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ABSTRACT 

The metabolome is the end product of all biochemical reactions in the body and 

is sensitive to external perturbations, such as diet, genetics, sex, disease, and 

environment. Understanding the dynamic relationship between metabolites and external 

inputs is key to delineating the metabolic underpinnings of disease. Mass-spectrometry 

based metabolomics provides a means through which the metabolome can be 

systemically and systematically profiled to discern alterations across thousands of 

metabolites at a time. The research in this dissertation characterized the effects of diet, 

genetics, and sex on the tissue metabolome. Adipose, skeletal muscle, and liver tissue 

were chosen due to their role in energy metabolism. In the first study, we characterized 

the effects of five diets (Japanese, ketogenic, Mediterranean, American, and standard 

chow) on the tissue metabolome, across both sexes. This study described the metabolic 

response to diets that altered in macronutrient ratio and composition, independent of 

genetic differences. Our results revealed that liver tissue was most sensitive to 

metabolic changes but responded similarly for diet, sex, and sex-by-diet interaction 

while adipose and muscle remained largely stable. In the second study, we 

characterized the effects of four strains (A/J, C57BL/6J, FVB/NJ, and NOD/ShiLtJ) on 

the tissue metabolome, across both sexes. This study assessed the metabolic response 

to differing genetic backgrounds represented by various predispositions to metabolic 

disease, independent of diet. Our results showed that strain exerted the largest effect 

on metabolites across all three tissues. In contrast, sex and sex-by-strain interaction 

had little effect on adipose, muscle, and liver. The third study characterized the effects 
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of diet, genetics, and sex on the tissue metabolome. We assessed the metabolic 

response to diet, genetics, sex, and their interactions to determine which factor/s were 

potentially driving metabolic differences. Strain exerted the largest effect across all 

tissues. Liver was most sensitive to metabolite changes when all factors and 

interactions were collectively assessed. Overall, the results in this dissertation aid in the 

understanding of complex relationships between diet, genetics, and sex at the systems-

level. Furthermore, it was shown that tissues responded differentially to the same stimuli 

highlighting the need to consider sample type when performing metabolomics. 
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CHAPTER ONE  

GENERAL EXPERIMENTAL DESIGN 
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The goal of this dissertation was to identify “metabotypes”, phenotypes defined 

by distinct strain- and diet-dependent metabolite profiles, which could be linked to 

systems’ phenotypes relevant to metabolic disease.  

 Little is known about the metabolic response to whole diets at the tissue level 

and even less is known about how genetic background intersects with diet to alter these 

responses. Metabolomics is an analytical tool that allows us to obtain relative 

abundances of individual metabolites within whole tissue or cells. It allows us to identify 

how metabolism is affected on a systems level. 

 This project is part of a larger project designed to identify how gene by diet 

interactions affect colon tumor initiation.  The first phase of the project assessed how 

gene by diet interaction affected physiology in the absence of tumors. This study 

focused on the identification of metabolites during the first phase of the project. 

 Males and females across four strains of mice (A/J, C57Bl/6J, NOD, and FVB) 

were fed one of five diets (Japanese, Mediterranean, ketogenic, American, and 

standard chow) for 7 months. These mice were chosen due to their varying 

susceptibility to azoxymethane, a chemical carcinogen; however, these mice also have 

altering susceptibilities to metabolic disease. Mice were fed diets as libitum for 12 

weeks, to acclimate to the diets, prior to metabolic testing. During metabolic testing 

mice were placed in metabolic chambers to measure respiratory exchange rate, oxygen 

consumption, activity levels, and heat output. 

 The research in this dissertation measured thousands of metabolites within 

adipose, muscle, and liver tissue across multiple diets and genetic backgrounds for both 

sexes with the aim of understanding how all three factors intersect to modify the tissue 
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metabolome. The objectives of this study were: 1. Characterize the relative effects of 

genetics, sex, diet, and their interactions on tissue metabolomes, 2. Identify tissue-level 

metabolic effects of diets that are commonly recommended for health, and 3. Link tissue 

metabolite profiles to systems phenotypes relevant to metabolic syndrome. 

 Chapter 3 will provide the bioinformatics approach designed to deal with tissue 

metabolomics, including experimental procedure, sample preparation, and statistical 

procedures. Chapter 4 will characterize the effects of diet and sex on a single genetic 

background in adipose, skeletal muscle, and liver tissue. Chapter 5 will characterize the 

effect of strain and sex on the tissue metabolome when mice were fed a single diet. 

Chapter 6 will characterize the effects diet, genetics, and sex on the tissue metabolome. 

Chapter 7 will conclude the research presented in this dissertation and provide future 

directions.
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CHAPTER TWO  

METABOLOMICS AND ITS ROLE IN DISSECTING SYSTEMS-LEVEL 

EFFECTS OF DIET, GENETICS, AND SEX 
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2.1 Energy Balance and Diet 

More than two-thirds of the United States (U.S.) population is classified as 

overweight or obese [1-3]. Obesity is associated with the comorbidities type 2 diabetes, 

hypertension, heart disease, and certain cancers [4]. In addition, obesity is the 5th 

leading cause of death worldwide [3]. Obesity and its comorbidities are an economic 

burden. As of 2008, the estimated annual cost of obesity in the U.S. was $147 billion [5].  

Obesity is traditionally accepted as the physiological response to excess caloric 

intake and low physical activity. Despite a large body of research investigating the 

relationship between obesity and diet and lifestyle interventions, no clear relationship 

has been elucidated. Current recommendations encourage individuals to increase their 

physical activity [6] and to consume a healthy eating pattern [7]. According to the 

Dietary Guidelines for Americans a healthy eating pattern consists of a variety of 

vegetables, fruits, grains, fat-free or low-fat dairy, a range of proteins consisting of lean 

meats, eggs, legumes, and seafood, and oils with limited consumption of saturated fats, 

sugar, and sodium [7]. Caloric intake is also considered important to maintaining a 

healthy lifestyle, in addition to the types of food consumed. Caloric intake for an 

individual is dependent on a number of factors; activity level, age, weight, sex, and 

height [8]. The aim of a healthy eating pattern and limiting caloric intake is to modulate 

energy metabolism. Energy metabolism at the cellular level is the production of ATP 

from nutrients. Nutrients from food come in the form of three macronutrients; protein, 

carbohydrates, and fat.  



 

 6 

2.1.1 Protein 

Protein synthesis occurs through the transcription of DNA to RNA and the 

translation of RNA. This process is known as the central dogma in biology. Transcription 

of DNA generates messenger RNA (mRNA) and transfer RNA (tRNA), which are 

necessary to build proteins. The nucleotide sequences of mRNA are translated into 

amino acids, which bind together to create proteins. Proteins are generated from twenty 

amino acids. Nine of these amino acids are essential for humans and mice, which 

means they must be provided from dietary sources (Table 2.1). In addition to creating 

proteins from individual amino acids, individual amino acids can be incorporated into 

various metabolic reactions to produce glucose through gluconeogenesis and ATP 

through the TCA cycle. 

Although dietary intake of protein makes up approximately 1% of proteins stored 

in the body [9] various levels of protein in the diet have been investigated. Consumption 

of a high-protein diet can increase satiety; however, there is some concern that the 

liver’s capacity to convert nitrogen to urea may be exceeded inducing a disease state 

with long-term adherence [10]. Furthermore, a high-protein diet can prevent muscle 

catabolism during weight loss [11]. 
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Table 2.1: Twenty Amino Acids 

Non-essential Amino Acids Essential Amino Acids 
Alanine Histidine 
Arginine Isoleucine 
Asparagine Leucine 
Aspartate Lysine 
Cystine Methionine 
Glutamic acid Phenylalanine 
Glycine Threonine 
Ornithine Tryptophan 
Proline Valine 
Serine  
Tyrosine  

 

2.1.2 Carbohydrates 

 The simplest form of carbohydrates is monosaccharides. All monosaccharides 

are made up of carbons, hydrogens, and oxygens with the empirical formula Cm(H2O)n. 

Monosaccharides consist of a single glucose, fructose, galactose, or xylose. Other 

forms of carbohydrates can be built from monosaccharides. Disaccharides (sucrose, 

lactose, maltose, and trehalose) and polyols (sorbitol and mannitol) are made up of two 

monosaccharides. Oligosaccharides (raffinose, oligofructoses, and maltodextrins) are 

made up of three to nine monosaccharides. Polysaccharides are made up of more than 

nine monosaccharides. Polysaccharides consist of starches (amylose, amylopectin, and 

glycogen) and non-starches (cellulose and pectins). Carbohydrates are broken down 

into monosaccharides through digestive enzymes, such as α-amylase in order to utilize 

for energy metabolism. Monosaccharrides, disaccharides, and polyols are generally 

known as simple carbohydrates while oligosaccharides and polysaccharides are known 

as complex carbohydrates. 
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Fructose and galactose can be converted into glucose for energy metabolism. 

Adipose, muscle, and liver through glucose transporters take up glucose in an insulin-

dependent manner while excess glucose is stored as fat through de novo lipogenesis. 

Carbohydrates through dietary intake make up 50-100% of carbohydrate stores in the 

body, which is stored as glycogen [9].  

The relationship between carbohydrate intake and health remains controversial. 

Like protein, intake of carbohydrates has been shown to induce satiety for at least 90 

minutes postprandial [12]. Furthermore, current recommendations have suggested 

limiting fat intake to improve cardiovascular disease; however, a recent study has 

shown that high-carbohydrate diets have been associated with higher total mortality 

across the world [13, 14]. Conversely, high-carbohydrate diets have improved insulin 

sensitivity, lowered LDL cholesterol and reduced weight [15, 16]. 

2.1.3 Lipids 

Lipids can act as receptors, serve as the plasma membrane of a cell, or be 

broken down into non-esterified fatty acids for energy. Lipids consist of triacylglycerols, 

phospholipids, sphingolipids, as well as others. Triacylglycerols consist of three fatty 

acids attached to a glycerol backbone and serve as the primary component of adipose 

tissue. Triacylglycerols can be broken down via lipoprotein lipase into glycerol and non-

esterified fatty acids. In order for lipids to be accessible for metabolism breakdown of 

triacylglycerols is necessary. Non-esterified fatty acids, also known as free fatty acids, 

can then be shuttled to the mitochondria for ATP production. Free fatty acids are 

classified a short-chain, medium-chain, and long-chain fatty acids. Short-chain fatty 
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acids have six or fewer carbons, medium-chain fatty acids contain between eight and 

fourteen carbons, and long-chain fatty acids contain more than fourteen carbons. All 

fatty acids, regardless of length, consist of a carbon backbone and a carboxylic acid. 

Furthermore, fatty acids can be classified as either saturated of unsaturated. Saturated 

fatty acids contain hydrogens at all carbon atoms while unsaturated fatty acids contain 

at least one double bond.  

Two fatty acids, linoleic acid and α -linoleic acid, are essential for humans and 

mice and can only be provided by diet. These fatty acids are necessary to build omega-

3 and omega-6 fatty acids. Omega-3 and 6 fatty acids are named omega-3 and 6 

because their first double bond is at the third and sixth carbon from the methyl end. 

Omega-3 fatty acids convert to eicosapentanoic acid (EPA) and docosahexaenoic acid 

(DHA) while omega-6 fatty acids convert to arachadonic acid (AA). DHA and EPA are 

considered anti-inflammatory and AA is considered pro-inflammatory [17]. High omega-

6 to omega-3 ratios have been linked to obesity and diabetes and create a pro-

inflammatory response [17]. 

Fat intake makes up less than 1% of fat stores in the body [9]. While 

consumption of a high protein diet induces satiety, high intakes of fat have not resulted 

in the same levels of satiety for any length of time [12], which may lead to 

overconsumption of food. For this reason high-fat diets and fats, in general, have been 

touted as the primary contributor to obesity; however, the ketogenic diet, which is 

primarily made up of fat has not induced an obesogenic state in individuals suggesting 

another mechanism [18, 19]. 
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2.2 Health and Diet 

Diet modification has treated a host of diseases including type 2 diabetes, 

epilepsy, Celiac’s disease, irritable bowel disease (IBS), and cardiovascular disease 

[20-26]. Diet, however, can be used for more than disease reversal. Individuals may use 

diet to maintain a healthy weight or improve athletic performance [27-29]. The following 

four diets were chosen for this dissertation due to their known affects on human health. 

These diets were formulated to mimic the macronutrient and dietary composition of a 

human diet.  

2.2.1 American (Western) Diet 

 With the industrial revolution refined grains, oils, sugars, and high fructose corn 

syrup were developed. These foods became the staples of a western diet, particularly 

after WWII. The diet that stemmed from the industrial revolution and the term western 

became synonymous due to the association of industrialization with western countries, 

such as the U.S. and England.  From 2007-2008 the average caloric intake was 2,504 

and 1,771 for men and women, respectively [30, 31]. When calories were broken down 

by macronutrient approximately 50% were attributable to carbohydrates, nearly 16% to 

protein, and roughly 33% to fat with 11% of fat being saturated fat [30-32]. The Dietary 

Guidelines for Americans were developed in 1980 and have been updated and revised 

every five years to promote a healthy diet based on published research. In addition to 

dietary recommendations the guidelines assess the current state of nutrition in the 

United States. According to the 2015-2020 Dietary Guidelines the average U.S. adult 

under-consumed vegetables (<1-2 cups per day) but exceeded the dietary 
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recommendations for total grains, protein, sugars, saturated fats, and sodium [7]. 

Current dietary guidelines recommend 2.5 or more cups of vegetables, three cups or 

less of dairy, 7 ounces of protein, and less than 10% of calories from sugar or saturated 

fats. Despite these recommendations current research has shown an inverse 

relationship between vegetable consumption and weight gain, heart disease, and 

diabetes [33, 34]. This suggests that more than 2.5 cups of vegetables should be 

consumed to receive maximal health benefits. In agreement with the recommendations 

over-consumption of sugar showed an increased risk of cardiovascular disease and 

metabolic syndrome, according to the NHANES [35, 36]. As individuals pursue food that 

is pre-made, quick, and hyper palatable, diseases such as obesity, type 2 diabetes, 

certain cancers, and cardiovascular disease have also increased [37, 38]. Furthermore, 

as countries become westernized and consume more foods from an American diet the 

aforementioned diseases follow [39]. Since the wide adoption of the American diet both 

locally and globally, deaths due to preventable diseases, mentioned above, have 

become some of the top causes of death [40]. 

2.2.2 Japanese Diet 

 The Japanese diet is low in fat and high in carbohydrate [41]. Rice, soybeans, 

fish, some meats, oils, fermented foods, and vegetables typically make up the Japanese 

diet [42]. After WWII the Japanese population began eating what is now considered a 

traditional Japanese diet, mentioned above. Preceding WWII the Japanese population 

was impoverished and primarily ate a diet of rice. The association between the 

Japanese diet and longevity developed as a result of this alteration in dietary pattern. 
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Prior to WWII the average life expectancy of Japanese men and women was 42.8 and 

51.1 years, respectively [43]. From 1946 to 1951 life expectancy rose by 18 years for 

men and 13.7 years for women. The life expectancy of the Japanese population 

continued to increase until Japan had the highest life expectancy in the world in 1979 

[43]. As of today the average Japanese individual lives to 85, which is ranked third 

worldwide [44]. The high life expectancy of the Japanese population drew considerable 

attention to their eating habits. Okinawa, Japan, in particular, is known for having a 

large number of centenarians [45]. Okinawans tend to be resistant to acculturation and 

therefore maintain a traditional diet [45]. In 2002, the same scientists that research the 

Okinawan centenarian population published The Okinawa program [46]. This book 

provided dietary guidelines based on the Japanese diet in Okinawa popularizing the 

Japanese diet in the United States.  

Rates of coronary heart disease (CHD) and cancer, in Japan, are some of the 

lowest in the world [47-49]. Investigating CHD in Japanese-Americans revealed the 

same rates of CHD when consuming a traditional Japanese diet; however, when 

Japanese-Americans consumed a western diet they had a 3-5-fold increase in CHD 

prevalence [47]. Furthermore, Japanese individuals that moved to the U.S. and adopted 

a western diet had increased rates of certain cancers [48]. Individual markers of health 

are improved through the consumption of a Japanese diet. In the Japanese population, 

consumption of fish and soy were associated with higher HDL cholesterol and folate 

levels [50]. 

Studies investigating the Japanese diet in mice also show significant health 

improvements. Mice fed a Japanese diet had lower liver weights, adiposity levels, 
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serum glucose, insulin levels, and triglyceride levels compared to their counterparts fed 

a Mediterranean diet [51]. Furthermore, modification of the Japanese diet to contain 

more fish, soy, seaweed, vegetables, fruit, and dashi, a fermented seasoning reduced 

serum LDL cholesterol, liver total cholesterol, and IL-6 levels compared to mice fed a 

traditional Japanese diet [41]. Individual components of a Japanese diet were also 

shown to have protective effects. Consuming green tea in conjunction with a high-fat 

diet diminished the negative effects of the high-fat diet in mice [52]. 

2.2.3 Mediterranean Diet 

 The Mediterranean diet consists of a moderate level of carbohydrates and fats. 

Individuals eating a Mediterranean diet consume a low intake of saturated fats, meats, 

and dairy; high intake of vegetables, cereals, nuts, fruits, and legumes; and a moderate 

intake of fish and wine [53-55]. Ancel Keys was the first to promote a Mediterranean diet 

in the U.S.. Investigating the diets of 12,000 men across seven countries in a study, 

known as The Seven Countries study, he revealed that the Mediterranean diet had 

protective effects of CHD [56, 57]. The Mediterranean diet, however, didn’t become 

popular in the U.S. until the 1990’s. Despite the promotion of the Mediterranean diet by 

Ancel Keys decades earlier, Walter Willet is often accredited with creation of the 

Mediterranean diet in the U.S. [58, 59].  

In addition to the Japanese diet, consumption of a Mediterranean diet contributes 

to some of the longest life expectancies in the world [51]. Besides long life 

expectancies, the Mediterranean diet can improve specific markers of health. When 

assessing the health of an individual triglyceride levels, HDL, LDL, and blood glucose 
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levels are measured. These markers have been linked to CVD, NAFLD, and type 2 

diabetes [26, 60-62]. A healthy individual will have triglyceride levels that are less than 

150 mg/dL, HDL levels that are greater than 60mg/dL, LDL levels that are less than 

100mg/dL, and fasting glucose levels that are less than 100mg/dL [63, 64]. 

Furthermore, menopausal women are assessed for osteoporosis. The Mediterranean 

diet has been shown to increase bone mineral density and reduce triglyceride levels 

[55, 65]. The Mediterranean diet has also been shown to improve energy metabolism in 

obese individuals. Sirt 4 is a mitochondrial ADP-ribosyltransferase that aids in the 

downregulation of insulin secretion via inhibition of glutamate dehydrogenase 1 [66]. 

Obese individuals adhering to a Mediterranean diet showed improved sirt 4 levels [54]. 

Additionally, adherence to a Mediterranean diet lowered their body mass index, fasting 

blood glucose, LDL, and increased HDL levels [54].  

2.2.4 Ketogenic Diet 

 The ketogenic diet was formally developed in the 1920’s to treat epilepsy [20, 21, 

67]. Prior to the ketogenic diet starvation was the primary method to treat epilepsy [67]. 

The term “ketogenic” was coined due to the production of ketone bodies as a result of 

the diet [67]. The Ketogenic diet is predominantly comprised of fat. The original diet was 

developed by M.G. Peterman and consisted of 1g of protein per kilogram of body weight 

in children, 10-15g of carbohydrates per day, and the rest of the calories in fat [67, 68]. 

Ketosis is the basis of a ketogenic diet and occurs when fatty acid oxidation becomes 

the primary source of energy for the body in response to glucose depletion. As a result 

three ketone bodies—β-hydroxybutyrate, acetoacetate, and acetone are produced. 



 

 15 

 The ketogenic diet has also been used to treat symptoms of autism [69] and as 

an adjuvant treatment for cancer [70, 71]. In addition to the therapeutic effects of the 

diet, interest in the ketogenic diet has continued to gain popularity despite few studies 

showing the efficacy of the ketogenic diet as a weight loss tool [18, 72, 73].  Moreover, 

endurance athletes use a ketogenic to increase their endurance by reducing the need 

for glucose supplementation during an event and improving their maximum volume of 

oxygen (VO2 max). Off-road cyclists fed a ketogenic diet utilized significantly more free 

fatty acids during exercise than cyclists on a mixed diet [29]. VO2 max was also 

significantly higher and RER was significantly lower in cyclists fed a ketogenic diet [29]. 

The ketogenic diet can also improve these markers for weeks after cessation of the diet. 

Individuals fed a ketogenic diet showed a reduced RER after 20 days and remained low 

at 40 days even after cessation of the ketogenic diet [72]. 

 

2.3 The Role of Genetics in Diet and Disease 

Diets are used to lose weight, improve health, or treat disease; however the 

efficacy of a diet can be influenced by genetic background. Studying dietary responses 

in humans can be challenging for many reasons, including but not limited to the inability 

for biological replicates, compliance, high-heterozygosity, and issues with self-reporting 

methods. Regardless, several human studies have been able to determine the genetic 

effects on diet and disease [45, 74, 75]. Postprandial plasma triglyceride levels are a 

risk factor for cardiovascular disease. Individuals fed a high-fat diet were assessed for 

genetic variants associated with plasma triglyceride levels. Two SNPs were associated 

with triglyceride response revealing genetic variants that may increase plasma 
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triglyceride levels [76].  

Mice are a good model to represent humans due to their genetic similarity, the 

ability for biological replications, and their inherent compliance. Inbred strains of mice 

are developed through the breeding between siblings or parent and progeny. In order 

for a mouse line to become homozygous must be bred for at least 20 sequential 

generations (F20). After 20 generations mice become 98.7% homozygous at all loci 

[77], which allows for biological replication. In addition to biological replication inbred 

mice make it possible to compare multiple scientific studies potentially produced at 

different times and in different locations. This allows researchers to comprehensively 

study the biology of a particular mouse strain. Due to the inbred nature of a mouse 

strain, however, it can be difficult to extrapolate results beyond the genetic breed. For 

this reason, multiple strains can be utilized to represent genetic diversity and allow us to 

better understand how individual variation can influence physiological responses to 

dietary inputs. For example, diet induced obesity has been shown to be induced in 

C57BL/6J mice, while A/J and NOD/ShiLtJ mice are obesity resistant [78-81]. 

Furthermore, genetic background has been shown to influence the severity of disease. 

Ob/ob mice on a FVB/NJ background developed severe diabetes while ob/ob mice on a 

C57BL/6J mice developed hyperglycemia [82]. Treatment of disease through diet has 

also been shown to have differing levels of success due to genetic background. 

Seizures have been successfully controlled through a ketogenic diet; however, between 

10-40% of patients do not experience a reduction in seizures, which is thought to be 

due to inherent genetic differences [83]. Investigating the effects of genetic background 

on mice consuming a ketogenic diet revealed that C57BL/6J and DBA/2J mice 
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remained seizure-free while FVB/NJ and A/J mice both continued to experience 

seizures [83]. In order to assess the role of genetics in our study four strains (A/J, 

NOD/ShiLtJ, FVB/NJ, and C57BL/6J) were chosen in this dissertation for their altering 

susceptibilities to common metabolic diseases.  

2.3.1 A/J 

A/J mice were developed by LC Strong in 1921 [84]. They are a cross between a 

Bagg albino and a Cold Spring Harbor albino. A/J mice are high susceptible to cancer 

and are used as a carcinogen induced cancer model [85, 86]. Conversely A/J mice are 

resistant to diabetes, obesity, atherosclerosis, insulin resistance, and glucose 

intolerance [78, 84, 87]. In addition to metabolic markers A/J mice were shown to have 

low levels of activity [88]. 

2.3.2 C57BL/6J 

The C57BL/6J mouse was developed using mice provided by Abbie Lanthrop, a 

high school teacher [77].  Clarence Little, along with Leonell Strong, and E.C. 

MacDowell created the C57BL/6J line around 1918 [77]. In contrast to A/J mice, 

C57BL/6J mice are susceptible to diet-induced obesity, type 2 diabetes, and 

atherosclerosis [78, 82, 89-91]. C57BL/6J also show high levels of activity [88] 

2.3.3 FVB/NJ 

FVB/NJ mice were developed in 1966. Outbred Swiss mice were bred for a 

resistance or sensitivity to histamine challenge after receiving a pertussis vaccination 

[92]. It was discovered that the sensitive line was also sensitive to the Friend leukemia 
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virus B strain (FVB) so this generation was then inbred specifically to develop the 

FVB/NJ strain [92]. FVB/NJ mice are susceptible to certain cancers, have higher basal 

body temperature, activity, and anxiety levels [93, 94]. Additionally, FVB/NJ mice are 

homozygous for the Pde6brd1 allele resulting in retinal degeneration [92].  

2.3.4 NOD/ShiLtJ 

NOD/ShiLtJ mice developed from the inbreeding of the Cataract Shionogi strain 

[95]. NOD/Shi mice developed at the F6 generation, marked by elevated fasting blood 

glucose. The F6 generation was then inbred and at the F20 generation, female mice 

spontaneously developed insulin-dependent diabetes [95]. These mice were then inbred 

in 1974 to develop the NOD/ShiLtJ strain. NOD/ShiLtJ mice are a model for type 1 

diabetes [96]. They are characterized by the leukocyte infiltration of pancreatic islets. In 

addition NOD/ShiLtJ females are the first to show decreased in pancreatic insulin, 

typically around 12 weeks, while males express this phenotype weeks later [81].  

 

2.4 The Role of Sex in Diet and Disease 

 Research investigating diet and disease over the last century has predominantly 

used males as their subjects; however, it has been shown that females differentially 

respond to diet and disease in some cases. The largest difference between males and 

females relates to their sex hormones. Females primarily produce estrogen and 

progesterone while males produce testosterone.  Physiologically females tend to have a 

higher proportion of body fat relative to men, regardless of ethnic group [97].  There are 

also sex differences when it comes to utilization of fats and carbohydrate at rest and 
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during exercise. Women store more fatty acids as triglycerides while men oxidize free 

fatty acids at the resting state [98], which may be due to estrogen levels in women [99]. 

Conversely, during exercise, women preferentially use fatty acids over carbohydrates 

while men preferentially use carbohydrates [98]. Free fatty acids have also been shown 

to have differential effects on insulin sensitivity. Free fatty acids in men played a role 

inhibiting tissue insulin sensitivity but had no effect on insulin sensitivity in women [100]. 

Furthermore, post-menopausal women or ovariectomized mice had increased insulin 

resistance [101]. 

Disease prevalence can also be due to sex dimorphisms. Seventy-eight percent 

of autoimmune disease diagnoses are women [102]. In contrast, men are more likely to 

develop type 1 diabetes [103]. Additionally, both men and women are nearly equally at 

risk for CVD; however, women have a higher rate of death [104].  

 

2.5 Metabolomics 

Chromatographs are used to separate analytes (i.e. compounds in a sample). 

The first chromatograph was developed by Mikhail Semenovich Tsvett in the early 

1900’s. This chromatograph was able to separate plant pigment. Paper chromatography 

was developed several decades later in 1941 by Richard Synge and Archer Martin. This 

allowed for the separation of colorless compounds as the solvent spread across the 

paper. Compounds would spread across the paper based on their solvency in the 

chosen solution. Paper chromatography was the primary method used until NMR was 

developed in the early 1950’s. NMR spectroscopy determines the physical and chemical 



 

 20 

properties using the magnetic properties of the atomic nuclei [105]. The intramolecular 

magnetic field that surrounds an atom in a whole molecule alters the resonance 

frequency, which provides structural information. A major advantage to NMR is sample 

recovery, but the inability to resolve compounds due to low sensitivity must be 

considered. Less than a decade after the development of NMR, in 1959, the first gas 

chromatographer was coupled to a mass spectrometer occurred [106]. Analytes 

measured using gas chromatography-mass spectrometry (GC-MS) must be volatile 

limiting the types of analytes that can be analyzed, however, the resolving power—the 

ability to provide a specific mass resolution (chapter 3.6.2)—is higher than NMR due to 

higher sensitivity. The first paper published using metabolomics as it is currently thought 

of analyzed urine and breath using GC to discern nutritional differences in 1971. 

Robinson and Pauling measured approximately 250 metabolites in breath and 280 

metabolites in urine.  

Electrospray ionization (ESI) coupled with liquid chromatography and mass 

spectrometry was developed in 1989 [107] (see section 3.6.1 for details). The addition 

of ESI was an important technological advancement in metabolomics because it 

allowed for the ionization and measurement of larger molecules, such as metabolites, 

with very little fragmentation. This paved the way to be able to measure metabolites, 

such as peptides, nucleic acids, and other polar hydrophilic compounds.  

The term metabolomics was not coined until 1998 by S.G. Oliver, et. al. [108]. 

Metabolomics is the quantification and identification of metabolites that are left by 

biochemical reactions that occur throughout the body. These measurements are usually 

taken at a single point in time. Metabolomics is usually thought of as the phenotypic 
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response to the completion of the central dogma (Fig. 2.2). Metabolites in the body are 

influenced by diet, disease, environment, genetics, and many other factors. To 

understand the number and types of metabolites that could be identified the human 

metabolome project was formed. The first draft of the human metabolome was 

completed in January 23, 2007. This metabolome consisted of approximately 2,500 

metabolites, 1,200 drugs, and 3,500 food components.  

There are two major types of metabolomics: untargeted and targeted. Untargeted 

metabolomics can detect thousands of metabolites while targeted metabolomics 

measures a set of pre-defined metabolites or pathways. Untargeted metabolomics can 

investigate metabolic disruptions due to an external perturbation without prior biological 

information. This allows for the potential to identify novel metabolites, which may be a 

biomarker of disease. The sensitivity of the measurements, however, can be lower 

compared to targeted metabolomics due to the large range of metabolites being 

measured and the inability to perform absolute quantification [109]. In contrast, targeted 

metabolomics can allow for absolute quantification of metabolites of interest by 

comparing metabolites of interest to known quantities of their respective 13C-labeled 

standard. Targeted metabolomics, however, does not measure unknown metabolites. 

Conversely, an untargeted approach allows for the identification of unknown metabolites 

(metabolites that are not defined by a retention time and mass-to-charge ratio). 

Although these metabolites cannot be identified they can potentially be linked to 

diseases as the field of metabolomics progresses. 

With the potential to identify thousands of metabolites in a single sample 

bioinformatics tools have been employed to hand the complex data. Furthermore, due 
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to the potential limitations in detection, data must be handled carefully to deal with 

missing values, background noise, and alterations in retention time due to column drift 

(see chapter 3). 

Most metabolomics studies use non-invasive samples (i.e. serum, urine, etc.) to 

identify metabolites rather than tissue. This provides a global metabolite profile but does 

not provide any tissue specific information; however, understanding how tissue 

metabolites are influenced has become of interest recently. Using untargeted 

metabolomics, adipose, muscle, and liver tissue were assessed to identify alterations in 

the metabolome due to diet, genetic, and/or sex effects. 

2.5.1 The Role of Metabolomics in Understanding Diet 

Diet and disease are inextricably linked. Understanding how diet alters 

underlying metabolic pathways can provide insight into how whole diets and/or 

supplements influence health and ultimately disease. Many studies use low-fat and 

high-fat diets to assess diet differences. Metabolomics studies have investigated the 

differences between high- and low-fat diets in serum, liver, feces, and urine. Metabolites 

involved in energy metabolism and amino acid metabolism were all increased with the 

consumption of a high-fat diet [110, 111]. Furthermore, individuals consuming a Nordic 

diet, which consists of whole-grains, berries, root vegetables, and fatty fish showed 

altered amino acid metabolism and fatty acid profiles [112]. 



23 

 

Figure 2.1: Depiction of the Central Dogma through –omics studies.  
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Individual dietary components can also influence the metabolome. Consumption 

of meat provides an exogenous influx of amino acids into the body. Investigating 

humans consuming a vegan diet, which consists of zero animal products, had lower 

amino acid levels compared to omnivores [113]. Additionally, specific metabolites can 

be associated with dietary components. Vegetable intake was positively correlated with 

phenylacetylglutamine while red-meat intake was associated with o-acetylcarnitine, 

which aids in the transport of acetyl-CoA to the mitochondria during fatty acid oxidation 

[114]. Moreover, increased pipecolic acid and s-methylcysteine levels in serum for both 

humans and mice are associated with consumption of dry beans [115].  

It has been shown that individual dietary components can be attributable to 

changes in the metabolome; however, dietary components can interact to modulate the 

effects of one another with the potential to cancel out deleterious effects. Metabolites 

influenced by a high-fat diet in mice were mediated by consumption of green tea [52]. In 

addition to diet-driven alterations in the metabolome, caloric differences can also affect 

the metabolite levels. Metabolites in the TCA cycle and glycolysis were altered by 

energy-restriction [116].  

2.5.2 The Role of Metabolomics in Understanding Disease 

 Metabolomics can be used to identify biomarkers that can predict a disease state 

or as a means to identify potential treatment targets. Leucine, isoleucine, and valine are 

branched-chain amino acids (BCAA), which are necessary for protein synthesis and 

metabolism of glucose. Levels of BCAA were increased in obese individuals, type 2 

diabetics, and individuals displaying insulin resistance [117-119]. Furthermore, 



 

 25 

increases in body mass index—a tool used to determine overweight and obesity—in 

addition to obesity were associated with increased levels of amino acids [117, 119]. 

Moreover, alterations in amino acid metabolism and tryptophan metabolism were also 

altered in obese individuals resulting in increased levels of kynurenine, kynurenic acid, 

and quinolinate [119, 120].  

The ability to predict the development of disease is important for prevention. As 

of 2015, it is estimated that approximately 30 million individuals have diabetes in the 

U.S. [121]. The Framingham Heart Study profiled 2,383 individuals to identify 

relationships between body mass index and cardiometabolic traits. Plasma metabolites 

from the Framingham Heart study identified 2-aminoadipic acid as a predictor of 

developing diabetes. This longitudinal study showed that increased levels of 2-

aminoadipic acid were associated with a >4-fold risk of developing diabetes up to 12 

years prior to developing type 2 diabetes [122]. 

Non-alcoholic fatty liver disease (NAFLD) is marked by inflammation and excess 

storage of fat in the liver. Chronic NAFLD can lead to cirrhosis. Dysregulation of amino 

acids has been linked to NAFLD [123]. Additionally, obesity-associated NAFLD in 

humans revealed increased BCAA in serum in individuals with steatosis [124].  

Although metabolic diseases alter amino acid metabolism, obesity treatments 

can reverse these alterations. Both dietary intervention and gastric by-pass surgery 

decreased branched chain amino acids and other amino acids [125]. In addition to 

alterations in metabolites, glucose homeostasis was improved, which may be due to 

lowering BCAA levels [125].  
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The development or treatment of metabolic diseases has been shown to alter the 

metabolome; however, bodily injury can also alter the metabolome. Injury to the anterior 

cruciate ligament (ACL) resulted in changes in the following pathways in synovial fluid: 

glycine, serine, and threonine; arginine and proline; alanine, aspartate, and glutamate 

[126]. Additionally, joint injury resulted in changes in several amino acids, including 

hydroxyproline and proline [126]. Amino acids have been shown to play a role in joint 

health [127]. Furthermore, hydroxyproline and proline are critical for collagen formation 

[128]. 

2.5.3 The Role of Metabolomics in Understanding Genetics 

Genetics may influence an individual’s response to diet or disease. Metabolomics 

can assess how different genetic backgrounds influence the underlying metabolome. 

Leptin is important in the regulation of energy balance and reduces appetite. 

Dysregulation of hunger signals can occur if an individual becomes leptin resistant. 

Furthermore, absence of leptin or the leptin receptor can also alter hunger signals. Two 

genetically obese mouse models, db/db (leptin receptor deficient) and ob/ob (leptin 

deficient), showed an increase in BCAA and a decrease in other amino acids [129]. 

Db/db mice, however, are also a model for type 2 diabetes. Glycoxylate, a biomarker for 

diabetes [130] was elevated in db/db mice while lysine and arginine were decreased 

[129]. 

Type 1 diabetes (T1D) is a polygenic autoimmune disorder that results in the 

destruction of pancreatic β -cells. NOD/ShiLtJ, a T1D mouse model, were compared to 

C57BL/6J mice to assess metabolic alterations due to type 1 diabetes. Metabolites in 
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the TCA cycle were higher in C57BL/6J mice with the exception of glutamic acid, 

succinate, and asparate [96]. Glutamic acid is converted to gamma-aminobutyric acid 

(GABA) via glutamic acid decarboxylase (GAD). NOD/ShiLtJ mice express anti-GAD 

enzymes, which prevent the conversion of glutamic acid to GABA. 

Humans are inherently genetically diverse making it difficult to separate genetic 

influences from environmental influences; however, differences in metabolites can still 

be assessed as potential biomarkers of disease. Genome wide associations studies can 

be combined with metabolomics to identify genetic alterations linked to metabolic 

differences. Genetic variants that correspond to metabolic phenotypes have been 

matched to metabolic pathways. For example, FADS1 is an enzyme that aids in the 

metabolism of omega-3 and omega-6 fatty acids. SNPs containing the FADS1 gene 

have been shown to explain up to 10% of the variance in glycerophospholipd 

concentrations [131]. 

 

2.6 Summary 

 Metabolic diseases in the U.S. and worldwide continue to rise despite current 

treatments. Metabolomics studies have revealed a complex relationship between 

metabolic diseases, diet, and genetics. Branched chain amino acids as well as other 

amino acids were often altered in response to diet or disease, although it is not clear 

why. Some metabolic differences are also due to sex. The complex relationships 

between diet, genetics, and the potential role of sex have yet to be studied in a 
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comprehensive way. Understanding the influence of each and their interactions may 

provide insight into how the metabolome is altered to affect physiology. 
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CHAPTER THREE  

EXPERIMENTAL AND COMPUTATIONAL METHODS TO PERFORM 

NUTRITIONAL METABOLOMICS 
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3.1 General Workflow to Perform Tissue Level Metabolomics 

Untargeted metabolomics was performed for all experiments discussed using 

liquid chromatography coupled with electrospray ionization quadropole mass 

spectrometry (Fig. 3.1).  To understand and characterize how diet, genetics, and sex 

interact to influence the metabolome adipose, skeletal muscle, and liver tissue were 

flash frozen from four strains of mice after being fed five diets for 6-7 months. Extracting 

metabolites from tissue was not inconsequential due to potential metabolic shifts if the 

tissue samples degrade. As a result, tissue samples are kept frozen throughout the 

extraction process as well as all equipment and solutions. High-performance liquid 

chromatography separated metabolites based on size and polarity. Metabolites are then 

ionized through electrospray ionization and transferred to the mass analyzer and 

detector. This is where mass-to-charge (m/z) and relative abundance are measured in a 

full mass spectrum (MS1). This dataset is then compared against known retention times 

and m/z to identify metabolites. Using retention time and m/z to identify metabolites is 

moderately specific; however, some metabolites such glucose-1-phosphate and 

glucose-6-phosphate cannot be discerned with using tandem mass spectrometry (MS2). 

The steps mentioned above allow us to identify and quantify thousands of metabolites in  

complex tissue samples across multiple interactions. Each step is discussed in detail 

below. 
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Figure 3.1: Schematic of Q-Exactive Plus Hybrid Quadropole-Orbitrap Mass Spectrometer (Image 

source: Thermo Scientific Q Exactive Plus Orbitrap LC-MS/MS System product specification 

sheet: https://assets.thermofisher.com/TFS-Assets/CMD/Specification-Sheets/PS-63912-LC-MS-Q-

Exactive-Plus-Orbitrap-PS63912-EN.pdf) 
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3.2 Sample Preparation 

Metabolite measurements typically come from cells, due to their ability to easily 

perform flux analysis and quantitative labeling. Metabolite measurements, however, 

from tissue can provide insight into systemic changes despite the additional challenges; 

tissue cannot be easily labeled, quantifying turnover rates is difficult at best, and 

preventing degradation of the sample during the extraction process requires special 

care. Measurements from a single time point can provide a lot of information regarding 

long-term changes and which metabolites are sensitive to perturbations and which are 

not. Tissue metabolites also provide a much more comprehensive picture since tissues 

interact within the body. 

Adipose, skeletal muscle, and liver tissue was collected from male and female 

mice from A/J, NOD/ShiLtJ, C57BL/6J, and FVB/NJ strains. Mice were fed one of five 

diets (Japanese, ketogenic, Mediterranean, Western, and standard chow) for a total of 

6-7 months. Dissections were performed by Dr. David Threadgill’s laboratory and 

samples were sent on dry ice to the University of Tennessee-Knoxville. Mice were 

staggered throughout the experiment due to volume. Although I was largely uninvolved 

with mouse work, I did participate in dissections and assisted with some laboratory work 

while visiting Dr. Threadgill’s laboratory for a total of two weeks. Samples were stored at 

-80°C and remained frozen until methanol extraction.  

3.3 Metabolite Extraction 

 Different methods can be utilized to extract metabolites from biological samples 

to analyze hydrophilic (e.g. methanol, freeze thaw methanol) or hydrophobic 
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metabolites (e.g. Hydrochloric acid, chloroform, and methanol:chloroform) . Currently, 

there are no methods that extract all of the metabolites present in a sample; therefore, 

the extraction method is crucial to identifying metabolites of interest. Two solvents; 

methanol and methanol:water were chosen for metabolite extraction in the following 

studies. One hundred percent methanol and 80:20 methanol:water were chosen for 

their low decomposition rates of high energy molecules [132].  

 

3.4 Internal Standard 

 Internal standards in mass spectrometry are used to quantify metabolite 

abundances or to control for run-to-run variation when running a high volume of 

samples that exceed the capacity of the mass spectrometer. To quantify metabolites a 

purified version of the metabolite of interest is used. Quantification requires that the 

metabolite of interest is labeled with 13C. A known quantity is injected into the mass 

spectrometer and is subsequently compared across all samples of interest to quantify 

the abundance of the metabolite in each sample. A single purified metabolite with 

known m/z and retention time can also be used to measure run-to-run variation 

ensuring that metabolites are being properly identified.  

 Another method that is less common is to uniformly label bacteria, such as 

Escherichia coli (E.Coli) and spike samples of interest. This allows for multiple 

metabolites to be assessed at the same time. To uniformly label bacteria, bacteria are 

grown on 13C-glucose agar plates and then transferred to 13C-glucose liquid cultures. 

The bacteria are then tested for uniform labeling on the mass spectrometer before being 
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used as an internal sample for any experiment. 13C-labeled E. Coli NCM3722 were 

spiked into all samples for each experiment discussed. 

 

3.5 Liquid Chromatography 

 Extraction of metabolites from tissue results in a complex mixture of compounds. 

A reverse phase liquid chromatography column was used for experiments discussed. 

Liquid chromatography is used to separate mixtures of compounds in a high throughput 

manner. There are two separation methods that can be performed to accomplish this; 

normal phase liquid chromatography (NPLC) and reverse phase liquid chromatography 

(RPLC). Normal phase liquid chromatography refers to a situation when the stationary 

phase is more polar than the mobile phase, while reverse phase liquid chromatography 

refers to a situation where the stationary phase is less polar than the mobile phase. 

RPLC retains hydrophobic compounds on the column while allowing hydrophilic 

compounds to be released quickly. NPLC results in the opposite response. Choice of 

column is important depending on the type of molecules of interest.  

 

3.6 Mass Spectrometry Instrumentation 

All mass spectrometers consist of an ionization source, a mass analyzer, and a 

detector. The compounds of interest are first ionized with a negative or positive charge 

and converted into a gaseous substance. These gaseous ions then pass on to the mass 

analyzer where they are resolved according to their mass-to-charge ratio. Finally, the 

ions that emerge from the analyzer are detected and their relative abundance is 
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measured. The relative abundance value is then converted into an intensity signal, 

which is then graphed with the m/z ratio as the independent variable and the relative 

abundance as the dependent variable.  

3.6.1 Electrospray Ionization 

 Electrospray Ionization (ESI) is a soft ionization method that is used to ionize 

compounds with very little fragmentation. This allows biologists to identify and analyze 

large, nonvolatile molecules that were previously difficult to capture [107]. ESI is 

performed by applying a voltage to a capillary tube that transfers the eluent to the mass 

spectrometer. The following experiments were performed using a spray voltage of 3kV.  

The eluent that moves through the capillary tube becomes a protonated eluent and 

develops a Taylor cone at the tip of the capillary tube [133]. When the voltage is 

applied, a fine spray of liquid is ejected from the Taylor cone. This liquid breaks into tiny 

like-charged droplets. As these like-charged droplets move towards the mass 

spectrometer their solvent evaporates due to the heated capillary. As the droplet size 

shrinks their surface charge density increases until they hit the “Rayleigh stability limit” 

[134]. This is when their surface tension can longer be sustained and they undergo 

“Coloumb fission” [135]. Smaller droplets are continuously formed until positively 

charged ions in the gas-phase are formed. These will then pass through the heated 

capillary and into the mass analyzer (Fig. 3.2). The nitrogen sheath gas was set to a 

flow rate of 10psi and the capillary temperature for the following experiments was set at 

320°C. 
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3.6.2 Mass analyzer and Detector 

The mass analyzer is where ions are separated by their m/z ratio. There are 

many different types of mass analyzers. Each one is specific to a subset of molecule 

types. When considering which analyzer to use figures of merit must be considered. 

Figures of merit consist of five items: mass resolution, mass resolving power, mass 

accuracy, mass precision, and dynamic range. Mass resolution is the observed mass-

to-charge divided by the smallest distance that two m/z can be separated, while mass 

resolving power is the ability of the mass spectrometer to provide a specified value of 

mass resolution [136]. Mass resolution is also defined at 50% of the maximum peak 

height for an Orbitrap mass spectrometer. Mass accuracy is defined as the difference 

between the measurement result and the exact mass of a measured value. Mass 

precision (or sensitivity) is the difference between independent mass measurements 

[137].  Dynamic range is the range between the smallest m/z and the largest m/z that 

the analyzer can detect. 

The Orbitrap is used in the following experiments (Fig. 3.1). It has a mass range 

of 50-6,000 m/z, a dynamic range of >5,000:1, a mass accuracy of <1PPM RMS 

internally and <3PPM RMA externally, and a sensitivity of 500fg buspirone on column 

S/N 100:1 [138]. Samples in the following experiments were analyzed with a resolution 

of 140,000. A scan window of 85 to 800 m/z was used from 0 to 9 minutes, and a 

window of 110 to 1000 m/z from 9 to 25 minutes in the following studies. 
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Figure 3.2: Schematic Depicting Formation of Charged Analyte from Electrospray Ionization 
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Before ions are analyzed they must go through the RF-lens, quadropole, and C-

trap. The RF-lens and quadropole store and isolate ions, which are scanned by m/z 

before being transported into the C-trap to measure their mass. 

 

3.7 Analysis of Metabolomics Data 

 Full MS1 allows for thousands of molecules with different m/z to be scanned and 

measured. To properly analyze any biological data as many sources of variation must 

be removed as possible. High-throughput data, such as metabolomics, creates a unique 

set of issues that must be addressed due to computational and instrumentation limits. 

To limit external variation the experimental design must be considered. Samples should 

be randomized according to the experimental design to reduce run-to-run variation on 

the mass spectrometry. If samples cannot be computationally processed together then 

they should be randomized again before picking peaks, otherwise systematic variation 

may be introduced. 

Metabolites measured from the mass spectrometer are defined by their retention 

time on the column and their m/z ratio. The first step in defining a metabolite involves 

correcting for column drift. As the column in the mass spectrometer is used the 

metabolites tend to remain attached to column longer. To obtain the correct retention 

time an algorithm to correct for column drift must be used. Many programs automatically 

correct for column drift, including MAVEN, the program used to identify metabolites for 

the following studies. 
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3.7.1 MAVEN 

 Raw files are created by Xcalibur, which is the software associated with a 

Thermofisher Scientific mass spectrometer. These files must be converted to an mzML 

file, which can be read by MAVEN. Conversion can occur via msconvert [139]. MAVEN 

is an open source data analyzer for metabolomics data [140, 141]. When samples are 

loaded into MAVEN total ion chromatograms are corrected based on retention time 

automatically, for each sample (Fig. 3.3). A list of known metabolites; metabolites that 

have a retention time and m/z, can be uploaded to identify metabolites. Metabolites can 

then be manually chosen or automatically chosen. All of the following experiments used 

both manual and automatic peak picking techniques. Identified metabolites were 

manually chosen and peak abundance was integrated by mass (±5 ppm) and retention 

time. Unidentified metabolites were chosen using an algorithm with the following 

settings: minimum peak width, 5; minimum signal/blank ratio, 3 or greater; minimum 

peak intensity, 10,000; and minimum peak/baseline, 3.  Unidentified peaks were filtered 

manually to remove those that did not meet the above criteria. 

 

3.8 Normalization of Data 

3.8.1 Imputation 

Often there are missing values in metabolomics data, which are generally 

thought to be below the sensitivity of the mass spectrometer. As a result, researchers 

replace the missing values with one of several techniques. Our study used k-Nearest 

Numbers (kNN) imputation to replace missing values. kNN imputation averages k- 
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Figure 3.3: Example of Peak Analysis in MAVEN software (Image source: http://genomics-

pubs.princeton.edu/mzroll/index.php?show=screenshots) 
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neighbors to determine a value for the missing number. Using a small k allows for noise 

to be more influential while a large k will reduce the local effects of the data allowing the 

data to become more generalizable. To find the k-nearest neighbors a Euclidean metric 

is used (eq. 3.1) [142]. 

 

Equation 3.1 

dist(A,B) =
xi − yi( )

i=1

m

∑
2

m
 

 

where m is the dimensionality of the data matrix and A and B are data vectors. 

Replacing missing values in metabolomics is important to the matrix structure for 

downstream analysis. Missing values are not well tolerated in certain multivariate 

analysis techniques, such as partial least squares discriminant analysis (PLS-DA) or 

principal component analysis (PCA). Metabolites that were missing 70% or more 

sample measurements were removed from analysis prior to kNN imputation.  

3.8.2 Covariates 

 Metabolomics data may have confounding factors so covariates are sometimes 

needed. Metabolite abundance is sensitive to the quantity of sample measured, usually 

in a linear fashion. For this reason it is important to adjust metabolite abundance for 

sample weight to correct the metabolite abundance. Another important covariate to 

consider including is an internal standard. Run-to-run variation may occur on a mass 

spectrometer. One way to correct for this is to run a single internal standard of known 
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mass and retention time. Another method is to spike samples with a 13C-labeled 

bacterial species, such as E. Coli, to standardize metabolite measurements across 

runs. This allows for direct comparisons between individual metabolites within a known 

sample and individual metabolites within a 13C-labeled sample of known quantity. An 

internal standard should correct for any sample variation from run-to-run given that the 

internal standard is homogenous across all samples. 

Metabolites measured from the 13C E. Coli internal standard were matched with 

their corresponding metabolite; otherwise metabolites measured were matched with a 

13C metabolite of the same class according to their chemical taxonomy. Classes were 

identified using the Human Metabolome Database [143-145]. Tissue weight and internal 

standard were treated as covariates for the statistical models in this dissertation to 

control for biological and technical variation.  

 

3.8.3 Scaling and Transformations 

Due to variation across mice, even within the same strain, it is important to 

consider scaling methods. Additionally, scaling across metabolites may be necessary to 

interpret high and low signals. Scaling can occur across samples, metabolites, or both, 

which allows for variation reduction. Pareto scaling mean centers the data and then 

divides by the square root of the standard deviation. This shrinks high signal data 

without losing low signal data. Pareto scaling was performed on each metabolite, across 

samples, in this dissertation. Mice were then median normalized, across metabolites, 

and cube-root transformed to create a normal distribution. 
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3.9 Statistical Techniques Used to Analyze Metabolomics Data 

3.9.1 Benjamini-Hochberg to Control for Type 1 error 

 The Benjamini-Hochberg procedure controls the expected proportion of 

significant effects that are in fact type 1 errors (or false positives). This is called the 

False Discovery Rate (FDR). In this dissertation, we will set an upper bound for FDR of 

q = 5%. Let p(1)≤ p(2)...≤p(k) be the ordered p-values for m independent tests. For our 

given upper bound q = 0.05, determine k to be the maximum i for which  

 

Equation 3.2 

 

p(i) ≤
i

m

⎛

⎝
⎜

⎞

⎠
⎟q . 

Then the k smallest p-values all correspond to significant effects, controlling for FDR ≤ 

q. 

 Another method to correct for type 1 error is the Bonferroni correction, which is a 

way to control the family wise error rate. The family wise error rate is the probability of 

having one or more false discoveries when performing multiple hypothesis tests. To 

perform the Bonferroni correction the significant p-value is multiplied by the total number 

of tests. The Benjamini-Hochberg procedure is more appropriate for metabolomics data 

because it is less conservative than the Bonferroni correction. Since the Bonferroni 

correction is a family wise error rate it reduces the number of type 1 errors at the cost of 

increasing the number of type 2 errors (or false negatives). In metabolomics data this 
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can result in a large reduction in the number of significant metabolites due to the volume 

of metabolites being measured. The Benjamini-Hochberg procedure, however, controls 

the expected proportion of false discoveries allowing for a less stringent cutoff. As a 

trade-off this procedure allows for a percentage of type 1 errors to remain in the 

analysis in order to gain power while the Bonferroni correction attempts to remove all 

type 1 errors at the cost of power. All of the following experiments used the Benjamini-

Hochberg procedure to adjust for multiple comparisons. 
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CHAPTER FOUR  

TISSUE LEVEL DIET AND SEX-BY-DIET INTERACTIONS REVEAL 

UNIQUE METABOLITE AND CLUSTERING PROFILES USING 

UNTARGETED LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY 

ON ADIPOSE, SKELETAL MUSCLE, AND LIVER TISSUE IN C57BL6/J 

MICE 
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4.1 Abstract 

Diet is a common tool used for weight loss or to improve health. Obesity, 

however, contributes to the intersection between diet and disease due its effect on risk 

of developing type 2 diabetes, hypertension, cardiovascular disease, stroke, 

osteoarthritis, and certain cancers. Various dietary profiles are associated with effects 

on health, yet little is known about the effects of diet at the tissue level. Using 

untargeted metabolomics, this study aimed to identify changes in water-soluble 

metabolites in C57BL/6J males and females, fed one of five diets (Japanese, ketogenic, 

Mediterranean, American, and standard mouse chow) for seven months. Metabolite 

abundance was examined in liver, skeletal muscle, and adipose tissue for sex, diet, and 

sex-by-diet interaction. Analysis of variance (ANOVA) suggests that liver tissue is most 

metabolically active under dietary changes compared to adipose and skeletal muscle. 
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The ketogenic diet was distinguishable from other diets for both males and females, 

according to partial least squares discriminant analysis. Pathway analysis revealed that 

the majority of pathways affected play an important role in amino acid metabolism in 

liver tissue. Not surprisingly, amino acid profiles were affected by dietary patterns in 

skeletal muscle. Few metabolites were significantly altered for adipose tissue relative to 

skeletal muscle and liver tissue indicating it was largely stable, regardless of diet 

alterations. The results of this study revealed that the ketogenic diet had the largest 

affect on physiology, particularly for females. Furthermore, metabolomics revealed that 

diet affects metabolites in a tissue-specific manner; however, liver was most sensitive to 

dietary changes. 

 

4.2 Introduction 

Diet is arguably the most commonly used tool for weight loss or to improve 

health.  The physiological consequences of diet manifest in its close association with 

disease. Four (diabetes, cardiovascular disease (CVD), cancer, and stroke) of the top 

10 causes of death in the United States are associated with diet[146]. Obesity is a major 

contributor to the intersection between diet and disease due its effect on risk of 

developing type 2 diabetes, hypertension, cardiovascular disease, stroke, osteoarthritis, 

and certain cancers[2, 147, 148]. In the United States (U.S.) more than two-thirds of the 

population is classified as overweight or obese. Globally, overweight and obesity are 

now related to more deaths than underweight, except in parts of Asia and sub-Saharan 

Africa [2]. Accordingly, a recent meta-analysis indicated that approximately 40% of the 



 

 48 

U.S. general population is attempting to lose weight at any given time, and primarily 

through changes in diet [149].  

Various dietary profiles around the globe are associated with effects on health. 

For example, American diet is used to describe the high fat and sucrose intake that are 

characteristic of the United States and, increasingly, of other developed countries. 

Consumption of an American diet is associated with increased risk of obesity and its co-

morbid disorders in both humans and experimental models [37, 38]. Conversely, dietary 

patterns that are enriched in fiber, certain unsaturated fats, and plant-derived bioactive 

compounds are associated with beneficial effects on body weight and on risks of diet-

related syndromes such as cardiovascular disease and diabetes. Diets characteristic of 

Japan and the Mediterranean region both contain relatively high intake of 

polyunsaturated fatty acids and fiber- and flavonoid-rich fruits and vegetables, with 

modest consumption of the sugar and saturated fat that are hallmarks of the American 

diet. Accordingly, both the Japanese and Mediterranean eating patterns are associated 

with reduced risk of obesity and metabolic syndrome. Rates of coronary heart disease 

(CHD), hypertension, and cancer in individuals following a Japanese diet have 

remained low compared to individuals following an American diet [47-49, 150, 151]. 

Likewise, consumption of a Mediterranean diet is associated with reduced risk of 

cardiovascular disease, type 2 diabetes and obesity compared to Western-style eating 

patterns [26, 152, 153]. In stark contrast to complex carbohydrate-rich diets, like 

Japanese and Mediterranean diet profiles, ketogenic or Atkins-type regimens, which 

consist primarily of fat and protein, are also widely popular for weight loss. An inherent 

assumption of diet regimens is that they alter cellular metabolism, particularly in 
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important metabolic tissues such as adipose and liver.  However, despite the widely 

accepted relationship between diet and health, and the prevalent use of diets for weight 

loss, relatively little is known about the fundamental impact of diet on metabolism at the 

tissue level.  

Mass spectrometry-based metabolomic platforms now enable global, discovery-

based profiling of tissue and circulating metabolomes. Accordingly, metabolomics has 

emerged as a tool with which to understand the impact of diet on metabolism and to 

identify metabolites and pathways that are associated with disease [90, 110, 154]. 

Metabolomics studies on the effects of diets in humans and mice frequently use 

samples that can be obtained noninvasively (e.g., plasma, erythrocytes or urine). Less 

is known, however, about the impact of diet at the tissue level, and the extent to which 

tissues may respond to diet in a similar manner. The objective of this study was to use 

metabolomics to determine the effects of diet on metabolomes at the tissue level and to 

associate tissue metabolites with systems level phenotypes of energy utilization and 

body composition in mice. Four common dietary profiles (American, Japanese, 

Mediterranean and ketogenic) were chosen because of their relationships to various 

aspects of metabolic health in humans, and because they vary widely in composition. 

Mouse diets were formulated to represent both the macronutrient profiles and sources 

that are characteristic of each of these four eating patterns, while maintaining similar 

caloric values and sufficient amounts of micronutrients. The C57BL/6J strain was used 

because it has been extensively characterized as a model of diet-induced obesity. Both 

males and females were used to evaluate the relative effects of diet, sex, and sex-by-

diet interaction on tissue metabolism. Untargeted metabolomics was used to 
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comprehensively profile the metabolomes of liver, skeletal muscle, and adipose tissue 

because of their roles in energy balance [155, 156].  

 

4.3 Materials and Methods 

4.3.1 Animals and Diets 

All husbandry and experimental procedures were approved by the Institutional 

Animal Care and Use Committee of the University of North Carolina. Four-week old 

C57BL/6J mice were purchased from The Jackson Laboratory (Bar Harbor, ME). Mice 

were allowed to acclimate for 14 days and consumed a standard mouse chow (PicoLab 

Mouse Diet 20, LabDiet, St. Louis, MO) during this period. At 42 days of age, five male 

and five female mice were assigned to each of five diets: American, Mediterranean, 

Japanese, ketogenic, or chow. Diets were designed in collaboration with Research 

Diets, Inc. (New Brunswick, NJ) to contain calories, macronutrient ratios, sources of 

ingredients, fiber content, and lipid profiles that are reflective of each diet pattern. (Table 

4.1, macronutrient ratios, Appendix I and J, detailed formulations). Mice were 

maintained on a 12-hour light/dark cycle throughout the study. At age 18 weeks, after 

12 weeks on the diets, mice were housed in Phenomaster metabolic chambers (TSE 

Systems, Inc.) for 48 hours for measurement of metabolic rate and activity. The 

chambers measured respiratory exchange rate (RER), volume of oxygen (VO2), and 

heat output via heat dissipation, and activity level by laser detection. Activity levels 

measured voluntary movement of the mouse in the x and y plane. Mice were 

euthanized at seven months of age by CO2 asphyxiation.  Perigonadal adipose tissue 
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was dissected and weighed as a measure of adiposity. Samples of adipose tissue, the 

left lobe of the liver and the vastus medialis, vastus lateralis, and rectus femoris muscle 

were snap-frozen in liquid N2 and stored at -80oC for metabolomics analysis. 

 

Table 4.1: Dietary Composition 

 Ketogenic 
D12052706 

American 
D12052705 

Mediterranean 
D12052702 

Japanese 
D12052703 

chow 
D12052701 

Fat 84% 
Butter, Lard 

35% 
Corn oil, butter, 

Olive oil 

42.6% 
Olive oil 

11% 
Soybean oil, 

Olive oil 

18% 
Soybean oil 

Carbohydrate None 50% 
Corn starch, 

Wheat starch, 
Sucrose, potato 

starch 

44.69% 
Wheat starch, 

Sucrose, Fructose 

76% 
Rice starch, 

Sucrose 

63% 
Corn starch 

Protein 16% 
Casein 

15% 
Soy, Beef, Egg 

white 

12.71% 
Soy, Fish, Beef 

13% 
Soy, Fish 

19% 
Casein 

 

4.3.2 Metabolite Extraction and Liquid Chromatography Mass Spectrometry 

Frozen tissue samples were pulverized under liquid N. Approximately 25 mg of 

pulverized tissue were weighed and extracted sequentially in methanol and then in 

methanol:water (4:1), as previously described [157]. Supernatants were dried under 

nitrogen and reconstituted in 160 μL of sterile MilliQ water. Internal standard (60 μL of a 

13C-labeled E.Coli metabolite pool) was added to each sample. 

4.3.3 Preparation of 13C-labelled E. Coli metabolite pool 

Cultures of Escherichia coli NCM3722 were grown on minimal media 13C-glucose 

agar plates and passed five times. Single colonies were then transferred to minimal 

media 13C-glucose liquid cultures (0.4% w/v made from 99% U-13C-glucose, Cambridge 
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Isotope Laboratories). Liquid cultures were set back five times before samples were 

extracted and run on mass spectrometer to ensure complete 13C-labeling of all 

metabolites. 

E. Coli cells were extracted by vacuum filtering three 10 mL aliquots, per culture, 

for three different cultures (grown to ~0.4 OD600) through Magna nylon membrane filters 

(0.45 micron, 47 mm filter, Maine Manufacturing, Sanford, ME). The filters were 

transferred face down into petri dishes containing 1.3 mL of extraction solvent (40:40:20 

HPLC grade methanol, acetonitrile, water with 0.1M formic acid) chilled to -20 ˚C. The 

extraction was allowed to proceed for 15 min at -20 ˚C. The following extraction was 

carried out in a room maintained at 4 ˚C unless otherwise specified. The filters were 

rotated so that the cell side was on top and rinsed by pipetting the extraction solvent 

over the face of the filters. The extraction fluid was then transferred to 1.5 mL centrifuge 

tubes and an additional 300 µL of new extraction fluid was used to wash the filters 

again. The remaining extraction solvent was also transferred to the 1.5 mL centrifuge 

tube and centrifuged for 5 minutes (16.1 rcf). The resulting supernatant was transferred 

to new vials and the pelleted cell was resuspended in 50 µL of extraction solvent. The 

extraction was allowed to proceed for 15 min at -20 ˚C at which time the samples were 

centrifuged for 5 min (16.1 rcf). The supernatant was transferred to the vials and 

another 50 µL of extraction solvent was added to the pelleted cell repeating the previous 

extraction once more. Vials containing all of the collected supernatant were dried under 

a stream of N2 until all the extraction solvent had been evaporated. Following the 

resuspension of extracted E. coli residue in 300 µL of sterile water, samples were 

physically averaged and 10 mL were directly spiked into unlabeled samples.  
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4.3.4 Metabolomics Data Processing 

Raw files generated by Xcalibur were converted to mzML, an open-source 

format, using msconvert [139]. An open source data analyzer for metabolomics, 

MAVEN [140, 141] (Princeton University) was used to correct total ion chromatograms 

based on retention time automatically, for each sample. Known metabolites were 

manually chosen and peak abundance was integrated by mass (±5 ppm) and retention 

time. Unknown metabolites were chosen using an algorithm with the following settings: 

minimum peak width, 5; minimum signal/blank ratio, 3 or greater; minimum peak 

intensity, 10,000; and minimum peak/baseline, 3.  Unknown peaks were filtered 

manually to remove those that did not meet the above criteria. 

4.3.5 Statistical Analysis 

All statistical analyses were performed in the language R (3.1.0 and 3.2.2) [158]. 

An ANOVA model was used to identify significant effects of diet, sex, and sex-by-diet 

interaction on physiological traits and metabolites. Tukey’s Honest Significant Difference 

(HSD) was used for post-hoc testing. Significance for physiological traits was based on 

raw p-values (p < 0.05). 

Metabolite peak area data files were read into R using the package XLConnect [159]. 

Metabolites that were missing 70% or more sample measurements were removed from 

analysis. Missing values in the remaining metabolites were imputed using k-nearest 

numbers from the function impute [160] (Additional File 1 and 2). Metabolites were 

matched to their corresponding 13C-labeled internal standard, or to a 13C-labeled 

standard of the same compound class. Class types were identified using the Human 
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Metabolome Database [143-145]. Prior to statistical analyses, a linear model was 

created for each metabolite using the terms sex, diet, sex*diet, tissue weight and 

internal standard (eq. 4.1): 

 

Equation 4.1 

Metabolite = sex + diet + sex*diet + tissue weight + internal s tandard

 

Coefficients for the terms for tissue weight and internal standard were used to 

adjust metabolite abundance for technical variation using eq. 4.2: 

 

Equation 4.2 

Adjusted metabolite =metabolite+ tissue weight coefficient(mean tissue weight −

tissue weight)+ internal s tandard coefficient(mean internal s tandard −

internal s tandard)

 

 

Adjusted metabolites were Pareto scaled across all mice for each metabolite 

using the package MetabolAnalyze [161], normalized to the median across all 

metabolites for each mouse, and cube root transformed to create a normal distribution. 

Normalized metabolite values were analyzed for effects of sex, diet and sex*diet. Data 

were assessed for normality using Q-Q plots, residuals, and the Shapiro-Wilks test. 

False discovery rate for ANOVA and correlation analyses was set to 5% using the 

method of Benjamin-Hochberg [162]. Venn diagrams were created using the package 

VennDiagram [163].  
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4.3.6 Correlation Analysis 

Associations between physiological measurements and metabolite 

measurements across tissues were assessed using Pearson correlation from the 

package Hmisc [164] and the package R.Utils [165]. Correlation p-values were FDR-

adjusted using the Benjamini-Hochberg procedure. Correlations were visualized using 

the Cytoscape app Metscape [166].   

4.3.7 Functional Pathway Analysis 

Overrepresentation pathway analysis was performed using Metaboanalyst [167]. 

KEGG IDs were input and compared against the mouse KEGG reference metabolome. 

Statistical significance of pathway overrepresentation was evaluated using Fisher’s 

exact test. Pathway topology was performed using relative-between centrality. 

 

4.4 Results 

4.4.1 Physiological Measurements Reveal Differences Among Diet and Sex-by-

diet 

Body composition and indirect calorimetry were used to define system-level 

effects of diet and sex on metabolism. Body weight, adiposity, oxygen consumption 

(VO2), respiratory exchange ratio (RER), and heat output were all significantly 

influenced by diet but in a sex-dependent manner (psex X diet < 0.05; Table 4.2).  In 

contrast, activity level was significantly affected by sex (p = 0.036) but not by diet or 

sex-by-diet interaction. Females consuming the Mediterranean diet were significantly 
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heavier than those fed the ketogenic or standard chow diets and numerically heavier 

than all four diet groups (Fig. 4.1A). Ketogenic females also weighed significantly less 

than those consuming the American diet (Fig. 4.1A).  The heaviest males were those 

eating the American diet, which weighed significantly more than males fed the standard 

or Japanese diets (Fig. 4.1A). Evidence of interaction between sex and diet were clearly 

visible in adipose tissue, particularly with regard to the ketogenic diet.  This diet 

produced the leanest females but the fattest males, based on relative weight of the 

abdominal fat pad (Fig. 4.1B). Ketogenic diet females were significantly leaner than 

Mediterranean females. The Japanese diet yielded the leanest males (2.1 ± 0.71%), 

which had significantly less adipose tissue than those fed the Mediterranean (4.96 ± 

0.24%, p=0.015), ketogenic (6.25 ± 1.15%, p=0.006), and American (4.29 ± 0.94%, 

p=0.002) diets. Oxygen consumption in both sexes was lowest in mice consuming the 

Japanese diet, which is consistent with its lower fat content compared to other diets 

(Fig. 4.1C). Differences in fat and carbohydrate content of the diets were reflected in 

RER values, which were comparable between males and females. Mice of both sexes 

consuming the ketogenic diet had the lowest RER values (0.73), and differed 

significantly from all other diets (Fig. 4.1D). In males, the high carbohydrate content of 

the Japanese diet was reflected in a significantly higher RER value than in all other 

diets. Heat output (an indicator of energy expenditure), was higher in females than 

males across diets. In both sexes, heat output was lowest in mice fed the Japanese diet 

and highest in those on the ketogenic diet (Fig. 4.1E). Activity levels varied but were not 

significantly affected by diet or sex-by-diet (Fig. 4.1F).    

 



 

 57 

Table 4.2: P-values for Effects of Sex, Diet, and Sex-by-diet Interaction on Weight and Metabolism. 

 Sex Diet Sex-by-diet 

Weight <0.001 <0.001 0.013 

Adiposity 0.004 0.005 0.001 

VO2 0.002 <0.001 0.302 

RER 0.222 <0.001 0.004 

Heat Output <0.001 <0.001 0.011 

Activity 0.036 0.367 0.856 

p<0.05 is considered significant 
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Figure 4.1: Effects of sex and diet on weight and metabolic phenotypes; N=5/ sex and diet group, 

avg. ± std. dev. Dots represent individual mice within sex-by-diet combination. Horizontal bars 

represent pairwise comparisons performed using Tukey’s HSD post-hoc analysis; * p<0.05, ** 

p<0.01, and *** p<0.001 Body weight (A) and adiposity (B) were measured at 28 weeks of age, after 

16 weeks on the experimental diets. Adiposity is expressed as the relative weight of the 

perigonadal adipose fat pads. Oxygen consumption (C), RER (D), heat output (E), and activity (F) 

were measured during a 48 hr. period when mice were housed in Phenomaster metabolic cages.   
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4.4.2 Significant Effects of Sex, Diet, and Sex-by-diet Interaction on Tissue 

Metabolomes 

Liver, skeletal muscle, and adipose tissue are fundamental to systemic energy 

balance and play central roles in the body’s response to diet. Global metabolomic 

profiling of these tissues was used to characterize the effects of sex and diet on tissue 

metabolism. A total of 184 known compounds, those for which m/z and retention time 

have been mapped to specific metabolites on our platform, were detected in one or 

more tissues. In addition, several thousand features corresponding to unknown 

metabolites (6,245, 4,909, and 4, 477) were detected in liver, skeletal muscle, and 

adipose tissue, respectively.   

An ANOVA model was used to identify metabolites that were robustly affected by 

sex, diet, and sex-by-diet interaction (Appendix A, Additional File 3, Fig. 4.2). A total of 

85 metabolites (46% of all known metabolites detected) were significantly affected (FDR 

< 0.05) by diet, sex, or diet interacting with sex in one or more tissues (Fig. 4.2A). 

Approximately one-third (28 of 85) of these metabolites were influenced by diet in a sex-

dependent manner in at least one tissue.  Some metabolites differed only by sex (23), 

with no influence of diet in any tissue. Likewise, 18 metabolites differed only between 

diets, with no impact of sex in any tissue. Of the 41 known metabolites that were 

significantly affected in one or more tissues by diet or sex-by-diet interaction, only two 

(proline and hydroxyproline) were altered in all three tissues (Appendix A). 

The impact of both sex and diet on tissue metabolomes was most apparent in 

liver. Twenty-six metabolites responded to the variation in diets but in a manner that 

differed between males and females (Fig. 4.2B). An additional 30 metabolites were 
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affected by diet similarly in both sexes. Likewise, 31 metabolites differed between males 

and females independently of diet effects. Nineteen metabolites were only affected by 

sex and showed no response to diet, while 18 differed between diets but not between 

males and females. In contrast to liver, the majority of metabolites in muscle and 

adipose tissue did not show sex-dependent responses to diet (Figs. 4.2C, D).  Only 

three metabolites were significant for sex-by-diet interaction in adipose tissue (Fig. 

4.2C), and none in muscle (Fig. 4.2D). Within adipose tissue the relative effect of sex 

was greater than that of diet, with eight metabolites differing significantly between males 

and females (Fig. 4.2C). Only three metabolites were affected by diet alone.  Fourteen 

metabolites showed effects of sex in muscle, and 11 of diet, with four influenced by both 

factors independently (Fig. 4.2D). Unsupervised hierarchical clustering was performed 

to visualize the relatedness of each of the 10-sex/diet groups, based on similarities 

between hepatic metabolomes (Fig. 4.3).  Males and females clustered separately, 

indicating that the effect of diet did not override intrinsic metabolic differences between 

males and females. 
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Figure 4.2: Shared and unique effects of sex, diet, and sex-by-diet interactions on tissue 

metabolomes. The sets of metabolites that differed significantly, based on ANOVA (FDR < 0.05) 

by sex, diet, or sex-by-diet interaction across tissues, (A), and in liver (B), adipose (C), and 

muscle (D) were visualized for shared and factor-specific effects using Venn diagrams. Only sex 

and diet are shown for muscle (D) because there were no metabolites significantly affected by the 

interaction term in the ANOVA model. Metabolites significantly affected by the interaction term 

were excluded from those significant for main effects of sex or diet.   
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Figure 4.3: Hierarchical clustering of sex/diet groups based on metabolite abundance in liver. 

Heatmaps were generated in Metaboanalyst (v3.0) using group averages of the 50 metabolites 

that varied the most across sex and diet combinations.  Samples were normalized to median 

values and values were scaled using Pareto scaling.  Z-score was used to determine scale. 

Abbreviations: Deoxyribose-P: Deoxyribose-phosphate, 6-P-Gluconate: 6-phosphogluconate, 

G1/6P: Glucose-1/6-phosphate, Sedoheptulose-BP: Sedoheptulose-bisphosphate, G3P: Glycerol-

3-phosphate 
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4.4.3 Functional Annotation of Diet and Sex Effects 

The sets of metabolites affected by the interaction between diet and sex, and by 

sex and diet independently, were functionally annotated using KEGG pathways (Table 

4.3, Fig. 4.4). Sex and diet interacted to significantly affect purine metabolism in liver (p 

< 0.001), with nine metabolites mapping onto this pathway (referred to as hits). 

Interactions between sex and diet also influenced amino acid metabolism. Six 

metabolites are included in the KEGG pathway aminoacyl-tRNA biosynthesis (p = 

0.001), which represents incorporation of amino acids into protein. Additional pathways 

(pantothenate and CoA biosynthesis, arginine and proline metabolism, and valine, 

leucine, and isoleucine biosynthesis) contain metabolites that were affected by sex-by-

diet interaction but were not significantly overrepresented after adjusting for FDR ( > 

0.05). Metabolites affected by diet, independently of sex, also represented components 

of amino acid metabolism, including an additional four metabolites in the aminoacyl-

tRNA biosynthesis pathway. Other aspects of amino acid metabolism (e.g., arginine and 

proline metabolism) were represented by at least two metabolites. Only two metabolites 

affected by diet are components of the TCA cycle. Sex affected aspects of pyrimidine 

(hits=3), riboflavin (hits=2), and beta-alanine (hits=2) metabolism, as well as 

pantothenate and CoA biosynthesis (hits=2) but no pathways were significantly 

overrepresented (FDR > 0.05).  

Diet significantly affected amino acid metabolism (aminoacyl-tRNA biosynthesis, 

p = 0.002) in muscle, but metabolites affected by sex did not map onto specific KEGG 

pathways (i.e., < 2 metabolites/pathway). In adipose tissue, the eight metabolites that 

differed between males and females included components of purine metabolism (hits=3)  
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Table 4.3: KEGG Pathway Enrichment of Metabolites Affected by Diet, Sex and Sex-by-diet 

Interaction. 

Tissue Factor Pathway Hits P-value (k/m)q 

All Tissues Sex-by-diet Purine metabolism 10 <0.001 0.002 

  Aminoacyl-tRNA biosynthesis 7 <0.001 0.002 

      

 Diet Arginine and proline metabolism 5 <0.001 0.004 

      

 Sex Purine metabolism 6 0.002 0.002 

      

Liver Diet Arginine and proline metabolism 4 0.001 0.003 

      

 Sex-by-diet Purine metabolism 9 <0.001 0.005 

  Aminoacyl-tRNA biosynthesis 6 0.001 0.005 

      

Muscle Diet Aminoacyl-tRNA biosynthesis 3 0.002 0.02 

      

Adipose Sex Purine metabolism 3 0.003 0.013 
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Figure 4.4: Sex-by-diet influenced purine metabolism. Purine metabolites affected by sex-by-diet 

were plotted. Horizontal bars represent significant pairwise comparisons performed using 

Tukey’s HSD post-hoc analysis; * p<0.05, ** p<0.01, *** p<0.001. 
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and arginine and proline metabolism (hits=2). The small numbers of metabolites 

affected by sex-by-diet interaction (hits=3) or diet alone (hits=2) in adipose tissue were 

not matched to pathways. 

4.4.4 Relationships Between Known Metabolites and Phenotypes 

The relationships between metabolite profiles in each tissue and systems level 

energy balance traits were identified using a correlation-based approach.  Energy 

expenditure and adiposity were significantly correlated with 27 and 20 metabolites, 

respectively, across the three tissues, with the majority of associations due to hepatic 

(17 heat, 12 adiposity) and adipose (5 heat, 8 adiposity) metabolomes (Fig. 4.5). Partial 

correlation was used to adjust for spurious correlations to body weight, after which 15 (4 

in adipose and 11 in liver) metabolites remained significantly correlated with adiposity 

and 19 (5 in adipose and 16 in liver) with heat output. In muscle, four metabolites 

(pantothenate, N-acetyl-glutamate, orotate, and kynurenine) were correlated with heat 

output and none with adiposity.  

The relationships between tissue metabolites and systems level energy balance 

traits were assessed by constructing a correlation-based network. The network consists 

of metabolites (39, 8 and 5 from liver, adipose and muscle, respectively) that were 

significantly correlated with at least one energy balance trait and with one or more 

metabolites in any of the three tissues (Fig. 4.6, Appendix B). The majority of the 

metabolites that were correlated within and across all tissues were purine metabolites, 

amino acids, and energy molecules. Pantothenate, vitamin B5, is a metabolite that is 

necessary for coenzyme A synthesis. Pantothenate in skeletal muscle was positively 
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correlated with pantothenate (r=0.68) in adipose tissue. Pantothenate in both tissues 

was positively correlated with aminoadipic acid (adipose, r=0.59; muscle, r=0.46), 

allantoate (r=0.58, 0.69), and butyryl-CoA (r=0.51, 0.47) and negatively correlated with 

n-acetyl-glutamine (r=-0.66, -0.73), n-acetyl-L-alanine (r=-0.57, -0.49), in liver. 

Pantothenate in both tissues was also positively correlated with s-adenosyl-L-

homoCysteine (r=0.66, 0.51) in adipose tissue. Another B vitamin, riboflavin, in liver, 

was positively correlated with adiposity (r=0.50); however, it was not correlated with any 

metabolites in adipose or skeletal muscle. Methionine, in liver, was negatively correlated 

with arginine (r=-0.47), erythrose-4-phosphate (r=-0.48), and lysine (r=-0.48), in skeletal 

muscle.  Riboflavin is necessary for the formation of FAD and FMN. 

 

4.5 Discussion 

Diet is a primary determinant of health, but the fundamental relationship between 

dietary intake and metabolism at the tissue level is poorly understood. We used an 

untargeted metabolomics approach to investigate the effects of diet and sex on tissue 

metabolomes, and to relate metabolites to body composition and energy expenditure.  

Experimental diets were designed to model eating patterns (American, Japanese, 

Mediterranean, and ketogenic) that are known to affect various aspects of metabolic 

health in humans. Diet composition varied widely in terms of the sources of ingredients, 

relative contribution of animal- and plant-based ingredients, and macronutrient and 

micronutrient composition.  In combination with sex, these diets imposed a strong and 

diverse stimulus on tissue metabolism. This allowed us to query the extent to which 

tissue metabolomes were influenced by diet, sex, and their interactions, and to  
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Figure 4.5: Correlations between metabolites and system phenotypes.  Pearson correlation was 

used to associate metabolites in adipose (A), muscle (B), and liver (C) with weight, adiposity, and 

metabolic phenotypes. Significant correlations (FDR < 0.05) are represented by an asterisk (*). For 

metabolites that were significantly correlated for adiposity and/or heat output, partial correlation 

was used to determine if the relationship between metabolite and trait was due to spurious 

correlation with body weight. Correlations that remained significant are indicated by a bold 

asterisk (*). 
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Figure 4.6: Cross-tissue metabolite and phenotype network.  Pearson correlation was used to 

associate metabolites within and across each tissue with weight, adiposity, and metabolic 

phenotypes. Only significant correlations (FDR < 0.05) are shown. To assess relationships within 

and across tissues and phenotypes, metabolites are clustered by their respective tissue or 

phenotype. The size of each node represents the number of edges connected to the node. A red 

line represents positively correlated metabolites, while a blue line represents negatively 

correlated metabolites.  
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characterize their relative impact on liver, adipose tissue, and skeletal muscle.  Our 

model, which included 10 unique combinations of diet and sex, also enabled us to use 

correlation to relate metabolites to body composition and energy expenditure.  

Because of the sex-dependent effects of diet on weight and energy expenditure 

phenotypes, we expected that a considerable proportion of metabolites would be 

influenced by diet in a sex-dependent manner. This was true in liver, in which the 

number of metabolites affected by the interaction (n=26) was comparable to those 

responding to diet (n=30) and sex (n=31) independently. In contrast, the metabolomes 

of adipose tissue and muscle showed little evidence of sex-specific response to diet, 

which may be due to the fact that liver is one of the first tissue to receive and digest 

nutrients from the diet. Only three metabolites responded to diet in a sex-dependent 

way in adipose tissue, and none in muscle. Approximately one-third (9 of 27) of 

metabolites in liver that were influenced by sex-by-diet interactions are involved in 

purine metabolism. Purine metabolism includes the synthesis and breakdown of purine 

nucleotides, which are building blocks of nucleic acids and cofactors that are required 

for energy metabolism.  While these functions are fundamentally important for all cells, 

recent metabolomic studies associate this pathway with adaptation to energetic 

challenges and to metabolic syndrome. Progressive exposure to cold rapidly increased 

purine metabolites in brown adipose tissue, in parallel with mitochondrial thermogenesis 

[168].   No effects of cold exposure were observed in white adipose from the same 

animals, suggesting a relationship to mitochondrial uncoupling and fatty acid oxidation.  

Metformin is a widely used anti-diabetic drug that improves glycemia and lipidemia 

through the energy-sensing kinase AMPK and other targets in liver. Metformin 
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administration to diet-induced obese increased purine metabolites in serum [169]. 

Circulating levels of purine metabolites have also been shown to discriminate between 

obese patients with and without metabolic syndrome [170]. How flux through the purine 

metabolism pathway may regulate cellular utilization is not yet clear. One potential 

mechanism is through effects on 5-Aminoimidazole-4-carboxamide ribonucleotide 

(AICAR), an intermediate in the de novo purine synthesis pathway  [171]. AICAR 

interacts with the gamma subunit of AMPK, inducing a conformational change that 

enhances its phosphorylation and activation [172]. This AMP-mimicking action of AICAR 

has resulted in its widespread use as an AMP analog in experimental studies, although 

the physiological effects of endogenous AICAR in mammals are unknown [173]. We 

recently proposed that endogenous AICAR mediates anti-obesity actions of the 

polyherbal supplement Zyflamend, which both alters tissue purine metabolism and 

activates AMPK [174]. Whether AICAR levels were altered in the current study has not 

been determined because we do not consistently detect it with sufficient sensitivity for 

quantitation in tissues. Additional, more focused studies are necessary to determine the 

consequences of variation in purine metabolism and how this pathway might influence 

the response to diet. 

Various aspects of amino acid metabolism were influenced by sex-by-diet 

interactions in liver, as well as by diet alone in muscle.  Twelve of the 20 amino acids 

differed between diets in at least one tissue, along with numerous amino acid 

metabolites. The percentage of protein in each diet was sufficient for mice but varied 

across diets (from ~ 13 – 19%). In addition, different types of protein were used, from 

both plant and animal sources.  Some of the effects of diet may therefore be attributed 
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to variation in amino acid composition of the diets.  Other changes in amino acids and 

their metabolites likely resulted from metabolic adaptations to varying levels of 

carbohydrates and fat. Metabolomic studies have been valuable in identifying 

relationships between amino acid metabolism and various aspects of metabolic health 

that had previously gone undetected [175-177]. In particular, several analyses of the 

serum metabolome in humans have revealed a link between branched chain amino acid 

metabolism and cardiometabolic health [117, 178]. A recent, large scale study of 

individuals in the Framingham Offspring cohort determined that a broad collection of 

serum amino acids, and not just branched chain species, are associated with abdominal 

obesity, BMI, insulin resistance, lipidemia and other metabolic traits [119]. Our study 

design was not of sufficient scope to link specific tissue amino acid levels to the 

metabolic traits that we measured. We also did not profile the serum metabolome and 

thus cannot determine how tissue amino acid changes are reflected in those in 

circulation.  Nonetheless, assuming that these tissues contribute to serum amino acid 

profiles, our results suggest that diet may influence the risk of metabolic disease 

through effects on tissue amino acid metabolism.  

The Framingham Offspring cohort study described above also identified 

aminoadipic acid, which we found to be significantly influenced by diet in liver and 

muscle, as a novel metabolite that predicts future development of type 2 diabetes in 

normoglycemic individuals [119].  Other metabolomic studies have also associated this 

metabolite, which is a poorly understood intermediate in lysine catabolism, with 

metabolic health in humans [170] and in Zucker rats. Levels of aminoadipic acid in 

serum are elevated years prior to the development of insulin resistance in humans 
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[122].  Experimental studies show that it augments the hypoglycemic actions of insulin, 

suggesting an adaptive role in maintaining glucose homeostasis. Despite its emerging 

role in metabolic disease, little is known about dietary regulation of aminoadipic acid. 

Consumption of beef was shown to acutely increase plasma levels of aminoadipic acid, 

compared to a meal containing fish [179]. However in our study, tissue levels were 

lowest in the Japanese and Mediterranean diets, one of which (Japanese) is devoid of 

bovine protein while the other (Mediterranean) derived almost 70% of its protein from 

bovine sources (beef and casein).  Therefore although we cannot identify a specific 

dietary component that regulates aminoadipic acid levels, the significant impact of diet 

in both muscle and liver in our results warrant future investigation into this relationship.  

Given that the experimental diets used in this study are associated with pro- or 

anti-obesogenic effects, the relatively modest impact of diet on the adipose metabolome 

is somewhat surprising. Only five metabolites were significantly affected by diet, either 

alone (n=3) or through interaction with sex (n=2). One of these metabolites, 3-

methylphenylacetic acid, is a metabolite of common herbicides [143-145]. Interestingly, 

this metabolite was significantly more abundant in adipose tissue from mice fed the 

Japanese diet, which contains the highest proportion of plant-derived ingredients (e.g., 

rice starch, soy protein).  Many organic pollutants have been shown to accumulate in 

the lipid-rich matrix of adipose tissue and to increase risk of obesity and metabolic 

disease.  Although we are not aware of such associations for 3-methylphenylacete, its 

significant enrichment emphasizes the potential for unintended consequences of 

experimental diets on tissue metabolomes.  
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Sex influenced the adipose metabolome more so than diet, based on both the 

ANOVA results and unsupervised clustering. Notably, pantothenate levels differed 

significantly by sex, with increased levels in adipose tissue from females.  Comparable 

differences were seen in skeletal muscle, and levels in both tissues correlated 

significantly with energy expenditure. Pantothenate plays a pivotal role in energy 

metabolism because it is the substrate from which Coenzyme A (CoA) is synthesized. 

This essential nutrient is provided in the diet and actively transported into tissues. 

Pantothenate kinase is the rate-limiting enzyme for synthesis of CoA from pantothenate, 

and is under nutritional, hormonal, and allosteric control [180-182].  Differences in tissue 

pantothenate content between males and females may therefore be due to sex effects 

on pantothenate uptake or on regulation of its conversion to CoA.  Either way, the 

relationship between energy expenditure and pantothenate in both adipose tissue and 

muscle suggests that CoA levels contribute to metabolic differences between males and 

females. Although pantothenate levels were not affected by diets included in this study, 

according to the network analysis they were correlated with seven metabolites across 

tissues, including aminoadipic acid suggesting a potential relationship between 

pantothenate and potential predictors of disease.  Collectively, these relationships 

suggest that pantothenate availability or uptake may be an important variable in 

metabolic disease. Interestingly, pantothenate supplementation was recently shown to 

attenuate the consequences of a high sucrose diet on lipid metabolism in Drosophila 

[183].  

While our focus was on tissue metabolomes, effects of the ketogenic diet on 

adiposity were notable. Ketogenic diets are popular for weight loss, although clinical 
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studies do not consistently support their efficacy. Studies in rodents have shown that a 

ketogenic diet paradoxically increases the percentage of body fat, often at the expense 

of lean mass and despite increased energy expenditure [184, 185]. Our data from males 

are consistent with these studies, all of which also used only male mice. In contrast, 

ketogenic diet females in our study had the lowest adiposity of all diets, although some 

pairwise comparisons to other diets were not significantly different. Both males and 

females had the lowest RER values, suggesting that fat utilization was comparably 

affected in both sexes. To our knowledge, ours is the first study to demonstrate sex-

specific effects of a ketogenic diet on body composition.  

Several limitations of our study should be emphasized.  In particular, the diets 

were designed to reflect common patterns of global consumption in humans. 

Accordingly, we cannot the range of variation in diet composition prevents us from 

associating specific dietary factors with metabolite patterns. We have also measured 

metabolites at a single time point. Effects of diet or sex on metabolite turnover therefore 

go undetected in our study. Furthermore, the extraction method we used targets polar 

metabolites at the expense of lipids, which are also likely subject to extensive sex and 

diet regulation. Finally, due to the specificity of the extraction method and the limited 

number of metabolites that can be identified using our in-house database, it is difficult to 

ascertain whether pathways significantly altered are affected by sex, diet or sex-by-diet 

interaction or because a metabolite is more easily identified to due inherent biases in 

the experimental procedure. 
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4.6 Conclusion 

We profiled three tissues (adipose, muscle, and liver), which play a major role in 

energy metabolism to determine the effects of diet and sex on the tissue metabolome. 

The stratified results showed tissue-specific effects of sex and diet on tissue 

metabolites. This study, however, was performed in the context of a single genetic 

background. Including other genetic backgrounds may reveal a more complex 

relationship between the tissue metabolome and diet. Nonetheless, this study has 

shown several metabolites that could be investigated to determine their role in 

metabolism and disease. 
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CHAPTER FIVE  

TISSUE LEVEL STRAIN AND SEX-BY-STRAIN INTERACTIONS 

REVEAL UNIQUE METABOLITE AND CLUSTERING PROFILES USING 

UNTARGETED LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY 

ON ADIPOSE, SKELETAL MUSCLE, AND LIVER TISSUE IN MICE FED 

A STANDARD CHOW DIET 
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5.1 Abstract 

Genetics have been shown to play an important role in the development of 

metabolic diseases. Despite the known role of genetics in metabolic diseases it is 

unknown how genetic background alters metabolism at the tissue level, particularly 

when fed the same diet. Using untargeted metabolomics, this study aimed to identify 

changes in water-soluble metabolites in A/J, C57BL/6J, FVB/NJ, and NOD/ShiLtJ males 

and females, fed a standard mouse chow diet for seven months. Metabolite abundance 

was examined in liver, skeletal muscle, and adipose tissue for sex, strain, and sex-by-

strain interaction. Females were lighter than males, independent of strain. A/J females 

had more adiposity than all other sex-by-strain combinations. ANOVA suggests that 

liver is most metabolically active across different genetic backgrounds, although 

adipose and muscle tissue were sensitive to genetic differences as well. Purine 
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metabolism and pathways that played a role in amino acid metabolism were significantly 

altered (FDR < 0.05) by strain in adipose and liver. All three tissues were largely 

unaffected by sex or sex-by-strain interaction relative to strain, suggesting that the 

tissue metabolome remains largely stable across genders consuming the same diet. 

This study revealed that no one strain had the predominant affect on physiology. 

Metabolomics revealed that strain affected the metabolome in a tissue-specific manner; 

however, liver was most sensitive to genetic differences. 

 

5.2 Introduction 

 Genetics have been shown to play an important role in the development of 

metabolic diseases, such as type 2 diabetes [186, 187], cardiovascular disease [188-

190], and obesity [191, 192]. Furthermore, markers for fasting glucose and insulin, body 

mass index, and triglycerides have been linked to genetic loci, independent of the 

disease state [191, 193, 194]. Despite the known role of genetics in metabolic diseases 

it is unknown how genetic background alters metabolism at the tissue level, particularly 

when fed the same diet.  

Due to the inherent genetic differences in humans it can be difficult to ascertain 

the role of genes associated with metabolic states. Moreover, investigating the role of 

metabolism at the tissue level is difficult at best in humans. Mice are an ideal alternative 

due their genetic similarity, inherent compliance, and replicative ability. Accordingly, the 

severity of disease due to genetic background has been shown through phenotypic 

markers in mice [82, 91]. Four strains of mice (A/J, C57BL/6J, FVB/NJ, and 
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NOD/ShiLtJ) were chosen to represent different metabolic states, both diseased and 

non-diseased. A/J mice are susceptible to cancer; however, they are resistant to 

diabetes, obesity, atherosclerosis, insulin resistance, and glucose intolerance [78, 84, 

87]. In contrast, C57BL/6J mice are susceptible to diet-induced obesity, type 2 diabetes, 

and atherosclerosis [78, 82, 89-91]. FVB/NJ mice are susceptible to certain cancers, 

have higher basal body temperature, activity, and anxiety levels [93, 94]. NOD/ShiLtJ 

mice are a model for type 1 diabetes [96]. In addition NOD/ShiLtJ females are the first 

to show decreased in pancreatic insulin, while males express this phenotype weeks 

later [81].  

Mass spectrometry-based metabolomic platforms now enable global, discovery-

based profiling of tissue and circulating metabolomes. Metabolomics has emerged as a 

tool to understand the impact of genetics on metabolism and identify metabolites and 

pathways that are associated with disease [96, 195]. Furthermore, metabolomics 

studies are typically limited to samples that can be obtained noninvasively (e.g., plasma, 

erythrocytes or urine). Less is known, however, about the impact of genetics at the 

tissue level, and the extent to which tissues respond to genetics in a similar manner 

when fed the same diet. The objective of this study was to use metabolomics to address 

the fundamental question of how genetics, which can vary widely, affect tissue 

metabolomes and to associate tissue metabolites with systems level phenotypes of 

energy utilization and body composition in mice. This was accomplished by comparing 

the effects of genetic differences, using A/J, C57BL/6J, FVB/NJ, and NOD/ShiLtJ males 

and females fed a standard chow diet, on metabolism in liver, skeletal muscle, and 

adipose tissues, in the context of a single diet. Males and females were used to 
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evaluate the relative effects of strain, sex, and sex-by-strain interaction on tissue 

metabolism. Untargeted metabolomics was used to comprehensively profile the 

metabolomes of liver, skeletal muscle, and adipose tissue because of their roles in 

energy balance [155, 156].  

 

5.3 Materials and Methods 

5.3.1 Animals and Diets 

All husbandry and experimental procedures were approved by the Institutional 

Animal Care and Use Committee of the University of North Carolina. Four-week old A/J, 

C57BL/6J, FVB/NJ, and NOD/ShiLtJ mice were purchased from The Jackson 

Laboratory (Bar Harbor, ME). Mice were allowed to acclimate for 14 days and 

consumed a standard mouse chow (PicoLab Mouse Diet 20, LabDiet, St. Louis, MO) 

with 23.2% of calories provided by protein. At 42 days of age, five male and five female 

mice were switched to a marginally lower protein standard chow diet (19% protein). 

Mice were maintained on a 12-hour light/dark cycle throughout the study. At age 18 

weeks, after 12 weeks on the diets, mice were housed in Phenomaster metabolic 

chambers (TSE Systems, Inc.) for 48 hours for measurement of metabolic rate and 

activity. The chambers measured respiratory exchange rate (RER), volume of oxygen 

(VO2), and heat output via heat dissipation, and activity level by laser detection. Activity 

levels measured voluntary movement of the mouse in the x and y plane. Mice were 

euthanized at seven months of age by CO2 asphyxiation.  Perigonadal adipose tissue 

was dissected and weighed as a measure of adiposity. Samples of adipose tissue, the 
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left lobe of the liver and the vastus medialis, vastus lateralis, and rectus femoris muscle 

were snap-frozen in liquid N and stored at -80oC for metabolomics analysis. 

5.3.2 Metabolite Extraction and Liquid Chromatography Mass Spectrometry 

Frozen tissue samples were pulverized under liquid N. Approximately 25 mg of 

pulverized tissue was extracted sequentially in methanol and then in methanol:water 

(4:1), as previously described [157]. Supernatants were dried under nitrogen and 

reconstituted in 160 μl of sterile MilliQ water. Internal standard (60 μL of a 13C-labeled 

E.Coli metabolite pool) was added to each sample. 

5.3.3 Preparation of 13C-labelled E. Coli metabolite pool 

Cultures of Escherichia coli NCM3722 were grown on minimal media 13C-glucose 

agar plates and passed 5 times. Single colonies were then transferred to minimal media 

13C-glucose liquid cultures (0.4% w/v made from 99% U-13C-glucose, Cambridge 

Isotope Laboratories). Liquid cultures were set back 5 times before samples were 

extracted and run on mass spectrometer to ensure complete 13C-labeling of all 

metabolites. 

E. coli cells were extracted by vacuum filtering three 10 mL aliquots, per culture, 

for three different cultures (grown to ~0.4 OD600) through Magna nylon membrane filters 

(0.45 micron, 47 mm filter, Maine Manufacturing, Sanford, ME). The filters were 

transferred face down into petri dishes containing 1.3 mL of extraction solvent (40:40:20 

HPLC grade methanol, acetonitrile, water with 0.1M formic acid) chilled to -20 ˚C. The 

extraction was allowed to proceed for 15 min at -20 ˚C. The following extraction was 

carried out in a room maintained at 4 ˚C unless otherwise specified. The filters were 
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rotated so that the cell side was on top and rinsed by pipetting the extraction solvent 

over the face of the filters. The extraction fluid was then transferred to 1.5 mL centrifuge 

tubes and an additional 300 µL of new extraction fluid was used to wash the filters 

again. The remaining extraction solvent was also transferred to the 1.5 mL centrifuge 

tube and centrifuged for 5 minutes (16.1 rcf). The resulting supernatant was transferred 

to new vials and the pelleted cell was resuspended in 50 µL of extraction solvent. The 

extraction was allowed to proceed for 15 min at -20 ˚C at which time the samples were 

centrifuged for 5 min (16.1 rcf). The supernatant was transferred to the vials and 

another 50 µL of extraction solvent was added to the pelleted cell repeating the previous 

extraction once more. Vials containing all of the collected supernatant were dried under 

a stream of N2 until all the extraction solvent had been evaporated. Following the 

resuspension of extracted E. coli residue in 300 µL of sterile water, samples were 

physically averaged and 10 mL were directly spiked into unlabeled samples.  

5.3.4 Metabolomics data Processing 

Raw files generated by Xcalibur were converted to mzML, an open-source 

format, using msconvert[139]. An open source data analyzer for metabolomics, MAVEN 

[140, 141] (Princeton University) was used to correct total ion chromatograms based on 

retention time automatically, for each sample. Known metabolites were manually 

chosen and peak abundance was integrated by mass (±5 ppm) and retention time. 

Unknown metabolites were chosen using an algorithm with the following settings: 

minimum peak width, 5; minimum signal/blank ratio, 3 or greater; minimum peak 



 

 85 

intensity, 10,000; and minimum peak/baseline, 3.  Unknown peaks were filtered 

manually to remove those that did not meet the above criteria. 

5.3.5 Statistical Analysis 

All statistical analyses were performed in the language R (3.1.0 and 3.2.2) [158]. 

An ANOVA model was used to identify significant effects of sex, strain, and sex-by-

strain interaction on physiological traits and metabolites. Tukey’s Honest Significant 

Difference (HSD) was used for post-hoc testing. Significance for physiological traits was 

based on raw p-values (p < 0.05). 

Metabolite peak area data files were read into R using the package XLConnect 

[159]. Metabolites that were missing 70% or more sample measurements were removed 

from analysis. Missing values in the remaining metabolites were imputed using k-

nearest numbers from the function impute [160] (Additional File 1 and 2). Metabolites 

were matched to their corresponding 13C-labeled internal standard, or to a 13C-labeled 

standard of the same compound class. Class types were identified using the Human 

Metabolome Database [143-145]. The actual weight of tissue that was extracted and the 

peak intensity of the corresponding internal standard were used as covariates in 

statistical analyses.  

Prior to statistical analyses, a linear model was created for each metabolite using the 

terms sex, strain, sex* strain, tissue weight and internal standard (eq. 5.1): 

 
Equation 5.1  

Metabolite = sex + strain+ sex* strain+ tissue weight + internal s tandard
 

 



 

 86 

Coefficients for the terms for tissue weight and internal standard were used to 

adjust metabolite abundance for technical variation using eq. 5.2: 

 

Equation 5.2 

Adjusted metabolite =metabolite+ tissue weight coefficient(mean tissue weight −

tissue weight)+ internal s tandard coefficient(mean internal s tandard −

internal s tandard)
  

 

Adjusted metabolites were Pareto scaled across all mice for each metabolite 

using the package MetabolAnalyze [161], normalized to the median across all 

metabolites for each mouse, and cube root transformed to create a normal distribution. 

Normalized metabolite values were analyzed for effects of sex, diet and sex*diet. Data 

were assessed for normality using Q-Q plots, residuals, and the Shapiro-Wilks test. 

False discovery rate for ANOVA and correlation analyses was set to 5% using the 

method of Benjamin-Hochberg [162]. Venn diagrams were created using the package 

VennDiagram [163].  

5.3.6 Correlation Analysis 

Associations between physiological measurements and metabolite 

measurements across tissues were assessed using Pearson correlation from the 

package Hmisc [164] and the package R.Utils [165]. Correlation p-values were FDR-

adjusted using the Benjamini-Hochberg procedure. Correlations were visualized using 

the Cytoscape app Metscape [166].   
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5.3.7 Functional Pathway Analysis 

 Overrepresentation pathway analysis was performed using Metaboanalyst [167]. 

KEGG IDs were input and compared against the mouse KEGG reference metabolome. 

Overrepresentation was performed using the algorithm Fisher’s exact test. Pathway 

topology was performed using relative-between centrality. 

 

5.4 Results 

5.4.1 Physiological Measurements Reveal Differences Among Strain and Sex-by-

strain 

Body composition and indirect calorimetry were used to define system-level 

effects of strain and sex on metabolism. Adiposity, oxygen consumption (VO2), and heat 

output were all significantly influenced by strain, but in a sex-dependent manner 

(psexXstrain<0.05; Table 5.1). In contrast, body weight was significantly affected by sex 

(p<0.001) but not by strain or sex-by-strain interaction. Activity levels were significantly 

affected by sex (p=0.009) and strain (p=0.020) but not sex-by-strain interaction. Tukey’s 

post-hoc comparisons were assessed to determine significant pairwise comparisons. 

Evidence of sex-by-strain interaction were clearly visible in adipose tissue. Adiposity 

levels in A/J females (4.01±0.3%) were significantly higher than female FVB/NJ 

(1.14±0.21%, p<0.001) and NOD/ShiLtJ mice (1.71±0.26%, p=0.004) and numerically 

higher than all other female mice regardless of strain (Fig. 5.1B). Conversely, adiposity 

levels in C57BL/6J males (3.8±0.69%) were significantly higher compared to male 

FVB/NJ mice (1.64±0.7%, p=0.01) and numerically higher than the other three mice 
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strains. Despite differences in adiposity across sex and strain, weight was only 

significant for sex. Males were heaviest compared to females, regardless of strain (Fig. 

5.1A). Oxygen consumption, an indirect measurement of energy expenditure, in both 

sexes was lowest in A/J mice (Fig. 5.1C). Male FVB/NJ mice had the highest VO2 levels 

compared to the other three strains, however; only A/J (p=0.003) and C57BL/6J 

(p=0.020) male mice were significantly different. Female A/J mice had significantly lower 

VO2 levels than C57BL/6J (p=0.020) and NOD/ShiLtJ (p=0.026) females. Female 

C57BL/6J mice produced significantly more heat than A/J (p=0.002) and NOD/ShiLtJ 

(p=0.010) females (Fig. 5.1E). FVB/NJ males produced significantly more heat than 

C57BL/6J (p=0.033) and NOD/ShiLtJ (p=0.037) males. Activity levels varied between 

sexes and strains but in an independent manner. Females had significantly higher 

levels of activity while C57BL/6J mice had the highest levels of activity relative to all 

other strains. RER had no significant difference for sex, strain, or sex-by-strain, which 

was expected due to all strains being fed a single diet (Fig. 5.1D).  

 

Table 5.1: P-values for Effects of Sex, Strain, and Sex-by-strain Interaction on Weight and 

Metabolism.  

Sex Strain Sex-by-Strain 

Weight <0.001 0.284 0.052 

Adiposity 0.338 <0.001 0.015 

VO2 0.001 <0.001 0.023 

RER 0.148 0.594 0.100 

Heat Output <0.001 0.001 <0.001 

Activity 0.009 0.020 0.124 

P<0.05 is considered significant. 
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5.4.2 Significant Effects of Strain, Sex and their Interactions on Tissue 

Metabolomes 

 Liver, skeletal muscle, and adipose tissue are fundamental to systemic energy 

balance and play central roles in the body’s response to diet, but it is unclear how 

genetics influences these tissues. Global metabolomic profiling of these tissues was 

used to characterize the effects of sex and strain on tissue metabolism. A total of 191 

known compounds, those for which m/z and retention time have been mapped to 

specific metabolites on our platform, were detected in one or more tissues. In addition, 

several thousand features corresponding to unidentified metabolites (6,292, 4,877, and 

4,864) were detected in liver, skeletal muscle, and adipose, respectively. 

 
 An ANOVA model was used to identify metabolites that were affected by sex, 

strain, and sex-by-strain interaction (Appendix C, Additional File 4, Fig. 5.2). A total of 

146 metabolites (76% of all known metabolites) were significantly affected by sex, 

strain, or sex-by-strain interaction, in one or more tissues. Approximately ninety percent 

(130 of 146) of these metabolites were influenced by strain in at least one tissue. To 

determine which tissue was most affected by strain we compared all significant 

metabolites across all tissues (Fig. 5.2A). Strain affected 105 metabolites in liver with 

seventy-two metabolites specific to liver. Adipose and skeletal muscle were less 

sensitive to strain with 38 and 30 metabolites. Thirteen and eight of the total metabolites 

were specific to adipose and skeletal muscle. Only six metabolites were significant for 

strain in all three tissues. 
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Figure 5.1: Effects of sex and strain on weight and metabolic phenotypes; N=5/ sex and strain 

group, avg. ± std. dev. Dots represent individual mice within sex-by-strain combination. 

Horizontal bars represent pairwise comparisons performed using Tukey’s HSD post-hoc analysis; 

* p<0.05, ** p<0.01, and *** p<0.001. Body weight (A) and adiposity (B) were measured at 28 weeks 

of age, after 16 weeks on the experimental diets. Adiposity is expressed as the relative weight of 

the perigonadal adipose fat pads. Oxygen consumption (C), RER (D), heat output (E), and activity 

(F) were measured during a 48 hr. period when mice were housed in Phenomaster metabolic 

cages.   
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 We then assessed the effects of sex, strain, and sex-by-strain in each tissue. 

Strain had the largest affect on the liver metabolome. Ninety-two metabolites responded 

to strain variation, independent of sex (Fig. 5.2B). Seventeen metabolites responded to 

strain in a sex dependent manner but only one metabolite (citrulline) was specific for 

sex-by-strain interaction only. Another 26 metabolites were significant for sex, 

independent of strain. Three of these metabolites (acetyllysine, glutamine, and 3-

methylphenylacetic acid) were specific to sex. Strain also affected adipose and skeletal 

muscle (Fig. 5.2C, D). Thirty-eight metabolites were altered in adipose tissue and 29 

metabolites were altered in skeletal muscle by strain, independent of sex. Only three 

metabolites (pantothenate, s-adenosyl-l-homocysteine, and threonine) were altered by 

sex, independent of strain, in adipose tissue. In contrast, no metabolites were altered by 

sex-by-strain interaction in adipose. Five metabolites were altered by sex, independent 

of strain, in skeletal muscle. Only four metabolites (shikimate, ornithine, 

hydroxyphenylacetic acid, and 2-isopropylmalic acid) were altered by sex-by-strain, in 

muscle. Assessing metabolites significant for strain using Tukey’s HSD post-hoc 

analysis revealed no one dominant pairwise comparison for any tissue (Fig. 5.2E, F, 

and G). Unsupervised hierarchical clustering was performed to visualize the relatedness 

of each of the 8-sex/strain groups, based on similarities between hepatic metabolomes. 

A/J and FVB/NJ mice clustered by strain and then sex, however, C57BL/6J and 

NOD/ShiLtJ mice clustered by sex (Fig. 5.3). This indicates that genetic background 

and sex have varying levels of influence on the metabolome. 
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5.4.3 Functional Annotation of Strain Effects 

 The sets of metabolites affected by sex, strain, or sex-by-strain interaction were 

functionally annotated using KEGG pathways (Table 5.2). Strain had the largest effect 

on pathways in adipose and liver tissue. Purine metabolism was significantly altered for 

strain with eight and sixteen metabolites (referred to as hits) mapping onto the KEGG 

pathway for adipose (p < 0.001) and liver tissue (p < 0.001) (Fig. 5.4). In addition, 13 

metabolites mapped onto pyrimidine metabolism (p < 0.001), in liver, for strain. Amino 

acid metabolism (alanine, aspartate, and glutamate metabolism (adipose, p < 0.001, 

hits=5) and aminoacyl-tRNA biosynthesis (adipose, p = 0.001, hits=7; muscle, p = 

0.002, hits=6)) was also significantly altered by strain for both tissues (FDR < 0.05). 

Metabolites affected by strain, independent of sex, also mapped onto pathways that 

represent amino acid metabolism (aminoacyl-tRNA and lysine biosynthesis), in muscle, 

but were not significantly overrepresented after controlling for FDR (> 0.05). Sex, 

independent of strain, also significantly affected purine metabolism (p < 0.001) with 

eight metabolites mapping on to the pathway in liver tissue. Sex, in muscle, also 

significantly altered by sex (lysine biosynthesis, p = 0.001, hits=2 and aminoacyl-tRNA 

biosynthesis, p = 0.001, hits=5). Sex-by-strain interaction did not affect any pathways 

for any tissue. 
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Figure 5.2: Shared and unique effects of strain on tissue metabolomes. The sets of metabolites 

that differed significantly, based on ANOVA (FDR < 0.05) by strain across tissues, (A), and by sex, 

strain, and sex-by-strain interaction in liver (B), adipose (C), and muscle (D) were visualized for 

shared and factor-specific effects using Venn diagrams. Metabolites that differed significantly for 

strain in adipose (E), muscle (F), and liver (G) were assessed for pairwise comparisons using 

Tukey’s HSD and visualized for shared and specific effects using Venn diagrams.  
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Figure 5.3: Hierarchical clustering of sex/strain groups based on metabolite abundance in liver. 

Heatmaps were generated in Metaboanalyst (v3.0) using group averages of the 50 metabolites 

that varied the most across sex and strain combinations.  Samples were normalized to median 

values and values were scaled using Pareto scaling.  Z-score was used to determine scale. 
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5.4.4 Relationship Between Known Metabolites and Phenotypes 

The relationships between metabolite profiles in each tissue and systems level 

energy balance traits were identified using a correlation-based approach (Fig. 5.5). 

Energy expenditure and adiposity were significantly correlated with 18 and 25 

metabolites, respectively, across all three tissues. The majority of the associations with 

adiposity are due to hepatic (15) and adipose (10) metabolomes while liver (9) and 

muscle (5) are responsible for most of the associations with heat. Partial correlation was 

used to adjust for misleading correlations to body weight, after which all of the 

metabolites remained significantly correlated with adiposity and heat output. 
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Figure 5.4: Purine metabolism in adipose and liver tissue. Metabolites significant for strain were 

plotted for adipose and liver tissue. Dashed lines represent missing metabolites in the pathway. 

Horizontal bars represent pairwise comparisons performed using Tukey’s HSD post-hoc analysis; 

* p<0.05, ** p<0.01, and *** p<0.001. 



97 

 



 

 98 

Table 5.2: KEGG Pathway Enrichment of Metabolites Affected by Sex, Strain, and Sex-By-Strain 

Tissue Factor Pathway Hits P-value (k/m)q 

All Tissues Sex Purine metabolism 9 <0.001 0.005 

  Aminoacyl-tRNA biosynthesis 7 0.002 0.005 

  Riboflavin metabolism 3 0.002 0.005 

  Lysine biosynthesis 2 0.004 0.005 

      

 Strain Purine metabolism 22 <0.001 0.007 

  Pyrimidine metabolism 15 <0.001 0.007 

  Alanine, aspartate and glutamate metabolism 9 <0.001 0.007 

  Citrate cycle (TCA cycle) 7 0.001 0.007 

  Pantothenate and CoA biosynthesis 6 0.001 0.007 

  Glyoxylate and dicarboxylate metabolism 6 0.002 0.007 

  Ascorbate and aldarate metabolism 4 0.004 0.007 

      

Adipose Sex Cysteine and methionine metabolism 2 0.002 0.025 

  Aminoacyl-tRNA biosynthesis 2 0.013 0.025 

      

 Strain Purine metabolism 8 <0.001 0.007 

  Alanine, aspartate and glutamate metabolism 5 <0.001 0.007 

  Aminoacyl-tRNA biosynthesis 7 0.001 0.007 

  Pyrimidine metabolism 5 0.003 0.007 

      

Muscle Sex Lysine biosynthesis 2 0.001 0.004 

  Aminoacyl-tRNA biosynthesis 5 0.001 0.004 

      

 Strain Aminoacyl-tRNA biosynthesis 6 0.002 0.003 

  Lysine biosynthesis 2 0.002 0.003 

      

Liver Sex Purine metabolism 9 <0.001 0.003 

  Riboflavin metabolism 3 0.001 0.003 

      

 Strain Purine metabolism 16 <0.001 0.004 

  Pyrimidine metabolism 13 <0.001 0.004 

  Glyoxylate and dicarboxylate metabolism 6 <0.001 0.004 

  Citrate cycle (TCA cycle) 5 0.002 0.004 
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The relationships between metabolite profiles and systems level energy balance 

traits across all three tissues were assessed. Metabolites that were associated with one 

or more traits were included. Eight, 15, and 24 metabolites were associated with one or 

more traits and one or more metabolites within or across tissues in adipose, muscle, 

and liver tissue (Fig. 5.6, Appendix D). Methionine in adipose tissue was negatively 

correlated with the bile salt taurodeoxycholic acid (r=-0.66, p<0.001) in muscle but was 

not associated with taurodeoxycholic acid (r=0.12) in liver tissue. Metabolites that were 

significant in more than one tissue showed tissue-specific responses. Pantothenate, in 

skeletal muscle, was negatively correlated with glycerol-3-phosphate (r=-0.54, p=0.001) 

in liver while glycerol-3-phosphate in muscle was positively correlated with pantothenate 

(r=0.23, p=0.18) in liver tissue. Furthermore, glycerol-3-phosphate in muscle was 

correlated with several energy molecules in skeletal muscle and liver tissue, however, 

glycerol-3-phosphate, in liver tissue, was only correlated with pantothenate in muscle 

(Fig. 5.6). Pantothenate is critical for the biosynthesis of coenzyme A while glycerol-3-

phosphate is the first step in de novo lipogenesis, as well as a glycolysis intermediate. 

Additionally, when mapping metabolites from all three tissues onto KEGG pathways 

pantothenate and CoA biosynthesis was significantly altered by strain (Table 5.2). 
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Figure 5.5: Correlations between metabolites and system phenotypes.  Pearson correlation was 

used to associate metabolites in adipose (A), muscle (B), and liver (C) with weight, adiposity, and 

metabolic phenotypes. Significant correlations (FDR < 0.05) are represented by an asterisk (*). For 

metabolites that were significantly correlated for adiposity and/or heat output, partial correlation 

was used to determine if the relationship between metabolite and trait was due to spurious 

correlation with body weight. Correlations that remained significant are indicated by a bold 

asterisk (*). 
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Figure 5.6:  Cross-tissue metabolite and phenotype network.  Pearson correlation was used to 

associate metabolites within and across each tissue with weight, adiposity, and metabolic 

phenotypes. Only significant correlations (FDR < 0.05) are shown. To assess relationships within 

and across tissues and phenotypes, metabolites are clustered by their respective tissue or 

phenotype. The size of each node represents the number of edges connected to the node. A red 

line represents positively correlated metabolites, while a blue line represents negatively 

correlated metabolites.  
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5.5 Discussion 

Genetics has long been associated with health outcomes in an individual, but the 

relationship between genetics and metabolism at the tissue level are poorly understood. 

We used untargeted metabolomics to investigate the effects of strain and sex on tissue 

metabolomes, and to relate metabolites to body composition and energy expenditure. 

Mouse strains varied with regards to their genetic backgrounds. This gave us insight 

into how diverse genetic backgrounds alter the tissue metabolome when fed the same 

diet. Strain, in combination with sex allowed us to query the extent to which tissue 

metabolomes were influenced by sex, strain, and their interaction, and to characterize 

their relative impact on liver, adipose, and skeletal muscle. Our model, which included 

eight unique combinations of sex and strain, also enabled us to use correlation to relate 

metabolites to body composition and energy expenditure. 

Since body weight was not affected by sex-by-strain interaction while adiposity, 

VO2, and heat output were we expected that a modest number of metabolites would be 

influenced by strain in a sex-dependent manner. Few metabolites, however, were 

influenced by sex-by-diet for any tissue; liver (n=17), adipose (n=0), and muscle (n=6). 

Conversely, strain exerted substantial effects on the metabolome across all tissues; 

liver (n=92), adipose (n=38), and muscle (n=29) relative to sex and sex-by-strain 

interaction. Approximately one-third (26 of 92) of metabolites in liver that were 

influenced by strain are involved in purine and pyrimidine metabolism. Purine and 

pyrimidine metabolism consist of the breakdown and synthesis of purine and pyrimidine 

nucleotides, which are building blocks of nucleic acids and cofactors that are required 
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for energy metabolism. Although purine and pyrimidine metabolism are fundamentally 

important for all cells, recent metabolomics studies have shown alterations in these 

pathways due to differences in genetic background. C57BL/6J females had higher 

levels of hypoxanthine in plasma at 3 weeks compared to NOD/ShiLtJ mice while 

NOD/ShiLtJ mice showed higher levels of inosine over 15 weeks [96]. In contrast, our 

study showed no differences between NOD/ShiLtJ and C57BL/6J mice for hypoxanthine 

although the duration of our study was 7 months and included males. Our study also 

revealed significantly higher levels of inosine in C57BL/6J mice compared to 

NOD/ShiLtJ mice contradicting the aforementioned study. Our conflicting results could 

be due to the fact that our measurements were performed in liver tissue versus plasma, 

which represents the systemic pool of metabolites rather than tissue specific metabolite 

pools. 

 Alanine, aspartate, and glutamate metabolism was influenced by strain in liver, 

as well as adipose tissue with six and five metabolites significantly altered between 

strains. NOD/ShiLtJ mice had the lowest levels of alanine and highest levels of 

aspartate while glutamate levels were highest in A/J mice. Glutamine converts to 

glutamate via increased glutaminase activity in uncontrolled diabetes [196]. NOD/ShiLtJ 

mice, which develop type-1-diabetes, showed increased levels of glutamate relative to 

glutamine. Moreover, C57BL/6J mice can develop type 2 diabetes while ob/ob mice on 

a FVB/NJ background developed severe diabetes indicating that FVB/NJ can develop a 

diabetic phenotype [82]. C57BL/6J and FVB/NJ mice showed similar 

glutamate:glutamine levels to NOD/ShiLtJ mice. Although glutaminase was not 

measured in our study, querying single nucleotide polymorphisms (SNP) using the 
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mouse phenome database showed three SNPs across all four strains for glutaminase 

with two SNPs belonging to NOD/ShiLtJ and one belonging to FVB/NJ. In contrast, A/J 

mice, which are resistant to developing diabetes, only showed a slight increase in 

glutamate relative to glutamine despite having the highest levels of glutamate. In 

addition to glutamate, alanine and aspartate levels may be increased due to higher 

levels of alanine (ALT) and aspartate aminotransferase (AST). Both of these enzymes 

have been shown to be increased in individuals at risk for type 2 diabetes [197]. ALT, in 

particular, has been used as a marker of liver damage. Querying SNPs for ALT using 

the mouse phenome database showed eight SNPs across all four strains with all eight 

SNPs belonging to NOD/ShiLtJ and one belonging to C57BL/6J mice. ALT levels, 

measured in the liver in our study, were highest in A/J mice (data not shown), which 

also had the highest alanine levels in liver, despite their resistance to type 2 diabetes. 

ALT levels in the liver are also a marker of non-alcoholic fatty liver disease [60], 

although A/J mice have also been shown to be resistant to developing NAFLD [198]. 

Our study was not designed to link specific metabolites with specific genetic markers. 

Despite this investigating the potential association between ALT levels, alanine and the 

effects of A/J mice on this relationship requires further investigation. 

 In addition to pathways that were significantly affected in this study recent 

metabolomics studies have shown different metabolic signatures in plasma between 

C57BL/6J and NOD/ShiLtJ female mice. C57BL/6J mice had significantly increased 

levels of TCA cycle intermediaries (citrate, α-ketoglutarate, fumarate, malate, β-alanine, 

and glutamine) compared to NOD/ShiLtJ mice [96]. Although the TCA cycle pathway, in 

liver, was not significantly altered there were significant differences across metabolites 
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present in the TCA cycle. In contrast to the findings in plasma, our study revealed that 

NOD/ShiLtJ mice had significantly higher levels of citrate/isocitrate and fumarate 

compared to C57BL/6J mice; however, these results were specific to liver. When 

assessing differences within the TCA cycle across all strains, in liver, A/J mice had 

significantly higher levels of acetyl-CoA, citrate/isocitrate, coenzyme A, fumarate, 

malate, and succinate compared to C57BL/6J. A previous study revealed higher levels 

of metabolites in the TCA cycle for adipose compared to muscle and liver, in males, of 

two obesity mouse models, ob/ob and C57BL/6J fed a high-fat diet [199]. Our study 

included males and females, which may account for the differences found across the 

literature. Additionally, our measurements are relative. In the context of different strains 

metabolites abundances from C57BL/6J mice may appear to contradict previous 

studies. Regardless, these results emphasize that metabolite pools can change 

significantly based on location in the body. 

 Phenotypes were associated with metabolites in all three tissues. Cofactors are 

important for biochemical reactions to occur. NAD+ was positively correlated with 

activity levels in adipose and liver tissue. Previous studies have shown an increase in 

NAD+ during exercise [200]. Furthermore, ADP and ATP also showed a positive 

relationship with activity levels in liver while AMP had an inverse relationship with 

adiposity. AMP is necessary for the activation of AMPK, which plays an important role in 

energy metabolism. In the liver, activation of AMPK inhibits fatty acid synthesis through 

the phosphorylation of acetyl-CoA carboxylase 1 and 2 (ACC 1 and 2) [201].  Without 

AMP to activate AMPK fatty acid synthesis is not controlled potentially leading to 

NAFLD. Recent advancements have shown therapeutic potential in treating NAFLD 
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through modulation of AMPK levels [202]. Furthermore, metformin and salicylate have 

been shown to increase AMPK levels in liver tissue improving insulin sensitivity and 

inhibiting lipogenesis [201]. The negative association between AMP and adiposity in our 

study may provide an explanation for lowered AMPK levels during increased weight 

gain; however, we did not measure AMPK or ACC1 and 2 levels in our mice. Further 

studies investigating the relationship between adiposity, AMP, and AMPK levels are 

warranted. 

 Several limitations should be noted. First, our study measured metabolites in a 

steady state, at a single time point. Thus we are unable to assess potential turnover due 

to genetic differences. Second, our extraction method targets polar metabolites at the 

expense of lipid metabolites, so we are unable to assess the effects of genetics on the 

lipid metabolome, which are likely to be affected by sex and genetic differences. 

Furthermore, due to the specificity of the extraction method and the limited number of 

metabolites that can be identified using our in-house database, it is difficult to ascertain 

whether pathways significantly altered are affected by sex, strain or sex-by-strain 

interaction or because a metabolite is more easily identified to due inherent biases in 

the experimental procedure. Finally, although we know the strains of mice chosen have 

been genetically profiled we did not genetically assess the mice in this study. 

 

5.6 Conclusion 

 We profiled three tissues (adipose, muscle, and liver), which play a major role in 

energy metabolism to determine the effects of strain and sex on the tissue metabolome. 
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The stratified results showed tissue-specific effects of strain and sex on tissue 

metabolites. This study, however, was performed in the context of a single diet. 

Including other diets may reveal a more complex relationship between the tissue 

metabolome and genetics. Nonetheless, this study has shown several metabolites that 

could be investigated to determine their role in metabolism and disease. 
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CHAPTER SIX  

TISSUE LEVEL SEX, DIET, AND GENETICS INTERACT REVEAL 

UNIQUE METABOLITE AND CLUSTERING PROFILES USING 

UNTARGETED LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY 

ON ADIPOSE, SKELETAL MUSCLE, AND LIVER TISSUE IN MICE 
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6.1 Abstract 

The physiological consequences of diet can vary widely due to differences in 

genetic background and gender yet diet remains one of the most commonly used tools 

for weight loss or to improve health. Although the relationship between diet and health is 

widely accepted, and countless individuals use various diets for weight loss, relatively 

little is known about the fundamental impact of diet on metabolism at the tissue level. 

Using untargeted metabolomics, this study aimed to identify changes in water-soluble 

metabolites in A/J, C57BL/6J, FVB/NJ, and NOD/ShiLtJ males and females, fed one of 

five diets (Japanese, ketogenic, Mediterranean, American, and standard mouse chow) 

for seven months. Metabolite abundance was examined in liver, skeletal muscle, and 

adipose tissue for sex, strain, diet, sex-by-strain, sex-by-diet, strain-by-diet, and sex-by-

strain-by-diet interaction. ANOVA suggests that liver is the most metabolically active 
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when assessing all factors; however, muscle was most sensitive to strain effects. 

Unsupervised clustering revealed that mice clustered by strain then sex when 

comparing known metabolites. Pathway analysis showed that the majority of pathways 

affected played a role in amino acids metabolism across all three tissues. Purine 

metabolism, in liver tissue, however, was the only pathway altered by sex-by-strain-by-

diet. The results of this study revealed that amino acid metabolism is sensitive to diet, 

genetic, and strain effects but not necessarily their interactions. Furthermore, 

metabolites were affected in a tissue specific manner. 

 

6.2 Introduction 

The physiological consequences of diet can vary widely due to differences in 

genetic background and gender yet diet remains one of the most commonly used tools 

for weight loss or to improve health. Obesity is a major contributor to the intersection 

between diet and disease due its effect on risk of developing type 2 diabetes, 

hypertension, cardiovascular disease, stroke, osteoarthritis, and certain cancers [2, 147, 

148]. Obesity rates, however, stratify based on gender and race [203]. Accordingly, the 

prevalence of metabolic diseases such as type 2 diabetes have also shown disparities 

between races. Native Americans (33%) had the highest rates of type 2 diabetes while 

Alaskan natives (5.5%) had the lowest [204].  

Previous studies investigating the efficacy of diet on health have shown marked 

differences in the response to certain aspects of diet. Intake of fruits and vegetables 

showed higher circulating levels of beta-cryptoxanthin and lutein in women compared to 
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men [205]. Significant effects genetic risk scores and dietary intake were identified in 

relation to markers of adiposity [206]. Individuals with the A allele of melanocortin-4 

receptor had a positive association between total fat intake and consumption of an 

American diet and abdominal obesity [207]. Additionally, individuals with the TCF7L2-

rs7903146 polymorphism have an increased incidence of type 2 diabetes, CVD, and 

stroke. Adherence to a Mediterranean diet improved fasting glucose and reduced their 

risk of CVD and stroke [208]. Despite the growing body of knowledge dissecting the 

effects of sex and diet and genetics and diet, a more comprehensive understanding of 

the intersection between all three is necessary.  

Investigation of diet and health in humans has provided insight into the potential 

relationships between diet and sex, and diet and genome, however, humans are often 

non-compliant and under report dietary intake on food frequency questionnaires [209]. 

Mice are an ideal alternative due their genetic similarity, inherent compliance, and 

replicative ability. Accordingly, the severity of disease due to genetic background has 

been shown through phenotypic markers in mice [82, 91]. Although the relationship 

between diet and health is widely accepted, and countless individuals use various diets 

for weight loss, relatively little is known about the fundamental impact of diet on 

metabolism, especially in the context of different genetic backgrounds, at the tissue 

level.  

Mass spectrometry-based metabolomic platforms now enable global, discovery-

based profiling of tissue and circulating metabolomes. Accordingly, metabolomics has 

emerged as a tool with which to understand the impact of diet, genetics, and sex on 

metabolism and to identify metabolites and pathways that are associated with disease 
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[90, 110, 154]. Metabolomics studies on the effects of diet, genetics, or sex in humans 

and mice frequently use samples that can be obtained noninvasively (e.g., plasma, 

erythrocytes or urine). Less is known, however, about the impact of diet, genetics, or 

sex at the tissue level, and the extent to which tissues may respond to diet, genetics, or 

sex in a similar manner. The objective of this study was to use metabolomics to 

determine the effects of diet, genetics, and sex on metabolomes at the tissue level and 

to associate tissue metabolites with systems level phenotypes of energy utilization and 

body composition in mice. Four common dietary profiles (American, Japanese, 

Mediterranean and ketogenic) were chosen because of their relationships to various 

aspects of metabolic health in humans, and because they vary widely in composition. 

Mouse diets were formulated to represent both the macronutrient profiles and sources 

that are characteristic of each of these four eating patterns, while maintaining the same 

caloric value and sufficient amounts of micronutrients. Four strains of mice (A/J, 

C57BL/6J, FVB/NJ, and NOD/ShiLtJ) were chosen for their genetic diversity. Both 

males and females were used to evaluate the relative effects of diet, strain, sex, sex-by-

strain, sex-by-diet, strain-by-diet, and sex-by-strain-diet interaction on tissue 

metabolism. Untargeted metabolomics was used to comprehensively profile the 

metabolomes of liver, skeletal muscle, and adipose tissue because of their roles in 

energy balance [155, 156].  
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6.3 Materials and Methods 

6.3.1 Animals and Diets 

All husbandry and experimental procedures were approved by the Institutional 

Animal Care and Use Committee of the University of North Carolina. Four-week old A/J, 

C57BL/6J, FVB/NJ, and NOD/ShiLtJ mice were purchased from The Jackson 

Laboratory (Bar Harbor, ME). Mice were allowed to acclimate for 14 days and 

consumed a standard mouse chow (PicoLab Mouse Diet 20, LabDiet, St. Louis, MO) 

during this period. At 42 days of age, five male and five female mice from each strain 

were assigned to each of five diets: American, Mediterranean, Japanese, ketogenic, or 

chow. Diets were designed in collaboration with Research Diets, Inc. (New Brunswick, 

NJ) to contain calories, macronutrient ratios, sources of ingredients, fiber content, and 

lipid profiles that are reflective of each diet pattern. (Table 6.1, macronutrient ratios, 

Appendix I and J, detailed formulations). Mice were maintained on a 12-hour light/dark 

cycle throughout the study. At age 18 weeks, after 12 weeks on the diets, mice were 

housed in Phenomaster metabolic chambers (TSE Systems, Inc.) for 48 hours for 

measurement of metabolic rate and activity. The chambers measured respiratory 

exchange rate (RER), volume of oxygen (VO2), and heat output via heat dissipation, 

and activity level by laser detection. Activity levels measured voluntary movement of the 

mouse in the x and y plane. Mice were euthanized at seven months of age by CO2 

asphyxiation.  Perigonadal adipose tissue was dissected and weighed as a measure of 

adiposity. Samples of adipose tissue, the left lobe of the liver and the vastus medialis, 
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vastus lateralis, and rectus femoris muscle were snap-frozen in liquid N2 and stored at -

80°C for metabolomics analysis. 

 

Table 6.1: Dietary Composition 

 Ketogenic 
D12052706 

American 
D12052705 

Mediterranean 
D12052702 

Japanese 
D12052703 

chow 
D12052701 

Fat 84% 
Butter, Lard 

35% 
Corn oil, butter, 

Olive oil 

42.6% 
Olive oil 

11% 
Soybean oil, 

Olive oil 

18% 
Soybean oil 

Carbohydrate None 50% 
Corn starch, 

Wheat starch, 
Sucrose, potato 

starch 

44.69% 
Wheat starch, 

Sucrose, Fructose 

76% 
Rice starch, 

Sucrose 

63% 
Corn starch 

Protein 16% 
Casein 

15% 
Soy, Beef, Egg 

white 

12.71% 
Soy, Fish, Beef 

13% 
Soy, Fish 

19% 
Casein 

 

6.3.2 Metabolite Extraction and Liquid Chromatography Mass Spectrometry 

Frozen tissue samples were pulverized under liquid N2. Approximately 25 mg of 

pulverized tissue were weighed and extracted sequentially in methanol and then in 

methanol:water (4:1), as previously described [157]. Supernatants were dried under 

nitrogen and reconstituted in 160 μL of sterile MilliQ water. Internal standard (60 μL of a 

13C-labeled E.Coli metabolite pool) was added to each sample. 

6.3.3 Preparation of 13C-labelled E. Coli metabolite pool 

Cultures of Escherichia coli NCM3722 were grown on minimal media 13C-glucose 

agar plates and passed five times. Single colonies were then transferred to minimal 

media 13C-glucose liquid cultures (0.4% w/v made from 99% U-13C-glucose, Cambridge 

Isotope Laboratories). Liquid cultures were set back five times before samples were 
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extracted and run on mass spectrometer to ensure complete 13C-labeling of all 

metabolites. 

E. Coli cells were extracted by vacuum filtering three 10 mL aliquots, per culture, 

for three different cultures (grown to ~0.4 OD600) through Magna nylon membrane 

filters (0.45 micron, 47 mm filter, Maine Manufacturing, Sanford, ME). The filters were 

transferred face down into petri dishes containing 1.3 mL of extraction solvent (40:40:20 

HPLC grade methanol, acetonitrile, water with 0.1M formic acid) chilled to -20 ˚C. The 

extraction was allowed to proceed for 15 min at -20˚C. The following extraction was 

carried out in a room maintained at 4˚C unless otherwise specified. The filters were 

rotated so that the cell side was on top and rinsed by pipetting the extraction solvent 

over the face of the filters. The extraction fluid was then transferred to 1.5 mL centrifuge 

tubes and an additional 300 µL of new extraction fluid was used to wash the filters 

again. The remaining extraction solvent was also transferred to the 1.5 mL centrifuge 

tube and centrifuged for 5 minutes (16.1 rcf). The resulting supernatant was transferred 

to new vials and the pelleted cell was resuspended in 50 µL of extraction solvent. The 

extraction was allowed to proceed for 15 min at -20˚C at which time the samples were 

centrifuged for 5 min (16.1 rcf). The supernatant was transferred to the vials and 

another 50 µL of extraction solvent was added to the pelleted cell repeating the previous 

extraction once more. Vials containing all of the collected supernatant were dried under 

a stream of N2 until all the extraction solvent had been evaporated. Following the 

resuspension of extracted E. coli residue in 300 µL of sterile water, samples were 

physically averaged and 10 mL were directly spiked into unlabeled samples.  
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6.3.4 Metabolomics Data Processing 

Raw files generated by Xcalibur were converted to mzML, an open-source 

format, using msconvert [139]. An open source data analyzer for metabolomics, 

MAVEN [140, 141] (Princeton University) was used to correct total ion chromatograms 

based on retention time automatically, for each sample. Known metabolites were 

manually chosen and peak abundance was integrated by mass (±5 ppm) and retention 

time. Unknown metabolites were chosen using an algorithm with the following settings: 

minimum peak width, 5; minimum signal/blank ratio, 3 or greater; minimum peak 

intensity, 10,000; and minimum peak/baseline, 3.  Unknown peaks were filtered 

manually to remove those that did not meet the above criteria. 

6.3.5 Statistical Analysis 

All statistical analyses were performed in the language R (3.1.0 and 3.2.2) [158]. 

An ANOVA model was used to identify significant effects of sex, strain, diet, sex-by-diet, 

sex-by-strain, strain-by-diet, and sex-by-diet interaction on physiological traits and 

metabolites. Tukey’s Honest Significant Difference (HSD) was used for post-hoc testing. 

Significance for physiological traits was based on raw p-values (p < 0.05). 

Metabolite peak area data files were read into R using the package XLConnect 

[159]. Metabolites that were missing 70% or more sample measurements were removed 

from analysis. Missing values in the remaining metabolites were imputed using k-

nearest numbers from the function impute [160] (Additional File 1 and 2). Metabolites 

were matched to their corresponding 13C-labeled internal standard, or to a 13C-labeled 

standard of the same compound class. Class types were identified using the Human 
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Metabolome Database [143-145]. Prior to statistical analyses, a linear model was 

created for each metabolite using the terms sex, strain, diet, sex*diet, sex*strain, 

strain*diet, sex*strain*diet tissue weight and internal standard (eq. 6.1): 

Equation 6.1 

Metabolite = sex + strain+ diet + sex*diet + sex* strain

+strain*diet + sex* strain*diet + tissue weight + internal s tandard

 

Coefficients for the terms for tissue weight and internal standard were used to adjust 

metabolite abundance for technical variation using eq. 6.2: 

Equation 6.2 

Adjusted metabolite =metabolite+ tissue weight coefficient(mean tissue weight −

tissue weight)+ internal s tandard coefficient(mean internal s tandard −

internal s tandard)
 

Adjusted metabolites were Pareto scaled across all mice for each metabolite 

using the package MetabolAnalyze [161], normalized to the median across all 

metabolites for each mouse, and cube root transformed to create a normal distribution. 

Normalized metabolite values were analyzed for effects of sex, strain, diet, sex*diet, 

sex*strain, strain*diet, and sex*strain*diet. Data were assessed for normality using Q-Q 

plots, residuals, and the Shapiro-Wilks test. False discovery rate for ANOVA and 

correlation analyses was set to 5% using the method of Benjamin-Hochberg [162]. Venn 

diagrams were created using the package VennDiagram [163].  
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6.3.6 Correlation Analysis 

Associations between physiological measurements and metabolite 

measurements across tissues were assessed using Pearson correlation from the 

package Hmisc [164] and the package R.Utils [165]. Correlation p-values were FDR-

adjusted using the Benjamini-Hochberg procedure. Correlations were visualized using 

the Cytoscape app Metscape [166].   

6.3.7 Functional Pathway Analysis 

Overrepresentation pathway analysis was performed using Metaboanalyst [167]. 

KEGG IDs were input and compared against the mouse KEGG reference metabolome. 

Statistical significance of pathway overrepresentation was evaluated using Fisher’s 

exact test. Pathway topology was performed using relative-between centrality. 

 

6.4 Results 

6.4.1 Physiological Measurements Reveal Difference Among Sex-by-strain-by-diet 

 Body composition and indirect calorimetry were used to define system-level 

effects of sex, strain, and diet on metabolism. Body weight, adiposity, VO2, RER, and 

heat output were significant for sex-by-strain-by-diet (Table 6.2). In contrast, activity was 

significant for sex-by-strain, independent of diet. Tukey’s post-hoc comparisons were 

assessed to determine significant pairwise comparisons. Male and female C57BL/6J 

mice had the highest body weights relative to the other strains (Fig. 6.1A). Female A/J 

mice fed a ketogenic diet had the lowest bodyweight compared to all other mice. 
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Female FVB/NJ mice fed a Japanese diet were significantly different from all other diets 

fed to female FVB/NJ mice (Fig. 6.1A). Male C57BL/6J mice fed a Japanese diet were 

the lightest compared to all other Male C57BL/6J mice. Female C57BL/6J mice fed a 

ketogenic diet were lightest compared to all other female C57BL/6J mice. Although 

adiposity is significantly different for sex-by-strain-by-diet interaction there were very few 

significant pairwise comparisons (Fig. 6.1B). Female A/J mice fed a Mediterranean diet 

(4.91±0.76%, p<0.001) had significantly more adiposity then female A/J mice fed a 

ketogenic diet (1.38±0.13%). Likewise, Female C57BL/6J mice fed a Mediterranean diet 

(5.19±0.77%) had significantly more adiposity then female C57BL/6J mice fed a 

ketogenic (1.85±0.53%, p<0.001) or chow diet (2.4±0.35%, p=0.15). Female FVB/NJ 

mice were lightest relative to all other mice; however, they were not significantly 

different. VO2 levels were used to measure energy expenditure. Female A/J mice fed a 

ketogenic diet had the highest VO2 levels relative to all other female A/J mice (Fig. 

6.1C). RER responded in a similar manner for each strain and sex across diets. The 

Japanese diet, which is high in carbohydrates was represented by a high RER value 

(~0.9) while the ketogenic diet, which is high in fat was represented by a low RER value 

(~0.73) (Fig. 6.1D). Heat output was highest in male and female A/J mice relative to all 

other diets (Fig. 6.1E). Furthermore, female FVB/NJ mice had the highest heat output 

compared to female FVB/NJ fed a Japanese diet or chow diet. Activity levels were not 

affected by diet but rather by sex-by-strain interaction (Fig.6.1F). Female A/J mice 

(1855 beam breaks) had significantly lower activity levels compared to female FVB/NJ 

(3620, p<0.001), NOD/ShiLtJ (7135, p<0.001), and C57BL/6J mice (3638, p<0.001). 

Conversely, male A/J mice showed no difference in activity levels. Male FVB/NJ mice 
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(1520) had significantly lower activity levels compared to male C57BL/6J mice (2782, 

p=0.040). 

 

Table 6.2: P-values of Effects of Sex, Strain, Diet, and Sex-by-Strain, Sex-by-Diet, Strain-by-Diet, 

and Sex-by-Strain-by-Diet Interaction on Weight and Metabolism. 

 Sex Strain Diet Sex by Strain Sex by Diet Strain by Diet Sex by Strain by Diet 

Weight <0.001 <0.001 <0.001 <0.001 0.005 <0.001 0.022 

Adiposity <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.003 

RER 0.539 <0.001 <0.001 0.003 0.417 0.533 0.008 

VO2 <0.001 <0.001 <0.001 0.001 0.080 <0.001 0.009 

Heat Output <0.001 <0.001 <0.001 <0.001 0.003 <0.001 0.001 

Activity <0.001 <0.001 0.137 0.004 0.857 0.978 0.750 

 

6.4.2 Significant Effects of Sex, Diet, Strain, and Their Interactions on Tissue 

Metabolomes 

 An ANOVA model was used to identify metabolites that were robustly affect by 

sex, strain, diet, and their interactions. A total of 178 metabolites (98% of all known 

metabolites detected) were significantly affected by sex, strain, diet, or their interactions 

in one or more tissues (Appendix E, Additional File 5, Fig. 6.2). One hundred and fifty-

four metabolites (84% of total effected metabolites) were influenced by strain in at least 

one tissue. Twenty of these metabolites were significant for strain independent of all 

other factors. Only one metabolite was significant for each factor; sex (thymine), diet 

(dAMP), strain-by-diet (citrate/isocitrate), and sex-by-strain-by-diet (nicotinamide 

ribotide), independent of all other factors.  
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Figure 6.1: Effects of sex, strain, and diet on weight and metabolic phenotypes; N=5/ sex, strain, 

and diet group, avg. ± std. dev. Dots represent individual mice within sex-by-strain-by-diet 

combination. Horizontal bars represent pairwise comparisons performed using Tukey’s HSD 

post-hoc analysis; * p<0.05, ** p<0.01, and *** p<0.001 Body weight (A) and adiposity (B) were 

measured at 28 weeks of age, after 16 weeks on the experimental diets. Adiposity is expressed as 

the relative weight of the perigonadal adipose fat pads. Oxygen consumption (C), RER (D), heat 

output (E), and activity (F) were measured during a 48 hr. period when mice were housed in 

Phenomaster metabolic cages.   
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Strain, independent of all other factors, affected the largest number of metabolites in 

muscle (n=40); however, adipose (n=34) and liver (n=19) were also affected. In 

contrast, adipose tissue was most sensitive to sex (n=12), independent of other factors, 

relative to liver (n=0) and skeletal muscle (n=3). Only liver tissue was affected by diet 

(n=3), independent of all other factors. 

 Unsupervised hierarchical clustering was performed to visualize the relatedness 

of each of the 40-sex/strain/diet combinations, based on similarities between 

metabolomes (Fig. 6.3). In liver, A/J and C57BL/6J mice clustered separately, while 

NOD/ShiLtJ and FVB/NJ mice were predominantly independently clustered with one 

NOD/ShiLtJ mouse clustered with FVB/NJ  

mice. Additionally, mice predominantly clustered by sex secondarily to genetic 

background. Skeletal muscle primarily followed the same pattern, however, A/J and 

C57BL/6J mice did not cluster together perfectly as in liver. Conversely, adipose tissue 

did not show a specific clustering pattern for any factor. 

 

6.4.3 Functional Annotation of Sex, Strain, and Diet Effects 

 The sets of metabolites affected by each factor and their interactions were 

functionally annotated using KEGG pathways (Table 6.3). Strain, sex, and diet 

interacted to significantly affect purine metabolism in liver (FDR, p<0.001), with seven 

metabolites (referred to as hits) mapping onto this pathway. Purine metabolism was 

also significantly affected by diet (hits=12), strain (hits=18), and sex-by-strain (hits=12) 

interaction in liver. Strain affected pathways involved in energy metabolism 

(pantothenate and CoA biosynthesis and TCA cycle). Additionally, diet affected amino 
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Figure 6.2: Shared and unique effects of sex, strain, diet, sex-by-diet, sex-by-strain, strain-by-diet, 

and sex-by-strain-by-diet interactions on tissue metabolomes. The sets of metabolites that 

differed significantly, based on ANOVA (FDR < 0.05) by sex, diet, strain, sex-by-diet, strain-by-

diet, or sex-by-strain-by-diet interaction across tissues, (A), and in adipose (B), muscle (C), and 

liver (D) were visualized for shared and factor-specific effects using Venn diagrams. 
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Figure 6.3: Hierarchical clustering of sex/diet groups based on metabolite abundance in liver. Heatmaps were generated in 

Metaboanalyst (v3.0) using group averages of the 50 metabolites that varied the most across diet/genetic/sex combinations.  Samples 

were normalized to median values and values were scaled using Pareto scaling. Z-score was used to determine scale. Abbreviations: 

F-1/6-BP: Fructose-1,6-bisphosphate, Sedoheptulose-BP: Sedoheptulose-bisphosphate



 

 126 

acid metabolism (aminoacyl-tRNA biosynthesis and arginine and proline metabolism). In 

muscle, sex, strain, and diet all affected amino acid metabolism (aminoacyl-tRNA 

biosynthesis, lysine biosynthesis, arginine and proline biosynthesis, and glutamate and 

glutamine metabolism, and alanine, aspartate, and glutamate metabolism) (Fig. 6.4). 

Additionally, strain affected the TCA cycle (hits=6). Likewise, sex and strain affected 

amino acid metabolism (aminoacyl-tRNA biosynthesis, arginine and proline metabolism, 

and alanine, aspartate, and glutamate metabolism) in adipose tissue. 

 

6.4.4 Relationship Between Known Metabolites and Phenotypes 

 The relationships between metabolite profiles in each tissue and systems level 

energy balance traits were identified using a correlation-based approach (Fig. 6.5).  

Energy expenditure and adiposity were significantly correlated with 58 and 84 

metabolites, respectively, across the three tissues. Hepatic (26 heat, 33 adiposity), 

adipose (16 heat, 33 adiposity), and skeletal muscle (16 heat, 18 adiposity) 

metabolomes contributed the associations in a similar manner. Partial correlation was 

used to adjust for spurious correlations to body weight, after which 75 (33 in adipose, 33 

in liver, and 9 in muscle) metabolites remained significantly correlated with adiposity 

and 54 (16 in adipose, 26 in liver, and 12 in muscle) with heat output.  
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Figure 6.4: Metabolites mapped onto pathways in a cell. Metabolites identified in adipose, muscle, 

and liver were mapped onto pathways in a cell. Amino acids are highlighted in red. 
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Table 6.3:KEGG Pathway Enrichment of Metabolites Affected by Sex, Strain, Diet, Sex-by-diet, 

Sex-by-strain, Strain-by-diet, and Sex-strain-by-diet Interaction. 

Tissue Effect Pathway Hits P-value (k/m)q 

All Tissues Sex Pyrimidine metabolism 11 <0.001 0.004 

  Purine metabolism 14 <0.001 0.004 

  Arginine and proline metabolism 9 <0.001 0.004 

  Aminoacyl-tRNA biosynthesis 11 0.001 0.004 

      

 Strain Pyrimidine metabolism 18 <0.001 0.011 

  Purine metabolism 20 <0.001 0.011 

  Alanine, aspartate and glutamate metabolism 9 <0.001 0.011 

  Glycine, serine and threonine metabolism 10 <0.001 0.011 

  Arginine and proline metabolism 12 <0.001 0.011 

  Ascorbate and aldarate metabolism 5 0.001 0.011 

  Aminoacyl-tRNA biosynthesis 15 0.001 0.011 

  Citrate cycle (TCA cycle) 7 0.001 0.011 

  Pantothenate and CoA biosynthesis 6 0.001 0.011 

  Phenylalanine, tyrosine and tryptophan biosynthesis 3 0.003 0.011 

  D-Glutamine and D-glutamate metabolism 3 0.007 0.011 

  Glutathione metabolism 7 0.007 0.011 

      

 Diet Aminoacyl-tRNA biosynthesis 13 <0.001 0.005 

  Arginine and proline metabolism 10 <0.001 0.005 

  Purine metabolism 12 <0.001 0.005 

  Pyrimidine metabolism 9 <0.001 0.005 

  Ascorbate and aldarate metabolism 4 0.001 0.005 

      

 Sex-by-strain Purine metabolism 14 <0.001 0.002 

  Pyrimidine metabolism 9 <0.001 0.002 

      

 Sex-by-diet Glycine, serine and threonine metabolism 4 <0.001 0.003 

      

 Sex-by-strain-by-diet Purine metabolism 8 <0.001 0.002 

      

Adipose Sex Aminoacyl-tRNA biosynthesis 11 <0.001 0.007 

  Arginine and proline metabolism 8 <0.001 0.007 

  Alanine, aspartate and glutamate metabolism 4 0.003 0.007 

  Lysine biosynthesis 2 0.004 0.007 

  Pantothenate and CoA biosynthesis 3 0.006 0.007 
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Table 6.3 continued 
Tissue Effect Pathway Hits P-value (i/m)q 

      

 Strain Arginine and proline metabolism 10 <0.001 0.011 

  Aminoacyl-tRNA biosynthesis 12 <0.001 0.011 

  Pyrimidine metabolism 7 0.002 0.011 

  Glycine, serine and threonine metabolism 6 0.002 0.011 

  Alanine, aspartate and glutamate metabolism 5 0.003 0.011 

  Ascorbate and aldarate metabolism 3 0.006 0.011 

  Purine metabolism 8 0.008 0.011 

  Citrate cycle (TCA cycle) 4 0.01 0.011 

      

 Sex-by-Strain Purine metabolism 8 <0.001 0.005 

  Pyrimidine metabolism 3 0.002 0.005 

  Pantothenate and CoA biosynthesis 2 0.004 0.005 

      

Muscle Sex Pyrimidine metabolism 6 <0.001 0.008 

  Arginine and proline metabolism 5 0.002 0.008 

  Aminoacyl-tRNA biosynthesis 6 0.002 0.008 

  Lysine biosynthesis 2 0.002 0.008 

      

 Strain Pyrimidine metabolism 11 <0.001 0.011 

  Purine metabolism 13 <0.001 0.011 

  Aminoacyl-tRNA biosynthesis 13 <0.001 0.011 

  Arginine and proline metabolism 10 <0.001 0.011 

  Citrate cycle (TCA cycle) 6 0.001 0.011 

  Ascorbate and aldarate metabolism 4 0.001 0.011 

  D-Glutamine and D-glutamate metabolism 3 0.002 0.011 

  Alanine, aspartate and glutamate metabolism 6 0.002 0.011 

  Glycine, serine and threonine metabolism 6 0.009 0.011 

  Pantothenate and CoA biosynthesis 4 0.01 0.011 

      

 Diet Aminoacyl-tRNA biosynthesis 10 <0.001 0.005 

  Lysine biosynthesis 2 0.001 0.005 

      

Liver Strain Pyrimidine metabolism 16 <0.001 0.007 

  Purine metabolism 18 <0.001 0.007 

  Alanine, aspartate and glutamate metabolism 9 <0.001 0.007 
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Table 6.3 continued 
Tissue Effect Pathway Hits P-value (i/m)q 

  Phenylalanine, tyrosine and tryptophan biosynthesis 3 0.002 0.007 

  Citrate cycle (TCA cycle) 6 0.003 0.007 

  Ascorbate and aldarate metabolism 4 0.003 0.007 

  Pantothenate and CoA biosynthesis 5 0.004 0.007 

      

 Diet Purine metabolism 12 <0.001 0.005 

  Aminoacyl-tRNA biosynthesis 12 <0.001 0.005 

  Pyrimidine metabolism 9 <0.001 0.005 

  Arginine and proline metabolism 9 <0.001 0.005 

  Ascorbate and aldarate metabolism 4 <0.001 0.005 

      

 Sex-by-Strain Purine metabolism 12 <0.001 0.002 

  Pyrimidine metabolism 7 0.001 0.002 

      

 Sex-by-Diet Glycine, serine and threonine metabolism 4 <0.001 0.003 

      

 Sex-by-Strain-by-Diet Purine metabolism 7 <0.001 0.002 
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The relationships between tissue metabolites and systems level energy balance 

traits were assessed by constructing a correlation-based network. The network consists 

of metabolites (21, 19 and 13 from liver, adipose and muscle, respectively) that were 

significantly correlated with at least one energy balance trait and with one or more 

metabolites in any of the three tissues (Fig. 6.6, Appendix F). Adiposity was correlated 

with all 53 metabolites identified. A-ketoglutarate was positively correlated with adiposity 

in adipose (r=0.34,p<0.001) and muscle tissue (r=0.27). Conversely, α-ketoglutarate 

was negatively correlated with weight (r=-0.29,p<0.001) in adipose tissue indicating that 

increased body weight due to increased muscle mass may influence a-ketoglutarate 

levels. Pantothenate, in adipose, a precursor for CoA biosynthesis, was also negatively 

correlated with adiposity (r=-0.40,p<0.001). Furthermore, pantothenate was negatively 

correlated with metabolites identified and muscle and liver, but positively correlated with 

metabolites identified in adipose tissue with the exception of cysteine. Pantothenate 

converts to coenzyme A via an enzymatic reaction requiring cysteine, which may 

explain the inverse relationship. Quinolinate, a potential marker of obesity, was 

positively correlated with adiposity (r=-.35,p<0.001) in liver tissue and negatively 

correlated with adiposity in adipose tissue (r=-.33,p<0.001), suggesting a complex 

relationship between adiposity and tissue type. 

 

6.5 Discussion 

 Genetics and diet play a major role in health; however, the fundamental 

relationship between genetics, dietary intake, and metabolism at the tissue level remain 
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poorly understood. We used an untargeted metabolomics approach to investigate the 

effects of diet, genetics, and sex on tissue metabolomes, and to relate metabolites to 

body composition and energy expenditure.  Experimental diets were designed to model 

eating patterns (American, Japanese, Mediterranean, and ketogenic) that are known to 

affect various aspects of metabolic health in humans. Diet composition varied widely in 

terms of the sources of ingredients, relative contribution of animal- and plant-based 

ingredients, and macronutrient and micronutrient composition. Furthermore, differences 

in genetic background could result in various predispositions to metabolic disease. The 

combination of diet, genetics, and sex produced a stratified response on the tissue 

metabolome. This allowed us to query the extent to which tissue metabolomes were 

influenced by diet, genetics, sex, and their various interactions, and to characterize their 

relative impact on liver, adipose, and skeletal muscle. Our model, which included 40 

unique combinations of diet, genetics, and sex, also enable us to use correlation to 

relate metabolites to body composition and energy expenditure. 

 Although sex-by-strain-by-diet exerted effects on weight and energy expenditure 

phenotypes, a considerable proportion of metabolites were influenced by strain alone. 

Surprisingly, skeletal muscle was most sensitive to strain (n=40); however, strain 

exerted effects on adipose (n=34) and liver (n=19) tissue, independent of all other 

treatments or combinations.  
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Figure 6.5: Correlations between metabolites and system phenotypes.  Pearson correlation was 

used to associate metabolites in adipose (A), muscle (B), and liver (C) with weight, adiposity, and 

metabolic phenotypes. Significant correlations (FDR < 0.05) are represented by an asterisk (*). For 

metabolites that were significantly correlated for adiposity and/or heat output, partial correlation 

was used to determine if the relationship between metabolite and trait was due to spurious 

correlation with body weight. Correlations that remained significant are indicated by a bold 

asterisk (*). 
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Figure 6.6: Cross-tissue metabolite and phenotype network.  Pearson correlation was used to 

associate metabolites within and across each tissue with weight, adiposity, and metabolic 

phenotypes. Only significant correlations (FDR < 0.05) are shown. To assess relationships within 

and across tissues and phenotypes, metabolites are clustered by their respective tissue or 

phenotype. The size of each node represents the number of edges connected to the node. A red 

line represents positively correlated metabolites, while a blue line represents negatively 

correlated metabolites.  
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Metabolites affected by strain and diet, in muscle, were involved in several 

aspects of amino acid metabolism (aminoacyl-tRNA biosynthesis, arginine and proline 

metabolism, glutamine and glutamate metabolism, alanine, aspartate, and glutamate 

metabolism). Strain altered 15 of the 20 amino acids while diet altered 11 in muscle. 

The percentage of protein in each diet varied considerably (~13-19%), which may be 

attributable to amino acid differences seen across diets. Additionally, variations in 

carbohydrate and fat levels may also contribute to diet-associated differences in amino 

acid profiles. Genetic effects on amino acid metabolism have been linked to metabolic 

diseases, such as type 2 diabetes. Additionally, GWAS studies have attributed genetic 

variants to BCAA levels. Specifically PPM1K, which activates the branched-chain alpha-

ketoacid complex via mitochondrial phosphatase and serves as the rate limiting to 

BCAA catabolism was positively associated with BCAA levels [210]. Although we 

cannot comment specifically about PPM1K in our study since we did not perform 

genetic sequencing this relationship warrants further investigation. Furthermore, insulin 

resistance in humans has been attributable to alterations in BCAA levels in muscle, as 

well as TCA cycle intermediates [211]. Methylmalonyl CoA mutase may play a role in 

BCAA availability for use in the TCA cycle and is linked to altered lipid metabolism in 

muscle. Methylmalonyl CoA is converted to succinyl CoA via this enzyme, which then 

enters the TCA cycle. FVB/NJ mice showed 434 SNP variations compared to the other 

strains, using the mouse phenome database, for methylmalonyl-CoA mutase. 

Homozygous mutations in this gene can cause increased levels of methylmalonic acid 

in plasma potentially resulting in methylmalonic aciduria, a severe metabolic disease 

[211]. While we did not measure metabolites in plasma we did find significantly 
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increased levels methylmalonic acid between strains for muscle. Whether or not tissue 

levels of methylmalonic acid play a role in metabolic dysfunction cannot be determined 

in the current study. Further studies are needed to determine the role of methylmalonic 

acid on disease. Additionally, amino acid metabolism was also affected by sex and 

strain in adipose, sex in muscle, and strain, diet, and sex-by-diet in liver tissue.  

 In contrast to strain, few metabolites responded to sex-by-strain-by-diet 

interaction. Despite this, sex-by-strain-by-diet interaction influenced purine metabolism 

in liver. Purine metabolism includes the synthesis and breakdown of purine nucleotides, 

which are building blocks of nucleic acids and cofactors that are required for energy 

metabolism. While these functions are fundamentally important for all cells, recent 

studies have associated alterations in this pathway with gene mutations and metabolic 

disease. Gout is a disease characterized by a build up of uric acid in the blood. Genome 

wide association studies have related genetic variants in GLUT9, URAT1, and ABCG2 

to prevention or progression of gout [212]. Assessing the role of GLUT9 in males and 

females from Sardinia and Chianti, Tuscany revealed that SNP rs6855911 had the 

strongest association with uric acid levels, lowering uric acid levels in individuals from 

both cohorts with this allele [213]. Furthermore, gender contributed to differences in uric 

acid levels. Women with this allele had even lower levels of uric acid than men [213]. 

Although this study did not investigate the role of dietary components on metabolism it 

has been well established that diet contributes purine metabolite levels [214-216]. Diets 

containing animal products contributed to higher purine levels compared to other diets 

[216]. Furthermore, men have a higher risk of developing gout due to higher blood 
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levels of uric acid compared to women [216]. Seven metabolites in our study were 

mapped onto purine metabolism; however, uric acid levels were not significantly altered.  

Tryptophan is an essential amino acid important for protein synthesis and the 

biosynthesis of serotonin and melatonin, two metabolites that aid in the regulation of 

mood and sleep [217]. Furthermore, tryptophan can be broken down into kynurenine, 

kynurenic acid, and quinolinate. The obesogenic state in humans has been associated 

with these three metabolites [218]. Our data identified tryptophan, kynurenine, kynurenic 

acid, and quinolinate in liver tissue displaying differences due to diet. Furthermore, 

associations with phenotypic markers of metabolism showed a positive correlation 

between quinolinate and adiposity, independent of body weight for both adipose and 

liver tissue. In contrast, kynurenine and kynurenic acid were not significantly correlated 

with any phenotype. Correlation network analysis also revealed a positive associate 

between quinolinate, in liver, and a negative correlation, in adipose tissue, with 

adiposity. Although this dual relationship with adiposity cannot be completely explained 

previous studies have associated quinolinate levels in the liver with toxicity [219]. 

Additionally, quinolinate is the precursor to NAD+ formation [220]. NAD+ is necessary 

for the TCA cycle to function, however, both the TCA cycle and NAD+ levels have been 

shown to decrease as adiposity increases [221], so the inverse relationship between 

quinolinate and adiposity in adipose tissue cannot be explained by increased NAD+ 

levels. Furthermore, our data showed no correlation between NAD+ and quinolinate for 

the correlation network analysis or between quinolinate and NAD+ in adipose tissue. It 

is possible that quinolinate was converted to nicotinamide, the intermediary metabolite 
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between quinolinate and NAD+; however, we did not measure this metabolite in our 

system. Measuring this metabolite may provide critical information regarding this 

relationship. Additionally, quinolinate phosphoribosyltransferase (QPRT) is necessary 

for the conversion of quinolinate to NAD+. Previous studies have shown a negative 

relationship between QPRT expression and markers of diabetes [218]. It is possible that 

QPRT expression was altered in our study; however, gene expression was not 

measured. Further investigation into the relationship between adiposity, quinolinate, and 

QPRT are warranted to further define this relationship. In addition to diet, quinolinate 

was significant for strain in all three tissues. All four strains differentially respond to diet-

induced obesity. Diet-induced obesity resistant A/J mice are had the lowest levels of 

quinolinate. 

Several limitations of our study should be emphasized.  In particular, the diets 

were designed to reflect common patterns of global consumption in humans. 

Accordingly, the range of variation in diet composition prevents us from associating 

specific dietary factors with metabolite patterns. We have also measured metabolites in 

a steady state, at a single time point. Effects of diet, genetics, or sex on metabolite 

turnover therefore go undetected in our study. Furthermore, the extraction method we 

used targets polar metabolites at the expense of lipids, which are also likely subject to 

extensive sex, genetic, and diet regulation. Finally, due to the specificity of the 

extraction method and the limited number of metabolites that can be identified using our 

in-house database, it is difficult to ascertain whether pathways significantly altered are 
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affected by sex, strain, diet, or their interactions or because a metabolite is more easily 

identified to due inherent biases in the experimental procedure. 

 

6.6 Conclusion 

 We profiled three tissues (adipose, muscle, and liver), which play a major role in 

energy metabolism to determine the effects of genetics, diet, and sex on the tissue 

metabolome. The stratified results showed many tissue specific effects, however, amino 

acids metabolism was universally affected. Although this study comprehensively profiles 

the interactions between genetic, sex, and diet, serum metabolites were not measured. 

Profiling serum metabolites may provide insight into the global metabolic profile. 

Nonetheless, this study has shown several metabolites that could be investigated to 

determine their role in metabolism and disease. 
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CHAPTER SEVEN  

CONCLUSION 
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Mass spectrometry based metabolomics is in its infancy but is quickly becoming 

a powerful tool to elucidate the metabolic effects of small perturbations in a system. 

Many studies have shown that this method is able identify potential biomarkers of 

disease. This dissertation had three aims: 1.) characterize the relative effects of 

genetics, sex, diet, and their interactions on tissue metabolomes, 2.) identify tissue-level 

metabolic effects of diets that are commonly recommended for health, and 3.) link tissue 

metabolite profiles to systems phenotypes relevant to metabolic syndrome. To 

accomplish these aims adipose, skeletal muscle, and liver tissue were collected from 

males and females of four strains of mice (A/J, C57BL/6J, FVB/NJ, and NOD/ShiLtJ) 

fed one of five diets (Japanese, ketogenic, Mediterranean, American, and standard 

chow). The tissues were chosen due to their known role in energy metabolism, while the 

diets were chosen for their known roles in health. The strains of mice were chosen for 

their genetic diversity. The first aim allowed us to identify metabolites sensitive to 

differences in the system due to discrepancies in diet, sex, or genetic background. This 

allowed us to query the extent to which diet, in the presence or absence of genetic or 

sex differences, influenced the tissue metabolome. The second aim allowed us to map 

altered metabolites onto KEGG pathways to query the biological role on individual 

metabolites and their role in metabolic pathways, which may influence health status. 

The third aim allowed us find associations between phenotypic metabolic data and 

altered metabolites in the body, which provides insight into the mechanism through 

which metabolites influence physiological responses. 

 In all three studies we examined each tissue metabolome across genetic, sex 

and/or diet effects. In addition to metabolome measurements we were provided 
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measurements pertaining to body weight, adiposity, RER, VO2, heat output, and activity 

levels. In the first study, we examined each tissue metabolome in C57BL/6J males and 

females fed all five diets for 7 months. In the second study, we examined each tissue 

metabolome in males and females for all four strains of mice fed a standard chow diet 

for 7 months. In the third study, we examined each tissue metabolome in males and 

females for all four strains of mice fed all five diets for 7 months.  

 Metabolism is fundamental to life and plays a critical role in the health and the 

well being of cells, tissues, and overall biological systems. Fluctuations in metabolism 

can have profound physiological impacts contributing to metabolic diseases. Moreover, 

metabolism is often sensitive to environmental stimuli, such as diet and lifestyle [112, 

222-225] while also being sensitive to genetic differences and gender [177, 210, 226, 

227]. Genetic mutations, immunological responses, and protein conformation changes 

have been much of the focus over the last 50 years when assessing disease and 

potential treatments, however, alterations in the metabolome have gained increasing 

attention in recent years. Furthermore, the ability to integrate of genomics, 

transcriptomics, proteomics, and metabolomics, provides a means with which to 

develop a comprehensive understanding of how the body may change at the cellular, 

tissue, and systems-level to promote a disease state. While the genetic information can 

provide information regarding an individual’s potential for developing a disease, the 

metabolome can provide information with respect to the beginning stages of a disease. 

Aminoadipic acid, for example, has been linked to the development of type 2 diabetes 

with higher levels circulating in the blood up to 12 years prior to the disease state [122]. 

Additionally, while this dissertation has shown tissue specific effects on the 
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metabolome, which should be taken into consideration, serum and urine metabolomes 

can be non-invasively profiled making them an ideal candidate for long-term 

surveillance for disease risk. Most metabolomics studies currently aim to identify 

metabolic differences between the diseased and non-diseased state, however, few 

have aimed to identify baseline differences between, diet, genetic, or sex differences. 

The work presented in this dissertation contributes to the later body of work. A disease 

state is difficult to interpret without understanding the “normal” state, therefore a basic 

understanding of how diet influences the metabolome under normal physiological 

conditions can aid in the understanding of which diet may improve symptoms and which 

may exacerbate symptoms. Furthermore, the environment can influence genetic 

predisposition to certain diseases. Understanding how basic genetic differences 

translate to the metabolome can provide a basic understanding of how the metabolome 

is influenced due to inherent genetic differences. Finally, many studies that have studied 

the disease state have primarily investigated these effects in men. Recently, an influx of 

studies have included women, unsurprisingly discovering that while women develop the 

same diseases as men their symptoms, treatments, and outcomes can be vastly 

different. While much of this has been attributed to sex hormones, investigating how the 

metabolome differs between genders is critical to identifying inherent differences. It may 

be discovered that a metabolite biomarker may be appropriate for one gender but not 

the other. Our research has demonstrated that specific metabolites differentiate by sex, 

while others are perturb through differences in diet (presented in chapter 3). 

Furthermore, there is a subset of metabolites that are influenced by the interaction 

between diet and gender. When we considered genetic background we demonstrated 
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that genetic background was far more influential to alterations in the metabolome than 

either gender or the interaction between gender and genetics underscoring the 

importance of genetics on metabolism (presented in chapter 4). Finally, when we 

considered the influence of diet, genetics, and sex simultaneously we demonstrated that 

genetics had the largest impact across all potential combinations with gender playing a 

secondary role, however, sex-by-strain-by diet interaction influenced a subset of 

metabolites (presented in chapter 5). It is important to note that metabolites had a 

stratified response across all factors and their interactions emphasizing the complex 

relationship between diet, genetics, and sex. It must also be pointed out, however, that 

diet had the least impact on the metabolome; however, differences in diet still impacted 

the metabolome in combination with gender and genetic background. 

Metabolomics has become a powerful tool to investigate systems-level 

alterations that are the result of many biochemical reactions. While metabolomics is still 

in its infancy technological improvements have allowed for significant advancements in 

recent years. However, metabolomics studies still remain expensive ant time 

consuming. Furthermore, no one extraction method can extract all the metabolites 

present in a system requiring multiple extraction methods and a large quantity of sample 

to obtain comprehensive cover. Additionally, there are thousands of metabolites that 

have yet to be identified creating a large gap in knowledge regarding the biological role 

these metabolites have in the body. Accordingly, unknown metabolites also present a 

challenge because they can only be identified by their mass-to-charge ratio making it 

difficult to separate whole metabolites from fragments. Finally, since metabolomics is a 

young field, repositories and databases are still being formed to aid in the identification 
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and functional analysis of metabolites. The lack of databases and repositories has 

made it difficult to share raw spectral data and made it necessary for researchers to 

build their own internal databases and has made it nearly impossible to identify 

unknown analytes. 

 Metabolomics has flourished since the development of liquid chromatography, 

allowing for the identification of larger molecules. As the field continues to mature 

researchers will be able to investigate more complex biological questions. This 

dissertation shows the capacity with which metabolomics has to address complex 

relationships in a biological system. Diet has long been a complex topic to investigate 

due to the complex nature of diet composition and the many confounding variable, such 

as diet and sex, as well as potential lifestyle components. This dissertation has 

contributed to understanding the complex relationship between diet, genetics, and sex 

and their influence on the tissue metabolome. This has highlighted the potential of 

metabolomics to dissect nuanced differences among the interactions. As metabolomic 

analyses continue to increased in popularity, our understanding of the metabolome's 

contribution to disease and will continue to deepen. 
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 APPENDIX A 

 
Table A.1: Significant ANOVA p-values (FDR < 0.05) for Adipose, Muscle, and Liver Tissue in 

C57BL/6J Mice 

  Sex (i/m)q Diet (i/m)q Sex-by-Diet (i/m)q 

Liver 1-Methyl-Histidine 0.0001 0.0021 0.1715 0.0291 0.0807 0.0166 

 1-Methyladenosine 0.0962 0.0179 0.0011 0.0064 0.7719 0.0454 

 2-dehydro-D-gluconate 0.0001 0.0021 0.0006 0.0055 0.0651 0.0148 

 3-hydroxybutyryl-CoA 0.0118 0.0080 0.0031 0.0086 0.0867 0.0172 

 3-S-methylthiopropionate 0.0054 0.0059 0.0081 0.0114 0.1148 0.0195 

 4-Pyridoxic acid 0.1508 0.0215 0.0049 0.0099 0.0008 0.0018 

 6-phospho-D-gluconate 0.0000 0.0012 0.0000 0.0001 0.0705 0.0154 

 Acetyl-CoA 0.0048 0.0056 0.0063 0.0107 0.2313 0.0264 

 Acetyllysine 0.0000 0.0007 0.6248 0.0441 0.0652 0.0149 

 Adenosine 0.1108 0.0189 0.0019 0.0076 0.0007 0.0017 

 ADP-D-glucose 0.0056 0.0060 0.2238 0.0317 0.2064 0.0252 

 Allantoate 0.0000 0.0002 0.0283 0.0165 0.0751 0.0160 

 Aminoadipic acid 0.0000 0.0011 0.0007 0.0057 0.0735 0.0157 

 AMP 0.9185 0.0479 0.0014 0.0069 0.0038 0.0039 

 Asparagine 0.0103 0.0077 0.0084 0.0116 0.0006 0.0016 

 Betaine 0.6662 0.0413 0.0002 0.0042 0.0000 0.0004 

 Carnitine 0.5131 0.0365 0.8455 0.0480 0.0034 0.0037 

 Citrulline 0.0062 0.0061 0.0042 0.0094 0.0034 0.0037 

 Coenzyme A 0.0047 0.0056 0.0207 0.0151 0.1875 0.0241 

 Creatine 0.5157 0.0367 0.0020 0.0078 0.0048 0.0043 

 Cyclic-AMP 0.0006 0.0030 0.0710 0.0221 0.1013 0.0184 

 Deoxyinosine 0.2198 0.0254 0.0047 0.0097 0.0003 0.0011 

 Deoxyribose-phosphate 0.0000 0.0014 0.0010 0.0062 0.2634 0.0280 

 Deoxyuridine 0.5261 0.0370 0.0001 0.0034 0.0001 0.0009 

 Dephospho-CoA 0.9076 0.0477 0.0000 0.0031 0.0097 0.0059 

 dGMP 0.9185 0.0479 0.0014 0.0069 0.0038 0.0039 

 Dihydroxy-acetone-phosphate 0.0002 0.0024 0.7020 0.0455 0.0043 0.0042 

 FAD 0.0005 0.0029 0.0279 0.0164 0.5207 0.0389 

 Fructose-1/6-bisphosphate 0.0004 0.0028 0.1198 0.0259 0.2956 0.0294 

 Fumarate 0.2785 0.0280 0.0001 0.0033 0.1204 0.0198 

 Glucarate 0.0083 0.0069 0.0018 0.0076 0.0362 0.0110 

 Gluconate 0.0000 0.0006 0.0013 0.0068 0.0013 0.0023 

 Glucose-1/6-phosphate 0.5329 0.0372 0.0000 0.0023 0.0079 0.0054 
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Table A continued 
  Sex (i/m)q Diet (i/m)q Sex-by-Diet (i/m)q 

 Glutamate 0.6724 0.0415 0.0000 0.0030 0.0156 0.0073 

 Glutamine 0.0000 0.0013 0.0003 0.0048 0.0185 0.0079 

 Glutathione 0.5254 0.0369 0.4719 0.0403 0.0006 0.0017 

 Glyceraldehdye-3-phosphate 0.0002 0.0024 0.7020 0.0455 0.0043 0.0042 

 Glycerol-3-phosphate 0.2279 0.0258 0.0009 0.0060 0.0077 0.0053 

 GMP 0.7821 0.0442 0.0004 0.0050 0.6924 0.0434 

 Guanine 0.0055 0.0059 0.9039 0.0488 0.0540 0.0134 

 Histidine 0.0451 0.0132 0.0015 0.0071 0.8798 0.0478 

 Homocysteic acid 0.0021 0.0044 0.0000 0.0022 0.1993 0.0247 

 Homoserine 0.0001 0.0020 0.5854 0.0431 0.0079 0.0054 

 Hydroxyisocaproic acid 0.0001 0.0019 0.0872 0.0236 0.0784 0.0163 

 Hydroxyproline 0.1762 0.0231 0.0000 0.0021 0.0886 0.0174 

 Hypoxanthine 0.7102 0.0422 0.0000 0.0023 0.0003 0.0012 

 IMP 0.0043 0.0055 0.7088 0.0456 0.0007 0.0018 

 Inosine 0.0404 0.0124 0.0591 0.0209 0.0003 0.0012 

 Leucine/isoleucine 0.0733 0.0160 0.0158 0.0140 0.0002 0.0010 

 Lysine 0.1135 0.0191 0.0007 0.0057 0.0019 0.0028 

 Methionine 0.0053 0.0059 0.0000 0.0015 0.0169 0.0076 

 N-acetyl-glutamine 0.0000 0.0007 0.0015 0.0071 0.0465 0.0125 

 N-Acetyl-L-alanine 0.0000 0.0010 0.0604 0.0210 0.0128 0.0067 

 N-acetyl-L-ornithine 0.3087 0.0291 0.0034 0.0089 0.7569 0.0451 

 NADH 0.0005 0.0029 0.0083 0.0116 0.4639 0.0368 

 Octulose 8/1P 0.6719 0.0414 0.0000 0.0004 0.0722 0.0155 

 Ornithine 0.2097 0.0249 0.0638 0.0213 0.0015 0.0025 

 Pantothenate 0.0511 0.0138 0.0232 0.0156 0.0026 0.0032 

 Proline 0.0078 0.0067 0.0036 0.0090 0.0024 0.0031 

 Riboflavin 0.0000 0.0017 0.0769 0.0227 0.0068 0.0050 

 Ribose-phosphate 0.0001 0.0021 0.2206 0.0316 0.0102 0.0061 

 Sedoheptulose bisphosphate 0.0010 0.0035 0.0637 0.0213 0.0633 0.0145 

 Sedoheptulose-1/7-phosphate 0.1508 0.0215 0.0000 0.0015 0.0199 0.0082 

 Serine 0.0077 0.0067 0.0000 0.0019 0.0008 0.0019 

 Taurine 0.1122 0.0190 0.0450 0.0191 0.0024 0.0031 

 Taurodeoxycholic acid 0.0017 0.0041 0.0422 0.0187 0.0006 0.0016 

 Threonine 0.0001 0.0020 0.5854 0.0431 0.0079 0.0054 

 Tryptophan 0.0758 0.0162 0.0024 0.0080 0.0670 0.0150 

 UDP-D-glucuronate 0.1355 0.0206 0.0051 0.0101 0.0703 0.0154 

 Uracil 0.0029 0.0049 0.0056 0.0104 0.3383 0.0316 

 Uridine 0.0000 0.0005 0.1519 0.0279 0.0165 0.0075 

 Valine 0.6864 0.0417 0.0002 0.0041 0.0000 0.0004 
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Table A continued 
  Sex (i/m)q Diet (i/m)q Sex-by-Diet (i/m)q 

 Xanthine 0.8622 0.0466 0.0034 0.0089 0.0000 0.0006 

 Xanthosine 0.1669 0.0225 0.0014 0.0070 0.0001 0.0007 

 Xanthurenic acid 0.0230 0.0101 0.0122 0.0130 0.1089 0.0190 

        

Muscle Acetyllysine 0.0028 0.0032 0.0005 0.0009 0.5030 0.0315 

 Aminoadipic acid 0.0000 0.0012 0.0000 0.0004 0.0349 0.0048 

 Deoxyribose-phosphate 0.0008 0.0022 0.0450 0.0072 0.3385 0.0242 

 Deoxyuridine 0.0002 0.0017 0.3868 0.0285 0.0028 0.0007 

 Erythrose-4-phosphate 0.0005 0.0020 0.0006 0.0010 0.0079 0.0016 

 Glucose-1/6-phosphate 0.0007 0.0021 0.0066 0.0026 0.0310 0.0045 

 Histidine 0.6679 0.0383 0.0008 0.0011 0.0009 0.0003 

 Homocysteic acid 0.0058 0.0038 0.0000 0.0002 0.0009 0.0003 

 Homoserine 0.6309 0.0369 0.0000 0.0004 0.0139 0.0025 

 Hydroxyphenylacetic acid 0.0011 0.0024 0.5603 0.0359 0.1858 0.0157 

 Hydroxyproline 0.0059 0.0038 0.0000 0.0000 0.0003 0.0001 

 Kynurenine 0.0004 0.0018 0.6971 0.0411 0.8638 0.0457 

 Methionine 0.0026 0.0031 0.0084 0.0029 0.2760 0.0210 

 N-acetyl-glutamine 0.0002 0.0016 0.9717 0.0493 0.0400 0.0053 

 N-Acetyl-L-alanine 0.0029 0.0032 0.7999 0.0443 0.3076 0.0227 

 Orotate 0.0000 0.0009 0.9987 0.0500 0.0750 0.0082 

 Pantothenate 0.0000 0.0003 0.0116 0.0032 0.0969 0.0099 

 Proline 0.5518 0.0338 0.0013 0.0014 0.0993 0.0101 

 Threonine 0.5957 0.0356 0.0000 0.0004 0.0126 0.0023 

 Tryptophan 0.0007 0.0021 0.0006 0.0010 0.0091 0.0018 

 Valine 0.6530 0.0377 0.0006 0.0010 0.0482 0.0060 

        

Adipose 1-Methyladenosine 0.0008 0.0010 0.2280 0.0226 0.0649 0.0063 

 a-ketoglutarate 0.0196 0.0035 0.0007 0.0009 0.5926 0.0336 

 Adenosine 0.0001 0.0006 0.0244 0.0061 0.1696 0.0127 

 Citrulline 0.0008 0.0010 0.0958 0.0134 0.1980 0.0142 

 Glucosamine-1/6-phosphate 0.2739 0.0197 0.0008 0.0010 0.0001 0.0001 

 Glutamine 0.8048 0.0424 0.002 0.0017 0.0000 0.0000 

 Guanosine 0.0001 0.0005 0.0819 0.0121 0.1541 0.0119 

 Hydroxyproline 0.8013 0.0422 0.0000 0.0001 0.3356 0.0219 

 Inosine 0.0007 0.0010 0.1627 0.0183 0.8314 0.0438 

 N-acetyl-glutamate 0.0000 0.0004 0.0150 0.0046 0.1040 0.0088 

 Pantothenate 0.0000 0.0001 0.1033 0.0140 0.5085 0.0300 

 Proline 0.0053 0.0018 0.0011 0.0011 0.0000 0.0001 

 S-adenosyl-L-homoCysteine 0.0000 0.0002 0.0798 0.0118 0.3760 0.0239 
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All known metabolites considered significant in the ANOVA were identified in liver, 
skeletal muscle, and adipose tissue. Bold values indicate that the metabolite is 
statistically significant. Bold metabolites are not tissue specific. Bold and italicized 
metabolites are shared between all three tissues. Benjamini-Hochberg procedure was 
performed to determine significance.  
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APPENDIX B 

Table B.2: Number of Edges for Each Node in Correlation Network Analysis in C57BL/6J Mice 

Metabolite Tissue Total 
Degree 

(+/-) 

Degree 
(Adipose) 

(+/-) 

Degree 
(Muscle) 

(+/-) 

Degree 
(Liver) 

(+/-) 

Degree 
(Phenotype) 

(+/-) 
α-ketoglutarate Adipose 6 (2/4) 1 (0/1) 0 3 (0/3) 2 (2/0) 

Adenosine Adipose 6 (3/3) 0 1 (0/1) 4 (3/1) 1 (0/1) 

ADP Adipose 3 (2/1) 1 (1/0) 0 1 (1/0) 1 (0/1) 

IMP Adipose 3 (3/0) 1 (1/0) 0 1 (1/0) 1 (1/0) 

Myo-inositol Adipose 3 (2/1) 1 (1/0) 0 2 (1/1) 0 

N-acetyl-glutamate Adipose 9 (5/4) 4 (3/1) 1 (1/0) 2 (1/1) 2 (0/2) 

Pantothenate Adipose 14 (9/5) 2 (2/0) 2 (1/1) 8 (5/3) 2 (1/1) 

S-adenosyl-L-homoCysteine Adipose 6 (5/1) 1 (1/0) 1 (1/0) 2 (1/1) 2 (2/0) 

3-S-methylthiopropionate Liver 5 (1/4) 0 0 4 (1/3) 1 (0/1) 

6-phospho-D-gluconate Liver 9 (7/2) 0 0 8 (6/2) 1 (1/0) 

Acetyllysine Liver 6 (5/1) 1 (1/0) 1 (1/0) 3 (2/1) 1 (1/0) 

Adenosine Liver 4 (2/2) 0 0 2 (1/1) 2 (1/1) 

ADP-D-glucose Liver 12 (10/2) 0 0 10 (9/1) 2 (1/1) 

Allantoate Liver 11 (8/3) 3 (2/1) 1 (1/0) 6 (4/2) 1 (1/0) 

Aminoadipic acid Liver 13 (9/4) 2 (2/0) 1 (1/0) 8 (5/3) 2 (1/1) 

AMP Liver 4 (3/1) 0 0 3 (3/0) 1 (0/1) 

ATP Liver 11 (9/2) 0 0 10 (7/2) 1 (1/0) 

Butyryl-CoA Liver 11 (8/3) 2 (2/0) 1 (1/0) 7 (4/3) 1 (1/0) 

CDP Liver 7 (7/0) 0 0 6 (6/0) 1 (1/0) 

Citrulline Liver 5 (2/3) 1 (0/1) 0 2 (1/1) 2 (1/1) 

Creatine Liver 3 (3/0) 0 0 2 (2/0) 1 (1/0) 

Cytidine Liver 5 (2/3) 2 (1/1) 0 2 (1/1) 1 (0/1) 

Deoxyuridine Liver 5 (2/3) 1 (0/1) 0 2 (2/0) 2 (0/2) 

Dephospho-CoA Liver 6 (3/3) 0 1 (0/1) 4 (3/1) 1 (0/1) 

dGMP Liver 4 (3/1) 0 0 3 (3/0) 1 (0/1) 

FAD Liver 13 (10/3) 0 0 12 (9/3) 1 (1/0) 

Fructose-1,6-bisphosphate Liver 11 (9/2) 0 0 10 (8/2) 1 (1/0) 

GDP Liver 10 (10/0) 0 1 (1/0) 8 (8/0) 1 (1/0) 

Glucarate Liver 2 (1/1) 0 1 (0/1) 0 1 (1/0) 

Gluconate Liver 8 (4/4) 1 (1/0) 1 (0/1) 5 (3/2) 1 (0/1) 

Glutamine Liver 12 (6/6) 1 (1/0) 0 10 (5/5) 1 (0/1) 

GMP Liver 5 (4/1) 0 0 4 (4/0) 1 (0/1) 

Guanosine Liver 6 (5/1) 0 0 4 (3/1) 2 (2/0) 
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Table B continued 
Metabolite Tissue Total 

Degree 
(+/-) 

Degree 
(Adipose) 

(+/-) 

Degree 
(Muscle) 

(+/-) 

Degree 
(Liver) 

(+/-) 

Degree 
(Phenotype) 

(+/-) 
Hydroxyisocaproic acid Liver 3 (2/1) 0 0 2 (2/0) 1 (0/1) 

IMP Liver 3 (3/0) 0 0 2 (2/0) 1 (1/0) 

Inosine Liver 8 (8/0) 0 0 7 (7/0) 1 (1/0) 

Methionine Liver 11 (3/8) 1 (0/1) 2 (0/2) 7 (3/4) 1 (0/1) 

N-acetyl-glutamine Liver 13 (5/8) 4 (1/3) 1 (0/1) 7 (4/3) 1 (0/1) 

N-Acetyl-L-alanine Liver 13 (10/3) 1 (0/1) 2 (1/1) 8 (8/0) 2 (1/1) 

NADH Liver 8 (7/1) 1 (1/0) 0 6 (5/1) 1 (1/0) 

Octulose 8/1P Liver 4 (2/2) 1 (1/0) 0 2 (0/2) 1 (1/0) 

Riboflavin Liver 9 (9/0) 0 0 8 (8/0) 1 (1/0) 

Ribose-phosphate Liver 6 (6/0) 0 0 5 (5/0) 1 (1/0) 

Sedoheptulose bisphosphate Liver 10 (9/1) 0 0 9 (8/1) 1 (1/0) 

Taurine Liver 3 (3/0) 0 0 2 (2/0) 1 (1/0) 

UDP-N-acetyl-glucosamine Liver 9 (9/0) 0 0 8 (8/0) 1 (1/0) 

Uridine Liver 10 (5/5) 1 (0/1) 1 (1/0) 7 (4/3) 1 (0/1) 

Arginine Muscle 5 (3/2) 0 2 (2/0) 2 (0/2) 1 (1/0) 

Histidine Muscle 3 (3/0) 0 2 (2/0) 0 1 (1/0) 

Lysine Muscle 5 (2/3) 0 2 (2/0) 2 (0/2) 1 (0/1) 

Orotate Muscle 4 (2/2) 1 (0/1) 0 2 (2/0) 1 (0/1) 

Pantothenate Muscle 12 (8/4) 4 (3/1) 0 7 (4/3) 1 (1/0) 

Activity Phenotype 7 (6/1) 0 0 7 (6/1) 0 

Adiposity Phenotype 15 (9/6) 2 (1/1) 1 (0/1) 11 (7/4) 1 (1/0) 

Heat Output Phenotype 19 (10/9) 3 (2/1) 2 (1/1) 13 (7/6) 1 (0/1) 

RER Phenotype 12 (6/6) 1 (1/0) 2 (2/0) 9 (3/6) 0 

Weight Phenotype 11 (5/6) 4 (1/3) 0 5 (3/2) 2 (1/1) 
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APPENDIX C 

Table C.3: Significant ANOVA p-values (FDR < 0.05) for Adipose, Muscle, and Liver Tissue in Mice 

Fed a Standard Chow Diet 

 
Tissue Metabolite Sex (i/m)q Strain (i/m)q Sex-by-

Strain 
(i/m)q 

Liver 1-Methyladenosine 0.3736 0.0292 0.0143 0.0265 0.2465 0.0262 

 2-dehydro-D-gluconate 0.7035 0.0408 0.0000 0.0050 0.0001 0.0008 

 2-Hydroxy-2-methylbutanedioic acid 0.0044 0.0049 0.0001 0.0076 0.1543 0.0209 

 2-Isopropylmalic acid 0.1751 0.0204 0.0008 0.0141 0.0861 0.0157 

 3-hydroxybutyryl-CoA 0.0089 0.0063 0.0007 0.0135 0.7803 0.0447 

 3-methylphenylacetic acid 0.0033 0.0045 0.4894 0.0467 0.3394 0.0305 

 3-phosphoglycerate 0.5168 0.0345 0.0000 0.0053 0.7237 0.0434 

 3-S-methylthiopropionate 0.2107 0.0223 0.0298 0.0305 0.2288 0.0252 

 4-Pyridoxic acid 0.0377 0.0108 0.0002 0.0096 0.0235 0.0089 

 6-phospho-D-gluconate 0.0739 0.0140 0.0000 0.0020 0.0030 0.0038 

 Acetyl-CoA 0.0000 0.0002 0.0000 0.0070 0.0094 0.0060 

 Acetyllysine 0.0019 0.0038 0.4096 0.0456 0.5880 0.0397 

 Aconitate 0.2581 0.0243 0.0264 0.0299 0.4087 0.0330 

 Adenine 0.8649 0.0459 0.0225 0.0290 0.2669 0.0272 

 Adenosine 0.0219 0.0089 0.0000 0.0072 0.0554 0.0131 

 Adenosine 5-phosphosulfate 0.3379 0.0279 0.0142 0.0264 0.9104 0.0479 

 ADP 0.0002 0.0018 0.0000 0.0037 0.0064 0.0052 

 ADP-D-glucose 0.0098 0.0066 0.0000 0.0042 0.0235 0.0089 

 Alanine 0.1970 0.0215 0.0003 0.0111 0.1201 0.0186 

 Allantoate 0.0001 0.0016 0.0516 0.0337 0.0042 0.0044 

 Allantoin 0.3929 0.0298 0.0007 0.0136 0.2942 0.0286 

 Aminoadipic acid 0.0010 0.0030 0.0004 0.0116 0.8011 0.0453 

 Aminoimidazole carboxamide 
ribonucleotide 

0.8912 0.0467 0.0057 0.0220 0.0334 0.0104 

 AMP 0.9086 0.0472 0.0000 0.0005 0.0387 0.0110 

 Aspartate 0.0267 0.0094 0.0001 0.0084 0.0803 0.0153 

 ATP 0.0017 0.0037 0.0002 0.0099 0.1085 0.0175 

 Atrolactic acid 0.0004 0.0023 0.0026 0.0186 0.4953 0.0364 

 Betaine 0.0005 0.0024 0.0008 0.0141 0.1546 0.0210 

 CDP 0.0196 0.0085 0.0004 0.0116 0.0032 0.0040 

 CDP-ethanolamine 0.5596 0.0361 0.0001 0.0091 0.0009 0.0024 

 Citrate 0.6513 0.0392 0.0085 0.0240 0.2581 0.0268 

 Citrate/isocitrate 0.6513 0.0393 0.0085 0.0240 0.2581 0.0268 
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Table C continued 
Tissue Metabolite Sex (i/m)q Strain (i/m)q Sex-by-

Strain 
(i/m)q 

 Citrulline 0.0284 0.0097 0.0809 0.0363 0.0042 0.0044 

 CMP 0.1913 0.0211 0.0000 0.0015 0.4067 0.0330 

 Coenzyme A 0.1205 0.0174 0.0018 0.0171 0.1290 0.0191 

 Creatine 0.3737 0.0292 0.0000 0.0073 0.8408 0.0463 

 Cyclic-AMP 0.0374 0.0108 0.0000 0.0006 0.0390 0.0111 

 Cystathionine 0.1029 0.0162 0.0002 0.0096 0.3140 0.0294 

 dCMP 0.0385 0.0109 0.0020 0.0175 0.2021 0.0238 

 Deoxyinosine 0.0003 0.0021 0.0006 0.0131 0.0426 0.0115 

 Deoxyribose-phosphate 0.0036 0.0046 0.0000 0.0026 0.0159 0.0075 

 Deoxyuridine 0.3580 0.0286 0.0000 0.0013 0.0132 0.0069 

 Dephospho-CoA 0.9282 0.0479 0.0167 0.0273 0.7065 0.0429 

 dGMP 0.9086 0.0472 0.0000 0.0005 0.0387 0.0111 

 dTMP 0.9898 0.0496 0.0001 0.0075 0.7052 0.0428 

 FAD 0.0001 0.0016 0.0000 0.0002 0.0004 0.0016 

 FMN 0.0002 0.0017 0.0000 0.0023 0.3379 0.0304 

 Fructose-1,6-bisphosphate 0.3541 0.0284 0.0000 0.0018 0.0000 0.0007 

 Fumarate 0.2344 0.0233 0.0036 0.0200 0.8579 0.0467 

 GDP 0.0017 0.0037 0.0099 0.0247 0.0175 0.0079 

 Glucarate 0.0225 0.0090 0.0083 0.0238 0.0193 0.0082 

 Gluconate 0.0363 0.0107 0.0000 0.0004 0.0695 0.0144 

 Glucosamine-1/6-phosphate 0.6601 0.0395 0.0005 0.0124 0.3160 0.0295 

 Glucose-1/6-phosphate 0.5012 0.0340 0.0000 0.0036 0.9431 0.0487 

 Glutamate 0.0681 0.0136 0.0000 0.0053 0.0024 0.0035 

 Glutamine 0.0003 0.0022 0.1385 0.0394 0.0349 0.0106 

 Glutathione 0.6965 0.0407 0.0000 0.0068 0.0053 0.0050 

 Glutathione disulfide 0.8430 0.0453 0.0009 0.0146 0.0580 0.0134 

 Glycerate 0.1059 0.0164 0.0079 0.0236 0.7164 0.0432 

 Glycerol-3-phosphate 0.0070 0.0058 0.0030 0.0192 0.0290 0.0098 

 GMP 0.2765 0.0251 0.0001 0.0082 0.2461 0.0261 

 GTP 0.0203 0.0086 0.0010 0.0148 0.1005 0.0169 

 Guanosine 0.0029 0.0043 0.0010 0.0149 0.0152 0.0074 

 Homocysteic acid 0.8481 0.0454 0.0049 0.0212 0.0002 0.0012 

 Hypoxanthine 0.0607 0.0129 0.0017 0.0168 0.1584 0.0212 

 IMP 0.4582 0.0324 0.0002 0.0094 0.0477 0.0121 

 Indole 0.0939 0.0156 0.0283 0.0303 0.1126 0.0179 

 Inosine 0.0000 0.0010 0.0007 0.0138 0.1031 0.0171 

 Isocitrate 0.6513 0.0393 0.0085 0.0240 0.2581 0.0268 

 Kynurenine 0.1595 0.0195 0.0206 0.0284 0.1971 0.0236 

 Lysine 0.0548 0.0124 0.0021 0.0176 0.1371 0.0197 
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Table C continued 
Tissue Metabolite Sex (i/m)q Strain (i/m)q Sex-by-

Strain 
(i/m)q 

 Malate 0.6725 0.0400 0.0000 0.0052 0.1698 0.0219 

 Methionine 0.2327 0.0232 0.0000 0.0050 0.2343 0.0255 

 N-acetyl-glucosamine-1/6-phosphate 0.2406 0.0236 0.0013 0.0157 0.1749 0.0223 

 N-acetyl-glutamine 0.0000 0.0000 0.0000 0.0014 0.0419 0.0115 

 N-Acetyl-L-alanine 0.1237 0.0176 0.0001 0.0080 0.0334 0.0105 

 N-carbamoyl-L-aspartate 0.3423 0.0280 0.0001 0.0094 0.0943 0.0164 

 NAD+ 0.0012 0.0032 0.0034 0.0198 0.0667 0.0141 

 NADH 0.0003 0.0021 0.0000 0.0025 0.0000 0.0005 

 NADP+ 0.0291 0.0098 0.0000 0.0020 0.1978 0.0236 

 NADPH 0.0002 0.0017 0.0037 0.0200 0.0979 0.0166 

 Octulose 8/1P 0.0025 0.0041 0.0000 0.0055 0.0106 0.0064 

 Orotate 0.5941 0.0372 0.0105 0.0249 0.0049 0.0048 

 Pantothenate 0.0000 0.0012 0.0070 0.0229 0.0030 0.0038 

 Phenylalanine 0.6681 0.0398 0.0048 0.0211 0.1199 0.0185 

 Phenyllactic acid 0.0004 0.0022 0.0026 0.0186 0.4953 0.0364 

 Pipecolic acid 0.0750 0.0141 0.0001 0.0082 0.1335 0.0194 

 Propionyl-CoA 0.5425 0.0355 0.0000 0.0064 0.0411 0.0114 

 Riboflavin 0.0003 0.0021 0.0017 0.0169 0.3796 0.0319 

 Ribose-phosphate 0.0009 0.0029 0.0024 0.0182 0.1765 0.0224 

 S-adenosyl-L-homoCysteine 0.0000 0.0010 0.0003 0.0115 0.1292 0.0192 

 Sarcosine 0.2018 0.0217 0.0002 0.0096 0.1304 0.0193 

 Sedoheptulose bisphosphate 0.0010 0.0030 0.1659 0.0405 0.0005 0.0017 

 Sedoheptulose-1/7-phosphate 0.5927 0.0371 0.0003 0.0114 0.1719 0.0220 

 Shikimate 0.7653 0.0427 0.0000 0.0015 0.0004 0.0016 

 Succinate 0.0611 0.0129 0.0118 0.0256 0.7422 0.0437 

 Thymidine 0.0867 0.0150 0.0001 0.0085 0.1432 0.0201 

 Tyrosine 0.6965 0.0407 0.0009 0.0144 0.3278 0.0300 

 UDP 0.0310 0.0100 0.0005 0.0127 0.0144 0.0072 

 UDP-D-glucose 0.2803 0.0252 0.0000 0.0002 0.0031 0.0039 

 UDP-D-glucuronate 0.0096 0.0066 0.0014 0.0162 0.0997 0.0168 

 UDP-N-acetyl-glucosamine 0.5977 0.0373 0.0000 0.0009 0.0740 0.0148 

 UMP 0.0677 0.0135 0.0000 0.0026 0.1308 0.0193 

 Uracil 0.1856 0.0208 0.0016 0.0167 0.0008 0.0022 

 Uridine 0.4525 0.0322 0.0002 0.0102 0.0183 0.0081 

 UTP 0.6797 0.0402 0.0001 0.0091 0.0018 0.0031 

 Valine 0.0005 0.0024 0.0008 0.0141 0.1546 0.0210 

 Xanthine 0.0158 0.0078 0.0022 0.0179 0.1751 0.0223 

 Xanthosine 0.0032 0.0044 0.0000 0.0053 0.0656 0.0139 

 Xanthosine-5-phosphate 0.0502 0.0120 0.0001 0.0087 0.7525 0.0440 
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Table C continued 
Tissue Metabolite Sex (i/m)q Strain (i/m)q Sex-by-

Strain 
(i/m)q 

 Xanthurenic acid 0.2755 0.0251 0.0030 0.0193 0.2835 0.0280 

        

Muscle 2-Hydroxy-2-methylbutanedioic acid 0.0624 0.0128 0.0000 0.0008 0.1713 0.0194 

 2-Isopropylmalic acid 0.9837 0.0494 0.0282 0.0135 0.0002 0.0011 

 3-phosphoglycerate 0.1845 0.0202 0.0004 0.0030 0.1584 0.0184 

 a-ketoglutarate 0.2860 0.0247 0.0001 0.0020 0.0078 0.0041 

 Acetyllysine 0.2039 0.0211 0.0032 0.0060 0.6132 0.0397 

 ADP 0.0237 0.0087 0.0013 0.0044 0.5862 0.0388 

 Allantoin 0.2424 0.0228 0.0030 0.0059 0.5276 0.0370 

 Aminoadipic acid 0.0035 0.0038 0.0066 0.0081 0.3078 0.0273 

 Arginine 0.0041 0.0041 0.0009 0.0038 0.0165 0.0058 

 Ascorbic acid 0.0007 0.0022 0.0049 0.0072 0.0027 0.0026 

 Asparagine 0.3617 0.0279 0.0031 0.0059 0.1990 0.0212 

 Betaine 0.0027 0.0035 0.0897 0.0216 0.3606 0.0298 

 CDP-ethanolamine 0.0013 0.0026 0.0167 0.0111 0.1918 0.0207 

 Cholic acid 0.0333 0.0101 0.0012 0.0043 0.0004 0.0013 

 Citrulline 0.0530 0.0118 0.0002 0.0025 0.0079 0.0042 

 Cytidine 0.0007 0.0022 0.0002 0.0026 0.1365 0.0170 

 Deoxyribose-phosphate 0.6841 0.0396 0.0025 0.0055 0.0511 0.0104 

 Deoxyuridine 0.9631 0.0489 0.0000 0.0000 0.0400 0.0091 

 Erythrose-4-phosphate 0.0002 0.0014 0.0000 0.0012 0.2968 0.0267 

 Fructose-1,6-bisphosphate 0.5162 0.0342 0.0009 0.0037 0.1225 0.0161 

 Glucose-1/6-phosphate 0.0008 0.0022 0.0000 0.0010 0.2604 0.0247 

 Glutamine 0.0000 0.0005 0.0392 0.0154 0.0097 0.0045 

 Glycerol-3-phosphate 0.0000 0.0006 0.0000 0.0008 0.0040 0.0030 

 Histidine 0.2052 0.0212 0.0000 0.0014 0.0399 0.0091 

 Homocysteic acid 0.0075 0.0053 0.0000 0.0002 0.1424 0.0173 

 Hydroxyphenylacetic acid 0.1237 0.0168 0.0114 0.0095 0.0004 0.0013 

 Hydroxyproline 0.0000 0.0006 0.0900 0.0216 0.0541 0.0106 

 Lysine 0.0003 0.0016 0.0009 0.0037 0.0073 0.0040 

 Methionine 0.0005 0.0019 0.0008 0.0036 0.5136 0.0365 

 Myo-inositol 0.2198 0.0219 0.0001 0.0016 0.2633 0.0249 

 N-Acetyl-L-alanine 0.0053 0.0045 0.0053 0.0074 0.1231 0.0162 

 NAD+ 0.9950 0.0499 0.0064 0.0080 0.0158 0.0057 

 Ornithine 0.7939 0.0431 0.0742 0.0199 0.0022 0.0024 

 Orotate 0.0009 0.0023 0.4797 0.0394 0.0485 0.0101 

 Pantothenate 0.0000 0.0001 0.0027 0.0057 0.1678 0.0192 

 Shikimate 0.2798 0.0245 0.0334 0.0145 0.0021 0.0024 

 Taurodeoxycholic acid 0.0035 0.0038 0.0017 0.0048 0.0026 0.0026 
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Table C continued 
Tissue Metabolite Sex (i/m)q Strain (i/m)q Sex-by-

Strain 
(i/m)q 

 Thymidine 0.9708 0.0491 0.0004 0.0031 0.7468 0.0439 

 Tryptophan 0.0000 0.0004 0.0213 0.0121 0.0003 0.0012 

 Tyrosine 0.0012 0.0026 0.0079 0.0085 0.3490 0.0293 

        

Adipose 2-Hydroxy-2-methylbutanedioic acid 0.1418 0.0143 0.0006 0.0031 0.1427 0.0147 

 ADP 0.5012 0.0323 0.0005 0.0029 0.9951 0.0499 

 ADP-D-glucose 0.1443 0.0145 0.0003 0.0019 0.8726 0.0471 

 Asparagine 0.0431 0.0068 0.0015 0.0049 0.4399 0.0330 

 ATP 0.1201 0.0127 0.0037 0.0072 0.5823 0.0391 

 Citrulline 0.0012 0.0010 0.0014 0.0046 0.9339 0.0487 

 Creatine 0.6733 0.0390 0.0012 0.0045 0.1488 0.0153 

 Cysteine 0.2436 0.0203 0.0010 0.0041 0.4288 0.0325 

 Dihydroxy-acetone-phosphate 0.2887 0.0228 0.0102 0.0115 0.6172 0.0401 

 Fumarate 0.7827 0.0427 0.0067 0.0096 0.3973 0.0311 

 Gluconate 0.8164 0.0439 0.0102 0.0114 0.1695 0.0170 

 Glucosamine-1/6-phosphate 0.0131 0.0034 0.0117 0.0122 0.3021 0.0262 

 Glutamine 0.0084 0.0026 0.0037 0.0072 0.0679 0.0080 

 Glyceraldehdye-3-phosphate 0.2887 0.0228 0.0102 0.0115 0.6172 0.0401 

 Guanine 0.7760 0.0425 0.0068 0.0096 0.6298 0.0406 

 Histidine 0.8567 0.0454 0.0029 0.0065 0.2742 0.0244 

 Hypoxanthine 0.3840 0.0274 0.0001 0.0012 0.6710 0.0419 

 Inosine 0.2890 0.0228 0.0018 0.0052 0.1552 0.0157 

 Isocitrate 0.8999 0.0467 0.0032 0.0068 0.0624 0.0075 

 Methionine 0.0001 0.0005 0.0000 0.0003 0.0039 0.0012 

 Methionine sulfoxide 0.0216 0.0043 0.0031 0.0068 0.1092 0.0118 

 N-Acetyl-L-alanine 0.0838 0.0103 0.0005 0.0026 0.0708 0.0083 

 N-carbamoyl-L-aspartate 0.0957 0.0110 0.0086 0.0107 0.6035 0.0397 

 Octulose 8/1P 0.5446 0.0342 0.0057 0.0089 0.4822 0.0348 

 Orotate 0.6533 0.0383 0.0053 0.0087 0.7551 0.0443 

 Pantothenate 0.0001 0.0005 0.1836 0.0319 0.0896 0.0100 

 Pyroglutamic acid 0.1618 0.0156 0.0058 0.0090 0.0817 0.0094 

 Pyrophosphate 0.0332 0.0057 0.0054 0.0088 0.0265 0.0038 

 Quinolinate 0.4481 0.0302 0.0019 0.0055 0.0314 0.0044 

 Ribose-phosphate 0.4764 0.0313 0.0121 0.0123 0.8438 0.0464 

 S-adenosyl-L-homoCysteine 0.0000 0.0001 0.0751 0.0241 0.1993 0.0190 

 Shikimate-3-phosphate 0.0586 0.0081 0.0050 0.0084 0.5047 0.0358 

 Taurine 0.7024 0.0401 0.0022 0.0057 0.1799 0.0178 

 Taurodeoxycholic acid 0.7332 0.0412 0.0002 0.0014 0.0687 0.0081 

 Threonine 0.0006 0.0008 0.0457 0.0203 0.4334 0.0327 
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Table C continued 
Tissue Metabolite Sex (i/m)q Strain (i/m)q Sex-by-

Strain 
(i/m)q 

 Thymidine 0.0876 0.0106 0.0052 0.0086 0.3717 0.0298 

 Thymine 0.7119 0.0404 0.0107 0.0117 0.0693 0.0082 

 Tyrosine 0.0021 0.0013 0.0060 0.0092 0.5122 0.0361 

 Uric acid 0.3619 0.0263 0.0111 0.0118 0.4138 0.0318 

 Valine 0.4149 0.0289 0.0000 0.0006 0.6908 0.0424 

 Xanthine 0.4980 0.0322 0.0051 0.0085 0.9289 0.0485 

 
All known metabolites considered significant in the ANOVA were identified in liver, 
skeletal muscle, and adipose tissue. Bold values indicate that the metabolite is 
statistically significant. Bold metabolites are not tissue specific. Bold and italicized 
metabolites are shared between all three tissues. Benjamini-Hochberg procedure was 
performed to determine significance.  
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APPENDIX D 

Table D.4: Number of Edges for Each Node in Correlation Network Analysis in Mice Fed a 

Standard Chow Diet 

Metabolite Tissue Total 
Degree 

(+/-) 

Degree 
(Adipose) 

(+/-) 

Degree 
(Muscle) 

(+/-) 

Degree 
(Liver) 

(+/-) 

Degree 
(Phenotype) 

(+/-) 
1-Methyl-Histidine Adipose 2 (1/1) 1 (0/1) 0 0 1 (1/0) 

2-Hydroxy-2-methylbutanedioic acid Adipose 1 (0/1) 0 0 0 1 (0/1) 

Methionine Adipose 3 (2/1) 1 (1/0) 1 (0/1) 0 1 (1/0) 

N-acetyl-glutamine Adipose 3 (1/2) 2 (1/1) 0 0 1 (0/1) 

NAD+ Adipose 4 (4/0) 3 (3/0) 0 1 1 (1/0) 

Threonine Adipose 2 (2/0) 1 (1/0) 0 0 1 (1/0) 

Uric acid Adipose 2 (2/0) 1 (1/0) 0 0 1 (1/0) 

6-phospho-D-gluconate Liver 11 (11/0) 0 2 (2/0) 8 (8/0) 1 (1/0) 

ADP Liver 13 (11/2) 0 2 (1/1) 9 (9/0) 2 (1/1) 

CDP Liver 7 (7/0) 1 (1/0) 0 5 (5/0) 1 (1/0) 

CDP-ethanolamine Liver 3 (2/1) 0 0 2 (2/0) 1 (0/1) 

CMP Liver 9 (8/1) 0 1 (0/1) 7 (7/0) 1 (1/0) 

Gluconate Liver 9 (9/0) 0 1 (1/0) 7 (7/0) 1 (1/0) 

Sedoheptulose-1/7-phosphate Liver 2 (2/0) 0 0 1 (1/0) 1 (1/0) 

FAD Liver 12 (10/2) 0 2 (1/1) 8 (8/0) 2 (1/1) 

FMN Liver 10 (8/2) 0 1 (0/1) 8 (7/1) 1 (1/0) 

GDP Liver 6 (6/0) 0 1 (1/0) 4 (4/0) 1 (1/0) 

Hydroxyisocaproic acid Liver 1 (1/0) 0 0 0 1 (1/0) 

N-acetyl-glutamine Liver 3 (2/1) 0 2 (1/1) 0 1 (1/0) 

NADH Liver 13 0 2 (2/0) 9 (9/0) 2 (1/1) 

NADP+ Liver 10 (8/2) 0 2 (1/1) 7 (7/0) 1 (0/1) 

NADPH Liver 7 (7/0) 0 1 (1/0) 5 (5/0) 1 (1/0) 

Taurodeoxycholic acid Liver 1 (1/0) 0 0 0 1 (1/0) 

UDP Liver 8 (8/0) 0 2 (2/0) 5 (5/0) 1 (1/0) 

Acetyl-CoA Liver 10 (10/0) 0 4 (4/0) 4 (4/0) 2 (2/0) 

Adenosine Liver 4 (2/2) 0 1 (1/0) 2 (1/1) 1 (0/1) 

Allantoate Liver 4 (3/1) 0 1 (0/1) 2 (2/0) 1 (1/0) 

dAMP Liver 1 (0/1) 0 0 0 1 (0/1) 

Glutathione disulfide Liver 6 0 0 6 0 

Pantothenate Liver 3 (2/1) 0 1 (0/1) 1 (1/0) 1 (1/0) 

Glycerol-3-phosphate Liver 4 (3/1) 0 1 (0/1) 2 (2/0) 1 (1/0) 

Ascorbic acid Muscle 4 (1/3) 0 0 3 (1/2) 1 (0/1) 
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Table D continued 
Metabolite Tissue Total 

Degree 
(+/-) 

Degree 
(Adipose) 

(+/-) 

Degree 
(Muscle) 

(+/-) 

Degree 
(Liver) 

(+/-) 

Degree 
(Phenotype) 

(+/-) 
CDP Muscle 1 (1/0) 0 0 0 1 (1/0) 

CDP-ethanolamine Muscle 2 (1/1) 0 1 (1/0) 0 1 (0/1) 

Gluconate Muscle 2 (1/1) 0 1 (1/0) 0 1 (0/1) 

Taurodeoxycholic acid Muscle 2 (0/2) 1 (0/1) 0 0 1 (0/1) 

Acetyl-CoA Muscle 1 (0/1) 0 0 0 1 (0/1) 

Arginine Muscle 7 (6/1) 0 4 (4/0) 2 (2/0) 1 (0/1) 

Cytidine Muscle 5 (0/5) 0 0 4 (0/4) 1 (0/1) 

Deoxyribose-phosphate Muscle 3 (3/0) 0 1 (1/0) 1 (1/0) 1 (1/0) 

Hydroxyproline Muscle 4 (2/2) 0 2 (1/1) 1 (1/0) 1 (0/1) 

Lysine Muscle 8 (7/1) 0 4 (4/0) 2 (2/0) 2 (1/1) 

Methionine Muscle 7 (7/0) 0 4 (4/0) 2 (2/0) 1 (1/0) 

Pantothenate Muscle 6 (1/5) 0 2 (1/1) 2 (0/2) 2 (0/2) 

Glycerol-3-phosphate Muscle 16 (16/0) 0 5 (5/0) 9 (9/0) 2 (2/0) 

Tryptophan Muscle 7 (6/1) 0 4 (4/0) 1 (1/0) 2 (1/1) 

RER Phenotype 3 (0/3) 0 3 (0/3) 0 0 

VO2 Phenotype 7 (4/3) 1 (0/1) 4 (2/2) 2 (2/0) 0 

Weight Phenotype 3 (1/2) 0 2 (0/2) 1 (1/0) 0 

Activity Phenotype 19 (18/1) 2 (2/0) 4 (4/0) 13 (12/1) 0 

Adiposity Phenotype 9 (7/2) 2 (1/1) 0 7 (6/1) 0 

Heat Phenotype 13 (8/5) 2 (2/0) 7 (3/4) 4 (3/1) 0 
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APPENDIX E 

Table E.5: Significant ANOVA p-values (FDR < 0.05) for Adipose, Muscle, and Liver Tissue 

Tissue Metabolite Sex (i/m)q Strain (i/m)q Diet (i/m)q Sex-by-
Strain 

(i/m)q Sex-by-
Diet 

(i/m)q Strain-by-
Diet 

(i/m)q Sex-by-Strain-by-
Diet 

(i/m)q 

Adipose 1-Methyl-Histidine 0.0000 0.0049 0.0014 0.0299 0.0041 0.0128 0.0627 0.0250 0.0019 0.0034 0.3293 0.0340 0.5772 0.0424 

 1-Methyladenosine 0.2433 0.0296 0.0056 0.0335 0.1824 0.0292 0.0163 0.0177 0.3079 0.0292 0.0658 0.0179 0.9080 0.0487 

 2-dehydro-D-gluconate 0.0004 0.0068 0.0000 0.0013 0.0000 0.0017 0.0001 0.0053 0.1366 0.0200 0.0000 0.0013 0.0984 0.0215 

 2-Hydroxy-2-
methylbutanedioic acid 

0.0037 0.0100 0.0000 0.0003 0.7897 0.0458 0.0292 0.0207 0.0607 0.0137 0.0629 0.0176 0.8399 0.0477 

 2-Isopropylmalic acid 0.2764 0.0308 0.0000 0.0083 0.7094 0.0440 0.0002 0.0065 0.1719 0.0222 0.1519 0.0253 0.3395 0.0349 

 2,3-Diphosphoglyceric acid 0.1154 0.0235 0.0004 0.0276 0.9770 0.0496 0.0201 0.0187 0.7688 0.0443 0.8603 0.0485 0.0067 0.0071 

 3-hydroxybutyryl-CoA 0.0000 0.0037 0.0000 0.0187 0.0000 0.0048 0.0599 0.0247 0.1278 0.0194 0.0043 0.0065 0.5031 0.0404 

 3-phosphoglycerate 0.0559 0.0188 0.0000 0.0009 0.0000 0.0067 0.0877 0.0273 0.9886 0.0497 0.1055 0.0217 0.1134 0.0227 

 3-S-methylthiopropionate 0.2506 0.0298 0.0030 0.0319 0.0302 0.0186 0.3150 0.0381 0.8472 0.0464 0.6414 0.0442 0.0035 0.0053 

 4-aminobutyrate 0.5791 0.0399 0.0043 0.0329 0.2506 0.0319 0.0000 0.0044 0.0987 0.0171 0.2452 0.0305 0.2371 0.0306 

 4-Pyridoxic acid 0.0077 0.0117 0.0000 0.0051 0.0180 0.0167 0.0024 0.0111 0.4661 0.0354 0.0542 0.0166 0.1770 0.0272 

 6-phospho-D-gluconate 0.9790 0.0495 0.0000 0.0127 0.0080 0.0143 0.0000 0.0038 0.0066 0.0054 0.0000 0.0009 0.3010 0.0335 

 a-ketoglutarate 0.9399 0.0487 0.1187 0.0432 0.8911 0.0479 0.0000 0.0028 0.0131 0.0070 0.1668 0.0262 0.2957 0.0332 

 Acetyl-CoA 0.0000 0.0042 0.0080 0.0344 0.0010 0.0101 0.0046 0.0132 0.1633 0.0217 0.1027 0.0215 0.0184 0.0107 

 Acetyllysine 0.0000 0.0011 0.0012 0.0295 0.0048 0.0131 0.0142 0.0172 0.1849 0.0230 0.2044 0.0282 0.4267 0.0379 

 Aconitate 0.8617 0.0470 0.0001 0.0235 0.3599 0.0356 0.0446 0.0230 0.1676 0.0219 0.1349 0.0240 0.4453 0.0387 

 Adenine 0.0711 0.0202 0.0000 0.0179 0.5298 0.0403 0.9940 0.0499 0.0664 0.0143 0.2755 0.0319 0.0120 0.0090 

 Adenosine 0.0130 0.0131 0.0000 0.0195 0.0009 0.0099 0.0443 0.0229 0.1035 0.0175 0.0000 0.0007 0.0027 0.0049 

 ADP 0.0331 0.0163 0.0000 0.0065 0.1513 0.0277 0.1241 0.0301 0.1123 0.0183 0.0017 0.0045 0.0067 0.0071 

 ADP-D-glucose 0.5662 0.0396 0.0000 0.0003 0.0004 0.0091 0.0004 0.0077 0.0260 0.0095 0.3260 0.0339 0.1772 0.0272 
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Table E continued 
Tissue Metabolite Sex (i/m)q Strain (i/m)q Diet (i/m)q Sex-by-

Strain 
(i/m)q Sex-by-

Diet 
(i/m)q Strain-by-

Diet 
(i/m)q Sex-by-Strain-by-

Diet 
(i/m)q 

 Alanine 0.9207 0.0483 0.0033 0.0322 0.4595 0.0385 0.1873 0.0335 0.3180 0.0297 0.9851 0.0498 0.0001 0.0017 

 Allantoate 0.0000 0.0004 0.0567 0.0407 0.0000 0.0035 0.0004 0.0078 0.0001 0.0013 0.0037 0.0061 0.0178 0.0106 

 Allantoin 0.6372 0.0417 0.0000 0.0011 0.0431 0.0201 0.0832 0.0269 0.2847 0.0282 0.1440 0.0246 0.0689 0.0187 

 Aminoadipic acid 0.0000 0.0030 0.0000 0.0009 0.0000 0.0035 0.0005 0.0082 0.1753 0.0224 0.0465 0.0157 0.0264 0.0125 

 Aminoimidazole carboxamide 
ribonucleotide 

0.0142 0.0134 0.0000 0.0064 0.0003 0.0085 0.0018 0.0105 0.1174 0.0187 0.3551 0.0351 0.1158 0.0228 

 AMP 0.0735 0.0204 0.0000 0.0004 0.0000 0.0049 0.0000 0.0039 0.4048 0.0332 0.0607 0.0174 0.1822 0.0275 

 Asparagine 0.1322 0.0247 0.0027 0.0316 0.0093 0.0148 0.1709 0.0325 0.0177 0.0080 0.0640 0.0177 0.0299 0.0132 

 Aspartate 0.0002 0.0061 0.0000 0.0048 0.0142 0.0160 0.0002 0.0065 0.6120 0.0399 0.0205 0.0112 0.3001 0.0334 

 ATP 0.0011 0.0080 0.0000 0.0151 0.4052 0.0370 0.6667 0.0456 0.1717 0.0222 0.0469 0.0157 0.0279 0.0128 

 Atrolactic acid 0.0004 0.0069 0.0000 0.0129 0.0000 0.0070 0.0714 0.0260 0.1390 0.0202 0.0012 0.0040 0.4139 0.0375 

 Betaine 0.5131 0.0382 0.0000 0.0024 0.0000 0.0021 0.5178 0.0430 0.0002 0.0017 0.2061 0.0284 0.0011 0.0035 

 Butyryl-CoA 0.0001 0.0051 0.8310 0.0495 0.0000 0.0050 0.0019 0.0107 0.0000 0.0009 0.0645 0.0178 0.3372 0.0349 

 Carnitine 0.6484 0.0420 0.0856 0.0420 0.0154 0.0163 0.0235 0.0195 0.0787 0.0154 0.6097 0.0432 0.0012 0.0036 

 CDP 0.0529 0.0185 0.0000 0.0130 0.0009 0.0099 0.1673 0.0324 0.0111 0.0066 0.0017 0.0046 0.0117 0.0089 

 CDP-ethanolamine 0.0455 0.0178 0.0000 0.0044 0.0000 0.0031 0.0007 0.0087 0.9762 0.0494 0.0911 0.0205 0.0000 0.0007 

 Cellobiose 0.3134 0.0322 0.1345 0.0436 0.0159 0.0164 0.9630 0.0496 0.6496 0.0411 0.5528 0.0419 0.0033 0.0052 

 Cholic acid 0.3126 0.0322 0.0846 0.0420 0.3382 0.0350 0.0000 0.0012 0.0006 0.0022 0.0037 0.0061 0.4155 0.0375 

 Citrate 0.1837 0.0272 0.0004 0.0275 0.6178 0.0423 0.2009 0.0341 0.0505 0.0125 0.0080 0.0080 0.5600 0.0420 

 Citrate/isocitrate 0.1837 0.0273 0.0004 0.0275 0.6178 0.0423 0.2009 0.0341 0.0505 0.0125 0.0080 0.0080 0.5600 0.0420 

 Citrulline 0.0180 0.0141 0.0004 0.0276 0.0000 0.0049 0.0002 0.0067 0.0049 0.0048 0.2557 0.0310 0.1376 0.0244 

 CMP 0.6122 0.0410 0.0000 0.0059 0.0630 0.0219 0.0560 0.0243 0.0846 0.0160 0.0302 0.0131 0.1564 0.0259 

 Coenzyme A 0.0156 0.0136 0.0000 0.0202 0.0161 0.0165 0.0683 0.0255 0.3280 0.0302 0.1970 0.0278 0.2300 0.0302 

 Creatine 0.2576 0.0302 0.0009 0.0290 0.0000 0.0069 0.1717 0.0326 0.0000 0.0011 0.0029 0.0056 0.4198 0.0377 
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Table E continued 
Tissue Metabolite Sex (i/m)q Strain (i/m)q Diet (i/m)q Sex-by-Strain (i/m)q Sex-by-Diet (i/m)q Strain-by-Diet (i/m)q Sex-by-Strain-by-Diet (i/m)q 

 Creatinine 0.2695 0.0305 0.0185 0.0369 0.6998 0.0439 0.7552 0.0470 0.5329 0.0375 0.2867 0.0323 0.0319 0.0135 

 Cyclic-AMP 0.0000 0.0030 0.0000 0.0002 0.1362 0.0269 0.0784 0.0266 0.2582 0.0271 0.1199 0.0228 0.0186 0.0108 

 Cystathionine 0.0000 0.0010 0.0000 0.0017 0.0001 0.0076 0.1691 0.0324 0.1739 0.0223 0.7153 0.0458 0.0846 0.0203 

 Cytidine 0.9220 0.0483 0.0003 0.0264 0.0001 0.0073 0.3281 0.0385 0.0474 0.0122 0.0968 0.0211 0.2085 0.0291 

 dAMP 0.0568 0.0189 0.3762 0.0472 0.0000 0.0047 0.3938 0.0401 0.0094 0.0062 0.4501 0.0386 0.3035 0.0336 

 dCMP 0.6813 0.0427 0.0000 0.0185 0.0389 0.0196 0.0900 0.0276 0.1788 0.0227 0.2338 0.0298 0.2613 0.0316 

 Deoxyinosine 0.0000 0.0022 0.0000 0.0101 0.9754 0.0496 0.0081 0.0151 0.3619 0.0314 0.0088 0.0083 0.0043 0.0059 

 Deoxyribose-phosphate 0.0000 0.0029 0.0000 0.0121 0.0083 0.0145 0.1144 0.0296 0.6289 0.0404 0.1437 0.0246 0.8076 0.0471 

 Deoxyuridine 0.7644 0.0447 0.0000 0.0001 0.0009 0.0099 0.3970 0.0402 0.1155 0.0186 0.0080 0.0080 0.0228 0.0117 

 Dephospho-CoA 0.8525 0.0468 0.0000 0.0044 0.0018 0.0111 0.7060 0.0462 0.2807 0.0281 0.2897 0.0324 0.7622 0.0464 

 dGMP 0.0735 0.0204 0.0000 0.0004 0.0000 0.0049 0.0000 0.0039 0.4048 0.0332 0.0607 0.0174 0.1822 0.0275 

 Dihydroorotate 0.0071 0.0115 0.0002 0.0261 0.8219 0.0466 0.2042 0.0342 0.2537 0.0269 0.0657 0.0179 0.5978 0.0429 

 Dihydroxy-acetone-phosphate 0.0000 0.0025 0.0000 0.0161 0.0236 0.0176 0.0089 0.0155 0.7658 0.0442 0.4219 0.0377 0.0067 0.0071 

 dTMP 0.1007 0.0225 0.0000 0.0086 0.1277 0.0264 0.4300 0.0410 0.0775 0.0154 0.4457 0.0385 0.1908 0.0280 

 dUMP 0.6505 0.0420 0.0000 0.0179 0.0000 0.0062 0.0028 0.0116 0.0077 0.0057 0.2889 0.0324 0.0397 0.0148 

 dUTP 0.3649 0.0340 0.0062 0.0338 0.3503 0.0354 0.0043 0.0130 0.7209 0.0431 0.5208 0.0410 0.0312 0.0134 

 FAD 0.0000 0.0034 0.0000 0.0014 0.0078 0.0143 0.9817 0.0498 0.5971 0.0395 0.1043 0.0216 0.0062 0.0069 

 FMN 0.0000 0.0032 0.0000 0.0023 0.7111 0.0441 0.1752 0.0328 0.2651 0.0275 0.2949 0.0326 0.1235 0.0234 

 Fructose-1,6-bisphosphate 0.0030 0.0097 0.0000 0.0050 0.1295 0.0265 0.0000 0.0047 0.4141 0.0336 0.0311 0.0132 0.0025 0.0047 

 Fumarate 0.0001 0.0051 0.0000 0.0047 0.0015 0.0108 0.0001 0.0053 0.3089 0.0293 0.0556 0.0168 0.0842 0.0202 

 GDP 0.0440 0.0176 0.0195 0.0372 0.9181 0.0485 0.6257 0.0450 0.0741 0.0150 0.0240 0.0120 0.0025 0.0047 

 Glucarate 0.0000 0.0022 0.0000 0.0198 0.0000 0.0020 0.2185 0.0348 0.0517 0.0127 0.0013 0.0042 0.5061 0.0405 

 Gluconate 0.0000 0.0035 0.0000 0.0027 0.0000 0.0042 0.0078 0.0150 0.0165 0.0078 0.0371 0.0142 0.1732 0.0269 

 Glucosamine-1/6-phosphate 0.4592 0.0366 0.0234 0.0378 0.9812 0.0497 0.3864 0.0399 0.7252 0.0432 0.3038 0.0330 0.0767 0.0195 
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Table E continued 
Tissue Metabolite Sex (i/m)q Strain (i/m)q Diet (i/m)q Sex-by-Strain (i/m)q Sex-by-Diet (i/m)q Strain-by-Diet (i/m)q Sex-by-Strain-by-Diet (i/m)q 

 Glucose-1/6-phosphate 0.0130 0.0131 0.0000 0.0230 0.0003 0.0088 0.0028 0.0115 0.1450 0.0206 0.0265 0.0125 0.0403 0.0150 

 Glutamate 0.3158 0.0323 0.0000 0.0022 0.0000 0.0024 0.0000 0.0030 0.0052 0.0049 0.0749 0.0189 0.0612 0.0178 

 Glutamine 0.0000 0.0033 0.0062 0.0337 0.0102 0.0150 0.2142 0.0347 0.0090 0.0060 0.0030 0.0056 0.0381 0.0145 

 Glutathione 0.2494 0.0297 0.0000 0.0029 0.4916 0.0392 0.0465 0.0232 0.1787 0.0226 0.4340 0.0381 0.0069 0.0072 

 Glutathione disulfide 0.3952 0.0348 0.0004 0.0274 0.1783 0.0290 0.8891 0.0488 0.3757 0.0319 0.1594 0.0257 0.0677 0.0185 

 Glyceraldehdye-3-phosphate 0.0000 0.0025 0.0000 0.0161 0.0236 0.0176 0.0089 0.0155 0.7658 0.0442 0.4219 0.0377 0.0067 0.0071 

 Glycerate 0.2982 0.0317 0.0000 0.0214 0.0352 0.0192 0.0284 0.0205 0.0402 0.0113 0.4576 0.0389 0.0308 0.0133 

 Glycerol-3-phosphate 0.0017 0.0086 0.0000 0.0164 0.0003 0.0087 0.1050 0.0288 0.0048 0.0048 0.0008 0.0034 0.0059 0.0068 

 GMP 0.0633 0.0195 0.0000 0.0008 0.0000 0.0067 0.0010 0.0093 0.9425 0.0487 0.1123 0.0223 0.6920 0.0450 

 GTP 0.0121 0.0128 0.0000 0.0091 0.0084 0.0145 0.1819 0.0332 0.0686 0.0145 0.0074 0.0078 0.0316 0.0135 

 Guanine 0.0009 0.0077 0.0000 0.0152 0.7370 0.0446 0.0086 0.0153 0.7175 0.0430 0.5445 0.0416 0.2093 0.0292 

 Guanosine 0.0156 0.0136 0.0000 0.0126 0.0542 0.0211 0.0000 0.0010 0.4558 0.0350 0.0364 0.0141 0.2387 0.0306 

 Histidine 0.1014 0.0226 0.0000 0.0183 0.0135 0.0159 0.0005 0.0082 0.2804 0.0281 0.0982 0.0212 0.0280 0.0128 

 Homocysteic acid 0.0000 0.0020 0.0000 0.0016 0.0022 0.0115 0.0016 0.0102 0.0145 0.0074 0.0075 0.0078 0.0041 0.0058 

 Homoserine 0.2124 0.0285 0.0517 0.0404 0.0083 0.0145 0.0041 0.0127 0.0002 0.0015 0.5412 0.0415 0.0007 0.0029 

 Hydroxyisocaproic acid 0.0418 0.0174 0.0024 0.0313 0.0038 0.0126 0.0001 0.0054 0.8997 0.0478 0.3197 0.0337 0.0953 0.0212 

 Hydroxyproline 0.2524 0.0299 0.3878 0.0473 0.0000 0.0010 0.1415 0.0312 0.3256 0.0301 0.0005 0.0029 0.0528 0.0169 

 Hypoxanthine 0.4370 0.0360 0.0000 0.0121 0.0005 0.0092 0.0027 0.0115 0.0206 0.0086 0.0014 0.0043 0.0168 0.0104 

 IMP 0.0321 0.0163 0.0000 0.0190 0.0065 0.0138 0.2426 0.0358 0.2016 0.0240 0.0209 0.0113 0.0670 0.0184 

 Indole 0.9572 0.0491 0.0008 0.0287 0.2731 0.0328 0.4842 0.0423 0.4810 0.0358 0.0462 0.0156 0.0806 0.0198 

 Inosine 0.0000 0.0020 0.0000 0.0086 0.0148 0.0161 0.0001 0.0062 0.4932 0.0361 0.0484 0.0159 0.0002 0.0018 

 Isocitrate 0.1837 0.0273 0.0004 0.0275 0.6178 0.0423 0.2009 0.0341 0.0505 0.0125 0.0080 0.0080 0.5600 0.0420 

 Kynurenic acid 0.1045 0.0229 0.0072 0.0341 0.0000 0.0038 0.0041 0.0128 0.1434 0.0205 0.0231 0.0118 0.6396 0.0438 

 Kynurenine 0.3775 0.0343 0.0000 0.0206 0.0028 0.0119 0.0157 0.0176 0.6743 0.0417 0.0053 0.0069 0.4986 0.0403 
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Table E continued 
Tissue Metabolite Sex (i/m)q Strain (i/m)q Diet (i/m)q Sex-by-

Strain 
(i/m)q Sex-by-

Diet 
(i/m)q Strain-by-

Diet 
(i/m)q Sex-by-Strain-by-

Diet 
(i/m)q 

 L-arginino-succinate 0.0102 0.0124 0.0000 0.0119 0.0000 0.0060 0.0000 0.0011 0.1986 0.0238 0.1626 0.0259 0.2104 0.0292 

 Leucine/isoleucine 0.7346 0.0440 0.0000 0.0158 0.0011 0.0103 0.1409 0.0312 0.0297 0.0099 0.1848 0.0271 0.0000 0.0004 

 Lipoate 0.1032 0.0228 0.0065 0.0339 0.0308 0.0187 0.2490 0.0360 0.7897 0.0449 0.5105 0.0406 0.8632 0.0481 

 Lysine 0.0000 0.0039 0.0004 0.0271 0.0000 0.0066 0.3996 0.0403 0.4134 0.0335 0.0005 0.0030 0.0154 0.0101 

 Malate 0.0023 0.0092 0.0000 0.0019 0.0057 0.0135 0.1372 0.0309 0.2643 0.0274 0.0018 0.0046 0.5116 0.0407 

 Methionine 0.1683 0.0265 0.0000 0.0007 0.0000 0.0050 0.1057 0.0289 0.1452 0.0206 0.0001 0.0018 0.4681 0.0394 

 Myo-inositol 0.7449 0.0443 0.0000 0.0065 0.0000 0.0047 0.0057 0.0139 0.5057 0.0365 0.1321 0.0238 0.0764 0.0195 

 N-acetyl-glucosamine-1/6-
phosphate 

0.8722 0.0473 0.0000 0.0140 0.7675 0.0453 0.0002 0.0069 0.2602 0.0271 0.4178 0.0376 0.3569 0.0356 

 N-acetyl-glutamate 0.0178 0.0141 0.0000 0.0087 0.0002 0.0083 0.6038 0.0446 0.0045 0.0046 0.3751 0.0359 0.7214 0.0457 

 N-acetyl-glutamine 0.0000 0.0001 0.0000 0.0020 0.0000 0.0038 0.0000 0.0029 0.0530 0.0128 0.0002 0.0021 0.0126 0.0092 

 N-Acetyl-L-alanine 0.0066 0.0113 0.0000 0.0010 0.0836 0.0234 0.0000 0.0036 0.0633 0.0140 0.0695 0.0183 0.0185 0.0107 

 N-acetyl-L-ornithine 0.4949 0.0377 0.1667 0.0443 0.0000 0.0021 0.0412 0.0227 0.7817 0.0447 0.2177 0.0290 0.4354 0.0383 

 N-carbamoyl-L-aspartate 0.0000 0.0032 0.0004 0.0271 0.5260 0.0402 0.7269 0.0466 0.2267 0.0254 0.0236 0.0119 0.4638 0.0393 

 NAD+ 0.0005 0.0070 0.0000 0.0165 0.8303 0.0468 0.1113 0.0294 0.0186 0.0082 0.1112 0.0222 0.1227 0.0234 

 NADH 0.0001 0.0056 0.0000 0.0045 0.0012 0.0104 0.0008 0.0090 0.0874 0.0162 0.0035 0.0060 0.0075 0.0074 

 NADP+ 0.0159 0.0137 0.0000 0.0037 0.0375 0.0195 0.0234 0.0195 0.3396 0.0306 0.4952 0.0401 0.1758 0.0271 

 NADPH 0.0043 0.0104 0.0010 0.0294 0.0221 0.0175 0.0215 0.0190 0.6927 0.0422 0.5423 0.0416 0.0232 0.0117 

 Nicotinate 0.0272 0.0155 0.0131 0.0358 0.2339 0.0313 0.5890 0.0443 0.3560 0.0312 0.6546 0.0445 0.0818 0.0199 

 Octulose 8/1P 0.0020 0.0090 0.0075 0.0342 0.0000 0.0008 0.0381 0.0222 0.1601 0.0215 0.0730 0.0187 0.2585 0.0314 

 Ornithine 0.0067 0.0113 0.5801 0.0485 0.0131 0.0158 0.0002 0.0066 0.0275 0.0096 0.7049 0.0456 0.0213 0.0113 

 Orotate 0.9861 0.0497 0.0635 0.0411 0.7142 0.0441 0.7072 0.0463 0.0797 0.0155 0.0340 0.0137 0.0049 0.0062 

 Pantothenate 0.0000 0.0020 0.0004 0.0273 0.0211 0.0173 0.0000 0.0018 0.0022 0.0036 0.3535 0.0350 0.1215 0.0233 

 Phenylalanine 0.3649 0.0340 0.0000 0.0164 0.7544 0.0450 0.0223 0.0192 0.4711 0.0355 0.0320 0.0134 0.0303 0.0133 
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Table E continued 
Tissue Metabolite Sex (i/m)q Strain (i/m)q Diet (i/m)q Sex-by-Strain (i/m)q Sex-by-Diet (i/m)q Strain-by-Diet (i/m)q Sex-by-Strain-by-Diet (i/m)q 

 Phenyllactic acid 0.0004 0.0069 0.0000 0.0129 0.0000 0.0070 0.0714 0.0260 0.1390 0.0202 0.0012 0.0040 0.4139 0.0375 

 Phenylpyruvate 0.0210 0.0147 0.0001 0.0246 0.6360 0.0426 0.7831 0.0474 0.6779 0.0418 0.6907 0.0453 0.2464 0.0310 

 Phosphoenolpyruvate 0.8485 0.0468 0.0000 0.0112 0.0001 0.0074 0.0576 0.0244 0.0732 0.0149 0.7217 0.0459 0.0156 0.0102 

 Pipecolic acid 0.3104 0.0321 0.0000 0.0131 0.5129 0.0397 0.5350 0.0433 0.0225 0.0089 0.4605 0.0390 0.0441 0.0156 

 Proline 0.0589 0.0191 0.7651 0.0493 0.0001 0.0078 0.2964 0.0375 0.0125 0.0069 0.1588 0.0257 0.5870 0.0426 

 Propionyl-CoA 0.9113 0.0481 0.0000 0.0019 0.0712 0.0225 0.0119 0.0165 0.0026 0.0038 0.1564 0.0256 0.0011 0.0035 

 Pyroglutamic acid 0.0621 0.0194 0.0007 0.0287 0.9677 0.0494 0.0024 0.0112 0.0319 0.0102 0.6115 0.0433 0.7806 0.0467 

 Quinolinate 0.5871 0.0402 0.0000 0.0154 0.0083 0.0144 0.0741 0.0262 0.6131 0.0399 0.0021 0.0049 0.0381 0.0145 

 Riboflavin 0.0000 0.0022 0.0000 0.0054 0.6711 0.0433 0.0053 0.0137 0.0181 0.0081 0.0004 0.0028 0.0008 0.0031 

 Ribose-phosphate 0.0000 0.0024 0.0000 0.0148 0.1216 0.0260 0.9830 0.0498 0.6742 0.0417 0.0994 0.0213 0.2324 0.0304 

 S-adenosyl-L-homoCysteine 0.0000 0.0042 0.0000 0.0049 0.0003 0.0087 0.1997 0.0341 0.0038 0.0043 0.0047 0.0067 0.1892 0.0280 

 Sarcosine 0.9575 0.0491 0.0133 0.0358 0.1507 0.0277 0.2366 0.0356 0.1413 0.0203 0.9072 0.0490 0.0001 0.0016 

 Sedoheptulose bisphosphate 0.0286 0.0158 0.0000 0.0173 0.2539 0.0320 0.0014 0.0099 0.3370 0.0305 0.4439 0.0384 0.0083 0.0076 

 Sedoheptulose-1/7-phosphate 0.0025 0.0093 0.0000 0.0067 0.0000 0.0066 0.0027 0.0114 0.0565 0.0132 0.0006 0.0031 0.0685 0.0187 

 Serine 0.0889 0.0217 0.0000 0.0218 0.0000 0.0045 0.0038 0.0125 0.0007 0.0023 0.2802 0.0321 0.0905 0.0209 

 Shikimate 0.0077 0.0117 0.0000 0.0039 0.5618 0.0410 0.0000 0.0022 0.2331 0.0258 0.0001 0.0017 0.2360 0.0305 

 Succinate 0.4517 0.0364 0.0003 0.0268 0.5160 0.0398 0.1563 0.0318 0.0032 0.0040 0.1942 0.0276 0.0205 0.0112 

 Taurine 0.0560 0.0188 0.0431 0.0398 0.0000 0.0038 0.0029 0.0116 0.0504 0.0124 0.2293 0.0296 0.0037 0.0055 

 Taurodeoxycholic acid 0.0003 0.0065 0.0000 0.0038 0.0122 0.0156 0.7355 0.0467 0.0091 0.0061 0.0000 0.0011 0.0000 0.0005 

 Threonine 0.2124 0.0285 0.0517 0.0404 0.0083 0.0145 0.0041 0.0127 0.0002 0.0015 0.5412 0.0415 0.0007 0.0029 

 Thymidine 0.2656 0.0304 0.0000 0.0011 0.0315 0.0188 0.4946 0.0425 0.2291 0.0256 0.1184 0.0227 0.3366 0.0348 

 Trehalose-6-Phosphate 0.3551 0.0337 0.8403 0.0496 0.0878 0.0237 0.0046 0.0132 0.9271 0.0484 0.5500 0.0418 0.4569 0.0391 

 Trehalose/sucrose 0.3462 0.0334 0.1309 0.0435 0.0184 0.0168 0.9609 0.0496 0.6495 0.0410 0.5262 0.0412 0.0037 0.0055 

 Tryptophan 0.0008 0.0076 0.5920 0.0486 0.0004 0.0090 0.0000 0.0016 0.2766 0.0279 0.1695 0.0264 0.0136 0.0096 

 
 
 
 



 

 182 

Table E continued 
Tissue Metabolite Sex (i/m)q Strain (i/m)q Diet (i/m)q Sex-by-

Strain 
(i/m)q Sex-by-

Diet 
(i/m)q Strain-by-

Diet 
(i/m)q Sex-by-Strain-by-

Diet 
(i/m)q 

 Tyrosine 0.3830 0.0345 0.0004 0.0272 0.0000 0.0025 0.5846 0.0442 0.6903 0.0422 0.4933 0.0401 0.0521 0.0168 

 UDP 0.0428 0.0174 0.0001 0.0236 0.0028 0.0120 0.0180 0.0182 0.3909 0.0325 0.1094 0.0221 0.0327 0.0137 

 UDP-D-glucose 0.0239 0.0151 0.0000 0.0019 0.0026 0.0118 0.0000 0.0021 0.6455 0.0409 0.0270 0.0126 0.0001 0.0012 

 UDP-D-glucuronate 0.0013 0.0082 0.0000 0.0035 0.0019 0.0112 0.0956 0.0280 0.3813 0.0322 0.1785 0.0268 0.0019 0.0043 

 UDP-N-acetyl-glucosamine 0.9251 0.0484 0.0000 0.0060 0.0805 0.0232 0.0008 0.0089 0.4819 0.0358 0.1317 0.0237 0.0425 0.0153 

 UMP 0.8893 0.0476 0.0000 0.0010 0.8932 0.0479 0.0002 0.0064 0.5044 0.0365 0.1319 0.0237 0.6774 0.0447 

 Uracil 0.0094 0.0121 0.0000 0.0055 0.0001 0.0073 0.0001 0.0063 0.0347 0.0106 0.0823 0.0197 0.0536 0.0170 

 Uric acid 0.1273 0.0244 0.1748 0.0445 0.4596 0.0385 0.0169 0.0179 0.7108 0.0428 0.0807 0.0195 0.2923 0.0331 

 Uridine 0.0738 0.0204 0.0000 0.0023 0.0003 0.0087 0.0000 0.0008 0.1862 0.0230 0.2376 0.0300 0.0212 0.0113 

 UTP 0.0000 0.0046 0.0000 0.0087 0.0092 0.0148 0.0042 0.0129 0.4238 0.0339 0.0100 0.0086 0.0040 0.0057 

 Valine 0.5131 0.0382 0.0000 0.0025 0.0000 0.0021 0.5178 0.0430 0.0002 0.0017 0.2061 0.0284 0.0011 0.0035 

 Xanthine 0.7840 0.0451 0.0000 0.0198 0.0741 0.0227 0.0251 0.0198 0.0180 0.0081 0.0647 0.0178 0.0001 0.0012 

 Xanthosine 0.0000 0.0043 0.0000 0.0029 0.0154 0.0163 0.0137 0.0171 0.7029 0.0425 0.0014 0.0043 0.0000 0.0004 

 Xanthosine-5-phosphate 0.3373 0.0330 0.0000 0.0112 0.8075 0.0463 0.0539 0.0240 0.1144 0.0185 0.3032 0.0329 0.1579 0.0260 

 Xanthurenic acid 0.0019 0.0089 0.0004 0.0274 0.0000 0.0037 0.0187 0.0184 0.0380 0.0110 0.0016 0.0045 0.5376 0.0414 

                

Muscle 1-Methyl-Histidine 0.0000 0.0010 0.0000 0.0091 0.1049 0.0092 0.0072 0.0074 0.3358 0.0247 0.5765 0.0368 0.7318 0.0410 

 2-dehydro-D-gluconate 0.0958 0.0156 0.0004 0.0160 0.3677 0.0204 0.0140 0.0090 0.6572 0.0383 0.5187 0.0344 0.3209 0.0235 

 2-Hydroxy-2-
methylbutanedioic acid 

0.1363 0.0180 0.0000 0.0006 0.4680 0.0255 0.0219 0.0106 0.1395 0.0140 0.3105 0.0253 0.2310 0.0189 

 2-Isopropylmalic acid 0.6523 0.0384 0.0000 0.0018 0.0038 0.0031 0.0000 0.0023 0.9280 0.0475 0.0582 0.0086 0.0000 0.0004 

 2-oxo-4-methylthiobutanoate 0.0000 0.0020 0.0002 0.0141 0.6761 0.0350 0.8607 0.0464 0.5314 0.0332 0.5685 0.0365 0.6895 0.0395 

 3-methylphenylacetic acid 0.8050 0.0437 0.0002 0.0142 0.9067 0.0460 0.0662 0.0157 0.1628 0.0155 0.2122 0.0199 0.0008 0.0015 

 3-phosphoglycerate 0.8040 0.0437 0.0005 0.0164 0.9271 0.0469 0.0227 0.0108 0.7060 0.0400 0.3006 0.0247 0.0919 0.0105 
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Table E continued 
Tissue Metabolite Sex (i/m)q Strain (i/m)q Diet (i/m)q Sex-by-Strain (i/m)q Sex-by-Diet (i/m)q Strain-by-Diet (i/m)q Sex-by-Strain-by-Diet (i/m)q 

 3-S-methylthiopropionate 0.0019 0.0063 0.3632 0.0429 0.6688 0.0347 0.4249 0.0333 0.6377 0.0375 0.9120 0.0480 0.9900 0.0496 

 6-phospho-D-gluconate 0.4584 0.0316 0.0000 0.0073 0.1411 0.0109 0.0895 0.0176 0.2677 0.0213 0.0164 0.0037 0.6982 0.0398 

 a-ketoglutarate 0.7424 0.0417 0.0000 0.0010 0.3584 0.0198 0.0026 0.0056 0.4361 0.0292 0.1653 0.0168 0.0445 0.0066 

 Acetyllysine 0.0584 0.0132 0.0182 0.0273 0.0021 0.0027 0.2508 0.0264 0.2824 0.0220 0.3239 0.0260 0.4650 0.0300 

 Aconitate 0.1821 0.0202 0.0025 0.0204 0.7792 0.0400 0.3865 0.0318 0.3349 0.0247 0.8509 0.0464 0.8551 0.0451 

 Adenosine 0.1083 0.0165 0.0000 0.0111 0.5141 0.0275 0.0302 0.0119 0.5743 0.0349 0.0767 0.0100 0.2417 0.0195 

 ADP 0.0027 0.0069 0.0000 0.0105 0.4054 0.0223 0.4164 0.0330 0.8162 0.0439 0.1025 0.0121 0.2074 0.0177 

 ADP-D-glucose 0.0646 0.0137 0.0065 0.0234 0.2443 0.0152 0.0878 0.0174 0.4774 0.0309 0.1173 0.0132 0.6014 0.0360 

 Allantoate 0.1254 0.0174 0.0028 0.0207 0.1079 0.0095 0.0724 0.0161 0.0435 0.0061 0.4781 0.0328 0.0004 0.0014 

 Allantoin 0.6491 0.0383 0.0000 0.0041 0.0009 0.0024 0.0572 0.0148 0.3027 0.0232 0.2750 0.0237 0.5184 0.0324 

 Aminoadipic acid 0.0000 0.0013 0.0000 0.0046 0.0003 0.0021 0.6086 0.0390 0.7523 0.0416 0.1263 0.0141 0.0409 0.0064 

 AMP 0.0003 0.0044 0.0000 0.0111 0.3490 0.0194 0.4544 0.0343 0.2681 0.0214 0.6529 0.0396 0.2143 0.0181 

 Arginine 0.0286 0.0113 0.0001 0.0132 0.0000 0.0010 0.1300 0.0201 0.1641 0.0156 0.2201 0.0205 0.8818 0.0461 

 Ascorbic acid 0.4139 0.0298 0.0056 0.0229 0.7306 0.0377 0.0482 0.0140 0.0822 0.0095 0.0571 0.0084 0.5782 0.0350 

 Asparagine 0.0364 0.0119 0.0004 0.0155 0.4692 0.0256 0.0480 0.0139 0.0860 0.0098 0.1930 0.0188 0.5943 0.0356 

 Aspartate 0.0034 0.0073 0.0000 0.0045 0.7005 0.0361 0.0305 0.0119 0.7209 0.0405 0.0298 0.0055 0.1171 0.0123 

 ATP 0.3402 0.0269 0.0002 0.0144 0.6114 0.0320 0.0194 0.0102 0.6619 0.0385 0.4079 0.0300 0.4183 0.0281 

 Betaine 0.6897 0.0398 0.0000 0.0091 0.0000 0.0013 0.7783 0.0441 0.0349 0.0052 0.4405 0.0313 0.5025 0.0316 

 CDP-ethanolamine 0.0000 0.0026 0.0001 0.0123 0.8423 0.0429 0.0889 0.0175 0.0750 0.0089 0.5103 0.0340 0.7414 0.0414 

 Citraconic acid 0.0104 0.0091 0.0576 0.0326 0.3673 0.0204 0.0000 0.0020 0.1370 0.0138 0.0072 0.0023 0.4579 0.0297 

 Citrate 0.1830 0.0203 0.0001 0.0122 0.0317 0.0054 0.1726 0.0226 0.8251 0.0443 0.7279 0.0425 0.5124 0.0320 

 Citrate/isocitrate 0.1830 0.0203 0.0001 0.0122 0.0317 0.0054 0.1726 0.0226 0.8251 0.0443 0.7279 0.0425 0.5124 0.0321 

 Citrulline 0.0000 0.0026 0.0000 0.0046 0.0548 0.0067 0.6214 0.0394 0.7766 0.0426 0.5762 0.0368 0.3294 0.0240 

 CMP 0.0020 0.0064 0.0002 0.0145 0.7914 0.0405 0.9060 0.0474 0.4214 0.0285 0.2040 0.0195 0.4693 0.0302 
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Table E continued 
Tissue Metabolite Sex (i/m)q Strain (i/m)q Diet (i/m)q Sex-by-Strain (i/m)q Sex-by-Diet (i/m)q Strain-by-Diet (i/m)q Sex-by-Strain-by-Diet (i/m)q 

 Creatine 0.0183 0.0102 0.0000 0.0032 0.4930 0.0267 0.0036 0.0061 0.1330 0.0135 0.2149 0.0201 0.5382 0.0333 

 CTP 0.3956 0.0291 0.0185 0.0274 0.0670 0.0074 0.0258 0.0112 0.8240 0.0442 0.0369 0.0065 0.4616 0.0299 

 Cyclic-AMP 0.0019 0.0063 0.0000 0.0021 0.0597 0.0070 0.1891 0.0235 0.1252 0.0129 0.0087 0.0025 0.0191 0.0042 

 Cystathionine 0.6501 0.0383 0.0000 0.0052 0.6061 0.0318 0.0028 0.0058 0.7844 0.0429 0.0016 0.0010 0.0703 0.0088 

 Cysteine 0.6737 0.0391 0.0017 0.0192 0.3291 0.0186 0.1648 0.0222 0.4562 0.0301 0.1050 0.0123 0.6201 0.0366 

 Cytidine 0.0000 0.0024 0.0000 0.0091 0.0443 0.0061 0.0000 0.0006 0.7640 0.0421 0.4208 0.0305 0.0392 0.0062 

 Deoxyribose-phosphate 0.3048 0.0255 0.0000 0.0029 0.8472 0.0432 0.0001 0.0029 0.1793 0.0164 0.1327 0.0146 0.4333 0.0288 

 Deoxyuridine 0.1808 0.0201 0.0000 0.0000 0.0071 0.0037 0.0011 0.0046 0.7049 0.0399 0.1715 0.0172 0.3997 0.0274 

 dGMP 0.0003 0.0044 0.0000 0.0111 0.3490 0.0195 0.4544 0.0343 0.2681 0.0214 0.6529 0.0397 0.2143 0.0181 

 Dihydroxy-acetone-phosphate 0.1376 0.0181 0.0000 0.0120 0.0979 0.0089 0.1059 0.0186 0.0808 0.0094 0.0636 0.0090 0.0251 0.0048 

 Erythrose-4-phosphate 0.0000 0.0015 0.0000 0.0025 0.2011 0.0134 0.1512 0.0215 0.0021 0.0009 0.0001 0.0004 0.0415 0.0064 

 FAD 0.6770 0.0393 0.0001 0.0136 0.0626 0.0071 0.5587 0.0377 0.4911 0.0315 0.1791 0.0178 0.0065 0.0027 

 Fructose-1,6-bisphosphate 0.4267 0.0303 0.0000 0.0029 0.6733 0.0349 0.0012 0.0046 0.5929 0.0357 0.2987 0.0246 0.3343 0.0243 

 Fumarate 0.9473 0.0483 0.0007 0.0172 0.8793 0.0448 0.1891 0.0234 0.7636 0.0421 0.3980 0.0294 0.0710 0.0089 

 GDP 0.2692 0.0240 0.0012 0.0184 0.3293 0.0187 0.5723 0.0381 0.5431 0.0336 0.4584 0.0320 0.0805 0.0096 

 Gluconate 0.0024 0.0067 0.1874 0.0389 0.9951 0.0498 0.0110 0.0084 0.7986 0.0434 0.8783 0.0471 0.2835 0.0216 

 Glucono-lactone-6-phosphate 0.0000 0.0020 0.0000 0.0031 0.1396 0.0109 0.0200 0.0103 0.0843 0.0097 0.4512 0.0317 0.0139 0.0036 

 Glucosamine-1/6-phosphate 0.1590 0.0192 0.3067 0.0418 0.4988 0.0269 0.0032 0.0059 0.2132 0.0183 0.0221 0.0045 0.0362 0.0060 

 Glucose-1/6-phosphate 0.0000 0.0011 0.0000 0.0022 0.4646 0.0252 0.0073 0.0074 0.0370 0.0055 0.0016 0.0010 0.0056 0.0026 

 Glutamate 0.0916 0.0154 0.0024 0.0203 0.0008 0.0023 0.3884 0.0318 0.0544 0.0071 0.0059 0.0019 0.1080 0.0117 

 Glutamine 0.0003 0.0043 0.0110 0.0252 0.1537 0.0115 0.2881 0.0280 0.0732 0.0088 0.4706 0.0325 0.2292 0.0189 

 Glyceraldehdye-3-phosphate 0.1971 0.0208 0.0001 0.0126 0.2033 0.0135 0.0782 0.0167 0.0991 0.0109 0.0870 0.0108 0.0420 0.0065 

 Glycerol-3-phosphate 0.0035 0.0073 0.0000 0.0029 0.1290 0.0105 0.0076 0.0075 0.0008 0.0005 0.5612 0.0361 0.6204 0.0366 

 GMP 0.0009 0.0053 0.0000 0.0031 0.9982 0.0500 0.1827 0.0231 0.2833 0.0221 0.8429 0.0461 0.5142 0.0321 
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Table E continued 
Tissue Metabolite Sex (i/m)q Strain (i/m)q Diet (i/m)q Sex-by-

Strain 
(i/m)q Sex-by-

Diet 
(i/m)q Strain-by-

Diet 
(i/m)q Sex-by-Strain-by-

Diet 
(i/m)q 

 Histidine 0.0107 0.0092 0.0000 0.0014 0.0002 0.0019 0.0021 0.0053 0.0133 0.0027 0.5881 0.0372 0.1158 0.0122 

 Homocysteic acid 0.0015 0.0060 0.0000 0.0009 0.0000 0.0008 0.1069 0.0187 0.3046 0.0233 0.0654 0.0092 0.0000 0.0008 

 Homocysteine 0.7585 0.0421 0.0004 0.0160 0.0000 0.0011 0.0116 0.0085 0.5030 0.0320 0.5682 0.0365 0.1078 0.0117 

 Homoserine 0.0032 0.0072 0.0035 0.0214 0.0000 0.0003 0.0741 0.0163 0.0320 0.0048 0.7973 0.0447 0.1586 0.0148 

 Hydroxyphenylacetic acid 0.0475 0.0127 0.0008 0.0174 0.6882 0.0356 0.0000 0.0013 0.0534 0.0070 0.5641 0.0363 0.2367 0.0192 

 Hydroxyproline 0.0062 0.0082 0.0271 0.0290 0.0000 0.0000 0.9725 0.0493 0.0727 0.0088 0.7487 0.0433 0.3149 0.0232 

 IMP 0.0700 0.0140 0.0000 0.0066 0.3673 0.0204 0.4483 0.0341 0.5552 0.0341 0.6307 0.0387 0.4130 0.0279 

 Inosine 0.0850 0.0149 0.7518 0.0480 0.7809 0.0401 0.0011 0.0046 0.5129 0.0324 0.1090 0.0125 0.0216 0.0044 

 Isocitrate 0.1830 0.0203 0.0001 0.0122 0.0317 0.0054 0.1726 0.0226 0.8251 0.0443 0.7279 0.0425 0.5124 0.0321 

 Lactate 0.0607 0.0134 0.0244 0.0285 0.3127 0.0180 0.0033 0.0060 0.7768 0.0426 0.2374 0.0215 0.5041 0.0317 

 Leucine/isoleucine 0.1111 0.0167 0.0015 0.0190 0.0008 0.0023 0.3168 0.0291 0.1403 0.0141 0.1475 0.0155 0.7102 0.0402 

 Lysine 0.0002 0.0041 0.0000 0.0106 0.0000 0.0004 0.0164 0.0096 0.2050 0.0180 0.1185 0.0134 0.1364 0.0133 

 Malate 0.6042 0.0367 0.0002 0.0143 0.8104 0.0416 0.0771 0.0165 0.6215 0.0369 0.2009 0.0192 0.0174 0.0040 

 Methionine 0.0001 0.0034 0.0000 0.0083 0.0000 0.0007 0.1730 0.0226 0.0081 0.0018 0.1177 0.0133 0.2855 0.0218 

 Methylcysteine 0.7080 0.0405 0.0003 0.0154 0.0000 0.0011 0.0102 0.0083 0.4992 0.0318 0.6178 0.0383 0.1196 0.0124 

 Methylmalonic acid 0.1990 0.0210 0.0049 0.0224 0.7269 0.0375 0.0482 0.0140 0.1769 0.0163 0.2044 0.0195 0.4817 0.0307 

 Myo-inositol 0.5719 0.0356 0.0000 0.0112 0.2383 0.0148 0.5843 0.0385 0.3961 0.0273 0.5158 0.0343 0.6665 0.0385 

 N-acetyl-glucosamine-1/6-
phosphate 

0.0025 0.0068 0.0000 0.0050 0.3744 0.0207 0.8535 0.0462 0.0772 0.0091 0.0055 0.0019 0.0871 0.0101 

 N-acetyl-glutamate 0.0541 0.0130 0.0000 0.0089 0.9853 0.0494 0.2622 0.0268 0.7660 0.0422 0.3365 0.0266 0.7386 0.0413 

 N-acetyl-glutamine 0.0000 0.0014 0.0165 0.0268 0.2282 0.0143 0.0007 0.0042 0.1448 0.0144 0.9535 0.0490 0.1669 0.0153 

 N-Acetyl-L-alanine 0.0000 0.0029 0.0107 0.0251 0.8385 0.0427 0.0740 0.0163 0.5533 0.0340 0.3309 0.0263 0.7092 0.0402 

 NAD+ 0.1876 0.0205 0.0000 0.0041 0.3424 0.0191 0.0089 0.0079 0.5314 0.0332 0.3226 0.0259 0.1065 0.0116 

 NADH 0.4313 0.0305 0.0179 0.0272 0.4605 0.0251 0.3687 0.0311 0.9352 0.0478 0.3559 0.0275 0.3734 0.0263 
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Table E continued 
Tissue Metabolite Sex (i/m)q Strain (i/m)q Diet (i/m)q Sex-by-Strain (i/m)q Sex-by-Diet (i/m)q Strain-by-Diet (i/m)q Sex-by-Strain-by-Diet (i/m)q 

 NADP+ 0.1318 0.0178 0.0000 0.0115 0.8232 0.0421 0.2351 0.0257 0.4457 0.0296 0.7960 0.0446 0.0198 0.0043 

 NADPH 0.1244 0.0174 0.0000 0.0106 0.4071 0.0224 0.0123 0.0087 0.7213 0.0405 0.0480 0.0075 0.5164 0.0323 

 Nicotinamide ribotide 0.3778 0.0284 0.2638 0.0409 0.5009 0.0270 0.1904 0.0235 0.0073 0.0017 0.0069 0.0022 0.0011 0.0017 

 Ornithine 0.0147 0.0098 0.0000 0.0063 0.0043 0.0032 0.0989 0.0182 0.2048 0.0180 0.6521 0.0396 0.7173 0.0404 

 Orotate 0.0000 0.0009 0.0693 0.0335 0.0912 0.0086 0.0879 0.0174 0.7447 0.0414 0.3943 0.0292 0.1754 0.0157 

 Pantothenate 0.0000 0.0001 0.0000 0.0034 0.1562 0.0116 0.0998 0.0183 0.0067 0.0016 0.2403 0.0217 0.2550 0.0203 

 Phosphoenolpyruvate 0.9511 0.0485 0.0017 0.0193 0.9133 0.0463 0.0067 0.0072 0.9315 0.0477 0.3292 0.0262 0.1161 0.0122 

 Proline 0.0996 0.0158 0.0000 0.0059 0.0000 0.0009 0.0622 0.0153 0.4494 0.0298 0.2988 0.0246 0.0988 0.0110 

 Pyrophosphate 0.2282 0.0224 0.0404 0.0309 0.8888 0.0451 0.0000 0.0022 0.2598 0.0208 0.0132 0.0032 0.4125 0.0279 

 Quinolinate 0.0429 0.0123 0.0051 0.0226 0.3700 0.0205 0.0002 0.0032 0.0013 0.0007 0.2783 0.0238 0.0262 0.0049 

 Ribose-phosphate 0.0118 0.0093 0.0000 0.0046 0.2968 0.0174 0.1480 0.0214 0.3928 0.0272 0.8201 0.0456 0.0451 0.0067 

 Serine 0.0207 0.0105 0.0025 0.0204 0.0007 0.0023 0.6352 0.0399 0.3510 0.0255 0.4327 0.0310 0.4561 0.0296 

 Shikimate 0.6408 0.0380 0.0000 0.0102 0.0065 0.0036 0.0000 0.0011 0.9771 0.0493 0.2193 0.0204 0.3566 0.0254 

 Succinate 0.1990 0.0210 0.0049 0.0224 0.7269 0.0375 0.0482 0.0140 0.1769 0.0163 0.2044 0.0195 0.4817 0.0307 

 Taurine 0.1149 0.0168 0.0118 0.0255 0.5497 0.0292 0.0324 0.0121 0.0004 0.0003 0.2048 0.0195 0.2178 0.0183 

 Taurodeoxycholic acid 0.5504 0.0348 0.0000 0.0080 0.2672 0.0161 0.0007 0.0042 0.1161 0.0122 0.0000 0.0004 0.3763 0.0265 

 Threonine 0.0032 0.0072 0.0035 0.0214 0.0000 0.0003 0.0741 0.0163 0.0320 0.0048 0.7973 0.0447 0.1586 0.0148 

 Thymidine 0.0709 0.0141 0.0000 0.0016 0.2775 0.0164 0.0566 0.0147 0.2483 0.0200 0.4443 0.0314 0.9148 0.0471 

 Tryptophan 0.0000 0.0023 0.1440 0.0374 0.0000 0.0015 0.0052 0.0068 0.0002 0.0002 0.0435 0.0071 0.5789 0.0350 

 Tyrosine 0.0364 0.0119 0.0000 0.0114 0.0000 0.0006 0.0097 0.0081 0.0027 0.0010 0.1487 0.0156 0.4456 0.0293 

 UDP 0.0000 0.0024 0.0001 0.0126 0.3289 0.0186 0.2700 0.0272 0.6575 0.0383 0.0683 0.0093 0.0683 0.0086 

 UDP-D-glucose 0.8775 0.0460 0.0000 0.0023 0.5912 0.0311 0.9917 0.0498 0.1057 0.0115 0.1151 0.0131 0.0002 0.0012 

 UDP-D-glucuronate 0.2100 0.0215 0.0000 0.0039 0.3328 0.0188 0.1449 0.0211 0.1699 0.0159 0.1238 0.0138 0.0021 0.0020 

 UDP-N-acetyl-glucosamine 0.0009 0.0053 0.0000 0.0027 0.8148 0.0417 0.1872 0.0233 0.2415 0.0197 0.0690 0.0094 0.0001 0.0008 
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Table E continued 
Tissue Metabolite Sex (i/m)q Strain (i/m)q Diet (i/m)q Sex-by-

Strain 
(i/m)q Sex-by-

Diet 
(i/m)q Strain-by-

Diet 
(i/m)q Sex-by-Strain-by-

Diet 
(i/m)q 

 UMP 0.0014 0.0059 0.0000 0.0062 0.6930 0.0358 0.4694 0.0347 0.2138 0.0184 0.8966 0.0475 0.5068 0.0318 

 Uracil 0.2372 0.0227 0.0008 0.0174 0.1842 0.0127 0.2904 0.0281 0.3817 0.0267 0.2698 0.0234 0.1845 0.0162 

 Uric acid 0.0154 0.0099 0.0002 0.0140 0.4695 0.0256 0.7785 0.0441 0.4164 0.0282 0.2189 0.0204 0.0029 0.0022 

 Uridine 0.3418 0.0270 0.0000 0.0034 0.0024 0.0028 0.0000 0.0005 0.0393 0.0057 0.0437 0.0071 0.2388 0.0193 

 UTP 0.1888 0.0206 0.0004 0.0157 0.5637 0.0299 0.0882 0.0175 0.4895 0.0314 0.2541 0.0225 0.7713 0.0423 

 Valine 0.6897 0.0398 0.0000 0.0092 0.0000 0.0013 0.7783 0.0441 0.0349 0.0052 0.4405 0.0313 0.5025 0.0316 

 Xanthine 0.1720 0.0197 0.0102 0.0249 0.2479 0.0153 0.0246 0.0110 0.7752 0.0425 0.7331 0.0427 0.1210 0.0124 

 Xanthosine 0.2670 0.0238 0.0070 0.0236 0.3806 0.0211 0.0107 0.0083 0.3209 0.0240 0.1314 0.0146 0.9667 0.0487 

                

Liver 2-Hydroxy-2-
methylbutanedioic acid 

0.3591 0.0348 0.0000 0.0099 0.1217 0.0145 0.3291 0.0366 0.3661 0.0224 0.4126 0.0382 0.0966 0.0103 

 2-Isopropylmalic acid 0.0008 0.0054 0.0000 0.0031 0.4955 0.0349 0.0059 0.0111 0.6728 0.0371 0.0258 0.0114 0.0311 0.0048 

 3-methylphenylacetic acid 0.0020 0.0066 0.0008 0.0190 0.0000 0.0001 0.0079 0.0123 0.0844 0.0070 0.0017 0.0023 0.0165 0.0033 

 3-phospho-serine 0.4091 0.0366 0.0190 0.0285 0.7751 0.0442 0.1156 0.0270 0.3121 0.0193 0.1298 0.0241 0.8198 0.0450 

 3-phosphoglycerate 0.0897 0.0211 0.0000 0.0085 0.8867 0.0471 0.0026 0.0086 0.3556 0.0218 0.9809 0.0497 0.2907 0.0223 

 6-phospho-D-gluconate 0.9959 0.0499 0.0032 0.0225 0.2809 0.0249 0.0674 0.0233 0.0859 0.0071 0.1413 0.0252 0.2221 0.0182 

 a-ketoglutarate 0.6638 0.0429 0.0000 0.0070 0.2158 0.0210 0.0001 0.0027 0.0279 0.0028 0.0080 0.0058 0.0028 0.0013 

 Acetyllysine 0.0028 0.0071 0.0016 0.0209 0.2101 0.0208 0.5183 0.0412 0.3074 0.0190 0.0708 0.0185 0.5246 0.0341 

 Adenosine 0.0010 0.0057 0.0000 0.0077 0.0282 0.0052 0.1796 0.0308 0.2317 0.0151 0.0091 0.0063 0.0003 0.0006 

 ADP 0.6995 0.0437 0.0056 0.0241 0.1167 0.0140 0.4641 0.0402 0.5657 0.0319 0.0181 0.0095 0.0028 0.0013 

 ADP-D-glucose 0.1450 0.0254 0.0002 0.0159 0.0439 0.0070 0.4617 0.0402 0.2425 0.0156 0.3631 0.0365 0.4644 0.0315 

 Allantoin 0.3076 0.0329 0.0000 0.0056 0.0578 0.0083 0.0087 0.0127 0.0143 0.0016 0.3419 0.0357 0.1513 0.0141 

 Aminoadipic acid 0.0042 0.0079 0.0000 0.0025 0.3708 0.0295 0.5421 0.0418 0.2721 0.0170 0.2925 0.0338 0.9317 0.0482 

 AMP 0.5093 0.0392 0.4817 0.0461 0.7868 0.0446 0.0001 0.0030 0.0613 0.0052 0.1157 0.0229 0.1117 0.0115 
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Table E continued 
Tissue Metabolite Sex (i/m)q Strain (i/m)q Diet (i/m)q Sex-by-Strain (i/m)q Sex-by-Diet (i/m)q Strain-by-Diet (i/m)q Sex-by-Strain-by-Diet (i/m)q 

 Arginine 0.0455 0.0160 0.0096 0.0260 0.1004 0.0126 0.5090 0.0410 0.3477 0.0213 0.1708 0.0272 0.0939 0.0101 

 Ascorbic acid 0.7015 0.0437 0.0002 0.0156 0.2869 0.0253 0.6770 0.0445 0.8770 0.0458 0.5495 0.0420 0.0821 0.0094 

 Asparagine 0.0002 0.0043 0.0051 0.0237 0.8771 0.0468 0.0277 0.0179 0.4290 0.0257 0.3392 0.0357 0.0361 0.0055 

 Aspartate 0.0002 0.0041 0.0018 0.0212 0.6974 0.0419 0.0004 0.0048 0.0600 0.0051 0.0706 0.0184 0.0008 0.0008 

 ATP 0.3083 0.0329 0.0014 0.0204 0.0083 0.0030 0.0043 0.0103 0.2961 0.0184 0.0945 0.0209 0.0649 0.0081 

 CDP-ethanolamine 0.0000 0.0012 0.3567 0.0444 0.0264 0.0050 0.0003 0.0045 0.8530 0.0448 0.0508 0.0159 0.3961 0.0277 

 Cellobiose 0.3255 0.0336 0.0014 0.0205 0.5036 0.0352 0.2615 0.0343 0.1263 0.0095 0.0176 0.0094 0.1025 0.0108 

 Citrate 0.2100 0.0288 0.0001 0.0129 0.9097 0.0477 0.6394 0.0437 0.6814 0.0375 0.2521 0.0320 0.4895 0.0326 

 Citrate/isocitrate 0.2100 0.0288 0.0001 0.0129 0.9097 0.0477 0.6394 0.0437 0.6814 0.0375 0.2521 0.0320 0.4895 0.0326 

 Citrulline 0.0000 0.0005 0.0000 0.0111 0.0001 0.0008 0.0560 0.0221 0.0979 0.0079 0.4249 0.0386 0.0407 0.0059 

 CMP 0.0260 0.0132 0.0001 0.0132 0.8155 0.0452 0.2727 0.0347 0.5221 0.0300 0.6501 0.0442 0.2638 0.0207 

 Creatine 0.0036 0.0076 0.0000 0.0072 0.0643 0.0090 0.1939 0.0316 0.1919 0.0131 0.1291 0.0240 0.1968 0.0167 

 Creatinine 0.0002 0.0040 0.0790 0.0355 0.0041 0.0022 0.0956 0.0256 0.3227 0.0199 0.2703 0.0328 0.0825 0.0095 

 Cysteine 0.1367 0.0249 0.0000 0.0119 0.6311 0.0396 0.0047 0.0105 0.0088 0.0010 0.0874 0.0202 0.4040 0.0281 

 Cytidine 0.8365 0.0468 0.0005 0.0177 0.2141 0.0210 0.0011 0.0065 0.7204 0.0394 0.0069 0.0053 0.2997 0.0227 

 Deoxyuridine 0.0415 0.0155 0.0008 0.0190 0.1249 0.0149 0.1496 0.0294 0.6008 0.0336 0.1677 0.0270 0.1211 0.0121 

 dGMP 0.5093 0.0392 0.4817 0.0462 0.7868 0.0446 0.0001 0.0031 0.0613 0.0053 0.1157 0.0229 0.1117 0.0115 

 Dihydroorotate 0.0007 0.0052 0.1802 0.0401 0.0893 0.0116 0.3803 0.0380 0.1285 0.0097 0.1051 0.0218 0.2312 0.0187 

 Dihydroxy-acetone-phosphate 0.8518 0.0471 0.0000 0.0054 0.1744 0.0182 0.0064 0.0114 0.0074 0.0008 0.3033 0.0343 0.1937 0.0166 

 dUMP 0.0137 0.0110 0.0021 0.0215 0.2003 0.0201 0.0373 0.0197 0.3893 0.0235 0.1069 0.0220 0.6019 0.0372 

 FAD 0.3383 0.0341 0.0079 0.0253 0.6128 0.0391 0.3780 0.0380 0.6759 0.0372 0.0220 0.0106 0.2740 0.0213 

 Fructose-1,6-bisphosphate 0.1885 0.0278 0.0001 0.0150 0.6551 0.0405 0.0020 0.0080 0.0168 0.0018 0.9126 0.0486 0.6821 0.0405 

 Fumarate 0.0596 0.0177 0.0000 0.0044 0.7627 0.0438 0.0277 0.0179 0.4617 0.0273 0.0177 0.0094 0.7425 0.0425 

 Glucarate 0.0994 0.0219 0.0076 0.0251 0.4996 0.0350 0.1150 0.0270 0.4859 0.0285 0.3637 0.0365 0.4262 0.0292 
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Table E continued 
Tissue Metabolite Sex (i/m)q Strain (i/m)q Diet (i/m)q Sex-by-Strain (i/m)q Sex-by-Diet (i/m)q Strain-by-Diet (i/m)q Sex-by-Strain-by-Diet (i/m)q 

 Gluconate 0.0567 0.0174 0.0270 0.0300 0.4462 0.0330 0.0971 0.0257 0.7679 0.0414 0.2675 0.0327 0.3989 0.0278 

 Glucosamine-1/6-phosphate 0.0017 0.0063 0.0776 0.0354 0.1192 0.0143 0.0243 0.0171 0.3067 0.0190 0.0353 0.0134 0.0340 0.0052 

 Glucose-1/6-phosphate 0.0009 0.0055 0.3695 0.0447 0.1709 0.0180 0.1226 0.0276 0.8050 0.0430 0.0818 0.0197 0.0984 0.0105 

 Glutamine 0.0026 0.0070 0.0000 0.0024 0.3708 0.0295 0.1311 0.0282 0.2747 0.0172 0.1280 0.0239 0.0106 0.0026 

 Glyceraldehdye-3-phosphate 0.8518 0.0471 0.0000 0.0054 0.1744 0.0182 0.0064 0.0114 0.0074 0.0008 0.3033 0.0343 0.1937 0.0165 

 Glycerate 0.2129 0.0289 0.0027 0.0220 0.1744 0.0182 0.6039 0.0431 0.3480 0.0214 0.0859 0.0201 0.0980 0.0105 

 Glycerol-3-phosphate 0.1424 0.0252 0.0006 0.0182 0.1862 0.0190 0.0129 0.0141 0.0057 0.0007 0.1882 0.0284 0.0706 0.0085 

 GMP 0.2375 0.0300 0.3990 0.0451 0.7902 0.0447 0.0000 0.0014 0.0479 0.0042 0.2583 0.0322 0.0761 0.0089 

 Guanidoacetic acid 0.1300 0.0243 0.0000 0.0097 0.0029 0.0020 0.1765 0.0307 0.9387 0.0479 0.2534 0.0321 0.8941 0.0472 

 Guanine 0.0743 0.0196 0.0000 0.0095 0.5686 0.0375 0.0050 0.0106 0.0611 0.0052 0.0393 0.0141 0.2483 0.0198 

 Guanosine 0.0018 0.0064 0.0000 0.0096 0.1760 0.0183 0.0036 0.0098 0.3098 0.0192 0.0751 0.0189 0.1187 0.0119 

 Histidine 0.2594 0.0310 0.0003 0.0164 0.0344 0.0059 0.9710 0.0496 0.8927 0.0463 0.4148 0.0383 0.0275 0.0045 

 Homocysteic acid 0.0356 0.0146 0.0051 0.0238 0.7000 0.0419 0.0366 0.0196 0.4872 0.0285 0.3268 0.0353 0.4485 0.0306 

 Homocysteine 0.8352 0.0467 0.0000 0.0085 0.2918 0.0256 0.0006 0.0055 0.8867 0.0461 0.0159 0.0089 0.0384 0.0056 

 Homoserine 0.0001 0.0038 0.0355 0.0312 0.0606 0.0086 0.0979 0.0258 0.1036 0.0082 0.0973 0.0211 0.0021 0.0011 

 Hydroxyisocaproic acid 0.0024 0.0068 0.0000 0.0015 0.0714 0.0098 0.8148 0.0472 0.5287 0.0303 0.0067 0.0052 0.3967 0.0277 

 Hydroxyphenylacetic acid 0.5740 0.0409 0.3127 0.0436 0.7670 0.0440 0.0053 0.0108 0.8383 0.0443 0.3317 0.0354 0.3669 0.0263 

 Hydroxyphenylpyruvate 0.3703 0.0352 0.0920 0.0364 0.0222 0.0047 0.0004 0.0048 0.0372 0.0036 0.0537 0.0163 0.1650 0.0150 

 Hydroxyproline 0.0037 0.0076 0.0196 0.0287 0.0000 0.0000 0.2407 0.0336 0.0013 0.0002 0.0037 0.0036 0.3762 0.0267 

 Hypoxanthine 0.8138 0.0461 0.0028 0.0221 0.2980 0.0259 0.0937 0.0254 0.9118 0.0469 0.0261 0.0114 0.0630 0.0080 

 IMP 0.2155 0.0291 0.0001 0.0137 0.0062 0.0026 0.1961 0.0318 0.0632 0.0054 0.1536 0.0261 0.0309 0.0048 

 Isocitrate 0.2100 0.0288 0.0001 0.0130 0.9097 0.0477 0.6394 0.0437 0.6814 0.0375 0.2521 0.0320 0.4895 0.0326 

 Lysine 0.0072 0.0091 0.0111 0.0267 0.3281 0.0274 0.0473 0.0212 0.6954 0.0382 0.1763 0.0275 0.1571 0.0144 

 Malate 0.0029 0.0072 0.0483 0.0327 0.5864 0.0382 0.1010 0.0261 0.1454 0.0106 0.1144 0.0228 0.1039 0.0110 
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Table E continued 
Tissue Metabolite Sex (i/m)q Strain (i/m)q Diet (i/m)q Sex-by-

Strain 
(i/m)q Sex-by-

Diet 
(i/m)q Strain-by-

Diet 
(i/m)q Sex-by-Strain-by-

Diet 
(i/m)q 

 Methionine 0.0000 0.0019 0.0024 0.0217 0.4843 0.0345 0.0049 0.0105 0.3216 0.0198 0.1236 0.0235 0.0106 0.0026 

 Methionine sulfoxide 0.0000 0.0015 0.0000 0.0070 0.0302 0.0055 0.0612 0.0227 0.5116 0.0296 0.1168 0.0230 0.0090 0.0024 

 Methylcysteine 0.9653 0.0494 0.0000 0.0108 0.2295 0.0219 0.0018 0.0078 0.8053 0.0430 0.0383 0.0138 0.1131 0.0115 

 Myo-inositol 0.0012 0.0059 0.0001 0.0141 0.0163 0.0041 0.0093 0.0129 0.5403 0.0308 0.0011 0.0018 0.5926 0.0369 

 N-acetyl-glucosamine-1/6-
phosphate 

0.0393 0.0152 0.0000 0.0066 0.4362 0.0325 0.0318 0.0187 0.2356 0.0153 0.9045 0.0485 0.2177 0.0179 

 N-acetyl-glutamate 0.0000 0.0008 0.1612 0.0394 0.0020 0.0018 0.0002 0.0042 0.2158 0.0144 0.0258 0.0114 0.4491 0.0306 

 N-Acetyl-L-alanine 0.7315 0.0444 0.0007 0.0188 0.5160 0.0356 0.2915 0.0354 0.3389 0.0208 0.0699 0.0183 0.4504 0.0307 

 N-acetyl-L-ornithine 0.0062 0.0088 0.0300 0.0304 0.0157 0.0040 0.6739 0.0445 0.0348 0.0034 0.0091 0.0063 0.0134 0.0029 

 NAD+ 0.0015 0.0061 0.0238 0.0294 0.0007 0.0013 0.0311 0.0185 0.5742 0.0323 0.0002 0.0007 0.9326 0.0482 

 NADH 0.0007 0.0052 0.0264 0.0299 0.9249 0.0481 0.9120 0.0487 0.8172 0.0435 0.1247 0.0236 0.8984 0.0473 

 NADP+ 0.0347 0.0144 0.3693 0.0446 0.1921 0.0195 0.0016 0.0075 0.2297 0.0150 0.2037 0.0295 0.6443 0.0390 

 NADPH 0.0024 0.0069 0.0074 0.0250 0.9815 0.0496 0.8686 0.0481 0.9283 0.0475 0.2488 0.0318 0.8663 0.0462 

 Octulose 8/1P 0.0096 0.0098 0.9317 0.0496 0.0411 0.0067 0.0955 0.0256 0.0286 0.0029 0.0130 0.0078 0.0674 0.0082 

 Ornithine 0.0000 0.0023 0.4251 0.0454 0.0875 0.0114 0.1179 0.0272 0.3136 0.0194 0.4429 0.0391 0.0033 0.0014 

 Orotate 0.0637 0.0183 0.0055 0.0240 0.9405 0.0485 0.9810 0.0497 0.4629 0.0274 0.1058 0.0219 0.6614 0.0396 

 Pantothenate 0.0000 0.0002 0.0000 0.0055 0.0084 0.0030 0.0000 0.0004 0.0235 0.0024 0.0002 0.0007 0.0516 0.0069 

 Proline 0.0001 0.0031 0.0023 0.0217 0.0434 0.0069 0.0216 0.0167 0.5678 0.0321 0.0531 0.0162 0.0125 0.0029 

 Pyrophosphate 0.4032 0.0364 0.0231 0.0293 0.0278 0.0052 0.7105 0.0453 0.8977 0.0464 0.4674 0.0398 0.1186 0.0119 

 Quinolinate 0.1750 0.0271 0.0000 0.0042 0.0249 0.0049 0.1320 0.0282 0.8226 0.0437 0.0114 0.0073 0.1389 0.0133 

 Ribose-phosphate 0.0318 0.0141 0.0000 0.0048 0.2692 0.0243 0.0008 0.0060 0.9509 0.0483 0.6383 0.0439 0.9442 0.0486 

 S-adenosyl-L-homoCysteine 0.0000 0.0003 0.0000 0.0044 0.2848 0.0251 0.0001 0.0033 0.4586 0.0271 0.0288 0.0120 0.0766 0.0089 

 Sedoheptulose-1/7-phosphate 0.1324 0.0246 0.0000 0.0061 0.5624 0.0372 0.3638 0.0376 0.0130 0.0014 0.2936 0.0339 0.2532 0.0201 

 Serine 0.0006 0.0050 0.0153 0.0277 0.1951 0.0198 0.0212 0.0166 0.2766 0.0173 0.0272 0.0118 0.0048 0.0017 
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Table E continued 
Tissue Metabolite Sex (i/m)q Strain (i/m)q Diet (i/m)q Sex-by-Strain (i/m)q Sex-by-Diet (i/m)q Strain-by-Diet (i/m)q Sex-by-Strain-by-Diet (i/m)q 

 Shikimate 0.2509 0.0306 0.0013 0.0203 0.9423 0.0486 0.0021 0.0081 0.0372 0.0036 0.1042 0.0218 0.1387 0.0132 

 Shikimate-3-phosphate 0.7714 0.0452 0.0003 0.0167 0.5578 0.0370 0.8653 0.0480 0.2207 0.0146 0.2984 0.0341 0.3113 0.0235 

 Taurine 0.0957 0.0217 0.0000 0.0033 0.0194 0.0044 0.1541 0.0298 0.5894 0.0331 0.1035 0.0217 0.0428 0.0062 

 Taurodeoxycholic acid 0.0410 0.0154 0.0010 0.0195 0.0343 0.0059 0.0665 0.0232 0.4358 0.0260 0.0013 0.0019 0.0192 0.0036 

 Threonine 0.0001 0.0038 0.0355 0.0312 0.0606 0.0086 0.0979 0.0258 0.1036 0.0083 0.0973 0.0211 0.0021 0.0011 

 Thymidine 0.0333 0.0143 0.0017 0.0210 0.2038 0.0203 0.0755 0.0239 0.2522 0.0160 0.3049 0.0344 0.1822 0.0158 

 Thymine 0.0045 0.0081 0.1007 0.0368 0.7023 0.0420 0.1651 0.0302 0.2758 0.0172 0.3011 0.0343 0.4404 0.0301 

 Trehalose/sucrose 0.4650 0.0380 0.0000 0.0101 0.2901 0.0255 0.2803 0.0350 0.3366 0.0207 0.0302 0.0125 0.0580 0.0075 

 Tryptophan 0.0004 0.0046 0.3154 0.0437 0.5306 0.0361 0.0270 0.0177 0.6649 0.0367 0.1508 0.0259 0.1654 0.0150 

 Tyrosine 0.0001 0.0033 0.0038 0.0230 0.2289 0.0218 0.0206 0.0165 0.5620 0.0318 0.2551 0.0321 0.0117 0.0028 

 UDP 0.1094 0.0227 0.2388 0.0419 0.9686 0.0493 0.0066 0.0117 0.7293 0.0398 0.1261 0.0238 0.3177 0.0238 

 UDP-D-glucuronate 0.4915 0.0388 0.4478 0.0457 0.6484 0.0403 0.0031 0.0092 0.9333 0.0477 0.2235 0.0306 0.0826 0.0095 

 UMP 0.4726 0.0382 0.4387 0.0455 0.5778 0.0379 0.0002 0.0040 0.1982 0.0134 0.1140 0.0228 0.0796 0.0092 

 Uracil 0.0053 0.0085 0.6503 0.0478 0.5844 0.0382 0.0002 0.0040 0.6371 0.0354 0.0340 0.0132 0.1709 0.0154 

 Uric acid 0.0070 0.0091 0.6690 0.0480 0.5637 0.0373 0.0005 0.0052 0.1857 0.0128 0.3580 0.0363 0.3276 0.0243 

 Uridine 0.0035 0.0076 0.0592 0.0339 0.2255 0.0217 0.0025 0.0085 0.1593 0.0116 0.0625 0.0175 0.1262 0.0124 

 Valine 0.0010 0.0056 0.0000 0.0086 0.2494 0.0231 0.0327 0.0188 0.7115 0.0390 0.0316 0.0127 0.0039 0.0015 

 Xanthine 0.0360 0.0147 0.6862 0.0481 0.4075 0.0313 0.0026 0.0087 0.3041 0.0188 0.0570 0.0167 0.1272 0.0124 

 
All known metabolites considered significant in the ANOVA were identified in liver, skeletal muscle, and adipose tissue. 
Bold values indicate that the metabolite is statistically significant. Bold metabolites are not tissue specific. Bold and 
italicized metabolites are shared between all three tissues. Benjamini-Hochberg procedure was performed to determine 
significance. 
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APPENDIX F 

Table F.6: Number of Edges for Each Node in Correlation Network Analysis Across Strains and 

Diets 

Metabolite Tissue Total 
Degree 

(+/-) 

Degree 
(Adipose) 

(+/-) 

Degree 
(Muscle) 

(+/-) 

Degree 
(Liver) 

(+/-) 

Degree 
(Phenotype) 

(+/-) 
3-methylphenylacetic acid Adipose 13 (9/4) 6 (6/0) 2 (0/2) 1 (1/0) 4 (2/2) 

4-aminobutyrate Adipose 5 (3/2) 2 (2/0) 0 1 (0/1) 2 (1/1) 

AMP Adipose 15 (12/3) 12 (10/2) 0 1 (1/0) 2 (1/1) 

CDP-ethanolamine Adipose 18 (15/3) 13 (12/1) 1 (1/0) 1 (0/1) 3 (2/1) 

GMP Adipose 15 (12/3) 12 (10/2) 0 0 3 (2/1) 

IMP Adipose 14 (10/4) 12 (10/2) 0 0 2 (0/2) 

N-acetyl-glutamate Adipose 21 (15/6) 12 (11/1) 2 (1/1) 2 (0/2) 5 (3/2) 

NAD+ Adipose 13 (12/1) 12 (11/1) 0 0 1 (0/1) 

S-adenosyl-L-homoCysteine Adipose 18 (9/9) 6 (6/0) 4 (0/4) 4 (1/3) 4 (2/2) 

UMP Adipose 13 (10/3) 12 (10/2) 0 0 1 (0/1) 

a-ketoglutarate Adipose 9 (7/2) 2 (2/0) 3 (2/1) 2 (2/0) 2 (1/1) 

Cysteine Adipose 16 (13/3) 10 (9/1) 3 (2/1) 2 (1/1) 1 (1/0) 

dGMP Adipose 15 (12/3) 12 (10/2) 0 1 (1/0) 2 (1/1) 

Inosine Adipose 6 (3/3) 4 (3/1) 1 (0/1) 0 1 (0/1) 

Pantothenate Adipose 28 
(13/15) 

12 (11/1) 6 (0/6) 6 (0/6) 4 (2/2) 

Quinolinate Adipose 13 (3/10) 0 5 (1/4) 7 (2/5) 1 (0/1) 

Glycerol-3-phosphate Adipose 11 (10/1) 8 (8/0) 1 (1/0) 1 (1/0) 1 (0/1) 

Trehalose/sucrose Adipose 12 (5/7) 7 (1/6) 1 (1/0) 3 (2/1) 1 (1/0) 

Uracil Adipose 11 (7/4) 6 (6/0) 1 (0/1) 2 (0/2) 2 (1/1) 

2-Hydroxy-2-methylbutanedioic acid Liver 20 (19/1) 1 (1/0) 6 (5/1) 11 (11/0) 2 (2/0) 

4-Pyridoxic acid Liver 9 (5/4) 2 (2/0) 4 (1/3) 2 (2/0) 1 (0/1) 

Cellobiose Liver 12 (11/1) 0 0 10 (10/0) 2 (1/1) 

Glucarate Liver 15 (6/9) 5 (0/5) 1 (0/1) 5 (4/1) 4 (2/2) 

FMN Liver 24 (9/15) 5 (3/2) 7 (1/6) 8 (2/6) 4 (3/1) 

IMP Liver 19 (14/5) 3 (0/3) 1 (0/1) 13 (13/0) 2 (1/1) 

N-Acetyl-L-alanine Liver 22 (19/3) 3 (2/1) 4 (4/0) 13 (12/1) 2 (1/1) 

N-acetyl-glutamine Liver 23 (16/7) 3 (0/3) 5 (5/0) 12 (10/2) 3 (1/2) 

Adenine Liver 10 (8/2) 0 0 7 (7/0) 3 (1/2) 

Adenosine Liver 11 (7/4) 2 (1/1) 2 (1/1) 5 (4/1) 2 (1/1) 
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Table F continued 
Metabolite Tissue Total 

Degree 
(+/-) 

Degree 
(Adipose) 

(+/-) 

Degree 
(Muscle) 

(+/-) 

Degree 
(Liver) 

(+/-) 

Degree 
(Phenotype) 

(+/-) 
Citrulline Liver 5 (2/3) 1 (0/1) 0 1 (1/0) 3 (1/2) 

Cystathionine Liver 12 (7/5) 1 (1/0) 2 (1/1) 7 (4/3) 2 (1/1) 

dAMP Liver 4 (2/2) 0 0 1 (0/1) 3 (2/1) 

Deoxyinosine Liver 21 (17/4) 2 (0/2) 4 (4/0) 12 (12/0) 3 (1/2) 

Deoxyuridine Liver 22 (19/3) 2 (1/1) 6 (5/1) 13 (12/1) 1 (1/0) 

Guanosine Liver 16 (15/1) 0 2 (2/0) 12 (12/0) 2 (1/1) 

Homocysteic acid Liver 10 (9/1) 1 (1/0) 4 (3/1) 4 (4/0) 1 (1/0) 

Inosine Liver 19 (14/5) 1 (0/1) 2 (2/0) 13 (11/2) 3 (1/2) 

Quinolinate Liver 4 (3/1) 0 0 3 (2/1) 1 (1/0) 

Ribose-phosphate Liver 22 (16/6) 2 (0/2) 3 (2/1) 14 (13/1) 3 (1/2) 

Trehalose/sucrose Liver 12 (11/1) 0 0 10 (10/0) 2 (1/1) 

1-Methyl-Histidine Muscle 18 (13/5) 2 (0/2) 4 (4/0) 9 (8/1) 3 (1/2) 

2-Hydroxy-2-methylbutanedioic acid Muscle 20 (17/3) 2 (2/0) 6 (5/1) 11 (9/2) 1 (1/0) 

2-Isopropylmalic acid Muscle 14 (2/12) 2 (0/2) 6 (0/6) 5 (2/3) 1 (0/1) 

2-dehydro-D-gluconate Muscle 13 (9/4)) 3 (1/2) 8 (6/2) 1 (1/0) 1 (1/0) 

6-phospho-D-gluconate Muscle 12 2 (0/2) 5 (4/1) 4 (3/1) 1 (1/0) 

N-Acetyl-L-alanine Muscle 11 (7/4) 3 (0/3) 5 (5/0) 1 (1/0) 2 (1/1) 

N-acetyl-glutamine Muscle 15 (8/7) 3 (0/3) 6 (5/1) 3 (2/1) 3 (1/2) 

NADPH Muscle 6 (4/2) 1 (0/1) 3 (3/0) 1 (0/1) 1 (1/0) 

a-ketoglutarate Muscle 18 (13/5) 2 (1/1) 8 (6/2) 7 (5/2) 1 (1/0) 

Asparagine Muscle 14 (11/3) 2 (1/1) 8 (7/1) 3 (2/1) 1 (1/0) 

Lysine Muscle 10 (5/5) 3 (3/0) 0 5 (1/4) 2 (1/1) 

Orotate Muscle 15 (8/7) 4 (0/4) 5 (5/0) 3 (2/1) 3 (1/2) 

Xanthosine Muscle 3 (1/2) 1 (0/1) 1 (0/1) 0 1 (1/0) 

RER Phenotype 4 (2/2) 2 (1/1) 0 2 (1/1) 0 

VO2 Phenotype 7 (1/6) 5 (0/5) 0 2 (1/1) 0 

Weight Phenotype 28 
(11/17) 

10 (9/1) 4 (0/4) 14 (2/12) 0 

Activity Phenotype 6 (6/0) 3 (3/0) 1 (1/0) 2 (2/0) 0 

Adiposity Phenotype 53 
(30/23) 

19 (4/15) 13 (10/3) 21 (16/5) 0 

Heat Output Phenotype 14 (6/8) 3 (3/0) 3 (0/3) 8 (3/5) 0 
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APPENDIX G 

 

D12052701 - 06

OpenStandard Diet with tBHQ and Same With Modifications

Product # D12052701 D12052702 D12052703 D12052704 D12052705 D12052706
OpenStandard Diet Mediterranean Diet Japanese Hunter-Gatherer Western Ketogenic

(Modified)
Ingredient gm gm gm gm gm gm
Casein 200 44 0 0 38.5 160
Soy Protein Isolate, Supro 661 0 0 16 0 0 0
Fish Protein Isolate 0 27 27 152 8.5 0
Egg White 0 9 6 48 55 0
Beef, Cooked 0 61.9 7 126.5 76.9 0
L-Cystine 3 3 3 3 3 3

Corn Starch 641 0 0 0 30 0
Wheat Starch 0 365 0 0 195 0
Rice Starch 0 0 763.5 0 0 0
Potato Starch 0 0 0 333 30 0
Sucrose 0 61 70 60 205 0
Fructose 0 19 6 29 22 0

Cellulose, BW200 75 40.7 10 75 18.2 37.5
Inulin 25 13.5 38 25 6 12.5

Soybean Oil 70 0 10.5 0 0 0
Corn Oil 0 0 0 0 34.4 8
Menhaden Oil (200 ppm tBHQ) 0 13.2 5 24.6 1 8
Trisun Sunflower Oil 0 0 0 0 0 0
Palm Kernal Oil 0 9.9 0 14.7 0 0
Butter, Anhydrous 0 7.4 4.2 0 54.1 161
Lard 0 0 0 0 0 161
Safflower Oil 0 0 0 11.8 0 0
Flaxseed Oil 0 6.1 0 34.4 1 0
Olive Oil 0 117.7 11 0 27.5 0

t-BHQ 0.0049 0.0023 0.0039 0 0.0047 0.0033

Mineral Mix S10026 10 10 10 10 10 10
Dicalcium Phosphate 13 13 13 13 13 13
Calcium Carbonate 5.5 5.5 5.5 5.5 5.5 5.5
Potassium Citrate, 1 H2O 16.5 16.5 16.5 16.5 16.5 16.5

Vitamin Mix V10001 10 10 10 10 10 10
Biotin (1%) 0 0.014 0.014 0.1 0.1 0
Choline Bitartrate 2 2 2 2 2 2

Cholesterol 0 0 0.19 0.27 1.5 1.5

Red Wine Extract 0 0.045 0 0 0 0
Green Tea Extract 0 0 0.215 0 0 0

FD&C Red Dye #5 0 0.05 0 0.025 0 0.025
FD&C Yellow Dye #40 0.05 0 0.025 0.025 0 0
FD&C Blue Dye #1 0 0 0.025 0 0.05 0.025

Total 1071.0549 855.5113 1034.6729 994.42 864.7547 609.5533
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D12052701 - 06

OpenStandard Diet with tBHQ and Same With Modifications

D12052701 D12052702 D12052703 D12052704 D12052705 D12052706
g OpenStandard Diet Mediterranean Diet Japanese Hunter-Gatherer Western Ketogenic
Protein 177.0 115.7 120.8 271.1 140.7 142.2
Carbohydrate 570.3 406.7 689.1 362.1 455.3 3.1
Fat 72.4 172.3 44.6 123.2 139.7 339.9
Cholesterol 0.0 0.21 0.23 0.62 1.81 2.09
Fiber 93.8 50.8 50.0 93.8 22.7 46.9

g%
Protein 16.5 13.5 11.7 27.3 16.3 23.3
Carbohydrate 53.2 47.5 66.6 36.4 52.6 0.5
Fat 6.8 20.1 4.3 12.4 16.2 55.8
Cholesterol 0.0 0.024 0.023 0.063 0.210 0.342
Fiber 8.8 5.9 4.8 9.4 2.6 7.7

kcal
Protein 708 463 483 1084 563 569
Carbohydrate 2281 1627 2757 1448 1821 13
Fat 652 1551 401 1109 1257 3059
Total 3641 3641 3641 3641 3641 3641

kcal%
Protein 19 12.71 13 30 15 16
Carbohydrate 63 44.69 76 40 50 0
Fat 18 42.60 11 30 35 84

g% Contribution to Protein sources
Casein 98.3 33.1 0.0 0.0 23.8 97.9
Soy Protein Isolate, Supro 661 0.0 0.0 11.5 0.0 0.0 0.0
Fish Protein Isolate 0.0 22.2 21.2 53.3 5.7 0.0
Egg White 0.0 6.3 4.0 14.4 31.7 0.0
Beef, Cooked 0.0 35.8 3.9 31.3 36.6 0.0
Rice Starch 0.0 0.0 56.9 0.0 0.0 0.0
L-Cystine 1.7 2.6 2.5 1.1 2.1 2.1

g% Contribution to Carb sources
Corn Starch 100.0 0.0 0.0 0.0 5.9 0.0
Wheat Starch 0.0 80.1 0.0 0.0 38.4 0.0
Rice Starch 0.0 0.0 88.8 0.0 0.0 0.0
Potato Starch 0.0 0.0 0.0 74.7 5.3 0.0
Sucrose 0.0 15.1 10.3 17.0 45.6 0.0
Fructose 0.0 4.7 0.9 8.2 4.9 0.0

Cellulose, BW200 (Insoluble) (g/kg) 70.0 47.6 9.7 75.4 21.0 61.5
Inulin (Soluble) (g/kg) 23.3 15.8 36.7 25.1 6.9 20.5
Total Fiber (g/kg) (includes starch source) 87.5 59.4 48.3 94.3 26.3 76.9

Cholesterol (mg/kg) 37.3 239.8 225.3 627.8 2096.2 3422.9

Red Wine Extract (mg/kg) 0 52.6 0 0 0 0
Green Tea Extract (mg/kg) 0 0 207.8 0 0 0

tBHQ (mg/3641 kcals) 4.9 4.9 4.9 4.9 4.9 4.9
Biotin (mg/3641 kcals) 0.20 0.34 0.34 1.20 1.20 0.20
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APPENDIX H 
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Typical Fatty Acid Profiles of D12052701 - 06 Based on
Data from the Manufacturers of the Fats Listed

D12052701 D12052702 D12052703 D12052704 D12052705 D12052706
OSD Mediterranean Japanese Hunter-Gatherer Western Ketogenic

Ingredient (g) gm gm gm gm gm

Corn Oil 34.4 8
Menhaden Oil, ARBP-F 13.2 5 24.6 1 8
Beef, Cooked 61.9 7 126.5 76.9
Butter, Anhydrous 7.4 4.2 54.1 161
Lard 161
Palm Kernal Oil 9.9 14.7
Olive Oil 117.7 11 27.5
Safflower Oil, USP 11.8
Flaxseed Oil 6.1 34.4 1
Soybean Oil, USP 70 10.5

Total 70 216.2 37.7 212 194.9 338

C2, Acetic 0.0 0.0 0.0 0.0 0.0 0.0
C4, Butyric 0.0 0.2 0.1 0.0 1.7 5.2
C6, Caproic 0.0 0.1 0.1 0.0 1.0 3.1
C8, Caprylic 0.0 0.6 0.0 0.8 0.6 1.8
C10, Capric 0.0 0.6 0.1 0.6 1.4 4.1
C12, Lauric 0.0 4.7 0.1 6.7 1.5 4.7
C14, Myristic 0.0 3.6 0.8 4.9 6.1 18.5
C14:1, Myristoleic 0.0 0.3 0.1 0.3 1.0 2.4
C15:0 0.0 0.1 0.0 0.3 0.1 0.2
C16, Palmitic 7.3 22.1 4.6 14.5 25.9 75.3
C16:1, Palmitoleic 0.0 3.5 0.8 3.6 2.4 6.7
C16:2 0.0 0.2 0.1 0.4 0.0 0.1
C16:3 0.0 0.2 0.1 0.4 0.0 0.1
C16:4 0.0 0.2 0.1 0.4 0.0 0.1
C17:0 0.0 0.2 0.0 0.5 0.2 0.6
C17:1, n-9 0.0 0.2 0.0 0.3 0.2 0.0
C18, Stearic 2.7 6.2 1.5 6.2 10.2 36.9
C18:1, Oleic, n-9 17.0 95.5 12.6 26.2 50.5 96.1
C18:1, Vaccenic, n-7 0.0 0.7 0.1 1.5 0.9 0.0
C18:2, Linoleic, n-6 37.5 17.6 7.3 16.9 26.5 47.9
C18:3, gamma-Linolenic, n- 0.0 0.0 0.0 0.0 0.0 0.0
C18:3, alpha-Linolenic, n-3 5.5 4.4 1.0 19.4 2.0 4.6
C18:4, Stearidonic, n-3 0.0 0.4 0.2 0.8 0.0 0.2
C20, Arachidic 0.0 0.6 0.1 0.1 0.7 1.8
C20:1, n-9 0.0 0.5 0.1 0.5 0.2 1.1
C20:2, Eicosadienoic, n-6 0.0 0.0 0.0 0.1 0.0 1.3
C20:3, n-6 0.0 0.1 0.0 0.2 0.0 0.2
C20:3, n-3 0.0 0.0 0.0 0.0 0.0 0.0
C20:4, Arachidonic, n-6 0.0 0.4 0.1 0.7 0.1 0.6
C20:4, n-3 0.0 0.0 0.0 0.0 0.0 0.0
C20:5, Eicosapentaenoic, n 0.0 1.9 0.7 3.5 0.1 1.1
C21:0 0.0 0.0 0.0 0.0 0.0 0.0
C21:5, n-3 0.0 0.1 0.0 0.2 0.0 0.1
C22, Behenic 0.0 0.0 0.0 0.0 0.0 0.0
C22:1, Erucic 0.0 0.0 0.0 0.1 0.0 0.0
C22:4, Clupanodonic, n-6 0.0 0.0 0.0 0.1 0.0 0.0
C22:5, n-3 0.0 0.4 0.1 0.7 0.0 0.4
C22:5, n-6 0.0 0.0 0.0 0.0 0.0 0.0
C22:6, Docosahexaenoic, n 0.0 1.4 0.5 2.5 0.1 0.8
C24, Lignoceric 0.0 0.1 0.0 0.2 0.0 0.0
C24:1 0.0 0.0 0.0 0.1 0.0 0.0

Total 69.9 167.4 31.7 113.5 133.7 316.3

Research Diets, Inc.

7/18/12
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Typical Fatty Acid Profiles of D12052701 - 06 Based on
Data from the Manufacturers of the Fats Listed

OSD Mediterranean Japanese Hunter-Gatherer Western Ketogenic
Saturated (g) 9.9 39.0 7.6 33.9 49.1 151.3
Monounsaturated (g) 17.0 100.6 13.6 31.9 54.1 106.4
Polyunsaturated (g) 42.9 26.5 10.0 44.8 29.0 57.3

Saturated (%) 14.2 23.3 23.9 29.9 36.7 47.9
Monounsaturated (%) 24.3 60.1 43.0 28.2 40.5 33.6
Polyunsaturated (%) 61.4 15.9 31.6 39.5 21.7 18.1

Total Omega-6 (g) 37.5 18.1 7.5 17.9 26.7 50.1
Total Omega-6 (%) 53.6 10.8 23.6 15.8 20.0 15.9
Total Omega-3 (g) 5.5 8.5 2.6 27.1 2.4 7.2
Total Omega-3 (%) 7.8 5.1 8.1 23.9 1.8 2.3
n6 : n3 Ratio 6.9 2.1 2.9 0.66 11.3 6.9

Research Diets, Inc.

7/18/12
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APPENDIX I 

Uncertainty Analysis Addendum For Chapter 5 

kNN Imputation 

 Values may be missing from a dataset because they are not measured in a 

sample or because they are below the limit of detection.  Imputation methods may be 

used to replace missing values. Missing values in metabolomics data are often replaced 

with some value since it is often accepted that a metabolite may be missing because it 

is below the detection limit of the mass spectrometer. Furthermore, missing values in 

metabolomics data are not well tolerated when performing multivariate analyses, such 

as PLSDA and PCA. The data analyzed in this dissertation used the kNN imputation 

method. 

The original kNN imputation was performed using data that was missing 70% or 

less of metabolite values across samples and averaged 10 neighbors (see chapter 5 for 

results). This follow-up analysis has reduced the number of missing values to 10% or 

less and reduced the number of neighbors from 10 to 4. This resulted in a reduction of 

initial metabolites in the dataset by 33.1%, 26%, and 35.1% for adipose, skeletal 

muscle, and liver tissue with 13.7%, 14%, and 14% of the metabolites for each tissue is 

attributable to knowns (Table I.1). 
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Table I.7: Number of Metabolites Present in Each Raw File Before Imputation 
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Comparison of ANOVA Analyses 

 ANOVA was used to assess the significance of each metabolite for sex, strain, 

and strain-by-sex interaction. The previous analysis determined that there were 85, 10, 

and 2 significant metabolites for strain, sex, and sex-by-strain interaction (Fig. 5.2), 

while the new analysis found 66, four, and one significant metabolites for each factor 

(Fig. I.1). Several metabolites were specific to one analysis for each factor (Fig. I.2). 

Since there were fewer metabolites in the second analysis due to the more stringent 

requirements, some of the metabolites in the first analysis are specific because they are 

no longer present in the second analysis (Table I.2). In adipose tissue six metabolites 

that were significant for strain were removed from the second analysis and in liver tissue 

11 metabolites were removed from the second analysis for strain. 

Comparison of Pathway Analyses 

 Functional pathway analysis was performed to map significant metabolites onto 

KEGG pathways. Several pathways were found in both analyses; however, some 

pathways were unique to each analysis (Table I.3, and Table 5.2). In the first analysis 

there were no significantly altered pathways for sex-by-strain interaction; however, in 

the second analysis sex-by-strain interaction altered pyrimidine metabolism in liver 

tissue. In addition, the number of hits for each pathway that were found in both analyses 

was altered. Purine metabolism, in liver, which was altered by strain, had 20 metabolites 

mapped onto this pathway but in the new analysis 17 metabolites mapped onto this 

pathway.
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Figure I.1: Shared and unique effects of strain on tissue metabolomes. The sets of metabolites 

that differed significantly, based on ANOVA (FDR < 0.05) by strain across tissues, (A), and by sex, 

strain, and sex-by-strain interaction in liver (B), adipose (C), and muscle (D) were visualized for 

shared and factor-specific effects using Venn diagrams. Metabolites that differed significantly for 

strain in adipose (E), muscle (F), and liver (G) were assessed for pairwise comparisons using 

Tukey’s HSD and visualized for shared and specific effects using Venn diagrams.  
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Figure I.2: Venn diagrams depicting overlap of significant metabolites from ANOVA that began 

with up to 70% of the values missing from each metabolite and ANOVA that began with up to 10% 

of the values missing from each metabolite. Comparison of each data analysis was performed for 

sex (A), strain (B), and sex-by-strain (C) for all tissues combined; sex (D), strain (E), and sex-by-

strain (F) for adipose tissue; sex (G), strain (H), sex-by-strain (I) for muscle; and sex (J), strain (K), 

and sex-by-strain (L) for liver tissue. 
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Table I.8: Comparison of Significant Metabolites from ANOVA 
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Table I.9: KEGG Pathway Enrichment of Metabolites Affected by Sex, Strain, and Sex-by-Strain 

Pathways in bold represent pathways also found in chapter 5. 
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Comparison of Correlation Analyses 

 Assessing correlations between metabolite profiles in each tissue and systems 

level energy balance traits revealed that 32, 11, and 51 metabolites were associated 

with one or more phenotypes for adipose, muscle, and liver tissue in the previous 

analysis (Fig. 5.5). There were 24, 11, and 55 metabolites in adipose, muscle, and liver 

tissue associated with one or more phenotypes in the new analysis (Fig. I.3). Many of 

the metabolites that were associated with one or more phenotypes were in both 

analyses; however there were a few metabolites that were specific to each analysis. In 

adipose tissue, nine metabolites were specific to the previous analysis, while one 

metabolite was specific to the new analysis. In muscle, two metabolites were specific to 

the previous analysis and two were specific to the new analysis. In liver, two metabolites 

were specific to the previous analysis and three metabolites were specific to the new 

analysis.  

When comparing correlations that were assessed between and across tissues 

the new analysis had a greater number of metabolites correlated with phenotypes and 

one or more tissues. The previous analysis showed that eight, 15, and 24 metabolites 

were associated with one or more traits and one or more metabolites within or across 

tissues in adipose muscle, and liver tissue. The new analysis showed that 11, 19, and 

30 metabolites were now significantly correlated for adipose, muscle, and liver tissue 

(Fig. I.4). 
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Figure I.3: Correlations between metabolites and system phenotypes.  Pearson correlation was 

used to associate metabolites in adipose (A), muscle (B), and liver (C) with weight, adiposity, and 

metabolic phenotypes. Significant correlations (FDR < 0.05) are represented by an asterisk (*).  
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Figure I.4: Cross-tissue metabolite and phenotype network.  Pearson correlation was used to 

associate metabolites within and across each tissue with weight, adiposity, and metabolic 

phenotypes. Only significant correlations (FDR < 0.05) are shown. To assess relationships within 

and across tissues and phenotypes, metabolites are clustered by their respective tissue or 

phenotype. The size of each node represents the number of edges connected to the node. A red 

line represents positively correlated metabolites, while a blue line represents negatively 

correlated metabolites.  
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Summary 

 Comparing the results from two analyses showed that the level of stringency 

applied to the KNN imputation might result in alteration of the results. The first analysis 

used 10 nearest neighbors and allowed for up to 70% of the samples to be missing from 

each metabolite. The second analysis used 4 nearest neighbors and allowed for up to 

10% of the samples to be missing from each metabolite. Reducing the number of 

neighbors increased the local effects and reduced the chance of averaging values 

across treatments. This may have produced values that were more specific to the 

treatment and less general to the entire population. Caution should be taken when 

determining the number of missing values and the number of neighbors to perform KNN 

imputation as it can impact the results of the data. 
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