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Abstract

Geometrical frustration refers to the inability of a complex system to satisfy all its competing

interactions within an underlying topological constrained lattice. The two-dimensional

kagome lattice is one of the most frustrated lattices and has been a favorite in the theoretical

condensed matter community. However, the large variety of exotic states predicted in kagome

lattices lies in contrast to a paucity of experimental systems, making new kagome lattice

compounds highly desired.

In this dissertation, I shall provide a systematic study of the structural and magnetic

properties of a new compounds family, A2RE3Sb3O14 (A = Mg, Zn; RE = Pr, Nd, Gd,

Tb, Dy, Ho, Er, Yb). These compounds feature a hitherto unstudied “tripod kagome

lattice (TKL)” that was realized by partial ion substitution in the pyrochlore structure.

In this dissertation, I shall first briefly introduce the frustrated magnetism and experimental

methods in the first two chapters. The third part will cover some general aspects of the

TKL, including its structural relation to the pyrochlore lattice, the unique tripod-like spin

anisotropies, and spin Hamiltonian. In the fourth chapter, I shall present susceptibility (dc,

ac) and specific heat measurements and do a case by case investigation of their magnetic

ground states. These include non-collinear spin orders, dipolar spin orders, spin glasses,

magnetic charge orders, and several quantum spin liquids. These ground states are compared

with the parent pyrochlore lattice and are understood from the standpoint of a balance among

spin-spin interactions, anisotropies and Kramers/non-Kramers nature of single ion state.

In the fifth chapter, an in-depth neutron scattering study of Mg2Ho3Sb3O14 is provided,

demonstrating the system to be a kagome spin ice from a transverse Ising model. The last

section contains the conclusions of this dissertation and offers perspectives for future work.
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Chapter 1

Introduction

This chapter is intended to give a brief introduction to geometrical frustration as well as some

frustrated systems. I shall begin with some basic concepts in frustrated magnetism. After

that, a brief review of pyrochlore oxides will be provided as the system that we studied is a

kagome variant from the pyrochlore lattice. The third section contains important information

related to the kagome antiferromagnet which is highly related to the physics discussed in the

following chapters. Lastly, I will show how the TKL is realized from a pyrochlore lattice and

why this will be a considerable improvement for experimental studies on kagome physics.

1.1 Basic Concepts of Frustrated Magnetism

In physics, frustration refers to the presence of competing forces that cannot be simul-

taneously satisfied. Frustrated magnetism arises from the systems in which localized

magnetic moments, or spins, interact through competing exchange interactions that cannot

be simultaneously satisfied, giving rise to a large degeneracy of the system’s ground state

[13]. Usually, antiferromagnetic interactions on lattices that involve triangular motifs

are responsible for this behavior. It is clear from from Fig. 1.1(a) that a triangle of

antiferromagnetically interacting Ising spins, which must point upward or downward, is the

simplest example of frustration. When a pair of spins are aligned with anti-parallel moments,

the third spin is frustrated, resulting in the same total energy with either the up or down

spin configuration. On the other hand, the same model on a square lattice (1.1(c)) or Ising
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Figure 1.1: Ising models for (a) a triangle with antiferromagnetic spins, (b) a triangle
with ferromagnetic spins, and (c) a square with nearest-neighbor antiferromagnetic spins.

spins with ferromagnetic interactions (1.1(b)) are not frustrated because there is a unique

state which has the lowest energy for these systems. This example already demonstrates

two important aspects of frustrated magnetism which are equally important: many-body

interactions and the geometry of the underlying lattice.

The study of geometrical frustration begins with the idea of classical ground state

degeneracy which is now considered to be a key, or even a defining, characteristic of

frustration. Wannier showed in 1950 that an antiferromagnet consisting of a two-dimensional

(2D) triangular lattice has a very large number of degenerate ground states [14]. The ground-

state entropy is extensive and is equal to 0.323 kBN, where kB is the Boltzmann constant and

N is the number of spins. When the temperature is lowered, the spins fluctuate thermally in

a correlated manner. The same idea could also be applied to a pyrochlore lattice or a kagome

lattice antiferromagnet where the degenerated ground states are known to be a spin ice [15]

and a kagome spin ice (KSI) [16], respectively. In these states, classical fluctuations (thermal

activation) dominate. Given the Ising nature, excitations of any form will require a minimum

energy to flip one spin. The system will eventually fall out of equilibrium and freeze into

one of the microstates when the temperature is sufficiently low. Therefore, these systems

can be viewed as classical spin liquids, or cooperative paramagnets, which are analogous to

an ordinary liquid composed of molecules that form a dense, highly correlated state that has

no static order [13].

When quantum spin fluctuations are introduced into a frustrated magnet with small

spin numbers, the quantum mechanical uncertainty principle produces zero-point motions

comparable to the size of the spin itself which persists down to T = 0 K. Although they are
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similar to thermal fluctuations in some ways, quantum fluctuations can be phase coherent.

If they are strong enough, the result is a quantum spin liquid (QSL), a superposition state

in which the spins simultaneously point in many different directions [13]. The study of

QSLs begins with P. W. Andersen’s proposal of the resonating valence bond (RVB) in 1987

[17]. In his original proposal, nearby spins form pairs of rotationally invariant singlets, or

valence bonds, which do not develop long-range order (LRO) in any local order parameter

at any temperature. For the ground state to be a RVB, it is necessary that large-scale

resonances between different singlet configurations lead through interference effects to a

noticeable energy gain. In other words, the ground state is a superposition of different

partitionings of spins into valence bonds. Later, it was realized that valence bonds need not

be formed only from nearby spins [18]. If a valence bond is formed from spins that are far

apart, the spins are less tightly bound, consequently more easily excited into a state with

non-zero spin, giving rise to a possibility of large numbers of different QSL states. In an

attempt to classify these states, X. G. Wen has used the concept of the projective symmetry

group and has classified hundreds of QSLs on S = 1/2 antiferromagnets on the square

lattice [19]. It is noteworthy that QSLs are not “disordered systems”, and most of them

are expected to possess a definite topological order for both their ground states and their

collective excitations. In this sense, they are much more akin to superconductors or quantum

spin Hall liquids than to spin glasses (SG) [20]. In terms of excitations, a QSL is a state

with fractional quasi-particle excitations. In ordinary phases of matter, all of the excitations

are constructed from elementary excitations that are either electron-like (spin S = 1/2 and

charge ±e) or magnon-like (spin S = 1 and charge-neutral). In QSLs, the excitations are

usually “spinons”, an exotic quasi-particle carrying a half-integer spin (normally 1/2) and

are charge-neutral. The property that the excitation is fractional means that spinons can

be placed far away from each other with a finite energy cost; in other words, they can be

deconfined [21]. In this sense, a spinon is a “fraction” of an electron. Spinons are well

established in one-dimensional (1D) systems in which they occur as domain walls [22]. In

2D and 3D systems, a spinon is created simply as an unpaired spin which can then move by

locally adjusting the nearby valence bond configurations.
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On the experimental side, the frustration index, f ≡ θW/Tc, provides a quantitative

measure of the level of frustration [23]. Here, θW is the Weiss temperature that characterizes

the sign and strength of interaction, and Tc is the ordering or spin freezing temperature.

In frustrated magnets, the paramagnetic region usually extends to temperatures well below

θW , giving rise to a large value of f . The Tc or the absence of static moments can be probed

by susceptibility and specific heat measurements or by nuclear magnetic resonance (NMR)

and muon spin resonance (µSR) experiments. More detailed information on the correlation

and excitations is provided by magnetic neutron scattering, which probes the dynamical

structure factor S(Q, ω) of the system. A more detailed introduction of this experimental

technique can be found in Chapter 2.

1.2 Pyrochlore Oxides

The 3D pyrochlore lattice is one of the most important frustrated systems. Over the past

several decades, interest in the magnetic behavior of pyrochlore oxides of type RE3+
2 X4+

2 O7,

where RE is a rare earth ion and X is usually a transition metal, has exploded. Both

the RE and X sites form a network of corner-sharing tetrahedron (Fig. 1.2 (a)). Due to

various RE elements in the periodic table and a large number of transition metals, the

pyrochlore oxides form a large family of compounds that could stabilize as a cubic structure

at room temperature (Fig. 1.2 (b)). Moreover, because of the various spin numbers and spin

anisotropies of different RE3+ ions, the complex interplay among the spin-orbital coupling,

dipolar, and exchange interactions leads to many novel ordered/disordered states. For

example, this interplay leads to multi-k ordering [24] with multiple field induced transitions

[25] for Heisenberg spins in Gd2Ti2O7, the spin ice state in Ho2Ti2O7 [26] and Dy2Ti2O7 [27]

for classical Ising spins, possible quantum spin ice (QSI) phases in Pr2X2O7 (X = Sn, Zr)

[28, 29], Tb2Ti2O7 [30] and Yb2Ti2O7 [31] for quantum Ising models, as well as the order by

disorder physics in the XY spin system Er2Ti2O7 [32]. This section will mainly focus on the

physics of spin ice and QSI since they are strongly related to the observations in the TKLs

discussed in the following chapters.
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Figure 1.2: (a) A pyrochlore lattice composed of corner-shared tetrahedrons. (b) A
structure-field or stability-field map for RE2X2O7 materials. Adapted from Ref. [1].

1.2.1 Spin Ice

The spin-ice phenomenology in the pyrochlore oxides was discovered in 1997 in Ho2Ti2O7 [26].

In Ho2Ti2O7, the strong axial crystal electric field (CEF) acting on the Ho3+ ion gives rise

to an almost ideal classical Ising spin. The local Ising axis is along the four local cubic [111]

directions such that a spin can only point either “in” or “out” of a tetrahedron. Within

a tetrahedron, there are six degenerate two-in-two-out spin configurations that minimize

the effective ferromagnetic exchange energy. Given a large number of spins, there is a large

number of ground state degeneracies and a zero point entropy, similar to the statistic problem

of triangular Ising antiferromagnets mentioned above. This degeneracy can be described by

borrowing Pauling’s argument of the residual proton configuration disorder in hexagonal

water ice [33]. Because of this analogy, these systems have been given the name spin ice.

Soon after the proposal of spin ice in Ho2Ti2O7, Ramirez et al. [27] measured precisely the

zero-point entropy in Dy2Ti2O7, establishing Dy2Ti2O7 as another spin ice material. For

both Dy and Ho pyrochlores, the large 10 µB moments lead to a critical role for magnetic

dipole-dipole interactions. It is the large dipolar interaction (∼ 2.35 K) that overcomes

the antiferromagnetic exchange interaction (∼ 1.2 K) and results in a spin ice state. The

dipole-dipole correlation is faithfully reflected by an elastic neutron scattering experiment.
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Figure 1.3: (a) Illustration of the mapping between spin ice and water ice. (b) Illustration
of the spin to dumbbell mapping for tetrahedron hosting positive and negative monopoles.
This figure is taken from Ref. [2]. (c) Examples of magnetic diffuse scattering of different
models on a pyrochlore lattice calculated by the mean-field theory. This figure is adapted
from Ref. [3].

As shown in Fig. 1.3, the observed diffuse scattering pattern can only be obtained using the

dipolar model.

Another important consequence of long-range dipolar interaction relies on the excitations.

When going beyond the equilibrium condition, a single spin flip process in the spin ice

manifold will break the ice rule for two neighboring tetrahedra. From a magnetic viewpoint,

the center of this tetrahedron becomes a source or sink for flux, that is, a magnetic monopole.

Therefore, a single spin flipping corresponds to creating two equal and opposite magnetic

monopoles on nearest-neighbor diamond sites (Fig. 1.3 (b)). In the dumbbell model

description, the energy of two defects located at a distance apart is simply the sum of two

defect creation energies and a magnetic Coulombic interaction between the defects [2]. Many

experiments in which the monopoles in spin ice are studied and manipulated have already

been performed. For example, Jaubert and Holdsworth showed that the energy of a monopole

can be extracted from the Arrhenius behavior of the magnetic relaxation rate [34]. Using

neutron scattering measurements under magnetic fields, Morris, et al. provided evidence of

Dirac strings in the Dy2Ti2O7 [35]. By measuring the current using the electromotive force,

a group in England is able to derive the microscopic parameters of monopole motion in spin

ice states and to identify the distinct roles of free and bound magnetic charges [36]. Overall,
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the discovery of monopoles in spin ices has connected this classical spin liquid system to

fractionalization and topological order, and it appears not yet to be losing momentum [37]!

1.2.2 Quantum Spin Ice

A QSI is a type of U(1) QSL which might be observed in certain pyrochlore magnets. It

is achieved by introducing quantum dynamics into the classical nearest-neighbor spin ice

model. The dynamics term could be a perturbative “transverse” nearest-neighbor exchange

couplings (J⊥) in addition to the “longitudinal” Ising exchange term (Jzz). A minimal model

is given by a local XXZ Hamiltonian:

HQSI = Jzz
∑
i,j

Szi S
z
j − J⊥

∑
i,j

(S+
i S
−
j + S−i S

+
j ), (1.1)

where S+ and S− are spin ladder operators. Here, the transverse couplings are required to

have a characteristic energy scale J⊥ < Jzz such that the manifold of a classical spin ice state

forms a reference classical spin liquid, the background on which quantum fluctuations can act

perturbatively [4, 13]. The lowest order terms derived from a canonical perturbation theory

that preserves the ice rule constraint are ring exchange terms that live on the hexagonal loops

on the pyrochlore lattice (Fig. 1.4 (a)). The ring exchange model then reduces to a quantum

dimer model on a diamond lattice which can be analyzed using the properties of the soluble

point [38]. In short, a QSL phase is found in this minimal model by both the U(1) Gauge

theory [38] and quantum Monte Carlo simulations [39]. Besides J⊥ and Jzz, there are two

extra terms (J⊥⊥, Jz⊥) allowed by symmetry on the pyrochlore lattice [40] that originate

from linear transformations of a pseudo-dipolar interaction and a Dzyaloshinskii-Moriya

interaction. Using gauge mean field theory (gMFT), the zero temperature phase diagram

using the coupling parameters Jex = (Jzz, J⊥, J⊥⊥, Jz⊥) has been studied for systems with

Kramers ions [5]. An example phase diagram produced using this method is shown in Fig.

1.4 (b). Besides the conventional ferromagnetic and antiferromagnetic ordered states, a QSI

phase appears as expected, in a region where the Ising coupling Jzz is sufficiently larger than

the other terms.
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Figure 1.4: (a) A segment of a [111] kagome plane in the pyrochlore lattice showing one
closed hexagonal loop (in red) and a flippable spin configuration around that loop. The figure
is taken from Ref. [4]. (b) A zero temperature gMFT phase diagram taken through sections
in the space of symmetry-allowed nearest-neighbor exchange couplings on the pyrochlore
lattice. This figure is adapted from Ref. [5].

Among the pyrochlore family, Tb2Ti2O7, Pr2X2O7 (X = Sn, Zr) and Yb2Ti2O7 are

candidates for displaying some of the QSI phenomenologies.

Tb2Ti2O7 was the first material which was named a QSI [41]. The Tb3+ moments have

strong Ising characteristics, and they do not develop LRO down to the lowest measured

temperatures. Early neutron studies found a broad region of diffuse scattering around Q

= (002) [42], suggesting non-Ising fluctuations. It was then realized that the first excited

CEF level in this system is only 18 K above the ground state doublet which allows for

a significant admixing between the CEF states through exchange and long-range dipolar

interaction [43]. Calculations show that Tb2Ti2O7 might sit on the boundary between an

all-in-all-out LRO phase and a two-in-two-out spin ice state. Recently, it has been argued

that a sizable magneto-elastic response in this system will split the ground state doublet,

leading to a singlet-singlet gap as large as 2 K and that this is the principal reason why this

system does not order [44]. Overall, Tb2Ti2O7 behaves like a QSL experimentally, and with

spin ice like correlations and transverse fluctuations, a (partial) QSI picture is still possible

at this moment [4].

The studies on Pr2X2O7 (X = Sn, Zr) have just begun only recently. In these two

materials, Pr3+ is a non-Kramers ion that possess a magnetic CEF Ising doublet ground

state, similar to that in Ho2Ti2O7 and Tb2Ti2O7. Both compounds display some of the key
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characteristics of spin ice states, such as the Pauling zero-point entropy and pinch points

[28, 29]. However, inelastic neutron scattering suggests that the low-temperature state of this

system remains dynamic down to at least 100 mK, in sharp contrast with classical spin ices

where almost no inelastic response is observed [45]. A recent single crystal neutron scattering

measurement on Pr2Zr2O7 revealed a broad continuum of excitations, the temperature and

magnetic field dependence of which indicates a continuous distribution of quenched transverse

fields acting on the non-Kramers CEF ground state doublets [46]. It appears that the disorder

in Pr2Zr2O7, which might come from the high-temperature single crystal synthesis, induces

a QSL state. A QSI model associated with this observation is proposed by L. Savary and L.

Balents in 2017 that states in non-Kramers spin ices, disorder induces quantum entanglement

and engenders an associated emergent gauge structure and set of fractional excitations [47].

The interest in Yb2Ti2O7 has continued growing since early 2000. In this system, early

specific heat and µSR measurements show a LRO transition at Tc 0.21 K, resulting in a

splayed ferromagnetic state. The magnetic moments are found to be predominantly aligned

along one of the six [100] cubic directions, but slightly splayed away from complete alignment.

Below Tc, a temperature-independent relaxation rate is found by µSR [48] along with rods of

diffuse scattering along the [111] directions in the elastic neutron spectrum [49]. In Yb2Ti2O7,

although the Yb3+ ions possess an XY-type anisotropy (meaning that the magnetic moments

have their largest magnetic response perpendicular to the local [111] direction), the strongest

interaction in the system is believed to be the Ising coupling (Jzz), validating a QSI model

at the first stage. This was demonstrated by Ross et al. through spin wave measurements of

the polarized state under an external magnetic field [31]. However, this picture is somehow

challenged by a more recent neutron scattering experiment [50], which finds a much smaller

Jzz compared to the previous report.

Overall, the three materials discussed above, are all described to some extent by the

effective spin-1/2 QSI Hamiltonian Equ. 1.1 from which one can obtain an exotic gapless

U(1) QSL state. However, none of them have yet been confirmed to be a clear realization of

such a state. More theoretical and experimental work is expected to appear in the coming

years.
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Figure 1.5: (a) A kagome lattice with q = 0 and q =
√

3∗
√

3 local modes. (b) Momentum
structure of the inelastic neutron scattering data for single crystal samples of ZnCu3(OH)6Cl2
at 1.6 K for three different energies. Adapted from Ref. [6].

1.3 Kagome Antiferromagnet

The kagome lattice defines a certain type of 2D structure constructed by a network of corner-

shared triangles (Fig. 1.5). It has been a favorite in the theoretical condensed matter

community since the experimental work on SrCr8Ca4O19 [51]. This section will begin with the

most studied model on the kagome lattice, that is, an ideal Heisenberg antiferromagnet. Its

experimental realization in herbertsmithite ZnCu3(OH)6Cl2 will also be covered. After that,

the physics of kagome spin ice (KSI) and emergent charge order (ECO) will be introduced.

These exotic phenomena are theoretically predicted based on Ising spins, but have not been

realized yet experimentally.

1.3.1 Nearest-Neighbor Heisenberg Model

Contrary with the initial proposal by Anderson on triangular and square lattices, corner

sharing is a key ingredient for stabilizing fluctuating ground states, such as the RVB or QSL

states [52]. The nearest-neighbor Heisenberg model on a kagome lattice is one of this kind.

Even at a mean field level, the corner-sharing geometry generates a macroscopic ground

state degeneracy and branches of zero energy excitations. As shown in Fig. 1.5 (a), given

a LRO state in a kagome lattice, simultaneous local rotation of spins belonging to two

sublattices has no energy cost. The cooperative motion results in a short correlation length

which prevents LRO even at zero temperature. Over the years, there has been tremendous
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interests investigating the ground state of this “simple” model. Using different theoretical

approaches, various ground states have been found, including RVB, Z2-QSL, U(1)-QSL,

chiral spin liquid, etc., with either gapped or gapless excitations. They are reviewed in a

paper by M. R. Norman, where one could locate an introduction to the related theories [53].

From the experimental point of view, the ideal kagome antiferromagnet should follow

three criteria: (i) decoupled kagome planes with negligible interlayer interactions, (ii) an

absence of perturbations such as anisotropies, further neighbor interactions, and dipolar

interactions, and (iii) a spin equals to 1/2 to increase quantum fluctuations. Among

all of the explorations of the ideal kagome Heisenberg antiferromagnets, Herbertsmithite

ZnCu3(OH)6Cl2 stands out, fitting all of the criteria. This material features well defined

Cu2+-kagome layers that are well separated by diamagnetic Zn2+ layers. Furthermore, Cu2+

is a spin-1/2 ion with highly isotropic couplings. Various measurements, including specific

heat, muon spin rotation (µSR), and neutron scattering fail to observe any sign of spin

ordering or freezing down to mK regions [54, 55, 56]. Exploiting the advantages of single

crystals for neutron scattering measurements, Han et al. found spectra with a modest

dependence on both momentum and energy (Fig. 1.5 (b)), representing a spinon continuum

[6]. Above 1 meV, the momentum pattern is what one would expect for near-neighbor

antiferromagnetic correlations within the kagome plane. One problem with Herbertsmithite

is the structural defeat, i.e. Zn-Cu anti-site disorder. Resonant X-ray measurements revealed

that 15% excess copper sits on the zinc sites [57], resulting in strong correlations in the

excitation spectrum below 1 meV [58]. Nevertheless, ZnCu3(OH)6Cl2 still remains to date

the most promising QSL candidate from a nearest-neighbor Heisenberg model.

1.3.2 Kagome Spin Ice and Emergent Charge Order

In terms of anisotropy, the pure Ising kagome case has been treated theoretically [59]. Again,

the absence of order is predicted, leading to a classical spin liquid. A mathematically

equivalent problem is enforcing in-plane Ising anisotropy (spin points either into or out of the

center of each triangle) and ferromagnetic nearest neighbor interaction. This is a spin-ice-like

system in a kagome layer – a kagome spin ice (KSI). A preventative spin configuration of

the KSI state is shown in Fig. 1.6 (a). The local ice rule will be either one-in-two-out or
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Figure 1.6: (a) Magnetic configurations of the dipolar KSI and their alternative
representations, showing one of the ground states exhibiting the

√
3*
√

3 magnetic order,
and its depiction in terms of dimers. Blue/red dots present negative/positive magnetic
charges, respectively. (b) Temperature dependence of the specific heat and entropy per spin
of the dipolar KSI. The sharp large peak corresponds to the ECO transition, and the small
peak at T ∼ 0.1 D corresponds to the LRO transition. Adopted from Ref. [7].

two-in-one-out for a single triangle and there are six degenerate states out of eight possible

configurations. The degeneracy and the associated zero-point entropy have been determined

by analytic and classical Monte Carlo calculations (0.50R per mole spin here) [16] which

greatly exceeds that of the pyrochlore spin ice.

The model discussed above has only considered the nearest neighbor exchange interaction.

In the presence of the long dipolar interactions, the magnetic charge emergents. The

emergent charge is defined as the algebraic sum over the three charges it contains (Fig.

1.6 (a)), similar to the magnetic monopole in spin ices. Therefore, when the ice rules are

unanimously fulfilled at low temperatures, the total magnetic charge at each vertex of the

triangle is±1. The interaction can be alternatively written as the sum of the nearest-neighbor

short-ranged order (SRO) KSI ferromagnet and the magnetic Coulomb interaction between

the charges [7]. As demonstrated by Monte Carlo simulations, the Coulomb interaction drives

a sharp transition to an emergent charge ordered (ECO) state that is absent for nearest-

neighbor interactions alone (Fig. 1.4 (b)). In this state, positive and negative charges

alternate, but the remaining threefold degeneracy of the spin states for each charge means
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that the spin order is only partial. Being a partially ordered state, the ECO state has non-

zero entropy (∼ 0.11R per mole spins). This part of the entropy can only be released given

a loop dynamic of spin-flipping, which results in a
√

3*
√

3 LRO state at a temperature well

below the ECO transition (Fig. 1.4 (c)).

Experimentally, there are at present no experimental realizations of kagome Ising

magnets. The kagome ECO states have been observed in spin-ice materials under applied

magnetic fields [60, 61] and nano-fabricated systems in the 2D limit [62]. However, a crucial

experimental observation of KSI or ECO states has remained elusive in a bulk kagome

compound.

1.4 Towards new Kagome Magnets

Besides the QSL, KSI and ECO states mentioned above, many other exotic states are

predicted in a kagome lattice, such as the spin-orbital liquid state [63], dipolar spin order [8],

the Kosterlitz-Thouless transition [64], Quantum Order by Disorder (QObD) [65], nematicity

and supernematicity [66]. However, the large variety of exotic states predicted lies in

contrast to a paucity of experimental systems. Besides herbertsmithite, recent attention

has also been paid to vesignieite BaCu3V2O8(OH)2 [67] and the barlowite Cu4(OH)6BrF

[68]. From a materials standpoint, however, these systems are limited by (i) known defect-

prone structures, and (ii) the inability to substitute facilely on the magnetic site (e.g with

non-Heisenberg spins) to realize states other than the QSL. Clearly then, finding new KLM-

containing compounds with spin-type variability is a challenge of the highest order.

Intriguingly, a 2D kagome lattice is naturally contained in the frustrated 3D pyrochlore

structure. In pyrochlores RE2X2O7, both the RE3+ and X4+ sublattices form alternating

kagome and triangular layers along the [111] axis as a result of corner-shared tetrahedrons.

However, the strong interlayer interactions enforce three-dimensionality. Obviously, if one

can remove the magnetic moment of the triangular layers in the pyrochlore lattice, a RE-

kagome-only lattice might be realized, enabling the study of intrinsic kagome physics.

Because of various spin and spin anisotropies of different RE3+ ions, strong spin-orbital
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coupling, and long-ranged dipolar interactions in addition to the exchange couplings, rich

physics is immediately available which obviously goes beyond QSL physics.

In this dissertation, I shall introduce a new family of kagome lattice compounds -

A2RE3Sb3O14 (A = Mg, Zn; RE = Pr, Nd, Gd, Tb, Dy, Ho, Er, Yb), which are realized

by partial ion substitution in the pyrochlore lattice. Here, the triangular layers in the

pyrochlore structure are occupied by non-magnetic A2+ ions, leaving the RE3+-kagome

layer well isolated from neighboring layers. We studied their structures as well as their

magnetism by dc-, ac-susceptibility, specific heat, and neutron scattering measurements,

which reveal various ground states. Some of them have been predicted but have not been

realized before experimentally. Some of them even go beyond theoretical considerations. I

hope the comprehensive study in this dissertation can provide a guidance for further studies

and stimulate more works on these exciting compounds.
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Chapter 2

Experimental Methods

This chapter provides details of experimental methods as well as a brief introduction of some

of the relevant research techniques. I do not intend to go into the details for x-ray diffraction

(XRD), specific heat, magnetic susceptibility, and magnetization measurements as they are

basic concepts in the solid state physics. Magnetic ac susceptibility and neutron scattering

are two important techniques used in the dissertation; therefore, they are briefly introduced

2.1 Sample Synthesis

All of the A2RE3Sb3O14 (A = Mg, Zn; RE = Pr, Nd, Gd, Tb, Dy, Ho, Er, Yb) samples

studied in this dissertations are in the polycrystalline form and were synthesized by standard

solid state reactions. Starting materials are fine powders (∼ 300 mesh) of RE2O3 (RE =

Nd, Gd, Dy, Ho, Er, Yb) / Pr6O11 / Tb4O7, Sb2O3, and MgO/ZnO which were purchased

through commercial vendors. For the Zn2R3Sb3O14 branch of the family, stoichiometric

mixtures were carefully ground, pressed into pellets and reacted at a temperature of 1200

◦C in air using a box furnace for three days with several intermediate grindings. For the

Mg2R3Sb3O14 branch, a higher reaction temperature of 1300 - 1350 ◦C was required to obtain

pure phases.
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2.2 X-Ray Diffraction and Structural Refinements

Powder XRD were carried out using a HUBER X-ray powder diffractometer with Cu Kα

radiation (λ = 1.5418Å). Measurements were taken at room temperature between 4 ≤ 2θ ≤

100 ◦ with ∆2θ = 0.05 ◦.

Rietveld analysis of the XRD data was carried out using the programs of FULLPROF

suite [69]. Peak shapes were modeled using a pseudo-Voigt function convoluted with an axial

divergence asymmetry function. Backgrounds were obtained through linear interpolation

between a set of manually chosen background points with refinable heights.

2.3 Specific Heat

The low temperature (0.076 K ≤ T ≤ 7 K) specific heat (C(T )) measurements were

performed in a He3-He4 dilution refrigerator using the semi-adiabatic heat pulse technique.

The powder samples were cold-sintered with Ag powder, the contribution of which was

measured separately and subtracted from the data. These measurements were performed

by Jennifer Trinh and Arthur P. Ramirez in the University of California, Santa Cruz. The

high-temperature specific heat (2 ≤ T ≤ 300, K) measurements were carried out on a

Quantum Design Physical Properties Measurement System. The lattice contribution to the

heat capacity is estimated from the results of a measurement of the non-magnetic isomorph

Zn2La3Sb3O14.

It is common that the nuclear specific heat is likely to appear at ultra-low temperatures

(≤ 0.5 K) in rare-earth compounds. The nuclear specific heat contains two parts, a contact

hyperfine coupling that comes from the interaction between electronic spin and nuclear spin,

and a quadrupolar contribution that describes the interaction between the nuclear electric

quadrupole moment and the electric field gradient at the nucleus [70]. The expression of the

nuclear specific heat Hamiltonian is:

CN =
R

(kBT )2

∑I
i=−I (E2

i − EiEj) exp
(
−Ei+Ej

kBT

)
∑I

i=−I exp
(
−Ei+Ej

kBT

) , (2.1)
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where Ei (i = -I, ..., I)are the eigenvalues of the nuclear hyperfine coupling Hamiltonian:

HN = Ai〈Jz〉+ P

[
i2 − 1

3
I(I + 1)

]
. (2.2)

Here, I is the nuclear spin quantum number and Jz is the electronic spin angular momentum

quantum number. A and P are the hyperfine coupling and the quadrupolar coupling

constants, respectively.

In Chapter 5, we will focus on the nuclear specific heat analysis of Mg2Ho3Sb3O14. The

Ho element has only one isotope with nuclear spin I = 7/2 and J = 8 following Hund’s rules.

The hyperfine coupling constants have been determined for Ho metals with A = 0.0399 K

and P = 0.002 K [71]. Therefore, given a static moment size (µstatic = gJ〈Jz〉) of the Ho3+

ions, the nuclear specific heat can be calculated numerically following Equ. 2.1.

2.4 DC Susceptibility and Magnetization

Magnetic dc susceptibility (χdc) measurements were made using a Magnetic Properties

Measurement System (MPMS) with a superconducting interference device (SQUID) magne-

tometer. Measurements were made after coolinsg in zero field and in a measuring field of

µ0H = 0.1T over the temperature range between 2 K and 300K. The Weiss temperature (θW )

was obtained by Curie-Weiss (CW) fit of the inverse susceptibility. Isothermal magnetization

M(H) measurements were made using a Quantum Design Vibrating Sample Magnetometer

(VSM) at 2 K with magnetic fields between -6.5 ≤ µ0H ≤ 6.5T.

2.5 AC Susceptibility

The ac susceptibility (χac) measurement is an important tool for characterizing magnetic

materials. In ac magnetic measurements, a small ac drive magnetic field is superimposed on

the dc field, causing a time-dependent moment in the sample. There are two advantages of ac

measurements. Firstly, the measurement is very sensitive to small changes in magnetization,

as it measures the dM/dH of M(H) curve. Secondly, ac measurements yield information
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about magnetization dynamics which are not obtained in dc measurements because the

sample moment is constant during the measurement time.

Our ac susceptibility measurements were performed at the National High Magnetic Field

Laboratory (NHMFL) using the conventional mutual inductance technique, in collaboration

with Minseong Lee and Eun San Choi. The magnetic fields were obtained using an ac-dc

current calibrator (Valhalla Scientific, model 2700) and three lock-in amplifiers (Stanford

Research, SR 830). The phases of the lock-in amplifiers are set to measure each of the

harmonics signals which are shifted from the oscillating magnetic field according to Eq. 2.5.

The lock-in amplifiers are also set to read the linear component (first harmonic response)

and the nonlinear components (second and third harmonic responses) with respect to the

oscillating ac field frequency. The amplitude of the ac excitation field (h0) varies from 0.43

to 4.3 Oe with frequency (f) ranging from 40 to 1000 Hz. The applied external dc magnetic

field (Hac) varies from 0 to 1000 Oe. The data was taken while warming up the sample

from the base temperature with a rate of 7.6 mK/min utilizing a zero field cooling process.

The linear and nonlinear ac susceptibility values have been scaled by the ac field and ac

frequency.

Principally, the magnetization m is expressed as :

m = m0 + χ0h+ χ1h
2 + χ2h

3 + ... (2.3)

Then, in the ac susceptibility measurements, when applying the magnetic field h =

h0 sinωt, the induced voltage E of the pick up coil is given as [72]:

E =A{χt0h0 cosωt+ χt1h
2
0 sin 2ωt− 3/4χt2h

3
0 cos 3ωt− 1/2χt3h

4
0 sin 4ωt+ ...} (2.4)

with

χt0 = χ0 + 3/4χ2h
2
0 + 5/8χ4h

4
0 + ...

χt1h0 = χ1h0 + χ3h
3
0 + 15/16χ5h

5
0 + ...

3/4χt2h
2
0 = 3/4χ2h

2
0 + 15/16χ4h

4
0 + 63/64χ6h

6
0 + ...

(2.5)
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Here, χt0, χt1h0, and 3/4χt2h2
0 are the first harmonic, the second harmonic, and the third

harmonic component, respectively, that we have measured during the experiments [73].

In this dissertation, we will mainly focus on the linear response (first harmonic). Since

the applied ac field h0 is small, the first harmonic component is similar to the linear ac

susceptibility (χt0 ≈ χ0) which we labeled as χac in the following.

In the higher frequency case, the magnetization of the sample may lag behind the drive

field h. Thus, the ac susceptibility measurement yields two quantities: the magnitude and

the phase shift (φ). We denote χ′ac (≡ χ0 cosφ ) as the real part, which is the slope of the

M(H) curve discussed above, and χ′′ac (≡ χ0 sinφ ) as the imaginary part, which indicates

dissipative processes in the sample.

2.6 Neutron Scattering

2.6.1 Concepts and Equations

A neutron is charge neutral and carries a spin which allows it to interact with magnetic

moments, including those arising from the electron cloud around an atom. This unique

property makes it an excellent probe for the determination of the static and dynamic

magnetic properties of matter. The principal aim of a neutron scattering experiment is the

determination of the probability that a neutron which is incident on the sample with wave-

vector k scatters with wave-vector k′. During a scattering process, a neutron exchanges

energy and momentum with the material. Due to energy and momentum conservation,

the momentum and energy transfer to the sample is Q = k - k′ and ~ω = ~2

2m
(k2 − k′2),

respectively. Depending on whether the energy transfer is zero or not, the neutron scattering

experiments can be divided into two categories: elastic scattering and inelastic scattering.

Both of these techniques have been used in Chapter five when studying the magnetism of

Mg2Ho3Sb3O14. Here, I will focus on the magnetism and make a brief introduction of the

magnetic scattering. In this section, all of the principle equations can be found in a stadard

neutron scattering textbook [74].
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For unpolarized neutrons, identical magnetic ions with localized electrons, the spin-only

magnetic scattering cross section is:

d2σ

dΩdω
= (γr0)

2k′

k
F 2 (Q) e−2W (Q)

∑
α·β

(
δαβ −

QαQβ

Q2

)
Sαβ (Q, ω) , (2.6)

where γ = -1.91 is the gyromagnetic ratio of the neutron moment, r2
0 is the nuclear

cross section, F (Q) is the magnetic form factor that usually falls off with increasing |Q|,

e−2W (Q) is the Debye-Waller factor, and Sαβ (Q, ω) is the magnetic scattering function. It

is noteworthy that the polarization factor

(
δα13 −

QαQB

Q2

)
tells us that neutrons can only

couple to the magnetic moments or spin fluctuations that are perpendicular to Q which

allows unambiguous determination of the moment directions. The Sαβ (Q, ω) in the integral

representation is given by:

Sαβ (Q, ω) =
1

2π~
∑
j,j′

∫ ∞
−∞

eiQ(Ri−R′
j)
〈
Ŝαj (0) Ŝβj (t)

〉
e−iωtdt. (2.7)

where
〈
Ŝαj (0) Ŝβj (t)

〉
describes the thermal average of the time-dependent spin operators,

and Rj is the coordination of the magnetic moment at site j. It is clear then that a neutron

scattering experiment measures the Fourier transform of the pair correlation function in

space and time. Physically speaking, the neutron may be considered as a magnetic probe

which establishes the momentum- and energy-dependent magnetic field and detects the

response in the scattering sample. We can thereby relate the magnetic scattering function

to a generalized dynamic susceptibility (χαβ (Q, ω)) by the fluctuation-dissipation theorem:

Sαβ (Q, ω) =
N~
π

(
1− exp

(
− ~ω
kBT

))−1

Imχαβ (Q, ω) . (2.8)

Lastly, in the inelastic neutron scattering experiments, the energy transfer ~ω can be

either positive or negative. According to Boltzmann statistics, there is a scattering law of

S(Q, ω) upon time reversal, known as principle of detailed balance, such that:

S (−Q,−ω) = exp

(
− ~ω
kBT

)
S (Q, ω) . (2.9)

20



It unambiguously relates the neutron energy-gain and energy-loss processes to each other.

2.6.2 Powder Neutron Diffraction

Neutron diffraction or elastic neutron scattering is the application of neutron scattering to

the determination of the atomic and/or magnetic structure of a material. The technique is

similar to XRD, but with the additional ability to reveal the microscopic magnetic structure

of a material. In order to probe the magnetic ground state, we carried out powder neutron

diffraction measurements using the HB-2A high-resolution powder diffractometer [75] at the

High Flux Isotope Reactor at Oak Ridge National Laboratory.

The HB-2A Neutron Powder Diffractometer is a workhorse instrument used to conduct

crystal and magnetic structural studies of powdered and ceramic samples as a function

of intensive conditions (such as temperature, pressure, and magnetic field). Powder

diffraction data collected on this instrument are ideally suited for the Rietveld method.

The diffractometer has a Debye-Scherrer geometry. The detector bank has 44 3He tubes

with 12’ Soller collimators. A germanium wafer-stack monochromator is vertically focusing

and provides one of three principal wavelengths depending on which reflection is in the

diffracting condition: (113) 2.41 Å, (115) 1.54 Å, or (117) 1.12 Å. The take-off angle from

the monochromator is fixed at 90◦, and the minimum peak full width at half maximum

(FWHM) is 0.2◦. There are two choices of premonochromator collimation (α1 = 12’ or

open) and three choices of pre-sample collimation (α2 = 16’, 21’, or 31’) that allow the

operation of the instrument in high-resolution or high-intensity modes.

Measurements on 5g Mg2Ho3Sb3O14 powder sample were performed in a cylindrical

copper container. Neutron wavelengths of 1.546 Å and 2.410 Å were used, produced by

the (115) and (113) reflections of a vertically focusing Ge monochromator, respectively. The

shorter wavelength, with a higher intensity and Q-coverage, was used to determine the crystal

structure, and the longer wavelength, with a better Q resolution, was used to measure the

magnetic diffuse scattering between temperatures of 0.4 K and 40 K.

21



2.6.3 Inelastic Neutron Scattering

Inelastic neutron scattering experiments measure the magnetic scattering function S(Q,

ω) (Eq. 2.7) of a target material with certain a momentum transfer (Q) and energy

transfer (~ω). Inelastic scattering experiments normally require a monochromatization of

the incident or outgoing beam and an energy analysis of the scattered neutrons. This

can be done either through time-of-flight techniques (neutron time-of-flight scattering) or

through Bragg reflection from single crystals (neutron triple-axis spectroscopy and neutron

backscattering) [74]. In this dissertation, inelastic neutron scattering measurements were

performed to probe the high energy CEF transitions as well as the low energy collective spin

excitations. They are measured with two time-of-flight instruments, the Fine-Resolution

Fermi Chopper Spectrometer (SEQUOIA) [76] at the Spallation Neutron Source (SNS) of

Oak Ridge National Laboratory and the Disk Chopper Spectrometer (DCS) [77] at the NIST

Center for Neutron Research, respectively.

The SEQUOIA instrument is a direct geometry time-of-flight chopper spectrometer with

fine energy transfer and wave-vector resolution capabilities used for forefront research on

dynamical processes in materials. In particular, SEQUOIA allows for unprecedented high-

resolution inelastic neutron scattering studies of magnetic excitations and lattice vibrations.

SEQUOIA has a 5.5 m flight path from the sample to detector bank. This detector bank

currently covers scattering angles from -30 to 60 in the horizontal and from -18 to 18 in the

vertical in increments of ∼0.3◦. Therefore the total solid angle coverage is .863 steradians.

SEQUOIA uses the full source spectrum provided by the decoupled water moderator, and

can be used to study excitations on energy scales ranging from a few millielectron volts up to

several electron volts as a result. For our SEQUOIA measurements, a ∼ 5 g powder sample

of Mg2Ho3Sb3O14 was loaded in an aluminum sample holder and cooled down to 4 K with

a closed cycle refrigerator. In order to probe all possible CEF excitations, several incident

neutron energies were used, with Ei = 240, 120, 60, and 8 meV in the high resolution mode.

The same measurements were repeated for an empty aluminum sample holder that was used

for background subtraction.
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The DCS is a direct geometry time-of-flight spectrometer which is primarily used for

studying of low energy excitations and quasielastic neutron scattering. Neutrons with a

single well-defined energy arrive at the sample in pulses. The energies that the neutrons

acquire, having been scattered by the sample, are determined from their times of flight to

an array of detectors. A cleanpulsed monochromatic neutron beam is produced using seven

disk choppers which produce neutron incident wavelengths ranging from 0.23 to 1.0 nm,

i.e. ∼2.3 to ∼10 Å. Each of the pulsing and monochromating choppers has three slots of

different widths. This permits three choices of resolution at a given wavelength and master

chopper speed. The chopper phase stability, approximately 100-200 ns at 20000 rpm, is

excellent. For our DCS measurements, a ∼ 5 g powder sample of Mg2Ho3Sb3O14 was loaded

in a copper can and cooled down to the millikelvin regime using a dilution refrigerator. The

measurements were carried out with an incident neutron wavelengths of 5 Å in the high flux

mode at T = 0.12, 0.40, 1.6, 4.2, 10.0, and 40.0 K. Due to the large specific heat and related

relaxation process below 1 K, a long period of thermal stabilization time was required. The

equilibrium was reached ∼ 6 h after the temperature of the mixing chamber reaches base,

as the intensities of the magnetic Bragg peaks saturate and do not change over time.

For both measurements, all data were corrected for detector efficiency using a vanadium

standard, normalized to incident beam monitor (DCS) or beam current (SEQUOIA), and

corrected for absorption by the sample. Data reduction was performed using the DAVE

programs [78].
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Chapter 3

General Considerations

Since we are studying a number of new compounds with a hitherto unstudied frustrating

lattice, it is necessary to consider all of the compounds as a family group and then to discuss

the family’s basic properties. This chapter intends to provide some general considerations of

the TKL family before going into the physics of any specific compound. This includes the

structure, the unique “tripod” spin anisotropies, and the general spin Hamiltonian. Since the

TKL is achieved through partial ion substitution in the pyrochlore structure, these aspects

are compared to the parent pyrochlore structure. For simplification, in the following

dissertation, we use the abbreviated name A-RE for the TKLs such as MgPr for

Mg2Pr3Sb3O14.

3.1 Structure

The A2RE3Sb3O14 (A = Mg, Zn; RE = Pr, Nd, Gd, Tb, Dy, Ho, Er, Yb) compounds

crystallize in a rhombohedral structure with the R -3m space group in hexagonal expression.

Compared with the pyrochlore lattice, the triangular layers of both the RE3+ and Sb5+

sublattices in the structure are replaced by Mg2+ or Zn2+ The replacement is also possible

for other magnetic transition metal ions such as Co2+ and Mn2+ [79, 80, 81]. The

chemical formula can also be written as (A0.25RE0.75)2(A0.25Sb0.75)2O7, which is a pyrochlore

(RE2X2O7) with one-quarter of the RE3+ and X4+ ions substituted in an ordered manner

(Fig. 3.1(b)). It is noteworthy that for the XRD pattern 3.2, the strongest peak for
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pyrochlore at 2θ ∼ 30◦ disappears completely and splits into two peaks, providing evidence

for the absence RE-Sb site-disorder. As shown in the chapter four, the C(T ) peaks at their

phase transitions are very sharp, further underscoring the high degree of site order in the

kagome layers. This good kagome layer separation is likely due to the large ion size difference

between Mg2+ (Zn2+) and RE3+. In this structure, the nearest neighbor distance between

the RE3+ ions within a kagome layer remains similar to that of its pyrochlore cousin, and

the RE3+-kagome layers are well isolated from each other by the non-magnetic Mg2+Zn2+,

Sb5+ layers. Take Mg2Gd3Sb3O14 for example, the nearest Gd-Gd distance within a kagome

layer (3.678 Å) is similar to the distance in Gd2Ti2O7 (3.600 Å), and much smaller than the

distance between different planes (6.162 Å). Since the dipolar energy goes as 1/r3, this leads

to inter-layer energies an order of magnitude smaller than the intra-layer energies.

For the A = Mg branch, XRD patterns of all eight compounds (RE = Pr, Nd, Gd, Tb,

Dy, Ho, Er, Yb) can be precisely fitted using the TKL structure. The XRD patterns for two

end members, MgPr and MgYb with the largest and smallest RE ionic radius among those

we prepared, respectively, are shown in Fig. 3.2 (a) and (b). The associated crystallographic

table with selected bond lengths is listed in Table. 3.1. As shown in Fig. 3.3, the lattice

parameters decrease smoothly as the RE ionic radius decreases, which is in agreement with

a previous report [82].

For the A = Zn branch, the XRD patterns for compounds with larger RE ionic radii (RE

= Pr, Nd, Gd, Tb, Dy) closely correspond to the TKL structure; on the other hand, some

discrepancies are observed for compounds with smaller ionic radii (RE = Ho, Er, Yb). This

finding agrees with a previous report in which attempts to synthesize materials with the

TKL structure based on smaller rare earth ions were unsuccessful [81]. For comparison, the

XRD patterns for two compounds with nearby RE3+ ions on the periodic table, ZnDy and

ZnHo, are plotted in Fig. 3.2 (c) and (d). In general, the XRD pattern of ZnHo is similar to

that of ZnDy in terms of the positions and intensity ratios of the main reflections. However,

some weak reflections observed in ZnDy, such as the (012), (110), and (104) Bragg peaks

(marked by the arrows in Fig. 3.2(d)), are not present in the ZnHo data.

The difference between ZnDy and ZnHo can be explained by Zn/Ho site disorder. As

both compounds have similar TKL structures, it is the site mixing of the Zn and Ho ions that
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Figure 3.1: (a) Alternating kagome and triangular layers in a pyrochlore lattice. (b)
Alternating RE-kagome and Mg-triangular layers in a TKL. Dashed lines indicate a single
unit cell. Local oxygen environments around RE3+ for (c) pyrochlore and (d) TKL. (e) A
single kagome layer with surrounding O1 in a TKL. (d) A single “tripod”. Dashed lines
represent Ising axes.
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reduces the distinctness of their original positions, increases the crystallographic symmetries,

and results in a reduction of the number of Bragg reflections. Assuming total site mixing

of Zn/Ho with 40% Zn and 60% Ho occupancy at their original Wyckoff site in a TKL, an

XRD simulation will give zero intensity for the (012), (110), (104) Bragg peaks if one ignores

the weak scattering from oxygen. As shown in Fig. 3.2(d), a Rietveld refinement based on a

total Zn/Ho site disorder model fits the XRD pattern reasonably well except for a few small

discrepancies. It is noteworthy that the refinements do not give stable oxygen positions,

and there are tiny peaks (less than 1% of the intensity of the strongest peak) that cannot

be indexed by the TKL structure. This means that although the Zn/RE site order model

catches the main feature of the XRD pattern, it is possible that there are hidden orders of

the lattice which are beyond our model. For the lattice parameters (Fig. 3.3), a clear jump

is observed between ZnDy and ZnHo for a, showing that site disorder expands the lattice

within the ab plane. Such site disorder is not totally unexpected when we move from lower

to higher Z in the 4f row. As we do so, the ionic radius of RE3+ decreases, and finally

at Ho, it becomes insufficient to be distinguished from the Zn2+ ions during the sample

synthesis at high temperature. Similar behavior has been reported for Ca2RE3Sb3O14 where

the Ca/RE site disorder is present for all RE compounds of the Ca branch [83]. In order to

distinguish these site-disordered lattices from other site-ordered ones, we will add a notation

“∗” before the chemical formula for disordered lattice (e.g. ∗ZnHo) in the following sections.

It is also possible that some slight A/RE disorder exists in the other compounds. Within

the experimental resolution, the refinements based on our XRD patterns generally give 0-5%

A/RE site disorder for other TKL members of the Zn branch (RE = Pr, Nd, Gd, Tb, Dy)

and all TKLs of the Mg branch.

Similar to the disorder effects found in other frustrated magnets, such A/RE site disorder

in the TKL structure is likely to modify the spin-spin correlations and tune the fragile low-

temperature ground state. As shown in the following chapter, the total Zn/Er disorder in

∗ZnEr results in a spin glass (SG) ground state. It is also noteworthy that a small level

of site disorder is likely plays an important role. For example, by comparing two separate

reports of MgDy, the difference of the ECO ordering temperatures (∼ 0.3 K in Ref. [9], ∼

0.37 K in our report) and the sharpness of the transition peaks in C(T ) can be attributed to
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Figure 3.2: XRD patterns and best fits from Rietveld refinements of two end members
in the Mg branch for (a) MgPr and (b) MgYb. XRD patterns and best fits from Rietveld
refinements of two TKLs in the Zn branch with nearby RE ions in the periodic table, (c)
ZnDy and (d)∗ZnHo. Arrows indicates where obvious discrepancies are observed.

the different percentages of Mg/Dy site disorder which might come from different reaction

environments during sample synthesis.

3.2 “Tripod” Spin Anisotropies

In the pyrochlore RE2X2O7, one important structural feature is that each RE3+ ion is

surrounded by eight oxygen atoms (3.1(c)) with two shorter RE-O1 bonds lying along the

local-[111] axis, and six longer RE-O2 bonds forming a puckered ring. This feature defines

the CEF and the g-factor which determines the ionic anisotropy for the RE3+ spins. In the

TKL, this local oxygen coordination is largely preserved. The RE ion is still surrounded by

eight oxygens with the two shortest RE-O1 bonds lying along the local-[111] axis (3.1(d)).

The difference is that the longer six RE-O bonds are divided into two sets: four longer RE-O2

bonds and two intermediate RE-O3 bonds (see Tab. 3.1 for detailed bond lengths). As shown
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Table 3.1: Summary of room temperature XRD pattern refinements for A2R3Sb3O14 (A
= Mg, Zn; RE = Pr, Nd, Gd, Tb, Dy, Ho, Er, Yb)

A = Mg Pr Nd Gd Tb Dy Ho Er Yb

IR (RE3+) (Å) 1.266 1.249 1.193 1.180 1.167 1.155 1.144 1.125

a (Å) 7.44347(3) 7.43899(8) 7.35505(6) 7.33201(3) 7.31781(9) 7.30817(8) 7.29484(9) 7.26659(2)

c (Å) 17.55855(18) 17.54255(18) 17.35073(14) 17.31816(35) 17.29602(22) 17.26724(19) 17.23451(21) 17.17256(27)

Mg1(3a) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

Mg2(3b) (0, 0, 1
2

) (0, 0, 1
2

) (0, 0, 1
2

) (0, 0, 1
2

) (0, 0, 1
2

) (0, 0, 1
2

) (0, 0, 1
2

) (0, 0, 1
2

)

RE (9d) ( 1
2

, 0, 1
2

) ( 1
2

, 0, 1
2

) ( 1
2

, 0, 1
2

) ( 1
2

, 0, 1
2

) ( 1
2

, 0, 1
2

) ( 1
2

, 0, 1
2

) ( 1
2

, 0, 1
2

) ( 1
2

, 0, 1
2

)

Sb (9e) ( 1
2

, 0, 0) ( 1
2

, 0, 0) ( 1
2

, 0, 0) ( 1
2

2, 0, 0) ( 1
2

2, 0, 0) ( 1
2

, 0, 0) ( 1
2

, 0, 0) ( 1
2

, 0, 0)

O1 (6c) (0, 0, z) (0, 0, z) (0, 0, z) (0, 0, z) (0, 0, z) (0, 0, z) (0, 0, z) (0, 0, z)

z 0.1043(5) 0.1078(4) 0.1031(5) 0.0986(6) 0.0940(5) 0.1085(5) 0.1152(5) 0.1175(5)

O2 (18h) (x, x̄, z) (x, x̄, z) (x, x̄, z) (x, x̄, z) (x, x̄, z) (x, x̄, z) (x, x̄, z) (x, x̄, z)

x 0.5293(4) 0.5275(3) 0.5320(3) 0.5344(4) 0.5372(3) 0.5323(4) 0.5357(3) 0.5249(4)

z 0.8907(3) 0.8914(2) 0.8951(3) 0.8964(3) 0.8980(3) 0.8968(3) 0.8983(3) 0.8959(3)

O3 (18h) (x, x̄, z) (x, x̄, z) (x, x̄, z) (x, x̄, z) (x, x̄, z) (x, x̄, z) (x, x̄, z) (x, x̄, z)

x 0.4703(4) 0.4708(3) 0.4754(4) 0.4753(5) 0.4765(4) 0.4769(4) 0.4751(3) 0.4719(4)

z 0.3566(3) 0.3558(2) 0.3578(2) 0.3591(3) 0.3586(2) 0.3596(2) 0.3580(2) 0.3523(2)

RE-O1 (Å) 2.412(4) 2.383(4) 2.393(4) 2.423(6) 2.458(5) 2.337(4) 2.285(4) 2.261(4)

RE-O2 (Å) 2.566(4) 2.556(2) 2.587(3) 2.606(4) 2.634(3) 2.586(4) 2.616(3) 2.513(3)

RE-O3 (Å) 2.547(6) 2.557(4) 2.487(4) 2.460(6) 2.462(4) 2.442(4) 2.467(4) 2.561(6)

Intralayer RE-RE 3.72174(4) 3.71950(5) 3.67753(4) 3.66601(8) 3.65891(5) 3.65409(5) 3.64742(5) 3.63330(6)

Interlayer RE-RE 6.23482(6) 6.22936(6) 6.16099(5) 6.14852(9) 6.14016(7) 6.13020(6) 6.11863(7) 6.09645(10)

Overall B (Å2) 1.39(1) 1.55(1) 1.45(1) 1.51(2) 1.43(1) 1.58(1) 1.55(1) 1.48(2)

Rp 3.24 2.05 2.32 3.65 2.93 3.37 3.54 2.94

Rwp 3.55 2.05 3.42 4.56 3.43 3.72 3.31 3.16

χ2 2.62 1.15 1.17 1.51 1.24 3.89 3.60 2.27

A = Zn Pr Nd Gd Tb Dy Ho Er Yb

IR (R3+) (Å) 1.266 1.249 1.193 1.180 1.167 1.155 1.144 1.125

a (Å) 7.47622(9) 7.46151(10) 7.40270(11) 7.378569(11) 7.36714(12) 7.38639(3) 7.37040(3) 7.35212(2)

c (Å) 17.42042(21) 17.36332(22) 17.20519(26) 17.15565(26) 17.11680(29) 17.09436(7) 17.04657(7) 16.97254(6)

Zn1(3a) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) disorder disorder disorder

Zn2(3b) (0, 0, 1
2

) (0, 0, 1
2

) (0, 0, 1
2

) (0, 0, 1
2

) (0, 0, 1
2

) disorder disorder disorder

RE (9d) ( 1
2

, 0, 1
2

) ( 1
2

, 0, 1
2

) ( 1
2

, 0, 1
2

) ( 1
2

, 0, 1
2

) ( 1
2

, 0, 1
2

) disorder disorder disorder

Sb (9e) ( 1
2

, 0, 0) ( 1
2

, 0, 0) ( 1
2

, 0, 0) ( 1
2

, 0, 0) ( 1
2

, 0, 0) ( 1
2

, 0, 0) ( 1
2

, 0, 0) ( 1
2

, 0, 0)

O1 (6c) (0, 0, z) (0, 0, z) (0, 0, z) (0, 0, z) (0, 0, z) (0, 0, z) (0, 0, z) (0, 0, z)

z 0.1105(7) 0.1063(8) 0.1084(8) 0.1061(8) 0.1057(9) - - -

O2 (18h) (x, x̄, z) (x, x̄, z) (x, x̄, z) (x, x̄, z) (x, x̄, z) (x, x̄, z) (x, x̄, z) (x, x̄, z)

x 0.5183(5) 0.5206(5) 0.5180(5) 0.5212(5) 0.5178(6) - - -

z 0.8890(3) 0.8902(4) 0.8888(3) 0.8876(4) 0.8857(4) - - -

O3 (18h) (x, x̄, z) (x, x̄, z) (x, x̄, z) (x, x̄, z) (x, x̄, z) (x, x̄, z) (x, x̄, z) (x, x̄, z)

x 0.4654(4) 0.4644(4) 0.4676(4) 0.4662(4) 0.4668(5) - - -

z 0.3510(3) 0.3554(3) 0.3546(3) 0.3566(3) 0.3544(3) - - -

RE-O1 (Å) 2.370(6) 2.395(7) 2.360(6) 2.370(7) 2.369(7) - - -

RE-O2 (Å) 2.483(4) 2.502(4) 2.454(4) 2.461(4) 2.420(4) - - -

RE-O3 (Å) 2.634(6) 2.553(6) 2.536(6) 2.496(6) 2.528(6) - - -

Intralayer RE-RE 3.73811(3) 3.73076(3) 3.70135(3) 3.68928(6) 3.68357(7) - - -

Interlayer RE-RE 6.19490(7) 6.17561(7) 6.12026(10) 6.10237(10) 6.08907(10) - - -

B (Å2) 1.54(1) 1.52(1) 1.53(1) 1.64(1) 1.66(1) 2.42(2) 2.16(1) 2.17(1)

Rp 3.61 3.11 2.76 3.36 3.28 3.93 4.81 3.61

Rwp 5.76 4.92 5.78 5.48 5.32 8.68 9.79 9.73

χ2 2.00 2.05 1.46 2.45 1.57 2.89 5.28 6.17
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Figure 3.3: Lattice parameters obtained from Rietveld refinements as a function of RE3+

ionic radius for all RE members in the Mg and Zn branches of the TKL family.

in the following section, this change reduces the point group of symmetry at the RE site from

D3d to C2h, which has an important consequence for the CEF of non-Kramers ions. Generally

speaking, since the CEF degeneracy has already been lifted by the pyrochlore-like anisotropy

for an effective spin-1/2 system, the dominant anisotropy remains the one distinguishing the

puckered ring from the local-[111] oxygen ions, making this in-plane anisotropy most likely

irrelevant to the ground state degeneracy. In other words, due to the similar local oxygen

environment of the RE ion compared to that of the parent pyrochlore structure, we expect

a similar CEF splitting of the 4f ground state, resulting in either Ising spins or XY -spin

vectors that are neither uniaxial nor uniplanar. As shown in 3.1(f), there are three Ising

axes for each kagome layer that are joining each RE ion to the O1 ion that are located

at the center of the tetrahedron (thus the local XY plane is the one that is perpendicular

to the local Ising axes). It is this lack of a unique crystal axis that is neither parallel nor

perpendicular to the individual Ising axes of the distorted RE polyhedra that warrants use

of the modifier “Tripod ” to avoid confusion with uniaxial (coplanar) kagome lattices. Such
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Figure 3.4: Magnetization curves up to 6.5 T measured at T = 2 K for Mg2RE3Sb3O14

and RE2Ti2O7 (RE = Gd, Dy, Er). The µeff (solid color bar) represents the effective free-ion
moment for each RE3+ ion.

tripod-like axes will also be crucial for the understanding of the low-temperature magnetism

for each RE-TKL.

As discussed in the introduction, with a pyrochlore-like local environment, the eight RE

elements studied in this dissertation likely possess three different spin anisotropies, depending

on different elements. The Gd3+ is the only Heisenberg spin due to the half-filled 4f shell.

For the Yb3+ and Er3+, the CEF is likely giving rise to a local-XY model, where the spins

are energetically favored to lie in the local XY-plane perpendicular to the tripod-Ising axes

[84]. The remaining five ions (Pr3+, Nd3+, Dy3+, Ho3+, Tb3+) all possess Ising anisotropies.

The conjecture of spin anisotropies is confirmed by similar low-temperature magnetization

curves between each RE-TKL and its pyrochlore parent. Here, we show the magnetization

curves at 2 K for three TKL compounds and their pyrochlore cousins (all in polycrystalline

forms) in Fig. 3.4, where apparent similarities are found for all three sample sets.

For Gd-TKL, the magnetization curve shows a straight line up to 3 T which signatures an

isotropic g-factor as expected for an S-state of Gd3+ (J = 7/2, L = 0). The magnetization

reaches 7.0 µB/Gd3+ (6.4 µB/Gd3+ for Gd2Ti2O7) at 6.5 T, which is about 88.5% of its

effective moment. Similar to Dy2Ti2O7, strong anisotropic behaviors are observed in Dy-

TKL. The magnetization quickly saturates at a plateau of 5.1 µB/ Dy3+, about half of

its effective moment. In the pyrochlore spin ice, such half magnetization plateau is the

characteristic behavior of Dy3+ Ising moment [85]. A similar half magnetization plateau

observed here provides strong evidence for the local Ising anisotropy for Dy ions in the TKL
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system. For Er-TKL, the magnetization reaches 4.8 µB/Er3+ (4.6 µB/Er3+ for Er2Ti2O7),

which is about half of the effective moment per Er ion. Moreover, the magnetization curve

of Er-TKL is also similar to that of its pyrochlore cousin Er2Ti2O7 for the whole field region

from 0 to 6.5 T. This similarity provides supporting evidence for the local XY anisotropy

that has been confirmed in the Er pyrochlore.

Finally, it is worth mentioning that for MgHo (see Chapter 5), MgDy [9], and MgNd [86],

the observed magnetic Bragg peaks from low-temperature neutron diffraction measurements

also support the Ising spin scenario proposed above.

3.3 Hamiltonian

For a rare-earth oxide compound with localized electrons, there are three kinds of interactions

that need to be taken into account. They are the CEF term, the dipolar interaction and the

exchange interaction, which are written in a Hamiltonian as:

H = HCEF +Hdip +Hex. (3.1)

The HCEF is the CEF term (or crystal potential) that describes the static electric field

potential produced by a surrounding charge distribution (anion neighbors). It is also known

as the single ion term because the ground state wave functions determine the anisotropic

g-factor (g⊥, g‖). Since the electrostatic potential energy satisfies the Laplace equation

and has the symmetry of the surroundings of the ion, the potential energy thereby can be

expanded as a sum of spherical harmonics. In the case of rare earth ions, the perturbations

due to the CEFs are usually small compared with the spin-orbit couplings. Therefore, it is

appropriate to chose representations in which the states are eigenstates of the total orbital

angular momentum (J). For a given J-multiplet, the Hamiltonian is expressed in terms of

the Extended Stevens Operators [87] with a general form:

HCEF =
∑

k=2,4,6

k∑
q=−k

Bq
kO

q
k. (3.2)
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where Bq
k is the Stevens parameters with k being the order (also called rank or degree) for f -

electrons and q being the operator range (that varies between -k and k). Oq
k are the Stevens

operators which are polynomials of the components of the total angular momentum operator

of a rare-earth ion: Jz, J+ and J (J± = Jx ± iJy) [88]. The above Hamiltonian effectively

splits each RE3+ ground atomic multiplet into 2J+1 levels. Given a configuration of ligands,

if the CEF ground state is a degenerate doublet that is well isolated from above levels, it

ensures a pseudo-spin-1/2 description such that the system acts as a canonical two-level

system at low temperature. Among the eight RE ions studied in this dissertation, except for

Gd which has no CEF effect due to its zero angular momentum, four of them (RE = Nd, Dy,

Er, Yb) have a half-integral J (known as Kramers ion), and their single ion ground states are

doublets that are restrictedly protected by time-reversal symmetry. Therefore, the pseudo-

spin-1/2 picture is automatically guaranteed, and the HCEF term vanishes. On the other

hand, the other three (RE = Pr, Tb, Ho) have non-Kramers ions, so the single ion ground

states are not necessarily degenerate doublets. In the pyrochlore system, an “accidental”

degeneracy of the non-Kramers doublets is usually found due to the protection of a high

symmetry point group (D3d) at the RE site. In the TKL compounds, due to the symmetry

reduction of the RE site, the CEF levels for non-Kramers ions should split into 2J+1 singlet

levels according to the point group symmetry (C2h) [89]. Since their local oxygen ligands

remain closely similar to its pyrochlore parent, the ground state doublet should split into

two singlets with a small and finite energy difference. As we will discuss in Chapter 5, as

long as the energy splitting is comparable to the spin-spin interactions, the HCEF in this case

can be treated as a transverse field.

The second term Hdip is the magnetic dipole-dipole interaction. In a TKL, it is given by:

Hdip =
1

2
DnnR

3
nn

∑
i,j

(
Si · Sj
|Rij|3

− 3(Si ·Rij)(Sj ·Rij)

|Rij|5

)
. (3.3)

Here, Dnn = µ0

4π

µ2
eff

R3
nn

defines the dipolar energy scale which is proportional to the square of

effective moment (µeff ). Rij is the vector between two spins Si, Sj, and Rnn is the nearest

distance between two spins that can be found in 3.1. For ions hosting a large moment,

the energy scale of Dnn becomes comparable to the exchange interaction. For example,
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in pyrochlore spin ices, the dipolar interaction overwhelms the antiferromagnetic exchange

interaction, which results in a two-in-two-out ice rule state [15]. It is also noteworthy that

the summation of the above Hamiltonian runs over all i, j, illustrating the long range nature

of dipolar interactions. In spin ices, the important consequence is that the dipole moment

of the underlying electronic degrees of freedom fractionalizes into magnetic monopoles when

local defects are present [2]. Therefore, the interaction between the monopoles follows the

magnetic Coulomb law, which is also long range in nature.

The third term Hex represents the exchange interaction. It is usually appropriate to

consider only the nearest neighbor interaction for rare earth oxides due to strong localization

of the 4f electrons. Therefore, Hex is given by:

Hex = −1

2

∑
i,j

Juvij S
u
i S

v
j , (3.4)

where Juvij = Jvuji is the matrix of exchange coupling between site i and j. The exchange matrix

has four components which represent Heisenberg exchange, Kitaev exchange, Dzyaloshinskii-

Moriya interaction and symmetric off-diagonal terms, respectively. For XY systems, it is

almost certain that the anisotropic exchange parameters are playing an important role.

However, for Heisenberg spins, we expect isotropic coupling. For Ising spins, there are only

Ising exchanges that couple the Sz component of the nearest sites. For the latter two cases,

we can reduce the matrix Juvij into a single value Jex. An estimation of the Jex can be found

from the Weiss temperature (θW ) via a mean field theory [90]:

Jex = − 3θW
zS(S + 1)

(3.5)

where z is the number of nearest neighbors. In our TKL system, z = 4. Since Jex is the

effective exchange constant that couples two unit spins, Jex = JS(S + 1). Because of the

large spin moment in the RE-oxide systems, the measured θW has the contribution from

both the exchange and the dipolar parts. As a simple approximation, one can estimate the
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exchange contribution by subtracting θW by the dipolar contribution Dnn [91], with

Jex = −3

4
(θW −Dnn). (3.6)

Thus an estimation of the Jex can be found by low temperature dc susceptibility measure-

ment. For example, for MgDy, with θW = -0.12 K and µeff = 10.2 µB, we get Dnn = 1.31

K and Jex = 1.12 K.
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Chapter 4

Magnetic Ground States: A

Susceptibility and Specific Heat

Survey

The main results in this chapter, along with the results from the previous chapter, have

produced two scientific publications: (i) Z. L. Dun, et al., Phys. Rev. Lett. 116, 157201

(2016) [Editor’s Suggestion], and (ii) Z. L. Dun, et al., Phys. Rev. B 95, 104439 (2017).

In this Chapter, I shall provide a comprehensive study of the magnetic properties of two

branches of the rare earth TKL family A2RE3Sb3O14 (A = Mg, Zn; RE = Pr, Nd, Gd,

Tb, Dy, Ho, Er, Yb) with non-magnetic A sites. By combining the experimental probes of

dc, ac susceptibility and specific heat, we show various magnetic ground states for TKLs

with different RE ions. These include (i) the non-magnetic singlet state for MgPr and

ZnPr, (ii) long range orderings (LROs) for MgGd, ZnGd, MgNd, ZnNd, and MgYb, (iii)

a long range magnetic charge ordered state for MgDy, ZnDy, and potentially for MgHo,

(iv) possible spin glass states for ZnEr, ZnHo, (v) the absence of spin ordering down to 80

mK for MgEr, MgTb, ZnTb, and ZnYb compounds. These ground states are compared to

their pyrochlore parents and are discussed in terms of their spin anisotropies, CEF ground

states, and chemical pressure effects. I will begin with a case-by-case study of the magnetic

properties and end with discussions. The results for compounds with the same RE ion will

be combined as sets.
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4.1 Magnetic Properties

4.1.1 Mg2Pr3Sb3O14 and Zn2Pr3Sb3O14

For MgPr, a CW fit of 1/χdc from 150 K to 300 K (Fig. 4.1 (a)) yields a Weiss temperature,

θW = -46.18 K and an effective magnetic moment, µeff = 3.40 µB. For ZnPr, a similar fit

yields θW = -68.43 K and µeff = 3.61 µB. These µeff values are consistent with the free ion

moment of µeff = 3.58 µB expected for Pr3+ ions. Below 50 K, 1/χdc becomes flat, followed

by another slope change below 10 K (Fig. 4.1 (a) inset), suggesting changes of the magnetic

moments and spin-spin interactions in this temperature region due to CEF effects.

For MgPr, a broad feature around 0.35 K is observed at zero field in χ′ac (Fig. 4.2 (a))

while no obvious sign of LRO is observed from χ′ac down to 50 mK. For ZnPr (Fig. 4.2 (b)),

LRO is also not observed in χ′ac where a Curie-Weiss type behavior is persistent down to the

lowest measured temperature of 0.3 K. For both MgPr and ZnPr, the absolute values of the

magnetic specific heat (Cmag) below 10 K are extremely small (< 0.1 J/K2 per mol-Pr), in

sharp contrast to those observed in Pr-pyrochlores within the same temperature range (∼

2 J/K2 per mol-Pr) [28, 29]. The integrated magnetic entropy (Smag) from 0.35 K to 6 K

recovers ∼ 0.2 J/K per mol-Pr, a value that is 3% of Rln2 that is expected for a effective

spin-1/2 system.

In the Pr-pyrochlore compounds, the single-ion ground state is a non-Kramers doublet

with a large Ising-like anisotropy whose first excited CEF level is a non-magnetic singlet

that is well separated from the ground state doublet (18 meV in Pr2Sn2O7 [28, 92] and

9.5 meV in Pr2Zr2O7 [29]). Such effective spin-1/2 Ising systems with antiferromagnetic

(antiferromagnetic) exchange interactions give rise to a QSI ground state at low temperature

[28, 29] where spin fluctuations from a quantum superposition of the spin ice manifold

suppresses LRO.

The small values of Cmag and Smag observed in the Pr-TKLs suggest that the lower

crystal field symmetry in the TKLs lifts the degeneracy of the low energy states probed in

the pyrochlores. As discussed in the previous chapter, with non-Kramers Pr3+ ions, the local

site symmetry alters the CEF spectrum to mix the doublets and results in a non-magnetic

singlet ground state. Such a non-magnetic state is consistent with the small values of Cmag
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Figure 4.1: (a-h) Inverse χdc from 2 K to 300 K for all A2RE3Sb3O14 (A = Mg, Zn; RE =
Pr, Nd, Gd, Tb, Dy, Ho, Er, Yb) compounds. Insets: zoomed in 1/χdc at low temperature
regions.
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Figure 4.2: Temperature dependence of the real part of χac for (a) MgPr, and (b) ZnPr.
(c) Cmag/T and Smag for both compounds.

and Smag, as well as the flat χdc (steep 1/χdc) observed at low temperatures (Fig. 4.1 (a)).

Therefore, the signals observed in χ′ac of MgPr and ZnPr are likely due to a combination of

Van Vleck susceptibility and a contribution from magnetic impurities that is not observed

by the XRD.

4.1.2 Mg2Nd3Sb3O14 and Zn2Nd3Sb3O14

For MgNd, a CW fit from 150 K to 300 K of 1/χdc yields θW = -66.36 K and µeff = 3.58

µB. For ZnNd, a similar fit yields θW = -60.47 K and µeff = 3.60 µB. The µeff values are

consistent with the free ion moment of µeff = 3.62 µB expected for Nd3+. A CW fit in the

low temperature region (2 K-10 K, Fig. 4.1 (b)) yields θW = -0.01 K, µeff = 2.38 µB for

MgNd and θW = -0.11 K, µeff = 2.28 µB for ZnNd. These numbers are similar to that of

the Nd pyrochlores [93, 94] and consistent with a recent report of the MgNd [86].

For MgNd, a broad peak is observed in the zero field χ′ac at 0.49 K, accompanied by a

shoulder around 0.55 K (Fig. 4.3 (a)). A small dc-field of 0.03 T reduces its height and

separates the positions of these features. With increasing fields, the position of the low

temperature peak does not show any obvious field dependence while the shoulder-related

peak moves to higher temperatures. In Fig. 4.3 (c), Cmag/T of MgNd shows a λ-like peak

at 0.55 K, indicating a second order antiferromagnetic LRO transition. For ZnNd, a similar

peak in Cmag/T is observed at a slightly lower temperature of 0.47 K. Accordingly, a sharp

peak is observed at 0.47 K in χ′ac (Fig. 4.3 (a)) at zero field. Similar to that of MgNd, this
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peak splits into two when a small dc field is applied (shown in Fig. 4.3 (b) inset). For both

compounds, Cmag show a T 3 behavior below TN , consistent with linear dispersive spin wave

excitations in three dimensions.

The magnetic ground state for MgNd has been recently studied by Scheie et. al [86],

where a second order phase transition with a non-coplanar k = 0 spin ordering has been

revealed by elastic neutron scattering and C(T ) measurements. The proposed spin structure

is an all-in-all-out spin state where three spins in each triangle are pointing in or out of

the local tripod directions (along RE-O1) simultaneously (Fig. 4.3 (d)). Such a state also

resembles the all-in-all-out spin structure for Ising spins on pyrochlore lattices, which has

been observed in Nd2Sn2O7 [93]. Regarding the double peak feature observed in χ′ac, it is the

position of the shoulder at zero field (0.55 K) that agrees with the LRO transition in Cmag.

Accordingly, the appearance of the 0.47 K peak in χ′ac seems to suggest a two-step transition.

Additionally, a closer look at the order parameter scan of the (101) magnetic Bragg peaks

from Ref. [86] seems to reveal a slope change around 0.45 K. Another possibility is that,

since the lower temperature peak does not appear in Cmag/T , the two-step feature could be

due to the grain effect, wherein grains with different crystal axes respond differently with

respect to the applied magnetic field. For ZnNd, the two-step feature more closely converges

in temperature at zero field which can only be distinguished in χ′ac under a smaller dc field.

For both compounds, further measurements under a small magnetic field will be helpful to

clarify the nature of the two-step transition.

4.1.3 Mg2Gd3Sb3O14 and Zn2Gd3Sb3O14

For MgGd, a CW fit from 5 K to 15 K of 1/χdc (Fig.4.1 (c)) yields θW = -6.70 K and µeff

= 8.06 µB. For ZnGd, a similar fit of 1/χdc (Fig. 4.1 (c)) yields θW = -6.85 K and µeff =

8.09 µB. The negative values of θW are close to that of Gd2Ti2O7 (θW = -11.7 K) [95]. The

effective moments are consistent with µeff = 7.94 µB expected for Gd3+ (8S7/2).

For MgGd, χ′ac shows a sharp, frequency independent peak at TN = 1.65 K (Fig.4.4 (a)),

with measurement frequencies ranging from 80 to 700 Hz, indicating a LRO transition. For

ZnGd, χ′ac shows an inflection point at the same temperature region (∼1.69 K). For both

compounds, the transitions are further confirmed by a sharp peak in Cmag(T ) (Fig.4.4 (b)).
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Both of the integrated Smag from 0.2 K to 6 K reach 17.2 J/K per mole-Gd, indicating a

complete LRO among the Gd3+ spins.

The Gd3+ ion has Heisenberg spins (J = 7/2, L = 0) whose LRO in a 2D system violates

the Mermin-Wagner theorem [96]. What is the driving force that defeats the Mermin-

Wagner theorem? In order to uncover its physical origin, we have used a Luttinger-Tisza

type theory [97, 98] and studied the eigenvalues and eigenfunctions of the interaction matrix

in wave vector space. The calculation was done by one of my collaborators, Prof. Shastry

Sriram at the University of California, Santa Cruz. The general idea is to construct a 2D

kagome lattice and treat exchange and dipolar interactions as vectors in k-space (the so

called Luttinger-Tisza method). Therefore, given an eigenvalue for a 2D Bravais lattice, the

interactions reduce to a 9×9 matrix that can be easily diagonalized. For MgGd/ZnGd, the

dipolar energy scale of the nearest neighbor spins Dnn ∼ 0.79 K, while an estimate of the

exchange constant is Jex ∼ 5.62/5.73 K, respectively. We found that the minimum eigenvalue

of the interacting matrix is at the Brillouin zone center with k = 0, and the corresponding

eigenvector represents a 120◦ state where the three spins in the unit cell lie in the plane

pointing along three axes at angles 2π/3 to each other (Fig. 4.4 (d)). Here, it is the large

dipolar term that breaks the rotational invariance, lifts the frustration of a kagome lattice,

and helps defeat the Mermin-Wagner theorem for a 2D Heisenberg lattice. It is known that

higher values of spin than 1/2 release the frustration somewhat like soft spins would [99], and

the case here has S = 7/2. This seems to enable a 2D-Ising like transition with a logarithmic

heat capacity in the style of Onsager. Actually, a similar spin structure was predicted by

Maksymenko et. al by considering classical dipoles on a kagome lattice[8]. Their calculated

specific heat agrees well with our experiment in the critical region by proper scaling (Fig. 4.4

(c)). Thus, we conclude MgGd/ZnGd to be a rare example of a dipolar interaction mandated

spin ordering on a kagome lattice.

4.1.4 Mg2Tb3Sb3O14 and Zn2Tb3Sb3O14

For MgTb, a CW fit from 150 K to 300 K (Fig. 4.1 (d)) of 1/χdc yields a θW = -13.70 K

and µeff = 9.98 µB. For ZnTb, a similar fit yields θW = -13.41 K and µeff = 9.86 µB. The
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effective moments are slightly larger than the free ion moment of µeff = 9.72 µB expected

for Tb3+.

For MgTb, both the real (χ′ac) and imaginary (χ′′ac) part of the ac susceptibility show

a broad feature around 0.35 K that is frequency dependent. Below this temperature, an

anomaly is observed at 0.12 K that is more clearly seen in χ′′ac. Aside from these, no sharp

LRO features are observed down to 50 mK (Fig. 4.4 (a)). For ZnTb, χ′ac indicates a

paramagnetic behavior down to the lowest measured temperature of 0.3 K, which is frequency

independent (Fig. 4.4 (b)). For both compounds, the absence of LRO is further confirmed

by the specific heat measurement where no singularity is observed down to 80 mK. Instead,

the Cmag shows a broad feature (around 1.5 K for the MgTb and 2.5 K for ZnTb), followed

by a power law rise below 0.3 K, as seen in the log-log plot of Fig. 9(c). We attribute

this behavior to the hyperfine coupling between the nuclear and electronic spin degrees of

freedom of the Tb3+ ion (for 159Tb, nuclear spin is I = 3/2).

The absence of LRO in MgTb and ZnTb is reminiscent of similar behavior in the

pyrochlore compound Tb2Ti2O7. As mentioned in the introduction, Tb2Ti2O7 remains a

candidate for hosting the QSI/QSL state. In order to explain the absence of LRO, theory

has invoked virtual transitions between the CEF levels of the ground state and the low

lying excited state which preclude conventional order [41, 44]. Due to the similar local

environment, we also expect the same Ising anisotropy as well as similar low lying CEFs

in Tb-TKLs. Similar to the case of the Pr-TKLs, the difference is that every CEF doublet

has split into two singlet levels, making it necessary to consider a four singlet levels to fully

account for the low temperature magnetism. It is possible that a similar virtual transition

is playing an important role to obstruct LRO in Tb-TKLs, making them promising QSL

candidates.

4.1.5 Mg2Dy3Sb3O14 and Zn2Dy3Sb3O14

For MgDy, the CW fit below 10 K yields θW = -0.18 K and µeff = 10.20 µB (Fig. 4.1

(e)), consistent with the free ion moment of 10.63 µB for Dy3+ (6H15/2). For ZnDy, a

similar fit (Fig. 4.1 (e)) of 1/χdc yields θW = -0.72 K and µeff = 10.20 µB. In Dy2Ti2O7

[95], the small θW (-0.20 K) is due to the competition between the dipolar interaction and
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Figure 4.7: (a) Relationship between spin vectors (arrows), magnetic dipoles (connected
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of a microstate showing emergent charge order (ECO). (c) The vector average of the three
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[9].

46



super-exchange couplings of Dy ions. Here, the similarity in local structure translates into a

similar-size coupling to the pyrochlore case since the total spin-spin coupling is dominated by

the dipolar interaction. With the ferromagnetic dipolar interaction, the negative θW again

shows the antiferromagnetic nature of the exchange interactions in MgDy.

For both compounds, transitions to LRO are observed both in the χ′ac (Fig. 2(e)) and

Cmag(T ) (Fig. 2(f)), at TN = 0.37 K and 0.39 K, respectively. For MgDy, the integrated

entropy from 0.2 K to 6 K reaches Smag = 5.38 J/K per mole Dy, hosting a zero-point entropy

of 0.38 J/K when compared with Rln2 = 5.76 J/K per Dy. An extra increase is observed

in Cmag/T of ZnDy below 0.2 K that is absent in that of MgDy. Due to this increase, the

integrated Smag from 0.1 K to 6 K reaches 5.81 J/K per mole Dy. Aside from this, the

position, intensity, and shape of the Cmag peak are almost identical for MgDy and ZnDy.

Initially, we interpreted the transition at 0.37 K in MgDy as a LRO of the Dy3+ spins

because of the lack of frequency dependence of χ′ac and the sharpness of the transition in

both χ′ac, and Cmag [100]. Following our findings, recent neutron scattering experiments

[9] illustrate that this LRO transition is actually an ECO where emergent magnetic charge

degrees of freedom exhibit LRO while spins remain partially disordered. As discussed in

the introduction, the idea of magnetic charge comes from the monopole in spin ices. With

Ising spins in a TKL, the potential for emergent behavior is defined by considering a spin

(magnetic dipole) as two separate + and − magnetic charges so the emergent charge of a

triangle is defined as the algebraic sum over the three charges it contains (Fig. 4.7 (a))

[7, 9]. In the ECO state, the + and − charges alternate, forming a LRO pattern, while

the remaining threefold degeneracy of spin states is preserved for each charge; therefore the

spin order is only partial (Fig. 4.7 (b)). As a result, the partially disordered spins give

an averaged LRO moment on each Dy site (Fig. 4.7 (c)) which is the origin of the LRO

features observed in χ′ac and Cmag. As described in Ref. [9], there are two experimental

signatures that differentiate the ECO state from conventional LRO: (i) a non-zero entropy

S0 = 0.11R per mole Dy [101] and (ii) the presence of both Bragg and diffuse magnetic

scattering in neutron-scattering measurements [62, 61]. The first signature is observed in

our Cmag measurement (Fig. 4.6 (c)), and the second signature, namely the coexistence of
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Bragg and diffuse magnetic scattering, has also been confirmed by Paddison et. al. in Ref.

[9].

With almost identical behaviors observed here between MgDy and ZnDy, it is likely that

ZnDy shares the same ECO ground state as well. In this sense, the increase of Cmag below

0.25 K in ZnDy is unexpected. This signal is likely not due to the Dy nuclear spin, given

the same magnetic ion and the same hyperfine coupling. One possibility is that it is related

to the additional spin dynamics below the ECO, which has been proposed theoretically by

Monte Carlo simulations [7, 9]. With the partially ordered ECO state, a fully spin-ordered

state with zero entropy density could be achieved at an even lower temperature given non-

local (ring flip) spin dynamics that do not cost energy within the ECO manifold. The extra

entropy recovered in ZnDy compared to that of MgDy (∼ 0.4 J/K per mole-Dy) is consistent

with such a picture where spin dynamics drive the system further towards LRO and fully

recover the total entropy of Rln2. Yet it remains unknown why such dynamics are absent in

MgDy.

4.1.6 Mg2Ho3Sb3O14 and ∗Zn2Ho3Sb3O14

For MgHo, a low temperature CW fit from 2 K to 10 K of 1/χdc (Fig. 4.1 (f)) yields θW =

-0.27 K and µeff = 10.54 µB. For ∗ZnHo, a similar fit (Fig. 4.1 (f)) yields θW = -2.49 K and

µeff = 10.22 µB. These values for the effective moment are close to the free ion moments of

µeff = 10.63 µB expected for Ho3+. The origin for the small negative θW here is the same

as those of the Dy-TKLs.

For MgHo, both the real part (χ′ac) and the imaginary part (χ′′ac) of χac show a broad peak

around 0.4 K with strong frequency dependence (Fig. 4.8 (a)). With increasing frequency of

the ac field, the peak becomes even broader and shifts higher in temperature. By fitting the ac

field frequency (f) and χ′′ac peak maximum Tmax to an Arrhenius formula f = f0 exp(−Eb/T ),

we obtain an energy barrier of Eb = 12.3 K (Fig. 4.8 (a) inset). For ∗ZnHo, an even broader

peak with similar frequency dependence is observed in both χ′ac and χ′′ac around 0.45 K (Fig.

4.8 (b)). The corresponding energy barrier from the Arrhenius fit is Eb = 7.2 K.

Similar frequency dependence of χac has been observed in their parent spin ice pyrochlores

Dy2Ti2O7 and Ho2Ti2O7 above the spin freezing transition [27, 15]. In Dy2Ti2O7, at a
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temperature region above the spin freezing where the monopole density is high but where

the double-monopoles are few, the relaxation behavior in χac can be well parametrized by

an Arrhenius law. The related value of Eb is equal to twice the effective spin-spin coupling

(Jeff ), which is actually the energy cost of a single monopole defect [102]. In Ho2Ti2O7, a

larger value of Eb = 13.08 K (∼ 6Jeff ) is observed, and the origin is not well understood

[103].

Moving forward, what is the ground state, and what is the associated energy barrier

in the Ho-TKL? First, with close similarities of the spin anisotropies and the spin-spin

interactions between MgDy and MgHo, similar ECO states would be expected. Indeed, for

MgHo, the temperature of the 0.4 K transition in χac is close to the 0.37 K ECO transition in

MgDy. However, the frequency dependence of χac clearly differentiates it from that of MgDy,

suggesting an ECO state with an extra spin relaxation process due to thermal or quantum

fluctuations. Such behavior is likely related to the non-Kramers nature Ho3+ where the

extra lowering of site symmetry in the TKL system splits the energy of CEF ground state

doublets in Ho3+ at a finite energy, building an energy barrier for spin-spin interactions. The

related relaxation process could also involve a hyperfine contribution that is not uncommon
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in Ho magnets at these temperatures. Second, given the large dipolar couplings which act

ferromagnetic exchange interactions at the nearest neighbor, MgHo is a potential candidate

for hosting the KSI state. As discussed in Ref. [16], classical spins with TKL-like Ising

anisotropy on a kagome lattice are highly frustrated which will result in a large ground state

degeneracy and the zero-point entropy. Similar to that of the pyrochlore spin ice, if the KSI

state is achieved, the broad peak observed in χac of MgHo could represent a spin freezing

process with Tf ≤ 0.4 K while the system enters the SRO state characterized by the KSI ice

rule. Then the value of Eb = 12.3 K is likely related to the energy difference from the ice rule

state to the excited all-in-all-out state for a single Ho-triangle. The KSI state distinguishes

itself from the ECO state in such a way that the magnetic charge degrees of freedom with

respect to each triangle do not order, which will not give an averaged LRO of spins. Thus,

from the point of view of elastic neutron scattering, only diffuse scattering is expected in the

absence of sharp magnetic Bragg peaks. In order to clarify the exact ground state of MgHo,

low temperature neutron diffraction measurement will be necessary.

Indeed, we have performed elastic and inelastic neutron scattering measurements to study

this low temperature magnetism. The results, along with the C(T ) data, have established

MgHo as a quantum kagome ice where the non-Kramers nature of Ho3+ induces quantum

fluctuations, resulting in a moment-modulated ECO state. The results and analysis will be

detailed in the next chapter.

For ∗ZnHo, the physics is complicated by the Zn-Ho site-disorder mentioned above. For

a totally disordered TKL system, the site-disorder destroys the well-separated Ho kagome

layers and forms a disordered 3D pyrochlore-like system where each site has an occupancy

of 40% non-magnetic Zn ions and 60% magnetic Ho ions. Compared to the Ho-pyrochlore

lattice, such system will be depleted in the A-sublattice and stuffed with extra Ho ion in

the B-sublattice. In the stuffed spin ice compound Ho2+δTi2−δO7−δ, a “cluster glass” ground

state [104] is found. For ∗ZnHo, the frequency dependence in χac is likely related to a similar

glassy behavior.
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Figure 4.9: Temperature dependence of the real part of χac with different ac field
frequencies for (a) MgEr and (b) ZnEr. Inset: zoomed in χ′ac at the low temperature region.
(c) Cmag for MgEr. (d) Cmag/T for ∗ZnEr. The ZnDy data is plotted for reference.

51



4.1.7 Mg2Er3Sb3O14 and ∗Zn2Er3Sb3O14

For MgEr, a high temperature CW fit from 100 K to 300 K yields θW = -14.52 K and µeff

= 9.45 µB (Fig. 4.1 (g)). For ∗ZnEr, a similar fit yields θW = -16.08 K and µeff = 9.67

µB. The effective moments are consistent with the free ion moment of µ = 9.58 µB for Er3+

(4I15/2), and the value for θW is close to that of the pyrochlore Er2Ti2O7 ( θW = -15.93 K )

[95].

For MgEr, χac was measured down to 30 mK with a broad peak observed around 80 mK

(Fig. 4.9 (a)) which shows weak frequency dependence. This peak is not a LRO transition

according to our recent neutron scattering experiment which shows intense diffuse scattering

persisting down to T ∼ 60 mK. The data will be published elsewhere and will not be further

discussed here. The Cmag(T ) was measured down to 120 mK and exhibits a weak and

broad peak around 2 K (Fig. 4.9 (b)). At this temperature, no anomaly is observed in χac,

while an extremely weak anomaly (2*10−8 emu/mole-Er) was seen in χdc at 2.1 K that is

perhaps related to the weak Cmag(T ) peak. However, the nature of the 2.1 K transition

remains a mystery. The small size of the 2.1 K feature suggests an origin in a phase that is

not “topologically” connected to a classical ordered phase. Given that Er is XY -like in the

pyrochlores, we speculate that, if also XY -like in the TKL, this phase is a Kosterlitz-Thouless

vortex unbinding transition [105].

In ∗ZnEr, a SRO feature at 0.35 K is observed in both χ′ac and Cmag(T ). As shown in Fig.

4.9 (b), the χ′ac peak is broad with an obvious frequency dependence. The peak in Cmag is

also broad compared with the sharp LRO transition in ZnDy. The frequency dependence of

χ′ac and the broadness of the transition from χ′ac and Cmag are characteristic behaviors of a SG

system [106]. Similar to ∗ZnHo, site disorder exists in ∗ZnEr. The present situation is akin

to (EuxSr1−x)S [107] and other insulating SG systems where the concentration of magnetic

ions is close to the percolation threshold for nearest neighbor interactions. Therefore, ∗ZnEr

most likely exhibits a SG transition with TSG = 0.35 K.
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Figure 4.10: (a) Temperature dependence of the real part of χac under different dc fields
for MgYb. Inset: real part of χac as a function of applied dc field. (b) The real part of the
χac for ∗ZnYb. (c) Cmag/T for MgYb. (d) Cmag/T and Smag for ∗ZnYb. The dashed red
line presents the estimated entropy below 76 mK assuming T -linear behavior of Cmag down
to zero temperature.
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4.1.8 Mg2Yb3Sb3O14 and ∗Zn2Yb3Sb3O14

For MgYb, a low temperature CW fit from 2 K to 10 K of 1/χdc (Fig. 4.1 (h)) yields θW =

-0.45 K and µeff = 3.24 µB. For ∗ZnYb, a similar fit yields θW = -0.39 K and µeff = 3.18 µB.

These values for µeff are smaller than the free ion moments of µeff = 4.54 µB expected for

Yb3+, but similar to those found in the Yb pyrochlores, indicating a planar spin anisotropy

at low temperature. Unlike the small positive θW found in Yb pyrochlores, the values for

θW for both Yb TKLs are negative. This implies an enhanced antiferromagnetic exchange

interaction while transforming from the 3D pyrochlore lattice to the 2D TKL.

For MgYb, χ′ac shows an inflection point at 0.88 K at zero field (Fig. 4.10 (a)) which is

frequency independent (not shown here). The transition temperature is consistent with a

λ-shaped peak in Cmag/T (Fig. 4.10 (c)), suggesting an antiferromagnetic LRO transition

with TN = 0.88 K. The feature in χ′ac becomes a well-defined peak under a small dc magnetic

field of 0.05 T (red curves in Fig. 4.10 (a)). With even larger dc field, this peak moves to

lower temperature and becomes weaker in intensity. The dc field scan of χ′ac measured at

50 mK is shown in the inset of Fig. 4.10 (a). Two features are evident from the data: a

drop between 0 and 0.05 T and a broad peak around 0.1 T, which drops quickly with even

higher fields. Similar behaviors have been observed in a parent pyrochlore antiferromagnet

Yb2Ge2O7 [72, 108]. There, the Yb-sublattice possesses an antiferromagnetic LRO ground

state with TN = 0.62 K. With an applied magnetic field, a double peak feature is observed in

the field scan of χ′ac, where the first peak around 0.1 T is due to magnetic domain alignment

and the second peak at 0.2 T corresponds to a spin-flop transition from the antiferromagnetic

LRO state to the spin polarized state [108]. Similar physics is likely to occur in MgYb such

that the two features in χ′ac are due to magnetic domain movement and spin polarization,

respectively.

For ∗ZnYb, paramagnetic behavior is observed in χ′ac down to the lowest measured

temperature of 0.3 K, and no LRO is observed in Cmag down to 75 mK. Instead, Cmag/T

becomes a constant below 0.25 K (Fig. 4.10 (d)), indicating a T -linear behavior for Cmag.

If such T -linear behavior is extended to zero temperature, the integrated entropy from 0

K to 6 K reaches 5.80 J/K per mole-Yb (Fig. 4.10 (d) inset) which is close to the value

54



of Rln2 = 5.76 J/K expected for an ordered two-level system. Due to strong site-disorder,

some SRO glassy behavior is expected as that of ∗ZnEr. Since no SRO feature is observed

in χ′ac nor Cmag, it is possible that the spin freezing process lies below 0.3 K in the Cmag ∝ T

region, which is not detected by χ′ac. On the other hand, if such a possibility is ruled out by

further measurements, the absence of spin freezing and the fully recovered entropy clearly

differentiate ∗ZnYb from a conventional SG system, indicating a single (or very limited

number of) micro-state in configuration space at zero temperature. Given the small effective

spin-1/2 moments of Yb3+, theoretical interpretation of such a state will be interesting even

for a system even with severe disorder.

4.2 Discussion

4.2.1 Spin Anisotropies

As discussed in the previous chapter, if we assume a single ion anisotropy of each RE3+

ion similar to that of their parent pyrochlore lattices, three types of anisotropies are

expected. For Pr3+, Nd3+, Tb3+, Dy3+, Ho3+, Ising anisotropy is expected, while Er3+

and Yb3+ should exhibit XY behavior and Gd3+ should exhibit Heisenberg-like behavior.

In TKL systems, when mediated by exchange/dipolar interactions, these three types of spins

introduce different magnetic ground states. The magnetic properties of the 16 A2RE3Sb3O14

compounds (A = Mg, Zn; RE = Pr, Nd, Gd, Tb, Dy, Ho, Er, Yb) have been summarized in

Table 4.1. Here, aside from the non-magnetic ground state found for Pr-TKLs, we will focus

on the Mg branch and discuss their ground states in terms of each type of spin anisotropy.

Among the four Mg2RE3Sb3O14 (RE = Nd, Tb, Dy, Ho) compounds with possible Ising

anisotropy, MgNd has smaller effective moments where the dipole-dipole interaction is small.

The observed all-in-all-out spin structure agrees with the LRO scenario expected for an

antiferromagnetic Ising model [86]. The other three Ising spin compounds, Mg2RE3Sb3O14

(RE = Tb, Dy, Ho), possess a large moment ∼ 10 µB. Within this group, the Dy and

Ho compounds are most similar due to a small antiferromagnetic exchange interaction as

estimated from the low temperature θW (∼ -0.2 K). Since the dipole-dipole interaction has

55



an energy scale ∼ 1.3 K, it is tempting to view both systems as pure dipolar ferromagnets. It

is possible both compounds possess an ECO ground state, yet apparent differences in χac are

observed, suggesting different spin dynamics. This situation of two distinct ground states for

the Dy and Ho compounds in TKLs is different from that of pyrochlores where typical spin ice

behavior is observed in all Ho2X2O7 and Dy2X2O7 (X =Ti, Sn, Ge) [26, 15, 103, 109, 110, 111].

This interesting contrast suggests the importance of studying the underlying spin dynamics

in order to understand precisely how lowering the dimensionality in the TKLs leads to LRO.

In the TKL family, MgGd is the only Heisenberg system due to the half filled f-shell

of Gd3+. The LRO transition at 1.65 K is due to strong dipole-dipole interactions, which

provides an experimental example of the suppression of frustration in a kagome lattice by

strong long-range interactions.

The Er3+ and Yb3+ are both effective spin-1/2 Kramers ions that likely possess XY

anisotropy as in their pyrochlore counterparts. As Yb3+ possesses a much smaller moment

than Er3+, one would expect larger quantum fluctuations which usually perturb LRO. In the

TKLs, however, LRO is found in MgYb instead of MgEr. If the XY anisotropy is preserved

in both MgEr and MgYb, our observations imply that the anisotropic exchange that couples

to the CEF g-tenser plays an important role. As shown in the introduction, for the XY

pyrochlore compounds, the detailed balance between anisotropic nearest neighbor exchange

interaction, Jex = (Jzz, J±, Jz±, J±±), in addition to the strong quantum spin fluctuations

of the effective spin-1/2 moment, stabilizes various exotic magnetic ground states [5]. In

Er2Ti2O7, for example, dominant interactions are coplanar type J± and J±± that couples

the spin component within the XY plane [32]. Accordingly, the magnetic ground state is

an antiferromagnetic state with XY -type LRO that is stabilized by quantum fluctuations

[32, 112]. Meanwhile, Yb2Ti2O7 has a major Ising type contribution (Jzz) that couples the

Ising component of Yb3+ moments. Thus, moments in Yb2Ti2O7 tend to behave as Ising

spins, which results in a quantum spin ice ground state [31]. An analogous stabilization is

likely to occur in the XY TKLs, which could lead to a complex ground state phase diagram

and differences between MgEr and MgYb.

56



Table 4.1: A summary of magnetic properties of A2RE3Sb3O14 (A = Mg, Zn; RE = Pr,
Nd, Gd, Tb, Dy, Ho, Er, Yb). For RE = Nd, Gd, Dy, Ho, Yb compounds, values of θW
and µeff are from low temperature fits of 1/χdc. For RE = Pr, Tb, Er, values from high
temperature fits are used instead because of the nonlinear 1/χdc at low temperature due to
CEF effects. Therefore, these values from high temperature fits do not necessarily reflect
the spin-spin interactions at low temperatures.

Pr Nd Gd Tb Dy Ho Er Yb

f state (RE3+) 4f2 4f3 4f7 4f8 4f9 4f10 4f11 4f13

Kramers ion? No Yes Yes No Yes No Yes Yes

Anisotropy ∼ Ising Heis. Ising Ising Ising XY XY

A = Mg

θW (K) -46.18 -0.05 -6.70 -13.70 -0.18 -0.27 -14.52 -0.45

µeff (µB) 3.4 2.49 8.06 9.88 10.2 10.54 9.45 3.24

Ground state non-mag. LRO LRO QSL(?) ECO QSI QSL(?) LRO

TN,f,SG (K) ∼ 0.55 1.65 ∼ 0.37 0.4 0.08, 2.1 0.88

A = Zn

θW (K) -68.43 -0.11 -6.85 -13.41 -0.72 -2.49 -16.08 -0.39

µeff (µB) 3.61 2.28 8.09 9.86 10.2 10.22 9.67 3.18

Ground state non-mag. LRO LRO QSL(?) ECO SG(?) SG SG(?)

TN,f,SG (K) ∼ 0.47 1.69 ∼ 0.39 0.45 0.35 ∼(?)

4.2.2 Kramers Versus Non-Kramers

We can use another key attribute of these compounds to categorize the eight TKLs in the

Mg branch. Five of them (RE = Nd, Gd, Dy, Er, Yb) have Kramers ions, whose single

ion ground state doublet is restrictively protected by time-reversal symmetry and are thus

degenerate in energy for a mean field of zero. The other three (RE = Pr, Tb, Ho) have non-

Kramers ions, whose single ion ground state could also be a doublet but is not necessarily

degenerate.

In the pyrochlore system, an “accidental” degeneracy of the non-Kramers doublets is

usually found due to the protection of a high symmetry point group (D3d) at the RE site.

Recently, it has been theoretically proposed that in some spin ice like pyrochlore with non-

Kramers ions, perturbations such as site-disorder, which act as local transverse fields, could

lift such a degeneracy and possibly lead to different QSL ground states through quantum

superpositions of spins [47]. An example is the QSL candidate Pr2Zr2O7 [29] in which a

recent inelastic neutron scattering study revealed the lifting of such degeneracy due to a

continuous distribution of quenched transverse fields [46].
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In the previous chapter, we have shown that in a TKL, the point group symmetry at

the rare earth site is reduced from D3d to C2h. In such a case, the accidental degeneracy

of the non-Kramers doublet is naturally removed which splits the doublet into two non-

magnetic singlets state with a finite energy difference [89]. However, spin-spin interactions

which act as local exchange fields can easily mix the two nearby singlets state and recover

the magnetic moment. Starting from the CEF scheme of the parent pyrochlore lattice,

if the energy splitting of the two lowest singlet states is comparable to the spin-spin

interactions, the additional symmetry reduction can be viewed as a perturbation to the

original CEF Hamiltonian where the system remains magnetic with a valid effective spin-

1/2 description. One the other hand, if the two lowest singlet states get too separated in

energy, exchange/dipolar interactions will be insufficient to induce magnetism magnetism,

and a non-magnetic ground state is expected [113].

Among the three non-Kramers ion compounds, it is clear that MgPr belongs to the

second category where a non-magnetic singlet ground state is found. The other two, MgTb

and MgHo, likely belong to the first category, where the ground state doublets have a finite

splitting in energy but remain magnetic. A proper description of the two systems will be Ising

spins under transverse fields on a kagome lattice antiferromagnet. These two compounds can

thus be thought of as 2D analogues of Pr2Zr2O7. Our classification of the ground states based

on Kramers versus non-Kramers ions seems successful: the four TKLs with Kramers ions

(except for MgEr) exhibit LRO while no LRO is observed for the two TLKs with non-

Kramers ions. This result implies that a comprehensive approach considering non-Kramers

ions might be needed to explain the absence of LRO in MgTb and MgHo. In the next

chapter, we will focus on MgHo and use neutron scattering to probe it ground state and

excitations, and it indeed shows that the transverse field acts as a quantum tunneling term

and turns the system into a quantum kagome ice.

4.2.3 Chemical Pressure Effects

By substituting the smaller Mg2+ ions with the larger Zn2+ ions on the non-magnetic A-

site in the TKLs, we introduce chemical pressure that enlarges both lattice parameters a

and c. Principally, this effect has more dramatic influences on the exchange couplings than
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the dipolar interactions. In the pyrochlores, this chemical pressure effect has been proven

effective for determining the magnetic ground states. For example, by replacing the Ti site

with a smaller Ge ion or a larger Sn ion, the chemical pressure effect selects different magnetic

ground states in the pyrochlore systems Yb2X2O7 and Er2X2O7 (X = Ge, Ti, Sn) [72, 108].

In the TKL system, an obvious result of chemical pressure is the structural change. As

discussed above, while the A/RE site disorder is low in the Mg-branch and Zn-branch with

RE ions of larger size, a severe Zn/RE site disorder is present for TKLs with smaller RE ions

(RE = Ho, Er, Yb). This type of site disorder destroys the kagome lattice and introduces a

random distribution of RE ions with 3D correlation, which will result in a different magnetic

ground state.

For TKLs where the site disorder is small (RE = Pr, Nd, Gd, Tb, Dy), the chemical

pressure seems to have little effect on the low temperature magnetism in both branches.

Both MgPr and ZnPr have singlet ground states. We found LRO in the Nd, Gd and Dy

compounds in both Mg and Zn branches with similar ordering temperatures (Tab. 4.1),

consistent with the small lattice constant differences. No LRO is observed in both MgTb

and ZnTb. It is noteworthy that some subtle differences have been observed. For example,

while MgTb shows a broad SRO-like feature in χ′ac at 400 mK, no such feature is seen in

ZnTb. In Fig. 4.5 (c), Cmag/T also shows some differences above 400 mK between the two.

Another example is that for MgNd, the zero field χ′ac seems indicate a two-step transition,

while for ZnNd, a small magnetic dc field is required to separate them. Also, for ZnDy,

an extra increase of Cmag is observed below the ECO transition which is absent in that of

MgDy. More work is needed to understand the differences between these systems.
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Chapter 5

Mg2Ho3Sb3O14: A Quantum Kagome

Ice from A Transverse Ising Model

Some theoretical calculations in this chapter are done in collaboration with Martin Mourigal’s

group at the Georgia Institute of Technology. Specifically, Joseph M. Paddison fitted the

inelastic spectrum with a relaxation model, and XiaoJian Bai evaluated the mean-field

Hamiltonian and found the ground state of the system. The main results of this chapter are

to be published in a scientific journal.

In this chapter, I will show that MgHo, an Ising TKL antiferromagnet, is a model

for a quantum kagome ice where the splitting of the Ho3+ crystal electric field doublet

serves as a uniform transverse field, allowing quantum tunnelings between degenerate ice-

like microstates. Using neutron scattering, our measurements reveal a symmetry breaking

transition at 0.32 K to a partially ordered state closely related to the ECO state expected for

a dipolar Ising magnet [114]. We observe persisting spin dynamics both above and below the

transition, in contrast to static correlations observed in a sister compound based on Dy3+

[9]. Using extracted parameters from neutron data, we explain our observations within a

mean-field model incorporating the effects of quantum dynamics and frustration.
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5.1 Introduction

Frustrated magnetism, which arises from competing interactions in a topologically con-

strained lattice, can lead to a large ground state degeneracy and the formation of low-

temperature, fluid-like states, so-called spin liquids [13]. Pyrochlore and kagome spin ices

[15, 16] are two paradigmatic examples of spin liquids in a classical limit in a sense as the

fluctuations e.g. monopole excitations) in the system are purely driven by thermal activation

and that the energy barrier between degenerate microstates precludes spin dynamics when

the temperature is sufficiently low. In the presence of quantum fluctuation, one can in

principle obtain an exotic QSI descended from the classical spin ice state that is long-

range entangled and persisting fluctuation in the zero-temperature limit [115]. One way

to introduce quantum effects is to deviate from the pure Ising model and consider a local

XXZ model with a transverse coupling (J⊥), where theory predict a Coulombic U(1) quantum

spin liquid phase with gapless photon-like excitations [38]. Much attention has been paid to

a pyrochlore compound Yb2Ti2O7 which is thought to be a promising realization of such a

model [31]. Yet the precondition of strong Ising coupling is challenged by a recent neutron

scattering measurement [50].

Another way to enhance quantum fluctuations for an Ising magnet is to apply a transverse

field. The resulting transverse Ising model (TIM) is the simplest quantum many-body

system such that the cooperative exchange interaction is separable from a tunable quantum

tunneling term (transverse field). Leaving alone the frustration, the TIM is known to be a

canonical example to show zero-temperature quantum phase transitions [116] and has a wide

relevance to condensed matter phenomena, such as superconductivity, order by disorder, and

quantum information [117]. It can be achieved experimentally in either ferromagnet with

uniaxial symmetry under external magnetic fields, i.e. CoNb2O6 [118], or in rare earth

compounds with a two-singlet CEF ground state [113], i.e. LiTbF4 [119]. The key question

is then how to introduce TIM in a real frustrated magnet since a spin ice is nonuniaxial and

has a doublet CEF ground state. One theory has been proposed recently that for certain

types of spin ice compounds with non-Kramers ions, such as Ho2Ti2O7 and Pr2Zr2O7 [46],

disorder will act as quenched random transverse fields, inducing quantum entanglements that
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Figure 5.1: Partial crystal structure, showing the alternating Ho-kagome layers (large
blue spheres) and Mg-triangular layers (small orange spheres) in a unit cell. (b) Local
environment, showing eight surrounding oxygens (small red spheres) and four nearest
neighbor Ho sites (whose spins are labeled by black arrows) around a central Ho ion. The
mean-field at each site contains a transverse (hx) and a longitudinal (hz) component. The
hx effectively splits the non-Kramers doublet in the pyrochlore (|±〉) into two singlets in the
Ho-TKL (|0〉 and |1〉) while the hz describes the spin-spin interactions.

turn classical spin ices into quantum spin liquids [47]. Instead of considering disorder and

random transverse fields that are often complicated and difficult to quantify, it is desirable

to search for a structurally perfect frustrated Ising magnet with a two-singlet ground state.

Such a magnet will automatically match up to a TIM under a uniform transverse field,

enabling the realization of a QSI.

5.2 Transverse Ising Model

Our recently discovered TKL Ising antiferromagnet, MgHo, offers us an opportunity to

realize such a QSI in a kagome lattice from the TIM. Similar to the TKL compounds

described earlier, MgHo features well-isolated Ho3+-kagome planes that alternate with non-

magnetic Mg2+ triangular layers 5.1 (a). Rietveld refinements from X-ray and neutron

powder diffraction measurements confirm this structure with negligible Mg/Ho site disorder,

in contrast to some TKL compound studied earlier [9]. The local oxygen environment around
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Figure 5.2: Crystal field measurements on SEQUOIA at ORNL with incident energy of
(a) 60 meV and (b) 120 meV. (c) Comparison between the observed CEF levels of MgHo and
that in Ho2Ti2O7 from Ref. [10]. (d) Q cut of the inelastic spectrum. Open dots/squares
are measured intensities. The peak components of five CEF levels obtained from Lorentzian
peak fits are shown as black dashed lines. (e) Q dependence of different energy cuts. The
magnetic form factor for Ho3+ is plotted for references.
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mean-field, Random Phase Approximation (RPA) with Onsager correction [11] and high
temperature series expansion (HTSE) [12]. (b) The expectation value of σx and σz as a
function of ∆/J(0) from the mean-field model.

Ho3+ remains closely similar to that of the parent compound Ho2Ti2O7, guaranteeing a

similar CEF scheme with three distinct tripod-like Ising axes that are canted away from

the kagome plane (Fig. 5.1b). At the same time, compared to Ho2Ti2O7, the additional

point group symmetry reduction at the Ho3+ site, in principle, splits every CEF doublet of

non-Kramers Ho3+ ions into two non-magnetic singlets. Then what are the combination of

effects on the single ion properties? In order to answer this question, we have performed

a high energy inelastic neutron scattering experiment to probe the CEF excitations. A

contour plot of scattering intensity as a function of energy (E) and momentum transfer (Q)

is plotted in Fig. 5.2 (a), (b). By performing a Q cut of the spectrum, five CEF levels are

observed at 16.4(2) 20.5(2), 51.3(8), 54.3(4), and 63.3(8) meV, respectively (5.2 (d)). Note

that the excitations at ∼ 11 meV and ∼ 33 meV do not follow the magnetic form factor of

Ho3+ (5.2(e)), therefore, are not magnetic in origin. As can be seen in Fig. 5.2 (c), the CEF

scheme and intensity ratios of MgHo closely resemble those observed in Ho2Ti2O7 [10], except

for a renormalization in energy. It means that the symmetry reduction of the system only

modifies the general CEF levels slightly, and the energy splitting of every Kramers doublet

are within the energy resolution of our measurement. Indeed, by performing a point charge

calculation from a refinement-determined structural model, the energy splitting of the ground
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state doublet (∆) is estimated to be 2.5 K, a number that is two order of magnitude smaller

than the characteristic energy between different CEF levels observed here experimentally.

With well-separated higher CEF levels, the splitting ∆ defines a two-singlet TIM and

differentiates MgHo from other classical Ising magnets, e.g. a closely related TKL compound

MgDy based on Kramer ions Dy3+ ions [9]. Since the two ground state singlets of Ho3+ (total

angular momentum J = 8) is almost fully jz = ± 8 characteristic, we can write them as

symmetric and antisymmetric forms such that |0〉 ≈ 1√
2
(|8〉+ |−8〉) and |1〉 ≈ 1√

2
(|8〉−|−8〉).

Hence, |0〉 and |1〉 define a two level CEF-basis such that the only non-zero matrix element

is 〈0| Jz |1〉 ≡ 8. The Hamiltonian in the CEF-basis can be rewritten as an effective spin-1/2

model where ∆ can be treated as a uniform transverse field, such that

H =
∆

2

∑
i

σxi −
1

2

∑
i,j

Jijσ
z
i σ

z
j . (5.1)

Here, σi denotes unit Pauli matrices and Ji,j is the effective interaction between Ising pseudo-

spins that contains two parts, the nearest neighbor exchange coupling (Jnn) and a long-range

dipolar interaction (D). Within a mean-field treatment (molecule field approximation), one

can reduce the many-body Hamiltonian to a collection of effective single spins [120],

H =
∑
i

(
∆

2
σxi −

∑
j

Jij〈σzj 〉σzi

)
. (5.2)

where the mean-field contains both a transverse and a longitudinal component (h in Fig. 5.1

(b)). The eigenfunctions for effective spins (|0m〉, |1m〉) are superpositions of the CEF basis,

whereas the ground state of the system is a product state where every spin is compatible

with its molecule field. Due to Jij, the mean-field at an individual site i is directly related

to that of nearby sites, and the equilibrium condition leads to 〈1mi |σz |0mi 〉 = 0.

For a non-frustrated TIM (e.g. Jij > 0), the interactions are site-independent so that

a constant hi is guaranteed. Within the mean-field treatment, this model has already

demonstrated the most important properties of a TIM. That is: magnetic ordering at finite

temperature can only be achieved when the transverse field is smaller than the many-body
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interactions, for which the ordered magnetic moments are largely reduced due to non-

vanishing transverse component (Fig. 5.3 (a) and (b)) [120]. Although the mean-field

approximation overestimates the critical value of ∆/J(0) (here, J(0) = ΣiJij is defined

as sum of spin-spin interactions at each site) as well as the magnetic ordering temperature

[121], it provides a general picture of the TIM which will be instructive for the investigation

of a frustrated TIM, such as MgHo in the present study.

5.3 Paramagnetic Dynamics

Before discussing the low-temperature behaviors, we now focus on the high-temperature

paramagnetic region (T > 4 K > J) and use neutron-scattering experiments to reveal spin

correlations. Normalized neutron scattering intensities as a function of momentum (Q) and

energy transfer (ω) at various temperatures are plotted in Fig. 5.5 and 5.4, respectively. The

Isub(Q) are obtained by subtracting high-temperature datasets, thereby presenting a good

estimate of the purely magnetic scattering. Diffuse scattering with a broad peak centered

at ≈ 0.65 Å is observed as the temperature is lowered, which is characteristic of ice-rule

correlations in the parent pyrochlore spin ice compounds [109]. The I(ω) is background

subtracted and is obtained by integrating Q from 0.4 Å to 1.6 Å. From Fig. 5.5, three

main features are observed: (i) a dominating central peak at quasi-elastic channel which is

magnetic in origin, (ii) a broad tail extending to high energies, and (iii) a weak peak around

8 K which is clearly visible in all of the SEQUOIA data sets as well as on the negative-

energy-transfer side of some DCS datasets (e.g., 4.2 K). By contrast, in systems where a

transverse field is prohibited by a doublet ground state, spin fluctuations are much slower;

e.g., the inelastic energy width is less than 0.1 K in Ho2Ti2O7 at a temperature of 2 K [122].

When going away from the paramagnetic region, a shoulder develops at low energy (∼2 K,

very near the elastic line) when the temperature is lowered (0.4 K dataset).

It is useful to compare these results with the predictions of the Random Phase

Approximation (RPA) theory [123]. At high temperature, RPA predicts that the entire

spectral weight is contained in a single sharp peak at ω = ∆, corresponding to the crystal-

field splitting. On cooling, the CEF excitation should split into three modes which acquire
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dispersion because of the effect of the interactions; consequently, the single peak in I(ω)

would broaden due to powder averaging the dispersive modes. No central peak is predicted

at any temperature. These predictions disagree in almost all respects with the experimental

results which show a strong central peak, broad inelastic scattering, and a sharp peak which

is weak and nearly temperature independent.

We are not the first to observe this sort of behavior in a two-singlet system: the canonical

two-singlet ferromagnet LiTbF4 [119, 124, 125] shows features which are qualitatively very

similar to MgHo, and the central peak is also a common feature of “soft mode” structural

transitions [11]. Actually, all these features can be well modeled by a “relaxation-coupled

oscillator ”(RCO) model that was used to describe a canonical TIM system [124]. The

imaginary part of the dynamic susceptibility of each mode in the RCO framework is given

by

χuu (Q, ω) =
χ0 (0) ∆2

ω2
u (Q)− ω2 − iωγ(ω)

,

γ(ω) = Γ0 +
δ2

(φ− iω)
, (5.3)

where ωu(Q) is the dispersion relation for collective oscillating modes of a TIM system and

γ(ω) describes a damping function that contains couplings between the oscillating modes

and the relaxing components. Here, Γ0 is the damping constant, δ is the coupling coefficient

between relaxing and oscillating modes, and φ is the energy width of the distribution of

relaxing modes. In the limit of small φ (φ is much smaller than the instrument resolution

in the current study), we can eliminates φ and reduce the imaginary part of χuu (Q, ω) to

the sum of a Lorentzian central peak and a damped harmonic oscillator whose frequency is

renormalized as Ω2
u(Q) = ω2

u(Q)+δ2 [125]. The observation of the coexisting the high energy

tail along with the 8 K peak suggests two damping modes, one that is strongly over-damped

such that Γ0 � Ωu(Q) while the other is under-damped such that Γ1 < Ωu(Q). Within the

RPA [123] and the Onsager reaction field correction [126], we reach a “RPA-Onsager-RCO”

model to describe the scattering function, which finally allows us to fit Isub(Q) and I(ω)
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simultaneously. The expression for the scattering function is:

SΓ0,Γ1(Q, ω) =
χ0 (0) ∆2

N

∑
µ

|Fµ (Q)|2 { Tδ2R (ω)

ω2
µ (Q) Ω2

µ (Q)
+

ω

π [1− exp (−ω/T )]

[
(1− f)Γ0[

Ω2
µ (Q)− ω2

]2
+ (ωΓ0)2

+
fΓ1[

Ω2
µ (Q)− ω2

]2
+ (ωΓ1)2

]
}. (5.4)

The model then contains five free parameters (∆, δ, Γ0, Γ1, and f , the fraction of over-

damped modes) where excellent fits over the whole paramagnetic region from 4.2 K to 40 K

are obtained as shown in Fig. 5.6. The fitted values of the parameters are Jnn = 1.10 (3)

K, ∆ = 3.09(2) K and δ = 7.77(3) K. We obtain a majority (f = 96.2(3)%) of over-damped

mode whose damping (Γ0) increases with decreasing temperature. On the other hand, the

remaining fraction (3.8(3)%) of the under-damped mode is temperature independent with

Γ1 = 4.8(2) K, giving rise to the weak peak in I(ω) at an energy close to
√

∆2 + δ2 = 8.3

K. It is noteworthy that simple models, such as the damped harmonic oscillator, do not give

good fits of the spectrum. The successful consistency between our experimental observations

and the RPA-Onsager-RCO model suggests that MgHo indeed behaves like a canonical two-

singlet system at high temperatures, and the paramagnetic dynamics of the TIM might be

universal.

5.4 Partially Ordered Ground State

We now turn to the low-temperature region (T < ∆, Jij) where the combination of frustration

and quantum dynamics induced by the transverse field is expected to lead to non-trivial

quantum states. We use specific heat and neutron-scattering measurements to reveal possible

phase transitions and low-temperature spin dynamics. In the specific heat, a sharp peak is

observed at T ∗ = 0.32 K (Fig.5.7), indicating a symmetry breaking transition. A Schottky-

type broad peak is present in the same temperature range, which is due to the Hyperfine

coupling between Ho3+ electronic and nuclear spins. The calculated nuclear specific heat

assuming static moments of 10µB/Ho3+ (red dashed line) obviously overestimates the height,

while an alternative estimation, a fraction (75%) of static spins with reduced moment of 8µB
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Figure 5.6: Experimental data (black circles) and fits (red lines) of the RPA-Onsager-RCO
model described in the text to Isub(ω) and I(Q). Fits were performed over the temperature
range 4.0 K ≤ T ≤ 40 K to DCS, SEQUOIA, and HB2A data simultaneously. All data are
normalized. Error bars correspond to 1 standard error.
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(black solid line), renders a reasonable subtraction for the low-temperature tail (T < 0.2 K)

and gives a sensible estimation of the magnetic entropy associated with the subtracted data

(Fig. Fig.5.7 inset). The fraction number and the reduced moment hints for entangled

quantum correlations, which has also been observed in the quantum spin liquid candidate

Pr2Zr2O7 [29]. In fact, the nuclear specific heat can be treated as an efficient probe to

examine the level of quantum fluctuations of the electronic spins and “measure” the fraction

of moments that are still fluctuating.

Below T ∗, two striking features are observed in our neutron-scattering data. The first

feature is the emergence of structured excitations with the most prominent mode at around 3

K which is absent in the paramagnetic region (Fig. 5.8 (b)). This is in sharp contrast to the

Kramers-ion variant MgDy in the TKL family [9], where the low-temperature dynamics are

missing entirely in the observation window. Secondly, we found weak magnetic Bragg peaks

appearing on top of broad diffuse scattering signals in Isub(Q) (Fig. 5.8 (a)), consistent with

a q = 0 all-in-all-out spin structure. The coexistence of the magnetic diffuse scattering and

the Bragg peaks is reminiscent of the ECO state previously observed in MgDy [9]. However,

here, the Rietveld refinement gives an ordered moment of 1.66(1)µB per spin, which has been

strongly reduced from the expected value of 3.33µB for a classical ECO state. In addition,

the diffuse scattering is not as sharp as that obtained from the ideal ECO state or that

observed in MgDy. Since our structural refinements indicate no Ho/Mg site disorder, both

effects are not likely due to defeat effects. Therefore, the observations in specific heat and

neutron scattering indicate a new partially ordered state, which is beyond the description of

the ECO state.

As the first attempt to understand this state, we solve the mean-field TIM Hamiltonian

(Eq.5.2) for the TKL structure in the zero temperature limit. The expectation value of

the effective moment on an arbitrary site is given by 〈σzi 〉 = 2hzi /(
√

4(hzi )
2 + ∆2). Since

hzi depends on the 〈σzj 〉 at nearby sites, an equilibrium can be be achieved only when the

condition is satisfied for every site. It is easy to see that for a kagome antiferromagnet, a

uniform hi (in other words, a constant moment state) can never be achieved with non-zero ∆.

This is in contrast to the similar problem on a pyrochlore lattice antiferromagnet where any

state in the two-in-two-out spin-ice manifold naturally leads to a uniform hi. The problem
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becomes even more interesting when the long-range dipolar interaction comes into play.

To resolve the mean-field ground state, we evaluate the Hamiltonian numerically in real

space. The principle is to compute hzi and update 〈σzi 〉 repeatedly until the convergence

is reached. Using either random spin configurations or the more physically meaningful

ECO configurations as initial states, a new type of ground state is found for which we

call the moment modulated emergent charge order state (mmECO). Within this state, the

characteristic of ECO is preserved, such that a two-in-one-out/one-in-two-out configuration is

always found for every up/down triangle (or vice versa), forming a long range order of altering

positive and negative emergent charges. However, a key difference is that the magnitudes

of moment vary from site to site. For every triangle, there is one minority spin (empty

arrows in Fig. 5.9 (a)) whose moment size is relatively larger than the other two majority

spins (filled arrows in 5.9 (a)). Here, the non-uniform moment texture resembles a spin

density wave that is usually found in metallic compounds but is hardly realized in a system

with localized electrons. The statistical distribution of the moments forms a broad peak for

the majority spins (filled peak in 5.9 (b)) and a narrow δ-function-like distribution for the

minority spins (empty peak in 5.9 (b)). As a result, the statistics of the magnetic charges

form a relatively narrow distribution around ± 0.5 ( 5.9 (b)). This corresponds to adding

a spatial variation to the divergence full channel in the spin fragmentation theory [62, 127],

while leaving the divergence free part intact. Alternatively, if we keep the divergence full

part constant throughout the lattice, this gives rise to a soft breaking of the divergence free

condition in the other channel. Either case calls for a generalization of the fragmentation

theory.

In order to compare results with the experiments, we ran the mean-field calculation

with various initial configurations and transverse fields with the nearest neighbor exchange

Jnn = 1.0 K and the dipolar coupling D = 1.29 K fixed. In the case of classical ECO

states as initial configurations, we notice that almost all spins in the final mmECO states

remain parallel to spins in the initial configurations, resulting in large correlations with the

initial ECO states. We further note that the classical ECO states from Monte Carlo (MC)

simulations with the full ordered moment could exhibit different short range correlations

depending on the temperature. The states deep in the ECO phase, for example 0.2 K, have

73



- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 00

1 0

2 0

3 0

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 00
2
4
6
8

1 0

( b ) ∆ = 2.10 Κ,  
T M C  =  0 . 4  K  

 

 

 
Dis

trib
uti

on 

m o m e n t ,  〈σz 〉 

( c ) ∆ = 2.10 Κ,  
T M C  =  0 . 4  K  

 

 

 
Dis

trib
uti

on

 c h a r g e ,   Σ〈σz
i 〉 

( a )
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magnetic charges, defined as the sum of 〈σzi 〉 for each triangle.

a much sharper diffuse scattering pattern than that of states right after the phase transition

(such as 0.4 K). We found that a good fit to both the diffuse scattering and the Bragg peak

intensity can be achieved using the 0.4 K ECO states as initial configurations with ∆ = 2.1

K (Fig.5.8 (a)), where the broadness of the diffuse scattering is, to a large extent, inherited

from the initial ECO states. Due to this very same observation, the 0.2 K ECO states lead to

final configurations with diffuse scattering patterns that are too sharp compared to the data.

In this sense, the quantum fluctuations in the system are described by thermal activation

energy here such that the difference between 0.4 K and 0.2 K sets an energy scale for the

quantum effects.

Our mean-field approach is able to provide useful information about the excitations as

well. The energy gap between the ground state and the excited state on a single site is√
4(hzi )

2 + ∆2. A counting for the mmECO states that give best fit to Isub(Q) reveals two

peaks centered around 3.1 K and 7.7 K (Fig. 5.8 (b), which come from the sites of minority

and of majority spins, respectively. This qualitatively explains the sharp mode around 3

K in the inelastic neutron spectrum, defining a characteristic energy of the system through
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a single-spin-flip type of excitation (|0mi 〉 → |1mi 〉 in Fig. 5.1 (b)). Our mean-field model

cannot, however, explain the continuous nature of the excitation spectrum and its high-

energy tail, which suggests that non-trivial quantum correlations may play an important

role.

5.5 Summary

The persisting quantum dynamics in both the paramagnetic and low temperature regions,

the modulation of magnetic moments, and the fictionalization of emergent charge in the

mmECO state clearly differentiate it from the ECO state expected for a classical system,

demonstrating enhanced quantum effects due to the transverse fields. Meanwhile, since both

Monte Carlo simulations [128, 129] and U(1) Gauge theory [130] predict a spin liquid state

for a kagome antiferromagnet under weak transverse fields and in the absence of dipolar

interaction, the mmECO state found here opens a new window for possible exotic states

when quantum fluctuations are combined with long range interactions. In summary, MgHo

introduces quantum dynamics in the exotic phase of ECO and realizes for the first time a

frustrated TIM, making it the simplest experimental system for studying quantum many-

body problems on a frustrated lattice and an excellent candidate to realize quantum kagome

ice physics.
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Chapter 6

Conclusion and Outlook

This dissertation focused on the structural and magnetic properties of our newly discovered

rare earth TKL compounds A2RE3Sb3O14 (A = Mg, Zn; RE = Pr, Nd, Gd, Tb, Dy, Ho,

Er, Yb), which were achieved by partially substituting the ions in the cubic pyrochlore

lattice. Their unique structure and rich spin types provide us a platform to realize exotic

kagome-based physics.

This dissertation provides a comprehensive study of their low temperature magnetism

by means of susceptibility and specific heat measurements, which have revealed various

magnetic ground states. These include the non-magnetic singlet state for MgPr, ZnPr,

LROs for MgGd, ZnGd, MgNd, ZnNd, and MgYb, a long range ECO state for MgDy, ZnDy,

possible SG states for ZnEr, ZnHo, and the absence of spin ordering down to 80 mK for

MgEr, MgTb, ZnTb, and ZnYb compounds. The ground states observed here bear both

similarities as well as striking differences from the states found in the parent pyrochlore

systems. In particular, while the TKLs display a greater tendency towards LRO, the lack of

LRO in MgHo, MgTb and ZnTb can be viewed from the standpoint of a balance among spin-

spin interactions, anisotropies, and the non-Kramers nature of the single ion state. While

substituting Zn for Mg changes the chemical pressure and subtly modifies the interaction

energies for compounds with larger RE ions, this substitution introduces structural disorder

and modifies the ground states for compounds with smaller RE ions (Ho, Er, Yb).

We have shown that the TKLs with non-Kramers ion are essentially the first experimental

realization of TIM on a frustrated lattice. In addition, we performed elastic and inelastic
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neutron scattering measurements on MgHo, illustrating a unique mmECO ground state,

along with persisting quantum dynamics all the way from the paramagnetic region to the

partially ordered state. Using extracted parameters from neutron data, we explain our

observations within a mean-field model incorporating the effects of quantum dynamics and

frustration. These results establish MgHo as a quantum kagome ice from the TIM.

The results shown in this dissertation, along with other pioneering studies (e.g. the

studies for MgDy [9] and MgNd [86]) have illustrated the general properties and some exciting

physics of the system. However, there are a lot of questions waiting to be answered.

On the experimental side, future CEF excitation measurements will be important for

determining the CEF levels, g-tensors, as well as confirming the spin anisotropies for TKL

members. Since no LRO is observed down to 50 mK in MgTb, ZnTb, MgEr, and ZnYb,

these four TKL systems are promising candidates for hosting QSL states. Other experiments,

including neutron scattering, µSR, and NMR will be helpful to identify the nature of their

ground states as well as the spin correlations. Since QSL states are characterized by the

presence or absence of a gap in the anyon excitation spectrum, it is important to determine

if any of the QSL candidate TKLs possess such a gap. For Nd-KLs, the nature of the two-

step order needs to be addressed. Measurements under weak magnetic fields are needed to

provide insight into this question. Interpreting such measurements will be difficult, given

the present polycrystalline samples, but coarse-grained behavior can be studied. For Gd-

TKLs, our theoretical investigation based on the Luttinger-Tisza method predicts a 120 ◦

spin structure. Confirmations are needed by other direct measurements. For MgDy, neutron

scattering experiments based on a powder sample with 4-6% site disorder have identified an

ECO with average spin LRO ground state. We expect a similar ground state in ZnDy. A

question then would be whether or not perfect samples (lacking any site disorder) give rise

to true LRO of the Dy3+ spins, as predicted by the theory [114]. For MgHo, the exact nature

of the mmECO state as well as its collective excitation needs to be understood better. For

MgEr, the nature of the 80 mK peak in χ′ac remains unclear, and it is unknown whether the

2.1 K transition in Cmag is indeed a KT transition. It is also not clear what the LRO state

for MgYb is exactly. Future studies are needed to answer all these questions.
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On the theoretical side, due to the uniqueness of the tripod-like local Ising/XY anisotropy

on a kagome lattice, there are limited theoretical works at the moment that suitably describe

the TKL system. Our theoretical investigation using a Luttinger-Tisza type theory provides

a first universal mean-field level description of the TKL. Aside from this, there are few

existing theoretical studies that can be directly adopted. For Heisenberg spins, Moessner

et al. considered classical dipoles on a 2D kagome lattice and calculated a phase diagram

by scaling dipolar and exchange interactions [8]. This model might be a good starting

point for the Gd-TKLs. For Ising spins, models with TKL-like canted Ising spins have

predicted an ECO followed by a spin LRO transition on a kagome lattice [114], which

seems to successfully explain the experimental observation for MgDy. The other two Ising

compounds, Tb and Ho-TKLs, have non-Kramers ions, and therefore belong to the TIM

family. Although our mean field method successfully explains many of the observations in

MgHo, more advanced theoretical tools, such as quantum Monte Carlo [131] and multi-

scale entanglement renormalization ansatz [132], will be necessary to take into account

entanglement and to construct a real quantum model. For both compounds, the long range

dipolar interaction is needed to be included which is absent in the previous study of TIMs

[129, 130, 133]. For XY spins, there are even fewer (if any) theoretical studies since the

situation of three distinct local XY planes has most likely not been previously considered

before the realization of the TKL. Therefore, the TKLs offer an unexplored realm of theory.

The future exploration of the whole TKL family is expected to open a new field in

condensed matter physics and materials science studies, just as the pyrochlore did during

the last two decades. We hope our results will stimulate both experimental and theoretical

studies on these exciting compounds.
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A. Locatelli, T. O. Menteş, B. S. Burgos, and N. Rougemaille. Fragmentation of

magnetism in artificial kagome dipolar spin ice. Nature communications, 7, 2016. 13,

47, 73

[63] R. Schaffer, S. Bhattacharjee, and Y. B. Kim. Spin-orbital liquids in non-Kramers

magnets on the kagome lattice. Phys. Rev. B, 88(17):174405, 2013. 13

[64] Y. Zhao, W. Li, B. Xi, Z. Zhang, X. Yan, S.-J. Ran, T. Liu, and G. Su. Kosterlitz-

thouless phase transition and re-entrance in an anisotropic three-state potts model on

the generalized kagome lattice. Phys. Rev. E, 87(3):032151, 2013. 13
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