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Abstract

This study investigates facility location problems in the presence of facility disruptions. Two

types of problems are investigated. Firstly, we study a facility location problem considering

random disruptions. Secondly, we study a facility fortification problem considering

disruptions caused by random failures and intelligent attacks.

We first study a reliable facility location problem in which facilities are faced with the

risk of random disruptions. In the literature, reliable facility location models and solution

methods have been proposed under different assumptions of the disruption distribution. In

most of these models, the disruption distribution is assumed to be completely known, that

is, the disruptions are known to be uncorrelated or to follow a certain distribution. In

practice, we may have only limited information about the distribution. In this work, we

propose a robust reliable facility location model that considers the worst-case distribution

with incomplete information. Because the model imposes fewer distributional assumptions,

it includes several important reliable facility location problems as special cases. We propose

an effective cutting plane algorithm based on the supermodularity of the problem. For the

case in which the distribution is completely known, we develop a heuristic algorithm called

multi-start tabu search to solve very large instances.
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In the second part of the work, we study an r-interdiction median problem with

fortification that simultaneously considers two types of disruption risks: random disruptions

that happen probabilistically and disruptions caused by intentional attacks. The problem is

to determine the allocation of limited facility fortification resources to an existing network.

The problem is modeled as a bi-level programming model that generalizes the r-interdiction

median problem with probabilistic fortification. The lower level problem, that is, the

interdiction problem, is a challenging high-degree non-linear model. In the literature, only

the enumeration method is applied to solve a special case of the problem. By exploring the

special structure property of the problem, we propose an exact cutting plane method for

the problem. For the fortification problem, an effective logic based Benders decomposition

algorithm is proposed.
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Chapter 1

Introduction

Due to globalization and the widely applied philosophy of lean production, today’s supply

chains are more vulnerable to disruptions; severe consequences occur even if only a few critical

components fail. Facilities are one of the most critical components in supply chain networks.

Facility failure leads to massive negative effects, such as a substantial increase in both service

costs and customer dissatisfaction. These failures can be caused by natural disasters, such as

hurricanes and earthquakes, and intentional or unintentional human actions, such as labor

strikes, fires, malicious cyber-attacks and terrorist strikes.

In response to facility disruption risks, both proactive and reactive mitigation options

can be used to improve supply chain reliability. An ideal network design should implement

and integrate all of these options to make the network risk resilient and cost-effective. One

proactive option is to add redundant facilities in the network design phase such that the

system can still performance well even when some facilities are disrupted. Another option is

to harden or fortify facilities such that they have a smaller chance of being disrupted. The

risk of facility disruption decreases by introducing built-in redundancy, investing to enhance
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facility infrastructure, and assuring rapid recovery from disruption. In this dissertation, we

focus on optimizing the strategic decision of locating and fortifying facilities, as the effects

of disruption can be significantly reduced with optimized decisions at the strategic level.

1.1 Facility Location with Disruption

When designing a supply chain network, one of the most crucial decisions is facility location.

The is a problem often faced by both private firms and the public sectors. For example,

a courier services company must determine where to locate the local stores and sorting

facilities, and city governments must determine locations of schools, hospitals and fire

stations. These decisions directly affect the performance of the networks. Operations

research models have been developed to aid in these decisions.

The simple facility location problem, or the uncapacitated facility location problem

(UFLP), is one of the most well-studied location problems. It can be stated as follows:

given a set of potential facility locations and a set of customers with known demand rates,

one needs to select a subset of these locations at which to set up facilities and determine

customer assignments to minimize total costs. The cost components consist of initial facility

setup costs and day-to-day transportation costs. Figure 1.1 shows a location solution for a

UFLP instance with the 50 largest cities in the U.S. based on 1990 census data. In the UFLP,

the facilities are assumed to be constantly available once they are constructed. However, in

reality, facilities may become unavailable due to disruptive events, such as natural disasters,

terrorist attacks and labor strikes. Although facility failures rarely happen, they can disrupt

the normal operations and impose with high costs. For example, in March of 2000, the fire at
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Figure 1.1: An example of the solution to a facility location problem

the Philips microchip factory in New Mexico, U.S. onsignificantly affected its two customers,

Nokia and Ericsson. The loss of short term revenue is estimated to be at least $400 million

for Ericsson, and the long-term loss was even greater [48]. Other examples, like Hurricane

Katrina in 2005 seriously disrupted national oil and gas production in the Gulf of Mexico,

amounting to nearly 1.4 million barrels lost per day [14], and the Tohoku-Kanto Earthquake

and Tsunami in 2001 caused an estimated $195-305 billion in losses through physical damage

alone [64]. Additional examples can be found in the supply chains literature [16, 88, 78].

The risk of disruption is not a new concept in supply chain management, however, interest

from practitioners and researchers has increased explosively in recent decades. Snyder et al.

[81] give four reasons for this. First, several high-profile events, such as the ones listed above,

attracted considerable public attention. Second, the popularity of the just-in-time philosophy

results in more vulnerable supply chains. Third, because of globalization, companies tend
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to spread their supply chains throughout the world, which increases uncertainty. Lastly, the

topic is reaching critical momentum with the maturation of relevant research.

The need to design supply chain networks that effectively balance efficiency and

robustness requirements motivates this stream of research. We study a reliable version of

UFLP by considering random facility disruptions. In this problem, facility failures have direct

effects on transportation costs. When one facility fails, it loses its entire capacity and the

customers originally assigned to it may have to be served by other working facilities that are

far away, which results in a significant increase in transportation costs. The goal is to design a

reliable and resilient distribution network that operates efficiently in both normal and failure

scenarios. The objective is to minimize setup costs and expected transportation costs. This

problem is referred to as the reliable facility location problem (RFLP). Figure 1.2 shows the

solution of the RFLP assuming the disruption probability of a location is proportional to

its distance from New Orleans. Compared with the location solution given by figure 1.1,

locations near New Orleans are no longer chosen for set-up, and facilities that are far away

with lower disruption probabilities are open.

The RFLP is clearly NP-hard because it generalizes the UFLP. Several models have

been developed in the last decade and both exact and approximation algorithms have been

proposed. However, most RFLP models and algorithms can only deal the problem under

certain assumptions about the nature of the facility failures. For example,

1. The RFLP with the most restrictive assumption that all sites fail with equal probability

and that facility failures are uncorrelated is studied by Snyder and Daskin [82] and Shen

et al. [80].
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Figure 1.2: An example of the location solution considering disruption risks

2. The problem with heterogeneous failure rates and uncorrelated failures is studied by

Cui et al. [24], Shen et al. [80] and Aboolian et al. [1].

3. The problem with heterogeneous failure rates and correlated failures is rarely studied

in the literature. Li and Ouyang [51] address this problem with a continuum

approximation approach and no exact mathematical programming formulation is

provided.

It is still challenging to exactly solve the problem with large scale instances due to

its complex nature. Therefore, there is a need to develop more efficient algorithms for

the general problem. Moreover, in the works mentioned above, the distribution of the

disruptions is assumed to be fully known by the decision maker. However, it is often

challenging to obtain full information on the disruptions distribution. In this work, we

propose a robust RFLP model that can consider different levels of information visibility. 1.

The disruption distribution is completely known; for example, the disruptions are known
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to be uncorrelated or to follow a certain distribution. 2. Only partial information about

the disruption distribution is known. The proposed model minimizes the setup cost and

expected transportation costs under the worst-case distribution. We propose an effective

cutting plane algorithm that exactly solves for the problem. As a special case, the cutting

plane algorithm solves the RFLP in its general form, that is, with heterogeneous failure rates

and correlated failures. We also provide a heuristic algorithm that can solve large instances

of RFLP within a reasonable amount of time.

1.2 r-interdiction Median Problem with Fortification

In supply chain networks, identifying and then fortifying most critical nodes is an effective

way to hedge against disruption risks in the system. The network fortification problem has

gained increasing attention from researchers in the past decades. However, most research

considers only one type of disruption risk, such as probabilistic risk that models natural

disasters, as in [82, 24, 1], or worst-case risk that models man-made attacks, as in [21, 76, 96].

In reality, disruption risks from different sources exist simultaneously. Therefore, we argue

that it is beneficial to have a general model that is able to consider different disruption risks

simultaneously.

The model we present in this work considers a generalized r-interdiction median problem

with fortification (RIMF). The RIMF is first introduced by Church and Scaparra [21]. In the

RIMF, a network of p operating facilities is given. Facilities are assumed to have unlimited

capability such that customers are always served by the nearest facility. There exists a

malicious attacker who seeks the most critical r facilities to attack such that the effect of the
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attack on the network’s performance is maximized. The damage is measured by the increase

in total weighted distance between customers and their nearest operating facility after the

attacks. RIMF solves the problem of allocating protective resources to the most critical q

facility in anticipation of the worst-case loss when r facilities are attacked. In the original

RIMF, it is assumed that an attack on a protected facility has no effect and an attack on an

unprotected facility is successful with certainty.

In reality, a fortified facility may still be disrupted by an attack. Therefore, Zhu et al.

[96] propose the r-interdiction median problem with probabilistic fortification (RIMF-p) in

which any facility, even a protected one, may be disrupted by a successful attack with some

probability. The RIMF-p adds uncertainty in the form of both fortification and interdiction

to the RIMF. We study an extension of the RIMF-p with simultaneous risk of probabilistic

disruption and intentional attacks. The proposed model includes the RIMF-p as a special

case, and the RIMF-p includes the original RIMF and the r-interdiction median (RIM)

problem [19] as special cases. We present a bi-level nonlinear mixed-integer programming

model for the problem. Due to its high degree of nonlinearity, the model is difficult to solve

using standard approaches for bi-level programming models. Even only the lower problem,

that is, the attacker’s problem, is considered, there is no efficient solution method proposed in

the literature. In this dissertation, we present an efficient cutting plane method that exactly

solves the attacker’s problem. For the upper level problem, that is, the network defenders’

problem, we propose solution methods based on the logic-based Benders decomposition

framework.
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1.3 Document Organization

The remainder of this dissertation is organized as follows. Chapter 2 reviews the literatures

on facility location and fortification problems considering disruptions. In Chapter 3, we

study the facility location problem with random disruptions. We present the robust reliable

facility location model for the problem. By proving the supermodularity of the problem, we

propose a cutting plane algorithm for the problem. In addition, a multi-start tabu search

algorithm is proposed for solving large instances. The efficiency of the proposed algorithms

is demonstrated with extensive computational studies. In Chapter 4, we study the RIMF

considering both random disruptions and intentional attacks. We present a bi-level model

for the problem. Algorithms are proposed for solving attacker’s problem and defender’s

problem. Computational studies are performed to test the algorithms’ performance. Finally,

Chapter 5 summaries the contributions of this work and pointing out the future research

directions.
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Chapter 2

Literature Review

In this chapter, we provide an overview of some basic facility location problems that are

relevant to this work in Section 2.1. In Section 2.2, we discuss works related to the facility

location problems considering random disruptions. In Section 2.3, we review the related

literature on location problems with fortification.

2.1 Facility Location Problems

Facility location, as a critical strategic decision, has been an important research topic in the

operations research community for a long time. The systematic study of this problem can

be dated to 1909, when Alfred Weber began to study the problem now known as the Weber

problem. This problem aims to locate a warehouse such that the total distance to customers

are minimized. A vast literature has developed since then. In this section, we review only

some of the core location models.
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Depending on the decision space, these location problems can be classified into two major

categories: continuous location problems, in which a facility can be located at any feasible

point in the plane, and discrete location problems, in which facilities are chosen from a set of

given candidate locations. The Weber problem and its extensions, such as the multisource

Weber problem [59, 25] in which p > 1 facilities in the plane has to be determined, belong

to the first category.

The most well-known discrete location problems are perhaps the p-median problem and

p-center problem introduced by Hakimi [39, 40] in the 1960s. In the p-median problem, one

determines the location of p facilities to minimize the weighted average distance between

facilities and customers, whereas the p-center problem seeks to minimize the maximal

distance. The p-median problem and p-center problem are originally introduced as network

location problems in which customers are treated as nodes in a network, and facilities must

be placed on the network. However, most of the literature studies these problems from a

discrete location perspective because of the following properties: for the p-median problem,

Hakimi [40] shows that an optimum can be found by locating facilities among the nodes of

the network, and for the p-center problem, Minieka [63] proves that an optimal solution can

be found by locating facilities among nodes and a finite number of intersection points on the

edge. These two classical problems have received tremendous attention and enormous work

has been developed for them and their variants, see survey papers [73, 75].

Motivated by the needs of optimal location in the public sector, such as locations of

hospitals and fire stations for which there exist constraints on a maximal distance between

a facility and a served customer, Church and Velle [20] introduce the maximal covering

location problem. Similar to the p-center problem, the maximal covering location examines
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the maximal distance between customers and a facility, but unlike the p-center problem, it

includes a fixed covering radius as an input parameter. The goal is to determine facility

locations such that the number of customers who can be covered within a given radius is

maximized. Farahani et al. [32] summarizes the advances for the covering problem.

The study of UFLP began at a similar time to the p-median and p-center problems in

the 1960s, see [56, 28]. As in the p-median problem, the efficiency of the system is measured

by the weighted distance between customers and facilities. However, unlike the p-median

problem in which the number of open facilities is given as a parameter, in the UFLP, the

number of open facilities becomes an endogenous decision and is a trade-off between fixed

location costs and transportation costs. The UFLP has been studied under different names

in the literature, usually composed of an adjective (uncapaciated, simple, or optimal) and a

substantive (plant, warehouse, facility, or site) followed by the word facility [46]. Extensive

work has been devoted to the UFLP and both exact and heuristic algorithms have been

proposed, (e.g., [23, 29, 18, 5]).

In all of previously mentioned location problems, customers are assigned to an open

facility that minimizes assignment cost. However, in the capacitated facility location

problem (CFLP), an importation extension of the UFLP, capacity limit is considered for

each candidate location. In the CFLP, a customer can be supplied by multiple facilities (e.g.,

Geoffrion and Bride [35], Sridharan [84]) unless single sourcing is required, (e.g., [89, 3]).

The models mentioned above are the most basic location models in the location science.

The complexity of realistic industrial settings gives rise to more sophisticated models, for

example, multi-commodity [71, 13, 79], multi-layer [6, 34, 90], and multi-period [43, 66]
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models. Interested readers are referred to recent review papers written by [70] and Melo

et al. [60].

2.2 Reliable Facility Location Problems

According to Snyder et al. [81], Drezner [26] is the first to consider facility disruptions in

facility location models. The author extends the p-median and the p-center problems by

considering random facility disruptions. These extended models are called the unreliable

p-median problem and the (p, q)-center problem, respectively. In these two models, facilities

are assumed to fail with a known probability. In addition, the probability that a customer is

served by his k-nearest facility is known, which greatly simplifies the problem. The author

proposes neighborhood-search-type heuristic algorithms for both problems.

Snyder and Daskin [82] introduce the RFLP. They propose two reliable facility location

models based on p-median and UFLP. Unlike Drezner [26], instead of assuming that the

probability that a customer is served by his k-nearest facility is given, Their models

calculate these probabilities endogenously. With the assumption that all sites have identical

failure probabilities and that disruptions are uncorrelated, the authors propose a Lagrangian

relaxation algorithm to solve the problems.

One obvious shortcoming of Snyder and Daskin [82]’s model is the assumption of identical

failure probabilities. Researchers have developed models that relax this assumption. One

intuitive approach is to explicitly enumerate all or a sample of scenarios. Snyder and Daskin

[83] develop a p-robust model with a minimum-expected-cost solution with the constraint

that relative regret is no more than 100p% in each scenario. Shen et al. [80] formulate
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the RFLP as a two-stage stochastic programming model and apply the sample average

approximation. However, the number of scenarios grows exponentially with the number of

facilities and the model becomes intractable for even moderate-sized problems.

A more practical approach is to calculate the expectation of transportation costs as a non-

linear term within the model, similar to the approach in Snyder and Daskin [82]. However, it

is significantly more difficult to derive such a term with heterogeneous failure probabilities.

Cui et al. [24] propose a nonlinear mixed integer formulation that allows site-dependent

failures and then present an equivalent linear model of the proposed nonlinear model. A

Lagrangian based algorithm is developed to solve the linear model. They also provide a

continuum approximation model for the problem. Shen et al. [80] propose another nonlinear

integer programming model. They use heuristics to find near optimal solutions. They

also develop a 4-approximation algorithm with the identical failure probability assumption.

Berman et al. [10] study a reliable p-median problem with site-dependent failures and develop

exact algorithms and greedy heuristic algorithms. They also derive the worst-case error

bound for the greedy algorithms. O’Hanley et al. [68] provide an alternative linearization

method for reliable facility location models with site-dependent failure probabilities. They

show that their model is highly compact and requires fewer variables and constraints than

the model proposed by Cui et al. [24]. Aboolian et al. [1] develop algorithms that contains

local search heuristics and a cutting plane procedure for the problem with independent and

heterogeneous failures. They first develop a lower bounding model for the RFLP based on

the Cui et al. [24]’s model. The lower bound can be improved by successive cutting planes

which cut off the solutions that have been explored by local search. They show that their

method outperforms the Lagrangian relaxation algorithm proposed by Cui et al. [24] in both
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execution time and solution quality. They also develop efficient heuristics based on local

search to solve large problem instances.

Location problems with disruptions have also been studied in other contexts. Berman

et al. [11] study a location problem in which a customer does not know whether the facility is

working or not until he or she visits it (incomplete information). The objective is to minimize

the expected customers’ travel costs. Greedy heuristic algorithms are proposed. Berman

et al. [12] generalize the problem studied by Berman et al. [11] by considering correlations

across failure events and derive closed-form analytical results under restricted settings, such

as the 2-facility problem on a unit segment. Zhang et al. [95] study the competitive location

problem and formulate it as a bilevel optimization problem. They propose a variable

neighborhood decomposition search heuristic algorithm to solve the problem. Considering

capacity and disruptions together is rare in literature but not unheard of in the literature.

Gade and Pohl [33] extend the CFLP with facility disruptions. The authors use a sample

average approximation algorithm to solve the problem approximately. A similar problem is

studied by Aydin and Murat [8], who propose a swarm intelligence based sample average

approximation (SIBSAA).

In these works, excepting Berman et al. [11] and the scenario based models [83, 80], the

disruptions are assumed to be uncorrelated. The study of reliable facility location problems

under correlated facility disruptions is still rare in the literature. Li and Ouyang [51] study

the RFLP in which facilities are subject to spatially correlated disruptions that occur with

site-dependent probabilities. They use the continuum approximation approach to estimate

and design the complex system. Lu et al. [55] study a reliable facility location problem in

which disruptions are can be correlated according to an uncertain joint distribution. Instead
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of minimizing the expected costs under all scenarios, they apply distributionally robust

optimization techniques to minimize the expected cost under the worst-case distribution. To

the best of our knowledge, no solution method in the literature is able to solve the RFLP

exactly with general correlated disruptions.

There are related papers on supply chain network design problems in more complex

contexts considering disruption risks. Qi et al. [72] study an integrated supply chain design

problem on a two-echelon supply chain. The disruptions may happen at both echelons. They

describe the facility’s disruption-recovery cycles as a stochastic process with memoryless

exponential distributions. Chen et al. [15] propose an integer programming model for a

reliable version of the joint inventory-location problem. They assume that all open facilities

fail independently with an equal probability. Ahmadi-Javid and Seddighi [2] study a reliable

location-routing problem with random disruptions at both facilities and vehicles. Zhang

et al. [94] study a three-tiered supply chain network design problem considering disruptions,

the risk-pooling effect and economies of scale. The authors develop a Lagrangian-relaxation

based algorithm and a heuristic algorithm.

2.3 Location Problem with Fortification

In most models reviewed in Section 2.2, the facility disruption occurs as a probabilistic

random event. Snyder et al. [81] classify this kind of risk as an exogenous risk that cannot

be affected by the decision-maker’s action and is modeled using stochastic processes. The

objective is to minimize the expected costs under all failure scenarios. These models take

the failure risk into consideration at the supply chain design phase and determine optimal
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facility location. The facility fortification option is absent in most of these models except

those in [54, 50]. Lim et al. [54] study a reliable facility location problem in which both

unreliable and reliable (i.e., those that cannot be disrupted) facilities can be set up. They

formulate the problem as a mixed integer programming model and develop a Lagrangian

relaxation-based solution algorithm. They prove that when all of the failure probabilities of

the unreliable facilities are larger or smaller than certain thresholds, the problem reduces to

the classic UFLP. In the model, each customer is assigned to at most an unreliable facility

and then a reliable facility as a backup. However, this approach might be unrealistic when

an unreliable facility fails but a customer can be served by a closer unreliable facility. Li

et al. [50] extend the problem of Lim et al. [54] by considering a limited fortification budget.

A closely related stream of research studies location problems where the disruption risk

can be mitigated by fortifying facilities. This stream of research originates from the works

of Church et al. [19] and Church and Scaparra [21]. Their model considers the disruption

risks caused by intelligent intentional attacks. In these models, the disruptions are modeled

explicitly by decision variables rather than random events. Snyder et al. [81] classify this

kind of risk as endogenous risk. The objective is to fortify an existing network to minimize

network costs anticipating worst-case attacks.

Church et al. [19] propose two interdiction models: the r-interdiction median problem

(RIM) and the r-interdiction covering problem (RIC). In RIM, the attacker needs to choose r

facilities to interdict among the p existing facilities to maximize the increase in the weighted

distance. Church and Scaparra [21] extend the previous study of the RIM [19] by adding

a level of fortification decision. This problem is referred to as the r-interdiction median

problem with fortification (RIMF). In the RIMF, the defender wants to protect the network
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by fortifying q facilities to minimize costs in the worst-case scenario when the attacker

destroys r unfortified facilities. Scaparra and Church [77] reformulate the model as a maximal

covering problem with precedence constraints,in which the model can provide lower and

upper bounds to the problem. The bounds are then used to reduce the size of the original

model proposed by Church and Scaparra [21]. Scaparra and Church [76] formulate the RIMF

as a bilevel integer programming model and propose a solution method based on a tree search

implicit enumeration (IE) procedure. Aksen et al. [4] study the fortification problem with a

budget constraint, in which the model determines the optimal number of facilities to fortify

instead of using a predetermined number. They assume there is a capacity expansion cost

when a customer is reassigned to a non-interdicted facility. Liberatore et al. [53] consider

the correlation effects between the facilities and that one attack may affect more than one

facility. The facilities being affected may only lose some of their capacity.

Zhu et al. [96] introduce probabilistic factors into the fortification model by assuming

that an attack is successful only when all defense units allocated in the facility have failed

to intercept it. They propose a model that generalizes the RIMF’s bilevel formulation with

probabilistic factors. However, they do not provide an efficient algorithm to solve the lower

level model, and only brute force enumeration is used to find the solution. Zhang et al. [93]

consider random attacks which may be introduced by misplaced attacks or natural disasters.

Their model requires explicitly enumerating all attack patterns and the number of patterns

grows exponentially; as a result, only the most modest instances can be solved.
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Chapter 3

Efficient Solution Methods for Facility

Location Problems with Random

Disruptions

3.1 Problem Definition and Formulation

Consider the problem of locating facilities from a set of potential locations J = {1, ..., |J |}

to serve a set of customer demand aggregation points I = {1, ..., |I|}. Each customer i ∈ I

faces a demand with rate di. The fixed setup cost to open facility j ∈ J is fj and the unit

shipment cost from facility j ∈ J to customer i ∈ I is cij. Furthermore, if the demand of

customer i ∈ I is not served, a unit penalty cost ci0 is incurred. We assume that ci0 ≥ cij

for all i ∈ I and j ∈ J , i.e., any customer should be served as long as there is an available

facility.
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Facilities are unreliable with unexpected random failures. The random vector ξ̃ =

(ξ̃1, ..., ξ̃|J |)T is adopted to represent the failure status of all facilities, where the random

variable ξ̃j ∈ {0, 1} is 1 if facility j is online and 0 if it is disrupted. The set of all possible

realizations of ξ̃ is denoted by

Ξ :=
{
(ξ1, ..., ξ|J |)T | ξj ∈ {0, 1} ∀j ∈ J

}
= {0, 1}|J |.

For any realization ξ ∈ Ξ, let pξ be the corresponding probability, i.e., pξ := Prob(ξ̃ = ξ).

A distribution of ξ̃ can then be represented by a vector p of pξ for all ξ ∈ Ξ. Note that

p has 2|J | components as the cardinality of Ξ is 2|J |. Due to the high dimensionality, it

is often challenging to determine the distribution p of facility failures. Consequently, we

assume that the distribution is partially characterized by n pieces of information. For any

k ∈ {1, ..., n}, the kth piece of information specifies that the probability of all facilities in

set Ak being online and all facilities in set Bk being disrupted is within the interval [q
k
, qk],

i.e., Prob(ξ̃j = 1 ∀j ∈ Ak, ξ̃j = 0 ∀j ∈ Bk) ∈ [q
k
, qk]. Therefore, the distribution p should be

contained in the following set P :

P :=
{
p ∈ [0, 1](2

|J|)
∣∣∣∑ξ∈Ξ|ξj=1 ∀j∈Ak,ξj=0 ∀j∈Bk

pξ ∈ [q
k
, qk] ∀k ∈ {1, ..., n}, ∑

ξ∈Ξ pξ = 1
}
.

To the best of our knowledge, the definition of P generalizes the characterization of the

disruption distribution in any existing work. Some special cases are discussed as follows.

• Stochastic model. The case with a completely known distribution p can be viewed as

P being a singleton defined by 2|J | pieces of information. In this case, the problem is
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written as:

min
S⊆J

∑
j∈S

fj + E[Q(S, ξ̃)]. (3.1)

A special case of the problem where the complete information is given by the statement

that disruptions are independent is study by [82, 80, 24, 1].

• Marginal distribution model. P can be characterized by |J | pieces of information, each

of which specifies the marginal probability for a facility to be online. More specifically,

we have Prob(ξ̃j = 1) = qj for any j ∈ J and hence

P =
{
p ∈ [0, 1](2

|J|)
∣∣∣∑ξ∈Ξ|ξj=1 pξ = qj ∀j ∈ J,

∑
ξ∈Ξ pξ = 1

}
.

Lu et al. [55] consider the same characterization of the disruption probability.

• Moment model. Note that the κth cross moment of the random variables ξ̃j where

j ∈ {j1, ..., jκ} ⊆ J is Ep[
∏jκ

j=j1
ξ̃j] = Prob(ξ̃j = 1 ∀j ∈ {j1, ..., jκ}). Thus, the set

P can be used to represent the set of distribution specified by the moments of ξ̃. In

particular, suppose that the marginal moment of ξ̃j is qj for any j ∈ J , while the cross

moment of ξ̃j1 and ξ̃j2 for any j1, j2 ∈ J and j1 < j2 is qj1j2 . Then the set P specified

by the first two moments can be written as

P =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
p ∈ [0, 1](2

|J|)

∣∣∣∣∣∣∣∣∣∣∣∣

∑
ξ∈Ξ|ξj=1 pξ = qj ∀j ∈ J,∑
ξ∈Ξ|ξj1=ξj2=1 pξ = qj1j2 ∀j1, j2 ∈ J, j1 < j2∑
ξ∈Ξ pξ = 1

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (3.2)
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Based on these available information, we would choose a set S ⊆ J of facilities to be set

up to serve the customers. As all the facilities are uncapacitated, any customer should be

served by the closest open facility that is not disrupted. Therefore, given set S of the open

facilities and realization ξ of the disruption status, the transportation and penalty cost to

serve all customers is

Q(S, ξ) =
∑
i∈I

di min
j∈{j∈S|ξj=1}∪{0}

cij,

where the shortage penalty cost ci0 satisfying ci0 ≥ cij for all i ∈ I and j ∈ J is incurred only

when all the open facilities are disrupted. Recall that the disruption status ξ̃ is uncertain.

If its distribution is known, the expectation of Q(S, ξ̃) should be taken into account when

deciding S. However, the distribution of ξ̃ can only be characterized by the set P . Because

this is a strategic decision, a decision maker may want to consider the worst case expectation

of Q(S, ξ̃) among all distributions in the set P , i.e., maxp∈P Ep[Q(S, ξ̃)]. Also note that a

fixed cost fj is charged to set up facility j ∈ J . As a result, an ideal set S of open facilities

should minimize both the fixed setup cost and the worst-case expected transportation and

penalty cost, which leads to the following robust optimization problem:

P : min
S⊆J

∑
j∈S

fj +max
p∈P

Ep[Q(S, ξ̃)]. (3.3)

Obviously, model (3.3) is a NP-hard problem, as it generalizes the UFLP, which is a

well-known NP-hard problem. In order to design efficient algorithms for this problem, we

next study some properties of model (3.3) in the following subsection.
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3.1.1 Model Properties

Supermodularity in discrete optimization is similar to the convexity. Intuitively, it

demonstrates “increasing returns” and has many applications. It is well-known that the

UFLP is equivalent to minimizing a supermodular function [9]. We next show that this

property can be extended to the expected transportation and penalty cost item Ep[Q(S, ξ̃)],

which is written as E(S,p) for brevity, i.e., E(S,p) := Ep[Q(S, ξ̃)].

Firstly, we recall some well-known results of supermodular set functions [see 65,

Chap.III.3.1]. Let U be a finite set and f a real-valued function on the subsets of set

U . Denote ρe(S) := f(S ∪ {e}) − f(S) as the incremental value of adding an element e to

the set S. We have the following definition and properties of supermodular set functions.

Definition 3.1. A set function f is supermodular if one of the following statements is

satisfied,

(1) f(S) + f(T ) ≤ f(S ∩ T ) + f(S ∪ T ), for all S, T ⊆ U ;

(2) ρe(S) ≤ ρe(T ), for all S ⊆ T ⊆ U and e ∈ U \ T .

Lemma 3.2. A positive linear combination of supermodular functions is supermodular.

A set function f is defined as nonincreasing if f(S) ≥ f(T ), for all S ⊆ T . We have the

following property for nonincreasing supermodular set functions.

Lemma 3.3. If f is a nonincreasing supermodular set function, then f(S) ≥ f(T ) +∑
e∈S\T ρe(T ), for all S, T ⊆ U .

Based on the definition and lemmas above, we can prove the supermodularity and

monotonicity of E(S,p).
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Proposition 3.4. Given p, E(S,p) is supermodular and nonincreasing in S.

Proof: We firstly prove that given a fixed ξ, Q(S, ξ) is supermodular and nonincreasing in

S. For each S ⊆ T ⊆ J and e ∈ J \ T ,

Q(S ∪ {e}, ξ)−Q(S, ξ) =
∑
i∈I

di min
j∈{j∈S∪{e}|ξj=1}∪{0}

cij −
∑
i∈I

di min
j∈{j∈S|ξj=1}∪{0}

cij.

If ξe = 0,

Q(S ∪ {e}, ξ)−Q(S, ξ) = Q(T ∪ {e}, ξ)−Q(T, ξ) = 0,

otherwise, i.e., ξe = 1,

Q(S ∪ {e}, ξ)−Q(S, ξ) =
∑

i∈I di min{0, cie −minj∈{j∈S|ξj=1}∪{0} cij}

≤ ∑
i∈I di min{0, cie −minj∈{j∈T |ξj=1}∪{0} cij}

= Q(T ∪ {e}, ξ)−Q(T, ξ).

Therefore Q(S, ξ) is supermodular in S according to Definition 3.1. Furthermore, we have

Q(S ∪ {e}, ξ) ≤ Q(S, ξ), and thus Q(S, ξ) with fixed ξ is nonincreasing and supermodular

in S.

We next consider E(S,p), i.e., the expected transportation and penalty cost. As the

entries of p is finite, E(S,p) can be written as E(S,p) =
∑

ξ∈Ξ Q(S, ξ)pξ. Note that pξ is

nonnegative. Thus E(S,p) is supermodular and nonincreasing in S because of Lemma 3.2

and the fact that, a positive linear combination of nonincreasing functions is nonincreasing.

This completes the proof.
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Note that Q(S, ξ) in our problem is essentially the same as h(x, ξ) in [55], in which x

denotes the vector of facility location decisions and ξ denotes the disruption scenario. They

proved that h(x, ξ) is supermodular in S(ξ) = {j ∈ J |ξj = 1}, which is the set of online

facilities depending on the disruption scenario ξ. Different from their work, Proposition 3.4

proves that Q(S, ξ) is supermodular in S, which is the decision, i.e., the set of facilities

decided to open.

We further notice that Proposition 3.4 does not rely on the independence of disruptions.

Therefore, the solution methods developed in next section, which are based on Proposition

3.4, can handle the correlated disruptions as well.

3.2 Solution Methods

In this section, we first derive the cutting plane algorithm framework for solving robust

model (3.3). Since the stochastic model (3.1) is a special case of the robust model (3.3), the

algorithm is readily applicable to solve model (3.1). Then, we propose a multi-start tabu

search algorithm for solving model (3.1).

3.2.1 An Exact Cutting Plane Algorithm

By introducing a continuous variable η to represent the worst-case expected transportation

and penalty cost, we can write model (3.3) as,

P : min
S⊆J

∑
j∈S fj + η

s.t. η ≥ E(S,p), ∀p ∈ P.

(3.4)
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Given p ∈ P , for the nonincreasing and supermodular function E(S,p) in S, we define

ρj(S,p) := E(S ∪{j},p)−E(S,p), representing the incremental value when involving node

j into S, similarly as in Definition 3.1. According to Contreras and Fernández [22], we have

the following theorem, which can be derived from Lemma 3.3.

Theorem 3.5. Given S ⊆ J and p ∈ P , consider a real number η ∈ R and a set K := {η ∈

R|η ≥ E(T,p) +
∑

j∈S\T ρj(T,p), ∀T ⊆ J}. Then η ∈ K if and only if η ≥ E(S,p).

Based on Theorem 3.5, model (3.3) can be written as,

P : min
S⊆J

∑
j∈S fj + η (3.5a)

s.t. η ≥ E(T,p) +
∑

j∈S\T ρj(T,p), ∀T ⊆ J,p ∈ P. (3.5b)

Model (3.5) contains an exponential number of constraints, as constraints (3.5b) should

be satisfied for all the subsets of J and p in P . It is impractical to directly solve even a

problem with moderate size. For example, if |J | = 100, the quantity of all the subsets of J

is 2100 ≈ 1.2676506× 1030.

Fortunately, the cutting plane approach can be applied to efficiently solve this problem.

Generally speaking, to implement the cutting plane approach, we start from solving the

relaxed problem with only a subset of constraints. Then, we identify the violated constraints

by solving the separation problem, and solve the relaxed problem again with these violated

constraints involved. These steps repeat and continue, until no violated constraint is found.

Given S, the separation problem of constraints (3.5b), denoted as Zsep(S), is obtained

by maximizing the right-hand side of constraints (3.5b) over all T ⊆ J and p ∈ P , or
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equivalently, by maximizing the right-hand side of the constraints in model (3.4) over all

p ∈ P , i.e.,

Zsep(S) = max
p∈P,T⊆J

{
E(T,p) +

∑
j∈S\T ρj(T,p)

}
= max

p∈P
max
T⊆J

{
E(T,p) +

∑
j∈S\T ρj(T,p)

}
= max

p∈P
E(S,p),

where the second line comes from the equivalent transformation, and the third line comes

from Lemma 3.3 and Proposition 3.4, or more specifically, as E(S,p) is nonincreasing and

supermodular in S, we have E(S,p) ≥ E(T,p) +
∑

j∈S\T ρj(T,p), for all T ⊆ J .

The detailed steps of the cutting plane algorithm is as follows.

Step 1 Consider the relaxation of model (3.5), denoted as RP , with only a subset of

constraints (3.5b).

Step 2 Solve RP and obtain the optimal solution (η∗, S∗).

Step 3 Solve the separation problem Zsep(S
∗) = maxp∈P E(S∗,p). Obtain the optimal

solution p∗ and the optimal objective value Z∗
sep(S

∗) = E(S∗,p∗). If η∗ < E(S∗,p∗),

add constraint η ≥ E(S∗,p∗) +
∑

j∈S\S∗ ρj(S
∗,p∗) into RP , and then go to Step

2; otherwise, i.e., η∗ ≥ E(S∗,p∗), terminate the algorithm and output the current

solution (η∗, S∗) as the optimal solution for model (3.5).

Note that in Step 3 above, we claim that η∗ ≥ E(S∗,p∗) indicates the optimality of the

current solution (η∗, S∗). This is because

η∗ ≥ E(S∗,p∗) = max
p∈P

E(S∗,p),
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where the equality sign comes from the fact that p∗ is the optimal solution of the separation

problem. Thus we have

η∗ ≥ E(S∗,p), ∀p ∈ P,

i.e., all the constraints in model (3.4) are satisfied, or equivalently, no violated constraint

can be found for the current solution (η∗, S∗), and therefore (η∗, S∗) is optimal.

For this cutting plane algorithm, we have the following theorem.

Theorem 3.6. The cutting plane algorithm solves model (3.5) to optimality within finite

iterations.

Proof: An upper bound of the number of iterations of the cutting plane algorithm is

the number of J ’s subsets, which is finite, and thus the algorithm terminates within finite

iterations.

Furthermore, as P is a minimization problem, the objective value of RP provides

a lower bound to model (3.3), and any solution (η∗, S∗) to RP always satisfies η∗ ≤

maxp∈P E(S∗,p). In Step 3, when the algorithm terminates with the solution (η∗, S∗),

we have η∗ ≥ maxp∈P E(S∗,p). Thus η∗ = maxp∈P E(S∗,p), and an optimal solution is

obtained when the algorithm terminates.

Remark: The cutting plane procedure can be implemented using the lazy constraint

callback provided by CPLEX. The solver automatically checks if there exists any super-

modular constraints that are violated, when an integer solution has been identified. This

implementation automatically takes the advantage of a warm start. In our preliminary

computational experiment, it speeds up the solution time by about several times when

compared to the procedure without lazy constraint callback.
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The relaxed problem RP in Step 2 of the cutting plane algorithm is a mixed integer

programming with moderate number of constraints, thus RP can be solved efficiently by

commercial solver like CPLEX. However, because the distribution set P is generally defined,

in some cases the separation problem Zsep(S
∗) in Step 3 of the cutting plane algorithm could

be a linear programming problem with exponential number of decision variables, which is

not an easy problem to be solved. In the following subsection 3.2.1, we will discuss the

approach to solve this separation problem, and the detailed algorithmic steps to formulate

the supermodular cut η ≥ E(S∗,p∗) +
∑

j∈S\S∗ ρj(S
∗,p∗) are presented in subsection 3.2.1.

Solving the Separation Problem

Because the separation problem Zsep(S) contains exponential number of variables, we next

apply the column generation approach to solve it efficiently.

With the general definition of P , the separation problem Zsep(S) = maxp∈P E(S,p) can

be written as,

Zsep(S) = max
pξ≥0

∑
ξ∈Ξ Q(S, ξ)pξ

s.t.
∑

ξ∈Ξ pξ = 1,∑
ξ∈Ξ|ξj=1 ∀j∈Ak,ξj=0 ∀j∈Bk

pξ ≤ qk, ∀k = 1, ..., n,

−∑
ξ∈Ξ|ξj=1 ∀j∈Ak,ξj=0 ∀j∈Bk

pξ ≤ −q
k
, ∀k = 1, ..., n,

(3.6)

where the constraints are from the definition of P . Define the dual variables of the constraints

in model (3.6) respectively as α, βk and β
k
for all k = 1, ..., n, and then the dual problem of
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model (3.6) is as follows,

ZD
sep(S) = min

α,β,β
α +

∑n
k=1(qkβk − q

k
β
k
)

s.t. α +
∑

k∈{1,...,n}|ξj=1 ∀j∈Ak,ξj=0 ∀j∈Bk
(βk − β

k
) ≥ Q(S, ξ), ∀ξ ∈ Ξ,

βk ≥ 0, β
k
≥ 0, ∀k = 1, ..., n,

where β and β are respectively the vectors of βk and β
k
. The corresponding pricing problem

(also known as the reduce cost), denoted as RC(S), is as follows,

RC(S) = max
ξ∈Ξ

⎧⎪⎪⎨⎪⎪⎩Q(S, ξ)− α−
∑

k∈{1,...,n}|
ξj=1 ∀j∈Ak,ξj=0 ∀j∈Bk

(βk − β
k
)

⎫⎪⎪⎬⎪⎪⎭ .

Substitute Q(S, ξ) and conduct equivalent reformulation, then RC(S) can be further written

as,

RC(S) = max
ξ∈Ξ

{∑
i∈I

di min
j∈{j∈S|ξj=1}∪{0}

cij − α−
n∑

k=1

(βk − β
k
)
∏
j∈Ak

ξj
∏
j′∈Bk

(1− ξj′)

}
. (3.7)

For example, given P in (3.2), which is defined by the first two moments of ξ̃, the

corresponding pricing problem to solve the separation problem is

RC(S) = max
ξ∈Ξ

{∑
i∈I

di min
j∈{j∈S|ξj=1}∪{0}

cij − α−
∑
j∈J

βjξj −
∑

j1,j2∈J,j1<j2

βj1j2ξj1ξj2

}
. (3.8)

Here, βj and βj1j2 are the dual variables corresponding to the first and second moments

constraints, i.e., the first two constraints in (3.2), respectively.

For the pricing problem RC(S), we have the following proposition.
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Proposition 3.7. Model (3.7) is NP-hard.

Proof: Consider model (3.8), which is a special case of model (3.7). It is sufficient to show

that the weighted MAX CUT problem, a well-known NP-hard problem, can be reduced to

model (3.8) in polynomial time.

The weighted MAX CUT problem is formally defined as follows: Given a simple graph

G = (V,E) and a weight wij ∈ Z+ for each edge (i, j) ∈ E, partition V into disjoint sets V1

and V2 such that the sum of the weights of the edges between V1 and V2 is maximized. Let

wij = 0 for any (i, j) /∈ E. It can be formulated as

max
yi∈{−1,1}

{
1

4

∑
i,j∈V,i �=j

wij(1− yiyj)

}
,

where yi = 1 if i ∈ V1 and yi = −1 if i ∈ V2.

Consider an instance of model (3.8) where cij = ci0 for all i ∈ I and j ∈ J . Set

βj2j1 := βj1j2 for all j1, j2 ∈ J such that j1 < j2. Model (3.8) can be written as

RC(S) = max
ξj∈{0,1}

{∑
i∈I

dici0 − α−
∑
j∈J

βjξj − 1

2

∑
j1,j2∈J,j1 �=j2

βj1j2ξj1ξj2

}
.
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Define a new decision variable xj := 2ξj − 1, i.e., ξj = (xj + 1)/2 for any j ∈ J . We have

xj ∈ {−1, 1} for all j ∈ J and

RC(S) = max
xj∈{−1,1}

{∑
i∈I

dici0 − α−
∑
j∈J

βj · xj + 1

2
− 1

2

∑
j1,j2∈J,j1 �=j2

βj1j2 ·
xj1 + 1

2
· xj2 + 1

2

}

= max
xj∈{−1,1}

{(∑
i∈I

dici0 − α− 1

2

∑
j∈J

βj − 1

8

∑
j1,j2∈J,j1 �=j2

βj1j2

)

−
∑
j∈J

(
1

2
βj +

1

4

∑
j′∈J,j′ �=j

βjj′

)
· xj −

∑
j1,j2∈J,j1 �=j2

1

8
βj1j2xj1xj2

}
.

Suppose that J = V and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

8
βj1j2 =

1

4
wj1j2 , ∀j1, j2 ∈ J, j1 �= j2,

1

2
βj +

1

4

∑
j′∈J,j′ �=j

βjj′ = 0, ∀j ∈ J,

∑
i∈I

dici0 − α− 1

2

∑
j∈J

βj − 1

8

∑
j1,j2∈J,j1 �=j2

βj1j2 =
1

4

∑
j1,j2∈J,j1 �=j2

wj1j2 ,

i.e.,

βj1j2 = 2wj1j2 ∀j1, j2 ∈ J, j1 �= j2, βj = −
∑

j′∈J,j′ �=j

wjj′ ∀j ∈ J, α =
∑
i∈I

dici0.

It is straightforward that this specific instance of RC(S) is equivalent the weighted MAX

CUT problem.

To implement the column generation approach, the pricing problem need to be solved for

many times in order to identify effective columns, or decision variables, thus the efficiency

of solving the pricing problem has a significant impact on the efficiency of the whole

algorithm. Although the pricing problem (3.7) is proved to be NP-hard, indicating that no
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polynomial algorithm exists for it, we can instead reformulate it into an equivalent integer

programming with moderate number of decision variables and constraints, which can be

solved satisfactorily by commercial solvers like CPLEX. The equivalent reformulation is

presented in the following proposition.

Proposition 3.8. Let Ak = {a1k, ..., a|Ak|
k } and Bk = {b1k, ..., b|Bk|

k } for any k ∈ {1, ..., n}.

Then model (3.7) is equivalent to

RC(S) = max
ξ∈Ξ,

π,λ,μ,ν

∑
i∈I

diπi − α−
∑
k∈K�

(βk − β
k
)λk +

∑
k∈K⊕

(βk − β
k
)

⎛⎝−1 +

|Ak|∑
m=1

μm
k +

|Bk|∑
m=1

νm
k

⎞⎠
s.t. πi ≤ cijξj + ci0(1− ξj), ∀i ∈ I, j ∈ S,

λk ≤ ξj, ∀k ∈ K	, j ∈ Ak,

λk ≤ 1− ξj, ∀k ∈ K	, j ∈ Bk,

μm
k ≤ ξj, ∀k ∈ K⊕,m ∈ {2, ..., |Ak|}, j ∈ {a1k, ..., am−1

k },

μm
k ≤ 1− ξamk , ∀k ∈ K⊕,m ∈ {1, ..., |Ak|},

νm
k ≤ 1− ξj, ∀k ∈ K⊕,m ∈ {2, ..., |Bk|}, j ∈ {b1k, ..., bm−1

k },

νm
k ≤ ξj, ∀k ∈ K⊕,m ∈ {1, ..., |Bk|}, j ∈ Ak ∪ {bmk },

(3.9)

where π, λ, μ and ν are respectively the vectors of πi, λk, μ
m
k and νm

k ,

K	 := {k ∈ {1, ..., n} | βk − β
k
< 0} and K⊕ := {k ∈ {1, ..., n} | βk − β

k
> 0}.
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Proof: Let πi represent the term minj∈{j∈S|ξj=1}∪{0} cij for any i ∈ I. We can write model

(3.7) as

RC(S) = max
ξ∈Ξ,π

∑
i∈I diπi − α−∑n

k=1(βk − β
k
)
∏

j∈Ak
ξj

∏
j′∈Bk

(1− ξj′)

s.t. πi ≤ cijξj + ci0(1− ξj), ∀i ∈ I, j ∈ S.

Consider the term −(βk − β
k
)
∏

j∈Ak
ξj

∏
j′∈Bk

(1 − ξj′) for any k ∈ {1, ..., n} in the

objective function.

Case 1: Suppose that βk−β
k
< 0, i.e., k ∈ K	. We can introduce a new decision variable

λk to represent
∏

j∈Ak
ξj

∏
j′∈Bk

(1− ξj′). Then the term −(βk − β
k
)
∏

j∈Ak
ξj

∏
j′∈Bk

(1− ξj′)

can be replaced with −(βk − β
k
)λk by adding the constraints

λk ≤ ξj, ∀j ∈ Ak and λk ≤ 1− ξj, ∀j ∈ Bk.

Case 2: Suppose that βk − β
k
> 0, i.e., k ∈ K⊕. Note that

−
∏
j∈Ak

ξj = −
a
|Ak|−1

k∏
j=a1k

ξj

(
1− (1− ξ

a
|Ak|
k

)
)
= −

a
|Ak|−1

k∏
j=a1k

ξj +

a
|Ak|−1

k∏
j=a1k

ξj(1− ξ
a
|Ak|
k

) = · · ·

= − ξa1k + ξa1k(1− ξa2k) + · · ·+
a
|Ak|−1

k∏
j=a1k

ξj(1− ξ
a
|Ak|
k

) = −1 + (1− ξa1k) +

|Ak|∑
m=2

am−1
k∏
j=a1k

ξj(1− ξamk )
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and

−
∏
j′∈Bk

(1− ξj′) = −
b
|Bk|−1

k∏
j′=b1k

(1− ξj′)(1− ξ
b
|Bk|
k

) = −
b
|Bk|−1

k∏
j′=b1k

(1− ξj′) +

b
|Bk|−1

k∏
j′=b1k

(1− ξj′)ξb|Bk|
k

= · · ·

= − 1 + ξb1k + (1− ξb1k)ξb2k + · · ·+
b
|Bk|−1

k∏
j′=b1k

(1− ξj′)ξb|Bk|
k

= −1 + ξb1k +

|Bk|∑
m=2

bm−1
k∏

j′=b1k

(1− ξj′)ξbmk ,

which yields

−
∏
j∈Ak

ξj
∏
j′∈Bk

(1− ξj′) = −
∏
j∈Ak

ξj +
∏
j∈Ak

ξjξb1k +

|Bk|∑
m=2

∏
j∈Ak

ξj

bm−1
k∏

j′=b1k

(1− ξj′)ξbmk

= − 1 + (1− ξa1k) +

|Ak|∑
m=2

am−1
k∏
j=a1k

ξj(1− ξamk ) +
∏
j∈Ak

ξjξb1k +

|Bk|∑
m=2

∏
j∈Ak

ξj

bm−1
k∏

j′=b1k

(1− ξj′)ξbmk .

Define the new decision variables μ1
k, μ

m
k for any m = 2, ..., |Ak|, ν1

k , and νm
k for any m =

2, ..., |Bk|, which represent the terms

1− ξa1k ,

am−1
k∏
j=a1k

ξj(1− ξamk ),
∏
j∈Ak

ξjξb1k , and
∏
j∈Ak

ξj

bm−1
k∏

j′=b1k

(1− ξj′)ξbmk ,

respectively. Under the constraints

μm
k ≤ ξj, ∀m ∈ {2, ..., |Ak|}, j ∈ {a1k, ..., am−1

k },

μm
k ≤ 1− ξamk , ∀m ∈ {1, ..., |Ak|},

νm
k ≤ 1− ξj, ∀m ∈ {2, ..., |Bk|}, j ∈ {b1k, ..., bm−1

k },

νm
k ≤ ξj, ∀m ∈ {1, ..., |Bk|}, j ∈ Ak ∪ {bmk },
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we can replace the term −(βk − β
k
)
∏

j∈Ak
ξj

∏
j′∈Bk

(1− ξj′) in the objective function with

(βk − β
k
)

⎛⎝−1 +

|Ak|∑
m=1

μm
k +

|Bk|∑
m=1

νm
k

⎞⎠ .

Proposition 3.8 reformulates the pricing problem RC(S) in (3.7) as the linear integer

program in (3.9), which is ready to be solved by any commercial IP solver, e.g., CPLEX.

Although model (3.9) has more decision variables and constraints than model (3.7), its

numbers of variables and constraints are

|J |+ |I|+ |K	|+
∑
k∈K⊕

|Ak|+
∑
k∈K⊕

|Bk| ≤ |I|+ |J |+
n∑

k=1

(|Ak|+ |Bk|) ≤ |I|+ (n+ 1)|J |

and

|I||S|+
∑
k∈K�

|Ak|+
∑
k∈K�

|Bk|+
∑
k∈K⊕

|Ak|∑
m=2

(m− 1) +
∑
k∈K⊕

|Ak|+
∑
k∈K⊕

|Bk|∑
m=2

(m− 1)

+
∑
k∈K⊕

|Bk|∑
m=1

(|Ak|+ 1)

≤ |I||J |+
n∑

k=1

|Ak|∑
m=2

(m− 1) +
n∑

k=1

|Ak|+
n∑

k=1

|Bk|∑
m=2

(m− 1) +
n∑

k=1

|Bk|∑
m=1

(|Ak|+ 1)

= |I||J |+
n∑

k=1

1

2
|Ak|(|Ak| − 1) +

n∑
k=1

|Ak|+
n∑

k=1

1

2
|Bk|(|Bk| − 1) +

n∑
k=1

(|Ak|+ 1)|Bk|

= |I||J |+
n∑

k=1

1

2

(
|Ak|2 − |Ak|+ 2|Ak|+ |Bk|2 − |Bk|+ 2|Ak||Bk|+ 2|Bk|

)
= |I||J |+

n∑
k=1

1

2

(
|Ak|2 + 2|Ak||Bk|+ |Bk|2 + |Ak|+ |Bk|

)
= |I||J |+

n∑
k=1

1

2
(|Ak|+ |Bk|+ 1)(|Ak|+ |Bk|) ≤ |I||J |+ n

2
|J |(|J |+ 1)

35



respectively, and hence are still polynomial in the input size, i.e., |I|, |J | and n.

As an illustration of Proposition 3.8, we consider P in (3.2), which is defined by the first

two moments of ξ̃. The corresponding RC(S) in (3.8) can be reformulated as

RC(S) = max
ξ∈Ξ,
π,λ,μ

∑
i∈I

diπi − α−
∑
j∈J

βjξj −
∑

j1,j2∈J,j1<j2,
βj1j2

<0

βj1j2λj1j2 +
∑

j1,j2∈J,j1<j2,
βj1j2

>0

βj1j2 (−ξj1 + μj1j2)

s.t. πi ≤ cijξj + ci0(1− ξj), ∀i ∈ I, j ∈ S,

λj1j2 ≤ ξj1 , ∀j1, j2 ∈ J, j1 < j2, βj1j2 < 0,

λj1j2 ≤ ξj2 , ∀j1, j2 ∈ J, j1 < j2, βj1j2 < 0,

μj1j2 ≤ 1− ξj2 , ∀j1, j2 ∈ J, j1 < j2, βj1j2 > 0,

μj1j2 ≤ ξj1 , ∀j1, j2 ∈ J, j1 < j2, βj1j2 > 0.

(3.10)

Note, for this special case, there exists a simplified formula as follows

RC(S) = max
ξ∈Ξ,
π,λ

∑
i∈I

diπi − α−
∑
j∈J

βjξj −
∑

j1,j2∈J,j1<j2

βj1j2λj1j2

s.t. πi ≤ cijξj + ci0(1− ξj), ∀i ∈ I, j ∈ S,

λj1j2 ≤ ξj1 , ∀j1, j2 ∈ J, j1 < j2,

λj1j2 ≤ ξj2 , ∀j1, j2 ∈ J, j1 < j2,

λj1j2 ≥ ξj1 + ξj2 − 1, ∀j1, j2 ∈ J, j1 < j2.

(3.11)

On Generating Initial Columns

Column generation algorithm starts with a group of initial columns such that the restricted

master problem is feasible. For some problems, it is straightforward to find such columns.

For example, one can use a set of all singletons as initial columns for a set covering problem.

However, for this problem, it is difficult to directly construct a feasible set of columns except
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for some special cases, such as the marginal model, see [55]. Actually, if P is not properly

given, it may happen that no distribution can satisfy P . Next, we show a method to

generate initial columns or prove such columns not exist by using the cross moment model

as an example, i.e., P is given by (3.2). This method adopts the same idea of two phase

simplex method.

The separation problem Zsep(S) for the cross moment model can be rewritten as,

Zsep(S) = max
pξ≥0

∑
ξ∈Ξ Q(S, ξ)pξ

s.t.
∑

ξ∈Ξ pξ = 1,∑
ξ∈Ξ|ξj=1 pξ = qj ∀j ∈ J,∑
ξ∈Ξ|ξj1=ξj2=1 pξ = qj1j2 ∀j1, j2 ∈ J, j1 < j2.

(3.12)

We construct a first phase master problem, which considers an arbitrary subset of columns

as follows

MP� = min
pξ≥0,

α‡≥0,β‡≥0,

α‡ +
∑

j∈J |ξj=1 β
‡
j +

∑
j1,j2∈J |j1<j2,ξj1=ξj2=1 β

‡
j1j2

s.t.
∑

ξ∈Ξ̂ pξ + α‡ = 1,∑
ξ∈Ξ̂|ξj=1 pξ + β‡

j = qj ∀j ∈ J,∑
ξ∈Ξ̂|ξj1=ξj2=1 pξ + β‡

j1j2
= qj1j2 ∀j1, j2 ∈ J, j1 < j2,

(3.13)

where α‡, β‡
j and β‡

j1j2
are nonnegative artificial variables corresponding to each constraint

of the model.

There are two cases when solving MP�:
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(i) MP� = 0, and we find a set of initial columns.

(ii) MP� > 0. Then we solve pricing problem W , which can be written as:

W = min
ξ∈Ξ

⎧⎨⎩α† +
∑

j∈J |ξj=1

β†
j +

∑
j1,j2∈J |j1<j2,ξj1=ξj2=1

β†
j1j2

⎫⎬⎭ ,

, where α†, β†
j and β†

j1j2
represent the corresponding duals obtained by solving MP�. Similar

to (3.11), W can be solved by following integer programming model:

W = min
ξ,λ

α† +
∑

j∈J β
†
jξj +

∑
j1,j2∈J,j1<j2

β†
j1j2

λj1j2

λj1j2 ≤ ξj1 , ∀j1, j2 ∈ J, j1 < j2,

λj1j2 ≤ ξj2 , ∀j1, j2 ∈ J, j1 < j2,

λj1j2 ≥ ξj1 + ξj2 − 1, ∀j1, j2 ∈ J, j1 < j2,

(3.14)

If W < 0, we add corresponding column to MP�, and repeat the process. If W ≥ 0,

then the problem Zsep(S) is infeasible for any S.

Formulating the Supermodular Cut

Suppose that S∗ and p∗ are given. The corresponding cut η ≥ E(S∗,p∗)+
∑

j∈S\S∗ ρj(S
∗,p∗)

can be constructed by Algorithm 1, in which variables cost and cost(j) respectively denote

E(S∗,p∗) and E(S∗ ∪ {j},p∗). As the number of non-zero items in p∗ is O(n), the

computational complexity of Algorithm 1 is O(n|I||J |).

For some special cases with further assumptions about the disruption probabilities,

such that the conditional disruption probabilities can be calculated in O(1) whereas n is

significantly larger than |J |, we propose a more efficient Algorithm 2. Several examples fall
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Algorithm 1 Construct a supermodular cut corresponding to S∗ and p∗

Input: A set of facilities S∗ and a disruption distribution p∗.
Output: A supermodular cut, i.e., η ≥ E(S∗,p∗) +

∑
j∈S\S∗ ρj(S

∗,p∗)
1: cost ← 0, cost(j) ← 0 for all j ∈ J \ S∗

2: for each ξ ∈ Ξ such that p∗ξ > 0 do
3: Q ← 0, Q(j) ← 0 for all j ∈ J \ S∗

4: for each i ∈ I do
5: cmin ← ci0
6: for each j ∈ S∗ such that ξj = 1 do
7: cmin ← min{cmin, cij}
8: end for
9: Q ← Q+ dicmin

10: for each j ∈ J \ S∗ do
11: if ξj = 1 then
12: Q(j) ← Q(j) + di min{cmin, cij}
13: else
14: Q(j) ← Q(j) + dicmin

15: end if
16: end for
17: end for
18: cost ← cost+ p∗ξQ, cost(j) ← cost(j) + p∗ξQ(j) for all j ∈ J \ S∗

19: end for
20: return the supermodular cut η ≥ cost+

∑
j∈S\S∗(cost(j)− cost)
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into this category, including the case in which ξ̃j for all j ∈ J are independently distributed

as assumed in [1], and the case in which the correlations of disruptions are induced from

shared hazard exposure and follow certain known pattern as assumed in [51].

In Algorithm 2, variable γ denotes the joint disruption probability of facilities j1, ..., jt,

that is, Prob(ξj1 = 0, ..., ξjt = 0). Step A of Algorithm 2 is to sort a list of at most

|J | facilities for |I| times; therefore, Step A runs in O(|I||J | log |J |). Furthermore, if the

conditional probability Prob(ξjt = 0|ξj1 = 0, ..., ξjt−1 = 0) can be obtained in O(1), Step B

and Step C of Algorithm 2 both run in O(|J |). Thus Lines 5-11 run in O(|I||J |), and Lines

12-22 run in O(|I||J |2). In summary, Algorithm 2 runs in O(|I||J | log |J |+ |I||J |+ |I||J |2),

which is in the order of O(|I||J |2), and Algorithm 2 is more efficient than Algorithm 1.

3.2.2 A Multi-Start Tabu Search Algorithm

For RFLP, i.e., problem (3.1), although the cutting plane algorithm is able to find the

optimal solution of the problem, the computational time grows tremendously with the size

of the problem. This motivates us to develop an efficient heuristic algorithm in order to find

high quality solutions for large scale problem within an acceptable amount of time.

Tabu search algorithm [36, 37], as an efficient method to solve combinatorial optimization

problem, has been shown to be very successful on solving discrete location problems [5, 85,

62, 86, 30, 41]. The general idea of the tabu search algorithm is: Based on a current solution,

search its neighbors, and determine the best one among all the neighbors as the candidate

solution (and also as the current solution) with the consideration of tabu list and aspiration

criterion. Update the tabu list by adding the candidate solution and removing some other
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Algorithm 2 Construct a supermodular cut corresponding to S∗ and p∗

Input: A set of facilities S∗ and a disruption distribution p∗.
Output: A supermodular cut, i.e., η ≥ E(S∗,p∗) +

∑
j∈S\S∗ ρj(S

∗,p∗)
1: for each customer i ∈ I do � Step A (Lines 1-3)
2: Sort facilities j ∈ S∗ and the emergency facility j = 0 in the nondecreasing order of

their distances to customer i. Let Li = {j1, ..., j|S∗|+1} be the list of indexes of facilities
satisfying cij1 ≤ ... ≤ cij|S∗|+1

.
3: end for
4: cost ← 0, cost(j) ← 0 for all j ∈ J\S∗

5: for each customer i ∈ I do
6: γ ← 1
7: for jt ∈ Li, i.e.,t = 1, ..., |S∗|+ 1 do � Step B (Lines 7-10)
8: cost ← cost+ γ × (1− Prob(ξjt = 0|ξj1 = 0, ..., ξjt−1 = 0))× dicijt
9: γ ← γ × Prob(ξjt = 0|ξj1 = 0, ..., ξjt−1 = 0)
10: end for
11: end for
12: for each j ∈ J\S∗ do
13: for each customer i ∈ I do
14: γ ← 1
15: Insert j into the sorted list Li

16: for jt ∈ Li, i.e.,t = 1, ..., |S∗|+ 2 do � Step C (Lines 16-19)
17: cost(j) ← cost(j) + γ × (1− Prob(ξjt = 0|ξj1 = 0, ..., ξjt−1 = 0))× dicijt
18: γ ← γ × Prob(ξjt = 0|ξj1 = 0, ..., ξjt−1 = 0)
19: end for
20: Remove j from the sorted list Li

21: end for
22: end for
23: return the supermodular cut η ≥ cost+

∑
j∈S\S∗(cost(j)− cost)

41



ones according to specified rules. If the candidate solution outperforms the currently-known

best solution, update the best solution with the candidate solution. Repeat and continue

the steps above until the stopping criteria is satisfied.

In this subsection, we design an efficient multi-start tabu search (MSTS) algorithm based

on Michel and Van Hentenryck [62] to solve the large scale instances of the RFLP. The details

of the MSTS algorithm are explained as follows.

Neighbors For a current solution S, we define the neighbors of S by simply flipping the

status of one facility. Let Sj be the neighbor of S obtained by flipping the status of facility

j, then we have Ij∈Sj
= 1 − Ij∈S and Ik∈Sj

= Ik∈S for all k �= j, where Ij∈S ∈ {0, 1} is the

indicator of whether facility j belongs to S. The set of all the neighbors of S can be written

as {S1, ..., SJ}. It is shown through numerical experiments that the MSTS algorithm with

this simple definition of neighbors can perform quite satisfactorily.

Tabu list The candidate solution is the best one among the neighbors of the current

solution, as long as this best neighbor is not prohibited by the tabu list. The tabu list

is built and updated to avoid revisiting to exploited solutions. Let it be the counter of

iterations. We use tj for all j ∈ J to implement the tabu list, which specifies the iteration

number to which the status of facility j cannot be flipped, i.e., given current solution as S,

its neighbor Sj cannot be selected as candidate solution if it ≤ tj. When the neighbor Sj

is selected as candidate solution, tj is updated as tj = it + tLen, where tLen is an integer

keeping track of the length of the tabu list. We follow [62] and use a simple dynamic tabu

list length scheme to update tLen.
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Aspiration criterion We also employ the aspiration criterion to override a solution’s

tabu state.Recall that the tabu list prohibits some neighbors from being candidate solution,

and the candidate solution is selected from the non-prohibited neighbors. The aspiration

criterion we adopt is: even one neighbor is prohibited by the tabu list, we could still select it

as candidate solution, as long as this solution outperforms the currently-known best solution.

This simple criterion is commonly used, and performs well in our algorithm.

Stopping criterion We stop the algorithm when the currently-known best solution has

not been improved for StabilityLimit number of iterations. With larger StabilityLimit, the

algorithm is able to overcome more local optimal solution, however with the tradeoff being

longer computational time. StabilityLimit is an important parameter to be tuned in the

tabu search algorithm, and we discuss the tuning of this parameter in detail in Appendix-A.

Multi-start technique Unlike most existing tabu search algorithms, which run with

only one initial solution, we apply the multi-start technique in this algorithm by executing

the tabu search process above for nStarts times with different randomly generated initial

solutions. This multi-start technique has been shown to be very successful in combining with

meta-heuristic algorithms [57, 74, 61]. nStarts is an important parameter for the MSTS

algorithm, and we will introduce the detailed parameter tuning process for it in appendix.

The overview of the MSTS algorithm is shown in Figure 3.1,

and its pseudo-code is shown in Algorithm 3.

In Algorithm 3, we use S to store the current solution, Sj† and Obj† to store the candidate

solution and its objective value, and S∗ and Obj∗ to store the best solution and the best
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Figure 3.1: Flowchart of the multi-start tabu search
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Algorithm 3 MSTS Algorithm

Output: The optimal solution S∗ and the optimal objective value
1: nS ← 0
2: while nS < nStarts do
3: Initialize S, Obj† ← Obj(S), and Obj∗ ← Obj(S) if nS = 0 � Initialization
4: ns ← 0, it ← 0, and tj ← 0 for all j ∈ J
5: while ns < StabilityLimit do
6: it ← it+ 1
7: for each facility j ∈ J do
8: if it > tj and Obj(Sj) < Obj† then � Tabu list
9: Obj† ← Obj(Sj)
10: else if it ≤ tj and Obj(Sj) < Obj∗ then � Aspiration criterion
11: Obj† ← Obj(Sj)
12: end if
13: end for
14: j† ← random{j ∈ J |Obj(Sj) = Obj†}, S ← Sj† � Update the candidate and the current

solutions
15: tj† ← it+ tLen � Update the tabu list
16: Dynamic tabu list length scheme
17: if Obj† < Obj∗ then
18: ns ← 0
19: S∗ ← Sj† , Obj∗ ← Obj†

20: else
21: ns ← ns+ 1
22: end if
23: end while
24: nS ← nS + 1
25: end while
26: return S∗ as optimal solution and Obj∗ as optimal objective value
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objective value known so far. Obj(S) is the function to calculate the objective value of model

(3.1) for a given S.

3.3 Computational Studies

In this section, we apply the proposed algorithms, i.e., the cutting plane algorithm and the

MSTS algorithm, to solve the robust RFLP, and demonstrate their advantages by comparing

them with several existing algorithms.

All of the computational experiments are coded with C++, and implemented using

ILOG CPLEX Academic Initiative Edition 12.6 (64-bit) in single thread model, on a Dell

OptiPlex 9010 with one Intel 3.40 GHz CPU and 4G memory running Unix Operation System

unless otherwise noted. For the cutting plane algorithm, the supermodular constraints are

implemented as lazy constraints.

3.3.1 Results of Cutting Plane Algorithm

We first test the performance of the cutting plane algorithm for three categories of instances:

(i) We begin with instances with fully known distributions. First, we test instances with

independent disruptions, and we compare the cutting plane algorithm with the algorithm

proposed by [1], which to our knowledge is the best known algorithm for the problem with

independent disruptions. Then, we apply the proposed algorithm to solve two types of

instances with correlated disruptions.

(ii) For instances with marginal disruption probabilities, we firstly apply the worst-case

distribution proved by [55] to model (3.3), then solve the worst-case problem using the
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cutting plane algorithm, and finally compare the results with those of [55], which is obtained

using the Benders decomposition algorithm.

(iii) For instances with cross moment of disruption probabilities, as there is no existing

comparable algorithm, we solve the problem using the cutting plane algorithm directly

without any comparison.

Instances with Independent Disruptions

For the instances with independent disruptions, we compare the cutting plane algorithm with

the search-and-cut (SnC) algorithm proposed by Aboolian et al. [1]. Note that when the

disruptions are independent and the disruption probability of each facility is given, model

(3.3) turns into its special case with set P being a singleton, containing a single known

distribution.

The computation is conducted based on the same data sets used in Aboolian et al. [1],

which are from 1990 census data. In these data sets, each node represents a potential

facility location and an aggregated demand point. We compare the performance of the two

algorithms on instances with 50, 75, and 100 nodes, each representing one of the 50, 75, or

100 largest cities in the U.S. The demand, the fixed facility setup cost, and the transportation

cost are the same as in Aboolian et al. [1] based on the data sets. As assumed in [1], the

facility disruptions occur independently, and the disruption probabilities qj are given as

qj = 0.01+0.1αe−Dj/400, where Dj is the great circle distance (in miles) between node j and

New Orleans (Dj corresponds to dj in [1], and we change the notation to avoid confusion). For

each number of nodes, α varies from 1.0 to 1.5 in 0.05 increments giving total 33 instances.

For the SnC algorithm, we fix the maximum assignment level R to the number of nodes

47



so that its objective values are comparable with ours. The neighborhood size is set to 3

to achieve the best performance according to their computational results (please refer to

Aboolian et al. [1] for details). Both algorithms are solved to a 0.5% optimality gap or a

maximum CPU time of 3600 seconds, whichever occurs first.

The computational results are summarized in Table 3.1. The first two columns identify

the instance with the number of nodes and the value of α. The middle three columns show the

results of the SnC algorithm and the last four columns show the results of the cutting plane

algorithm. For each instance, we report the objective value provided by the SnC algorithm

in the column titled “Obj” under the name “SnC Algorithm”, and report the difference of

the objective values between these two algorithms in the column titled “ΔObj” under the

name “Cutting Plane Algorithm”. In the column titled “Gap (%)” for both algorithms, we

report the optimality gap, which is the relative gap between the lower and upper bounds

when the corresponding algorithm terminates. For the cutting plane algorithm we proposed,

the lower bound is the solution of the relaxed master problem, and the upper bound is the

best feasible solution. For the SnC algorithm, the lower and upper bounds are designed by

[1]. In short, the lower bound is obtained by solving a specific mixed integer programming

problem, and the upper bound is obtained by implementing a neighborhood search starting

from the current lower bound.

In addition, we report the CPU time (in seconds) in the column titled “CPU Time”, and

specially for the cutting plane algorithm we report the number of cuts added in the column

titled “#Cuts”.

From Table 3.1, we observe that both algorithms find solutions with the same objective

values for all instances, i.e., the values of ΔObj are zero for all instances, but the cutting
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Table 3.1: Results for cutting plane algorithm - Independent disruptions

Instance SnC Algorithm Cutting Plane Algorithm
Nodes α Obj Gap(%) CPU Time #Cuts ΔObj Gap(%) CPU Time

50 1 1,020,180 0.38 47.62 203 0 0.36 1.73
50 1.05 1,021,040 0.50 48.23 210 0 0.00 1.33
50 1.1 1,021,890 0.46 57.49 206 0 0.02 2.18
50 1.15 1,022,750 0.49 69.86 194 0 0.13 1.91
50 1.2 1,023,610 0.47 76.52 214 0 0.28 1.65
50 1.25 1,024,470 0.47 83.27 201 0 0.00 1.72
50 1.3 1,025,330 0.48 96.34 212 0 0.50 1.85
50 1.35 1,026,180 0.48 106.80 241 0 0.00 2.13
50 1.4 1,026,980 0.49 133.95 226 0 0.49 1.68
50 1.45 1,027,780 0.40 160.20 272 0 0.00 2.45
50 1.5 1,028,490 0.49 165.61 231 0 0.33 2.10
75 1 1,148,490 0.41 216.09 389 0 0.00 14.16
75 1.05 1,149,490 0.42 240.59 303 0 0.00 13.39
75 1.1 1,150,490 0.47 251.72 309 0 0.00 11.47
75 1.15 1,151,490 0.46 310.70 318 0 0.00 11.07
75 1.2 1,152,500 0.49 387.15 333 0 0.00 15.28
75 1.25 1,153,500 0.44 473.07 389 0 0.00 14.30
75 1.3 1,154,510 0.43 551.13 407 0 0.00 19.05
75 1.35 1,155,520 0.50 600.89 395 0 0.00 22.85
75 1.4 1,156,520 0.49 731.02 373 0 0.00 23.15
75 1.45 1,157,530 0.50 990.51 392 0 0.47 20.05
75 1.5 1,158,540 0.50 1174.16 363 0 0.00 17.46
100 1 1,252,600 0.58 3678.63 832 0 0.44 207.05
100 1.05 1,253,600 0.73 3606.84 809 0 0.49 167.93
100 1.1 1,254,600 0.86 3604.15 917 0 0.42 244.51
100 1.15 1,255,610 0.98 3619.92 898 0 0.45 244.72
100 1.2 1,256,610 1.11 3657.92 805 0 0.48 204.52
100 1.25 1,257,620 1.25 3645.43 997 0 0.41 304.33
100 1.3 1,258,630 1.39 3625.49 896 0 0.41 207.29
100 1.35 1,259,640 1.51 3669.57 870 0 0.44 233.32
100 1.4 1,260,650 1.63 3687.87 937 0 0.50 242.25
100 1.45 1,261,660 1.77 3625.88 972 0 0.50 325.62
100 1.5 1,262,670 1.90 3600.57 1029 0 0.43 363.55
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plane algorithm significantly outperforms the SnC algorithm in computational time. For

example, for the instance with 50 nodes and α = 1, the cutting plane algorithm solves the

instance 27 times faster than the SnC algorithm. For other instances with 50 or 75 nodes

which can be solved by the SnC algorithm appropriately (i.e., to an optimality gap of 0.5%

within 3600 seconds), the cutting plane algorithm runs about 15-80 times faster than the

SnC algorithm. For the instances with 100 nodes, the SnC algorithm fails to reduce the

optimality gap to 0.5% within 3600 seconds, while the cutting plane algorithm is still able

to solve these instances within around 6 minutes.

As previously discussed in subsection 3.2.1, there are theoretically an exponential number

of cuts in the cutting plane algorithm. However, from the column titled “#Cuts” in Table

3.1, we observe that only a very small portion of them are needed, and the number of cuts

needed increases moderately with the problem size. It is further observed that the efficiency

of the SnC algorithm is sensitive to the value of α, as the CPU time increases acutely with

the value of α. For example, for the instances with 50 nodes, as the value of α increases from

1 to 1.5, the CPU time of the SnC algorithm increases from 51.25 seconds to 160.95 seconds.

This observation is consistent with those in Aboolian et al. [1]. In contrast, in the cutting

plane algorithm, the CPU time remains almost unaffected with the increase of α within this

range, and some instances with larger values of α are solved with even less computational

effort. This observation indicates that the cutting plane algorithm is algorithmically stable

and robust.

We also test the algorithms with randomly generated instances. The instances are

randomly generated as follows: the location of facilities and customers are uniformly

distributed over [0, 100] × [0, 100], and the unit transportation cost cij is assumed to be
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proportional to the Euclidean distance in the plane. For each facility j ∈ J , the initial

setup cost fj randomly generated in [2000, 5000] and the failure probability qj is uniformly

generated in [0, 0.1]. Demand of each customer i ∈ I is generated uniformly in [0, 20]. We

set the unit missed demand cost diE = φ = 200 (diE = 200) for all i ∈ I. In such settings,

the missed demand penalty occurs only when all open facilities fail. The computational

results are summarized in Tables 3.2. The first two columns identify the instances with the

number of facilities (|J |) and customers (|I|). Instance sizes are ranged from 50 facilities

and 50 customers to 100 facilities and 150 customers. For each problem size, we generate 10

random instances and hence, solve at total of 150 instances. We report the average values of

the indicators as in Table 3.1 except the CPU time, which we report the minimal, average

and maximal CPU time. In addition, we report the number of instances that cannot be

solved to a gap of 0.5% in 3600 seconds in the column titled “#Unsolved”. We observe that

the cutting plane algorithm is significantly faster than the SnC algorithm on these random

instances. When the instance size becomes large, the sync algorithm is unable to solve almost

all of the instances. For the cutting plane algorithm, it takes an average of 95.9 seconds and

a maximum of 317.97 seconds to solve the 10 random instances of 100 facilities and 150

customers and the average optimality gaps it provides are much smaller than those given by

the SnC algorithm.
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Table 3.2: A comparison of algorithms performance – random instances

|J | |I|

SnC Algorithm Cutting Plane Algorithm

Upper Bound Gap (%)
CPU Time

#Unsolved # Cuts Upper Bound Gap (%)
CPU Time

#Unsolved
Min Ave Max Min Ave Max

50 50 25185 0.38 9.29 44.52 203.71 0 76.9 25185 0.06 0.07 0.13 0.23 0

50 75 32750 0.41 23.40 293.01 1064.16 0 100.6 32750 0.05 0.12 0.25 0.44 0

50 100 40894 0.87 567.88 1874.27 3634.02 3 160.8 40894 0.15 0.28 0.76 1.72 0

50 125 48318 1.48 280.18 3269.28 3672.89 8 207.1 48318 0.13 0.31 1.78 3.50 0

50 150 53262 2.34 3622.99 3654.32 3716.95 10 289.7 53262 0.12 1.36 3.68 6.42 0

75 50 24511 0.41 26.05 154.31 546.36 0 96.2 24511 0.08 0.10 0.27 0.86 0

75 75 32901 0.98 189.58 1897.27 3649.46 4 185.9 32901 0.14 0.30 1.13 2.06 0

75 100 39232 1.74 1685.69 3236.77 3646.23 7 292.4 39232 0.21 0.94 4.04 12.56 0

75 125 45924 2.52 3609.52 3651.35 3719.08 10 289.6 45924 0.21 1.00 5.66 15.35 0

75 150 52339 3.57 3600.34 3655.44 3726.47 10 506.0 52338 0.24 3.71 28.69 85.77 0

100 50 23967 0.41 116.71 525.44 839.72 0 115.7 23967 0.10 0.19 0.43 0.76 0

100 75 32433 1.04 533.84 3032.62 3685.62 8 201.0 32433 0.08 0.80 1.86 4.21 0

100 100 38715 2.41 197.73 3016.86 3678.37 8 322.5 38697 0.27 0.46 6.60 20.04 0

100 125 45935 4.18 3604.48 3649.61 3715.39 10 601.3 45935 0.40 3.09 44.69 172.78 0

100 150 51676 4.45 3629.06 3695.84 3744.53 10 785.1 51661 0.34 27.69 95.90 317.97 0
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Instances with correlated disruptions

In this subsection, we perform a computational study for the reliable facility location

instances with correlated disruptions. We study two examples of correlated disruptions that

are used in the related literatures to demonstrate the capability of the proposed algorithm.

Correlation induced from shared hazard exposure

When the disruption mechanism is well understood, such as when correlations are induced

from shared hazard exposure, the disruption can be conditioned on the states of the

hazard source. This method to characterize the disruption correlation has been studied

in recent literature studying reliable facility location problems [51, 55]. We follow their

study, assuming that there exists a hazard source at the origin and that hazardous event

occurs with a certain probability α. When the hazard occurs, the disaster propagates and

disrupts facilities; a facility j fails with a probability e−|Dj |/θ, where |Dj| is the distance of

location j to the hazard source and θ is a parameter that characterizes the strength of the

disruption propagation effect. The marginal probability of facility disruption at location j

is given by qj = αe−|Dj |/θ. We adopt the same instances used in subsection 3.3.1 except

that the facility failure probability is defined by the above conditional probability. Similar

to Lu et al. [55], we examine three combinations of the parameters α and θ: α = 0.1 and

θ = 100 (the probability of hazard is low and the propagation effect is low, which we refer

to as the low-risk scenario), α = 0.2 and θ = 200 (the probability of hazard is moderate and

the propagation effect is moderate, which we refer to as the moderate risk scenario), α = 0.3
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and θ = 800 (the probability of hazard is high and the propagation effect is high, which we

refer it to as the high risk scenario).

Table 3.3: Instances with correlation induced from shared hazard exposure

Nodes α θ
Cutting Plane Algorithm – Correlated Cutting Plane Algorithm – Uncorrelated

# Cuts Upper Bound Gap (%) CPU Time # Cuts Upper Bound Gap (%) CPU Time

50 0.1 200 152 995,407 0.48 0.95 183 995,281 0.17 1.00

50 0.2 400 182 1,025,260 0.00 1.54 243 1,022,640 0.23 1.59

50 0.3 800 667 1,139,280 0.49 24.31 461 1,109,550 0.06 16.20

75 0.1 200 231 1,120,330 0.00 7.02 222 1,120,180 0.00 5.86

75 0.2 400 393 1,158,080 0.00 20.73 447 1,154,140 0.00 22.47

75 0.3 800 2039 1,295,240 0.31 1718.38 1659 1,260,560 0.40 631.11

100 0.1 200 631 1,224,000 0.31 87.34 596 1,223,790 0.40 105.25

100 0.2 400 784 1,262,520 0.45 273.24 1018 1,257,740 0.29 217.01

100 0.3 800 2617 1,380,400 3.05 3600.00 2561 1,344,720 1.35 3600.01

Table 3.3 highlights the computational results. The aggregated column titled “Cutting

Plane Algorithm – Correlated” reports the results of the proposed algorithm for instances

with correlated disruptions, and the column titled “Cutting Plane Algorithm – Uncorrelated”

reports the results for corresponding instances with same marginal failure probabilities but

uncorrelated failures. From the result, we observe that the cutting plane algorithm is able

to solve most instances. For the same instance, the objective value, the solution time, and

the number of cuts added all increase with the risk parameters. Compared with instances

in which the disruptions are independent, the objective is larger when the disruptions are

correlated, and the difference increases from the low risk scenario to the high risk scenario.
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Correlations specified by the beta-geometric distribution

In this subsection, we consider facility status as a series of coin flip experiments, with

“heads” and “tails” corresponding to “working” and “failure”. If the coin flip experiments

are independent and the probability of getting “head” is a known constant p, then X,

the number of trials needed to get the first “head” conforms to the (shifted) geometric

distribution with probability mass function P (X = k) = (1 − p)k−1p and is exactly the

case of uncorrelated disruptions, where P (X = k) is the probability that a customer is

served by its k-th closest facility in the context of our problem. If the probability of getting

“head” is not a constant but follows a beta distribution Beta(α, β), then the trials are

positively correlated and X conforms to the beta-geometric distribution. The beta-geometric

distribution and the closely related beta-binomial distribution that models the number of

“heads” in N trials have been used in various fields to model correlation failures, such as in

biometrics (Griffiths [38], Weinberg and Gladen [91]), computer science (Nicola and Goyal

[67]) and marketing (Fader and Hardie [31]). Although Li and Ouyang [51] use the beta-

binomial distribution to model the correlation and derive the conditional probability, we find

beta-geometric distribution approaches the studied problem more directly and the resulting

formula is essentially the same. We denote the beta-geometric distribution BG(α, β), which

has two parameters of the beta distribution. It has the probability mass function:

P (X = t) =
B(α + 1, β + t− 1)

B(α, β)
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, where B(·, ·) is the beta function. To avoid dealing with the beta function, one can compute

P (T = t) using the following forward-recursion formula:

P (T = t) =

⎧⎪⎪⎨⎪⎪⎩
α

α+β
t = 1

β+t−2
α+β+t−1

P (T = t− 1) t = 2, 3, ...

Let rt denote the conditional probability that the t-th closest facility fails given that all the

closer facilities fail. We have:

rt =
β + t− 1

α + β + t− 1
, t = 1, 2, 3, ...

The probability that the closest facility fails is r1 = β
α+β

and the formula for rt shows that

the disruptions are positively correlated because rt1 ≤ rt2 for all t1 ≤ t2, and the larger the

value α+β the less significant the correlation. We refer readers to Fader and Hardie [31] for

step-by-step details of the derivations.
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Table 3.4: Instances with correlation specified by beta-geometric distribution

Nodes β
α+β α+ β

Cutting Plane Algorithm – Correlated Cutting Plane Algorithm – Uncorrelated
# Cuts Upper Bound Gap (%) CPU Time # Cuts Upper Bound Gap (%) CPU Time

50 0.01 10 170 1,004,760 0.42 1.22 246 1,003,270 0.00 1.14
50 0.01 20 226 1,004,000 0.00 1.22 246 1,003,270 0.00 1.14
50 0.01 50 214 1,005,120 0.29 1.14 246 1,003,270 0.00 1.14
50 0.05 10 372 1,064,520 0.26 5.74 308 1,056,460 0.30 2.83
50 0.05 20 338 1,059,770 0.00 5.98 308 1,056,460 0.30 2.83
50 0.05 50 307 1,057,760 0.00 5.22 308 1,056,460 0.30 2.83
50 0.1 10 874 1,137,710 0.41 31.64 663 1,126,010 0.49 17.55
50 0.1 20 667 1,131,750 0.41 23.72 663 1,126,010 0.49 17.54
50 0.1 50 606 1,127,900 0.42 16.14 663 1,126,010 0.49 17.55
75 0.01 10 339 1,129,830 0.00 9.62 302 1,128,720 0.00 8.45
75 0.01 20 308 1,129,230 0.00 8.24 302 1,128,720 0.00 8.46
75 0.01 50 291 1,128,920 0.00 7.35 302 1,128,720 0.00 8.45
75 0.05 10 553 1,193,330 0.49 74.94 617 1,187,050 0.00 42.50
75 0.05 20 744 1,189,910 0.50 69.70 617 1,187,050 0.00 42.45
75 0.05 50 542 1,188,140 0.11 46.13 617 1,187,050 0.00 42.47
75 0.1 10 1972 1,277,540 0.49 1058.79 1439 1,263,000 0.39 448.38
75 0.1 20 1693 1,269,740 0.43 596.47 1439 1,263,000 0.39 449.82
75 0.1 50 1489 1,266,790 0.50 527.93 1439 1,263,000 0.39 448.77
100 0.01 10 562 1,233,750 0.00 137.64 577 1,232,780 0.35 136.29
100 0.01 20 702 1,233,230 0.41 98.34 577 1,232,780 0.35 136.15
100 0.01 50 577 1,232,960 0.44 106.82 577 1,232,780 0.35 136.46
100 0.05 10 1540 1,289,910 0.45 1960.06 1484 1,284,260 0.30 1157.08
100 0.05 20 1303 1,287,280 0.49 1103.06 1484 1,284,260 0.30 1162.74
100 0.05 50 990 1,285,280 0.47 601.64 1484 1,284,260 0.30 1159.95
100 0.1 10 2886 1,361,450 3.47 3600.48 2335 1,348,630 2.29 3600.00
100 0.1 20 2488 1,356,680 2.32 3600.00 2339 1,348,630 2.27 3600.00
100 0.1 50 2451 1,347,850 1.81 3600.00 2335 1,348,630 2.29 3600.00
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Computational results for reliable supply chain network design problems in which the

correlation is specified by the beta-geometric distribution are shown in Table 3.4. The

instances are the same as those used in the previous section, except that the facility failure

probability is defined by the beta distribution. We vary the value of β
α+β

and α+β to study

the effect of the marginal disruption rate and the degree of correlation. Each column in

Table 3.4 has the same meaning as in the previous subsection. From Table 3.4, we observe

that our algorithm can solve most instances very efficiently. Generally speaking, for the same

instance, the solution time, the objective value and the number of cuts added increase with

the marginal disruption rate and the degree of correlation. Compared with the uncorrelated

counterpart instances, the instances with correlated disruptions have larger objective value

and the difference increases with the degree of the correlation. These observations are

consistent with the results in Table 3.3. There are two discrepancy observations, that is, the

third row has an upper bound larger than the second row for the correlated case, and in the

last row, the correlated case has an upper bound smaller than the uncorrelated case. We

believe this is caused by the existence of an optimality gap.

Instances with Marginal Disruption Probabilities

For instances with marginal disruption probabilities, Lu et al. [55] prove the worst-case

distribution for this problem. Note that when applying the worst-case distribution they

proved, model (3.3) turns into its special case with known distribution in set P . Therefore,

we solve the worst-case problem using the cutting plane algorithm, and compare our results

with those of [55], which is obtained by solving a stochastic programming problem using a

Benders decomposition algorithm.
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The same assumptions from [55] about marginal disruption probabilities are adopted. A

disastrous event occurs at a certain source with probability β (which corresponds to α in [55],

and we change the notation to avoid confusion). When the disaster occurs, it propagates and

causes disruptions to facilities. The marginal disruption probability of facility j, denoted as

qj, decreases exponentially with its distance from the source, denoted as Dj. We assume that

qj is given by qj = βe−Dj/θ, where the parameter θ characterizes the strength of disruption

propagation effect. For demand, the fixed setup cost, and transportation cost, we use the

same data sets as in subsection 3.3.1, i.e., the data sets in [1]. For both algorithms, we solve

to a 0.5% optimality gap.

The results are shown in Table 3.5. Each instance is characterized by the combination of

the number of nodes, the source disaster probability β, and the disruption propagation factor

θ. As in [55], we assume that the number of nodes is chosen from value the set {50, 75, 100},

β ∈ {0.1, 0.2, 0.3}, and θ ∈ {200, 400, 800}, giving us 27 total instances in total. For each

instance, we compare the objective value, the optimality gap, and the CPU time in seconds

for these two algorithms. From the results, we observe that the cutting plane algorithm out

performs the Benders decomposition algorithm in terms of computational time, and in many

cases the cutting plane algorithm is able to find better solutions.

Instances with Cross Moment of Disruption Probabilities

For instances with cross moment of disruption probabilities, there is no existing comparable

algorithm, so we solve the problem with the cutting plane algorithm directly to show that

this algorithm can provide satisfactory solution in an efficient way.
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Table 3.5: Results for cutting plane algorithm - Marginal disruption probabilities

Instance Lu et al. [55] Cutting Plane Algorithm
Nodes β θ Obj Gap(%) CPU Time #Cuts ΔObj Gap(%) CPU Time

50 0.1 200 998,603 0.42 20.08 132 0 0.01 2.21
400 1,071,085 0.47 23.60 174 -545 0.01 2.56
800 1,426,616 0.48 28.77 141 -3,458 0.00 2.32

50 0.2 200 1,006,565 0.42 22.13 131 0 0.32 2.27
400 1,140,029 0.43 28.32 168 -883 0.37 3.34
800 1,843,037 0.50 19.10 146 -3,611 0.39 2.01

50 0.3 200 1,012,901 0.42 21.68 158 0 0.01 2.39
400 1,209,215 0.49 33.43 187 -3,941 0.38 2.62
800 2,258,727 0.47 17.46 114 -3,033 0.01 1.85

75 0.1 200 1,123,501 0.02 118.61 234 0 0.01 19.02
400 1,201,468 0.03 146.94 258 2,404 0.29 19.61
800 1,604,318 0.01 148.79 191 0 0.01 12.72

75 0.2 200 1,135,638 0.48 110.74 231 -3,275 0.01 16.74
400 1,281,522 0.28 124.93 301 -1,993 0.01 24.35
800 2,090,157 0.47 102.43 216 -4,928 0.41 17.49

75 0.3 200 1,141,226 0.49 110.96 208 0 0.01 15.58
400 1,357,590 0.27 121.64 226 0 0.01 17.97
800 2,568,298 0.37 111.07 272 -5,337 0.46 21.45

100 0.1 200 1,231,258 0.49 727.66 467 -3,583 0.42 146.22
400 1,299,906 0.49 485.45 416 -149 0.01 136.31
800 1,738,672 0.49 634.66 446 -2,879 0.30 171.57

100 0.2 200 1,237,231 0.49 688.72 596 -303 0.37 161.96
400 1,380,660 0.48 461.10 493 -1,128 0.41 157.31
800 2,240,389 0.39 384.49 355 0 0.49 95.16

100 0.3 200 1,245,840 0.23 943.04 514 0 0.01 163.52
400 1,460,349 0.48 440.13 402 -1,192 0.46 105.30
800 2,743,006 0.49 311.32 322 -3,644 0.35 93.48
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The cross moment matrix of disruption probabilities is denoted as matrix Q|J |×|J |, where

the entry qjk corresponds to the joint disruption probability of facility j and facility k.

Specially, the diagonal entry, i.e., qjj, is the marginal disruption probability of facility j. We

generate random matrix Q in the following way: first, we assume a independent distribution

with marginal probability the same as in subsection 3.3.1, i.e., qj = βe−Dj/θ; we then generate

a sample with size of 5 × |J | from the independent distribution and let the matrix Q be a

cross moment matrix that describes the sample distribution. For demand, the fixed setup

cost, and the transportation cost, we use the same data sets as in subsection 3.3.1, i.e., the

data sets in [1]. The results are shown in Table 3.6. The instances considered, i.e., the

combination of the number of nodes and the values of β and θ, are the same as in Table 3.5.

From the results, we observe that the cutting plane algorithm is able to solve samll

instances efficiently, e.g., 10 nodes or 20 nodes. We also notice that when the value of θ

increases from 200 to 800, the solution time increases significantly. This increase factor also

increases with instance size. Therefore, the instances with 50 nodes and θ = 400 or 800

become extremely difficult for the proposed algorithm to solve.

3.3.2 Results of Multi-start Tabu Search

In this subsection, we study the performance of the MSTS algorithm for solving RFLP

instances with independent disruptions.

According to our discussion in subsection 3.2.2, the number of start nStarts and the

stopping criterion StabilityLimit significantly affect the efficiency of the MSTS algorithm.

For all the computations below, we set nStarts = 20 and StabilityLimit = 20, according
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Table 3.6: Results for cutting plane algorithm - Cross moment of disruption probabilities

Instance Cutting Plane Algorithm
Nodes β θ #Cuts Obj Gap(%) CPU Time

10 0.1 200 14 539,356 0.00 0.61
400 13 539,356 0.00 0.78
800 21 597,117 0.00 4.46

0.2 200 13 545,225 0.00 0.62
400 18 554,397 0.00 1.85
800 19 615,285 0.00 6.48

0.3 200 18 542,659 0.11 1.50
400 15 581,538 0.00 0.55
800 23 652,007 0.00 6.00

20 0.1 200 42 770,300 0.01 6.55
400 40 781,371 0.00 13.49
800 53 807,559 0.00 171.16

0.2 200 45 776,661 0.00 7.86
400 55 794,413 0.00 39.92
800 76 852,476 0.01 830.31

0.3 200 40 773,959 0.00 5.95
400 40 816,136 0.00 119.79
800 74 887,295 0.16 3518.79

50 0.1 200 136 997,204 0.01 1527.70
400 50 1,102,230 287.51 3600.25
800 1 4,507,876 6678.76 3603.36

0.2 200 114 999,456 0.49 869.38
400 2 2,526,397 1128.19 3693.15
800 1 40,624,200 60989.00 3604.67

0.3 200 161 1,003,734 0.00 2346.48
400 2 2,466,342 921.68 3618.49
800 1 8,048,309 12002.70 3614.29

62



to the parameter tuning process in the appendix. We also study the acceleration of the

MSTS algorithm when applying the parallelization techniques. Details of the acceleration

are available in appendix-A.

We test the proposed multi-start tabu search algorithm’s performance with the instances

used in Aboolian et al. [1]. Table 3.7 summarizes the results. The results from the proposed

exact algorithm is also listed for comparison. For the MSTS, because it is a randomized

algorithm, we perform 10 runs for each instance to reduce the occasionality. We report the

best, worst and average objective values obtained by the heuristic algorithm among 10 runs.

Table 3.7 shows that the MSTS finds a very high quality solution much faster than the exact

algorithm. For many instances, it finds the optimal solution in all 10 runs.

The algorithm is also tested with very large random instances. The random instances

are generated in the same way as in subsection 3.3.1. The size of the instances ranges from

200 potential facilities and 200 customers to 600 potential facilities and 800 customers. The

instances are also solved with the cutting plane algorithm with a time limit of 7200 seconds.

Table 3.8 reports the results. The cutting plane algorithm fails to solve all of these instances

to optimality within the time limit. The upper bounds are the best objective values that have

been found when the algorithm terminates. For the MSTS, we run the algorithm 10 times

and report the minimal, average, and maximal values of the upper bound and the CPU time

used. As can be seen from Table 3.8, the MSTS is able to solve extremely large instances

within a reasonable amount of time. With respect to the solution quality, the MSTS find

solutions with equal or better quality than the cutting plane algorithm even in the worst

case among the 10 runs (except the worst case for 400 facilities and 400 customers).
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Table 3.7: Performance of the multi-start tabu search algorithm on benchmark instances

Nodes α

Cutting Plane Algorithm Multi-start Tabu search

Upper Bound CPU Time
Upper Bound

Iterations CPU Time
Best Ave Worst

50 1 1,020,180 1.73 1,020,180 1,020,180 1,020,180 1250.2 0.4331

50 1.1 1,021,890 2.18 1,021,890 1,021,890 1,021,890 1215.7 0.4194

50 1.2 1,023,610 1.65 1,023,610 1,023,610 1,023,610 1245.8 0.4333

50 1.3 1,025,330 1.85 1,025,330 1,025,330 1,025,330 1285.1 0.4419

50 1.4 1,026,980 1.68 1,026,980 1,026,980 1,026,980 1109.6 0.3854

50 1.5 1,028,490 2.10 1,028,490 1,028,500 1,028,600 1093.4 0.3767

75 1 1,148,490 14.16 1,148,490 1,148,490 1,148,490 1391.9 1.2463

75 1.1 1,150,490 11.47 1,150,490 1,150,490 1,150,490 1410.9 1.3171

75 1.2 1,152,500 15.28 1,152,500 1,152,500 1,152,500 1409.9 1.2999

75 1.3 1,154,510 19.05 1,154,510 1,154,510 1,154,510 1405.7 1.2871

75 1.4 1,156,520 23.15 1,156,520 1,156,520 1,156,520 1402.8 1.2916

75 1.5 1,158,540 17.46 1,158,540 1,158,540 1,158,540 1367.4 1.2461

100 1 1,252,600 207.05 1,252,600 1,252,600 1,252,600 1532.5 2.9813

100 1.1 1,254,600 244.51 1,254,600 1,254,600 1,254,600 1510.3 2.8418

100 1.2 1,256,610 204.52 1,256,610 1,256,700 1,257,500 1447.1 2.6782

100 1.3 1,258,630 207.29 1,258,630 1,258,700 1,259,310 1471.7 2.7327

100 1.4 1,260,650 242.25 1,260,650 1,260,650 1,260,650 1508.8 2.8135

100 1.5 1,262,670 363.55 1,262,670 1,262,670 1,262,670 1501.8 2.8676
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Table 3.8: Performance of the multi-start tabu search algorithm on large size random
instances

|J | |I|
Cutting Plane Algorithm Multi-start tabu search

Upper Bound CPU Time
Upper Bound CPU Time

Best Ave Worst Min Ave Max

200 200 58137 7200.87 58137 58137 58137 16.91 22.87 29.79
200 400 102114 7200.29 100932 100956 100998 36.28 49.33 65.02
200 600 131082 7200.03 128270 128463 128967 56.69 74.92 99.46
200 800 160749 7200.00 158295 158567 158809 67.19 99.11 127.66
400 200 61837 7200.01 61213 61386 61514 126.03 250.60 367.22
400 400 95272 7200.01 94599 94805 95321 280.80 410.00 545.15
400 600 128505 7200.02 123501 123655 124069 394.94 784.99 1149.21
400 800 156446 7200.00 151960 152294 152520 463.24 794.04 1495.11
600 200 63292 7200.02 61078 61131 61188 414.44 736.44 1171.49
600 400 101333 7200.02 97661 97902 98189 930.21 1640.13 2399.03
600 600 129135 7200.03 123920 124227 124495 1755.01 2492.36 3521.72
600 800 157959 7200.00 151738 152309 152783 1787.61 3527.27 4990.80

Acceleration of MSTS Algorithm with Parallelization

Because each start of the tabu search is independent of the others, the algorithm can be

easily paralleled by letting each start run in parallel. The parallelization of the algorithm

is implemented using OpenMP. This set of computations is done using the Newton high

performance compute (HPC) cluster (https://newton.utk.edu/). We limit our parallelization

to 48 processors because this is the current limit on the cluster. In Figure 3.2 we present

speedup of the proposed MSTS with respect to the number of processors. The algorithm is

applied to instances with 50, 75, and 100 nodes with α = 1 and the number of starts is set

to 500. From Figure 3.2, we observe that it achieves an almost linear speedup.
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Figure 3.2: Parallel multi-start tabu search
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Chapter 4

Efficient Solution Methods for a

General r-interdiction Median

Problem with Fortification

4.1 Problem Definition and Formulation

Consider an existing supply network with a set of operating facilities J = {1, ..., p} and a set

of customer demand aggregation points I = {1, ..., |I|}. Each customer i ∈ I has demand

given by di. The unit shipment cost from facility j ∈ J to customer i ∈ I is cij. The

efficiency of the system is measured by the total weighted distance between customers and

the facilities. The capacity of a facility is assumed to be unlimited. Thus, a customer is

always served by its nearest working facility. Furthermore, we assume there is an emergency

facility 0 to model the costs of lost sales. If the demand of customer i ∈ I is not served, a

unit penalty cost ci0 is incurred. Without loss of generality, we assume that ci0 ≥ cij for all
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i ∈ I and j ∈ J ; that is, any customer will be served if there is at least one available facility.

Let J+ denote the set open facilities including the emergency facility, i.e., J+ = {0, 1, ..., p}

.

Facilities face two types of disruption risks simultaneously: probabilistic, exogenous risks

and worst-case, endogenous risks. The two types of risks are independent from each other.

A facility fails if either of these two disruption risks takes effect. For exogenous risks, facility

j fails with probability qj. Facility disruptions caused by exogenous risks are independent

across facilities. Endogenous risks are modeled by an attacker with r interdict resources.

Each unit of these resources can be used to attack a facility; however, two or more units

cannot be used on the same facility. If a facility is not fortified, an attack succeeds for sure.

However, if the facility is fortified, the probability of successful attack is w. The total number

of fortified locations is bounded above by h due to limited defensive resources. The problem

is to determine h locations to fortify to minimize expected transportation costs anticipating

worst-case attacks.

The problem can be viewed as a leader-follower game, as illustrated by Figure 4.1:

the leader, that is, the network planner or defender, aims to minimize costs by making

fortification decisions, then the follower, that is, the attacker, tries to interdict the network to

maximize its damage. The following bi-level model is formulated by adding the probabilistic

disruption factor to the RIMF-p model proposed by Zhu et al. [96].

Defender’s decision variables:

zj =

⎧⎪⎪⎨⎪⎪⎩
1, if facility j is fortified;

0, otherwise.

Attacker’s decision variables:
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Minimize:    Expectation of transportation costs

Determine: Facilities to fortify

Maximize:    Expectation of transportation costs

Determine: Facilities to attack

Defender’s problem

Attacker’s problem

anticipate

Figure 4.1: Bi-level problem

sj =

⎧⎪⎪⎨⎪⎪⎩
1, if facility is attacked;

0, otherwise.

The fortification problem (FP) is written as:

minF (z) (4.1)

s.t.
∑

j∈J zj ≤ h ∀j ∈ J (4.2)

zj ∈ {0, 1}, ∀j ∈ J

F (z) is the expected transportation costs under worst-case attacks for a fortification decision

z and is computed by solving the attacker’s problem.
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A facility j’s failure probability pj is an expression relating to sj:

pj = 1− (1− qj)(1− sjw
zj) (4.3)

When zj = 0, i.e., the facility is not fortified, wzj = 1, and the facility is disrupted for

sure when it is attacked, i.e., pj = 1, as long as sj = 1. Otherwise, the facility fails when

either the probabilistic disruption, with probability qj, takes place or an intentional attack

succeeds, with probability w.

Then we can compute the probability that customer i is assigned to its v-th closest facility

as:

βiiv =

⎧⎪⎪⎨⎪⎪⎩
1− piv , v = 1;

(1− piv)×
∏v−1

l=1 pil , 2 ≤ v ≤ |J+|;
(4.4)

The expected transpiration costs can be expressed as:

∑
i∈I

|J+|∑
v=1

ciivdiβiiv =
∑
i∈I

cii1di(1− pi1) +
∑
i∈I

|J+|∑
v=2

ciivdi(1− piv)×
v−1∏
l=1

piv (4.5)

Thus, F (z) is computed by solving the attacker’s problem (AP):

F (z) = max
∑
i∈I

cii1di(1− pi1) +
∑
i∈I

|J+|∑
v=2

ciivdi(1− piv)×
v−1∏
l=1

piv (4.6)
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s.t.
∑

j∈J sj ≤ r ∀j ∈ J+, (4.7)

pj = 1− (1− qj)(1− sjw
zj) ∀j ∈ J+, (4.8)

sj ∈ {0, 1}, ∀j ∈ J+.

In the bi-level model, the defender makes an upper-level decision, and the objective

is to minimize expected transportation costs under worst-case attacks, which is given by

solving the attacker’s problem. Constraints (4.2) and (4.7) model the limited resources of

the defender and attacker, respectively. The attacker’s objective is to maximize the expected

transportation costs after launching attacks.

The difficulty of the attacker’s problem arises from the high degree of nonlinearity in its

objective function and its constraints (4.8). Even for a special case such as the one studied

by Zhu et al. [96] in which only disruptions caused by intentional attacks are considered,

there is no solution method proposed other than enumeration. For the fortification problem,

only a greedy heuristic method is proposed. An additional special case is one in which w = 0;

that is, an attack fails for sure if a fortified facility is attacked. The problem is studied by

Church et al. [19], Church and Scaparra [21], Scaparra and Church [76, 77], and Liberatore

et al. [52]. In such a case, the attacker’s problem can be formulated as a mixed integer

programming model, and therefore a commercial solver such as CPLEX can be used to solve

the problem. For the fortification problem with this attacker’s problem as the lower level

problem, there exist relatively efficient solution methods in the literature (e.g., [76, 77]).
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4.2 Model Properties

In this section, we discuss the structure properties of the model from a set function point

of view, which provides the theoretical cornerstone for the solution methods developed in

the next section. Some preliminary knowledge of supermodular function is reviewed in

Section 3.1.1, in Chapter 3. Same notations are used in this section.

4.2.1 The Attacker’s Problem

Consider a known fortification decision, let Θ(S) be a function defined on a subset S of J+

and Θ(S) is defined as the expected transportation costs when facilities in S are attacked.

Next, we show Θ is supermodular.

Proposition 4.1. Θ is nondecreasing.

Proof: It is sufficient to show Θ is nonincreasing if Θ(S∪{e}) ≥ Θ(S) for any S ∈ J+, e /∈ S.

Let Γi(S) be a set function corresponding to the expected transportation for customer i, thus

Θ(S) =
∑

i∈I Γi(S), where Γi(S) =
∑|J+|

l=1 βiilciil . By lemma 3.2, it is sufficient to show Γi(S)

is nondecreasing for any i.

Without loss of generality, assume facility e is the k-th closest facility of the customer,

and let pe be the probability facility e fails when e is not attacked and p′e be the probability

when e is attacked. Obviously, p′e ≥ pe, the equality holds when w = 0 and the facility is

fortified. We have:

Γi(S ∪ {e}) =
k−1∑
l=1

βiilciil +
1− p′k
1− pk

βiikciik +
p′k
pk

|J+|∑
l=k+1

βiilciil .
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Thus,

ρΓi
e (S) = Γi(S ∪ {e})− Γi(S) =

pk−p′k
1−pk

βiikciik +
p′k−pk
pk

∑|J+|
l=k+1 βiilciil

≥ ciik(
pk−p′k
1−pk

βiik +
p′k−pk
pk

∑|J+|
l=k+1 βiil)

= ciik(
pk−p′k
1−pk

βiik +
p′k−pk
pk

× pk
1−pk

× βiik)

= 0.

The second line holds because by the definition of cl, we have cii1 ≤ cii2 ... ≤ cii|J+| .

Because there is an emergency facility, thus pii|J+| = 0 and βii|J+| =
∏|J+|−1

l=1 pil . With simple

chaining process, we have:
|J+|∑

l=k+1

βiil =
pk

1− pk
βk. (4.9)

This completes the proof.

Proposition 4.2. Θ is supermodular.

Proof: Consider another set T , T = S ∪ {σ}, σ �= e, σ, e /∈ S. σ is the u-th closest facility.

similarly, we have:

Γi(T ) =
u−1∑
l=1

βiilciil +
1− p′u
1− pu

βiiuciiu +
p′u
pu

|J+|∑
l=u+1

βiilciil .

Case 1, u < k:

Γi(T ∪ {e}) =
u−1∑
l=1

βiilciil +
1− p′u
1− pu

βiiuciiu +
p′u
pu

k−1∑
l=u+1

βiilciil +
p′u
pu

× p′k
pk

|J+|∑
l=k+1

βiilciil .
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ρΓi
e (T ) = Γi(T ∪ {e})− Γi(T ) =

p′u
pu

(
pk − p′k
1− pk

βiikciik +
p′k − pk

pk

|J+|∑
l=k+1

βiilciil).

Recall,

ρΓi
e (S) = Γi(S ∪ {e})− Γi(S) =

pk − p′k
1− pk

βiikciik +
p′k − pk

pk

|J+|∑
l=k+1

βiilciil .

.

We have:

ρΓi
e (T ) =

p′u
pu

ρΓi
e (S) ≥ ρΓi

e (S).

.

Case 2, u > k:

Γi(T∪{e}) =
k−1∑
l=1

βiilciil+
1− p′k
1− pk

βiikciik+
p′k
pk

u−1∑
l=k+1

βiilciil+
p′k
pk

×1− p′u
1− pu

βiiuciiu+
p′k
pk

×p′u
pu

×
|J+|∑

l=u+1

βiilciil .

ρΓi
e (T ) = Γi(T ∪ {e})− Γi(T ) =

=
pk−p′k
1−pk

βiikciik +
p′k−pk
pk

∑u−1
l=k+1 βiilciil +

p′k−pk
pk

× 1−p′u
1−pu

βiiuciiu +
p′k−pk
pk

× pu
pu

∑|J+|
l=u+1 βiilciil .

Thus,
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ρΓi
e (T )− ρΓi

e (S) =
p′k−pk
pk

(pu−p′u
1−pu

βiiuciiu +
p′u−pu
pu

∑|J+|
l=u+1 βiilciil)

≥ p′k−pk
pk

(pu−p′u
1−pu

βiiuciiu + ciiu × p′u−pu
pu

∑|J+|
l=u+1 βiil)

=
p′k−pk
pk

× ciiu(
pu−p′u
1−pu

βiiu +
p′u−pu
pu

× pu
p′u−pu

)

= 0,

In summary, ρΓi
e (T )− ρΓi

e (S) ≥ 0 when T has exactly one more element than S.

Consider any sets S ⊆ T ⊂ J+ and e ∈ J+ \ T , let V = T \ S = {v1, v2, ..., vn}.

We have

ρΓi
e (S ∪ {v1})− ρΓi

e (S) ≥ 0

ρΓi
e (S ∪ {v1, v2})− ρΓi

e (S ∪ {v1}) ≥ 0

...

ρΓi
e (T )− ρΓi

e ((S ∪ {v1, ..., vn}) ≥ 0.

Sum the inequalities, we have ρΓi
e (T ) ≥ ρΓi

e (S). By second condition in Definition 3.1,

we completes the proof.

4.2.2 The Fortification Problem

Define Ψ(Z) as the corresponding set function for F (z). Let I(Z) be the attacked facilities

in an optimal solution of the attackers’ problem when Z is the fortification set.

Proposition 4.3. Ψ is nonincreasing.

It is clear Ψ is nonincreasing.

Proposition 4.4. ρΨe (Z) = 0, if e /∈ I(Z).
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Proof: Because I(Z) is a feasible solution for the attack problem, Ψ(Z ∪{e}) ≥ Θ(I(Z)) =

Ψ(Z). Since Ψ is nonincreasing, Ψ(Z∪{e}) ≤ Ψ(Z), thus Ψ(Z∪{e}) = Ψ(Z), i.e., ρe(Z) = 0.

The same observation is made by [76] for RIMF, and it immediately implies Proposi-

tion 4.5 and the tree search algorithm [76] is also applicable to solve this problem.

Proposition 4.5. There exists an optimal solution Z∗ where at least one j such that j ∈ I(∅)

and j ∈ Z∗.

Proposition 4.6. Ψ is neither supermodular nor submodular.

Proof: We prove this by providing two examples. In the first example, we show a case

where it is not supermodular. Then, we use another example to show it is not submodular.

Example 1: Consider an instance with one customer, three facilities, and an emergency

facility as shown by Figure 4.2, i.e., cij = j, and ci0 = 4. Let r = 3, w = 0.5 and qj = 0 for

j = 1, 2, 3. Thus, if a facility is fortified, then the probability of fail pj = 0.5, otherwise it

fails for sure. Consider facility 2 as e, it is easy to compute Table 4.1.

Table 4.1: Function values with different T for example 1

T = ∅ {1} {1, 3}
Ψ(T ) 4 2.5 2.25

Ψ({e} ∪ T ) 3 2 1.875
ρΨe (T ) -1 -0.5 -0.375

Because ρΨe (∅) < ρΨe ({1}) < ρΨe ({1, 3}), Ψ violates the definition of a supermodular

function.

Example 2: Consider an instance with the same structure as example 1. However, we

assume there is only one attack unit, i.e., r = 1. Let w = 0 and qj = 0.5 for j = 1, 2, 3. In
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Figure 4.2: A instance of fortification problem

this case, if a facility is fortified, it is immune to the attack, while it fails at probability of

0.5 even no attack is lunched of that facility. For this case, we have following Table 4.2.

Table 4.2: Function values with different T for example 2

T = ∅ {1} {1, 3}
Ψ(T ) 2.75 2.25 2.25

Ψ({e} ∪ T ) 2.75 2 1.875
ρΨe (T ) 0 -0.25 -0.375

Because ρΨe (∅) > ρΨe ({1}) > ρΨe ({1, 3}), Ψ violates the definition of a submodular

function.

Proposition 4.7. When attack solution is fixed, let Ψ̄ be the function for the corresponding

fortification problem. Ψ̄ is a nonincreasing supermodular function.
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Proof: Let p↑j be the probability of disruption for facility j when j is not fortified, and

p↓j be the the probability when it is fortified. When we prove Proposition 4.2, the result of

attacking a facility is equivalent to increase the probability of disruption for that facility.

Correspondingly, fortifying a facility is equivalent to decrease the probability. Thus, we

can construct nondecreasing supermodular function Θ(S) such that a facility fails with

probability p↑j for j ∈ S, and p↓j for j /∈ S. Let S� be the complement set of S. Ψ̄(S) = Θ(S�).

Because Θ is a nondecreasing supermodular, Ψ̄ is nonincreasing supermodular.

4.3 Solution Methods

4.3.1 For the Attacker’s Problem

We have shown that the AP is equivalent to maximizing a nondecreasing supermodular

function with cardinality constraints. Recall that −f is submodular if f is supermodular.

The problem is also equivalent to minimizing a nonincreasing submodular function with

cardinality constraints. Because a supermodular function has its equivalent submodular

counterpart, in the literature, the term submodular is commonly used instead of supermod-

ular to maintain consistency in terminology.

The relationship can be summarized with the following four-way contingency Table 4.3.

The diagonal elements are equivalent.

Table 4.3: Relationship of submodular and supermodular optimization

Objective
Function Minimize Maximize

Submodular Polynomial solvable NP-hard
Supermodular NP-hard Polynomial solvable
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Minimizing a general submodular function can be solved in strong polynomial time

[44, 69]. The most theoretically efficient algorithm known is the one developed by [69],

which runs in O(n5EO + n6), where n is the size of the ground set and EO is the time to

evaluate the function with a given subset. However, methods for incorporating additional

constraints, such as cardinality constraints or, more generally, knapsack constraints, are not

discussed. In fact, the problem may become significantly harder when side constraints are

added. There are cases of submodular function minimization with side constraints that are

NP-hard McCormick [58]. Some research considers knapsack constraints in the context of

submodular optimization; however, most of this research relates to maximizing a submodular

function [87, 49, 45, 47]. To the best of our knowledge, there is no combinatorial method

developed for minimizing a monotone, nonincreasing, submodular function with cardinality

constraints or knapsack constraints.

Next we outline a cutting plane algorithm that solves the AP exactly. A similar approach

has been developed for solving supply chain design problem where a cost term appears to

be submodular [92]. The cutting plane algorithm iteratively solves a series of MIP master

problems and subproblems. Because the solution methods uses a MIP master problem, it

can easily include additional side constraints, which can be useful in practice.

To be consistent with terminology used in the literature, instead of maximizing a

supermodular function, we reformulate the problem as a submodular function minimization.

Define set function Ω(S) = −Θ(S) + Θ(∅), such that Ω is a nonincreasing submodular

function with Ω(∅) = 0. The AP is equivalent to

min{Ω(S) : |S| ≤ r, S ⊆ J}.
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Definition 4.8. Given a submodular function f with f(∅) = 0, the submodular polyhedron

P (f) is defined as P (f) = {v : v ∈ Rn, ∀S ⊆ U, v(S) ≤ f(S)}, where v(S) =
∑

i∈S vi.

With a slight abuse of notation, we define f(s) = f(S), where s is the incidence vector

for the set S.

The convex lower envelope for the submodular function is:

Qf = {(s, t),∈ {0, 1}n × R : f(s) ≤ t}

.

Theorem 4.9. The inequality t ≥ ∑
i∈U visi is a valid inequality for Qf if and only if

v ∈ P (f). AtamtüRk and Narayanan [7]

The inequality defined above is called an extended polymatroid inequality. Given a

solution (s̄, t̄), we can check whether in Qf or we find a an extended polymatroid inequality

to cut off the infeasible solution. The problem is written as:

t∗ = max{
∑
i∈U

vis̄i : v ∈ P (f)},

and can be solved with the Greedy Algorithm [27]:

Step 1 For a given s, sort U such that sl1 ≥ sl2 ≥ .. ≥ sln

Step 2 Compute v̄i as f({l1, l2, .., li}) - f({l1, l2, .., li−1}), which is the incremental value by

adding li to {l1, l2, .., li−1}.
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Because si only takes value in 0 and 1, Step 1 runs in O(n), and Step 2 can be done

with n sequential calls to function evaluation. Thus, the algorithm runs with a time bound

O(nEO), and we have
∑

i∈U v̄is̄i = f(S). If t̄ ≥ t∗, no extended polymatroid inequality is

violated, or we find a cut in the following form:

t ≥ v̄1s1 + v̄2s2 + ...+ v̄nsn.

The master problem (AP-master) is formulated as:

min t (4.10)

s.t. t ≥ v̄1
ks1 + v̄2

ks2 + ...+ v̄n
ksn ∀k ∈ K, (4.11)

∑
j∈J+ sj ≤ r ∀j ∈ J+,

sj ∈ {0, 1}, ∀j ∈ J+,

where K is the collection of cuts from previous iterations. The cutting plane algorithm starts

by solving AP-master with constraints (4.11) being empty. Let (s̄, t̄) be the optimal solution

to the master problem. Note that the problem can be unbounded in the first iteration, in

this case t = −∞. Add a cut if necessary with the Greedy Algorithm as outlined above.

The process repeat until a solution does not violate any extended polymatroid inequality.

The algorithm then terminates with an optimal solution to the problem.

81



4.3.2 For the Fortification Problem

Compared with the AP, the FP is much harder for two reasons. First, unlike AP in which

the objective value can be directly computed in polynomial time with a given solution,

to evaluate a solution for FP one needs to solve a corresponding AP. Second, because we

have shown that FP is neither submodular nor supermodular, there is not much structural

information we can use. We next develop a logic-based Benders decomposition algorithm for

solving the problem.

A logic-based Benders decomposition

The logic-based Benders decomposition introduced by [42] is a generalization of the

Benders decomposition. Like Benders decomposition, the logic-based Benders decomposition

decomposes the original problem into a master problem and (a) subproblem(s) with

corresponding variables denoted as x and y. The master problem is solved to obtain a

solution for variables x, then subproblems are solved for y given the fixed x values.

The cuts in the Benders decomposition are based on linear duality, which requires the

subproblem to be a linear programming problem whereas the subproblem of a logic-based

Benders decomposition can be in any form of a mathematical program. The inference duals

are used instead of the linear duals. Because of this, there is no standard algorithm to

generate cuts for the logic-based Benders decomposition and one has to derive cuts based on

knowledge of the underlying problem. The cutting plane methods we propose in the previous

section are actually a special case of logic Benders decompositions where the inference duals

is readily provided by the supermodular property.
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The efficiency of a logic-based Bender decomposition depends on how the master problem

and subproblem are defined and is highly affected by the tightness of the cut. We can write

the master problem of FP as:

min η (4.12)

s.t. logic-based Benders cuts (4.13)

∑
j∈J+ zj ≤ h ∀j ∈ J+

zj ∈ {0, 1}, ∀j ∈ J+

where, η is a nonnegative continuous variable to simulate transportation costs. The

relationship between η and decision variables x and z is established by the logic-based

Benders cuts.

Given a solution (z̄, η̄) to the master problem, we compute the transportation costs by

solving an AP, and let η∗ = F (z̄). If η∗ > η̄, then the current solution is infeasible and a cut

that eliminates such a solution should be added to the master problem.

With the assumption that the master problem has a finite domain, Chu and Xia [17]

shows that the algorithm is guaranteed to converge to an optimal solution if the cuts satisfy

the following two conditions:

1 If the current master problem solution x is infeasible, then the cut must exclude at least

x;
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2 Any feasible solution x satisfies the cut.

Clearly the result holds for our problem even though it has a continuous variable η because

the model always tries to minimize η. A cut that satisfies both conditions is called valid.

Theorem 4.10. Cuts in the form of (4.14) guarantee that the algorithm finds an optimal

solution in finite iterations.

η ≥ η∗ − η∗(
∑

j∈z̄j=0

zj +
∑

j∈z̄j=1

(1− zj)) (4.14)

Proof: Clearly, the cut satisfies for condition 1, for if incumbent solution (z̄, η̄) is infeasible,

i.e., η̄ < η∗, the cut ensures the solution is cut off by requiring η ≥ η∗ for solution (z̄). For

any solution other than (z̄), the cut is inactive. Thus, it does not eliminate any feasible

solution.

Obviously, the algorithm based on cut (4.14) is inefficient since it does no better than

simple enumeration of all of the possible combinations of z, i.e., all subsets of J . Now

consider a family of cuts in the following form:

η ≥ η∗ +
∑

j∈z̄j=0

Δz
jzj +

∑
j∈z̄j=1

∇z
j(1− zj) (4.15)

, where Δz
j is a coefficient used to capture the change of transportation costs by fortifying

facility j and ∇z
j is used to capture the change of transportation costs when the defense

resource is removed from facility j. Clearly, Δz
j ≤ 0 and ∇z

j ≥ 0. When set Δz
j = −η∗ for

j, z̄j = 0 and ∇z
j = 0 for j, z̄j = 1, it is easy to verify it is a valid cut and is at least as tight

as (4.14). For simplicity, we let ∇z
j = 0 and focus on analyzing Δz

j .
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η ≥ η∗ +
∑

j∈z̄j=0

Δz
jzj (4.16)

Let Z denote the corresponding fortified locations for the incumbent solution z̄.

Theorem 4.11. Cuts in the form of (4.16) with Δz
j = Δ̂z

j are valid.

Δ̂z
j = min

T,Z⊆T⊆J,
{Ψ(T ∪ {j})−Ψ(T )} for j ∈ J, j /∈ Z (4.17)

Proof: Clearly the cut eliminates infeasible incumbent solutions. We next show that it

does not eliminate any feasible solution.

Consider a cut generated with an incumbent solution Z. For another solution Z ′, Z ⊆ Z ′.

Let ZΔ = Z ′ \Z. Consider an arbitrary order of ZΔ, {l1, l2, .., ln}. Let Li = Z ∪{l1, l2, ..., li}.

We have

Ψ(Z ′) = Ψ(Z) +
n∑

i=1

ρΨli (L
i−1)

By the definition of Δ̂z
j , we have Δ̂z

li
≤ ρΨli (L

i−1)

Ψ(Z ′) ≥ η∗ +
∑

j∈z̄j=0

Δ̂z
jzj

Thus, cut (4.17) does not eliminate solution Z ′ for any Z � Z ′. Because Ψ is a

nonincreasing function regarding both set variables, if Z �⊆ Z ′, the inequality still holds by

adding missing elements in Z to Z ′. Thus, the cut does not eliminate any feasible solution.
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However, computing Δ̂z
j is hard in general. Next, we propose a family of cuts that can

be computed in no more than a linear number of calls to the AP. The basic idea is to find

an approximation to the lower bound Δ̂z
j .

Because of Proposition 4.4, an optimal solution T to (4.17) must satisfy j ∈ I(T ). The

motivation for the following cut by forcing j to be included by I(Z).

Define the restricted attack problem F ♦
j (z) by forcing facility j to be attacked. This can

be achieved by adding the constraint in the master model of AP:

sj ≥ 1. (4.18)

Let Ψj denote the set function for the corresponding fortification problem. We always

have j ∈ I(T ) for j /∈ T .

Δ̃z
j = Ψj(Z ∪ {j})−Ψj(Z) for j ∈ J, j /∈ Z (4.19)

It is still an open question whether cuts with coefficient Δ̃z
j are valid cut or not for the

problem. To compute a coefficient, we need to solve two APs. Because we only want to find

a lower bound approximation for the coefficient, we can first compute Ψj(Z), and find the

corresponding interdiction set I(Z), and compute a lower bound of Ψj(Z ∪{j}) by fixing the

interdiction solution to I(Z).
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4.4 Computational Study

In this section, we test the performance of the proposed algorithms. We implement the

algorithms in Scala and solve all of the problem instances on a Dell OptiPlex 9010 with

one Intel 3.40 GHz CPU and 4G of memory running the Ubuntu operating system. The

MIP problems are solved using the ILOG CPLEX Academic Initiative Edition 12.6. The

U.S. dataset is used to test the algorithms’ performance. The U.S. dataset is based on 2000

census data and contains the largest cities in the U.S. and is used in related works [1, 24, 80].

The exogenous probabilistic disruption rate is computed as pj = αe−Dj/θ, where Dj is the

distance from the location to New Orleans.

4.4.1 Solving the Attacker’s Problem

Because there is no solution method other than enumeration available in the literature, we

compare the cutting plane algorithm with enumeration. The algorithms are tested with

instances ranging from 50 nodes to 150 nodes. In the dataset, a node is a customer and a

candidate location. Thus, we first solve a p-median problem to select p facilities. We assume

that no facility is fortified, and we test three values for the number of facilities attacked r,

i.e., 3, 6, and 9, which covers the range of r values used in most related works. The results

are summarized in Table 4.4. Columns tilted “nbEO” reports the number of calls to evaluate

a solution (z, s), i.e, to compute objective function (4.6). For the enumeration method, the

number of calls equals the combination number
(
p
r

)
. It is not surprising that the cutting

plane algorithm always finds an optimal solution. While the solution time for enumeration
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increases exponentially with respect to p and r, the increase is very mild for the cutting

plane algorithm.

We also test the algorithm’s performance by varying parameters that affect the disruption

probabilities, such as w, α, θ. Three combinations of α and θ are tested to simulate

low, moderate, and high probabilistic disruption risks: (0.1, 200), (0.2, 400), and (0.3, 800)

respectively. We randomly fortify
⌊
p
2

⌋
facilities. The results are reported in Table 4.5- 4.8.

Columns tilted “nbCuts” report the number of cuts in the form of (4.11) is added to the

master problem. From the results, we observe that when w increases, the objective value

increases, and the solution time and the number of cuts generated increases in general. Recall

that w is the probability that an attack succeeds when a facility is fortified. The objective

value increases with the probabilistic disruption risk factors α and θ. However, no obvious

pattern is observed in terms of how the these factors affect the solution time and the number

of cuts generated.
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Table 4.4: Cutting plane algorithm’s performance on solving AP

Nodes p r
Enumeration Cutting plane

Obj. Time nbEO ΔObj. Time nbEO

50 15 3 1101845.24 0.14 455 0 0.29 374
50 15 6 1976813.06 0.55 5005 0 0.11 740
50 15 9 3240988.49 0.42 5005 0 0.11 969
50 20 3 792317.18 0.07 1140 0 0.07 552
50 20 6 1455117.90 1.70 38760 0 0.14 1503
50 20 9 2202803.09 7.44 167960 0 0.20 2043
50 30 3 431071.16 0.29 4060 0 0.19 1774
50 30 6 845343.21 41.89 593775 0 0.48 4224
50 30 9 1423410.35 1012.98 14307150 0 0.66 5002
75 15 3 1265758.87 0.03 455 0 0.03 339
75 15 6 2303228.54 0.24 5005 0 0.06 805
75 15 9 3246383.92 0.24 5005 0 0.09 966
75 20 3 897856.49 0.08 1140 0 0.06 656
75 20 6 1732421.59 2.53 38760 0 0.15 1665
75 20 9 2355708.23 11.04 167960 0 0.25 2109
75 30 3 514184.54 0.40 4060 0 0.25 2177
75 30 6 1132851.13 59.78 593775 0 0.49 3700
75 30 9 1707084.16 1443.23 14307150 0 1.18 7727
100 15 3 1372013.35 0.03 455 0 0.05 548
100 15 6 2502580.27 0.30 5005 0 0.12 1272
100 15 9 3534156.55 0.30 5005 0 0.13 1245
100 20 3 1002426.94 0.10 1140 0 0.09 825
100 20 6 1918525.84 3.30 38760 0 0.22 1942
100 20 9 2558151.56 14.32 167960 0 0.34 2198
100 30 3 593566.69 0.51 4060 0 0.33 2273
100 30 6 1257326.92 75.66 593775 0 0.65 4194
100 30 9 1914434.62 1825.49 14307150 0 1.25 6927
150 15 3 1546415.88 0.05 455 0 0.05 372
150 15 6 2698907.14 0.50 5005 0 0.14 1079
150 15 9 3977272.72 0.50 5005 0 0.18 1254
150 20 3 1187705.98 0.15 1140 0 0.14 762
150 20 6 2234857.77 5.01 38760 0 0.23 1454
150 20 9 2887852.42 21.86 167960 0 0.66 3559
150 30 3 697791.79 0.75 4060 0 0.55 2672
150 30 6 1465985.90 109.53 593775 0 0.87 3913
150 30 9 2219730.26 2670.02 14307150 0 1.67 7013
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Table 4.5: Algorithm’s performance on different parameters – instances with 50 nodes

Nodes p r α θ
w = 0.4 w = 0.6 w = 0.8

Obj. Time nbCuts nbEO Obj. Time nbCuts nbEO Obj. Time nbCuts nbEO

50 15 3 0.1 200 646491.81 0.21 11 180 792218.03 0.10 14 231 937944.26 0.08 18 294
50 15 3 0.2 400 668362.21 0.06 14 227 812856.55 0.05 18 292 957350.90 0.06 28 454
50 15 3 0.3 800 750129.29 0.03 11 180 887448.01 0.03 15 242 1024766.74 0.07 31 500
50 15 6 0.1 200 964558.04 0.04 16 259 1216939.34 0.06 28 455 1544510.95 0.06 28 456
50 15 6 0.2 400 991650.28 0.04 18 290 1247395.32 0.07 37 595 1575842.61 0.09 35 567
50 15 6 0.3 800 1084601.75 0.03 20 325 1346233.23 0.06 38 616 1673069.58 0.08 51 822
50 15 9 0.1 200 1223619.83 0.03 12 198 1551609.28 0.07 32 518 2186703.53 0.05 25 407
50 15 9 0.2 400 1254648.24 0.03 15 245 1577136.36 0.10 45 729 2235828.91 0.09 37 601
50 15 9 0.3 800 1364131.70 0.04 17 278 1717114.39 0.14 56 908 2373736.64 0.10 68 1096
50 20 3 0.1 200 467394.61 0.02 6 127 568948.23 0.03 12 257 670501.84 0.02 14 298
50 20 3 0.2 400 487809.61 0.01 6 127 589312.13 0.02 12 256 690814.66 0.03 19 404
50 20 3 0.3 800 557381.67 0.02 8 169 655578.85 0.04 21 446 753776.03 0.05 30 634
50 20 6 0.1 200 649288.37 0.03 20 425 854882.36 0.04 20 427 1116002.03 0.05 29 615
50 20 6 0.2 400 670232.07 0.04 22 469 879303.35 0.04 24 510 1142008.75 0.09 50 1057
50 20 6 0.3 800 748289.64 0.02 16 342 961221.39 0.07 46 973 1218942.84 0.09 64 1354
50 20 9 0.1 200 816174.32 0.02 14 298 1139635.64 0.05 35 740 1528079.96 0.07 39 825
50 20 9 0.2 400 841676.76 0.03 20 425 1166018.29 0.04 24 509 1555371.82 0.10 49 1036
50 20 9 0.3 800 929345.70 0.04 26 553 1251554.55 0.07 42 889 1645403.09 0.21 119 2514
50 30 3 0.1 200 197745.54 0.05 12 375 234906.98 0.09 22 687 307495.06 0.09 33 1029
50 30 3 0.2 400 214197.71 0.04 13 406 251285.12 0.06 22 686 323823.76 0.13 48 1495
50 30 3 0.3 800 266417.92 0.04 14 436 303305.38 0.05 19 593 375245.69 0.14 50 1557
50 30 6 0.1 200 366943.59 0.05 17 532 466957.56 0.08 27 842 580947.81 0.18 60 1865
50 30 6 0.2 400 385218.63 0.05 17 531 485931.33 0.08 27 844 600128.88 0.19 62 1927
50 30 6 0.3 800 444770.54 0.07 20 627 545229.68 0.08 29 904 656731.60 0.21 68 2114
50 30 9 0.1 200 458843.48 0.07 25 780 644215.57 0.15 52 1619 878623.87 0.23 69 2148
50 30 9 0.2 400 477460.29 0.14 48 1495 662224.00 0.11 37 1151 895736.85 0.38 116 3605
50 30 9 0.3 800 540754.61 0.11 40 1244 722042.89 0.14 45 1399 948530.98 0.39 112 3478
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Table 4.6: Algorithm’s performance on different parameters – instances with 75 nodes

Nodes p r α θ
w = 0.4 w = 0.6 w = 0.8

Obj. Time nbCuts nbEO Obj. Time nbCuts nbEO Obj. Time nbCuts nbEO

75 15 3 0.1 200 841154.86 0.02 13 210 934062.69 0.02 17 279 1083869.38 0.03 28 452
75 15 3 0.2 400 865100.88 0.02 14 226 958201.38 0.02 20 326 1109851.56 0.03 25 407
75 15 3 0.3 800 943327.40 0.02 14 229 1045096.59 0.03 23 375 1193996.58 0.04 32 518
75 15 6 0.1 200 1279956.32 0.02 11 179 1518375.05 0.03 21 341 1828591.49 0.05 40 645
75 15 6 0.2 400 1315230.17 0.02 11 179 1553551.90 0.03 26 425 1865672.19 0.05 39 630
75 15 6 0.3 800 1426897.78 0.02 16 260 1660920.48 0.03 25 407 1966862.85 0.05 41 664
75 15 9 0.1 200 1644592.67 0.02 17 276 2032639.17 0.03 23 373 2502527.64 0.04 30 486
75 15 9 0.2 400 1686103.69 0.02 16 262 2070857.62 0.04 31 506 2540367.20 0.08 55 889
75 15 9 0.3 800 1801648.37 0.02 19 311 2183489.78 0.05 33 539 2643466.74 0.11 75 1213
75 20 3 0.1 200 543153.23 0.02 8 170 650409.41 0.03 12 257 757665.59 0.04 18 384
75 20 3 0.2 400 567202.54 0.02 7 148 673835.08 0.03 14 296 780467.61 0.05 26 554
75 20 3 0.3 800 647595.74 0.02 10 213 749665.85 0.03 17 361 851735.95 0.05 27 570
75 20 6 0.1 200 753486.52 0.04 21 445 975119.92 0.07 32 682 1290260.77 0.07 32 680
75 20 6 0.2 400 780615.24 0.04 17 362 1004593.15 0.08 32 678 1318672.77 0.15 76 1605
75 20 6 0.3 800 868683.57 0.04 21 443 1096677.77 0.09 44 932 1401777.70 0.12 51 1078
75 20 9 0.1 200 946363.40 0.05 24 509 1295043.67 0.09 44 932 1749010.59 0.12 56 1189
75 20 9 0.2 400 973857.52 0.06 27 578 1325374.67 0.09 38 804 1778576.55 0.13 58 1226
75 20 9 0.3 800 1070560.97 0.09 48 1018 1421409.38 0.10 46 972 1865410.36 0.18 78 1646
75 30 3 0.1 200 248626.69 0.13 33 1030 289686.58 0.22 57 1775 379864.07 0.21 55 1711
75 30 3 0.2 400 266482.03 0.15 39 1219 307752.06 0.17 44 1370 398293.52 0.15 39 1214
75 30 3 0.3 800 320628.93 0.13 34 1060 365406.71 0.18 47 1461 457970.34 0.24 64 1993
75 30 6 0.1 200 370752.02 0.10 25 779 482767.05 0.15 36 1123 724110.45 0.25 58 1807
75 30 6 0.2 400 390536.39 0.15 39 1217 501293.43 0.22 56 1747 743765.98 0.26 64 1995
75 30 6 0.3 800 454649.26 0.13 33 1029 562133.23 0.15 35 1093 808828.24 0.42 103 3206
75 30 9 0.1 200 500797.23 0.12 29 905 638355.71 0.35 79 2459 1001377.41 0.39 83 2584
75 30 9 0.2 400 520446.55 0.11 27 843 657530.48 0.33 73 2275 1020613.97 0.44 95 2954
75 30 9 0.3 800 587472.52 0.13 32 1001 720537.44 0.45 89 2770 1082735.19 0.55 113 3513
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Table 4.7: Algorithm’s performance on different parameters – instances with 100 nodes

Nodes p r α θ
w = 0.4 w = 0.6 w = 0.8

Obj. Time nbCuts nbEO Obj. Time nbCuts nbEO Obj. Time nbCuts nbEO

100 15 3 0.1 200 851938.73 0.02 10 163 1016052.90 0.03 21 342 1180167.06 0.04 29 468
100 15 3 0.2 400 883125.84 0.02 15 243 1046088.34 0.02 14 228 1209050.85 0.04 26 423
100 15 3 0.3 800 990082.76 0.02 13 209 1145873.29 0.03 18 292 1301663.82 0.03 23 373
100 15 6 0.1 200 1207367.79 0.04 27 436 1445538.08 0.04 27 437 1895994.80 0.07 47 756
100 15 6 0.2 400 1232800.09 0.03 19 309 1485930.75 0.06 42 678 1936730.71 0.07 46 742
100 15 6 0.3 800 1332409.80 0.04 20 324 1608562.79 0.08 52 839 2050312.24 0.12 84 1354
100 15 9 0.1 200 1496908.67 0.02 14 228 1883939.12 0.07 42 675 2499328.26 0.08 48 775
100 15 9 0.2 400 1535290.62 0.03 21 341 1932646.31 0.07 45 722 2540767.89 0.13 68 1101
100 15 9 0.3 800 1671863.58 0.03 23 374 2087906.66 0.09 54 872 2673027.83 0.14 82 1321
100 20 3 0.1 200 609454.96 0.02 6 127 720915.31 0.04 15 320 832375.65 0.07 25 533
100 20 3 0.2 400 635698.99 0.02 6 127 746529.58 0.04 16 344 857360.18 0.07 28 596
100 20 3 0.3 800 722272.07 0.02 9 190 828418.26 0.04 15 321 934564.45 0.08 30 636
100 20 6 0.1 200 842712.64 0.06 24 510 1071876.96 0.11 43 913 1406135.68 0.14 48 1016
100 20 6 0.2 400 870520.87 0.05 21 447 1103987.03 0.10 41 870 1437096.25 0.19 80 1690
100 20 6 0.3 800 960711.79 0.06 24 510 1203369.67 0.09 36 765 1526960.28 0.20 81 1711
100 20 9 0.1 200 1078848.11 0.04 15 319 1412434.51 0.15 55 1164 1898835.73 0.18 60 1270
100 20 9 0.2 400 1109366.44 0.03 12 257 1445471.09 0.11 41 866 1931032.68 0.20 67 1417
100 20 9 0.3 800 1209879.67 0.04 17 361 1549416.04 0.08 29 613 2025199.92 0.24 80 1690
100 30 3 0.1 200 344839.05 0.09 18 568 371196.29 0.19 40 1246 444896.69 0.22 48 1493
100 30 3 0.2 400 363700.45 0.12 26 813 390420.60 0.14 30 936 464865.86 0.27 58 1807
100 30 3 0.3 800 419218.05 0.11 21 659 449422.09 0.14 29 903 529538.06 0.29 63 1960
100 30 6 0.1 200 458796.66 0.24 44 1374 605081.02 0.15 31 967 856012.39 0.26 52 1621
100 30 6 0.2 400 477548.54 0.27 54 1680 625445.13 0.17 35 1091 877726.26 0.42 84 2614
100 30 6 0.3 800 539078.99 0.23 47 1465 692520.93 0.26 51 1588 949886.66 0.57 114 3542
100 30 9 0.1 200 605321.88 0.15 30 939 779989.27 0.26 48 1495 1185328.34 0.39 77 2396
100 30 9 0.2 400 627581.86 0.17 34 1061 800507.95 0.35 67 2086 1206046.11 0.38 71 2212
100 30 9 0.3 800 699988.30 0.19 37 1153 868913.17 0.46 79 2458 1273243.94 0.56 105 3267
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Table 4.8: Algorithm’s performance on different parameters – instances with 150 nodes

Nodes p r α θ
w = 0.4 w = 0.6 w = 0.8

Obj. Time nbCuts nbEO Obj. Time nbCuts nbEO Obj. Time nbCuts nbEO

150 15 3 0.1 200 978091.13 0.02 10 163 1157034.39 0.03 13 214 1335977.64 0.05 24 391
150 15 3 0.2 400 1013516.61 0.03 14 227 1191149.70 0.05 24 393 1368782.79 0.05 25 405
150 15 3 0.3 800 1133839.75 0.05 22 354 1303359.69 0.05 23 375 1472879.62 0.06 31 500
150 15 6 0.1 200 1319742.13 0.08 36 582 1647836.05 0.09 42 681 2057133.77 0.11 48 775
150 15 6 0.2 400 1349494.47 0.08 37 599 1682488.02 0.10 46 742 2103901.45 0.14 63 1016
150 15 6 0.3 800 1464954.11 0.09 39 630 1799061.45 0.12 52 840 2231052.10 0.17 79 1270
150 15 9 0.1 200 1671972.32 0.04 19 307 2113443.08 0.12 51 821 2804872.55 0.14 54 871
150 15 9 0.2 400 1708514.78 0.04 20 322 2156616.49 0.12 52 836 2852898.90 0.15 65 1047
150 15 9 0.3 800 1848990.67 0.08 36 583 2292580.04 0.18 73 1175 3004224.55 0.28 103 1657
150 20 3 0.1 200 694426.32 0.04 11 234 834210.25 0.05 13 275 975199.10 0.09 25 530
150 20 3 0.2 400 722874.51 0.05 12 254 863337.46 0.20 15 319 1003800.41 0.11 31 656
150 20 3 0.3 800 817204.06 0.04 11 232 953210.56 0.06 19 403 1089217.07 0.11 32 676
150 20 6 0.1 200 967912.36 0.04 12 257 1235387.61 0.10 29 611 1541933.86 0.20 53 1120
150 20 6 0.2 400 998526.51 0.05 15 320 1266038.70 0.11 31 658 1572660.68 0.34 90 1901
150 20 6 0.3 800 1098849.57 0.05 13 279 1363699.07 0.09 27 570 1666501.60 0.26 73 1538
150 20 9 0.1 200 1180653.86 0.06 17 362 1508890.43 0.18 46 968 2048708.93 0.29 68 1436
150 20 9 0.2 400 1205621.14 0.06 17 360 1536997.97 0.18 48 1015 2079084.15 0.35 94 1984
150 20 9 0.3 800 1294461.72 0.08 22 466 1632219.54 0.24 60 1268 2174244.26 0.39 99 2089
150 30 3 0.1 200 414869.50 0.12 18 562 438490.91 0.31 45 1400 530829.62 0.36 54 1680
150 30 3 0.2 400 436341.13 0.12 17 532 459956.72 0.25 37 1153 553688.50 0.36 53 1651
150 30 3 0.3 800 498675.63 0.15 21 657 523762.45 0.26 39 1214 627217.23 0.38 57 1774
150 30 6 0.1 200 544925.55 0.24 34 1060 712363.14 0.22 32 999 1000880.61 0.37 53 1655
150 30 6 0.2 400 566447.44 0.25 36 1123 735667.92 0.27 39 1217 1025812.40 0.43 62 1933
150 30 6 0.3 800 636080.11 0.29 42 1309 811999.41 0.25 37 1153 1108433.96 0.55 80 2486
150 30 9 0.1 200 675773.69 0.27 36 1123 903661.83 0.47 62 1930 1370628.88 0.49 63 1965
150 30 9 0.2 400 699827.98 0.29 40 1249 927251.44 0.46 62 1931 1394749.76 0.76 103 3203
150 30 9 0.3 800 774115.34 0.30 41 1276 1005210.48 0.63 84 2611 1472280.18 1.01 135 4195
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4.4.2 Solving the Fortification Problem

Two methods in the literature can be adapted to solve FP: the tree-search implicit

enumeration method proposed by Scaparra and Church [76], which is an exact algorithm to

solve FP; and the greedy search heuristic algorithm proposed by Zhu et al. [96]. The proposed

logic-based Benders decomposition algorithm is compared with these two algorithms, and

the results are reported in Table 4.9- 4.12. The column titled “nbAPs” reports the number

of calls required to solve an AP. All of the APs are solved by the cutting plane method.

The column titled “ΔObj.” reports the difference between the objective value obtain by the

relevant algorithm and the objective value from the tree search algorithm. The algorithms

are set with a time limit of 3600 seconds. Because the tree search may need to explore

(rh+1−1)/(r−1) number of nodes [76], as expected, we observe that the tree search algorithm

is very sensitive to parameters h and r. The greedy algorithm is fastest among the three

methods, and the least sensitive to increases in parameters h and r. However, about 30% of

the solutions are not optimal. The logic-based Benders decomposition algorithm requires a

solution time comparable with the tree search solution time for instances with small values

of h and r. However, the solution time only increases moderately with h and r; thus, it has

an advantage in solving instances with large h and r. For the instances for which tree search

completes in a given time limit, that is, the solution is proven to be optimal, the logic-based

Benders decomposition algorithm always finds a solution with the same objective value. The

logic-based Benders decomposition algorithm finds even better solutions for three instances

when the tree search terminates due to the time limit.
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Table 4.9: Algorithms performance comparison for FP – instances with 50 nodes

Nodes p h r
Tree search Greedy search LBD

Time nbAPs Obj. Time nbAPs ΔObj. Time nbAPs ΔObj.

50 15 3 3 1.57 25 576359.81 1.03 14 0 2.83 123 0
50 15 3 6 7.14 205 1014705.36 1.21 28 0 2.34 99 0
50 15 3 9 17.91 522 1545002.81 1.67 41 0 6.53 345 0
50 15 6 3 1.12 53 513927.51 0.52 27 16030.92 4.43 411 0
50 15 6 6 30.56 1200 754878.18 1.50 52 0 7.45 481 0
50 15 6 9 127.08 5387 990033.80 2.57 72 0 6.11 413 0
50 15 9 3 1.32 69 468233.12 0.66 40 0 5.31 637 0
50 15 9 6 51.94 2587 632548.83 1.92 71 0 4.31 291 0
50 15 9 9 208.78 11364 803304.32 3.28 101 0 3.70 354 0
50 20 3 3 0.87 24 487809.61 0.42 14 0 7.39 349 0
50 20 3 6 15.12 237 859628.19 1.89 28 0 16.93 333 0
50 20 3 9 56.45 563 1096057.21 4.62 41 0 18.58 225 0
50 20 6 3 1.52 43 391879.01 0.78 25 0 15.69 747 0
50 20 6 6 65.11 1303 561885.61 3.48 49 0 17.29 361 0
50 20 6 9 478.56 6401 748734.01 8.82 68 0 39.06 507 0
50 20 9 3 1.43 40 385594.23 1.08 37 0 317.88 21841 0
50 20 9 6 81.84 1730 496970.88 4.37 71 0 9.34 332 0
50 20 9 9 1104.28 18814 629121.70 10.84 101 0 24.95 563 0
50 30 3 3 6.12 36 248040.67 2.36 17 0 18.73 230 0
50 30 3 6 63.51 200 416827.89 8.60 30 26102.88 89.33 316 0
50 30 3 9 276.88 568 679664.45 19.62 43 0 139.11 343 0
50 30 6 3 14.70 97 221107.64 4.36 31 0 538.63 6936 0
50 30 6 6 434.89 1523 367165.16 16.06 52 9143.87 598.85 2766 0
50 30 6 9 3600.30 8176 495450.15 31.66 73 41090.27 985.66 2515 0
50 30 9 3 25.17 161 177946.84 6.67 46 0 82.92 1252 0
50 30 9 6 1486.63 6694 283285.57 23.53 72 0 588.83 2353 0
50 30 9 9 3600.72 10272 379873.48 52.35 107 4335.09 971.75 2556 0
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Table 4.10: Algorithms performance comparison for FP – instances with 75 nodes

Nodes p h r
Tree search Greedy search LBD

Time nbAPs Obj. Time nbAPs ΔObj. Time nbAPs ΔObj.

75 15 3 3 0.83 31 771614.08 0.34 14 0 3.65 226 0
75 15 3 6 9.56 215 1226376.57 1.22 28 0 3.99 140 0
75 15 3 9 26.15 513 1792170.32 2.26 41 0 6.65 269 0
75 15 6 3 1.93 76 633034.67 0.61 29 31059.66 8.08 656 0
75 15 6 6 45.29 1364 923224.84 1.97 51 0.00 9.23 431 0
75 15 6 9 186.50 5700 1173857.88 3.33 71 0 7.86 378 0
75 15 9 3 2.27 98 573274.94 0.84 43 0 3.14 306 0
75 15 9 6 78.71 3120 779724.55 2.46 72 0 4.07 270 0
75 15 9 9 293.14 12016 956783.96 4.24 101 2348.67 4.22 345 0
75 20 3 3 1.39 28 567202.54 0.67 14 0 5.89 186 0
75 20 3 6 23.62 237 1033377.15 3.04 28 0 36.58 458 0
75 20 3 9 58.58 441 1304001.37 5.88 41 0 31.51 335 0
75 20 6 3 2.59 48 467689.76 1.40 28 0 16.22 537 0
75 20 6 6 119.54 1473 663518.28 4.46 49 64167.79 22.52 359 0
75 20 6 9 519.26 4917 879042.78 10.81 71 0 48.71 667 0
75 20 9 3 2.69 53 464545.73 1.80 39 0 135.12 6942 0
75 20 9 6 204.22 3114 607673.73 5.29 69 0 27.04 692 0
75 20 9 9 1621.88 22524 739335.97 12.82 100 4083.85 25.18 448 0
75 30 3 3 11.38 35 308702.30 3.92 16 0 29.53 204 0
75 30 3 6 88.95 130 519644.36 17.92 30 0 126.43 233 0
75 30 3 9 374.38 403 737304.84 40.47 43 0 263.70 288 0
75 30 6 3 39.11 140 293699.82 6.31 28 3328.73 2602.49 21164 0
75 30 6 6 873.67 1435 419216.68 33.61 52 24859.59 558.01 1594 0
75 30 6 9 3600.33 3581 592307.48 84.34 74 41585.32 3616.80 5367 0
75 30 9 3 68.16 271 255942.65 9.60 42 0 334.70 3271 0
75 30 9 6 3260.57 8170 370632.39 46.91 77 5317.03 1132.90 3937 0
75 30 9 9 3600.12 5257 494146.25 105.93 110 23736.04 2636.10 5160 -12784.06
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Table 4.11: Algorithms performance comparison for FP – instances with 100 nodes

Nodes p h r
Tree search Greedy search LBD

Time nbAPs Obj. Time nbAPs ΔObj. Time nbAPs ΔObj.

100 15 3 3 1.21 29 860663.28 0.52 14 0 6.66 305 0
100 15 3 6 12.94 204 1357508.07 1.76 28 0 6.08 152 0
100 15 3 9 33.99 509 2003174.51 3.01 41 0 10.13 321 0
100 15 6 3 3.92 108 705433.14 0.92 31 43642.05 5.73 334 0
100 15 6 6 65.05 1384 1021655.03 2.78 52 0 11.33 381 0
100 15 6 9 249.63 5599 1287003.25 4.64 71 0 7.76 315 0
100 15 9 3 3.86 118 654041.10 1.36 46 0 4.99 368 0
100 15 9 6 102.92 2929 874605.92 3.54 73 0 4.78 270 0
100 15 9 9 390.22 12043 1081252.95 6.01 102 0 3.05 262 0
100 20 3 3 2.49 32 635698.99 1.01 14 0 7.58 168 0
100 20 3 6 33.45 241 1170888.29 4.60 30 10693.21 78.81 674 0
100 20 3 9 83.77 450 1456946.56 9.26 43 79151.73 38.27 280 0
100 20 6 3 4.98 60 545069.83 2.38 28 0 34.22 733 0
100 20 6 6 172.04 1461 745984.03 7.93 50 0 35.57 345 0
100 20 6 9 870.46 5647 985138.79 16.45 72 0 50.47 466 0
100 20 9 3 4.82 60 527275.04 3.06 39 0 120.87 4161 0
100 20 9 6 280.86 2994 685388.47 9.68 70 0 42.20 816 0
100 20 9 9 2537.95 25147 838072.48 19.51 100 111130.75 35.38 545 0
100 30 3 3 12.22 32 377883.17 4.60 16 0 38.35 231 0
100 30 3 6 104.17 118 601722.02 23.02 30 0 170.51 259 0
100 30 3 9 462.61 368 828137.57 55.21 43 0 404.14 316 0
100 30 6 3 39.16 102 341513.52 10.27 30 0 1880.08 9415 0
100 30 6 6 1098.38 1217 496235.51 45.21 52 14034.94 967.08 1691 0
100 30 6 9 3600.12 3167 662208.77 118.95 72 32942.93 2637.81 2698 0
100 30 9 3 73.78 201 309779.23 14.59 42 0 899.73 5848 0
100 30 9 6 3600.19 6082 423395.01 53.96 72 2519.00 1042.40 2402 0
100 30 9 9 3600.17 3574 562349.98 127.60 102 19955.23 3499.95 4822 -8245.34
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Table 4.12: Algorithms performance comparison for FP – instances with 150 nodes

Nodes p h r
Tree search Greedy search LBD

Time nbAPs Obj. Time nbAPs ΔObj. Time nbAPs ΔObj.

150 15 3 3 1.99 31 1013516.61 0.84 14 0 10.35 280 0
150 15 3 6 22.65 220 1608989.32 3.00 28 0 10.15 163 0
150 15 3 9 50.68 487 2258751.20 5.18 41 0 13.81 280 0
150 15 6 3 4.13 67 843480.11 1.53 28 0 27.27 917 0
150 15 6 6 96.53 1114 1241652.98 5.02 51 0 38.36 821 0
150 15 6 9 361.47 5077 1526860.23 7.93 71 0 14.64 386 0
150 15 9 3 4.31 75 807567.25 1.94 41 0 13.36 801 0
150 15 9 6 149.77 2589 1052999.80 5.44 69 0 8.38 347 0
150 15 9 9 573.06 11708 1289876.08 9.67 99 0 6.66 339 0
150 20 3 3 3.69 23 722874.51 1.95 14 0 17.08 205 0
150 20 3 6 53.69 200 1218049.89 7.79 28 0 65.42 279 0
150 20 3 9 154.10 491 1698605.53 15.13 41 0 67.09 313 0
150 20 6 3 5.90 34 656362.21 3.60 25 0 123.11 1511 0
150 20 6 6 277.92 1126 892969.86 15.61 48 0 76.73 448 0
150 20 6 9 1909.65 7372 1167456.35 27.66 70 916.97 85.45 524 0
150 20 9 3 6.21 40 632827.03 5.56 41 0 249.59 5276 0
150 20 9 6 625.29 3773 825139.47 23.14 74 4261.55 166.76 1737 0
150 20 9 9 3600.06 22324 1015841.44 35.02 101 22164.32 131.88 1235 0
150 30 3 3 19.94 33 448488.62 6.79 16 0 62.30 259 0
150 30 3 6 162.58 119 712366.40 35.60 30 0 426.34 427 0
150 30 3 9 683.84 373 969595.10 85.02 43 0 637.96 344 0
150 30 6 3 68.59 111 414030.45 14.21 29 0 964.17 3764 0
150 30 6 6 2218.82 1596 594611.90 67.78 52 18955.78 2260.65 2741 0
150 30 6 9 3602.11 2402 774668.70 158.81 72 55835.42 3179.83 2440 0
150 30 9 3 107.56 184 370223.08 21.92 43 0 460.65 2350 0
150 30 9 6 3600.71 3959 511672.90 81.96 72 4171.87 3067.12 4884 0
150 30 9 9 3600.08 2221 682826.96 164.74 101 998.87 3607.46 4190 -18626.93
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

In Chapter 3, we study a reliable facility location problem that generalizes the classical

UFLP by considering random facility disruptions. We study the problem with the

disruption distribution in its general form, that is, heterogeneous failure rates and correlated

failures. We propose a novel way to characterize the available information of the disruption

distribution. With that, we propose a robust reliable facility location model that includes

several important problems studied in the literature. We propose a cutting plane algorithm

based on the supermodularity of the problem. For the cases in which the distribution is

fully known, the computational results show that the cutting plane algorithm not only

outperforms the best-known algorithm in the literature that solves uncorrelated disruptions,

but also efficiently solves moderate-sized problems with correlated disruptions. For the cases

in which only marginal failure probabilities are known, the problem is equivalent to solving

a stochastic model with a special distribution. The computational results show that the
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cutting plane algorithm outperforms the Benders decomposition. The heuristic algorithm,

multi-start tabu search, is shown to be very efficient and effective in solving large instances

for the instances in which failures are independent.

In Chapter 4, we present a model along with solution methods for determining the optimal

fortification plans for a distribution network considering both random facility disruptions and

worst-case intelligent attacks. The model generalizes several important problems studied in

the literature such as RIM, RIMF and RIMF-p. We show that the attacker’s problem is

equivalent to a supermodular function maximization problem with coordinate constraints,

and an exact cutting plane algorithm is proposed. As shown by computational study, the

cutting plane algorithm is very efficient in solving the attacker’s problem and significantly

outperforms the enumeration method. For the overall fortification problem, we show that

the tree search algorithm developed for RIMF is also applicable for solving the problem,

and a logic-based Benders decomposition algorithm is proposed. Computational study

demonstrates that the logic-based Benders decomposition algorithm has advantages over

the tree search algorithm when h, the number of facilities to fortify and r, the number of

facilities to attack, are relatively large.

5.2 Future Research Direction

The problems we study only consider the effects of facility disruption on transportation costs;

in reality, the effects can be manifold and complex. Thus, it would be interesting to take

more realistic cost components into consideration. It would also be interesting to study the

problems in a multi-product and/or multi-layer setting.
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It would also be interesting to extend the models studied in this work to solve critical

infrastructure problems. The location and protection of facilities is important from a national

security perspective and one mission of the Department of Homeland Security (DHS) is to

improve critical infrastructure security and resilience. The DHS has identified 16 critical

infrastructure sectors (CIs) that play a critical role in national security. Almost all of them

are associated with certain facility types, such as cellular towers in the communications sector

and power plants in the energy sector. One important characteristic of CIs is that they are

interconnected and interdependent on multiple levels. The interdependency of CIs is either

caused by physical proximity or operational interaction. Because the models we studied are

relevant for contexts with correlated disruptions, the solution methods may be adaptable to

solve location and fortification problems for CIs.

For both problems investigated by this study, facilities are assumed to have unlimited

capacity. The models and theoretical results in this work will no longer be applicable

when facility capacity is considered. When capacity is considered, the nearest assignment

property is no longer holds and one must solve an assignment problem to evaluate a solution.

Moreover, the supermodular properties are very probably violated. Therefore, it is much

harder to solve the problem once facility capacity is considered.

For the fortification problem, there are several possible research directions. First, h and

r are predetermined/known in this study, but in practice, h is actually a decision made by

the network planner and r is often hard to accurately estimate when the network planner

makes the fortification decision. It would therefore be interesting to extend the model to

explicitly model h as a decision variable and r with a probability distribution. Second, the

network/facilities are predetermined. It is interesting to extend this work to consider facility
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location decisions, in other words, to simultaneously make the location and fortification

decisions
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linearization technique for modeling reliability in facility location and related problems.

European Journal of Operational Research, 230(1):63–75. 13

[69] Orlin, J. B. (2009). A faster strongly polynomial time algorithm for submodular function

minimization. Mathematical Programming, 118(2):237–251. 79

[70] Owen, S. H. and Daskin, M. S. (1998). Strategic facility location: A review. European

journal of operational research, 111(3):423–447. 12

[71] Pirkul, H. and Jayaraman, V. (1996). Production, transportation, and distribution

planning in a multi-commodity tri-echelon system. Transportation Science, 30(4):291–

302. 11

[72] Qi, L., Shen, Z.-J. M., and Snyder, L. V. (2010). The effect of supply disruptions on

supply chain design decisions. Transportation Science, 44(2):274–289. 15

[73] Reese, J. (2006). Solution methods for the p-median problem: An annotated

bibliography. Networks, 48(3):125–142. 10

112



[74] Resende, M. G. and Werneck, R. F. (2006). A hybrid multistart heuristic for the

uncapacitated facility location problem. European Journal of Operational Research,

174(1):54–68. 43

[75] Revelle, C. S., Eiselt, H. A., and Daskin, M. S. (2008). A bibliography for some

fundamental problem categories in discrete location science. European Journal of

Operational Research, 184(3):817–848. 10

[76] Scaparra, M. P. and Church, R. L. (2008a). A bilevel mixed-integer program for critical

infrastructure protection planning. Computers & Operations Research, 35(6):1905–1923.

6, 17, 71, 76, 94

[77] Scaparra, M. P. and Church, R. L. (2008b). An exact solution approach for the

interdiction median problem with fortification. European Journal of Operational Research,

189(1):76–92. 17, 71

[78] Sheffi, Y. (2001). Supply chain management under the threat of international terrorism.

The International Journal of Logistics Management, 12(2):1–11. 3

[79] Shen, Z.-J. M. (2005). A multi-commodity supply chain design problem. Iie

Transactions, 37(8):753–762. 11

[80] Shen, Z.-J. M., Zhan, R. L., and Zhang, J. (2011). The reliable facility location

problem: Formulations, heuristics, and approximation algorithms. INFORMS Journal

on Computing, 23(3):470–482. 4, 5, 12, 13, 14, 20, 87

113



[81] Snyder, L. V., Atan, Z., Peng, P., Rong, Y., Schmitt, A. J., and Sinsoysal, B. (2016).

Or/ms models for supply chain disruptions: A review. IIE Transactions, 48(2):89–109. 3,

12, 15, 16

[82] Snyder, L. V. and Daskin, M. S. (2005). Reliability models for facility location: the

expected failure cost case. Transportation Science, 39(3):400–416. 4, 6, 12, 13, 20

[83] Snyder, L. V. and Daskin, M. S. (2006). Stochastic p-robust location problems. IIE

Transactions, 38(11):971–985. 12, 14

[84] Sridharan, R. (1995). The capacitated plant location problem. European Journal of

Operational Research, 87(2):203–213. 11

[85] Sun, M. (2006). Solving the uncapacitated facility location problem using tabu search.

Computers & Operations Research, 33(9):2563–2589. 40

[86] Sun, M. (2012). A tabu search heuristic procedure for the capacitated facility location

problem. Journal of Heuristics, 18(1):91–118. 40

[87] Sviridenko, M. (2004). A note on maximizing a submodular set function subject to a

knapsack constraint. Operations Research Letters, 32(1):41–43. 79

[88] Tang, C. S. (2006). Robust strategies for mitigating supply chain disruptions.

International Journal of Logistics: Research and Applications, 9(1):33–45. 3

[89] Tragantalerngsak, S., Holt, J., and Rönnqvist, M. (2000). An exact method for the
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A Parameter-Tuning of the MSTS Algorithm

A.1 Parameter StabilityLimit

We first try to tune the parameter StabilityLimit – the number of iterations without

improvement before completing one start of the tabu search. We test the tabu search

with different values of StabilityLimit for solving benchmark instances with 50, 75 and

100 nodes with α = 1. Table A1 gives the results. For each row, 10000 random runs of the

tabu search (1 start) are performed. Column titled “Popt” reports the percentage of runs

producing the optimal solution (we compare the objective value and the best objective value

obtained by the exact algorithm). Column titled “Iterations” reports the average number

of iterations for each run of tabu search. Column titled “Time” reports the average time

in seconds for each run of tabu search. It can be seen from the table, in general, both the

percentage of runs producing the optimal and the average number of iterations increase with

the value of StabilityLimit. For each problem scale, the computational time is proportional

to number of iterations. Thus, there is a need to choose a value for StabilityLimit to

balance solution quality and solution time. For example, the 50 nodes instance, when

StabilityLimit is set to 1, on average, it takes 23 iterations and the probability of finding

optimal solution is 3.27%. If we perform 10 runs of the tabu search, the chance of finding

optimal solution becomes Popt = 1− (1− 3.27%)10 = 28.28% and it takes 230 iterations on

average. Comparing these number with StabilityLimit = 100, it is obviously better to set

StabilityLimit = 100. In table A2, we compute a the chances of finding optimal solution

of different value of StabilityLimit by assuming a total 500 iterations available. It can be

seen from the table, in general, the chances first increase then decrease with the value of
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StabilityLimit. StabilityLimit = 20 has a very good performance and is chosen for all

remaining experiments.

Table A1: Tabu search performance with regard to StabilityLimit

Nodes StabilityLimit Popt(%) Iterations Time
50 1 3.27 23 0.01
50 3 8.65 26 0.01
50 5 11.8 30 0.01
50 10 16.36 40 0.01
50 20 65.26 61 0.02
50 50 74.03 96 0.03
50 100 79.39 150 0.05
50 200 78.65 251 0.08
75 1 1.9 34 0.04
75 3 8.59 39 0.04
75 5 12.31 42 0.04
75 10 44.36 54 0.05
75 20 66.27 70 0.06
75 50 68.56 103 0.09
75 100 70.04 156 0.13
75 200 72.22 262 0.20
100 1 9.41 46 0.10
100 3 11.29 50 0.11
100 5 11.68 54 0.11
100 10 11.53 61 0.12
100 20 12.39 74 0.14
100 50 12.04 109 0.19
100 100 12.89 160 0.26
100 200 12.43 263 0.40

Table A2: Chance of finding optimal solutions with 500 iterations

Nodes
StabilityLimit

1 3 5 10 20 50 100 200

50 0.5195 0.8210 0.8770 0.8920 0.9998 0.9991 0.9949 0.9536

75 0.2458 0.6817 0.7869 0.9958 0.9996 0.9963 0.9790 0.9133

100 0.6597 0.6981 0.6865 0.6332 0.5907 0.4462 0.3495 0.2234

A.2 Parameter nStarts

We examine how the number of starts affects the algorithms performance. We solve the

benchmark instances with α = 1 with difference number of starts. The results are reported

in Table A3. In the column titled “Chance”, we compute the estimated chance of finding
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optimal solution based on Table A1. It can be seen that when the chance of find optimal

solution increases with the increase of number of starts and the chances become very close

to 1 when the number of starts greater than 20. From the table, we observe that the number

of iterations and time used is proportional to the number of starts.

Table A3: Algorithm performance with regard to nStarts

Nodes nStarts Upper Bound
Iterations Time Chance

Min Ave Max
50 3 1,020,180 1,020,180 1,020,180 176.2 0.0693 0.958073
50 5 1,020,180 1,020,180 1,020,180 305.4 0.1060 0.994940
50 10 1,020,180 1,020,180 1,020,180 589.3 0.2014 0.999974
50 20 1,020,180 1,020,180 1,020,180 1250.2 0.4331 1.000000
50 50 1,020,180 1,020,180 1,020,180 3108.3 1.0666 1.000000
50 80 1,020,180 1,020,180 1,020,180 4814.0 1.6802 1.000000
50 100 1,020,180 1,020,180 1,020,180 6137.6 2.1053 1.000000
75 3 1,148,490 1,148,490 1,148,490 218.0 0.2022 0.961625
75 5 1,148,490 1,148,490 1,148,490 369.2 0.3435 0.995634
75 10 1,148,490 1,148,490 1,148,490 711.1 0.6553 0.999981
75 20 1,148,490 1,148,490 1,148,490 1391.9 1.2463 1.000000
75 50 1,148,490 1,148,490 1,148,490 3549.5 3.2131 1.000000
75 80 1,148,490 1,148,490 1,148,490 5653.6 5.1599 1.000000
75 100 1,148,490 1,148,490 1,148,490 6908.1 6.2522 1.000000
100 3 1,252,600 1,255,250 1,259,110 228.2 0.4349 0.327548
100 5 1,252,600 1,253,930 1,260,060 378.6 0.7543 0.483859
100 10 1,252,600 1,252,890 1,253,580 744.3 1.4543 0.733598
100 20 1,252,600 1,252,600 1,252,600 1532.5 2.9813 0.929030
100 50 1,252,600 1,252,600 1,252,600 3687.9 6.9429 0.998658
100 80 1,252,600 1,252,600 1,252,600 5857.5 11.0321 0.999975
100 100 1,252,600 1,252,600 1,252,600 7436.0 13.7748 0.999998
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