u = u∗, v = v∗, and w = w∗, will be feasible, in which case this 3-bin solution is in the ramping

polytope, or this system of equations will not be feasible, in which case this 3-bin solution is not

in the ramping polytope. In the latter case we can use the Farkas certificate for the system of

equations to generate a cut for the 3-bin space which cuts-off this infeasible solution. Our cut-

generating linear program picks, in some sense, the best such infeasibility certificate so as to get

the deepest cut.

3.3.2 A Cut-Generating Linear Program

For ease we will consider the dual form of the cut-generating LP, which is derived from (3.15)

and (3.21) above. Let e be the appropriately sized vector of 1’s and suppose z ∈ R+. Let

(p∗, p̄∗, u∗, v∗, w∗) be a solution vector in 3-bin space. Consider the following linear program:

z∗ = min z (3.22a)

subject to

π A[a,b]p[a,b] + Ā[a,b]p̄[a,b] ≤ γ[a,b]b̄
[a,b] + ze ∀[a, b] ∈ T (3.22b)

δ
∑

{[a,b]∈T | t∈[a,b+DT]}
γ[a,b] ≤ 1 + z t ∈ [T] (3.22c)

ε
∑

[a,b]∈T
p[a,b] = p∗ (3.22d)

μ
∑

[a,b]∈T
p̄[a,b] = p̄∗ (3.22e)

ξ
∑

{[a,b]∈T | t∈[a,b]}
γ[a,b] = u∗t t ∈ [T] (3.22f)

α
∑

{[a,b]∈T | t=a}
γ[a,b] = v∗t t ∈ [T] (3.22g)

σ
∑

{[a,b]∈T | t=b+1}
γ[a,b] = w∗

t t ∈ [T] (3.22h)

z ∈ R+; p[a,b], p̄[a,b] ∈ R
T
+, γ[a,b] ∈ R+, ∀[a, b] ∈ T , (3.22i)

where π ∈ R
m|T |
− is the set of dual variables for constraints (3.22b), δ ∈ R

T− is the set of dual

variables for (3.22c), and ε, μ, ξ, α, σ ∈ R
T are the sets of dual variables for constraints (3.22d -

60

3.22h), respectively. We observe if z∗ is 0, then (p∗, p̄∗) is a feasible solution to D, and if not,

we can use the optimal dual vector to cut off the 3-bin solution (p∗, p̄∗, u∗, v∗, w∗) ∈ RΠ3-bin. To

demonstrate, suppose z∗ > 0 and we have an optimal dual vector π∗, δ∗, ε∗, μ∗, ξ∗, α∗, σ∗. Then by

strong duality z∗ = (δ∗)T e+ (ε∗)T p∗ + (μ∗)T p̄∗ + (ξ∗)Tu∗ + (α∗)T v∗ + (σ∗)Tw∗ > 0, and so the cut

(δ∗)T e+ (ε∗)T p+ (μ∗)T p̄+ (ξ∗)Tu+ (α∗)T v+ (σ∗)Tw ≤ 0 cuts off the solution (p∗, p̄∗, u∗, v∗, w∗) in

3-bin space (that is, it is a valid separating hyperplane between (p∗, p̄∗, u∗, v∗, w∗) and conv(Π3-bin)).

We maximize the depth of the cut by choosing the optimal such cut, with respect to the 1-

norm normalization, instead of any dual feasible solution to (3.22) [8]. In particular, note in the

dual of (3.22), the constraint associated with z is −eT δ − eTπ ≤ 1. When the proposed solution

(p∗, p̄∗, u∗, v∗, w∗) is infeasible for RΠ3-bin, this limits the 1-norm of these otherwise unbounded rays.

3.3.3 Implementation

To test the efficacy of these cuts, we implement them as a callback for a utility-scale unit

commitment problem based on the set of FERC generators. These consist of two sets of generators,

a “summer” and “winter” set of generators, which are based on market data provided from the

PJM Interconnection and other sources [84]. We use the standard 3-bin formulation for the master

unit commitment MIP, as discussed in Section 3.2.1, that is:

min
∑
g∈G

∑
t∈[T]

⎛⎝∑
l∈[L]

(lcg lpgt) +
Ccg Cδgt +

Hcg Hδgt +
Rcgugt +

Dcgwg
t

⎞⎠ (3.23a)

s.t.
∑
g∈G

pgt ≥ Lt, ∀t ∈ [T] (3.23b)

∑
g∈G

p̄gt ≥ Lt +Rt, ∀t ∈ [T] (3.23c)

(3.10), (3.11) ∀g ∈ G, (3.23d)

(pg, p̄g, ug, vg, wg) ∈ Πg
3bin, ∀g ∈ G. (3.23e)

We only consider cuts on a subset of the generators, namely for those that have irredundant ramping

constraints while operating and those that have a minimum run time of at least 2. That is, we

consider cuts on GC := {g ∈ G | (P g − P g) > min{RDg, RUg} and UT g ≥ 2}. We do this because

the 3-bin formulation is tight for generators with no ramping constraints and the problem (3.22)

becomes impractically large for generators with UT g = 1.

61

Cut Callback

UC Master MIP

C
u
rr
en
t
LP

 r
el
ax
at
io
n G

enerated
 C

u
ts

g

CGLP
g

CGLP
g

CGLP
…

g

re
la
xa
ti
on

g

re
la
xa
ti
on

g

re
la
xa
ti
ong

 cu
t or

g
 feasible

g
 cu
t or

g
 feasible

g
 cu
t or

g
 feasible

Figure 3.1: Visualization of the cut-generation procedure

The cuts are implemented in a callback, namely, given the current LP relaxation for

(3.23), for each generator in GC with fractional status variables, we use (3.22) to determine if

(p∗, p̄∗, u∗, v∗, w∗) ∈ conv(Π3-bin), and if not we add the violated ramping inequality given by the

optimal dual solution of (3.22). We generate the cuts using the “bundling” approach of Balas et al.

[8], that is, at the current master LP relaxation we try to generate a cut for each g ∈ GC and give

these to the solver together. This is visualized in Figure 3.1, where we see for each unit g ∈ GC

the cut-generation LP (CGLP) is an independent problem. For a given LP relaxation to the UC

Master MIP (3.23), we separate the solution by generator g, and then check the feasibility of this

relaxed solution in Dg by solving the CGLP (3.22). If we find the relaxed solution infeasible, we

pass the generated cut to the UC Master MIP, along with the cuts generated for other units in GC .

Though we do not do so for this experiment, it would be trivial to parallelize the cut-generation

procedure.

Next, we discuss some computational enhancements to this general outline. First, to mitigate

numerical issues, we only add cuts for which the solution to (3.22), z∗, is greater than 10−2. Second,

after the first round of calls to the cut-generating LPs we use the existing basis information if and

only if we did not generate a cut from it in the previous pass. The intuition is that if we did not

62

generate a cut from this generator previously then the current 3-bin vector is probably close to the

previous one. On the other hand, if we did generate a cut, then (we hope) the current 3-bin vector

is far away from the previous one, so we discard the previous basis information. Third, we make

an enhancement based on symmetry by observing that if g1, g2 ∈ GC have identical parameters

(including initial conditions), a cut generated for g1 is valid for g2, and vice versa. That is, if we

denote generators identical to g as orb(g), for every cut generated for g we add the associated cut

for every ĝ ∈ orb(g). Finally, we choose an aggressive branch-and-cut strategy, generating cuts at

the root node, for the first 50 nodes, and then every 100 nodes thereafter.

While this is heavy machinery for easy UC instances, we will see that for hard UC instances

having this machinery available results in a noticeable improvement.

3.3.4 Computational Experiments

All computational experiments were performed on a Dell PowerEdge T620 with 2 Intel Xeon E5-

2670 processors and 256GB of RAM running Ubuntu 14.04.2. Gurobi 6.5.0 was used as the MIP

and LP solver for all problems, and the callback routine was implemented using Gurobi’s Python

interface. For all problems the number of available threads was set to 1. For the MIP unit

commitment problem, the parameter PreCrush was set to 1 to facilitate adding cuts in callbacks

along with a time limit of 1800 seconds. All other parameters were preserved at default. A dummy

callback was used for instances where cuts were not added.

To generate a diverse set of unit commitment test instances, real-time load, day-ahead reserves,

and wind generation for 2015 were obtained from PJM’s website [128, 129]. For each day in 2015 a

24-hour unit commitment problem was formulated, with wind generation accounted for as negative

demand in (3.23). For ease, the daylight savings days of 08 Mar and 01 Nov were excluded. 31 Dec

was excluded for lack of available data. For the months of April – September the set of summer

generators was used, and the winter generators were considered for the remaining six months.

Generators with missing cost curves were excluded, and generators with missing up/down time

data were given UT g = DT g = 1. Generators marked as wind powered were dropped as wind

generation is considered separately. In total then 935 generators were considered for the winter

system and 978 generators were considered for the summer system. Given the selection criteria

above for GC , |GC | = 459 for the winter system and |GC | = 492 for the summer system. As no data

on start-up or shut-down ramp rates are provided, SUg = SDg = P g for all g ∈ G. Additionally,

no data on cool down is provided, so we assume all generators cool down in twice their minimum

63

Table 3.1: 3-bin UC Formulation Problem Size

cont. vars # binary vars # constraints # nonzeros
Winter System 102048 112220 288478 963303

Summer System 103584 117360 300108 983799

Table 3.2: Winter System: Cut Generation LP Sizes

variables # constraints # nonzeros
Mean 7382.1 12247.2 46819.3
Min 1177 2148 7788

Median 8674 14251 53971
Max 14701 22572 84701

down time period, i.e., DT g
C = 2DT g. We use the data provided on initial status and assume all

generators currently on are available to be turned off and operating at minimum power.

In Table 3.1 we specify the size of the base UC formulation (3.23) for both the winter and summer

set of generators, reporting the number of constraints, continuous variables, binary variables, and

non-zero elements in the constraints matrix, respectively. These form the template for our test set,

as we vary only the demand and reserve data. As we can see, both generator sets yield MIPs of

significant size.

In Table 3.2 we report some summary statistics for the 459 cut generation LPs for the winter

system, and similarly in Table 3.3 we report summary statistics for the 492 cut generation LPs for

the summer system, based on the formulation (3.22). As we can see, most of the LPs are of modest

size, with the variation dependent on the parameters UT g and DT g. Namely, the larger UT g and

DT g are, the fewer valid time intervals in T for generator g, so the smaller the formulation (3.22)

is. As an example, many of the generators in the test sets are large coal units with UT g = 15 and

DT g = 9. These units only have 2059 variables in their cut generation LPs. Some of the nuclear

units in the test sets only have 1177 variables in their cut generation LPs because once started

(stopped) they must stay on (off) for the rest of the time horizon. Conversely, there are some

Table 3.3: Summer System: Cut Generation LP Sizes

variables # constraints # nonzeros
Mean 7568.3 12537.3 47918.5
Min 1177 2148 7788

Median 8674 14778.5 56977
Max 14701 22572 84701

64

Table 3.4: Initial Computational Results

No User Cuts Ramping Polytope Cuts
Time (s) Nodes Time (s) Nodes Cuts Added Cut Time (s)

Geometric Mean 172.52 44.01 163.39 44.08 97.16 10.50
Min 85.48 0 82.13 0 16 1.24

Median 168.97 0 153.82 0 99 11.83
Max 557.82 715 812.32 640 636 77.13

inst. better 130 37 231 26

Table 3.5: High Wind Computational Summary, Solved Instances

No User Cuts Ramping Polytope Cuts
Time (s) Nodes Time (s) Nodes Cuts Added Cut Time (s)

Geometric Mean 204.47 60.84 196.50 48.03 153.99 8.34
Min 58.40 0 54.78 0 2 0.19

Median 197.41 0 192.63 0 173 10.32
Max 1523.65 9875 1030.74 10976 804 58.50

inst. better 138 57 218 73

small gas units in both test sets which have UT g = DT g = 2. These small units have larger cut

generation LPs with 14701 variables.

3.3.5 Initial Results

Of the 362 instances tested, 361 were feasible, and the summary statistics for these instances with

and without the cuts developed above are given in Table 3.4. As we can see, none of the problems in

the test set devised are particularly difficult for a modern MIP solver. Though there may be some

slight benefit to adding the cuts, most instances are solved at the root node, and no instance takes

more than about 15 minutes or 1000 nodes. It is worth noting for these instances that Gurobi needs

quite a bit of time (usually 60-120 seconds) to solve the root relaxation, and then spends quite a

bit of time at the root node generating cuts and applying heuristics. In the last row we report the

number of instances for which that method is strictly better. Here we see the cuts usually result

in a better time, though just slightly, and in most cases (n = 298) both methods need the same

number of nodes to prove optimality to the default tolerance of 0.01% (as most are solved at the

root).

65

Table 3.6: High Wind, Harder Instances

No User Cuts Ramping Polytope Cuts
Date Time (s) Nodes Time (s) Nodes Cuts Added Cut Time (s)

04 Jan 601.93 2841 543.98 1935 208 7.58
15 Mar 988.85 4129 751.59 1533 222 8.77
01 Apr 704.16 554 458.90 216 525 21.18
03 Apr 644.06 689 540.69 544 367 13.84
12 Apr 742.06 1310 435.95 556 125 13.45
15 Apr 1523.65 627 615.81 374 742 26.00
25 Apr 1152.09 1440 1030.74 1220 413 15.89
24 May 988.10 686 377.98 162 505 14.19
23 Jun 723.91 583 447.34 575 298 40.49
02 Oct 620.03 5030 911.74 10976 108 7.65
24 Oct 556.26 934 608.30 772 21 7.49
28 Oct 411.65 1134 701.46 3764 133 6.59
21 Nov 1193.51 4125 940.53 3130 187 9.30
25 Nov 567.15 2648 810.62 3910 288 13.08
16 Dec 993.68 5946 758.29 3214 192 8.54
23 Dec 793.52 9875 570.36 3688 94 6.47

Geometric Mean 780.74 1742.70 629.51 1255.49 210.66 11.88

3.3.6 High Wind Instances

To create more difficult test instances, we again used the 2015 data from PJM, but considered

increased wind penetration. In 2015, wind energy accounted for approximately 2% of energy

demanded. A recent study conducted for PJM suggested that the interconnection could handle

renewable penetration as high as 30%, which may be coming online as soon as 2026 [57]. Therefore,

to create high-wind penetration instances, we multiplied the 2015 wind data by a factor of 15 to

get to 30% wind energy. Note that our model implicitly allows for the possibility of curtailment

(as we consider wind as negative load); further, if the wind is greater than load at a given hour

it may also provide reserves. Given the greater swings in the net-load curve that the extra wind

generation causes, we would expect these instances to be much harder than the base-case instances,

and indeed, we find this to be true.

Of the 362 instances tested, 6 timed out for both methods, and 356 solved for both methods

(all instances were feasible). The summary statistics for the instances which did not time out are

reported in Table 3.5. As we can see, there are modest reductions in geometric mean solve time

and geometric mean nodes. To see the impact on more interesting instances, those for which either

method took more than 10 minutes to solve (but did not time out) are detailed in Table 3.6. For

these harder instances we can see that for the most part the cuts are effective at reducing the

enumeration necessary to arrive at and prove an optimal solution. We have a geometric mean

66

Table 3.7: High Wind, Timed Out Instances

No User Cuts Ramping Polytope Cuts
Date MIP Gap Nodes MIP Gap Nodes Cuts Added Cut Time (s)
27 Oct 0.0102% 10202 0.0116% 8024 400 15.69
12 Nov 0.1287% 2613 0.0871% 3470 447 13.50
14 Nov 0.0111% 10202 0.0104% 8939 561 17.88
17 Nov 0.1015% 2242 0.1144% 1917 729 13.29
26 Nov 0.2110% 4778 0.2128% 4498 225 9.83
20 Dec 0.0232% 10202 0.0188% 9955 243 12.49

reduction in run time of about 150 seconds, such that the typical hard instance went from taking

approximately 13 minutes to 10.5 minutes to solve. As these problems are usually solved in a 10 or

15 minute time window, this is a significant improvement. Additionally, there is a 28% reduction in

geometric mean nodes for these instances, suggesting that strengthening the feasible region for the

ramping-constrained generators with cuts from the ramping polytope eliminates some enumeration.

Lastly in Table 3.7 we summarize the 6 instances which timed out, reporting the final MIP gap in

place of computational time. There do not seem to be any conclusions that can be safely drawn

from these 6 instances.

3.3.7 Observed Cuts

To better understand the cuts generated from (3.22), we examined the generated cuts for a subset of

the high-wind test instances. The vast majority of the cuts were variable upper-bound inequalities.

Specifically, those of the form

p̄gt ≤
∑
i∈[T]

(ξgi u
g
i + αg

i v
g
i + σg

iw
g
i) , (3.24)

for some t ∈ [T], where the coefficients ξgi , α
g
i , and σg

i are the normalized optimal dual values from

(3.22) (so that the coefficient on p̄gt is 1).

In a similar fashion two-period ramping inequalities were observed, i.e.

p̄gt − pgt−j ≤
∑
i∈[T]

(ξgi u
g
i + αg

i v
g
i + σg

iw
g
i) , (3.25)

p̄gt−j − pgt ≤
∑
i∈[T]

(ξgi u
g
i + αg

i v
g
i + σg

iw
g
i) , (3.26)

67

where j was most often 1, but sometimes 2, and on one occasion 3 for the ramp-up inequality

(3.25). Three-period ramping inequalities were also common

−pgt−j + p̄gt − pgt+k ≤
∑
i∈[T]

(ξgi u
g
i + αg

i v
g
i + σg

iw
g
i) , (3.27)

p̄gt−j − pgt + p̄gt+k ≤
∑
i∈[T]

(ξgi u
g
i + αg

i v
g
i + σg

iw
g
i) , (3.28)

with (3.28) occurring much more often than (3.27), and both usually having j = k = 1. A few

inequalities of the form (3.28) were observed with j = 1, k = 2 and j = 2, k = 1, and at least one

instance with j = 1, k = 3.

Occasionally more exotic inequalities would be generated. The four-period ramping inequalities

−pgt−j + p̄gt − pgt+k + p̄gt+l ≤
∑
i∈[T]

(ξgi u
g
i + αg

i v
g
i + σg

iw
g
i) , (3.29)

p̄gt−j − pgt + p̄gt+k − pgt+l ≤
∑
i∈[T]

(ξgi u
g
i + αg

i v
g
i + σg

iw
g
i) , (3.30)

with consecutive time periods (j = 1, k = 1, l = 2) were most common, but four-period inequalities

with j = 2, k = 1, and l = 2 were observed as well. The five-period ramping inequality

p̄gt−2 − pgt−1 + p̄gt − pgt+1 + p̄gt+2 ≤
∑
i∈[T]

(ξgi u
g
i + αg

i v
g
i + σg

iw
g
i) , (3.31)

was also generated on several occasions. In a similar vain, a seven-, nine-, and ten-period ramping

inequalities were observed once.

In all cases the generated inequalities had varying degrees of sparsity in the generator’s status

variables (ug, vg, wg). Some cuts were generated with only two non-zeros on the right-hand side,

these were always involving the end of the time horizon. Several inequalities only had a few non-

zeros in the right-hand side. Many more however spanned the generator’s production horizon (i.e.,

when the ug variables are non-zero), though in most cases these inequalities had about one-third

to one-half non-zeros on the right-hand side. This is because with fractional status variables, the

cut generated usually spans several of the polytopes D[a,b].

68

3.3.8 Reflections

First, we note that it is somewhat surprising that we were able to separate so many cuts in a

reasonable amount of time. However, with T = 24 we see from Tables 3.2 and 3.3 that many of

the LPs are of a manageable size, and most can be solved quickly with a modern commercial LP

solver. Further, after the first cut pass the most of the generators have the same solution in the UC

LP relaxation, so there’s nothing for Gurobi to do in the LP separation problem. (As mentioned

above, we leave the LP separation problems loaded in memory.) Additionally, across all the test

instances, 33% of the cuts we add are additional valid cuts added by symmetry. (Recall that if we

compute a cut for a generator we also add that cut for all generators in its orbit.)

Even though in practice we were able to solve the cut-generating problem for T = 24, obviously

the problem (3.22) increases super-linearly in T . One way to improve the performance could be to

more carefully screen which generators we generate cuts on. It may only make sense with longer

time horizons to generate cuts on those “large” generators (with large UT g and DT g) for which

the super-linear explosion in formulation size is more manageable. Additionally, it is clear from the

formulation of (3.22) that most of the columns and rows (specifically those from (3.22b)) probably

never enter the basis, and could perhaps be generated on the fly, with an initial basis constructed

based on the 3-bin solution. However, the implementation of such a method would be non-trivial.

Another possibility to improve the performance on longer time horizons would be to solve a “rolling”

separation problem, where for each time period t we solve a small (e.g. 7-period) version of (3.22)

centered around time t. That being said, the density of the cuts observed suggests that such a

procedure may be less effective at generating quality cuts. Alternatively, problem (3.22) could be

generated on the fly based on the LP relaxation values for ug. Notice (3.22) decomposes when

u∗t = 0 for some t, and though adding time-dependent start-up costs complicates this picture, such

a decomposition could be done heuristically.

Finally, it is worth taking a moment to bridge the gap between the computation results presented

in this section and those reported on 2 and 3-period ramping inequalities recently, namely Damcı-

Kurt et al. [27] and Pan and Guan [125]. We note that the cuts given by (3.22) are a superset of

those presented in these two papers. The “slow-start” generators in Damcı-Kurt et al. [27] take an

average of 4 time periods to ramp from SU to P , and the “fast-start” generators need an average

of 3 time periods. Similarly, for the instances used in Pan and Guan [125], every generator in

the test set needs 4 time periods to ramp up to P . This test set also contains large amounts of

69

symmetry, which for unit commitment is not perfectly encoded in the formulation symmetry, and

hence cannot be exploited by the MIP solver [120]. In the systems we test here, for both the winter

and summer generator sets, the generators in GC take an average of just 2 time periods to ramp

from SU to P , and half (which we do not generate inequalities for) do not have ramping constraints

at all. As far as the authors are aware this is the first experiment to test any ramping inequalities

based on real-world generator data. The computational results presented here demonstrate that

valid inequalities from the ramping polytope are beneficial for difficult unit commitment instances,

and do not detract from unit commitment instances which are easy to solve.

3.4 Conclusion

We have presented a compact extended formulation for a ramping-constrained generator and a cut-

generating linear program based upon the extended formulation. We demonstrated that the these

cuts are computational beneficial for high-wind unit commitment instances based on the FERC

generator set and data from PJM. Finally, the slight generalization of Balas’s result [6, 7] presented

in Appendix C may be of use in developing new extended formulations.

70

Chapter 4

A Novel Matching Formulation for

Startup Costs in Unit Commitment

This chapter and Appendices D and E are based on a manuscript prepared for publication by Ben

Knueven, Jim Ostrowski, and Jean-Paul Watson:

Knueven, B., Ostrowski, J., and Watson, J. P. (2017). A Novel Matching Formulation

for Startup Costs in Unit Commitment. Submitted.

Authors Knueven and Ostrowski discovered the proposed matching formulation. Author Knueven

posed Theorem 4.1; authors Knueven and Ostrowski proved Theorem 4.1. Authors Knueven and

Watson set-up the computational experiments; author Knueven performed the computational

experiments and collected the data. Author Knueven drafted the initial manuscript; authors

Ostrowski and Watson edited and enhanced the manuscript. A preprint of this paper is available

at http://www.optimization-online.org/DB_FILE/2017/03/5897.pdf.

In this chapter, we present a novel formulation for startup cost computation in the unit

commitment problem (UC). Both our proposed formulation and existing formulations in the

literature are placed in a formal, theoretical dominance hierarchy based on their respective

linear programming relaxations. Our proposed formulation is tested empirically against existing

formulations on large-scale unit commitment instances drawn from real-world data. While requiring

more variables than the current state-of-the-art formulation, our proposed formulation requires

fewer constraints, and is empirically demonstrated to be as tight as a perfect formulation for

startup costs. This tightening can reduce the computational burden in comparison to existing

71

formulations, especially for UC instances with large reserve margins and high penetration levels of

renewables.

4.1 Nomenclature

4.1.1 Indices and Sets

g ∈ G Thermal generators

l ∈ Lg Piecewise production cost intervals for generator g: 1, . . . , Lg.

s ∈ Sg Startup categories for generator g, from hottest (1) to coldest (Sg).

t ∈ T Hourly time steps: 1, . . . , T .

4.1.2 Parameters

clg Cost coefficient for piecewise segment l for generator g ($/MWh).

cRg Cost of generator g running and operating at minimum production P g ($/h).

csg Startup cost in category s for generator g ($).

D(t) Load (demand) at time t (MW).

DTg Minimum down time for generator g (h).

P g Maximum power output for generator g (MW).

P
l
g Maximum power available for piecewise segment l for generator g (MW).

P g Minimum power output for generator g (MW).

R(t) Spinning reserve at time t (MW).

RDg Ramp-down rate for generator g (MW/h).

RUg Ramp-up rate for generator g (MW/h).

SDg Shutdown rate for generator g (MW/h).

SUg Startup rate for generator g (MW/h).

TCg Time down after which generator g goes absolutely cold, i.e., enters state Sg.

T s
g Time offline after which the startup category s is available (T 1

g = DTg, T
Sg
g = TCg).

T
s
g Time offline after which the startup category s is no longer available (= T s+1

g , T
Sg

g =

+∞).

UTg Minimum run time for generator g (h).

W (t) Aggregate wind (renewables, more generally) generation available at time t (MW).

72

4.1.3 Variables

pg(t) Power above minimum for generator g at time t (MW).

pW (t) Aggregate wind generation used at time t (MW).

plg(t) Power from piecewise interval l for generator g at time t (MW).

rg(t) Spinning reserves provided by generator g at time t (MW), ≥ 0.

ug(t) Commitment status of generator g at time t, ∈ {0, 1}.
vg(t) Startup status of generator g at time t, ∈ {0, 1}.
wg(t) Shutdown status of generator g at time t, ∈ {0, 1}.
cSUg (t) Startup cost for generator g at time t ($), ≥ 0.

δsg(t) Startup in category s for generator g at time t, ∈ {0, 1}.
xg(t, t

′) Indicator arc for shutdown at time t, startup at time t′, uncommitted for i ∈ [t, t′), for

generator g, ∈ {0, 1}.
yg(t, t

′) Indicator arc for startup at time t, shutdown at time t′, committed for i ∈ [t, t′), for

generator g, ∈ {0, 1}.

4.2 Introduction

The unit commitment problem (UC) concerns the scheduling of thermal generators to meet

projected demand while minimizing system operations cost [160]. Here, we propose a new

formulation for representing thermal generator startup costs, which leads to a tightening of the

linear programming (LP) relaxation of the mixed-integer linear programming (MILP) UC problem.

We then empirically demonstrate that the tighter LP relaxation can translate into reduced run-

times to solve the MILP UC using commercial branch-and-cut solvers.

MILP formulations for UC have been of interest since Garver’s original formulation [56]. These

are extremely difficult problems to solve in practice at the scale, e.g., at the scale of the Midcontinent

ISO in the United States. Many practical problems involve hundreds of generators on a transmission

system with thousands of buses with a time horizon of at least 48 hours. Further, solutions must

be completed in tens of minutes at most. As a consequence, system operators often have to use

substantially suboptimal solutions to comply with the time limit, i.e., with optimality gaps that

are sometimes tens of a percent [18].

There are a few approaches for reducing run-times to an optimal solution. One approach

is via decomposition. The intuition is that loosely-connected parts of the UC problem can be

73

decomposed into easier subproblems, and a solution to the original can be discovered through an

iterative process. One way to decompose UC is by generators – splitting the generator set G into

subsets (by location or some other criteria). Classical decomposition methods (such as ADMM) can

then be used to force convergence between subproblems [40, 134]. Another possible decomposition

is on the time horizon – the principle here being that after a sufficiently long period decisions made

previously do not have much affect on decisions made now. Such an approach is explored in [81].

An orthogonal approach for reducing run times is stronger formulations for UC, and this research

has found its way into practice. Most of this work has focused on tightening the polyhedral

description of a single generator’s dispatch. In [86] an exponential convex hull description for

minimum up and down times in terms of a generator’s status variables is given; Rajan and Takriti

[133] uses the startup and shutdown status variables to describe the same set using only a linear

number of inequalities. This result is extended in [58] to generators with startup and shutdown

power constraints. Inequalities to tighten the formulation of the ramping process are considered

in [119, 27, 125], as well as Chapter 3.

A formulation for time-dependent startup costs based on generator commitment variables

appears in [115]; Carrion and Arroyo [17] considers the same formulation in the context of a MILP

approach to UC. Startup cost categories together with associated indicator variables are introduced

in [113]. Morales-España et al. [110] improves on the indicator formulation from [145] and

demonstrates empirically that the use of startup category indicators results in a tighter formulation

than those described in [115] and [17], both of which use generator commitment variables to model

startup costs. Morales-España et al. [111] uses this same approach to model generator start-up

and shut-down energy production. Brandenberg et al. [14] shows that the epigraph for concave

increasing startup costs modeled using generator status variables has an exponential number of

facets. However, [14] provides a linear-time separation algorithm for computing these facets.

Finally, a restrictive temperature-based model for startup cost is presented in [144].

In this chapter we introduce a novel matching formulation for time-dependent startup costs in

UC. We theoretically analyze the strength of our formulation relative to existing formulations in

the literature, and introduce an additional formulation as an intermediary to ease the comparison

between existing formulations. We then empirically analyze the impact of our new formulation,

both in an absolute sense and relative to other formulations, on the ability of commercial branch-

and-cut software packages to solve utility-scale UC problems.

74

The remainder of this chapter is organized as follows. We begin in Section 4.3 with a discussion

of the base UC formulation, without startup cost components. Section 4.4 then details both existing

and two novel startup cost formulations for UC. In Section 4.5, we establish a provable dominance

hierarchy concerning the relative tightness of the LP relaxations of the different startup cost

formulations. We empirically compare the performance of the various startup cost formulations in

Section 4.6, using large-scale UC instances based on industrial data. We discuss the implications of

our results in Section 4.7. Finally, we conclude with a summary of our contributions in Section 4.8.

4.3 Unit Commitment Formulation

We present a MILP UC formulation based on [110] that we will use as the baseline for the

comparison between startup cost formulations. We assume that the production cost is piecewise

linear convex in pg(t), where Lg is the number of piecewise intervals and P
0
g = P is the start of

the first interval. Let G1 be the generators that have UT g = 1 and G>1 be the generators with

UT g > 1. We then formulate the UC problem as follows:

min
∑
g∈G

∑
t∈T

⎛⎝∑
l∈Lg

(clg p
l
g(t)) + cRg ug(t) + cSUg (t)

⎞⎠ (4.1a)

subject to:

∑
g∈G

(
pg(t) + P gug(t)

)
+ pW (t) = D(t) ∀t ∈ T (4.1b)

∑
g∈G

rg(t) ≥ R(t) ∀t ∈ T (4.1c)

pg(t) + rg(t) ≤ (P g − P g)ug(t)− (P g − SUg)vg(t) ∀t ∈ T , ∀g ∈ G1 (4.1d)

pg(t) + rg(t) ≤ (P g − P g)ug(t)− (P g − SDg)wg(t+1) ∀t ∈ T , ∀g ∈ G1 (4.1e)

pg(t) + rg(t) ≤ (P g − P g)ug(t)

− (P g − SUg)vg(t)− (P g − SDg)wg(t+1) ∀t ∈ T , ∀g ∈ G>1 (4.1f)

pg(t) + rg(t)− pg(t−1) ≤ RUg ∀t ∈ T , ∀g ∈ G (4.1g)

pg(t−1)− pg(t) ≤ RDg ∀t ∈ T , ∀g ∈ G (4.1h)

pg(t) =
∑
l∈Lg

plg(t) ∀t ∈ T , ∀g ∈ G (4.1i)

75

plg(t) ≤ (P
l
g − P

l−1
g) ∀t ∈ T , ∀l ∈ Lg, ∀g ∈ G (4.1j)

ug(t)− ug(t−1) = vg(t)− wg(t) ∀t ∈ T , ∀g ∈ G (4.1k)

t∑
i=t−UTg+1

vg(i) ≤ ug(t) ∀t ∈ [UTg, T], ∀g ∈ G (4.1l)

t∑
i=t−DTg+1

wg(i) ≤ 1− ug(t) ∀t ∈ [DTg, T], ∀g ∈ G (4.1m)

pW (t) ≤W (t) ∀t ∈ T (4.1n)

plg(t) ∈ R+ ∀t ∈ T , ∀l ∈ Lg, ∀g ∈ G (4.1o)

pg(t), rg(t) ∈ R+ ∀t ∈ T , ∀g ∈ G (4.1p)

pW (t) ∈ R+ ∀t ∈ T (4.1q)

ug(t), vg(t), wg(t) ∈ {0, 1} ∀t ∈ T , ∀g ∈ G. (4.1r)

Constraints (4.1b – 4.1r) are standard in UC formulations without time-varying startup costs, see

[110] or Chapter 3.

We will take the formulation above as given, and for the remainder of the chapter we will focus

on the formulation of the startup cost cSUg (t).

4.4 Startup Cost Formulations

In this section, we introduce the formulations for startup cost cSUg (t) examined in this chapter. (We

provide the full specification for each formulation in Appendix D.) For notational ease, since in

all cases we are referencing a single generator, we will drop the subscript g on all variables and

parameters in this section and in the following section.

4.4.1 Formulations from the Literature

One Binary Formulation (1-bin)

The typical formulation for startup costs using only the status variable u is [115, 17]

cSU(t) ≥ cs

⎛⎝u(t)−
T s∑
i=1

u(t−i)

⎞⎠ ∀s ∈ S , ∀t ∈ T (4.2a)

cSU(t) ≥ 0 ∀t ∈ T . (4.2b)

76

This formulation has the advantage of only needing as many constraints as startup types, and no

additional variables.

Strengthened One Binary Formulation (1-bin*)

As pointed out in [144], the 1bin formulation above can be strengthened by increasing the coefficients

on the u(t− i) variables

cSU(t) ≥ cs

(
u(t)−

DT∑
i=1

u(t−i)
)
−

s−1∑
k=1

⎛⎝(cs − ck)
T

k∑
i=Tk+1

u(t−i)

⎞⎠ ∀s ∈ S , ∀t ∈ T (4.3a)

cSU(t) ≥ 0 ∀t ∈ T . (4.3b)

Startup Type Indicator Formulation (STI)

The formulation proposed in [110] introduces binary indicator variables for each startup type.

Specifically, for each startup type s, we have δs(t), ∀t ∈ T which is 1 if the generator has a type s

startup in time t and 0 otherwise. The corresponding constraints are

δs(t) ≤
T

s−1∑
i=T s

w(t−i) ∀s ∈ S \ S, ∀t ∈ T (4.4a)

v(t) =

S∑
s=1

δs(t) ∀t ∈ T . (4.4b)

We can replace the objective function variables cSU(t) using the substitution

cSU(t) =

S∑
s=1

csδs(t) ∀t ∈ T . (4.4c)

Extended Formulation (EF)

Pochet and Wolsey [131] propose an extended formulation for startup and shutdown sequences,

which provides a perfect formulation for startup costs. Let y(t, t′) = 1 if there is a startup in time

t and a shutdown in time t′ and 0 otherwise, for t′ ≥ t+ UT . Similarly let x(t, t′) = 1 if there is a

shutdown in time t and a startup in time t′ and 0 otherwise, for t′ ≥ t+DT . The constraints are

∑
{t′|t′>t}

y(t, t′) = v(t) ∀t ∈ T (4.5a)

77

∑
{t′|t′<t}

y(t′, t) = w(t) ∀t ∈ T (4.5b)

∑
{t′|t′<t}

x(t′, t) = v(t) ∀t ∈ T (4.5c)

∑
{t′|t′>t}

x(t, t′) = w(t) ∀t ∈ T (4.5d)

∑
{τ,τ ′|τ≤t<τ ′}

y(τ, τ ′) = u(t) ∀t ∈ T . (4.5e)

Note that with constraints (4.5a–4.5e), constraints (4.1k–4.1m) become redundant. Hence, the u, v,

and w variables may be projected out. The startup costs are calculated by placing the appropriate

coefficient on the x variables

cSU(t) =

S∑
s=1

cs

⎛⎝ t−T s∑
t′=t−T

s
+1

x(t′, t)

⎞⎠ ∀t ∈ T , (4.5f)

where the inside summation is understood to be taken over valid t′.

From integer programming theory [159], we know this formulation to be integral because it is

a network flow model, where the vertices are two partite sets, one for startups and the other for

shutdowns, and the arcs y connect startups to feasible shutdowns and the arcs x connect shutdowns

to feasible startups. By putting a flow of one unit through the network, we arrive at a feasible

generator schedule. Note integrality comes at the cost of needing O(|T |2) additional variables to

model startup costs.

4.4.2 Novel Formulations

Here we present two new formulations for startup costs. The first can be seen as a relaxation of

EF, and the second as 1-bin* with the inequalities strengthened by using the turn on and turn off

indicators v and w.

Matching Formulation (Match)

Similar to EF, for t ∈ T let x(t′, t) = 1 if there is a shutdown in time t′ and a startup in time t

and 0 otherwise, for t′ ∈ T such that t− TC < t′ ≤ t−DT . Note that this is only (TC −DT)|T |

78

additional variables. The associated constraints are

t−DT∑
t′=t−TC+1

x(t′, t) ≤ v(t) ∀t ∈ T (4.6a)

t+TC−1∑
t′=t+DT

x(t, t′) ≤ w(t) ∀t ∈ T , (4.6b)

(where again the sums are understood to be taken over valid t′) and the objective function is

cSU(t) = cSv(t) +

S−1∑
s=1

(cs − cS)

⎛⎝ t−T s∑
t′=t−T

s
+1

x(t′, t)

⎞⎠ ∀t ∈ T . (4.6c)

Let us examine constraints (4.6a) and (4.6b). Note that if v(t) and w(t) are already determined,

these equations serve to match shutdowns with startups. That is, if v(t) = 1 and w(t′) = 1, then

in any optimal solution x(t′, t) = 1 since cs − cS < 0. We arrive at this formulation by eliminating

the arcs y from EF and the arcs x(t′, t) such that t− t′ ≥ TC.

Three Binary Formulation (3-bin)

This formulation is similar in spirit to the 1-bin* formulation, only instead of using the status

variables u, we use the on/off variables v and w to keep track of the different types of startups

cSU(t) ≥ csv(t)−
s−1∑
k=1

⎛⎝(cs − ck)
T

k−1∑
i=Tk

w(t−i)

⎞⎠ ∀s ∈ S , ∀t ∈ T (4.7a)

cSU(t) ≥ 0 ∀t ∈ T . (4.7b)

Equation (4.7a) works analogously to equation (4.3a). That is, if we did not turn off in the last T
s

time periods, (4.7a) ensures that we pay at least cs for a startup in time t. Note that when s = 1,

the second term is an empty sum, and hence is 0. Equation (4.7b) ensures that the startup cost

is never negative. Note that over STI, this formulation needs the same number of constraints and

has fewer variables (only the additional |T | variables for cSU(t), which can be eliminated for STI,

while not needing the indicator variables δ). This formulation is presented to ease the comparison

between STI and the 1-bin formulations.

79

4.5 Dominance Hierarchy of Startup Cost Formulations

In this section we establish the relationships between the six formulations presented in Section 4.4.

First, we consider the relationship between the tightness of each formulation. Let zEF , zMatch, zSTI ,

z3bin, z1bin∗ , and z1bin be the linear programming relaxation values for their respective formulations.

We have the following:

Theorem 4.1.

z1bin ≤ z1bin∗ ≤ z3bin ≤ zSTI ≤ zMatch ≤ zEF ,

that is, EF is the tightest formulation, 1-bin is the weakest formulation, with the relationship above

amongst the others.

Proof. Since the EF formulation is the convex hull description, it is clear that it is the tightest

formulation, implying zMatch ≤ zEF . Furthermore, [144] shows that 1bin* is a tighter formulation

than 1bin, implying that z1bin ≤ z1bin∗ . As a result, we only need to prove the inner three

relationships. To prove these relationships, i.e. that zA ≤ zB, it is sufficient to show that there is

a linear mapping from the polytope associated with B onto the polytope associated with A that

preserves objective value and that through this linear mapping, every constraint in formulation A

is implied by constraints in formulation B. This is sufficient to show that zA ≤ zB as it shows that

all feasible solutions for B can be mapped to solutions feasible for A with the same objective value.

zSTI ≤ zMatch: We proceed by demonstrating that all the inequalities in STI are implied by

the inequalities in Match. First, consider the linear transformation from Match to STI

δs(t) =

t−T s∑
t′=t−T

s
+1

x(t′, t) ∀s ∈ S \ S, ∀t ∈ T (4.8)

δS(t) = v(t)−
t−DT∑

t′=t−TC+1

x(t′, t) ∀t ∈ T . (4.9)

The equality constraints (4.4b) follow directly from the sum of (4.8) and (4.9). To see (4.4a), notice

that by (4.6b),

x(i, t) ≤ w(i) ∀t ∈ {i+DT, . . . , i+ TC − 1}, ∀i ∈ T . (4.10)

80

By (4.8) and (4.10), we have

δs(t) ≤
t−T s∑

i=t−T
s
+1

w(i) =
T

s−1∑
i=T s

w(t−i) ∀s ∈ S \ S, ∀t ∈ T , (4.11)

which is just (4.4a).

z3bin ≤ zSTI: This follows by eliminating the indicators δ from the objective function using

(4.4a) and (4.4b). As ck ≥ cs for all k ∈ S such that k > s, we have

cSU(t) =

S∑
k=1

ckδk(t)

≥
s−1∑
k=1

ckδk(t) + cs
S∑

k=s

δk(t)

= cs
S∑

k=1

δk(t)−
s−1∑
k=1

(cs − ck)δk(t)

≥ csv(t)−
s−1∑
k=1

⎛⎝(cs − ck)

T
k−1∑

i=Tk

w(t−i)

⎞⎠ ∀s ∈ S , ∀t ∈ T , (4.12)

which is (4.7a). (4.7b) follows from the non-negativity of cs and δs(t).

z1bin∗ ≤ z3bin: (4.3b) and (4.7b) are the same, so we need show that (4.7a) implies (4.3a).

Consider the inequality (4.7a), noting v(t) ≥ u(t) − u(t−1) by (4.1k) and −w(t) ≥ −u(t−1) by

(4.1k) and (4.1l)

cSU(t) ≥ csv(t)−
s−1∑
k=1

⎛⎝(cs − ck)
T

k−1∑
i=Tk

w(t−i)

⎞⎠
≥ cs(u(t)− u(t−1))−

s−1∑
k=1

⎛⎝(cs − ck)

T
k−1∑

i=Tk

u(t− 1− i)

⎞⎠
≥ cs(u(t)− u(t−1))−

s−1∑
k=1

⎛⎝(cs − ck)

T
k∑

i=Tk+1

u(t−i)

⎞⎠
≥ cs

(
u(t)−

DT∑
i=1

u(t−i)
)
−

s−1∑
k=1

⎛⎝(cs − ck)

T
k∑

i=Tk+1

u(t−i)

⎞⎠ ∀s ∈ S , ∀t ∈ T , (4.13)

which is (4.3a).

81

Table 4.1: Size of the Formulations

Formulation # variables # constraints

1-bin O(|T |) O(|S||T |)
1-bin* O(|T |) O(|S||T |)
3-bin O(|T |) O(|S||T |)
STI O(|S||T |) O(|S||T |)

Match O((TC −DT)|T |) O(|T |)
EF O(|T |2) O(|T |)

We note that Theorem 4.1 is not demonstrating strict dominance. We only guarantee that, for

example, EF is no worse than Match in its linear programming relaxation. As we will see from the

computational experiments in Section 4.6, some of these relationship often hold with equality.

Table 4.1 compares the size as a function of the problem parameters for each startup formulation.

Note we only consider the variables needed in addition to the baseline formulation (4.1).

4.6 Computational Experiments

The dominance hierarchy for various startup cost formulations introduced in Section 4.5 establishes

their relative tightness. We quantify tightness as the optimal objective function value for the

LP relaxation of the UC problem with a given startup cost formulation. In the context of a

MILP, tighter LP relaxations can lead to more efficient branch-and-cut search, due to increased

fathoming opportunities. However, the size and structure of the underlying LP varies across startup

cost formulations, and reductions in branch-and-cut search time (measured in terms of number

of tree nodes explored) may be offset by the cost of solving the LP relaxations at each node.

Further, formulation details interact with heuristics and other features of MILP solvers, often in

unpredictable ways.

In this context, we now experimentally compare the performance of the range of startup cost

formulations for UC, using two state-of-the-art commercial MILP solvers. We consider two sets of

problem instances. The first set of instances are realistic instances derived from publicly available

market and regulatory data obtained from the CAISO system operator in the US. The second set

is the FERC generator set [84] (which itself is based on data from the PJM independent system

operator in the US), with demand, reserve, and wind scenarios based on publicly-available data

obtained from PJM for 2015 [128, 129].

82

The “CAISO” instances have 610 thermal generators, of which 410 are schedulable, i.e., not

forced to run. Generators with quadratic cost curves were approximated using Lg = 2. Five 48-hour

demand scenarios were examined; demands were taken directly from CAISO historical data. Four

of the demand scenarios are based on historical information, while “Scenario400” is a hypothetical

scenario where wind supply is on average 40% of demand; the wind profile is constructed based on

actual CAISO data, scaled appropriately. For each instance the reserve level was varied from 0%,

1%, 3%, and 5% of demand, resulting in a total of 20 test instances. We allow for the possibility

of curtailment of wind generation by (4.1b) and (4.1n). Each generator has only two startup

categories, i.e., Sg = 2.

The “FERC” instances are based on two generator sets provided by (and publicly available

from) the US Federal Energy Regulatory Commission (FERC): a “Summer” set of generators and a

“Winter” set of generators [84]. We use the Summer set of generators for dates in April - September

and the Winter set for the remaining dates. After (i) excluding generators with missing or negative

cost curves, (ii) letting UTg = DTg = 1 for generators g with missing up/down time data, and

(iii) eliminating generators marked as wind (we consider wind power separately), the Summer and

Winter sets respectively contain 978 and 934 generators. No data on startup or shutdown power

limits was provided by FERC, so we assume SUg = SDg = P g. Similarly, FERC provided no data

for cool-down times, so we set TCg = 2DTg. All generators had at most two startup types, i.e.,

Sg ≤ 2, and the piecewise production cost curves are based on market bids, such that 1 ≤ Lg ≤ 10.

For the FERC instances, we consider twelve 48-hour demand, reserve, and wind scenarios from

2015, one from each month. In 2015, wind generation accounted for 2% of the electricity supplied

in PJM, so we created twelve additional “high-wind” scenarios by multiplying the wind data for

2015 by a constant factor of 15 to increase mean wind energy supply for the year to 30% of load.

A recent study conducted for PJM suggests that in less than a decade renewables could achieve

30% penetration rates in the interconnection [57]. Like the CAISO instances, we allow for the

curtailment of wind generation.

The two test instance sets represent vastly different systems. The CAISO instances consist

of mostly small, flexible generators. Of the 410 schedulable generators, only 20 have irredundant

ramping constraints (i.e., RUg ≥ (P g − P g) and RUg ≥ (P g − P g)). Therefore, for 390 of the

generators (95% of the total), EF, together with the equations from (4.1), is a convex hull description

of each generator’s dispatch. These flexible generators account for 75% of schedulable capacity. For

83

Table 4.2: Summary of computational experiments for CAISO instances using Gurobi. For
time (s) and number of branch-and-cut (B&C) nodes we report the geometric mean across the
20 instances, including those which reach the wall-clock limit of 600 seconds.

Formulation EF Match STI 3-bin 1-bin* 1-bin

Time (s) 370.5 43.12 52.84 91.43 600 600

of times best 0 11 8 1 0 0

of times 2nd 0 8 11 1 0 0

Max. time (s) 600 130 243 600 600 600

of time outs 7 0 0 1 20 20

B&C nodes 1.510 13.50 20.22 39.09 5914 5827

Table 4.3: Summary of computational experiments for CAISO Instances using CPLEX. For
time (s) and number of branch-and-cut (B&C) nodes we report the geometric mean across the 20
instances, including those which hit the wall-clock limit of 600 seconds.

Formulation EF Match STI 3-bin 1-bin* 1-bin

Time (s) 261 48.0 40.8 62.9 600 600

of times best 0 5 11 4 0 0

of times 2nd 0 6 8 6 0 0

Max. time (s) 600 110 223 423 600 600

of time outs 2 0 0 0 20 20

of B&C nodes 3.60 2.83 4.75 32.6 15442 15210

both the Summer and Winter FERC generator sets, such flexible generators only account for 50%

of the fleet, and approximately 30% of schedulable capacity.

Computational experiments were conducted on a Dell PowerEdge T620 with two Intel Xeon E5-

2670 processors, for a total of 16 cores and 32 threads, and 256GB of RAM, running the Ubuntu

14.04.5 Linux operating system. The Gurobi 7.0.1 MILP solver was used for the experiments

labeled “Gurobi”, while the CPLEX 12.7.1.0 MILP solver was used for the experiment labeled

“CPLEX”. Both solvers were allowed to use all 32 threads in each experimental trial. Here we

present summaries of the computational experiments; the full results are available in Appendix E.

4.6.1 CAISO Instances

We first consider the experimental results for the CAISO instances. For both Gurobi and CPLEX,

we impose a wall-clock time limit of 600 seconds; all other settings were left at their defaults. In

Tables 4.2 and 4.3, we summarize the computational experiments for these instances. For each UC

formulation we report the geometric mean time to an optimal solution (Time (s)), the number of

84

instances for which that method did best (# of times best), the number of instances for which that

method did second best (# of times 2nd), the longest run time across the 20 instances (Max. time

(s)), and the number of instances for which that method hit the 600 second time limit (# of time

outs). When a solver times out for an instance, we substitute the time limit in the calculation for

the geometric mean, leading to an underestimation when an instance fails to solve for a given UC

formulation. In the last row, we report the shifted geometric mean number of branch-and-cut tree

nodes explored by the solver, substituting the number of nodes explored when the solver hits the

time limit. To compute the shifted geometric mean, we add 1 to each node count, so as to avoid

multiplying by 0 when the solver identifies a solution at the root node. A bold-faced entry in a row

denotes the startup cost variant that performed best for the given measure.

We immediately see that both of the 1-bin variants are not competitive, and in no case identify

an optimal solution within the time limit, even after exploring a considerable number of branch-and-

cut nodes. This is consistent with results reported recently in the UC literature. Gurobi identifies

optimal solutions to the EF variant in approximately half the cases, and CPLEX identifies optimal

solutions in all but two cases. However, for both solvers, the EF variant exhibits significantly larger

run times – presumably due to the size of the LP formulation – than those observed for the Match,

STI, or 3-bin variants.

Overall, 3-bin variant is not competitive with the Match and STI variants, and Gurobi times

out for one instance. Using CPLEX, the 3-bin variant is often the best or second-best, but when

it performs poorly 3-bin often takes much longer than the Match and STI variants.

Comparing the Match and STI variants, we can see that overall Gurobi performs better using

the Match variant while CPLEX performs better using the STI variant. However, for both solvers,

the Match variant has the lowest maximum time across the CAISO test instances, suggesting it

may be a more robust UC formulation in practice. Additionally, for both the Match and STI

variants, solution times generally grow with increases in reserve level; we refer to the detailed

results in Appendix E. The latter observation has significant potential impact on stochastic unit

commitment solvers, as we discuss further below in Section 4.7.

Turning to the number of branch-and-cut nodes explored, in the case of the 1-bin variants, the

large number of nodes explored is consistent with the inability of the solver to identify optimal

solutions within the specified time limit. Interestingly, Gurobi and CPLEX typically did not leave

the root node processing phase within the 600 second time limit when considering the EF variant.

Further, we note that the size of the EF formulation makes cut generation (and heuristics) at the

85

Table 4.4: Computational results for CAISO instances: Relative Integrality Gap (%), geometric
mean across 20 instances.

Formulation EF Match STI 3-bin 1-bin* 1-bin

Gap (%) 0.008 0.008 0.033 0.033 1.525 1.569

root node more difficult. In the case of the Match and STI variants, both Gurobi and CPLEX

identify an optimal solution at the root node for instances with relatively low reserve levels, with

CPLEX finding a root node solution more often. However, as reserve levels increase, the number of

nodes explored increases. Finally, we observe that the relatively few number of tree nodes explored

with the tighter Match and STI variants indicates relatively few opportunities for parallelism, at

least in terms of accelerating the tree search process.

Finally, in Table 4.4 we report the relative integrality gap for each combination of startup cost

formulation and instance. For each instance, we compute the relative integrality gap by taking the

best integer solution objective value found across all six formulations and both solvers, denoted

z∗IP , and the objective value of the LP relaxation for each instance (as computed by Gurobi after

relaxing the binary variables), denoted z∗LP ; we then report (z∗IP −z∗LP)/z
∗
IP as a percentage. First,

we observe that the results in Table 4.4 are consistent with and empirically verify the correctness of

Theorem 4.1. The 1-bin variants are significantly weaker than the other variants, with the relative

integrality gap typically exceeding 1%. We also note that in all instances, the relative integrality

gap (and hence LP relaxation) for the EF and Match variants is identical; an analogous situation

is observed for the STI and 3-bin variants. Lastly, we note that the Match formulation typically

closes 50-90% of the integrality gap relative to STI (74% in geometric mean), which explains its

computational benefit despite the additional variables required.

4.6.2 FERC Instances

Because the FERC instances are larger and therefore likely more difficult than the CAISO instances,

we increased the wall-clock time limit to 900 seconds. Further, for Gurobi we set the Method

parameter to 3 so Gurobi would use the non-deterministic concurrent optimizer to solve the root

LP relaxations. The non-deterministic concurrent optimizer solves LPs by running primal and

dual simplex on one thread each and a barrier plus crossover method on the remaining 14 threads,

returning an optimal LP basis from whichever method returns first. All other settings for Gurobi

were left at their defaults. CPLEX settings were preserved at their defaults. When describing the

86

Table 4.5: Summary of computational experiments for FERC Instances using Gurobi. For time (s)
and number of branch-and-cut (B&C) nodes we report the geometric mean across the 12 instances,
including those which hit the wall-clock limit of 900 seconds.

(a) 2% Wind Penetration

Formulation EF Match STI 3-bin 1-bin* 1-bin

Time (s) 702 154 218 267 712 739

of times best 0 6 4 2 0 0

of times 2nd 0 6 5 1 0 0

Max. time (s) 900 411 491 841 900 900

of time outs 4 0 0 0 7 7

of B&C nodes 1.00 1.38 5.91 9.03 67.5 50.8

30% Wind Penetration

Formulation EF Match STI 3-bin 1-bin* 1-bin

Time (s) 808 215 391 401 799 804

of times best 0 8 2 2 0 0

of times 2nd 2 1 6 3 0 0

Max. time (s) 900 648 900 900 900 900

of time outs 6 0 2 3 10 10

of B&C nodes 1.00 4.66 51.7 78.2 142 130

computational results below, we separate the instances into two categories: the results considering

the 2% wind penetration levels observed in 2015 and hypothetical 30% wind penetration levels

based on the same data.

In Tables 4.5 and 4.6 we summarize the computational experiments for both Gurobi and CPLEX

for the FERC instances. Tables 4.5 and 4.6 report the same statistics for the FERC instances as

Tables 4.2 and 4.3 did for the CAISO instances. First, we consider the 2% wind penetration

instances, which are reported in part (a) of both tables. We observe that the 1-bin variants and EF

are not competitive with the Match and STI variants. As was the case with the CAISO instances,

Match performs best with Gurobi, whereas STI performs better with CPLEX. CPLEX does not find

these instances difficult, solving all 12 problems using the Match and STI variant at the root node.

The 3-bin variant is occasionally the fastest method for CPLEX for a given instance, but mirroring

the CAISO instances it has a significantly inferior worse-case solve time than either Match or STI.

Next, we consider the FERC instances with 30% wind penetration levels. Here, we see that only

the Match variant able to solve all 12 instances within the time limit on both solvers. Considering

the solve time geometric mean, we observe that the Match variant reduces the solve time relative

87

Table 4.6: Summary of computational experiments for FERC Instances using CPLEX. For time (s)
and number of branch-and-cut (B&C) nodes we report the geometric mean across the 12 instances,
including those which hit the wall-clock limit of 900 seconds.

(a) 2% Wind Penetration

Formulation EF Match STI 3-bin 1-bin* 1-bin

Time (s) 478 136 114 162 499 538

of times best 0 2 5 5 0 0

of times 2nd 0 4 6 2 0 0

Max. time (s) 900 222 150 737 900 900

of time outs 1 0 0 0 4 5

of B&C nodes 1.23 1.00 1.00 7.52 356 414

30% Wind Penetration

Formulation EF Match STI 3-bin 1-bin* 1-bin

Time (s) 604 185 211 298 784 798

of times best 0 5 2 5 0 0

of times 2nd 1 3 8 0 0 0

Max. time (s) 900 269 900 900 900 900

of time outs 2 0 1 3 10 10

of B&C nodes 1.95 1.94 5.91 25.3 1171 1153

to the STI variant by 45% for Gurobi, with a more moderate reduction for CPLEX. Overall, the

30% wind penetration level instances are noticeably more difficult than the 2% wind penetration

instances. However, for Gurobi, the Match variant requires only 40% more computational time on

average to solve the former, while the STI variant requires more than 80% additional computational

time. The situation is similar for CPLEX, where the Match variant only needs 36% more

computational time on average for 30% wind instances, whereas STI variant needs 85% more

computational time.

Next, we consider the number of branch-and-cut tree nodes explored when solving each instance.

Looking at Table 4.5, we observe that for the Match variant, Gurobi typically locates an optimal

solution at the root node, or at least relatively early in the tree search process. Overall, the number

of tree nodes explored under the Match variant is significantly less than that under the STI variant;

the latter in turn dominates, as expected, the 3-bin and 1-bin variants. Mirroring the results for

CAISO instances, Gurobi does not exit root node processing on the EF variant – in all cases the

root relaxation is solved, but the time limit is exhausted applying cuts and heuristics. For both

1-bin variants, Gurobi spends a significant amount of time during root node processing generating

88

Table 4.7: Computational results for FERC instances: Relative Integrality Gap (%), geometric
mean across each of the 12 instances.

(a) 2% Wind Penetration

Formulation EF Match STI 3-bin 1-bin* 1-bin

Gap (%) 0.068 0.068 0.075 0.075 0.911 0.911

(b) 30% Wind Penetration

Formulation EF Match STI 3-bin 1-bin* 1-bin

Gap (%) 0.206 0.206 0.314 0.314 3.003 3.003

cuts, which is why for some instances a small number of nodes are explored before the time limit

expires. Consistent with the increase in relative instance difficulty, Gurobi requires more nodes

to identify an optimal solution in the case of 30% wind instances, but the increase is much less

pronounced than for the STI or 3-bin variants.

Examining the node count summaries for CPLEX in Table 4.6, we observe that using the

Match and STI variants the 2% wind instances are easy, never leaving the root node. Similar to the

experience with Gurobi, for 30% wind instances there is only a modest increase in node count for

the Match variant (only one instance does not solve at the root node), and larger but still modest

increases for STI and 3-bin variants. When it solves, the EF variant does so at the root node, and

the 1-bin variants need more enumeration, and usually hit the time limit while still exploring the

tree.

Finally, we report the relative integrality gap for each combination of instance and variant in

Table 4.7, calculated in the same manner as those reported in Table 4.4. Like the results for the

CAISO instances, we again observe empirical verification of Theorem 4.1. Further, the EF and

Match variants have identical integrality gaps, as do the STI and 3-bin variants. Unlike as was

observed for the CAISO instances, the 1-bin* variant is not significantly tighter than the 1-bin

variant, and the Match variant typically only closes 0%-40% of the root gap over STI. This result

is partially explained by the fact that approximately half of the generators are ramp-constrained

– and even in the EF case, we are not using an ideal formulation for ramp-constrained generators.

However, for the January and February 30% wind penetration level instances the difference is

significant (Match closes 95% of the root gap for January and 67% of the root gap for February over

STI, see Appendix E), which is consistent with the result that only the Match and EF variants were

able to solve these instances within the time limits on both solvers. For the 2% wind penetration

89

instances the Match variant only closes 8% of the relative integrality gap on average versus STI.

Interestingly Table 4.5 shows the Match variant is still computationally competitive for Gurobi,

but STI is able to outperform Match using CPLEX because the extra variables are not providing

much in the way of additional tightness.

4.6.3 Statistical Analysis

A statistical analysis of the computational results was performed using the Wilcoxon signed-rank

test [158] for both Gurobi and CPLEX. On Gurobi, across the entire test set (both CAISO and

FERC), Match is superior to all the other formulations examined at the α = 0.01 level. On the

other hand, using CPLEX, though Match was faster than STI and 3-bin in mean solve time, these

differences were not significant at the α = 0.05 level. Further, on the “Low Wind” instances (those

being the 2% Wind Penetration instances from FERC and the instances corresponding to historical

dates from CAISO), the STI variant is able to outperform Match at the α = 0.01 level, though the

difference in magnitude is only 16.8 seconds. Finally, we note that for the “High Wind” instances

(Scenario400 instances from CAISO and 30% Wind Penetration instances from FERC) Match is

60.4 seconds faster in mean solve time, but this difference was not significant at the α = 0.05 level.

This is likely due to this test being underpowered at n = 16. The full results of the statistical

analysis are available in Appendix E.

4.7 Discussion

We now discuss the implications of the computational experiments described above. First, we

note that both the CAISO and FERC test instances have Sg ≤ 2 for all generators g, due to the

data available. In real-world instances, a non-trivial number of generators may have Sg > 2. Our

proposed Match formulation of startup costs in UC can model more startup categories – up to TCg

– by simply changing the objective coefficients. In contrast, with the exception of EF, all other

startup cost formulations require additional variables and/or constraints.

As the experiments on the CAISO instances demonstrate, reserve requirements do have a

significant impact on the difficulty of solving UC. For instances with a 0% or 1% reserve requirement,

Gurobi is able to solve all instances using the Match formulation in under a minute. This is an

interesting observation in the context of stochastic unit commitment [149], in which reserve levels

for individual scenarios are minimal, as the scenarios themselves are intended to capture the range

90

of uncertainties that may be encountered. Further, we note that effective decomposition techniques

for solving stochastic UC problems – including progressive hedging [20] – repeatedly solve individual

(and thus deterministic) scenario problems. Thus, we expect our Match formulation to significantly

accelerate the solution of stochastic UCs.

Our experiments also demonstrate that with a modern MILP solver, commodity workstation

hardware, and tight formulations, we can quickly solve utility-scale UC problems to very small

(< 0.01%) optimality gaps. In fact, the results for the CAISO instances suggest they could be

solved to even tighter gaps than the Gurobi and CPLEX defaults, within the imposed time limit.

Reduced optimality gaps are important to guarantee market fairness, i.e., to ensure that a cheaper

generator is scheduled in place of a more expensive one. The ability to run to very small optimality

gaps is also important in the context of scenario-based decomposition approaches to stochastic UC.

Deterministic UC scenarios often have feasible solutions which are far away from optimal. Thus,

imposition of a tighter optimality gap can significantly improve convergence of algorithms such as

progressive hedging, by providing strong initial solutions of individual scenarios – which are used to

guide subsequent iterations of the algorithm. Further, the ability of progressive hedging to generate

high-quality lower bounds for stochastic UC is dependent on how tightly the scenario UC problems

are solved [20, 53].

In the context of stochastic UC – where renewable energy supply is the main driver of uncertainty

– it is interesting to note that for both systems the high-wind scenarios (“Scenario400” for CAISO

and the 30% wind penetration instances for FERC) are significantly more difficult, independent

of startup formulation. However, these instances are also where our proposed Match formulation

shows the most improvement over STI. Across all 16 high-wind scenarios, using Gurobi the Match

variant exhibited a >44% improvement in geometric mean solve time, with a more modest >15%

improvement using CPLEX, and a 57% improvement in geometric mean relative integrality gap.

In comparison, on the other 28 instances, using Gurobi the Match variant only showed a 20%

improvement in geometric mean solve time, with a 20% degradation using CPLEX, and a 50%

geometric mean relative integrality gap closure over STI. This is not surprising, given that more

variability in net-load implies there will be more switches in generator status.

Finally, we comment on the “synthetic” UC instances from [17], which are extended via

replication in [119] and again in [110]. These originate from a now dated genetic algorithm UC

paper [79], which has no indication that these were drawn from real-world data. Compared to the

generator sets gathered from CAISO and FERC, these instances have much less flexible capacity

91

(less than 10% in all cases), which implies that the ramping process is a much bigger factor in

adjusting to changes in demand than generator switching. Additionally, the replication of the

same 8 or 10 generators induces artificial symmetry into the problem, which can confound the

branch-and-cut process. Though modern commercial MILP solvers have sophisticated symmetry

detection, they do not capture all the symmetry in UC [120]. These factors together imply that

the synthetic instances are less likely to be impacted by improvements in startup cost formulations.

Based on the instances in [119], we created twenty 48-hour unit commitment problems, and tested

the six startup cost formulations on the platform described in Section 4.6 using Gurobi. After 1800

seconds of wall-clock time, the Match, STI, and 3-bin variants were able to solve only 6 of the 20

instances, the EF variant was able to solve 2 of the 20 instances, and the 1-bin variants only 1 of

the 20 instances. In geometric mean Match was only able to close 5% of the relative integrality gap

over STI. The confounding symmetry and inflexibility in these instances makes it difficult to draw

a distinction between the Match, STI, and 3-bin variants, though they all out-perform the 1-bin,

1-bin*, and EF variants.

4.8 Conclusions

We have presented a novel matching formulation for time-dependent startup costs in UC, and an

additional compact formulation for time-dependent startup costs as an intermediary between the

STI and the 1-bin formulations. We have formally placed these two new formulations, in addition to

existing alternatives, in a formal dominance hierarchy based on the corresponding LP relaxations.

We examined the computational efficacy of the various alternative formulations for time-dependent

startup costs on large-scale unit commitment instances based on real-world data from the PJM and

CAISO independent system operators in the US using two commercial MILP solvers. We find that

the proposed matching formulation is computationally as effective on average than the current state-

of-the-art formulation, and is computationally more effective for high-wind penetration scenarios.

Additionally, we empirically demonstrated that the proposed matching formulation is as tight as

the ideal formulation while being more compact.

92

Chapter 5

Exploiting Identical Generators in

Unit Commitment

This chapter and Appendices F and G are based on a manuscript prepared for publication by Ben

Knueven, Jim Ostrowski, and Jean-Paul Watson:

Knueven, B., Ostrowski, J., and Watson, J. P. (2017). Exploiting Identical Generators

in Unit Commitment. Submitted.

Author Knueven proposed the exact aggregation approach. Authors Knueven and Ostrowski

developed the theoretical results. Authors Knueven and Watson programmed the computational

experiments; author Knueven performed all computational experiments and data analysis. Author

Knueven wrote the initial draft of the manuscript; authors Ostrowski and Waston revised and edited

the manuscript. A preprint of this paper is available at http://www.optimization-online.org/

DB_FILE/2017/06/6112.pdf.

This chapter presents sufficient conditions under which thermal generators can be aggregated

in mixed-integer linear programming (MILP) formulations of the unit commitment (UC) problem,

while maintaining feasibility and optimality for the original disaggregated problem. Aggregating

thermal generators with identical characteristics (e.g., minimum/maximum power output, minimum

up/down-time, and cost curves) into a single unit reduces redundancy in the search space caused

by both exact symmetry (permutations of generator schedules) and certain classes of mutually non-

dominated solutions. We study the impact of aggregation on two large-scale UC instances, one from

the academic literature and another based on real-world data. Our computational tests demonstrate

that when present, identical generators can negatively affect the performance of modern MILP

93

solvers on UC formulations. Further, we show that our reformation of the UC MILP through

aggregation is an effective method for mitigating this source of difficulty.

5.1 Nomenclature

5.1.1 Indices and Sets

g ∈ G Thermal generators.

t ∈ T Hourly time steps: 1, . . . ,T.

[t, t′) ∈ Yg Feasible intervals of operation for generator g with respect to its minimum uptime,

that is, [t, t′) ∈ T × T such that t′ ≥ t+UTg.

5.1.2 Parameters

Dt Load (demand) at time t (MW).

DTg Minimum down time for generator g (h).

P
g

Maximum power output for generator g (MW).

Pg Minimum power output for generator g (MW).

RDg Ramp-down rate for generator g (MW/h).

RUg Ramp-up rate for generator g (MW/h).

SDg Shutdown ramp rate for generator g (MW/h).

SUg Startup ramp rate for generator g (MW/h).

TCg Time down after which generator g goes cold (h).

UTg Minimum up time for generator g (h).

5.1.3 Variables

pgt Power above minimum for generator g at time t (MW).

ugt Commitment status of generator g at time t, ∈ {0, 1}.
vgt Startup status of generator g at time t, ∈ {0, 1}.
wg
t Shutdown status of generator g at time t, ∈ {0, 1}.

yg[t,t′) Indicator arc for startup at time t, shutdown at time t′, committed for i ∈ [t, t′),

for generator g, ∈ {0, 1}, [t, t′) ∈ Yg.

94

5.2 Introduction

Unit commitment (UC) is a core optimization problem in power systems operations, in which the

objective is to determine an on/off schedule for thermal generating units that minimizes production

costs while satisfying constraints related to generator performance characteristics and power flow

physics [160]. UC is now widely modeled as a mixed-integer linear program (MILP) and solved using

commercial branch-and-cut technologies, e.g., those available in the Gurobi [66] and CPLEX [69]

software packages. Due to its criticality, significant research has been dedicated over the past

15 years toward improving the quality of MILP formulations of UC, specifically focusing on the

strength of the associated LP relaxation – as this is strongly correlated with computational difficulty.

Recent examples of the progress in state-of-the-art of UC formulations are reported in [119, 110,

58, 109] and Chapter 3.

Most of the UC research to date has focused on the analysis of generator ramping and startup

cost polytopes. An alternative and orthogonal approach, however, considers the impact of symmetry

in the UC MILP model induced by the presence of multiple generators with identical physical

performance characteristics and other properties. Here, we consider two generators to be identical

if they have identical performance parameters and cost coefficients. We will show that initial

status can be ignored for our purposes. As we discuss subsequently, such identical generators are

found in both academic UC instances and those based on real-world data. Further, developing

an understanding of exact symmetry is a necessary first step toward developing formulations that

consider partial symmetry, which is more pervasive in practice.

Aggregating thermal generators with identical characteristics into a single unit reduces

redundancy in the search space caused by both exact symmetry (permutations of generator

schedules) and certain classes of mutually non-dominated solutions – both of which can cause

performance issues when commercial MILP solvers are employed to solve UC [120, 87]. Further,

degeneracy in the solution space induced by symmetry is known to cause convergence difficulties

for decomposition-based solvers for stochastic UC, e.g., see [19].

In the context of exact MILP-based solution methods for UC, one approach to addressing

identical generator symmetry is through the introduction of advanced branching strategies when

exploring the branch-and-bound search tree. For example, [120] introduces “modified orbital

branching,” which strengthens orbital branching for cases when a problem’s symmetry group

contains additional structure, as is the case with UC [123]. While such an approach has promise, its

95

implementation is non-trivial and their are issues in practice. Further, when using CPLEX callbacks

many of the solver’s advanced features are disabled, which can result in slower solve times overall.

Further, the approach is not possible to implement in Gurobi as the callback interface does not

allow the user to access or decide on a branching variable [66].

Another approach to addressing the presence of symmetry in UCMILP formulations involves the

introduction of symmetry-breaking inequalities. For example, [87] adds static symmetry-breaking

inequalities to a UC MILP formulation. Their approach eliminates some, but not all of, of the

redundancy in the branch-and-bound tree induced by symmetry, leading to faster computational

times overall for highly symmetric instances. However, symmetry-breaking inequalities have the

disadvantage that they increase the size of the LP relaxation. We compare their inequalities to the

method proposed in this chapter in Appendix G.

In this chapter we propose addressing identical generators in UC MILP formulations through

a novel aggregation approach. While this idea is certainly not new (e.g., see [141, 54, 143, 124]),

we introduce conditions under which such an aggregation can be done exactly – that is, after

simple post-processing we have a provably optimal solution to the original disaggregated problem.

Our results are a consequence of recent advances in convex hull formulations for commitment

of a single generator, see [94, 86, 133, 58] and Chapter 3. We provide conditions under which

“orbital shrinking” [41] can be performed exactly for UC. Finally, we show that our approach can

significantly reduce the solve times required for large-scale UC instances, considering a state-of-

the-art UC MILP formulation.

The remainder of this chapter is organized as follows. In Section 5.3 we review the UC

problem, and demonstrate how naive aggregation can result in an infeasible solution to the

original disaggregated UC problem. Section 5.4 explores sufficient conditions for feasible and

optimal disaggregation and introduces simple algorithms for disaggregation. These base results

are expanded for more cases in Appendix F. Section 5.5 considers how the presence of multiple

identical generators can result in symmetric and non-symmetric solutions with the same objective

function value, and how aggregation models can express these solutions concurrently. In Section 5.6

we present computational results for two sets of large-scale UC instances, one from the academic

literature and another based on real-world data. We then conclude in Section 5.7 with a summary

of our contributions.

96

5.3 Unit Commitment Formulation

UC MILP formulations reported in the literature are typically expressed in the general form

min
∑
g∈G

cg(pg) (5.1a)

subject to

∑
g∈G

pgt = Dt ∀t ∈ T (5.1b)

pg ∈ Πg ∀g ∈ G (5.1c)

where cg(pg) denotes the costs associated with thermal generator g producing a (vector) output

of pg over the scheduling horizon and Πg denotes the set of feasible schedules for generator g.

When it is clear from context that we are referencing a single generator, we drop the superscript g

on parameters and variables. A significant portion of the UC literature focuses on how to model

the feasible sets Πg, where there is a trade-off between the model size versus the tightness of the

formulation.

For the purposes of exposition we will focus on the simplified version of UC above, but in

Appendix F we go into more detail, including spinning reserves, piecewise linear operating costs,

and time-dependent startup costs.

The ability to aggregate identical generators is dependent on which UC MILP formulation is

considered. For instance, consider the basic “3-bin” formulation for a generator [17, 119]:

Put ≤ pt ≤ Put, ∀t ∈ T (5.2a)

pt − pt−1 ≤ RUut−1 + SUvt, ∀t ∈ T (5.2b)

pt−1 − pt ≤ RDut + SDwt, ∀t ∈ T (5.2c)

ut − ut−1 = vt − wt, ∀t ∈ T (5.2d)

t∑
i=t−UT+1

vi ≤ ut, ∀t ∈ [UT,T] (5.2e)

t∑
i=t−DT+1

wi ≤ 1− ut, ∀t ∈ [DT,T] (5.2f)

97

pt ∈ R+, ut, vt, wt ∈ {0, 1} ∀t ∈ T (5.2g)

where Constraints (5.2a) enforce minimum / maximum generator output, Constraints (5.2b, 5.2c)

enforce ramping limits, Constraints (5.2d) enforce logical constraints on u, v, and w, and Constraints

(5.2e, 5.2f) enforce minimum up / down times.

Consider the case of two generators with identical performance and cost parameters. We can

always model this situation by treating each generator individually. However, it would be desirable

if we could aggregate the generators to exploit the symmetric structure. Unfortunately, the above

model does not present a straightforward way to accomplish this. Consider a 5 time period case

where two generators each have P = SU = SD = 100, P = 200, and RU = RD = 50. Ideally,

we would prefer to let the u, v, and w variables represent how many of the generators remain on,

are turned on, and are turned off at a given time. Suppose, then, that we use formulation (5.2)

but allow ut, vt, and wt variables to take values in {0, 1, 2}. Then, consider the following feasible

solution to this simple aggregated UC model:

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2

2

2

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

200

300

400

300

200

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.3)

The solution to the aggregated model is clearly not feasible in the disaggregated model, as both

generators must produce at full capacity in time period 3, but the generator that started up at

time 2 cannot ramp to full capacity by time period 3. The problem with this naive aggregated

formulation is that when one generator is operating at full capacity, the other is able to “steal”

its ramping capability. Unfortunately, tighter descriptions in the 3-bin space do not overcome this

problem. Hence a necessary condition for exact aggregation of the 3-bin model is for the generators

to have redundant ramping constraints.

Some UC MILP formulations do allow for variable aggregation without violating the structure

of the base problem. For example, consider the formulation

A[a,b)p[a,b) ≤ b[a,b)y[a,b) ∀[a, b) ∈ Y (5.4a)

98

∑
[a,b)∈Y

p
[a,b)
t = pt ∀t ∈ T (5.4b)

∑
{[a,b)∈Y |t∈[a,b+DT)}

y[a,b) ≤ 1 ∀t ∈ T (5.4c)

y[a,b) ∈ {0, 1} ∀[a, b) ∈ Y , (5.4d)

where the polytope P [a,b) = {p[a,b) ∈ R
T
+ | A[a,b)p[a,b) ≤ b[a,b)} describes the feasible production

of the generator if it is turned on at time a, turned off at time b, and consistently on during the

interval [a, b). Constraints (5.4a) enforce the appropriate ramping and minimum/maximum power

output given that the generator is on during the [a, b) time interval. Constraints (5.4c) ensure that

minimum up and downtime constraints are met. While the above formulation is large (it contains

O(|T |3) many variables and constraints), it is provably tight (see Chapter 3). In particular, so long

as the dispatch of the generator operating in the interval [a, b) can be described as a polytope, this

formulation is integer in y. We will see this is also a sufficient condition for exact aggregation using

this extended formulation.

As observed in Chapter 3, Constraints (5.4c) correspond to clique inequalities for an interval

graph. Because interval graphs are totally unimodular [62], it follows that the matrix given by

Constraints (5.4c) is totally unimodular, and thus has the integer decomposition property [9].

Therefore, we can model k-many identical generators by letting the Y variables be general integers

in the range [0, k] and rewriting Constraints (5.4c) as

∑
{[a,b)∈Y |t∈[a,b+DT)}

Y[a,b) ≤ k ∀t ∈ T . (5.5)

In this context, Y[a,b) represents how many of the generators are on during the interval [a, b).1

Because there are separate power variables for each on-interval [a, b), this formulation overcomes

the problems seen in (5.3).

Note that the size of the above formulation is heavily dependent on generator minimum up

and down times. For generators with small minimum up and down times, the above formulation is

very large, so much so that the benefits of a tight model are outweighed by model size. However,

for generators with moderate minimum up and downtimes (say 8 hours), the above model is quite

tractable.

1We use capital letters to represent aggregated variables.

99

Given that we see many generators with small minimum up and downtimes (say 2 hours each),

it is worthwhile to ask when the 3-bin model is decomposable. As the example in (5.3) suggests,

the problem is with the ramping. Consider the traditional 3-bin formulation for generators with

redundant ramping constraints, when UT ≥ 2 [110]:

Put ≤ pt, ∀t ∈ T (5.6a)

pt ≤ Put + (SU−P)vt + (SD−P)wt+1 ∀t ∈ T (5.6b)

ut − ut−1 = vt − wt ∀t ∈ T (5.6c)

t∑
i=t−UT+1

vi ≤ ut ∀t ∈ [UT,T] (5.6d)

t∑
i=t−DT+1

wi ≤ 1− ut ∀t ∈ [DT,T] (5.6e)

pt ∈ R+, ut, vt, wt ∈ {0, 1} ∀t ∈ T . (5.6f)

This formulation has the property that the constraint matrix defined by (5.6c, 5.6d, 5.6e) is totally

unimodular [94], and so it too has the integer decomposition property [9]. We discuss the case

when UT = 1 in Appendix F for clarity of exposition here.

In any case, the total unimodularity of Constraints (5.4c) and (5.6c, 5.6d, 5.6e) only ensure

that the on-off schedules can be decomposed, and tell us nothing about whether (and if so, how)

the aggregated power output can be disaggregated into a feasible production schedule for each

generator in the aggregation. In the following section we explore these issues.

5.4 Disaggregating Solutions

While the results from [9] give conditions for when a UC schedule can be decomposed, it does

not suggest a constructive approach to performing the decomposition. We now outline how to

decompose solutions to the aggregate UC formulation into individual generator schedules. We first

provide theorems regarding the relationship between schedules and the power output of identical

generators.

Theorem 5.1. Consider identical generators g1, g2 ∈ G, and assume their production costs are

increasing and convex. Then there exists an optimal solution with pg1t = pg2t or (inclusive) one of

100

the nominal or startup/shutdown ramping constraints is binding for generator g1 or g2 for all times

t for which they are both on.

Proof. By contradiction, consider an optimal schedule in which pg1t > pg2t and with no binding

nominal or startup/shutdown ramping constraints at time t. Then, we may decrease pg1t by epsilon

and increase pg2t by epsilon without affecting feasibility. Furthermore, because production costs are

increasing and convex, this new solution is no worse than the original.

From Theorem 5.1, if two identical generators start up at time a and shut down at time b, then

their power outputs in the interval [a, b) are identical. Theorem 5.1 also applies to fast-ramping

generators, i.e., generators that are not ramp-limited, as the lack of ramping constraints ensures if

two identical generators are on in a given time period, then they must have the same power output.

This result suggests that allowing u to be a general integer is also sufficient. The only exception to

this rule is when there is a binding startup/shutdown rate.

Theorem 5.2. Suppose generator g1 is turned off at time t. If identical generator g2 can also be

turned off at time t, there exists an optimal solution where the generator that has been on for the

least amount of time is turned off.

Proof. Suppose identical g1, g2 ∈ G have been on at time t for at least UT(= UTg1 = UTg2)

time periods, starting at time t0, and that generator g1 has been on longer. If generator g1 is

turned off at time t, then there exists a t′ with t0 ≤ t′ ≤ t such that pg2t′−1 ≤ pg1t′−1 and pg1t′ < pg2t′ .

Notice that permuting g1 and g2 for all t ≥ t′ does not affect the objective value, and does not

change the power output. Finally, the permuted solution satisfies the ramping constraints since

pg1t′ −pg2t′−1 < pg2t′ −pg2t′−1 and pg2t′ −pg1t′−1 ≤ pg2t′ −pg2t′−1, satisfying ramp up, and pg1t′−1−pg2t′ < pg1t′−1−pg1t′

and pg2t′−1 − pg1t′ ≤ pg1t′−1 − pg1t′ , satisfying ramp down.

Theorem 5.3. Suppose generator g1 is turned on at time t. If an identical generator g2 can also be

turned on at time t, and there are no time-dependent startup costs for g1 and g2, then there exists

an optimal solution where g2 is turned on at t.

Proof. Suppose identical g1, g2 ∈ G at time t have been off for at least DT(= DTg1 = DTg2) time

periods. Then for all t′ ∈ T such that t′ ≥ t, we can permute the schedules for g1 and g2 without

changing the objective value or the power output, in which case g2 is turned on at time t.

101

Theorems 5.2 and 5.3 illustrate how we can interchange parts of a UC schedule that involve

identical generators, and not lose optimality. We explore this issue further in Section 5.5. The

implications of the above theorems also provide some strong direction for the characteristics a

disaggregation method for aggregated UC schedules that maintains both feasibility and optimality.

Before formalizing this procedure, we first introduce some additional notation. Suppose K ⊂ G
such that all generators in K have identical properties, except for initial status. We again use

capital letters to represent aggregated variables, and the superscript K to represent the parameters

shared among the generators (e.g., DTK = DTg, SDK = SDg, etc., for g ∈ K). In this context,

we now illustrate how to decompose schedules for both the extended formulation and the 3-bin

formulation for fast-ramping generators.

5.4.1 Extended Formulation (EF)

Let Y =
∑

g∈K yg, P =
∑

g∈K pg, and P [a,b) =
∑

g∈K pg,[a,b) ∀[a, b) ∈ YK. Consider the aggregated

extended formulation for the generators in K:

A[a,b)P [a,b) ≤ b[a,b)Y[a,b) ∀[a, b) ∈ YK (5.7a)∑
[a,b)∈YK

P
[a,b)
t = Pt ∀t ∈ T (5.7b)

∑
{[a,b)∈YK|t∈[a,b+DT)}

Y[a,b) ≤ |K| ∀t ∈ T (5.7c)

Y[a,b) ∈ {0, . . . , |K|} ∀[a, b) ∈ YK. (5.7d)

Algorithm 5.1 demonstrates how to construct feasible schedules given a solution (Y ∗, P ∗) to (5.7),

by “peeling-off” a feasible solution (yg, pg) for generator g and leaving behind a feasible solution

(Ŷ , P̂) to (5.7) for K \ {g}. The essential logic of the method is to always take feasible startups

when available (line 10), thus ensuring the remaining aggregated solution is feasible. Theorem 5.3

ensures optimality of this approach. Additionally, Theorem 5.1 allows us to assign to each generator

on during an interval [a, b) the average of the power output across all generators on during interval

[a, b) (line 9) while maintaining optimality and feasibility.

Note that having different initial conditions is not an issue as long as we extend YK back to

include intervals when the generators in K last started or last ran (adding duplicate intervals if

necessary for two generators that started at the same time period but have different outputs at

102

Algorithm 5.1 (Peel Off EF) Constructs feasible generator schedules from a solution of (5.7).

Initialize all yg, pg,[a,b) to 0.

Initialize all Ŷ to Y ∗, P̂ [a,b) to P ∗[a,b) respectively.
t← min{i | Y ∗

[i,j) ≥ 1}
while t ≤ T do

5: t′ ← min{j | Y ∗
[t,j) ≥ 1}

yg[t,t′) ← 1; Ŷ[t,t′) ← Y ∗
[t,t′) − 1;

for i ∈ [t, t′) ∩ T do

p
g,[t,t′)
i ← P

∗[t,t′)
i /Y ∗

[t,t′)

P̂
[t,t′)
i ← P

∗[t,t′)
i − p

g,[t,t′)
i

10: t← min{i ≥ t′ +DT | Y ∗
[i,j) ≥ 1}

P̂t ←
∑

[a,b)∈Y P̂
[a,b)
t , ∀t ∈ T

pgt ←
∑

[a,b)∈Y p
g,[a,b)
t , ∀t ∈ T

t = 0). As long as P [a,b) is a polytope, we can always do the disaggregation step for power on

lines 8 and 9. Hence P [a,b) begin as polytope is a sufficient condition for exact aggregation of the

extended formulation. Ancillary services can be handled in a similar fashion; see Appendix F for

more details.

5.4.2 3-Bin for Fast-Ramping

Let U =
∑

g∈K ug, V =
∑

g∈K vg, and W =
∑

g∈K wg. We will first consider the aggregated 3-bin

model for commitment status:

Ut − Ut−1 = Vt −Wt ∀t ∈ T (5.8a)

t∑
i=t−UT+1

Vi ≤ Ut ∀t ∈ [UTK,T] (5.8b)

t∑
i=t−DT+1

Wi ≤ |K| − Ut ∀t ∈ [DTK,T] (5.8c)

Ut, Vt,Wt ∈ {0, . . . , |K|} ∀t ∈ T (5.8d)

Algorithm 5.2 demonstrates how to disaggregate a solution (U∗, V ∗,W ∗) to (5.8) by constructing

a feasible 3-bin schedule for a generator g and leaving a feasible solution (Û , V̂ , Ŵ) to (5.8) after

g is removed from K. Similar to Algorithm 5.1, it essentially takes shutdowns whenever possible

when on (lines 7 – 11) and startups whenever possible when off (lines 12 – 14). Thus, the schedule

103

is clearly feasible for g, and taking startups/shutdowns whenever possible ensures (5.8) remains

feasible for K \ {g} (and so all the integer bounds decrease by 1), and as before, Theorems 5.2

and 5.3 establish optimality.

Algorithm 5.2 (Peel Off 3-bin) Constructs feasible generator schedules from a solution of (5.8).

Initialize all ug, vg, wg to 0.

Initialize all Û , V̂ , Ŵ to U∗, V ∗, W ∗ respectively.

if U∗
1 ≥ 1 then

ug1 ← 1; Û1 ← U∗
1 − 1;

5: t← 2

while t ≤ T do

if ugt−1 = 1 then

if
∑t−1

i=t−UTK+1
vi = 0 and W ∗

t ≥ 1 then

wg
t ← 1; Ŵt ←W ∗

t − 1;

10: else

ut ← 1; Ût ← U∗
t − 1;

else 	 ut−1 = 0

if
∑t−1

i=t−DTK+1
wi = 0 and V ∗

t ≥ 1 then

ut, vt ← 1; Ût ← U∗
t − 1; V̂t ← V ∗

t − 1;

15: t← t+ 1;

Note that historical data can be leveraged after the first time period. If the generator is on at

t = 1, then we can arbitrarily assign it a historical startup vt. Similarly, if the generator is off at

t = 1, we can assign a historical shutdown wt. Because ramping constraints are not active, initial

conditions can be arbitrarily assigned based on whether the generator is on or not. We expand this

result and provide a proof of correctness – including the case with time-dependent startup costs –

in Appendix F.

Consider the power output for an aggregated set of identical fast-ramping generators. Along

with (5.8), we have the aggregated power P =
∑

g∈K pg with the constraints for UTK ≥ 2:

PKUt ≤ Pt ∀t ∈ T (5.9a)

Pt ≤ P
K
Ut + (SUK −P

K
)Vt + (SDK −P

K
)Wt+1, ∀t ∈ T . (5.9b)

Because (5.9) is a sum of constraints, it is clearly valid. Further, using the result from Algorithm 5.2

along with Theorem 5.1, we can construct a feasible and optimal disaggregation for power output.

For simplicity suppose SUK = SDK; we handle the remaining two cases in Appendix F. If ugt = 1,

104

vgt = 0, and wg
t+1 = 0 then

pgt =
P ∗
t −min{SUK, P ∗

t /U
∗
t } · V ∗

t −min{SDK, P ∗
t /U

∗
t } ·W ∗

t+1

U∗
t − V ∗

t −W ∗
t+1

. (5.10)

If the generator is just starting up such that vgt = 1, then pgt = min{SUK, P ∗
t /U

∗
t }, and similarly

if shutting down (wg
t+1 = 1), then pgt = min{SDK, P ∗

t /U
∗
t }. If ugt = 0 then pgt = 0. Spinning

reserves and piecewise linear costs can be disaggregated in a similar fashion, as can generators with

UTK = 1; see Appendix F for details.

Taken together then, we see that for a generators whose dispatch can be described using (5.6) (or

the modified version thereof whenUT = 1), for exact aggregation it is sufficient to just consider this

formulation with the u, v, and w variables being allowed to take on general integers, as described

by equations (5.8) and (5.9). We also note that ancillary services, like reserves, can be handled in

a similar fashion, so long as total power available for generation plus other services is describable

by (5.6).

5.5 The Potential Impact and Benefit of Aggregation

Aggregating identical generators provides a way of efficiently exploiting the presence of symmetry

in UC, leading to several computational advantages. First, UC instances with large numbers of

identical generators may have alternative optimal solutions. Consider the case where two identical

generators in a UC instance have different schedules. Permuting these schedules will lead to different

solutions in a disaggregated UC model. If there are k generators of the same type, then there

may be as many as k! different optimal solutions. While a variety of methods can be used to

combat the effects of symmetry in MILP models, these generally rely on symmetry-breaking cuts

or clever branching, and experience has shown that explicitly aggregating symmetry away is the

most successful way of exploiting symmetry – when possible.

We additionally observe that aggregate UC solutions may encode more than just symmetric

solutions found by permuting generator schedules. For example, consider the U variables defined

in formulation (5.3), and assume generators are not ramp-constrained. Assuming UTK ≤ 3, there

are two ways to feasibly disaggregate the on/off solution. The first is

105

ug1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

1

1

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ug2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

1

1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.11)

and the other is:

ug1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

1

1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ug2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

1

1

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.12)

These solutions are not symmetric, but they do have identical objective function values. As is

the case with symmetric solutions, such mutually non-dominating solutions may lead to more

tree exploration in the branch-and-cut process. Aggregation allows us to consider these solutions

simultaneously.

Now, we further illustrate the disaggregation process. When UTK ≤ 3, Algorithm 5.2

decomposes the aggregate solution to formulation (5.3) – again assuming redundant ramping limits

– to (5.11). Then, by (5.10) the power output associated with solution (5.11) is given as

pg1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

200

200

200

200

200

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, pg2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

100

200

100

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.13)

106

On the other hand, if UTK > 3, then Algorithm 5.2 with equation (5.10) yields

pg1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

200

200

200

100

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, pg2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

100

200

200

200

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.14)

Finally, we discuss the impact of aggregation on market fairness. In practice, generation

capacity is often not utility-owned. Algorithms 5.1 and 5.2 greedily schedule each generator, such

that a generator disaggregated first may have a very different schedule than the last generator

disaggregated. One possible way to address this problem is to randomly permute the order

generators are disaggregated in, so that in the long run (over many days and hence many UC

solves), no generator is preferred over another.

Further, the main purpose of Algorithms 5.1 and 5.2 is to demonstrate that under certain

conditions, a feasible disaggregation always exists, and can be found in polynomial time. A

practitioner could use other methods to disaggregate identical generators. For example, an auxiliary

MILP could be formulated to solve the disaggregation problem with whatever objective function

is desirable. One such objective function is to minimize the difference in run-time between the

symmetric generators; another possibility is to minimize the difference in economic profit between

the symmetric generators. In this way, aggregation could be exploited to make electricity markets

fairer than the current practice of allowing the MILP solver to break these ties arbitrarily.

5.6 Computational Experiments

To test the effectiveness of our aggregation approach, we selected two unit commitment test sets

from the literature. The first, described further in Chapter 4, is based on real-world data gathered

from the California Independent System Operator (CAISO). Each of the twenty instances share

a set of 610 thermal generators. We consider five 48-hour demand scenarios, crossed with static

spinning reserve requirements that varied between 0%, 1%, 3%, and 5% of system demand. The

scenarios labeled with dates correspond to real-world load profiles from the corresponding calendar

date. In contrast, “Scenario400” is a hypothetical scenario where wind supply is on average 40% of

demand (we use a “net-load” formulation for wind supply). We approximated the quadratic cost

107

Table 5.1: Ostrowski Instances: Generator Performance Data

Gen P P UT(DT) SU(SD) RU(RD) TC
(MW) (MW) (h) (MW/h) (MW/h) (h)

1 455 150 8 150 225 14
2 455 150 8 150 225 14
3 130 20 5 20 50 10
4 130 20 5 20 50 10
5 162 25 6 25 60 11
6 80 20 3 20 60 8
7 85 25 3 25 60 6
8 55 10 1 20 135 2

curves provided with two piecewise segments. Each thermal generator has two startup categories.

We refer to these instances as “CAISO” instances.

The other UC test set is taken from [119]. The instances in this test case – which we refer to as

the “Ostrowski” instances – are constructed by replicating the thermal generators in UC instances

originally introduced in [79] and [17]. These generators have been used as a baseline to create

large UC instances through replication in much of the UC literature [12, 13, 45, 50, 47, 51, 70, 110,

162, 161, 40]. The parameters and cost curves used for the eight base generators are provided in

Tables 5.1 and 5.2. In Table 5.2, a, b, and c denote the coefficients of the quadratic cost function

such that cp(pt) = a2pt + bpt + c; cH and cC respectively denote the hot- and cold-startup costs.

The number of copies of each generator type in each of the twenty instances is specified in Table 5.3.

The number of thermal generators in the Ostrowski instances ranges from 28 to 187. The demand

curve for each instance is given as a percentage of total system capacity, as reported in Table 5.4,

and for each instance the reserve level was fixed to 3% of system demand. We use a two segment

piecewise approximation for production costs. In contrast to the CAISO instances, the Ostrowski

instances consider only a 24 hour scheduling horizon.

We consider the base UC MILP formulation described in Chapter 4, which represents the state-

of-the-art. The performance of our aggregation approach is analyzed relative to this baseline.

All computational experiments were conducted on a Dell PowerEdge T620 server with two

Intel Xeon E5-2670 processors, for a total of 16 cores, 32 threads, and 256GB of RAM, running

the Ubuntu 14.04.5 Linux operating system. The Gurobi 7.0.1 MILP solver [66] was used in all

experiments, and the solver was allowed to use all 32 threads in each experimental trial.

108

Table 5.2: Ostrowski Instances: Generator Cost Data

Gen c b a cH cC

($) ($/MW) ($/MW2) ($) ($)

1 1000 16.19 0.00048 4500 9000
2 970 17.26 0.00031 5000 10000
3 700 16.60 0.00200 550 1100
4 680 16.50 0.00211 560 1120
5 450 19.70 0.00398 900 1800
6 370 22.26 0.00712 170 340
7 480 27.74 0.00079 260 520
8 660 25.92 0.00413 30 60

Table 5.3: Ostrowski Instances: Number of Generators of Each Type

Generator Total
Problem 1 2 3 4 5 6 7 8 Gens

1 12 11 0 0 1 4 0 0 28
2 13 15 2 0 4 0 0 1 35
3 15 13 2 6 3 1 1 3 44
4 15 11 0 1 4 5 6 3 45
5 15 13 3 7 5 3 2 1 49
6 10 10 2 5 7 5 6 5 50
7 17 16 1 3 1 7 2 4 51
8 17 10 6 5 2 1 3 7 51
9 12 17 4 7 5 2 0 5 52
10 13 12 5 7 2 5 4 6 54
11 46 45 8 0 5 0 12 16 132
12 40 54 14 8 3 15 9 13 156
13 50 41 19 11 4 4 12 15 156
14 51 58 17 19 16 1 2 1 165
15 43 46 17 15 13 15 6 12 167
16 50 59 8 15 1 18 4 17 172
17 53 50 17 15 16 5 14 12 182
18 45 57 19 7 19 19 5 11 182
19 58 50 15 7 16 18 7 12 183
20 55 48 18 5 18 17 15 11 187

5.6.1 CAISO Instances

Of the total 610 thermal generators in the CAISO instances, there is no symmetry among the 36

slow-ramping generators, but the 574 fast-ramping generators do have some non-trivial symmetry.

Aggregation allows us to reduce these 574 fast-ramping generators to 429 aggregated generators,

109

Table 5.4: Ostrowski Instances: Demand (% of Total Capacity)

Time 1 2 3 4 5 6 7 8 9 10 11 12
Demand 71% 65% 62% 60% 58% 58% 60% 64% 73% 80% 82% 83%

Time 13 14 15 16 17 18 19 20 21 22 23 24
Demand 82% 80% 79% 79% 83% 91% 90% 88% 85% 84% 79% 74%

Table 5.5: CAISO: Selected Generator Performance Characteristics

Number P P c b a cC cH

Identical (MW) (MW) $*103 ($/MW)*103 ($/MW2)*103 $*103 $*103

8 106.3 47.835 2.19187 0.02498 0.0000581 3.189 4.252
7 3.1 0.93 0.00662 0.03977 0 0.093 0.124
6 1.4 0.35 0.00662 0.04452 0 0.07 0.098
5 100 45 2.06698 0.02498 0.0000593 3.0 4.0
5 3.5 1.05 0.00415 0.04206 0 0.0105 0.14
4 180 81 3.59086 0.02402 0.0000297 5.4 7.2
4 75 74.25 0.13711 0.02726 0 2.25 3.00
4 70 53.9 0.21868 0.02493 0.0000148 2.1 2.8
4 49.9 22.455 1.09041 0.02568 0.0000636 1.497 1.996
4 49.5 22.275 1.05231 0.02497 0.0000611 1.485 1.98
4 12.2 3.05 0.04126 0.04326 0 0.61 0.854
4 11.2 5.04 0.24371 0.0295 0.0000496 0.336 0.448
4 11 4.95 0.23929 0.02495 0.0000533 0.33 0.44
4 10.75 4.8375 0.23392 0.02495 0.0000517 0.3225 0.43
3 100 45 1.7298 0.02381 0.0000672 3.0 4.0
3 78 77.22 0.06097 0.02831 0 2.34 3.12
3 21.69 5.4225 0.07335 0.04326 0 1.0845 1.5183
3 21.6 21.384 -0.76024 0.06329 0 0.648 0.864
3 16.27 4.0675 0.05502 0.04326 0 0.8135 1.1389
3 3.4 1.02 0.00381 0.03977 0 0.102 0.136
3 1.3 0.6 -0.00728 0.04197 0 0.039 0.052

with the largest aggregation representing 8 physical generators. Overall, we obtained 36 aggregated

generators. In Table 5.5 we report on a subset of the aggregated generators, specifically excluding

those for which we can only aggregate two generators. The CAISO test set is dominated by flexible,

fast-ramping generators, with UT = DT = 1, TC = 2, SU,SD ≥ P, and RU,RD ≥ (P − P).

Consequently, we omit this information for purposes of brevity. Similar to Table 5.2, a, b, and c

denote coefficients for the quadratic cost function, while cH and cC respectively denote the hot-

and cold-startup costs. Because we are not using the EF UC formulation, our aggregation approach

allows us to reduce the size relative to the standard 3-bin formulation by 24%.

110

Table 5.6: Computational Results for CAISO UC Instances

Time (s) Nodes

Instance 3-bin 3-bin+A 3-bin 3-bin+A

2014-09-01 0% 31.35 14.25 0 0

2014-12-01 0% 25.77 12.38 0 0

2015-03-01 0% 24.08 14.27 0 0

2015-06-01 0% 13.11 8.50 0 0

Scenario400 0% 27.29 23.63 0 0

2014-09-01 1% 20.52 16.44 0 0

2014-12-01 1% 38.48 24.69 95 0

2015-03-01 1% 21.75 19.11 0 0

2015-06-01 1% 39.87 15.59 47 0

Scenario400 1% 47.54 44.63 0 1438

2014-09-01 3% 81.47 38.27 7 122

2014-12-01 3% 65.01 36.53 1292 125

2015-03-01 3% 50.79 25.04 0 0

2015-06-01 3% 87.25 41.23 0 115

Scenario400 3% 131.28 69.45 2055 880

2014-09-01 5% 47.07 30.95 95 7

2014-12-01 5% 83.87 66.90 1203 3978

2015-03-01 5% 80.57 21.65 923 0

2015-06-01 5% 26.99 43.79 0 402

Scenario400 5% 115.53 118.51 3867 4225

Geometric Mean: 43.85 27.55

In Table 5.6 we report the wall-clock time and number of branch-and-cut nodes explored before

termination for the respective formulations, where “3-bin” denotes the UC formulation proposed

in Chapter 4 and “3-bin+A” denotes the aggregation formulation for fast-ramping generators

introduced in this chapter. We left all Gurobi parameter settings at their default value, such

that the solver terminated when the optimality gap was less than or equal to 0.01%. We did not

impose a time limit for these experiments. Despite their size, we observe that these instances are not

difficult given the current state-of-the-art UC formulation and a modern commercial MILP solver.

Yet, we do observe a geometric mean improvement of 37% in wall clock time with aggregation,

across the twenty CAISO instances. Aggregation is only slower in only two of the twenty instances,

and in both cases the difference is minimal.

Next, considering the number of nodes explored during the branch-and-cut search process, we

see that neither formulation has an advantage. We conjecture this is likely due to role of Gurobi’s

incumbent-finding heuristics. Specifically, because the typical CAISO instance has a root gap of

111

Table 5.7: Computational Results for Ostrowski UC Instances

Time (s) Nodes

Instance 3-bin EF/3-bin+A 3-bin EF/3-bin+A

1 8.44 14.02 1509 68

2 154.75 21.07 48129 157

3 703.94 100.33 316704 4464

4 14.84 17.28 8532 60

5 143.18 57.22 131320 4350

6 95.41 28.00 62394 72

7 (0.0238%) 119.22 535361* 4854

8 (0.0107%) 71.00 1378310* 9267

9 (0.0169%) 125.63 819798* 12217

10 (0.0327%) 82.89 751319* 11549

11 (0.0186%) 18.76 73976* 1155

12 (0.0240%) 22.91 42729* 460

13 (0.0266%) 74.43 41325* 6464

14 (0.0144%) 19.75 41469* 15

15 780.76 39.63 120599 3091

16 (0.0162%) 90.31 42102* 2597

17 154.37 27.88 2114 1059

18 (0.0121%) 22.36 60651* 151

19 (0.0195%) 21.30 42683* 2436

20 106.44 18.46 527 0

Geometric Mean: >349.77 38.03

<0.01% (see Chapter 4), Gurobi only needs to find a high-quality solution before terminating, and

does not need to expend significant effort proving that a solution is optimal within optimality gap

tolerance.

5.6.2 Ostrowski Instances

For the Ostrowski instances, generators 1 – 5 have non-redundant ramping constraints, so we use

the extended formulation in our aggregation, and for generators 6 – 8 we use the 3-bin fast-ramping

aggregation. In all cases there are no more than 8 generators in the aggregated model. Due to the

difference in difficulty relative to the CAISO instances, we impose a time limit of 900 seconds for

these experiments.

We report the results of experiments on the Ostrowski instances in Table 5.7, recording the

terminating optimality gap in parentheses for cases when the time limit was reached. Even with a

state-of-the-art UC MILP formulation (i.e., that of Chapter 4) and 900 seconds of wall-clock time,

112

Gurobi fails to establish optimality within tolerance for over half of the 20 instances. Given that

the Ostrowski instances have half the number of time periods and far fewer thermal generators than

the CAISO instances, one might expect these instances to be easier. However, as demonstrated

in [120, 87] and Table 5.7, even a modern MILP solver with sophisticated, general symmetry

detection routines cannot handle UC instances with large numbers of identical generators. In

comparison, our aggregation approach significantly reduces the difficulty of these instances, to the

point where they can be solved in at most two minutes of wall clock time. Further, our aggregation

approach requires far fewer nodes during the branch-and-cut process, often by an order of magnitude

or more. As reported in Appendix G, aggregation also outperforms the static symmetry breaking

inequalities proposed in [87] for the 3-bin formulation.

5.7 Conclusion

We have shown that symmetry due to the presence of identical generators is present in both

real-world and academic UC instances, and we posited an aggregation method that can mitigate

computational issues induced by this symmetry. While modern MILP solvers possess sophisticated

symmetry-detection technology, they are unable to address this form of UC symmetry. Our

aggregation approach requires a fairly straightforward reformulation of the UC MILP, with an

associated disaggregation method. Thus, our approach is viable in practice for addressing symmetry

in UC.

113

Chapter 6

Conclusions

In this chapter we draw some conclusions and suggest directions for further research.

6.1 Detecting Almost Symmetries of Graphs

Chapter 2 introduced a branch-and-bound framework for almost symmetry detection on simple

graphs. Graphs with a few hundred vertices exhibited much more almost symmetry than the

minimum amount required by the Erdős-Rényi bound. While the computational results presented

in Chapter 2 are not promising as a general method for almost symmetry detection, there are

several possible avenues of investigation.

First, it may be possible to specialize the Hungarian algorithm for the specific matching problem

solved to increase its efficiency. The bounding process could be improved by considering heuristics

to find a lower bound on the clique number for the compliment of the permutations graph.

Incumbent heuristics could be added to the branch-and-bound framework to improve performance.

Additionally, almost symmetries do not need to be maximal to be of practical use, and in most

contexts a heuristic would suffice.

The question that spurred the investigation of almost symmetries is still open. That is, the

presence of symmetry in real-world integer programming problems is a major hindrance if not

properly dealt with. Can almost symmetries cause a similar problem, and if so, what methods can

be used to mitigate their presence?

114

6.2 The Unit Commitment Problem

Chapters 3, 4, and 5 investigated the unit commitment problem. Chapter 3 introduced an extended

formulation for a generic generator in UC. This formulation is integral, but has the disadvantage

of being large. Because the generator formulation is too large to usually be used directly in a UC

formulation, a cutting plane procedure is proposed.

However, the cut-generation LP is still a large linear program, and solving it for more than a

24-hour time horizon may be problematic. Specialized methods, such a column generation, may

make it possible to solve this large-scale LP faster, especially since most columns will be non-basic

for an optimal cut.

Chapter 4 proposed a new formulation for time-dependent start-up costs. This formulation has

more variables than is necessary to specify the problem, while being more compact than the full

extended formulation. Chapter 4 also shows that large-scale unit commitment instances, especially

with the improved formulation, often have very small relative integrality gaps – usually less than 1%.

This is despite not employing the tight formulation for ramping-constrained generators investigated

in Chapter 3. With cuts and presolve reductions a modern MILP solver can usually tighten the

gap another order of magnitude.

Chapter 5 explored an aggregation approach for exact symmetry handling in unit commitment,

using the formulations proposed in Chapters 3 and 4. Exploiting symmetry in this fashion can often

result in large computational speedups. Further, the large extended formulation from Chapter 3 can

be made practical in a UC instance if it represents several generators instead of one. One unexplored

application of this exact aggregation approach is in capacity expansion problems, where often it is

assumed there are at most 10s of different generators to choose from, and more than one type of

each may be built.

Another consequence of Chapter 5 is a proof that the start-up cost formulation proposed in

Chapter 4 is integer for objective vectors corresponding to increasing start-up costs. This is by

Remark 1.1 and Theorem F.4. Taken together then, Chapters 4 and 5 suggest that deterministic UC

is not a difficult problem computationally, at least as presented in this thesis. However, the addition

of ACOPF constraints to represent the distribution network complicates things considerably. That

being said, solving stochastic and robust versions of UC, which often use deterministic UC as a

subproblem, are definitely within reach. Employing stochastic methods will become more of a

necessity as more renewable generation comes on-line.

115

Table 6.1: Almost Symmetry in the CAISO Generators

opt% / feas% Generators

Full Model 410
Aggregated 328

1% / 0% 295
1% / 1% 294
2% / 0% 288
2% / 1% 287
2% / 2% 286
5% / 0% 259
5% / 1% 256
5% / 2% 254
5% / 5% 251

10% / 0% 249
10% / 1% 245
10% / 2% 242
10% / 5% 239
10% / 10% 237

6.3 Future Work

Future research will entail bringing almost symmetries to bear on the unit commitment problem.

Some work has already been completed in this line of investigation. Because almost symmetries of

the unit commitment problem are simply almost symmetries of the power generators’ parameters,

it is easy to design heuristic methods for almost symmetry detection in unit commitment.

As an example, consider the CAISO generators used in Chapters 4 and 5. Recall this test set

has 410 schedulable generators. In Table 6.1 we report the reduction in generators that exploiting

almost symmetry allows. The column “opt% / feas%” reports the percentage we allow optimality

and feasibility to be relaxed, respectively, and in the “Generators” column we report the number

of aggregated generators in the reduced model. The “Aggregated” entry reports the dimension

reduction allowed by the work in Chapter 5.

As we can see, even a simple heuristic approach to almost symmetry allows us to reduce the

dimension of the unit commitment problem by another 30% over exact symmetry reductions, albeit

at the cost of relaxing optimality and feasibility (by a controlled amount). However, as reported in

this thesis, solving large-scale unit commitment instances exactly is usually not difficult, at least for

deterministic problems. Using the formulation developed in Chapter 4 with the symmetry reduction

techniques from Chapter 5, none of the 48-hour CAISO instances take more than two minutes to

116

solve on commodity hardware with commercial solver. Thus it is unlikely that further reductions

would have much impact on the solve time. Additionally, there is no reason with a problem this

easy to settle for an approximation.

Research along this line must then move on to consider more difficult versions of the unit

commitment problem. Exploiting almost symmetries may be of value in unit commitment with

the addition of ACOPF constraints and stochasticity caused by uncertainty in renewable output.

Finally, there may be other structured problems, like unit commitment, for which it is easy to

detect and exploit almost symmetry.

117

Bibliography

118

[1] Arlazarov, V., Zuev, I., Uskov, A., and Faradzhev, I. (1974). An algorithm for the reduction

of finite non-oriented graphs to canonical form. {USSR} Computational Mathematics and

Mathematical Physics, 14(3):195 – 201. 12, 14

[2] Arvind, V., Köbler, J., Kuhnert, S., and Vasudev, Y. (2012). Approximate graph isomorphism.

In Mathematical Foundations of Computer Science 2012, pages 100–111. Springer. 20, 22

[3] Babai, L. (2016). Graph isomorphism in quasipolynomial time. In Proceedings of the 48th

Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, pages 684–697, New

York, NY, USA. ACM. 10, 20

[4] Babai, L., Kantor, W. M., and Luks, E. M. (1983). Computational complexity and the

classification of finite simple groups. In Foundations of Computer Science, 1983., 24th Annual

Symposium on, pages 162–171. IEEE. 10

[5] Babai, L. and Kucera, L. (1979). Canonical labelling of graphs in linear average time. In

Foundations of Computer Science, 1979., 20th Annual Symposium on, pages 39–46. IEEE. 11

[6] Balas, E. (1979). Disjunctive programming. Annals of Discrete Mathematics, 5:3–51. 49, 70,

152, 153

[7] Balas, E. (1998). Disjunctive programming: Properties of the convex hull of feasible points.

Discrete Applied Mathematics, 89(1):3–44. 49, 70, 152, 153

[8] Balas, E., Ceria, S., and Cornuéjols, G. (1993). A lift-and-project cutting plane algorithm for

mixed 0–1 programs. Mathematical Programming, 58(1-3):295–324. 57, 61, 62

[9] Baum, S. and Trotter Jr, L. E. (1978). Integer rounding and polyhedral decomposition for

totally unimodular systems. In Optimization and Operations Research, pages 15–23. Springer.

99, 100, 185, 187

[10] Bertsimas, D. and Tsitsiklis, J. N. (1997). Introduction to linear optimization, volume 6.

Athena Scientific Belmont, MA. 2

[11] Bonami, P., Lodi, A., Tramontani, A., and Wiese, S. (2015). On mathematical programming

with indicator constraints. Mathematical Programming, 151(1):191–223. 152

119

[12] Borghetti, A., Frangioni, A., Lacalandra, F., Lodi, A., Martello, S., Nucci, C., and Trebbi, A.

(2001). Lagrangian relaxation and tabu search approaches for the unit commitment problem. In

Power Tech Proceedings, 2001 IEEE Porto, volume 3. 108

[13] Borghetti, A., Frangioni, A., Lacalandra, F., and Nucci, C. A. (2003). Lagrangian heuristics

based on disaggregated bundle methods for hydrothermal unit commitment. IEEE Transactions

on Power Systems, 18(1):313–323. 108

[14] Brandenberg, R., Huber, M., and Silbernagl, M. (2015). The summed start-up costs in a unit

commitment problem. EURO Journal on Computational Optimization, pages 1–36. 74

[15] Buchheim, C. and Jünger, M. (2003). An integer programming approach to fuzzy symmetry

detection. In International Symposium on Graph Drawing, pages 166–177. Springer. 23

[16] Carlson, B., Chen, Y., Hong, M., Jones, R., Larson, K., Ma, X., Nieuwesteeg, P., Song, H.,

Sperry, K., Tackett, M., et al. (2012). MISO unlocks billions in savings through the application

of operations research for energy and ancillary services markets. Interfaces, 42(1):58–73. 49

[17] Carrion, M. and Arroyo, J. M. (2006). A computationally efficient mixed-integer linear

formulation for the thermal unit commitment problem. IEEE Transactions on Power Systems,

21(3):1371–1378. 50, 74, 76, 91, 97, 108, 162

[18] Chen, Y. (2016). Personal correspondence. Principal Advisor at Midcontinent Independent

System Operator. 73

[19] Cheung, K., Gade, D., Silva-Monroy, C., Ryan, S., Watson, J., Wets, R., and Woodruff,

D. (2015a). Toward scalable stochastic unit commitment - part 2: Solver configuration and

performance assessment. Energy Systems, 6(3):417–438. 95

[20] Cheung, K., Gade, D., Silva-Monroy, C., Ryan, S. M., Watson, J.-P., Wets, R. J.-B., and

Woodruff, D. L. (2015b). Toward scalable stochastic unit commitment. Energy Systems, 6(3):417–

438. 91

[21] Conforti, M., Cornuéjols, G., and Zambelli, G. (2014). Integer Programming, volume 271.

Springer. 2, 4, 154

[22] Cook, W., Dash, S., Fukasawa, R., and Goycoolea, M. (2009). Numerically safe gomory mixed-

integer cuts. INFORMS Journal on Computing, 21(4):641–649. 4

120

[23] Corneil, D. G. and Gotlieb, C. C. (1970). An efficient algorithm for graph isomorphism.

Journal of the ACM (JACM), 17(1):51–64. 11, 12, 13

[24] Cornuéjols, G., Margot, F., and Nannicini, G. (2013). On the safety of gomory cut generators.

Mathematical Programming Computation, 5(4):345–395. 4

[25] Crawford, J., Ginsberg, M., Luks, E., and Roy, A. (1996). Symmetry-breaking predicates for

search problems. KR, 96:148–159. 13

[26] Culberson, J., Johnson, D., Lewandowski, G., and Trick, M. (2015). Graph coloring instances.

http://mat.gsia.cmu.edu/COLOR/instances.html. 35

[27] Damcı-Kurt, P., Küçükyavuz, S., Rajan, D., and Atamtürk, A. (2015). A polyhedral study of

production ramping. Mathematical Programming, pages 1–31. 51, 54, 69, 74

[28] Darga, P. T., Liffiton, M. H., Sakallah, K. A., and Markov, I. L. (2004). Exploiting structure in

symmetry detection for CNF. In Proceedings of the 41st annual Design Automation Conference,

pages 530–534. ACM. 14

[29] Darga, P. T., Sakallah, K. A., and Markov, I. L. (2008). Faster symmetry discovery using

sparsity of symmetries. In Proceedings of the 45th Annual Design Automation Conference, DAC

’08, pages 149–154, New York, NY, USA. ACM. 7, 14, 24

[30] Denton, B. T., Miller, A. J., Balasubramanian, H. J., and Huschka, T. R. (2010). Optimal

allocation of surgery blocks to operating rooms under uncertainty. Operations research, 58(4-

part-1):802–816. 5

[31] Desrochers, M. and Soumis, F. (1989). A column generation approach to the urban transit

crew scheduling problem. Transportation Science, 23(1):1–13. 5

[32] Dumas, Y., Desrosiers, J., and Soumis, F. (1991). The pickup and delivery problem with time

windows. European journal of operational research, 54(1):7–22. 5

[33] Dummit, D. and Foote, R. (2004). Abstract Algebra. Wiley. 6

[34] Eckstein, J., Hart, W. E., and Phillips, C. A. (2015). PEBBL: an object-oriented framework

for scalable parallel branch and bound. Mathematical Programming Computation, 7(4):429–469.

34

121

[35] Erdős, P. and Rényi, A. (1963). Asymmetric graphs. Acta Mathematica Hungarica, 14(3):295–

315. 21, 35

[36] Faenza, Y., Oriolo, G., and Stauffer, G. (2010). The hidden matching structure of the

composition of strips: a polyhedral perspective. In 14th Aussois Workshop on Combinatorial

Optimization, Aussois (January 2010). 152, 156

[37] Fair Isaac Corporation (2017). FICO Xpress Optimization. http://www.fico.com/en/

products/fico-xpress-optimization. 4

[38] Feige, U. (2002). Relations between average case complexity and approximation complexity. In

Proceedings of the thiry-fourth annual ACM symposium on theory of computing, pages 534–543.

ACM. 22

[39] Feige, U. and Kilian, J. (1996). Zero knowledge and the chromatic number. In Computational

Complexity, 1996. Proceedings., Eleventh Annual IEEE Conference on, pages 278–287. IEEE. 32

[40] Feizollahi, M. J., Costley, M., Ahmed, S., and Grijalva, S. (2015). Large-scale decentralized

unit commitment. International Journal of Electrical Power & Energy Systems, 73:97–106. 74,

108

[41] Fischetti, M. and Liberti, L. (2012). Orbital shrinking. In International Symposium on

Combinatorial Optimization, pages 48–58. Springer. 6, 96

[42] Fischetti, M., Liberti, L., Salvagnin, D., and Walsh, T. (2017). Orbital shrinking: Theory and

applications. Discrete Applied Mathematics, 222:109–123. 6

[43] Forrest, J., Ralphs, T., Fylstra, D., Hafer, L., Hart, B., Kristjannson, B., Phillips, C.,

Saltzman, M., Straver, E., Watson, J.-P., and Santos, H. G. (2017). COIN-OR Branch-and-

Cut MIP Solver. https://projects.coin-or.org/Cbc. 4

[44] Fox, M., Long, D., and Porteous, J. (2007). Discovering near symmetry in graphs. In

Proceedings of the 22nd national conference on Artificial intelligence-Volume 1, pages 415–420.

AAAI Press. 24

[45] Frangioni, A. and Gentile, C. (2006a). Perspective cuts for a class of convex 0–1 mixed integer

programs. Mathematical Programming, 106(2):225–236. 108

122

[46] Frangioni, A. and Gentile, C. (2006b). Solving nonlinear single-unit commitment problems

with ramping constraints. Operations Research, 54(4):767–775. 49, 51, 55

[47] Frangioni, A. and Gentile, C. (2009). A computational comparison of reformulations of the

perspective relaxation: SOCP vs. cutting planes. Operations Research Letters, 37(3):206–210.

108

[48] Frangioni, A. and Gentile, C. (2015a). An extended MIP formulation for the single-unit

commitment problem with ramping constraints. In 17th British-French-German conference on

Optimization, London. 49, 57

[49] Frangioni, A. and Gentile, C. (2015b). New MIP formulations for the single-unit commitment

problems with ramping constraints. IASI Research Report 15-06. 49, 57

[50] Frangioni, A., Gentile, C., and Lacalandra, F. (2008). Solving unit commitment problems

with general ramp constraints. International Journal of Electrical Power & Energy Systems,

30(5):316–326. 108

[51] Frangioni, A., Gentile, C., and Lacalandra, F. (2009). Tighter approximated milp formulations

for unit commitment problems. IEEE Trans. Power Syst., 24(1):105–113. 108

[52] Fürstenberg, C. (2015). A drawing of a graph. http://en.wikipedia.org/wiki/Graph_

theory#mediaviewer/File:6n-graf.svg. 21

[53] Gade, D., Hackebeil, G., Ryan, S. M., Watson, J.-P., Wets, R. J.-B., and Woodruff, D. L.

(2016). Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-

integer programs. Mathematical Programming, 157(1):47–67. 91

[54] Garcia-Gonzalez, J., de la Muela, R. M. R., Santos, L. M., and Gonzalez, A. M. (2008).

Stochastic joint optimization of wind generation and pumped-storage units in an electricity

market. IEEE Transactions on Power Systems, 23(2):460–468. 96

[55] Garey, M. R., Johnson, D. S., and Stockmeyer, L. (1974). Some simplified NP-complete

problems. In Proceedings of the sixth annual ACM symposium on theory of computing, pages

47–63. ACM. 32

123

[56] Garver, L. L. (1962). Power generation scheduling by integer programming-development of

theory. Power Apparatus and Systems, Part III. Transactions of the American Institute of

Electrical Engineers, 81(3):730–734. 50, 52, 73

[57] GE Energy (2014). PJM renewable integration study. PJM Interconnection. 66, 83

[58] Gentile, C., Morales-Espana, G., and Ramos, A. (2016). A tight MIP formulation of the unit

commitment problem with start-up and shut-down constraints. EURO Journal on Computational

Optimization, pages 1–25. 51, 74, 95, 96, 187, 198

[59] Gilmore, P. C. and Gomory, R. E. (1961). A linear programming approach to the cutting-stock

problem. Operations research, 9(6):849–859. 5

[60] Godsil, C. and Royle, G. (2001). Algebraic Graph Theory. Springer-Verlag. 6

[61] Goldreich, O., Micali, S., and Wigderson, A. (1991). Proofs that yield nothing but their

validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM (JACM),

38(3):690–728. 10, 20

[62] Golumbic, M. C. (2004). Algorithmic graph theory and perfect graphs, volume 57. Elsevier. 99

[63] Gomory, R. E. (1958). Outline of an algorithm for integer solutions to linear programs. Bulletin

of the American Mathematical Society, 64(5):275–278. 3

[64] Gomory, R. E. (1960). An algorithm for the mixed integer problem. Research memorandum

rm-2597, The Rand Corporation. 3

[65] Grünbaum, B. (2003). Convex polytopes, volume 221 of Graduate Texts in Mathematics.

Springer-Verlag. 153

[66] Gurobi Optimization, Inc. (2016). Gurobi optimizer reference manual. http://www.gurobi.

com. 4, 95, 96, 108

[67] Hartke, S. G. and Radcliffe, A. (2009). Mckay’s canonical graph labeling algorithm.

Communicating mathematics, 479:99–111. 14

[68] Herstein, I. N. (2006). Topics in algebra. John Wiley & Sons. 6

[69] International Business Machines Corporation (2017). IBM CPLEX Optimizer. https://

www-01.ibm.com/software/commerce/optimization/cplex-optimizer/. 4, 95

124

[70] Jabr, R. (2012). Tight polyhedral approximation for mixed-integer linear programming unit

commitment formulations. IET Generation, Transmission & Distribution, 6(11):1104–1111. 108

[71] Jeroslow, R. G. (1987). Representability in mixed integer programming, I: characterization

results. Discrete Applied Mathematics, 17(3):223–243. 153

[72] Jünger, M., Liebling, T. M., Naddef, D., Nemhauser, G. L., Pulleyblank, W. R., Reinelt, G.,

Rinaldi, G., and Wolsey, L. A. (2009). 50 Years of Integer Programming 1958-2008: From the

Early Years to the State-of-the-art. Springer Science & Business Media. 2, 4

[73] Junttila, T. A. and Kaski, P. (2007). Engineering an efficient canonical labeling tool for large

and sparse graphs. In ALENEX, volume 7, pages 135–149. SIAM. 11, 15

[74] Kaibel, V., Peinhardt, M., and Pfetsch, M. E. (2011). Orbitopal fixing. Discrete Optimization,

8(4):595–610. 6

[75] Kaibel, V. and Pfetsch, M. (2008). Packing and partitioning orbitopes. Mathematical

Programming, 114(1):1–36. 5

[76] Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. In

Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages 302–311.

ACM. 2

[77] Katebi, H., Sakallah, K. A., and Markov, I. L. (2012a). Conflict anticipation in the search for

graph automorphisms. In Logic for Programming, Artificial Intelligence, and Reasoning, pages

243–257. Springer. 11

[78] Katebi, H., Sakallah, K. A., and Markov, I. L. (2012b). Graph symmetry detection and

canonical labeling: Differences and synergies. arXiv preprint arXiv:1208.6271. 15

[79] Kazarlis, S. A., Bakirtzis, A., and Petridis, V. (1996). A genetic algorithm solution to the unit

commitment problem. IEEE Trans. Power Syst., 11(1):83–92. 91, 108

[80] Khachiyan, L. G. (1979). A polynomial algorithm in linear programming. In Soviet

Mathematics Doklady, volume 20, pages 191–194. 2

[81] Kim, K., Botterud, A., and Qiu, F. (2017). Temporal decomposition for improved unit

commitment in power system production cost modeling. ANL Technical Report. ANL/MCS-

P7073-0717. 74

125

[82] Knueven, B., Ostrowski, J., and Watson, J.-P. (2017). Online companion for a novel matching

formulation for startup costs in unit commitment. 202

[83] Knuth, D. E. (1993). The Stanford GraphBase: a platform for combinatorial computing,

volume 37. Addison-Wesley Reading. 34

[84] Krall, E., Higgins, M., and O’Neill, R. P. (2012). RTO unit commitment test system. Federal

Energy Regulatory Commission. 61, 82, 83, 168

[85] Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval research

logistics quarterly, 2(1-2):83–97. 29

[86] Lee, J., Leung, J., and Margot, F. (2004). Discrete Optimization, 1(1):77–85. 50, 74, 96

[87] Lima, R. M. and Novais, A. Q. (2016). Symmetry breaking in MILP formulations for unit

commitment problems. Computers & Chemical Engineering, 85:162–176. 5, 95, 96, 113, 201,

207, 208, 210

[88] Lin, C.-L. (1994). Hardness of approximating graph transformation problem. In Algorithms

and Computation, pages 74–82. Springer. 20

[89] López-Presa, J. L., Anta, A. F., and Chiroque, L. N. (2011). Conauto-2.0: Fast isomorphism

testing and automorphism group computation. arXiv preprint arXiv:1108.1060. 11, 15

[90] López-Presa, J. L. and Fernández, A. (2004). Graph isomorphism testing without full

automorphism group computation. 15

[91] Lynch, M. (1968). Storage and retrieval of information on chemical structures by computer.

Endeavour, 27(101):68. 11

[92] Magnanti, T. L. and Wolsey, L. A. (1995). Optimal trees. Handbooks in Operations Research

and Management Science, 7:503–615. 152

[93] Maher, S. J., Fischer, T., Gally, T., Gamrath, G., Gleixner, A., Gottwald, R. L., Hendel, G.,

Koch, T., Lübbecke, M. E., Miltenberger, M., Müller, B., Pfetsch, M. E., Puchert, C., Rehfeldt,

D., Schenker, S., Schwarz, R., Serrano, F., Shinano, Y., Weninger, D., Witt, J. T., and Witzig,

J. (2017). The SCIP Optimization Suite 4.0. Technical Report 17-12, ZIB, Takustr.7, 14195

Berlin. 4

126

[94] Malkin, P. (2003). Minimum runtime and stoptime polyhedra. CORE Report, Université

catholique de Louvain. 50, 96, 100, 187

[95] Margot, F. (2002). Pruning by isomorphism in branch-and-cut. Mathematical Programming,

94(1):71–90. 7, 23

[96] Margot, F. (2003). Exploiting orbits in symmetric ILP. Mathematical Programming, 98(1-

3):3–21. 7, 23

[97] Margot, F. (2010). Symmetry in integer linear programming. In 50 Years of Integer

Programming 1958-2008, pages 647–686. Springer. 5

[98] Markov, I. (2007). Almost-symmetries of graphs. In Proc. International Symmetry Conference

(ISC), pages 60–70. 23

[99] Mathon, R. (1978). Sample graphs for graph isomorphism testing. In Proc. 9th S.E. Conf.

Combinatorics, Graph Theory and Computing, pages 499–517. 12

[100] Mathon, R. (1979). A note on the graph isomorphism counting problem. Information

Processing Letters, 8(3):131–136. 10, 20

[101] McKay, B. D. (1981). Practical graph isomorphism. Department of Computer Science,

Vanderbilt University. 13, 21

[102] McKay, B. D. and Piperno, A. (2013). nauty and traces user’s guide (version 2.5). Computer

Science Department, Australian National University, Canberra, Australia. 14

[103] McKay, B. D. and Piperno, A. (2014). Practical graph isomorphism, II. Journal of Symbolic

Computation, 60:94–112. 7, 11, 14, 15, 24, 34

[104] McKay, B. D. and Piperno, A. (2015). Nauty traces – graphs. http://pallini.di.

uniroma1.it/Graphs.html. 35

[105] Mehrotra, A. and Trick, M. A. (1996). A column generation approach for graph coloring.

Informs Journal on Computing, 8(4):344–354. 5

[106] Meller, R. D., Narayanan, V., and Vance, P. H. (1998). Optimal facility layout design.

Operations Research Letters, 23(3):117–127. 5

127

[107] Méndez-Dı́az, I. and Zabala, P. (2006). A branch-and-cut algorithm for graph coloring.

Discrete Applied Mathematics, 154(5):826–847. 5

[108] Miyazaki, T. (1997). The complexity of McKay’s canonical labeling algorithm. In Groups

and Computation II, volume 28, pages 239–256. Aer. Math. Soc.: Providence, RI. 14

[109] Morales-España, G., Gentile, C., and Ramos, A. (2015). Tight MIP formulations of the

power-based unit commitment problem. OR Spectrum, pages 1–22. 51, 95

[110] Morales-España, G., Latorre, J. M., and Ramos, A. (2013a). Tight and compact MILP

formulation for the thermal unit commitment problem. IEEE Transactions on Power Systems,

28(4):4897–4908. 74, 75, 76, 77, 91, 95, 100, 108, 187, 198, 201

[111] Morales-España, G., Latorre, J. M., and Ramos, A. (2013b). Tight and compact MILP

formulation of start-up and shut-down ramping in unit commitment. IEEE Transactions on

Power Systems, 28(2):1288–1296. 53, 74

[112] Morgan, H. (1965). The generation of a unique machine description for chemical structures-a

technique developed at chemical abstracts service. Journal of Chemical Documentation, 5(2):107–

113. 11

[113] Muckstadt, J. A. and Wilson, R. C. (1968). An application of mixed-integer programming

duality to scheduling thermal generating systems. IEEE Transactions on Power Apparatus and

Systems, (12). 74

[114] Munkres, J. (1957). Algorithms for the assignment and transportation problems. Journal of

the Society for Industrial & Applied Mathematics, 5(1):32–38. 29

[115] Nowak, M. P. and Römisch, W. (2000). Stochastic lagrangian relaxation applied to power

scheduling in a hydro-thermal system under uncertainty. Annals of Operations Research, 100(1-

4):251–272. 74, 76, 162

[116] O’Donnell, R., Wright, J., Wu, C., and Zhou, Y. (2014). Hardness of robust graph

isomorphism, lasserre gaps, and asymmetry of random graphs. In Proceedings of the Twenty-

Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1659–1677. SIAM. 20, 21,

22

128

[117] O’Neill, R. P. (2007). It’s getting better all the time (with mixed integer programming).

HEPG Forty-Ninth Plenary Session. 16, 49

[118] Ostrowski, J. (2008). Symmetry in Integer Programming. PhD thesis, Lehigh University. 5

[119] Ostrowski, J., Anjos, M. F., and Vannelli, A. (2012). Tight mixed integer linear programming

formulations for the unit commitment problem. IEEE Transactions on Power Systems, 27(1):39.

51, 74, 91, 92, 95, 97, 108

[120] Ostrowski, J., Anjos, M. F., and Vannelli, A. (2015). Modified orbital branching for structured

symmetry with an application to unit commitment. Mathematical Programming, 150(1):99–129.

70, 92, 95, 113

[121] Ostrowski, J., Linderoth, J., and Margot, F. (2017). Flexible isomorphism pruning. Working

paper. 7

[122] Ostrowski, J., Linderoth, J., Rossi, F., and Smriglio, S. (2008). Constraint orbital branching.

Integer Programming and Combinatorial Optimization, pages 225–239. 8

[123] Ostrowski, J., Linderoth, J., Rossi, F., and Smriglio, S. (2011). Orbital branching.

Mathematical Programming, 126(1):147–178. 7, 8, 23, 95

[124] Palmintier, B. and Webster, M. (2011). Impact of unit commitment constraints on generation

expansion planning with renewables. In Power and Energy Society General Meeting, 2011 IEEE,

pages 1–7. IEEE. 96

[125] Pan, K. and Guan, Y. (2016). A polyhedral study of the integrated minimum-up/-down time

and ramping polytope. arXiv:1604.02184. 51, 54, 69, 74

[126] Parris, R. and Read, R. (1969). A coding procedure for graphs. Scientific Report. UWI/CC,

10. 11

[127] Piperno, A. (2008). Search space contraction in canonical labeling of graphs. arXiv preprint

arXiv:0804.4881. 15

[128] PJM (2016a). PJM - ancillary services. http://pjm.com/markets-and-operations/

ancillary-services.aspx. Accessed: 2016-01-07. 63, 82, 169

129

[129] PJM (2016b). PJM - system operations. http://www.pjm.com/markets-and-operations/

ops-analysis.aspx. Accessed: 2016-01-07. 63, 82, 169

[130] Pochet, Y. and Wolsey, L. A. (1993). Lot-sizing with constant batches: Formulation and

valid inequalities. Mathematics of Operations Research, 18(4):767–785. 152

[131] Pochet, Y. and Wolsey, L. A. (2006). Production planning by mixed integer programming.

Springer Science & Business Media. 77, 162, 184, 189

[132] Puget, J.-F. (1993). On the satisfiability of symmetrical constrained satisfaction problems.

In Methodologies for Intelligent Systems, pages 350–361. Springer. 5

[133] Rajan, D. and Takriti, S. (2005). Minimum up/down polytopes of the unit commitment

problem with start-up costs. IBM Research Report. RC23628 (W0506-050). 50, 51, 52, 74, 96

[134] Ramanan, P., Yildirim, M., Chow, E., and Gebraeel, N. (2017). Asynchronous decentralized

framework for unit commitment in power systems. Procedia Computer Science, 108:665–674. 74

[135] Read, R. C. and Corneil, D. G. (1977). The graph isomorphism disease. Journal of Graph

Theory, 1(4):339–363. 11, 20

[136] Rockafellar, R. (1970). Convex Analysis. Princeton University Press. 153

[137] Rothvoß, T. (2017). The matching polytope has exponential extension complexity. Journal

of the ACM (JACM), 64(6):41. 4, 51

[138] Rudich, S. and Wigderson, A. (2004). Computational complexity theory. American

Mathematical Soc. 10

[139] Salvagnin, D. (2005). A dominance procedure for integer programming. Master’s thesis,

University of Padua. 7

[140] Schrijver, A. (1986). Theory of linear and integer programming. John Wiley & Sons. 18

[141] Sen, S. and Kothari, D. (2002). An equivalencing technique for solving the large-scale thermal

unit commitment problem. In The Next Generation of Electric Power Unit Commitment Models,

pages 211–225. Springer. 96

[142] Sherali, H. D. and Smith, J. C. (2001). Improving discrete model representations via

symmetry considerations. Management Science, 47(10):1396–1407. 5

130

[143] Shortt, A. and O’Malley, M. (2010). Impact of variable generation in generation resource

planning models. In Power and Energy Society General Meeting, 2010 IEEE, pages 1–6. IEEE.

96

[144] Silbernagl, M., Huber, M., and Brandenberg, R. (2016). Improving accuracy and efficiency

of start-up cost formulations in MIP unit commitment by modeling power plant temperatures.

IEEE Trans. Power Syst., 31(4):2578–2586. 74, 77, 80, 162

[145] Simoglou, C. K., Biskas, P. N., and Bakirtzis, A. G. (2010). Optimal self-scheduling of

a thermal producer in short-term electricity markets by MILP. IEEE Trans. Power Syst.,

25(4):1965–1977. 74

[146] Stachniss, C. (2015). C implementation of the hungarian method. http://www2.informatik.

uni-freiburg.de/~stachnis/misc.html. 34

[147] Stoer, J. and Witzgall, C. (1970). Convexity and Optimization in Finite Dimensions.

Springer. 153

[148] Sussenguth, E. H. (1965). A graph-theoretic algorithm for matching chemical structures.

Journal of Chemical Documentation, 5(1):36–43. 11

[149] Takriti, S., Birge, J., and Long, E. (1996). A stochastic model for the unit commitment

problem. IEEE Trans. Power Syst., 11(3):1497–1508. 90

[150] Trespalacios, F. and Grossmann, I. E. (2014). Review of mixed-integer nonlinear and

generalized disjunctive programming methods. Chemie Ingenieur Technik, 86(7):991–1012. 2

[151] Tseng, C.-L. (1996). On Power System Generation Unit Commitment Problems. PhD thesis,

University of California at Berkeley. 16

[152] Unger, S. H. (1964). Git–a heuristic program for testing pairs of directed line graphs for

isomorphism. Communications of the ACM, 7(1):26–34. 11

[153] Vance, P. H. (1993). Crew scheduling, cutting stock, and column generation: Solving huge

integer programs. PhD thesis, Georgia Institute of Technology. 5

[154] Vance, P. H., Barnhart, C., Johnson, E. L., and Nemhauser, G. L. (1994). Solving

binary cutting stock problems by column generation and branch-and-bound. Computational

optimization and applications, 3(2):111–130. 5

131

[155] Vance, P. H., Barnhart, C., Johnson, E. L., and Nemhauser, G. L. (1997). Airline crew

scheduling: A new formulation and decomposition algorithm. Operations Research, 45(2):188–

200. 5

[156] West, D. B. (2001). Introduction to Graph Theory. Prentice-Hall. 6, 9

[157] Weyl, H. (1950). The elementary theory of convex polyhedra. Contributions to the Theory

of Games, 1(24):3–18. 153

[158] Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics bulletin,

1(6):80–83. 90, 176

[159] Wolsey, L. A. (1998). Integer Programming, volume 42. Wiley New York. 78

[160] Wood, A. J., Wollenberg, B. F., and Sheblé, G. B. (2013). Power Generation, Operation and

Control. John Wiley & Sons. 73, 95

[161] Yang, L., Jian, J., Wang, Y., and Dong, Z. (2015a). Projected mixed integer programming

formulations for unit commitment problem. International Journal of Electrical Power & Energy

Systems, 68:195–202. 108

[162] Yang, L., Jian, J., Zhu, Y., and Dong, Z. (2015b). Tight relaxation method for unit

commitment problem using reformulation and lift-and-project. IEEE Transactions on Power

Systems, 30(1):13–23. 108

132

Appendices

133

Appendix A

Detailed Computational Results for

Chapter 2

In this appendix we break-out the scaling graph in Figure 2.4 into scaling graphs for the individual

cases tested. These are presented in Figure A.1. We also present the rest of the results on branching

choice robustness, similar to that in Table 2.4, in Table A.1. Also, we provide more test-cases for

the branching strategy similar to those given in Figure 2.5. These results are in Figure A.2. Finally,

in Table A.2 we present some computational results on the test suite from Table 2.2 with a modified

branching strategy. In particular, at each node we create three children, two of which are deletion

nodes for the two edges highest-ranked by edgeUse and the third fixing both these edges. The

hope is this makes the fixing child stronger, making for a more balanced tree while also not loosing

much due to the robustness of the branching selection demonstrated in Section 2.4.1. As we can

see, this branching strategy is better for the random graphs, miles1500.col, and le450 5b.col,

but is worse for the remaining graphs. Overall this strategy apparently does not effectively exploit

robustness of edgeUse branching.

134

Figure A.1: Detailed scaling on various problems

135

Figure A.1: (continued)

136

Figure A.1: (continued)

137

Figure A.1: (continued)

138

Figure A.1: (continued)

139

Figure A.1: (continued)

140

Table A.1: edgeUse branching robustness, additional instances

miles250.col,
k = 5

Rank % of Nodes

1 76.85%
2 8.34%
3 0.73%
4 0.47%
5 0.28%
6 0.24%
7 0.19%
8 0.17%
9 0.15%
10 0.15%
11+ 12.43%

miles500.col,
k = 5

Rank % of Nodes

1 67.44%
2 1.32%
3 0.20%
4 0.28%
5 0.13%
6 0.19%
7 0.19%
8 0.28%
9 0.39%
10 0.36%
11+ 29.21%

miles1000.col,
k = 5

Rank % of Nodes

1 80.33%
2 0.44%
3 0.13%
4 0.23%
5 2.44%
6 3.64%
7 1.74%
8 0.76%
9 0.34%
10 0.54%
11+ 9.40%

141

Table A.1: (continued)

miles1500.col,
k = 3

Rank % of Nodes

1 96.95%
2 0.58%
3 0.37%
4 0.12%
5 0.09%
6 0.11%
7 0.06%
8 0.05%
9 0.10%
10 0.15%
11+ 1.42%

le450 5b.col,
k = 15

Rank % of Nodes

1 84.48%
2 5.17%
3 3.45%
4 1.72%
5 3.45%
6 1.72%
7+ 0.00%

le450 15b.col,
k = 15

Rank % of Nodes

1 70.05%
2 0.32%
3 0.22%
4 0.39%
5 0.12%
6 0.05%
7 0.05%
8 0.06%
9 0.06%
10 0.06%
11+ 28.62%

142

Table A.1: (continued)

ran10 100 b.bliss,
k = 10

Rank % of Nodes

1 61.30%
2 6.98%
3 2.19%
4 0.93%
5 0.79%
6 0.46%
7 0.95%
8 2.07%
9 2.68%
10 1.83%
11+ 19.82%

ran10 100 c.bliss,
k = 10

Rank % of Nodes

1 60.92%
2 2.76%
3 1.32%
4 2.21%
5 0.60%
6 0.39%
7 0.14%
8 0.15%
9 0.17%
10 0.16%
11+ 31.19%

ran10 100 d.bliss,
k = 10

Rank % of Nodes

1 79.29%
2 1.33%
3 0.52%
4 0.15%
5 0.60%
6 4.66%
7 0.60%
8 1.69%
9 2.92%
10 0.09%
11+ 8.15%

143

Figure A.2: Random branching (box plot) vs. edgeUse branching (�, number of nodes on right)
vs. local branching (×, number of nodes on left), additional instances

144

Figure A.2: (continued)

145

Figure A.2: (continued)

146

Figure A.2: (continued)

147

Figure A.2: (continued)

148

Table A.2: Computational Results – three children per node

games120.col n = 120 e = 638

k 0 1 2 3 4 5 6 7 8 9
γG
k 119 118 117 114 113 112 112 111 111 112*

seconds 0.0 0.0 0.1 0.2 0.3 0.4 2.4 28.5 938.7 †

miles250.col n = 128 e = 387

k 0 1 2 3 4 5 6 7
γG
k 108 106 104 102 100 99 97 98*

seconds 0.0 0.1 0.2 0.7 3.1 55.8 852.7 †

miles500.col n = 128 e = 1170

k 0 1 2 3 4 5 6 7 8
γG
k 114 113 111 110 109 108 107 108* 107*

seconds 0.0 0.1 0.1 0.3 1.6 16.3 212.0 † †

miles750.col n = 128 e = 2113

k 0 1 2 3 4 5 6 7 8
γG
k 122 121 120 119 118 117 116 115 115*

seconds 0.0 0.1 0.2 0.4 1.5 9.3 99.4 872.3 †

miles1000.col n = 128 e = 3216

k 0 1 2 3 4 5 6 7
γG
k 123 122 121 120 119 118 118 117*

seconds 0.0 0.1 0.2 0.5 2.0 29.9 422.6 †

miles1500.col n = 128 e = 5198

k 0 1 2 3 4 5
γG
k 102 101 100 99 98 97*

seconds 0.0 0.7 1.7 24.5 586.6 †

le450 5b.col n = 450 e = 5734

k 0 13 14 15 16 17 18 19
γG
k 450 450 450 450 450 450 450 449

seconds 0.0 1.1 1.3 1.6 1.8 5.1 387.6 2847

le450 15b.col n = 450 e = 8169

k 0 1 2 4 5 7 8 10 11 14 15 16 17
γG
k 450 450 449 449 448 448 447 447 446 446 445 446* 447*

seconds 0.0 0.1 0.2 0.4 0.6 0.7 0.8 1.1 1.3 47.2 176.3 † †

le450 25b.col n = 450 e = 8263

k 0 1 2 3 4 5 6 7 8 9 10
γG
k 450 450 449 449 449 448 448 447 447 447 448*

seconds 0.0 0.1 0.2 0.4 0.6 0.6 1.1 2.0 13.9 129.4 †

ran10 100 a.bliss n = 100 e = 502

k 0 6 7 8 9 10 11 12
γG
k 100 100 99 99 99 99 99 100*

seconds 0.0 0.0 0.1 0.4 1.9 14.0 342.9 †

ran10 100 b.bliss n = 100 e = 464

k 0 3 4 7 8 9 10 11 12
γG
k 100 100 99 99 99 99 98 98 100*

seconds 0.0 0.0 0.1 0.2 2.0 6.8 96.4 1644 †

ran10 100 c.bliss n = 100 e = 525

k 0 5 6 7 8 9 10 11 12 13
γG
k 100 100 99 99 99 99 99 98 98 100*

seconds 0.0 0.0 0.1 0.1 0.4 1.9 7.2 101.6 1561 †

ran10 100 d.bliss n = 100 e = 514

k 0 1 7 8 9 10 11 12
γG
k 100 100 100 99 99 99 99 100*

seconds 0.0 0.0 0.1 0.6 4.5 22.1 466.0 †

149

Appendix B

Code Structure for FindAlmostSymmetry

This appendix provides a brief description for the code structure for FindAlmostSymmetry. The

full source code is available at http://dx.doi.org/10.5281/zenodo.840558.

The files NautyGraph.hpp and NautyGraph.cpp provide a C++ wrapper for nauty’s dense

graphs with dynamic allocation, allowing for the easy addition and removal of edges. The two main

classes are DenseGraph and NautyGraph. DenseGraph is a class for managing graph objects packed

in a bit vector format which can be used in nauty. NautyGraph is derived from DenseGraph and

provides methods to call nauty’s automorphism routine and accessing the results. For each node

A, EF
A (the graph of fixed edges) and PA (the graph of permutations) are stored as DenseGraphs.

A NautyGraph is used for storing the graph G. NautyGraph.hpp and NautyGraph.cpp also define

the class EdgeList, which is used for storing ED
A for each node A. These three classes all have

utilib::PackObject (from PEBBL) as a parent class, allow them to be passed around using MPI

by PEBBL (or utilib’s MPI routines).

The files findAlmost.hpp and parFindAlmost.hpp provide the header information for the

functions and classes used for the solver, and findAlmost.cpp implements these. The classes

defined in findAlmost.hpp provide hooks for PEBBL’s serial interface. Class findAlmost is a

derived class of PEBBL’s branching class, and its methods and attributes set up the problem and

are common to every search node: the original graph G, the starting budget k, and solver options.

Class findAlmostSub is derived from PEBBL’s branchSub class and provides attributes which are

specific to a node, and methods which do the node processing. Most of the main while loop

in Algorithm 6 is contained in findAlmostSub::boundComputation(), which PEBBL repeatedly

calls until either this node is pruned by bound or no more refining can be done for this node,

150

in which case a branching edge is selected using findAlmostSub::findBranchEdge(). Finally,

class findAlmostSol is derived from PEBBL’s solution class, and is used for storing, passing, and

writing solutions. The remaining functions have names corresponding to those in the paper, e.g.,

BuildCostMatrix is implemented in buildCostMatrix().

Similarly, the classes in parFindAlmost.hpp provide the hooks for PEBBL’s parallel interface and

also has the header information for function using MPI. The function parRefineByMatching()

is similar to refineByMatching() but parallelizes the repeated calls to hungarian solve().

Class parFindAlmost is derived from findAlmost and PEBBL’s parallelBranching class, and

has methods that allow instances of it to be passed around using MPI messaging. Similarly,

class parFindAlmostSub is derived from findAlmostSub and PEBBL’s parallelBranchSub. In

addition to facilitating subproblem passing through MPI, parFindAlmostSub also replaces a few

of the methods of findAlmostSub for parallel subproblem management – in particular ensuring

parRefineByMatching() is called while the solver is ramping up.

151

Appendix C

Constrained Minkowski Sums of

Polyhedra

We will prove Theorem 3.1 by extending the classical result of Balas on disjunctive programs.

The success of disjunctive programming as initially laid out by Balas [6, 7] toward the practical

solvability of problems involving indicator constraints is clear; see [11] for a recent overview. We

consider an extension of Balas’s classical result (Theorem C.1), a weaker version of which is given

as a lemma by Faenza et al. [36], and show it can be used to model constrained Minkowski sums

of polyhedra. Generalizing the convexity constraint is an approach that has been taken before,

namely for the shortest path polytope [130] and the tree packing polytope [92], which would be

sufficient to prove Theorem 3.1. However, we show that any integer polytope could be used in place

of the convexity constraint, allowing for a great deal of modeling flexibility. Note that this result

is stronger than we need, but we provide it here for completeness.

The goal of this section is to arrive at a polyhedral representation of constrained Minkowski

sums of polyhedra using indicator variables. First we must dispense with some definitions. Scalar

multiples and Minkowski sums for sets in R
n are defined in their usual way as

λC := {λx | x ∈ C}, (C.1)

C1 + C2 := {x1 + x2 | x1 ∈ C1, x2 ∈ C2}. (C.2)

For a set S ⊂ R
n, conv(S) is the convex hull of S and cone(S) is the conic hull of S. The orthogonal

projection of S ⊂ R
n × R

p onto R
n is denoted projx(S) := {x ∈ R

n | ∃y ∈ R
p s.t. (x, y) ∈ S}.

152

A system of linear inequalities Ax ≤ b is said to be a perfect formulation of a set S ⊂ R
n if

conv(S) = {x ∈ R
n | Ax ≤ b}. For a polyhedron P ⊂ R

n we say that a polyhedron Q ⊂ R
n×R

p is

an extended formulation of P if projx(Q) = P . Such an extended formulation is said to be compact

when only a polynomial number of variables and constraints in the size of the input are needed

to describe Q. For convenience we (again) use the notation [m] = {1, . . . ,m} and subscripts to

indicate the components of a vector.

Naturally our tools are those of convex analysis [136, 147, 65], with the Minkowski-Weyl theorem

for polyhedra [157] playing a lead role. To motivate the framework developed in this section,

consider convex combinations of polyhedra. Suppose we have a collection P 1, . . . , Pm of nonempty

polyhedra, and notice conv
(
∪i∈[m]P

i
)
=
⋃{∑m

i=1 γiP
i | ∑m

i=1 γi = 1, γ ≥ 0}. An interesting

question is when is such a set closed and polyhedral. Indeed Theorem 9.8 and subsequent corollaries

in Rockafellar [136] give sufficient conditions for closedness. Balas [6, 7] provides sufficient conditions

for polyhedreality along with an extended formulation for such a set. We restate Balas’s result.

Theorem C.1. Consider m polyhedra P i = {x ∈ R
n | Aix ≤ bi} and their polyhedral recession

cones Ri = {x ∈ R
n | Aix ≤ 0} and let Qi be a (bounded) polytope such that P i = Qi + Ri.

Define the set S = conv
(
∪i∈[m]P

i
)
and polyhedron P = conv(∪i∈[m]Q

i)+ cone(∪i∈[m]R
i). Then the

polyhedron

Y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aixi ≤ γib
i, i ∈ [m]∑

i∈[m] x
i = x∑

i∈[m] γi = 1

γi ≥ 0, i ∈ [m]

(C.3)

provides an extended formulation of P . If each P i, i ∈ [m], is nonempty then cl(S) = P .

Additionally, the vertices of Y have binary γi.

In the context of Theorem C.1 we also have the following result from Jeroslow [71] and Corollary

9.8.1 in Rockafellar [136]:

Theorem C.2. If P 1, . . . , Pm are all nonempty and have identical recession cones then S = P and

so Y provides a polyhedral extended formulation for S.

We would like to generalize the above theorems to allow for different combinations of polyhedra.

To be precise, suppose Γ is a polyhedron in R
m, and consider the set

⋃{∑m
i=1 γiP

i | γ ∈ Γ}. A

153

natural question is this: can we derive results similar in spirit to those of the preceding theorems?

We answer this question in the affirmative, with a few restrictions on Γ.

To see what some of these restrictions must be, consider the challenges of using indicator

variables as in (C.3). Suppose we have a polyhedron P with a representation Ax ≤ b. Clearly

γP = {x | Ax ≤ γb} for all γ > 0. The first issue is for γ < 0, γP = {x | Ax ≥ γb}. This

shows that allowing the sign to switch on γ will not allow the easy modeling of inequalities, and

therefore we will, without loss of generality, only consider nonnegative indicator variables. Another

issue dealing with the discontinuity of γP when γ is near 0 is that by definition 0P = {0} whereas

{x | Ax ≤ 0b} = {x | Ax ≤ 0}, which is the polyhedral recession cone of P . This demonstrates that

in a formulation like (C.3), while the indicator variables γ allow for “control” over the finite part

of P , the recession directions of P are always included. Similarly, if P is empty, the polyhedral

recession cone {x | Ax ≤ 0} is not, and will be included in a formulation like (C.3). For ease

of exposition we will restrict ourselves to the case when each polyhedron is nonempty, but note

that with some extra notation we could extend the results of Section A to include possibly empty

polyhedra.

A The Extended Formulation

Now consider the set S :=
⋃

γ∈Γ
(∑m

i=1 γiP
i
)
, where P i, i ∈ [m], are nonempty polyhedra in R

n and

Γ ⊆ R
m
+ is a nonempty, nonnegative polyhedron. The goal is to arrive at a polyhedral representation

for S. The exposition here follows that found in 21, Section 4.9.

Theorem C.3. Consider m nonempty polyhedra P i = {x ∈ R
n | Aix ≤ bi}, i ∈ [m], and

for each i ∈ [m] let Qi be a (bounded) polytope in R
n and Ri be a (closed convex) cone in

R
n such that P i = Qi + Ri. Let Γ ⊆ R

m
+ be a nonempty polyhedron. Consider the set

P :=
⋃

γ∈Γ
(∑m

i=1 γiQ
i +
∑m

i=1R
i
)
and consider the polyhedron Y ⊆ R

n+nm+m defined by

Y :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Aixi ≤ γib

i, i ∈ [m]∑m
i=1 x

i = x

(γ1, . . . , γm) = γ ∈ Γ.

(C.4)

Then P = projx(Y) := {x ∈ R
n | ∃(x1, . . . , xm, γ) ∈ R

nm+m s.t. (x, x1, . . . , xm, γ) ∈ Y }. In

particular, P is a polyhedron.

154

Proof. Let x ∈ P (P is nonempty as the union of the sum of nonempty sets). There exists points

qi ∈ Qi, ri ∈ Ri and γ ∈ Γ such that x =
∑m

i=1 γiq
i +
∑m

i=1 r
i. Define xi = γiq

i + ri for i ∈ [m].

Now by construction x =
∑m

i=1 x
i and Aixi = Ai(γiq

i+ri) = γiA
iqi+Airi ≤ γib

i+0 for all i ∈ [m].

Hence (x, x1, . . . , xm, γ) ∈ Y , so P ⊆ projx(Y).

Conversely, let (x, x1, . . . , xm, γ) ∈ Y . Consider I+ := {i | γi > 0} and I0 := {i | γi = 0}. For

i ∈ I+, Aixi ≤ γib
i and so xi ∈ γiQ

i +Ri. For i ∈ I0, Aixi ≤ 0 and so xi ∈ Ri = γiQ
i +Ri. Since

x =
∑m

i=1 x
i ∈∑m

i=1(γiQ
i +Ri) and γ ∈ Γ, this shows x ∈ P , and hence projx(Y) ⊆ P .

As the projection of a polyhedron, P is itself a polyhedron.

Remark C.1. For all Γ ⊆ R
m
+ , Y provides a polynomial-size (in dim(P i) and dim(Γ)) polyhedral

representation of P . Further, if for all i ∈ [m], P i is bounded (i.e., Ri = {0}), then P = S and Y

provides a compact formulation for S.

Remark C.2. If Γ ⊆ R
m
++ (the open, strictly positive orthant), then γiP

i = γiQ
i + Ri

∀(γ1, . . . , γm) ∈ Γ. Therefore P = S and so Y provides a compact formulation for S.

The next theorem demonstrates that cl(S) = P with a restriction on Γ.

Theorem C.4. Let Γ ⊆ R
m
+ and P 1, . . . , Pm ⊆ R

n be nonempty polyhedra. Suppose there exists

γ̂ ∈ Γ such that γ̂i > 0 ∀i ∈ [m]. Then for P and S defined as above, cl(S) = P .

Proof. First consider cl(S) ⊆ P . Since P as a polyhedron is closed, it suffices to show S ⊆ P .

Hence let x ∈ S. Then ∃γ ∈ Γ, pi ∈ P i for i ∈ [m] such that x =
∑m

i=1 γip
i. As above for each

i ∈ [m], consider P i = Qi + Ri, so for each i ∈ [m] we have pi = qi + ri for qi ∈ Qi and ri ∈ Ri.

Thus x =
∑m

i=1 γiq
i+
∑m

i=1 γir
i, and since γiq

i ∈ γiQ
i and γir

i ∈ Ri (as Ri is a closed convex cone,

γi ≥ 0), we have x ∈ P .

Conversely, let x ∈ P . Then there exists γ ∈ Γ, qi ∈ Qi, and ri ∈ Ri such that x =
∑m

i=1 γiq
i +∑m

i=1 r
i. By assumption ∃γ̂ ∈ Γ that is strictly positive. By convexity, (1− ε)γ+ εγ̂ ∈ Γ ∀ε ∈ (0, 1);

further (1 − ε)γ + εγ̂ > 0 ∀ε ∈ (0, 1). Define xε :=
∑m

i=1[(1 − ε)γi + εγ̂i]q
i +

∑m
i=1 r

i. Clearly

limε→0+ xε = x, and we see that xε =
∑m

i=1[(1 − ε)γi + εγ̂i](q
i + ri/[(1 − ε)γi + εγ̂i]). Since

qi + ri/[(1− ε)γi + εγ̂i] ∈ P i for i ∈ [m], ε ∈ (0, 1) and (1− ε)γ + εγ̂ ∈ Γ ∀ε ∈ (0, 1), we have that

xε ∈ S ∀ε ∈ (0, 1). Hence x ∈ cl(S).

The requirement that Γ have a strictly positive element should not be seen as overly restrictive.

If for some i, γi = 0 ∀γ ∈ Γ, then we should probably discard this particular P i since it never

contributes to the sum.

155

Remark C.3. If there exists γ̂ ∈ Γ such that γ̂ > 0 and P 1, . . . , Pm are all nonempty, then

Theorems C.3 and C.4 together imply that cl(S) = projx(Y).

Theorem C.5. Suppose P 1, . . . , Pm are nonempty polyhedra with identical recession cones, and

Γ ⊂ R
m
+ is a polyhedron such that 0 /∈ Γ. Then S =

⋃
γ∈Γ

(∑m
i=1 γiP

i
)
is a polyhedron and

S = projx(Y).

Proof. Let x ∈ P . Then there exists qi ∈ Qi, ri ∈ Ri and γ ∈ Γ such that x =
∑m

i=1 γiq
i+
∑m

i=1 r
i.

By assumption there exist j ∈ [m] such that γj > 0. As the P i’s have identical recession cones,

we have
∑m

i=1 r
i ∈ γjP

j . Define pj = qj +
∑m

i=1 r
i/γj and pi = qi for i �= j, and it follows that

x =
∑m

i=1 γip
i. Hence x ∈ S. The result then follows from Theorem C.3.

Remark C.4. To see the necessity of 0 /∈ Γ, consider the sets S and P when γ = 0. If P 1, . . . , Pm

have the same recession cone R, we see that P
∣∣
γ=0

=
∑m

i=1 0Q
i +
∑m

i=1R
i = R, whereas S

∣∣
γ=0

=∑m
i=1 0P

i = {0}, and R = {0} if and only if all the P i’s are bounded. Hence we can do away with

the assumption 0 /∈ Γ in Theorem C.5 if all the P i’s are bounded.

It may be that Γ is the continuous relaxation of some integer set which determines the polyhedra

P i simultaneously allowed in the sum. The next theorem shows that vertices and extreme rays of Y

have γ components which are vertices and extreme rays of Γ, hence if Γ is a perfect formulation for

some integer set, vertices of Y will have integer γ. Further, even if Γ is not a perfect formulation,

this shows that to find solutions with integer γ one need only consider cuts on Γ and not the entire

polyhedron Y . For ease of notation, for y ∈ Y define yΓ to be the components of y in Γ. Finally,

we note that a version of Theorem C.6 appears as Lemma 5 in [36], although it is restricted to the

pure integer case, and the proof is merely sketched. We provide a complete proof and drop any

assumption of integrality.

Theorem C.6. Y = conv(V) + cone(R), for finite sets V and R, where for each vertex v ∈ V , vΓ

is a vertex of Γ and for each extreme ray r ∈ R, rΓ is an extreme ray of Γ. That is, projγ(Y) = Γ.

Proof. Let y ∈ Y such that y = (x, x1, . . . , xm, γ1, . . . , γm) and define γ := yΓ. Since Γ is a

polyhedron, by the Minkowski-Weyl theorem there exist vectors v1, . . . , vp, r1, . . . , rq ∈ R
m and

λ ∈ R
p
+, μ ∈ R

q
+ such that γ =

∑p
k=1 λkv

k +
∑q

l=1 μlr
l and

∑p
k=1 λk = 1. In particular, we have

γi =

p∑
k=1

λkv
k
i +

q∑
l=1

μlr
l
i, with

p∑
k=1

λk = 1, ∀i ∈ [m] (C.5)

156

Let I+ = {i | γi > 0} and I0 = {i | γi = 0}. Define

xki :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
xiv

k
i /γi if i ∈ I+

xi if i ∈ I0 and λk > 0

x̂ki ∈ vki P
i if i ∈ I0 and λk = 0

∀k ∈ [p], (C.6)

xli :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
xir

l
i/γi if i ∈ I+

0 if i ∈ I0 and μl > 0

x̂li ∈ rliP
i if i ∈ I0 and μl = 0

∀l ∈ [q], (C.7)

and xk =
∑m

i=1 x
k
i for k ∈ [p] and xl =

∑m
i=1 x

l
i for l ∈ [q]. For k ∈ [p] define yk :=

(xk, xk1, . . . , x
k
m, vk1 , . . . , v

k
m) and for l ∈ [q] define yl := (xl, xl1, . . . , x

l
m, rl1, . . . , r

l
m).

We first check the feasibility of the points constructed above. So for each k ∈ [p], consider

yk. By construction ykΓ ∈ Γ and xk =
∑m

i=1 x
k
i , so for feasibility we need verify that Aixki ≤ vki b

i.

Suppose i ∈ I+, then Aixi ≤ γib
i, and multiplying both sides by vki and dividing by γi shows xki

is feasible. Now suppose i ∈ I0 and so Aixi ≤ 0. If λk > 0, then we must have vki = 0, so xki is

feasible. If λk = 0, xki is feasible by construction (since each P i is nonempty we can always find

such a point x̂ki). The feasibility of yl for each l ∈ [q] is similar.

Now we need show y =
∑p

k=1 λky
k +

∑q
l=1 μly

l to complete the proof. So first suppose i ∈ I+,

then
∑p

k=1 λkx
k
i +

∑q
l=1 μlx

l
i =

∑p
k=1 λkxiv

k
i /γi +

∑q
l=1 μlxir

l
i/γi =

xi
γi
(
∑p

k=1 λkv
k
i +

∑q
l=1 μlr

l
i) =

xi. Conversely, suppose i ∈ I0, then
∑p

k=1 λkx
k
i +

∑q
l=1 μlx

l
i =

∑
k:λk>0 λkxi +

∑
k:λk=0 λkx̂

k
i +∑

l:μl>0 μl0 +
∑

l:μl=0 μlx̂
l
i =

∑
k:λk>0 λkxi + 0 + 0 + 0 = xi

∑
k:λk>0 λk = xi. It then follows,∑p

k=1 λkx
k +

∑q
l=1 μlx

l =
∑p

k=1 λk
∑m

i=1 x
k
i +

∑q
l=1 μl

∑m
i=1 x

l
i =

∑m
i=1(

∑p
k=1 λkx

k
i +

∑q
l=1 μlx

l
i) =∑m

i=1 xi = x. Hence, we have shown y =
∑p

k=1 λky
k +

∑q
l=1 μly

l with λ, μ ≥ 0 and
∑p

k=1 λk = 1,

proving the theorem.

As mentioned, Theorem C.6 demonstrates that if Γ is a perfect formulation of some integer

set and the variables xi are continuous, then Y (under the given assumptions) provides a perfect

formulation for S
∣∣
Z+

=
⋃

γ∈Γ∩Z+
{∑m

i=1 γiP
i}. Noting that the polyhedron of Theorem 3.1 is exactly

of this form, we see that the vertices of the polytope D must have integer γ.

157

Appendix D

Specification of UC formulations

In this appendix we specify the unit commitment formulations tested in Section 4.6. We use the

same nomenclature as Chapter 4. All six formulations share a common set of constraints and

variables on generator operation and system balance.

∑
g∈G

(
pg(t) + P gug(t)

)
+ pW (t) = D(t) ∀t ∈ T (D.1a)

∑
g∈G

rg(t) ≥ R(t) ∀t ∈ T (D.1b)

pg(t) + rg(t) ≤ (P g − P g)ug(t)− (P g − SUg)vg(t) ∀t ∈ T , ∀g ∈ G1 (D.1c)

pg(t) + rg(t) ≤ (P g − P g)ug(t)− (P g − SDg)wg(t+1) ∀t ∈ T , ∀g ∈ G1 (D.1d)

pg(t) + rg(t) ≤ (P g − P g)ug(t)

− (P g − SUg)vg(t)− (P g − SDg)wg(t+1) ∀t ∈ T , ∀g ∈ G>1 (D.1e)

pg(t) + rg(t)− pg(t−1) ≤ RUg ∀t ∈ T , ∀g ∈ G (D.1f)

pg(t−1)− pg(t) ≤ RDg ∀t ∈ T , ∀g ∈ G (D.1g)

pg(t) =
∑
l∈Lg

plg(t) ∀t ∈ T , ∀g ∈ G (D.1h)

plg(t) ≤ (P
l
g − P

l−1
g) ∀t ∈ T , ∀l ∈ Lg, ∀g ∈ G (D.1i)

ug(t)− ug(t−1) = vg(t)− wg(t) ∀t ∈ T , ∀g ∈ G (D.1j)

t∑
i=t−UTg+1

vg(i) ≤ ug(t) ∀t ∈ [UTg, T], ∀g ∈ G (D.1k)

158

t∑
i=t−DTg+1

wg(i) ≤ 1− ug(t) ∀t ∈ [DTg, T], ∀g ∈ G (D.1l)

pW (t) ≤W (t) ∀t ∈ T (D.1m)

plg(t) ∈ R+ ∀t ∈ T , ∀l ∈ Lg, ∀g ∈ G (D.1n)

pg(t), rg(t) ∈ R+ ∀t ∈ T , ∀g ∈ G (D.1o)

pW (t) ∈ R+ ∀t ∈ T (D.1p)

ug(t), vg(t), wg(t) ∈ {0, 1} ∀t ∈ T , ∀g ∈ G. (D.1q)

A One Binary Formulation (1-bin)

min
∑
g∈G

∑
t∈T

⎛⎝∑
l∈Lg

(clg p
l
g(t)) + cRg ug(t) + cSUg (t)

⎞⎠ (D.2a)

subject to:

Constraints (D.1a) – (D.1q)

cSUg (t) ≥ csg

⎛⎝ug(t)−
T s

g∑
i=1

ug(t−i)

⎞⎠ ∀s ∈ Sg, ∀g ∈ G, ∀t ∈ T (D.2b)

cSUg (t) ≥ 0 ∀g ∈ G, ∀t ∈ T (D.2c)

B Strengthened One Binary Formulation (1-Bin*)

min
∑
g∈G

∑
t∈T

⎛⎝∑
l∈Lg

(clg p
l
g(t)) + cRg ug(t) + cSUg (t)

⎞⎠ (D.3a)

subject to:

Constraints (D.1a) – (D.1q)

cSUg (t) ≥ csg

⎛⎝ug(t)−
DTg∑
i=1

ug(t−i)

⎞⎠− s−1∑
k=1

⎛⎜⎝(csg − ckg)

T
k
g∑

i=Tk
g+1

ug(t−i)

⎞⎟⎠ ∀s ∈ Sg, ∀g ∈ G, ∀t ∈ T

(D.3b)

159

cSUg (t) ≥ 0 ∀g ∈ G, ∀t ∈ T
(D.3c)

C Three Binary Formulation (3-bin)

min
∑
g∈G

∑
t∈T

⎛⎝∑
l∈Lg

(clg p
l
g(t)) + cRg ug(t) + cSUg (t)

⎞⎠ (D.4a)

subject to:

Constraints (D.1a) – (D.1q)

cSUg (t) ≥ csgvg(t)−
s−1∑
k=1

⎛⎜⎝(csg − ckg)

T
k
g−1∑

i=Tk
g

wg(t−i)

⎞⎟⎠ ∀s ∈ Sg, ∀g ∈ G, ∀t ∈ T (D.4b)

cSUg (t) ≥ 0 ∀g ∈ G, ∀t ∈ T (D.4c)

D Startup Type Indicator Formulation (STI)

min
∑
g∈G

∑
t∈T

⎛⎝∑
l∈Lg

(clg p
l
g(t)) + cRg ug(t) +

S∑
s=1

csδs(t)

⎞⎠ (D.5a)

subject to:

Constraints (D.1a) – (D.1q)

δsg(t) ≤
T

s
g−1∑

i=T s
g

wg(t− i) ∀s ∈ Sg \ Sg, ∀g ∈ G, ∀t ∈ T (D.5b)

vg(t) =

Sg∑
s=1

δsg(t) ∀g ∈ G, ∀t ∈ T . (D.5c)

E Matching Formulation (Match)

min
∑
g∈G

∑
t∈T

(∑
l∈Lg

(clg p
l
g(t)) + cRg ug(t) + cSg v(t) +

Sg−1∑
s=1

(csg − cSg)

⎛⎜⎝ t−T s
g∑

t′=t−T
s
g+1

xg(t
′, t)

⎞⎟⎠) (D.6a)

160

subject to:

Constraints (D.1a) – (D.1q)

t−DTg∑
t′=t−TCg+1

xg(t
′, t) ≤ vg(t) ∀g ∈ G, ∀t ∈ T (D.6b)

t+TCg−1∑
t′=t+DTg

xg(t, t
′) ≤ wg(t) ∀g ∈ G, ∀t ∈ T , (D.6c)

F Extended Formulation (EF)

min
∑
g∈G

∑
t∈T

(∑
l∈Lg

(clg p
l
g(t)) + cRg ug(t) +

Sg∑
s=1

csg

⎛⎝ t−T s∑
t′=t−T

s
+1

xg(t
′, t)

⎞⎠) (D.7a)

subject to:

Constraints (D.1a) – (D.1q)∑
{t′|t′>t}

yg(t, t
′) = vg(t) ∀g ∈ G, ∀t ∈ T (D.7b)

∑
{t′|t′<t}

yg(t
′, t) = wg(t) ∀g ∈ G, ∀t ∈ T (D.7c)

∑
{t′|t′<t}

xg(t
′, t) = vg(t) ∀g ∈ G, ∀t ∈ T (D.7d)

∑
{t′|t′>t}

xg(t, t
′) = wg(t) ∀g ∈ G, ∀t ∈ T (D.7e)

∑
{τ,τ ′|τ≤t<τ ′}

yg(τ, τ
′) = ug(t) ∀g ∈ G, ∀t ∈ T . (D.7f)

161

Appendix E

Detailed Computational Results for

Chapter 4

This is an appendix detailing the computational results in Chapter 4. Here we present complete

tables of computational results used to make the summary tables in Chapter 4 as well as a statical

analysis of the computational performance of the various formulations.

A Computational Results

In this section we present full tables for the computational results reported in Chapter 4. The

computational platform used for all experiments is a Dell PowerEdge T620 with two Intel Xeon

E5-2670 processors for a total of 16 cores and 32 threads, 256GB of RAM, running the Ubuntu

14.04.5 operating system. The latest major versions of Gurobi (7.0.1) and CPLEX (12.7.1.0) were

used when the experiments were conducted.

When referring to a startup cost formulation, we use the same notation as in Chapter 4. That

is, “EF” is the extended formulation from [131], “Match” is the matching formulation introduced

in Chapter 4, “STI” is the startup type indicator formulation introduced in Chapter 4, “3-bin” is

the three-binary formulation also introduced in Chapter 4, “1-bin*” is the strengthened one-binary

formulation introduced in [144], and “1-bin” is the typical formulation in the generator’s status

variables from [115, 17].

We use the same base unit commitment model to benchmark the different startup cost

formulations, the full specification of which can be found in Appendix D.

162

Table E.1: Gurobi Computational Results for CAISO Instances: Wall Clock Time. When
instances are solved to optimality, reported quantities are seconds to solution. Otherwise, reported
quantities in parentheses are the optimality gap after 600 seconds.

Instance EF Match STI 3-bin 1-bin* 1-bin

2014-09-01 0% 357.21 30.24 46.80 53.55 (0.028%) (0.041%)

2014-12-01 0% 169.30 23.89 23.06 65.81 (0.073%) (0.068%)

2015-03-01 0% 166.04 24.68 41.76 16.46 (0.042%) (0.053%)

2015-06-01 0% 163.38 12.64 18.76 24.74 (0.017%) (0.020%)

Scenario400 0% 335.67 26.60 65.02 173.37 (0.403%) (0.383%)

2014-09-01 1% 462.78 20.39 22.44 31.83 (0.055%) (0.045%)

2014-12-01 1% 381.80 36.43 28.90 85.78 (0.072%) (0.069%)

2015-03-01 1% 178.40 20.41 35.08 67.20 (0.079%) (0.090%)

2015-06-01 1% 274.25 41.60 39.03 70.83 (0.020%) (0.028%)

Scenario400 1% (0.012%) 46.08 83.29 182.19 (0.376%) (0.446%)

2014-09-01 3% 598.73 75.69 63.26 87.48 (0.043%) (0.036%)

2014-12-01 3% (0.011%) 63.64 54.88 93.39 (0.083%) (0.087%)

2015-03-01 3% 217.10 48.91 73.06 99.57 (0.112%) (0.110%)

2015-06-01 3% 329.79 84.66 38.13 83.26 (0.024%) (0.022%)

Scenario400 3% (0.013%) 129.50 243.01 356.10 (0.495%) (0.538%)

2014-09-01 5% 412.24 46.80 44.92 119.49 (0.037%) (0.037%)

2014-12-01 5% (0.012%) 86.41 107.14 113.69 (0.104%) (0.082%)

2015-03-01 5% (0.010%) 83.49 87.22 94.95 (0.115%) (0.105%)

2015-06-01 5% (0.010%) 28.28 66.97 151.47 (0.031%) (0.031%)

Scenario400 5% (0.014%) 115.02 107.02 (0.014%) (0.514%) (0.570%)

Geometric Mean: >370.3 43.12 52.84 >91.43 >600 >600

A.1 CAISO Instances

We report the computational experiments based on the “CAISO” generators, which are based on

real-world market data from the California Independent System Operator. This test set has 610

generators. Four 48-hour demand scenrios are based on historical data corresponding to the date

listed (2014-09-01, 2014-12-01, 2015-03-01, 2015-06-01), and one hypothetical high-wind scenario

where wind supply is on average 40% of energy demanded (Scenario400).

For each scenario we considered four reserve levels: 0%, 1%, 3%, and 5%. In Tables E.1 - E.5

for each instance we report the demand/wind scenario followed by the reserve level. A 600 second

time limit was imposed for these instances for both solvers.

163

Gurobi 7.0.1

All Gurobi settings besides the time limit were left at defaults. In Table E.1 we report the wall-clock

time reported by Gurobi at termination, or if Gurobi hit the 600 second time-limit, we report in

parentheses the terminating optimality gap. In the last row we report the geometric mean solve

time across the 20 instances for each formulation, inserting 600 seconds into the calculation in the

event the solver times out.

As we can see, the EF, 1-bin* and 1-bin variants are uncompetitive. The EF variant is large in

comparison to the others, which significantly slows down the initial LP solve as well as root node

processing (i.e., heuristics and cut-generation). Conversely, the 1-bin and 1-bin* variants are more

compact than Match or STI, but the overall weakness of the formulations (see Table E.5) prevents

Gurobi from finding and certifying an optimal solution (with < 0.01% optimality gap) within the

time limit. The 3-bin variant is as compact as the 1-bin variants, and while it is more competitive

than the latter, for nearly all of these instances it comes in 3rd place behind Match and STI, and

fails to solve in one case. The Match and STI variants have broadly similar performance, with

Match pulling ahead given its advantage in the hypothetical Scenario400. Based on computational

time these instances are “easy” for both Match and STI, in the sense that all 20 instances solve to

optimality in under 5 minutes.

In Table E.2 we report the number of branch-and-cut nodes explored by Gurobi at termination,

indicating with a * when the solver terminated because of the 600 second time limit. In the last

row we report the shifted geometric mean node count across all twenty instances (this value is

calculated by adding 1 to all node counts and then computing the geometric mean, so as to avoid

multiplication by 0).

As remarked above, because the EF variant is so large, Gurobi only leaves the root node for the

EF variant in one instance, and in all other cases Gurobi either finds an optimal solution at the

root note or hits the wall-clock limit before beginning to branch. On average Gurobi uses slightly

fewer nodes for the Match variant over the STI, and similarly 3-bin, when it solves, only uses a

few more nodes on average than STI. Turning to the 1-bin variants, we can see Gurobi processed

several thousand nodes in each instance before hitting the time limit, which was not enough to

overcome the weakness of these formulations.

164

Table E.2: Gurobi Computational Results for CAISO Instances: Nodes Explored. Cells report
the number of tree nodes explored during branch-and-cut search. Entries with a terminating “*”
report the number of tree nodes explored when the 600 second time limit is hit. Otherwise, the
entries represent the number of tree nodes required to identify an optimal solution.

Instance EF Match STI 3-bin 1-bin* 1-bin

2014-09-01 0% 0 0 110 0 11895* 9285*

2014-12-01 0% 0 0 0 3 5904* 4067*

2015-03-01 0% 0 0 0 0 2565* 4419*

2015-06-01 0% 0 0 0 0 7247* 15893*

Scenario400 0% 0 0 0 2373 5604* 5801*

2014-09-01 1% 0 0 0 0 7164* 10934*

2014-12-01 1% 0 95 0 160 4072* 7144*

2015-03-01 1% 0 0 0 0 2415* 2684*

2015-06-01 1% 0 47 47 0 11853* 5499*

Scenario400 1% 0* 0 47 1854 7210* 6542*

2014-09-01 3% 0 7 31 31 14071* 12852*

2014-12-01 3% 0* 1292 366 144 3900* 6024*

2015-03-01 3% 0 0 58 1 2476* 2124*

2015-06-01 3% 0 0 0 0 8362* 5153*

Scenario400 3% 0* 2055 2874 2309 6518* 6657*

2014-09-01 5% 0 95 147 2497 7763* 9316*

2014-12-01 5% 0* 1203 40 138 4497* 3681*

2015-03-01 5% 3783* 923 2971 758 2264* 2263*

2015-06-01 5% 0* 0 100 1125 3894* 5783*

Scenario400 5% 0* 3867 140 3848* 6684* 6907*

Shifted Geo. Mean: >1.510 13.50 20.22 >39.09 >5914 >5827

CPLEX 12.7.1.0

In Table E.3 we report the wall-clock time required by CPLEX to reach an optimal solution, or if

the solver hit the time limit, we report the optimality gap at termination in parentheses.

Overall CPLEX performs better on these instances than Gurobi, but we still see the EF and

1-bin variants are uncompetitive. CPLEX is able to solve all the instances using Match, STI, and 3-

bin within the time limit, but it is obvious that 3-bin is the inferior of these three: in the worst case

(Scenario400 5%) it needs 423 seconds, whereas STI in the worst case needs 223 seconds and Match

only needs 110 seconds in the worst case. Though STI outperforms Match in mean solve time,

this highlights that Match has flatter performance profile than STI on this instances. In a similar

fashion, we see that 3-bin is sometimes the fastest, but for all the high-wind Scenario400 instances

it performs significantly worse than Match or STI. 3-bin underperformed on these instances for

Gurobi as well. This is in spite of the fact that STI and 3-bin exhibit the same optimality gap

165

Table E.3: CPLEX Computational Results for CAISO Instances: Wall Clock Time. When
instances are solved to optimality, reported quantities are seconds to solution. Otherwise, reported
quantities in parentheses are the optimality gap after 600 seconds.

Instance EF Match STI 3-bin 1-bin* 1-bin

2014-09-01 0% 277.51 47.36 32.54 38.42 (0.060%) (0.080%)

2014-12-01 0% 176.86 25.03 30.41 45.46 (0.103%) (0.118%)

2015-03-01 0% 167.34 22.82 19.78 20.76 (0.082%) (0.111%)

2015-06-01 0% 141.00 19.68 19.97 19.01 (0.023%) (0.056%)

Scenario400 0% 189.98 39.40 52.17 218.87 (0.801%) (0.956%)

2014-09-01 1% 245.80 46.41 19.75 24.74 (0.068%) (0.097%)

2014-12-01 1% 189.27 41.73 36.97 66.30 (0.111%) (0.146%)

2015-03-01 1% 172.37 37.36 36.69 41.24 (0.059%) (0.102%)

2015-06-01 1% 188.68 34.94 30.25 19.89 (0.026%) (0.064%)

Scenario400 1% 288.39 63.93 53.29 319.76 (0.818%) (0.874%)

2014-09-01 3% 415.29 62.67 40.45 37.27 (0.067%) (0.108%)

2014-12-01 3% 292.17 72.06 52.07 101.31 (0.120%) (0.135%)

2015-03-01 3% 346.39 58.97 43.02 55.51 (0.129%) (0.102%)

2015-06-01 3% 180.42 38.56 20.41 19.97 (0.066%) (0.073%)

Scenario400 3% (0.012%) 110.20 140.43 420.13 (0.678%) (0.774%)

2014-09-01 5% 272.24 60.57 29.44 53.30 (0.065%) (0.091%)

2014-12-01 5% 381.81 75.47 62.67 102.32 (0.134%) (0.164%)

2015-03-01 5% 273.29 35.96 44.08 58.95 (0.135%) (0.161%)

2015-06-01 5% 291.17 71.24 38.51 59.93 (0.039%) (0.095%)

Scenario400 5% (0.012%) 94.47 222.68 422.80 (0.766%) (1.384%)

Geometric Mean: >261.1 48.02 40.75 62.87 >600 >600

on all these instances (see Table E.5). One possible explanation of this phenomenon is the extra

indicator variables δsg(t) make it easier for both Gurobi and CPLEX to generate strong cutting

planes. Another possibility is that branching on these indicator variables is often advantageous.

In Table E.4 we report the number of branch-and-cut nodes CPLEX explored during search,

with a * indicating that the solver terminated because it reached the 600 second wall-clock limit.

In the last row we report the shifted geometric mean across the 20 instances, which is calculated

the same way it was in Table E.2.

We see that for the tighter formulations (EF, Match, STI, and 3-bin), CPLEX often finds and

proves an optimal solution at the root node or only a few nodes into the tree. For the 1-bin

variants, CPLEX often explores more than 10000 nodes before hitting the wall-clock time limit.

Additionally, considering instances Scenario400 3% and Scenario400 5%, we observe that Match

was able to out-perform STI on these instances because it required less enumeration. Similarly,

166

Table E.4: CPLEX Computational Results for CAISO Instances: Nodes Explored. Cells report
the number of tree nodes explored during branch-and-cut search. Entries with a terminating “*”
report the number of tree nodes explored when the 600 second time limit is hit. Otherwise, the
entries represent the number of tree nodes required to identify an optimal solution.

Instance EF Match STI 3-bin 1-bin* 1-bin

2014-09-01 0% 0 0 0 0 33839* 31955*

2014-12-01 0% 0 0 0 0 15956* 17895*

2015-03-01 0% 0 0 0 0 18359* 17284*

2015-06-01 0% 0 0 0 0 26114* 23025*

Scenario400 0% 0 0 0 5701 8586* 6955*

2014-09-01 1% 0 0 0 0 35138* 28739*

2014-12-01 1% 0 0 0 263 16691* 15893*

2015-03-01 1% 0 0 0 0 25618* 23716*

2015-06-01 1% 0 0 0 0 24161* 20693*

Scenario400 1% 0 0 0 5748 8766* 7822*

2014-09-01 3% 45 41 126 0 24013* 26919*

2014-12-01 3% 2 0 21 1531 13099* 14593*

2015-03-01 3% 5 0 2 137 16259* 20094*

2015-06-01 3% 0 0 0 0 10014* 18983*

Scenario400 3% 803* 508 5662 5833 6445* 6008*

2014-09-01 5% 0 3 0 38 23902* 23423*

2014-12-01 5% 43 34 2 2700 7752* 10689*

2015-03-01 5% 0 0 36 40 14412* 10718*

2015-06-01 5% 3 4 0 6 16081* 11000*

Scenario400 5% 1166* 62 6378 5815 5922* 5944*

Shifted Geo. Mean: >3.60 2.83 4.75 >32.6 >15442 >15210

3-bin requires more than 5000 nodes on each of the Scenario400 instances, explaining its relative

weakness on these high-wind instances.

Relative Integrality Gap

In Table E.5 we report the relative integrality gap for each instance and formulation. This is

calculated by solving the LP relaxation for each problem and instance, which has value z∗LP , and

comparing that to the best integer solution found across all twelve runs for each instance, z∗IP . The

corresponding integrality gap can be then calculated by appealing to the formula

relative integrality gap =
z∗IP − z∗LP

z∗IP
. (E.1)

The values in Table E.5 report this ratio as a percentage.

167

Table E.5: Computational Results for CAISO Instances: Relative Integrality Gap (%).

Instance EF Match STI 3-bin 1-bin* 1-bin

2014-09-01 0% 0.0097 0.0097 0.0229 0.0229 0.9878 1.0506

2014-12-01 0% 0.0058 0.0058 0.0190 0.0190 1.0813 1.1370

2015-03-01 0% 0.0020 0.0020 0.0270 0.0270 1.5774 1.5774

2015-06-01 0% 0.0012 0.0012 0.0102 0.0102 0.8885 0.8915

Scenario400 0% 0.0113 0.0113 0.1288 0.1288 4.6156 4.6972

2014-09-01 1% 0.0106 0.0106 0.0239 0.0239 1.0058 1.0682

2014-12-01 1% 0.0059 0.0059 0.0198 0.0198 1.0906 1.1509

2015-03-01 1% 0.0037 0.0037 0.0326 0.0326 1.6411 1.6411

2015-06-01 1% 0.0044 0.0044 0.0134 0.0134 0.9105 0.9105

Scenario400 1% 0.0128 0.0128 0.1302 0.1302 4.6721 4.7553

2014-09-01 3% 0.0149 0.0149 0.0283 0.0283 1.0452 1.1093

2014-12-01 3% 0.0089 0.0089 0.0245 0.0245 1.1165 1.1803

2015-03-01 3% 0.0119 0.0119 0.0428 0.0428 1.7416 1.7446

2015-06-01 3% 0.0087 0.0087 0.0180 0.0180 0.9373 0.9451

Scenario400 3% 0.0201 0.0201 0.1372 0.1372 4.7249 4.8072

2014-09-01 5% 0.0081 0.0081 0.0217 0.0217 1.0657 1.1348

2014-12-01 5% 0.0107 0.0107 0.0265 0.0265 1.1415 1.2094

2015-03-01 5% 0.0091 0.0091 0.0459 0.0459 1.7700 1.7798

2015-06-01 5% 0.0084 0.0084 0.0181 0.0181 0.9474 0.9559

Scenario400 5% 0.0237 0.0237 0.1400 0.1400 4.7721 4.8568

Geometric Mean: 0.0079 0.0079 0.0328 0.0328 1.5251 1.5688

Examining Table E.5, we see that EF and Match, as well as STI and 3-bin, always have identical

gaps. One way of viewing the observed equivalence of EF and Match is that although Match is

not a perfect formulation for startup costs like EF is, the only vertices that are fractional in Match

are sub-optimal – at least for reasonable (i.e., concave increasing) startup costs. We suspect a

similar situation is playing itself out in the comparison between STI and 3-bin. Turning to the

1-bin variants, we see the optimality gap for these is quite large relative to the other formulations

tested, which helps to explain their weak computational performance. Additionally, across these

instances Match is able to close 40-90% of the integrality gap over STI, which helps explain its

performance despite requiring more integer variables.

A.2 FERC Instances

We report the computational experiments based on the “FERC” generators, which are drawn

from the RTO Unit Commitment Test System provided by the Federal Energy Regulatory

Commission [84], which itself is based on market data gathered from the PJM Interconnection.

168

The FERC set of generators consists of a “Winter” set and a “Summer” set, and each test set

has approximately 900 generators. Demand, reserve, and wind scenarios for 2015 were constructed

based on market data available on the PJM website [128, 129]. Twelve days were selected from

2015, one from each month, to create a variety of scenarios. We used the Summer generators for

the months April – September and the Winter generators for the remaining months.

Using the data collected, we determined wind power was 2% of load, on average, in 2015. We

created then for each day selected two scenarios, one with the actual wind data from 2015 (2% Wind

Penetration), and another where the wind data from 2015 was multiplied by a constant factor of 15

(30% Wind Penetration). Hence the 2% wind scenarios correspond to the problem facing system

operators today, whereas the 30% wind scenarios correspond to problems that system operators

may face in the future under high renewables penetration.

For all solvers a time limit of 900 seconds was imposed for these computational experiments.

Gurobi 7.0.1

Because this test set is larger than CAISO, Gurobi often selects the deterministic concurrent

optimizer to solve the root LP (this solves the root node using one core for primal simplex, one

core for dual simplex, and the remaining cores for parallel barrier). Preliminary experiments

showed that this choice resulted in a random, and often large (i.e. greater than 30 seconds),

“concurrent spin time,” which is the time spend ensuring this concurrent LP solver is deterministic.

Gurobi recommended setting the Method parameter to 3 to eliminate this lag, which selects the

non-deterministic concurrent optimizer. This is the same LP solver without the logic to ensure

determinism. Hence we set the Method parameter to 3 for the FERC experiments on Gurobi.

As the solver almost always solved the root LPs in this case using parallel barrier, a practitioner

wanting to ensure determinism could set the Method parameter to 2 without loosing performance.

In Table E.6 we report the wall-clock time for the FERC instances, inserting in parentheses the

terminating optimality gap when the solver hits the time limit of 900 seconds. (In the 2% wind

penetration case, for the 1-bin formulation, instance 2015-07-01, Gurobi found an optimal solution

before the solver terminated, so we report the time.)

For the 2% wind instances we observe the 1-bin variants perform better than the CASIO

instances, but they are still uncompetitive with Match, STI, and 3-bin variants. The EF is similarly

uncompetitive. We see that 3-bin is significantly worse than Match or STI, and for one instance

(2015-09-01) takes over 800 seconds to find an optimal solution, whereas STI in the worst case needs

169

Table E.6: Gurobi Computational Results for FERC Instances: Wall Clock Time. When instances
are solved to optimality, reported quantities are seconds to solution. Otherwise, reported quantities
in parentheses are the optimality gap after 900 seconds.

(a) 2% Wind Penetration

Instance EF Match STI 3-bin 1-bin* 1-bin

2015-01-01 511.91 111.34 193.07 241.63 (0.017%) (0.046%)

2015-02-01 586.95 85.12 314.07 463.66 (0.143%) (0.172%)

2015-03-01 807.3 152.24 177.44 245.77 649.54 596.24

2015-04-01 (0.012%) 190.62 321.6 177.27 675.45 660.92

2015-05-01 512.55 177.51 191.29 186.68 334.17 416.03

2015-06-01 619.8 142.57 139.16 211.92 406.68 575.42

2015-07-01 (0.017%) 411.00 491.22 260.41 (0.014%) 901.87

2015-08-01 808.34 113.13 350.52 449.67 (0.11%) (0.165%)

2015-09-01 (0.016%) 313.79 284.31 840.5 (0.101%) (0.113%)

2015-10-01 605.11 132.95 113.69 133.48 582.63 582.58

2015-11-02 573.13 109.88 200.83 209.22 (0.073%) (0.136%)

2015-12-01 (0.013%) 116.25 114.15 242.18 (0.055%) (0.105%)

Geometric Mean: >701.4 153.60 218.36 266.53 >710.7 >738.6

(b) 30% Wind Penetration

Instance EF Match STI 3-bin 1-bin* 1-bin

2015-01-01 712.53 127.22 (0.902%) (1.334%) (4.083%) (3.808%)

2015-02-01 612.38 114.78 (0.043%) (0.158%) (0.952%) (0.959%)

2015-03-01 895.97 647.78 480.77 496.35 (0.386%) (0.460%)

2015-04-01 (0.024%) 140.82 236.23 425.71 (0.276%) (1.054%)

2015-05-01 (0.016%) 104.62 119.06 110.24 312.33 337.55

2015-06-01 698.12 222.54 141.18 110.06 (0.408%) (0.101%)

2015-07-01 (0.015%) 126.98 346.18 230.15 (0.222%) (0.105%)

2015-08-01 (0.019%) 395.87 379.42 227.92 (0.768%) (0.870%)

2015-09-01 (0.012%) 245.73 780.9 (0.035%) (0.254%) (0.256%)

2015-10-01 (0.036%) 439.03 352.54 533.72 617.14 607.19

2015-11-02 789.73 182.40 618.73 782.18 (0.803%) (1.065%)

2015-12-01 674.84 312.67 361.35 421.08 (0.035%) (0.035%)

Geometric Mean: >807.9 214.70 >390.3 >400.9 >798.5 >802.6

only 491 seconds (2015-07-01), and Match in the worst case needs only 411 seconds (2015-07-01).

Overall Match outperforms the other variants on these instances using Gurobi.

Turning to the 30% wind instances, we first note that Match is the only variant that solves all 12

instances, and also dominants the other variants in geometric mean solve time. It is interesting to

note, turning to a moment to Table E.10, that for the 2015-01-01 and 2015-02-01 instances, Match

is able to close 95% and 67% of the integrality gap, respectively, over STI. This explains why only

170

Table E.7: Gurobi Computational Results for FERC Instances: Nodes Explored. Cells report
the number of tree nodes explored during branch-and-cut search. Entries with a terminating “*”
report the number of tree nodes explored when the 900 second time limit is hit.

(a) 2% Wind Penetration

Instance EF Match STI 3-bin 1-bin* 1-bin

2015-01-01 0 0 0 0 1443* 101*

2015-02-01 0 0 47 976 3864* 3964*

2015-03-01 0 0 0 0 1537 1487

2015-04-01 0* 0 0 0 0 0

2015-05-01 0 0 0 0 0 0

2015-06-01 0 0 0 0 0 0

2015-07-01 0* 0 123 47 281* 505

2015-08-01 0 0 720 1756 1194* 420*

2015-09-01 0* 46 425 3543 4087* 4613*

2015-10-01 0 0 0 0 0 0

2015-11-02 0 0 0 0 15* 15*

2015-12-01 0* 0 0 0 46* 30*

Shifted Geo. Mean: >1.00 1.38 5.91 9.03 >67.5 >50.8

(b) 30% Wind Penetration

Instance EF Match STI 3-bin 1-bin* 1-bin

2015-01-01 0 0 4440* 7761* 147* 1592*

2015-02-01 0 0 2067* 2079* 3791* 3387*

2015-03-01 0 47 550 47 31* 47*

2015-04-01 0* 0 0 47 1858* 79*

2015-05-01 0* 0 0 0 0 0

2015-06-01 0 0 0 0 31* 15*

2015-07-01 0* 0 0 0 15* 47*

2015-08-01 0* 879 60 0 15* 31*

2015-09-01 0* 0 2573 4180* 5759* 4241*

2015-10-01 0* 2501 1775 2199 2100 1161

2015-11-02 0 0 256 390 31* 15*

2015-12-01 0 0 0 387 655* 603*

Shifted Geo. Mean: >1.00 4.66 >51.7 >78.2 >142 >130

Match and EF were able to solve these instances within the time limit. Here again we find again

that the EF and 1-bin variants are uncompetitive, and while 3-bin is sometimes the fastest to a

solution (e.g. 2015-08-01), it exhibits more performance variability than either STI or Match.

In Table E.7 we report the number of branch-and-cut nodes explored at termination; instances

when Gurobi terminated because the time limit of 900 seconds was reached are denoted with a *.

171

In the last row we report the shifted geometric mean across the twelve runs of each wind type,

which is calculated the same way it was for Table E.5.

Across both wind levels it is interesting to note that Gurobi often spends the majority of the

time at the root node, first solving the LP and then in cut generation and root-node heuristics. For

the largest formulation, EF, Gurobi either finds the optimal at the root node or terminates without

having branched. Additionally, the low node count observed in most of the instances for the 1-bin

variants reflect this fact as well; Gurobi spends most of the time at the root node attempting to

tighten this formulations with cuts. Using the Match variant Gurobi solves nearly all the 2% wind

instances at the root node, and only has to explore a significant portion of the tree for a few of the

30% wind instances.

CPLEX 12.7.1.0

For this experiment all CPLEX settings were preserved at default, save setting the 900 second

wall-clock time limit.

In Table E.8 we report the wall-clock time using CPLEX for the FERC instances, replacing the

time with the terminating optimality gap in parentheses when the solver reaches the 900 second

time limit without certifying an optimal solution.

Similar to the experience with the CAISO instances, CPLEX overall performs better on this

test set than Gurobi. Examining the solver output suggests that one potential reason for this

is CPLEX’s dual simplex method was usually successful at finding the optimal LP solution in a

reasonable amount of time, at least when compared to Gurobi.

Considering the 2% wind instances, we see that Match, STI, and 3-bin variants solve every

instance, with STI exhibiting the best performance overall. Similar to before, the EF, 1-bin*,

and 1-bin variants are not competitive. Looking at just Match, STI, and 3-bin, the 3-bin variant

exhibits severe performance variability: it solves five of the twelve instances the fastest, but it has

the worst-case longest run time of these three – 738 seconds vs. 222 seconds for Match and 150

seconds for STI.

Turning to the 30% wind instances, we note that Match is the only variant able to solve all

twelve instances in the time limit required, and is the fastest in geometric mean. Interestingly

CPLEX was able to solve the instance 2015-02-01 using STI in a reasonable time. Comparing the

terminating optimality gaps, we see that for instance 2015-01-01, Gurobi terminated with a gap

of 0.902% for STI, whereas CPLEX terminated with a gap of only 0.078%. This suggests CPLEX

172

Table E.8: CPLEX Computational Results for FERC Instances: Wall Clock Time. When
instances are solved to optimality, reported quantities are seconds to solution. Otherwise, reported
quantities in parentheses are the optimality gap after 900 seconds.

(a) 2% Wind Penetration

Instance EF Match STI 3-bin 1-bin* 1-bin

2015-01-01 340.32 127.12 116.39 103.33 (0.017%) (0.016%)

2015-02-01 382.86 123.08 144.91 737.72 (0.264%) (0.261%)

2015-03-01 624.50 127.39 100.59 172.34 498.82 578.84

2015-04-01 602.51 115.71 144.15 134.50 292.09 297.05

2015-05-01 323.48 83.25 73.91 108.68 206.31 153.57

2015-06-01 353.67 119.69 94.44 79.89 256.10 339.02

2015-07-01 868.58 221.59 93.79 87.97 352.34 516.29

2015-08-01 344.70 131.51 92.35 193.95 (0.135%) (0.130%)

2015-09-01 (0.011%) 143.91 127.92 527.99 (0.144%) (0.148%)

2015-10-01 445.44 164.97 150.02 143.53 355.31 393.93

2015-11-02 475.37 175.06 134.81 129.18 867.88 (0.017%)

2015-12-01 440.35 138.84 122.01 131.57 427.34 523.87

Geometric Mean: >477.6 135.60 113.70 162.42 >498.3 >536.1

(b) 30% Wind Penetration

Instance EF Match STI 3-bin 1-bin* 1-bin

2015-01-01 455.13 155.13 (0.078%) (1.252%) (4.206%) (4.163%)

2015-02-01 489.58 165.69 310.78 (0.152%) (1.975%) (1.740%)

2015-03-01 618.62 179.55 214.57 242.20 (0.112%) (0.114%)

2015-04-01 857.72 247.31 258.42 210.11 (0.753%) (0.774%)

2015-05-01 414.45 128.01 101.18 82.64 262.59 240.91

2015-06-01 460.15 166.51 109.42 100.83 (0.035%) (0.040%)

2015-07-01 506.11 182.80 131.57 121.17 (0.037%) (0.041%)

2015-08-01 (0.019%) 196.02 161.15 140.66 (0.198%) (0.162%)

2015-09-01 896.64 178.61 173.09 736.56 (0.949%) (0.607%)

2015-10-01 (0.012%) 269.18 277.81 559.67 514.99 738.49

2015-11-02 447.73 189.60 248.55 (0.022%) (0.480%) (0.260%)

2015-12-01 636.79 202.57 176.64 215.01 (0.104%) (0.096%)

Geometric Mean: >604.1 185.02 >210.8 >296.8 >775.3 >793.2

may be better than Gurobi at tightening the STI formulation either through cuts or presolve,

which may explain the difference in performance between the two solvers. For the other variants

these instances are largely similar to those preceding: 3-bin exhibits performance variability and is

inferior to both Match and STI, and the EF, 1-bin*, and 1-bin variants are uncompetitive.

In Table E.9 we report the number of nodes explored at termination, denoting with a * when

the solver terminated because it reached the 900 second wall-clock time limit.

173

Table E.9: CPLEX Computational Results for FERC Instances: Nodes Explored. Cells report
the number of tree nodes explored during branch-and-cut search. Entries with a terminating “*”
report the number of tree nodes explored when the 900 second time limit is hit.

(a) 2% Wind Penetration

Instance EF Match STI 3-bin 1-bin* 1-bin

2015-01-01 0 0 0 0 5704* 5696*

2015-02-01 0 0 0 5688 3434* 3825*

2015-03-01 11 0 0 0 2274 3868

2015-04-01 0 0 0 0 84 88

2015-05-01 0 0 0 0 73 0

2015-06-01 0 0 0 0 0 0

2015-07-01 0 0 0 0 722 1943

2015-08-01 0 0 0 1045 5672* 5694*

2015-09-01 0* 0 0 5507 5658* 5826*

2015-10-01 0 0 0 0 0 27

2015-11-02 0 0 0 0 3768 2871*

2015-12-01 0 0 0 0 165 647

Shifted Geo. Mean: >1.23 1.00 1.00 7.52 >355.5 >413.8

(b) 30% Wind Penetration

Instance EF Match STI 3-bin 1-bin* 1-bin

2015-01-01 0 0 2576* 3790* 1094* 1384*

2015-02-01 0 0 259 5530* 2145* 2370*

2015-03-01 0 0 0 0 3005* 2748*

2015-04-01 0 0 0 0 1856* 1762*

2015-05-01 0 0 0 0 0 0

2015-06-01 0 0 0 0 2335* 2366*

2015-07-01 0 0 0 0 3207* 2901*

2015-08-01 0* 0 0 0 1570* 1284*

2015-09-01 0 0 0 5593 3468* 2497*

2015-10-01 3196* 2849 2723 144 4438 5830

2015-11-02 0 0 0 3990* 1288* 1608*

2015-12-01 0 0 0 0 2164* 1669*

Shifted Geo. Mean: >1.95 1.94 >5.91 >25.3 >1171 >1153

Taking both wind levels together, observe for the Match variant CPLEX solves all but one

instance at the root node, and for the STI variant it solves all but three of the 24 instances at the

root note. In a similar fashion, when the EF variant solves it is often at the root node. The 3-bin

variant also solves most of the instances at the root node as well. For the 1-bin variants, CPLEX

often explores more nodes than Gurobi, but only explores a few thousand before the wall-clock

time limit is reached.

174

Table E.10: Computational Results for FERC Instances: Relative Integrality Gap (%)

(a) 2% Wind Penetration

Instance EF Match STI 3-bin 1-bin* 1-bin

2015-01-01 0.0284 0.0284 0.0362 0.0362 0.5500 0.5500

2015-02-01 0.0423 0.0423 0.0717 0.0717 0.9187 0.9187

2015-03-01 0.0327 0.0327 0.0334 0.0334 0.3727 0.3727

2015-04-01 0.0540 0.0540 0.0540 0.0540 0.5788 0.5788

2015-05-01 0.0456 0.0456 0.0456 0.0456 0.4131 0.4131

2015-06-01 0.0375 0.0375 0.0375 0.0375 1.0321 1.0321

2015-07-01 0.0796 0.0796 0.0796 0.0796 1.3827 1.3827

2015-08-01 0.1233 0.1233 0.1422 0.1422 1.5661 1.5661

2015-09-01 0.5283 0.5283 0.5542 0.5542 1.9062 1.9063

2015-10-01 0.1140 0.1140 0.1141 0.1141 1.0522 1.0522

2015-11-02 0.0760 0.0760 0.0797 0.0797 1.4377 1.4377

2015-12-01 0.0629 0.0629 0.0654 0.0654 1.1305 1.1305

Geometric Mean: 0.0683 0.0683 0.0746 0.0746 0.9113 0.9113

(b) 30% Wind Penetration

Instance EF Match STI 3-bin 1-bin* 1-bin

2015-01-01 0.0924 0.0924 1.7525 1.7525 7.4916 7.4916

2015-02-01 0.1703 0.1703 0.5119 0.5119 3.7359 3.7359

2015-03-01 0.0995 0.0995 0.1140 0.1140 1.9207 1.9207

2015-04-01 0.8124 0.8124 0.8476 0.8476 6.8377 6.8377

2015-05-01 0.0729 0.0729 0.0729 0.0729 1.5792 1.5792

2015-06-01 0.0807 0.0807 0.0859 0.0859 2.5388 2.5388

2015-07-01 0.1383 0.1383 0.1412 0.1412 2.5278 2.5278

2015-08-01 0.3701 0.3701 0.3904 0.3904 4.1100 4.1100

2015-09-01 0.2884 0.2884 0.3747 0.3747 3.2275 3.2275

2015-10-01 1.1342 1.1342 1.1446 1.1446 2.9962 2.9962

2015-11-02 0.1825 0.1825 0.2626 0.2626 2.8615 2.8615

2015-12-01 0.2558 0.2558 0.2738 0.2738 1.2704 1.2704

Geometric Mean: 0.2060 0.2060 0.3141 0.3141 3.0031 3.0031

Relative Integrality Gap

In Table E.10 we report the relative integrality gap for the FERC instances, calculated in the exact

same fashion as the CAISO relative integrality gap results reported in Table E.5.

First, we observe the same pattern as we did for CAISO: the integrality gaps for EF and Match

are always the same, as are those for STI and 3-bin. Otherwise, the results here are significantly

different than those for CAISO. We note 1-bin* is no tighter than 1-bin for the FERC instances.

Turning to the 2% wind instances, we see that EF and Match often are not tighter than STI and

175

3-bin, or are only marginally so. This explains STI’s performance dominance on the 2% instances

in CPLEX – the extra variables from Match are not, in these instances, buying much (or any)

additional tightness over STI. Match and EF only close 8% of the optimally gap in geometric mean

over STI, which is significantly less than the 75% geometric mean gap closure observed for CAISO.

Considering now the 30% wind instances, we see in particular that Match closes a large portion

of the optimality gap over STI in the 2015-01-01 and 2015-02-01 instances, with modest reductions

in every instance except 2015-05-01. We also observe that in general, the high-wind instances, both

here and in Table E.5, have larger integrality gaps than low-wind instances across all formulations.

This should be expected as large amounts of renewables generation imply large net-load swings,

which should result in more generator switching and generator ramping.

B Statistical Analysis

In this section we report the results of a statical analysis of the computational results above, using

the Wilcoxon signed-rank test [158]. To separate out the potential contributions to performance

variability, we considered five sets of instances for each solver: (i) “All” (n = 44) – which consists

of the entire test suite, (ii) “CAISO” (n = 20) – which is the CAISO set of instances, (iii) “FERC”

(n = 24) – which is the FERC set of instances, (iv) “High Wind” (n = 16) – which consists of the

Scenario400 instances from CAISO and the 30% Wind Penetration instances from FERC, and (v)

“Low Wind” (n = 28) – which is all the other instances not in High Wind. We note that for n � 20

this statistical test starts to become underpowered.

B.1 Gurobi 7.0.1

In Table E.11 we report the mean differences in solve times and the results of the Wilcoxon signed-

rank test across the five sets described above on the Gurobi computational experiments. In each

cell we report the column mean solve time minus the row mean solve time; hence a negative number

implies the column was faster than the row, whereas a positive number implies the row was faster

than the column. Because the Wilcoxon test is for difference in arithmetic mean, the results in

these tables report the difference in arithmetic mean solve time, whereas the summary results in

Section A report the geometric mean solve time. Looking at the entire test set we can see that the

Match formulation outperforms the others at the α = 0.01 using Gurobi. Match also outperforms

STI in the breakdowns at the α = 0.05 level, except for the CAISO test set. STI in turn outperforms

176

Table E.11: Results of the Wilcoxon signed-rank test for Gurobi computational experiments.
Each cell reports the column mean solve time minus the row mean solve time. A “*” indicates the
difference is significant at the α = 0.05 level; a “**” indicates the difference is significant at the
α = 0.01 level.

(a) All (n = 44)

Formulation EF Match STI 3bin 1bin* 1bin

EF -466.0** -383.3** -327.1** 96.5** 101.3**

Match 466.0** 82.7** 138.9** 562.5** 567.3**

STI 383.3** -82.7** 56.2** 479.8** 484.6**

3bin 327.1** -138.9** -56.2** 423.6** 428.4**

1bin* -96.5** -562.5** -479.8** -423.6** 4.8

1bin -101.3** -567.3** -484.6** -428.4** -4.8

(b) CAISO (n = 20)

Formulation EF Match STI 3bin 1bin* 1bin

EF -360.3** -348.1** -284.0** 188.0** 188.5**

Match 360.3** 12.2 76.3** 548.3** 548.8**

STI 348.1** -12.2 64.1** 536.0** 536.5**

3bin 284.0** -76.3** -64.1** 472.0** 472.5**

1bin* -188.0** -548.3** -536.0** -472.0** 0.5

1bin -188.5** -548.8** -536.5** -472.5** -0.5

(c) FERC (n = 24)

Formulation EF Match STI 3bin 1bin* 1bin

EF -554.1** -412.7** -363.0** 20.3 28.6

Match 554.1** 141.5* 191.1* 574.4** 582.8**

STI 412.7** -141.5* 49.7 432.9** 441.3**

3bin 363.0** -191.1* -49.7 383.3** 391.7**

1bin* -20.3 -574.4** -432.9** -383.3** 8.4

1bin -28.6 -582.8** -441.3** -391.7** -8.4

177

Table E.11: (continued)

(d) High Wind (n = 16)

Formulation EF Match STI 3bin 1bin* 1bin

EF -534.2** -362.9** -285.8** 26.0 27.4

Match 534.2** 171.3* 248.5* 560.2** 561.6**

STI 362.9** -171.3* 77.1 388.9** 390.3**

3bin 285.8** -248.5* -77.1 311.7** 313.1**

1bin* -26.0 -560.2** -388.9** -311.7** 1.4

1bin -27.4 -561.6** -390.3** -313.1** -1.4

(e) Low Wind (n = 28)

Formulation EF Match STI 3bin 1bin* 1bin

EF -427.1** -395.0** -350.7** 136.8** 143.5**

Match 427.1** 32.1* 76.3** 563.8** 570.6**

STI 395.0** -32.1* 44.3** 531.8** 538.5**

3bin 350.7** -76.3** -44.3** 487.5** 494.2**

1bin* -136.8** -563.8** -531.8** -487.5** 6.7

1bin -143.5** -570.6** -538.5** -494.2** -6.7

3-bin overall and in several of the breakout sets. These statistics also bear out the larger observation

that the EF, 1-bin, and 1-bin* variants are uncompetitive with any of Match, STI, and 3-bin.

B.2 CPLEX 12.7.1.0

In Table E.12 we report the mean differences in solve time and the results of the Wilcoxon signed-

rank test for the CPLEX computational experiments. As with Table E.11, In each cell we report

the column mean solve time minus the row mean solve time; so a negative number implies the

column was faster than the row, and a positive number implies the row was faster than the column.

While Match still has the best mean overall, the Wilcoxon test is not able to differentiate it from

STI and 3-bin. Interestingly STI is better than 3-bin at the α = 0.01 level. We also note that on

the Low Wind instances STI is able to out-perform Match using CPLEX at the α = 0.01, which

bears out the observations from the computational results above. The magnitude of the difference

is not large, however. Turning to the High Wind instances, we see Match is able to out-perform the

other formulations save STI at the α = 0.05 level; it is likely the low power of the test at n = 16

makes it difficult to distinguish Match and STI statistically. Finally we observe that overall the

EF, 1-bin, and 1-bin* variants are significantly worse than the Match, STI, and 3-bin variants.

178

Table E.12: Results of the Wilcoxon signed-rank test for CPLEX computational experiments.
Each cell reports the column mean solve time minus the row mean solve time. A “*” indicates the
difference is significant at the α = 0.05 level; a “**” indicates the difference is significant at the
α = 0.01 level.

(a) All (n = 44)

Formulation EF Match STI 3bin 1bin* 1bin

EF -328.3** -317.1** -218.3** 212.8** 227.1**

Match 328.3** 11.3 110.0 541.2** 555.4**

STI 317.1** -11.3 98.8** 529.9** 544.1**

3bin 218.3** -110.0 -98.8** 431.1** 445.4**

1bin* -212.8** -541.2** -529.9** -431.1** 14.2

1bin -227.1** -555.4** -544.1** -445.4** -14.2

(b) CAISO (n = 20)

Formulation EF Match STI 3bin 1bin* 1bin

EF -234.5** -236.2** -180.1** 314.7** 314.7**

Match 234.5** -1.7 54.4 549.2** 549.2**

STI 236.2** 1.7 56.0** 550.8** 550.8**

3bin 180.1** -54.4 -56.0** 494.8** 494.8**

1bin* -314.7** -549.2** -550.8** -494.8** 0.0

1bin -314.7** -549.2** -550.8** -494.8** 0.0

(c) FERC (n = 24)

Formulation EF Match STI 3bin 1bin* 1bin

EF -406.5** -384.5** -250.1* 128.0 154.1*

Match 406.5** 22.0 156.4 534.5** 560.6**

STI 384.5** -22.0 134.4 512.5** 538.6**

3bin 250.1* -156.4 -134.4 378.1** 404.2**

1bin* -128.0 -534.5** -512.5** -378.1** 26.1

1bin -154.1* -560.6** -538.6** -404.2** -26.1

179

Table E.12: (continued)

(d) High Wind (n = 16)

Formulation EF Match STI 3bin 1bin* 1bin

EF -422.2** -361.8** -175.4 186.1* 195.3*

Match 422.2** 60.4 246.8* 608.3** 617.5**

STI 361.8** -60.4 186.4* 547.9** 557.1**

3bin 175.4 -246.8* -186.4* 361.5** 370.7**

1bin* -186.1* -608.3** -547.9** -361.5** 9.2

1bin -195.3* -617.5** -557.1** -370.7** -9.2

(e) Low Wind (n = 28)

Formulation EF Match STI 3bin 1bin* 1bin

EF -274.7** -291.5** -242.8** 228.1** 245.2**

Match 274.7** -16.8** 31.9 502.8** 519.9**

STI 291.5** 16.8** 48.7** 519.6** 536.7**

3bin 242.8** -31.9 -48.7** 470.9** 488.0**

1bin* -228.1** -502.8** -519.6** -470.9** 17.1*

1bin -245.2** -519.9** -536.7** -488.0** -17.1*

C Summary

Considering Tables E.1 and E.6 together, it is unambiguous that Match performs better than the

other variants on Gurobi, followed by STI and then 3-bin. This is born out in the statical analysis

of these results in Table E.11. Given that Match is as tight as EF in all instances while needing

many fewer variables, but not too many additional variables over STI, this result is not surprising.

Conversely, the computational results using CPLEX reported in Tables E.3 and E.8 are a bit

more ambiguous, and this is reflected in Table E.12. While using CPLEX Match is often slower in

the average case than STI, using the Match formulation CPLEX solved every of the 44 instances

considered in under 5 minutes, and hence it exhibited the better worst-case performance.

180

Appendix F

Aggregation/Disaggregation Details

In this appendix we detail how reserves, piecewise linear operating costs, and time-dependent

startup costs can be exactly aggregated. Additionally we specify how to disaggregate solutions for

fast-ramping generators with different startup and shutdown ramp rates. For ease of presentation

this appendix (mostly) is self-contained.

A Nomenclature

A.1 Indices and Sets

g ∈ G Thermal generators

l ∈ Lg Piecewise production cost intervals for generator g: 1, . . . ,Lg.

s ∈ Sg Startup categories for generator g, from hottest (1) to coldest (Sg).

t ∈ T Hourly time steps: 1, . . . ,T.

[t, t′) ∈ X g Feasible intervals of non-operation for generator g with respect to its minimum

downtime, that is, [t, t′) ∈ T × T such that t′ ≥ t + DTg, including times (as

necessary) before and after the planning period T .

[t, t′) ∈ Yg Feasible intervals of operation for generator g with respect to its minimum uptime,

that is, [t, t′) ∈ T ×T such that t′ ≥ t+UTg, including times (as necessary) before

and after the planning period T .

A.2 Parameters

cl,g Cost coefficient for piecewise segment l for generator g ($/MWh).

181

cR,g Cost of generator g running and operating at minimum production Pg ($/h).

cs,g Startup cost of category s for generator g ($).

Dt Load (demand) at time t (MW).

DTg Minimum down time for generator g (h).

P
g

Maximum power output for generator g (MW).

P
l,g

Maximum power available for piecewise segment l for generator g (MW) (P
0,g

=

Pg).

Pg Minimum power output for generator g (MW).

Rt Spinning reserve at time t (MW).

RDg Ramp-down rate for generator g (MW/h).

RUg Ramp-up rate for generator g (MW/h).

SDg Shutdown rate for generator g (MW/h).

SUg Startup rate for generator g (MW/h).

TCg Time down after which generator g goes cold, i.e., enters state Sg.

Ts,g Time offline after which the startup category s is available (T1,g = DTg, TSg ,g =

TCg)

T
s,g

Time offline after which the startup category s is no longer available (= Ts+1,g,

T
Sg ,g

= +∞)

UTg Minimum run time for generator g (h).

A.3 Variables

pgt Power output for generator g at time t (MW).

pl,gt Power from piecewise interval l for generator g at time t (MW).

rgt Spinning reserves provided by generator g at time t (MW), ≥ 0.

ugt Commitment status of generator g at time t, ∈ {0, 1}.
vgt Startup status of generator g at time t, ∈ {0, 1}.
wg
t Shutdown status of generator g at time t, ∈ {0, 1}.

cSU,gt Startup cost for generator g at time t ($), ≥ 0.

xg[t,t′) Indicator arc for shutdown at time t, startup at time t′, uncommitted for i ∈ [t, t′),

for generator g, ∈ {0, 1}, [t, t′) ∈ X g.

yg[t,t′) Indicator arc for startup at time t, shutdown at time t′, committed for i ∈ [t, t′),

for generator g, ∈ {0, 1}, [t, t′) ∈ Yg.

182

B Unit Commitment Formulation

This section lays out the basic unit commitment formulation we consider for the computational

tests above.

min
∑
g∈G

cg(pg) (F.1a)

subject to:

∑
g∈G

pgt = Dt ∀t ∈ T (F.1b)

∑
g∈G

rgt ≥ Rt ∀t ∈ T (F.1c)

(pg, rg) ∈ Πg ∀g ∈ G, (F.1d)

where cg(pg) is the cost function of generator g producing an output of pg over the time horizon T ,

and Πg represents the set of feasible schedules for generator g. Here cg includes possibly piecewise

linear convex production costs, as well as time-dependent startup costs. We will see how we can

modify the formulations in the main body to allow for these additional modeling features while still

maintaining the property that we can disaggregate solutions to aggregated generators.

For completeness we restate the theorems from the main text.

Theorem 5.1. Consider identical generators g1, g2 ∈ G, and assume their production costs are

increasing and convex. Then there exists an optimal solution with pg1t = pg2t or (inclusive) one of

the nominal or startup/shutdown ramping constraints is binding for generator g1 or g2 for all times

t for which they are both on.

Theorem 5.2. Suppose generator g1 is turned off at time t. If identical generator g2 can also be

turned off at time t, there exists an optimal solution where the generator that has been on for the

least amount of time is turned off.

Theorem 5.3. Suppose generator g1 is turned on at time t. If an identical generator g2 can also be

turned on at time t, and there are no time-dependent startup costs for g1 and g2, then there exists

an optimal solution where g2 is turned on at t.

183

While Theorem 5.3 is useful for when start-up costs are not time-dependent, this is often not a

realistic assumption. Therefore, we have the following two theorems which will be of use when

start-up costs are time-dependent.

Theorem F.1. Suppose generator g1 is turned on at time t, and has been off for at least TC(=

TCg1 = TCg2) time periods. If identical generator g2 can also be turned on at time t and has been

off for at least TC time periods, there exists an optimal solution where where g2 is turned on at

time t.

Proof. Similar to the proof of Theorem 5.3.

Theorem F.2. If identical generators g1, g2 ∈ G both shut down at time t and g1 starts up at time

t1 ≥ t +DT (DT = DTg1 = DTg2) and g2 starts up at time t2 ≥ t +DT, then an equally good

solution exists where g1 starts up at time t2 and g2 starts up at time t1.

Proof. Like in the proof of Theorem 5.3, we may permute the remainder of each generator’s schedule

without affecting feasibility or the objective value.

C Disaggregating the Extended Formulation

First, we consider the extended formulation, which is more straightforward than disaggregating

the 3-bin formulation. We can add reserves and piecewise linear production costs by adding new

variables r
[a,b),g
t ∀[a, b) ∈ Yg, ∀t ∈ T and p[a,b),l,g ∀[a, b) ∈ Yg, ∀l ∈ Lg, ∀t ∈ T . We add time-

dependent startup costs by replacing the packing polytope we used above with the shortest path

polytope [131]. The resulting formulation is

A[a,b)p[a,b) +A′[a,b)r[a,b) +
∑
l∈L

A[a,b),lp[a,b),l ≤ b[a,b)y[a,b) ∀[a, b) ∈ Y (F.2a)

∑
[a,b)∈Y

p
[a,b)
t = pt ∀t ∈ T (F.2b)

∑
[a,b)∈Y

r
[a,b)
t = rt ∀t ∈ T (F.2c)

∑
{[c,d)∈X | t=d}

x[c,d) =
∑

{[a,b)∈Y | t=a}
y[a,b) ∀t ∈ T (F.2d)

∑
{[a,b)∈Y | t=b}

y[a,b) =
∑

{[c,d)∈X | t=c}
x[c,d) ∀t ∈ T (F.2e)

184

∑
{[a,b)∈Y | a≤0}

y[a,b) +
∑

{[c,d)∈X | c≤0}
x[c,d) = 1 (F.2f)

∑
{[a,b)∈Y | b>T}

y[a,b) +
∑

{[c,d)∈X | d>T}
x[c,d) = 1, (F.2g)

where the polytope

{p[a,b), r[a,b), p[a,b),1, . . . , p[a,b),L ∈ R+ | A[a,b)p[a,b) +A′[a,b)r[a,b) +
∑
l∈L

A[a,b),lp[a,b),l ≤ b[a,b)} (F.3)

represents feasible production given that the generator is turned on at time a and turned off at

time b. Piecewise production costs can then be handled by placing the appropriate objective

coefficient on the p[a,b),l variables and time-dependent startup costs are accounted for by placing

the appropriate objective coefficient on the x[c,d) variables.

Similar to the EF presented in the main text, we see that the underlying shortest path polytope

(F.2e, F.2e, F.2f, F.2g) with nonnegativity, has a totally unimodular constraint matrix, and thus

has the integer decomposition property [9]. Hence if we have k generators have identical parameters,

we can replace (F.2f) and (F.2g) with

∑
{[a,b)∈Y | a≤0}

Y[a,b) +
∑

{[c,d)∈X | c≤0}
X[c,d) = k (F.4a)

∑
{[a,b)∈Y | b>T}

Y[a,b) +
∑

{[c,d)∈X | d>T}
X[c,d) = k, (F.4b)

thus pushing k units of flow through the graph. Changing these right-hand-sides doesn’t affect the

integrality of the full polytope (F.2a – F.2e), (F.4) (see Chapter 3).

As before, allowing capital variables to represent aggregated variables for identical generators,

now Y[a,b) represents how many of the generators are on during the interval [a, b) andX[a,b) represents

how many generators are off during the interval [a, b). Since there are separate power variables

for each on interval [a, b), like before with the EF in the main text, Theorem 5.1 enables us to

disaggregate power easily once the status variables are disaggregated.

Letting K ⊂ G be some set of identical generators, consider the extended formulation for these

aggregated generators

A[a,b)P [a,b) +A′[a,b)R[a,b) +
∑
l∈L

A[a,b),lP [a,b),l ≤ b[a,b)Y[a,b) ∀[a, b) ∈ Y (F.5a)

185

∑
[a,b)∈Y

P
[a,b)
t = Pt ∀t ∈ T (F.5b)

∑
[a,b)∈Y

R
[a,b)
t = Rt ∀t ∈ T (F.5c)

∑
{[c,d)∈X | t=d}

X[c,d) =
∑

{[a,b)∈Y | t=a}
Y[a,b) ∀t ∈ T (F.5d)

∑
{[a,b)∈Y | t=b}

Y[a,b) =
∑

{[c,d)∈X | t=c}
X[c,d) ∀t ∈ T (F.5e)

∑
{[a,b)∈Y | a≤0}

Y[a,b) +
∑

{[c,d)∈X | c≤0}
X[c,d) = |K| (F.5f)

∑
{[a,b)∈Y | b>T}

Y[a,b) +
∑

{[c,d)∈X | d>T}
X[c,d) = |K|. (F.5g)

We can then write down an easy algorithm to decompose solutions to (F.5).

Algorithm F.1 (Peel Off EF) Constructs feasible generator schedules from a solution of (F.5).

Initialize all P̂ [a,b) to P ∗[a,b) and all pg,[a,b) to 0.

Find a feasible s, t path based on (F.5d – F.5g) and store in xg, yg.

X̂ ← X∗ − xg, Ŷ ← Y ∗ − yg

for [a, b) ∈ Y with yg[a,b) = 1 do

5: for t ∈ [a, b) ∩ T do

p
g,[a,b)
t ← P

∗[a,b)
t /Y ∗

[a,b); P̂
[a,b)
t ← P

∗[a,b)
t − p

g,[a,b)
t

r
g,[a,b)
t ← R

∗[a,b)
t /Y ∗

[a,b); R̂
[a,b)
t ← R

∗[a,b)
t − r

g,[a,b)
t

for l ∈ L do

p
g,[a,b),l
t ← P

∗[a,b),l
t /Y ∗

[a,b); P̂
[a,b),l
t ← P

∗[a,b),l
t − p

g,[a,b),l
t

10: for t ∈ T do

P̂t ←
∑

[a,b)∈Y P̂
[a,b)
t

R̂t ←
∑

[a,b)∈Y R̂
[a,b)
t

pgt ←
∑

[a,b)∈Y p
g,[a,b)
t

rgt ←
∑

[a,b)∈Y r
g,[a,b)
t

After running Algorithm F.1 |K| − 1 times we are left with |K| feasible (and by Theorem 5.1

optimal) schedules, one for each generator in K. We formalize this in Theorem F.3.

First we need a simple lemma regarding the decomposability of polytopes.

Lemma F.1. Let P a polytope such that P := {x ∈ R
n
+ | Ax ≤ b} and for k ≥ 1 define kP := {x |

1
kx ∈ P} = {x ∈ R

n
+ | Ax ≤ kb}. If y ∈ kP , then 1

ky ∈ P and (k−1)
k y ∈ (k − 1)P .

Proof. It suffices to notice that 1
ky is feasible for the system {x ∈ R

n
+ | Ay−(k−1)b ≤ Ax ≤ b}.

186

Now we turn to the main result.

Theorem F.3. Algorithm F.1 returns a feasible solution for (F.2) and a feasible solution for (F.5)

for the remaining K \ {g} generators. That is, after applying Algorithm F.1 |K| − 1 times we have

a feasible and optimal solution for every g ∈ K.

Proof. Notice the feasible s, t path leaves the equalities (F.2d – F.2g) and (F.5d – F.5g) feasible for

xg, yg and X̂, Ŷ respectively. Further, the solutions constructed for the pg,[a,b), rg,[a,b), and pg,[a,b),l

variables (lines 6 – 9) are exactly of the type prescribed by Lemma F.1, and so both these and

the P̂ [a,b), R̂[a,b), and P̂ [a,b),l variables are feasible for (F.2a) and (F.5a) respectively. Theorem 5.1

ensures this assignment is optimal as well. The equalities (F.2b, F.2c) and (F.5b, F.5c) follow from

lines 11 – 14.

The last statement follows from inducting on the size of K.

D Disaggregating the 3-bin polytope

Recalling the traditional 3-bin formulation for fast ramping generators (when UTg ≥ 2) [110, 58]:

Pgugt ≤ pgt , ∀t ∈ T , (F.6a)

pgt + rgt ≤ P
g
ugt + (SUg −P

g
)vgt + (SDg −P

g
)wg

t+1, ∀t ∈ T , (F.6b)

ugt − ugt−1 = vgt − wg
t , ∀t ∈ T , (F.6c)

t∑
i=t−UT+1

vgi ≤ ugt , ∀t ∈ [UTg,T], (F.6d)

t∑
i=t−DT+1

wg
i ≤ 1− ugt , ∀t ∈ [DTg,T], (F.6e)

pgt , rgt ∈ R+, ∀t ∈ T , (F.6f)

ugt , vgt , wg
t ∈ {0, 1}, ∀t ∈ T . (F.6g)

It has the property that the constraint matrix defined by (F.6c, F.6d, F.6e) is totally unimodu-

lar [94], and so it too has the integer decomposition property [9]. When UTg = 1, (F.6b) is replaced

with the following [110, 58]:

pgt + rgt ≤ P
g
ugt + (SUg −P

g
)vgt , ∀t ∈ T , (F.7a)

187

pgt + rgt ≤ P
g
ugt + (SDg −P

g
)wg

t+1, ∀t ∈ T . (F.7b)

D.1 Generator Production Cost Function

The convex production costs are typically approximated by piecewise linear costs. This is done by

partitioning the interval [P,P] into L subintervals with breakpoints P
l
, with P

0
= P, P

L
= P, and

P
l
< P

l+1
. Let cl be the marginal cost for the segment [P

l−1
,P

l
]. The variable ct, then, represents

the production cost for time t given the following constraints:

ct =
k∑

l=1

clplt ∀t ∈ T (F.8a)

pt = Put +

k∑
l=1

plt ∀t ∈ T (F.8b)

0 ≤ plt ≤ (P
l −P

l−1
)ut ∀l ∈ L, ∀t ∈ T (F.8c)

The cost functions of the generators need to be modified to account for the aggregation.

Fortunately, using the intuition behind Theorem 5.1, the lack of ramping constraints ensure if

two identical generators are on in a given time period, they must have the same production,

meaning that allowing u to be a general integer is also sufficient. The only exception to this rule

is when there is a startup/shutdown rate. Without loss of generality assume SU = SD = P
l′
. We

substitute (F.8c) by

plt ≤ (P
l −P

l−1
)ut ∀l ∈ [l′], ∀t ∈ T (F.9a)

plt ≤ (P
l −P

l−1
)(ut − vt − wt+1) ∀l > l′, ∀t ∈ T (F.9b)

plt ≥ 0 ∀l ∈ L, ∀t ∈ T (F.9c)

when UT ≥ 2 and

plt ≤ (P
l −P

l−1
)ut ∀l ∈ [l′], ∀t ∈ T (F.10a)

plt ≤ (P
l −P

l−1
)(ut − vt) ∀l > l′, ∀t ∈ T (F.10b)

plt ≤ (P
l −P

l−1
)(ut − wt+1) ∀l > l′, ∀t ∈ T (F.10c)

plt ≥ 0 ∀l ∈ L, ∀t ∈ T (F.10d)

188

when UT = 1. When the generator has just turned on (about to turn off), then its power output

cannot be above SU (SD). Hence constraints of the form (F.9b) and (F.10b, F.10c) cut off these

solutions in the pl variables just as (F.6b) and (F.7a, F.7b) do for the p variables.

D.2 Generator Startup Costs

There are many different proposed formulations for time-dependent startup costs. One of which,

[131], provides a perfect (and totally unimodular) formulation. It is:

∑
{t′|[t,t′)∈Y}

y[t,t′) = vt ∀t ∈ T (F.11a)

∑
{t′|[t′,t)∈Y}

y[t′,t) = wt ∀t ∈ T (F.11b)

∑
{t′|[t′,t)∈X }

x[t′,t) = vt ∀t ∈ T (F.11c)

∑
{t′|[t,t′)∈X }

x[t,t′) = wt ∀t ∈ T (F.11d)

∑
{[τ,τ ′)∈Y |t∈[τ,τ ′)}

y[τ,τ ′) = ut ∀t ∈ T . (F.11e)

Like the extended formulation in the generator model, this formulation can be quite large,

containing O(T 2) many variables. However, after adding these constraints to 3-bin model for fast-

ramping generators, the resulting formulation still satisfies the integer decomposition property, and

we can show this aggregation is valid for the generator schedule.

Chapter 4 suggests a more compact formulation of startup costs:

t−DT∑
t′=t−TC+1

x[t′,t) ≤ vt ∀t ∈ T , (F.12a)

t+TC−1∑
t′=t+DT

x[t,t′) ≤ wt ∀t ∈ T , (F.12b)

(where the sums are understood to be taken over valid t′) and the objective function is

cSUt = cSvt +
S−1∑
s=1

(cs − cS)

⎛⎝ t−Ts∑
t′=t−T

s
+1

x[t′,t)

⎞⎠ ∀t ∈ T , (F.12c)

189

and dropping the remaining x[t,t′) for which t′ ≥ t + TC. The resulting computational

experiments suggest that this formulation dominates (F.11) computationally, in addition to the

other formulations examined. The reason is that while (F.12) is not an integer polytope, it is

integer “in the right direction,” that is, any fractional vertex for 3-bin models using (F.12) will be

dominated by an integer solution for all reasonable objective coefficients (the fractionally enters

the formulation by allowing cooler startups to be assigned even when the generator is still hot).

D.3 Disaggregating schedules

In this section we will show how to decompose solutions to the aggregated formulation with various

common features, such as time-dependent startup costs, reserves, and piecewise linear production

costs. Suppose K ⊂ G such that all generators in K have identical properties (save initial status).

Let U =
∑

g∈K ug, V =
∑

g∈K vg, W =
∑

g∈K wg, andX =
∑

g∈K xg. LetUT = UTg, DT = DTg,

and TC = TCg for some (every) g ∈ K.
First consider the aggregated 3-bin model for commitment status with startup costs:

Ut − Ut−1 = Vt −Wt ∀t ∈ T (F.13a)

t∑
i=t−UT+1

Vi ≤ Ut ∀t ∈ [UT,T] (F.13b)

t∑
i=t−DT+1

Wi ≤ |K| − Ut ∀t ∈ [DT,T] (F.13c)

t−DT∑
t′=t−TC+1

X[t′,t) ≤ Vt ∀t ∈ T , ∀g ∈ G (F.13d)

t+TC−1∑
t′=t+DT

X[t,t′) ≤Wt ∀t ∈ T , ∀g ∈ G (F.13e)

Ut, Vt,Wt ∈ {0, . . . , |K|} ∀t ∈ T (F.13f)

X[t,t′) ∈ {0, . . . , |K|} ∀ t, t′ ∈ T 2 with DT ≤ t′ − t < TC. (F.13g)

Algorithm F.2 demonstrates how to disaggregate a solution to (F.13). We establish the correctness

of Algorithm F.2 with the next theorem.

190

Algorithm F.2 (PeelOff) Constructs feasible generator schedules from a solution of (F.13).

Initialize all ug, vg, wg, xg to 0.

Initialize all Û , V̂ , Ŵ , X̂ to U∗, V ∗, W ∗, X∗, respectively.
if U∗

1 ≥ 1 then

ug1 ← 1; Û1 ← U∗
1 − 1;

5: Assign historical startup vt, for −UT < t ≤ 0.

else

Assign historical shutdown wt, for −DT < t ≤ 0.

t← 2

while t ≤ T do

10: if ugt−1 = 1 then 	 If on in the previous period

if
∑t−1

i=t−UT+1 vi = 0 and W ∗
t ≥ 1 then 	 If we can turn off and a turn off is available

wg
t ← 1; Ŵt ←W ∗

t − 1; 	 Turn off

if ∃t′ s.t. t+ TD ≤ t′ < t+TC and X∗
[t,t′) ≥ 1 then 	 If there is a hot-start

available

ugt′ , v
g
t′ ← 1; xg[t,t′) ← 1; 	 Take it

15: Ût′ ← U∗
t′ − 1; V̂t′ ← V ∗

t′ − 1;

X̂[t,t′) ← X∗
[t,t′) − 1;

t← t′ + 1;

else if ∃t′ ≥ t+TC s.t.
∑t+TC−1

t′=t+DTX∗
[t,t′) < V ∗

t′ then 	 Else take some cold start,

if possible

ugt′ , v
g
t′ ← 1; Ût′ ← U∗

t′ − 1; V̂t′ ← V ∗
t′ − 1;

20: t← t′ + 1;

else 	 If not, stay off for the rest of the time horizon

t← T+ 1;

else 	 If we could not turn off or a turn off was not available

ut ← 1; Ût ← U∗
t − 1; 	 Stay on

25: t← t+ 1;

else 	 ut−1 = 0, i.e., off previously

if
∑t−1

i=t−DT+1wi = 0 and V ∗
t ≥ 1 then 	 If we can turn on and a turn on is available

ut, vt ← 1; Ût ← U∗
t − 1; V̂t ← V ∗

t − 1; 	 Turn on

if ∃t′ ∈ (t−TC, t−DT]∩Z s.t. X∗
[t′,t) ≥ 1 then 	 If there is a historical hot-start

30: xg[t′,t) ← 1; X̂[t′,t) ← X∗
[t′,t) − 1; 	 Take it

wg
t′ ← 1; Ŵt′ ←W ∗

t′ − 1; 	 Assign historical data for t ≤ −DT

t← t+ 1;

else 	 If no turn on feasible or available

t← t+ 1; 	 Stay off

191

Theorem F.4. Suppose (U∗, V ∗,W ∗, X∗) is a feasible solution for (F.13). Then for every g ∈ K
there exist (ug∗, vg∗, wg∗, xg∗) feasible for the minimum up-time/down-time system for K:

ugt − ugt−1 = vgt − wg
t ∀t ∈ T , ∀g ∈ K

t∑
i=t−UT+1

vgi ≤ ugt ∀t ∈ [UT,T], ∀g ∈ K

t∑
i=t−DT+1

wg
i ≤ 1− ugt ∀t ∈ [DT,T], ∀g ∈ K

t−DT∑
t′=t−TC+1

x[t′,t) ≤ vgt ∀t ∈ T , ∀g ∈ K

t+TC−1∑
t′=t+DT

x[t,t′) ≤ wg
t ∀t ∈ T , ∀g ∈ K

ugt , v
g
t , w

g
t ∈ {0, 1} ∀t ∈ T , ∀g ∈ K

x[t,t′) ∈ {0, . . . , |K|} ∀ t, t′ ∈ T 2 with DT ≤ t′ − t < TC.

Proof. Clearly this is true when |K| = 1. We will proceed by induction on the size of K, “peeling off”
feasible binary vectors and leaving behind a still feasible crushed system. Suppose (U∗, V ∗,W ∗, X∗)

is feasible (F.13), and |K| = I. We wish to find a feasible solution to the following system:

U∗
t = Ût + ugt , V ∗

t = V̂t + vgt , W ∗
t = Ŵt + wg

t ∀t ∈ T (F.14a)

X∗
[t,t′) = X̂[t,t′) + x[t,t′) ∀ t, t′ ∈ T 2 with DT ≤ t′ − t < TC (F.14b)

ugt − ugt−1 = vgt − wg
t ∀t ∈ T (F.15a)

t∑
i=t−UT+1

vgi ≤ ugt ∀t ∈ [UT,T] (F.15b)

t∑
i=t−DT+1

wg
i ≤ 1− ugt ∀t ∈ [DT,T] (F.15c)

t−DT∑
t′=t−TC+1

x[t′,t) ≤ vgt ∀t ∈ T (F.15d)

t+TC−1∑
t′=t+DT

x[t,t′) ≤ wg
t ∀t ∈ T (F.15e)

192

ugt , v
g
t , w

g
t ∈ {0, 1} ∀t ∈ T (F.15f)

xg[t,t′) ∈ {0, 1} ∀ t, t′ ∈ T 2 with DT ≤ t′ − t < TC (F.15g)

Ût − Ût−1 = V̂t − Ŵt ∀t ∈ T (F.16a)

t∑
i=t−UT+1

V̂i ≤ Ût ∀t ∈ [UT,T] (F.16b)

t∑
i=t−DT+1

Ŵi ≤ (I − 1)− Ût ∀t ∈ [DT,T] (F.16c)

t−DT∑
t′=t−TC+1

X̂[t′,t) ≤ V̂t ∀t ∈ T (F.16d)

t+TC−1∑
t′=t+DT

X̂[t,t′) ≤ Ŵt ∀t ∈ T (F.16e)

Ût, V̂t, Ŵt ∈ {0, . . . , I − 1} ∀t ∈ T (F.16f)

X̂[t,t′) ∈ {0, . . . , I − 1} ∀ t, t′ ∈ T 2 with DT ≤ t′ − t < TC. (F.16g)

Algorithm F.2 constructs a feasible solution to (F.14, F.15, F.16) from a solution of (F.13). To

see this, first notice that the solution returned by Algorithm F.2 always has (F.14). Similarly,

Algorithm F.2 constructs a feasible solution for (ug, vg, wg, xg), so (F.15) holds. Further, (F.13a)

and (F.15a) together imply (F.16a). Notice that given the bounds on Û and (F.16b - F.16e), we

get the bounds on V̂ , Ŵ , and X̂, and the proof is finished. Therefore we check the bounds on Û

and (F.16b–F.16e), proceeding by contraction each time.

Ût ≤ I − 1: Let t be the first time period such that Ût > I − 1 (notice t > 1 by line 8 in Algorithm

F.2). Then Ût = I and further, ut = 0, U∗
t = I. Now by (F.13c),

∑t
i=t−DT+1W

∗
i ≤ I−I = 0.

Therefore W ∗
i = 0, ∀i ∈ [t−DT+ 1, t], yielding wg

i = 0, ∀i ∈ [t−DT+ 1, t]. Since U∗
t = I

and W ∗
t = 0, (F.13a) gives I = U∗

t−1 + V ∗
t . If V ∗

t > 0, since g is eligible for a turn-on, this

contracts line 27 in Algorithm F.2. If V ∗
t = 0, then U∗

t−1 > I − 1, contracting the minimality

of t.

193

(F.16b): Suppose there is t with
∑

i=t−UT+1 V̂i > Ûi. We have the following relation:

U∗
t

vgi ≥0

≥ U∗
t −

t∑
i=t−UT+1

vgi

(F.13b)
≥

t∑
i=t−UT+1

(V ∗
i − vgi)

(F.14a)
=

t∑
i=t−UT+1

V̂t > Ût
(F.14a)
= U∗

t − ugt
ug
t≤1

≥ U∗
t − 1 (F.17)

Since the far left and far right differ by only 1, and all quantities are integer, in order for the

strict inequality to hold, all weak inequalities in (F.17) must be equalities. Therefore we have

(a) ugt = 1, (b)
∑t

i=t−UT+1 vi = 0, and (c)
∑t

i=t−UT+1 V
∗
i = U∗

t . Together (a) and (b) imply

ugi = 1 and U∗
i ≥ 1 for every i ∈ {t − UT, . . . , t}. Therefore generator g started-up most

recently at some time î such that î ≤ t −UT; i.e vî = 1. Line 11 of Algorithm F.2 implies

then that W ∗
i = 0 for every i ∈ {̂i + UT, . . . , t}, and hence (d) U∗

i − U∗
i−1 = V ∗

i for every

i ∈ {̂i+UT, . . . , t} by equation (F.13a). There are but two cases then.

Case 1. Suppose î+UT ≤ t−UT+1. Then
∑t

i=t−UT+1 V
∗
i = U∗

t −U∗
t−UT by (d). By (c)

then U∗
t−UT = 0 but (a) and (b) give U∗

t−UT ≥ 1.

Case 2. Suppose t−UT+ 1 < î+UT. We have:

U∗
t

(c)
=

t∑
i=t−UT+1

V ∗
i =

î+UT−1∑
i=t−UT+1

V ∗
i +

t∑
i=î+UT

V ∗
i

(d)
=

î+UT−1∑
i=t−UT+1

V ∗
i +U∗

t −U∗
î+UT−1

(F.18)

Subtracting U∗
t from both sides we get the relation 0 =

∑î+UT−1
i=t−UT+1 V

∗
i − U∗

î+UT−1
.

Finally then, we see

0 =
î+UT−1∑

i=t−UT+1

V ∗
i − U∗

î+UT−1

(F.13b)
≤

î+UT−1∑
i=t−UT+1

V ∗
i −

î+UT−1∑
i=î

V ∗
i =−

t−UT∑
i=î

V ∗
i

vî=1

≤ −1,

(F.19)

yielding the contraction desired.

(F.16c): Very similar to the proof for (F.16b).

(F.16d): Supposing there is t with
∑t−DT

t′=t−TC+1 X̂[t′,t) > V̂t we can use the same technique from

the proof of (F.16b) to get the following string of inequalities:

V ∗
t ≥ V ∗

t −
t−DT∑

t′=t−TC+1

xg[t′,t)

(F.13d)
≥

t−DT∑
t′=t−TC+1

X∗
[t′,t) −

t−DT∑
t′=t−TC+1

xg[t′,t)

194

(F.14b)
=

t−DT∑
t′=t−TC+1

X̂[t′,t) > V̂t
(F.14a)
= V ∗

t − vgt ≥ V ∗
t − 1 (F.20)

Hence we may conclude (a) vgt = 1, (b)
∑t−DT

t′=t−TC+1 x
g
[t′,t) = 0, and (c)

∑t−DT
t′=t−TC+1X

∗
[t′,t) =

V ∗
t . We have (a) implies that V ∗

t ≥ 1, so
∑t−DT

t′=t−TC+1X
∗
[t′,t) ≥ 1, so ∃t′ ∈ {t−DT+1, . . . , t−

TC} such that X∗
[t′,t) ≥ 1. But line 14 in Algorithm F.2 then sets xg[t′,t) = 1, a contraction.

(F.16e): This is the same as (F.16d).

Hence Algorithm F.2 constructs a feasible solution for (F.14, F.15, F.16). We can then proceed in

this manner until I = 1, proving the theorem.

Notice that Algorithm F.2 constructs solutions exactly of the type in Theorems 5.2 and F.1.

Theorem F.2 justifies the arbitrary choice in lines 13 – 20 for which shutdown/startup path the

generator takes. Hence we do not loose anything in optimality or feasibility by aggregating a fast-

ramping generator’s status variables, even in the presence of time-dependent startup costs. Next

we will see how to disaggregate the power and reserve variables.

D.4 Disaggregating Power and Reserves

Disaggregating Power when UT ≥ 2

Consider the power output for an aggregated set of identical fast-ramping generators. First we will

consider the case when UT ≥ 2. Along with (F.13), we the aggregated power P =
∑

g∈K pg and

reserves R =
∑

g∈K rg with the constraints:

PUt ≤ Pt ∀t ∈ T , (F.21a)

Pt +Rt ≤ PUt + (SU−P)Vt + (SD−P)Wt+1, ∀t ∈ T . (F.21b)

Since (F.21) is just a sum of constraints, it is clearly valid.

If SU ≥ SD, then Algorithm F.3a demonstrates how to disaggregate power. On the other hand,

when SD ≥ SU disaggregation can be done in an analogous fashion, as shown in Algorithm F.3b.

The essential logic of Algorithms F.3a and F.3b is that of Theorem 5.1. That is, either the power

outputs of all generators are equal, or either the startup- and/or shutdown-ramping constraints are

active. When SU = SD then Algorithms F.3a and F.3b give the same result.

195

Algorithm F.3a (Peel Off Power) Constructs feasible generator schedule from a solution of
(F.21) when SU ≥ SD.

for g ∈ K, t ∈ T do

if P ∗
t /U

∗
t ≤ SD then 	 If the average power is less than SD

if ugt = 1 then

pgt ← P ∗
t /U

∗
t 	 Give all generators on average power

5: else

pgt ← 0

else if (P ∗
t − SD ·W ∗

t+1)/U
∗
t ≤ SU then 	 If not, check if remaining average power ≤ SU

if wg
t+1 = 1 then

pgt ← SD 	 Give generators shutting down SD

10: else if ugt = 1 then

pgt ← (P ∗
t − SD ·W ∗

t+1)/U
∗
t 	 Give all others on remaining average power

else

pgt ← 0

else 	 (P ∗
t − SD ·W ∗

t+1)/U
∗
t > SU, so we need separate out generators starting

15: if wg
t+1 = 1 then

pgt ← SD 	 Give generators shutting down SD

else if vgt = 1 then

pgt ← SU 	 Give (remaining) generators starting up SU

else if ugt = 1 then

20: pgt ← (P ∗
t − SU · V ∗

t − SD ·W ∗
t+1)/U

∗
t 	 all others on get remaining average power

else

pgt ← 0

196

Algorithm F.3b (Peel Off Power) Constructs feasible generator schedule from a solution of
(F.21) when SD ≥ SU.

for g ∈ K, t ∈ T do

if P ∗
t /U

∗
t ≤ SU then 	 If the average power is less than SU

if ugt = 1 then

pgt ← P ∗
t /U

∗
t 	 Give all generators on average power

5: else

pgt ← 0

else if (P ∗
t − SU · V ∗

t)/U
∗
t ≤ SD then 	 If not, check if remaining average power ≤ SD

if vgt = 1 then

pgt ← SU 	 Give generators starting up SU

10: else if ugt = 1 then

pgt ← (P ∗
t − SU · V ∗

t)/U
∗
t 	 Give all others on remaining average power

else

pgt ← 0

else 	 (P ∗
t − SU · V ∗

t)/U
∗
t > SD, so we need separate out generators stopping

15: if vgt = 1 then

pgt ← SU 	 Give generators starting up SU

else if wg
t+1 = 1 then

pgt ← SD 	 Give (remaining) generators shutting down SD

else if ugt = 1 then

20: pgt ← (P ∗
t − SU · V ∗

t − SD ·W ∗
t+1)/U

∗
t 	 all others on get remaining average power

else

pgt ← 0

197

Disaggregating Power when UT = 1

When UT = 1, we need consider a modified version of the aggregated generator’s production

constraint, as is the case for a single generator [110, 58]. Again using the aggregated variables from

before, consider the aggregated production constraints

PUt ≤ Pt ∀t ∈ T (F.22a)

Pt +Rt ≤ PUt + (SU−P)Vt, ∀t ∈ T (F.22b)

Pt +Rt ≤ PUt + (SD−P)Wt+1, ∀t ∈ T . (F.22c)

When SU ≥ SD, we can again use Algorithm F.3a, except we need modify line 20 to

pgt ← (P ∗
t − SU ·min{V ∗

t −W ∗
t+1, 0} − SD ·W ∗

t+1)/U
∗
t . (F.23)

The correctness of Algorithm F.3a the modification above to line 20 follows from Theorem 5.1 and

Algorithm F.2. That is, min{V ∗
t , W ∗

t+1} generators turn on at time t and turn off at time t + 1,

and hence min{V ∗
t −W ∗

t+1, 0} will get SU power at line 18.

Similarly when SD ≥ SU, we can use Algorithm F.3b, modifying line 20 to

pgt ← (P ∗
t − SU · V ∗

t − SD ·min{W ∗
t+1 − V ∗

t , 0})/U∗
t . (F.24)

The correctness of Algorithm F.3b with the modification to line 20 is exactly analogous to that in

the SU ≥ SD case above.

Disaggregating Reserves

Having disaggregated power, reserves rg can be disaggregated by considering (pgt +rgt) and (P ∗
t +R∗

t)

in Algorithm F.3a or F.3b (or their modified analogs when UT = 1) above in place of pgt and P ∗
t

respectively.

D.5 Disaggregating Piecewise Linear Production Costs

Disaggregating Piecewise Linear Production Costs when UT ≥ 2

In the case of piecewise production costs we can modify (F.9) by considering the aggregated

piecewise production variables P l =
∑

g∈K pl,g. We consider the sum of constraints of the

198

form (F.9), recalling l′ is such that SU = SD = P
l′

P l
t ≤ (P

l −P
l−1

)Ut ∀l ∈ [l′], ∀t ∈ T (F.25a)

P l
t ≤ (P

l −P
l−1

)(Ut − Vt −Wt+1) ∀l > l′, ∀t ∈ T (F.25b)

P l
t ≥ 0 ∀l ∈ L, ∀t ∈ T (F.25c)

If the generator is on and did not just turn on nor is about to turn off (ugt = 1, vgt = 0, wg
t+1 = 0),

then pl,gt = P ∗l
t /U∗

t . If the generator just turned on (ugt = 1, vgt = 1, wg
t+1 = 0), then

pl,gt = P ∗l
t /U∗

t ∀l ∈ [l′], ∀t ∈ T (F.26a)

pl,gt = 0 ∀l > l′, ∀t ∈ T , (F.26b)

and similarly if the generator is just about to turn off (ugt = 1, vgt = 0, wg
t+1 = 1) Notice that with

the aggregated linking constraints for piecewise production

Pt = PUt +
∑
l∈L

P l
t ∀t ∈ T ,

the assignment given by (F.26) is compatible with Algorithms F.3a and F.3b. pl,gt is 0 for all l, t

when the generator is off (ugt = 0).

Consider the case when SU > SD. Letting P
lSU

= SU and P
lSD

= SD, (lSU > lSD) we may

use a modified version of (F.25)

P l
t ≤ (P

l −P
l−1

)Ut ∀l ∈ [lSD], ∀t ∈ T (F.27a)

P l
t ≤ (P

l −P
l−1

)(Ut −Wt+1) ∀l ∈ (lSD, lSU], ∀t ∈ T (F.27b)

P l
t ≤ (P

l −P
l−1

)(Ut − Vt −Wt+1) ∀l > lSU, ∀t ∈ T (F.27c)

P l
t ≥ 0 ∀l ∈ L, ∀t ∈ T . (F.27d)

Like before, if the generator did not just turn on nor is about to turn off (ugt = 1, vgt = 0, wg
t+1 = 0),

then pl,g = P ∗l
t /U∗

t . If the generator just turned on (ugt = 1, vgt = 1, wg
t+1 = 0), then

pl,gt = P ∗l
t /U∗

t ∀l ∈ [lSU], ∀t ∈ T (F.28a)

pl,gt = 0 ∀l > lSU, ∀t ∈ T . (F.28b)

199

If the generator is just about to turn off (ugt = 1, vgt = 0, wg
t+1 = 1), then

pl,gt = P ∗l
t /U∗

t ∀l ∈ [lSD], ∀t ∈ T (F.29a)

pl,gt = 0 ∀l > lSD, ∀t ∈ T . (F.29b)

Finally, pl,gt = 0 for all l, t when the generator g is off (ugt = 0).

The case when SD > SU can be handled similarly.

Disaggregating Piecewise Linear Production Costs when UT = 1

When UT = 1, the aggregated piecewise power constraints need to be modified as well. Under the

assumption P
l′
= SU = SD, consider the aggregated version of (F.10)

P l
t ≤ (P

l −P
l−1

)Ut ∀l ∈ [l′], ∀t ∈ T (F.30a)

P l
t ≤ (P

l −P
l−1

)(Ut − Vt) ∀l > l′, ∀t ∈ T (F.30b)

P l
t ≤ (P

l −P
l−1

)(Ut −Wt+1) ∀l > l′, ∀t ∈ T (F.30c)

P l
t ≥ 0 ∀l ∈ L, ∀t ∈ T . (F.30d)

Without loss of generality, we can assign the piecewise power making the same modifications that

were necessary for the power production. In particular, we have that pl,gt = P ∗l
t /U∗

t if ugt = 1, vgt =

wg
t+1 = 0. If is a startup or shutdown (or both), (ugt = 1, vgt and/or wg

t+1 = 1), then we can

use (F.26).

Assuming SU �= SD, we can introduce lSU and lSD as before for (F.27)

P l
t ≤ (P

l −P
l−1

)Ut ∀l ∈ [max{lSU, lSD}], ∀t ∈ T (F.31a)

P l
t ≤ (P

l −P
l−1

)(Ut − Vt) ∀l > lSU, ∀t ∈ T (F.31b)

P l
t ≤ (P

l −P
l−1

)(Ut −Wt+1) ∀l > lSD, ∀t ∈ T (F.31c)

P l
t ≥ 0 ∀l ∈ L, ∀t ∈ T . (F.31d)

If we have ugt = 1, vgt = 0, wg
t+1 = 0, then pl,gt = P ∗l

t /U∗l
t . Then there are three other cases

to consider. Suppose SU > SD. If the generator is just starting and does not shutdown (ugt =

1, vgt = 1, wg
t+1 = 0), then (F.28) applies, and if the generator is shutting down (ugt = 1, vgt =

0 or 1, wg
t+1 = 1), then (F.29) applies.

200

The case when SD > SU is handled analogously. That is, if the generator is shutting down and

did just startup (ugt = 1, vgt = 0, wg
t+1 = 1), then (F.29) is used, and if the generator is starting

up (ugt = 1, vgt = 1, wg
t = 0 or 1) then (F.28) applies.

E Full Formulations

In this section we specify the unit commitment formulations tested in Section 5.6.

E.1 Three Binary Formulation

Suppose that generator operating cost is piecewise linear and convex in pgt , and let G>1 = {g ∈ G |
UTg > 1} and G1 = {g ∈ G | UTg = 1}. The following is the “3-bin” formulation from [110] and

Chapter 4, which is used as a basis for comparison in Section 5.6. In Appendix G we consider this

formation with the addition of static symmetry-breaking inequalities from [87].

min
∑
g∈G

∑
t∈T

(∑
l∈Lg

(cl,gpl,gt)+cR,gugt+cS,gvgt+
Sg−1∑
s=1

(cs,g−cS,g)

⎛⎝ t−Ts,g∑
t′=t−T

s,g
+1

xg[t′,t)

⎞⎠) (F.32a)

subject to:

∑
g∈G

(pgt+Pgugt)=Dt ∀t∈T (F.32b)

∑
g∈G

rgt ≥Rt ∀t∈T (F.32c)

pgt+rgt ≤(P
g−Pg)ugt−(P

g−SUg)vgt ∀t∈T ,∀g∈G1 (F.32d)

pgt+rgt ≤(P
g−Pg)ugt−(P

g−SDg)wg
t+1 ∀t∈T ,∀g∈G1 (F.32e)

pgt+rgt ≤(P
g−Pg)ugt−(P

g−SUg)vgt−(P
g−SDg)wg

t+1 ∀t∈T ,∀g∈G>1 (F.32f)

pgt+rgt−pgt−1≤RUg ∀t∈T ,∀g∈G (F.32g)

pgt−1−p
g
t≤RDg ∀t∈T ,∀g∈G (F.32h)

pgt =
∑
l∈Lg

pl,gt ∀t∈T ,∀g∈G (F.32i)

pl,gt ≤(P
l,g−Pl−1,g

) ∀t∈T ,∀l∈Lg,∀g∈G (F.32j)

ugt−ugt−1=vgt−wg
t ∀t∈T ,∀g∈G (F.32k)

201

t∑
i=t−UTg+1

vgi ≤ugt ∀t∈[UTg,T],∀g∈G (F.32l)

t∑
i=t−DTg+1

wg
i ≤1−ugt ∀t∈[DTg,T],∀g∈G (F.32m)

t−DTg∑
t′=t−TCg+1

xg[t′,t)≤vgt ∀t∈T ,∀g∈G (F.32n)

t+TCg−1∑
t′=t+DTg

xg[t,t′)≤wg
t ∀t∈T ,∀g∈G (F.32o)

pl,gt ∈R+ ∀t∈T ,∀l∈Lg,∀g∈G (F.32p)

pgt ,r
g
t ∈R+ ∀t∈T ,∀g∈G (F.32q)

ugt ,v
g
t ,w

g
t ∈{0,1} ∀t∈T ,∀g∈G (F.32r)

xg[t,t′)∈{0,1} ∀[t,t′)∈X g,∀g∈G. (F.32s)

E.2 Aggregation Formulation

We now lay out the aggregation formulation introduced in this paper, denoted “3-bin+A” and

“EF/3-bin+A” in Section 5.6. For g1, g2 ∈ G, define g1 to be equivalent to g2 if and only if g1 and

g2 have identical parameters, and denote this relationship g1 ∼ g2 (note that ∼ is an equivalence

relation). Consider the set of generators G �∼ = {g ∈ G | g �∼ g′ ∀g′ ∈ G \ {g}}, that is, G �∼ is the

subset of generators in their own equivalence classes. Let G∼ = G \ G �∼, and partition it into two

subsets, G∼F = {g ∈ G∼ | RUg,RDg ≥ (P
g −Pg)} and G∼S = G∼ \ G∼F . Hence G∼S is the set of

slow-ramping generators where each g ∈ G∼S has some other g′ ∈ G∼S with g �= g′ and g ∼ g′. In

a similar way G∼F is the set of fast-ramping generators with this property. So both G∼F and G∼S

can be partitioned into equivalence classes under ∼, with each class having more than one member.

Denote these GF and GS , respectively. Note then that each K ∈ GF (GS) is a set of identical

generators, which can be represented in a UC model using the aggregation techniques described

in this paper. Further, notice that {G �∼} ∪ GF ∪ GS is a partition of the set of generators G. We

represent each g ∈ G �∼ using the traditional 3-bin formulation, each K ∈ GF using the aggregated

3-bin formulation, and each K ∈ GS using the aggregated extended formulation.

For all the data used in this paper, SDg = SUg, so without loss of generality assume there

exists l̂g ∈ Lg such that P
l̂g ,g

= SUg = SDg for each g ∈ G (the formulation for the other cases

is found in [82]). As above, let G1
�∼ = {g ∈ G �∼ | UTg = 1} and G>1

�∼ = {g ∈ G �∼ | UTg > 1}.

202

Similarly let G 1
F = {K ∈ GF | UTK = 1} and G>1

F = {K ∈ GF | UTK > 1}. We use capital letters

to represent aggregated variables. The resulting formulation is as follows.

min
∑
g∈G

∑
t∈T

(∑
l∈Lg

(cl,gpl,gt)+cR,gugt+cS,gvgt+

Sg−1∑
s=1

(cs,g−cS,g)

⎛⎝ t−Ts,g∑
t′=t−T

s,g
+1

xg[t′,t)

⎞⎠)

+
∑
K∈GF

∑
t∈T

(∑
l∈LK

(cl,KP l,K
t)+cR,KUKt +cS,KV Kt +

SK−1∑
s=1

(cs,K−cS,K)

⎛⎝ t−Ts,K∑
t′=t−T

s,K
+1

XK
[t′,t)

⎞⎠)

+
∑
K∈GS

∑
t∈T

(∑
l∈LK

(cl,KP l,K
t)+cR,KUKt +

SK∑
s=1

cs,K

⎛⎝ t−Ts,K∑
t′=t−T

s,K
+1

XK
[t′,t)

⎞⎠) (F.33)

subject to:

∑
g∈G

(pgt+Pgugt)+
∑
K∈GF

(
PKt +PKUKt

)
+
∑
K∈GS

(
PKt +PKUKt

)
=Dt ∀t∈T (F.34a)

∑
g∈G

rgt+
∑
K∈GF

RKt +
∑
K∈GS

RKt ≥Rt ∀t∈T (F.34b)

pgt+rgt ≤(P
g−Pg)ugt−(P

g−SUg)vgt ∀t∈T ,∀g∈G1
�∼ (F.35a)

pgt+rgt ≤(P
g−Pg)ugt−(P

g−SDg)wg
t+1 ∀t∈T ,∀g∈G1

�∼ (F.35b)

pgt+rgt ≤(P
g−Pg)ugt−(P

g−SUg)vgt−(P
g−SDg)wg

t+1 ∀t∈T ,∀g∈G>1
�∼ (F.35c)

pgt+rgt−pgt−1≤RUg ∀t∈T ,∀g∈G �∼ (F.35d)

pgt−1−p
g
t≤RDg ∀t∈T ,∀g∈G �∼ (F.35e)

pgt =
∑
l∈Lg

pl,gt ∀t∈T ,∀g∈G �∼ (F.35f)

pl,gt ≤(P
l,g−Pl−1,g

) ∀t∈T ,∀l∈Lg,∀g∈G �∼ (F.35g)

ugt−ugt−1=vgt−wg
t ∀t∈T ,∀g∈G �∼ (F.35h)

t∑
i=t−UTg+1

vgi ≤ugt ∀t∈[UTg,T],∀g∈G �∼ (F.35i)

t∑
i=t−DTg+1

wg
i ≤1−ugt ∀t∈[DTg,T],∀g∈G �∼ (F.35j)

t−DTg∑
t′=t−TCg+1

xg[t′,t)≤vgt ∀t∈T ,∀g∈G �∼ (F.35k)

203

t+TCg−1∑
t′=t+DTg

xg[t,t′)≤wg
t ∀t∈T ,∀g∈G �∼ (F.35l)

pl,gt ∈R+ ∀t∈T ,∀l∈Lg,∀g∈G �∼ (F.35m)

pgt ,r
g
t ∈R+ ∀t∈T ,∀g∈G �∼ (F.35n)

ugt ,v
g
t ,w

g
t ∈{0,1} ∀t∈T ,∀g∈G �∼ (F.35o)

xg[t,t′)∈{0,1} ∀[t,t′)∈X g,∀g∈G �∼ (F.35p)

PKt +RKt ≤(P
K−PK)UKt −(P

K−SUK)V Kt ∀t∈T ,∀g∈G 1
F (F.36a)

PKt +RKt ≤(P
K−PK)UKt −(P

K−SDK)WK
t+1 ∀t∈T ,∀K∈G 1

F (F.36b)

PKt +RKt ≤(P
K−PK)UKt −(P

K−SUK)V Kt −(P
K−SDK)WK

t+1 ∀t∈T ,∀K∈G>1
F (F.36c)

PKt =
∑
l∈LK

P l,K
t ∀t∈T ,∀K∈GF (F.36d)

P l,K
t ≤(P

l,K−Pl−1,K
)UKt ∀t∈T ,∀l≤ l̂K,∀K∈GF (F.36e)

P l,K
t ≤(P

l,K−Pl−1,K
)

·(UKt −V Kt) ∀t∈T ,∀l>l̂K,∀K∈G 1
F (F.36f)

P l,K
t ≤(P

l,K−Pl−1,K
)

·(UKt −WK
t+1) ∀t∈T ,∀l>l̂K,∀K∈G 1

F (F.36g)

P l,K
t ≤(P

l,K−Pl−1,K
)

·(UKt −V Kt −WK
t+1) ∀t∈T ,∀l>l̂K,∀K∈G>1

F (F.36h)

UKt −UKt−1=V Kt −WK
t ∀t∈T ,∀K∈GF (F.36i)

t∑
i=t−UTK+1

V Ki ≤UKt ∀t∈[UTK,T],∀K∈GF (F.36j)

t∑
i=t−DTK+1

WK
i ≤1−UKt ∀t∈[DTK,T],∀K∈GF (F.36k)

t−DTK∑
t′=t−TCK+1

XK
[t′,t)≤V Kt ∀t∈T ,∀K∈GF (F.36l)

t+TCK−1∑
t′=t+DTK

XK
[t,t′)≤WK

t ∀t∈T ,∀K∈GF (F.36m)

P l,K
t ∈R+ ∀t∈T ,∀l∈LK,∀K∈GF (F.36n)

204

PKt ,RKt ∈R+ ∀t∈T ,∀K∈GF (F.36o)

UKt ,V Kt ,WK
t ∈{0,...,|K|} ∀t∈T ,∀K∈GF (F.36p)

XK
[t,t′)∈{0,...,|K|} ∀[t,t′)∈XK,∀K∈GF (F.36q)

P
[a,b),K
t +R

[a,b),K
t ≤(P

K−PK)Y K[a,b) ∀t∈[a,b),∀[a,b)∈YK,∀K∈GS (F.37a)

P [a,b),K
a +R[a,b),K

a ≤(SUK−PK)Y K[a,b) ∀[a,b)∈YK,∀K∈GS (F.37b)

P
[a,b),K
b−1 +R

[a,b),K
b−1 ≤(SDK−PK)Y K[a,b) ∀[a,b)∈YK,∀K∈GS (F.37c)

P
[a,b),K
t +R

[a,b),K
t −P [a,b),K

t−1 ≤RUKY K[a,b) ∀t∈(a,b),∀[a,b)∈YK,∀K∈GS (F.37d)

P
[a,b),K
t−1 −P [a,b),K

t ≤RDKY K[a,b) ∀t∈(a,b),∀[a,b)∈YK,∀K∈GS (F.37e)

P
[a,b),l,K
t ≤(P

l,g−Pl−1,g
)Y K[a,b) ∀t∈[a,b),∀[a,b)∈YK,∀l∈LK,∀K∈GS (F.37f)∑

{[a,b)∈YK|t∈[a,b)}
Y

[a,b),K
t =UKt ∀t∈T ,∀K∈GS (F.37g)

∑
{[a,b)∈YK|t∈[a,b)}

P
[a,b),K
t =PKt ∀t∈T ,∀K∈GS (F.37h)

∑
{[a,b)∈YK|t∈[a,b)}

R
[a,b),K
t =RKt ∀t∈T ,∀K∈GS (F.37i)

∑
{[a,b)∈YK|t∈[a,b)}

P
[a,b),l,K
t =P l,K

t ∀t∈T ,∀l∈LK,∀K∈GS (F.37j)

∑
{[c,d)∈XK|t=d}

XK
[c,d)=

∑
{[a,b)∈YK|t=a}

Y K[a,b) ∀t∈T ,∀K∈GS (F.37k)

∑
{[a,b)∈YK|t=b}

Y K[a,b)=
∑

{[c,d)∈XK|t=c}
XK

[c,d) ∀t∈T ,∀K∈GS (F.37l)

∑
{[a,b)∈YK|a≤0}

Y K[a,b)+
∑

{[c,d)∈XK|c≤0}
XK

[c,d)=|K| ∀K∈GS (F.37m)

∑
{[a,b)∈YK|b>T}

Y K[a,b)+
∑

{[c,d)∈XK|d>T}
XK

[c,d)=|K| ∀K∈GS (F.37n)

P
[a,b),l,K
t ∈R+ ∀t∈[a,b),∀[a,b)∈YK,∀l∈LK,∀K∈GS (F.37o)

P
[a,b),K
t ,R

[a,b),K
t ∈R+ ∀t∈[a,b),∀[a,b)∈YK,∀K∈GS (F.37p)

Y K[a,b)∈{0,...,|K|} ∀[a,b)∈YK,∀K∈GS (F.37q)

XK
[c,d)∈{0,...,|K|} ∀[c,d)∈XK,∀K∈GS . (F.37r)

205

In total, we have that (F.33) is the objective function, Constraints (F.34) describe the demand and

reserve requirement for the system, Constraints (F.35) describe the technical constraints for the

generators that could not be aggregated, Constraints (F.36) describe the technical constraints for

the fast-ramping generators that were aggregated, and Constraints (F.37) describe the technical

constraints for the slow-ramping generators that could be aggregated. Variables not appearing in

the above model are assumed to be 0.

206

Appendix G

Additional Computational Tests for

Chapter 5

In this appendix we present some additional computational results to complement those in

Chapter 5. The notation is that of Appendix F.

A Symmetry Breaking Inequalities

In addition to the formulations considered before, we consider the addition of the “S3” variables and

inequalities from [87] to the base 3-bin UC formulation. Lima and Novais [87] propose introducing

new variables yong which indicate if generator g ever turned on during the time horizon, along with

inequalities to enforce this

∑
t∈T

ugt ≥ yong ∀g ∈ G (G.1)

ugt ≤ yong ∀t ∈ T , ∀g ∈ G. (G.2)

They then propose the following two symmetry-breaking inequalities for each set of identical

generators K

yong ≥ yong+1 ∀g, g+1 ∈ K (G.3)∑
t∈T

ugt ≥
∑
t∈T

ug+1
t ∀g, g+1 ∈ K, (G.4)

207

Table G.1: Additional Computational Results for CAISO UC Instances

Time (s) Nodes

Instance 3-bin 3-bin+SBC 3-bin+A 3-bin 3-bin+SBC 3-bin+A

2014-09-01 0% 31.35 34.07 14.25 0 0 0

2014-12-01 0% 25.77 29.36 12.38 0 0 0

2015-03-01 0% 24.08 34.47 14.27 0 0 0

2015-06-01 0% 13.11 14.25 8.50 0 0 0

Scenario400 0% 27.29 35.99 23.63 0 0 0

2014-09-01 1% 20.52 29.38 16.44 0 0 0

2014-12-01 1% 38.48 86.41 24.69 95 566 0

2015-03-01 1% 21.75 35.76 19.11 0 0 0

2015-06-01 1% 39.87 30.42 15.59 47 0 0

Scenario400 1% 47.54 57.85 44.63 0 154 1438

2014-09-01 3% 81.47 92.60 38.27 7 696 122

2014-12-01 3% 65.01 120.03 36.53 1292 95 125

2015-03-01 3% 50.79 77.96 25.04 0 3 0

2015-06-01 3% 87.25 147.05 41.23 0 79 115

Scenario400 3% 131.28 147.61 69.45 2055 140 880

2014-09-01 5% 47.07 69.51 30.95 95 176 7

2014-12-01 5% 83.87 132.97 66.90 1203 79 3978

2015-03-01 5% 80.57 72.70 21.65 923 0 0

2015-06-01 5% 26.99 96.56 43.79 0 162 402

Scenario400 5% 115.53 95.50 118.51 3867 31 4225

Geometric Mean: 43.85 59.69 27.55

where g, g+1 ∈ K is understood to be two consecutive generators in K. (G.3) enforces that if

generator g+1 ever turns on then generator g does as well, and (G.4) enforces that generator g is

scheduled in at least as many time periods as generator g+1. As pointed out in [87], this eliminates

many, but not every, source of symmetry in UC.

B Computational Results

Here we present computational results for the instances tested in the main text with the addition of

the “S3” variables and inequalities from [87], which we label as “3-bin+SBC”. The computational

platform is as described in the main text.

208

Table G.2: Additional Computational Results for Ostrowski UC Instances

Time (s) Nodes

Instance 3-bin
3-bin
+SBC

EF/3-bin
+A 3-bin

3-bin
+SBC

EF/3-bin
+A

1 8.44 54.82 14.02 1509 13700 68

2 154.75 44.73 21.07 48129 10370 157

3 703.94 127.23 100.33 316704 25802 4464

4 14.84 109.15 17.28 8532 26297 60

5 143.18 101.73 57.22 131320 17784 4350

6 95.41 45.03 28.00 62394 7160 72

7 (0.0238%) 270.34 119.22 535361* 75097 4854

8 (0.0107%) 57.36 71.00 1378310* 29362 9267

9 (0.0169%) 167.56 125.63 819798* 49318 12217

10 (0.0327%) 287.18 82.89 751319* 133909 11549

11 (0.0186%) (0.0220%) 18.76 73976* 20838* 1155

12 (0.0240%) (0.0265%) 22.91 42729* 7505* 460

13 (0.0266%) (0.0264%) 74.43 41325* 13420* 6464

14 (0.0144%) (0.0203%) 19.75 41469* 4127* 15

15 780.76 (0.0105%) 39.63 120599 35111* 3091

16 (0.0162%) (0.0223%) 90.31 42102* 8770* 2597

17 154.37 237.90 27.88 2114 2185 1059

18 (0.0121%) (0.0214%) 22.36 60651* 3972* 151

19 (0.0195%) (0.0250%) 21.30 42683* 6025* 2436

20 106.44 628.20 18.46 527 4288 0

Geometric Mean: >349.77 >277.82 38.03

B.1 CAISO Instances

In Table G.1 we report the computational results for the CAISO instances described above. As we

can see, in almost all cases the symmetry-breaking constraints are unhelpful. This is to be expected

since these instances have a relatively tight root optimality gap, and the extra constraints serve to

slow effective cut generation and heuristic search at the root node. Overall they serve to slow the

solver down over 3-bin, though in one instance the 3-bin+SBC variant finds a high-quality solution

fastest and with fewest nodes.

B.2 Ostrowski Instances

As in the main text, we set a time limit of 900 seconds for the Ostrowski instances and report the

terminating MIP gap in parentheses when the solver terminates at the time limit. In Table G.2 we

209

report the computational results for the Ostrowski instances from the main text. As reported in [87],

the symmetry-breaking constraints are helpful overall for the smaller Ostrowski instances (1–10),

but they perform worse than 3-bin on the larger instances (11–20). In comparison, EF/3-bin+A has

a relatively flat performance profile across all 20 instances, suggesting that, when handled properly,

identical generators can be leveraged to significantly reduce the computational burden of UC.

210

Vita

Bernard (Ben) Albert Knueven was born on June 17th, 1988, to Leo and Mary Jo Knueven. He

attended Colerain High School in Cincinnati, Ohio. Upon graduation, he enrolled at Northern

Kentucky University, and in the spring of 2010 he completed undergraduate degrees in music and

mathematics. Ben then accepted a graduate teaching assistantship at Miami University in Oxford,

Ohio, where he studied mathematics. He earned a master’s degree in mathematics in the summer

of 2012. Ben remained at Miami University the following school year as an instructor, teaching

courses in pre-calculus and calculus.

In the fall of 2013 Ben enrolled at the University of Tennessee, Knoxville, to pursue his PhD in

Industrial Engineering under the guidance of James Ostrowski. He was supported in part by the

university’s chancellor’s fellowship his first four years. In the summer of 2015 Ben was selected to

receive an Office of Science Graduate Student Research award from the U.S. Department of Energy,

Office of Science. As a result, he spent seven months spanning 2015 and 2016 in Albuquerque, New

Mexico, where he worked in the Discrete Math & Optimization Department at Sandia National

Laboratories under the tutelage of Jean-Paul Watson. He continued his work at Sandia as student

intern remotely from Knoxville. Ben completed his PhD in Industrial Engineering in December

2017.

211

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2017

	Almost Symmetries and the Unit Commitment Problem
	Bernard Albert Knueven
	Recommended Citation

	tmp.1541714957.pdf.ExAqp

