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ABSTRACT 

This dissertation was designed to examine the validity of heart rate (HR) and 

motion sensors for estimating energy expenditure (EE) during activities ranging from 

sedentary behaviors to vigorous exercise. A secondary purpose was to devise new ways 

to improve on current methods of estimating EE. Specific aims of the dissertation were: 

( 1) to examine the use of pedometers to measure steps taken, distance traveled, and EE 

during treadmill walking at various speeds; (2) Examine the use of a Polar HR monitor to 

estimate EE during treadmill running, stationary cycling, and rowing; (3) compare the 

current Actigraph regression equations (relating counts·min- 1 to EE) against three newer 

devices (Actiheart, Actical, and AMP-331) during sedentary, light, moderate, and 

vigorous intensity activities; and (4) development of a new 2-regression model to 

estimate EE using the Actigraph accelerometer. 

For the first aim, 10 participants performed treadmill walking for five minutes at 

five speeds while wearing two pedometers of different brands (10 pedometer brands were 

tested) on the right and left hip. Simultaneously oxygen consumption (V02) was 

measured and actual steps were counted using a hand tally counter. Six of the 10 

pedometers were within± 3% of actual steps at 80 m·min-1 and faster. Most pedometers 

were within± 10% of actual distance at 80 m·min·1, but they overestimate distance at 

slower speeds, and underestimate distance at faster speeds. Most pedometers gave 

estimates of gross EE within ± 30% of measured EE across all speeds. In general, 

pedometers are most accurate for assessing steps, less accurate for assessing distance, and 

even less accurate for assessing kcals. 
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In the second aim, 10 males and 10 females performed a maximal treadmill test. 

On a separate day they performed treadmill, cycle, and rowing exercise for 10 minutes at 

three different intensities. During each trial EE was estimated using two Polar S41 O HR 

monitors (one with predicted VO2max and HR.max (PHRM) and one with actual VO2max and 

HRmax (AHRM), input into the watch). Simultaneously, EE was measured by indirect 

calorimetry (IC). For males there were no differences among the mean values of EE for 

the AHRM, PHRM and IC for any exercise mode (P � 0.05). In females, the AHRM 

significantly improved the estimate of EE compared to the PHRM (P < 0.05), but it still 

overestimated mean EE on the treadmill and cycle (P < 0.05). The Polar S410 HR 

monitor provides the best estimate of EE when the actual VO2max and HRmax are used. 

For the third aim, 48 participants performed various activities ranging from 

sedentary pursuits to vigorous exercise. The activities were split into three routines of six 

activities and each participant performed one routine. During each routine an Actigraph 

(right hip), Actical (left hip), Actiheart (chest), and AMP-331 (right ankle) were worn. 

Simultaneously, EE was measured by IC. The Actiheart HR algorithm was not 

significantly different from measured EE for any of the 18 activities (P � 0.05). The 

Actiheart combined HR and activity algorithm was only significantly different from 

measured EE for vacuuming and ascending/descending stairs (P < 0.05). All remaining 

prediction equations, for the devices examined, over- or underestimated EE for at least 

seven activities. The Actiheart HR algorithm provided the best estimate of EE over a 

wide range of activities. The Actical and Actigraph tended to overestimate walking and 

sedentary activities and underestimate most other activities. 
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For the fourth aim, 48 participants performed various activities (sedentary, light, 

moderate, and vigorous intensities) that were split into three routines of six activities. 

Each participant performed one routine. During each test the participants wore an 

Actigraph accelerometer and EE was measured by IC. Forty-five tests were randomly 

selected for the development of the new equation, and 15 tests were used to cross­

validate the new equation and compare against existing equations. For each activity the 

coefficient of variation (CV) of the counts per 10 seconds was calculated to determine if 

the activity was walking/running, or some other activity. If the CV � 10 then a 

walking/running regression equation (relating counts·min· 1 to METs) was used, while if 

the CV> 10 a lifestyle/leisure time physical activity (LTPA) regression was used. The 

new 2-regression model explained 73% of the variance in EE for walking/running, and 

83.8% of the variance in EE for lifestyle/LTPA and it was within± 0.84 METs of 

measured METs for each of the 17 activities performed (P 2: 0.05). The new 2-regression 

model is a more accurate prediction of EE then the currently published regression 

equations using the Actigraph accelerometer. 
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PART I 

INTRODUCTION 
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There is substantial evidence that supports the importance of physical activity for 

preventing chronic diseases. The American College of Sports Medicine (ACSM) and the 

Centers for Disease Control and Prevention (CDC) have recommended that all 

Americans should accumulate a minimum of30 minutes of moderate-intensity physical 

activity on most, preferably all days of the week (21 ). This should be considered a 

starting point for Americans rather than a maximal amount needed. Unfortunately, most 

adults are not reaching this minimal recommendation, with nearly a quarter of Americans 

not performing any leisure time physical activity (LTPA) at all (5). Of additional 

importance is that an estimated 65. 7% of US adults are overweight or obese (based on 

BMI) and among children and adolescents the prevalence of those overweight is 16% 

(based on norm tables) (13). Obesity has become a major public health concern and 

physical inactivity is a major contributor to obesity (18). 

In free-living individuals, obtaining an accurate assessment of physical activity 

related energy expenditure is difficult. For an average-sized person, the current 

ACSM/CDC recommendation translates into expending a minimum of 150 kcals·day9 1 or 

1000 kcalsweek- 1 (32). Various techniques have been developed in an effort to estimate 

both physical activity related energy expenditure and 24 hour energy expenditure. Such 

methods include recall questionnaires, activity logs, motion sensors that detect bodily 

movement, heart rate (HR), and doubly labeled water (DL W). Essentially there are two 

main primary outcomes from these methods: (1) total daily energy expenditure (TDEE), 

and (2) physical activity-related energy expenditure (P AEE). TDEE is composed of three 

components: ( 1) resting metabolic rate (RMR), (2) thermic effect of feeding (TEF), and 

(3) PAEE. For most individuals RMR contributes 60-70% to the TDEE (23), while the 
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TEF contributes 10- 1 5% (26), and PAEE contributes the remaining 1 5-30%. PAEE is 

the main component of TDEE that is associated with chronic diseases and is also the 

most variable among individuals. Therefore, it is important that we have accurate tools 

for assessing P AEE. 

Questionnaires and activity logs are commonly used to estimate energy 

expenditure because of the ease with which they can be administered to large groups of 

individuals. However, a major drawback is that they rely on the participant's ability to 

recall and accurately record the activities performed, which can result in significant errors 

occurring for the estimation of energy expenditure. In general, questionnaires are useful 

for recalling structured activities, but fail in their estimation of light- to moderate­

intensity activities ( 19). Therefore, researchers are interested in developing more 

accurate, objective methods of quantifying physical activity. 

DL W is considered the "gold standard" for measuring 24-hour energy 

expenditure, but its applications are limited. DL W relies on the use of stable isotopes 

(deuterium and 02
18), but they are in limited supply and are very expensive (> $500 per 

participant). The equipment needed (i.e. gas isotope ratio mass spectrometer) is also a 

limiting factor due to the cost and expertise needed to perform the analysis. In addition, 

DL W cannot distinguish bouts of activity or the intensity at which they are performed; 

thus, it only gives information on TDEE. 

In an effort to more accurately assess the amount of physical activity performed 

during the day researchers have used various motion sensors ( e.g. accelerometers and 

pedometers) and attempted to use them to predict energy expenditure. Pedometers are 

low cost devices that provide a measure of ambulatory physical activity. In general, these 
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devices provide an accurate measure of steps taken at normal walking speeds e 80 

m·min- 1
), but under-count at slower walking speeds (� 67 m·min- 1

) (1, 8, 25). In addition, 

they fail to provide an accurate estimate ofTDEE (15) and have only modest correlations 

with energy expenditure assessed by indirect calorimetry during moderate-intensity 

lifestyle activities (r = 0.493 - 0.580) (2). Furthermore, most pedometers cannot record 

the intensity, duration, or frequency of activity bouts. 

Accelerometers are devices that measure the magnitude of acceleration and 

deceleration of the body, which enables researchers to distinguish between activities of 

different intensities. Uniaxial accelerometers measure acceleration in one plane 

(vertical), where as biaxial or triaxial accelerometers measure acceleration in two or three 

planes, thus providing more information about body movements. Accelerometers also 

have the ability to store data and track the duration and frequency of activity bouts, as 

well as being non-invasive, which makes them a popular choice among researchers. 

In laboratory settings accelerometers show promise for the estimation of energy 

expenditure. Most researchers find a strong linear relationship between counts·min- 1 

during activities such as treadmill walking/running on flat surfaces and actual energy 

expenditure measured by direct or indirect calorimetry (11, 20, 31, 33). Unfortunately, 

when accelerometers are used in free-living populations, they fail to accurately detect the 

additional energy expenditure associated with various lifestyle activities, specifically 

upper body movement, walking up grades, carrying or lifting objects, and activities such 

as cycling where there is no displacement of the hip (2, 14, 34). Since physical activity 

plays an important role in preventing chronic disease it is important that we have accurate 
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tools to assess physical activity. In addition, we need to improve how these devices are 

used for the assessment of P AEE during a variety of activities. 

HR has also been examined as a method for estimating free-living energy 

expenditure. Several investigators have shown HR to be a good estimate of energy 

expenditure during structured activities and over a 24-hour period in a room calorimeter 

(6, 7, 9, 10, 16, 22, 27, 30). HR has the advantage of being a physiological measure that 

has a linear relationship with oxygen consumption during dynamic activities involving 

large muscle groups. However, there are numerous factors that affect an individual's HR 

including environmental factors, gender, training status, hydration level, and stress levels. 

HR also is limited in its ability to accurately estimate energy expenditure during 

sedentary and light activities. This has led investigators to develop methods that employ 

the combined use of HR and motion data to get a better estimate of energy expenditure 

during various activities. In general, the combined HR + motion sensor technique shows 

promise and appears to improve the estimate of energy expenditure during laboratory and 

free-living conditions (3, 4, 12, 17, 24, 28, 29). However, it is limited in its use due to 

the need to construct individual HR-V02 curves on each participant for both leg and arm 

activity. In addition, data analysis is extremely time-consuming which currently limits its 

use in studies involving a large number of participants. 

Statement of the Problem 

Currently there are numerous devices on the market to predict energy expenditure, 

but they all have limitations in their ability to estimate the energy expenditure of 

individual physical activities, as well as 24-hour energy expenditure. Currently, there are 
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numerous prediction equations relating accelerometer counts·min- 1 to energy expenditure, 

which makes it difficult to compare values across studies. In addition, they all rely on a 

linear relationship between activity counts and energy expenditure during a limited 

amount of activities (i.e. walking/running or moderate-intensity lifestyle activities), 

which limits the generalizability of these equations to free-living conditions. Therefore, 

it is necessary that we compare the current methods available to estimate energy 

expenditure and improve on these methods so a more accurate estimation of energy 

expenditure can be obtained. 

Statement of Purpose 

The purpose of this dissertation is to examine the validity of HR and motion 

sensors for estimating energy expenditure and to devise new ways to improve on current 

methods that are currently in use. The first study (Part Ill) examines the use of 

pedometers to measure steps taken, distance traveled, and energy expenditure during 

treadmill walking at various speeds. The second study (Part IV) examines the use of a 

Polar HR monitor to estimate energy expenditure during treadmill running, stationary 

cycling, and rowing. The third study (Part V) compares the current Actigraph regression 

equations (relating counts·min- 1 to energy expenditure) against three newer devices 

(Actiheart, Actical, and AMP-331) during sedentary, light, moderate, and vigorous 

intensity activities. The fourth study (Part VI) describes the development of a new 2-

regression model to estimate energy expenditure using the Actigraph accelerometer. 
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Significance of these Studies 

With the advent of new physical activity monitoring devices it is critical that these 

devices are validated against a well-accepted criterion measure ( e.g. indirect 

calorimetery) and compared against current devices so researchers know which methods 

work best. In addition, in the current validation study a wide range of activities were 

used (sedentary, light, moderate, and vigorous intensity) in order to obtain a better 

understanding of where the devices work and where they fail . 

The development of the new 2-regression model for the prediction of energy 

expenditure enables a researcher to distinguish between walking, running, and other 

activities that are performed through the day. In addition, it provides a much closer 

estimate of energy expenditure across a wide range of activities. 
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Physical Activity Assessment 

Various methods for the assessment of physical activity include subjective and 

objective measures. Subjective measures include physical activity questionnaires, 

physical activity diaries, and interviews either by phone or in person. Objective measures 

include heart rate (HR) monitoring, oxygen consumption, and bodily movement by 

motion sensors. While subjective measures are an important aspect of physical activity 

assessment they are beyond the scope of this review, which will focus on objective 

measures of physical activity. 

Doubly Labeled Water 

For the assessment of total daily energy expenditure (TDEE) doubly labeled water 

(DL W) is generally accepted as the "gold standard". Briefly, for the measurement of 

DL W, an individual is first given a solution containing deuterium (2H) and oxygen-18 

{ 180) (2H/80). Following equilibration, a urine sample is taken to determine the levels 

of 2H and 1 80 in the system. After a 7 to 14 day measurement period a second urine 

sample of 2H and 1 80 is taken to examine the decrease in these isotopes over the 

measurement period. During the measurement period the 2H will decrease due to H20 

turnover, while the 1 80 will decrease due to both H20 turnover and CO2 production. 

TDEE can then be calculated by the difference in the rates of2H and the 1 80 

disappearance. Lifson et al. ( 48) was the first to develop this technique using rodent 

models in the 1955.  It was not until the early 1980s that Schoeller and van Santen (70) 

introduced this technique for use in humans. Schoeller and van Santen (70) examined the 

use of DL W in four adults versus energy intake over a 14 day period. All meals during 
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the measurement period were prepared by the Clinical Research Center kitchen. Energy 

expenditure was calculated by taking the sum of the dietary intake and the change in 

body stores. The average energy expenditure by DL W overestimated energy intake by 

2. � ± 5 .6% (-5.8 to 7. 1%), which was not significantly different. 

DeLany et al. (20) validated the DL W technique for measuring energy 

expenditure in 36 soldiers. Eighteen soldiers were assigned to a light ration group and 18 

soldiers were placed in a ready-to-eat group. Only nine of the participants in each group 

had their energy expenditure measured by DLW. The light ration group received 1980 

kcals·day· 1 , while the ready to eat ration contained 4,020 kcals·daf 1 • Each was supplied 

with the appropriate meals before heading into the field. For the 18 soldiers who took 

DL W, their mean energy expenditure was 5% higher than that measured by energy 

intake/balance method, which was not significant. 

DLW has been used in numerous studies (6, 29, 45, 49, 64, 7 1, 74, 89) as a "gold 

standard" for the measurement of energy expenditure. The advantage of using DL W over 

a technique such as a whole room calorimeter is that DLW can be done in free-living 

participants without constraining them to a single room. However, it should be noted that 

DL W has its limitations. The DL W technique is usually performed over 1-3 weeks and 

provides a measure of the average TDEE, hence the type, intensity, and duration of 

activities cannot be determined. To get an estimate of PAEE using DLW, the RMR and 

TEF are subtracted from the TDEE, which is shown by the following equation: P AEE = 

TDEE (0.9) - RMR, where TDEE x 0. 10 accounts for TEF. Alternatively, the TDEE can 

be expressed as a multiple of the daily resting energy expenditure which indicates the 

overall daily physical activity level (PAL). Another major limitation to using DL W is 
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that it is very expensive (> $500 per subject) and sophisticated and expensive equipment 

is necessary for analysis. 

Motion Sensors 

Pedometers 

Electronic pedometers are a popular means for estimating physical activity. 

Originally developed hundreds of years ago, its main function was to measure plots of 

land. It was not until recently that researchers began using pedometers for monitoring 

physical activity (78). Most pedometers are worn at the midline of the thigh on the waist, 

while some are secured to the ankle or wrist with a strap. Early pedometers with 

mechanical mechanisms were unreliable and generally considered to be unacceptable for 

research (30, 40, 84). Kemper and Verschuur (40) examined the validity of a Russian 

and German mechanical pedometer in 58 boys (age: 12-18 yrs). They had the 

participants walk at 2, 4, and 6 km·hr-1 for 5,  4, and 4 minutes, respectively on a 

treadmill . In addition, they also ran at 6, 8, 10, and 14 km·hr- 1 for 3,  3 ,  3 ,  and 2 minutes, 

respectively on a treadmill. For the German pedometer, it underestimated actual steps by 

66% ± 35.6% at 2 km·hr-1 and overestimated steps by 7. 1 % ± 33.3% and 6.9% ± 11.4% at 

4 and 6 km·hr-1 , respectively. The Russian pedometer underestimated steps by 88.8% ± 

19.7% and 13.9% ± 33.9% at 2 and 4 km·hr- 1
, respectively, while overestimating actual 

steps by 10.2% ± 8. 1 % at 6 km·hr- 1
• Both pedometers overestimated actual steps taken at 

the running speeds, with the German pedometer overestimating by 3.4% ± 9.8%, 0.6% ± 

9.5%, and 8.6% ± 8. 1 % at speeds of 8, 10, and 14 km·hf 1
, respectively. The Russian 
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pedometer overestimated actual steps by 3 .9% ± 6.4%, 3 .7% ± 3.4%, and 9.0% ± 8.6% at 

speeds of 8, 1 0, and 14  km·hr- 1
, respectively. This study showed the inaccuracies 

associated with the mechanical pedometers, especially at slower walking speeds. 

Interestingly, these researchers believed the pedometer would be a good training tool for 

cardiovascular endurance exercise and so it was thought that it would be best if the 

pedometer did not register slow walking speeds at all, due to these steps having a minor 

importance as a training stimulus. 

With time the pedometer has evolved into a more sophisticated device, capable of 

recording steps, distance, and energy expenditure. The newer electronic pedometers are 

generally mounted on the waist and have either a spring-suspended lever arm mechanism 

or a piezo-electric accelerometer mechanism. The horizontal spring-suspended lever arm 

moves up and down in response to the hip's vertical accelerations. This movement opens 

and closes an electrical circuit; the lever arm makes an electrical contact and a step is 

registered. For this pedometer to work correctly it must be placed in a vertical plane, 

perpendicular to the ground. The piezo-electric accelerometer mechanism has a 

horizontal cantilevered beam with a weight on the end, which compresses a piezo-electric 

crystal when subjected to acceleration. This generates voltage proportional to the 

acceleration and the voltage oscillations are used to record steps. Thus, this mechanism 

could be less susceptible to errors that occur due to tilt. 

Several studies have shown these newer electronic pedometers to be accurate and 

reliable for measuring steps taken (3, 1 8, 38, 68, 69), but their accuracy is not as great for 

measuring distance and energy expenditure (3, 1 8, 38). In 1 996, Bassett et al . (3) 

examined the accuracy and reliability of five electronic pedometers for measuring steps 
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taken and distance walked. In the first part of the study 20 participants walked a 4.88 km 

sidewalk course while wearing the same brand of pedometer on the left and right hip. 

This was repeated for each pedometer for a total of five trials. They found that there was 

a significant difference among pedometers for measuring distance (P < 0.05), with the 

Yamax Digiwalker DW-500 and Accusplit Fitness Walker giving closer estimates of 

distance than the other pedometers. In addition, the Yamax Digiwalker DW-500 showed 

close agreement between the left and right hips for measuring steps taken, recording 

100.6% and 100.7% of actual steps, respectively. In the same study the effects of 

treadmill walking speed on pedometer accuracy to count steps was also examined. This 

was accomplished by having 10 participants walk at 54, 67, 80, 94, and 107 m·min· 1 for 

five minutes at each speed. The Yamax Digiwalker DW-500 was shown to be more 

accurate than the other pedometers for recording steps taken and distance traveled at the 

slower walking speeds (54-80 m·min- 1) while at speeds greater than 80 m·min· 1 all 

pedometers showed close agreement. 

Since all of the pedometers examined by Bassett el al. (3) are no longer 

manufactured, Crouter et al. (18) examined the validity of 10 currently available 

electronic pedometers for measuring steps taken, distance traveled, and energy 

expenditure. They had 10 participants walk on a treadmill at 54, 67, 80, 94, and 107 

m·min·1 for 5 minute stages. Eight of the pedometers displayed an estimate of energy 

expenditure, therefore during those walking trials energy expenditure was measured by 

indirect calorimetry. One pedometer was worn on the right side and a second pedometer 

of a different brand was worn on the left side at each speed, then the pedometers were 

switched and the participants performed a second trial. Most pedometers showed good 
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agreement between the left and right side, having intraclass correlation coefficients 

greater than 0.8 1. The Oregon Scientific and Sportline 345 were the exceptions with 

�orrelation coefficients of 0.76 and 0.57, respectively. Most of the pedometers 

underestimated steps at 54 m·min· 1
, but there accuracy improved at the faster speeds. At 

80 m·min· 1 and faster, six of the models (Yamasa Skeleton, Omron, Yamax Digiwalker 

· SW-701, Kenz Lifecorder, New Lifestyles NL-2000, and Walk4Life LS 2525) were 

within ± 1 % of actual steps taken. Of the six pedometers that measured distance traveled, 

most were within± 10% at 80 m·mm·1 , but overestimated distance at slower speeds and 

underestimated distance at faster speeds. Two (Kenz Lifecorder and New Lifestyles NL-

2000) of the eight pedometers that measured energy expenditure displayed both net and 

gross energy expenditure, while the other six pedometers were assumed to display gross 

energy expenditure. Seven of the eight pedometers were accurate to within± 30% of 

actual gross energy expenditure at all speeds. The authors concluded that pedometers are 

most accurate for step counting, less accurate for assessing distance, and less accurate 

still for assessing energy expenditure. 

Some investigators have attempted to examine the validity of pedometers under 

free-living conditions. Bassett et al. (4) examined the validity of motion sensors for 

measuring energy expenditure during 28 activities. Eighty-one participants performed 

one to nine activities for 15 minutes each. During each activity, energy expenditure was 

measured by indirect calorimetry using a Cosmed K4b2 and one pedometer (Yamax 

Digiwalker SW-701) and three other motions sensors were worn. The pedometer tended 

to overestimate the energy cost of over-ground walking by approximately 1 MET, but 

underestimated most other moderate-intensity lifestyle activities by approximately 1 
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MET. The pedometer also showed a modest correlation between the displayed energy 

expenditure and indirect calorimetry (r = 0.49). The mean error score (indirect 

calorimetry minus pedometer) showed that the pedometer underestimated all 28 activities 

by 1 . 1  METs with a 95% confidence interval of± 3 .0 METs. 

Leenders et al. ( 45) examined different methods of measuring physical activity 

versus D_LW in 13 females. They had participants wear a Yamax Digiwalker-500 

pedometer along with two other motion sensors for seven days, while TDEE was 

measured by DLW. Over the 7-day period the Yamax pedometer underestimated actual 

energy expenditure by 59% (-497 kcals·daf 1). This study highlights the fact that 

pedometers may by useful for use in large studies to estimate steps, but not to determine 

their PAEE. 

Recently, pedometers have been developed that are designed to be worn on the 

ankle. Ankle-mounted pedometers have been shown to be superior at detecting steps at 

slower walking speeds (< 80 m·min·1), which is important when trying to obtain an 

accurate estimate of steps taken over a 24-hour period (38). During the day, much time is 

spent in light activity such as washing dishes, cooking, or light cleaning, which may not 

be entirely detected by a waist-mounted pedometer. The Step Watch 3 (Cymatech Inc., 

Seattle, WA) had been shown to be nearly 100% accurate on the treadmill at speeds 

ranging from 26.8 m·min· 1 to 107 m·min- 1
• In addition, it detected an extra 1367 to 1 843 

steps over a 24-hour period versus a Yamax SW-701 and a New Lifestyles NL-2000 

waist-mounted pedometers, respectively, while another ankle-mounted pedometer the 

AMP-33 1 detected 2 1 85 fewer steps than the StepWatch 3 (38). When trying to get an 

accurate estimate of 24-hour energy expenditure it is important to be able to track all 
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activities. Ankle-mounted pedometers, specifically the Step Watch 3,  appear to have the 

ability to track light activities performed throughout the day, where other devices may 

fail. 

The electronic pedometer is a valuable tool for researchers to help assess the 

amount of physical activity that individuals are obtaining. They do have some limitations 

such as not being able to detect vertical work, upper body activities or when an individual 

is carrying or pushing an object. In addition, pedometers are not capable of detecting the 

"pattern" of physical activity (i.e. intensity, frequency, duration), as the more expensive 

piezo-electric accelerometers can. Furthermore, there is growing evidence that the 

spring-levered pedometers may be susceptible to errors that occur due to being tilted or 

factors related to obesity (i.e. increased waist circumference) ( 1 7, 53). 

Accelerometers 

Currently there are several commercially available accelerometers such as the 

Caltrac (Hemokinetics, Madison, WI), the Actigraph accelerometer (Manufacturing 

Technology, Fort Walton Beach, FL) (formerly called the Manufacturing Technology 

Inc. (MTI) Actigraph accelerometer, or the Computer Science Application (CSA) 

accelerometer), the Actical and Actiwatch (Minimitter, Sunriver, OR), the Tracmor, 

(Maastricht, The Nethlerlands) and the Tritrac-R3D accelerometer (Hemokinetics, 

Madison, WI). Accelerometers are devices that measure the magnitude of acceleration 

and deceleration of the body, which enables the researcher to distinguish between 

activities of different intensities. Uniaxial accelerometers measure acceleration in one 

plane (vertical) while biaxial or triaxial accelerometers measure acceleration in two or 
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three planes, thus being able to capture a greater amount of movements. In addition, 

accelerometers have the ability to store data and track the frequency of exercise, as well 

as being non-invasive which makes them a popular choice among researchers. 

Caltrac 

The Caltrac, which uses a uniaxial accelerometer, was one of the first 

commercially available accelerometers. The Caltrac has a major limitation in that it 

cannot store minute-by-minute data, so only total activity during a certain period can be 

examined. The original algorithm used by the Caltrac to estimate energy expenditure was 

developed by Montoye et al. ( 54 ). They had 21 participants ( age: 20-60 yrs) perform flat 

and graded walking/running on a treadmill, bench stepping, knee bends, and floor 

touches for 4 minutes each, while wearing a Caltrac. During the fourth minute of each 

activity, oxygen consumption was measured using a Beckman Metabolic Cart. They 

hypothesized that the Caltrac would not be able to detect the increased energy cost of 

graded walking and running, which was correct, but due to the inclusion of these 

activities into the regression equation the algorithm developed overestimated the cost of 

walking and running on a flat surface. 

Since Montoye et al. ( 54) developed the original algorithm to estimate energy 

expenditure using the Caltrac, other investigators have confirmed their findings that the 

Caltrac overestimates walking (2, 9, 26, 32, 37, 58, 59, 67, 80) and cannot detect the 

increased energy cost associated with graded walking and running (26, 54, 79). For 

example, Haymes and Byrnes (32) placed the Caltrac on twenty one participants during 

treadmill walking and running. Each participant walked at 2, 3, 4, and 5 mph at a 0% 
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grade and ran at 4, 5, 6, 7, and 8 mph at a 0% grade. Each speed was performed for four 

minutes and gas exchange measurements were measured by indirect calorimetry. During 

brisk walking and slow jogging the Caltrac was found to overestimate energy expenditure 

by 20-40%. An additional finding was that the Caltrac was not able to detect increases in 

running speeds from 5 to 8 mph. 

Bray et al. (9) used a respiratory chamber to examine 40 girls (age: 10-16 yrs) 

over a 24-hour period. While in the respiratory chamber the participants wore two 

Caltrac accelerometers, one on each hip, and performed normal sedentary activities and 

two 20 minute bouts on a cycle ergometer. During the 24-hour period the Caltrac 

significantly underestimated energy expenditure by 6.8% to 30.4%. 

While the literature suggests that the Caltrac is reliable (54, 59, 67), it 

significantly overestimates energy expenditure during walking and running on a flat 

surface, while underestimating energy expenditure over a 24-hour period. Thus, the 

Caltrac does not seem to be a suitable device for use by researchers to measure energy 

expenditure. 

Actigraph 

The Actigraph accelerometer is the most widely used accelerometer in physical 

activity research. The Actigraph is small (2.0 x 1.6 x 0.6 in) and lightweight ( 1 .5 ounces) 

and can be attached at the waist, wrist, or ankle using velcro straps. The Actigraph uses a 

uniaxial accelerometer, which can measure accelerations in the range of 0.05 to 2 G's and 

a band limited frequency of 0.25 to 2.5 Hz. These values correspond to the range where 

most human activities are performed. An 8-bit analog-to-digital converter samples at a 
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rate of 10 Hz and then summed for the specified time period (epoch). If a one minute 

epoch is used the Actigraph can store 22 days worth of data, which is downloaded to a 

personal computer via a reader interface unit. 

Numerous studies have examined the validity and reliability of the Actigraph in 

both laboratory and field settings (4, 23, 27, 34, 36, 41, 52, 57, 81, 83, 85, 88). The first 

published study using the Actigraph accelerometer (model 5032) was performed by Janz 

in 1994 (36). This study examined the validity of the Actigraph to assess physical 

activity in 31 children ( age: 7-15 yrs). Each child in the study wore an Actigraph 

accelerometer and HR monitor for three consecutive days. In addition, they completed a 

physical activity diary at the end of each day. It was found that the correlation between 

the average movement counts from the Actigraph and the average net HR for each of the 

three days were r = 0.70, 0.51, and 0.55, respectively. The relationship between average 

movement counts and minutes spent at � 60% of HR reserve was also found to be high 

for each of the three days; r = 0.72, 0.61, and 0.60, respectively. Because of the high 

correlation coefficients between the Actigraph counts and the HR variables, it was 

concluded that the Actigraph accelerometer is a valid, objective method to monitor 

children's physical activity. 

Melanson and Freedson (52) were one of the first to examine the validity of the 

Actigraph accelerometer (model 5032) under laboratory conditions. They had 15 males 

(age: 21 ± 1.0 yrs) and 13 females (age: 21 ± 1.1 yrs) walk at 4.8 and 6.4 km·hf 1 and run 

at 8.1 km·hr- 1 on a treadmill for eight minutes at each speed, while wearing an Actigraph 

at the hip, ankle, and wrist. In addition, at each speed, data were collected at 0%, 3%, 

and 6% grades. Simultaneously energy expenditure was measured by indirect 
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calorimetery. While the Actigraph was able to detect changes in speed, it was not able to 

detect changes in treadmill grade. The correlation between measured energy expenditure 

and Actigraph counts from the ankle, hip, and wrist were r = 0.66, 0.80, and 0.8 1 ,  

respectively (all, P < 0.0 1). Twenty-one participants were selected at random to be used 

for the development of prediction equations for energy expenditure, which was then 

cross-validated on the remaining seven participants. The best one predictor model, which 

included wrist counts and body mass had a mean difference (predicted minus actual) for 

the cross-validation group of 0.2 1 kcals·min- 1 ." Overall, the model that best predicted 

energy expenditure included the ankle, hip, and wrist counts plus body mass. This 

resulted in a mean difference of 0.02 kcals·min-1 , but there were large individual 

differences ranging from -2.86 to +3 .86 kcals·min-1 • 

Trost et al. (83) examined the validity of the Actigraph in 30 children (age: 10- 14 

yrs) during treadmill walking and running. Each participant walked at 3 and 4 mph and 

ran at 6 mph at a 0% grade for 5 minutes at each speed. Indirect calorimetry was used to 

determine energy expenditure. While performing the walking and running the participant 

wore an Actigraph on both the left and right hips, which were found to give similar 

activity counts and had an intraclass reliability coefficient between the two Actigraph 

devices of 0.87 across all speeds. The activity counts were also highly correlated with 

energy expenditure (kcals·min-1), r = 0.87 (P < 0.0 1). Twenty participants were randomly 

selected to be used for the development of a prediction equation, with the remaining 10  

participants set aside for a cross-validation of the new equation. For the group of 1 0, the 

mean energy expenditure from the new prediction equation was not significantly different 

from the actual energy expenditure for all speeds combined. The mean difference was 
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0.0 1 kcals·min· 1
, but there was a trend for overestimation of energy expenditure at the 

slowest speed and underestimation of energy expenditure at the fastest speed. 

Specifically, at 3, 4, and 6 mph the mean differences were +0.46, -0.02, and -0.4 1 

kcals·min· 1 , respectively. While it appears that the Actigraph is a valid device for 

estimating energy expenditure in children, it was most accurate at 4 mph, which most 

likely is greater than normal walking speeds for children. 

Currently, the most widely used regression equations for estimating energy 

expenditure (kcals·min· 1 and METs) in adults is the Actigraph regressions developed by 

Freedson et al. (27). Their study also computed cut-points that would relate Actigraph 

activity counts to the intensity of the activity. This allowed researchers to estimate how 

much time was spent performing light, moderate, and vigorous intensity activities. 

Freedson et al. (27) had 25 males (age: 24.8 ± 4.2 yrs) and 25 females (age: 22.9 ± 3.8 

yrs) walk at 4.8 and 6.4 Jan·hr- 1 and run at 9.7 km·hr- 1 on a treadmill for six minutes at 

each speed. The participants wore an Actigraph accelerometer (model 7164) on the right 

hip for all trials. Simultaneously, energy expenditure was measured using indirect 

calorimetry. The authors first developed an algorithm to predict MET level based off the 

counts·min·1 from the Actigraph accelerometer; METs = 1 .439008 + (0.000795 * 

counts·min-1). This equation was then used to determine cut points (for counts·min- 1 ) 

corresponding to various MET levels; light activity (< 3.0 METs) corresponds to less 

than 1952 counts·min· 1
, moderate activity (3.0 - 5.99 METs) corresponds to 1952 - 5724 

counts·min- 1 , hard activity (6.0 - 8.99 METs) corresponds to 5725 - 9498 counts·min- 1 , 

· and very hard activity {> 8.99 METS) corresponds to greater than 9498 counts·min· 1 • The 

development of the prediction equation for energy expenditure (kcals·min- 1) used a 
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random sample of 35 of the participants, which was then cross-validated in the remaining 

15 participants. Mean differences (measured minus predicted) for energy expenditure 

were -0. 19, -0.46, and 0. 12 kcals·min·1 at 4.8, 6 .4, and 9.7 km·hr-1 , respectively, which 

were not significantly different. 

In 2000 Hendelman et al. (34) published one of the first studies examining the use 

of an Actigraph accelerometer to predict energy expenditure in moderate-intensity 

lifestyle activities. They had 25 participants (age: 40.8 ± 7.2 yrs) perform three test 

sessions consisting of various activities. In session one, the participants walked at four 

self-selected speeds (leisurely, comfortable, moderate, and brisk) on in indoor track. 

Each walking bout lasted approximately 5 minutes. In session two, they played two holes 

of golf using a pull cart. In session three, they performed the following activities for 5 

minutes each; 1) washing windows, 2) dusting, 3) vacuuming, 4) lawn mowing (using a 

gas powered push mower), and 5) planting shrubs. During all sessions the participants 

wore an Actigraph accelerometer (model 7164) on the left hip and a TEEMl00 Aerosport 

portable gas analyzer was simultaneously worn for the measurement of energy 

expenditure. Regression analysis was performed on the walking only data, and on all the 

data combined, to develop equations for the prediction ofMETs based on the counts·min· 

1
• These equations were then used to determine intensity cut points for light (1.9 - 2.99 

METs), moderate (3.0 -5 .99 METs), and hard (6.0 - 8.99 METs). The walking cut 

points were 219 1, 6893, and 1 1596 counts·min·1 for light, moderate, and hard activity, 

respectively, which were similar to that reported by Freedson el al. (27). The cut points 

for all the data combined were 19 1, 7526, and 1486 1 counts·min· 1 for light, moderate, and 

hard activities, respectively. They also developed individual regression equation for each 
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participant based on the accelerometer and energy expenditure during the walking 

activity. This was then applied to the accelerometer data from the remaining activities 

and it was found that the Actigraph underestimated the energy expenditure of moderate­

intensity lifestyle activities by 30.5-56.8%. 

In 2000, Swartz et al. (81) also examined the use of an Actigraph accelerometer 

(model 7164) in a field setting. They developed intensity cut points for moderate­

intensity lifestyle activities and added an Actigraph accelerometer to the wrist to see if 

there was an improvement in the estimation of energy expenditure by using both the hip 

and wrist accelerometer counts. Seventy participants (age: 41 ± 15 yrs, BMI: 26.0 ± 5.4 

kg·m-2) performed one to six activities, within one or more of the following categories; 

yard work, occupation, housework, family care, conditioning, and recreation. In all there 

were a total of 28 activities, with 12 participants performing each activity. Each activity 

was performed for 15 minutes. A Cosmed K4b2 was used to measure energy expenditure 

during all activities. In addition, the participants wore an Actigraph accelerometer on the 

right anterior axillary line at waist level and one on the dominant wrist. Based on the 

equation developed to predict METs from hip counts·min· 1 the intensity cut points were 

574, 4945, and 9317 for light (1.1-3 METs), moderate (3-5.9 METs) and hard (?: 6 

METs ), respectively. It was also found that the regression equations developed for the 

wrist, hip, and wrist plus hip accelerometer counts accounted for 3.3%, 31.7% and 34.3% 

of the variation in MET level of the activities performed, respectively. Although the 

addition of the wrist data to the hip data explained significantly more of the variability in 

the MET level, it was only a 2.6% improvement. The authors concluded that this small 
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improvement was outweighed by the additional time needed to analyze the data and the 

extra cost needed for the accelerometer placed on the wrist. 

Bassett et al. (4) examined the validity of the Actigraph accelerometer (model 

7164) to estimate energy expenditure during moderate-intensity lifestyle activities. The 

Actigraph accelerometer was worn on the right hip. Simultaneously, a Cosmed K4b2 

portable metabolic unit was used to measure energy expenditure. The Actigraph MET 

values were calculated based on three commonly used equations; 1) manufacture's 

equation (CSAl ), which gives an estimate of net EE (15) 2) Freedson 's equation (CSA2), 

which uses counts per minute and was developed from a study using treadmill walking 

and running (27), and 3) Hendelman's equation (CSA3), which is based on lifestyle 

activities performed in the field (34). A total of 28 activities were performed which fell 

under the categories of yard work, occupation, housework, family care, conditioning, and 

recreation. Activities were performed for 15 minute periods. Reported mean error scores 

(indirect calorimetry - device) for all activities combined were: CSAl ,  0.97 METs, 

CSA2, 0.4 7 ME Ts, and CSA3, 0.05 METs. Across all 28 activities, the equations predict 

METs fairly well, but there were large variations for individual activities. For example, 

the equations overestimated walking, but significantly underestimated activities that are 

predominantly arm activities or had a large upper body component such as 

pushing/carrying objects, lifting objects, hill climbing, lawn mowing, raking leaves, and 

washing windows. 

Leenders et al. ( 45) examined the use of an Actigraph accelerometer (model 

7164) to assess free-living physical activity versus DLW. Thirteen women wore an 

Actigraph accelerometer for seven days while actual energy expenditure was determined 
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by DLW. The Actigraph data was collected in one minute epochs and the equation of 

Freedson et al. (27) was used to estimated energy expenditure (kcals·min-1 ). In this group 

of females it was found that the Actigraph underestimated P AEE by 59%. This study 

highlighted the fact that it is difficult to account for all types of activities performed 

during the day using a device placed on the hip. This was an important finding because it 

highlighted the fact that laboratory based equations do not necessarily work in a field 

setting, suggesting that further work was needed to enhance the validity of accelerometer 

based prediction models in the field. 

Recently, King et al. (4 1 )  examined the validity of an Actigraph accelerometer 

( model 7 164) during treadmill exercise in 2 1  healthy adults. Participants wore an 

Actigraph on their left and right hips while walking on a treadmill at 53, 80, and 107 

m·min- 1 and running at 134, 1 6 1 ,  1 88, and 214 m·min-1 • Each speed was maintained for 

10 minutes and energy expenditure was measured by indirect calorimetry (Parvomedics 

TrueMax 2400). Energy expenditure for the Actigraph was calculated using both the 

manufacturer's equation and the equation developed by Freedson et al. (27). There were 

no significant differences between the left and right devices at any speed. For the 

Actigraph, there was a significant effect of speed on activity counts, the manufacturer's 

estimate of total energy expenditure, and Freedson' s equation of estimated total energy 

expenditure ( all, P < 0.001 ). A steady increase in counts occurred as speeds increased 

from 54 to 16 1  m·min-1 , however there was a leveling off or slight drop in the activity 

counts between the speeds of 16 1  and 2 14  m·min- 1
• Using the manufacturer's equation, 

the Actigraph was not significantly different from actual energy expenditure at speeds of 

80, 1 07, 16 1 ,  and 1 88 m·min-1 (P � 0.05), but it significantly underestimated energy 
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expenditure at 54 and 2 14 m·min-1 (P < 0.05), while overestimating energy expenditure at 

1 34 m·min-1 (P < 0.05). The only difference when using the equation of Freedson et al. 

(27) is that the Actigraph was similar at 1 34 m·min-1
• In addition, the correlation between 

total energy expenditure and estimated Actigraph energy expenditure ranged from r = 

0.73 at 54 m·min-1 to r = 0.58 at 2 14 m·min-1
• This study highlights an important 

limitation of the Actigraph accelerometer ; at running speeds above approximately 1 6 1  

m·min-1
• At these speeds, the activity counts begin to level off, thus limiting its use for 

high intensity activities. 

Actical 

The Actical accelerometer is a small (28 x 27 x 1 0mm) device that uses an 

omnidirectional accelerometer and weighs only 1 7  grams. The Actical is sensitive to 

movements in the range of 0.5 to 3 Hz. It is capable of storing 45 days worth of data 

using I -minute epochs. To date, only a few studies have examined the validity and 

reliability of the Actical (33,  42, 63, 88). 

Klippel and Heil (42) validated the Actical in 12 men and 12 women while 

performing 9 activities; typing, hand writing, card sorting, floor sweeping, carpet 

vacuuming, table surface dusting, treadmill walking at 67 and 80.4 m·min-1
, and treadmill 

jogging at 1 20.6 m·min- 1
• All activities were performed in a laboratory and energy 

expenditure was measured using a VmaxST portable metabolic system. While 

performing the activities the participants wore an Actical on the non-dominant wrist, on 

the ankle on the same side of the body as the wrist device, and on the right hip. 

Prediction equations were developed using the average of the last two minutes of each 
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activity. The.prediction equation developed for the Actical when worn at the ankle (r = 

0.77, SEE =± 1.4 METs, P < 0.001), hip (r = 0.94, SEE =± 0.8 METs, P < 0.001) and 

wrist (r = 0.90, SEE = ± 1.0 METs, P < 0.001) showed promise for the prediction of 

METs. 

Heil and Klippel (33) also validated the Actical in adolescents and teens using 

similar methods as Klippel and Heil ( 42). The children performed the following 9 

activities; typing, hand writing, video game playing, floor sweeping, carpet vacuuming, 

table surface dusting, treadmill walking at 67 and 80.4 m·min· 1 , and treadmill jogging at 

120.6 m·min· 1 • In the children they were interested in estimating activity energy 

expenditure (AEE) (AEE = task energy expenditure minus RMR) in kcals·kg- 1 .min· 1 , 

rather than METs as was used in the adults. The equations developed for the ankle (r = 

0.80, SEE =± 0.077 1, P < 0.001), hip (r = 0.89, SEE =± 0.0587, P < 0.00 1), and wrist (r 

= 0.89, SEE =± 0.0592, P < 0.001) all provided a reasonable estimate of AEE. 

Recently Puyau et al. (63) examined the validity of the Actical to predict AEE in 

children. Thirty-two children ( age: 7-18 yrs) wore an Actical monitor while performing a 

4-hour routine in a room calorimeter. Upon awakening, the children remained still for 30 

minutes for the measurement of their basal metabolic rate (BMR). They were then 

allowed to eat before they played Nintendo for 20 minutes in a sitting position, worked at 

a computer for 20 minutes while sitting in a chair, continuously dusted the contents of the 

room calorimeter for 10 minutes, performed aerobic exercises by following a videotape 

for 12 minutes and practiced free throws from a set distance in a standing position for 10 

minutes. They then left the room calorimeter had had their oxygen consumption 

measured by a SensorMedics 2900 metabolic cart while walking on a treadmill at 2.0 
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mph for 7 minutes, walking at 3 .5-4.0 mph for 7 minutes and running at 4.5-7 mph for 7 

minutes. Linear regression analysis was used to develop equations for AEE ( energy 

expenditure minus BMR) and physical activity ratio (PAR) ( energy expenditure/BMR). 

The equations developed accounted for 8 1  % of the variability in AEE and PAR. The 

authors also sought to determine appropriate cut points for sedentary, light, moderate, and 

vigorous activity based on AEE and PAR. The activity cut points of 1 00, 1 500, and 6500 

counts·min·1 corresponded to light (AEE, 0.0 1 kcals·kg-1 .min·1 and PAR, 1 .5), moderate 

(AEE, 0.04 kcals·kg-1 .min·1 and PAR, 3), and vigorous (AEE, 0. 1 kcals·kg-1 .min·1 and 

PAR, 6) activities, respectively. 

TriTrac-R3D 

The TriTrac-R3D (TriTrac) is a triaxial accelerometer that was developed with 

the hope of overcoming some of the limitations of uniaxial accelerometers. The Tri Trac 

has three independent sensors in orthogonal axes to detect acceleration in three planes (x, 

y, z). It is about the size of a deck of cards and weighs 170 grams. The TriTrac can be 

programmed to record in one second to one minute epochs and can store 7-days worth of 

data when one minute epochs are used. In addition, it provides an estimate for both 

activity energy expenditure as well as resting energy expenditure (based on age, gender, 

height, and weight). 

The TriTrac has the potential to be a better predictor of energy expenditure due to 

its use of three accelerometers, versus a uniaxial accelerometer. Many investigators have 

examined its validity and reliability to predict energy expenditure ( 10, 12, 14, 24, 34, 35, 

41, 43-45, 5 1 ,  72, 75, 85-87). Sherman et al. (72) examined the use of the TriTrac to 
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predict energy expenditure during ambulatory activity. Sixteen participants (age: 24 ± 3 

yrs) simultaneously had their energy expenditure measured and predicted by indirect 

calorimetery and a TriTrac, respectively while at rest ( 10 minutes pre- and 20 minutes 

post exercise) and while walking on a treadmill at various speeds at a 0% grade. The 

speeds were between 40% and 70% of their V02pea1c which was measured during an 

incremental treadmill test on a separate day. Each speed was maintained for 15 minutes. 

The participants on a separate day walked for 15 minutes on a level soccer field at speeds 

that produced similar HRs as those obtained during the treadmill walking. There were no 

significant differences between actual energy expenditure and that estimated by the 

TriTrac at rest before exercise or any of the treadmill walking speeds, although the 

TriTrac significantly underestimated energy expenditure post exercise (P < 0.05), most 

likely due to its inability to take into account elevations in energy expenditure due to post 

exercise oxygen consumption. During the field trial, energy expenditure was predicted 

based on the HR value and there were no significant differences between the energy 

expenditure estimated by HR and that given by the TriTrac. 

Jakicic et al. (35) examined the accuracy of the TriTrac to estimate energy 

expenditure during various activities. Twenty participants (age: 21.5 yrs) performed five 

different exercises on separate days, each lasting 20-30 minutes. The activities were 

performed for 10 minutes at each intensity and included: treadmill walking (3 mph at 0%, 

5%, and 10% grade), treadmill running (5 mph at 0% and 5% grade), cycling (1. 5 kg 

resistance at 50 rpm and 65 rpm), stepping (8 in step height at 20 cycles·min- 1 and 30 

cycles·min-1), and slideboard (160 cm slide at 17 cycles·min·1 and 21 cycles·min- 1). For 

all activities, the participants wore two TriTrac accelerometers and energy expenditure 
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was measured by indirect calorimetry. The assessment of inter-instrument reliability 

revealed that there was a significant difference between the devices ( worn on the left and 

right sides) for the prediction of energy expenditure during all activities (P < 0.05). The 

highest correlations between indirect calorimetry and predicted EE from the TriTrac were 

seen during walking and running (r = 0. 78 -0.92, P < 0.05). Stepping and slideboard 

activities had a correlation of r = 0.54 -0.8 1 (P < 0.05). Cycling was the only activity 

where actual and predicted energy expenditure were not significantly correlated (r = 0.04 

-0.43, P � 0.05). Although the TriTrac energy expenditure was significantly correlated 

with measured energy expenditure, it significantly underestimated measured energy 

expenditure for all activities, except treadmill running. 

Welk et al. (85) published one of the first studies that examined the TriTrac under 

both laboratory and field conditions. Fifty-two participants (age: 29 yrs) completed two 

choreographed routines that included six activities that were performed for six minutes 

each. Three activities (walking at 80.5 m·min· 1 , walking at 107 .3 m·min- 1 , and jogging at 

170 m·min-1) were performed in both routines to assess the reliability of instruments. The 

three additional activities in routine 1 included mowing, raking, and shoveling, while the 

three additional activities in routine 2 were vacuuming, sweeping, and stacking groceries. 

During the indoor activities a SensorMedics 2900 metabolic cart was used to measure 

energy expenditure, while during the outdoor activities an Aerosport KB 1-C portable 

metabolic unit was used. Correlations between the treadmill walking/jogging energy 

expenditure and the TriTrac in routine 1 were r = 0.93, while the correlation during 

routine 2 was r = 0.92. The correlation between the energy expenditure for the lifestyle 

activities and the TriTrac was r = 0.59. During the treadmill walking (80.5 and 107.3 
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m·min- 1 ) the TriTrac significantly overestimated the actual METs by approximately 0.5 -

1 .0 METs (P < 0.05), but during treadmill jogging ( 170 m·min-1 ) there was not a 

significant difference between the predicted and actual METs (P 2: 0.05). During the 

lifestyle activities the TriTrac significantly underestimated energy expenditure by 57%, 

with the largest errors seen during the sweeping and vacuuming tasks. This study 

highlights the fact that the laboratory equations developed do not always transfer to free­

living situations, as was seen with the Actigraph accelerometer. 

Leenders et al. ( 45) examined the use of a Tri Trac accelerometer to assess free­

living physical activity versus DL W. Thirteen women wore a TriTrac accelerometer for 

seven days while actual energy expenditure was determined by DL W. In this group of 

females, the TriTrac underestimated PAEE by 35%. This is an improvement over the 

Actigraph and Yamax pedometer (which each underestimated by 59%). While the 

TriTrac accelerometer shows promise for being a better measurement device than 

uniaxial accelerometers, for predicting energy expenditure, it is still missing a large part 

of the 24-hour P AEE. In addition, it has the same limitations as other devices worn on 

the hip such as not being able to take into account activities such as walking up/down a 

grade, carrying objects such as a briefcase or groceries, and bicycling. 

Campbell et al. ( 1 0) evaluated the use of a Tri Trac accelerometer to measure 

energy expenditure in females during field activities. Twenty women (age: 20-29 yrs) 

performed a choreographed routine to simulate daily activities, which consisted of the 

following: walking on a 400 m asphalt track, jogging on a 400 m asphalt track, stair 

climbing a flight of 1 7 stairs without the use of a handrail, walking on an incline of 12 

degrees in slope and 32 m long, stationary cycling at a work load of 50 watts, and arm 
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ergometry with no resistance. All activities were performed for five minutes at a self 

selected speed. During the routine the participants wore a TriTrac accelerometer and 

energy expenditure was measured using indirect calorimetry (Cosmed K4b2 portable 

system). The ·TriTrac prediction of energy expenditure for walking on an incline and for 

the total routine were not significantly different from the actual energy expenditure, while 

it significantly overestimated energy expenditure during level walking and jogging, and 

underestimated actual energy expenditure during stair climbing, stationary cycling, and 

arm ergometry. This study highlights that fact that overall the TriTrac may give a 

reasonable estimate of energy expenditure, but it significantly over- and underestimates 

individual activities. 

Recently, King et al. ( 41) examined the Tri Trac during treadmill exercise in 21 

healthy adults. Participants wore a TriTrac on their left and right hips while walking on a 

treadmill at 53, 80, and 107 m·min·1 and running at 134, 161, 188, and 214 m·min·1
• Each 

speed was maintained for 10 minutes and energy expenditure was measured by indirect 

calorimetry (Parvomedics TrueMax 2400). There were no significant differences 

between the left and right devices at any speed. There was a significant effect of speed 

on vector magnitude counts, estimated AEE, and estimated total energy expenditure ( all, 

P < 0.001). Unlike what is observed with other uniaxial accelerometers, the TriTrac 

counts continued to increase with each speed, but they did become attenuated at the 

fastest running speeds ( 161 to 214 m-min-1 ). However, the TriTrac significantly 

overestimated actual AEE and total energy expenditure at all walking and running 

speeds. In addition, the correlation between total energy expenditure and estimated 
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energy expenditure by the TriTrac ranged from r = 0.49 at 54 m·min- 1 to r = 0.83 at 214 

m·min- 1
• 

RT3 Research Tracker 

The RT3 Research Tracker (RT3) was recently introduced as the replacement to 

the TriTrac-R3D. The RT3 uses a three-dimensional piezoelectric accelerometer and has 

the ability to store data in epochs of one second to one minute. When one minute epochs 

are used, up to 21 days of data can be stored depending on the data collection mode (X, 

Y, and Z or vector magnitude). The RT3 is much smaller than the TriTrac (2.8 x 2.2 x 

1.1 in) and weighs 2.3 ounces. The manufacturer claims that the reliability of the RT3 

should be better than the TriTrac due to the use of an integrated triaxial accelerometer 

that integrates the three vectors into a single chip, versus the TriTrac which uses three 

independent sensors. In addition, they conduct factory testing to make sure the device 

conforms to specific standards before being sold. 

To date few studies have examined the accuracy and reliability of the RT3 (21, 

22, 41, 61, 62, 66). De Voe et al. (22) compared the R T3 and Tri Trac accelerometers 

under laboratory and field settings. The participants performed a maximal stress test, 

treadmill walking, and over-ground walking on an outside field while wearing a R T3 and 

TriTrac in the lumbar region of the back. During the stress test and treadmill walking 

(slow: 4.8 km·hr- 1 at 0%, 5%, 10%, and 15% grade; fast walk: 6. 4 km·hr-1 at 0% grade; 

and jogging: 9.7 km·hr- 1 at 0% grade) oxygen consumption was measured by indirect 

calorimetry. The slow walk, fast walk, and jogging were performed for 6 minutes at each 

speed and grade. The over-ground walking consisted of three 6 minute bouts at 4.8, 6.4 
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and 9.7 knrhr· 1 • During all testing HR was measured using a Polar Vantage XL HR 

monitor. The main finding was that, on average, the RT3 records higher activity counts 

than the R3D. In addition, there was less variation in the activity counts for a given 

activity when using the RT3. However, they both had moderate correlations with oxygen 

consumption and vector magnitude counts during the treadmill walking and jogging (RT3 

r = 0.57; TriTrac r = 0.58; both P <. 0.001 )  and HR and vector magnitude counts (RT3 r = 

0.5 1 ;  TriTrac r = 0.5 1 ; both P < 0.00 1 ). The lowest correlations were seen during the 

graded walking, which was seen for both accelerometers. 

Powell and Rowlands (62) examined the intermonitor variability of the RT3 

during various activities. One female (24 yrs) performed the following six activities: 

treadmill walking at 4 and 6 km·hr- 1 , treadmill running at 8 and 10 km·hr- 1 , and a repeated 

sit-to-stand activity controlled by a metronome set at 40 beats·min· 1
• Each activity was 

performed for 12  minutes and the routine was repeated on a separate day. During the 

activities eight monitors were secured to the female's waist (four above the left hip and 

four about the right hip). During locomotor activities the intermonitor coefficient of 

variation was low ( < 6% ), but it was higher during the sit-and-stand test (8 - 25% ). 

There were no differences in the vector magnitude, X and Z axes between the first and 

second trials, although one monitor recorded significantly lower activity counts for the Y 

axis in trial one versus trial two. There were intermonitor differences evident for the Y 

and Z axis at 4, 6, 8, and 10 km·hr- 1 , and for the vector magnitude and X axes at 6, 8, and 

10 km·hr- 1 • In addition, as the intensity of exercise increased, the variability among the 

monitors also increased. The reliability of the RT3 was shown to be good, but 
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researchers should be aware of the intermonitor variability. Also, the vertical axis 

appeared to show the least variability and was the most reliable. 

Rowlands et al. ( 66) examined the validity of the RT3 for the assessment of 

physical activity and determined cut-points for moderate (3-5 .99 ME Ts) and vigorous � 

6 METs) intensity activity in 19 boys (age: 9.5 ± 0.8 yrs) and 15 men (age: 20.7 ± 1.4 

yrs). The participants first sat quietly for 10 minutes while playing a keyboard computer 

game (boys) or completing a crossword (men). This was followed by walking on a 

treadmill at 4 and 6 km·hr-1 and running at 8 and 10 km·hr-1
, kicking a soccer ball with an 

investigator ( distance: boys = 2.4 m, men = 3 m), and alternately hopping and jumping on 

a hopscotch grid. All activities were performed for 4 minutes while wearing both an RT3 

and a TriTrac accelerometer. Douglas bags were used for the measurement of oxygen 

consumption and carbon dioxide production during the last minute of each activity. To 

account for differences in body size, oxygen consumption was expressed relative to body 

mass raised to the power of 0.75 (SV02). The RT3 accelerometer counts were 

significantly correlated with SV02 for all activities in both the boys and men. The RT3 

vector magnitude was a significantly better predictor of SV02 than the TriTrac vector 

magnitude. Analyses between the RT3 and TriTrac showed that the RT3 vertical axis 

counts were significantly higher during walking at 6 km·hr- 1
, running at 10 km·hr- 1

, and 

hopscotch (P < 0.05), but not during the other activities. For the anteroposterior axis the 

RT3 counts were significantly higher than the TriTrac for all activities (P < 0.05), except 

sitting and kicking a ball. This study highlighted the point that even though both 

monitors used are triaxial accelerometers, the activity_ counts given by each are not 

always comparable. 
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King et al . ( 4 1 )  examined the RT3 during treadmill exercise in 2 1  healthy adults. 

Participants wore a RT3 on their left and right hips while walking on a treadmill at 53, 

80, and 107 m·min·1 and running at 134, 16 1 ,  1 88, and 214 m·min·1 • Each speed was 

maintained for 10  minutes and energy expenditure was measured by indirect calorimetry 

(Parvomedics TrueMax 2400). There were no significant differences between the left 

and right devices at any speed. For the RT3 there was a significant effect of speed on 

vector magnitude counts, estimated AEE, and estimated total energy expenditure ( all, P < 

0.001 ). A slight attenuation in the counts occurred only at the fastest running speeds ( 188 

to 2 14 m·min-1 ). However, the RT3 significantly overestimated measured AEE and total 

energy expenditure at all walking and running speeds. In addition, the correlation 

between total energy expenditure and estimated energy expenditure by the RT3 ranged 

from r = 0.39 at 54 m·min· 1 to r = 0.685 at 214 m·min·1 • 

Motion sensors provide a valuable tool for objective monitoring of physical 

activity however, they have several limitations. In general, accelerometers are limited to 

ambulatory activities such as level walking and slow running. Accelerometers are not as 

effective during lifestyle activities and have been shown to be ineffective at predicting 

the energy cost of activities such as cycling, upper body exercise (if waist-mounted), 

swimming, rowing, or walking/running up an incline (26, 32, 35, 45, 52, 79, 85). In 

addition, uniaxial accelerometers cannot detect increases in energy expenditure that occur 

at running speeds over 9 km·hr1 (8, 32). 
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Heart Rate 

HR is often used to estimate both exercise and free-living energy expenditure. 

Since HR is linearly related to oxygen uptake (VO2) for dynamic activities involving 

large muscle groups (13, 73), it can provide a reasonable estimate of energy expenditure 

during exercise ( 11, 25). The use of HR provides a physiological measurement which 

can provide information on the pattern of activity performed. Several methods have been 

used to estimate energy expenditure, such as average pulse rate ( 60), net HR ( activity HR 

minus resting HR) (1), and the use of linear predictions based on HR-VO2 curves 

developed on an individual basis in a laboratory setting (5, 31, 47, 49, 50, 56, 65, 77). Of 

these methods the most common approach is using the linear prediction equations, but 

there are limitations to its use due to the variability in the HR-VO2 relationship at low 

HRs. One method that attempts to reduce the error seen from the HR variability is the 

Flex HR method. 

The Flex HR method is a common method used for predicting 24-hour energy 

expenditure. The Flex HR method utilizes HR and VO2 measured at rest (lying, standing, 

sitting) and during exercise of various intensities to develop HR-VO2 calibration curves 

(28). The Flex HR is the average of the highest HR during rest and the lowest HR during 

light exercise. In a field setting, the assumed resting metabolic rate ( 1 MET) is used for 

any value below the Flex HR, while the HR-VO2 curve is used to estimate energy 

expenditure for any value above the Flex HR. Ceesay et al. ( 11) examined the Flex HR 

method in 20 participants. The HR-VO2 relationship was determined for lying, sitting, 

standing, and while performing the following activities: cycle ergometer at 50 rpm and 

work loads of 25, 50, 75, and 100 watts, stepping at 20 steps·min· 1 on a 225 mm block, 
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and jogging in place at 138 steps·min· 1 • The jogging in place was excluded from the 

analysis and to determine the Flex HR they used the mean of the highest HR while 

standing and the lowest HR during the stepping exercise. The participants then spent 

2 1 .5 hours in a room calorimeter, during which time they performed the following 

activities: cycle ergometer at 50 rpm and a work rate of 50 watts, rowing at 20 

strokes·min· 1 at a work rate of SO watts, stepping at a rate of 20 steps·min· 1 , and jogging in 

place at 138 steps·min·1 • Overall, the Flex HR method underestimated actual energy 

expenditure by 1 .2 ± 6 .2% with a range of - 1 1.4% to + 10.6%. More importantly, during 

the 2 1  hours in the calorimeter, only 98 minutes were spent above the Flex HR, meaning 

22 minutes of the structured exercise were spent below the Flex HR. 

Livingstone et al. ( 49) examined the estimation of energy expenditure by the Flex 

HR method versus DL W in free-living individuals. Individual calibration curves were 

developed for 15 participants using lying, sitting, standing and cycle ergometer exercise. 

The participants then had their HR monitored for 15 days while actual energy 

expenditure was measured by DL W. Although in two-thirds of the participants, the Flex 

HR method gave an energy expenditure value within + 10% of DL W, the individual error 

ranged from -22.2% to +52. 1 %. This large range in individual scores is similar to that 

reported in other studies ( 19, 4 7, 56, 71 ). 

Another approach for the estimation of energy expenditure has been developed by 

Polar Electro, Inc. Polar Electro, Inc. is a leading manufacturer of HR monitors and their 

devices have been shown to be valid devices for the measurement of HR when compared 

to electrocardiogram (39, 46, 82). In addition, Polar has developed software (OwnCal) 

that allows an individual to estimate energy expenditure during exercise. The OwnCal 
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software uses inputted user data (gender, age, weight, physical activity status, V02max and 

HRmax) and exercise HR. In Polar watches such as the S4 10, the user has the ability to 

have the watch estimate their V02max and HR.max, or they may input their actual values if 

known. Under laboratory conditions the OwnCal software has been shown to be an 

accurate way of estimating exercise energy expenditure during various forms of activities 

(i.e. treadmill walking/running, cycling, and rowing) in males, when either the estimated 

V02max and HRmax or their actual values are input into the watch ( 16). In females, 

regardless of whether the estimated or actual V02max and HRmax are used, the estimated 

energy expenditure from the Polar watch significantly overestimates measured energy 

expenditure. In females, one problem with using the predicted V02max and HRmax is that 

the Polar watch significantly overestimates V02max by 10 mlki 1 .min· 1
• Thus, it produces 

a greater error in estimated energy expenditure when the predicted maximal values are 

used. When the actual maximal values are used, there is a significant improvement in the 

estimate of energy expenditure. In addition, even though there are significant differences 

in females, the mean estimates of energy expenditure are still acceptable giving values 

that are within± 12% of measured energy expenditure, when using the actual V02max and 

HRmax• ( 16). 

The use of HR for the estimation of energy expenditure has many advantages, it 

also has several limitations. For example, the Flex HR method is a time consuming 

method, because of the need to develop individual calibration curves for individuals. In 

addition, the method has mixed results and has not been shown to always be an accurate 

method (49, 56, 65, 77). The Polar method is only useful for HRs above 90 beasts·min· 1 

and relies on a proprietary algorithm. In addition, a major drawback to using HR is that 
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factors such as environmental temperature, stress, hydration level, mode of exercise 

(upper vs. lower body), gender, and training status can affect the estimation of energy 

expenditure. These factors make it difficult to generalize the HR-VO2 relationship 

among individuals, which warrants the need for individualized HR-VO2 regressions to be 

developed. 

Simultaneous Method: HR + Motion Sensor 

Due to the large errors in estimating energy expenditure by a single device some 

researchers have proposed combining devices such as a motion sensor and HR monitor 

for a more accurate estimate of energy expenditure (3 1, 50, 55, 65, 77). From these 

studies it appears that combining devices to estimate energy expenditure will result in a 

more accurate assessment of energy expenditure versus using a single device by itself. 

Haskell et al. (3 1) was the first to propose the simultaneous use of HR and both upper and 

lower body motion sensors to help improve the estimate of energy expenditure. They had 

participants perform activities such as treadmill walking and running (flat and up hill), 

cycling, arm cranking and stepping in the laboratory while wearing a HR monitor, and 

motion sensor on the wrist and thigh. Simultaneously energy expenditure was measured 

by indirect calorimetry. The HR-motion sensor method was highly correlated to 

measured energy expenditure (R2 = 0.89, SEE 2.3 mlkg-1 .min-1), on average. They 

concluded that the use of separate regressions for upper and lower body activity can 

improve the estimate of energy expenditure when combined with HR. 

Since Haskell et al. (3 1) most investigators have only examined the simultaneous 

method in the laboratory and have had good success. Rennie et al. ( 65) examined the 
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simultaneous method, under controlled conditions in a whole room colorimeter, using a 

new instrument (HR+M) that they developed for use in their laboratory. Their new 

device was a single instrument that was worn around the chest and recorded minute-by­

minute data for both HR and movement. Prior to starting the experiment they developed 

individualized HR-V02 curves by measuring the participants V02 in the lying and seated 

position, and then at four workloads on a cycle ergometer. They then monitored 

participants for 12-hours in a room calorimeter and during that time they had the 

participants perform stepping and cycling exercises at prescribed intervals throughout the 

time period. They found that the overall mean error of estimating total energy 

expenditure using the simultaneous method was 0.00% versus whole room calorimetry. 

In the same study, the use of the Flex HR method produced a mean error of 16.5%. A 

major limitation to this study is that the device used is not currently available; it was 

something that they designed in their laboratory. 

Brage et al. (8) has also found encouraging results using a branching equation that 

involves the simultaneous use of accelerometry and HR. They used a whole room 

calorimeter to monitor participants for 22 hours, of which 12.5 hours were spent awake. 

During this time, the participants performed cycling, walking, running, and stepping 

exercise. The participants had their V02pea1c measured using a treadmill protocol prior to 

entering the whole room calorimeter, so individualized HR-V02 regression equations 

could be developed. Additionally, an Actigraph flex point and a Flex HR were 

determined for each individual. The Actigraph flex point was determined by taking 50% 

of the mean Actigraph counts·min· 1 while walking at 3 km·hr1
• The Flex HR was 

determined by the following equation: 10 beasts·min·1 plus the average of the resting HR 
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and the mean HR at 3 knrhr1
• The individual data was also averaged together to get a 

group HR-VO2 regression curve. To estimate PAEE they used an algorithm they 

developed based on Actigraph (placed on the hip) activity counts·min-1 and HR 

(beasts·min-1 ) (figure 1). The first branch in the algorithm is determined by accelerometer 

counts·min·1 • If the counts·min·1 are less than the Actigraph flex point then the right side 

(NO) of the branch is followed. Conversely, if the counts·min· 1 is greater then the 

Actigraph flex point the left side (YES) of the branch is followed. The next step in the 

branch is determined by HR values and finally the P AEE is calculated based on a 

combination of HR and Actigraph data. They used the algorithm in figure 1 to estimate 

PAEE based on both the individual HR-VO2 relationship and the group HR-VO2 

regression equations. Using the individual HR-VO2 regressions, they found average 

estimates of PAEE of -4.4% ± 29.0%. When the group HR-VO2 regression was used, the 

average estimate of PAEE was 3.5% ± 20.1 %. Neither of these two methods was 

significantly different from that measured by the whole room calorimeter. While this 

study is promising, the method requires individualized HR-VO2 regression equations to 

be developed for each individual, as well as a time consuming data analysis to determine 

energy expenditure. 

While there have been several laboratory experiments involving the use of the 

simultaneous method few have examined its use in a field setting. Strath et al. (76) 

examined the accuracy of the simultaneous method (HR+ motion sensor), an Actigraph 

accelerometer, HR, and a Yamax SW-70 1 pedometer to estimate energy expenditure for 

14 different activities such as vacuuming, house cleaning, walking, pushing a 

lawnmower, raking leaves, and stair climbing. While performing the activities an 
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NO 
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NO 
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Box 3: 
P3 %HR-PAl +{l·P3) 

%ACC-PAI 

NO 

Box 4: 
P4 %HR-PAI + (1-P4) 

%ACC-PAI 

Figure 1 .  Equation structure for the combination of accelerometry (ACC) and 
heart rate (HR). All HR values are absolute HR minus resting HR (RHR). All physical 
activity intensity (PAI) relationships are determined by calibration. Therefore, this study 
has 2 equation complexes, depending on whether individual or group calibration is used. 
The equation complexes translate minute-by-minute data into PAI as follows. If 
Computer Science and Applications (CSA) value is above x, we use box 1 (with P1) if the 
HR value is above y; otherwise we use box 2 (with P2). Similarly, if the CSA value is $X, 
we use box 3 (with P3) if the HR value is above z; otherwise we use box 4 (with P4). 
Physical activity energy expenditure (P AEE) is obtained by integrating PAI with respect 
to time. The parameters x, Y1-2, z1.2, and P1-4 are either assumed a priori or can be 
estimated post hoc by simulation of all possible models, while the standard error between 
predicted and measured P AEE is minimized. Reprinted from Brage et al (8). 
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n, . 

Actigraph accelerometer and Yamax SW-701 pedometer were worn on the hip, a Polar 

Vantage XL HR monitor was used to collect minute-by-minute HR data and two 

additional Actigraph accelerometers were worn on the wrist and thigh, which were used 

in conjunction with HR data for the simultaneous method. Each activity was performed 

for 15 minutes and actual energy expenditure was measured with a Cosmed K4b2 

portable metabolic system. Prior to performing the activities, the participants performed 

submaximal tests using a treadmill and arm ergometer so individualized HR-VO2 

regression curves could be developed for both leg and arm activity. HR data were used 

to predict METs based on the individualized HR-VO2 regression curves obtained from 

the treadmill test. Data from the motion sensors were used to determine if the activity 

was performed using arms or legs. To do this, a ratio of the wrist and leg Actigraph 

counts were taken and if the wrist to leg ratio was greater than 25 if was determined to be 

arm activity, while if the ratio was less than 25 if was determined to be leg activity. The 

measured HR was then applied to the specific HR-VO2 regression line based on the ratio 

and a MET value was determined for the activity. For each activity an error score was 

developed ( criterion minus device). The mean of the error scores for each device were 

then used for the analysis. Overall, the simultaneous method was the most accurate and 

had an R2 of0.8 1 with the Cosmed K4b2
• The mean estimates for 13 of 14 activities 

were within 0.3 METs of measured METs. Lawn mowing was off by 0.7 METs. 

In a follow-up study, Strath et al. (77) examined the use of the simultaneous 

method over a 6-hour period in free-living participants. The simultaneous HR and 

motion sensor method was compared to actual energy expenditure measured by a 

Cosmed K4b2 portable metabolic system. The methods used were similar to their 
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previous study (76). Participants wore an Actigraph accelerometers and HR monitor for 

a 6-hour period, while minute-by-minute VO2 was continuously measured. Overall, the 

mean total energy expenditure values for the 6-hr period estimated by the simultaneous 

method (748 ± 178 METmin- 1 ) were not different from the measured values from the 

Cosmed (749 ± 138 METmin- 1). A drawback to the simultaneous method of Strath et al. 

(76) is that individual HR-VO2 regressions need to be developed for both arm and leg 

activity which is very time consuming and also requires the participants to perform 

submaximal testing prior to the measurement period. In addition, the participants must 

wear a HR strap the entire time, which can become irritating to the skin and 

uncomfortable. Lastly, the data analysis is time consuming and requires a large database 

due to the amount of data collected. 

Ac ti heart 

The Actiheart (Minimitter, Suriver, OR) is a relatively new device that combines 

HR and a movement sensor into a single unit that weighs 10 grams. The device is 

attached to the chest using ECG electrodes. The main sensor (3 .3 cm in diameter) 

attaches to the sternum and it contains the movement sensor, rechargeable battery, a 

memory chip, and other electronics. The smaller sensor (5 x 11 x 22 mm) attaches to the 

midclavicular line, and is connected to the main sensor by a thin wire 100 mm long. The 

Actiheart can measure acceleration, HR, HR variability, and ECG amplitude. Epoch 

lengths of 15, 30, or 60 seconds can be chosen to store data and approximately 14 days of 

data can be stored with a one minute epoch. The Actiheart uses a piezo-electric 

accelerometer with a frequency range of 1-7 Hz, and a dynamic range of± 2. 5 Gs. The 
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Actiheart ECG measures in a range of 35 to 255 beats·min·1 with a sampling frequency of 

128 Hz. To date there is only one published study on the reliability and validity of the 

Actiheart (7). 

Brage et al. (7) examined eight Actiheart units for technical reliability and validity 

as well as assessed the accuracy of the device to detect walking and running. In the first 

part of the study, eight Actiheart accelerometers were tested during a controlled 

mechanical setting. The devices were set to record in 15 second epochs under different 

controlled conditions (36 different accelerations ranging from 0. 1 to 19.7 m·s-2). Each 

frequency was recorded for 2 minutes. At accelerations above 0. 7 m·s·2 the reliability of 

the instrument was good with a coefficient of variation (CV) between trials of 0.0% (0-

1 1%), whereas below this point there was considerably more variability (18% (0-245%)). 

Between instruments CV below 0.5 m·s·2 were 89% (40--167%), from 0.5 to 1.0 m·s·2 it 

was 25% (17-33%), and above 1.0 m·s·2 the CV was 5.3% (4-14%). Although there is a 

large variability at lower accelerations, these are probably a small source of error due to 

human movement being above these values. 

In the second part of the study by Brage et al. (7) the Actiheart units were then 

compared against ECG and a Polar S6 10 heart rate monitor during treadmill exercise in 

nine participants. They examined the units for intra- and inter-instrumental reliability for 

the HR sensor. Again 15 second epochs were used to record simulated HRs with 

frequencies of 25, 30, 33, 50, 100, 150, 200, and 250 beats·min·1 • Each frequency was 

recorded for 2 minutes. The treadmill exercise consisted of 4 minutes of rest, then 4 

minutes of walking at 3 .2, 4.5, and 5.8 km·hf 1
, then 4 minutes of running at 8.5, 10.3, and 

12. 1 km·hr-1 • The Actiheart did not detect HRs below 25 beats·min·1
, but was within 1 
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beats·min·1 at HRs between 30 and 250 beats·min· 1 • In addition, there was less than a 1 

beats·min·1 difference between the ECG, Actiheart, and Polar S6 10 HR monitor during 

the treadmill walking. 

The third part of the study by Brage et al. (7) was designed to develop prediction 

equations to predict physical activity intensity (PAI) during treadmill walking and 

running. Twenty participants performed treadmill exercise as previously described. 

During the treadmill exercise indirect calorimeter (Cosmed K4b2) was used to measure 

energy expenditure and the Actiheart was set to store data in 15 second epochs. The 

participants then wore the Actiheart for one night to obtain a sleeping HR measurement. 

Lastly, they performed a 10 minute step test which consisted of stepping up and down on 

a 215 mm step, starting at 0.25 Hz in minute one and increasing to 0.625 Hz in minute 

10. The Actiheart counts·min· 1 increased with treadmill speed, but not in a linear manner. 

The slope of the walking activities was approximately 10 times greater than the slope of 

the running speeds, indicating that there may be an attenuation in counts·min·1 at higher 

speeds as is seen with other accelerometer devices. The prediction equations developed 

included models for movement counts only (R2 = 0.842, P < 0.001), HR above sleeping 

HR (HRaS) (R2 = 0.903, P < 0.00 1), Movement plus HRaS (R2 = 0.942, P < 0.00 1), 

HRaS with the step test (R2 = 0.937, P < 0.001), and movement plus HRaS with step test 

(R2 = 0.956, P < 0.001). The combined model using movement plus HRaS with step test 

was significantly more accurate than any other model (P < 0.05). In addition, when 

absolute HR was substituted for the HRaS there was a significant decrease in the 

accuracy of the model (P = 0.01 1). While this is only the first study to examine the 
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Actiheart, it appears to have promise as a potential device to monitor free-living physical 

activity. 
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VALIDITY OF 10 ELECTRONIC PEDOMETERS FOR MEASURING 
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This part is a paper by the same name published in Medicine and Science in 
Sports and Exercise in 2003 by Scott E. Crouter, Patrick L. Schneider, Murat Karbulut, 
and David R. Bassett, Jr. 

Crouter, S. E., P. L. Schneider, M. Karabulut, and D. R. Bassett, Jr. Validity of 
ten electronic pedometers for measuring steps, distance, and energy cost. Med. Sci. 
Sports Exerc. , Vol. 35, No. 8, pp. 1455-1460, 2003 . 

Abstract 

Purpose: This study examined the effects of walking speed on the accuracy and 

reliability of ten pedometers: Yamasa Skeletone (SK), Sportline 330 (SL330) and 345 

(SL345), Omron (OM), Yamax Digi-Walker SW-70 1 (DW), Kenz Lifecorder (KZ), New 

Lifestyles 2000 (NL), Oregon Scientific (OR), Freestyle Pacer Pro (FR), and Walk4Life 

LS 2525 (WL). Methods: Ten subjects (33 ±12 yrs) walked on a treadmill at various 

speeds (54, 67, 80, 94, and 107 m·min- 1 ) for five-minute stages. Simultaneously, an 

investigator determined steps by a hand counter, and energy expenditure (kcal) by 

indirect calorimetry. Each brand was measured on the right and left side. Results: 

Correlation coefficients between right and left sides exceeded 0.8 1 for all pedometers 

except OR (0. 76) and SL345 (0.57). Most pedometers underestimated steps at 54 m·min· 

1 , but accuracy for step counting improved at faster speeds. At 80 m·min-1 and above, six 

models (SK, OM, DW, KZ, NL and WL) gave mean values that were within ± 1 % of 

actual steps. Six pedometers displayed the distance traveled. Most of them estimated 

mean distance to within ± 10% at 80 m·min·1 , but overestimated distance at slower speeds 

and underestimated distance at faster speeds. Eight pedometers displayed kcals, but 

except for KZ and NL it is unclear whether this should reflect net or gross kcals. If one 

assumes they display net kcals, the general trend was an overestimation of kcals at every 
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speed. If one assumes they display gross kcals, then seven of the eight pedometers were 

accurate to within ± 30% at all speeds. Conclusion: In general, pedometers are most 

accurate for assessing steps, less accurate for assessing distance, and even less accurate 

for assessing kcals. Key Words: ENERGY EXPENDITURE, PHYSICAL ACTIVITY, 

LOCOMOTION, AND EXERCISE 

Introduction 

The electronic pedometer is a simple device that can be used to assess physical 

activity. In recent years a wide variety of new electronic pedometers have been 

introduced, which makes it necessary to test these new devices for accuracy and 

reliability. With the phasing out of older analog models, the pedometer has evolved into 

a device that can also estimate distance traveled and energy expenditure (kcal). Some 

models have internal clocks and can store information for viewing or downloading to a 

computer. Concerning principles of operation, electronic pedometers use three basic 

mechanisms for recording steps. The original and most basic is a spring-suspended 

horizontal lever arm that moves up and down in response to vertical displacement of the 

waist. The lever arm opens and closes an electrical circuit with each step and the number 

of steps are counted (e.g. Yamax Digiwalker SW-701 and Sportline 345). Some newer 

models have incorporated a glass-enclosed magnetic reed proximity switch ( e.g. Omron 

and Oregon Scientific). The third type has an accelerometer consisting of a horizontal 

beam and a piezoelectric crystal ( e.g. New Lifestyles and Lifecorder); steps are 

determined from the number of zero-crossings of the instantaneous acceleration vs. time 

curve. 
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In 1996 Bassett et al. (1) assessed the accuracy of five electronic pedometers. To 

date it is the only multi-brand comparison study of electronic pedometers and none of the 

pedometers they examined are currently available. Bassett et al. found that at a walking 

speed of 2.0 mph, pedometers underestimated steps by 50-75% but they became more 

accurate as the walking speed increased. At self-selected walking speeds of 80 - 107 

m·min- 1
, the Yamax Digiwalker DW-500 recorded average values for steps and distance 

that were within 1 % of actual. Nelson et al. (9) looked at the validity of the Yamax 

Digiwalker DW-500 in reporting gross kcal. Nelson et al. showed that at walking speeds 

of 3 to 4 mph on the treadmill, it provided valid results, but it significantly 

underestimates gross kcals at 2 mph and below. However, it is possible that the kcal 

values displayed by pedometers are supposed to reflect net kcal (i.e. - physical activity 

energy expenditure, above resting). 

In recent years, new recommendations have been issued concerning the amount of 

physical activity that one should perform on a regular basis. The current 

recommendation from the U.S. Surgeon General is to accumulate at least 30 minutes of 

moderate-intensity physical activity on most days of the week (16). This is also 

supported by the Centers for Disease Control and Prevention and the American College 

of Sports Medicine, which notes that the recommendation can be met by walking 2 miles 

briskly (10). Studies have shown that 30 minutes of brisk walking is equal to 3, 100 -

4000 steps, depending on the age of the population (13, 17, 19), which allows one to 

quantify a time recommendation in terms of steps taken. Others recommend a different 

approach to daily physical activity. Hatano advocates taking a total of 10,000 steps per 

day for cardiovascular disease prevention (7). At the University of Colorado Health 
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Sciences Center, Hill has developed a program called "Colorado On The Move" and 

recommends a 2,000-step increase above one's normal step count for prevention of 

weight gain (8). 

Taking into consideration these pedometer recommendations, the increasing use 

of pedometers in intervention studies, and their potential for surveillance of physical 

activity, it is important to have valid devices for measurement. Therefore, the purpose of 

this study was to examine the accuracy and reliability of 10 electronic pedometers for 

measuring steps taken, distance traveled, and kcals at various treadmill walking speeds. 

Methods 

Subjects 

Five males and five females from the University of Tennessee volunteered to 

participate in the study. The average (± SD) age and body mass index (BMI) was 33 ± 

12 years and 25.7 ± 6.3, respectively. The testing protocol was approved by the 

University of Tennessee Institutional Review Board prior to the start. Written informed 

consent was obtained from all subjects prior to testing. Age was recorded, and height and 

weight were measured in street clothes (without shoes) with a stadiometer and calibrated 

physician's scale, respectively. Stride length was measured by having the subjects take 

20 strides down an indoor hallway at their normal walking speed. The total distance was 

divided by 20 to compute stride length. This was repeated three times and an average 

was programmed into the pedometers. Descriptive data of the subjects is presented in 

Table 1. 

70 



Table 1. Physical characteristics of subjects (mean ± SD). 

Men Women 
(N= S) (N= S) 

Age (yr) 34 ± 13 3 1  ± 13 
Height (cm) 180.9 ± 4.2 162.8 ± 7.3 
Weight (kg) 84. 7 ± 32.6 68. 1 ± 10.6 
BMI (kg·m-2) 25.7 ± 8.8 25.7 ± 3.2 
Stride Length (m) 0.8 1 ± 0.07 0. 78 ± 0.08 
RMR (kcals·day-1)* 2080 ± 502 1659 ± 307 

* RMR measured by indirect calorimetry. 

Protocol 

All Subjects 
(N= 10) 
32 ± 12 

17 1.9 ± 1 1.08 
76.4 ± 24.49 
25.7 ± 6.25 
0.80 ± 0.07 
1869 ± 45 1 

Ten pedometers were examined to determine the effects of walking speed on steps 

taken, distance traveled, and energy expenditure (kcal): Yamasa Skeletone EM- 180 (SK), 

Sportline 330 (SL330) and 345 (SL345), Omron HJ-105 (OM), Yamax 

Digi-Walker SW-70 1 (DW), New Lifestyles NL-2000 (NL), Kenz Lifecorder (KZ), 

Oregon Scientific PE3 16CA (OR), Freestyle Pacer Pro (FR), and Walk4Life LS 2525 

(WL ). Prior to the first trial the subjects received instructions for walking on the 

treadmill and were allowed time to adapt to walking at the various speeds. The subjects 

walked at speeds of 54, 67, 80, 94, and 107 m·min·1 on a motor driven treadmill (Quinton 

model Q55XT, Seattle, WA). The treadmill speed and grade were calibrated prior to 

testing according to the manufacturer's instructions. Energy expenditure was measured 

by indirect calorimetry for all trials, except for devices that were solely step counters (SK 

and SL330). Measurements were made using a TrueMax 2400 computerized metabolic 

system (ParvoMedics, Salt Lake City, UT), which has been validated against the Douglas 

Bag method in our laboratory (3). Prior to each test, the 02 and CO2 analyzers were 
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calibrated using gases of known concentrations, and the flowmeter was calibrated using a 

3.00 L syringe. 

One electronic pedometer of each brand was worn on the right and left sides of 

the body, in the midline of the thigh. For the electronic pedometers that had a variable 

sensitivity switch (OR, OM), it was placed in the middle setting. Each trial consisted of 

five minutes of walking at the given speed to allow the subject to reach steady state. An 

average of the last two minutes were used for calculation of actual gross kcals. An 

investigator tallied actual steps with a hand counter. Between trials the subject stepped 

off the treadmill for one minute so that values from the electronic pedometers could be 

recorded. 

Resting metabolic rate (RMR) was measured by a TrueMax 2400 metabolic 

system. The subjects came in early in the morning after an overnight fast, with the 

exception of water. They were also asked to refrain from the use of stimulants 

(including caffeine, tobacco, and medication) and intense physical activity. Once the 

subject arrived they were allowed to relax in a reclining position while the test was 

explained. Gas exchange measurements were made for 40 minutes. The first 20-minute 

period allowed the individual to return to resting levels and adapt to the mouthpiece, and 

the second 20 minute-period was used for the determination of RMR. The measured 

RMR was then subtracted from the measured gross kcal, during treadmill walking, to 

obtain net kcal. 

72 



Statistical Treatment 

Statistical analyses were carried out using SPSS version 11.0.1 for windows 

(SPSS Inc., Chicago, IL). Initially, 2-way repeated measures ANOV As (side of body x 

speed) were carried out on each pedometer brand, but since the results showed no effects 

of placement site (L vs. R), the two sides were averaged. Intraclass correlation 

coefficients were used to report comparison between right and left side measures of the 

same electronic pedometer. Subsequently, 2-way ANOV As (speed x pedometer brand) 

were used to compare mean difference scores (pedometer minus actual) for steps taken, 

distance traveled, and net and gross kcals. An alpha of P < 0.05 was used to denote 

statistical significance. Although mean difference scores were used for statistical 

analysis, they do not give a good representation of how accurate the pedometer is when 

presented in a graph, since the total amount of steps are not known. Therefore, all graphs 

are presented with percent difference scores, which allow for easier illustration of how 

accurate the pedometers were. 

Results 

All trials were completed without problems, except that one of the NL pedometers 

had to be replaced by a new device because of a broken mechanism. Correlation 

coefficients between the right and left sides exceeded 0.81 for all pedometers except OR 

(0. 76) and SL345 (0.57) (Table 2). 

Table 3 shows significant differences from actual steps and figure 1 shows 

percentage of actual steps at each speed. In general pedometers tended to underestimate 

actual steps at 54 and 67 m·min- 1
• Several pedometers were accurate at speeds of 80 
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Table 2. Intraclass correlation coefficients for pedometers worn on the right and left sides 

of the body. 

Pedometer ICC 
(95% CI) 

SL330 0.91 
(0.85, 0.95) 

SK 0.83 
(0.89, 0.96) 

OM 0.83 
(0.71, 0.90) 

DW 0.98 
(0.94, 0.98) 

KZ · 0.94 
(0.90, 0.97) 

NL 0.99 
(o.is, o.99) 

OR 0-:76 
(0.61, 0.86) . 

SL345 0.57 
(0.35, 0. 73) 

FR 0.95 
(0.92, 0.97) 

WL 0.81 
(0.682 0.89) 
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Table 3. Pedometer accuracy for measuring steps during horizontal treadmill walking at 
five different speeds. 

Speed 
(m·min-1) SL330 SK OM DW KZ 

54 
67 
80 
94 

NL 

+ 

+ 

OR SL345 FR 
+ 

+ 

+ 

+ 

107 + + + + + 
(+) Significant overestimation of actual steps (P < 0.05) 
(-) Significant underestimation of actual steps (P < 0.05) 

. .  · 

75 

WL 

+ 

+ 



0 
� 

1300/o 

1200/o 

1 100/o 

100% 

90% 

-a- SL 330 
--1'r- SK 

80% -�- OM 

--<>- DW 
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--1:s:-- NL 

700/o -+- OR 
----- SL 345 

-.- FR 

--cr- WL 
60% _L__�---- --------==��=====��::::::'._ __ _ 

54 67 80 
Speed (nv'min) 

94 107 

Figure 1 .  Effect of speed on pedometer accuracy (percentage of actual steps) during 
treadmill walking. 
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m·min·1 and above, with six models (SK, OM, DW, NL, KZ and WL) providing mean 

values that were within ± 1 % of actual steps. Only one pedometer (DW) did not 

significantly differ from actual steps at any speed (P � 0.05), while the OR was 

significantly different from actual steps at all speeds (P < 0.05). 

Six pedometers displayed the distance traveled (OM, DW, OR, SL345, FR, WL). 

Table 4 shows significant differences from actual steps and figure 2 shows percentage of 

actual distance traveled at each speed. In general, the pedometers tended to overestimate 

distance traveled at slower speeds and underestimate distance traveled at higher speeds, 

with 80 m·min· 1 being the most accurate speed for most pedometers. All electronic 

pedometers were significantly different (P < 0.05) for at least two speeds, except for FR, 

which was significantly different (P < 0.05) at only one speed (107 m·min- 1
). 

Eight pedometers displayed estimates of energy expenditure (OM, DW, NL, KZ, 

OR, SL345, FR, WL). With the exception ofNL and KZ it is unclear if they are 

displaying net or gross kcals. New Lifestyles NL-2000 and KZ estimate gross kcals by 

taking into account the subject's RMR (based on input of age, gender, weight, and 

height). Table 5 shows significant differences from actual gross and net kcals. Figure 3 

shows the percent difference from actual gross kcals at all speeds and figure 4 shows the 

percent difference from actual net kcals at all speeds. Only one electronic pedometer 

(FR) was not significantly different (P � 0.05) from gross kcals at any speed. For net 

kcals all electronic pedometers were significantly different (P < 0.05) for at least four 

speeds, except for KZ, which was significantly different (P < 0.05) at only one speed (94 

m·min-1). 
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Table 4. Pedometer accuracy for measuring distance traveled during horizontal treadmill 
walking at five different speeds. 

Speed 
(m·min-1) 

OM DW OR SL345 
54 + + 

67 + + + 

80 + 

94 
107 

(+) Significant overestimation of actual distance traveled (P < 0.05) 
(-) Significant underestimation of actual distance traveled (P < 0.05) 
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Figure 2. Effect of speed on pedometer estimates of percentage of actual distance traveled 
during treadmill walking. 

79 



Table 5. Pedometer accuracy for measuring gross and net kcals during horizontal 
treadmill walking at five different speeds. 

Gross kcals 
Speed 

(m·min-1) OM DW KZ NL OR SL345 FR WL 
54 + + + 

67 + + + 

80 + + + + + 

94 + + + + 

107 + + 

Net kcals 
Speed 

(m·min-1) OM DW KZ NL OR SL345 FR WL 
54 + + + + + 

67 + + + + + + + 
80 + + + + + + + 

94 + + + + + + + + 

107 + + + + + 

( +) Significant overestimation of actual gross or net kcals (P < 0.05) 
(-) Significant underestimation of actual gross or net kcals (P < 0.05) 
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Figure 3. Effects of speed on pedometer estimates of percent of actual gross kcals, during 
treadmill walking. 
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Figure 4. Effects of walking speed on pedometer estimates of percentage of actual net 
kcals, during treadmill walking. 

82 



Discussion 
The use of pedometers in both research and practice is rapidly growing, as these 

devices provide an inexpensive, objective means of assessing physical activity, and they 

are generally believed to be accurate and reliable. Researchers usually prefer to express 

pedometer data as "steps", since that is the most direct expression of what the pedometer 

measures (11, 14, 15). Six pedometers (SK, OM, DW, NL, KZ, WL) out of the ten gave 

mean values that were within ± 1 % of actual values at speeds of 80 m·min- 1 and above. 

The Japanese Industrial standards have set the maximum permissible error of 

miscounting steps at 3%, or 3 steps out of 100 (6). It is interesting that all five of the 

pedometers made by Japanese companies met this recommendation, while only one of 

the non-Japanese pedometers (WL, made in Taiwan) was as accurate. 

At slower speeds, the pedometers were not as accurate in step counting. This 

results from the fact that vertical accelerations of the waist are less pronounced at slow 

walking speeds, so it is less likely that the threshold value to record a step (e.g.- 0.35 G 

for DW) will be exceeded. Four pedometers (WL, KZ, NL, DW) showed acceptable 

accuracy at speeds 54 m·min·1 (or 2 mph), indicating that these pedometers are a good 

choice for use in research studies. However, it should be noted that in the frail elderly or 

others with a slow, shuffling gait, even these brands of pedometers are probably 

inadequate to obtain a true assessment of walking (4, 13, 18). 

Most pedometers were fairly accurate for measuring distance at a speed of 80 

m·min- 1 , providing mean estimates that were within ± 10% of the actual values. The 

stride length that was programmed into the pedometer was determined at self-selected 

walking speeds, which approximate 84 m·min· 1 in healthy adults (12). At slower speeds, 
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the actual stride length was shorter than the value programmed into the pedometer, 

causing an overestimation of distance. At faster speeds, the actual stride length was 

longer than the programmed value, causing the distance to be underestimated. 

The distance traveled was not only affected by stride length, but also by the 

sensitivity of the pedometers ( and accuracy in counting steps). Two of the pedometers 

FR and SL345 appeared to be the most accurate for measuring distance at slower speeds 

( < 80 m·min · 1 ), but when other factors are taken into consideration it can be seen that they 

grossly undercounted steps. This is a case of "compensating errors" where 

overestimation of stride length and underestimation of steps offset each other, and make 

these two models appear accurate for assessing distance. 

In most cases, it is not clear whether pedometers measure gross kcals or net kcals. 

Previous investigators have reached different conclusions on what the measured kcal 

value given by the pedometer actually represents. Nelson et al . (9) assumed that the 

values displayed by the Y amax Digiwalker 500 were gross kcals, and found that at 

normal walking speeds (80- 1 07 m·min ·1
) it gave a close estimate of gross kcals. Bassett 

et al . (2), in a study of lifestyle activities (yard work, housework, childcare, occupational 

tasks, recreation) assumed that they displayed net kcals (above RMR), and found that at 

walking speeds between 78- 1 00 m·min· 1 the Yamax SW-70 1 overestimates net kcals. 

During most other lifestyle activities however, they saw an underestimation of net kcals. 

In looking at the kcal data from the present study, it appears that it should be assumed 

that electronic pedometers are estimating gross kcals if the activity mode is walking. 

This invariably means that pedometers will underestimate the cost of most other types of 

"lifestyle" activities, especially those involving arm activity, pushing or carrying objects, 
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walking uphill, or stair climbing. This is a limitation when attempting to use pedometers 

to quantify daily physical activity energy expenditure (PAEE) (2). Nevertheless, 

pedometers are useful in that they provide a valid, reliable measure of ambulatory 

activity, which is one of the most prevalent forms of activity in today's society (5, 14). 

We believe that expressing pedometer data as "steps·day- 1 " provides an extremely useful 

index of an individual 's overall ambulatory activity level. Expressing the data in this 

manner eliminates the need to make adjustments for height or body weight when 

comparing individuals, which is advantageous. 

The NL and KZ provide estimates of both net and gross kcal, made possible 

because they predict the user's RMR based on age, height, weight, and gender. It should 

be noted that while these devices can be called "pedometers" because they measure steps, 

they are actually accelerometers in terms of principles of operation. Thus, activity 

energy expenditure is computed by integrating the acceleration vs. time curve, and 

activities like jogging (where there is a greater amplitude of the acceleration curve) will 

be credited with more kcal'step-1 than activities like walking. These two models are also 

unique in that they have internal memory chips that allow them to store data. The NL 

can store up to 7 days of data, while the KZ can store up to 42 days of data in 1-day 

epochs. This data storage feature may be useful for researchers who do not wish to rely 

on subjects "logging" their own steps. 

Overall, it appears that DW is the most accurate at predicting steps, distance, and 

gross kcals for walking. The WL is close in terms of accuracy, although the reliability 

coefficient was only 0.84. The NL and KZ do not have the ability to measure distance, 

but they were among the most accurate at measuring steps. In addition they have the 
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ability to: (a) store multiple days of data; (b) distinguish between the kcals expended per 

step in walking and running; and ( c) provide rough estimates of net and gross energy 

expenditure. The KZ can store 42 days of data, which can be downloaded to a computer 

for subsequent analysis. The drawback to KZ is that it has a higher cost, around $200, 

plus $250 for the computer interface and software. 

In conclusion it is not our intention to endorse any one pedometer for all 

purposes. Our objective is to make researchers aware of the validity of these devices and 

allow them to make the judgment of which pedometer to use. Whether the objective 

outcome is steps, distance, or kcals, consideration should be given as to which variable is 

the most important when determining which electronic pedometer to use. 

Acknowledgements 

The authors would like to thank Cary Springer (UTK Statistical Consulting 

Services) for performing the statistical analyses. No financial support was received from 

any of the pedometer companies, importers, or retailers. The results of the present study 

do not constitute endorsement of the products by the authors or ACSM. 

86 



References 

1. Bassett, D. R., Jr., B. E. Ainsworth, S. R. Leggett, C. A. Mathien, J. A. Main, D. 

C. Hunter, et al. Accuracy of five electronic pedometers for measuring distance 

walked. Med Sci. Sports Exerc. 28: 1071-1077, 1996. 

2. Bassett, D. R., Jr., B. E. Ainsworth, A. M. Swartz, S. J. Strath, W. L. O'Brien, and 

G. A. King. Validity of four motion sensors in measuring moderate intensity 

physical activity. Med Sci. Sports Exerc. 32:S471-480, 2000. 

3. Bassett, D. R., Jr., E. T. Howley, D. L. Thompson, G. A. King, S. J. Strath, J. E. 

McLaughlin, et al. Validity of inspiratory and expiratory methods of measuring 

gas exchange with a computerized system. J. Appl. Physiol. 91:218-224, 2001. 

4. Bassett, D. R. and S. J. Strath. Use of pedometers to assess physical activity. In: 

Physical Activity Assessment for Health-Related Research. G. J. Welk (Ed.) 

Champaign, IL: Human Kinetics, 2002, pp. 163-177. 

5. Crespo, C. J., S. J. Keteyian, G. W. Heath, and C. T. Sempos. Leisure-time 

physical activity among US adults. Results from the Third National Health and 

Nutrition Examination Survey. Arch. Intern. Med. 156:93-98, 1996. 

6. Hatano, Y. Prevalence and use of pedometer. Res. J. Walking. 1:45-54, 1997. 

7. Hatano, Y. Use of the pedometer for promoting daily walking exercise. 

International Council on Health, Physical Education, and Recreation. 29:4-8, 

1993. 

8. Hellmich, N. Get with the 2,000-step program: walk an extra mile, shoo away 

weight gain. USA Today. Oct. 24, 2002:8D. 

87 



9. Nelson, T. E., N. Y. J. M. Leenders, and W. M. Sherman. Comparison of activity 

monitors worn during treadmill walking (abstract). Med. Sci. Sports Exerc. 

30:S l 1 ,  1 998. 

1 0. Pate, R. R., M. Pratt, S. N. Blair, and e. al. Physical activity and public health: a 

recommendation from the Centers for Disease Control and Prevention and the 

American College of Sports Medicine. JAMA. 273:402-407, 1995. 

1 1 . Rowlands, A. V., R. G. Eston, and D. K. Ingledew. Measurement of physical 

activity in children with particular reference to the use of heart rate and 

pedometry. Sports Med 24:258-272, 1997. 

12. Ternes, W. C. Cardiac Rehabilitation. In: Essentials of Cardiopulmonary Physical 

Therapy. E. A. Hillegass and H. S. Sadowsky (Eds.) Philadelphia: W. B. 

Saunders, 1994, pp. 633-676. 

13. Tudor-Locke, C., R. Jones, A. M. Myers, D. H. Paterson, and N. A. Ecclestone. 

Contribution of structured exercise class participation and informal walking for 

exercise to daily physical activity in community-dwelling older adults. Res. Q. 

Exerc. Sport. 73:350-356, 2002. 

1 4. Tudor-Locke, C. E. and A. M. Myers. Challenges and opportunities for measuring 

physical activity in sedentary adults. Sports Med. 31 :9 1 - 1 00, 2001 .  

1 5. Tudor-Locke, C. E. and A. M. Myers. Methodological Considerations for 

Researchers and Practitioners Using Pedometers to Measures Physical 

(Ambulatory) Activity. Res. Q. Exerc. Sport. 72: 1 - 12, 2001 .  

1 6. U.S. Department of Health and Human Services. Physical Activity and Health: A 

Report of the Surgeon General. Atlanta, GA: U.S. Department of Health and 

88 



Human Services, Centers for Disease Control and Prevention, National Center for 

Chronic Disease Prevention and Health Promotion, 1 996. 

1 7. Welk, G. J., J. A. Differding, R. W. Thompson, S. N. Blair, J. Dziura, and P. Hart. 

The utility of the Digi-walker step counter to assess daily physical activity 

patterns. Med. Sci. Sports Exerc. 32:S48 1 -488, 2000. 

1 8. Wilcox, S., C. E. Tudor-Locke, and B. E. Ainsworth. Physical activity patterns, 

assessment, and motivation in older adults. In: Gender, Physical Activity and 

Aging. R. J. Shepherd (Ed.) Boca Raton, FL: CRC Press, 2002, pp. 13-39. 

19. Wilde, B. E., C. L. Sidman, and C. B. Corbin. A 10,000-step count as a physical 

activity target for sedentary women. Res. Q. Exerc. Sport. 72:41 1 -414, 200 1 .  

89 



PART IV 

ACCURACY OF POLAR S410 HEART RATE MONITOR 

TO ESTIMATE ENERGY COST OF EXERCISE 

90 



This part is a paper by the same name published in Medicine and Science in 
Sports and Exercise in 2004 by Scott E. Crouter, Carrie Albright, and David R. Bassett, 
Jr. 

Crouter, S. E., C .  Albright, and D. R. Bassett, JR. Accuracy of Polar S410 Heart 
Rate Monitor to Estimate Energy Cost of Exercise. Med Sci. Sports Exerc. , Vol. 36, No. 
8, pp. 1433-1439, 2004. 

Abstract 

Purpose: The purpose of this study was to examine the accuracy of the Polar 

S410 for estimating gross energy expenditure (EE) during exercise when using both 

predicted and measured V02max and HRrnax versus indirect calorimetry (IC). Methods: 

Ten males and 10 females initially had their V02max and HRrnax predicted by the S410, 

and then performed a maximal treadmill test to determine their actual values. The 

participants then performed three submaximal exercise tests at RPE of 3, 5, and 7 on a 

treadmill, cycle, and rowing ergometer for a total of nine submaximal bouts. For all 

submaximal testing, the participant had two S410 heart rate monitors simultaneously 

collecting data: one heart rate monitor (PHRM) utilized their predicted V02rnax and 

HRrnax, and one heart rate monitor (AHRM) used their actual values. Simultaneously, EE 

was measured by IC. Results: In males, there were no differences in EE among the mean 

values for the AHRM, PHRM, and IC for any exercise mode (P � 0.05). In females, the 

PHRM significantly overestimated mean EE on the treadmill (by 2.4 kcal'min-1), cycle 

(by 2.9 kcal'min-1 ), and rower (by 1.9 kcal'min-1) (all P � 0.05). The AHRM for females 

significantly improved the estimation of mean EE for all exercise modes, but it still 

overestimated mean EE on the treadmill (by 0.6 kcal·min- 1 ) and cycle (by 1.2 kcal'min- 1) 

(P � 0.05). Conclusion: When the predicted values ofV02rnax and HRrnax are used, the 
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Polar S410 HRM provides a rough estimate of EE during running, rowing, and cycling. 

Using the actual values for VO2max and HRmax reduced the individual error scores for both 

genders, but in females the mean EE was still overestimated by 12%. Key Words: 

MAXIMAL OXYGEN UPTAKE, ENERGY EXPENDITURE, PHYSICAL ACTIVITY, 

RATING OF PERCEIVED EXERTION 

Introduction 

Heart rate (HR) monitors are a valuable tool for athletes and those who are 

interested in improving fitness. HR is often used to estimate exercise intensity or 

prescribe exercise either based on a percentage of an individual 's HRmax or HR reserve. 

Furthermore, because HR is linearly related to oxygen uptake for dynamic activities 

involving large muscle groups (6, 24), it can provide a reasonable estimate of energy 

expenditure (EE) during exercise (5, 7). This application could be useful for athletes and 

for individuals who exercise for weight control. 

HR monitoring can also be a valuable tool for researchers seeking to quantify the 

intensity of exercise bouts. The use of HR does have limitations due to influence of other 

factors that can affect exercise HR. These include stress, hydration level, environmental 

factors such as temperature and humidity, mode of exercise (upper vs lower body), 

gender, and training status. Motion sensors such as electronic pedometers and 

accelerometers are commonly used to assess PA, but they are mainly limited to 

ambulatory activities. Motion sensors have been shown to be ineffective at predicting the 

energy cost of activities such as cycling, upper-body exercise, swimming, rowing, or 

walking/running up an incline (8, 10, 12, 18, 1 9, 26). In addition, uniaxial 
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accelerometers and pedometers cannot detect increases in EE that occur at running speeds 

over 9 km:hr- 1 (3, 10). 

Polar Electro, Inc., is a leading manufacturer of HR monitors. Their instruments 

have been shown to provide valid measurements of HR when compared with 

electrocardiograms (14, 15, 27). This company has developed software that allows a user 

to estimate EE during exercise. To accomplish this, Polar developed the "Ownlndex," 

which uses nonexercise prediction equations for V02max and HRmax· The estimated EE 

during exercise is determined from the "OwnCal" software, which is based on user data 

and exercise HR. The Polar S410 HR monitor is one of the Polar watches that gives 

users the option to either predict V02max and HRmax or to program the actual, measured 

values into the watch. 

To our knowledge, no published studies have examined the accuracy of Polar HR 

monitors to predict EE during exercise. Therefore, the purpose of this study was twofold: 

1) to examine the accuracy of the Polar S410 for estimating EE during exercise using 

one's predicted V02max and HRmax, and 2) to determine whether the use of measured 

V02max and HRmax improves the accuracy of the Polar S410 for estimating EE. 

Methods 

Subjects 

Twenty active participants (10 male, 10 female) from the University of Tennessee 

volunteered to participate in the study. Inclusion criteria for the study included regular 

exercise (at least 3 dwk-1) and absence of contraindications to exercise testing. The 
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procedures were reviewed and approved by the University of Tennessee Institutional 

Review Board before the start of the study. Each participant signed a written informed 

consent and completed a Physical Activity Readiness Questionnaire (PAR-Q) before 

participating in the study. Weight and height were measured in light clothing (without 

shoes) using a calibrated physician's scale and stadiometer, respectively. 

Protocol 

Each participant performed a maximal exercise test, nine submaximal exercise 

bouts, and a resting metabolic rate (RMR) test. For all testing, participants were asked to 

refrain from physical activity 24 h before testing and to refrain from food, alcohol, and 

tobacco 3 h before the tests. 

Predicted V02max and HRmax 

The predictions of V02max and HRmax were performed according to the 

manufacturer's recommendations outlined in the Polar S410  user's manual (22). The 

Polar S4 10 devise uses a nonexercise prediction equation based on user information ( age, 

height, weight, gender, physical activity level) and resting heart rate information. The 

participants defined their physical activity level (low, middle, high, top) based on 

descriptions given by the Polar S4 10  user's guide (22). The physical activity level along 

with the participant's information was then programmed into the S4 10  HR monitor. The 

participant was allowed to relax in a reclining position for 15 min before the Polar S41 0  

predicting his/her V02max and HRmax· 
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Measurement of V02max and HRmax 

Participants performed a maximal exercise test on a motor driven treadmill 

(Quinton model Q55XT, Seattle, WA) for the purpose of measuring VO2max and HRmax· 

The treadmill speed was calibrated by measuring the belt length (3.190 m) and the time 

required to complete 25 revolutions of the treadmill belt. This was verified using a hand­

held digital tachometer (Nidec-Shimpo America Corp. Model DT-107, Itasca, IL) that 

had been calibrated to an accuracy of within ± 0.1 %. A carpenter's level was used to 

calibrate the treadmill grade to 0.0%, according to the manufacture's instructions. 

Metabolic measurements were made by indirect calorimetry (IC) using a TrueMax 2400 

computerized metabolic system (ParvoMedics, Salt Lake City, UT), which was validated 

against the Douglas bag method in our laboratory ( 1 ). Before each test, the 02 and CO2 

analyzers were calibrated using gases of known concentrations, and the flow meter was 

calibrated using a 3-L syringe. 

Before the maximal exercise test the participant warmed up on the treadmill, and 

a comfortable running speed was determined, which was used as the starting point of the 

maximal exercise test. A 5-min rest period separated the warm-up and the start of the 

maximal exercise test. During the first 2 min of the test the participant was brought back 

to the predetermined running speed and then the grade was increased 1 % per minute until 

volitional fatigue. After 3 min of recovery, a blood sample was taken from a fingertip 

and analyzed for blood lactate concentration using an automated lactate/glucose analyzer 

(YSI 2300 STAT Plus, Yellow Springs, OH). 

Maximal oxygen uptake (VO2max) was determined from the highest I -min average 

of oxygen uptake and was verified by the participant meeting three of the four following 
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criteria; 1) 3-min postexercise lactate � 8.0 mmol·L- 1
, 2) maximal HR within 10  beats per 

minute of age-predicted maximal HR (220 - age), 3) R value � 1 . 1 5, and 4) VO2 plateau 

(:s 150 mL·min- 1 increase between stages) ( 1 1). 

Submaximal exercise bouts 

To examine the accuracy of the Polar S410  to estimate EE during exercise, 

participants performed three submaximal exercise tests at various intensities on a Quinton 

Q55XT motor driven treadmill, Lode Excalibur Sport electronically braked cycle 

ergometer ( Groningen, NL), and a Concept II rowing ergometer (Morrisville, VT), for a 

total of nine submaximal exercise tests. Before the submaximal testing, one watch was 

programmed with the participant's predicted VO2max and HRmax, which hereafter is 

referred to as the predicted HR monitor (PHRM). A second watch was programmed with 

the participant's actual VO2max and HRmax, which is referred to as the actual HR monitor 

(AHRM). Each stage consisted of 10  min of exercise at self-selected work rates 

equivalent to a rating of perceived exertion (RPE) of 3 (moderate), 5 (hard), and 7 (very 

hard) (0-10 Borg Category-Ratio Scale) (2 1). The participant was instructed on 

interpretation of the RPE scale during the warm-up and worked at each RPE during the 

warm-up (20). The first 5 min of exercise at each work rate allowed for the participant to 

reach the correct RPE and to achieve a steady state. During the second 5 min, HR and 

RPE values were recorded from the PHRM and AHRM, while actual EE was measured 

by IC. Heart rate, RPE, and work rate were recorded at 1 -min intervals, and 5-min rest 

was given between each stage to allow for recovery. 
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Both the exercise mode and RPE were assigned in random order. For all 

submaximal tests the participants were blinded as to their HR. For the treadmill 

submaximal tests the grade was set at 0%, and the participant controlled the speed of the 

treadmill to reach the desired RPE. To eliminate bias of previous treadmill experience, 

participants could not see the speed they were walking/running at, and the investigator 

measured speed with a Nidec-Shimpo DT-107 handheld digital tachometer. On the cycle 

ergometer, the participant was allowed to pedal at a comfortable cadence that was 

maintained for all three RPE levels. As on the treadmill, the participant was not able to 

see the work rate, which was increased by the investigator until the desired RPE was 

reached. For the rowing ergometer, the participant maintained an average power output 

(W) that corresponded to the desired RPE. 

RMR was measured by IC using a TrueMax 2400 computerized metabolic 

syste�. The participants came in early in the morning after an overnight fast, with the 

exception of water. They were also asked to refrain from stimulants (including caffeine, 

tobacco, and medication) and intense physical activity for the 12 h before the test. Once 

the subjects arrived they were allowed to relax in a reclining position while the test was 

explained. Gas exchange measurements were taken for 40 min. The first 20-min period 

allowed the individual to return to achieve a stable baseline, and the second 20-min 

period was used for the determination of RMR. 
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Statistical Treatment 

Statistical analyses were carried out using SPSS version 1 1 .5.0 for windows 

(SPSS Inc., Chicago, IL). Initially, three-way repeated measures ANOV A (intensity x 

measurement device x gender) were carried out to compare EE values (kcal"min-1 ) for 

each exercise device. The initial results showed that there was a gender effect, so all 

further analyses were done for each gender separately. Subsequently, two-way repeated 

measures ANOV A (intensity x measurement device) were used to compare EE values 

(kcal·min-1) for PHRM, AHRM, and IC at all three RPE levels for each gender. Where 

appropriate, post hoc analyses were performed using Bonferroni corrections. An alpha of 

0.05 was used to denote statistical significance. 

Paired t-tests were performed to examine differences between predicted and 

actual VO2max and HRmax· Pearson product moment correlation coefficients were 

performed to examine the strength of the relationship between predicted and actual 

V02max• 

Bland-Altman plots were used to graphically show the variability in individual 

estimated EE values (kcal·min- 1) around zero (2). This allows for the mean error score 

and the 95% prediction interval to be shown. Devices that are accurate will display a 

tight prediction interval around zero. Data points below zero signify an overestimation, 

whereas points above zero signify an underestimation. 

Results 

Descriptive data for males and females are presented in Table 1 .  In males, the 

average gross EE values for PHRM, AHRM, and IC on the treadmill, cycle, and rowing 
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Table 1 .  Physical characteristics of participants (mean ± SD). 

Men Women 

(N = 10) (N = 10) 

Age (yr) 26 ± 3 . 1 23 ± 2.4 

Height (cm) 1 79.6 ± 4.7 167.0 ± 4.0 

Weight (kg) 83 .6 ± 2 1 .6 58.5 ± 5 .7 

BMI (kg·m-z) 25.9 ± 6. 1 2 1 .0 ± 1 .8 

Measured V02max (ml"kf1.min-1) 5 1 .0 ± 1 1 .4 42.2 ± 4.0 

Predicted V02max (ml"kg-1.min-1j 50.7 ± 1 5 . 1  53 .0 ± 7.8 

Measured HRmax (bpm) 190 ± 10.3 1 9 1  ± 6.7 

Predicted HRmax (bpm )8 192 ± 3 .3 195 ± 2.8 

Peak Lactate (mM/ 1 1 .7 ± 2.3 9.3 ± 1 .7 

a Predicted using the Polar S4 10 HR monitor. 
b Measured 3-min post maximal treadmill exercise test. 
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ergometer are shown in Figure 1 .  There were no differences in male EE values among 

PHRM, AHRM, and IC for any exercise mode (P � 0.05). Figure 2 shows the individual 

errors in estimating EE across all exercise modes. For the PHRM the mean error (IC ­

PHRM) was -0. 1 kcalmin· 1 (-4.6 to +4.3 kcalmin· 1
, 95% CI) and for the AHRM the 

mean error (IC - AHRM) was -0.5 kcalmin· 1 (-3.2 to +2. 1  kcalmin· 1
, 95% CI). 

In females, average gross EE values for PHRM, AHRM, and IC on the treadmill, 

cycle, and rowing ergometer are shown in Figure 3. The PHRM significantly 

overestimated mean EE on the treadmill (by 2.4 kcalmin·1), cycle (by 2.9 kcalmin·1), and 

rower (by 1 .9 kcalmin- 1 ) (all P < 0.05). The AHRM for females significantly improved 

the estimation of mean EE for all exercise modes, but it still overestimated mean EE on 

the treadmill (by 0.6 kcalmin- 1 ) and cycle (by 1 .2 kcalmin- 1 ) (P < 0.05). Figure 4 shows 

the individual errors in estimating EE across all exercise modes. For the PHRM, in 

females, the mean error (IC - PHRM) was -2.4 kcalmin· 1 (-5.2 to +0.4 kcalmin· 1
, 95% 

Cl). Although the AHRM still overestimated EE in females, the mean error (IC -

AHRM) was improved to -0. 7 kcalmin· 1 (-2.2 to +0.8 kcalmin· 1 , 95% CI). 

All participants achieved V02max based on the criteria used for the present study. 

For males, the mean predicted and measured V02max values were not significantly 

different (P � 0.05), but they were significantly different for females (P = 0.00 1 ). For 

males, there was a significant correlation between predicted and actual V02max (r = 0.872, 

P = 0.00 1) but not for females (r = 0.477, P � 0.05) (Fig. 5). There were no significant 

differences between predicted and measured HRmax for males or females (P � 0.05). 
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Figure 1. Male energy expenditure values at each RPE level (3,5,7) for the predicted 
heart rate monitor (PHRM), actual heart rate monitor (AHRM) and indirect calorimetry 
(IC) on the treadmill, cycle, and rowing ergometer (mean± standard error). 
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(PHRM), and (B) the heart rate monitor with the actual values (AHRM). Solid line 
represents mean difference; dashed lines represent 95% prediction intervals. 
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Discussion 

In males, there were no significant differences among the mean EE values for 

PHRM, AHRM, and IC for any exercise mode. Although the mean errors were close to 

zero, the Bland-Altman plots showed that, on an individual basis, there is considerable 

variation in the estimation of EE when using the PHRM. However, the AHRM tightened 

up the 95% prediction interval and provide a more accurate estimation of EE. 

In females, the PHRM significantly overestimated EE for all exercise modes. The 

AHRM improved the estimates of EE considerably, but there was still a small, but 

statistically significant, overestimation on the treadmill and cycle. In addition, the Bland­

Altman plots show the same finding in females as in males with a tighter scatter of error 

scores around zero when using the AHRM. 

A new finding of this study is that a simple, user-friendly device (the Polar HR 

monitor) can yield reasonable estimates of EE for exercise modes where motion sensors 

(i.e., pedometers and accelerometers) often fail. For example, Campbell et al. (4) showed 

that the Tritrac accelerometer was significantly different from IC for activities such as 

cycling, walking, jogging, and arm ergometer. For walking and jogging, the Tritrac 

overestimated EE by 30.6% (SD ± 23.4%) and 15.8% (SD ± 2.3%), respectively, whereas 

it underestimated cycling EE by 53% (SD ± 59.53%). Jakicic et al. ( 12) found a similar 

magnitude of error as Campbell et al. ( 4) during treadmill walking/running, stepping, 

cycling, and slideboard exercises. In the current study, when the actual V02max and 

HRmax were used, the Polar S4 10  had a mean error of 4% (SD ± 10%) in males, whereas 

in females the mean error was 12% (SD ± 13%). The advantage of using HR is that it is 

a physiological parameter that can detect changes in exercise intensity even when the 
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movement patterns differ greatly. Thus, the HR monitor is able to estimate EE in 

activities such as rowing and cycling, which do not elicit vertical displacement of the 

trunk, where pedometers and accelerometers would fail ( 4, 12). 

It is important to note the differences between the Polar method of estimating EE 

and the Flex HR method. The Flex HR method utilizes HR and VO2 measured at rest 

(lying, standing, sitting) and during exercise of various intensities to develop HR-VO2 

calibration curves (9). The Flex HR is defined as the average of the highest HR during 

rest and the lowest HR during light exercise. In a field setting, the assumed RMR 

(lMET} is used for any value below the Flex HR, whereas the HR-VO2 calibration curve 

is used to estimate EE for any value above the Flex HR. A drawback to this method is 

that it is time consuming to develop individual calibration curves for individuals (9). The 

present study examined planned bouts of structured exercise whereas Flex HR studies 

have used much longer time periods, ranging from 6 h (23,  25) to 3--4 d ( 17). It should 

be noted that the Polar watch can only estimate EE during exercise when the HR is � 90 

bpm or � 60% of the individual 's HR.max· Thus, the Polar watch fails to record EE data at 

rest and during light-intensity physical activity. For this reason, we considered the 

possibility that the Polar HR monitor measures net EE, but our analyses showed that it 

more closely approximates gross EE (data not shown). 

A practical application of the Polar S4 10 is that it provides reasonable estimates 

of gross EE during exercise when using an individual 's measured V02max and HRmax­

There is an emerging belief that a combination of devices may yield more accurate 

estimates of EE than any single method (9, 13). The use of a Polar HR monitor to 

capture exercise plus motion and position sensors to capture ubiquitous PA (summed 
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together) could be a good way to estimate total EE. Previously, Levine et al. (16) have 

shown that by using accelerometers and inclinometers to capture body motion and 

position, they can account for 85% of nonexercise activity thermogenesis (NEAT). 

NEAT is comprised of several components such as occupational work, walking, sitting, 

standing, and any other nonexercise movement performed throughout the day. Thus, a 

person could wear the motion and position sensors throughout the day and remove them 

and put on the HR monitor when performing structured exercise. 

The Polar S410 accurately predicted V02max in males, btit not in females. It is 

difficult to draw conclusions about this due to the small sample size, but it may be 

important in explaining some of our results. In addition, Polar uses a proprietary 

algorithm for estimating V02max, HRmax, and exercise EE. The Polar S410 significantly 

overestimated the female V02max by 10.8 ml'ki t .min- 1 , which led to a greater 

overestimation of EE than when the actual values were used. In females, but not males, 

the use of measured V02max and HRmax significantly improved the mean estimate of EE 

during exercise. Since there was no difference between the predicted and actual V02max 

in males, both watches gave similar mean values for EE. However, in both the males and 

females the use of measured V02max and HRmax provided a tighter prediction interval 

around zero, which indicates that the actual values must be programmed into the watch 

for greater accuracy. A limitation of this study is that it examined only healthy college 

aged students. Thus, the results may not be applicable to individuals who fall outside the 

age and fitness range of the participants we examined. 

In an effort to understand how the Polar S410 estimates EE, we examined the 

relationship between estimated EE and HR, when the actual V02max and HRmax were 
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programmed into the watch. Figure 6 is a representative graph for two participants ( one 

male and one female), showing that there is a strong linear relationship (r = 0.99) 

between HR and estimated EE, but it is unique to each participant. Therefore, we 

reasoned that the Polar heart watch must be taking into account the individual's HRmax 

and VO2max- Figure 7 illustrates the positive, linear relationship between the percentage 

of HRmax and the percentage of maximal energy expenditure for the same two participants 

in Figure 6. This time, the regression line was nearly identical for each participant, and it 

was similar for all participants, regardless of fitness level, gender, or other variables. 

Thus, it appears that the Polar S4 10 is using the percentage of HRmax to estimate the 

percentage of VO2max, which is then converted to caloric expenditure. 

An important consideration if using a Polar HR watch is that the "OwnCal" 

software is only available with certain Polar watches. The S-Series watches (used in the 

present study) have the capability to program in measured VO2max and HRmax· The S­

Series watches range in price from $ 179 to $400, depending on the features of the watch. 

There are two M-Series watches (M91 Ti and M6 1) that estimate exercise EE, but they 

utilize gender, body weight, and exercise heart rate. The M-Series watches range in price 

from $ 169 to $249, so at the same price the S-Series can provide additional features to 

improve the accuracy of the estimated exercise EE. 

In conclusion, when the predicted values ofVO2max and HRmax are used, the Polar 

S4 10 HRM provides a rough estimate of EE during treadmill, cycling, and rowing. For 

males, the use of predicted values resulted in a mean error of 2% (SD ± 1 8% ), whereas in 

females the mean error was 33% (SD ± 20.9). To improve on the accuracy, the actual 

measured values for VO2max and HRmax should be used. For males, this resulted in a 4% 
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error (SD ± 10%), whereas in females the mean error was improved to 12% (SD ± 1 3%). 

In addition, the Polar S4 10 has an important advantage over motion sensors in that it is 

applicable to a variety of exercise modes. 

Acknowledgements 

No financial support was received from Polar Electro Inc. for the purpose of this 

study. The results of the present study do not constitute endorsement of the products by 

the authors or ACSM. 

1 12 



References 

1 .  Bassett, D. R., Jr., E. T. Howley, D. L. Thompson, G. A. King, S. J. Strath, J. E. 

McLaughlin, et al. Validity of inspiratory and expiratory methods of measuring 

gas exchange with a computerized system. J. Appl. Physiol. 9 1  :2 1 8-224, 200 1 .  

2. Bland, J. M. and D. G. Altman. Statistical methods for assessing agreement 

between two methods of clinical measurement. Lancet. 1 :307-3 10, 1986. 

3 .  Brage, S . ,  N.  Wedderkopp, P .  W. Franks, L .  B. Andersen, and K. Froberg. 

Reexamination of validity and reliability of the CSA monitor in walking and 

running. Med. Sci. Sports Exerc. 35 : 1447- 1454, 2003 . 

4. Campbell, K. L., P. R. Crocker, and D. C. McKenzie. Field evaluation of energy 

expenditure in women using Tritrac accelerometers. Med. Sci. Sports Exerc. 

34: 1667- 1 674, 2002. 

5 .  Ceesay, S. M., A. M. Prentice, K. C. Day, P. R. Murgatroyd, G. R. Goldberg, W. 

Scott, et al. The use of heart rate monitoring in the estimation of energy 

expenditure: a validation study using indirect whole-body calorimetry. Br. J. Nutr. 

6 1 : 1 75-1 86, 1 989. 

6. Christensen, C. C., H. M. Frey, E. Foenstelien, E. Aadland, and H. E. Refsum. A 

critical evaluation of energy expenditure estimates based on individual 02 

consumption/heart rate curves and average daily heart rate. Am. J. Clin. Nutr. 

37:468-472, 1983. 

7. Eston, R. G., A. V. Rowlands, and D. K. lngledew. Validity of heart rate, 

pedometry, and accelerometry for predicting the energy cost of children's 

activities. J. Appl. Physiol. 84:362-371 ,  1998. 

1 13 



8. Fehling, P. C., D. L. Smith, S. E. Warner, and G. P. Dalsky. Comparison of 

accelerometers with oxygen consumption in older adults during exercise. Med. 

Sci. Sports Exerc. 3 1 : 1 7 1 - 1 75, 1999. 

9. Freedson, P. S. and K. Miller. Objective monitoring of physical activity using 

motion sensors and heart rate. Res. Q. Exerc. Sport. 7 1 :S2 1 -29, 2000. 

10. Haymes, E. M. and W. C. Byrnes. Walking and running energy expenditure 

estimated by Caltrac and indirect calorimetry. Med. Sci. Sports Exerc. 25 : 1 365-

1369, 1993 . 

1 1 . Howley, E. T., D. R. Bassett, Jr., and H. G. Welch. Criteria for maximal oxygen 

uptake: review and commentary. Med. Sci. Sports Exerc. 27: 1292- 130 1 ,  1995 . 

12 .  Jakicic, J. M., C. Winters, K. Lagally, J. Ho, R. J .  Robertson, and R. R. Wing. The 

accuracy of the TriTrac-R3D accelerometer t� estimate energy expenditure. Med. 

Sci. Sports Exerc. 3 1 :747-754, 1 999. 

13 .  Janz, K. F .  Use of heart rate monitors to assess physical activity. In: Physical 

Activity Assessments for Health-Related Research. G. J. Welk (Ed.) Champaign, 

IL: Human Kinetics, 2002, pp. 143- 1 6 1 .  

14. Karvonen, J., J. Chwalbinska-Moneta, and S. Saynajakangas. Comparison of heart 

rates measured by ECG and microcomputer. Physician Sportsmed. 12 :65-69, 

1984. 

1 5 . Leger, L. and M. Thivierge. Heart rate monitors : validity, stability, and 

functionality. Physician Sportsmed. 16 : 143- 1 5 1 ,  1998. 

1 14 



16 . Levine, J., E. L. Melanson, K. R. Westerterp, and J. 0. Hill. Measurement of the 

components of nonexercise activity thermogenesis. Am. J. Physiol. Endocrinol. 

Metab. 28 1:E670-675, 2001. 

17. Livingstone, M. B., A. M. Prentice, W. A. Coward, S. M. Ceesay, J. J. Strain, P. 

G. McKenna, et al. Simultaneous measurement of free-living energy expenditure 

by the doubly labeled water method and heart-rate monitoring. Am. J. C/in. Nutr. 

52:59-65, 1990. 

18 . Melanson, E. L., Jr. and P. S. Freedson. Validity of the Computer Science and 

Applications, Inc. (CSA) activity monitor. Med. Sci. Sports Exerc. 27:934-940, 

1995. 

19 . Montoye, H. J. Use of movement sensors in measuring physical activity. Sci. 

Sports. 3 :223-236, 1988 . 

20. Morgan, W. and G. Borg. Perception of effort in the prescription of physical 

activity. In: Mental Health and Emotional Aspects o/Sports. T. Nelson (Ed.) 

Chicago: American Medical Association, 1976, pp. 126-129 . 

21 .  Noble, B .  J., G. A. Borg, I .  Jacobs, R. Ceci, and P .  Kaiser. A category-ratio 

perceived exertion scale: relationship to blood and muscle lactates and heart rate. 

Med. Sci. Sports Exerc. 15 :523-528, 1983. 

22. Polar Electro. Polar S410™/S210™ heart rate monitor user 's manual. Woodbury, 

NY: Polar Elector, Inc., 2002 

23. Rennie, K., T. Rowsell, S. A. Jebb, D. Holburn, and N. J. Wareham. A combined 

heart rate and movement sensor: proof of concept and preliminary testing study. 

Eur. J. Clin. Nutr. 54:409-414, 2000. 

1 15 



24. Spurr, G. B., A. M. Prentice, P. R. Murgatroyd, G. R. Goldberg, J. C. Reina, and 

N. T. Christman. Energy expenditure from minute-by-minute heart-rate recording: 

comparison with indirect calorimetry. Am. J. Clin. Nutr. 48:552-559, 1988. 

25. Strath, S. J., D. R. Bassett, Jr., D. L. Thompson, and A. M. Swartz. Validity of the 

simultaneous heart rate-motion sensor technique for measuring energy 

expenditure. Med Sci. Sports Exerc. 34:888-894, 2002. 

26. Swan, P. D., W. C. Byrnes, and E. M. Haymes. Energy expenditure estimates of 

the Caltrac accelerometer for running, race walking, and stepping. Br. Med. J. 

31:235-239, 1997. 

27. Treiber, F. A., L. Musante, S. Hartdagan, H. Davis, M. Levy, and W. B. Strong. 

Validation of a heart rate monitor with children in laboratory and field settings. 

Med. Sci. Sports Exerc. 21:338-342, 1989. 

1 1 6 



PART V 

VALIDITY OF HEART RATE AND ACCELEROMETRY FOR THE 

MEASUREMENT OF ENERGY EXPENDITURE 

1 1 7 



Abstract 

In recent years, several new devices have been developed for the purpose of 

estimating energy expenditure (EE). It is important that the validity of these new devices 

be examined, and compared to that of existing devices. Purpose: The purpose of this 

study was to examine the validity of three new devices (Actiheart, Actical, and AMP-

331) and the Actigraph accelerometer compared to indirect calorimetery, over a wide 

range of activities. Methods : Forty-eight participants (age: 35 ± 11.4 yrs) performed 

various activities that ranged from sedentary behaviors (lying, sitting) to vigorous 

exercise. The activities were split into three routines of six activities, and each 

participant performed one routine. The participants wore four devices (Actigraph 

accelerometer, Actical, Actiheart, and AMP-331) and simultaneously, EE was measured 

with a portable metabolic system. For the Actigraph, seven previously published 

equations were used to estimate EE from the accelerometer counts. For the Actical, two 

published equations were used to estimate EE from the accelerometer counts. For the 

Actiheart, EE was estimated using the manufacturer 's heart rate (HR) algorithm, activity 

algorithm, and combined HR and activity algorithm. The AMP-331 estimated EE from 

the manufacturer's equation . Results : The Actiheart HR algorithm was not significantly 

different from measured EE for any of the 18 activities performed (P :::: 0.05), while the 

Actiheart combined HR and activity algorithm was only significantly different from 

measured EE for vacuuming and ascending/descending stairs (P < 0.05). All remaining 

prediction equations, for the devices, over- or underestimated EE for at least seven 

activities. Conclusion: The Actiheart HR algorithm was the best predictor of EE over a 

wide range of activities. The Actigraph and Actical regressions tended to overestimate 
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walking and sedentary activities and underestimate most other activities. The AMP-33 1  

gave a close estimate of EE during walking, but overestimated sedentary/light activities 

and underestimated all other activities. Key Words: MOTION SENSOR, PHYSICAL 

ACTIVITY, OXYGEN CONSUMPTION, ACCURACY 

Introduction 

The ability to accurately track energy expenditure (EE) using objective methods is 

of increasing interest. Accelerometers provide a means by which researchers can 

examine the intensity, frequency, and duration of physical activity bouts that individuals 

are performing. The Actigraph (formerly known as the Manufacturing Technology 

Incorporated (MTI) Actigraph, and the Computer Science Applications Inc. (CSA)) 

accelerometer is one of the most widely used devices and is currently being used in the 

Fourth U.S .  National Institute of Health and Nutrition Examination Survey (NHANES 

IV). In addition, there are some newer devices on the market including the Actical, 

Actiheart, and AMP-33 1  that provide information on how much physical activity 

individuals are obtaining. 

Although accelerometers are used extensively in research, they are generally 

validated in laboratory settings; this limits the generalizability of the results to free-living 

populations. For example, Leenders et al. ( 1 7) found that the Actigraph accelerometer 

(model 7 1 64) underestimated 24-hour EE by 59% compared to doubly labeled water. 

They used a regression equation relating counts·min·1 to METs developed by Freedson et 

al. ( 6) during treadmill walking and running. In general, it has been shown that the 

Freedson equation overestimates the energy cost of walking, while underestimating the 
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energy cost of most moderate-intensity lifestyle activities ( 1 ,  26). The underestimation of 

lifestyle activities is most likely due to a failure to detect the additional EE resulting from 

arm activity, uphill walking, stair climbing, lifting, and carrying objects ( 1 ). Hence 

Hendelman et al . ( 12) and Swartz et al. (25) developed regression equations relating 

counts·min- 1 from the Actigraph to METs using moderate-intensity lifestyle activities. 

These equations were developed with the intent of obtaining a more accurate estimate of 

time spent in moderate-intensity activities. However, the Hendelman and Swartz lifestyle 

regression equations are not likely to be accurate for sedentary and light activities 

because they have y-intercepts of 2.9 and 2.6 METs, respectively. 

Recently, new devices have become available for the measurement of EE. The 

Actical device (Mini Mitter, Sunriver, OR) uses a small (28 x 27 x 10  mm) 

omnidirectional accelerometer and weighs 17 grams. To date, only a few studies have 

examined the validity and reliability of the Actical ( 1 1 ,  1 5, 2 1 ,  27). Generally, it has 

been found to have a high correlation between counts·min- 1 when worn on the hip and 

measured METs during treadmill walking, running, and lifestyle activities performed in a 

laboratory (r = 0.94) ( 1 5). Another new device is the Actiheart (Mini Mitter, Sunriver, 

OR) which combines a heart rate (HR) monitor and accelerometer into a single unit that 

weighs 10  grams and is 1 88 mm in length. Brage et al. (3) found the device to give valid 

and reliable HR and accelerometer data under laboratory conditions, but no studies have 

been published that report on its accuracy in the field. 

The AMP-33 1  (Activity Monitoring Pod, Dynastream Innovations Inc., Cochrane, 

AB, Canada) is an ankle mounted activity monitor that utilizes accelerometers to estimate 

steps, distance, speed, and EE. In a recent validation study, the AMP-33 1  was found to 
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be within ± 4% of actual steps at treadmill walking speeds 54 m·min-1 and faster. 

However, it underestimated distance traveled by approximately 1 1  % at speeds of 40 

m·min· 1 and faster (14). The company's own testing found that the AMP-33 1 gave mean 

steps within 1 % of actual steps during over-ground walking on a 200 meter track at 

speeds of 44 to 120 m·min·1
, while it was within ± 3% of actual distance at the same 

speeds (7). 

With the development of new devices, it is important to validate them in a field 

setting and compare them against current devices to determine the best method of 

predicting EE. Therefore, the purpose of this study was to compare the Actical, 

Actiheart, AMP-33 1, and Actigraph against indirect calorimetry during sedentary, light, 

moderate, and vigorous intensity activities in a field setting. 

Methods 

Subjects 

Twenty-four males (Age: 36 ± 12.8 yrs, BMI: 25.7 ± 5.2 kg·m-2) and 24 females 

(Age: 35 ± 10.3 yrs, BMI: 22.7 ± 4.0 kg·m-2) from the University of Tennessee, Knoxville 

and surrounding community volunteered to participate in the study. The procedures were 

reviewed and approved by the University of Tennessee Institutional Review Board before 

the start of the study. Each participant signed a written informed consent and completed 

a Physical Activity Readiness Questionnaire (PAR-Q) before participating in the study. 

Participants were excluded from the study if they had any contraindications to exercise or 

12 1 



were not physically capable of completing the activities. The physical characteristics of 

the participants are shown in Table 1. 

Anthropometric Measurements 

Prior to testing participants had their height and weight measured (in light 

clothing, without shoes) using a stadiometer and a physician's scale, respectively. Body 

mass index (BMI) was calculated according to the formula: body mass (kg) divided by 

height squared (m2). Skinfold measurements were taken using Lange Calipers 

(Cambridge, MD) at the chest, abdomen and thigh for men and at the tricep, suprailic,. 

and thigh for women (13). 

Procedures 

Participants performed various lifestyle and sporting activities that were divided 

into three routines. 

Routine I: Lying, standing, sitting doing computer work, filing articles, walking 

up and down stairs at a self selected speed, cycling at a self selected work rate. 

Routine 2: walking at approximately 3 mph around a track, walking at 

approximately 4 mph around a track, playing one-on-one basketball, playing 

singles racquetball, running at approximately 5 mph around a track, running at 

approximately 7 mph around a track. 

Routine 3: vacuuming, sweeping and/or mopping, washing windows, washing 

dishes, lawn mowing with a push mower, raking grass and/or leaves. 
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Table 1 .  Physical characteristics of the participants (mean ± SD (range)). 

Variable 
Age (yr) 

Height (in)• 
Body Mass 

(kg)* 

All 
Male Female Participants 

(N=24) (N=24) (N=48) 
36 ± 12.8 35 ± 10.3 35 ± 1 1 .4 
(2 1 - 69) (22 - 55) (2 1 - 69) 
70.9 ± 2.8 65. 1 ± 2.3 68.0 ± 3 .8 

(62 .8 - 74.2) (60.2 - 68.5) (60.2 - 74.2) 
83 .9 ± 20.2 62.3 ± 12 .3 73 . 1  ± 19.6 

(59.4 - 141 .0) (45 .4 - 109.0) (45 .4 - 14 1 .0) 
25.8 ± 5.2 22.7 ± 4.0 24.2 ± 4.8 

( 19. 1 - 40.6) ( 17.9 - 36.4) ( 1 7.9 - 40.6) 
Restinf V02 3 .6 ± 0.8 3 .4 ± 0.8 3.5 ± 0.9 

(mlkg· ·min-1) (2 . 1  - 5.0) (2.0 - 4.9) (2.0 - 5.0) 
Sum of 3 49 .0 ± 27 .9 52.0 ± 16. 7 50.5 ± 22.5 
skinfold (16.6 - 125.5) (24.5 - 93 .7) (16.6 - 125.5) 

BMl=Body Mass Index; *Significantly different from females, P < 0.05 . 
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Twenty participants performed each routine, and most performed only one 

routine. Participants performed each activity in the routine for 10 minutes, with a 1 to 2 

minute break between each activity. Oxygen consumption (V02) was measured 

continuously by indirect calorimetry (Cosmed K4b2, Rome Italy). Participants also wore 

four motion sensors for the duration of the routine. For all devices that used body weight, 

2 kg was added to account for the added weight of the Cosmed and motion sensors. 

Routine 1 was performed in the Applied Physiology Laboratory, routine 2 was performed 

at University facilities, and routine 3 was performed at either the participant's home or 

the investigator's home. The participants who did not perform routine 1 were asked to sit 

quietly for 5 minutes before the start of the routine so that a resting V02 and HR could be· 

measured. 

Indirect Calorimetry 

The participants wore a Cosmed K4b2 portable metabolic system for the duration 

of each routine. The Cosmed K4b2 weighs approximately 1. 5 kg, including the battery, 

and a specially designed harness. The Cosmed K4b2 has been shown to be a valid device 

when compared against the Douglas Bag method during cycle ergometry ( 18). Prior to 

each test, the oxygen and carbon dioxide analyzers were calibrated according to the 

manufacturer's instructions. This consisted of performing a room air calibration and a 

reference gas calibration using 15.93% oxygen and 4.92% carbon dioxide. The turbine 

was then calibrated using a 3.00 L syringe (Hans-Rudolph). Finally, a delay calibration 

was performed to adjust for the lag time between the expiratory flow measurement and 
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the gas analysis. During each test a gel-seal was used to help prevent air leaks from the 

face mask. 

Motion Sensors 

During the routine, participants wore two waist-mounted accelerometers 

(Actigraph and Actical), an AMP-33 1  on the right ankle, and an Actiheart attached to the 

chest using ECG Electrodes. The motion sensors were positioned according to the 

manufacturer's  recommendation. Figure 1 shows the devices used for the study. All 

devices were synchronized with a digital clock prior to testing. At the conclusion of each 

test, data from each device were downloaded to a personal computer for subsequent 

analysis. 

The Actigraph (model 7 1 64) is a small (2.0 x 1 .6 x 0.6 in) and lightweight (42.5 

grams) uniaxial accelerometer that measures accelerations in the range of 0.05 to 2 G's 

with a band limited frequency of 0.25 to 2.5 Hz. These values correspond to the range at 

which most human activities are performed. An 8-bit analog-to-digital converter samples 

at a rate of 10  Hz and these values are then summed over a specified time period (epoch). 

The Actigraph data can be downloaded to a personal computer via a reader interface unit. 

The Actigraph was worn at waist level at the right anterior axillary line in a nylon pouch 

that was attached to a belt. The Actigraph was initialized using one second epochs. The 

Actigraph accelerometer was calibrated at the beginning and end of the study and each 

time was found to be within ± 3 .5% of the reference value, which is within the 

manufacturer's standards. 
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Figure 1 .  Devices used for prediction of energy expenditure. (Top) Actiheart, (bottom left to right) Actigraph, Actical, AMP-
33 1 .  



The Actical accelerometer is a small (28 x 27 x 10 mm) device that uses an 

omnidirectional accelerometer and weighs 17 grams. The Actical is sensitive to 

movements in the range of0.5 to 3 Hz. The Actical was worn at waist level in the left 

anterior axillary line, attached to a belt with velcro straps provided by the manufacturer. 

The Actical was initialized using 15-second epochs. 

The AMP-33 1 is an ankle mounted activity monitor, which uses two 

accelerometers that measure acceleration of the shank in the horizontal and vertical 

directions throughout the gait cycle. This device is able to count steps and measure stride 

length. The participant 's gender, birth date, height, and weight are programmed into the 

AMP-33 1 prior to testing. The AMP-33 1 has a digital display to allow for viewing of 

activity data during the test, or it can be downloaded to a computer for subsequent 

analysis. For all activities the AMP-33 1 was placed in a neoprene case and securely 

fastened around the right ankle with a velcro strap. The device was positioned directly 

over the Achilles tendon. The AMP-33 1 was initialized with I -minute epochs. 

The Actiheart is a relatively new device that combines HR and a movement 

sensor into a single unit that weighs 10 grams and is 188 mm in length. The device is 

attached to the chest using ECG electrodes. The main sensor (7 mm thick and has a 

diameter of 33 mm) attaches over the sternum and contains the movement sensor, 

rechargeable battery, a memory chip, and other electronics. The smaller sensor (5 x 1 1  x 

22 mm) attaches over the midclavicular line, and is connected to the main sensor by a 

thin 100 mm long wire. The Actiheart measures acceleration, HR, HR variability, and 

ECG amplitude. The Actiheart uses a piezo-electric accelerometer with a frequency 

range of 1-7 Hertz, and a dynamic range of± 2.5 Gs. The Actiheart ECG measures in a 
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range of35 to 255 bpm with a sampling frequency of 128 Hz. During all activities the 

Actiheart was attached to the chest using ECG electrodes (3M Red Dot 2271, London, 

Ontario). The Actiheart was initialized using 15 second epochs. 

Data Analysis 

Breath-by-breath data were collected by the Cosmed K4b2, and were averaged 

over a 30-second period. For each activity, VO2 (ml'min-1 ) was converted to VO2 (ml·kg-

1 .min-1 ) and then to METs by dividing by 3.5. For each activity, the MET values from 

minutes 4 to 9 ( for each device) were averaged and used in the subsequent analysis. 

The Actiheart provides minute-by-minute values for activity energy expenditure 

(AEE) (kcal'ki t .min-1 ) using a HR algorithm, activity algorithm, or a combined HR and 

activity algorithm. For the HR and combined heart rate and activity algorithms the 

individual's resting HR is needed; this was determined from the lying activity during 

routine 1, or the resting measurement before the other routines. In addition, based on the 

user information (age, height, weight, gender) put into the Actiheart software, resting 

metabolic rate is calculated using the Harris-Benedict equation (8), and is subsequently 

used to estimate AEE (i.e. net EE). Therefore, we used the Harris-Benedict equation (8) 

to estimate the resting metabolic rate per minute (kcals·min-1 ) for each participant, which 

was then divided by their body mass in kg to obtain kcal'kg-1 .min-1. This was then added 

to the AEE of the Actiheart so that gross EE could be obtained. The gross EE was then 

converted to METs (i.e. 1 kcal'ki t .hr- 1 is equal to 1 MET). 

The Actigraph accelerometer data were collected in one second epochs and were 

then converted to one minute averages using a Visual Basic program, written specifically 
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for this study. The counts·min·1 values were used in the following seven equations for the 

prediction of METs: 

(1) Net EE (kcals·min-1 ) = 0.0000191 x (counts·min- 1) x body mass in kg, 

from Actigraph manual ( 19) 

(2) Gross EE (kcals·min-1) = (0.00094 x counts·min-1 ) + (0.134 x mass in kg) -

7.37418, from Freedson et al. (6) 

(3) Gross EE (METs) = 1.439008 + (0.000795 x counts·min·1), 

from Freedson et al. (6) 

(4) Gross EE (METs) = 2.606 + (0.0006863 x counts·min·1), 

from Swartz et al. (25) 

(5) Gross EE (METs) = 1.602 + (0.000638 x counts·min-1), 

from Hendelman et al. (12) 

(6) Gross EE (METs) = 2.922 + (0.000409 x counts·min·1), 

from Hendelman et al. (12) 

(7) Gross EE (METs) = (0.00171 x counts·min-1) + (1.957 x height in cm) ­

(0.000631 x counts·min·1 x height in cm) - 1.883, 

from Heil et al. (10) 

Equation 1 provides an estimate of net EE (kcals·min-1), and thus the Harris­

Benedict equation (8) was used to estimate the each participant's resting metabolic rate 

per minute (kcals·min·1), which was divided by body mass in kg to obtain kcaI-kg-1 .min·1 • 

The net EE from equation 1 was used to compute gross EE (kcals·min-1 ), which was then 

converted to METs in the same manner as previously described. 
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Statistical Treatment 

Statistical analyses were carried out using SPSS version 13 .0 for Windows (SPSS 

Inc., Chicago, IL). For all analyses, an alpha level of 0.05 was used to indicate statistical 

significance. All values are reported as mean ± standard deviation. Independent t-tests 

were used to examine the difference between genders for anthropometric variables. One­

way repeated measures ANOV As were used to compare actual and predicted METs for 

each activity and all 18 activities combined. Pairwise comparisons with Bonferroni 

adjustments were performed to locate significant differences when necessary. 

Modified Bland-Altman Plots were used to graphically show the variability in the 

individual error scores (measured METs minus predicted METs) (2). This allowed for 

the mean error score and the 95% prediction interval to be shown. Devices that are 

accurate will display a tight prediction interval around zero. Data points below zero 

signify an overestimation, while data points above zero signify an underestimation. 

Results 

Due to errors which occurred during the downloading process, the AMP-331 data 

were missing for two participants (routine 1 and 3), Actiheart data were missing for one 

participant (routine 2), and Actigraph data were missing for one participant (routine 3). 

Table 2 shows the mean (± SD) for the Cosmed K4b2, Actical, Actiheart, and AMP for 

each of the 18 activities and for all activities combined. Table 3 shows the mean (± SD) 

for the Cosmed K4b2 and the Actigraph prediction equations. The only prediction 

method that was not significantly different from actual EE (METs) for any activity was 

the Actiheart HR algorithm (P � 0.05). The Actiheart combined HR and activity 
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Table 2. Mean (± SD) MET values for the Cosmed K4b2
, Actical, Actiheart, and AMP during various activities. 

Measured Actical Single 
METs Regression 

Lying 0.93 (0.23) · 0.97 (0.02) 

Standing 1 . 19 (0.27) 0.90 (0.OO)• 

Computer Work 1 .03 (0.21 )  0.91 (0.23) 

Filing papers 1 .58 (0.33) 0.99 (0.25t 
Ascending/Descending 
Stairs 6.44 (0.79) 4.33 (0.23)• 
Stationary Cycling (avg. 
99 watts) 6.20 (1 .58) 1 .89 (0.98)• 
Slow Walle 
(avg. 81 m·min"1 ) 3.23 (0.59) 4.34 (0.39)• 
Fast Walle 
(avg. 103 m·min"1) 3.93 (0.72) 5.22 (0.54)• 

Basketball 7.91 (1 . 10) 5.1 1 (0.38)• 

Racquetball 6.82 (1 .46) 4.33 (0.32)• 
Slow Run 
(avg. 1 59 m·min"1) 8. 10 (0.92) 8.48 (0.80) 
Fast Run 
(avg. 1 89 m·min"1) 8.82 (1 .22) 8.93 (0.96) 

Vacuum 3.54 (0.56) 2.43 (0.47)• 

Sweep/mop 3.57 (0.72) 2.35 (0.52t 

Washing windows 2.99 (0.59) 2.02 (0.55t 

Washing Dishes 2.07 (0.28) 1 .04 (0.20)• 

Lawn Mowing 6. 18  (0.84) 3.91 (0.35)• 

Raking grass/leaves 4. 10 (0.93) 3.02 (0.44)• 

Total for all activities 4.38 (2.66} 3 .41 (2.44t 
• Significantly different from Cosmed K4b2 (P < 0.05) 

Actical Double 
Regression 

0.97 (0.02) 

0.90 (0.OO)• 

0.91 (0.03) 

0.99 (0.25)• 

4.24 (0.22)• 

1 .95 ( l . 14)• 

4.29 (0.36)• 

5. 1 1  (0.53)• 

5.01 (0.37)• 

4.29 (0.28)• 

8.3 1 (0.79) 

8.75 (0.94) 

2.42 (0.48)• 

2.39 (0.59)• 

2.05 (0.59)• 

1 .04 (0.20)• 

4.20 (0.34)• 

3.36 (0.72t 

3.41 {2.39}· 

Actiheart 
Combined HR and 
motion algorithm 

0.96 (0. 10) 

1 . 1 3  (0.34) 

1 .05 (0.21 )  

1 .22 (0.33) 

4.55 (1 .38t 

4.20 (1 .86) 

2.74 (0.57) 

3.62 (0.75) 

6.96 (1 .44) 

6.30 (1 .12) 

8. 15 (0.92) 

8.99 (0.86) 

2.25 (0.41 )• 

2.79 (0.53) 

2.38 (0.56) 

2.02 (0.87) 

4.99 (1 .55) 

3.65 (1 . 1 2) 

3.79 {2.60}• 

Actiheart 
Activity Actiheart HR 

Algorithm Algorithm 

0.95 (0.09) 1 .01  (0. 14) 

0.96 (0.09) 1 .61  (0.70) 

0.96 (0.09) 1 .3 1  (0.46) 

1 .00 (0. 12)• 1 .7 1  (0.68) 

2.86 (0.90t 5.41 ( 1 .3 1 )  

1 .38 (0.32)• 5.78 (1 .76) 

2.94 (0.66) 2.53 (0.71 )  

3 .61 (0.82) 3.59 (0.95) 

3.64 (0.72)• 7.47 ( 1 .38) 

3 . 19 (0.58t 7.02 (1 .66) 

7.07 (1 .78) 8. 1 7 (1 . 1 1 )  

7.58 (2.09) 9.03 ( 1 . 1 1 )  

1 .48 (0.27)• 2.94 (0.64) 

1 .79 (0.54)• 3.59 (0.75) 

1 .52 (0.45t 3.1 8 (0.89) 

1 .05 (0. 12)• 3.09 (1 .55) 

2.66 (0. 71 )• 5.92 (1 .52) 

2. 12 (0.59)• 4.68 (1 .3 1 )  

2.61 (2.08}· 4.34 (2.64} 

AMP-33 1  

1 .50 (0.03t 

1 .5 1  (0.03t 

1 .50 (0.03)• 

1 .53 (0.08) 

2.83 (0.04t 

2.14 (0.68)• 

3.35 (0.50) 

4.60 (1 .02) 

3 . 1 1 (0. 16t 

3.00 (0.03)• 

5.17 (1 .45t 

5.72 (l .6 t )• 

2.67 (0.40)• 

2.37 (0.44)• 

l .75 (0.32t 

1 .5 1  (0.06)• 

2.87 (0.20)• 

2.53 (0.74)• 

2. 77 (1.40}• 
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Table 3 .  Mean {± SD} MET values for the Cosmed K4b2 and 7 ActigraEh Erediction eguations during various activities. 

Actigraph 
Measured Manufacture's 

METs Equation 

Lying 0.93 (0.23) 0.95 (0.09) 

Standing 1 . 19  (0.27) 0.96 (0.09) 

Computer Work 1 .03 (0.2 1) 0.95 (0.09) 

Filing papers 1 .58 (0.33) 1 .00 (0. 14)* 
Ascending 
/Descending Stairs 6.44 (0.79) 4.64 (0. 79)* 
Stationary Cycling 
( avg. 99 watts) 6.20 (1 .58) 1 .77 (0.92)* 
Slow Walk 
(avg. 8 1  m·min-1) 3.23 (0.59) 4.85 (0.78)* 
Fast Walk 
(avg. 103 m·min-1) 3.93 (0.72) 6.73 ( 1 . 18)* 

Basketball 7.91 ( 1 . 10) 7.42 (1 .36) 

Racquetball 6.82 (1 .46) 5 . 12  (1 .22)* 
Slow Run 
(avg. 159 m·min-1) 8. 10 (0.92) 10.05 ( 1 .57)* 
Fast Run 
(avg. 1 89 m·min-1) 8.82 ( 1 .22) 10.74 (2.74) 

Vacuum 3.54 (0.56) 1 .86 (0.4 1)* 

Sweep/mop 3.57 (0.72) 1 .73 (0.41)* 

Washing windows 2.99 (0.59) 1 .38 (0.3 1)* 

Washing Dishes 2.07 (0.28) 1 .05 (0. 17)* 

Lawn Mowing 6. 18  (0.84) 3 .83 (0.85)* 

Raking grass/leaves 4. 10 (0.93) 2.19 (0.53)* 

Total for all activities 4.38 (2.66) 3.77 (3.26}* 
*Significantly different from Cosmed K4b2 (P < 0.05) 

Actigraph 
Freedson Kcal 

equation 

1 .78 ( 1 .42) 

1 .77 (1 .42) 

1 .76 (1 .42) 

1 .79 ( 1 .43) 

4.35 (0.89)* 

2 .25 (1 .63)* 

4.40 (1 .05)* 

5 .76 (0.98)* 

6.28 (0.97)* 

4.66 (1 .09)* 

8.05 ( 1 . 10) 

8.68 (2.37) 

2.36 ( 1 .45) 

2.26 (1 .53) 

2.0 1 ( 1 .59) 

1 .78 (1 .59) 

3 .67 ( 1 .48)* 

2.59 ( 1 .38) 

3 .70 (2.57)* 

Actigraph 
Freedson 

MET 

eguation 

1 .44 (0.00)* 

1 .45 (0.02) 

1 .44 (0.00)* 

1 .48 (0.09) 

4.02 (0.54)* 

2.02 (0.67)* 

4. 1 5  (0.56)* 

5 .47 (0.82)* 

5 .95 (0.94)* 

3 .34 (0.85)* 

7.79 ( 1 . 1 0) 

8.27 ( 1 .91)  

2 .09 (0.30)* 

2.00 (0.29)* 

1 .75 (0.22)* 

1 .52 (0. 1 1 )* 

3.46 (0.6 1)* 

2.3 1 (0.37)* 

3 .41 (2.28)* 

Actigraph 
Swartz 

�uation 

2.6 1 (0.00)* 

2.6 1 (0.01)* 

2.6 1 (0.00)* 

2.64 (0.08)* 

4.83 (0.47)* 

3 . 10  (0.58)* 

4.95 (0.48)* 

6.08 (0.7 1)* 

6.50 (0.8 1)* 

5. 1 1  (0.73)* 

8.09 (0.95) 

8.5 1 (1 .65) 

3 . 16  (0.26) 

3 .09 (0.25) 

2.88 (0. 19) 

2.67 (0. 1  0)* 

4.35 (0.53) 

3 .36 (0.32) 

4.3 1 (1.96) 

Actigraph Actigraph 
Hendelman Hendelman Actigraph 

Walk Lifestyle Heil 
�uation �uation Equation 

1 .60 (0.00)* 2.92 (0.00)* 1 .5 1  (0.2 1)* 

1 .61  (0.0 1)* 2.93 (0.01 )* 1 .52 (0.2 1 )* 

1 .60 (0.00)* 2.92 (0.00)* 1 .5 1  (0.2 1)* 

1 .63 (0.07) 2.94 (0.04)* 1 .54 (0.24) 

3 .67 (0.43)* 4.25 (0.28)* 3 .5 1  (0.42)* 

2.06 (0.54)* 3 .22 (0.34)* 1 .94 (0.59)* 

3.78 (0.45)* 4.32 (0.29)* 3.60 (0.43)* 

4.83 (0.66)* 4.99 (0.42)* 4.62 (0.64)* 

5 .22 (0.76)* 5.24 (0.48)* 5 .02 (0.76)* 

3 .93 (0.68)* 4.42 (0.44)* 3.78 (0.72)* 

6.70 (0.88)* 6. 19 (0.56)* 6.42 (0.89)* 

7.09 (1 .53)* 6.44 (0.98)* 6.85 (1 .80)* 

2. 12  (0.24)* 3 .26 (0. 15) 2.00 (0.27)* 

2.05 (0.23)* 3.21 (0. 1 5) 1 .93 (0.30)* 

1 .85 (0. 1 8)* 3.08 (0. 1 1 )  1 .74 (0.25)* 

1 .67 (0.09)* 2.96 (0.06)* 1 .56 (0.2 1)* 

3 .23 (0.49)* 3 .96 (0.3 1 )* 3.06 (0.48)* 

2.30 (0.30)* 3 .37 (0. 19) 2. 18  (0.34)* 

3 . 18 (1 .83)• 3 .93 ( 1 . 17)* 3 .03 (1 .79)* 



algorithm only underestimated measured METs for ascending/descending stairs and 

vacuuming (P < 0.05). All the other prediction equations significantly over- or 

underestimated measured METs for at least seven different activities. 

Figures 2a and 2b show the Cosmed K4b2 MET values versus the MET prediction 

equations for the Actical, AMP, and Actiheart. In general, the Actical gave accurate 

predictions for sedentary activities and running, overestimated walking, and 

underestimated all other activities. The AMP-331 accurately estimated walking, 

overestimated sedentary activities, and underestimated all other activities. The Actiheart 

HR algorithm predicted all activities to within 1 MET. The Actiheart combined HR and 

activity algorithm underestimated moderate to vigorous intensity activities except for 

running. The Actiheart activity algorithm underestimated all activities except for 

sedentary activities. 

Figures 3a shows the Cosmed K4b2 MET values compared to the Actigraph 

regression equations developed on walking and jogging. In general, these equations 

overestimated sedentary activities and walking, and underestimated most other activities. 

Figure 3b shows the Cosmed K4b2 MET values compared to the Actigraph regression 

equations developed on lifestyle activities. Lifestyle equations overestimated walking 

and most sedentary and light activities, while underestimating the other activities. The 

manufacturer's equation responded in a similar manner to the lifestyle equations except it 

provided a closer estimate of sedentary activities and underestimated light activities. 

Figure 4 ( a-g) shows the Bland-Altman plots for the Actical single regression, 

Actiheart HR algorithm, Actiheart HR and activity algorithm, Actigraph Freedson kcal 

and MET equations, Actigraph Swartz equation, and the Actigraph Hendelman lifestyle 
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Figure 2. Measured and predicted energy expenditure for 18 different activities. (A) 
Cosmed K4b2

, Actical (single and double regression models), and AMP-331, (B) Cosmed 
K4b2

, and Actiheart (HR algorithm, activity algorithm, and combined HR and activity 
algorithm). 
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Figure 3 .  Measured and predicted energy expenditure for 18  different activities. (A) 
Cosmed K4b2, Actigraph walk/run regression equations, (B) Cosmed K4b2, and 
Actigraph lifestyle and manufacturer's regression equations. 
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Figure 4. Bland-Altman plots depicting error scores (indirect calorimetry minus 
prediction equation) for the (A) Actical single regression, (B) Actiheart combined HR 
and activity algorithm, (C) Actiheart HR algorithm, (D) Actigraph Freedson Kcal 
equations, (E) Actigraph Freedson MET equation, (F) Actigraph Swartz lifestyle 
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equation. The Bland-Altman plots for the other Actigraph equations, the Actical double 

regression, Actiheart activity algorithm, and AMP-331 are not shown due to their 

similarity with the Actical and Actigraph Bland-Altman plots already shown. 

Discussion 

The present study examined the validity of recently developed methods for 

predicting EE, based on HR, body motion, or combined approaches. Overall, the 

Actiheart, when using the HR algorithm, gave the best prediction of EE (ME Ts) and was 

not significantly different from the measured MET values for any of the 18 activities or 

for all activities combined. With the exception of the Swartz Actigraph equation, the 

other methods significantly underestimated the energy cost of the activities compared to 

indirect calorimetry. However, as can be seen in the Bland-Altman plots, the various 

methods had a wide scatter of individual error scores around zero, with the best estimate 

coming from the Actiheart. 

While the Actigraph equations used in this study have been validated extensively, 

this is one of the first studies to examine all of them over a wide range of activities; from 

sedentary behaviors to vigorous exercise. The results of the current study agree with the 

finding of Bassett et al. ( 1 ), who examined the manufacturer's equation ( 19), Freedson ' s 

MET equation (6), and Hendelman's lifestyle equation (12) during 28 moderate-intensity 

lifestyle activities. Specifically, Bassett et al. (1) found that the Hendelman lifestyle 

equation provided a mean estimate for all 28 activities within 0.5 METs of the criterion 

measure (Cosmed K4b2), but had large variability in its over- and underestimation of 

specific activities. In addition, they found that the Actigraph prediction equations 
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overestimated walking activities, while underestimating virtually all other lifestyle 

activities. The current study extends these findings by including sedentary activities, 

over-ground running, basketball, racquetball, etc. , in addition to examining more 

Actigraph equations. 

There does not appear to be any single Actigraph equation that is adequate for the 

prediction of all activities. In general, the use of equations developed on walking and 

jogging, such as the Freedson MET equation (6) and Hendelman walking equation (12), 

underestimate most activities except for walking. In contrast, the equations developed on 

moderate-intensity lifestyle activities such as the Swartz equation (25) and Hendelman 

lifestyle equation ( 12) overestimate light activity and walking, while underestimating all 

other activities. It is important to note that the walking equations predict light activities 

quite well due to the equation crossing the y-intercept at around 1 .4- 1 .6 METs (i.e. 0 

counts·min-1 = 1 .4- 1 .6 METs), while the lifestyle equations predict moderate-intensity 

activities quite well, but they over-predict sedentary and light activities due to the 

equations crossing the y-intercept at around 2.6-2.9 METs (i.e. 0 counts·min· 1 = 2.6-2.9 

METs ). In addition the walking equations underestimate vigorous activities � 6 METs) 

by approximately 1 MET more than the lifestyle prediction equations. 

The AMP-33 1 activity monitor is a valid device for estimating the energy cost of 

walking. However, it provides a poor estimate of EE during most other activities. It 

overestimates the energy cost of sedentary activities, and it underestimates the energy 

cost of most light to vigorous activities. A limitation to the AMP-33 1  is that the activity 

pod must be positioned directly over the Achilles tendon, but the neoprene case 

developed to hold it in place often slips to the side of the ankle which hinders the 

14 1  



accelerometer 's ability to detect motion. This is because the accelerometers are 

configured to detect movement in the antero-posterior axis, thus when the pod moves to 

the side it is no longer positioned in the correct axis. In addition, it appears that the 

AMP-33 1 it is not able to detect the side to side motion that occurs with many lifestyle 

activities. 

The Actical device, which uses an omnidirectional accelerometer, should in 

theory provide a better estimate of EE because it has the ability to measure acceleration 

in more than one movement plane. In addition, two regression equations have been 

developed for the device; a single regression line and the double regression model of Heil 

et al. ( 1 1 )  that uses two regression lines of different slopes to predict; (a) light activity 

and (b) moderate to vigorous activity. In the present study, both Actical regression 

equations responded in a similar manner to the Actigraph walking equations, in that it 

overestimated the energy cost of walking, while underestimating most other activities. 

The Actiheart was developed with the intent of overcoming some of the 

limitations of accelerometers worn on the hip. Theoretically, inclusion of a physiological 

variable (HR) should provide a better estimate of EE, over a wide range of activities, than 

accelerometry data alone (9, 24 ). Several investigators have shown that the simultaneous 

use of HR and motion sensors provides a more accurate estimate of EE than using HR or 

motion sensors alone, demonstrating that this technique has promise (3 , 4, 9, 22-24). 

However, the Actiheart 's algorithm does not utilize individual HR-V02 regression lines. 

Rather it uses resting HR and an algorithm developed on a group of individuals ( 4). 

Although it provides a close overall estimate of EE for a group of individuals, there is a 

large variability for the prediction of EE of specific activities, on an individual basis. 
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One reason for this is that the Actiheart device does not take into account the individual's  

fitness level. Thus, i t  tends to underestimate the EE of fit participants while 

overestimating the EE of less fit participants. In addition, although the device is intended 

to use both HR and motion data, the best prediction of EE came from the HR algorithm, 

possibly due to the poor prediction of EE from the activity algorithm used in the 

Actiheart. While the Actiheart shows promise for estimating EE, further work needs to 

be done under field conditions to develop better prediction equations. 

The Actiheart does improve slightly on the current methods available to 

researchers. As can be seen in the Bland-Altman plots, the HR algorithm and combined 

HR and activity algorithm have less scatter in the individual error scores around zero than 

the other devices. Specifically the HR algorithm has a mean difference ( criterion minus 

estimate) of0.03 METs with a 95% prediction interval of -2.68 to 2.76 METs, while the 

combined algorithm has a mean difference of 0.60 METs with a 95% prediction interval 

of -2.05 to 3 .26 METs. In contrast, the Swartz equation had a mean difference of 0.07 

METs, but it had a 95% prediction interval of -3 .30 to 3 .44 METs, while the Hendelman 

lifestyle equation had a mean difference of 0.44 METs and a 95%, prediction interval of -

3 .35 to 4.23 METs. While the Actiheart shows a slight improvement in accuracy over the 

other devices, the 95% prediction interval is still only within ± 2 METs. The Bland­

Altman plots also show that the Actiheart neither over- nor underestimates the energy 

cost of the 1 8  activities tested. In contrast, it can be clearly seen that the Hendelman 

lifestyle equation and Swartz equation overestimate the energy cost of sedentary/light 

intensity activities and underestimate the energy cost of moderate to vigorous intensity 

activities. 
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The proliferation of new Actigraph regression equations to predict EE as well as 

the introduction of new devices is problematic because it hinders standardization, making 

it difficult to compare physical activity data between studies. For example, there are 

currently over 10 different regression equations to predict EE in adults using the 

Actigraph (5, 6, 12, 16 , 20, 25, 28). A major limitation of most devices is that they do 

not provide an accurate prediction for specific activities. This is of critical importance 

because each individual perfonns a unique pattern of activities. However, it is clear that 

people spend more time sleeping and performing sedentary and light activities and hence 

accurate estimation of EE at the lower end of the range is critical. 

When considering the various devices for use in research, cost is also an issue. 

Larger studies typically use a device that is less expensive, while smaller studies might 

spend more money on a measuring device if it enhances accuracy. While the Actiheart 

gave the best overall estimate of EE, its cost prohibits its use in large studies. The cost of 

one Actiheart plus the software and docking station is $ 1500. Similarly, the Actical plus 

the docking station and software costs $995. The AMP-33 1 costs $450 per device, plus 

$750 for the software and docking station. Actigraph recently released (May 2005) the 

GT lM that will replace the older version (model 7 164). Unlike the other devices, the 

new Actigraph GTlM has a port in the device that a USB cable attaches to, thus 

eliminating the need for a docking station. The cost of the new Actigraph GT lM is $389 

per device. The user can pay $200 for a desktop version of their software, or they now 

have the option of using the software online for free. In addition, the new GT 1 M has a 

rechargeable battery (via the USB port) that does not need to be replaced. To assist in 

recharging multiple Actigraphs at the same time the company also sells a 7-port USB hub 
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for $75 . Currently they are working on additional features such as having the capability 

of initializing and downloading multiple devices at the _same time. 

The present study has both strengths and limitations. One strength is that it 

examined the validity of several devices, using an accepted gold standard for measuring 

EE in field settings. Another strength, is that it included a wide range of physical 

activities ranging from sedentary activities (lying, sitting) through vigorous exercise 

(racquetball, basketball, running). This approach is beneficial because it shows where the 

devices succeed and fail, and it can help suggest ways to improve upon the prediction of 

EE in the future. In contrast, most previous validation studies focused solely on 

locomotor activities and/or moderate-intensity lifestyle activities. Limitations of the 

current study are that it did not examine the validity of the devices in children, 

adolescents, or older adults, and the study population was predominantly Caucasian. In 

addition, the accuracy of these methods in free-living situations was not examine9. 

Future studies should validate these methods over extended periods, using room 

calorimetery or doubly labeled water. 

In conclusion, the Actiheart HR algorithm provides the best estimate of EE on an 

individual basis, although it still has room for improvement. In general, prediction 

equations developed using treadmill walking and running overestimate the energy cost of 

sedentary activities and walking, while underestimating the energy cost of most other 

activities. Prediction equations developed using moderate-intensity lifestyle activities 

tend to overestimate �he energy cost of walking, sedentary, and light activities, while they 

underestimate the energy cost of most other activities. The Actical and AMP-33 1  

respond in a similar manner to the Actigraph equations. 
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The significance of this study is that it provides information on EE estimates for 

specific activities, and thus could be helpful in suggesting new approaches to quantify 

and reduce physical activity measurements. Ultimately, if researchers can design a 

method that will accurately predict the EE over a wide range of physical activities, that 

method would have the greatest chance of being accurate when validated against doubly 

labeled water. 
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PART VI 

A NOVEL METHOD FOR USING ACCELEROMETER DATA 

TO PREDICT ENERGY EXPENDITURE 
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Abstract 

In recent years there has been an increase in the number of regression equations 

relating Actigraph accelerometer counts to energy expenditure (EE). A major limitation 

of these single regression models is that they tend to overestimate the energy cost of 

walking, and underestimate the cost of most moderate-intensity lifestyle activities. 

Recently we have found a method to distinguish walking and running from other 

activities based on the variability in the counts over time. Purpose: The purpose of this 

study was to develop a new 2-regression model relating Actigraph activity counts to EE 

over a wide range of physical activities, ranging from sedentary pursuits to vigorous 

exercise. Methods: Forty-eight participants (age: 35 ± 1 1 .4 yrs) performed various 

activities that were split into three routines of six activities. Sedentary, light, moderate, 

and vigorous intensity activities were chosen to represent the entire range of activities 

performed by most individuals. Each routine was performed by 20 individuals for a total 

of 60 tests. Forty-five tests were randomly selected for the development of the new 

equation and 15 tests were used to cross-validate the new equation and compare it against 

already existing equations. During each routine, the participant wore an Actigraph 

accelerometer on the hip and oxygen consumption was simultaneously measured by a 

portable metabolic system. For each activity the coefficient of variation (CV) for the 

counts per 10 seconds were calculated to determine if the activity was walking/running, 

or some other activity. If the CV was� 10 then a walk/run regression equation was used, 

while if the CV was > 10 a lifestyle/leisure time physical activity (LTPA) regression was 

used. Results: With this new method, the Actigraph counts·min- 1 explained 72.3% of 

the variance in EE for walking/running, and 83.8% of the variance in EE for 
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lifestyle/L TP As. In the cross-validation group the mean estimates using the new 2-

regression model were within 0.84 ME Ts of measured ME Ts for each of the activities 

performed (P � 0.05), which was a substantial improvement over the single regression 

models. The new method had a mean difference (criterion minus prediction) of0.001  

METs and 95% prediction intervals of± 1 .66 METs. Conclusion: The new 2-regression 

model is more accurate for the prediction of EE than currently published regression 

equations using the Actigraph accelerometer. Key Words: MOTION SENSOR, 

PHYSICAL ACTIVITY, OXYGEN CONSUMPTION, ACTIVITY COUNTS 

VARIABILITY 

Introduction 

The association between physical activity and positive health benefits has been 

well established (3, 4, 1 1 , 1 5). This has lead to the Centers for Disease Control and 

Prevention (CDC) and the American College of Sports Medicine (ACSM) 

recommendation that every US adult should accumulate 30 minutes of moderate-intensity 

physical activity on most, preferable all days of the week ( 16). While the benefits of 

regular moderate physical activity has been clearly shown, the measurement of how 

much physical activity individuals are performing has proven to be a difficult task. 

Accelerometers are objective measurement tools that allow researchers to 

estimate how much energy individuals are expending, as well as to quantify the amount 

time spent in light (< 3 METs), moderate (3 - 5 .99 METs), and vigorous � 6 METs) 

physical activity. The Actigraph (formerly the Manufacturing Technology Incorporated 

(MTI) Actigraph, and the Computer Science Applications Inc. (CSA)) accelerometer is 
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one of the most common devices used for the measurement of physical activity. Several 

equations have been developed relating the Actigraph activity counts to energy 

expenditure (EE) (6-8, 12, 14, 17, 1 8). Theoretically, this allows researchers to estimate 

total EE over a given period of time. In addition these equations allow researchers to 

establish cut points (based on counts·min·1
) for classification of light, moderate, and 

vigorous physical activity. 

In the last five years there has been a dramatic increase in the number of 

prediction equations relating the Actigraph activity counts to EE. The current regression 

equations for estimating EE based on the counts·min·1 from the Actigraph accelerometer 

were either developed during walking and running (6-8, 12, 14, 1 8) or during moderate­

intensity lifestyle activities (8, 17). However, these different equations pose a problem 

for researchers because no single regression line is able to accurately predict EE or time 

spent in different intensity categories, across a wide range of activities. In addition, all of 

these equations assume a linear relationship between counts·min· 1 and EE, but they all 

have limitations. Previously, it has been shown that equations developed on walking and 

jogging slightly overestimate the energy cost of walking and light activities, while they 

greatly underestimate the energy cost of moderate-intensity lifestyle activities. The 

lifestyle equations provide a closer estimate of EE for moderate-intensity activities, but 

greatly overestimate the energy cost of sedentary and light activities and underestimate 

the energy cost of vigorous activities (2). 

It is critical that the predictions equations to estimate EE are accurate across a 

wide range of activities ranging from rest to vigorous exercise. Using data collected in 

our laboratory, we observed that walking and running can be distinguished from other 
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activities based on the variability in the activity counts from the Actigraph. Generally, 

locomotor activities (i.e. walking and running) yield more consistent minute-to-minute 

counts than other activities ( e.g. vacuuming, raking leaves, racquetball, sweeping, etc), 

which have more erratic movement patterns. Specifically, the coefficient of variation 

(CV) between the minute-to-minute counts is below 10% for walking activity and greater 

than 10% for all other activities. In addition, we noted that the slope of the regression 

line relating counts·min-1 (x-axis) to METs (y-axis) is steeper for walking and running 

activities than it is for moderate-intensity lifestyle activities, meaning that two separate 

regression lines should be used for the prediction of these activities. 

Thus, we hypothesized that by calculating the CV of the counts over six 10-

second epochs, we could distinguish walking and running from all other activities. We 

further hypothesized that by using the appropriate regression line, we should obtain a 

closer estimate of EE across a wide range of activities. Therefore, the purpose of this 

study was to develop a new prediction equation for use with the Actigraph accelerometer 

that would be composed of two regression lines; one for walking and running and one for 

all other activities. The determination of which line to use was based on the CV of the 

counts per 10 seconds over a one minute period. 

Methods 

Subjects 

Forty-eight participants (Age: 35 ± 1 1 .4 yrs, BMI: 24.2 ± 4.8 kg·m-2) from the 

University of Tennessee, Knoxville and surrounding community volunteered to 
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participate in the study. The procedures were reviewed and approved by the University 

of Tennessee Institutional Review Board before the start of the study. Each participant 

signed a written informed consent and completed a Physical Activity Readiness 

Questionnaire (PAR-Q) before participating in the study. Participants were excluded 

from the study if they had any contraindications to exercise, or were· physically unable to 

complete the activities. The physical characteristics of the participants are shown in 

Table 1. 

Anthropometric Measurements 

Prior to testing, participants had their height and weight measured (in light 

clothing, without shoes) using a stadiometer and a physician's scale, respectively. Body 

mass index (BMI) was calculated according to the formula : body mass (kg) divided by 

height squared (m2). Skinfold measurements were taken using Lange Calipers 

(Cambridge, MD) at the chest, abdomen and thigh for men and at the tricep, suprailic, 

and thigh for women (9). 

Procedures 

Participants performed various lifestyle and sporting activities that were broken 

into three routines. 

Routine 1 :  Lying, standing, sitting doing computer work, filing articles, walking 

up and down stairs at a self selected speed, cycling at a self selected work rate. 
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Table 1 .  Physical characteristics of the participants ((mean ± SD (range)). 

Variable 

Age (yr) 

Height (in)• 
Body Mass 

(kg)• 

All 
Male Female Participants 

(N=24) (N=24) (N=48) 
36 ± 12.8 35 ± 10.3 35 ± 1 1 .4 
(2 1 - 69) (22 - 55) (2 1 - 69) 
70.9 ± 2.8 65. 1 ± 2.3 68.0 ± 3 .8 

(62.8 - 74.2) (60.2 - 68.5) (60.2 - 74.2) 
83 .9 ± 20.2 62.3 ± 1 2.3 73 . 1  ± 19.6 

(59.4 - 141 .0) (45.4 - 1 09.0) (45.4 - 141 .0) 
25.8 ± 5.2 22.7 ± 4.0 24.2 ± 4.8 

( 1 9. 1 - 40.6) (1 7.9 - 36.4) ( 1 7.9 - 40.6) 
RestinE V02 3 .6 ± 0.8 3 .4 ± 0.8 3.5 ± 0.9 

(mlkg9 ·min-1) (2. 1 - 5.0) (2.0 - 4.9) (2.0 - 5 .0) 

Sum of 3 49.0 ± 27.9 52.0 ± 16.7 50.5 ± 22.5 
skinfold (16.6 - 12S.S) (24.5 - 93.7) (16.6 - 125.5) 

BMI=Body Mass Index; *Significantly different from females, P < 0.05. 
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Routine 2: walking at approximately 3 mph around a track, walking at 

approximately 4 mph around a track, playing one-on-one basketball, playing 

singles racquetball, running at approximately 5 mph around a track, running at 

approximately 7 mph around a track. 

Routine 3: vacuuming, sweeping and/ or mopping, washing windows, washing 

dishes, lawn mowing with a push mower, raking grass and/or leaves. 

Twenty participants performed each routine, with most performing only one routine. 

Participants performed each activity in a routine for 10 minutes, with a 1 to 2 minute 

break between each activity. Oxygen consumption (V02) was measured continuously 

throughout the routine by indirect calorimetry (Cosmed K4b2, Rome Italy). Participants 

wore an Actigraph accelerometer on the right hip for the duration of the routine. For the 

Cosmed K4b2 and Actigraph, 2 kg was added to account for the added weight of the 

devices. Routine 1 was performed in the Applied Physiology Laboratory, routine 2 was 

performed at University facilities, and routine 3 was performed at either the participant's 

home or the investigator's home. The participants who did not perform routine 1 were 

asked to sit quietly for 5 minutes before the start of the routine so that a resting V02 

could be measured. 

Indirect Calorimetry 

The participants wore a Cosmed K4b2 for the duration of each routine. The 

Cosmed K4b2 weighs 1.5 kg, including the battery, and a specially designed harness. The 

Cosmed K4b2 has been shown to be a valid device when compared against the Douglas 

Bag method during cycle ergometry ( 13). In addition, during this study there was close 
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agreement between the measured V02 from the Cosmed K4b2 during the stationary 

cycling (avg. 98.7 watts) and the predicted values from the formula of the American 

College of Sports Medicine's Guidelines for Graded Exercise and Prescription ( 1) (R 2 = 

0.9 1 7, SEE = 1 34. 1 ml"min· 1
, P < 0.05). Prior to each test the oxygen and carbon dioxide 

analyzers were calibrated according to the manufacturer's instructions. This consisted of 

performing a room air calibration and a reference gas calibration using 1 5 .93% oxygen 

and 4.92% carbon dioxide. The turbine was then calibrated using a 3 .00 L syringe (Hans­

Rudolph). Finally, a delay calibration was performed to adjust for the lag time that 

occurs between the expiratory flow measurement and the gas analyzers. During each test 

a gel-seal was used to help prevent air leaks from the face mask. 

Actigraph Accelerometer 

The Actigraph accelerometer (model 7164) is a small (2.0 x 1 .6 x 0.6 in) and 

lightweight (42.5 grams) uniaxial accelerometer, and can measure accelerations in the 

range of 0.05 to 2 G's and a band limited frequency of 0.25 to 2.5 Hz. These values 

correspond to the range in which most human activities are performed. An 8-bit analog­

to-digital converter samples at a rate of 10  Hz and these values are then summed for the 

specified time period ( epoch). If a one minute epoch is used the Actigraph can store 22 

days worth of data, which is downloaded to a personal computer via a reader interface 

unit. The Actigraph was worn at waist level at the right anterior axillary line in a nylon 

pouch that was attached to a belt. The Actigraph was initialized using 1 second epochs 

and the time was synchronized with a digital clock so the start time could be 

synchronized with the Cosmed K4b2
• At the conclusion of the test the Actigraph data 
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were downloaded to a laptop computer for subsequent analysis. The Actigraph 

accelerometer was calibrated at the start and end of the study. On both occasions, the 

calibration fell within ± 3.5% of the reference value, which is within the manufacturer's 

standards. 

Data Analysis 

Breath-by-breath data were collected by the Cosmed K4b2 , which was averaged 

over a 30 second period. For each activity, VO2 (ml·min- 1) was converted to VO2 (ml'kg-

1 .min-1) and then to METs by dividing by 3.5. For each activity the MET value for 

minutes 4 to 9 were averaged and used for the subsequent analysis. 

The Actigraph accelerometer data were collected in one second epochs and were 

converted to counts per 10 seconds and counts·min-1 using a Visual Basic program, 

written specifically for this study. The coefficient of variation (CV) of the counts per 10 

seconds and the average of the counts·min-1 were calculated for minutes 4-9 of each 

activity. 

Statistical Treatment 

Statistical analyses were carried out using SPSS version 13.0 for windows (SPSS 

Inc., Chicago, IL). For all analyses, an alpha level of 0.05 was used to indicate statistical 

significance. All values are reported as mean ± standard deviation. Independent t-tests 

were used to examine the difference between genders for anthropometric variables. 

Forty-five tests were randomly selected for the development of the new 2-

regression model, thus leaving 15 tests for cross-validation of the new equation. Due to 
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waist mounted accelerometers not being able to detect cycling activity, it was excluded 

from all analyses. Stationary cycling was included to confirm that the Cosmed K4b2 was 

providing reasonable VO2 values. For the group used to develop the new prediction 

algorithms, each activity performed by an individual was classified based on the CV 

value of the 10 second counts; CV from 0. 1 to 10 (CV � 10) and CV of0 and >10 (CV > 

10). During the walking and running the CV was almost always less than 10, while for 

the other activities the CV was almost always greater than 10  (figure 1 ). One exception 

was during activities such as lying, sitting, and standing where the counts per minute 

could be zero for a full minute, thus giving a CV of zero. In these cases they were placed 

in the CV > 1 0  group for the purpose of developing the regression equation. Linear 

regression analyses was then used to predict METs from the counts per minute for the 

CV � 10 group and the CV > 1 0  group. 

In order to compare the newly developed equation with current regression models, 

we also estimated METs from the regression equations of Freedson et al. (7), Hendelman 

et al. (8), and Swartz et al. ( 17). A one-way repeated measures ANOV A was used to 

compare actual and predicted METs for each activity using the cross validation group. In 

addition, a one-way repeated measures ANOV A was used to compare actual and 

predicted METs for all 18 activities combined. Pairwise comparisons with Bonferroni 

adjustments were performed to locate significant differences when necessary. 

Modified Bland-Altman Plots were used to graphically show the variability in 

individual error scores (actual METs minus estimated METs) (5). This allowed for the 

mean error score and the 95% prediction interval to be shown. Devices that are accurate 
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Figure 1 .  Relationship between counts per minute from an Actigraph accelerometer and 
the coefficient of variation (CV) of the 10 second counts for various activities. 1 1  CVs 
between 400 and 600 were excluded from the graph, all of which were lifestyle activities. 
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will display a tight prediction interval around zero. Data points below zero signify an 

overestimation, while points above zero signify an underestimation. 

Results 

The data for one participant in the developmental group (routine 3) is missing due 

to an error that occurred during the downloading process. Mean (± SD) counts per 

minute and CV of the counts per 10  seconds, for each activity from the Actigraph 

accelerometer are shown in table 2 ( developmental group only). 

Initially, linear regression lines were used to predict METs from the counts·min- 1 

for activities where the CV was � 10  and activities where the CV was > 1 0. Further 

examination of the data revealed that a linear regression might not yield the best fit. For 

example, the linear regression for activities where the CV is � 10  significantly 

underestimated walking at 2 mph as well as running speeds greater than 7 mph. 

Therefore, we chose an exponential curve for activities where the CV was � 1 0  (figure 2). 

To verify the use of an exponential curve, we plotted the mean counts·min- 1 versus METs 

during treadmill walking and running from the study of King et al. ( 1 0) in figure 2. 

For activities where the CV was > 10 a cubic curve was found to be the best fit 

(figure 3). The new equations for the two groups are presented in table 3 .  Certain 

activities such as lying and sitting have counts·min- 1 that are less than 50, but are 

commonly over-predicted by 0.5 to 2.5 METs depending on the regression equation used. 

Therefore when the counts·min- 1 are less than 50, we propose that an individual be 

credited with 1 .0 METs, since this more accurately predicts these sedentary activities. 
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Table 2. Mean (± SD) counts·min- 1 and coefficient of variation (CV) for the 10  second counts from the Actigraph accelerometer 
for all activities ( 1 8) using the developmental group. 

Activity N Actigraph counts·min·1 CV for 10 sec 
counts 

Lying 1 5  0.2 (0.5) 109.S (226.8) 
Standing 15  1 3 .4 (22.0) 235 .3 ( 145.6) 
Computer work 1 5  3.3 (7.7) 228. 1 (234.8) 
Filing 1 5  59.8 ( 120. 1 )  1 86.4 (1 14. 1 )  
Ascending/descending stairs 1 5  32 1 1 .7 (621 .3) 17.4 (9.3) 
Slow walk ( avg. 8 1  m·min-1 ) 1 5  3341 .0 (798.3) 5 .4 ( 1 .7) 
Brisk Walk (avg. 104 m·min- 1

) 1 5  5050.3 ( 1078.2) 3 .8  ( 1 .6) 
Basketball 1 5  5570.8 (999.8) 52.3 ( 13 .0) 
Racquetball 1 5  3574.6 ( 1 1 1 6.3) 57.7 ( 1 7.8) 
Slow run (avg. 1 59 m·min- 1) 1 5  8 10 1 .3 ( 1377.4) 5 .8 (9.6) 
Fast run (avg. 1 92 m·min- 1

) 1 5  8 1 63 .4 ( 1327.0) 7.4 (1 0.2) 
Vacuum 14 788. 7 (304.2) 74.3 (33.5) 
Sweep/mop 14 7 19.0 (340.8) 75.0 (33.7) 
Washing Windows 14 420.0 (274. 1 )  145 .3 (45 .3) 
Washing dishes 14 107.2 ( 1 54. 1 )  1 93 .2 ( 1 17.6) 
Lawn Mowing 14 2560. 7 (804.5) 25.6 (9.7) 
Raking grass/leaves 14 1 1 14.0 {481 .6} 49.9 {2 1 .5} 
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Figure 2. Regression lines for the Actigraph counts·min·1 versus measured energy 
expenditure (METs) for the CV � 10 group. Numbers on graph represent mean data (N = 
10) from King et al. ( 10). 
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Figure 3. Regression lines for the Actigraph counts per minute versus measured energy 
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Table 3. Regression equations to predict resting metabolic equivalents (METs) from the Actigraph accelerometer. 

Prediction 
Model 

CV < 10 
group 

CV � l0 
group 

Equation 

Energy Expenditure (METs) = 1.966446 * (exp(0.00016737 * Actigraph counts·min-1)) 

Energy Expenditure (METs) = 2.12771 + (0.002087 * Actifaph counts·min-1) -
(2.6862 x 10-7 * (Actigraph counts·min- 1

)2) + (1.5246 x 10-1 * (Actigraph counts·min- 1
-
1)3) 

RJ 

0.723 

0.838 

SEE 

0.248 

0.918 



Thus the newly developed equation to predict gross energy expenditure (METs) 

from the Actigraph counts would consist of a three part algorithm; 

( 1 )  if the counts·min- 1 are � 50, energy expenditure = 1 .0 MET, 

(2) if the counts·min- 1 are > 50 

a. and the CV of the counts per 1 0  sec are 0. 1 to 1 0, then energy 

expenditure (METs) = 1 .966446 * (exp(0.000 16737 * Actigraph 

counts·min- 1)), 

b. or the CV of the counts per 10 sec are 0 or > 1 0, then energy 

expenditure (METs) = 2. 1 2771 + (0.002087 * Actigraph counts·min- 1) 

- (2.6862 x 1 0-7 * (Actigraph counts·min-1)2) + ( 1 .5246 x 1 0- 1 1  * 

(Actigraph counts·min- 1 )3) 

Table 4 shows the measured METs and estimated METs for the cross-validation 

group using the new prediction equation and three other commonly used Actigraph 

equations, for each activity. Figure 4 shows the measured and predicted MET values for 

each of the activities using the current Actigraph regression equations in the cross­

validation group. Figure 5 shows the measured and predicted MET values for the cross­

validation group using the new 2-regression model. The new 2-regression model was 

within 0.84 METs compared to measured METs for each of the 1 7  activities and was not 

significantly different from actual METs for any activity, or for all activities combined. 

In addition, the correlation between the predicted METs from the new 2-regression model 

and measured METs was r = 0.94 (P < 0.05). The other equations overestimated at least 
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Table 4. Mean (± SD) MET values of the cross-validation group for the Cosmed K4b2 (measured METs), the new Actigraph 2-
regression model and 3 other Actigraph prediction equations during various activities. 

Actigraph 
New 2-

Measured regression 
METs model 

Lying 0.91 (0.20) 1.00 (0.00) 
Standing 1.19 (0.18) 1.00 (0.00) 
Computer Work 1.03 (0.13) 1.00 (0.00) 
Filing papers 1.56 (0.16) 1.27 (0.60) 
Ascending/ Descending Stairs 6.83 (0.65) 6.06 (1.34) 
Slow walk (avg. 83 m·min-1) 2.94 (0.27) 3.44 (0.40) 
Fast walk (avg. 98 m·min-1) 3.60 (0.44) 4.44 (0.81) 

- Basketball 7.33 (0.52) 7.75 (0.76) 
"° Racquetball 6.63 (0.46) 7.21 (0.51) 

Slow run (avg. 160 m·min-1 ) 7.69 (0.56) 7.53 (1.78) 
Fast run (avg. 183 m·min-1 ) 8.05 (0.70) 7.64 (1.44) 
Vacuum 3.37 (0.51) 3.62 (0.86) 
Sweep/mop 3.32 (0.56) 3.26 (0.73) 
Washing windows 2.86 (0.93) 2.79 (0.48) 
Washing Dishes 1.98 (0.33) 1.55 (0.75) 
Lawn Mowing 6.06 (0.59) 5.65 (0.68) 
Raking grass/leaves 3.69 (0.89) 3.79 (0.78) 
Total for all activities 4.06 {2.49} 4.06 {2.56} 

*Significantly different from Cosmed K4b2 (P < 0.05) 

Actigraph 
Freedson MET Actigraph 

equation Swartz equation 

1.44 (0.00)* 2.61 (0.00)* 
1.44 (0.03) 2.61 (0.03)* 
1.44 (0.00)* 2.61 (0.00)* 
1.46 (0.03) 2.62 (0.03)* 
4.21 (0.65)* 5.00 (0.56) 
4.08 (0.56) 4.88 (0.48)* 
5.25 (0.82)* 5.89 (0. 71 )* 
6.11 (0.95) 6.64 (0.82) 
4. 73 (0.62)* 5.45 (0.53) 
7.72 (1.10) 8.02 (0.95) 
7.81 (1.00) 8.10 (0.86) 
2.09 (0.43) 3.17 (0.37) 
1.92 (0.32)* 3.02 (0.28) 
1.71 (0.21) 2.84 (0.18) 
1.49 (0.05) 2.65 (0.04) 
3.27 (0.53)* 4.19 (0.46)* 
2.17 (0.35)* 3.24 (0.30) 
3.43 {2.23}* 4.32 O.92} 

Actigraph 
Hendelman 
Lifestyle 
eguation 

2.92 (0.00)* 
2.93 (0.02)* 
2.92 (0.00)* 
2.93 (0.02)* 
4.35 (0.34)* 
4.28 (0.29)* 
4.88 (0.42)* 
5.33 (0.49)* 
4.62 (0.32)* 
6.15 (0.57) 
6.20 (0.51) 
3.26 (0.22) 
3.17 (0.16) 
3.06 (0.11) 
2.95 (0.03)* 
3.87 (0.27)* 
3.30 (0.18) 
3.95 O.15} 



9 -n---------------�-------------------, 

8 

7 

6 �-

(I) 5 

:s 4 

--e- Measured METs 

--<>-Freedson MET equation 

---&- Swartz equation 

---½- Hendelman Lifestyle equation 

3 -1-----.Ar A 7/F =K A 

-

- -- - .. 
_._,., 

I 

::i 2 

1 ---- -- _._ . ....  _ -

0 -------------------------�-----�------

# � ,  � � � � � ,  � p � � � � , ,  v� �,� ,# �'l>-q, <:)� -��
0 J� �4� 4�<> J� ��� -�04 ��;;s �� �:s J J 

:§ � . -�4J . �4J 9o4 'b,, ,$(/J o,'b ��' R �--
��<:s;, �'tf tc� 'br; 

(?�� 
�

':/$ �J>' � �'lo Cj �'lo ,$4, � " 
� 

4.4;
"' 

4.t/o' 
�

'bl 

� � � 
� � 

�
'b-

�
�

'b-

�# �� 
�

0� 
'\(,,� �o '\(,,rr,,� 

Figure 4. Measured and estimated METs for the cross-validation group, using 3 different regression equations for various 
activities. 



-

Cll 

--e- · Measured METs 
8 1  -0-2-regression model 

7 -------- - -- --- ------- - - -------- ---�--... _.17�- - -

6 

5 

4 

3 

2 

1 

0 --+---.-----,----,-----r---,---.--�---,----,---.......---...----..-----.----�-�--.J 

�4; 0� 'iP4; �<:' �,a, �l� #' 0� # #' 4.�� �4; � -� � :..� -� 
V �t , ,f -Q{> /o J J� �# J �

<b- -"-0 &§' �� /' �� �� 
� CJ -��4; .�4; � 'b', �� 0,'b � -��

.. 
cr,,u �'?i b� 'b', 

�� �� -� -� 6__. � 6__. � �
.. 

� '\; '\: 
()0 ..._\ V -� 4,"'0 4,"'0 �� '\) � � � �v � � � � 

� � � -� -� 
�4 �4 

�� �� 
�0 �� 9'0 �� 

Figure 5. Measured and estimated METs for the cross-validation group using the new 2-regression model for various activities. 



one walking speed and most activities below 2 METs. The Freedson equation was the 

only one that was significantly different from actual EE for all 17 activities combined (P 

< 0.001 ). The new 2-regression model, the Swartz equation, and the Hendelman equation 

all gave close overall estimates of EE. 

The Bland-Altman plots show that there was improved accuracy of individual 

activities with the new equation (figure 6). The Freedson equation (r = 0. 455, P < 0.001), 

Swartz equation (r = 0.639, P < 0.001), and the Hendelman equation (r = 0.924, P < 

0.001) all had problems estimating EE. Specifically, they tended to overestimate 

sedentary behaviors, light-intensity activities, and walking, while they underestimated 

many moderate-intensity lifestyle activities, vigorous sports, and stair climbing. 

Discussion 

This study describes a new approach to estimating EE using an Actigraph 

accelerometer. By using the coefficient of variation to distinguish between 

walking/running and lifestyle activities and then applying one of two regression 

equations, the estimate of EE during specific activities is improved, both on a group and 

individual basis, which has important implications for the estimation of EE. In addition, 

the new equation allows a researcher to separate the amount of energy expended in 

walking, running, and other activities. 

It is important to examine the differences between the new 2-regression model 

and other single linear regression models that are currently being used. To assist in 

explaining how the new two equation model is an advancement for the field we pooled 

all of our data together and drew in our two regression model, Freedson' s regression line, 
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and Swartz's regression line (figure 7). It is clear that no single regression line can 

accurately predict the energy cost of specific activities. There is a tradeoff, with some 

predicting the energy cost of walking better than others, and others predicting the energy 

cost of moderate-intensity lifestyle activities more accurately. It can clearly be seen that 

the new 2-regression model provides a better prediction across all activities. 

Walking and running are rhythmical, locomotor physical activities with highly 

consistent acceleration counts across time. Other lifestyle physical activities ( e.g. 

vacuuming, sweeping, raking, mowing) and leisure time physical activities ( e.g. 

basketball and racquetball) have a more erratic movement pattern, resulting in greater 

variability in counts over time. This is an important consideration when estimating EE 

using accelerometer counts, since lifestyle activities have a higher oxygen cost at the 

same counts·min-1
, compared to walking and running. Lifestyle activities may include 

components in them that increase EE, but are not measured by the Actigraph. This 

includes arm activities, lifting and carrying objects, hill climbing, stairs, and changing 

directions in the horizontal plane. The advantage of the new method is that we can 

account for this increased EE that occurs during lifestyle activities by using 2-regression 

lines to estimate EE. 

Given that ambulatory physical activity is an important component of overall EE, 

the new approach has the added benefit of being able to distinguish between walking, 

running and other activities, which could be useful to researchers. For the discrimination 

between walking and running we propose that a threshold of 6500 counts·min-1 be used. 

This is similar to the threshold of 6683 counts·min-1 chosen by Brage et al. (6) in a study 

which used treadmill walking and running. Epidemiologists can now examine how much 
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Figure 7. Relationship between Actigraph counts per minute and measured energy expenditure (METS) for various activities. 
The closed circles are activities with a CV 0. 1 to 10  and the open squares are the activities with a CV 0 or > 10. The solid lines 
represent the new 2 regression model; the dashed line with 2 dots represents the Swartz equation; the dashed line with 1 dot 
represents the Freedson MET equation. 



walking individuals perform and distinguish it from running and other moderate-intensity 

lifestyle activities for the purpose of validating "walking" items on questionnaires. In 

addition, those interested in weight loss interventions can track individuals in walking 

programs with better accuracy and determine how much walking individuals are doing 

during unsupervised sessions. 

The current study does have strengths and weaknesses. Strengths of the study are 

that the new 2-regression model was developed on a wide range of activities ranging 

from sedentary behaviors to vigorous exercise. This is in contrast to previous studies that 

developed single regression equations on a limited number of activities (i.e. 

walking/running or moderate-intensity lifestyle activities). In addition, this study 

examined activities outside of the laboratory, which should help improve the 

generalizability to free-living situations. Limitations of the study include a small cross 

validation group, but there was still enough power (> 0. 9 for 1 5  of the 1 7  activities) to 

find significant differences between the EE values of the various methods used. Future 

research should be designed to validate this method in a wide range of individuals for 24-

hour EE (i.e. with doubly labeled water) and with indirect calorimetry using other types 

of physical activities. 

In conclusion, the new 2-regression model, which is based on the counts·min· 1 and 

variability in counts between 1 0  second epochs, improves on currently available methods 

for the prediction of energy expenditure (METs ). The new method is more accurate on 

both a group and individual basis and has a bias of 0.00 1 METs (95% prediction interval 

of± 1 .66). In addition, this new method has the advantages of being able to distinguish 

between walking, running, and other activities and it predicts the energy cost of specific 
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activities with improved accuracy, which should ultimately result in a closer estimate of 

24-hour EE. 
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INFORMED CONSENT FORM 
The Validation of Electronic Pedometers 

Investigator: Patrick L. Schneider 

Address: 
The University of Tennessee 
Department of Health, Safety, and Exercise Science 
1914 Andy Holt Ave. 
Knoxville, TN 3 7919 

Telephone: 865-974-5091 

Purpose 
You are invited to participate in a research study. The purpose of this study is to examine 
the use of electronic pedometers to measure steps taken, distance walked, and caloric 
expenditure. If you give your consent, you will be asked to participate in one part of the 
study. The section checked below is the part of the study you are volunteering for. 
Before exercising, you will be given a brief questionnaire to determine your health status 
and you will be measured for height and weight in the laboratory. 

Procedures 
Part 1. Course validation - You will take 20 strides and the total distance covered 
will be divided by 20 to determine stride length. You will then be asked to walk 
around a 400 meter outdoor track a total of 2 times for each pedometer of the 
same brand. A total of 12 different brands of pedometers will be tested. 
Therefore, you will be asked to walk around the 400 meter track a total of 24 
times which is equivalent to 6 miles. A researcher will accompany you on each 
walk, manually counting each step. The testing will take place over the course of 
1-5 days and will require a total of about 2-4 hours of your time. 

__ Part 2. Effects of walking speed - You will be asked to walk on the treadmill at 
2.0, 2.5, 3 .0, 3 .5, and 4.0 mph (5 minutes per stage). The effects of walking speed 
on the accuracy of each of the 10 brands of pedometers being tested will be 
examined. The testing will take place over the course of 3-5 days and will require 
about 4-5 hours of your time. You will be asked to wear a nose-clip and 
mouthpiece, and breathe into a device to measure oxygen uptake for each of the 
five 25 minute trials you will be asked to complete. The liters of oxygen actually 
consumed will be compared against the estimated value from the pedometer. You 
will also have your resting metabolic rate measured using the nose-clip and 
mouthpiece for 40 minutes on a separate day from the walking trials. 

__ Part 3 .  24-hour comparison - You will be asked to wear a Yamax SW-200 
pedometer on one hip and another model on the other for 24 hours and record the 
number of steps registered on both pedometers at the end of each day. A 
comparison will then be made between the Yamax SW-200 and the comparative 
model. A total of 12 pedometers will be compared to the Yamax SW-200, 
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which will require a total of 1 2  days of testing. You will not be asked to do any 
activities beyond which you would normally do on any other day. You will be 
given instructions on how to use each pedometer and will not be asked to return to 
the laboratory until all 1 2  pedometers have been compared. 

Risks and Benefits 
There are very few risks associated with moderate exercise. The risks include abnormal 
blood pressure responses and heart rhythm disturbances. These risks of participating in 
this study are equivalent to the risks of activities requiring moderate exertion (yard work, 
light sport activities, etc.) that you engage in during everyday activities. The benefits to 
participation include knowledge of your stride length, and exposure to a device that may 
provide accurate information about "steps taken" and "distance walked." You will also 
be given information on your resting metabolic rate. 

Confidentiality 
The information obtained from these tests will be treated as privileged and confidential 
and will consequently not be released to any person without your consent. However, the 
information will be used in research reports or presentations, but your name and other 
identity will not be disclosed. 

Right to Ask Questions and to Withdraw 
You are free to decide whether or not to participate in this study and are free to withdraw 
from the study at any time. 
Before you sign this form, please ask questions about any aspects of the study which are 
unclear to you. 

Consent 
By signing this paper, I am indicating that I understand and agree to take part in this 
research study. 

Your signature Date 

Researcher's signature Date 
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Physical Activity Readiness Questionnaire (P AR-Q) 

Regular physical activity is fun and healthy, and increasingly more people are starting to 
become more active every day. Being more active is very safe for most people. 
However, people should check with their doctor before they start becoming much more 
physically active. 

If you are planning to become much more physically active than you are now, start by 
answering the seven questions in the box below. If you are between the ages of 15 and 
69, the PAR-Q will tell you if you should check with your doctor before you start. If you 
are over 69 years of age, and you are not used to being very active, check with your 
doctor. 

Common sense is your best guide when you answer these questions. Please read the 
questions carefully and answer each one honestly: check YES or NO. 

YES NO 1. Has your doctor ever said that you have a heart condition and that 
you should only do physical activity recommended by a doctor? 

YES NO 2. Do you feel pain in your chest when you do physical activity? 

YES NO 3. In the past month, have you had chest pain when you were not 
doing physical activity? 

YES NO 4. Do you lose your balance because of dizziness or do you ever lose 
consciousness? 

YES NO 5. Do you have a bone or joint problem that could be made worse by 
a change in your physical activity? 

YES NO 6. Do you know of any other reason why you should not be doing 
physical activity? 

I have read, understood and completed this questionnaire. Any questions I had were 
answered to my full satisfaction. 

Name _______________ _ 

Signature ______________ _ Date _______ _ 
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INFORMED CONSENT FORM 

Accuracy of the Polar S410 heart rate monitor for measuring energy cost of exercise 

Investigator: Scott E. Crouter 
Address: 

The University of Tennessee 
Department of Health, Safety, and Exercise Science 
1914 Andy Holt Ave. 
Knoxville, TN 3 7996 

Telephone: 865-974-5091 

Purpose 
You are invited to participate in a research study. The purpose of this study is to examine 

the use of the Polar S410 heart rate monitor to estimate energy expenditure during 

exercise. If you give your consent, you will be asked to perform the testing listed below. 

Before exercising, you will be given a brief questionnaire to determine your health status 

and you will be measured for height and weight in the laboratory. 

Procedures 

1. Resting metabolic rate (RMR) will be measured by indirect calorimetry using a 
Parvo-Medics metabolic cart. The test will be performed early in the morning 
after an overnight fast, with the exception of water. In addition, you need to 
refrain from the use of stimulants (including caffeine, tobacco, and medication) 
and intense physical activity for 12-hours prior to the test. Upon arrival you will 
be allowed to relax in a reclining position for the duration of the test. You will be 
fitted with a nose clip and mouthpiece, which will be supported by a head device. 
For the test you will be breathing only through your mouth into a hose that is 
connected to a metabolic cart for the measurement of oxygen uptake, which will 
allow us to determine your RMR. The total time that you will be breathing 
though the mouthpiece will be 40 minutes. 

2. You will perform a maximal exercise test on a motor-driven treadmill for the 
determination of your vo2max . The test will begin with a three minute walking 
warm-up. For the test the speed will be at a fast walk or comfortable running 
pace, based on your current physical activity and the grade will be increased 1 % 
every minute until volitional fatigue. Three minutes after the completion of the 
test a sterile lancet will be used to puncture the skin on your fingertip so that 100-
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microliters may be drawn out for blood lactate analysis. Including the warm-up 
the test will last 10-15 minutes. It is important for you to realize that you may 
stop when you wish because of feelings of fatigue or any other discomfort. We 
may stop the test at any time because of signs of fatigue, symptoms you may 
experience, or equipment malfunction. During the test you will also be asked to 
wear a nose-clip and mouthpiece as described above. You will also be asked to 
wear a heart rate monitor that will be strapped to your chest. 

3. On each of the following motorized treadmill, cycle ergometer, and a rowing 
ergometer, you will performing three exercise tests at a moderate, hard and very 
hard exercise intensity, for a total of nine exercise tests. Each test will last for 12 
minutes and the exercise intensity of moderate, hard, or very hard are based on 
your rating of perceived exertion. You will be given five minutes rest between 
exercise tests and may complete a maximum of six in one day. It will take a total 
of 13 8 minutes, including rest time, to complete the nine exercise tests. For each 
test you will be equipped with a nose clip, mouthpiece, and heart rate monitor. 

For both the VO2 max test and the exercise tests you will need to refrain from strenuous 
exercise 24-hours before the test and to refrain from food, alcohol, and tobacco within 
two hours of the test. The expected time commitment to complete the tests will be 
approximately 4-5 hours and will be spread over 3-5 days. You cannot perform the 
VO2 max testing and exercise testing on the same days but you may perform one of these 
tests after the RMR test. In addition 48 hours will be given between days in which you 
exercise to allow for recovery. 

Risks and Benefits 
There are very few risks associated with moderate exercise for healthy individuals. The 
risks include abnormal blood pressure responses, musculo-skeletal injuries, dizziness, 
difficulty in breathing, and in rare instances heart attack or death. The risks of maximal 
stress testing are somewhat greater, but are still reasonable in light of the anticipated 
benefits. There is also an added risk of infection from the finger puncture which will be 
reduced by using sterile equipment. The benefits to participation include knowledge of 
your RMR, VO2max , and exposure to a device that may provide accurate information 
about how many calories you burn during exercise. 

Confidentiality 
The information obtained from these tests will be treated as privileged and confidential 
and will consequently not be released to any person without your consent. However, the 
information will be used in research reports or presentations, but your name and other 
identity will not be disclosed. 

Contact Information 
If you have questions at any time about the study or the procedures, ( or you experience 
adverse effects as a result of participating in this study,) you may contact the Investigator, 
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Scott Crouter. If you have questions about your rights as a participant, contact Research 
Compliance Services of the Office of Research at (865) 974-3466 . 

Right to Ask Questions and to Withdraw 
You are free to decide whether or not to participate in this study and are free to withdraw 
from the study at any time. 

Before you sign this form, please ask questions about any aspects of the study, which are 
unclear to you. 

Consent 
By signing this paper, I am indicating that I understand and agree to take part in this 
research study. 

Your signature Date 

Researcher's signature Date 
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Description RPE Feelinxs 

Nothing at all 0 Nothing at all 

0.5 

Very little effort 1 

1 .5 

Very Comfortable 2 Easy Exercise 

2.5 

Easy to talk; no problem to continue 
3 Moderate Exercise 

3.5 

Could keep this up for a long time 
4 Somewhat Hard 

4.5 

More challenging; not as comforta�le 
5 Hard Exercise 

5 . 5  

Feels hard and I am getting tired 6 

6.5 

Tough; now I must push myself 7 Very Hard Exercise 

7.5 
Challenging; breathing is rapid and deep; 

difficult to talk 

8.5 

Uncomfortable; can't last much longer 
9 Very, Verv Hard Exercise 

9.5 

Can not talk; need to stop 10  Exhausting Maximal Exercise 
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INFORMED CONSENT FORM 

Measurement of Physical Activity Energy Expenditure during Lifestyle Activities 

Investigator: Scott E. Crouter 
Address: 

The University of Tennessee 
Department of Exercise, Sport, and Leisure Studies 
19 14  Andy Holt Ave. 
Knoxville, TN 3 7996 

Telephone: 865-974-509 1 

Purpose 
You are invited to participate in a research study. The purpose of this study is to examine 
the use of motion sensors, positioned at various body locations ( e.g., hip, ankle, and 
wrist), to estimate energy expenditure. If you give your consent, you will be asked to 
perform the testing listed below. Before exercising, you will be given a brief 
questionnaire to determine your health status and you will be measured for height, 
weight, and percent body fat in the laboratory. 

Procedures 

4. You will be asked to perform 1 of the 3 following routines: 

Routine #1 Routine #2 
1 )  Lying 1 )  Walking around a track 
2) Standing at approximately 3 mph 
3) Sitting working on a 2) Walking around a track 

computer at approximately 4 mph 
4) Standing doing office 3) Playing basketball 

work 4) Playing Singles 
5) Walking up and down Racquetball 

stairs 5) Running around a track 
6) Stationary cycling at at approximately 5 mph 

approximately 7 5 watts 6) Running around a track 
at approximately 7 mph 

Routine #3 
1 )  Vacuuming 
2) Sweeping/mopping 

floors 
3) Washing windows 
4) Washing dishes 
5) Raking leaves/grass 
6) Lawn Mowing 

If you choose, you may perform more than one routine, but you are not required to do so. 
Routines 1 and 2 will be performed on the campus at the University of Tennessee. 
Routine 3 will be performed at your place of residence or if needed at the home of the 
investigator. Each activity listed will be performed for 8- 10  minutes and a 2 minute 
recovery will be given between each activity. 
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5. To measure energy expenditure during the routine you will be asked to wear a 
face mask that will be attached to a portable unit that will be worn on your upper 
body using a harness. The entire unit weighs approximately 4 pounds. 

6. During the routine you will also be asked to wear 7 motion sensors. 1 will be 
worn on the wrist, 3 on the waist, 2 on the ankle, and 1 on the chest. 

7. It is important for you to realize that you may stop when you wish because of 
feelings of fatigue or any other discomfort. We may stop the test at any time 
because of signs of fatigue, symptoms you may experience, or equipment 
malfunction. 

The expected time commitment to complete the tests will be approximately 1.5 hours. If 
you choose to perform more than one routine then it will add an additional 1.25 hours per 
routine. 

Risks and Benefits 
There are few risks associated with moderate exercise. The risks include abnormal blood 
pressure responses and heart rhythm disturbances. The risks of participating in this study 
are equivalent to the risks of activities requiring moderate exertion (yard work, light sport 
activities, etc.) that you engage in during everyday life. The benefits to participation 
include exposure to a device( s) that may provide information on energy expenditure. 
You will also obtain your body mass index, which, is used to assess your risk of obesity­
related diseases. In the unlikely event that physical injury occurs as a result of 
participating in this study, financial compensation is not automatically available and 
medical treatment will not be provided free of charge. If a physical injury should occur 
over the course of the study, immediately notify the primary investigator, Scott Crouter. 

Confidentiality 
The information obtained from these tests will be treated as privileged and confidential. 
Some of the data (i .e. - your age, height, weight, gender, energy expenditure data, and the 
data from one of the waist-mounted motion sensors) will be shared with David Pober, an 
investigator at the University of Massachusetts-Amherst. However, your name will not 
be disclosed. This researcher is investigating a new technique that can detect different 
activities based on your movement pattern. None of the remaining data will be released 
to any person without your consent. The information will be used in research reports or 
presentations, but your name and other identity will not be disclosed. 

Contact Information 
If you have questions at any time about the study or the procedures, ( or you experience 
adverse effects as a result of participating in this study,) you may contact the investigator, 
Scott Crouter. If you have questions about your rights as a participant, contact Research 
Compliance Services of the Office of Research at (865) 974-3466. 

Right to Ask Questions and to Withdraw 
You are free to decide whether or not to participate in this study and are free to withdraw 
from the study at any time. 
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Before you sign this form, please ask questions about any aspects of the study, which are 
unclear to you. 

Consent 

By signing this paper, I am indicating that I understand and agree to take part in this 
research study. 

Your signature Date 

Researcher's signature Date 
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