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Abstract 

Neurodegenerative disorders plague the global population in vast number with very few 

treatments and no cures. These disorders act through various different mechanisms ranging from 

overexpression of certain genes to premature neuronal death. With no cure yet to be discovered, 

there is a need to look at other possibilities of treatment besides medicine to treat side effects. In 

attempt to find a genetically controlled factor that will prevent induction of apoptosis, or 

programmed cell death (PCD), this study screened eighty transgenic RNAi lines of Drosophila 

melanogaster with the hope of finding an anti-apoptotic factor. CCAP neurons were targeted 

using a UAS-GAL4 system as these neurons play an important role in wing formation and 

remain intact through the dynamic reconstruction D. melanogaster undergoes transitioning from 

larva to adult. Although the study did not yield any anti-apoptotic factor, one gene stood out due 

to its effect on wing structure. When silenced through RNAi, pebbled inhibited wing expansion 

and appears to have ablated the neurons before D. melanogaster enters the pupal stage of its life. 

Therefore, this study’s results suggest that pebbled affects CCAP neurons functionality. 

Introduction 

Neurological Disorders 

 

Neurodegenerative disorders are pathological manifestations from disturbed neuron 

function, whether by immediate injury or chronic activity (Martin 2002). Underlying 

mechanisms for these disorders are being investigated, and some have discovered that select 

properties of certain neurons can lead to selective vulnerabilities for those particular neurons 

(Martin 2002). Neurodegenerative disorders have afflicted millions of people around the world 

costing billions for treatments and deaths (Martin 1999 and Jackson 2014). Some appear 
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hereditary like Huntington’s while others are more spontaneous like Alzheimer’s (Martin 1999). 

They can range from genetic mutations to posttranslational alterations ultimately leading to the 

death of the neuron via programmed cell death (Martin 1999). These disorders have no cure and 

limited therapies. The study of neurodegenerative disorders encounters many difficulties when 

applied to humans. The human brain is a complex system of connections and activity. The 

disorders themselves are difficult to understand, and their specific mechanisms are still relatively 

unknown. Also, there is an arduous process that must be followed before testing can even be 

considered on humans. Therefore, much of what is known about neurodegenerative disorders 

utilizes non-human species for experiments.  

Drosophila as a Model Organism 

 

A particularly noteworthy non-human species used in the study of neurodegeneration is 

the common fruit fly, Drosophila melanogaster. This species, generally referred as a pest outside 

a research facility, has been used as a genetic model for over a century pioneered by Thomas 

Hunt Morgan (Stephenson and Metcalfe 2013). It is an ideal test subject for experiments 

requiring large sample sizes as it has a short development time just about ten days from embryo 

to a sexually mature adult (Jennings 2011). Its contribution to understanding signaling pathways 

and other metabolic attributes has been an immense addition to the knowledge of human 

pathology alongside its own (McGurk et al. 2015). A number of their developmental genes 

correspond to similar genes among higher order organisms like humans (Jennings 2011). It has 

four distinct life stages that require dramatic changes in anatomy and physiology. From the start, 

these fruit flies begin as eggs. Once laid, an egg will typically hatch after about a day at 25°C as 

a larva. From there, the larva will eat and grow over a week or so before it decides it is ready to 

pupate. Once it has pupated, the larva that entered the stage will undergo a dynamic 
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metamorphosis and eclosion, or emerge from their pupal casings, to become an adult fly 

(Jennings 2011). Reconstruction creates an entirely new physical profile with different functions 

and capabilities. This study focused on genetic regulation of before and after reconstruction of 

the Drosophila’s central nervous system (CNS).   The larval CNS consists of two lobes, making 

up the brain, and a ventral nerve cord (VNC) that transitions into an entirely new configuration 

with the brain taking residence in the head and the VNC in the thorax of the species (Fig. 1). 

Drosophila melanogaster has a complex neuronal network that is incredibly similar to 

vertebrates (McGurk et al. 2015).  For this reason, studies in neurodegeneration can be modeled 

using this species.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Schematic representation of Drosophila melanogaster third instar larva (a) and 

adult (b) CNS (from Strunov et al. 2013). OLA – optic lobe anlagen; BR – brain; SEG – 

subesophageal ganglion; SP – superior protocerebrum; AL – antennal lobe; OL – optic lobe; 

L – lamina; R – retina; ABD – abdominal neuromeres; TH – thoracic neuromeres; T1 – 

prothoracic neuromeres; T2 – mesothoracic neuromeres; T3 – metathoracic neuromeres. 
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CCAP Neurons 

For the following experiment, focus turns to the Crustacean Cardioactive Peptide (CCAP) 

neurons found within the central nervous system (CNS) of D. melanogaster.  These neurons are 

located along the VNC and into parts of the optic lobes (Fig. 1).  CCAP neuron activity have 

been observed in larval, pupal, and adult stages of life which means it somehow survives the 

drastic changes that occur between each life stage for the fruit fly (Nichols et al. 1999). This is a 

key feature that was utilized within this experiment. First discovered in crustaceans in 1987, 

these neurons produce several different kinds of neuropeptides that act as regulators of some 

essential physiological activities and contain receptors for other important neuropeptides such as 

ecdysis-triggering hormone (ETH) and eclosion hormone (EH) (Dulcis et al. 2005, Baker et al. 

1999).  A majority of these expressed neuropeptides are peptidergic and highly conserved 

including bursicon and partners of bursicon (burs and pburs), CCAP, and myoinhibitory peptides 

(MIPs) (Kim et al. 2015). These particular neuropeptides hold key roles in adult ecdysis such as 

bursicon which is essential in wing expansion and cuticle tanning and hardening (Peabody et al. 

2008).  CCAP are involved in the circulatory system as well as visceral organ activity in 

Drosophila (Dulcis et al. 2005, Yip et al. 1997). Some studies have shown that restricted cardiac 

function could negatively affect the act of eclosion which is when the fully formed adult fly 

emerges from its pupal casing (Park et al. 2003).   Effect on Drosophila’s ability to eclose was 

observed during the crosses made during this experiment and acted as a measure for determining 

how transgenic crosses performed.  

Apoptosis 

As mentioned before, the fruit fly undergoes dramatic changes in its morphology. Going 

from a wriggling larva to a flying adult takes a significant amount of time and energy for the 

species. Not only that, there are certain processes that are required for Drosophila to transition 
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smoothly between each stage of life. One process essential for this metamorphosis to occur is 

accomplished via a mechanism known as programmed cell death (PCD) and more specifically a 

type of PCD known as apoptosis. Apoptosis is not specific to D. melanogaster. It is seen in 

nature in a variety of species, including as humans, as a fundamental mechanism essential for 

development and homeostasis management (Fuchs and Steller 2011). Defects in its regulation 

has been shown to cause a range of pathologies in humans ranging from genetic disorders to 

diseases and even cancer (Fuchs and Steller 2011). D. melanogaster uses three known apoptotic 

genes to aid in its transition from larva to adult during the pupal stage. These genes, called 

reaper (rpr), head involution defective (hid), and grim, activate signaling pathways that induce 

apoptosis and are considered proapoptotic genes (Fuchs and Steller 2011).  Once apoptosis is 

induced it cannot be stopped within its target whether that be a cell or tissue. Regulation of this 

mechanism, therefore, is essential to ensure the “programmed” portion does not affect cells or 

tissues that do not require apoptosis.  This regulation is suspected in protecting the CCAP 

neurons from death unlike their surroundings and the focus of this experiment. The exact factors 

that are required for their preservation from this deadly mechanism require further investigation.  

Research Strategy 

 For this experiment, several genes were screened in the hope of finding anti-apoptotic 

factors that allow CCAP neurons to bypass apoptotic processes as Drosophila transition from 

larva to adult. Previous studies have shown that the genetic removal of CCAP neurons causes 

defects in their ecdysis behavior (Park et al. 2003).  Genetic crosses were made using the 

bipartite UAS-GAL4 system in which genes within the CCAP neurons will be knocked down or 

silenced via RNA interference or RNAi. If the gene that has been knocked down is important for 

CCAP survival, then the Drosophila will not continue past the pupal stage as a result.  
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Materials and Methods 

 

UAS-GAL4 system 

 

 Directed gene expression is an important technique required by scientists to study 

specific genes. However, there were limitations to previously most common gene expression 

manipulation methods. While the first method could induce expression, heat shock promotion 

required a heat shock promotor as well as heat shocking the transgenic animal while yielding low 

levels of expression (Brand and Perrimon 1993). The second method used transcriptional 

regulatory sequences from a defined promotor which permitted expression in specific cells but 

were limited in availability as well as being toxic for the organism (Brand and Perrimon 1993). 

Therefore, the UAS-GAL4 system was established. With this system, targeted gene expression 

was done in a temporal and spatial manner  making it an incredible genetic tool (Duffy 2002). 

    Discovered in yeast, the 881 amino acid protein, GAL4, acts as a transcriptional regulator 

that is sequence-specific within DNA (Kakidani and Ptashne 1988, Duffy 2002). This protein 

produced by the gal4 gene regulates transcription by binding to four sites known as Upstream 

Activating Sequences (UAS) which behaves similarly to enhancer elements in eukaryotes (Duffy 

2002). Through this mechanism, transcription of specific genes in specific tissues can be 

activated (Kakidani and Ptashne 1988).  This prokaryotic mechanism was replicated in the 

Drosophila genome by transformation, a type of horizontal gene transfer that involves uptake of 

foreign DNA sequences and integrating into recipient’s own genome (Fischer et al. 1988).  

Further studies would also implement this machinery into other model organisms, like zebrafish.  

The UAS-GAL4 system was made into a bipartite method where the parental lines, one 

expressing the GAL4 driver sequence and the other contains the UAS responder sequence, are 
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maintained separately, but their resulting progeny after mating contains the combined system 

where they will express both the driver sequence and responder sequence revealing the targeted 

gene products (Brand and Perrimon 1993, Duffy 2002) (Fig. 2). The bipartite aspect of this 

system is key to studying genes whose products could be detrimental to the organism if activated 

rendering loss of stock (Duffy 2002). Hence, this system has become an essential technique used 

by the majority of geneticists. In this experiment, the system was used in conjunction with RNA 

interference, RNAi, to knock down or silence suspected genes aiding in the protection of CCAP 

neurons through metamorphosis.  

 

RNAi 

 

 The ability to knock down, or silence, expression of genes is another method of gene 

expression manipulation that was more recently characterized than the UAS-GAL4 system (Sen 

and Blau 2006). RNA interference, RNAi, utilizes transcription of double-stranded RNA 

(dsRNA) which breaks down via enzymatic activity into short interfering RNA segments 

(siRNA) which mark certain mRNA strands for destruction (Grishok et al. 2001). This 

destruction prohibits translation of the specific protein the target mRNA specifies (Fig. 2).  Not 

only does it halt translation, but there are studies that show a posttranscriptional silencing of the 

corresponding gene (Grishok et al. 2001). RNAi’s ability to silence genes has been incredibly 

useful for isolating gene function.  

Therefore, in order to elucidate whether a gene was necessary or not for CCAP neuron 

protection, each gene that was investigated was replaced with this RNAi gene which would 

knock down the function of the gene. The phenotypic effects that resulted from this knock down 

could then be observed. This method is also not restricted to only Drosophila but has also shown 

to be effective in other species such as mammalian cells (Nielsen and Nielsen 2013). Therefore, 
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if a gene were to present itself as producing a protective factor against apoptosis within 

Drosophila, then the gene’s homologue in human cells could also be observed and tested to have 

the same effect within neurons.   

 

 

 

 

 

 

Crossing transgenic lines 

 Six males from test lines were crossed with five UAS-mCD8GFP; CCAP-gal4III virgins 

for each crossing. The test lines were ordered from the Bloomington Drosophila Stock Center, 

specifically using their TRiP lines which is the Transgenic RNAi Project. These lines have been 

verified to be transgenic RNAi lines. The genes chosen for this screening were considered due 

their previously identified functions as being a transcription factor or part of a signaling pathway 

directly affecting gene expression such as the Jun-Kinase (JNK) pathway. By crossing these 

transgenic lines that contain the necessary UAS with virgins that expressed CCAP-GAL4 driver, 

they ensured these transgenic lines targeted the CCAP neuron tissues. Some of these lines were 

Figure 2. Visualization of UAS-GAL4 system. One parent contains the driving Gal4 

sequence, referred to as the driver line. The other parent contains the corresponding UAS 

sequence, referred to as the responder line. The two sequences insert themselves in their 

designated position and begin expression within the targeted tissue. The gal4 encodes for the 

GAL4 protein which binds to the GAL4-activated promoter, initiating transcription of the 

targeted gene that has RNAi added into it. Expression of the RNAi produces a dsDNA which 

is sliced into subsequent short-interfering RNA sequences that bind to the target gene’s 

mRNA and halts translation of the targeted protein.   
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heterozygous segregating which means that the lines required the utilization of balancer 

chromosomes.  

Balancer chromosomes are used to suppress recombination with homologues that would 

otherwise lead to lethal or sterile mutants (Lattao et al. 2011). These balancers contain dominant 

markers that can be seen in all adults, but they also contain a subset of markers that will indicate 

homozygous mutant larvae from heterozygous (Lattao et al. 2011).  The negative control for this 

experiment is normal development of the pupae (Fig. 3). This results in a subsequently 

successful eclosion by a fully developed adult. The positive control for the results were measured 

against was UAS-grim. Premature expression of grim leads to total pupal death (Fig. 4). If the 

resulting progeny from the test crosses produced the same effect, then the gene would be 

considered to be essential in preventing apoptotic expression within the CCAP neurons.    

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Normally developed pupa. This 

pupa has easily distinguishable features such 

as the eyes within the left portion of the pupa 

casing. There are also furled wings that have 

will expand once eclosion occurs denoted by 

the darkened portions seen in the midsection 

of the pupa casing. 

 

Figure 4. Premature overexpression of grim. 

The head region, denoted by the black 

circle, has completely collapsed and 

condensed with no distinguishable features 

to indicate development. The dorsal region 

shows that the pupa has completely detached 

and shriveled away from the side leaving the 

casing completely hollow at the dorsal 

region. 
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Results 

In an initial screening, eighty RNAi lines were crossed with UAS-mCD8GFP; CCAp-

gal4III (U-mG; CCAP-gal4), which drives the expression of the RNAi genes in CCAP neurons 

as well as one for GFP (Fig. 5). The UAS-mCD8GFP produces a GFP signal in the CCAP 

neurons. GFP is a green fluorescent protein isolated from jellyfish and is used as a marker for 

tissue visualization in various organisms (Stretton et al. 1998).  After screening the different 

genes ranging in functions from development to transcriptional controls, there were no knocked 

down genes that yielded any probable anti-apoptotic factors as all larvae grew into adulthood. 

However, some of these genes resulted in eclosed adults exhibiting unusual wing formations. 

One particular gene stood out. Pebbled (peb), which codes for Hindsight (Hnt), is a homologous 

to the human zinc-finger transcription factor RREB-1 that has been seen to be expressed during 

embryonic development as well as later during the adult phase acting as a regulator (Sun and 

Deng 2007, Baechler et al. 2016).  This particular stock of knocked down pebbled, 

pebRNAi/TM3*, Sb, Tb (pebRNAi), was heterozygous segregating using a dominant larval markers, 

tubby (Tb), and a dominant adult marker, stubble (Sb), contained in different loci within the third 

chromosome called TM3*. Tubby results in larvae and pupae appearing squished compared to 

their wild type counterparts (Fig. 6B). Stubble refers to the stunted bristle length that adult 

Drosophila have lining their backs (Fig. 7B).  
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The pebRNAi parent for this cross are homozygous lethal where the pupae did not eclose 

and died (Fig. 6A).   The heterozygous form of this stock appeared tubby and progressed to 

eclosion (Fig. 6B). For the CCAP parent, pupae appeared normal as they developed towards the 

adult stage (Fig. 7C). After crossing the heterozygous pebRNAi with homozygous CCAP-gal4, 

roughly half of the F1 generation express the pebRNAi (96/200) while the other half will not 

(104/200) (Fig. 5). Those expressing pebRNAi progress to eclosion with a pupal length similar to 

the CCAP parent (Fig. 6E). Those that did not express pebRNAi served as the genetic control as 

they express the normal pebbled function in the CCAP neurons and identified as such by 

expressing the tubby phenotype during pupal stage (Fig. 6D).  

Figure 5. Genetic scheme of pebbled-RNAi cross with CCAP-gal4. Crossing the 

heterozygous pebRNAi that contains Tb and Sb on the third chromosome with homozygous 

CCAP-gal4 results in two genotypes in the F1 generation. One expresses the pebRNAi while 

the other does not. The one that does not express pebRNAi will have the tubby and stubble 

phenotypes while the one that does express pebRNAi will not have those phenotypes.  
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Once eclosed, the adult wing structures were most notable. For the CCAP parent, after 

eclosion the adults exhibit a crinkled wing formation with long, thin, bristles along the back and 

strong red eye color (Fig. 7A). The pebRNAi parent, after eclosion, has straight wings with 

shortened, thick, bristles – typical of the stubble phenotype – along its back and a more orange 

eye color (Fig. 7B). Two crosses were made in this experiment. One crossed pebRNAi males with 

CCAP virgins while the other crossed CCAP males and pebRNAi virgins. All pupae eclosed 

reaching the adult stage.  Adults that did not have the tubby phenotype during the pupal stage 

had severely shriveled wing structures that bent down close to their bodies and remained 

shriveled even after several days (Fig. 7D). Their eye color ranged from light orange in color to 

strong red and had long, thin, bristles like the CCAP parent (Fig. 7C).  The pupae that did have 

Figure 6. Composite picture of pupae structures. A) Homozygous lethal appearance of 

Pebbled 33943/ TM3*, Sb, Tb parent. B) Heterozygous tubby (Tb) appearance of Pebbled 

33943/ TM3*, Sb, Tb parent. C) U-mG; CCAP-gal4III parent D) Tubby appearance of 

Pebbled 33943/ TM3*, Sb, Tb, crossed with U-mG; CCAP-gal4III not expressing pebRNAi. 

E) Homozygous appearance of Pebbled 33943/ TM3*, Sb, Tb, crossed with U-mG; CCAP-

gal4III expressing pebRNAi. 
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the tubby phenotype eclosed with straight, expanded, wings with short bristles similar to the 

pebRNAi parent (Fig. 7D). 

Dissection of the larval central nervous system (CNS) and subsequent GFP staining 

allowed for the visualization of the CCAP neurons in the CCAP parent as they produced GFP 

from the UAS-mCD8GFP combined with CCAP-gal4 (Fig. 8A). Roughly five to six CNS were 

dissected from each test cross and stained similarly for visualization. Larvae from the test crosses 

were indiscriminately dissected before undergoing fixation and staining, as in larvae with the 

tubby phenotype and those without were dissected together from each test cross. However, the 

test cross using pebRNAi males did only contained CNS samples (n = 10) from larvae expressing 

Figure 7. Composite image of eclosed adult wing structures. A) Presentation of homozygous 

U-mG; CCAP-gal4III parent. B) Presentation of heterozygous Pebbled 33943/ TM3*, Sb, Tb 

parent.  C) Presentation of pebRNAi expressing adult from Pebbled 33943/ TM3*, Sb, Tb, 

crossed with U-mG; CCAP-gal4III parent  D) Presentation of adult not expressing pebRNAi 

from Pebbled 33943/ TM3*, Sb, Tb, crossed with U-mG; CCAP-gal4III. E) Comparison 

between the two adults resulting from Pebbled 33943/ TM3*, Sb, Tb, crossed with U-mG; 

CCAP-gal4III. 
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pebRNAi while the test cross using pebRNAi virgins had CNS samples (n = 12) from both those 

expressing pebRNAi and those that were not (npeb= 7, nTb = 5). 

 GFP staining of the test cross larval CNS revealed that when pebRNAi males were crossed 

with CCAP-gal4 virgins, there appeared to be no presentation of CCAP neurons (Fig. 8B). 

Crossing PebRNAi virgins with CCAP-gal4 males, GFP staining of the larval CNS had a portion 

of the dissected CNS not presenting CCAP neurons and the other portion did present CCAP 

neurons (Fig. 8C and Fig. 8D).  

 

Discussion 

 This study investigated eighty different genes to determine if any of them code for a 

factor that prevents apoptosis induction in CCAP neurons. These particular neurons survive 

through the metamorphosis as the Drosophila transition from larval stage to adult stage. 

Metamorphosis requires extensive reprogramming which involves the restructuring of the 

Drosophila’s neural circuit (Lee et al. 2013).  Ultimately, this study hypothesized that if there is 

a protective factor preventing apoptosis from occurring during a dramatic change such as 

Figure 8. GFP stained larval CNS. A) U-mG; CCAP-gal4 parent showing the CCAP 

neurons. B) Test cross using pebRNAi males and CCAP-gal4 virgins showing no neurons. 

C) Test cross using pebRNAi virgins and CCAP-gal4 males showing no neurons. D) Test 

cross using pebRNAi virgins and CCAP-gal4 males showing CCAP neurons.   
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metamorphosis then there could be a potential homolog within humans protecting against 

neurodegeneration. These protective factors could then be targeted for neurodegenerative 

disorder treatments. To determine their functions, the genes were silenced using RNAi. Though 

no anti-apoptotic factor revealed itself during this investigation, one particular gene appeared to 

indicate importance in the neuronal development. 

 Pebbled (peb) encodes for a highly conserved nuclear zinc-finger transcriptional protein 

expressed during different stages of the Drosophila’s life. Homolog expression has been 

identified in a variety of organisms, both invertebrates and vertebrates including the Ras-

responsive element binding protein 1 (RREB-1) in humans (Ming et al. 2013). During embryonic 

development, peb expression occurs in the midgut and extraembryonic membrane and aids in 

germ-band retraction and positioning of forming body parts (Yip et al. 1997).  Pebbled is 

required for eye development in adults as it assembles the five-cell preclusters, the timing of 

their neuronal determination, and subsequent rotation (Pickup et al. 2009).   Studies have shown 

that pebbled is suggested to express in specific tissues and negatively autoregulates which many 

transcriptional factors have been shown to do to maintain homeostatic levels (Ming et al. 2013 

and Rosenfeld et al. 2002).  

 From this study, knocking down pebbled in the CCAP neurons affected the Drosophila’s 

ability to expand its wings (Fig. 7C). These results suggest that pebbled somehow affects the 

CCAP neurons or parts of Drosophila’s neural circuitry to these neurons. One possible target of 

pebbled could be the neuropeptide production in CCAP neurons as these neurons produce 

neuropeptides such as bursicon and partners of bursicon which are responsible for cuticle tanning 

and wing expansion. CCAP neurons release bursicon before wing expansion hastening the 

hardening of the expanding cuticle suggesting that the hormone induces apoptosis of the wing 
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epidermis (Kimura et al. 2004). Analysis of the test cross larval CNS using GFP staining shows 

that expression of GFP has been hindered resulting in the CCAP neurons either not appearing, or 

they have been ablated.  Two test crosses were made where one used pebRNAi males crossed with 

CCAP-gal4 virgins and the other used the pebRNAi virgins crossed with CCAP-gal4 males. 

Interestingly, the cross using pebRNAi females resulted in a population that expressed GFP signal 

in the CCAP neurons while another population did not (Fig. 7C and D). Compared to the CCAP 

parent, signal was not as robust in the test cross population that did visualize the neurons, but this 

may have been due to the time between staining and visualizing.  GFP signal degrades over time 

and faster when exposed to fluorescent light. 

 Exactly how pebbled affects these CCAP neurons was not determined during this study 

and will require further testing to elucidate its relationship between the two. The next step would 

be to repeat dissections on larval CNS but separate the genetic control from the test cross to 

confirm the presence of CCAP neurons when pebbled is knocked down. Also, dissections on 

adult ventral nerve cord (VNC) will also be required to determine the presence or lack of these 

neurons after the organism has undergone its metamorphosis. These neurons reposition into the 

thorax area on the VNC after neural reconstruction that occurs during the transition from larva to 

adult (Fig. 1).  Further investigation will be needed to understand the pebbled gene more and see 

if its function translates to human homologs as the search for treatments and cures for 

neurodegenerative disorders continues. 
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