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ABSTRACT 

 
Movement not only permeates human life, but structures dimensions of experience. 

Phenomenological theory points to the dynamic congruency of movement and emotion, via 

the body schema, as shaping affectivity. For psychology, this calls for an understanding of 

behavior beyond being discrete events, but also manifesting kinetic melodies. Yet there is a 

gap in existing methodology for empirically studying the three-dimensional characteristics of 

human movement continuously across segments of the body. A potential line of research in 

this area, implicit affect regulation capacities, was described to inform the selection of 

instrumentation, measurement, and calculations of dynamic structure that would, theoretically, 

best measure movement for this and likely other purposes.  

Regarding instrumentation, an active motion capture system based on the Xbox Kinect 

and iPiSoft software was selected. Regarding measurement, rotational kinetic energy was 

identified from the biomechanics literature to meet this requirement. Calculations of dynamic 

structure focused on a measure of complexity, or structural richness, called multivariate 

multiscale sample entropy (MMSE).  

The agreement between the active system and a gold standard passive motion capture 

system was assessed on two components of rotational kinetic energy, rotational magnitude 

velocity and segment length, and on dynamic structure calculations. Two MFA actors (one 

male and one female) and a male professor of theater performed a total of 20 movement 

sequences, which were concurrently measured by the two systems. 

 The active motion capture system satisfactorily estimated dynamic movement in 

agreement with the passive system. It also estimated summary measures in high agreement 

with the passive system. Calculations of dynamic structure were in satisfactory agreement as 

well. Analyses of MMSE calculations from the active system data provided initial evidence 

that this process could characterize movement complexity as structural richness, perhaps 

describable as the body moving as a coherent whole over time. The instrumentation and data 

processing procedure described in this project can be used to validly measure dynamic 

movement in psychology. Limitations of the study and future directions in the research and 

methods are discussed. 
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CHAPTER 1: INTRODUCTION 
 

In the beginning, we are simply infused with movement -- not merely with a 

propensity to move, but with the real thing. This primal animateness, this original 

kinetic spontaneity that infuses our being and defines our aliveness, is our point of 

departure for living in the world and making sense of it...It is in effect the foundation 

of our sense of ourselves as agents within a surrounding world. But it is even more 

basically the epistemological foundation of our sense of who and what we are. We 

literally discover ourselves in movement. (Sheets-Johnstone, 2011, p. 117) 
 

Progress in the study of embodiment and embodied cognition has informed much 

about how one’s bodily activity is related to decision marking, semantic knowledge, and 

perception (Lakoff & Johnson, 1999; Gallagher, 2006; Noe, 2004). In particular, Gallagher’s 

basic insight into the body schema (as opposed to the body image; 1986) has provided for 

psychology a way to conceptualize the relationship between embodiment and the self.  

Considering the body as supporting ownership and agency reveals how our temporal 

embodiment is central to ongoing experience (see Ratcliffe, 2008 on “existential feelings”). 

Sheets-Johnstone makes the case that movement is so central to experience as whole, that to 

call cognition “embodied” is merely to apply “a lexical band-aid” to theory (1999, p. 260), as 

the term obscures how fundamentally the animate body permeates basic dimensions of 

experience. 

As animate movement has emerged as an important dimension of phenomenological 

understandings of experience, testable claims challenge empirical psychology.  While the 

applications of these theoretical advances and traditions to clinical psychology have yet to be 

fully worked-through (see Fuchs, Sattel, & Heningnsen, 2010), there remains a clear vacancy 

in the psychological methodology in the measurement of movement of the whole body over 

time. While some technology exists that might work well for related purposes, the accuracy of 

such technology remains untested, the system requires much preparation of participants, and 

the approach to movement data does not straightforwardly accommodate the needs of basic 

psychology research or applied clinical assessment (c.f., Burger & Toiviainen, 2013).  

There is a vast literature on these topics for the purposes of biomechanics and 

kinesiology, which cover a whole range of questions. Naturally, there are extensive and highly 

advanced instrumentation in these fields for the collection, processing, and analysis of kinetic 

(e.g., energy and force) and kinematic (e.g., velocity and acceleration) variables (Winter, 

2009; Robinson, Caldwell, Hamill, Kamen, Whittlesey, 2013). However, there is 

unfortunately no readymade translation of instrumentation from biomechanics to typical 

questions and contexts of basic or applied psychology. The physics of human movement is 

incredibly complex, the instrumentation advanced, and the data processing extensive. For 

these reasons, if there is to be any sustainable study of movement for the questions of 

psychology, there must be an accessible, theoretically-derived framework that draws out the 

most relevant features of biomechanics methodology and describes a validated process. 

In this project, I attempt to do just that. To bring relevant measures into focus, I will 

sketch out a specific line of research that serves as one impetus for studying movement. This 

sketch brings to the foreground the most relevant features of biomechanics measurement for 

this kind of research. Following, this project proceeds with the task of establishing the 
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credibility of a candidate instrument and process for studying these features. Hence this study 

serves as an attempt to establish specific instrumentation, and moreover, a general data 

collection and processing strategy that feasibly gathers reliable and relevant measurements of 

dynamic movement. 

 

An Impetus for Studying Movement in Psychology 

 
There have been several forays into the study of movement and spatiality in 

psychology including proxemics (Hall, 1966), the embodiment of music listening (Luck, 

Saarikallio, Burger, Thompson, & Toiviainen, 2010), and interactional synchrony (Ramseyer 

& Tschacher, 2011). Based on work in these fields and on phenomenological theory, there 

remains open the possibility to characterize movement dynamics as features of personality 

and self-regulation capacities. Self-regulation is thought to be transdiagnostic feature of 

psychopathology with core behavioral, experiential, and biological features (Carver, Johnson, 

Joormann, & Scheier, 2014). Developmental perspectives on self-regulation processes point 

toward the interactional dynamics of early relationships with primary caregivers as formative 

for relatively enduring styles of affect regulation (Fonagy, Gergely, Jurist & Target, 2004). 

Often described as attachment styles, these persist from early developmental context into 

adulthood (Fraley, Roisman, Booth-LaForce, Owen, & Holland, 2013), and are thought to be 

especially active during situations of interpersonal threat (Fonagy et al., 2004).  

A major theme in attachment research involves describing how highly relational 

processes that play out in the presence of the primary caregiver transform into further 

sophisticated processes that can operate in the primary caregiver’s absence (Fonagy et al., 

2004). This is characterized in a central question: how it is that interpersonal regulation 

becomes self-regulation? A candidate mechanism for the regulation of affect early in life is 

the interactional synchrony of the primary caregivers and their child (Isabella & Belsky, 

1991). Defined by the coordination of movement between a primary caregiver and their child, 

this kinematic process has foundational importance for containing and productively 

expressing the infant’s affect (Feldman, 2007). Infant-mother interactional synchrony is a 

thoroughly kinetic and whole-body phenomenon, reaching to a primary dimension of human 

experience that the phenomenologist, Sheets-Johnstone, seems to capture with her claim that 

“movement is our mother tongue” (2011, p. 195).   

Several authors have described models which posit automatic and dynamic styles of 

overregulation, underregulation and optimal regulation of affect, explicitly linking the concept 

of attachment styles to these affect regulation styles (e.g., Nolte, Guiney, Fonagy, Mayes, & 

Luyten, 2011). Cassidy proposed such a theory, conceptualizing attachment security as a 

capacity for open and flexible emotion expression in threatening situations (1994). 

Alternatively, two insecure attachment styles utilize different maladaptive affect regulation 

styles in her scheme: avoidant individuals exhibit inhibited emotion expression while anxious 

individuals exhibit heightened and undercontrolled emotional expression. Evidence suggests 

that these styles are relatively independent of temperamental proneness to anxiety and are 

more related to a developed skillfulness (Cassidy, 1994, p. 233). A similar theory has been 

proposed by Siegel, who stitches together various levels of analysis in his integrative 

developmental approach to interpersonal neurobiology (2012).  

To capture how the complexity of how affect regulation functions in adults, Fonagy, 
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Gergely, Jurist, and Target developed the concept of mentalization, and particularly the 

achievement of mentalized affectivity, which the authors define as “the capacity to connect to 

the meaning of one’s emotions” (2004, p. 15). They describe two levels of affect regulation 

that may result in this state of mentalized affectivity. On a primary level, affect regulation is a 

matter of maintaining a basic equilibrium; on a secondary level, affect regulation involves a 

process of meaning-making and interpersonal interpretation (2004, p. 95). This secondary 

level is also often called reflective function, a term with a longer history (Fonagy & Target, 

1997) and employed by related lines of research (e.g., Levy et al., 2006). Exploration into how 

these levels of affect regulation might interact over time remains a methodological and 

theoretical challenge.  

Toward this end, Fonagy, Gergely, and Target suggest that mentalization might be 

considered skillful process that involves “a self-reflective and an interpersonal component, is 

both implicit and explicit, and concerns both feelings and cognitions” (2008, p. 793). Related 

theory about self-regulation has operationalized some of the mechanisms of regulatory control 

in more concrete terms, as feedback-loop models of biobehavioral subsystems (Carver, 

Johnson, Joormann, & Scheier, 2014; Carver & Scheier, 2012). Effectively maintaining a 

primary, though complex, regulation of goals and affect, one might clear an opening for 

imagination or productive thought. 

 

Kinetic Melodies Gifted with Meaning 
    

Following the suggestion of affect regulation as being a kind of background skill with 

roots in synchrony with primary caregivers, I contend that skillfulness becomes a useful 

metaphor for extending our knowledge about the two-personal dynamic model of affect 

regulation in early childhood into a dynamic one-personal model of the adult personality. 

Skillful affect regulation seems to develop, in part, through the interactional synchrony of 

movement, which suggests that the complexity of adult individual affect regulation may also 

unfold, in part, as a dynamic structure of movement.  

Fleshing out the notion of movement as structuring affect regulation remains a 

difficult, almost intractable problem from a rigidly Cartesian perspective. Pausing a strict 

delineation between cognition and affect, or mind and body, may allow for alternative 

approaches to emerge. Theoretical work in phenomenology can provide some foundational 

comments in support of such an alternative endeavor. In The Structure of Behavior, Merleau-

Ponty attempts a critique of Cartesian approaches to mind and reductionism in behavioral and 

gestalt theories of psychology and offers a nuanced understanding of the organism as a living 

whole (1942/1983).  In doing so, he assigns behavior a major role in the ongoing maintenance 

equilibrium of the organism: “...each organism, in the presence of a given milieu, has its 

optimal conditions of activity and its proper manner of realizing equilibrium” (Merleau-Ponty, 

1942/1983, p. 148). This move highlights an empirical and dynamic perspective on behavior 

which necessarily departs from understanding behavior exclusively as reactions to collections 

of specific stimuli.  

He describes behavior as not necessarily a “thing,” and neither as an “idea” (Merleau-

Ponty, 1942/1983, p. 127), but as a “kinetic melody gifted with meaning” (Merleau-Ponty, 

1942/1983, p. 130) or a “form” (Merleau-Ponty, 1942/1983, p. 148). This stance holds that 

neuroscientific perspectives on behavior need not be restricted to reductive discoveries of 
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parts and subparts, but also need not abandon the investigation of physical processes for the 

sake of saving conscious experience. This is harmonious with Luria’s insight into the “kinetic 

melodies” of skilled movement through his study of function breakdowns due to lesions in the 

premotor cortex (Luria, 1973). 

Contemporary phenomenological perspectives on movement expand beyond early life 

and consider movement in circular exchange with emotional experience over time (Fuchs & 

Koch, 2014), forming a dynamic congruency (Sheets-Johnstone, 1999). These works amplify 

phenomenological insights of Husserl and Merleau-Ponty who observed a rather complex yet 

primary temporal intertwining between expression and behavior - especially in the contexts of 

affect, self-experience, and interpersonal relating (Husserl, 1977/1931; Merleau-Ponty, 

2002/1962). The temporal construction of experiences through movement and emotion might 

thus be understood as a major factor in the skillful engagement in the world (Dreyfus, 2002). 

 

Measurement of Dynamic Movement 
  

Taking seriously the theoretical importance of expressive behavior, empirical 

psychology is presented with a methodological challenge. An operationalization of it as 

dynamic movement stands at the nexus of psychology, biomechanics, and phenomenology. 

Affect regulation and experience meet body segment rotational kinematics and whole-body 

systemic dynamics at a juncture where there seem to be great potential for measurement, but 

without a coherent account of relevant measures to be validated. By analogy, some continuous 

measures of event-related potentials via electroencephalogram (EEG) have been applied to 

much success in measuring the continuous neural activity of affect regulation (Amodio, 

Master, Yee, & Taylor, 2008). Similarly, behavior might be measured as continuous 

movement.  

Such an approach should squarely measure affect regulation as it simultaneously 

unfolds for the self and in significance for others. The person would be understood as a 

dynamic, animate system unto themselves; open or closed to interactional synchrony with 

others, and characterized by systemic and dynamic movement as an active and expressive 

whole. This perspective becomes less concerned with the directions of body segment rotation 

than with the fact of movement and the trajectories of movement over. 

Some previous work has attempted to document the dynamic features of movement 

beyond immediate gestural or semantic functions. A striking example is Labanotation, a 

movement notation system often used to document dance choreography (Guest, 2014). The 

products of Labanotation function like a sheet of music, using different shapes, symbols, and 

colorations to indicate the features of a movement sequence. The theoretical approach of 

Laban has been applied to some models of human movement in psychology research (e.g., 

Foroud & Whishaw, 2006) and in modelling qualities of animations (the EMOTE Model; Chi, 

Costa, Zhao, & Badler, 2000). A drawback of assuming a system of discrete descriptions of 

movement like the Labanotation system, or directly applying Laban’s theoretical framework 

to movement, is that it may not be sensitive to systemic qualities of continuous movement. 

Instead, it seems that the measurement of movement dynamics as a continuous physical index 

may more closely describe the operations of movement as a biological phenomenon and 

provide a productive framework for observing the dynamic structure of affect regulation. 

Toward this end, biomechanical measurement can effectively track human movement over 
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time (Robertson, Caldwell, Hamill, Kamen, & Whittlesey, 2014). Some research has 

successfully applied this technology to the study of personality and musical movement, but 

inaccessibility of such instrumentation makes it less-than-ideal for widespread application in 

psychology, since relies on specialized expertise, expensive equipment, and affixing many 

reflective markers (see Luck, Saarikallio, Burger, Thompson, and Toiviainen, 2010). A need 

for instrumentation in this area remains. 

 

Measurement of Movement in Focus 

 

Measures. One historic convergence of clinical psychology and biomechanics lies in 

the appreciation of human gait patterns (Jaspers, 1963). In the case of gait there are various 

measures in biomechanics, like interstride intervals, which capture key aspects of the 

movement (Mentiplay et al., 2015). However, these measures do not directly apply to the 

general question of expressive movement, where there is not necessarily a concrete, 

predictable event like time intervals between walking strides. Instead, the frameworks of 

general energy and dynamics seem more well-suited approach for the task of measurement. 

Additionally, any measure should be robust to different forms of movement and contexts -- it 

should be able to flexibly assay expressive movement in an open-ended fashion.  

One destination of measurement is body segment rotational kinetic energy (Robinson 

et al., 2013). With the whole body as the system of interest, a rotational perspective on body 

segment movement is most appropriate, where body segments rotate at joints and implies 

gross movement of the body in space. Kinetic energy provides a scalar of movement, a one-

dimensional summary of three-dimensional movement. Not only does this make the 

interpretation and computation of movement data easier, but it also harmonizes well with 

neuroscientific methodology, like EEG and fMRI, which are also often processed into scalar 

values over time.  

The calculation of the rotational kinetic energy of a given body segment requires a few 

indices for calculation: 1) segment mass, 2) segment length, and 3) rotational velocity. 

Segment mass is estimated through models defining segments as proportions of the total body 

mass (de Leva, 1996), so its reliable measurement only depends on having the person’s 

overall mass. A motion capture system can estimate segment length. Generally, segment 

length is held constant for a given participant and is considered as a one-time set of values 

applied to calculations conducted on each frame of a movement sequence (Robinson, et al., 

2013, p. 63).  

This leaves rotational velocity as the primary variable for which validity needs to be 

established. Rotational velocity is typically described as the change in Euler angles per 

second, capturing each of the three dimensions of rotation (Robinson et al., 2013, p. 50). A 

whole-body model, with many body segments, and three dimensions of rotation being 

modelled for each, culminates into gratuitous data for a generalized description of movement 

dynamics. If we were to have reliably-measured rotational velocity, we would proceed with 

the XYZ rotational velocities separately in some calculations before bringing together as 

kinetic energy (see Appendix A for a description of this process). For the sake of concision 

and with the calculation of three-dimensional kinetic energy in mind, the current effort turns 

the three-dimensional rotational velocity into a different one-dimensional scalar: magnitude 

rotational velocity. This was achieved by taking the Euclidean norm of the three rotational 
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dimensions.  

The measurement of human biomechanical data across the whole-body results in 

multiple channels of body segments – magnitude rotational velocity, in the current case. There 

are different ways to arrange these multiple channels data. Under the guiding framework of 

kinetic energy, each of these segments would preferably be described in an individual over 

time, that is, one channel of data per body segment per recorded movement sequence. These 

channels could also be summed together to form a whole-body total over time, or in different 

subgroups, but they could also be kept separate and statistically modelled as a complex 

dynamic system that moves as a coherent whole over time. 

 

Dynamic structure of movement. Studies in biomechanics have employed 

algorithms that calculate the variability of movement over time in terms of meaningful 

structural complexity instead of modelling it away as irrelevant noise (Newell, Deutsch, 

Sosnoff, & Mayer-Kress, 2006). A family of univariate and multivariate mathematical 

algorithms, entropy models, quantify such structural characteristics of variability (Goldberger 

et al., 2000). A univariate measure that seems promising for the measurement dynamic 

movement is multiscale sample entropy (MSE; Costa, Goldberger, & Peng, 2002). It also has 

a multivariate counterpart, multivariate multiscale sample entropy (MMSE; Ahmed & 

Mandic, 2011). These emerge out of the tradition staked by Kolmogorov-Sinai entropy, which 

describes entropy as mean information richness or the level of description needed to produce a 

given output (Costa, Goldberger, & Peng, 2002). 

Shifts toward appreciating the potential structural characteristics of variability have led 

to progress in understanding dynamic structure of healthy, optimal performance across human 

systems. A leading line of research in this effort has demonstrated that optimal heart rate 

styles are richly complex, while unhealthy styles have been shown to either be highly 

predictable (e.g., highly regular beats) or highly random (e.g., atrial fibrillation; Costa, 

Goldberger, & Peng, 2005). Similar models have been applied to discover increases in the 

dynamic complexity of brain activity among individuals with schizophrenia after taking 

antipsychotics (Takahashi et al., 2010), to discriminate between fMRI data of young and 

elderly adults (Sokunbi, 2014), and to characterize the difference between healthy and 

unhealthy human gait and balance dynamics (Costa, Peng, Goldberger, & Hausdorff, 2003). 
 

Instrumentation. There remains the matter of how to acquire three-dimensional 

rotational information for the computation of scalar of movement like magnitude velocity in 

an accessible and reliable way. A procedure and software package that currently exists in the 

psychology literature is called Motion Energy Analysis (Ramseyer & Tschacher, 2011). This 

method calculates the frame-by-frame pixel changes on standard two-dimensional digital 

video plane. It has been used in basic research on the affective atmosphere of interpersonal 

interactions in experimental settings (Tschacher, Rees, & Ramseyer, 2014) and in clinical 

research, for example, in studying the effect of a movement-based intervention on negative 

symptoms in schizophrenia (Gabrusela, Finn, & Fuchs, 2015). This system does not model 

three-dimensional movement, nor does it capture the movement of separate body segments, so 

it does not meet the requirements for the current project. However, it has functioned 

successfully in research as a general indicator of how much movement transpires in a region of 

interest over time, the term of art being “motion energy” (Ramseyer & Tschacher, 2011, p. 
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286). The degree to which this method might estimate whole-body kinetic energy remains an 

open question outside the scope of this project, but it does give context for the task at hand. 

Passive motion capture systems are standard in the measurement of movement in 

biomechanics. While they are extremely accurate, they require significant preparation of a 

single participant with markers and in the modelling of their morphology ‘from the bottom 

up.’ This process also requires expertise on the part of the experimenter and a large, dedicated 

space for the sophisticated network of cameras involved. If motion capture is to be smoothly 

integrated into psychology research on movement dynamics, finding more feasible and more 

inconspicuous instrumentation is paramount.  

An active motion capture system is a promising response in this regard. These systems 

are active in the sense that they actively fit a human figure to depth data ‘from the top down.’ 

By nature of actively modelling, these systems introduce an additional layer of estimation into 

the collection of raw movement data, naturally introducing additional error. Increased error in 

the measurement of movement dynamics by active systems may be tolerable given 

accessibility advantages, but only if they can be thoroughly validated. Active systems seem 

well-positioned for use in research on expressive movement that requires the collection of 

three-dimensional dynamic data. Where large numbers of participants are frequent, a 

markerless, active system provides a way to measure the movement of people rather 

immediately, without applying materials to a participant or having them wear any specialized 

gear.  

Specifically, the Microsoft Kinect system may be able to reliably achieve such 

measurements while meeting the requirements of research on expressive movement. While 

the Kinect may not reach the accuracy needed for fine-grained biomechanical questions 

achievable by passive systems, the accuracy and rate of measurement may be suitable for 

estimating the spatiotemporal characteristics of movement. While there are several studies on 

the accuracy of the Kinect version 2 data (e.g., Clark et al., 2015; Geerse, Coolen, & 

Roerdink, 2015; Mentiplay et al., 2015), it has yet to be established whether this system can 

viably record a general measure like magnitude rotational velocity in an open-ended fashion, 

across varied situations that one might reasonably encounter in experimental or clinical 

psychology. Thus, a study was designed to examine the agreement between the estimates of 

this active system with a passive system on magnitude rotational velocity in body segments. 

This study also presents the development of a general procedure for processing movement 

data and for analyzing the dynamic structure of movement. 
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CHAPTER 2: METHOD 
 

 This study approached the question of agreement through the concurrent measurement 

of a series of movement sequences performed by three participants. With the active and 

passive systems measuring the identical scene simultaneously, differences between these 

systems were due to instrumentation. 

 

Participants 

 
Three individuals participated in this study. Two were actors studying for their 

Masters of Fine Arts (MFA) in Acting (one male, one female) who performed a series of 

seven varied movement sequences. The other participant was a professor of theater who 

specialized in movement training. He performed six sequences of corporeal mime from the 

training tradition of Etienne Decroux (Decroux, 1985; Leabhart, 1989). All study procedures 

were approved by the institution’s Internal Review Board and all individuals gave written 

informed consent for participation and video recording. 

 

Experimental Procedure 

 
After the calibration of instrumentation and basic preparation of participants for both 

movement systems, they were asked to perform a series of movement sequences. The two 

MFA participants each received identical instructions for movement sequences and performed 

them in the same order: treadmill walking freely and governed by a metronome, one minute 

sequences of random and swaying movement, the simulation of an interview procedure, a 

corporeal mime piece, and a brief walk through the capture area on the ground. These tasks 

were selected to provide a varied database of samples with widely different properties 

intended to push the limits of the active system’s movement tracking capacities, they also 

offered ways to explore the dynamic structure of movement. Refer to Table 1 for a summary 

of these movement sequences. 

 

Movement Sequences for the MFA Actors 

 
Treadmill Walking: Free and Paced Movement 

 

Participants were asked to walk on a commercial-grade treadmill both freely and with 

their steps paced by a metronome for one minute each. Speed was held constant within the 

two trails of the participants, but was set to a participant-determined comfortable speed. The 

metronome, which gave the constant indication of beats per minute (bpm) by a “click” sound, 

was set at 120 bpm. The two conditions, free and paced allow for a replication of findings that 

long-range correlations present in free walking are broken down in metronome-paced walking 

(Costa, Peng, Goldberger, Hausdorff, 2003; Hausdorff et al., 2001).  
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Table 1. Movement Sequences 

 

    Participant 

Sequence Duration Limit 

Female MFA 

Actor 

Male MFA 

Actor 

Professor 

of Theater 

Free treadmill 1 min x x  
Paced treadmill 1 min x x  
Random  1 min x x  
Swaying 1 min x x  
Mock stress interview  5 min x x  
Ground walking None x x  

The Rope None x x x 

Flick of the Seahorse’s Tail  None   x 

Actions of Agriculture     

Scythe None   x 

Pulling a cart None   x 

Pitchfork None   x 

Sowing seeds None     x 

 

Random and Recurring Sequences 

 

For further samples of expressive movement with different properties, the MFA actors 

were instructed to conduct two further movement sequences: random, to move around 

randomly for one minute and swaying, to sway in place for another minute. These sequences 

also served the purpose of providing candidate lower-complexity movements for comparison 

to natural expression, which was conceptualized to have more structural richness. 

 

Mock Interview  

  

As one planned application of movement measurement to psychology was through a 

well-defined stress induction paradigm, the Trier Social Stress Test (Kirschbaum, Pirke, & 

Hellhammer, 1993), MFA actors were asked to undergo the administration of the test for a 5-

minute duration in character. In summary, they were instructed to interview as a character of 

their choosing for a “dream job.” The inclusion of this in our experimental procedure allowed 

for the closest possible test to expectable conditions for the study of movement in an 

experimental psychology context. It also tests agreement at a longer duration.  

 

Corporeal Mime: The Rope 
 

MFA actors will be asked to perform a prepared corporeal mime piece. In this 

sequence, the participant moves as if they hand off a rope, which will be referred to as The 

Rope. Expert execution of movement sequence requires the coordinated articulation of all 

body segments. While giving yet another opportunity to test the accuracy of the system, the 
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inclusion of the sequence also allowed for exploring the sensitivity of the complexity 

calculations to movement between two students and an expert on the same sequence. Each 

participant performed the sequence three times during their recording. 

 

Ground Walking 

  

To assess the active system’s ability to capture kinematics at a short duration, the 

MFA actors were instructed to walk from the back of the capture area toward and through the 

space between the two Kinect cameras. Given the relatively short durations of these walking 

sequences, they were not long enough in duration to be included in analyses of dynamic 

structure agreement. 

 

Movement Sequences for the Professor of Theater 

 
 The male professor of theater performed The Rope and five additional corporeal mime 

sequences, including a series of four sequences from the Etienne Decroux corporeal mime 

tradition called the Actions of Agriculture. This is a series of four movement sequences that 

portray features of agricultural work: sowing seeds, pulling a cart, cutting crops with a scythe, 

and using a pitchfork. The professor of theater’s fifth movement sequence was called Flick of 

the Seahorse’s Tail, in which he portrayed the dynamics of a seahorse tail through bilateral 

arm movements. 

 In terms of testing the motion capture instrumentation, these corporeal mime 

sequences provided rich and varied samples of human movement. The professor’s 

performance of The Rope specifically allowed for an exploration of the properties of expert 

movement compared to those in training.  Like the MFA actors, the professor of theater 

performed The Rope sequence three times during the recording. 

 

Instrumentation  

 
Passive Motion Capture System 

 

 A 9-camera MX3/T10 1000 Hz motion analysis system, a passive motion capture 

system, was used as the gold standard of movement measurement in this study. This is a 

highly accurate state-of-the-art motion capture system used as a standard for biomechanical 

research (Windolf, Götzen, & Morlock, 2008). Providing a three-dimensional perspective on 

movement in the capture area, this allows for highly accurate and reliable recording of 

kinematics. 

Participants were outfitted with specialized light reflectors by experts in the operation 

of this system. These are designed to be minimally obtrusive, so as not to distort the 

participant’s natural movement. These reflectors are also specially designed to interface with 

the multiple cameras to produce three-dimensional location data. Before performing the 

movement sequences, participants stood in the center of the recording space for a baseline 

snapshot, which this system used as a template for modelling all future movement of this 

participant. By modelling morphology in terms of marker placement, this method also 
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provided data on body segment lengths for each participant.  

 

Active Motion Capture System  
 

In 2013, Microsoft released a second version of their Kinect camera system, which 

involves a hardware camera and a linked software development kit (SDK) allowing for data 

collection and analysis with a personal computer running Windows. Like its predecessor, this 

version measures human movement in three dimensions over time through a markerless 

method. That is, a method that does not require the placement of sensors or reflective markers 

on the participant’s body. This system records depth data using infrared sensors. Such data 

contain three-dimensional information, which can be actively modelled to a human form.  

Some approaches to collecting this data use custom programing to extract position 

data of the built-in skeletal; figure provided by the SDK (e.g., Clark et al., 2012).  There also 

exists third-party software (e.g., Brekelmans, 2016) to capture this raw data directly from the 

Kinect recording. By these systems, motion capture data of the body segments are directly 

written and usually only from the perspective of one camera. Though the data can be filtered 

or cleaned for outliers, the core movement modelling is essentially unalterable for these 

systems. Video might be recorded incidentally, but once recorded, the movement data are 

written and cannot be remodeled or resampled after the fact. 

The software system utilized in this study is made up of iPi Recorder 3.2.5.47 (iPiSoft 

LLC, 2016) and the iPi Motion Capture Studio (Basic) 3.4.16.212 with the Biomechanics 

Add-on (iPiSoft LLC, 2016). This software takes a fundamentally different approach to active 

motion capture with the Kinect camera (and is compatible with other cameras like the 

PlayStation Eye). Rather than directly recording skeletal movement data, iPi Recorder first 

records the depth data over time. In a second step, this video is “tracked” in iPi Motion 

Capture Studio. It is only at this stage that movement data are modelled.  

For the purposes of research on movement dynamics, this step between depth data 

recording and movement tracking offers advantages for the psychology researcher. One can 

supervise the movement tracking process and multiple cameras synthesized into a more 

accurate picture of depth. Regarding the supervision of tracking, one can observe the software 

estimating movement relative to the observable video. Though this may be rather infrequent, 

an active motion capture system has the potential of misidentifying or ‘losing track’ of a body 

segment through the course of recording, compounding into massive tracking errors. In an 

active motion capture system that directly records movement data, it is extremely difficult to 

notice this loss of the segment tracking since there is no visual comparison from which to 

supervise, and no backup of the depth recording from which to remodel.  

 

Cameras and laptops arrangement. Two Kinect cameras were stationed at the edge 

of the passive system’s pre-existing recording capture area. They were arranged 

approximately 2.85 m apart and each at approximately a 78° angle. The camera stage right 

was at a .8 m height over the ground with a slight, 4.26° upward tilt, with the camera stage left 

at a .9 m height over the ground and a negligible .48° upward tilt.  

As the software requires, each camera was linked to dedicated laptop, which were 

connected by Ethernet cable for reliable simultaneity and data transfer of the two recordings. 

One laptop-camera pair was dedicated the master controller of the recording process, dictating 
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the start and stop times of the of the slave laptop-camera pair. Cameras were situated on 

standard video camera tripods set to the sides of a table that had the laptops on it. iPi Recorder 

software was used to make the depth data recording and facilitate the networking of the 

machines. 

 

Calibration of cameras. When conducting a multi-camera setup, the spatial 

relationship between the two cameras needs to be reliably established before the two sets of 

depth data can be synthesized. This was accomplished by recording a calibration video before 

any movement sequences can be recorded. An experimenter traversed the capture area with a 

bright light source in hand, which the iPi Motion Capture Studio software tracks across both 

cameras. There need not be a strict arrangement of the cameras relative to each other - all 

successful calibrations are equivalently functional. A second calibration video was recorded at 

the end of the experimental session in case the camera arrangement of the pre-session 

calibration was somehow altered (e.g., accidentally bumping a camera), but was ultimately 

not needed in this study.  

 

Recording procedure. For the active motion capture system, participants are required 

to begin each movement sequence in a T-Pose (i.e., standing upright with arms held outward, 

parallel with the ground). Participants were instructed to hold the T-Pose for around 2-3 

seconds, after which the participant began the designated movement sequence. The passive 

motion capture system recording began immediately following the end of the T-Pose stance.  

 

Tracking and refining procedure with iPi Motion Capture Studio. The movement 

sequences were paired with a calibration file when imported into iPi Motion Capture Studio. 

A model of each participant was visually fitted to the videos for tracking. Parameters like 

height, arm length, and leg length, were adjusted to fit the still frame of the participant 

standing in a T-Pose. Once a model was created for a participant, it was used across all videos 

of that participant. Videos were then forward tracked under supervision. Whenever a gross 

error of tracking occurred relative to the original video, the tracking was paused, the human 

skeletal model manually corrected at the erroneous moment, and forward tracking was 

resumed. After forward tracking was completed, each video was backward refined. Backward 

refinement essentially refits the participant’s frame-by-frame pose going backwards in time, 

from the end to the beginning, providing subtle improvements to the initial tracking. 

 

Common Measurement Across Both Systems 

 

Body segments and groupings. Movement of body segments were measured in both 

systems as Head, Chest, Hips and left and right measurements of Upper Arms, Forearms, 

Thighs, Shins, and Feet. For all sequences, these body segments were also grouped by 

summing their respective values for each frame into Upper Body (Head, Chest, Upper Arms, 

and Forearms) and Lower Body (Hip, Thighs, Shins, Feet). Finally, a Total segments group 

was created by summing all body segments on their respective values for each frame. Thus, 

there were 16 values created in total for each movement sequence with 13 body segments and 

3 calculated segment groupings.  
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Frame of reference. The kinematic data from both systems were calculated relative to 

the global frame of reference. Each body segment was measured relative to the ground and 

described by kinematics independent of their position relative to other body segments. This 

can be contrasted with a frame of reference where the kinematics of each body segment is 

treated relative to their parent joint, for example, the Upper Arm’s movement relative to the 

Chest. Since both systems are calibrated to the global frame of reference, it provided a 

uniform and identical frame between the two motion capture systems on rotational data. 

 

Sampling rate. I proceeded with 30 hz as the standard sampling rate for all measures. 

This was the fastest sampling rate permitted for the active motion capture system. The passive 

motion capture system was sampled at 100 hz, which was transformed into 30 hz by 

upsampling by a magnitude of 3 to 300 hz and downsampling by a magnitude of 10. 

 

Aligning data. Data were aligned to the correct frame by first gathering an estimate of 

the corresponding frames between visualizations of the movement data. Second, cross-

correlation analyses were performed in R to discover the exact active and passive system 

frame with maximum correspondence and prepare the data accordingly for agreement 

analyses. 

  

Data Processing 

 
A major task after the collection of this raw movement data involves processing it into 

a format from which one can derive meaningful kinematic and kinetic variables. A 

collaborator and I have written R functions that import movement data and produce segment-

wise and whole-body kinematic variables for agreement analyses. Figure 1 depicts the flow of 

data collection, processing, and analysis.  

 

Magnitude Rotational Velocity 

 

Magnitude rotational velocity captures the movement of each body segment. In this 

project, it was measured as degrees per second of rotation relative to the global reference 

system (roughly, relative to the room). It was the primary metric under evaluation in this study 

as common across the active and passive systems, with the values of the passive system 

treated as a fixed gold standard. It is also the metric from which dynamic structure 

calculations are calculated for further evaluation of agreement. Further kinematic variables 

may be calculated and evaluated along the way, such as other kinematic measures, like 

acceleration and jerk (the 2nd derivative of velocity). The degree to which the active system 

measures magnitude velocity accurately directly informs the reliability of future calculations 

of kinetic measures, such as kinetic energy. 
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Figure 1. Flow Chart of Movement Data Collection, Processing, and Analysis 
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Segment Length 

 

Body segment lengths were also measured by the passive system and treated as a gold  

standard. These were acquired during the pose-fitting phase of the passive system’s tracking 

and are held constant as the passive system tracks sequences for that participant. Likewise, the 

active system fitted full-body models to the participant before any tracking can be done. This 

model is held also constant across each of the tracking sequences. Segment lengths were 

expressed in meters.  

 

Filtering Data 

 

It is common practice to filter biomechanical data to better model true kinematic 

values, typically with a low-pass Butterworth filter (Winter, 2009, p. 35). Passive system data 

of the markers were collected at 100 hz, and a residual analysis determined that an optimal 

filter was a low-pass Butterworth filter at 10 hz.  

For the active system, filtering was optimized relative to the processed passive system 

data as the first step in the data analysis process. The results of this analysis informed the filter 

order parameters and cut-off frequency for all following agreement analyses. Filtering was 

performed in R using the signal package (2014) and a custom function wrapper used to assess 

agreement for each movement sequence at many filter combinations. 

 

Complexity 

 

Complexity was operationalized as sample entropy using two closely related 

algorithms, multiscale sample entropy and multivariate sample entropy. The sample entropy 

calculation forms the conceptual core of these algorithms (SampEn; Richman & Moorman, 

2000). Sample entropy considers a time series sample and tests for patterning in the variability 

of the data over time. It specifically measures the probability that, over a sequence of m 

points, that m + 1 falls within an acceptable tolerance, r, at other m + 1 samples across the 

time series. Richman and Moorman summarize this as “precisely the conditional probability 

that two sequences with in a tolerance r for m points remain within r of each other at the next 

point.” (2000, p. H2042). The algorithm counts the number of template matches at m (usually 

fixed at 2) with the number of template matches m + 1, and, to give a standard scaling, takes 

the negative natural logarithm of this conditional probability.  This advances the approximate 

entropy algorithm (ApEn; Pincus, 1991), which was modelled to capture the mean rate of 

generation of information in a time series, or Kolmogorov-Sinai (KS) entropy. SampEn 

specifically is unbiased, but not counting templates as matching themselves, is a better 

estimate of time series with known complexity, and is more robust to differences in time 

series length (Richman & Moorman, 2000). 

 

Multiscale. Multiscale sample entropy introduces a multiscale advancement in 

measurement to this sample entropy algorithm (MSE; Costa, Goldberger, & Peng, 2005).  

Whereas its predecessors, approximate entropy and sample entropy, consider complexity 

across a single time scale, Costa, Goldberger & Peng (2005) note that complex processes 

often happen at different time scales in real-world data. This treatment helps to preserve the 
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entropy metric in accurately characterizing high-information variability as complex, 

maintaining a guiding intuition about complexity as representing “meaningful structural 

richness” in dynamic data (Grassberger, 1991, p. 16). The authors of MSE noticed that white 

noise can often erroneously register as more complex than naturally autocorrelated systems 

(Costa, Goldberger, & Peng, 2005). By paying attention to larger time scales, MSE can 

observe long-range dynamic structures typical of living systems. Thus, rather than one scaled 

value of entropy, this approach generates a series of entropy values for an individual time 

series, one for each integer increase in time scale (ε).  

As an analogy to the changing time scales, consider a digital geographical map. One 

can zoom in closely to the details of a street and can, step by step, zoom out to a 

neighborhood, a city, a state or country, and so on. Coarse-graining a time series works this 

way, but by averaging across bins of time-based data. The multiscale feature of MSE does this 

very change in scope. An ε = 10 averages bins of every 10 frames of data, ε = 20 across bins 

of every 20 frames. Thus, when recording at 30 frames per second, an MSE analysis at ε = 15 

counts patterns across half-second means. 

 

Multivariate. The multiscale sample entropy measure has been developed further by 

Ahmed and Mandic to account for complexity in multiple channels of data on the same 

system (2011). This applies the multiscale approach while considering cross-channel pattern 

matching within and across subspaces of a multivariate time series. Where sample entropy 

requires the fixed parameters of m, and r, and multiscale modification, of time scale, the 

multivariate algorithm requires these as well as the specification of time lags among the 

channels of data (τ). This method generalizes sample entropy to the multivariate case at the 

specified τ for the specified range of time scales. This is a rigorous and computationally 

taxing procedure to perform, which grows more taxing as the number of channels increases 

and the length of the data increase. MATLAB code was publicly shared by the developers of 

this algorithm and was used in this study to assess both MMSE and MSE (MSE being a 1-

channel case of MMSE; Ahmed & Mandic, 2011).  

 

XSEDE high performance computing system. For 13-channel, 5-minute long videos, 

high performance computing resources were required for most exhaustive test of MMSE. 

Processing of the multiscale sample entropy algorithms was completed via an allocation of 

service units on the NSF-funded Extreme Science and Engineering Discovery Environment 

(XSEDE) which was started at the University of Illinois-Champaign (Towns et al., 2014). The 

resource that was utilized in this study was Comet, the high-performance computing cluster 

based in the San Diego Supercomputing Center (SDSC; Moore et al., 2014). For this project, 

Comet was accessed remotely, and was used to run the MMSE algorithm on fully-prepared 

time series from both the active and passive systems to examine agreement on these measures. 

 

Data Analysis Strategy 

 
Data analyses focused primarily on the agreement of the active system to the passive 

system. This is a matter of agreement between a gold standard measure and a trial measure 

where absolute values are relevant. Additional analyses explored trials for expected features 
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of the multivariate multiscale sample entropy values. 

 

Assessing Agreement 

 

 Concordance correlation coefficient (rc). Statistical analyses on agreement have 

advanced to the calculation of concordance, which can be decomposed into accuracy and 

precision (Lin, 1989). A common measure of relatedness, Pearson correlation and its non-

parametric equivalents, do not meet the needs of examining the agreement of instrumentation 

methods. In the case of agreement, it is usually known a priori that the systems are measuring 

that same object. Thus, correlation loses much relevance and the question becomes: to what 

extent the measures are identical (Lin, 1989, p. 255)? It is important to know how measures 

agree in terms of scaling (of which correlation is scale-independent); not only whether they 

are related over time or between trials, but whether they also return similar values of the 

phenomenon at hand.  

The concordance coefficient has been developed to deal with variance between the 

measures in fixed or random ways, depending on the question at hand. In the case of the 

current study, variance was treated as fixed, considering the active system and the passive 

system as composing the population of interest, in comparing a trial instrument to a gold 

standard without intending to generalize this effect to a larger population (Lin, Hedayat, & 

Yang, 2002, p. 258-260).  

While there are no certain benchmarks for the interpretation of concordance, it is 

scaled from -1 to 1 and operates similarly to the intra-class correlation coefficient, producing 

very similar values (Chen & Barnhart, 2008) and might be roughly interpreted with the same 

rules of thumb of ICC in the social sciences (Cicchetti & Sparrow, 1981). The concordance 

coefficient is used throughout the current study and is considered the primary measure of 

degree of agreement. The R package Agreement was used to calculate these coefficients (Yu 

& Lin, 2012). 

The precision component of concordance is identical to Pearson correlation, 

particularly a fixed effects version of the Pearson correlation in the case of assessing 

concordance to a fixed target (Lin, Hedayat, & Yang, 2002, p. 259). Precision, then, assesses 

for the structural relationship between measures of the same phenomenon in a relative fashion 

while the accuracy component assesses for estimation of the measured value in absolute 

terms. 

  

 Limits of agreement and Bland-Altman plots. A way to capture the real-world 

meaning of rc is to present the high and low-bound 95% limits of agreement (Barnhart et al., 

2016). In the current case, these would be the bounds within which one could expect the 

active system values to be relative to the gold standard. These values form guiding lines on 

Bland-Altman plots, which are also generally recommended for visually assessing the 

agreement of two measures (Bland & Altman, 1986). These plots show the relationship 

between the average of the two measures and the difference between the two measures, 

allowing for a depiction of any systematic errors in measurement that might occur and cannot 

be captured by a single coefficient like rc (e.g., more extreme errors at the high end of 

measurement). The R package BlandAltmanLeh was used to create these plots and calculate 

the 95% limits of agreement (Lehnert, 2015). 
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Three Perspectives on Movement Agreement 

 

In the current study, a passive system designated as a gold standard measure for 

measuring movement, providing the values for an active system to estimate. Both systems 

concurrently measured a series of movement sequences. The agreement of active system 

estimates to the passive system values was assessed through three perspectives: dynamic, 

summary, and dynamic structure.  

 

Dynamic. One perspective employed in this project was the dynamic agreement 

between the two systems, that is, comparing the continuous, frame-by-frame values of both 

systems for each segment and for groups of segments (including one of all the segments 

summed together for each frame) within movement sequences. These agreement indices were 

then averaged across movement sequences for the main results. These analyses encompass 

large numbers of observations using core measures of agreement: the concordance coefficient 

(rc) precision coefficient (ρ), accuracy (χa), and the 95% limits of agreement of values. The 

95% lower confidence limit (CLL) of rc is also presented with rc values. 

 

Summary. The second perspective was the summary agreement, which involves the 

analysis of summaries of magnitude velocity across the whole movement sequence. That is, 

calculating the mean and standard deviation of movement for each segment and segment 

grouping across the whole sequence. I also assessed the agreement on body segment lengths 

across participants with the full suite of agreement measures. 

 

Dynamic structure. The third perspective of analysis was on dynamic structure 

agreement.  This involves analyses on sets of calculated values that reflect different elements 

of time series structure: autocorrelation and complexity. Autocorrelation values up to a lag of 

90 frames were calculated for body segments and segment groupings for each movement 

sequence and compared using the suite of agreement measures. Following, agreement 

between systems on the measures of complexity, multiscale sample entropy and multivariate 

multiscale sample entropy, was assessed with the same suite of analyses. 
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CHAPTER 3: RESULTS 
 

Both passive and active motion capture data for all 20 movement sequences were 

successfully collected with no missing data. I present the agreement between the active and 

passive systems over time in magnitude rotational velocity in degrees per second. Being a 

Euclidean-normed scalar the three-dimensional velocity, magnitude velocity gives simplified 

direct measure of general movement for each body segment over time. That is, it reflects a 

general “how much movement” recorded from a body segment over time without information 

about which dimension of rotation (X, Y, or Z) or which direction (positive or negative). In 

this way, magnitude velocity could be characterized as the omnidirectional rotational speed of 

a body segment over time. Validating magnitude rotational velocity of each body segment in 

the whole-body system provides a foundation toward supporting accuracy kinetic energy 

calculations, the other being accurate measurement of segment lengths. The following 

analyses include all movement sequences of the experiment by all three participants (N = 20).  

 

Optimal Filtering of the Active System Data 

 
To proceed with the agreement analyses and evaluations of complexity measures, the 

optimal filtering procedure for the active motion capture data needed to be established. 

Maximum concordance with the passive motion captures system across movement sequences 

was determined as the criteria for selecting a specific low-pass Butterworth filter. Optimal 

filter was operationalized as the filter that, across all body segments over several movement 

sequences, resulted in maximum frame-by-frame concordance with corresponding passive 

motion capture segments.  

For this analysis, I examined the 1-minute and 5-minute movement sequences of the 

two MFA actors, 10 in total. For each movement sequence, agreement of the active to the 

passive system was assessed at 30 digital frequencies (.01 to .30 by .01 increments) for 6 filter 

orders (1-6). In addition, the agreement of unfiltered data was assessed for comparison.  In 

total, 180 Butterworth filter settings were tested for each of the 13 body segments for 10 

movement sequences. I then averaged concordance measures at each Butterworth filter across 

body segments to get a value of overall performance. Following, averaged concordance across 

movement sequences was used to derive an optimal Butterworth filter for all subsequent data 

analyses.   

Among tested filters, the optimal low-pass Butterworth filter was a second order filter 

at a digital filter value of .24. See Figure 2 for a snapshot of five seconds of the male MFA 

actor’s mock interview data in the calculated total magnitude velocity. The optimal filter 

marginally improved upon the concordance coefficient of the unfiltered data: the optimal filter 

had a concordance coefficient of rc = .627 with a lower-bound 95% confidence limit of CLL = 

.619 which is larger than the unfiltered data, rc = .600, CLU = .613.  The optimal filter made 

gains in precision to the passive motion capture system over unfiltered data with a r = .686 

(CLL = .671). The unfiltered data had less precision, r = .674 (CLU = .656), the upper-bound 

of which did not reach the lower-bound of the optimal filter, demonstrating a notable 

improvement in the optimal filter.  

Accuracy decreased with the optimal filter (rc = .855, CLU = .861) when compared to 
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Figure 2. Five Seconds of Filtered and Unfiltered Active System Movement Data in Comparison to the Passive System 
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the unfiltered data (rc = .870, CLL = .863).  Given the overall improvement in concordance 

and the relative importance of precision over accuracy for the purposes of dynamic analyses, I 

proceeded with the optimal Butterworth-filtered data as the standard for all following 

analyses. 

 

Dynamic Agreement 
 

Agreement of the active system to the passive system over time was assessed. This 

focused on the ability of the active system to track the ongoing dynamics of movement. This 

was performed for each segment and segment grouping for each movement sequence at 30 hz. 

As an example of the data involved in a single movement sequence, see Figure 3a for the 

magnitude velocity of all 13 segments through the Scythe movement sequence performed by 

the professor of theater. Figure 3b visualizes the same data as movement.  

Across body segments for all movement sequences, the active motion capture system 

data agreed with the passive motion capture system with an average rc = .644 (CLL= .623). 

This was composed of a precision of r = .694 (CLL = .670), and an accuracy of χa = .883 (CLL 

= .868). Body segments had an average rotational magnitude velocity of 57.38 degrees/sec 

with an average absolute error of 21.83 degrees/sec. The averaged 95% limits of agreement 

ranged as follows:  -59.52 ≤ -.01 ≤ 59.33 degrees/sec. The three sequences with the largest 

average concordance were two of the movement sequences from the Actions of Agriculture 

performed by the professor of theater (Scythe and Pulling a Cart), r and the male MFA actor’s 

moving randomly sequence. The three sequences with the lowest average concordance were 

the male and female MFA actors’ swaying sequences and the male MFA actor’s The Rope 

sequence. See Appendix B for a table of dynamic agreement results for all sequences sorted 

by segment-wise average rc values. 

Figure 4 presents a scatterplot with the line of identity and Bland-Altman plot of all 

recorded movement values. The active system’s continuous total values tend to underestimate 

the passive system’s values and there are many observations that fall well outside of the 95% 

limits of agreement. We can very roughly label an rc = .644 as “good” for the purposes of 

social science research based on widely-accepted ICC benchmarks developed by Cicchetti and 

Sparrow (1981). 

There was more agreement between the two systems’ frame-by-frame summed totals 

of all segments, rc = .676 (CLL= .661), with a much larger precision r = .835 (CLL= .819) and 

a somewhat lower accuracy (χa = .798, CLL= .786). With an average magnitude rotational 

velocity of 744.66 (SD = 378.20) for the active system, agreement on total values had the 

following 95% limits of agreement around mean error: -591.63 ≤ -162.98 ≤ 265.68 degrees 

per second. For an example of this data, see Figure 5 for the first minute of total magnitude 

velocity values on the female MFA actor’s mock interview.  Table 2 shows the dynamic 

agreements of segments and segment-groupings averaged across participants and movement 

sequences. Acceleration agreement was substantially lower across segments, rc = .356, CLL = 

.319, and jerk agreement was even lower, rc = .216, CLL = .175.  
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Figure 3a. Movement Data from the Professor of Theater’s Performance of the Scythe Movement Sequence 
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Figure 3b. Visualizing the Professor of Theater’s Performance of the Scythe Movement Sequence 

 



 

24 
 

 
 

Figure 4. Dynamic Agreement Between the Active and Passive Systems 

 

 
 

Figure 5.  System Comparison of Total Magnitude Velocity in the First Minute of Female MFA Actor’s Mock Interview 
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Table 2. Dynamic Agreement Across All Movement Sequences 

 

      rc Components   95% Limits of Agreement 

Segment or Grouping rc CLL ρ χa Mean (SD) Lower Mean Error Upper 

Hip .40 .37 .48 .75 34.61 (25.42) -26.29 7.09 40.47 

Chest .62 .60 .68 .86 35.02 (28.41) -22.25 3.8 29.85 

Head .51 .48 .58 .80 40.27 (31.26) -35.62 8.25 52.11 

Upper Arm (R) .70 .68 .72 .93 62.54 (48.01) -57.04 -0.93 55.18 

Forearm (R) .74 .72 .76 .93 85.14 (66.65) -69.3 3.83 76.96 

Upper Arm (L) .67 .65 .69 .94 62.74 (47.43) -57.31 0.58 58.47 

Forearm (L) .73 .71 .76 .96 83.2 (63.57) -71.54 2.64 76.82 

Thigh (R) .74 .72 .77 .93 47.69 (35.14) -42.47 -1.3 39.88 

Shin (R) .72 .71 .78 .90 59.99 (47.45) -62.49 -4.66 53.17 

Foot (R) .50 .47 .60 .79 62.17 (49.43) -115.3 -7.56 100.17 

Thigh (L) .75 .73 .78 .95 48.42 (35.4) -40.22 -0.54 39.13 

Shin (L) .78 .76 .82 .94 60.27 (49.48) -57.23 -3.11 51.02 

Foot (L) .51 .49 .60 .80 62.59 (51.48) -116.68 -9.32 98.04 

Averaged Across Segments .64 .62 .69 .88 57.28 (44.55) -59.52 -0.1 59.33 

Upper Body .79 .78 .83 .92 368.92 (237.56) -176.68 18.16 212.99 

Lower Body .67 .65 .77 .84 375.74 (201.58) -252.45 -19.4 213.65 

Total .68 .67 .84 .80 744.66 (378.2) -591.63 -162.98 265.68 

Note. Segment Groupings are first summed on magnitude velocity data for each sequence, then agreement is assessed 

between the two systems. Upper Body is composed of Head, Chest, Upper Arms, and Forearms. Lower Body is 

composed of Hip, Thighs, Shins, and Feet. (L) and (R) specify left or right side of the body from the participant's 

perspective. 



 

26 
 

Summary Agreement 

 
The agreement between systems on the calculated kinematic averages of body 

segments and segment groupings was then assessed. Average velocity magnitude was 

calculated for segments and groupings for each system, agreement was assessed for each 

movement sequence, and agreement values were averaged across movement sequences. The 

standard deviation of velocity magnitude was also calculated as a summary index of how 

much velocity values varied across the sequence and subjected to the same analysis. 

 Across all individual segments, the agreement between the active and passive systems 

on mean magnitude velocity was extremely high, rc = .956 (CLL = .939). The upper body and 

lower body segment groupings each had extremely high agreement with the passive system 

(rcs = .985 and .957), while the agreement on mean total velocity was somewhat less, rc = 

.878.  Overall, the validity of the active system’s mean magnitude velocity estimates was 

high.  See Table 3 for a report of agreement between the two systems on segment and 

grouping-wise mean summary data. A Bland-Altman plot reveals some systematic error in 

agreement in summary measures, especially at high average velocities (Figure 6).  

Agreement on standard deviations of magnitude velocity were extremely high with an 

average rc = .921 (average 95% CLL: .890) across all individual body segments. Standard 

deviations of magnitude velocity for body segment groups were also in agreement between 

the two systems, at or above rc = .913. Agreement on summary acceleration was widely 

varying across body segments with some still high and others low or even negative, which 

may reflect a slight alignment artifact between the two streams of data. Jerk (2nd derivative of 

velocity) agreements were lower, but followed the same pattern, where some segments 

produced reasonable estimates of this summary value (See Appendices C and D for reports on 

the summary mean acceleration and jerk agreement values). Acceleration standard deviation 

estimates were uniformly high as were summary Jerk standard deviation estimates. 
 

Combining perspectives to examine error. With calculations of dynamic agreement 

for each segment and segment grouping over time and the calculations of mean and SDs of 

the movement for the passive system, an analysis of patterns in error was possible. I 

constructed a multiple regression model with summarized mean velocity and velocity SD 

values from the passive system predicting the dynamic agreement (rc). Velocity SD was a 

significant predictor in the model, β = .17, t(257) = 4.68, p < .001, while mean velocity was 

not, β = -.04, t(257) = -1.25, p = .21. The two predictors were centered to reduce 

multicollinearity, but were otherwise highly related, r(258) = .91, p < .001. See Figure 7 for a 

scatterplot of summarized velocity SDs and the dynamic rc for each unique segment time 

series, across movement sequences. 
 

Body Segment Length Agreement 

 
Segment lengths measured in meters from the active motion capture system and the 

passive motion capture system were compared (Figure 8). The active motion capture system 

models bilateral segments as the same length, while the passive system models all segments 

individually. I assessed segment length agreement for all three participants (N = 39). The two 
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Table 3. Summary Agreement Across All Movement Sequences 

 

       rc Components   95% Limits of Agreement 

Segment or Grouping rc CLL ρ χa Mean (SD) Lower Mean Error Upper 

Hip .93 .89 .97 .96 34.61 (25.42) -21.88 -7.09 7.7 

Chest .98 .96 .99 .99 35.02 (28.41) -15.23 -3.8 7.62 

Head .92 .89 .97 .95 40.27 (31.26) -22.28 -8.25 5.78 

Upper Arm (R) .97 .96 .99 .98 62.54 (48.01) -24.27 0.93 26.14 

Forearm (R) .97 .96 .99 .98 85.14 (66.65) -34.55 -3.83 26.9 

Upper Arm (L) .98 .97 .99 .99 62.74 (47.43) -22.09 -0.58 20.93 

Forearm (L) .99 .98 .99 .99 83.2 (63.57) -21.56 -2.64 16.29 

Thigh (R) .98 .96 .99 .99 47.69 (35.14) -14.07 1.3 16.66 

Shin (R) .96 .95 .99 .97 59.99 (47.45) -22.27 4.66 31.59 

Foot (R) .92 .89 .99 .93 62.17 (49.43) -35.15 7.56 50.27 

Thigh (L) .98 .97 .99 .99 48.42 (35.4) -13.81 0.54 14.89 

Shin (L) .98 .97 .99 .98 60.27 (49.48) -17.51 3.11 23.72 

Foot (L) .90 .88 .99 .91 62.59 (51.48) -36.57 9.32 55.21 

Averages Across Segments .96 .94 .99 .97 57.28 (44.55) -23.17 0.1 23.36 

Upper Body .99 .99 .83 .99 368.92 (237.56) -112.07 -18.16 75.76 

Lower Body .96 .99 .77 .97 375.74 (201.58) -140.08 19.4 178.9 

Total .89 .99 .84 .90 744.66 (378.2) -324.6 162.98 650.6 
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Figure 6. Summary Agreement Between the Active and Passive Systems 

 

 
 

Figure 7. Summary Velocity SD and Concordance Coefficient for All Segments 

 

 

 

Figure 8. Body Segment Agreement Between the Active and Passive Systems 
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systems agreed substantially, rc = .945 (CLL = .918). For a brief comparison, an assessment of 

the intraclass correlation between the two systems demonstrated significance and a similar 

value, ICC3 = .94, F(38) = 35.51, p < .001.  The 95% limits of agreement on body segments 

was a span of 16.5 cm. See Figure 7 for a scatterplot with identity line and a Bland-Altman 

plot of the body segment length data. From these plots, one can tell that there is a random 

arrangement of error with perhaps two outlier measurements where the active system 

overestimated body segment length. 

 

Dynamic Structure Agreement and Examination 

 
Autocorrelation Agreement 

 

 The ability of the active system to model the dynamic structure of the passive system 

was assessed next. Autocorrelation of each segment up to a lag of 90 (the equivalent of three 

seconds of data) was calculated for every movement sequence except for the MFA actors’ 

short walking sequences. I assessed agreement for each of these for each movement sequence 

then averaged the agreement coefficients for each segment and across segments to arrive at 

total agreement measures. The degree to which the two systems agree on these measures is 

taken to reflect the ability of the active system to capture a feature of the dynamic structure 

movement sequence. Correlation values at each lag are the units of comparison.  

 Averaged across the 13 body segments, there was moderate agreement in 

autocorrelation profiles, rc = .828 (CLL = .804). There was a small mean difference overall, 

with 95% confidence limits of agreement band within about .17 correlation points in either 

direction, -.172 ≤ -.001 ≤ .170.  
 

Complexity Agreement 

 

Multivariate and univariate multiscale sample entropy values were calculated for all 

movement sequences except for the MFA actors’ short walking sequences. In general, I 

sought to examine the agreement of complexity values computed on the data produced by the 

active motion capture system with those produced by the gold standard. To proceed, I first 

needed to fix m, τ, and r values for the MSE and MMSE algorithms. Previous research has 

used m = 2, τ = 1, and r = (.15 × SD of z-scored time series) in the description of human gait 

(Ahmed & Mandic, 2011), so these values were carried forward for these analyses. 

 

Multiscale sample entropy (MSE) agreement. MSE was first assessed in terms of 

complexity agreement. These were assessed up to ε = 10. There was a relatively low, but still 

acceptable correspondence between the two systems on multiscale sample entropy values for 

each epsilon, rc = .589 (CLL = .508). With an average sample entropy value of 1.042 (SD = 

.560) across the two systems, this resulted in a mean difference of .190, with the active motion 

capture system tending to overestimate the values. The limits of agreement spanned from a 

lower-limit of -.044 to an upper limit of .424, indicating that any values by the active motion 

capture system are likely overestimating the univariate sample entropy.  
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Multivariate multiscale sample entropy (MMSE) agreement. Following, agreement 

was explored between the two systems on MMSE values up to ε = 20. The systems were in 

more agreement for this multivariate version of the sample entropy algorithm than the 

univariate, rc = .768 (CLL = .711). With an average sample entropy value of .108 (SD = .120) 

across both systems, there was a small mean difference (-.003) and a 95% limits of agreement 

of -.066 ≤ -.003 ≤ .061.  

There were two sequences with very low agreement: the acting professor’s Flick of the 

Seahorse’s Tail, and the male MFA actor’s swaying sequence. These are two sequences where 

at least a few body segments had very low variability in movement during the sequence. For 

comparison, when these two removed from the calculations, average concordance increases  

substantially, rc = .867 (CLL = .817). 

 

Examination of MMSE 

  

Treadmill sequences. To explore the effectiveness of the complexity values in 

differentiating high and low complexity movement sequences as demonstrated in previous 

research, I tested for the difference between the complexity values of the two MFA actors on 

the free walking treadmill sequence and the paced metronome-regulated treadmill sequence 

using the values calculated from the active system.   

I averaged the corresponding treadmill trials for each actor and conducted a paired t-

test comparing the metronome-regulated movement to the normal movement. There were no 

differences between these values across all time scales, t(19) = -.92, p = .37, though when 

looking at the graph, there does seem to be a transition between the two at around ε = 5 

(Figure 9). To probe for differences after this transition, when dropping out the first 5 ε, we do 

see a significant difference, t(14) = -2.81, p = .014. 

 

 
 

Figure 9. Free Versus Paced Treadmill Walking Complexity 

 

Expertise on The Rope. Following, I explored the effect of expertise on movement 

complexity values. I compared the MMSE values of the expert participant, the professor of 

theater, to the averaged values of the two MFA actors. There was a large effect of expertise in 

the complexity of movement across the 20 time scales of sample entropy, t(19) = 2.89, p < 

.01, Figure 10. 13-channel white noise complexity is provided for comparison to randomness. 
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Figure 10. Complexity on The Rope 

 

Comparison of mock interview to swaying and random sequences. As a preliminary 

angle on complexity, I tested for mean differences in MMSE values for the two mock 

interview sequences (both MFA actors) against the averaged multiscale sample entropy across 

the random and swaying movement sequences for both MFA actors up to ε = 20. I predicted 

that the interview sequence would have larger sample entropy values. The opposite was the 

case. There was a large significant difference between the two averaged sample entropy 

values, t(19) = -5.13, p < .001, Figure 11. 

 

 
 

Figure 11. Mock Interview Compared to Random and Swaying Sequences 
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CHAPTER 4: DISCUSSION 
 
 This project attempted to establish the validity of a way to measure movement for the 

purposes of basic and applied psychology research. This led to the specification of rotational 

magnitude velocity of body segments and segment groupings as a primary measure of interest 

given the possibility of this measure in expressing general movement patterns. It also led to 

the development of a data collection and processing strategy which utilized an active motion 

capture system. The magnitude rotational velocity provided by this system were compared in 

kind with gold standard instrumentation in biomechanics. Agreement on body segment values 

were also explored given its crucial role in future calculations of kinetic energy. Mean and 

standard deviation summaries of the movement sequence data were calculated and compared 

for both systems as well and assessed relative to the gold standard. The ability of the active 

system to capture aspects of dynamic structure was assessed as well, with comparisons 

between systems on autocorrelation profiles and complexity calculations. 

This study revealed that the active system could track dynamic movement - frame by 

frame- in moderate agreement with a gold standard measure across a variety of movement 

sequences. In addition, it could characterize movement across a sequence with summary 

measures (mean and SD of magnitude rotational velocity) in very high agreement with a gold 

standard measure. A brief comparison of other kinematic measures, acceleration, and jerk, 

showed that these did not uniformly agree to the same degree. While the active system does 

not track dynamic movement in such a way that it could somehow replace a gold standard 

motion capture system, it does seem to reliably estimate the movement dynamics of a 

sequence, particularly at levels of agreement commonly accepted in social science research. In 

this vein, the active system's characterizations of dynamic structure, autocorrelation, and 

complexity, also agreed highly with the passive system. The active system’s multivariate 

multiscale sample entropy was much more accurate than its univariate counterpart, though the 

validity of the univariate version would likely be satisfactory for large studies. The active 

system could also accurately model the lengths of body segments of the participants, which 

when combined with the accurate measurement of rotational velocity and a measurement of 

an individual’s body mass, contains all the values required for the reliable calculation of 

rotational kinetic energy over time.  

Some initial tests of the multivariate complexity measure revealed that it was quite 

possibly a meaningful measure of structural richness in movement when applied to many 

channels of magnitude rotational velocity values over time. There was evidence for 

complexity at time scales greater than 1. At ε = 5, a transition in the complex dynamics of free 

treadmill walking emerged relative to paced, while at around ε = 11, divergences between the 

MFA actors and the professor of theater in movement complexity emerged. Alternatively, 

multivariate complexity in the mock interview sequence was consistently lower than the 

random and swaying sequences, in contrast to predictions. 

Overall, complexity measures did seem to index the holistic coherence of movement 

as a kind of gestalt at different time scales, capturing meaningful structural richness and 

perhaps something about the kinetic melody of movement. Regarding the mock interview 

sequence, one can reflect on how it was that these were less complex than swaying and 

random movement sequences. First, the swaying and random movements were much more 
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complex than initially expected. It seems that truly rigid swaying or truly random movements 

are extremely difficult to perform organically and, in fact, these instructions seemed to elicit 

much coherent whole-body movement. Second, perhaps this complexity structure would come 

out differently if one were to integrate across biological systems, where including heart rate or 

electroencephalogram (EEG) dynamics might have disproportionately contributed to the mock 

interview complexity. That said, there was a convergence in the complexity of these time 

series around ε = 16, signaling that, despite being less information-rich on the small scale, the 

actors’ movements during the mock interview held a similar complexity structure at large time 

scales.  

 

Limitations 

 
Some limitations of the study presented here should be addressed in guidance of 

further research. First, the movement recording and data processing setup presented in this 

study does not record hand movement. The Xbox Kinect system is highly developed to record 

hand movement, even to the specificity of the angles of joints within fingers, so it would in 

principle be possible to obtain hand movement if they are of interest for a given research 

question. However, using other proprietary systems or directly importing data from the Kinect 

SDK runs the major disadvantage (deemed too great in the current project) of recording 

movement blindly. One captures movement once and is unable to refine or correct the model 

relative to actual video. In any event, it is not known how accurate the Kinect version 2 is in 

recording fine motor movement of the hand, but it does seem capable of capturing reaching 

behavior at a larger scale. 

Second, this study only utilized two Kinect version 2 cameras in the capturing of 

movement. At least with a professional edition of iPi Motion Capture Studio, it is possible to 

record and synthesize the depth data of up to four Kinect version 2 cameras at once. This 

would unfortunately require four different computers linked via a Local Area Network due to 

the design of the Kinect drivers, but it seems that such a setup would only improve the 

accuracy and reliability of the Kinect recordings. PlayStation Eye cameras can be used as 

well, and permit an increase to 6 or more concurrent recordings for iPiSoft software. The 

results of the current study suggest that such setups should be similar or better at recording 

movement as rotational velocity. 

Third, the current study did not directly address test-retest reliability of the active 

motion capture system relative to the gold standard system. Such assessment would lend even 

more credence to system's ability to measure movement. One caveat to this limitation is that 

with the process presented in this work, the actual movement tracking can be visually 

supervised relative to the raw video. That is, one can watch the system as it tracks movement 

from the video and monitor for gross errors. In the current study, it is an educated guess that 

correcting for gross errors led to qualitatively different agreement results (e.g., correcting an 

arm segment tracking from being completely unhinged from the actual video). Anecdotally, 

when these massive losses of tracking occur, the motion capture systems rarely recover or 

self-correct and errors only compound over time.  
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Directions for Dynamic Movement Processing and Analysis 

 
There may be ways to improve the data processing and analysis of movement. I review 

a few areas that emerge as potential directions for the development of the data processing and 

analysis of movement data. One over-arching direction in this area would be to develop ways 

to ease the implementation of movement data collection in clinical and experimental 

psychology research. The development of publicly-available R functions, which would likely 

be generalized versions of the functions developed for this project, might aid investigators in 

crossing the gap to implementation. 

 

Removing Low-Performing Segments and Refining Segment Calculations 

 

By refining the whole-body model to remove low-performing segments, overall model 

reliability would increase. Of course, this should be weighed against the downside of losing a 

segment in the model. For example, the feet were low-performing and may not be too central 

to the success of whole-body modelling of movement, while the head also be relatively low-

performing, but perhaps more theoretically important for expressive movement (see Ramseyer 

& Tschacher, 2014). Likewise, the calculations of some segments might improve if the 

velocity magnitude calculations are restrained to the most relevant degrees of freedom at the 

level of segments. While the head may theoretically rotate in three degrees of freedom, 

segments like the shin (rotating at the knee) do not - especially when considering the 

properties of everyday expressive movement. Calculating magnitude velocity in this way may 

reduce the overall noise in the dynamic models and improve agreement further. Similarly, 

somehow removing segments below a certain threshold of velocity variability may 

dramatically improve reliability of measurement. 

 

 Dimension Reduction with Segment Groupings 

 

With a set of data, even perhaps the data presented in this study, one could perform an 

exploratory factor analysis to determine whether there are prevailing subgroups of body 

segments across participants and simplify the description of whole body movement to these 

groups. This approach runs the risk of over-simplifying what might be a wide diversity of 

movement patterns across participants, but may improve the parsimony of the data. 

Reductions along these lines would also aid in making computationally-intensive data 

processing, like the multiscale multivariate sample entropy calculations, possible on long 

duration recordings without the need to enlist supercomputing. Without knowing more about 

how expressive movement dynamics operate, preserving high-dimensional models of 

movement may help to capture complexity and coherence in movement more accurately.  

Including movement data of the center of mass, which is automatically calculated with 

the Biomechanics add-on for iPi Motion Capture Studio, may be an avenue for summarizing 

major features of movement succinctly. On the other hand, there are a few additional 

segments available that one may add as channels in data output (e.g., different sections of the 

spine).  
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Relative Frame of Reference 

 

 Using a relative frame of reference, that is, defining a segment's movement relative to 

the higher-order, parent segment rather than to the ground, might reduce redundant body 

segment intercorrelation, permitting a more exact description of movement dynamics. This 

may reduce noise in models attempting to estimate how the whole body moves as a coherent 

whole.  

 

Kinetic and Potential Energy 

 

Some directions in the measurement of movement dynamics would be to move 

forward with kinetic energy calculations (Robinson et al., 2013, p. 132). Further models could 

incorporate translational movement (instead of only rotational) into the overall modelling of 

movement may also improve accuracy, especially in the description of whole-body kinetic 

energy. With rotational velocity as the main ingredient of rotational kinetic energy 

calculations, creating an even more accurate model of total kinetic energy in concert with the 

most advanced practices of biomechanics methodology would only advance the purpose of 

developing a whole-body model of energy dynamics for psychology research. Measuring and 

incorporating potential energy dynamics is eminently possible, as well, allowing for the 

calculation of total energy dynamics. This would offer yet another layer of data for 

operationalizing questions regarding personality, affect, and character. 

 

Optimizing MSE and MMSE Parameters m, τ, and r for Expressive Movement 

  

 In this project, standard values of m, τ, and r from the developers of the MMSE 

algorithm (Ahmed & Mandic, 2011) were used for the MSE and MMSE analyses. There may 

be larger patterns (m) that are relevant to the complexity of movement. Moreover, there may 

also be important intercorrelations that occur over a larger time span, τ. Further research 

should establish optimal parameters for the case of expressive movement so as to capture the 

dynamic structure of a sequence more fully. 

 

Directions for Dynamic Movement Research in Empirical Psychology 

 
Affect Regulation 

 

An impetus for the development of this instrumentation procedure came from clinical 

psychology and phenomenology, where it was noticed how movement dynamics might be 

relevant to dimensions of affect regulation, especially those occurring implicitly, reflecting an 

embeddedness in an individual's background affective experience (Ratcliffe, 2008). Capacities 

for self-regulation are thought to be a relevant transdiagnostic feature for understanding 

psychopathology and a component of mentalization. Optimal regulation of affect under social 

stress can be theoretically equated with the presence of a secure attachment style (Cassidy, 

1994). Rooted in early interactions with primary caregivers, highly relational styles affect 

regulation seem to transform, as one moves into adulthood, into capacities for mentalization 

and for experiencing states of mentalized affectivity (Fonagy et al., 2004). However, the role 



 

36 
 

of whole-body movement in the maintenance of these styles may somehow remain. 

One could tailor phenomenologically front-loaded (Gallagher, 2003), behavioral-

experiential paradigms to examine interactions of experience and dynamic movement in affect 

regulation. Assessing movement in theoretically-informed situations (e.g., under social stress) 

may also more generally allow for the examination psychodynamic perspectives on character 

and anxiety (Shapiro, 2002). While relevant psychodynamic phenomena might more 

traditionally be conceptualized as discrete unconscious events or schemas, are increasingly 

conceptualized in ways that fit the model of dynamic movement – for example, as the 

neuropsychological processes (Solms, 2013) or interpersonal dynamics (Eagle, 2011). 

As multiscale sample entropy appears to be a promising metric in the study of 

movement, it may prove useful in examining implicit affect regulation. Measuring movement 

variability may free from some methodological limitations, but it also underlines the 

importance of other features of the measurement situation. In attempting to measure dynamic 

affect regulation across participants, one must reliably define the situation. In addition, one 

must select a situation that reliably engages an individual’s capacities for regulation and 

allows for whole-body movement.  

In the clinical neurobiology literature, there exists a well-studied situation for the 

induction of interpersonal stress that satisfies these important features of a whole-body 

measurement situation: the Trier Social Stress Test (TSST; Kirschbaum, Pirke, & 

Hellhammer, 1993). The TSST tasks participants to a well-defined interview task that reliably 

induces stress. This paradigm is an example of a good balance of experimental control with 

degrees of freedom in expressive movement.  

 

Interactions of Movement with Other Systems 

 

With reliable measurement of movement dynamics, one could investigate the 

integration of multiple systems in a person over time. Movement data could be coupled with 

EEG data to explore synchrony or even causal chains between brain activity and motor 

behavior over time using existing statistical modelling in these areas, like dynamic causal 

modelling (Friston, Harrison, & Penny, 2003). Neurophenomenology and phenomenological 

approaches to cognition have already empirically examined questions about temporal self-

constitution to examine the process of prereflective awareness (Thompson, 2007; Varela, 

Thompson, Rosch, 1991). To the extent that dynamic structures of movement are involved in 

the articulation of awareness, integration with EEG methodology may be a way to deeply 

explore individual differences in implicit affect regulation.  

Similarly, the convergence of movement with heart rate or skin conductance could be 

investigated to explore individual differences in sympathetic and parasympathetic nervous 

system function with movement, for example, with and without stress. These approaches 

might specify overregulation and underregulation dynamics of self-regulation (Cassidy, 1994) 

especially across bodily systems (Siegel, 2012).  

There may be a possibility of exploring movement dynamics in relation to spoken 

language at the levels of prosody or semantics. Regarding the study of dynamics of semantic 

quantitative linguistics (e.g., sentiment analysis) might be particularly productive (Tausczik & 

Pennebaker, 2010). Some measures exist for exploring the coherence of a text (e.g., Latent 

Semantic Analysis; Günther, Dudschig, & Kaup, 2015), and the degree to which linguistic 
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coherence and movement complexity correspond would be an interesting question for work 

on the embodiment of language and cognition (Lakoff & Johnson, 1999).  Generally, these 

forays into cross-system interactions may allow for the empirical investigation of personal and 

characterological integration.  

 

Psychotherapy Process and Outcome 

 

Applied opportunities also emerge with disciplines where concrete human bodily 

movement is relevant to clinical phenomena. An applied clinical direction would be the 

exploration of psychotherapy process, in terms of following interpersonal movement 

dynamics in whole-body interactive models over time in both the patient and the therapist. 

While it may contribute in a small way to current methodology in synchrony, where simpler 

video-based methods may be sufficient (Ramseyer & Tschacher, 2011), it is possible that this 

may provide a level of richness required to adequately assess complex relational dynamics, 

like transference/counter-transference relations, which are often theorized to develop in large 

part via enactments in the therapy room (Eagle, 2011). Likewise, the enhanced tracking 

benefitted by a motion capture approach might expand interactional synchrony models 

(Delaherche et al., 2012; Paxton & Dale, 2013), particularly by elaborating the role of animate 

intrapersonal organization in the presence of the other. 

With a stronger basic knowledge of the interaction of movement and affect regulation, 

there may be movement-based assessments for the indexing and tracking of clinical 

phenomena. Developmental of assessment protocols with different targeted movement 

sequences, analogous to a series of Rorschach cards, might be able to assess features of 

character and affect regulation – generally, the dynamic congruency of emotion and 

movement. Large samples of standardized movement sequences from individuals with known 

characterological features might be described with machine-learning algorithms to describe 

relevant movement from the ground up. 

 

Movement Training 

 

A different track of interdisciplinary work could explore expressive movement in the 

context of corporeal mime, dance, or theater (Decroux, 1985; Leabhart, 1989; Sheets-

Johnstone, 1966). This would be a useful collaboration toward promoting the description of 

movement sequences for training purposes. At the same time, such a collaboration may also 

help to hone a psychological theory of movement dynamics for the purposes of experimental 

psychology or applied clinical settings. While theoretical approaches around these topics 

would be inherently useful, an advantage of valid movement data collection is that is can both 

ground operationalization of theory and inspire further work with empirical insights. 

Precedent exists for the study of complexity dynamics and experience of expert artists which 

has mutually informed the contributing disciplines. For example, Williamon, Aufegger, 

Wasley, Looney and Mandic (2013) demonstrated complexity loss in heart rate under 

conditions of stress in an expert concert pianist. 
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Clinical Neuropsychology 

 

Though largely unexplored in this project, it does seem that studying the movement of 

individuals struggling with neurological disorders (including attention-deficit hyperactivity 

disorders) may help to characterize motor control at different time scales, which may be 

relevant to different neuropsychologically-relevant subsystems of movement and affect 

(Kaplan-Solms & Solms, 2002; Panksepp, 2014). It is possible that this instrumentation could 

be paired with any number of movement sequences that highlight features of motor control. 

But also, this method may allow for the assessment of subtle differences in affect regulation 

and character in disorders of the central nervous system, like Central Sensitization 

Syndromes, where widespread pain-sensitivity seems to have psychosomatic consequences 

(Yunus, 2007). Likewise, it seems flexible and reliable enough, having worked across many 

forms of movement in this study, to adapt to such situations well. Similarly, it seems like this 

system would be well suited to inform the diagnosis and treatment of individuals with 

sensorimotor coordination problems (Miller, Anzalone, Lane, Cermak & Osten, 2007).  

 

Conclusion 

 

 The opportunity to study whole-body movement dynamics opens a methodological 

window into core problems at the nexus of phenomenology and psychology: self-regulation, 

the process of human embodiment, affect consciousness, pre-reflective and reflective 

experience. It allows for specifying behavior as kinetic melodies (Luria, 1973; Merleau-Ponty, 

1942/1983) and considering the ways that neurological and other bodily systems interact – or 

form a coherent whole – over time. Sheets-Johnstone describes what is at stake when we 

overlook whole-body dynamics when considering human experience:  

 

To omit attention to whole-body dynamics is to reduce the dynamics of emotion— and 

more particularly, the dynamic form of an emotion as it unfolds — to a single 

expressive moment or to isolated internal bodily happenings. It is to de-temporalize 

what is by nature temporal or processual. Correlatively, it is to skew the evolutionary 

significance of emotion, which is basically not to communicate, but to motivate action. 

(1999, p. 273). 

 

Research in this direction has lacked a reliable and accessible methodological tool. 

With this project, I introduced a procedure that can be used to capture and describe the 

dynamic structure of raw movement. I also described some directions that may prove useful 

for the development of methods and theory for research on the animate body. This 

methodology indexes behavior as a temporal process rather than a discrete act and, in that 

way, may be a key toward empirically examining structural richness in movement. 

. 
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Appendix A. Rotational Kinetic Energy 

 
In order to provide an estimate of kinetic energy output for each limb at each time 

point, I employ the following function in the three planes of rotation for each body segment 

(Robertson, et al., 2014, p. 137): 

 
 

In this equation, ω stands for the segment’s rotational velocity at a given plane of rotation and 

I stands for the segment’s moment of inertia in that same plane. I can calculate the moment of 

inertia (Icg) in a given plane as a proportion of the segment mass (m) to the square of the 

segment’s radius of gyration (kcg; Robertson, et al., 2014, p. 72): 

 

 
 

Radii of gyration serve as indirect estimates for the location of the moment of inertia 

according to the average adult human body. I employ De Leva’s adjustments to the 

Zatsiorsky- Seluyanov measurements in our model of kinetic energy for each plane, which 

provide indices for determining the location radii of gyration separately for male and female 

adults (1996). These indices (Kcg) are multiplied by the segment length (L) in order to arrive at 

the specific radius of gyration location for each participant in each rotational plane (Robinson 

et al., 2014 p. 71): 

 
 

 Following, I calculate the Euler vector norms for the kinetic energy value at each frame for 

each segment across the three rotational planes. Summing the kinetic energy across segments 

at each frame provides the whole-body kinetic energy for that frame. 

 

Segment Mass 

 

There are a number of human models proposed to accomplish the estimation of each 

segment of the body by providing proportions of each segment mass relative to the whole 

body mass (Robinson et al., 2014, p. 65). I employ De Leva’s parameters for this metric 

(1996). Similar to the coefficients for the radii of gyration, different proportions are applied 

by gender. For example, the forearm is modelled as being 1.38% of the total body mass for 

females and 1.62% of the total body mass for males (De Leva, 1996, p. 1228). Thus, each 

participant’s total body mass and gender are required for the calculation of each segment’s 

kinetic energy across frames. These segment energies are also summed for each frame, 

providing an estimate of whole-body kinetic energy output at the original time resolution. 
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Appendix B. Dynamic Agreement by Movement Sequence and Sorted by rc  

 
       rc Components 

Participant Movement Sequence rc CLL ρ χa 

Professor of Theater Scythe (AOA) .93 .92 .93 .99 

Professor of Theater Pulling a cart (AOA) .84 .83 .87 .96 

Male MFA Actor Random  .83 .82 .84 .98 

Professor of Theater Sowing seeds (AOA) .79 .78 .83 .95 

Professor of Theater Pitchfork (AOA) .77 .75 .79 .97 

Female MFA Actor Random  .77 .76 .81 .94 

Female MFA Actor Mock stress interview  .74 .73 .75 .98 

Male MFA Actor Mock stress interview  .70 .70 .76 .92 

Female MFA Actor Free treadmill .67 .65 .71 .92 

Female MFA Actor Paced treadmill .66 .65 .72 .91 

Male MFA Actor Free treadmill .64 .63 .72 .85 

Professor of Theater The Rope .62 .60 .69 .86 

Male MFA Actor Paced treadmill .62 .61 .70 .80 

Female MFA Actor Ground walking .57 .50 .61 .92 

Professor of Theater Flick of the Seahorse’s Tail  .56 .53 .68 .82 

Male MFA Actor Ground walking .55 .46 .60 .88 

Female MFA Actor The Rope .54 .52 .61 .84 

Female MFA Actor Swaying .47 .45 .49 .93 

Male MFA Actor The Rope .33 .32 .42 .61 

Male MFA Actor Swaying .29 .27 .36 .63 

Note. Results are averaged across all segments. AOA indicates a movement sequence 

belonging to the corporeal mime Actions of Agriculture series. 
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Appendix C. Summary Agreement on Acceleration Means 

 

      rc Components 

Segment or Grouping rc CLL ρ χa 

Hip .66 .57 .88 .76 

Chest .05 -.26 .07 .82 

Head -.59 -.73 -.71 .83 

Upper Arm (R) .79 .65 .83 .96 

Forearm (R) .87 .78 .89 .97 

Upper Arm (L) -.74 -.83 -.85 .87 

Forearm (L) -.36 -.46 -.69 .52 

Thigh (R) -.29 -.40 -.69 .42 

Shin (R) .99 .98 .99 .99 

Foot (R) .90 .89 .99 .90 

Thigh (L) -.22 -.29 -.67 .33 

Shin (L) .36 .09 .43 .84 

Foot (L) .51 .35 .76 .67 

Averages Across Segments .23 .10 .17 .76 

Upper Body .16 -.02 .30 .52 

Lower Body .82 .77 .97 .84 

Total .72 .64 .92 .78 
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Appendix D. Summary Agreement on Jerk Means 
 

      rc Components 

Segment or Grouping rc CLL ρ χa 

Hip .62 .54 .90 .68 

Chest -.33 -.52 -.48 .70 

Head -.15 -.31 -.32 .48 

Upper Arm (R) .82 .74 .89 .92 

Forearm (R) .44 .37 .90 .49 

Upper Arm (L) .35 .27 .77 .46 

Forearm (L) .76 .72 .98 .77 

Thigh (R) .56 .52 .98 .58 

Shin (R) -.45 -.56 -.78 .57 

Foot (R) .44 .31 .79 .55 

Thigh (L) .50 .39 .76 .66 

Shin (L) -.02 -.28 -.02 .69 

Foot (L) .06 -.11 .13 .44 

Averages Across Segments .28 .16 .42 .61 

Upper Body .47 .38 .83 .57 

Lower Body .48 .42 .92 .52 

Total .58 .50 .90 .64 
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