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Abstract 

 

The coupling of high performance multi-dimensional liquid chromatography and tandem mass 

spectrometry for characterization of microbial proteins from complex environmental samples 

has paved the way for a new era in scientific discovery. The field of metaproteomics, which is 

the study of protein suite of all the organisms in a biological system, has taken a tremendous 

leap with the introduction of high-throughput proteomics. However, with corresponding 

increase in sample complexity, novel challenges have been raised with respect to efficient 

peptide separation via chromatography and bioinformatic analysis of the resulting high 

throughput data. In this dissertation, various aspects of metaproteomic characterization, 

including experimental and computational approaches have been systematically evaluated. In 

this study, robust separation protocols employing strong cation exchange and reverse phase 

have been designed for efficient peptide separation thus offering excellent orthogonality and 

ease of automation. These findings will be useful to the proteomics community for obtaining 

deeper non-redundant peptide identifications which in turn will improve the overall depth of 

semi-quantitative proteomics. 

Secondly, computational bottlenecks associated with screening the vast amount of raw mass 

spectra generated in these proteomic measurements have been addressed. Computational 

matching of tandem mass spectra via conventional database search strategies lead to modest 

peptide/protein identifications. This seriously restricts the amount of information retrieved 

from these complex samples which is mainly due to high complexity and heterogeneity of the 

sample containing hundreds of proteins shared between different microbial species often 
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having high level of homology. Hence, the challenges associated with metaproteomic data 

analysis has been addressed by utilizing multiple iterative search engines coupled with de novo 

sequencing algorithms for a comprehensive and in-depth characterization of complex 

environmental samples. 

The work presented here will utilize various sample types ranging from isolates and mock 

microbial mixtures prepared in the laboratory to complex community samples extracted from 

industrial waste water, acid-mine drainage and methane seep sediments. In a broad 

perspective, this dissertation aims to provide tools for gaining deeper insights to proteome 

characterization in complex environmental ecosystems.  
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Chapter 1 - Overview of Mass Spectrometry Based Proteomics and 

Bottlenecks Associated with Metaproteomic Characterization 
------------------------------------------------------------------------------------------------------------------------------------------ 

1.1 Mass Spectrometry and its Applications in Biological Systems: 
 

Mass spectrometry mainly involves the measurement of the mass to charge ratio of ions 

present in a sample. It has become a widely used analytical tool in biological research for the 

characterization of biomolecules like sugars, proteins, lipids, oligonucleotides etc. 

The first applications of mass spectrometry (MS) in biological research can be traced back to 

1940’s when heavy stable isotopes were used as tracers to understand carbon-di-oxide 

production in animal models [1]. Since then, rapid advancements in technology have diversified 

the range of MS in biological research. Currently, the applications of mass spectrometry in life-

sciences encompass such diverse areas as screening infants for metabolic disorders [2], profiling 

changes in protein expression between cells grown in different growth conditions [3], 

determining the presence of minerals in food [4], characterizing pharmaceutical drugs and in-

vivo metabolism [5] and studying functional gene expression in complex microbial ecosystems 

[6]. The growing popularity of MS in research can be exemplified from a search in PubMed (an 

online archive of life-science journals) for the phrase “Mass Spectrometry” that resulted in over 

280,000 total hits, with over 46,900 articles published since 2015. The importance of MS in 

biological research was further highlighted in 2002 when John Fenn and Koichi Tanaka were 

awarded the 2002 Noble prize in chemistry for their work on the “Development of soft 

ionization methods for mass spectrometric analysis of biological macromolecules” [7, 8]. 
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By definition, a mass spectrometer is an instrument that can ionize a sample and measure the 

mass to charge ratio of the resulting ions. However, the functional versatility of this mass to 

charge measurement has enabled this instrument to become a vital tool in a wide range of 

fields, including life sciences. This versatility is imparted because of the instrument’s ability to 

give quantitative and qualitative information on the elemental, isotopic, and molecular 

composition of both organic and inorganic specimens. In addition, the samples that can be 

analyzed include gas, liquid, and solid states that have masses ranging from single atoms 

(several Da) to proteins over 300 KDa [9]. Post-translational modifications (PTM) of proteins, an 

important regulatory process for the cellular localization and eventual function, can also be 

quantified via MS [10]. The coupling of MS instrumentation with high throughput computing 

clusters and associated software have dramatically improved the breadth of information that 

can be obtained in these complex studies and thus helped MS to permeate into an extensive 

range of research domains. Lastly, the interface of liquid chromatography with mass 

spectrometry (LC-MS) has allowed separation and characterization to be performed 

simultaneously thus making it a leading analytical technique in biotherapeutics [11].  

1.2 Mass Spectrometry based Proteomics in Systems Biology: 
 

Systems biology is an inter-disciplinary field consisting of genomics, transcriptomics, proteomics 

and metabolomics that is aimed at understanding the biological systems at the global level [12]. 

Proteomics, which is the comprehensive study of the expression of the entire compliment of 

proteins in different organs, tissues or cell types, is a key component of the systems biology 

approach. Proteomics plays an essential role in our understanding of biology as a dynamic 
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system since the proteome is directly derived from the genome and in turn regulates both gene 

expression and cellular metabolism. The analytical versatility of the mass spectrometer has 

been extensively exploited in systems biology based proteomic studies involving complex 

correlations among molecular components. 

There are two general strategies for studying Mass spectrometry (MS) based proteomics. The 

first is a discovery based approach in which, presence and absence of a certain protein is 

carried out by differential comparison of the entire proteome obtained from cellular extracts 

grown in different physiological conditions. This technique has demonstrated the capability to 

identify several thousand proteins and presents a global picture of the proteome under 

consideration [13]. However, specific functional characterizations like protein-protein 

interactions cannot be studied using this method. For this, a much more targeted approach is 

employed in which specific proteins along with their binding partners are extracted and studied 

systematically.  

MS based proteomics can be experimentally carried out using two different strategies. 1) The 

‘‘bottom-up’’ strategy involves digesting the crude protein extract into peptides using 

proteolytic enzymes such as trypsin. This is followed by separation of peptides using liquid 

chromatography coupled to tandem mass spectrometry.  2) ‘‘Top-down’’ strategy involves MS 

analysis of intact proteins that have not been cleaved by proteolytic enzymes. Here, intact 

proteins are subjected to direct fragmentation and subsequent mass analysis.  All the 

experiments described in this dissertation were carried out using the bottom-up approach [14]. 
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Some of the current studies where MS based proteomics has contributed to development of 

systems biology include 1) Nutritional sciences; where systems analysis of normal and nutrient-

perturbed networks with respect to a specific diet has enabled the modeling of cellular 

signaling responses [15], 2) Drug Discovery; where systems biology has resulted in the 

identification of protein network components and characterization of post-translational 

modifications in the drug discovery process [16], 3) Neurological Diseases; where integration of 

data from genetic and proteomic experiments has identified pathways involved in the 

pathogenesis of neurological diseases [17]. 

1.3 Metaproteomics- Utilizing the Power of High-Throughput Mass 

Spectrometry for Probing Complex Microbial Communities: 
 

The coupling of high performance multi-dimensional liquid chromatography and tandem mass 

spectrometry for deep proteome characterization of microbial proteins from complex samples 

(metaproteomics) has heralded a new era of scientific discovery for these crucial unculturable 

systems. Metaproteomic investigations have highlighted some interesting aspects of functional 

gene expression within microbial consortia, particularly those that contain limited microbial 

membership diversity. However, applications of proteomic investigations for complex microbial 

assemblages such as groundwater, seawater soils etc. still present challenges that need to be 

addressed. Nonetheless, metaproteomics has played a major role in enhancing our 

understanding of the microbial world and link microbial community composition to function. 

Earlier work on metaproteomics was heavily focused on lower complexity microbial systems 

such as those found in acid mine drainage (AMD) [18-20], sludge water bioreactor [21] and 
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microbial communities in gnotobiotic mice [22]. These models provided an initial understanding 

that propelled the design of customized proteomic workflows for more complex systems. Some 

of the key areas where environmental metaproteomics has been used to gain molecular 

insights include 1) Bioremediation; where microbial activities resulted in remediating toxic 

metal contamination sites like soil [23]. 2)  Carbon cycling as a means to regulate carbon flow in 

the ecosystem [24]. 3) Bioenergy that deals with the characterization of microbial species 

involved in the conversion of cellulosic material to biofuels for bioethanol, biodiesel and 

biohydrogen production [25] and 4) Understanding how microbial species impact human health 

in various body sites including oral, gastrointestinal and genital tracts [26].  

Inspecting metaproteomic datasets from these studies have revealed crucial information about 

microbial community structure, function, and dynamics. These observations have enhanced our 

understanding on how micro-organisms co-ordinate, co-operate and compete for nutrient 

resources and how they share the metabolic ‘work’ amongst themselves to ensure community 

survival and provides defense from external environmental sources. At the higher level, this 

information is useful in understanding host-microbial interactions such as bacterial/plant or 

bacterial/animal interfaces.   

1.4 Mass Spectrometry as a Method of Choice for Characterization of Microbial 
Mixtures: 
 

Mass spectrometry has served as a standard analytical platform for characterization of 

constituent molecules (peptides, proteins and other metabolites) in microbial mixtures. 

Recently, MS-based approaches have been used as alternatives, or in some cases completely 

replaced conventional methodologies for microbial characterization in research as well as 
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clinical microbiology laboratories. A series of commercially available systems are now routinely 

employed in hospital, clinical, and research labs worldwide [27]. Some of the highly effective 

MS systems for microbial characterization include MALDI-based tandem instruments—trap-TOF 

[28], TOF-TOF [29] FTMS [30] as well as single particle mass spectrometry (SPMS) analyzers 

[31]. Applications of electrospray ionization coupled with tandem MS for rapid characterization 

of microorganisms (including their proteomes and metabolomes) have been gradually making 

their way in 1) Identifying bacteria with unsequenced genomes [32], 2) In bacterial 

metaproteomics [33] and 3) Proteogenomics [34, 35].  

1.5 Experimental Challenges Associated with Community Proteomics: 
 

One of the major bottlenecks associated with microbial metaproteomics is the process of 

protein extraction from complex environmental samples. These samples often contain mixtures 

of various organic and inorganic materials that includes humic acid, lignin, chemical chelation, 

cell exudation and various degradation products. Different protein extraction methods have 

been designed depending on the features of the environmental samples that includes soils, 

sediments, ground and sea water samples, acid mine drainage, biofilms, marine organic 

particles and symbionts. However, due to the heterogeneous species composition, wide 

dynamic range in protein abundance levels, and the proteins binding to the membrane or soil 

matrix that are difficult to extract, there is no standard and efficient protocol for extracting 

proteins from environmental samples. Thus, design of new extraction protocols that can lead to 

enhanced quantification of proteins from these complex matrices is an area of active research 

in metaproteomic studies.  
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Another major caveat in the experimental workflow is the separation of peptide mixtures. 

Proteolytic digestion of proteins extracted from these community samples generally results in 

complex peptide mixtures. Sample fractionation is a crucial step, as it simplifies complexity 

prior to a mass spectrometric measurement. 2-dimensional gel electrophoresis is an efficient 

protocol for protein separation as it can effectively resolve protein isoforms and modification 

states. However, this process is hampered by its limited dynamic range and low-throughput, 

and thus has gradually been replaced with liquid chromatography (LC). In general, multi-

dimensional separations consisting of strong cation exchange (SCX) with reverse phase (RP) are 

used to separate complex peptide mixture in an automated, high-throughput manner. Here two 

different peptide properties i.e. charge and hydrophobicity are exploited to obtain good 

orthogonality. This dramatically improves the resolution and better sampling of low abundant 

species that results in the identification of thousands of proteins from these samples. However, 

disadvantages of LC include its generally higher operational cost and less favorable 

concentration sensitivity. 

Besides this, some of the other experimental challenges encountered during metaproteomic 

analyses include 1) Further optimization of proteome fractionation procedures for efficient 

extraction of soluble, membrane and extracellular fractions, 2) Quantification methods that do 

not require in situ metabolic labeling and 3) Use of mass spectrometers with fast scan speeds 

and high mass accuracies for resolving complex proteomes within optimum time frames. 
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1.6 Computational Challenges Associated with Community Proteomics: 
 

A multidimensional liquid chromatography/ tandem mass spectrometry measurement of a 

community sample generates molecular masses for thousands of tryptic peptides over a course 

of an extended chromatographic elution profile, which can last for 22-24 hours. Naturally, this 

process generates tens to thousands of fragmentation spectra, most of which correspond to a 

specific peptide sequence. Thus, manual inspection of these myriads of peptide sequences is 

impossible and requires complex bioinformatic tools for data interpretation.  

Over the past few years, the development of metaproteomics has been driven by the ability to 

sequence microbial genomes via high throughput sequencing [36]. Thus, the quality of a 

metaproteomic data is related to the metagenome from which it was derived. High-throughput 

DNA sequencing platforms like 454, Illumina and Ion Torrent have had dramatic impacts on 

metaproteome measurements. Best bioinformatic practices in metaproteomic data analysis 

involves constructing a predicted metagenomic database of the sample under consideration 

and computationally converting this metagenome to a metaproteome database and then 

searching the fragmentation spectra against this database to infer peptides and proteins. With 

the widespread availability and reduced cost of sequencing platforms, metagenome sequencing 

of samples has become a standard routine.   

Despite these developments, the field suffers from the exceptional complexity and 

heterogeneity of the sample that hamper data evaluation. Protein hits in metaproteome 

measurements are derived from several hundreds of different species, thus making taxonomic 

binning a tremendous task. Another challenging issue routinely encountered is the functional 
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annotation of proteins, as community proteomics is chiefly interested in specific functions 

performed by the dominant member in the ecosystem [37]. Other intrinsic complexities present 

in the biological sample, like homologous proteins/domains, horizontal gene transfer and strain 

level variations, require additional proteomic considerations that can maximize protein 

identification without compromising the false discovery rate (FDR).  

These computational bottlenecks have partially been addressed by developing softwares that 

are dedicated for the analysis of metaproteomic datasets [38, 39]. For exhaustive peptide and 

protein identifications, these softwares feature multiple database search algorithms which lead 

to enhanced identification reliability. Also, the use of concatenated metagenomes by combining 

several samples from different time points can boost metaproteome coverage. This issue will 

be addressed in detail in chapter 5. One solution in the measurement space employs the use of 

high mass accuracy, high resolution mass spectrometers such as FTICR or Orbitraps that have 

very high discriminatory power (≤ 5 parts-per-million mass accuracy) to resolve peptides of 

similar mass to charge ratios. This high resolving power permits high fidelity assignments during 

database search at an extraordinarily low FDR (false discovery rate) levels (≤ 0.1 %) [40].  

1.6.1 Database choice - A Critical Factor Influencing Protein Identifications: 
 

In spite of the development of dedicated tools (like multiple iterative search engines discussed 

above) for metaproteomic characterization, the choice of protein sequence database remains a 

major factor influencing the annotation of tandem mass spectra. Protein identification chiefly 

depends on matching experimental mass spectra obtained from the sample under study with 

the in-silico generated theoretical spectra obtained from a protein sequence database. 
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Environmental samples derived from soil, groundwater etc. may contain thousands of different 

microbial species, and the selection of a well-suited database is rather an arduous task. 

Secondly, these large databases result in an exponential increase in search space, which poses 

several FDR-related issues which impact the peptide to spectrum matches [41, 42]. Despite 

outstanding efforts undertaken in addressing metagenome research, the above-mentioned 

factors pertaining to database selection is still a major limiting factor influencing in-depth 

peptide/protein identifications. Cross-species identification is often a successful approach due 

to the high sequence similarity among orthologous genes from closely related species [43], but 

a single amino acid change can seriously affect peptide-to-spectrum matching, resulting in 

erroneous protein identification. Error-tolerant DB searches, as well as DB-independent 

strategies like de novo (peptide) sequencing (discussed below), have been proposed as 

alternative solutions to classical DB search [42, 44-46]. However, an optimized and standardized 

mass spectrometry (MS) data analysis pipeline that can cater to all the bottlenecks concerning 

metaproteomic characterization is not yet available. 

1.6.2 The Issue of Protein Identification and Inference: 
 

Apart from database choice, the validation of peptides/proteins identified is major issue to 

tackle in shotgun metaproteomic experiments [47]. The problem arises because of the fact that 

a given peptide identification can be potentially matched to several proteins due to sequence 

redundancy. In the metaproteomic landscape, this issue becomes even more complicated as 

the peptide sequences could either originate from different proteins within a single organism 

(intra-species variation) or more likely from homologous proteins originating in different 
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species (inter-species variation). This recurrence of a protein or in certain cases a part of a 

protein sequence is mainly due to sequence conservation of functional domains between 

closely related organisms. As a result, the protein assembly software will attribute these 

redundant sequences to several species thus hampering the process of unique identification 

and correct assignment of species. Hence, additional efforts are required while assigning 

protein identifications to avoid false positives [48].  

1.7 De Novo Sequencing: 
 

Although database searching is the current gold standard for analyzing proteomics data, it 

suffers from a major drawback in that it relies heavily on a user provided database.   This is 

acceptable in the case of microbial isolates where the database complexity is relatively low. 

However, in case of complex environmental samples, the metagenome may be unavailable or 

incomplete. This is because some of the low abundant microbial species in the sample may be 

uncultivable and hence the database lacks the complete genomic sequences. These naturally 

underrepresented species that contribute to the metaproteome may go undetected due to the 

absence of their corresponding sequences in the database.  

De novo sequencing offers an extended approach to common database searching strategy and 

can be used as an alternative tool for peptide identification. Here, instead of matching the 

spectrum to a database-derived theoretical spectrum, the de novo algorithm examines the 

sequence of a spectra directly from the tandem mass spectrum [49]. Thus, it side-steps the 

problem of unrecovered sequences by not relying on the protein sequence database at all. 

Figure 1.1 shows a representative example of peptide reconstruction directly via tandem mass
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Figure 1. 1: Peptide reconstruction via De Novo Sequencing 
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spectra. The main idea of de novo sequencing is to use the mass difference between two 

fragment ions to calculate the mass of an amino acid residue on the peptide backbone. The 

mass can usually uniquely determine the residue. For example, the mass difference between 

the y7 and y6 ions in Figure 1.1 is equal to 129, which is the mass of glutamic acid (E) residue. 

Similarly, the next adjacent residue between y6 and y5 can be determined as Leucine (L) by the 

mass difference. Such a process can be continued until all the residues are determined. Thus, if 

one can identify either the y-ion or b-ion series (the peptide nomenclature of b and y type ions 

is discussed in chapter 2) in the spectrum, the peptide sequence can be determined.  

However, the spectrum obtained from the mass spectrometry instrument does not tell the ion 

types of the peaks, which requires a computer algorithm to figure out the process of de novo 

sequencing. Modern computer architectures now allow de novo sequencing to be used as a 

powerful and cost-effective validation method for peptide identification. However, it should be 

noted that distinguishing amino acids or their combinations by direct interrogation of 

fragmentation spectra require high mass accuracy instrument platforms. For example, the 

masses of the Lysine and Glutamine residues differ by just 0.037 Da and thus requires a mass 

spectrometer that can afford a mass accuracy within a few ppm range that can distinguish 

closely related species. Hence, de novo sequencing should be used as a complimentary 

approach only when mass spectrometers possessing high mass accuracies (like Orbitraps 

discussed in chapter 2) are used for proteomic measurements. Secondly, the essential step of 

mapping these de novo peptides back to a protein sequence is not performed by the de novo 

algorithm. Also, using de novo derived data for taxonomic and functional interpretation of 
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metaproteomics data has not been explored so far. These aspects will be discussed in broader 

detail in chapter 4.  

1.8 Scope of the Dissertation: 
 

This dissertation will primarily focus on two key factors for enhancing metaproteome research: 

1) Optimization of chromatographic separations in order to obtain deeper non-redundant 

peptide identifications and 2) Optimized informatics pipeline consisting of multiple iterative 

search engines coupled with de novo sequencing algorithms for a comprehensive and in-depth 

characterization of complex environmental samples. As demonstration of these two major 

aspects, this dissertation will also describe the deployment of these experimental and 

computational strategies to evaluate various natural environmental microbial communities.  

Chapter 2 will provide a detailed explanation of biological mass spectrometry with a special 

focus on discovery proteomics. The foundations of multidimensional chromatography and 

tandem mass spectrometry, ionization modes, data-dependent acquisition, peptide/protein 

identification from MS/MS spectra will be discussed in broader detail.  

Chapter 3 will describe the optimization and refinement of complex peptide separation profiles 

on samples of varying complexities. Here, the concept of “peptide front-loading” will be 

introduced, which impacts proteome depth and modifications in experimental protocols will be 

proposed to circumvent this issue. The findings from this chapter will be useful to the 

proteomics community for obtaining deeper non-redundant peptide identifications which in 

turn will improve the overall depth of semi-quantitative proteomics.  
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Chapter 4 will address the computational bottlenecks associated with community proteomics. 

The use of multiple search engines coupled with the integration of orthogonal information form 

de novo sequencing algorithms will be discussed here. Samples of varying complexities will be 

used to evaluate the range and effectiveness of our approach.  

Chapter 5 will present a case study where time-series genome resolved metagenomics and 

endpoint metaproteomics were used to reveal changes in the microbial community of a newly 

inoculated Thiocyanate (SCN-) bioreactor. This work will highlight the applicability of 

metaproteomics to gain a mechanistic understanding of contaminant degradation by a 

microbial community and provide critical biological insights into the expression patterns of 

microbial functionality in the community. 

Chapter 6 will present another case study where metaproteomics was used to assess the 

expression of microbial multi-heme cytochromes in situ at three different sites along the west 

coast of North-America that contain methane seeps. This study highlights the applicability of 

metaproteomics to reveal the expression of proteins involved in extracellular electron transfer 

from ANME archaea to their bacterial partners thus mediating the process of reverse 

methanogenesis in oceanic sediments.  

 Finally, chapter 7 will summarize the major accomplishments of this dissertation research and 

provide a framework for future experiments to obtain deeper proteome coverage in diverse 

sample types at an unprecedented level of molecular detail. It will conclude by outlining the 

current state of mass spectrometry based proteomics and highlight major areas that need 

further research for comprehensive protein identification.   
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Chapter 2 - Experimental and Computational Approaches for Mass-

spectrometry Based Community Proteomics 
------------------------------------------------------------------------------------------------------------------------------------- 

2.1  Generalized Workflow of MS based Proteomic Studies:  
 

In this chapter, the overall approach of proteomic measurements of biological samples by liquid 

chromatography and tandem mass spectrometry will be discussed in broader detail. 

Multidimensional liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) 

is a standard analytical platform for the identification and quantification of peptides and 

proteins in complex biological samples. MudPIT (Multidimensional protein identification 

technology) is a widely used workflow for the separation of proteolytic peptides [50]. The main 

goal of MudPIT mass spectrometry is to maximize the identification of proteins with varied 

abundances. The intrinsic capability of MS allows only a limited number of peptide 

identifications, with the identifications biased towards the more abundant species in the 

sample. MudPIT measurements usually employ longer run times (~20 hrs.) that results in better 

separation of complex samples. This in turn enhances the overall peptide identifications [51]. 

Prior to scanning by the mass spectrometer, the peptide mixtures are resolved by 2-

dimentional chromatography. The main goal of peptide separation by chromatography is to 

maximize unique peptide identifications and in turn improve the overall protein identifications. 

Figure 2.1 outlines the generalized schematics of MudPIT workflow. Here, the proteins are first 

digested to peptides. These peptides are then loaded onto a biphasic column (usually strong 

cation exchange [SCX] and reverse phase[RP]). Different fractions of peptides are then eluted 

off this column by multidimensional chromatography and they subsequently enter the mass  
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Figure 2.1: Schematic illustration of the MudPIT Workflow
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spectrometer. Here the peptides of unique mass are first isolated and then fragmented. The 

mass/charge values of the resulting fragment ions are then measured to generate the MS/MS 

spectrum. The experimental spectra provide an empirically generated fingerprint of the 

peptide. Following this, the sequenced genome of the sample under consideration is subjected 

to in-silico digestion to generate theoretical spectra. Finally, the experimental and theoretical 

spectra are compared to identify peptides and proteins [52, 53]. A ~20 hr. MudPIT run typically 

generates hundreds to thousands of MS/MS spectra from which thousands of proteins can be 

sampled. Quantitative information on relative protein abundances can be estimated in a 

number of ways and will be discussed in section 2.7.  

2.2 Digestion of Proteins into Peptides: 
 

In order to obtain the peptide mixture for LC-MS/MS analysis, the biological sample is typically 

processed as follows: 

• The environmental sample is subjected to cell lysis. For this, the sample is boiled in lysis 

buffer containing SDS which breaks open the cells (SDS dissolved in 100 mM Tris-HCl 

buffer pH 8.0). SDS is a denaturing anionic surfactant which works by disrupting the 

hydrophobic interactions within the cell membrane. This damages the cellular integrity 

resulting in release of the proteins into the solution [54].  

• The resulting crude protein extract is subjected to TCA (Trichloroacetic acid) 

precipitation, which separates the proteins from the remaining cell debris. TCA primarily 

acts by dehydration of the water shells around the protein [55]. In addition, the anionic 

TCA may trigger partial protein unfolding through disruption of the electrostatic 
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interactions which determine the native tertiary structure of the protein. As a result, the 

usually well-hidden hydrophobic interior of the protein becomes exposed to the solvent 

[55]. 

• Protein denaturation is then achieved using urea. Direct interaction of urea with charged 

amino acid residues weakens the intermolecular bonds, thus weakening the overall 

secondary structure of protein. Once, the gradual unfolding of protein occurs, urea can 

then easily access the hydrophobic inner core of the protein thus speeding up the 

denaturation process [56]. In the next step, disulfide bonds in the protein are 

subsequently reduced with DTT (dithiothreitol) and the resulting thiol groups are 

alkylated using iodoacetamide to prevent bond reformation. 

• In the next step, the protein sample is digested to generate peptides that is subsequently 

sequenced by mass spectrometry. Protein digestion can be achieved both chemically and 

enzymatically. Cyanogen Bromide is a widely used chemical for protein digestion [57]. 

However, the main method of choice for protein digestion is enzymatic digestion by 

trypsin. It is a widely used endoprotease which acts by cleaving at the carboxyl side of 

the arginine and lysine residues unless these amino acids are followed by proline [58]. 

Tryptic peptides are between 10 to 20 amino acids long depending on the frequency of 

lysine and arginine residues, this range in molecular weight of peptides is ideal for 

measurements with the majority of mass analyzers. Also, the low cost of trypsin makes it 

an ideal candidate for mass spectrometry based proteomics. This process of proteolytic 

digestion of peptides for subsequent LC-MS/MS analysis is called bottom up proteomics.  
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• The samples are then transferred to a 10 kDa molecular cut off filter. An acid-salt 

solution of NaCl and formic acid is then added on top of the filter. The salt helps in 

efficient removal of peptides from the filter and helps in reducing the surface adsorption 

of peptides while the acid aids in protonation of peptides. This filter is spun at 4500 g, 

which causes the elution of tryptic peptides while all the remaining cellular debris are 

retained by the filter. 

• Finally, the standard peptide amount to be loaded for each MS measurement is 

determined by Bicinchoninic Acid Assay (BCA) assay kit [59]. This assay is based on the 

principal of Cu2+ reduction to Cu1+ by peptides in the alkaline solution. The Cu1+ ions are 

then detected by bicinchoninic acid. Initially, a standard curve is plotted by measuring 

the optical density of bovine serum albumin (BSA) prepared via serial dilution. Following 

this, the optical density of sample peptide solution is measured. Then using the standard 

curve as the reference, the peptide concentration in the sample is determined.   

2.3 Multidimensional Chromatography: 
 

The major advantage of MudPIT analysis is that it allows for the quantification of more low 

abundant proteins from a complex sample. This is achieved by chromatographic separation of a 

digested sample over long periods of time so that the low abundant species are also given 

sampling opportunities.  

• Initially, the peptide sample is loaded under high pressure on a fused silica microcapillary 

back-column (150 μm inner diameter), containing two stationary phases in tandem, a ~ 

4.5 cm strong cation exchange (SCX, 5 μm particle size, 100 Å pore size) resin followed by 
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~4.5 cm reverse phase (RP, 5 μm particle size, 125 Å pore size) resin. The SCX stationary 

phase consists of aliphatic sulfonic acid groups that are negatively charged in aqueous 

solution that results in the binding of strong basic analytes. The reverse phase resin 

consists of octadecyl carbon chain (C18)-bonded silica. Due to its non-polar and 

hydrophobic nature, the molecules in the polar mobile phase are adsorbed to the 

hydrophobic stationary phase of the reverse phase resin. An online two-dimensional 

liquid chromatography setup employing SCX and RP is a widely-used method for peptide 

fractionation because of its ability to exploit two distinct peptide chemical properties 

(charge and hydrophobicity), thus offering reasonable orthogonality.  

• The presence of RP upstream of SCX allows the sample to be loaded directly after 

digestion. At this point, the peptides are irreversibly bound to the RP resin. 

• In the next step, the back-column is washed offline for 15 mins with solvent A (95% HPLC 

grade water, 5% acetonitrile, 0.1% formic acid) and then five ramps of solvent A and 

solvent B (70% acetonitrile, 30% HPLC grade water, 0.1% formic acid) for 30 mins 

(Solvent A and Solvent B are the mobile phases). This initial washing step removes the 

residual urea or salt that may present in the sample. This step also translocates the 

bound peptides from the upstream RP onto the SCX resin. 

•  The biphasic back column with peptides bound to SCX is now mounted between a high-

power liquid chromatography (HPLC) system and an in house pulled nanospray emitter 

(100 μm i.d) packed with 12-15 cm of reverse phase resin. Thus, the peptides can be 

resolved chromatographically and then eluted directly into the mass spectrometer. This 

procedure is called online MudPIT. 
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• To resolve the peptides, a series of eleven ~2 hour chromatographic steps are employed 

(total runtime is 22 hours). Here, the peptides are translocated from the SCX to the 

downstream RP using a volatile salt (usually ammonium acetate) and then eluted into the 

mass spectrometer with a solvent A/ solvent B gradient. The salt concentration is 

increased gradually in each step so that different sub-population of peptides are resolved 

chromatographically and detected by the mass spectrometer. Figure 2.2 provides the 

schematics of peptide separation by chromatography used in all 2D-LC-MS/MS 

experiments.  

• A typical salt concentration scheme widely used in the proteomics community generally 

starts with 25 mM of ammonium acetate and increases by 25-50 mM increments, 

topping out at 500 mM in the last pulse [50, 60-63]. Thus, the analysis consists of eleven 

strong cation exchange steps followed by a ~ 2-hour reverse phase gradient, constituting 

an approximate runtime of 22 hours. However, reducing the initial concentration of salt 

to smaller incremental windows provided a better resolution in chromatography 

resulting in enhanced proteome coverage. This aspect will be discussed in broader detail 

in chapter 3.  

Although, the above presented method of sample analysis has a 20-fold increase in run-

time, it also increases sampling time, reduces noise and improves the detection 

sensitivity, especially for low abundant peptides.  
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Figure 2.2: Chromatographic Separation of Peptides 

 (A) Sample loading; peptides from digested protein sample are pressure loaded under onto a 
150 µm inside diameter microcapillary tube packed with SCX and RP. The column is washed 
offline that removes the residual urea or salt that may present in the sample. This step also 
helps in desalting of sample during loading and translocates the bound peptides from the RP 
onto the SCX resin. (B) Peptides bound to the SCX resin are resolved chromatographically to RP 
and then eluted directly to the mass spectrometer. (C) Gradual elution of sample; peptides are 
eluted gradually over a 22 hr period to achieve near total identifications. Each ~120 min 
chromatography step uses a series of increasing salt concentrations to transfer the peptides 
from SCX to the RP resin. The lower diagram demonstrates the peptides (yellow) moving from 
SCX (red) to the RP (green) resin. After each salt step, the acetonitrile gradient is used to elute 
the peptides from RP to the mass-spectrometer for analysis and detection.  Adapted from fig. 3 
Banks et al (10.1016/j.pep.2012.09.007) 
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2.4 Introducing Charged Particles to the Mass Spectrometer: 
 

Matrix-assisted Laser Desorption/Ionization (MALDI) [64] and Electrospray ionization (ESI) [8] 

are the two major ionization modes for introducing charged analytes from the liquid or solid 

phase into a gas phase.  MALDI uses a laser beam to dislodge analytes and create gas phase 

ions, while ESI uses a high voltage potential to desolvate the ions containing liquid droplets to 

the gas phase ions. The MALDI approach mostly generates ions of +1 charge state while ESI 

gives rise to multiply charged ions. MALDI is more amenable for top-down proteomics involving 

intact protein measurements while ESI can be easily coupled with on-line HPLC and tandem 

mass-spectrometry and is more suited for bottom-up proteomics approach. All the experiments 

outlined in this dissertation were carried out in the ESI mode.  

2.4.1 The Process of Electrospray Ionization: 
 

Electrospray Ionization (ESI) is an ionization technique best suited for the study of biological 

molecules. It is a comparatively a gentler ionization technique as it yields little fragmentation, 

and it can be coupled with tandem mass spectrometry to obtain structural information of 

peptides and proteins. In this method, the peptide sample is passed as a fine spray under a high 

electric field. This electric field forms a cone (called the Taylor Cone [65]) which is enriched in 

positive charges. The unstable end of the cone breaks up to yield a fine spray of positively 

charged droplets. These droplets are constantly losing solvent in flight due to evaporation and 

therefore shrink in volume. Finally, before reaching the so called Rayleigh limit [66], where 

charge balances the surface tension, these droplets undergo coulomb explosion [67] where 
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these droplets break to form smaller droplets which undergo desolvation to yield gas phase 

ions that enter the mass spectrometer for analysis (Figure 2.3).  

In the ESI mode, the tryptic peptides are maintained in an acidic environment (by addition of 

formic acid) to form multiply charged peptides. This multiple charging yields an effective mass 

range to the mass spectrometer and analysis of compounds with MW 100,000 Da is also 

possible. This is because multiple charging results in reduction in mass to charge ratio and 

allows us to measure a peptide whose MW exceeds the possible mass range that can be 

measured by the instrument. This also enables us to perform multiple measurements of 

molecular mass of the compound. The flow rates in electrospray can be varied from 1 nL/min-1 

µl/min (nanospray) to 1-100 µl/min (microspray) to 100 µl/min-1mL/min (macrospray). A high 

voltage of 3-5 kV is applied to the edge of the capillary.  Generally, the peptides to be analyzed 

are maintained in a mixture of water and organic solvents like acetonitrile as it helps in better 

drying of droplets to generate gas phase ions. The analytes suitable for ESI include charged 

inorganic anions and cations, organic acids and bases. Even polar neutral and non-polar neutral 

species are quite amenable to ESI.  

One of the biggest advantages of ESI is that it can be coupled with online liquid 

chromatography techniques. Also, the sample can be maintained in a liquid state and hence 

volatility and thermal stability of the molecule can be maintained to generate gas phase ions. It 

can also be coupled with tandem MS to study amino acid sequence of proteins and study non-

covalent interactions like post-translational modifications. However, ESI may result in photon 

transfer reactions which may result in species with higher proton affinity to retain charge. This 

may result in subsequent loss of valuable information as peptides that lose charge may not be 
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Figure 2.3: Schematics of Electrospray Ionization 
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measured by ESI. Multiple charging though useful to determine higher MW peptides may also 

prove to be a burden as the instrument needs a high mass resolving power to differentiate 

closely related species. 

The proteomics experiments described in this dissertation were carried out in the nanospray 

ionization mode. The reduction in flow rate achieved by nanospray leads to enhanced reduction 

in droplet size which increases the sensitivity of peptide measurements.  

2.5 Analysis of Peptide Ions Inside the Mass Spectrometer: 
 

2.5.1 Mass analyzer: 
 

Various methodologies exist for the analysis of peptides by generating their MS/MS spectra. 

The description below outlines the principles involved in mass analysis of the Thermo Scientific 

Linear Trapping quadrupole (LTQ) mass spectrometer. Before mass analysis can begin, the 

charged particles passing through entrance of the mass spectrometer (at a pressure of 760 

Torr) are transported through a series of chambers that are sequentially at lower pressures 

(~20 µTorr). Ions are then stored for a brief period in a mass analyzer and are then sequentially 

ejected from the mass analyzer according to their mass/charge values and finally detected by 

dynode/multiplier type detection system.  

The LTQ mass analyzer consists of a series of four ~6 cm long hyperbolic rods. These rods are 

cut into three sub-sections that are insulated from one another (figure 2.4). This creates a 

central quadrupole in which ions are trapped between two end quadrupoles. A DC voltage is 

applied to each section with the central section at -14 V and two end sections at +20 V thus 



28 
 

creating a potential difference where ions can be trapped efficiently. The DC voltages applied to 

end sections are adjusted to -12V so that positively charged ions can enter the trap. Once the 

ions move to the central section of mass analyzer, the DC voltage at the end sections is 

increased, thus trapping a sub-population of positively charged peptide ions (figure 2.4). 

Additional AC voltages are then applied across the rods of the central section so that ions can 

be held in stable trajectories. By manipulating these voltages, ions of a given mass/charge (m/z) 

can be destabilized so as to be ejected through a pair of slits in two of the central section rods. 

This selective ejection and subsequent detection gives rise to ‘full spectrum MS’ which provides 

information about the relative abundance of peptide species with different m/z values [68]. 

The next generation of instruments in the field of discovery proteomics was the LTQ Velos, 

which is a dual cell linear ion trapping instrument (figure 2.5). Compared to LTQ, the LTQ Velos 

features a novel ion transmission pipeline that significantly enhances transfer efficiency. It also 

consists of a dual trap, one for ion trapping at high pressure, which improves trapping efficiency 

by 90%. The second trap that is coupled to ion detection system is operated at low pressure 

that significantly improves measurement resolution [69].  

Further enhancement in mass accuracy can be achieved with mass spectrometers that have 

sophisticated detection systems such as the Orbitraps [70]. Orbitraps can be considered as a 

modified form of quadrupole ion trap, although orbitraps use a static electrostatic field as 

compared to quadrupole ions traps that uses a dynamic electrostatic field typically oscillating at 

~1MHz. The orbitrap’s axially symmetrical electrodes create a combined ‘quadro-logarithmic’ 

electrostatic potential. In an analogy, orbitraps mass analyzers share the principle with yet 
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Figure 2.4: Block Diagram of Linear Trapping Quadrupole 

Adapted from figure 5 Banks et. Al (10.1016/j.pep.2012.09.007)) 

 

https://doi.org/10.1016/j.pep.2012.09.007
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Figure 2.5: Block Diagram of LTQ Velos 

Image source: Tonya Pekar Second; Justin D. Blethrow; Jae C. Schwartz; Gennifer E. Merrihew; Michael J. MacCoss; Danielle L. 
Swaney; Jason D. Russell; Joshua J. Coon; Vlad Zabrouskov; Anal. Chem.  2009, 81, 7757-7765.DOI: 10.1021/ac901278y)
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another type of mass analyzer, the Fourier transform ion cyclotron resonance (FT-ICR). In FT-

ICR, ion detection is performed by a broadband image current detection, followed by a fast 

Fourier transform (FFT) algorithm [71] that converts the recorded time domain signal into a m/z 

spectrum [72] . Here, an axial frequency is used which is independent of the energy and the 

special spread of the ions. High efficiency in mass resolution and mass accuracy is achieved in 

orbitraps because of this energy independence. Briefly, the orbitrap is a system of axially 

symmetrical mass analyzer that consists of a spindle shaped inner electrode and a barrel 

shaped outer electrode. Migration of ions takes place from linear ion trap into a curved gas-

filled ion trap (c-trap). Ion trajectories are considerably slowed down by a nitrogen gas bath 

system which diverts the ions orthogonally into the space between outer and inner electrodes. 

Ion oscillation inside the analyzer is achieved around the central electrode due to the 

application of electrostatic field (Figure 2.6).  

All the mass spectrometry measurements described in this dissertation were performed by one 

of the three instruments described above. The increase in sample complexity has fueled the 

demand for instruments having higher sensitivity coupled with mass accuracy and speed. Some 

of the new generation mass spectrometers include the Q-Exactive hybrid quadrupole-Orbitrap 

mass spectrometer [73] and Orbitrap fusion [74] that deliver unprecedented molecular analysis 

of complex samples.  

Some of the crucial figures of merits that are used to differentiate various mass analyzers are 

described below.  



32 
 

 

 

Figure 2.6: Block Diagram of Orbitrap ELITE Hybrid Mass Spectrometer 

Image source: (http://planetorbitrap.com/orbitrap-elite#tab:features) 
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• Mass Resolving Power: Mass resolving power or the resolution in mass spectrometry 

refers to the ability of the instrument to differentiate two peaks having very small 

difference in mass to charge ratios. Resolution refers to the sharpness of the peak. The 

sharper the peak, the better is the resolution.  

       Resolving power can be illustrated by the following equation: 

Rm = m/ Δm resolution 

Where Δm is the value for minimum peak separation which enables us to distinguish 

two ionic species. Hence, Δm is the width of the peak measured at 50% fraction of the 

peak height. It is called “Full width and Half maximum”. Resolving power has no units 

• Mass Accuracy:  Mass accuracy refers to the difference between true mass of an ionic 

species and the measured mass. Here true mass refers to the calculated mass obtained 

by adding up the masses of each atom in the ion and the measured mass refers to the 

experimentally obtained value. This difference has to be as small as possible for us to 

obtain high mass accuracy. It is measured by the following equation  

Δmaccuracy = mtrue - mmeasured 

Mass accuracy is measured in parts per million (ppm). 

ppm= 106 [Δm accuracy / m measured]. 

Both resolving power and mass accuracy are important figures of merit in mass 

spectrometry. Modern day mass spectrometers can differentiate between peaks having 

very minute differences in mass to charge which allows us to separate closely related 

species with a high degree of mass accuracy with respect to the true mass. 
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• Dynamic Range: It is the measure of the detection range of the mass spectrometer i.e. 

the ratio of largest to smallest detectable signal.  

• Mass Range: It is the range of mass/charge that is amenable to detection by a given 

mass analyzer 

• Scanning Speed: Scanning speed refers to the time taken by a given mass analyzer to 

measure m/z values over a given mass range.  

MudPIT measurements consist of complex samples containing tens of thousands of peptides. 

Hence, it is imperative to employ a mass spectrometer having a high mass resolving power and 

high scanning speed that can differentiate closely related peptide species as well as resolve a 

complex proteome within a duration of 22-24 hours that constitutes a typical MudPIT setup.  

Table 2.1: Performance metrics of MS instruments described in this dissertation.  

 

 

 

Figure of Merit LTQ-XL LTQ-Orbitrap XL LTQ-Orbitrap Elite 

Mass resolving power 0.05 FWHM 1000-
2000 

7,500 - > 100,000 at 
m/z 400 

15,000 - > 240,000 at 
m/z 400 

Mass Accuracy 0.1 Da < 3 ppm* with 
external mass 
calibration < 1 ppm* 
with internal mass 
calibration 

< 3 ppm* RMS with 
external mass 
calibration < 1 ppm* 
RMS with internal 
mass calibration 

Dynamic Range  >4,000 within a single 
scan guaranteeing 
specified mass 
accuracy 

>5,000 within a 
single scan 
guaranteeing 
specified mass 
accuracy 

Mass Range m/z 15-200  
m/z 50 - 2000  
m/z 200 - 4000 

m/z 50 - 2000  
m/z 200 - 4000 

m/z 50 - 2000  
m/z 200 - 4000 
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                                       Observed Mass – Theoretical Mass 

                *ppm =       -----------------------------------------------    * 106 

                                                      Theoretical Mass  

 

                 FWHM = Full Width Half Maximum 

 

2.5.2 Basic Steps in a Tandem Mass Spectrometry Experiment: 
 

Once the peptide ions enter the mass spectrometer, they are processed as follows: 

• Obtain a mass spectrum: In this step, the ions that enter inside the mass spectrometer 

are used to generate a full mass spectrum and their m/z values are determined to 

locate the ion of interest 

• Isolate ions with m/z for the component of interest (Precursor ions): In this method, 

other ions with m/z values are eliminated and the precursor ion is selected. Generally, 

the ion having the most abundant m/z value is first selected and then we move down 

sequentially. We can limit the threshold of ions so that only those ions within a pre-

defined range of m/z value are selected for subsequent analysis.  

• Energetically activate or react the isolated (precursor) ion: In this step the precursor 

ion is activated by causing a shift in its mass or charge. This is done by colliding the ion 

with electrons, photons or neutral molecules resulting in its fragmentation. 

• Mass analyze the product ions: In this step the fragmented product ions are mass 

analyzed to obtain detailed structural information of the fragmented ion. In case of 

peptides, mass analysis of product ions can result in determining the amino acid 

sequence composition of the peptide. 
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Ion activation refers to increasing the internal energy of the ion resulting in its dissociation. 

The three most common ion activation methods are as follows: 

i. Collision-Induced dissociation (CID) or Collision-Activated dissociation (CAD): Here the 

ions are collided with a neutral atom or molecule. It’s important that the mass of the 

neutral molecule be as big as possible. This results in better fragmentation of the target ion 

which is then mass analyzed [75]. Hence neutral gases like argon or nitrogen are used.  CID 

is the most common ion activation method used in proteomic studies.  

ii. Activation by Photon absorption: Photodissociation or Infrared multiphoton 

dissociation (IRMPD): In this method, the fragmentation of the target ion is achieved by 

absorption of photons resulting in the target ion getting excited into a more energetic 

vibrational state. A threshold of this excitation results in cleavage of bonds causing 

fragmentation [76].  

iii. Activation by electrons: Electron induced dissociation (EID): In this method, 

fragmentation of positively charged target ions are achieved by transferring low energy 

electrons to them. This method is useful for higher charge state ions and is more useful to 

study PTM’s as EID only attacks the peptide backbone leaving the phosphorylation sites 

intact [77]. 

2.5.3 Data-Dependent Acquisition of MS/MS Spectra: 
 

Data dependent acquisition (DDA) is used to improve the sampling of low abundant peptides. 

Typically, the initial full scan MS identifies the m/z values of precursor ions, and MS/MS scans 

then systematically isolates, fragments and characterizes these ions in order of decreasing 
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abundance. Now, in order to avoid repeated characterization of the same species, the ions are 

added to the ‘dynamic exclusion (DE) list’. The time duration of exclusion list is user defined (for 

example, 30 seconds for an ion that has been sampled twice). This way, the ion is barred from 

repeated selection for a chosen time which allows low-abundant peptides to be sampled [78]. 

The choice of DE time is a function of chromatographic peak width and had been shown to 

improve the unique peptide counts in proteomic studies. This process is explained in broader 

detail in Figure 2.7. 

2.6 Database Matching of Tandem Mass Spectra:  
 

Each MudPIT run generates hundreds to thousands of MS/MS spectra. Each of these MS/MS 

spectra is a potential peptide fragment ion resulting from the digestion of a protein. In order to 

identify peptides, the experimental MS/MS spectra has to be matched with a predicted pattern 

of the fragment ion so that a list of proteins in the original sample can be identified [79]. Each 

experimental spectrum provides a characteristic fingerprint of the peptide which is correlated 

with the peptides derived from in-silico digest of the protein database by the same 

endoproteinases that was used during sample preparation (like trypsin). For this, various 

computational algorithms are put into use [52, 80-82]. 

2.6.1 Peptide Nomenclature: 
 

The matching of the experimental spectra with the in-silico generated spectra makes use of the 

peptide dissociation pattern obtained from CID (Collisional induced dissociation). CID 

preferentially breaks the bond along the backbone of the amino acid chain. A wide variety of 

product ions are generated because of the bond cleavages along the polypeptide backbone or  
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 Figure 2.7: Data dependent acquisition. 

 A) In the initial full scan, the mass spectrometer screens for the most abundant type of ions that 
are eluting (represented by blue, purple, yellow and green lines). These ions are then subjected 

to fragmentation. B) Now, to scout for low abundant peptides, the mass spectrometer puts 
these ions in the dynamic exclusion list such that these ions (represented by *) are excluded 

from MS/MS analysis for a chosen time. This in turn allows the analysis of ions represented by 
red, black, gray and orange lines which are in low abundance and would be selected for 

fragmentation. 
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via partial or complete cleavage of amino acid side chains. Figure 2.8 depicts the nomenclature 

used for naming ions formed from cleavages of the peptide backbone. The vertical lines 

correspond to bond cleavage and arrows signify the product ion. The product ions referred to 

by letters a, b, c correspond to the charge remaining with the N-terminal portion of the peptide 

ion while x, y, z denote product ions in which the charge is retained on the C-terminal portion of 

the ion [83].   

Peptide sequences are, by convention, listed from the N- to the C-terminus, therefore the 

choice of the a, b, c nomenclature is mnemonic as these are the first three letters of the 

alphabet. Amongst these different types of cleavages, those bond cleavages which occur along 

the peptide backbone are the most important for sequence determination, particularly the b 

and y ions which result from cleavage of peptide bonds. The m/z values of these b and y 

fragment ions can be calculated and MS/MS spectrum can be predicted for every possible 

peptide. Finally, matches between experimental and predicted fragmentation patterns are 

made and cross-correlation scores are calculated to identify how good a match is. Ambiguous 

matches are then filtered out before final assembly of peptides to proteins. 

2.6.2 Database Mapping of MS/MS Spectra:  
 

The next step in the proteomics experiment is to identify peptides measured by the mass 

spectrometer and assemble them into proteins. To accomplish this, the tandem mass spectra 

are computationally matched against the predicted proteome of the species under study. The 

protein database is a fasta formatted database constructed from the genome of the organism 

under consideration. This database consists of all the predicted proteins irrespective of its  
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 Figure 2.8: Nomenclature for naming the ions formed from peptide backbone cleavages
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expression or activity level present in the genome. Since all the protein based interpretations 

are based on this proteomic database, it Is imperative that genome of the species under study 

must be completely sequenced. In the absence of sequence information, other protein 

validation strategies are employed which will be discussed in broader detail in chapter 4.   

The first step in database searching involves the in-silico digestion of a protein fasta file using 

the same endoproteinases that were used during sample preparation (like trypsin). In the next 

step, theoretical spectra are generated by the computational algorithm with b and y type ions. 

Then, a pattern matching strategy is employed where experimental and theoretical spectra are 

matched with one another. The matched spectra are assigned a cross-correlation score called 

XCorr. In calculating XCorr, the top candidate peptide sequences are subjected to a “Barcode” 

analysis, where in-silico b and y ion series are predicted and assigned the highest intensities. 

This creates an in-silico barcode. At the same time, the actual measured spectrum is 

preprocessed where the top peaks are selected and binned in 10 m/z windows.  In the next 

step the in -silico and the preprocessed spectrum slide across each other. This procedure is 

repeated for all the peptide candidates and the top match is calculated amongst these and the 

top XCorr is reported in the final output. Each XCorr is assigned a value called deltCN that 

denotes the distinct match with the next best match. Finally, if both XCorr and deltCN pass a 

user defined threshold, the peptide spectrum match (PSM) is considered as a valid 

identification. Each PSM matches to a single peptide which is then computationally assembled 

to a protein candidate. There are several open source search programs that perform peptide 

sequencing to identify confident PSM’s, including SEQUEST [52], X! Tandem [84], MS-GF+ [85] , 

MASCOT [80] , MyriMatch [86],  Comet [87] , Andromeda [88], OMSSA [82] etc.  
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2.6.3 Controlling False Discovery Rate:  
 

False discovery rate (FDR) is the rate at which false positive identifications are made. FDR is 

used to ascertain the authenticity of MS measurements using the database search strategy. The 

FDR is calculated using the following equation.  

    

Decoy ID’s correspond to the protein sequences that do not belong to the sequenced organism 

under study. These decoy proteins can be either the reverse protein sequences or random 

sequences from an unrelated organism. This method of FDR calculation proposed by Elias and 

Gygi [89] assumes that, for a given number of decoy hits that pass a pre-defined threshold, 

there are equal number of false hits in the target sequences. Since false hits are added to target 

hits in the denominator, the number of false hits are doubled and hence a factor of 2 is added 

to the numerator containing decoy hits. The use of reverse or a randomized protein database 

that is concatenated to the actual protein database increases the total computational time but 

it helps in removing false positives and provides a FDR percentage (for example 1% FDR means 

99% confidence that proteins were correctly identified) which is valuable in ascertaining the 

quality of MS data as well as the protein database [90].  

With the ever-increasing size of the database used in metaproteomic investigations, using the 

standard filtering thresholds may result in substantial loss of PSM’s especially those 
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corresponding to low abundant peptides. In such cases, manual validation of PSM’s are carried 

out which will be discussed in chapter 6.  

2.6.4 Assembling Peptides to Proteins:  
 

Once the PSM’s are identified, the final computational task is to assemble the candidate 

peptides to get a list of protein identifications. DTASelect [91], IDPicker [92], PeptideShaker [38] 

are commonly used protein assembly algorithms used for this task. Here, within a user defined 

threshold of FDR and a minimal requirement of either one or two distinct peptides (a distinct 

peptide is basically a distinct sequence of amino acid) for a protein call, the algorithm 

assembles peptides back to protein and reports them. 

2.7 Quantitative Evaluation of MudPIT Data: 
 

Semi quantitative proteomics, also called label-free proteomics, refers to an approach where 

the intensities of the entire repertoire of proteins (as peptides) present in the sample is 

detected by LC-MS/MS. The very nature of this approach leads to variation in identification of 

peptides [93]. This variation is influenced by many factors such as run to run variation, 

fragmentation and detection differences. Hence, the data is normalized to estimate the relative 

abundances of proteins identified in MudPIT analysis. There are several approaches for data 

normalization [94-96], and one such approach uses the normalized spectral abundance factor 

(NSAF), discussed below, to gauge relative protein abundances present in the sample [94] .  

Computational analysis of data from MudPIT runs yields several variables that can be used for 

calculating protein abundances. These include the total number of proteins detected (N) and 



44 
 

the total number of fragmentation spectra matched to a specific protein which is also referred 

to as spectral count (SpC). The spectral abundance factor (SAF) for a particular protein K is 

calculated as SAFK = (SpC/L)K where L is the length of the protein. SAF allows ranking of proteins 

in each run by its abundance. Now, a larger protein might give rise more tryptic peptides. 

Hence, to compare relative abundances of a protein in different mass spectrometry runs, the 

normalized spectral abundance factor is calculated.  

   

The denominator in this equation (which is the summation of spectral counts of all the proteins 

divided by their lengths) reconciles run-to-run variation in total spectral counts. NSAF is a 

common method for normalizing protein abundances under different growth conditions. All the 

MudPIT data described in this dissertation were normalized using NSAF. The resulting NSAF 

values are then balanced by multiplying them with a common factor and converted to 

normalized spectral counts (nSpC) and used for reporting purposes.  
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Chapter 3 - Optimization of Salt Pulse Step Elution Conditions for 

Improved Depth and Enhanced Coverage of Unique Peptides in Multi-

dimensional LC-MS/MS Proteome Measurements 
 

Text and figures were taken from:  Ramsunder Iyer, Richard J. Giannone, Rose S. Kantor; Jill F. 

Banfield; Robert L. Hettich. Optimization of Salt Pulse Step Elution Conditions for Improved 

Depth and Enhanced Coverage of Unique Peptides in Multi-dimensional LC-MS/MS Proteome 

Measurements. Proteomics, Manuscript in Preparation  

Ramsunder Iyer’s contributions to this work included: Experimental design, performed all the 

proteomics sample preparation and mass spectrometry runs, data analysis, wrote, edited and 

revised the manuscript.  

------------------------------------------------------------------------------------------------------------------------------------------ 

3.1 Separation by Two-Dimensional Chromatography to Enhance Unique 

Peptide Measurements: 
 

A deep and comprehensive analysis of a complex proteome sample requires a high-

performance mass spectrometric approach coupled with an efficient and robust separation 

protocol for resolving the peptide mixture prior to detection. The main goal of this study was to 

analyze complex peptide separation profiles on samples of varying complexities to enhance 

unique peptide identifications, and then optimize the approach for an online multi-dimensional 

chromatographic strategy. The method focuses on a modified MudPIT (multidimensional 

protein identification technology) salt pulse scheme, which exploits multiple shallow salt 

fractions of ammonium acetate concentrations in the first stages of chromatographic 

separations. In order to test the range and robustness of the modified scheme, we tested its 

performance characteristics with a range of complex environmental samples ranging from an 

isolate of Caenorhabditis elegans, a model mixture of six environmental microbes 

(Saccharomyces cerevisiae, Escherichia coli, Clostridium thermocellum, Ignicoccus hospitalis, 
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Nanoarchaeum equitans and  Streptomyces eurocidicus and referred to as 6iso), and a complex 

environmental microbial community sample capable of degrading thiocyanate. In general, we 

obtained a dramatic improvement in proteome coverage with this scheme (28% and 41% 

increase in peptide counts for 6iso and C-elegans respectively) achieved by a more uniform 

peptide elution along the balanced salt pulses of the MudPIT experiment. This approach was 

designed to reduce incidences of high density peptide co-elution that overwhelm the analytical 

capacity of the mass spectrometer, thus impacting the overall depth of measurement. The 

enhanced depth in proteomic measurements obtained by this method demonstrates the 

potential of the shallower salt pulse scheme for multidimensional analysis of environmental 

samples of varying complexities. 

3.2 Current Status and Limitations in Peptide Chromatography:  
 

Multidimensional liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) 

is a common analytical platform for the identification and quantification of peptides and 

proteins in complex samples. MudPIT is a widely used workflow in which proteolytic peptides 

are separated online with a biphasic column containing Strong Cation Exchange (SCX) and 

Reverse Phase (RP), and then measured by High Performance tandem mass spectrometry 

(MS/MS) [50]. There are several other methods that can be used to separate complex peptide 

samples for LC-MS/MS analysis such as hydrophilic interaction liquid chromatography (HILIC), 

perfluorinated reversed phase chromatography, RP-RP with high pH and low pH elution, and 

mixed bead ion exchange chromatography etc. [97-100]. Multidimensional separations can be 

carried out either in online or offline modes. Offline separations offer flexibility in higher 
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resolution separations and enable facile re-analysis of samples, but require more sample 

handling and potential losses. Online approaches afford ease of automation and reduction in 

contamination and sample loss, but often require compromised chromatographic operating 

conditions [101]. Recently, a comprehensive analysis of the yeast proteome was demonstrated 

in just over an hour using a hybrid mass spectrometer (Orbitrap fusion) with a high MS/MS 

acquisition speed [102]. However, analysis of complex proteomes in such a short duration may 

be subject to random sampling events which may result in some irreproducibility in the peptide 

measurements, especially with previous generation mass spectrometers with sub-optimal duty-

cycles. Also, the spectra collected in this shortened run enhance qualitative identifications but 

may confound quantitative evaluations for samples with increased complexity. While there 

continues to be a growing development in high scanning speed MS instrumentation, the 

coupling of robust multi-dimensional chromatographic separation schemes that can 

complement these types of mass spectrometers is still an area of active research. 

To this end, MudPIT has been extensively employed because of its relative ease in sample 

handling and its ability to identify thousands of proteins in metaproteomic samples of relatively 

high complexities [103, 104]. Although there are a variety of multidimensional LC approaches, 

2D-LC employing SCX and RP continues to be a widely-used method for peptide fractionation.  

This is due to the ability to exploit two distinct peptide chemical properties (charge and 

hydrophobicity), thus offering reasonable orthogonality. The approach consists of applying a 

series of discrete salt steps (referred to herein as salt pulses) in which the concentration of 

ammonium acetate (a volatile salt) is increased over subsequent steps. The salt step elution 

causes a fraction of peptides to be displaced according to their charge and trapped on the RP 
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column. The peptides are then eluted from the RP column using an organic phase gradient, 

usually acetonitrile. The use of volatile salts in a discontinuous gradient causes less overlap 

between adjacent fractions, thus reducing the carry over [105, 106]. However, a major 

bottleneck in SCX-RP MudPIT strategy is its relatively low throughput; many of the experimental 

protocols provide one measurement per day in order to achieve reasonable depth. A separation 

strategy that more selectively optimizes salt steps in a MudPIT experiment would not only help 

improve overall measurement depth, but could also be useful for enhancing the throughput of 

these measurements.  

The utility of MudPIT for discovery proteomics was first demonstrated in the proteome of 

Saccharomyces cerevisiae [50, 51, 107]. Since then, the method has been extensively used for 

samples differing in range and complexity.  The typical protocol generally starts with 25 mM of 

ammonium acetate and increases by 25-50 mM increments, topping out at 500 mM in the last 

pulse [50, 60-62, 108]. Each salt pulse translocates a sub-population of peptides to be further 

separated by reversed phase (RP) HPLC and then detected by tandem mass spectrometry. This 

analysis typically consists of eleven to twelve strong cation exchange steps followed by a ~ 2-

hour reverse phase gradient, thus constituting an approximate runtime of 22-24 hours. 

Modifications to this elution profile strategy have also been proposed where the initial 

concentration of 25 mM for the volatile salt has been further scaled down [100, 109, 110]. 

These variations in salt concentration and reverse phase gradient time durations were chosen 

based on sample complexity and a desired level of resolution, but have not been explored in 

systematic detail. More recently, Yates et al. reported a modified micro MudPIT scheme for 

SCX-RP consisting of 39 strong cation exchange steps. In this study, they divided the initial 
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concentrations of ammonium acetate into smaller incremental windows, starting at 10 mM and 

ramping up at the later stage to a final concentration of 500 mM [111]. The protein and peptide 

counts of this new shallower scheme were equivalent to the standard 24 hr MudPIT employing 

wider and equally spaced windows ranging from 50 mM to 500 mM. Using this method, they 

were able to reduce the instrument operation time by 40 % by having a shorter 18.5 min 

reversed phase gradients.   

These findings prompted us to focus on a systematic examination of the critical aspects of the 

peptide separation metrics for these enhanced 2D-LC approaches.  We chose to focus on a few 

important questions that shed light on the utility of shallower scheme for improving the depth 

of proteomic analysis. (1) Is the shallower scheme able to resolve more unique peptides 

(peptides having distinct sequences of amino acids) per salt pulse in the chromatographic 

space, thus contributing to their improved detection by the mass spectrometer?  (2) What is 

the chemical nature of the peptides eluting in the earlier fractions in the shallower schemes, 

and do they provide biased separations or simply increase the unbiased separation resolution? 

(3) Can the shallower scheme be optimized to enhance total peptide identifications and thus 

improve the overall depth of quantitative proteomics for complex environmental samples?  

Initial testing on a Caenorhabditis elegans sample in our laboratory revealed that smaller 

incremental windows in ammonium acetate concentration led to a remarkable level of 

distinctness in peptide elution profiles in the first 2-3 salt pulses. Based on this, we proposed 

that shallowing the first series of salt pulses would have the greatest impact on unique peptide 

separations and thus subsequent MS detection. This approach is able to identify more peptides 

by evenly spacing them across each salt pulse resulting in their better detection by the mass 
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spectrometer without overwhelming its analytical capacity. This should result in better 

proteome coverage and thus a more robust quantitative proteomic analysis, especially relative 

to the generally accepted MudPIT salt pulse scheme used today by numerous laboratories. To 

this end, we have designed a salt step elution profile strategy to achieve maximum unique 

peptide elution per salt pulse. We optimized and evaluated the performance of this approach 

on three different samples of varying complexities using two different MS platforms. 

3.3 Materials and Methods:  
 

3.3.1 Protein Extraction and Enzymatic Digestion:  

Three different sample types were used for this study. The first was an isolate of C-elegans; the 

second was a mixture of six environmental microbes herein referred to as 6iso that included 

Saccharomyces cerevisiae, Escherichia coli, Clostridium thermocellum, Ignicoccus hospitalis, 

Nanoarchaeum equitans and Streptomyces eurocidicus. The third sample used for the study was 

a complex microbial community capable of degrading thiocyanate. The results pertaining to 

the thiocyanate degrading microbial community sample will be discussed in chapter 4.  All 

samples were prepared separately as follows: 1 mg of microbial sample was excised and 

thawed for cell lysis and protein extraction. These samples were first boiled for 5 min in 1 mL of 

lysis buffer containing 100 mM Tris-HCl, pH 8.0, 4% w/v SDS (sodium dodecyl sulfate), and 10 

mM dithiothreitol (DTT). The suspension was vortexed and sonicated with a Branson ultrasonic 

cell disruptor (20% amplitude for 2 min, 10 s pulse with 10 s rest). The resulting crude protein 

extract was precleared via centrifugation at 21000 g and quantified by the BCA assay (Pierce 

Biotechnology, Waltham, MA). An aliquot consisting of ∼1 mg of protein was subjected to TCA 
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precipitation and subsequent digestion with trypsin using the method described previously 

[103]. The resulting peptides were quantified by the BCA assay and stored at −80 °C until use. 

3.3.2 Nano 2D LC-MS/MS Measurement: 

 

Proteolytic peptide samples were analyzed via an online nano 2D LC–MS/MS system interfaced 

with either LTQ-Velos Pro or hybrid LTQ-Orbitrap-Elite MS (ThermoFisher Scientific). A 25 μg 

aliquot of peptides was loaded onto a biphasic silica back-column which was first packed with 

∼4.5 cm strong cation exchange (SCX; Lune by Phenomenex) followed by ~4.5 cm reverse phase 

(C18; Kinetex by Phenomenex). Back-columns were washed offline after sample loading with 

solvent A (95% HPLC grade water, 5% acetonitrile, 0.1% formic acid (FA) for 20 min, followed by 

a 25-min gradient of solvent B (70% acetonitrile, 30% HPLC grade water, 0.1% FA). Each back-

column was coupled in-line with an in-house pulled, reverse-phase (∼12 cm) packed nanospray 

emitter and analyzed by eleven or twelve-step MudPIT (multidimensional protein identification 

technology), as described previously [112]. The salt pulse schemes with their corresponding 

reverse phase gradient profiles are described in the results and discussions section.  Technical 

quadruplicates for 6iso, technical duplicates for C-elegans and technical triplicates were 

performed for the community sample. Both the instruments (LTQ Velos Pro and LTQ-Orbitrap-

Elite) were operated in a data-dependent mode. For LTQ-Velos Pro, all data-dependent MS/MS 

was performed in LTQ (top twenty), 1 microscan for both full and MS/MS scans; normalized 

collision energy 35% and dynamic exclusion time of 15 seconds.  For LTQ-Orbitrap-Elite, MS1 

was performed in Orbitrap and data dependent MS/MS was performed in LTQ (top twenty), 1 
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microscan for both full and MS/MS scans; normalized collision energy 35% and dynamic 

exclusion time of 30 seconds. 

3.3.3 Data Analysis:  

 
MS/MS spectra were analyzed using the following software protocol. A  decoy database of 

reversed protein sequences and common contaminants was appended to the two target 

databases under consideration  The fragmentation spectra were searched with the Myrimatch 

v2.1 algorithm [86] against the appropriate databases. For LTQ Velos Pro, the following 

configuration parameters were used: fully tryptic peptides with any number of miscleavages, an 

average precursor mass tolerance of 1.5 m/z, a fragment mass tolerance of 0.5 m/z, a static 

cysteine modification (+57.0214 Da), an N-terminal dynamic carbamylation modification 

(+43.0058 Da), and a dynamic methionine oxidation modification (+15.9949 Da). For Orbitrap 

Elite, all search configurations remained same except for the mono precursor mass tolerance, 

which was set to 10 ppm. Peptide identifications were filtered with IDPicker v3.1 [92] to achieve 

peptide-level FDR of < 1% (maximum Q value < 2%). At the protein level, a minimum of two 

distinct peptides plus one additional peptide were required per protein call and a minimum two 

spectra per protein. Protein abundances for a subset of proteins were estimated using 

normalization of spectral counts as described previously [94, 113]. Briefly, to account for the 

fact that larger proteins tend to contribute more peptide/spectra, spectral counts were divided 

by protein length to obtain a spectral abundance factor (SAF). These SAF values were then 

normalized against the sum of all SAF values in the run, allowing the comparison of protein 
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levels across individual replicates. These values were then balanced and converted to 

normalized spectral counts (nSpC).  

3.3.4 De novo Sequencing:  

De novo sequencing was performed using the software DeNovoGUI that provides a graphical 

user interface and parallelization of the PepNovo+ algorithm [114, 115]. We used the same 

mass tolerances and PTM parameters as done for the database searching. The default CID 

fragmentation and tryptic cleavage was specified. The resulting de novo peptide suggestions 

were filtered by a PepNovo+ score threshold above 100 for high-quality identifications as 

described previously [42]. De novo was performed on the thiocyanate degrading microbial 

community sample and will be discussed in chapter 4.   

3.4 Results and Discussion:  
 

3.4.1 The Problem of Front Loading:  

 

The first objective of our study was to improve the depth of proteomic measurements within a 

22-hour time frame. For this, we evaluated two different salt pulse schemes: one was a 

standard salt pulse scheme that was routinely used in our laboratory that consisted of equally 

spaced incremental windows in ammonium acetate starting at a concentration of 25 mM. We 

refer to this scheme as the “conventional 22 h” scheme. Peptide elution using this separation 

profile demonstrated a peculiar problem of front loading. Figure 3.1A reveals the total unique 

peptides of 6iso from each salt pulse for the conventional 22 h scheme. We defined unique  
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detected in only one salt pulse.  The peptides observed in the conventional separation scheme  

4980

1994
1155

1169

753

557

522

391

370
472

797

Conventional 22 h sp1

sp2

sp3

sp4

sp5

sp6

sp7

sp8

sp9

sp10

sp11

3.1 A

2080

2435

1445

971

832

750

839

751

684

652

1090

Modified 22 h

sp1

sp2

sp3

sp4

sp5

sp6

sp7

sp8

sp9

sp10

sp11

3.1B

Figure 3.1: Distribution of unique peptides across each salt pulse (sp) for the Conventional 22 h 
(3.1A) and Modified 22 h (3.1B) schemes for 6iso sample.  

Peptides are highly front loaded in the conventional scheme as indicated by the first salt pulse while 
they are more uniformly distributed in the modified scheme. 
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peptides as those peptides which differed from each other in amino acid sequence and were 

detected in only one salt pulse.  The peptides observed in the conventional separation scheme 

indicate a clear egregious front loading of unique peptides. This is especially evident in the first 

salt pulse which had an overwhelmingly large unique peptide elution profile relative to the 

other later pulses. This observation prompted us to split the initial salt pulse of 25 mM into 

smaller incremental windows. After some testing and optimization, we defined a modified 

scheme (referred to as modified 22 h) that combined the shallow initial pulses starting at a 

lower concentration of 10 mM with larger steps later in the scheme. The salt steps of the 

modified scheme were designed to have smaller incremental windows in the initial pulses to 

allow for more efficient chromatographic separation of the eluting unique peptides. Both the 

conventional and modified schemes employ a total of eleven salt steps, each followed by a RP 

gradient with a total acquisition time of 2 h per salt step or 22 h per sample. The ammonium 

acetate concentrations and RP gradient times of 22 h tested schemes are summarized in the 

Table 3.1 and the gradient profile for these 22 h salt pulse schemes are summarized in the 

Table 3.2.  

3.4.2 Proteome Metrics of Conventional 22 h vs. Modified 22 h Schemes: 
 

The optimized chromatographic separation scheme, which employs shallower salt pulses at the 

onset of the analysis was designed to enhance the distribution of peptides across the RP 

gradient. This should enable increased proteome coverage of complex environmental samples 

within the same time frame of 22 hours that constitutes a typical MudPIT setup. The 6iso  

 



56 
 

Table 3.1: The gradient elution profiles for tested MudPIT schemes 

MudPIT 

schemes 

Solvent A Solvent C or Solvent 

D 

Post salt pulse 

wash with 

Solvent A 

0-50 % 

Solvent B 

Total time 

per pulse 

22 hr scheme 

(Conventional 

and Modified) 

5 mins 5 mins 5 mins 105 mins 120 mins 

13 hr scheme 

(Modified) 

3 mins 4 mins 1 min 52 mins 60 mins 

 

Solvent A: 95% HPLC grade water, 5% acetonitrile, 0.1% formic acid. 

Solvent B:70% acetonitrile, 30% HPLC grade water, 0.1% formic acid. 

Solvent C: 50 mM Ammonium Acetate in Solvent A 

Solvent D: 500 mM Ammonium Acetate in Solvent A 

 

sample was used as initial benchmark to test the performance of the modified scheme. The 

total number of peptides, proteins and spectral counts identified in this sample, as measured by 

the LTQ Velos Pro, are presented in Table 3.3. We observed a dramatic improvement in peptide 

counts (28%) when we switched from conventional 22 h to modified 22 h scheme. This was 

mainly because the modified 22 h scheme better distributed the complexity of unique peptides 

across multiple fractions, as evident in Figure 3.1B. This is in stark contrast to the conventional 

22 h scheme, where the first salt pulse had an overwhelmingly large peptide elution profile 

(Figure 3.1A).  In addition to using the 6iso sample, we initially tested the performance matrix 

of conventional 22 h and modified 22 h schemes on an isolate sample of Caenorhabditis 

elegans. These samples were run in technical duplicates and we found a striking improvement  
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Table 3.2: Ammonium acetate concentrations and time durations for the conventional 22 h, 
modified 22 h and modified 13 h schemes. 

 

Conventional 22 h Modified 22 h Modified 13 h 

NH4Ac 

concentrati

on (in mM) 

Time duration 

of each RP 

gradient 

(in hours) 

NH4Ac 

concentration 

(in mM) 

Time duration of 

each RP gradient 

     (in hours) 

NH4Ac 

concentration 

(mM) 

Time duration for each salt 

step 

(in mins) 

25 2 10 2 10 60 

37.5 2 15 2 15 60 

50 2 20 2 20 60 

62.5 2 25 2 25 60 

75 2 30 2 30 60 

87.5 2 40 2 40 60 

100 2 50 2 50 60 

125 2 75 2 75 60 

175 2 100 2 100 60 

250 2 300 2 150 60 

500 2 500 2 250 60 

  500 120 

Total 

Runtime 

22 hrs Total 

Runtime 

22 hrs Total Run 

time 

13 hrs 
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Table 3.3: Overview of proteomic results from samples measured by the conventional 22 h 
and modified 22 h schemes for 6iso sample                                                                

                                                     Conventional 22 h                                                     Modified 22 h  

 

Table 3.4:  Overview of proteomic results from samples measured by the conventional 22 h 
and modified 22 h schemes for C-elegans sample        

                                                                   Conventional 22 h                                                Modified 22 h 

 

(41 %) in peptide counts. The total number of peptides, proteins and spectral counts identified 

in this sample, as measured by the LTQ Velos Pro, are presented in Table 3.4. 

We next compared the persistence of protein and peptide identification across the technical 

replicates (Figure 3.2). For 6iso, 2874 proteins of the total 5014 (57%) were reproducibly 

identified across all four technical replicates of the conventional 22 h scheme. The 

reproducibility improved in the modified 22 h scheme, where 3416 proteins out of the total 

5557 proteins (62%) were repeated across all four technical replicates (3.2A). The overlap at 

the peptide-level was expectedly less with 38% and 44% across conventional and modified 

schemes respectively for 6iso (3.2B). Thus, the inventory of reproducible peptide and protein  

Run Run 1 Run 2 Run 3 Run 4 Run 1 Run 2 Run 3 Run 4 

Spectral count 131912 119729 144153 150728 164774 172895 176144 150951 

Peptide counts 19409 19016 22217 20841 27324 26695 24998 25488 

Protein counts 3697 3972 4149 4007 4699 4583 4417 4350 

Run Run 1 Run 2 Run 1 Run 2 

Spectral counts 119680 116851 141285 149259 

Peptide counts 16546 16834 25493 21431 

Protein counts 5943 6019 7198 6904 
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Figure 3.2: Percentage of total proteins (3.2A) and peptides (3.2B) repeating across technical replicates for 6iso sample.  

The inventory of repeatable peptide and proteins across technical replicates remained consistent as we moved from one separation 
protocol to another. 
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identifications across technical replicates remained consistent from one separation protocol to 

another. Since data-dependent acquisition introduces a level of stochasticity in discovery 

proteomics, it is imperative that new separation strategies should be as robust as possible 

against random sampling events. Since this percentage remained relatively constant, if not 

somewhat improved, we concluded that the modified scheme did not contribute any further to 

random sampling events.  

We further sought to assess the overall reproducibility of the conventional 22 h and modified 

22 h schemes by looking at semi quantitative values of the normalized spectral counts (nSpC). 

We found a high degree of correlation within the technical quadruplicates of the 6iso, as 

depicted by the scatter plot matrix and Pearson’s correlation analysis of nSpC for both the 

schemes (Figure 3.3).  Thus, the new proteins were consistently detected as we switched from 

the conventional to the modified scheme. 

To further illustrate the improvement in dynamic range and better sampling of low abundant 

proteins for 6iso sample, we performed a statistical comparison of spectral counts of high and 

low abundant proteins for both the schemes.  Here, we wanted to check if the newly designed 

scheme was able to improve the detection of low abundant proteins. As expected, the modified 

22 h scheme facilitated increased sampling (Figure 3.4), Specifically, we found 304 additional 

proteins in the modified scheme that had a spectral count of twenty or lower.  

In general, highly abundant, proteotypic peptides, i.e. those peptides, easily and most 

persistently identified by LC MS/MS-based proteomic experiments, tend to mask the less 

proteotypic ones [116]. However, the more efficient separation strategy employed in the 
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Figure 3.3: Scatter plot matrix and Pearson’s correlation values of normalized spectral counts (nSpc) for conventional 22 h (3.3A) and 
modified 22 h (3.3B) schemes for the 6iso sample.  

A high degree of correlation within the technical quadruplicates was found indicating the high reproducibility of the newly designed 
scheme.

3.3B 3.3A 
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Figure 3.4: Proteome metric improvement in the modified 22 h scheme.  

Figure depicts the binning of proteins based on their spectral counts. Proteins having spectral 
counts in the range 1-20 were considered to be low abundant. The modified 22 h scheme 

facilitated increased sampling of 304 low abundant proteins. 
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modified scheme improves the visibility of low abundance proteotypic peptides, improving 

their sampling rate/reproducibility and thus providing additional information about proteins 

identified in the experiment.   

3.4.3 Gravy Index of Peptides: 

We compared the distributions of identified peptides from the conventional 22 h and modified 

22 h platforms in different hydrophobic and hydrophilic ranges. This was mainly done to assess 

the physiochemical properties of eluting peptides between the two tested schemes. A gravy 

score, which is measure of peptide/protein hydrophobicity, can be used to determine if the 

peptide is polar or non-polar. A negative gravy score indicates that the peptide is hydrophilic 

and positive score corresponds to hydrophobic ones [117, 118]. 

We hypothesized that the new scheme would result in the elution of more hydrophilic peptides 

in the initial pulses when the concentration of ammonium acetate in lower (0-50 mM). This in 

turn would enhance the elution of hydrophobic peptides at the latter pulses when salt pulse 

concentrations are higher (51-200 mM and 201-500 mM). We pooled all the non-redundant 

peptides of both the schemes and subjected them to analysis. The figure denotes the 

distribution of hydrophilic (3.5A & 3.5C) and hydrophobic peptides (3.5B & 3.5D) under 

different concentrations of ammonium acetate for C.elegans and 6iso samples.  

After the application of a salt pulse, the gradient starts with an aqueous phase and gradually 

shifts towards the organic phase.  Peptides that are highly hydrophilic should be displaced 

initially in the gradient flow when the aqueous phase content is high; otherwise their detection 

would be averted by the hydrophobic peptides that are eluted during the organic phase. We  
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Figure 3.5: Hydrophilic (3.5A & 3.5C) and hydrophobic (3.5B & 3.5D) peptide elution profiles for conventional 22 h and modified 22 h 
schemes for C.elegans samples and 6iso samples.  

Peptides were grouped under three different bins of ammonium acetate concentrations. The modified scheme resulted in the elution 
of more hydrophilic peptides in the initial pulses when the concentration of ammonium acetate in lower (0-50 mM). 

 

3.5A 3.5B 

(6iso) 
3.5D (6iso) 3.5C 



65 
 

reasoned that the shallower scheme would displace an optimum concentration of peptides 

across the reverse phase in each salt pulse, thus causing the hydrophilic peptides to be sampled 

more effectively. On the other hand, having a higher salt pulse (as in the conventional scheme) 

would displace a large sub-population of peptides, and many of the hydrophilic peptides may 

not get access to the short aqueous phase and hence would escape detection. The conventional 

22 h scheme has only three salt pulses under 50 mM. The modified 22 h scheme on the other is 

broken down into seven salt pulses under 50 mM. As indicated in the figures below (3.5A & 

3.5C), there is a slight enhancement in the sampling of hydrophilic peptides in the modified 22 

h scheme.  

3.4.4 Percentage and Numerical Gains in Total Peptides between the Conventional 22 

h and Modified 22 h Schemes: 
 

The 2D analysis of tryptic digests of C-elegans resulted in the cumulative identification of 

47,943 redundant peptide sequences across the eleven pulses of the conventional 22 h scheme. 

The modified 22 h scheme revealed 62,656 peptides. Similarly, for 6iso it was 70,735 and 

103,179 for the conventional 22 h and modified 22 h respectively -an increase of roughly 24% 

and 46% for C-elegans and 6iso respectively. These drastic shifts in peptide counts prompted us 

to analyze the depth in peptide detections across individual fractions. Figure 3.6 depicts the 

percentage and numerical gains in peptide counts per salt pulse as we move from the 

conventional 22 h to the modified 22 h scheme for 6iso (3.6A) and C-elegans (3.6B) samples. 

The shift of the bar towards the negative axis indicates that the conventional scheme gave 

more peptide identifications for that particular salt pulse while a shift towards the positive axis 

indicates increased identification rates in the modified scheme. As shown, the modified scheme  
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Figure 3.6: Numerical gains in peptide counts between the conventional 22 h and modified 22 h 
schemes for 6iso (3.6A) and C.elegans (3.6B) samples. 

. The negative bar indicates that conventional scheme gave more peptides for that particular 
salt pulse. As indicated, the modified scheme outperformed the conventional scheme in most of 

the salt steps 
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outperformed the conventional scheme in all the salt pulses except the first one. This was 

expected because the conventional scheme was highly front-loaded in the first salt pulse and 

was broken into smaller incremental windows in the modified scheme, resulting in more 

uniform peptide elution profiles.  

In a 2D LC-MS/MS analysis employing SCX and RP, the displacement of peptides from the 

charged SCX resin to the hydrophobic reverse phase resin is carried out by a volatile salt. The 

conventional scheme, which employs a higher concentration of ammonium acetate upfront, 

causes the displacement of a larger sub-population of peptides to the reverse phase resin for 

gradient separation and concurrent MS/MS. This increased complexity impacts overall peptide 

identification, as the mass spectrometer generally has a fixed duty cycle that can limit its 

capability to detect all peptides eluting at any given time. Thus, a larger subpopulation will 

likely lower the probability that all will be sampled. The modified scheme, however, causes a 

more uniform displacement of peptides in each salt pulse thus increasing the probability of 

complete sampling and leading to the gains observed here. 

3.4.5 Design of Shorter MudPIT Schemes for Improved Sample Throughput: 
 

The second objective of our study was to evaluate the impact of shallower scheme for 

improving the throughput of MudPIT measurements. The enhanced chromatographic 

separation, by virtue of the shallower salt pulse scheme, should result in a more even 

distribution of peptides across the reverse phase, thus permitting the use of a steeper RP 

gradient to perhaps achieve the same level of depth as a 22 h MudPIT. This in turn should 

reduce the overall instrument operation time, allowing for increased throughput. To test this, 
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we designed a twelve-step modified salt-pulse scheme with each pulse followed by a RP 

gradient of 75 min, 60 min or 45 min thus employing a total runtime of 15 h, 13 h and 9.5 h 

respectively. These shortened time schemes were chosen based on the desire to achieve higher 

throughput in MudPIT measurements without impacting the overall proteome metrics.   

6iso sample was used as a benchmark to evaluate these results on the LTQ Velos Pro mass 

spectrometer. The ammonium acetate concentrations and RP gradient times of 13 h tested 

schemes are summarized in the Table 3.1 and the gradient profile for these 13 h salt pulse 

schemes are summarized in the Table 3.2. The protein and peptide counts of the technical 

quadruplicates of 6iso for the conventional 22 h and modified 13 h schemes are illustrated in 

figure 3.7. Amongst the shorter MudPIT schemes, the modified 13 h scheme gave near identical 

peptide counts to the conventional 22 h scheme and worse than the 22 h modified scheme. We 

also studied the distribution of protein groups within the technical replicates for conventional 

22 h and modified 13 h methods (Figure 3.8). Here, proteins were binned based on the number 

of distinct peptides by which they were identified. We found a high degree of overlap in protein 

group distribution within the conventional 22 h and modified 13 h schemes for proteins 

identified by at least 5 distinct peptides – likely the more abundant proteins in the sample. 

Together, the four conventional 22 h MudPIT runs identified a total of 30428 distinct peptides 

and the four modified 13 h MudPIT runs identified 28052 distinct peptides. The extent of 

enhancement in duty cycle achieved in the modified 13 h scheme is similar to that achieved by 

Yates et. al. in their modified MudPIT strategy [111].   Thus, reducing the time by 9 hours using 

the shallower scheme does not have much of a negative impact on sampling of proteomic 

measurements, as the counts remained more or less the same. 
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Figure 3.7: Peptide and protein counts of 6iso tryptic peptides shown on a linear scale for conventional 22 h and modified 13 h 
schemes.  

Error bars indicate standard deviation (s.d); n=4 technical replicates.
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Figure 3.8: Distribution of Protein groups for 6iso sample 

Distribution of protein group identifications during successive replicate analyses of tryptic peptides from 6iso sample, as classified by 
the number of distinct peptides that characterized each protein.  Listed are proteins that were identified by 2 distinct peptides, those 

identified by 3 or 4 peptides, by 5 through 9 peptides and by 9 or more peptides. Error bars indicate standard deviation (s.d); n=4 
technical replicates. A high degree of overlap in protein group distribution within the conventional 22 h and modified 13 h schemes 

for proteins identified by at least 5 distinct peptides – likely the more abundant proteins in the sample 
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3.4.6 Distribution of Unique Peptides Across Modified 22 h and Modified 13 h 

Schemes: 
 

To evaluate the elution profile of peptides across individual fractions for the shorter 13 h 

schemes, we concatenated all the unique peptides of 6iso from each salt pulse and assessed 

their distribution across the salt pulses (Figure 3.9). The modified 13 h (3.9A) schemes showed 

a more even distribution of peptides across all the fractions. This observation was similar to the 

modified 22 h scheme (figures 3.1B and 3.9B) and is in stark contrast to the conventional 22 h 

scheme where the first salt pulse had an overwhelmingly large peptide elution profile (figure 

3.1A). For example, it takes only 5 pulses to achieve 75% peptide identification in the 

conventional scheme whereas, it takes 8 to 9 pulses to achieve 75% in the modified 22 h and 

modified 13 h respectively. Since the mass spectrometer has a somewhat fixed duty cycle, 

increased uniformity in the chromatographic separation obtained in the modified schemes 

allowed us in achieving deeper proteome coverage. 

3.5 Conclusions: 
 

The study presented here describes an optimized approach for multidimensional 

chromatographic separations in complex proteome measurements, specifically for SCX-RP 

separation of peptides. The high level of distinctness obtained in the shallower scheme 

demonstrates a more uniform elution of different peptides. We found that the modified 22 h 

scheme provides significant increases in measurement depth by virtue of improved spacing of 

unique peptide sub-populations per salt pulse. This translates to deeper total proteome 

coverage. Given that dynamic range is a critical issue in proteomics, the shallower scheme can  
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Figure 3.9: Distribution of unique peptides across each salt pulse (sp) for modified 13 h (3.9A) 
and modified 22 h (3.9B) schemes. 

Both the schemes showed even distribution of peptides across all fractions as indicated by 
uniform slices. 
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better sample low abundant peptides as there is reduced peptide density especially during the 

initial pulses. The modified 22 h scheme provides superior proteome coverage without 

compromising the total measurement time of 22 h that constitutes a typical MudPIT setup. In 

fact, the modified 13 h approach is comparable with the much longer conventional approach, 

thus yielding a significant increase in measurement throughput. Though the proposed 2D 

separation method described here was demonstrated using an online mode, it can easily be 

extended to offline fractionation techniques. 

The utility of modified scheme was further demonstrated on a complex community sample, the 

results of which are discussed in the next chapter  
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Chapter 4 - Evaluating the Impact of Multiple Search Engines and De 

Novo Sequencing Algorithms for Obtaining Deeper Proteome 

Coverage in Complex Environmental Samples 

4.1 De Novo Sequencing as an Alternative Tool for Peptide Validation-Case 

Study Using a Thiocyanate Degrading Microbial Community Sample:   
 

In order to further demonstrate the utility of modified 22 h scheme, we chose a “real world” 

thiocyanate (SCN-) degrading microbial community sample obtained from a bioreactor[119, 

120]. This sample was sent to us as a part of the collaborative initiative with Dr. Jillian F. 

Banfield’s group at UC, Berkeley and Dr. Susan T.L. Harrison at the University of Cape Town, 

South Africa.  The sample was enriched in several genera that have been previously detected in 

or isolated from SCN- and CN- degrading microbial communities. These included Thiobacillus, 

Mesorhizobium, Sphingomonas, Sphingopyxis, Comamonas, Rhodanobacter, 

and Microbacterium [121-124]. The thiocyanate sample was analyzed in technical triplicate for 

both Conventional 22 h and modified 22 h schemes on a high-resolution mass spectrometer 

(LTQ-Orbitrap Elite) to assess whether enhanced ion mass accuracy/resolution coupled with our 

newly designed chromatographic scheme impacts proteomic identification in a complex 

sample. Though data-dependent acquisition settings for this instrument were comparable to 

those used with the LTQ Velos Pro analysis of the 6iso and C elegans samples (described in the 

materials and methods section of chapter 3), the Orbitrap employed here allowed us to exclude 

unassigned and singly-charged analytes from targeted fragmentation as they are less 

informative with regard to  database searching [125]. The database used in this study was 

constructed from metagenomic assemblies described in Kantor et al [120].   



75 
 

The results of peptides, proteins and spectral counts of all the technical replicates are 

summarized in table 4.1.  

Table 4.1:  Overview of proteomic results from samples measured by the conventional 22 h 
and modified 22 h schemes for the Thiocyanate community sample 

                                                                 Conventional 22 h                                        Modified 22 h 

 

Surprisingly, the conventional 22 h scheme gave comparable peptide counts to the modified 22 

h scheme. But a closer analysis of the peptides eluting in the individual salt pulses revealed that 

the modified 22 h scheme outperformed the conventional 22 h scheme from pulse 4 to pulse 

11 (Figure 4.1). Also, inspection of the total spectral counts of both the schemes revealed that 

they were similar (Mean=70,001, SD=386 for the conventional 22 h and Mean=67050, SD=1511 

for the modified 22 h). This prompted us to investigate why the modified 22 h scheme did not 

exhibit the expected increased performance. To this end, we sought to examine whether the 

lack of depth in the modified scheme was due to peptide identification rather than peptide 

detection, as multispecies samples have exceptional complexity and heterogeneity, which 

creates a bottleneck for peptide detection using database searching approaches [39, 126, 127]. 

 

 

Run Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 

Spectral counts 70108 70322 69537 68775 66413 65961 

Peptide counts 20609 22359 22251 20137 14208 21121 

Protein counts 6788 7295 7005 6346 5313 6667 
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Figure 4.1: Distribution of concatenated peptides across individual salt pulses for technical triplicates of the thiocyanate community 
sample.   

The modified 22 h scheme outperformed the conventional 22 h scheme from pulse 4 to pulse 11. 
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For this, we used De novo sequencing, which is an alternative tool used to infer peptide 

sequences directly from the MS/MS spectra and does not require a protein sequence database. 

The utility of de novo sequencing in metaproteomic investigations has been demonstrated 

previously [42, 128].  Thus, we performed de novo sequencing on the thiocyanate 

metaproteome using DeNovoGui [114]  which has a graphic user interface and enables the user 

to run parallelized versions of PepNovo+ sequencing algorithm[115]. We retrieved de novo 

peptide suggestions for the technical triplicates of conventional 22 h and modified 22 h 

schemes (Figure 4.2) and found that the total number of collected spectra (i.e. those having 

PepNovo+ scores ranging from zero to maximum) was similar for both the schemes (blue bars). 

However, high confident spectra (PepNovo+ score above threshold 100) were observably 

greater (~20,000) in the modified scheme (red bars), even though the same to slightly less 

spectra were collected on average. These data imply that a larger proportion of high quality 

peptide spectra were measured in the modified scheme compared to the conventional, 38% vs. 

31% respectively, an increase that would no doubt add to the current peptide and protein 

count of the modified scheme irrespective of database quality. Although, the current 

metagenomic approaches provide a glimpse into community dynamics of high abundant 

organisms, they provide limited information for community members present at low 

frequencies [129]. Hence, the high quality unassigned spectra obtained in the thiocyanate 

community sample, combined with the information from Figure 3.4 for the 6iso sample 

(chapter 3) where the modified scheme has superior measurement depth for lower abundance 

peptides, suggests that the expected gains in measurement performance here might be masked 

by the incomplete metagenome information of lower abundant species in the thiocyanate
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Figure 4.2: Distribution of PepNovo+ scores for collected mass spectra for the thiocyanate community sample 

 Error bars indicate standard error (SE); n=3 technical replicates. The total number of collected spectra (0 to maximum) was similar 
for both the schemes (blue). However, high confident spectra (scores greater than or equal to 100) were observably greater in the 

modified scheme (red) indicating that a large portion of high quality spectra in this newly designed scheme are not matching to the 
corresponding database. 
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metaproteome.  

In a complex community sample, success in achieving accurate protein identification and 

enhanced proteome coverage is heavily reliant upon the protein database that is constructed 

from the metagenomic data. In comparison to the single cell type/microbial isolate databases 

which are well-curated, a large portion of high quality spectra in a metaproteomic study remain 

unassigned due to poor matches with the proteomic database.  This is mainly due to high 

complexity and heterogeneity of the sample containing thousands of proteins belonging to 

hundreds of different microbial species having varied abundances and often sharing a high level 

of homology. Also, the restricted availability of (predicted) peptide sequences matching the 

experimental spectra makes peptide to spectrum matching an arduous task [126] . De novo 

sequencing offers an extended approach to common database searching strategy and can be 

used as an alternative validation tool for peptide identification. By using this tool, we were able 

to demonstrate the overall enhanced measurement depth of our new scheme (~20,000 more 

HQ peptide spectra) for complex community samples, which would otherwise have been 

missed if only database search results were taken into consideration. This also reiterates the 

use of de novo sequencing as a powerful tool for improving the depth and reliability of 

metaproteomic identifications.   

The observations with respect to thiocyanate metaproteome lead to two important questions 

that formed the premise for the subsequent sections discussed in this chapter. 1) How to map 

de novo peptides back to metaproteome database? because peptide sequences though 

important give little relevant information unless one finds the corresponding protein 

sequences. 2) Instead of using one search engine, can a battery of multiple iterative search 
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engines be used for improving the reliability and depth of metaproteomic data? This approach 

has been shown to be suitable when working with well-established systems like human 

metaproteomes, but has not been verified with complex environmental samples where sample 

availability can be sometimes limited and metagenomic assembly is usually poor.   

4.2 Computational Bottlenecks Associated with Database Search Strategy for 
Complex Metaproteomes:  
 

Protein sequence database searching is the current gold standard in the proteomics community 

for accurate peptide and protein identifications. This is mainly because the search software 

requires limited computational space to interrogate the experimental spectra from a database 

having a pre-defined protein list derived from the metagenomic assembly of the sample under 

consideration. However, database search algorithms may contribute to low identification rates 

(low sensitivity) [130, 131] and elevated false discovery rates (low accuracy) [132]. Thus, 

improving the performance of database search algorithms is still an area of active research.  

The database search approach essentially presents two competing challenges for protein 

identification; accuracy and sensitivity. Accuracy is measured by false discovery rate, which is 

defined as the percentage of false identification in a pool of total identifications above a 

particular score threshold (FDR is discussed in detail in chapter 2). Accuracy or the confidence in 

protein identification is accomplished by increasing the score threshold. Thus, in order to 

account for both sensitivity and accuracy, new scoring functions have been developed that 

separates the true and false identifications more efficiently [133, 134].  
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Another bottleneck associated with the database search strategy is the search speed. To 

maintain an acceptable search speed, filtration methods are usually adopted that quickly 

shortlist a subset of proteins or peptide candidates based on cross-correlation scores which are 

further evaluated using more advanced scoring functions. However, this stringent filtration 

method often excludes real peptides. In shotgun proteomic studies, these real peptides often 

belong to those proteins that are present in the sample at a very low level and only represented 

in the MS/MS data by one of two spectra [135]. Alternatively, there are novel peptides present 

in the experimental spectra and their characterization is averted simply because the proteins 

belonging to these peptides were derived from low abundant species in the community and 

were missed during genome assembly.     

4.3 Combining Results from Multiple Search Engines: 

There are several open source algorithms that can be used to match the experimental spectra 

to the corresponding database to identify confident peptide-spectrum matches. These include 

SEQUEST [52], X! Tandem [84], MS-GF+ [85] , MASCOT [80] , MyriMatch [86],  Comet [87] , 

Andromeda [88], OMSSA [82] etc. However, computational analysis of MS/MS spectra 

represents a significant challenge in that only a fraction (typically <30%) of all acquired MS/MS 

spectra can be successfully interpreted as peptides using database search strategy. This can be 

partially explained by the differences in the scoring schemes implemented in the search tools 

that rank candidate database peptides with the given experimental spectrum. A standard 

scoring scheme for annotating the fragmentation spectra has not yet been designed and each 

database-searching algorithm implements similar, but slightly different strategies to identify 

peptides. For example, SEQUEST calculates a correlation score between a normalized MS/MS 
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spectrum and a unit-intensity fragmentation model. Mascot and OMSSA calculate the likelihood 

of matching peaks using Poisson, and hypergeometric distributions. X! Tandem calculates a 

score like SEQUEST, but considers the distribution of those scores to calculate an expect value 

(E value) like BLAST. Newer search engines like MyriMatch utilize intensity based information 

encoded in the spectrum and rank peaks into intensity bins to infer peptides.  

These differences in database search engines for scoring peptides has led to integration of 

multiple search engines for improved assessment of complex datasets, thus yielding a similar 

yet somewhat distinct set of peptide at the same FDR criterion [136-138]. The utility of multiple 

search engines has been successfully demonstrated for well-established systems like human 

metaproteomes [139], but has not yet been evaluated with complex multi-species 

environmental samples where biomass availability can sometimes be limited and metagenomic 

assembly can be poor.  

4.4 De Novo Sequencing- Advantages and Limitations: 

The ability to infer peptide sequences directly from the MS/MS spectra confers an indisputable 

advantage to the process of de novo sequencing. This is essentially useful for metaproteomic 

specimens where public repositories often fail to cover the entire proteome. In such cases 

where metagenome sequences may be difficult to obtain, de novo sequencing allows for the 

identification of peptides even if the peptide sequence information is incomplete or partially 

not available [140]. Although, de novo sequencing is a computationally intensive process, the 

availability of modern computer architecture has rendered it as a powerful and cost-effective 

method for peptide validation. The complementation of de novo sequencing with conventional 
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database searching methodologies can support the validation of borderline peptide 

identifications. In some cases, de novo sequencing can also prove to be a better alternative to 

database searching algorithm (for example, homologous proteins from different taxonomic 

domains). Here, database search programs are more prone towards certain protein 

identifications by assigning them greater probabilities. De novo sequencing on the other hand 

can counter such biases as it relies on spectrum information alone [42].  

However, de novo detection is frequently hampered by common de novo sequencing errors 

such as inversions and amino acid substitutions. Thus, proper evaluation of de novo inferred 

peptides for further downstream analysis is important to avoid false positives [127]. Also, the 

essential step of peptide mapping to protein sequences is not performed by de novo 

sequencing software.  

The utility of de novo sequencing for peptide identifications has been demonstrated previously 

for metaproteomic specimens [42]. However, extension of this methodology to infer taxonomic 

and functional information is still an un-explored domain. This step will be crucial in deepening 

the extent of meta-information that can be obtained from these complex samples.  

4.5 PepExplorer- A Pattern Recognition Tool for Mapping de novo Sequencing 

Results: 
 

PepExplorer is a post-processing de novo sequencing software that allows protein inference via 

statistical mapping of de novo sequencing results to a corresponding protein sequence 

database [141]. PepExplorer uses extensive pattern recognition to gather a list of homologous 

proteins derived from de novo sequencing data to allow for biological interpretation of data. In 
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order to achieve this, it utilizes a radical basis functional neural network that takes into account 

the de novo sequencing scores and peptide lengths to select probable protein candidates that 

belong to the target decoy database. PepExplorer is designed to handle the outputs from 

several commercially available and open source de novo tools like PepNovo, pNovo+, PEAKS 

etc. Similarly, the software accepts a series of database formats for input analysis.  

The focus of this study was to develop an integrated metaproteomic workflow consisting of 

multiple iterative search engines coupled with de novo sequencing algorithms for a 

comprehensive and in-depth characterization of complex environmental samples. 

4.6 Materials and Methods: 
 

4.6.1 Sample Types: 
 

Three different sample types were used for this study. The first was an isolate of Desulfovibrio 

desulfuricans (ND132); the second was a mixture of six environmental microbes herein referred 

to as 6iso that included Saccharomyces cerevisiae, Escherichia coli, Clostridium thermocellum, 

Ignicoccus hospitalis, Nanoarchaeum equitans and Streptomyces eurocidicus. The third sample 

used for the study was a biofilm sample inhabiting a site of extreme acid mine drainage (AMD) 

collected from Richmond Mine, Iron Mountain, CA.  

4.6.2 Protein Extraction and Enzymatic Digestion: 
 

ND132 and 6iso samples were prepared separately as follows: 1 mg of microbial sample was 

excised and thawed for cell lysis and protein extraction. These samples were first boiled for 5 

min in 1 mL of lysis buffer containing 100 mM Tris-HCl, pH 8.0, 4% w/v SDS (sodium dodecyl 
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sulfate), and 10 mM dithiothreitol (DTT). The suspension was vortexed and sonicated with a 

Branson ultrasonic cell disruptor (20% amplitude for 2 min, 10 s pulse with 10 s rest). The 

resulting crude protein extract was precleared via centrifugation at 21000 g and quantified by 

the BCA assay (Pierce Biotechnology, Waltham, MA). An aliquot consisting of ∼1 mg of protein 

was subjected to TCA precipitation and subsequent digestion with trypsin using the method 

described previously [103]. The resulting peptides were quantified by the BCA assay and stored 

at −80 °C until use. 

For the AMD sample, whole-cell protein fraction was extracted using methods similar to earlier 

studies [20, 142].  1 g of biofilm was gently mixed with 5 ml of H2SO4 at pH 1.1, the suspended 

biofilm was then centrifuged at 12000 g for 20 min at 4°C, the supernatant was then discarded. 

A washing step was incorporated to avoid interference of near-molar concentrations of metals 

with protein extraction. The pellet was re-suspended in 6 ml of 20 mM Tris-SO4, pH 8.0 and the 

cells were lysed by sonication on ice (5 × 1 min using a microprobe at high power with 1 min 

breaks to avoid excessive heating). 5 ml of 0.4 M Na2CO3 was then added at pH 11 and the 

whole-cellular protein fraction was separated from non-lysed cells and extracellular polymers 

by centrifugation (6000 g, 20 min, 4°C). Finally, proteins were precipitated by the addition of 

1:10 volume trichloroacetic acid and incubated at 4°C for at least 3 h. The mixture was 

centrifuged for 10 min at 20 000 g at 4°C and after washing the pellet with methanol at 4°C, it 

was centrifuged at 20 000 g at 4°C again, after which the pellet was air-dried and frozen at 

−80°C. The protein extract was subsequently denatured and reduced with 6 M 

Guanidine/10 mM DTT, and digested into peptides using sequencing grade trypsin (Promega, 

Madison, WI).  
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4.6.3 Nano 2D LC-MS/MS Measurement: 
 

Peptides were de-salted, concentrated and analyzed either via 22 h nano-2D-LC MudPIT (for 

ND132 and 6iso samples) or 24 h nano-2D-LC MudPIT (for AMD sample) consisting of strong 

cation exchange and reversed phase.  Raw spectra were collected on either an LTQ-Orbitrap 

ELITE mass spectrometer (for ND132 and 6iso samples) or an LTQ-Orbitrap XL mass 

spectrometer (for AMD sample), [Thermo Fisher Scientific, San Jose, CA] with technical 

duplicates for each sample.  The LTQ-Orbitrap-Elite was operated in a data-dependent mode. 

MS1 was performed in Orbitrap and data dependent MS/MS was performed in LTQ (top 

twenty), 1 microscan for both full and MS/MS scans; normalized collision energy 35% and 

dynamic exclusion time of 30 seconds. The LTQ-Orbitrap-XL was run as follows: full scans of the 

peptide mixture entering the mass spectrometer from the LC column were taken in the 

Orbitrap at 30 K resolution followed by five data-dependent MS/MS spectra acquired in the 

LTQ; two microscans were averaged for both full and MS/MS scans; normalized collision energy 

35% and dynamic exclusion was set at one.  

4.6.4 Data Analysis: 
 

Raw files were converted to MGF peak lists. The resulting peak list files were identified using 

four different database search algorithms; OMSSA version 2.1.9 [82], X!Tandem version X! 

Tandem Vengeance (2015.12.15.2) [143], MS-GF+ version Beta (v10282) [144] and Comet 

version 2016.01 rev. 2 [87]. The search was conducted using SearchGUI version 3.2.7 [145]. 

Protein identification was conducted against a concatenated target/decoy version of the three 

samples under consideration (ND132, 6iso and AMD having 3452, 16,321 and 191778 target 
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sequences respectively). The decoy sequences were created by reversing the target sequences 

in SearchGUI. The identification settings were as follows: Trypsin, Specific, with a maximum of 2 

missed cleavages 10.0 ppm as MS1 and 0.5 Da as MS2 tolerances. Peptides and proteins were 

inferred from the spectrum identification results using PeptideShaker version 1.16.4 [38]. 

Peptide Spectrum Matches (PSMs), peptides and proteins were validated at a 1.0% False 

Discovery Rate (FDR) estimated using the decoy hit distribution. 

4.6.5 De Novo Sequencing: 
 

Non-validated spectra i.e. those spectra that did not find a valid hit during database searching 

above were again exported as MGF peak lists and were subjected to de novo sequencing. For de 

novo sequencing, the software DeNovoGUI (version 1.2.0) was used [114] that provides a 

graphical user interface and parallelization of the PepNovo+ algorithm [115]. The fragmentation 

method used was CID_IT_TRYP in PepNovo+ that accounts for CID fragmentation and tryptic 

cleavage. The PepNovo+ algorithm was used in multithreaded mode via a locally available 

computing cluster. Finally, the de novo peptide suggestions were filtered by a PepNovo+ score 

threshold above 100 for high-quality identifications for further downstream analysis.  

4.6.6 De novo Results Parsing via PepExplorer: 
 

The High scoring de novo peptides (having PepNovo+ score threshold ≥ 100) together with the 

target decoy database of the three samples were filtered through PepExplorer which is 

integrated into the PatternLab for Proteomics (v4.0.0.68) environment [146]. The identity cutoff 

of 0.95 and minimum peptide length of 8 amino acids was used to select confident de novo 

peptides matching to the target-decoy database. This peptide length was similar to the 
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sequences of database derived peptides. The neural network of PepExplorer was run in a 

simplified mode by copying and pasting the high scoring de novo peptide suggestions in the 

provided text box.  

4.7 The Computational Pipeline: 
 

Figure 4.3 depicts the schematic illustration of the designed computational pipeline used for 

analyzing the metaproteomic data. Briefly, the raw spectra obtained from MudPIT 

measurements were converted to MGF peak lists which were then subsequently analyzed 

against either one (MS-GF+) or four (OMSSA, X!Tandem, MS-GF+ and Comet) different database 

search algorithms. The numerical gains in peptide and protein counts were then compared to 

quantify the gains observed when using multiple search engines (Steps 1 through 3). 

Subsequently, the spectra of non-validated PSM’s i.e. those that did not find a valid peptide hit 

during database searching, were subjected to de novo sequencing (steps 4 and 5). The high 

scoring de novo predicted peptides were then mapped to the target decoy database via 

PepExplorer to identify novel protein candidates (steps 6 through 8).         
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Figure 4.3:  Schematic illustration of the designed computational pipeline used for analyzing the metaproteomic data. 
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4.8 Results and Discussion:  
 

4.8.1 Comparison of Proteomic Results of Three Different Samples Analyzed Against 

Database Search Algorithms: 
 

Figure 4.4 illustrates the comparison among peptides (4.4A) and proteins (4.4B) identifications 

obtained by searching the acquired MS spectra against either four different search engines 

(OMSSA, X!Tandem, MS-GF+ and Comet and named as “Combined”)  or one search engine 

(MSGF+) using a <1% FDR threshold. Combining the search results from four different search 

engines lead to 13%, 18% and 36% increase in peptides and 6%, 12% and 14% increase in 

protein counts for ND132, 6iso and AMD samples respectively.  

Further assessment of the spectral ID’s indicated that 34%, 11% and 32% of high quality spectra 

for ND132, 6iso and AMD samples were converted to peptide identification via database 

searching. This implied that a large portion of high-confident spectra were not matching the 

database. This is a serious issue in community proteomics, arising mainly due to the restricted 

availability of predicted peptide sequences matching the experimental spectra. Hence, the 

spectra that did not find a valid hit during database searching were subjected to de novo 

sequencing.   

4.8.2 Taxonomic Attribution of Peptides via Unipept: 
 

One of the recent advancements in metaproteomics research is the biodiversity analysis of 

complex metaproteome samples using the Unipept web application [147]. Unipept has the 

lowest common ancestor (LCA) algorithm [148] that allows the taxonomic identification of  
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Figure 4.4: Peptide (4.4A) and protein (4.4B) counts respectively of the three samples searched 
against either four search algorithms (“Combined”) or one search algorithm (MSGF+).  

Error bars indicate standard deviation (s.d); n=2 technical replicates. 
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peptides detected in MS measurements. LCA is based on the principle that a particular peptide 

or a protein sequence is assigned to a species only if does not match with any other species 

contained in the Uniprot sequence database. On the other hand, if a peptide or a protein 

sequence is shared amongst different species that belong to the same genus, then the 

sequence is unambiguously assigned only at the genus level. Thus, unique peptides derived 

from shotgun MS measurements can be grouped in different taxonomic levels based on the LCA 

algorithm. In general, widely conserved sequences are assigned to higher order taxa (such as 

class or phylum).  

Unipept supports the biodiversity analysis of metaproteomic samples using the tryptic peptides 

generated during shotgun MS/MS experiments. The utility of Unipept for biodiversity analysis 

of metaproteome specimens has been demonstrated previously [46, 149]. In the current study, 

instead of tryptic peptides detected using database search algorithm, we used the de novo 

predicted peptides as inputs for Unipept and evaluated their taxonomic distribution. Since, all 

the three samples used in the study were digested using trypsin, the de novo predicted 

peptides were also tryptic in nature and served as ideal candidates for Unipept analysis. We 

only used high quality de novo predicted peptides having a score ≥ 100 and amino acid length ≥ 

8 for downstream analysis. The resulting peptide sequences were imported on Unipept 

(https://unipept.ugent.be/datasets) to deduce taxonomic information about the de novo 

sequencing peptides. Peptides were subjected to ‘Multi peptide’ analysis by setting the 

following parameters; ‘equate I and L residues’ and ‘filter duplicate peptides’.  

Figure 4.5 illustrates the taxonomic attribution of 6sio (4.5A) and AMD (4.5B) metaproteomic 

data obtained via Unipept. 1,114 out of 16,177 and 10,625 out of 108,115 peptides obtained via 

https://unipept.ugent.be/datasets
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de novo sequencing were taxonomically grouped by Unipept. The overwhelmingly large number 

of de novo predicted peptides obtained for 6iso sample compared to the AMD sample was 

mainly due to the different instrument platforms used for acquiring MS/MS spectra (Orbitrap-

ELITE for 6sio having faster scanning speed compared to Orbitrap-XL for AMD sample).  

In the next step, we evaluated the common taxonomic annotations between combined 

database search (OMSSA, X!Tandem, MS-GF+ and Comet)  and de novo sequencing i.e. the total 

number of phylum, class, family, genus and species common between combined database 

search and de novo sequencing (Figure 4.6). For example, there were thirty-three different 

phyla detected by combined database search for the AMD sample, out of which twenty-one 

were also identified by de novo sequencing (highlighted by red box). We found that de novo 

sequencing data from 6iso sample is able to account for almost all the phyla, class, family and 

genus detected by database searching. For the AMD sample, the resolution obtained is less and 

is partially confined to phyla and class and diminishes further as we move to family, genus and 

species.  

However, it must be noted that peptide attributions to different taxonomic bins via Unipept 

could lead to misassignments. This is evident from the 6iso data where species level resolution 

identified twenty-six different species (instead of six) out of which eleven were also identified 

by de novo sequencing. Assignment of peptides to more than six species could be due to strain-

level variation occurring in microbial species. It can also be an experimental artifact (peptides 

belonging to Keratin which is a common contaminant protein in mass spectrometry 

experiments). Since the species composition of 6iso sample was already known, this allowed 

the quantification of incorrect assignments present in this sample. However, in case of complex  
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Figure 4.5:  Taxonomic attribution of 6iso (4.5A) and AMD (4.5B) metaproteomic data obtained 
via de novo sequencing and filtered via Unipept.  

 

2848

2694

2104

2048

931

0 500 1000 1500 2000 2500 3000

phylum

class

family

genus

species

Number of Peptides

6iso de novo4.5A

274

246

232

229

133

0 50 100 150 200 250 300

phylum

class

family

genus

species

Number of Peptides

AMD de novo4.5B



95 
 

 

Figure 4.6: Taxonomic annotations common between combined database search algorithms and 
de novo sequencing for 6iso and AMD metaproteomic data.  
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heterogeneous sample like AMD, caution must be exercised before extending the conclusions 

obtained via Unipept and further validation thresholds must be applied to control the 

resolution of taxa identification before attributing the peptides to different taxonomic bins. This 

also reiterates the utility of de novo sequencing as a complimentary but not a ‘stand-alone’ 

approach for inferring the taxonomic diversity of metaproteomic data.  

4.8.3 Protein Gains after PepExplorer Data Integration for AMD Sample: 

In the next step, the high scoring de novo peptides (having PepNovo+ score threshold ≥ 100) 

were filtered through PepExplorer together with the target decoy database. Figure 4.7 depicts 

the sequential increase in protein counts for the AMD sample. It should be noted that peptides 

with an identity cutoff of 0.95 and minimum length of eight amino acids that matched to a 

given protein sequence in the target decoy database were considered to be true hits. 

Combining the proteins from ‘Combined database search’ and PepExplorer mapping of de novo 

predicted peptides to the database lead to an increase of 1873 proteins for the two technical 

replicates of the AMD sample.  

PepExplorer also generates a dynamic interactive report that allowed us to extract detailed 

information about the protein of interest. Figure 4.8 illustrates the graphical user interface of 

the results browser that is composed of two panels. The upper panel displays information 

pertaining to the protein such as the number of peptide alignments, spectral counts i.e. the 

number of de novo spectra that matched to the protein, the unique spectra associated with the 

protein and the coverage chart that displays the regions of the proteins which were mapped by 

the de novo predicted peptides. When a protein is selected, detailed information is displayed in   
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Figure 4.7: Average number of proteins detected in the AMD sample using a single database search engine (MSGF+), combined 
database search engines and summation of proteins obtained using the combined database search engines and Pepexplorer 

mapping of de novo predicted peptides to the database.  

Combining the proteins from ‘Combined database search’ and PepExplorer mapping of de novo predicted peptides lead to an average 
increase ~1200 (1873 in total) proteins for the two technical replicates of the AMD sample (highlighted by red box).

4.7 
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Figure 4.8: Graphical user interface of the PepExplorer results browser

4.8 
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the lower panel of all alignments that mapped to it, such as scan number, spectral count (Z), 

sequence provided by de novo sequencing tool and the corresponding sequence found in the 

database. Since we used a stringent identity cutoff (0.95), the de novo peptide sequence and 

database peptide sequence was in complete alignment with one another and only such 

proteins were considered in the candidate list for downstream analysis.   

Double clicking on the row of interest in the upper panel generates a graphical coverage report 

that shows the extension of area covered by predicted peptides (Figure 4.9). 

4.8.4 Functional Annotation of PepExplorer Inferred Protein List for the AMD Sample:  
 

Finally, we focused on the functional annotation of de novo sequencing data. For this we used 

GhostKOALA [150] which is KEGG’s (Kyoto Encyclopedia of Genes and Genomes) internal 

annotation tool for KEGG Orthology (KO) assignment. GhostKOALA utilizes the GHOSTX 

program [151] for searching the query sequences against the non-redundant protein database. 

The GHOSTX program searches the given query sequence against the non-redundant database 

and the resulting multiple hits (Paralogs) are combined and only the top scoring hits are 

displayed. The K number assignment in GhostKOALA is based on the sum of GHOSTX 

normalized scores. The GHOSTKOALA server can be accessed freely via the Kegg.jp website 

(http://www.kegg.jp/ghostkoala/). The query list of protein sequences can be submitted as 

FASTA files using the weblink. GhostKOALA is an email based web server meaning that the job 

request for K number assignment can be confirmed by clicking on the link in the automatically 

sent mail.  Thus, the 1873 PepExplorer filtered proteins for the AMD sample were submitted to  

 

http://www.kegg.jp/ghostkoala/
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Figure 4.9: The graphical report of the protein sequence coverage showing the extension of area covered by the predicted peptides

4.9 
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GhostKOALA. The K number assignments of each protein were then grouped into different 

molecular functions. 1222 out of 1873 (65%) proteins had K number assignments. Figure 4.10 

depicts the functional annotation of AMD metaproteomic data obtained using GhostKOALA. 

Proteins involved in genetic information and processing were the most predominant members 

in the dataset. The GhostKOALA results page also gives information on the taxonomic 

composition of the query data. Here, each query protein is assigned a taxonomic category 

according to the best hit gene in the cd-hit cluster supplemented version of the non-redundant 

pangenome dataset. Thus, the taxonomy data of the 1873 proteins were downloaded and 

analyzed to look for the most abundant phyla (figure 4.11). Of the five most abundant phyla, 

Nitrospirae was found to be the most predominant. Subsequently, the Nitrospirae phyla was 

further filtered down to look for the most abundant genus. Of these, Leptospirillum was found 

to be the predominant genus. 

Leptospirillum are a group of obligate aerobic bacteria that play a crucial role in industrial 

bioleaching and biooxidation of toxic metals. The predominance of this bacterial genera in the 

AMD sample is consistent with previous findings [152]. They are also important contributors to 

the acid mine drainage process especially in toxic metal accumulation sites (like the Iron 

Mountain in northern California). Organisms of Leptospirillum inhibit the deep underground 

mines enveloped in thick biofilms which are pink in color and float on the surface of water 

flowing in the mine [153, 154].  
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Figure 4.10: Functional annotation of AMD metaproteomic data obtained using GhostKOALA.  

(description in text) 

4.10 
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Figure 4.11: Taxonomic distribution of five most abundant phyla and subsequent genus based distribution of the most abundant 
phyla for the PepExplorer filtered protein list.
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4.9 Conclusions: 
 

The study presented here describes a two-pronged computational strategy for improving the 

reliability and depth of metaproteomic identifications. The results presented with respect to 

the thiocyanate community sample provided the initial impetus, as it highlighted the 

restrictions associated with database search results for metagenomes. A formidable effort is 

already underway to develop bioinformatic strategies that can tackle the complicated 

landscape in metaproteomic data analysis for multispecies samples (such as microbial 

communities) [44, 126, 140, 155, 156]. The combined database search strategy comprising of 

multiple iterative search engines increased the PSM’s, peptides and proteins when analyzing 

environmental samples of varying complexities. This allowed us to extract as much information 

as possible using the well-established database search strategy before embarking on other 

complimentary methods like de novo sequencing. Using our approach, we have shown that a 

significant number of de novo sequencing peptides could be matched back to the original 

protein sequence database especially for multispecies samples like AMD. Earlier studies on 

metaproteomic data analysis were solely focused on presenting the number of PSM’s and 

peptides and did not infer taxonomic or functional information [42]. In the current study, we 

have demonstrated the utility of de novo sequencing for improving the depth of meta 

information that can help in providing additional details while understanding complex 

ecosystems. We have shown a strategy for using a stringent filtering criteria for selecting de 

novo predicted peptides and mapping these peptides back to the database to identify novel 

protein candidates thus increasing the depth of biological information extracted from these 

complex datasets. Software enabling LCA analysis of metaproteome data (Unipept) can also be 
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used for de novo predicted peptides and can provide reliable results at the species level. But 

proper filters with specified thresholds (like high quality de novo peptides with significantly 

longer amino acid sequences) must be set to reduce false positives.  

In conclusion, the proposed computational strategy will be useful for all researchers involved in 

complex microbiome studies and provides a template for improving the reliability and analysis 

depth of metaproteomic investigations.   



106 
 

Chapter 5 – Applications of Metaproteomics for Investigation of 

Microbial Dynamics in Ground Water Specimens 
----------------------------------------------------------------------------------------------------------------------------------------- 

Part of the text and figure 5.8 was taken from:  Rose S. Kantor, Robert J. Huddy, Ramsunder 

Iyer, Brian C. Thomas, Christopher T. Brown, Karthik Anantharaman, Susannah Tringe, Robert L. 

Hettich, Susan T. L. Harrison, and Jillian F. Banfield. Genome-Resolved Meta-Omics Ties 

Microbial Dynamics to Process Performance in Biotechnology for Thiocyanate Degradation. 

Environmental Science & Technology 2017 51 (5), 2944-2953 DOI: 10.1021/acs.est.6b04477 

 

Ramsunder Iyer’s contributions to this work included: Sample preparation and experimental 

design for mass spectrometry measurements, data acquisition and analysis for the proteomics 

section.  

------------------------------------------------------------------------------------------------------------------------------------------ 

5.1 Introduction: 
 

The coupling of high performance multi-dimensional liquid chromatography and tandem mass 

spectrometry for deep proteome characterization of microbial proteins from complex 

environmental samples (metaproteomics) has set the platform for a new era in scientific 

discovery for complex microbial communities. Coupled with that, the other ‘metaomics’ 

methods like metagenomics and metatranscriptomics are increasingly being used to 

understand crucial processes and potential weak points in biotechnology. One such process is 

the nitrogen and phosphorus removal or bulking in wastewater treatment [157-159]. The 

genome-resolved metaomics approach has played an important role in industrial waste water 

treatment [160-163]. Using high-throughput sequencing of DNA and RNA followed by spectral 

interrogation of these communities has provided a holistic approach to identify key species 

involved in the wastewater treatment. Further enhancement in the activities and abundance of 
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these organisms under varying conditions could provide crucial insights for designing and 

operations of these systems.   

One of the widespread contaminants found in gold mining effluents is Thiocyanate (SCN-). It is 

found in especially high concentrations (up to 4000 mg/L). Its bioremediation is crucial as it can 

affect human health and aquatic organisms. [164-166]. Notably, SCN– is inhibitory toward iron- 

and sulfur-oxidizing microorganisms used in bio-oxidation processes at some gold mines (such 

as BIOX) and therefore must be removed before wastewater can be recycled within a mining 

site or discharged into the environment. Chemolithoautotrophic bacteria use SCN- as their 

source of energy and thus can help in its biodegradation [167-171]. The initial degradation 

products of this process are ammonium, carbon dioxide and reduced sulfur compounds.  An 

industrial-scale process known as Activated Sludge Tailings Effluent Remediation (ASTER, 

Outotec, South Africa) successfully treats SCN- containing wastewater at several gold mines.  

A long running SCN- fed bioreactor (known as SCN- stock reactor) at the University of Cape-

Town, South Africa has been inoculated with the sludge obtained from the ASTER process. The 

reactor consists of diverse microbial communities that have previously been studied and consist 

of several abundant Thiobacillus species that are involved in SCN- degradation due to the 

presence of an operon in the genomes of these autotrophic bacteria. Results also suggested the 

presence of other heterotrophs and the potential to remove nitrogen by Thiobacillus species 

[172]. However, questions regarding the stability of the community under different SCN- 

loadings, expression of observed metabolic potential and the significance of inter-organism 

interactions for nitrogen removal still remain unanswered. 
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In the current study, time-series genome resolved metagenomics followed by metaproteomics 

of samples from the final time point was used to track changes in the microbial community. For 

this, the newly inoculated SCN- bioreactor was operated under increasing loadings. In order to 

enrich for organisms that can use and remove the nitrogen produced by SCN- degradation, a 

control reactor with the same inoculum was fed with ammonium sulfate (NH4(SO4)1/2) and 

molasses to mimic the breakdown products of SCN-. The study was used to describe the 

microbial community structure, protein expression, and replication rates in both reactors 

during the experiment. The analysis interconnects the community membership and changes in 

reactor functions. The metaproteomics study highlights the key organisms and metabolic 

pathways active under high SCN- loadings.  

5.2 Materials and Methods: 
 

5.2.1 Sample Types:  
 

Two continuous stirred tank reactors were inoculated with homogenized biofilm and planktonic 

samples from the long-running SCN- stock reactor at the University of Cape Town [172].  One 

was fed KSCN (Experimental reactor) and the other was fed ammonium sulfate[NH4(SO4)1/2] 

(Control reactor) at equivalent nitrogen loadings to mimic thiocyanate degradation end-

products.  Feed concentrations were increased over 218 days, and feeds also included molasses 

(150 mg/L) and KH2PO4 (0.28 mM) as supplemental nutrients. The reactors reached a final 

loading rate of 1.43 mmol/h SCN- or NH4(SO4)1/2 at 12 hours HRT. Concurrent with the 

metagenomic sampling, three samples for metaproteomics were taken.  These included a 

biofilm sample from the experimental bioreactor and a biofilm and planktonic sample from the 
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control bioreactor.  Biofilm samples were scraped off the reactor wall (the interiors of both 

reactors accumulated biofilm) while planktonic samples were taken by filtering liquid from 

inside the reactors. Figure 5.1 depicts the schematics of samples chosen for metaproteomic 

characterization in the study.  

5.2.2 Protein Extraction and Proteomic Analysis: 
 

Proteins were extracted as described previously [173] and ∼1 mg of protein was subjected to 

trichloroacetic acid precipitation and subsequent digestion with trypsin. Proteolytic peptides 

were analyzed via an online nano 2D LC–MS/MS system interfaced with hybrid LTQ-Orbitrap-

Velos MS (ThermoFisher Scientific). The samples were run in technical triplicates. A 25-µg 

aliquot of peptides was loaded onto a biphasic column consisting of reverse phase followed by 

strong cation exchange and analyzed by eleven step MudPIT (Multidimensional protein 

identification technology) as described previously [112] . The instruments were operated in a 

data-dependent mode. MS1 was performed in Orbitrap and data dependent MS/MS was 

performed in LTQ (top twenty), 1 microscan for both full and MS/MS scans; normalized collision 

energy 35% and dynamic exclusion time of 30 seconds. MS2 mass spectra were analyzed using 

the following software protocol: Thermo RAW files were converted to mzML peaklists by 

ProteoWizard msConvert [174] and database searches used Myrimatch [86], with the de-

replicated set of genomes as the database. Configuration parameters were as follows: fully 

tryptic peptides with any number of missed cleavages, an average precursor mass tolerance of 

1.5 m/z, a mono precursor mass tolerance of 10 ppm, a fragment mass tolerance of 0.5 m/z, a 

static cysteine modification (+57.0214 Da), an N-terminal dynamic carbamylation modification 
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Figure 5.1: Schematics of the sample types chosen for the thiocyanate study  

(description in text) 
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 (+43.0058 Da), and a dynamic oxidation modification (+15.9949 Da). Peptide identifications 

were filtered with IDPicker v3.1 [92] to <1% peptide FDR (at the peptide level: maximum Q 

value <2%, minimum one spectra per peptide, and minimum one spectra per match; at the 

protein level: minimum two distinct peptides, minimum one additional peptide, and minimum 

two spectra per protein). ScanRanker [175] was used to assess the spectral quality.  

5.2.3 Metaproteome Bioinformatics:  
 

Two different versions of the metaproteome database were provided by collaborators for 

proteomic searching (figure 5.2). The first database was constructed by assembling the 

metagenome from a single sample from the experimental biofilm; the assembly accounted for 

87.5% of all reads in that sample (allowing 3 mismatches per 250 bp read). 

The second database was a compilation of 15 metagenomes from two samples (planktonic 

inoculum and SCN- biofim), dereplicated at the level of individual genomes. Each of the 15 

samples was assembled independently, the data was binned into genomes, and then the 

genomes from different samples were compared and dereplicated at 98% nucleotide identity). 

The database accounted for 90.4% of all reads in the sample (allowing 3 mismatches per 250 bp 

read). 

5.3 Results and Discussion: 
 

5.3.1 Impact of Database Versions on Protein/Peptide Identifications: 
 

In order to study the impact of database versions on the depth of proteomic analysis, we used 

the collected mass spectra of the experimental biofilm sample (sample highlighted in green in
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Figure 5.2: Schematic illustration of the database versions used in the thiocyanate study. 

Metagenome Database Versions

Single Metagenome:

1) Constructed from a single sample

2) All reads in that sample were used for a 
metagenomic assembly

Concatenated Metagenome:

1) Compilation of 15 metagenomes, dereplicated 
at the level of individual genomes.

2) Each of the 15 samples were assembled 
independently and then dereplicated at 98% 
nucleotide identity. 
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Figure 5.1) and searched it against the single and concatenated metagenomic assemblies.  

Figures 5.3A and 5.3B depict the peptide and protein counts respectively of each replicate 

when the data was searched with single and concatenated metagenomes. Searching the data 

with single metagenome assembly yielded an average total of 22670 peptides (SD = 1146.7) and 

6619 proteins (SD = 241.1) and 73088 spectra (SD = 469.9) for the three technical replicates. 

Concatenated metagenomic assembly on the other hand identified an average total of 21739 

peptides (SD = 980.2), 7029 proteins (SD = 254.4) and 70001 spectra (SD = 385.8) for the three 

technical replicates. 

The concatenated metagenomic assembly identified more proteins in all the technical 

replicates (figure 5.3B). However, peptide counts were observably less for the concatenated 

assembly (figure 5.3A) than the single metagenome. This discrepancy can be explained by the 

process of protein assembly used in IDPicker [92]. 

IDPicker has an easily comprehensible approach for assembling peptides to proteins in shotgun 

proteomic experiments. A ‘distinct peptide’ in IDPicker is defined as a distinct sequence of 

amino acids. In particular, post-translational modifications and charged states are disregarded. 

However, different isobaric sequences do count as distinct. For example, peptides ISBARIK and 

ISBARLK will be counted as distinct from one another. The peptide counts shown in figure 5.3A 

are all distinct peptides.   

The process of protein assembly is explained by the bipartite graph shown below (figure 5.4). 

The boxes in red indicate protein accessions and those in blue indicate peptide sequences, 

while those in green indicate clusters. Now, proteins are identified as belonging to the same 
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Figure 5.3: Peptide (5.3A) and protein (5.3B) counts respectively of each replicate when the 
thiocyanate data was searched with single and concatenated metagenomes.  

Searching the data with single metagenome assembly yielded an average total of 22670 
peptides (SD = 1146.7) and 6619 proteins (SD = 241.1) and 73088 spectra (SD = 469.9) for the 

three technical replicates. Concatenated metagenomic assembly on the other hand identified an 
average total of 21739 peptides (SD = 980.2), 7029 proteins (SD = 254.4) and 70001 spectra (SD 

= 385.8) for the three technical replicates.
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Figure 5.4: Bipartite graph explaining the process of protein assembly in IDPicker. 
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group when they are evidenced by exactly the same sequence of peptides. In the above case, 

the first green box has two protein groups that are identified by three different subsets of 

peptide groups. However, the second protein group has a peptide that is unique to it (peptide 

having sequence EEECHFYAGGQVYPGEASR). Clusters are a way to organize peptide and protein 

groups into associated subsets. Now since there is no connection between first two protein 

groups and last three peptide groups, two subsets are created.  

In the current study, while assembling peptides to proteins in IDPicker, we used a criterion of 

two distinct peptides for a protein to be called as a true hit (section 5.2.2). In case of single 

metagenomic assembly, there were several proteins that were found to have more than two 

distinct peptides (three or more) and thus, in spite of the fact that there were more distinct 

total peptides, they matched to fewer total proteins. On the contrary, while assembling 

peptides to proteins using the concatenated metagenomic assembly, there were several 

proteins that had just two distinct peptides matching to them. Hence less number of total 

distinct peptides were matching to more number of total proteins.  

5.3.2 Peptide Redundancy Between the Single and Concatenated Metagenomes: 
 

Next, we calculated the total number of peptide sequences shared between single and 

concatenated metagenomes. The 2D LC MS/MS analysis of tryptic digests of the experimental 

biofilm sample resulted in cumulative identification of 33,515 distinct, non-redundant tryptic 

peptide sequences using the single metagenome assembly. The concatenated metagenomic 

assembly on the other hand identified 32,311 distinct, non-redundant peptides. The Venn 

diagram in figure 5.5 depicts the peptide redundancy i.e. the total number of shared peptides  
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Figure 5.5: Venn diagram depicting the peptide redundancy i.e. the total number of shared 
peptides between the single and concatenated metagenomic databases.  
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between the single and concatenated metagenomic databases. A total of 28,810 peptides 

(78%) were shared between the two databases with 4705 (13%) and 3501 (9%) unique to single 

and concatenated metagenomes respectively.  

5.3.3 Spectral Quality Assessment of Single and Concatenated Metagenomic 

Assemblies:  
 

The success in achieving accurate protein identifications and a deeper proteome coverage in a 

complex metaproteomic specimens is heavily reliant on the quality of a predicted protein 

sequence database that is constructed from metagenomic data. As compared to single cell 

type/microbial isolate which are well assembled and curated, a larger portion of high-quality 

spectra in a metaproteomic study remain unassigned due to the incompleteness of the 

proteomic database. To quantify this, we used a spectral quality assessment tool, 

ScanRanker [175] which assigns scores for all of the collected spectra which in turn can be used 

to evaluate the quality of the database. Using ScanRanker scores, a distribution of total 

collected spectra including unassigned and assigned microbial spectra was plotted for all the 

three samples under consideration (control-planktonic, experimental-biofilm and control- 

biofilm). Figures 5.6A, 5.6B and 5.6C represent the distributions of ScanRanker scores for 

collected mass spectra of control-planktonic, experimental-biofilm and control-biofilm 

respectively searched with single metagenomic assembly. Figures 5.7A, 5.7Band 5.7C denote 

the distributions of ScanRanker scores for collected mass spectra of control-planktonic, 

experimental-biofilm and control-biofilm respectively searched with concatenated 

metagenomic assembly. 
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Figure 5.6: Stacked histograms representing the distributions of ScanRanker scores for collected 
mass spectra for control planktonic (5.6A), experimental biofilm (5.6B) and control biofilm (5.6C) 

respectively searched with single metagenomic assembly. 

0

50000

100000

150000

200000

-3 -1 -0.5 0 0.5 1 1.5 2 2.5

Sp
ec

tr
al

 C
o

u
n

ts

ScanRanker score

Experimental Biofilm

Total collected spectra Assigned spectra

0

50000

100000

150000

200000

-3 -1 -0.5 0 0.5 1 1.5 2 2.5

Sp
e

ct
ra

l C
o

u
n

ts

ScanRanker score

Control Planktonic

Total collected spectra Assigned spectra

0

50000

100000

150000

200000

-3 -1 -0.5 0 0.5 1 1.5 2 2.5

Sp
ec

tr
al

 C
o

u
n

ts

ScanRanker score

Control Biofilm

Total collected spectra Assigned spectra

5.6A 

5.6B 

5.6C 



120 
 

 

Figure 5.7: Stacked histograms representing the distributions of ScanRanker scores for collected 
mass spectra for control planktonic (5.7A), experimental biofilm (5.7B) and control biofilm (5.7C) 

respectively searched with concatenated metagenomic assembly. 
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In general, peptide identifications start occurring at a ScanRanker score of -0.5 and above. 

Spectra having scores below that range can be accounted for by experimental noise, implying 

that lower-quality spectra reside at the lower end of the distribution. Although somewhat 

variable for microbial isolates, we typically note that ∼60% of collected mass spectra can be 

assigned to peptides for an organism with a completely sequenced genome (without 

accounting from PTMs, sequence variants, and other unknown contaminants). However, due to 

the increased complexity of these samples, as well as the fact that the metagenomic databases 

used here are incomplete, approximately 8%, 27% and 21 % of total collected spectra were 

assigned for control planktonic, experimental biofilm and control biofilm respectively searched 

with single metagenomic assembly. There was a substantial improvement in case of 

concatenated metagenomic assembly where 15%, 34% and 32% of the total collected spectra 

were assigned to control planktonic, experimental biofilm and control biofilm respectively 

(Note that the percentage values described here are the ones that had a ScanRanker score of -

0.5 and above. Scores below that threshold were accounted for experimental noise and were 

discarded). The level of identification obtained using concatenated metagenome is comparable 

to previous studies using the same type of analysis on infant gut metaproteomes paired to 

metagenomic datasets [103]. Thus, meticulous construction of databases as in case of 

concatenated metagenomes that combines several samples can play an important role in 

boosting the coverage and depth of metaproteome data.  
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5.3.4 Expression of Genes Involved in SCN- Degradation Confirmed by Proteomics:  
 

The concatenated metagenomic assembly which was dereplicated at the level of individual 

genomes yielded a non-redundant bacterial set of 144 draft quality genomes. Besides this, 

eukaryotic, mitochondrial, chloroplast, phage and plasmid genomes were also recovered. This 

dereplicated set of metagenomic data was subsequently used for proteomic searches. 

Figure 5.8 depicts the expression of genes involved in SCN- degradation. The arrows denote the 

average of unique spectral counts across technical replicates ≥ 2 for a minimum of one subunit 

of enzyme involved in SCN- degradation.  There are two known types of SCN– hydrolases and 

four genomes, Thiobacillus_1, Thiobacillus_3, Thiobacillus_4, and Afipia_1, contain one of these 

two known hydrolases [167, 176]. Proteomics data were able to support the activity of these 

organisms in SCN–degradation, sulfur oxidation and carbon fixation. A recently described SCN–

 operon from Thiobacillus spp.[172] contains a set of proteins whose corresponding peptide 

sequences were confirmed by shotgun proteomics. Specifically, proteomics analysis was able to 

reveal the expression of genes in this operon in at least one of the three Thiobacillus genomes. 

The SQR-like protein which is one of the members of this operon had the highest count of 

unique spectral hits for all three Thiobacillus genomes. The CbiM-like protein hypothesized to 

be involved in cobalt metabolism was the only protein from the operon that was not detected 

by proteomics. Consistent with previous studies the Thiobacillus genomes encode the potential 

for autotrophic growth on sulfur compounds [177]. These sulfur oxidation genes for several of 

the Thiobacilli was confirmed by proteomics.  
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Figure 5.8: Metaproteomics in SCN– reactor showing expression of genes involved in SCN– degradation and by product breakdown. 

Each arrow indicates that the average of unique spectral counts across two technical replicates was ≥2 for at least one subunit or 
component of the enzyme complex involved in SCN- degradation.  
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Another important feature observed in community dynamics was the increase in relative 

abundance of Burkholderiales_6. Although, Burkholderiales_6 genome lacks any genes for SCN- 

degradation, but previous studies have isolated and characterized a strain of Burkholderia 

phytofirmans capable of thiocyanate degradation with acetate as a carbon source [178]. The 

genome of Burkholderiales_6 contains genes encoding the sox pathway, and the corresponding 

proteins were detected by proteomics. Overall, the results suggest a transition from 

autotrophic to mixotrophic/heterotrophic thiocyanate degradation at high thiocyanate loadings 

and after long periods of reactor operation. 

Since SCN– degradation releases nitrogen in the form of ammonium, possible mechanisms for 

nitrogen cycling and removal to N2 was investigated. Two predicted nitrite oxidizers, 

Nitrobacter_1 and Nitrobacter_2, were present at low abundances in the NH4(SO4)1/2, in the 

SCN– reactor their abundance was so low that their genomes did not assemble. However, 

proteins for nitrite oxidation corresponding to one of these genomes were detected in samples 

from both reactors.  

For the Thiobacilli, several denitrification-related complexes were detected with proteomics. 

The Burkholderiales_6 organism also likely contributed to denitrification. All denitrification 

genes except norB were identified in proteomics from the SCN– reactor biofilm. The limited 

detection of NorB was presumed to be an extraction bias due to numerous transmembrane 

domains in these proteins [179, 180].  
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5.4 Conclusions: 
 

The current study shows that meticulous construction of concatenated metagenomes by 

combining several samples plays a crucial role in boosting the metaproteome coverage. This 

can provide critical biological insights into the expression patterns of microbial functionality in 

the community. Proteomics data reveal the presence of several Thiobacillus spp., as well as 

Burkholderiales_6 that couple sulfur oxidation to denitrification. Their abundances, and 

proteomic evidence suggest the role of these organisms to be the key players in the 

denitrification process. 

This work also highlights the applicability of bioinformatics tools to gain a mechanistic 

understanding of contaminant degradation by a microbial community, to assess community 

stability, and ultimately, to inform engineering design choices. This study represents a step 

toward the use of metaproteomics for waste water treatment. The level of resolution achieved 

using metagenomics combined with metaproteomics enabled not only phylogenetic 

classifications and diversity of community members, but also confirmed the expression of key 

proteins involved in the degradation process. The data set and analysis provide valuable 

information that can be used to generate primers or probes for on-site measurements. 
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Chapter 6 - Applications of Metaproteomics to Investigate the 

Expression of Multi-heme Cytochromes in Methane Seep Sediments 
 

----------------------------------------------------------------------------------------------------------------------------------------- 

Part of the text and figures 6.1, 6.2 and 6.3 was taken from:  Connor T. Skennerton, Karuna 

Chourey, Ramsunder Iyer, Robert L Hettich, Gene W. Tyson, Victoria J Orphan. Methane-fuelled 

syntrophy through extracellular electron transfer: uncovering the genomic traits conserved 

within diverse bacterial partners of ANME archaea.  MBio, 2017. 8(4).   

 

Ramsunder Iyer’s contributions to this work included: Data analysis and generating figures for 

the proteomics section.  

------------------------------------------------------------------------------------------------------------------------------------------ 

6.1 Introduction: 
 

One of the dominant mechanisms for controlling methane flux in ocean sediments is mediated 

by syntrophic association between methanotrophic archaea (ANME) and deltaproteobacterial 

sulfate-reducing bacteria (SRB) [181, 182]. This process is called reverse methanogenesis which 

is also referred to as anaerobic oxidation of methane, and is a major source of methane 

removal in ocean sediments. Initial ecological studies described the association between ANME 

archaea and SRB [181, 182]. Since then, significant efforts have been placed into understanding 

this syntrophic partnership using various molecular techniques. Of these, metaproteomic 

characterization of natural samples and reactor systems has played a crucial role in revealing 

the mechanism of association between SRB and ANME archaea.  

Recent molecular evidence supports the hypothesis which is based on extracellular electron 

transfer (EET) mediated by multi-heme cytochromes that pass the electrons produced during 
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methane oxidation by the ANME archaea directly to their bacterial partners. [183, 184]. The 

mechanism of EET has been studied previously in metal reducing organisms like Shewanella and 

Geobacter [185, 186]. Subsequently, comparative genomics on ANME-2 revealed the presence 

of very large multi-heme cytochromes [183, 187] that are similar in size to outer membrane 

cytochromes of Shewanella and Geobacter. The majority of research to date has mainly focused 

on the metabolism of ANME lineages; however, little is known on the diversity and metabolic 

potential of the associated SRB partners in methane seeps. The syntrophic partners of ANME 

archaea come from a number of environmental clades of Deltaproteobacteria, of which SEEP-

SRB1 is most common bacteria. Homologs of SEEP-SRB1 cytochromes are present only in some 

other cultured Deltaproteobacteria, predominantly in the Desulfuromonadales that are known 

metal reducers, including genome bins from the sediment samples. Additionally, Ca. 

Desulfofervidus auxilii [188], several related Thermodesulfobacterales, Anaeromyxobacter, and 

Desulfurivibrio alkaliphilus AHT2 [189] contain homologs of these cytochromes. This operon 

consists of a core set of four genes: A six-bladed beta propeller fold protein, the two 

cytochromes (16 heme and 26 heme), and a peptidyl-prolyl cis-trans isomerase protein (figure 

6.1). Surrounding this core of the operon, there are other proteins that vary in composition and 

number but often consists of smaller cytochromes, proteins containing beta propeller fold 

proteins and other membrane proteins of unknown function.  

In the current study, metaproteomics was used to assess the expression of this operon in situ at 

three different sites along the west coast of North-America that contain methane seeps. These 

included Santa Monica Mounds, Eel river basin and the hydrate ridge. This study highlights the 

applicability of metaproteomics to reveal the expression of proteins involved in extracellular  
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Figure 6.1: Representative operon structure from organisms containing large multiheme cytochromes found in SEEP-SRB1.  

The operon consists of a core set of four genes: A six-bladed beta propeller fold protein, the two cytochromes (16 heme and 26 
heme), and a peptidyl-prolyl cis-trans isomerase protein. Surrounding this core of the operon, there are other proteins that vary in 

composition and number but often consists of smaller cytochromes, proteins containing beta propeller fold proteins and other 
membrane proteins of unknown function. 
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electron transfer from ANME archaea to their SRB partners thus mediating the process of 

reverse methanogenesis.     

6.2 Materials and Methods: 
 

6.2.1 Sample Collection: 
 

Five sediment samples were collected for metaproteomics from three locations (figure 6.2). A 

20-cm push core (PC48) was collected on 26 July 2005 from the Eel River Basin on dive T-863 of 

R/V Western Flyer using ROV Tiburon (coordinates: 40º 48.6631 N, 124º 36.7437 W; 520 m 

water depth) and divided into two sections of 10 cm (0 - 10cm and 10 - 20 cm). A second 20 cm 

push core was collected on 15th February 2005 on dive T-796 of R/V Western Flyer using ROV 

Tiburon from a mound a few hundred meters north-west of the venting mound in Santa Monica 

basin (coordinates: 33º 47.9748 N, 118º 38.796 W; 826 m water depth). This push core was 

divided into 4 cm segments; the 0-4 cm horizon and 8-12 cm horizon were used for proteomics. 

The final sample was the 3730-sediment collected from Hydrate Ridge that was also used for 

metagenomic sequencing. 

6.2.2 Cellular Lysis, Protein Extraction and Sample Preparation: 
 

Partially thawed seep sediments (5 gm) were suspended in 10 ml of detergent based lysis 

buffer, and subjected to heat-assisted cellular lysis as described previously [173]. The 

suspension was cooled down on bench top and centrifuged in fresh tubes for 5 min at 8000 g to 

settle the sediment. Resulting clear supernatant was aliquoted into fresh tubes and amended 

with chilled 100% trichloroacetic acid (TCA) to a final concentration of 25% (vol/vol) and kept at  
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Figure 6.2: Metaproteomic Sample collection sites.  

Eel River Basin (coordinates: 40º 48.6631 N, 124º 36.7437 W; 520 m water depth), Santa 
Monica basin (coordinates: 33º 47.9748 N, 118º 38.796 W; 826 m water depth) and Hydrate 

Ridge. 
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-20°C overnight. The residual sediment was discarded. Following overnight TCA precipitation, 

the supernatant was centrifuged at 21,000 x g for 20 min to obtain a protein pellet. The pellet 

was retained and washed thrice with chilled acetone [190] (air dried and solubilized in 6 M 

guanidine buffer (6 M guanidine; 10 mM dithiothreitol [DTT] in Tris-CaCl2 buffer (50mM Tris; 

10mM CaCl2, pH 7.8) and incubated at 60°C for three hours with intermittent vortexing. An 

aliquot of 25 µl was utilized for protein estimation, carried out using the RC/DC protein 

estimation kit (Bio-Rad Laboratories, Hercules, CA, USA) as per the manufacturer’s instructions. 

Remaining protein sample was diluted six-fold using Tris-CaCl2 buffer and trypsin was added 

(40 ug/1-3 mg total protein) based on protein estimation results. Proteins were digested 

overnight at 37 0C with gentle mixing and resulting peptides were reduced by addition of DTT 

(10 mM) and desalted using seppak column and solvent exchanged [191]. Peptides were stored 

at 80°C until MS analysis. All chemicals used in sample preparation and mass spectrometry 

analysis were obtained from Sigma Chemical Co. (St. Louis, MO), unless mentioned otherwise. 

Sequencing-grade trypsin was acquired from Promega (Madison, WI). High performance liquid 

chromatography- (HPLC-) grade water and other solvents were obtained from Burdick & 

Jackson (Muskegon, MI), 99% formic acid was purchased from EM Science (Darmstadt, 

Germany). 

6.2.3 Nano 2D LC-MS/MS Measurement: 
 

Peptide mix (100 ug peptide) was pressure loaded onto a biphasic resin packed column [SCX 

(Luna, Phenomenex, Torrance, CA) and C18 (Aqua, Phenomenex, Torrance, CA)] as described 

earlier [191, 192]. The sample column was connected to the C18 packed nanospray tip (New 
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Objective, Woburn, MA) mounted on Proxeon (Odense, Denmark) nanospray source as 

described earlier [193]. Peptides were chromatographically sorted using the Ultimate 3000 

HPLC system (Dionex, USA) over a course of 24h. The HPLC system was connected to the LTQ 

Velos mass spectrometer (Thermo Fisher Scientific,Germany), which was employed for peptide 

fragmentation and measurements via the Multi-Dimensional Protein Identification Technology 

(MuDPIT) approach as described earlier [191-193]. The peptide fragmentation and 

measurements was carried out in data dependent mode, using Thermo Xcalibur software 

V2.1.0. Each full scan (1 microscan) was followed by collision-activated dissociation (CID) based 

fragmentation using 35% collision energy of 10 most abundant parent ions (2 microscans) with 

a mass exclusion width of 0.2 m/z and dynamic exclusion duration of 60 s. 

6.2.4 Bioinformatic Data Analysis: 
 

For protein identifications, the raw spectra were searched against three databases of varying 

sizes via Myrimatch v2.1 [86] using parameters described previously [103]. The first was 

composed of 16 genomes identified in this study belonging to the Desulfobacterales and 

Desulfuromonadales; the second contained all predicted c-type cytochromes from these 

genomes containing four or more heme binding motifs  (CxxCH amino acid sequences) and the 

open reading frames of Desulfuromonadales sp. C00003107; finally, the third database 

contained the core four proteins from the cytochrome operon from all of the SEEP-SRB1 and 

Desulfuromonadales genomes recovered in this study. Static cysteine and dynamic oxidation 

modifications were not included in the search parameters. Identification of at least two 

peptides per protein (one unique and one non-unique) sequence was set as a prerequisite for 
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protein identification. Common contaminant peptide sequences from trypsin and keratin were 

concatenated to the database along with reverse database sequences. The reverse database 

sequences were used as decoy sequences to calculate false discovery rate (FDR) which was 

maintained at < 1% for peptide to spectrum identification. For downstream data analysis, 

spectral counts of identified peptides was normalized as described before [94] to obtain the 

normalized spectral abundance factor (NSAF), also referred to as normalized spectral counts 

(nSpc). Average of nSpc from duplicate runs was used to obtain relative abundance values of 

expressed proteins across different samples. Normalization of spectra helps to account for 

differences in protein length, variations in MS analysis of samples thereby providing 

information on relative abundance of protein in a given samples and across samples in a given 

study. 

6.3 Results and Discussion: 
 

The expression of the SEEP-SRB operon was assessed using semi-quantitative metaproteomics 

in situ at methane seeps at the Santa Monica Mounds, Eel River Basin and Hydrate Ridge along 

the west coast of North America (Figure 6.2). While absolute quantification of expressed 

proteins was beyond the scope of the current study, a semi quantitative mass spectrometry 

approach was taken to assess the relative abundance of expressed proteins and has been used 

in a number of previous protein expression analyses of complex samples [37, 194, 195]. The 

raw mass spectra were matched against a large concatenated predicted proteomic database 

containing sixteen genomes that belonged to Desulfobacteraceae SEEP-SRB1, Desulfobulbaceae 

SEEP-SRB4 and Desulfuromondales genomes recovered from the seep sediments. Although the 
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number of total identified proteins were modest (367 proteins across all three sites), among 

these were informative proteins that belonged to Wood Ljungdahl pathway (carbon monoxide 

dehydrogenase, formylmethanofuran-tetrahydromethanopterin N-formyltransferase), nitrogen 

fixation and sulfate reduction pathways (Sat, AprAB, DsrAB and DsrC). Expression of proteins 

belonging to Wood-Ljungdahl pathway (reductive acetyl-CoA pathway) was in line with SEEP-

SRB1 genomic studies. This pathway is involved in carbon fixation and in agreement with 

previous observations from lipid biomarkers and 13 C-bicarbonate labeling studies [196]. 

Similarly, metaproteomic evidence for the expression of nitrogen fixation pathways is 

supported by genomic data, where previous ecophysiological studies of AOM (Anaerobic 

oxidation of Methane) consortia in methane seep sediments have demonstrated differences in 

nitrogen utilization among different ANME partners, including direct or indirect involvement in 

nitrogen fixation [197, 198] and nitrate utilization [199] suggesting that N2 can be used as a 

biosynthetic nitrogen source. Finally, The SEEP-SRB1 genomes contain the genes required for 

sulfate reduction pathway, including sulfate adenylyl transferase (Sat), APS reductase (AprAB), 

dissimilatory sulfite reductase (DsrAB) and the sulfur carrier protein, DsrC (31) the expression of 

which was also confirmed by metaproteomics. 

However, the identification of multiheme cytochrome proteins, which are present at low-

moderate levels in these systems, was challenging. For complex systems, metaproteomics 

easily identifies the most abundant proteins, but has limited dynamic range and thus the lower 

abundance proteins often do not have adequate fragment ions or signal intensity to pass the 

standard threshold filters [200, 201]. In particular, the use of a large database to search for low 

abundant proteins adds to the difficulty in identifying less abundant proteins, since overall 
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peptide identification metrics (spectral matching, scoring criteria, and false discovery rates) are 

driven by the higher abundance peptides/proteins [202]. To better enable the search criteria 

for scouting lower abundance proteins, the database complexity was reduced by generating a 

smaller database of 2246 proteins derived from the sixteen genomes of SEEP-SRB1 and SEEP-

SRB4 clades. This database comprised of proteins having four or more heme motifs and the full 

genome of Desulfuromonadales bacterium C00003107 (consisting of ~2000 proteins). Using this 

approach, we could detect several multi-heme cytochromes, all having less than 10 heme 

motifs (Table 6.1). These cytochromes might be members of a second operon, also widely 

distributed in SEEP-SRB1 that contain two cytochromes with 11 or 12 heme binding motifs and 

are related to the OmcX gene in Geobacter species [203]. 

 For a more refined search, we further reduced the database complexity by assembling another 

database of only multiheme cytochromes, derived from the sixteen genomes of SEEP-SRB1 and 

SEEP-SRB4 clades. Protein expression was detected in all three sites from members of SEEP-

SRB1a, SEEP-SRB1c and two members of the Desulfomonadales (Table 6.2). Not all genes from 

each operon were detected at all sites, with Santa Monica and Eel River Basin having more 

matches than Hydrate Ridge. To more definitively support these limited database searches, 

peptide and protein identification was confirmed by manual validation of acquired peptide 

mass spectra from representatives of all the four members that constitute this operon (Figure 

6.3 A-F). These results show that the cytochromes are expressed in situ in syntrophic 

partnership with ANME archaea but at levels that are lower than enzymes from the sulfate 

reduction pathway. The reasons for this are unclear, it may be that extraction and detection 

were more difficult, cells may not require that many copies of the protein, or they may be  



136 
 

Table 6.1:  Multiheme cytochromes containing less than 10 heme motifs searched with a 
database of 2246 proteins derived from the sixteen genomes of SEEP-SRB1 and SEEP-SRB4 
clades.  

This database comprised of proteins having four or more heme motifs and the full genome of 
Desulfuromonadales bacterium C00003107 consisting of ~2000 proteins. 

 

Accession Description Organism Number of 
CxxCH 
Motifs 

Normalized 
Spectral  
Counts  
(nSpC) 

OEU45386.1 hypothetical 
protein 

BBJ60_11710 

Desulfobacterales 
bacterium S7086C20 

9 110.2 

OEU48827.1 cytochrome C Desulfobulbaceae 
bacterium 
S5133MH15 

8 140.7 

OEU55250.1 cytochrome C Desulfobulbaceae 
bacterium 
S3730MH12 

8 140.7 

OEU78971.1 hypothetical 
protein 

BA873_03805 

Desulfobulbaceae 
bacterium C00003063 

6 319.7 

OEU81657.1 hypothetical 
protein 

BA865_04060 

Desulfobacterales 
bacterium S5133MH4 

5 296.7 

OEU78922.1 hypothetical 
protein 

BA873_11840 

Desulfobulbaceae 
bacterium C00003063 

5 198.5 

OEU56220.1 hypothetical 
protein 

BA862_03850 

Desulfobulbaceae 
bacterium 
S3730MH12 

5 198.5 
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Table 6.2:  Multi-heme cytochromes detected in each replicate run across all three sites (Eel 
River Basin, Santa Monica Basin and Hydrate Ridge).  

The raw mass spectra were searched with a refined database of only multiheme cytochromes 
derived from the sixteen genomes of SEEP-SRB1 and SEEP-SRB4 clades. Numbers in centi-meters 

(cm) represent the depth at which the samples were collected and used for proteomic 
characterization.  

Sample Name Site Number of Multiheme 
cytochrome proteins 

   
Run_1_0-6 cm Hydrate Ridge 10 

Run_2_0-6 cm Hydrate Ridge 11 

   
Run1_0-4 cm Santa Monica 20 

Run2_0-4 cm Santa Monica 10 

Run3_0-4 cm Santa Monica 11 

   
Run1_8-12 cm Santa Monica 12 

Run2_8-12 cm Santa Monica 9 

   
Run1_0-10 cm Eel River 11 

Run2_0-10 cm Eel River 12 

Run3_0-10 cm Eel River 12 

   
Run1_10-20 cm Eel River 7 

Run2_10-20 cm Eel River 13 
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Figure 6.3 (A-F): Manual validation of acquired mass spectra  

Figures A through F depict spectra of atleast one peptide of all the proteins belonging to the 
SEEP-SRB operon involved in extracellular electron transfer. 
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Figure 6.3 continued 
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involved in a separate physiology not related to the ANME syntrophy. However, their presence 

in SEEP-SRB1 and phylogenetically unrelated Ca. Desulfofervidus auxilii warrants further 

analysis as a possible component of the ANME-SRB syntrophy.  

6.4 Conclusions: 
 

Some archaea known as anaerobic methanotrophs possess the ability to convert methane to 

carbon dioxide when they are growing in partnership with the sulfate reducing bacteria. This is 

achieved through the process of extracellular electron transfer (EET) via multi-heme 

cytochromes to pass electrons generated during methane oxidation by the archaea to their 

bacterial counterparts. In the proposed study, metaproteomics was used to gauge the 

expression of the operon involved in EET across three different sites along the pacific coast.  

Besides this, the study also highlights the bottleneck associated with protein identifications 

when searching the data with very large databases and how to circumvent that issue. While 

assembling peptides to proteins, each peptide is ranked depending on its score and only the top 

ranked peptides and its proteins are filtered and eventually displayed by the protein assembly 

software. In such cases, lower abundance proteins often do not pass the standard threshold 

filters as their identification is masked by the high abundant peptides/proteins present in the 

sample. The three-tiered database approach used in the current study where database 

complexity was sequentially reduced enabled us to identify several proteins involved in ANME-

SRB syntrophy that might otherwise have been missed if only large database were taken into 

consideration. Finally, manual inspection of the peptide mass spectra helped us to further 

validate the peptides that belong to SEEP-SRB operon.   
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Chapter 7 - Conclusions, Current Trends and Future Perspectives 
 

7.1 Conclusions from this Dissertation Work: 
 

Proteomic technology has made remarkable strides in the past decade, and high throughput 

mass spectrometry has emerged as the most preferred method for detailed characterization of 

the protein components in the biological systems. These studies have proved the versatility of 

mass spectrometry based proteomics as an emerging and powerful method for solving complex 

biological questions. The dominance of mass spectrometry can be attributed to several factors. 

The instrument’s incomparable ability to acquire quantitative as well as qualitative information 

about complex samples and the quest for continuous improvement in sensitivity, throughput 

and coverage has made mass spectrometry based proteomics a routine method for addressing 

a wide range of biological problems.  

The broad goal of this dissertation was to provide an enhanced experimental and 

computational tool kit that can benefit researchers carrying out discovery proteomics on 

complex environmental samples that can also be translationally extended to other sample 

types. We have attempted to design an integrated pipeline that incorporates both experimental 

and bioinformatic components into one framework to address a broad range of questions in 

the field of high-throughput proteomics. We have also thought extensively about the 

computational bottlenecks associated with large scale discovery proteomic studies, which 

include peptide redundancy, concatenated metagenomic builds, de novo sequencing etc. and 

provided a mechanistic framework for addressing these challenges. Finally, we have presented 
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two ‘Real World’ scenarios where knowledge gained from experimental and computational 

strategies have proved fruitful in addressing specific biological problems.   

In chapter 3 of the dissertation, we outlined some key aspects of peptide separation via two-

dimensional chromatography and how it can be optimized to obtain deeper non-redundant 

peptide identifications that translates to deeper proteome coverage. This work highlights the 

significance of shallowing the initial windows of ammonium acetate concentration that resulted 

in improved spacing of peptides across the reverse phase resin which in turn improved the 

detection capability of mass spectrometer having a fixed scanning speed. We further 

demonstrated the utility of our approach by using two different samples of varying complexities 

and thus demonstrated the success of our separation strategy. In this chapter, we also 

evaluated the efficacy of this separation strategy for improving the throughput of complex 

proteome measurements. Our results showed that reducing the time duration for data 

acquisition using the newly designed chromatographic separation method does not alter the 

overall proteomic depth. This study will be handy to researchers who want to have a quick 

glance of the protein compliments present in their sample before embarking on a much-

detailed experimental campaign.   

In chapter 4, we focused on real world environmental samples and demonstrated the outcome 

of revised experimental procedure described in chapter 3. Here, we introduced the applicability 

of alternative computational platform (de novo sequencing) for interrogating high-throughput 

mass spec data and how it can be useful in addressing the complex landscape of proteomic 

characterization of environmental samples. Subsequently, we described an integrated 

computational platform consisting of multiple iterative search engines and de novo sequencing 
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algorithms and proved its worthiness on samples of varying complexities. In the process, we 

also reported a few other computational tools (Unipept, PepExplorer etc.)  that can prove 

handy in providing reliable results during metaproteomic investigations. Lastly, we highlighted 

the significance of using stringent filters to reduce false positive identifications during data 

analysis.  

In chapter 5, we highlighted the applicability of proteomic tools to gain a mechanistic 

understanding of contaminant degradation by the microbial community in groundwater 

samples. Our results also show a definite merit in using concatenated metagenomes in boosting 

the coverage and reliability of metaproteomic results. Besides this, we demonstrated the 

functionality of protein assembly software and explained how it impacts total peptide and 

protein identifications in shotgun proteomic experiments. Further, a definite advantage of using 

sequence tagging approach (ScanRanker) was examined and described to gauge the extent of 

raw spectra that was covered by the single and concatenated metagenomic builds.   

In chapter 6, we transitioned to another complex environmental ecosystem for identification of 

multi-heme cytochromes and demonstrated the applicability of metaproteomics to determine 

the expression of an operon involved in extracellular electron transfer ultimately contributing 

to the process of reverse methanogenesis in oceanic sediments. We also highlighted another 

bottleneck associated with protein identification when searching the mass spectra with very 

large databases. To circumvent this issue, we described a three-tiered database search 

workflow followed by manual validation of select few mass spectra as an alternative approach 

for scouting very low abundant peptides. This method though cumbersome, provides a 
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mechanistic framework when looking for specific proteins of interest in complex biological 

specimens.  

In summary, the work described in this dissertation is a comprehensive study on the 

experimental and computational aspects of proteomic workflows and will serve as a valuable 

resource to all those MS researchers who are inclined towards understanding the nuts and 

bolts of discovery proteomic assays.   

7.2 Current Trends in Mass Spectrometry Based Proteomics:  
 

With its humble origins in basic research, the field of mass spectrometry has rapidly expanded 

and is the forefront in several domains that includes biology, chemistry, physics, clinical 

medicine and even space exploration. This trend is expected to continue in the future with the 

availability of high throughput state of the art mass spectrometers that can cater the needs of 

both researchers and commercial outfits where portable mass spectrometers are increasingly 

deployed which are easy to operate and require very little technical expertise.  

In the realm of biology, MS is being increasingly used in clinical laboratory settings and has wide 

range of applications from toxicological studies to personalized medicine. There is a growing 

belief that high throughput mass spectrometric immunoassays could one day replace ELISA 

(Enzyme linked immunosorbent assay). The ability of ELISA to detect specific antibodies with 

high degree of sensitivity and precision still makes it a standard choice for routine biochemical 

assays, but there are cases where clinically important proteins remain undetectable via ELISA. 

These include sequence variants and post-translational modifications [204]. Also, ELISA 

procedures often require extensive sample preparation to deplete the high abundant 
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protein/peptides. The ability of MS to detect protein isoforms even in complex biological 

matrices could prove worthy in such cases. Another distinct advantage of MS over ELISA is its 

ability to detect several analytes simultaneously with a high degree of sensitivity. The surge of 

MS based methods in clinical laboratories is expected to continue for bacterial identifications, 

imaging tissue sections (MALDI), diagnostic testing (for a panel of analytes that can include 

metabolites as well as peptide/proteins) and functional assays. Improvements in MS workflows 

are coupled with corresponding advancements in software architecture and information 

management. The development of laboratory information management systems (LIMS)[205] 

that features enhanced data tracking and exchange interfaces has made inter laboratory 

communications much more accessible. This has brought MS based detection into a larger and 

more diverse landscape where the transition from analyte quantification in biological samples 

to disease diagnosis and subsequent treatment has become much more streamlined.   

In terms of separation and detection of complex samples, two-dimensional chromatography 

coupled with tandem mass spectrometry has made tremendous progress since its inception in 

2001. The overall acquisition time has also gone down with the introduction of next generation 

mass spectrometers like Q-Exactive and Orbitrap fusion. This is evident from a recent 

publication where the entire yeast proteome was measured in an hour having the same 

proteome coverage as the 24 hr MudPIT procedure [102]. However, analysis of complex 

proteomes in such a short duration may be subject to random sampling events which may 

result in some irreproducibility in the peptide measurements. Also, the spectra collected in this 

shortened run enhance qualitative identifications but may confound quantitative evaluations 

for samples with increased complexity. Additionally, the newer instrument platforms are more 
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expensive than previous generation mass spectrometers. In labs where there is scarcity of 

funds, replacing old instruments with newer state of the art mass spectrometers may not be 

always feasible. Hence there continues to be growing trend in coupling a better separation 

strategy to MS for obtaining deeper proteome coverage especially for complex samples. These 

include hydrophilic interaction liquid chromatography (HILIC), perfluorinated reversed phase 

chromatography, RP-RP with high pH and low pH elution, and mixed bead ion exchange 

chromatography etc. [97-100] to name a few.  

Another growing trend in MS based proteomics is the concept of data sharing. This is becoming 

a common scientific practice which is in line with other ‘omic’ fields like transcriptomics and 

genomics. This crucial switch has been mainly triggered by open access journals that require 

data to be made publicly available so that researchers across the globe can get access to it. 

Additionally, the advent of user friendly resources and tools to support simpler data 

dissemination so that experimental researchers can easily upload their data to central 

repositories. Several noteworthy repositories have been developed which include MassIVE 

(http://massive.ucsd.edu/), jPOST (http://jpost.org/), the Human Proteome Map 

(http://www.humanproteomemap.org/) , ProteomicsDB (https://www.proteomicsdb.org/) and 

Chorus (https://chorusproject.org/). Also, the ProteomeXchange (PX) Consortium [206] 

supports many mass spectrometry based data analysis tools that are readily available for 

download. This consortium undergoes periodic upgrades and new bioinformatic tools are 

routinely made available. With the development of centralized repositories for data storage the 

growing field of MS is now filled with opportunities for those wanting to use this knowledge for 

making novel discoveries from pre-existing data. One of the main caveats in discovery 

http://massive.ucsd.edu/
http://jpost.org/
http://www.humanproteomemap.org/
https://www.proteomicsdb.org/
https://chorusproject.org/
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proteomic studies is with regards to data analysis and extracting relevant biological information 

from these complex measurements. Often, a researcher is looking for the expression of a 

subset of proteins in the dataset. In such cases, a wealth of the remaining data stays 

unanalyzed. By sharing the data in repositories, others can analyze them and thus further 

optimize their scientific value.  

The growing trends in mass spectrometry based proteomics described above that ranges from 

experimental improvements to bioinformatic tools, places MS in the forefront of biological 

research. However, it also poses an additional responsibility on the researches working in this 

domain. Since the debacle of SELDI mass spectrometry in biomarker discovery of ovarian cancer 

[207], new techniques need to be scrutinized thoroughly before being brought forth for 

commercial usage. This puts further onus on MS researchers like us to work more diligently at 

the fundamental level so that new progress whether experimental or computational, is backed 

by sufficient replicable data so that such disasters don’t happen in the future.  

7.3 Future Outlook, Perspectives and Demands: 
 

Given the enormous complexity of the metaproteome and the wide dynamic range of protein 

compliments in microbial communities, metaproteomic characterization faces a multitude of 

challenges at different stages of the analytical workflow. These include enhanced cell lysis and 

protein extraction protocols that are applicable to most complex sample matrices like soils, 

mass spectrometers having high mass accuracies and faster scanning speeds, high-throughput 

computing clusters capable of detecting a wide variety of post-translational modifications in 
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these complex specimens and the development of dedicated software that can integrate the 

metaproteomics data with other ‘omic’ studies for better visualization.  

Currently, a lot of laboratories use databases downloaded from public repositories (like NCBI 

and Uniprot) for data analysis. We expect this trend to change in the future with the availability 

of cheaper sequencing technology. The construction of high quality metagenomic and 

metatranscriptomic databases from the same samples (example [208-210]) will allow the 

construction of customized and sample specific metaproteomic databases which are expected 

to markedly improve the reliability and scope of protein identifications. Further improvements 

in data validation would involve FDR estimations. Since metaproteomic investigations involve 

many proteins having hypothetical and unannotated sequences, the FDR is not always correct. 

In such cases semi-supervised machine learning algorithms can be leveraged [211]. 

Metaproteomics using database searching is currently restricted to identification of 5-30% of 

spectra. A recent study estimated that about 30% of spectra belong to solvent and background 

components, [212] which leaves an additional 40% spectra that remain unidentified. Spectral 

libraries that can store and cluster spectra can be used as an alternative strategy to handle 

these spectra. De novo sequencing which has been extensively discussed in this dissertation 

could also be put into use to rescue myriads of unidentified spectra. Further refinement in de 

novo sequencing can be achieved by using alternative proteases such as Lys-C or Arg-C which 

gives rise to longer peptides and thus more robust identifications. As already highlighted 

before, we expect a surge in holistic data integration consisting of metagenomics, 

metaproteomics and metatranscriptomic studies. Given the high-dimensionality of these 
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datasets, improved data integration and analysis tools will be designed that can give a better 

understanding of system functionality and perturbations. 

Most of the challenges outlined here and corresponding solutions proposed are already under 

implementation, hence we expect the landscape of metaproteomics to flourish and become a 

major focus of systems biology in the coming decade.   

In conclusion, the field of metaproteomics has opened up new avenues for detailed 

characterization of microbes that exist in natural ecosystems. However, the field is still at a 

nascent stage and is restricted to few laboratories having access to high throughput 

instrumentation and computing clusters. We expect the field to gain further traction with 

reduced instrumentation costs similar to DNA sequencing technology and its active promotion 

by the research community as a superb and complimentary technique to other meta-omic 

methods especially in context of integrated omic analysis of microbial consortia. For this, more 

active collaborations need to occur between industries and academic institutions coupled with 

active workshops that can attract graduate student with interests in this exciting field of 

biology.   
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