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Introduction 

Holistic, (global) processing refers to the integration of local stimulus features into a 
larger perceptual form. While global precedence is the norm for adults [1], infants’ 
perception depends greatly upon individual differences [2]. 

      The most common measure of these differences is fixation duration to a stimulus which 
is also negatively correlated to cognitive functions throughout childhood [3]. One 
explanation is that infants exhibiting shorter looks may be utilizing the more efficient 
global-local processing sequence, while “long lookers” use the opposite strategy [2]. 
Previous studies in our lab have supported this [4]. 

      However, we contend that these differences actually stem from dopaminergic (DA) 
systems such as in dorsolateral prefrontal cortex (dlPFC) and striatum as opposed to basic 
perceptual intake. A major role of DA in dlPFC is the integration of working memory 
(WM) and inhibition [9]. While long looking infants demonstrate lower recognition 
memory [10], this study will be the first to test selective inhibition in accordance with 
looking-behavior. Moreover, we have developed a model for these effects using Markov 
Chains and Rescorla-Wagner (RW) learning algorithms which model DA striatal effects 
[5]. 

     Combining these approaches, we predict that saccade latency can be predicted as a 
stochastic linear differential equation with parameters related to inhibition and looking 
behavior. In the current stage we present evidence that infants differ only in learning 
hierarchical associations, but not temporally proximal cues. As such, our design 
demonstrates selectively decreased performance by short lookers in a task that actually 
rewards impairment in holistic processing. 

 

Procedure 

     Participants consisted of 6-month infants (n=8) 

     Similar to [5] participants were seated on a parent’s lap 55 cm away from a 27” color 
LCD monitor.  A 128 channel EGI EEG system was used for data collection including a 124 
geodesic net and 2 EOG electrodes coated with SignaCreme. E-Prime 2.0 was used. 
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     Auditory stimuli consisted of 4 two-tone sequences each lasting a total of 500ms, 
referred to here on as AX (Target), XA, BY, CZ to indicate shared components. 

     Participants were presented with a female face until breaking fixation after 20s of 
accumulated looking. Participants were then presented with a randomly selected auditory 
sequence followed by a 300 ms inter-stimulus interval (ISI) before the presentation of the 
reinforcer. The AX sequence signaled appearance on one side while all others signaled the 
opposite side of the screen. The AX sequence occurred 3 times as often as the others. Data 
was collected until the participants became bored or fussy (M=70 trials, SD=17). 

     EOG analyses were performed using NetStation software. “Hits” and “misses” were 
defined as either correct or incorrect anticipatory looks for the visual reinforcer. Latency 
was filtered for a 100-500ms prosaccade band pass. Statistical analyses were performed 
using the JMP 10 interface for SAS. 

 

Behavior 

For behavioral measures, the ROC (discrimination) functions for standard stimuli 
were positively correlated with peak look (r (1, 6) =6,732, p=.039), but not for the target.  

 

Latency 

To decompose the factors of peak look, regression analyses found strong relations 
with the difference in ROC between standard as target as well as the differences in ROC 
latencies: total (r(2,115)=.795, p<.0001) and ( t=13.75, p<.0001; t=-2.61, p=.01) for behavior 
and latency respectively.  

In testing our computational model of a first order, linear stochastic differential 
equation, multiple regression analyses were performed in ROC latency differences. Model 
comparisons supported a linear differential equation maximized with ROC difference and 
looker-type as predictors: total (F (2, 64) =7.0435, p=.0017) and (t=-2.93, p=.0047; t=-3.75, 
p=.0004) for ROC behavior and looker type respectively. Corrections for multiple 
comparisons did not affect significance. 

 

Computation 

The standard RW equation [6] states that changes in association between a stimulus and 
reward is proportional to error: 



∆𝑽 = 𝜶𝜷(𝝀 − 𝜮𝑽) [Here 𝜶𝜷 denote cue/reward salience] 

Here λ is the true outcome and V is the prediction. We can recreate a continuous time 
version with stochastic differential equations. Combining this with Bayes’ rule we obtain 
our novel Markov Matrix for weight adjustment: 
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Here δ is a learning parameter and the “A” terms reflect conditional probabilities. With 
hierarchical neural networks we can further partition variances to configure synaptic 
weight vectors in neural networks. Using the generated weights after an input we can 
describe neuron activation with a modified general state equation [7]: 
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Here F denotes a transfer function between neuron input and output. Due to threshold 
linearity [8] we used the ramp function. 

 

Simulation 

     Simulations were performed using a custom coded network for MATLAB 2014b for a 
fully crossed AX-CPT (see computation) 

     Our first simulation demonstrates the rapid AX learning predicted by RW independent 
of inhibitory parameters. Total activation of the correct neuron is plotted as a function of δ 
and block number 

     In contrast our second simulation demonstrates the vastly greater importance of 
inhibitory parameters on BX trials (currently under study). Activation is plotted as a 
function of δ vs. the inhibitory parameter after 100 trials. Note that a lack of general 
learning (chance) produces a better result than non-inhibitory learning which will only 
reinforce the prepotent response.  

 

Conclusion 

     Results strongly support the alternative hypothesis: infant looker groups do not differ in 
first order learning of stimulus associations. However, conclusions regarding inhibition are 



still dependent upon out current study (of which this was a precursor). The selective 
decreases in short looker’s ability to discriminate the standard from target have several 
explanations. For example, reinforcement frequency may be a lurking variable. Moreover, 
the suspected AX-XA interaction would require inhibition to be overcome. However, the 
requirements for that task are challenging even for adults and so lower levels of inhibition 
linked with WM may have caused the interaction by coding both stimulus components with 
the reinforcer, instead of just the most proximal one.  

     while weighted optimizations found our model of stochastic first order-linear DE's to be 
the best possible model, it left over 4/5 of variance unaccounted for. As such it is likely that 
high stochasticity will continue to make modeling difficult for the current age-paradigm 
combination.  
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