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ABSTRACT 
 

 Abundant, inexpensive, high purity molecular hydrogen as a medium for 

energy distribution is potentially enabling for adoption of alternative electricity 

generation schemes.  Steam reforming of natural gas remains the dominant 

method of producing large amounts of hydrogen. However, this process also 

creates by-products, most notably, carbon monoxide and carbon dioxide.  

Separation to ultra-high purity hydrogen from these syngas reformate streams by 

traditional methods, such as pressure swing absorption, has its disadvantages 

including long cycle times, contamination and a large equipment footprint.  

Alternative methods of hydrogen separation, such as electrochemical pumping, 

are a viable alternative to this separation dilemma due to their relative simplicity 

and potential efficiency. 

 The solid-state proton conductor cesium dihydrogen phosphate has 

shown potential in electrochemical hydrogen separation devices operating on 

reformed hydrocarbons. In this work, we have synthesized a suite of 

nanoparticles, including Pt, Pd, Ru, Ni and Cu, supported on carbon for 

implementation in solid acid electrodes.  We evaluate these materials at an 

intermediate temperature of 250 degrees Celsius for the hydrogen oxidation and 

reduction reaction, as well the electrooxidation of carbon monoxide.  Functionally 

graded anodes are fabricated to balance CO conversion activity with hydrogen 

oxidation.  These re-engineered anodes are implemented in conjunction with Ni-
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based cathodes to demonstrate efficient hydrogen separation using ultra low 

loadings of Pt from syngas-like inputs. 
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CHAPTER 1  

INTRODUCTION 
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Hydrogen Production 

 To generate H2, various methods are explored depending on the 

molecular precursor from which hydrogen is to be extracted. While there are 

many methods of hydrogen production, a few of note are biological, direct solar 

water splitting, electrolysis, and thermochemical.  Biological processes are 

numerous but the most common are microbial biomass conversion and 

photobiological.  These processes, while at the early stages, offer a potential 

sustainable, low-carbon hydrogen production method.  However, their output is 

modest at best.  Direct solar water splitting processes and water electrolysis use 

water and energy to split water into hydrogen and oxygen.  Direct solar water 

splitting uses light as an energy source using semiconductor materials in a 

photoelectrochemical process1.  Water electrolysis uses electricity as an energy 

source to split water into hydrogen and oxygen.  Water electrolysis remains very 

energy intensive in its current iteration2–6.  Though these methods offer a “green” 

option since they are low in carbon emissions or even carbon free, the current 

state of the technologies and their economics keep them from being widely 

applied in the hydrogen production field. 

 Thermochemical processes are the most prominent means of present day 

hydrogen production.  The most common techniques are solar thermochemical 

hydrogen, biomass gasification, coal gasification and partial oxidation of oil and 

natural gas reformation (or steam methane reformation).  The cleanest and most 

sustainable of the thermochemical processes is solar thermochemical hydrogen 
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production or solar water thermolysis.  This involves the decomposition of water 

normally over cerium oxide catalysts at temperatures of over 2000K1,7.   

However, most thermochemical processes uses other chemical precursors.  H2S  

has been used in order to produce hydrogen and sulfur at temperatures ranging 

from 1030K to 1600K8–10.  Other hydrogen rich precursors have been used 

including NH3BH3 as a molecular precursor to H2
11.   

 Biomass, coal, oil and natural gas all use carbon-based precursors, 

creating CO and CO2 as by-products during their respective decomposition 

reactions.  Biomass consists of a variety of renewable organics including crops 

such as switchgrass or crop residue used to produce hydrogen.  One drawback 

to biomass is the complexity and variety of the composition of the input material.  

Gaseous products normally include H2, CH4, CO, CO2, and various others 

depending on the biomass.  The CO can then be combined with water in the 

water-gas shift reaction (WGS) in order to increase the efficiency12–14 Biomass is 

still in early development and is not a widely used hydrogen production method. 

Fossil based hydrocarbons presently offer the most inexpensive means of 

molecular hydrogen production.  According to the Department of Energy, as of 

2009, 96% of the world’s hydrogen was produced from various thermochemical 

processes. Of these 48% is derived from steam reforming of methane, 30% is 

derived from partial oxidation of oil and 18% is derived from coal gasification.  

Partial oxidation of oil occurs via the oxidation of more “traditional” petroleum 

fossil fuels under less than one to one stoichiometric conditions.  This allows 
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substantial hydrogen to be released from the hydrocarbons, but due to the lack of 

oxygen, cannot fully combust to create water.  This hydrogen can then be 

separated and used for other purposes.   

 Coal gasification is a technique used to produce a variety of products 

including syngas by the reaction seen below: 

 CH0.8 +  H2O +  𝑂2 →  𝐶𝑂2 + CO + H2 + impurities  (1-1) 

After the separation of impurities, the stream mixture is called synthesis gas and 

can be further processed into hydrogen-rich liquid fuels and chemical or the 

hydrogen produced directly from the process can be used. 

Steam reforming of natural gas is the dominant method of hydrogen production15.  

A recent increase in the availability of natural gas16 in the United States has 

presented increased economic opportunities for conversion of methane and 

methane-derived molecules to hydrogen.  Methane conversion to hydrogen fuel 

is described by the chemical reactions:  Initial reforming reaction: 

 CH4 +  H2O →  CO + 3H2 (1-2) 

Water-gas shift reaction (WGS): 

 CO + H2O →  CO2 + H2 (1-3) 

Steam-methane reforming (SMR): 

 CH4 +  2H2O →  CO2 + 4H2 (1-4) 



5 
 

Methane can also be converted to liquid methanol to increase its transportability 

and hydrogen fuel density.  Methanol can then be reformed as needed to 

hydrogen via the reactions below: 

 CH3OH +  H2O →  CO2 + 3H2 (1-5) 

 CH3OH →  CO + 2H2   (1-6) 

Steam reforming of methane and its derivatives produces byproducts, including, 

CO and CO2 which must be removed in order to purify to hydrogen fuel. 

Hydrogen Separation 

 Presently, hydrogen fuel can be separated from via three major 

processes:  pressure swing adsorption, fractional cryogenic distillation or 

membrane separation.  Pressure swing adsorption and fractional cryogenic 

distillation are the two most popular commercially available methods17.  

Separation to ultra-high purity hydrogen from these reformate streams by these 

two traditional methods has its disadvantages.  These include long cycle times, 

contamination and a large equipment footprint18. Membrane based separation 

hold advantages over these methods due to low energy consumption, scalable 

investment cost, and system effectiveness.  The most common membrane based 

hydrogen separation is based on metallic membranes such as Pd19 or Pd-alloy20–

22.  Diffusion through these membranes is based on the concentration gradient 

and can be described by Fick’s first law of diffusion.  However, mechanically 
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stability, expense, and slow rates of diffusion have limited their effectiveness in 

large scale applications. 

 An alternative to diffusion-based membrane separation is electrochemical 

separation.  Electrochemical hydrogen separation devices are advantageous 

relative to diffusion based membranes because of their shorter response time for 

the increase or decrease in demand for hydrogen, more efficient use of precious 

metals, and potential applications for simultaneous electrochemical compression.  

Unlike diffusion based membranes, the hydrogen is oxidized and transported as 

protons through the membrane to a counter electrode at which the protons are 

reduced to evolve pure hydrogen gas.  Multiple proton-conducting electrolytes 

have been proposed for this application, including perfluorinated sulfonic acid 

(PFSA) polymers operating at low temperatures (~80 °C)2,23, Phosphoric acid 

and phosphoric acid-doped polybenzidazole (PBI) at intermediate temperatures 

(~180 °C)24,25, and proton-conducting oxide membranes at higher temperatures 

(>500 °C)26. 

 An intermediate temperature range (150°C to 300°C) is uniquely 

favorable, due to the increased resistance of hydrogen oxidation catalysts 

(typically platinum) to poisoning in this temperature range,27–30 a thermal match 

to the optimal methanol reforming temperature of 240-260°C,31  and the ability to 

use a conventional low-cost materials set for stack and system components that 

is obviated at higher temperatures.  A relatively new proton conducting material 
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exists in this advantageous temperature range known as cesium dihydrogen 

phosphate. 

Cesium Dihydrogen Phosphate as an Electrochemical Membrane 

 Multiple electrolytes have been proposed for this task including 

perfluorinated sulfonic acid membranes (PFSA) for low temperatures, phosphoric 

acid and phosphoric acid-doped polybenzidazole (PBI) for intermediate 

temperatures, and proton-conducting oxide membranes at higher temperatures.  

The intermediate temperature range (150°C to 300°C) offers the best range of 

hydrogen separation from methanol reformate due to the optimal methanol 

reformation temperature of 240-260 °C32.  A graph of proton conductivities of 

electrolytes function at low to intermediate temperature is shown in Figure 1-1. 

 

 

Figure 1-1 Various proton conducting membrane materials from room 

temperature to intermediate temperatures. 
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The solid-state proton conductor cesium dihydrogen phosphate (CsH2PO4 or 

CDP) has shown potential in electrochemical devices operating on fuels such as 

reformed natural gas or methanol. CDP undergoes a solid-solid phase transition 

at 228 °C and an associated increase in proton conductivity of more than three 

orders of magnitude (8.5 x 10-5 S cm-1 at 223 °C to 2.5 x 10-2 S cm-1 at 250 °C)33.  

This “super protonic” phase’s stability is subject to the partial pressure of 

water34,35.  The application of CDP in fuel cells has been a major interest since 

their developmental inception.  These systems have been shown to tolerate 

reformate streams in H2-air cells containing CO, H2S, NH3, CH3OH, C3H8 and 

CH4 of 20%, 100ppm, 100 ppm, 5%, 3% and 5% respectively, retaining 90-95% 

of pure H2 performance36. Solid acid fuel cells operated using methanol and an 

integrated steam reformer have also shown similar results.  They have also 

showed encouraging results when operating on alcohol fuels37.   

 In addition to showing promise as intermediate temperature fuel cells, 

recent investigations have shown promise in the application of hydrogen 

separation and compression38.  However, these earlier studies were performed 

using simulated reformate feeds and typically used Pt as the hydrogen evolution 

and oxidation catalyst.  However, in one study, a Ni catalyst was used as a 

hydrogen evolution catalyst to replace Pt on the cathode39.  In another study Ru 

was used as an oxidation catalyst under simulated reformate36.  Previous work 

using methanol as a fuel in solid acid fuel cells (SAFCs) has shown that an 
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integrated reformer with proper heat management would prove advantageous to 

efficient system operation over two separate processes37. 

Hydrogen Separation Electrocatalysts 

 The majority of relevant electrocatalysts today utilize materials designed to 

be used as nanoscale particle coatings.  With reactions occurring on the surface 

of the catalysts, this approach maximizes the real surface area for a given 

volume or geometric surface area.  This leads to a higher catalytic utilization 

which leads to a reduction of costs. For some relatively abundant metals like Ni 

and Fe the cost reduction may seem unwarranted, but considering that most 

highly active electrocatalysts are composed of expensive and rare metals 

including Pt, Ru and Pd, this optimization must be achieved for large scale 

production.  The price of Pt, Pd and Ru prices can be seen in Figure 1-2. 

 

 

Figure 1-2 Metal prices of Pt/Pd/Ru since 2006 

 



10 
 

 The leading choice for this process are structures referred to as supported 

catalysts.  These involve an electron conducting support on which the catalyst 

nanoparticles will be placed.  These nanoparticles are normally hemispherical in 

shape.   

 For the CDP based hydrogen separation electrocatalyst, a novel chemical 

vapor deposition (CVD) method is used to create nanoparticles on various 

supports using metal acetylacetonate.  The most common technique is to flow 

the precursor vapor over a substrate that is at a higher temperature than the 

incoming vapor.  However, we have selected to use a packed, mixed bed 

technique that allows for a much simpler design, but inhibits temperature 

controllability.  While the exact mechanism in our current setup is still unknown, 

we will turn to the literature for insight on the nanoparticle formation.  The CVD 

process can be summarized by two different mechanism for particle synthesis.  

These are known as nucleation and growth.  Based off the rate of these two 

processes, the particle size can vary greatly.  For nucleation, three steps will be 

considered based on a stable gas-phase precursor molecule.  In the first step we 

consider the molecule physisorbs to the surface.  The second step involves 

chemisorption.  The third step is reaction to the metal atom on the surface.  For 

the growth case, we consider two different processes.  One is autocatalytic of 

properties, thus allowing for a direct reaction with another precursor molecule.  

The other is surface migration to form larger metal particles.  These two 

mechanisms are effected by three main reaction variables:  Gas phase, solid 
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phase, and temperature.  For the gas phase, this includes the precursor vapor as 

well as any other gas selected to potentially aid in the reaction.  The solid phase 

includes the support structure, including any physisorbtion from a supporting 

reaction vapor.  For the temperature, this includes the ramp rate, as well as final 

temperature.  While generalities exist for any procedure, each metal acac is a 

separate case. 

 We will first consider the case that yields the most consistent results, 

which involves using Pt acetylacetonate (Pt(acac)2 ) to form Pt nanoparticles.  

Pt(acac)2 has been used as a precursor for many different reaction schemes to 

make Pt nanoparticles40–43.  We will consider each of the parameters 

(temperature, gas and solid) in order to determine the potential effects on 

nucleation and growth.  For vapor decomposition, Pt(acac)2 has been reported to 

thermalize around 510K44.  However this is variable due to the gas phase and 

solid phase interactions as well.  Higher temperatures lead to considerable 

carbon impurities of up to 50mass%C45.  Slow temperature ramp rates (5°C/min) 

from room temperature to 210°C have shown to give the best results for small, 

uniform nanoparticles46.   

 The gas phase interacts with the precursor vapor by either reacting with 

the precursor in the vapor phase, or by modifying the surface coverage of the 

solid phase.  For Pt (acac)2 , hydrogen, oxygen, nitrogen, and water have been 

investigated.  Hydrogen lowers the activation energy, but also increases the 

amount of carbon impurity47,48.  Oxygen decreases the amount of carbon impurity 
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by reacting with the residual carbon48.  Water lowers the activation energy slightly 

from oxygen47 and with proper temperature control reduces the carbon impurity 

to 1% for nanoparticles49.  The surface of the support is also effected by the gas 

phase.  One notable example is the autocatalytic effect of the atmosphere for Pt 

deposited is hydrogen42 or an inert gas like nitrogen or argon50.  Hydrogen leads 

to larger grain sizes compared to the inert atmosphere. 

 For our deposition of Pt, we decided to use a N2/H2O atmosphere at a 

ratio of 0.3/0.4 bar respectively, with a ramp rate of 5°C and a final temperature 

of 210°C.  For the reaction, it has been suggested that the first step is Pt(acac)2 

physisorbtion to the surface.  Next chemisorption will proceed by ligand 

exchange with surface hydroxyls.  This then leaves an acacH, a protonated acac 

and a Pt-O bond.  The loss of the second acac proceeds rapidly yielding a PtII 

oxo-type intermediate species.  The reduction step to Pt0 occurs via a two-

electron process with the oxidation of the acacH46.  We suggest the water aids in 

decreasing the activation energy as shown in other cases47 as well as potentially 

assisting in limiting Pt diffusion, giving a higher density of nucleation and a 

smaller average crystallite size.   

 The CVD technique implemented in CDP catalyst synthesis does not 

involve expensive instrumentation normally required of the process41,51.  The 

deposition is support sensitive and the same method can be used to create 

conformal coatings46 as well as nanotubes52.  Bimetallic and alloyed nanotubes 

can also be formed using the same technique for various catalytic reactions53–57.  
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Although these techniques have been applied to the optimization of oxygen 

reduction reaction and alkaline electrochemical reactions, very little effort has 

been placed into the hydrogen oxidation reaction and the hydrogen evolution 

reaction for hydrogen separation systems. 

Cell Fabrication 

 In order to fabricate a cell, electrode mixtures must be synthesized for the 

membrane-electrode assembly.  The composite electrocatalyst powders were 

synthesized by dry-grinding the fine CDP with the various metal/carbon catalyst 

and naphthalene (a fugitive binder).  These mixtures kept the mass ratio of CDP, 

naphthalene and carbon to 3: 1: 0.4 (mass) allowing for variation of the electrode 

catalyst mass without modifying the electrode thickness.  Hydrogen pump 

membrane-electrode assemblies (MEAs) were then fabricated using these 

electrocatalysts by lamination of active layers in a 2.85 cm2 diameter hardened 

steel die.  Stainless steel mesh was used for current collector and PTFE tape for 

a sealant.  Each MEA had a membrane thickness of approximately 75 to 85 

microns.  The mass of a given electrode varied between 22 to 28 mg dependent 

on the metal loading on the carbon support.  In each cell, the hydrogen evolution 

electrode was laminated at 125 MPa while the hydrogen oxidation electrode was 

laminated at 25 MPa.  The cell assembly was installed in a stainless steel fixture 

for testing.  The overall cell summary is observable in Figure 1-3. 
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Figure 1-3 Cell summary for solid acid hydrogen separation devices 

 

At testing temperatures, a humidified gas stream (approximately 0.35 bar) must 

be supplied in order to stabilize the CDP and inhibit the dehydration reaction58. 

In Situ Electrochemical Techniques 

 In order for an electrochemical reaction to take place, there are several 

necessary components: anode and cathode, electrolyte, and external connection 

between electrodes.  The anode and cathode are where the electrochemical 

reactions occur.  Oxidation results in the loss of electrons from the electroactive 

material and occurs at the anode.  A reduction reaction consumes electrons and 

occurs at the cathode.  In the case of an electrochemical H2/H2 hydrogen pump, 

the reactions are described below: 
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 Anode:  H2 → 2H+ + 2e− (1-7) 

 Cathode:  2H+ + 2e−  →  H2 (1-8) 

The main function of the electrolyte is to conduct ions from one electrode to the 

other.  Electrolytes also have to be electrically insulating to properly separate the 

electrical charge and ensure that the electrons flow through the external circuit. 

 A properly designed electrochemical cell will have a measureable open-

circuit cell potential described in volts.  Ideally, this voltage is described by the 

Nernst potential and is a function of both temperature and pressure.  The Nernst 

potential is described below: 

 E =  Eo −
RT

nF
ln [

COx

CRed
] (1-9) 

Where E is the cell potential, E° is the standard cell potential (zero in the case of 

hydrogen), R is the universal gas constant, T is the temperature in Kelvin, n is 

the number of moles of electron transferred, and C is the chemical concentration.  

For a gas system, this concentration is described in partial pressures of the 

active species.  For a standard H2/H2 hydrogen pump with equal pressures, the 

Nernst potential is zero.  However, when operating using fuel or fuel reformate 

this potential will change based on the partial pressures of the hydrogen in each 

electrode. 

 When deviating from the open-circuit potential, a current will begin to flow.  

Normalizing the current response to geometric area and measuring at multiple 

cell potentials will describe a cell voltage-current relationship commonly referred 
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to as a polarization curve.  We adopt this as a primary figure of merit for the 

devices that are the subject of this thesis.  A polarization curve for a solid acid 

CDP based, Pt/Pt, H2/H2 cell operating at 250°C can be seen below in Figure 

1-4. 

 

 

Figure 1-4 Symmetric hydrogen polarization curve at 250 °C with 75 °C dew 

point. 

 

A simple equation to define the cell potential as a departure from ideal voltage is 

described below: 

 Ecell =  E°(T, P) −  ηa,a − |ηa,c| − ηr − ηm,a − |ηm,c| − ηx  (1-10) 
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Where Ecell is the cell potential, E°(T,P) is the theoretical equilibrium open-circuit 

potential of the cell calculated from the Nernst potential.  The activation 

overpotentials at the anode and cathode are represented by ηa,a and ηa,c 

respectively.  Crossover losses are represented by ηx. Ohmic polarization is 

represented by ηr. concentration losses are represented by ηm,a and ηm,c for 

anode and cathode respectively.  These inefficiencies lead to the generation of 

heat at a rate defined by: 

 PH = PH,rev + PH,irr (1-11) 

Where PH is the “waste” heat power density, PH,rev is the reversible heat 

generation and PH,irr is the irreversible heat generation.  The reversible heat 

generation is described below: 

 PH,rev = −i
TΔS

nF
 (1-12) 

 Where i is the current density, T is the temperature in Kelvin, n is the 

number of moles of electrons transferred and S is the entropy of reaction.  This 

entropic term is commonly referred to as the Peltier heating.  The irreversible 

heat generation is defined below: 

 PH,irr = i( ηa,a + |ηa,c| + ηr + ηm,a + |ηm,c| + ηx) (1-13) 

 Where i is the current density, the activation overpotentials at the anode 

and cathode are represented by ηa,a and ηa,c respectively, crossover and other 

losses are represented by ηx, ohmic polarization is represented by ηr, and 

concentration losses are represented by ηm,a and ηm,c for anode and cathode 

respectively.  In order to better understand electrochemical hydrogen separation 
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systems, a more detailed look into these overpotentials are required.  One 

extremely advantageous method for analysis of electrochemical systems is 

impedance spectroscopy. 

 Electrochemical impedance spectroscopy (EIS) is a technique commonly 

used for delineating some polarizations.  This technique involves the application 

of an alternating-current (AC) signal of varying frequencies over the 

electrochemical reaction interface.  This causes the electrode-electrolyte to 

oscillate with the same applied frequency.  EIS data can be utilized to gain a 

wealth of information on the ohmic, charge transfer, and mass transfer 

resistances by using equivalent circuit or a first-principles-based modeling 

approach.  The electric field of EIS is described below: 

 E(t) =  E0 + ejωt (1-14) 

Where E(t) is the AC electric field at any time t,  ω is the angular frequency, with 

amplitude E0.  The term j is used to represent the square root of negative one.   

The current response is defined by: 

 I(t) =  I0 + ej(ωt+ϕ) (1-15) 

Where I(t) is the current at any time t, I0is the current amplitude, ω is the angular 

frequency and ϕ is the phase shift.  By applying these to Ohm’s law 

 E(t) =  I(t) ∗ Z   (1-16) 

A new term Z is defined as the complex impedance characteristics.  This 

impedance term has two different components. 

 Z = Z′ + jZ′′ (1-17) 
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Where Z’ represents the real component and Z’’ represents the imaginary 

component.  Using EIS, the overpotentials described in (1-10) can begin to be 

described using equivalent circuits elements.  These elements must be selected 

intelligently to best describe the physical nature of the processes they represent.  

Term by term representation of the equivalent circuit models will be described 

below. 

Activation Losses 

 The activation overpotentials at the electrodes represented by ηa,a and ηa,c 

physically represent the voltage loss required to initiate the reaction.  Between 

the electrode and the electrolyte there exists a structure referred to as the 

electrical double layer.  At the electrode and the electrolyte surface there is an 

accumulation of charge.  This accumulation of charge is only broken when the 

voltage exceeds the difference required to drive the charge transfer, thus leading 

to the electrochemical reaction.  This discontinuity of charge physically leads to 

capacitor like effects.  For equivalent circuit analysis, an electrode can be 

modeled as a resistance-capacitance (RC) circuit where the resistance and 

capacitator are in parallel.   

 Real material EIS spectra rarely display perfect RC circuit behavior.  In 

order to better represent the electrode in circuit models, a new circuit element, 

the constant phase element, is introduced to replace the capacitor.  The constant 

phase element is defined below: 
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 ZCPE =
1

Q(jω)a
 (1-18) 

Where Q has units of capacitance, ω is the angular frequency, and a varies 

between 0 and 1.  When a is equal to 0, the CPE reduces to a pure resistor and 

when a is equal to 1, the CPE displays an ideal capacitator response.  This is 

represented in Figure 1-5. 

 

 

Figure 1-5 Circuit model for electrodes in solid acids 

 

Where Q represents the CPE and R represents the charge transfer resistance.  

The subscripts “ox” and “red” represents the oxidation and reduction electrodes 

respectively.   

Polarization Kinetic Losses 

 In order to determine the kinetic polarization losses, a model must be used 

to evaluate the electrodes.  A general expression derived to express the kinetic 

activation potential of a given electrode is the Butler-Volmer (BV) model.  The BV 

describes an electrochemical model that is limited by the charge transfer of the 

electron as the rate determining step.  Other models are required to describe 
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systems with another limiting step or reactions that compete in parallel.  The BV 

model for both electrodes is defined below: 

 i =  io[eaaFη/RT − e−acFη/RT] (1-19) 

Where i is the current, io is the exchange current, aa and ac are the anodic and 

cathodic transfer coefficients, respectively, η is the overpotential, R is the 

universal gas constant and T is the Kelvin temperature. In the case of a rate-

limiting electron transfer step for the HOR/HER, (1-19) is equivalent to: 

 i =  io[eβFη/RT − e−(1−β)Fη/RT] (1-20) 

Where the transfer coefficients have been replaced by the symmetry factor, β, 

which for a completely symmetric activation barrier takes a value of 0.5.  By 

varying io and β as free parameters, a least-squares fitting can be used to fit 

polarization curves.  When the effective anodic transfer coefficient approaches 

zero, the low field approximation can be used as described in equation (1-21). 

 
i = io ∗

ηF

RT
 (1-21) 

Where, i is the current io is the exchange current density η is the over potential, F 

is the Faraday’s constant, R is the universal gas constant and T is the 

temperature in Kelvin.  However, a very educated upper and lower bound must 

be made to normalize the exchange current density.  Determining the exact tri-

phase boundary for solid acid environments remain an open problem but 

estimates can be made based between the physical surface area and the 

electrochemical surface area (ECSA) found in aqueous electrochemical tests38. 
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Ohmic Losses 

 The next major losses are the internal ohmic losses represented by ηr.  

This behavior is linear and can be defined by the summation of all contact and 

ionic resistances.  The ohmic polarization is represented as 

 ηr = I (∑ rk

n

k=1

) (1-22) 

Where I is the current, rk is the resistance of individual cell components.  Using 

EIS, the total ohmic resistance ( ∑ rk
n
k=1 ) is represented by the high-frequency 

resistance (HFR), which is defined as the intercept with the real axis in the high-

frequency region of the impedance arc.  This is represented by the circuit 

element in Figure 1-6. 

 

 

Figure 1-6 Circuit model for ohmic resistance in solid acid devices 

 

 The ionic resistance of the electrolyte represents the majority of the ohmic 

resistance.  The resistance is also a function of the geometry of the conducting 

material.  In order to describe the intrinsic property of a material, the resistivity 

shall be used.  The resistivity is related to the resistance through the cross-

sectional area and the linear path of ionic travel.  The conductivity, the inverse of 

the resistivity, is another common term to describe the effectiveness of ion 
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transport.  The conductivity also represents the intrinsic property of a material.  

For solid acid CDP systems, only the super-protonic phase is desirable for 

operations.  This region can be seen in Figure 1-7.  The conductivity in this 

region is dependent on the temperature of operation and follow an Arrhenius 

relationship. 

 σ =  Aoe−(
Ea
kT

)
 (1-23) 

Where Ea is the activation energy, k is the Boltzmann constant, and T is the 

Kelvin temperature.   

 

 

Figure 1-7 Measured proton conductivity of cesium dihydrogen phosphate 
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 This relationship, with an understanding the geometry of the cell, can be 

used to make further analysis of the system, such as temperature changes 

based on a conductivity difference. 

Polarization Mass Transport Losses 

 During electrochemical reactions, a reduction in the reactant surface 

concentration reduces the thermodynamic voltage from the Nernst equation and 

the exchange current density from the BV equation.  Restriction of the rate of 

transport within the porous electrode can occur for a variety of reasons including 

gas-phase diffusion limitation, accumulation of inert species, and surface 

blockage by poisoning.  The diffusion of hydrogen is rapid, but in very dilute 

streams containing other species, mass transport of hydrogen to the electrode 

becomes an issue.  This gas-phase diffusion limitation and the accumulation of 

inert species can be modeled in EIS analysis by introducing a new circuit 

element called the finite-length Warburg diffusion element.  The complex 

impedance represented by the Warburg element is described below: 

 Z =  
Rd tanh(√jωτ)

(√jωτ)
 (1-24) 

Where Rd is a resistance and τ is a time constant.  Catalyst surface blockage by 

poisoning has to be represented using a different model.  In order to model this, 

a modification of the BV relationship can be made in order to describe the more 

complex phenomena of catalyst blocking.  Natural gas derivatives, such as 

syngas, contain impurities including CO and H2S.  For the particular case of CO 
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adsorption, a new function θ can be introduce to help describe this phenomenon.  

This function is based on the relative CO coverage of the electrocatalyst.  A first-

order case of (1-θ) is derived for room-temperature systems which assumes 

negligible CO desorption.  This seems unlikely for the elevated temperatures of 

250 °C in which CDP based electrolytes operate and, indeed, electrochemical 

peaks for CO oxidation are not observed in these systems.  A second-order case 

(1-θ)2 assumes two adjacent Pt sites are required for hydrogen adsorption, which 

may not be justified if hydrogen dissociative adsorption is not rate limiting step.  

This modification to the BV equation is seen below: 

 i =  (1 − θ)nio[eβFη/RT − e−(1−β)Fη/RT] (1-25) 

Where: 

 (1 − θ)n =
RI,H2

RX,H2

 (1-26) 

Where RI,H2
represents the charge transfer resistance for the HOR in an anode 

feed diluted with an inert species and RX,H2
 is the same concentration with the 

inert replaced with CO.  The n represents the mode of CO absorption.  For low-

overpotentials, an approximation can be used to simplify calculations: 

 i =  (1 − θ)nio

ηF

RT
 (1-27) 

Other Polarization Losses 

 The polarization losses represented by the chemical crossover and 

electrical shorts can be modeled as well, however a properly designed system 

will minimize these losses to almost negligible values.  Due to our experimental 
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setup, another equivalent circuit element must be added to account for the 

inductance generated.  Inductance is of highest influence at very high 

frequencies in the EIS spectra and is a result of the stainless steel test fixture. 

This is represented in the circuit by the diagram below: 

 

 

Figure 1-8 Induction parameter for modeling the stainless steel test fixture 

in solid acid devices 

 

  By combining all these elements an equivalent circuit is modeled to represent 

the solid acid hydrogen separation system.  For systems with 100% H2 

concentration 

 

 

Figure 1-9 Solid acid circuit model for hydrogen separation devices 

 

For systems with diffused hydrogen input, like our reformate streams the 

Warburg element is added: 
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Figure 1-10 Solid acid circuit model for hydrogen separation devices with 

mass limitations in one electrode 

 

These circuit models are used in order to model EIS spectra in solid acid 

systems. 

X-ray Diffraction 

 X-ray diffraction is an essential technique for analyzing long-range order of 

crystalline solids.  The analysis of XRD is described by the Bragg equation 

(1-28). 

 nλ = 2dsin θ (1-28) 

Where λ is the wavelength of the x-ray, θ is the angle between the incident ray 

and the surface of the crystal, and d is the spacing between the layers of atoms.  

When the incident rays that make the Bragg angles are only slightly different 

from theta, we find that destructive interference is not complete.  This leads to an 

increasing of the width of a diffraction peak with the decreasing of the crystal 

size.  The exact treatment of this yields the Scherrer formula. 
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 t =
0.9λ

Bcos θ
 (1-29) 

Where t is the particle size of very small crystals, λ is the wavelength of the x-ray, 

and B is the full width half maximum of a diffraction peak. 

Gas Chromatography-Mass Spectrometry (GCMS) 

 Gas chromatography-mass spectrometry is an essential technique for 

measuring composition of gases as well as volatile liquids.  As hinted by the 

name, there are two components: the gas chromatographer and the mass 

spectrometer.  The gas chromatograph utilizes a capillary column as well as 

various chemical phases in order to increase or decrease the retention time of 

various molecules.  The mass spectrometers job is to capture, ionize, accelerate, 

deflect and detect the ionized molecules.  This is achieved by breaking each 

molecule into ionized fragments and analyzing the mass-to-charge ratio.  The 

number counts detected based off the mass-to-charge ration can then be used to 

determine the gas stream composition. 

Transient Plane Source 

 The transient plane source method is a useful technique for determining 

the thermal conductivities of solids.  In its most general form, two similar pellets 

are placed on either side of a sensor.  Then a thermal pulse is generated and the 

temperature response is measured.  This measured temperature is then fit to an 

equation based off the shape factor of the sensor and the sample.  For our case, 

the equation of fit is shown in equation (1-30) 
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 𝑇(𝜏) =
𝑃

𝑟𝜆𝜋
3
2

𝐷(𝜏) (1-30) 

Where P is the power per unit, r is the radius of the sensor, 𝜆 is the 

thermal conductivity, 𝐷(𝜏) is the shape function.  
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CHAPTER 2  

SUPPORTED CATALYST FOR SOLID ACID ELECTROCHEMICAL 

HYDROGEN SEPARATION 
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Abstract 

 

 The solid-state proton conductor cesium dihydrogen phosphate 

(CsH2PO4 or CDP) has shown potential in electrochemical devices operating on 

fuels such as reformed NG or methanol. CDP undergoes a solid-solid phase 

transition at 228 °C and an associated increase in proton conductivity of more 

than three orders of magnitude (8.5 x 10-5 S cm-1 at 223 °C to 2.5 x 10-2 S cm-1 

at 250 °C).  These systems have been shown to tolerate reformate streams in 

H2-air cells containing CO, H2S, NH3, CH3OH, C3H8 and CH4 of 20%, 100ppm, 

100 ppm, 5%, 3% and 5% respectively, retaining 90-95% of pure H2 

performance58. Solid acid fuel cells operated using methanol and an integrated 

steam reformer have also shown similar results37.  Recently, we showed that this 

material can also be used in an electrochemical hydrogen separation system 

using similar reformate streams36.  In the majority of these earlier studies, 

platinum was used as the catalyst for both the hydrogen reduction and oxidation 

reactions. We have also demonstrated that unsupported nickel is an effective 

hydrogen evolution catalyst in solid acid hydrogen pump devices39.  Here, we 

have synthesized a suite of carbon-supported catalysts (Pt, Pd, Ru, Ni and Cu) 

for implementation in electrodes.  We evaluate these materials as hydrogen 

oxidation and evolution catalysts in CDP-based devices. 
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Introduction 

 

 The efficiency and cost of hydrogen oxidation catalyst are of paramount 

importance to any potential hydrogen economy.  Typically in fuel cells, the HOR 

reaction can be practically ignored. This is true for solid acid fuel cell systems 

where the charge transfer resistance for a Pt/Pt hydrogen/air cell is 2.2 Ω cm2 

and for the hydrogen oxidation reaction is 0.05 Ω cm2.  Platinum based catalyst 

are the most effective and stable catalyst for the hydrogen oxidation catalyst 

(HOR) and the hydrogen evolution reaction (HER) for acidic environments.  

However, due to the rarity and expense of Pt, other catalyst must be investigated 

to determine an effective substitute.  The first step we will take will be examining 

the reaction mechanism. 

 The intrinsic kinetic rate of the hydrogen reaction, known as the exchange 

current density, io is defined as the rate at which the reaction proceeds at 

equilibrium.  The mechanism for the HOR reaction on Pt in acidic environments 

is usually assumed to proceed by adsorption of molecular hydrogen, followed by 

dissociation, and finally a fast charge-transfer step. 

 𝐻2 → 2𝐻𝑎𝑑 (2-1) 

 𝐻2 → 𝐻+ + 𝐻𝑎𝑑 + 𝑒− (2-2) 

 𝐻𝑎𝑑 → 𝐻+ + 𝑒− (2-3) 

These equations are referred to as the Tafel (2-1), Heyrovsky (2-2) and the 

Volmer (2-3). 
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 While various studies have been performed on the HOR and HER reaction 

in low temperature aqueous environments59–62 and phosphoric acid25, very 

limited studies have been performed on solid acid systems.  The presence of the 

electrolyte can have a major effect on the effects on the reactions.  This is most 

notable for Ru based catalyst which are poor performance in low temperature 

acidic environments for HOR63.  Hydrogen evolution reactions catalysis has also 

been studied in great detail for various catalyst including Ni, Cu, Ru, Pd and Pt64.  

However, as with the case of the HOR reaction, there have been very limited 

studies on non-aqueous environments. 

 A new class of proton conductor, cesium dihydrogen phosphate (CDP) 

allows for an effective hydrogen separation system at temperature ranges of 230-

250°C.  CDP based cells have already been implemented as a fuel cell on anode 

streams containing as much as 20% CO and as a hydrogen separation system 

on simulated reformate containing as much as 10% CO36. 

 In this contribution, we investigate multiple catalyst for hydrogen 

separation including Pt, Pd, Ru, Cu, Ni, NiCu and RuNi electrodes for both HOR 

and HER reactions.  Chemical vapor deposition was used to synthesize the 

catalyst on Vulcan XC72 carbon support.  We normalized the performance to Pt 

electrodes for both the HOR and HER reaction due to the stability in solid acid 

systems.  While the effective electrochemical surface area (ECSA) for solid acids 

is still an open problem, we bound our minimum surface area to the electrolyte 
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surface area of 2 m2/g and by measured ECSA found in the Pt aqueous acid 45 

m2/g in order to compare to other literature cases65. 

 

Experimental Methods 

 

 CsH2PO4 was synthesized by reaction of CsCO3 (Alfa Aesar, 99%) with 

H3PO4 (Alfa Aesar, 85%) followed by precipitation in methanol and drying.  The 

as-synthesized CDP was low-energy ball-milled to reduce its initial particle size, 

yielding a fine particulate powder with a BET surface area of approximately 2 

m2/g.   Carbon-supported metallic nanoparticles were synthesized as hydrogen 

oxidation and evolution catalysts. Platinum, Palladium, ruthenium, and nickel 

nanoparticles were deposited onto Vulcan XC-72R via a vapor-phase 

decomposition from their respective metal acetylacetonates Pt(acac)2 (Strem 

Chemical), Ru(acac)3 (Sigma-Aldrich), Cu(acac)2 (Sigma-Aldrich), Pd(acac)2 

(Strem-chemical) and Ni(acac)2 (Alfa Aesar).  These reactions were carried out 

using a fixed bed wherein the crystalline solid precursors were mechanically 

mixed with the Vulcan XC-72R carbon, in a N2-water vapor atmosphere at 

elevated temperatures via a method that we have demonstrated 

previously36,46,52,56,66,67.  The ultimate deposition temperature varied for each 

species deposited, from 170°C (palladium), 210 °C (platinum) and 240 °C 

(ruthenium, nickel, and copper).  The carbon-supported nickel and copper 

samples was further heat treated at 500°C under N2 for 3 hours in flowing N2.All 
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catalysts were characterized with using X-ray diffraction (XRD) (Philips X'Pert, l 

¼ 0.1541874 nm).  The position and width of diffraction peaks were obtained by 

fitting to Voight functions using IGOR Pro (Wavemetrics, Inc.).  Ru catalysts were 

further analyzed by transmission electron microscopy (Zeiss Libra 200MC). 

 Composite electrocatalyst powders were synthesized by dry-grinding the 

fine CDP with the various metal/carbon catalyst and naphthalene (a fugitive 

binder).  These mixtures kept the mass ratio of CDP, naphthalene and carbon to 

3: 1: 0.4 (mass) allowing for variation of the electrode catalyst mass without 

modifying the electrode thickness.  Hydrogen pump membrane-electrode 

assemblies (MEAs) were then fabricated using these electrocatalysts by 

lamination of active layers in a 2.85 cm2 diameter hardened steel die.  Stainless 

steel mesh was used for current collector and PTFE tape for a sealant.  Each 

MEA had a membrane thickness of approximately 75 to 85 microns.  The mass 

of a given electrode varied between 22 to 28 mg dependent on the metal loading 

on the carbon support.  In each cell, the hydrogen evolution electrode was 

laminated at 125 MPa while the hydrogen oxidation electrode was laminated at 

25 MPa.  The cell assembly was installed in a stainless steel fixture for testing. 

 Prior to electrochemical testing, the cell assembly was heated to 150 °C in 

dry Ar.  Both electrodes were then switched to a wet Ar purge at 75 °C dew point 

and heated to the testing temperature of 250 °C. 

 Electrochemical testing was conducted at 250 °C.  At the start of the 

experiment, each electrode was supplied 30 sccm of humidified ultrahigh purity 
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hydrogen at a 75 °C dew point. Polarization curves were recorded at 1 hour 

intervals with a Bio-Logic VSP potentiostat by scanning the working electrode 

potential at 5 mV s-1 from the open circuit voltage (OCV) to -0.3 V then to 0.3 V of 

overpotential. Potentiostatic electrochemical impedance spectroscopy (PEIS) 

spectra were also recorded at -50 mV versus OCV in a frequency range from 200 

kHz to 200 mHz with a single sine perturbation amplitude of 10 mV.  Polarization 

curves free of the ohmic losses due to membrane resistance were derived by the 

subtraction of the current multiplied by the high frequency resistance measured 

at OCV. Cells were held at -50 mV for 1 hour between testing cycles. 

 Imaging of electrodes and chemical analysis was conducted with a Hitachi 

TM3000 SEM equipped with a Bruker Quantax EDS system operating at 15 kV. 

 

Results and Discussion 

 

 Electrocatalysts are essential components for the solid acid hydrogen 

separation device and are separated into two electrodes separated by the 

membrane.  For the hydrogen oxidation and evolution reaction, Pt and Pt alloys 

are generally considered to be the most active.  Platinum itself is a rare and 

expensive metal, which hinders wide scale use for electrocatalysts.  Various 

techniques have been implemented in order to maintain performance while 

reducing the amount of Pt used in electrodes.  One of the most implemented 

tactics is reducing the particle size of the active catalyst to nanoparticles.  
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Nanostructured materials have an increased surface area to volume ratio which 

inherently increases the activity per mass.  These nanoparticles are normally 

supported on a network of electron-conduction support, like carbon, which further 

increases the utilization of the catalysts.  We have chosen to adopt this technique 

in order to fabricate high efficiency electrodes for the solid acid hydrogen 

separation system.  Carbon-supported Pt nanoparticles were synthesized as 

hydrogen oxidation and evolution catalysts. Platinum nanoparticles were 

deposited onto Vulcan XC-72R via a vapor-phase decomposition from its 

respective metal acetylacetonate, Pt(acac)2  These reactions were carried out 

using a fixed bed wherein the crystalline solid precursors were mechanically 

mixed with the Vulcan XC-72R carbon, in a N2-water vapor atmosphere at 

elevated temperatures via a method that we have demonstrated previously52,56,68.  

The ultimate deposition temperature was 210 °C.  

In order to evaluate the effectiveness of our deposition procedure, various 

characterization techniques were implemented.  X-ray diffraction is one essential 

technique for analyzing long-range order of crystalline solids.  The analysis of 

XRD is described by the Bragg equation described in (1-28). 

 When the incident rays that make the Bragg angles are only slightly 

different from theta, we find that destructive interference is not complete.  This 

leads to an increasing of the width of a diffraction peak with the decreasing of the 

crystal size.  The exact treatment of this yields the Scherrer formula (1-29).  Cu 

Kα X-ray diffraction patterns for as-synthesized carbon-supported Pt are shown 
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in Figure 2-1.  A mean particle size was computed using the Scherrer equation 

(1-29) and is found to be 3.3nm.  This is in agreement with Pt nanoparticles 

synthesized using similar methods.  We find for the Pt/C lattice parameter of 

0.3916nm.  This is in reasonable range of the tabulated value of 0.3923nm.   

 

 

Figure 2-1 XRD pattern for vapor-grown 60% Pt/XC72 

 

 While platinum on carbon (Pt/C) is an efficient catalyst and electron 

carrier, an ion conducting network for protons must be created in order provide 

for the electrochemical reaction.  In order to achieve this, the solid acid CDP was 

mixed in with the supported catalyst and a fugitive binder.  This electrode mixture 

is then laminated on either side of the membrane.  Figure 2-2 shows an SEM 

micrograph of an electrode formed using the supported catalysts with a total 

metal loading of 1.05 mgPtcm-2.  The CDP membrane can be seen at the top of 
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the screen while the voids in the electrode are due to the fugitive naphthalene 

which is used a binder.  Figure 2-2b shows a higher magnification of the same 

electrode.  The large 1 um CDP particles can be seen mixed with the carbon 

supported catalysts and does not display optimal mixing and dispersion. 

 

a)  b)   

Figure 2-2 SEM micrographs of Pt/Pt electrodes post test 

 

 These cells are than loaded into a stainless steel test fixture and brought 

up under dry inert gases (either N2 or Ar) to 150°C.  At this temperature, the 

gases are humidified to around 0.35 bar (75°C dew point) in order to inhibit the 

CDP dehydration reaction as reported by the phase diagram35.  At 250°C, these 

humidified purge gases are turned to H2 in order to begin electrochemical 

hydrogen pumping.  The first diagnostic test is electrochemical impedance 

spectroscopy performed at OCV.  In order to normalize our results, these 

resistance values were multiplied by the geometric measured area that is 

exposed to membrane.  A symmetric 1.05 mg/cm2 (per electrode) Pt/Pt 

impedance arc is shown in Figure 2-3 at 250°C under a hydrogen anode and   
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Figure 2-3 EIS spectra collected at OCV in hydrogen for Pt/Pt 
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hydrogen cathode feed at 75°C dew point.  This dew point is required in order to 

maintain stable proton conduction at 250°C35. 

 Due to the slight fabrication difference, there is always slight variation in 

the cell performance, notably the high frequency resistance (HFR).  This is the 

resistance at the intercept of the higher frequency (in this case around 12,000 

Hz) and accounts mostly for the membrane resistance, although all DC ohmic 

resistances are included in this measured value.  By taking advantage of Ohm’s 

law, we can multiply the measured HFR by the current in order to examine an IR-

free system.  The effect of the ohmic losses are most notable in Figure 2-4. 

 

 

Figure 2-4 Polarization curves in hydrogen at 250 °C for Pt/Pt 
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 The as-recorded and iR-free polarization curves for the Pt-Pt MEA 

acquired in pure H2 at 250 °C are shown in Figure 2-5.  The curves are 

symmetric and the dominant loss channel is ohmic, accounting for around 80% of 

the total losses in the cell. The majority of this resistance comes from the 

membrane.  Relatively thick membranes are currently used in solid acid 

hydrogen pumps for consistency.  These membrane have been shown to be 

reduced to 40 microns, but due to the large amount heat developed can lead to 

degradation.  This will be discussed more in chapter 5. 

 

 

Figure 2-5 iR-free polarization curves acquired in hydrogen at 250 °C with 

1.05mg/cm² electrodes for Pt/Pt 

 



43 
 

Figure 2-6 shows Tafel representations of iR-free polarization curves.  Using the 

iR-free polarization curves at temperatures at 250 °C, we applied the Butler- 

Volmer equation (1-20).  Allowing for io and ß to vary as free parameters, we 

applied a non-linear fitting to find the best fits for the polarization curves.  A value 

of 0.49 was found for ß and a geometric exchange current density found was 452 

mA/cm2.   

 

 

Figure 2-6 Tafel representation acquired in hydrogen at 250 °C with 

1.05mg/cm² electrodes for Pt/Pt 

 

 While the geometric surface area is an effective parameter in for 

evaluation, it only normalizes by the 2d face of the electrode.  Examining the 
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microstructure of the electrode membrane interface in higher magnification, 

Figure 2-7, we see that the electrode structure extends in the third dimension.  

Thus we must determine a more accurate way to measure the Pt active area of 

the electrode.  This is commonly referred to as the electrochemical surface area 

(ECSA) and denotes the total area of the reaction. Unfortunately, the effective 

electrochemical surface area (ECSA) for solid acids is still an open problem.  

This does not limit us completely however, and we will bind our surface area by 

considering the maximum and minimum cases. 

 

 

Figure 2-7 SEM micrographs of the electrode/membrane interface 

 

 In order to determine the maximum case, we must determine the surface 

area of the Pt nanoparticles on the carbon.  Electrochemical characterization of 

the as-synthesized catalysts was carried out with cyclic voltammetry (CV) using a 
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glassy carbon working electrode, a gold wire counter electrode, and a Hg/HgSO4 

reference electrode in N2-saturated 0.1M HClO4 and was reported in this study67.  

The measured surface area was 45 m2/g.  For the minimum case, we bound our 

surface area to the electrolyte surface area in the electrode.  In order to measure 

this surface area, we implemented BET, which is a technique based off of the 

Langmuir theory for monolayer adsorption.  We measured the surface area to be 

2 m2/g. 

 Using these maximum and minimum surface areas we were able to 

determine a functional range for the exchange current density.  The lower bound 

of the exchange current density based on the ECSA of Pt is 1.31 mA/cm2 and for 

the upper bound based off of the electrolyte area is 29.48 mA/cm2.  A similar 

range is found for Pt in the literature27,69–73.  Evaluation from the MEA structure in 

Figure 2-7 leads us to the suggestion that upper bound of 29.48 mA/cm2 is closer 

to the true value.  Although it is reasonable to assume that the CDP electrolyte is 

not in contact with all the Pt, which could also increase the exchange current 

density even higher to approach values that are reported in low temperature 

PEMFC cells.  This general procedure is applied to all further catalyst studies.  

The 1.05 mg/cm2 Pt supported on XC72 will act as the control case, and the 

basis for all of our supported catalysts. 

 Palladium is a slightly less expensive metal and resides closely to Pt in 

volcano plots of activity versus hydrogen bonding energy64.  However in anodes, 

Pd typically shows worse performance74,75.  Another issue for low temperature 
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anodes is the acidic liquid tends to compromise the stability of the Pd due to 

dissolution.  Despite these issues, we decided to test Pd as a HOR and HER 

catalyst in solid acid hydrogen separation system.  Palladium nanoparticles were 

deposited onto Vulcan XC-72R via a vapor-phase decomposition from their 

respective metal acetylacetonates Pd(acac)2  These reactions were carried out 

using a fixed bed wherein the crystalline solid precursors were mechanically 

mixed with the Vulcan XC-72R carbon, in a N2-water vapor atmosphere at 

elevated temperatures via a method that we have demonstrated in previous 

studies52,56,68.  The ultimate deposition temperature was 180 °C.  

 

 

Figure 2-8 XRD pattern for vapor-grown 60% Pd/XC72 

 

 X-ray diffraction patterns for as-synthesized carbon-supported Pd have 

been previous reported67.  We find for the Pd/C lattice parameter of 0.3965nm.  



47 
 

This is in slightly different than the tabulated value of 0.3892nm.  Previous we 

have isolated this lattice expansion to the presence of interstitial carbon as a 

consequence of the metalorganic synthesis route49.  Using the Scherrer relation 

(1-29) the particle size can be calculated to 4.3nm.  These supported 

nanoparticles were then mechanically mixed with CDP and naphthalene in a 

similar fashion as the Pt electrodes. As-recorded and iR-free polarization curves 

for the Pt-Pd MEA acquired in pure H2 at 250 °C are shown in Figure 2-9.  A 

Pt/Pt control is also displayed for reference. 

 

 

Figure 2-9 iR-free polarization curves acquired in hydrogen at 250 °C with 

1.05mg/cm² electrodes for Pt/Pt and Pd/Pt 
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 The curves are symmetric and the dominant loss channel is ohmic, 

accounting for around 80% of the total losses in the cell.  Pd has a fairly linear 

response, however we note that as the current increases current starts to 

delineate.  Contrary to Pt, Pd shows less symmetry to in the HOR vs HER 

reactions.  While not by a large margin, Pd favors the HOR reaction to the HER 

reaction.  Potential possibilities could include Pd ability to form Pd hydrides thus 

potentially increasing the anode reaction.  This could also dampen Pd’s ability to 

accept a proton on the cathode.  

 Figure 2-10 shows Tafel representations of iR-free polarization curves.  

Using the iR-free polarization curves at temperatures at 250 °C, we applied the 

Butler- Volmer equation (1-20).  Allowing for io and ß to vary as free parameters, 

we applied a non-linear fitting to find the best fits for the polarization curves.  A 

value of 0.4 was found for ß and a geometric exchange current density found 

was 407.5 mA/cm2 for the hydrogen oxidation reaction and 0.415 for ß and 406.3 

mA/cm2 for the geometric exchange current density for the hydrogen evolution 

reaction.  The area normalized current for Pd is 0.65-26.51 mA/cm2, which lies 

within similar range to Pt.  This is expected as Pt and Pd lie very close in the 

volcano plot for catalytic activity for the hydrogen reaction, however we must note 

the difference in performance from low temperature anodes.  Pd has also been 

reported to be stable in CDP based hydrogen separation systems for over 100 

hours at 0.1V overpotential67.  We contribute this stability to the nature of the 

solid-gas electrode.  However, Pd is not stable in fuel cell cathodes for solid acid 
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systems.  This is contributed to the reactivity of Pd-oxides with the CDP 

electrolyte49,57.   

 Ruthenium was selected as the next catalyst for the HOR and HER 

reaction in solid acid hydrogen separation devices.  Although having similar 

scarcity to Pt, Ru is surprisingly 25 times less expensive.  For low temperatures  

 

 

Figure 2-10 Tafel representation acquired in hydrogen at 250 °C with 

1.05mg/cm² electrodes for Pd/Pt 

 

in aqueous environments, Ru is a poor performer due to OH adsorbing to the 

catalyst for HOR and HER reactions.  However, alloying Ru with Pt has shown 

an increase in performance as well as aiding in the removal of CO from the Pt 
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surface.  Raising the temperature of the HOR reaction on pure Ru to 60°C from 

25°C has also shown a large increase in performance.  We hope that the 

removal of the aqueous solvent as well as the raising of the operational 

temperature to 250°C will lead to an effective HOR and HER catalyst in solid acid 

hydrogen separation devices.  Ruthenium nanoparticles were deposited onto 

Vulcan XC-72R via a vapor-phase decomposition from its respective metal 

acetylacetonate, Ru(acac)3  This reaction was carried out using a fixed bed 

wherein the crystalline solid precursors were mechanically mixed with the Vulcan 

XC-72R carbon, in a N2-water vapor atmosphere at elevated temperatures via a 

method that we have demonstrated previously52,56,68.  The ultimate deposition 

temperature was 240 °C.  X-ray diffraction patterns for as-synthesized carbon-

supported Ru are shown in Figure 2-11. 

 

 

Figure 2-11 XRD pattern for vapor-grown 60% Ru/XC72 
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XRD is not a good indicator for measuring the particle size for Ru on XC72.  In 

order to determine the particle size, TEM was used to measure the particles.  

This is depicted in Figure 2-12.  All of the metal observed was present in contact 

with the carbon support.  These supported nanoparticles were then mechanically 

mixed with CDP and naphthalene in a similar fashion as the Pt electrodes. 

 

 

Figure 2-12 High resolution TEM micrographs of the Ru nanoparticles 

dispersed on Vulcan XC-72R 

 

 As-recorded and iR-free polarization curves for the Pt-Ru MEA acquired in 

pure H2 at 250 °C are shown in Figure 2-13 for hydrogen oxidation and hydrogen 

evolution. The higher metal loading of 1.05 mg/cm2 curves are relatively 

symmetric and the dominant loss channel is ohmic, accounting for around 70% of 
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the total losses in the cell.  While Ru appears to have a linear trend, as the 

overpotential increases the slope increases.  At 500 mV of cell overpotential the 

charge transfer resistance increases from 0.1 to 0.15 Ω cm2.  However the story 

is slightly different for the HER reaction.  For the HER reaction, Ru remains linear 

for most of the curve.  The disparity of the HOR/HER branches could possibly be 

explained by the difference in the M-H bond strength for Ru metal which resides 

on the side of the volcano plot known to absorb hydrogen less readily64,76. 

 

 

Figure 2-13 iR-free polarization curves acquired in hydrogen at 250 °C with 

1.05mg/cm² electrodes for Pt/Pt and Ru/Pt 

 

Figure 2-14 shows Tafel representations of iR-free polarization curves.  Using the 

iR-free polarization curves at temperatures at 250 °C, we applied the Butler- 
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Volmer equation (1-20).  Allowing for io and ß to vary as free parameters, we 

applied a non-linear fitting to find the best fits for the polarization curves.  A value 

of 0.4 was found for ß and a geometric exchange current density found was 

317.5 mA/cm2 for the hydrogen oxidation reaction and 0.42 for ß and 319.8 

mA/cm2 for the geometric exchange current density for the hydrogen evolution 

reaction.  This is a drastic difference between the low temperature aqueous 

cases76. 

 

 

Figure 2-14 Tafel representation acquired in hydrogen at 250 °C with 

1.05mg/cm² electrodes for Ru/Pt 

 

Further investigation into the HOR reaction is conducted by deteremining the 

activation energy.  This is done by determing the geometric exchange current 
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density at four temperatures: 230, 240, 250, and 260°C.  By then assuming an 

Arrhenius relationship, the activation energy for the H2 electrooxidation is 

determined.  This is seen in Figure 2-15 by plotting the log of the geometric 

exchange current density vs 1/T.  An activation energy of 32.8 kJ/mol is found.  

Low temperature studies of Ru and HOR electrooxidation in aqueous 

environments have found that Ru is a very poor HOR and HER catalyst due to 

the OH adsorption.  DFT calculations for Ru (211) have shown similar results (35 

kJ/mol) to ones collected in solid acid environments77. 

 

 

Figure 2-15 Exchange current density versus the inverse of temperature.  

Markers are the collected data points with the line details the linear fit 
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 In order to further decrease the overall catalyst cost, we must branch our 

investigation into non-PGM catalysts.  Copper is one such metal that has shown 

some minimal performance in low temperature environments.  We hope that as a 

similar case to Pd and Ru that Cu will show better performance than its room 

temperature aqueous counterpart.  Copper nanoparticles were deposited onto 

Vulcan XC-72R via a vapor-phase decomposition from its respective metal 

acetylacetonate, Cu(acac)2  This reaction was carried out using a fixed bed 

wherein the crystalline solid precursors were mechanically mixed with the Vulcan 

XC-72R carbon, in a N2-water vapor atmosphere at elevated temperatures via a 

method that we have demonstrated previously52,56,68.  The ultimate deposition 

temperature was 240 °C.  X-ray diffraction patterns for as-synthesized carbon-

supported Cu are shown in Figure 2-16.  Based off of the Cu(111) we calculate 

the d-spacing of 0.2088nm.  Using the Scherrer relation the particle size can be 

calculated to 34.1nm.  We note the shard difference between the relatively small 

particles of Pt, Pd, and Ru to the larger particles of Cu.  We also find that Cu2O is 

found in this XRD analysis.  We expect all of the copper oxide to be reduced to 

copper metal in the hydrogen environment at operation conditions.  However, this 

may not be the case.  These supported nanoparticles were then mechanically 

mixed with CDP and naphthalene in a similar fashion as the Pt electrodes.  

These mixtures were then laminated as electrodes. 
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Figure 2-16 XRD pattern for vapor-grown 60% Cu/XC72 
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 As-recorded and iR-free polarization curves for the Pt-Cu MEA acquired in 

pure H2 at 250 °C are shown in Figure 2-17. The hydrogen oxidation of copper is 

seemingly nonexistent however an interesting cyclic feature is found in the higher 

over potentials.   

 Observation of the polarization curve shows that contrary to the PGM, Cu 

does not show a linear profile.  These kinetics are highlighted in the EIS spectra 

showing the large increase in the charge transfer resistance in Figure 2-18.  For 

HOR the current response is practically 0.  This is expected as Cu does not 

readily absorb hydrogen which is a fundamental step to hydrogen 

oxidation64,78,79. 

 

 

Figure 2-17 iR-free polarization curves acquired in hydrogen at 250 °C with 

1.05mg/cm² electrodes for Pt/Pt and Cu/Pt 
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Figure 2-18 EIS spectra collected at 50 mV of over potential for Pt/Pt and 

Cu/Pt 

 

 Figure 2-19 shows Tafel representations of iR-free polarization curves.  

Using the iR-free polarization curves at temperatures at 250 °C, we applied a 

modified Butler-Volmer equation (1-21).  Based on the hydrogen oxidation 

current, the effective anodic transfer coefficient for hydrogen oxidation 

approached 0.  Using the low field approximation we estimate the geometric 

current density to be 18.7 mA/cm2.  This is based off the charge transfer 

coefficient found at OCV which is 2.5 Ω cm2.  This is drastically larger than the 

recorded value for all of the PGM metals that we have explored previously.  The 

charge transfer resistance for Pt is 0.07 Ω cm2 and is also depicted in Figure 

2-18.  
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Figure 2-19 Tafel representation acquired in hydrogen at 250 °C with 

1.05mg/cm² electrodes for Cu/Pt 

 

  



60 
 

 Our next non-PGM selected for catalyst investigation is nickel.  Previous 

studies have shown Ni to be effective for hydrogen evolution from CsH2PO4,  

however, these studies were conducted using unsupported Ni in the cathode with 

a net Ni loading of 3.5mgNicm-2  39 .  We hypothesized that a carbon-supported 

catalyst analogous to those that we have previously demonstrated could improve 

Ni dispersion and utilization and permit lower quantities of catalyst to be used. Ni 

nanoparticles were deposited onto Vulcan XC-72R via a vapor-phase 

decomposition from its respective metal acetylacetonate, Ni(acac)2  This reaction 

was carried out using a fixed bed wherein the crystalline solid precursors were 

mechanically mixed with the Vulcan XC-72R carbon, in a N2-water vapor 

atmosphere at elevated temperatures via a method that we have demonstrated 

previously52,56,68.  The ultimate deposition temperature was 240 °C.  These 

supported Ni nanoparticles were then subjected to a heat treatment at 500°C in 

N2 for 3 hours in order to finish reacting all of the precursor.  Figure 2-20 shows a 

Cu Ka XRD pattern and high resolution TEM images of the experimental carbon 

supported Ni after heat treatment at 500°C. The Ni nanoparticles show a d 

spacing of 2.049 Å which is consistent with the expected value of 2.035 Å.  

Figure 2-20b shows clear diffraction rings which are consistent with the reported 

values for FCC Ni.  Figure 2-20c shows the XRD pattern obtained from the as-

synthesized Ni nanoparticles on Vulcan XC72.  Peak characteristics display FCC 

Ni metal with Scherrer analysis of this pattern showing a mean crystalline domain 
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size of 31 nm.  D-spacing analysis using the Scherrer relationship shows a mean 

spacing of 2.034 Å also consistent with the expected value.   

 

 

Figure 2-20 (a) High resolution TEM showing supported Ni nanoparticle 

with a d-spacing of 2.049 Å, consistent with the {111} (b) shows clear 

diffraction rings consistent with fcc Ni.  (c) Shows XRD 

 

 As-recorded and iR-free polarization curves for the Pt-Ni MEA acquired in 

pure H2 at 250 °C are shown in Figure 2-21 for hydrogen evolution.  As-recorded 

and iR-free polarization curves for the Pt-Ni MEA acquired in pure H2 at 250 °C 

are shown in Figure 2-22 for hydrogen oxidation.  FCC Ni has practically no HOR 

activity.  This asymmetry, in similar fashion to copper can be explained by the 

lack of hydrogen adsorption64,78,80.  
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Figure 2-21 iR-free polarization curves acquired in hydrogen at 250 °C for 

HER with 1.05mg/cm² electrodes for Pt/Pt and Ni/Pt 
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 A Tafel representation of supported Ni in shown in Figure 2-23 showing 

the disparity of the HOR and HER electrodes.  Using the low field approximation 

we estimate the geometric exchange current density to be 27.3 mA/cm2 for the 

FCC nickel. 

 

 

Figure 2-22 iR-free polarization curves acquired in hydrogen at 250 °C for 

HOR with 1.05mg/cm² electrodes for Pt/Pt and Ni/Pt 

 

 For Ni, the clear asymmetry in the rate of the HOR/HER could possibly 

indicate a different mechanism between the two.  For the HOR reaction, the 

charge transfer resistance increases with over potential, possibly indicating 
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poisoning of binding sites or mass transport limitation.  For the HER reaction, the 

charge transfer resistance decreases with overpotential. 

 

 

Figure 2-23 Tafel representation acquired in hydrogen at 250 °C with 

1.05mg/cm² electrodes for Ni/Pt 

 

 For various catalytic reactions, metal alloys have been shown to increase 

performance.  While copper and nickel have been investigated at low 

temperatures, there was no investigations into alloys of the two.  Two cases of 

Cu and Ni alloys were investigated. 

 Cu and Ni nanoparticles were deposited onto Vulcan XC-72R via a vapor-

phase decomposition from their respective metal acetylacetonates by 

simultaneous mixing  These reactions were carried out using a fixed bed wherein 
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the crystalline solid precursors were mechanically mixed with the Vulcan XC-72R 

carbon, in a N2-water vapor atmosphere at elevated temperatures via a method 

that we have demonstrated previously52,56,68.  The ultimate deposition 

temperature was 240 °C.  These supported nanoparticles were then subjected to 

a heat treatment at 500°C in N2 for 3 hours in order to finish reacting all of the 

precursor.  X-ray diffraction patterns for as-synthesized carbon-supported Ni/Cu 

are shown in Figure 2-24 

 

 

Figure 2-24 XRD pattern for vapor-grown 60% Ni and Cu onXC72 

 

Using the Scherrer relation the particle size can be calculated to 29.1nm.  Figure 

2-25 shows HOR and HER polarization curves for Pt-Cu/Ni MEAs.  In similar 

fashion to Cu and Ni, Cu/Ni has very limited HOR reaction.  However the cyclic  
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Figure 2-25 iR-free polarization curves acquired in hydrogen at 250 °C with 

1.05mg/cm² electrodes for Pt/Pt and NiCu/Pt 
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feature shown in base copper still remains.  The performance of both alloys are 

less than 60% Ni supported on the same carbon support. 

 Nickel was also combined with Ru in order to determine if any benefit, 

specifically to the HOR reaction could be achieved.  Ni and Ru nanoparticles 

were deposited onto Vulcan XC-72R via a vapor-phase decomposition from their 

respective metal acetylacetonates  This reaction was carried out using a fixed 

bed wherein the crystalline solid precursors were mechanically mixed with the 

Vulcan XC-72R carbon, in a N2-water vapor atmosphere at elevated 

temperatures via a method that we have demonstrated previously52,56,68.  The 

ultimate deposition temperature was 240 °C.  X-ray diffraction patterns for as-

synthesized carbon-supported Ni/Ru are shown in Figure 2-26.   

 

 

Figure 2-26 XRD pattern for vapor-grown 60% Ni and Ru on XC72 
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These supported Ru-Ni nanoparticles were then subjected to a heat treatment at 

500°C in N2 for 3 hours in order to finish reacting all of the precursor.  Using the 

Scherrer relation the particle size can be calculated to 12.8nm for 30%Ru and 

30% Ni.  We do note the significantly smaller particle size associated with the 

use of Ru as well with Ni.  Even at 5% Ru, the particle size decreases from 31nm 

to 19nm.  This could have to do with the autocatalytic nature of the deposited Ru 

metal in aiding in decomposition of the metal organic precursor. 

 Figure 2-27 shows HER polarization curves for Pt-Ru/Ni MEAs.  When 

these samples are compared to the Ru HER Figure 2-13 we see a minor 

increase in performance vs the 5% and the 30% Ru.   

 

 

Figure 2-27 iR-free polarization curves acquired in hydrogen at 250 °C for 

HER with 1.05mg/cm² electrodes for Pt/Pt and RuNi/Pt 
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 However, the addition of Ni to the electrode completely eliminates Ru 

HOR capabilities.  This is depicted in Figure 2-28.  Possibilities include alloying 

the Ru with Ni inhibits the absorption of hydrogen to the surface.  Ni effectively 

poisons the HOR reaction surface in this temperature range.   

 

 

Figure 2-28 iR-free polarization curves acquired in hydrogen at 250 °C for 

HOR with 1.05mg/cm² electrodes for Pt/Pt and RuNi/Pt 

 

 While alloying always has the potential to increase the performance, in the 

case of HOR/HER electrodes for Ni, Cu and Ru, it is best to stick to the base 

metals in our current fabrication scheme.  Although the degree of alloying was 

not 100%, we do not expect any further alloying to increase the performance. 
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 Table 2-1 shows a summary of measured exchange current densities 

ranges for Pt, Pd, Ru, Cu, and Ni HER in solid acid systems compared to those 

measured in aqueous environments64.  The lower bounds are bounded by the 

surface area of the electrolyte, while the upper bound is bounded by the ECSA 

as calculated in aqueous environments. 

 

Table 2-1 Hydrogen evolution exchange current densities as reported for 

CDP systems at 250°C compared to the aqueous cases found in the 

literature 

Sample 
Literature 

(mA/cm2)metal 

This Study 

(mA/cm2)metal 

Pt 49.79 1.31-29.48 

Pd 45.05 0.65-26.51 

Ru 15.00 0.53-20.86 

Cu 0.41 1.22-4.17 

Ni FCC 5.25 1.78-6.09 

 

 

Despite having the lowest performance, Cu shows the largest deviation from the 

reported literature values.  For hydrogen oxidation, Pt remains superior but Pd 

and Ru shows surprising promise for an effective catalyst.  For HER, Pd, Ru and 

Ni shows promise as a less expensive hydrogen evolution catalysts. 
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Conclusion 

 

 We have demonstrated a suite of carbon-supported catalysts (Pt, Pd, Ru, 

Ni and Cu) for implementation in electrodes for both the anode and the cathode.  

Though not nearly as active as Pt, Pd and Ru show promise for both the 

hydrogen oxidation catalyst as well as the evolution reaction.  Nickel and copper 

are not active for hydrogen oxidation.  Copper was not as active as nickel for 

hydrogen evolution, but showed a drastic increase in performance from 

previously reported values.  We expect the performance can be further improved 

by optimization of the electrode microstructure and dispersion of the catalyst.  
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CHAPTER 3  

SOLID ACID ELECTROLYTE MEMBRANES ENABLE PLATINUM-

FREE ELECTROCHEMICAL SEPARATION OF HYDROGEN FROM 

REFORMED METHANOL 
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Abstract 

 

 We demonstrate a device for electrochemical hydrogen separation from 

reformed methanol using a proton-conducting CsH2PO4 membrane and platinum-

free electrodes at an operational temperature of 250°C.  Carbon-supported Ru 

and Ni catalyst were synthesized via vapor deposition and used as hydrogen 

oxidation and evolution catalysts, respectively.   Methanol steam reforming 

proceeded with a commercial copper-based catalyst incorporated into the cell 

assembly. Devices free of Pt produced a hydrogen evolution current of 300 mA 

cm-2 at a cell voltage of 0.35 V.  

 

Introduction 

 

 Recent increases in natural gas production in the United States have 

renewed interest in chemicals and fuels produced from methane.  This includes 

hydrogen and methanol, both of which are principally derived from catalytic 

reforming of natural gas. Hydrogen is a crucial feedstock for the chemical 

industry, as well as a potential fuel for vehicular and stationary applications 

based on air-breathing fuel cells.  A stumbling block to the widespread adoption 

of these fuel cell technologies has been the lack of a distribution network for 

gaseous hydrogen coupled with its low volumetric energy density. In contrast 
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with hydrogen gas, liquid fuels, including methanol, exhibit distinct advantages in 

volumetric energy density and ease of transport.  Using methanol as a fuel has 

been heavily investigated, and considerable progress has been made in the area 

of proton-conducting direct methanol fuel cells (DMFCs), which directly 

electrooxidize methanol in conjunction with an air electrode to produce electrical 

power.   The obstacles to the widespread use of low-temperature polymeric 

direct methanol cells are extensive, however, due to issues such as a low 

thermodynamic equilibrium voltage, surface adsorption of oxidation products on 

catalysts, and methanol crossover through ionomeric membranes. 

 An alternative approach to direct electrooxidation is the use of methanol 

molecules as chemical hydrogen carriers, relying on distributed catalytic 

reforming to produce hydrogen fuel on demand81 for a given application.  This 

process can proceed via multiple pathways in the presence of water, namely, the 

steam reforming (3.1), decomposition (3.2), and the water gas shift (3.3) 

reactions 

 𝐶𝐻3𝑂𝐻 +  𝐻2𝑂 →  𝐶𝑂2 + 3𝐻2     ∆𝐻𝑜 = 49.5 𝑘𝐽/𝑚𝑜𝑙 (3.1) 

 𝐶𝐻3𝑂𝐻 →  𝐶𝑂 + 2𝐻2   ∆𝐻𝑜 = 90.2 𝑘𝐽/𝑚𝑜𝑙 
(3.2) 

 𝐶𝑂 +  𝐻2𝑂 →  𝐶𝑂2 + 𝐻2   ∆𝐻𝑜 = −41 𝑘𝐽/𝑚𝑜𝑙 
(3.3) 

The most widely used methanol reforming catalysts are based on copper,  

typically Cu/ZnO/Al2O3
32,82–84 At lower temperatures, steam reforming (3.1) is 
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thermodynamically favored, but as the reforming temperature is increased 

decomposition (3.2) becomes more prevalent.  Copper-based catalyst display 

high activity and low cost, however catalyst durability may be an issue85.  Recent 

work on Pd/ZnO catalysts have shown greater hydrogen yields than Cu-based 

catalysts at moderate temperatures and an improved resistance to deactivation, 

though the presence of Pd may limit the reach of these materials.   

 In a reforming-based hydrogen production scheme, separation of 

hydrogen from the byproducts of the reforming reaction is a crucial element of 

the process.  One relatively new method that has been proposed is 

electrochemical hydrogen separation.  In this scheme, hydrogen is selectively 

oxidized at a gas-diffusion electrode exposed to a multicomponent gas stream, 

producing protons, which are electrochemically “pumped” across a proton-

conducting membrane via an applied potential and subsequently evolved as 

gaseous hydrogen at the conjugate gas-diffusion electrode.  Multiple proton-

conducting electrolytes have been proposed for this application, including 

perfluorinated sulfonic acid (PFSA)  polymers operating at low temperatures (~80 

°C)2,23, Phosphoric acid and phosphoric acid-doped polybenzidazole (PBI) at 

intermediate temperatures (~180 °C)24,25, and proton-conducting oxide 

membranes at higher temperatures (>500 °C)26.  In the case of methanol, the 

intermediate temperature range (150°C to 300 °C) is uniquely favorable, due to 

the increased resistance of hydrogen oxidation catalysts (typically platinum) to 

poisoning27–30.  We also note a thermal match to the optimal methanol reforming 
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temperature of 240-260°C,31  and the ability to use a conventional low-cost 

materials set for stack and system components that is obviated at higher 

temperatures. 

 Here we consider the crystalline solid-state proton conductor CsH2PO4 

(CDP) as an electrolyte for hydrogen separation from reformed methanol.  

Operating at temperatures greater than 230 °C, CDP-based cells are perfectly 

matched to the optimal temperature range for methanol steam reforming, 

allowing the reforming catalyst to be directly integrated into the cell assembly.  

The first work to demonstrate this architecture used a fuel stream consisting of 

methanol and water vapor and a Pt anode catalyst coupled with a Pt-based air 

electrode for electricity production37.  Later electricity-producing cells also 

demonstrated a tolerance to fuel streams containing as much as 20% CO58 with 

Pt anode catalysts.  Recently, we showed that CDP membranes can also be 

used for electrochemical hydrogen separation from reformate streams containing 

similar concentrations of contaminants38. 

 The prospects for electrochemical hydrogen separation devices based on 

CDP are likely to remain limited if restricted to Pt-based electrodes, simply due to 

cost. Therefore we have sought non-platinum catalysts that are suitable 

replacements in the case of the hydrogen oxidation and evolution reactions. We 

found that unsupported nanoparticulate Ni is active for hydrogen evolution from 

CDP39 and that carbon-supported elemental Ru can be substituted as a CO-

tolerant hydrogen oxidation catalyst.  In this article, we describe cells based on 
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carbon-supported Ru anodes and carbon-supported Ni cathodes to realize the 

production of pure hydrogen from reformed methanol in the absence of a Pt 

catalyst.   

 

Experimental Methods 

 

 CsH2PO4 was synthesized by reaction of CsCO3 (Alfa Aesar, 99%) with 

H3PO4 (Alfa Aesar, 85%) followed by precipitation in methanol and drying.  The 

as-synthesized CDP was low-energy ball-milled to reduce its initial particle size, 

yielding a fine particulate powder with a BET surface area of approximately 2 

m2/g.   Carbon-supported metallic nanoparticles were synthesized as hydrogen 

oxidation and evolution catalysts. Platinum, ruthenium, and nickel nanoparticles 

were deposited onto Vulcan XC-72R via a vapor-phase decomposition from their 

respective metal acetylacetonates Pt(acac)2 (Strem Chemical), Ru(acac)3 

(Sigma-Aldrich), and Ni(acac)2 (Alfa Aesar).  These reactions were carried out 

using a fixed bed wherein the crystalline solid precursors were mechanically 

mixed with the Vulcan XC-72R carbon, in a N2-water vapor atmosphere at 

elevated temperatures via a method that we have demonstrated 

previously36,46,52,56,66,67.  The ultimate deposition temperature varied for each 

species deposited, from 210 °C (platinum) to 240 °C (ruthenium and nickel).  The 

carbon-supported nickel sample was further heat treated at 500°C under N2 for 3 

hours in flowing N2.All catalysts were characterized with using X-ray diffraction 
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(XRD) (Philips X'Pert, l ¼ 0.1541874 nm) and transmission electron microscopy 

(Zeiss Libra 200MC). The position and width of diffraction peaks were obtained 

by fitting to Voight functions using IGOR Pro (Wavemetrics, Inc.). 

 Composite electrocatalyst powders were synthesized by dry-grinding the 

fine CDP with the various metal/carbon catalyst and naphthalene (a fugitive 

binder).  These mixtures kept the mass ratio of CDP, naphthalene and carbon to 

3: 1: 0.4 (mass) allowing for variation of the electrode catalyst mass without 

modifying the electrode thickness.  Hydrogen pump membrane-electrode 

assemblies (MEAs) were then fabricated using these electrocatalysts by 

lamination of active layers in a 2.85 cm2 diameter hardened steel die.  Stainless 

steel mesh was used for current collector and PTFE tape for a sealant.  Each 

MEA had a membrane thickness of approximately 75 to 85 microns.  The mass 

of a given electrode varied between 22 to 28 mg dependent on the metal loading 

on the carbon support.  In each cell, the hydrogen evolution electrode was 

laminated at 125 MPa while the hydrogen oxidation electrode was laminated at 

25 MPa.  Control cells were fabricated using Pt catalysts on both electrodes; 

experimental cells were fabricated with a Ru-based anode and a Ni-based 

cathode with a metal loading of 1.05mg/cm2. 

 A methanol reforming layer was fabricated by compressing a composite of 

850 mg of coarsely pulverized Cu/ZnO/Al2O3 methanol reforming catalyst  

(HiFuel R120) and 150 mg of fine CDP between two pieces of Ni foam (INCO).   
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The cell assembly, consisting of the MEA and reforming layer, was installed in a 

stainless steel fixture for testing. 

 Prior to electrochemical testing, the cell assembly was heated to 150 °C in 

dry Ar, followed by a two hour treatment in 4% H2/Ar mixture to reduce the 

methanol reforming catalyst.  Both electrodes were then switched to a wet Ar 

purge at 75 °C dew point and heated to the testing temperature of 250 °C.  

 Electrochemical testing was conducted at 250 °C.  At the start of the 

experiment, each electrode was supplied 30 sccm of humidified ultrahigh purity 

hydrogen at a 75 °C dew point. Polarization curves were recorded at 1 hour 

intervals with a Bio-Logic VSP potentiostat by scanning the working electrode 

potential at 5 mV s-1 from the open circuit voltage (OCV) to -0.3 V and then to 

0.3V. Potentiostatic electrochemical impedance spectroscopy (PEIS) spectra 

were also recorded at -50 mV versus OCV in a frequency range from 200 kHz to 

200 mHz with a single sine perturbation amplitude of 10 mV.  Polarization curves 

free of the ohmic losses due to membrane resistance were derived by the 

subtraction of the current multiplied by the high frequency resistance measured 

at OCV. Cells were held at -50 mV for 1 hour between testing cycles.  After 15 

hours, humidified hydrogen on the anode was replaced with delivery of 6mL/hr of 

vaporized 1:1 methanol to water (volume) entrained in a carrier gas flow of 10 

sccm of ultrahigh-purity argon.  After 1 hour, electrochemical tests were 

conducted using the same electrochemical procedures.  In situ gas 

chromatography-mass spectrometry (GC-MS) experiments were conducted by 
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directly flowing the anode outlet stream through a Nafion gas dryer then into the 

Shmidazu GCMS.   

 Imaging of electrodes and chemical analysis was conducted with a Hitachi 

TM3000 SEM equipped with a Bruker Quantax EDS system operating at 15 kV.  

These were supported on an Al stub using double sided carbon tape. 

 

Results and Discussion 

 

 Syngas and natural gas reformate are two hydrogen rich fuel streams that 

are commonly made during industrial processes.  Syngas can contain 30-60% 

carbon monoxide (CO), 25-30% hydrogen (H2), 0-5% methane (CH4), 5-15% 

carbon dioxide (CO2), plus a lesser or greater amount of water vapor, smaller 

amounts of the sulfur compounds hydrogen sulfide (H2S), carbonyl sulfide (COS), 

and finally some ammonia and other trace contaminants86.  At these CO 

concentrations, further oxidative conversion of CO is desirable to boost hydrogen 

yield. Ru is capable of enhanced hydrogen production in CO-rich input streams. 

Previously, we attributed this result to a synergistic interaction of the water-gas 

shift (WGS) reaction and CO electrooxidation.  In order to determine the reason 

for this enhanced performance, we consider separately the heterogeneous WGS 

and CO electrooxidation properties of Ru and other supported catalysts for 

optimizing electrode architectures for hydrogen separation from highly CO-

enriched simulated syngas streams.  Functionally graded anodes are fabricated   
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Figure 3-1 iR-free polarization curves acquired in 45% CO balance Ar at 250 

°C with 1.05mg/cm² listed anode and 1.05mg/cm² Pt cathode 
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to balance CO conversion activity with hydrogen oxidation.  Figure 3-1 is an IR-

free polarization curve obtained at 250 °C under 45% CO, balance Ar anode 

stream.  The cathode is a pure hydrogen input on a Pt electrode.  Both gas 

inputs are hydrated to 75 °C dew point.  By applying the Nernst equation (1-9) 

with the measured OCV, the partial pressure of hydrogen can be estimated for 

this anode. This anode’s OCV is 281 mV which equates to 2.8e-4% of hydrogen 

being produced in the anode.  Pt has negligible performance for CO 

electrooxidation as well as WGS. 

 In order to further investigate the effect of the Ru WGS reaction, a Ru 

layer with the exact same composition to a ruthenium anode is added to the 

microporous layer during cell fabrication.  This layer is ionically separated from 

the anode in order to ensure that only the WGS reaction is occurring from the Ru 

nanoparticles.  This is depicted in Figure 3-2 

 This new electrode’s (electrode II) OCV is 141 mV, which equates to 1.4e-

1% of hydrogen in the anode.  The presence of Ru does have an effect as a 

WGS catalyst as demonstrated in the 3 orders of magnitude increase in the 

partial pressure of hydrogen.  This is not surprising since Ru is known to be a 

fairly active WGS catalyst87–90.  However, we notice that with our current setup 

for Ru on carbon that the water gas shift reaction is much lower than reported for 

Ru catalyst supported on ceramics.  
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Figure 3-2 iR-free polarization curves acquired in 45% CO balance Ar at 250 

°C with 1.05mg/cm² listed anode and 1.05mg/cm² Pt cathode 
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Figure 3-3 iR-free polarization curves acquired in 45% CO balance Ar at 250 

°C with 1.05mg/cm² listed anode and 1.05mg/cm² Pt cathode 

 

 The last architecture investigated was ruthenium anode.  The iR-free 

polarization curve can be observed in Figure 3-3.  The Ru anode (electrode III) 

has an OCV of 125 mV, which equates to 2.7e-1% hydrogen in the anode.  The 

difference between the OCV between electrode II and electrode III is attributed to 

the partial poisoning of the Pt electrode, leading to decrease of the absorbed H2 

to the electrode’s surface.  The large difference between the Pt anode and the 

Ru anode is immediately aware.  Ru has been known to electrooxidize CO at 

lower temperatures, but it is commonly assisted by Pt91–97.  Ru also assists Pt in 

low temperature acid aqueous electrooxidation of methanol21,63,69,98–100 as well as 
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HOR in akaline56.  The EIS spectra at 50mV of overpotential can be observed in 

Figure 3-4.  By fitting our circuit model depicted in Figure 1-9 and using our Pt 

hydrogen evolution electrode parameters we can calculate the charge transfer 

resistance. 

 

a) b)  

Figure 3-4 EIS spectra collected at 50mV of overpotential acquired in 45% 

CO balance Ar at 250 °C with 1.05mg/cm² listed anode and 1.05mg/cm² Pt 

cathode 

 

 Assuming an Arrhenius relationship, the activation energy for the CO 

electrooxidation is determined.  This is seen in Figure 3-5 by plotting the log of 

the geometric exchange current density vs 1/T.  An activation energy of 36.7 

kJ/mol is found.  Low temperature studies of Ru and CO electrooxidation have 

found lower activation energies of of 30 kJ/mol63.  We attribute this increase of 

activation energy to the large decrease in the OH adsorbed onto the catalyst 
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surface.  Note this is in drastic difference with the water gas shift reaction energy 

for Ru which has been reported as 77.9 and 121 kJ/mol. 

 

 

Figure 3-5 Exchange current density versus the inverse of temperature 

used to calculate the activation energy. 

 

 While the reaction mechanism the intermediate CO electrooxidation in 

solid acid electrolyte system is still undetermined, we suggest the reaction is 

similar to the low temperature aqueous electrooxidation reaction as opposed to 

the intermediate temperature water gas shift reaction.  We suggest the difference 

in activation energy is the due to the low relative humidity point at the operational 
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temperature of 250°C and 75°C dew point.  This significantly modifies the OH 

adsorbate surface coverage compared to the aqueous case.   

 

 

Figure 3-6 iR-free polarization curves acquired in 45% CO balance Ar at 250 

°C with 1.05mg/cm² Ru anode and 1.05mg/cm² Pt cathode 

 

 Despite having initial high performance, the cell quickly deteriorates.  The 

performance in Figure 3-6 has decreased by roughly 35% in the course of 24 

hours.  Further investigation of the electrode after testing shows that the 

performance decrease is linked to the oxidizing of the stainless steel support and 

test fixture by the formation of rust.  Figure 3-7 depicts three cells run in 

hydrogen, 45% CO for 24 hours and 45% CO for 72 hours. 
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 The reason for the creation of rust most likely stems from the carburization 

of the steel.  This then allows the water to oxidizes with surface iron forming 

rust101102.  These micron size particles on the stainless steel are then removed  

 

 

Figure 3-7 Hydrogen separation cells after testing at 250°C in 90% CO 

balance Ar 

 

from the bulk stainless steel and are blown into the electrode.  This clogs the 

electrode inhibiting gas diffusion as well as reacting with the CDP.  This is clearly 

visible in the SEM image in Figure 3-8. 

 EDS spectra shows that there are large amounts of iron in the electrode.  

Iron is only found in our test fixture and as a mechanical support for our MEA 

structure.  CDP has a high reactivity for metal oxides.  This has been noted 

before with the Pd based catalyst used for a cathode catalyst in air fed SAFCs 

operating at 250°C57.  Once these iron oxide particles are into our electrode,   
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Figure 3-8 TOP: SEM micrographs of Ru anodes after hydrogen separation 

testing in 90% CO balance Ar at 250°C for 72 hours.  BOTTOM: EDS spectra 

for Fe in the same electrode. 
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there is not an effective way to remove them.  This leads to clogging of the pores 

in our electrode that is required for gas transport.  Without effective gas transport, 

it is impossible to have stable electrochemical performance.  This could also 

inhibit water transport, thus potentially leading to CDP dehydration. 

 In order to increase the stability, a thick layer of graphite coating was 

applied to the test fixture as well as the removal of the stainless steel support.  

The improvements were noticeable as observed in Figure 3-9. 

 

 

Figure 3-9 CA collected in 90% CO balance Ar at 250 °C with 1.05mg/cm² Ru 

anode and 1.05mg/cm² Pt cathode 

 

Figure 3-9 was held at 50mV versus the OCV.  The deviation from the baseline 

of 42 mA/cm2 is due to liquid water vaporizing in the test fixture.  This leads to an 
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unsteady supply of reagents to an electrode leading to deviation from the 

average behavior.  After 115 hours, the current decreased by 1mA/cm2.  

However, the cell rapidly deteriorated after 115 hours.  This could of possibly 

been to an electrical short in the cell due to a water droplet. 

 Figure 3-10 shows iR-free polarization curves acquired at three different 

CO concentrations, 20%, 45% and 90% balance of Ar.  Applying the low field 

approximation to the Butler-Volmer equation (1-21) we can calculate the 

geometric exchange current densities to be 41.7, 41.36 and 40.98 mA/cm2 for 

20%, 45% and 90% respectively. 

 

 

Figure 3-10 iR-free polarization curves acquired in listed percent CO 

balance Ar at 250 °C with 1.05mg/cm² Ru anode and 1.05mg/cm² Pt cathode 
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These polarization curves shows a highly mass limiting reaction.  In order to 

investigate if the consumption rate of the CO, an in situ experiment was setup 

using a GCMS.  Figure 3-12shows GCMS data for 90% CO for 6 different 

overpotentials.  The current and time response is shown in Figure 3-11. 

 

 

Figure 3-11 CAs collected in 90% CO balance Ar at 250 °C for GCMS 

analysis with 1.05mg/cm² Ru anode and 1.05mg/cm² Pt cathode 

 

 GCMS results were collected at each over potential and also at OCV.   

These are summarized in Table 3-1 .  The anode gas stream upon entry is 90% 

CO with a balance of Ar.  The Ar gas is used as an inert marker gas in order to 

verify the accuracy of the measurement and should remain 10% throughout the  
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Figure 3-12 GCMS analysis collected from anode outlet with 90% CO 

balance Ar input after gas drying 
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experiment.  The general trend of percentage decrease of CO to CO2 increase is 

as expected for the proposed reaction. 

 

Table 3-1 GCMS analysis collected from anode outlet with 90% CO balance 

Ar input after gas drying 

Overpotential 

(mV) 

Ar 

(Percent) 

CO 

(Percent) 

CO2 

(Percent) 

0 11.3 87.59 1.11 

50 11.4 86.78 1.82 

100 10.94 85.72 3.33 

150 10.76 85.03 4.20 

200 9.12 84.28 6.60 

250 9.13 81.71 9.16 

300 9.94 77.58 12.47 

 

 

 By knowing the entry reagent flowrate for 45sccm and the exit 

percentages, we can use a mass balance and current integration to determine 

the relative efficiency.  At 50mV of overpotential the current density is 29.35 

mA/cm2 and at 250mV, which is the last steady overpotential, the current density 

is 337.14 mA/cm2 we can determine the amount of charge per minute by 

Faraday’s constant.  In this case we calculate 18.42C. At the same 

overpotentials, the change in percentage in CO is 5.08% thus leading to a mol 



95 
 

count of 9.2e-5.  Assuming the electron number is 2 we calculate the amount of 

charge to be 17.73C.  These calculations serve as a reasonable estimate of the 

CO electrooxidation but due to the system variability are not be entirely accurate.

 Despite the mass transport limiting current response as shown in the 

polarization curve, we notice that the amount of CO remains relatively high in the 

outlet of our anode stream.  This leads to the conclusion that water may actually 

be the limiting reagent in our anode reaction.  With our current design, it is not 

possible to increase and vary the partial pressure of water above 0.35 bar.  A 

new system designed to handle higher concentrations of water must be 

implemented in order to test this hypothesis. 

 Given the activity and stability of the CO electrooxidation reaction on our 

ruthenium anodes, we sought to apply this technology to a solid acid fuel cell.  

The cathode was fabricated using a conformal Pt particle coating on CDP as 

described in this paper46.  Figure 3-13 shows fuel cell performance at 250 °C on 

a feed stream of 90% CO and balance Ar for the anode and air fed to the 

cathode.  Despite the low performance, this proves an interesting design for 

potential applications in high CO based fuel streams such as those from coal 

gasification. 

 Due to the activity of Ru for both HOR and CO, we chose to formulate 

anodes for other applications in low percentage CO and higher percentage CO2 

feed streams.  One prime example is the steam reformation of methanol.  These 

methanol reformate streams contain less than 1% CO on commercial catalysts32.  
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 Polarization curves for both Pt and Ru based anodes are shown in Figure 

3-14 for an in situ MeOH steam reformation system.  This graph depicts as-

recorded Ru and Pt (control) hydrogen oxidation electrodes under neat hydrogen 

and methanol using Pt electrode as the cathode.  In both hydrogen and 

methanol, the Pt based anodes are marginally superior to their Ru counterparts.   

 

 

Figure 3-13 Fuel cell polarization curve collected in 90% CO balance Ar at 

250 °C with 1.05mg/cm² Ru anode and 1.75mg/cm² Pt cathode 

 

This is shown by the lower cell overpotentials required at any current density.  

Figure 3.14b shows the IRΩ-free polarization curves for the same curves.  The 

majority of the overpotential is dominated by the ohmic penalty of the membrane 
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which makes up 54.6% of the loss at -50 mA cm-2 in Ru anodes. Both Pt and Ru 

anode catalyst display a deviation of -10mV from the neat hydrogen OCV when 

switched over to methanol.  We assign this shift to a Nernstian effect of the 

change in the hydrogen concentration at the anode as a result of the reforming 

process. 

 

 

Figure 3-14 Hydrogen evolution polarization uncorrected for IR (a) and 

corrected for IR (b) for 1.05 mg cm-2 of Pt and Ru anodes on hydrogen and 

methanol at 250°C and 75°C dew point. 

 

In order to determine the composition of the reformed methanol, in situ GCMS 

experiments were performed.  Figure 3-15 shows the gas chromatography and 

mass spectrometry of an in situ cell being held at OCV under methanol.  For 

these measurements, nitrogen was replaced with argon as the carrier gas for its 

molecular weight of 40.   
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Figure 3-15 Gas chromatography and mass spectrum at OCV of methanol 

and water reformed in situ. 

 

This aids in the distinction from carbon monoxide and nitrogen in the mass 

spectrometry results.  The ratio of carbon monoxide to carbon dioxide is 

calculated to be 0.10.  This gives similar results to ex situ HiFUEL R120 

methanol reforming catalyst at 250°C.  Results have been reported at having a 

carbon monoxide to carbon dioxide ratio of 0.07 with an overall gas composition 

of 82.3% H2 16.6% CO2 and 1.2% CO84.  The extent of reaction can be defined 

by ratio of hydrogen produced to the maximum theoretical hydrogen that could 

be produced:  

 
𝛿 =  

𝐻2 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝐻2 𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙
 (3-1) 
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Where an extent of one represents maximum potential H2 at a given flow rate 

from the steam reformation defined in in equation (1-5).  Using mass balance 

calculations for a flow rate of 10sccm of Ar and assuming the extent of reaction 

to be one, the ratio between argon and carbon dioxide would be 0.40.  However, 

our ratio of argon to carbon dioxide is 0.24.  This can be taken a step further to 

calculate the extent of reaction to 0.58.  Finally, an overall mass balance is used 

to calculate the overall gas composition entering the cell electrode at OCV to 

38% H2, 35.1% H2O, 12% CO2, 8.1% MeOH, 6% Ar and >0.8% CO. 

 In order to determine the effects of potential catalyst poisoning from the 

reformer, a gas mixture of 38% H2 and balance of Ar were fed into both a Ru and 

Pt hydrogen pump cell.  Figure 3-16 shows RΩ free EIS of Pt cell and Figure 3-

16b shows RΩ free Ru cell at -50mV cell potential in both MeOH as well as a 38% 

H2 mixed with Ar stream.  Figure 3-16a shows negligible difference in the Rct from 

the mixed gas (0.092 Ω cm2) to the methanol feed (0.09 Ω cm2).   The Rct for the 

Ar mixture is slightly higher, but is attributed to the slight variance in cells 

between constructions.  A similar story can be told for 3.16b with the Rct of the 

mixed gas stream being slightly lower (0.12 Ω cm2) and the direct methanol being 

higher at (0.13 Ω cm2).  Previous studies have shown that at higher 

concentrations of 10% CO, Ru out performs Pt at higher over potentials36.  In situ  

methanol steam reformation shows the levels of CO are much lower, which 
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Figure 3-16 iRΩ-Free methanol and hydrogen/argon gas mixtures at 38% 

hydrogen at -50mV of overpotential. Cells consist 1.05 mg cm-2 of Pt (a) 

and Ru (b) anodes on hydrogen and methanol at 250°C and 75°C dew point.  
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explains why Pt is still out performing Ru as an anode catalyst.  The excess 

methanol and CO2 act as spectators species and do not show any signs of 

catalyst poisoning.  This is determined from the negligible Rct change between 

the hydrogen and argon streams to methanol.  This leads to the conclusion that 

the performance difference between pure H2 and the methanol is due to 

concentration effect.  The direct methanol hydrogen pump showed excellent 

stability at -0.05V as shown in Figure 3-17.  The initial increase in cell 

performance is due to the sintering of the CDP in the membrane.   

 

 

Figure 3-17 Steady state cell of 1.05 mg cm-2 Ru anodes on methanol at 

250°C at -50mV of overpotential.  Pt cathodes at 1.05 mg cm-2 were used as 

control electrodes for the hydrogen evolution reaction. 
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 After the cell reaches steady state the cell displayed a net decline in 

performance of -2 mA cm-2 after 50 hours of operation.  The decrease is most 

likely due to the reduction of methanol in the syringe in the syringe pump causing 

a concentration dilution.  This is consistent in showing that the excess methanol 

does not poison the Ru catalyst during cell operation. 

 Having demonstrated the effectiveness of the Ru-based anode, we then 

implemented a Ni-based cathode in the cell assembly.  This was in order to 

create a true Pt-free hydrogen separation system using in situ reformation.  

Figure 3-18a show as-recorded supported Ru and Ni hydrogen separation 

systems on both MeOH and neat hydrogen as well as a Pt-Pt control sample on 

neat hydrogen.  Figure 3-18b shows the IRΩ-free polarization curves for the same 

curves.  As with the previous systems, methanol reformed systems have 

decreased performance than their neat hydrogen counterparts.  This is mostly 

due to the dilution effect of reduced H2 in the stream as well as the OCV shift.  

With the addition of the Ni cathode, the ohmic resistance no longer becomes the 

domination cell parameter.  At -50mV of overpotential, the ohmic resistance is 

27% of the overall potential loss.  At -300 mA cm-2 the ohmic resistance is 42% of 

the overall loss.  Despite having less performance than Pt, we must consider the 

advantages of the Ru/Ni system.  The abundance and price of Ni are drastically 

less than its Pt counterpart. Ru itself is also considerably cheaper metal than Pt 

which could lead to larger systems built for the same price as their Pt 

counterparts.  The combination of the Ru and Ni electrodes can decrease cell   
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Figure 3-18 Hydrogen evolution polarization uncorrected for IR (a) and 

corrected for IR (b) for 1.05 mg cm-2 of Ru anodes on hydrogen and 

methanol at 250°C and 75°C dew point.  Ni cathodes at 2.1 mg cm-2 were 

used as control electrodes for the HER reaction. 
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fabrication cost by 12.  These electrodes can potentially be further optimized as 

well in order to increase the performance even more.  Another point of 

optimization is the large ohmic losses from the membrane.  Reducing the 

thickness of the membrane from 75 microns would greatly increase the overall 

system efficiency. 

 

Conclusion 

 

 We have demonstrated that methanol can be steamed reformed and the 

hydrogen separated using an inexpensive solid acid electrolyte and zero Pt at 

250°C.  Although Ru is not as active as Pt, the metal is considerably less 

expensive and shows other advantages in the ability to electrooxidize CO.  By 

combining commercial Cu Hi-Fuel catalyst with Ru anodes and with Ni cathodes 

we have demonstrated a non-Pt hydrogen separation system for CDP based 

devices operating at 250°C. 

 

  



105 
 

CHAPTER 4  

MODIFYING ELECTRODE ARCHITECTURES FOR SOLID ACID 

ELECTROCHEMICAL HYDROGEN SEPARATION DEVICES 
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Abstract 

 

The solid-state proton conductor cesium dihydrogen phosphate 

(CsH2PO4 or CDP) has shown potential in electrochemical devices operating on 

fuels such as reformed NG or methanol. In this work, functionally graded anodes 

are fabricated to balance CO conversion activity with hydrogen oxidation. 

Although Ru has shown potential as a hydrogen oxidation catalyst, Pt is still 

superior. A dual-phase Pt and Ru electrode has been fabricated in order to 

increase the energy efficiency over a single-metal anode. Various carbon 

supports have be used in order to increase the triple phase boundary leading to 

drastically reduced metal loadings. These re-engineered anodes are 

implemented in conjunction with Ni-based cathodes to demonstrate efficient 

hydrogen separation using ultra low loadings of Pt from syngas-like inputs. 

 

Introduction 

 

 Hydrogen solid acid fuel cells (SAFCs) based on the acid salt CsH2PO4 

are a relatively new class of devices with the potential for applications in 

intermediate temperatures of 250°C.  These devices have proven advantageous 

due to zero liquid water management as well as poisoning resistance to 

impurities from reformed hydrocarbons.  While SAFC anodes are robust with 
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regards to impurity tolerance, the optimization of the active catalyst surface area 

is still lacking.  Original SAFC electrodes were based on bulk mixing of Pt-black 

with the electrolyte.  These original cells58 showed a peak power density of 415 

mW/cm2 but at large Pt catalyst loadings of 7.5 mg/cm2.   

 In order to better optimize the Pt active area, a conformal coating 

technique was applied to make solid acid electrodes.  These electrodes were 

fabricated by performing a CVD deposition from the metalorganic Pt(acac)2.  The 

electrodes were then further modified with Pd in order to increase performance.  

These electrodes were found to be unstable due to the reaction with Pd and the 

CDP electrolyte57.  Conformally coated electrodes were able to reduce the Pt 

loading to 1.75 mg/cm2 while increasing the cell performance46. 

 In a recent development, CDP based devices have been applied to 

electrochemical hydrogen separation.  These electrodes employed a carbon 

support system based on XC72 Vulcan carbon.  These carbons were then 

mechanically mixed to form an electrocatalyst layer, with porosity added by using 

a fugitive binder, naphthalene.  While effective, these electrodes still use rather 

large amounts of catalyst.  In the case of Pt65, Pd65, and Ru36 loadings of 1.05 

mg/cm2 were applied.  For Ni39 electrodes, metal loadings are even higher at 3.5 

mg/cm2. 

 Carbon based electrodes have also shown promise for cathode 

optimization.  Two types of carbons, multi-walled nanotubes (MWNT) and single-

walled nanohorns (SWNH), were applied to SAFC cathodes.  These electrodes 
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showed further improvement relative to the conformal layer electrode, while 

reducing the Pt loading to 1.3 mg/cm2.  While these electrodes have shown 

promise for the cathode, we address the anode application of this technology in 

order to minimize the amount of Pt for the hydrogen oxidation reaction for both 

applications in fuel cells as well as hydrogen separation devices.  We note that 

the use of carbon-based electrodes in the cathode is fraught with durability 

issues due to carbon corrosion.  However, anode formulations operate a 

potentials at which carbon corrosion is minimized. 

 

Experimental Methods 

 

 CsH2PO4 was synthesized by reaction of CsCO3 (Alfa Aesar, 99%) with 

H3PO4 (Alfa Aesar, 85%) followed by precipitation in methanol and drying.  The 

as-synthesized CDP was low-energy ball-milled to reduce its initial particle size, 

yielding a fine particulate powder with a BET surface area of approximately 2 

m2/g.   Carbon-supported metallic nanoparticles were synthesized as hydrogen 

oxidation and evolution catalysts. Platinum, ruthenium, and nickel nanoparticles 

were deposited onto Vulcan XC-72R via a vapor-phase decomposition from their 

respective metal acetylacetonates Pt(acac)2 (Strem Chemical), Ru(acac)3 

(Sigma-Aldrich), and Ni(acac)2 (Alfa Aesar).  These reactions were carried out 

using a fixed bed wherein the crystalline solid precursors were mechanically 

mixed with the Vulcan XC-72R carbon, in a N2-water vapor atmosphere at 
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elevated temperatures via a method that we have demonstrated 

previously36,46,52,56,66,67.  The ultimate deposition temperature varied for each 

species deposited, from 210 °C (platinum) to 240 °C (ruthenium and nickel).  The 

carbon-supported nickel samples was further heat treated at 500°C under N2 for 

3 hours in flowing N2.  HCP Ni was synthesized by drying to Ni(acac)2 and 

performing the same vapor deposition with a final temperature of 260°C.   All Ni 

electrodes were fabricated by heat treatment of 50 mg of Ni nanoparticles 

(Sigma-Aldrich, <99% P/N 577995) at 500°C under N2 for 3 hours in flowing N2.  

Aqueous CDP was then deposited into the electrode by room temperature 

drying.  All catalysts were characterized with using X-ray diffraction (XRD) 

(Philips X'Pert, l ¼ 0.1541874 nm).  The position and width of diffraction peaks 

were obtained by fitting to Voight functions using IGOR Pro (Wavemetrics, Inc.). 

 Composite electrocatalyst powders were synthesized by dry-grinding the 

fine CDP with the various metal/carbon catalyst and naphthalene (a fugitive 

binder).  These mixtures kept the mass ratio of CDP, naphthalene and carbon to 

3: 1: 0.4 (mass) allowing for variation of the electrode catalyst mass without 

modifying the electrode thickness.  Multiwall nanotubes were fabricated via an 

aqueous CDP water evaporation followed by the catalyst deposition.  Hydrogen 

pump membrane-electrode assemblies (MEAs) were then fabricated using these 

electrocatalysts by lamination of active layers in a 2.85 cm2 diameter hardened 

steel die.  Stainless steel mesh was used for current collector and PTFE tape for 

a sealant.  Each MEA had a membrane thickness of approximately 75 to 85 
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microns.  The mass of a given electrode varied between 22 to 28 mg dependent 

on the metal loading on the carbon support.  In each cell, the hydrogen evolution 

electrode was laminated at 125 MPa while the hydrogen oxidation electrode was 

laminated at 25 MPa.  The cell assembly was installed in a stainless steel fixture 

for testing. 

 Prior to electrochemical testing, the cell assembly was heated to 150 °C in 

dry Ar.  Both electrodes were then switched to a wet Ar purge at 75 °C dew point 

and heated to the testing temperature of 250 °C. 

 Electrochemical testing was conducted at 250 °C.  At the start of the 

experiment, each electrode was supplied 30 sccm of humidified ultrahigh purity 

hydrogen at a 75 °C dew point. Polarization curves were recorded at 1 hour 

intervals with a Bio-Logic VSP potentiostat by scanning the working electrode 

potential at 5 mV s-1 from the open circuit voltage (OCV) to -0.3 V then to 0.3V. 

Potentiostatic electrochemical impedance spectroscopy (PEIS) spectra were also 

recorded at -50 mV versus OCV in a frequency range from 200 kHz to 200 mHz 

with a single sine perturbation amplitude of 10 mV.  Polarization curves free of 

the ohmic losses due to membrane resistance were derived by the subtraction of 

the current multiplied by the high frequency resistance measured at OCV. Cells 

were held at -50 mV for 1 hour between testing cycles. 

 Imaging of electrodes and chemical analysis was conducted with a Hitachi 

TM3000 SEM equipped with a Bruker Quantax EDS system operating at 15 kV.  

High resolution SEM used LEO 1525, 3 kV accelerating voltage. 
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Results and Discussion 

 

 As demonstrated in our previous work, Ru has shown promise as a HOR 

and HER catalyst as well as a CO electrooxidation catalyst for our solid acid 

hydrogen separation system.  The electrodes consisted of 1.05 mg/cm2 of 

catalyst supported on Vulcan XC72 and mechanically mixed with CDP and a 

fugitive binder naphthalene.  Such metal loadings are quite high for such a facile 

reaction as the HER.  Recall that we previously showed in chapter 2 that Ru was 

slightly more efficient for the HER reaction than for the HOR reaction.  A suite of 

catalysts with metal loadings varying from 0.01 to 1.05 mg/cm2 was synthesized 

for determining the effect of catalyst loading in our current electrode structure.  

Unfortunately due to the catalytic effect of Ru on carbon in air, metal loadings 

above 60% on carbon will combust.  This limits the maximum Ru loading on 

carbon to 1.05 mg/cm2 for our XC72 mechanical mixed electrode. 

 As-recorded and iR-free polarization curves for the Pt-Ru MEA acquired in 

pure H2 at 250 °C are shown in Figure 4-1 and Figure 4-2 for hydrogen oxidation 

and hydrogen evolution. The curves for the higher metal loading of 1.05 mg/cm2 

are relatively symmetric and the dominant loss channel is ohmic, accounting for 

over 70% of the total losses in the cell.  However, as the metal loading 

decreases, the symmetry disappears rapidly.  For the HOR, limiting current 

densities of 375 mA/cm2 , 190 mA/cm2, and 100 mA/cm2 were found for 10%, 5% 

and 1% Ru metal on XC72 respectively. 
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Figure 4-1 iR-free polarization curves acquired in hydrogen at 250 °C with 

variable Ru anode and 1.05mg/cm² Pt cathode 

 

We must note the mass transport limiting cases in the low loadings of Ru 

catalyst for HOR.  The mass transport of the hydrogen to the relatively dilute 

supported catalyst is leading to the limiting current that is observed.  This is also 

exacerbated by the lack of electrode optimization for maximizing the three-phase 

interfaces. 

 The HER reaction, at the same metal loadings, shows a drastically 

different trend in Figure 4-2.  We do not observe any limiting current for HER.  

60% and 30% Ru have similar HER performance to that of Pt, while 10% Ru 

remains comparable even with a metal reduction factor of 13.  The lower 
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loadings show a difference in performance, with a metal reduction of 2 leading to 

almost double the polarization required.  At the lowest loading of Ru, hydrogen 

evolution is still maintained and even with no metal, XC72 shows some activity at 

higher overpotentials. 

 

 

Figure 4-2 iR-free polarization curves acquired in hydrogen at 250 °C with 

variable Ru cathode and 1.05mg/cm² Pt anode 

 

 We know from chapter 2 that Ru is slightly a more active catalyst for HER 

than for HOR.  While this is a contributing factor, the mass transport for a 

hydrogen evolution reaction is limited to two phases (proton and electron) instead 
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of three.  This aids in reducing the loss due to mass transport thus increasing the 

performance. 

 The disparity can be better observed by picking an arbitrary potential away 

from OCV.  In this case we chose to select 60mV and examine the two 

electrodes.  This is shown in Figure 4-3 

 

 

Figure 4-3 Current density taken at 60mV of overpotential at 250°C in 

hydrogen comparing HOR to HER for Ru electrodes 

 

 From Figure 4-3 it is clear to see that Ru metal loadings can be reduced 

on the cathode and maintain high performance. However the anode may need 

more metal in order to perform as an efficient electrode.  This implies the need 

for thin catalyst layers with high weight percent Ru, Unfortunately, due to the 
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reactivity of Ru metal loadings greater than 60% in air, another electrode 

structure must be explored. 

 Conformal Pt coatings have shown success in the cathodic ORR reaction 

in solid acid fuel cell devices.  However, the large amount of Pt required (1.75 

mg/cm2) makes it an underwhelming choice for a Pt hydrogen separation system.  

Ruthenium however has a much lower cost thus allows us for a reasonable 

electrode cost with the relatively high metal amount needed for conformal 

coatings.  Ruthenium conformal coatings were deposited onto CDP via a vapor-

phase decomposition from Ru(acac)3  These reactions were carried out using a 

fixed bed wherein the crystalline solid precursors were mechanically mixed with 

the CDP, in a N2-water vapor atmosphere at elevated temperatures via a method 

that we have demonstrated previously52,56,68.  The ultimate deposition 

temperature was 240 °C.  Figure 4-4 shows CDP with conformal coating of Ru 

particles as synthesized from our one step vapor deposition.   

 This powder was then laminated directly onto the membrane, similarly to 

what was done with Pt and Pd conformal coatings on CDP57.  As-recorded and 

iR-free polarization curves for the Pt and Ru on CDP MEA acquired in pure H2 at 

250 °C are shown in Figure 4-5 for hydrogen oxidation and hydrogen evolution. 

While the first cycle seems promising, the cell rapidly decays to a non-functional 

cell in a matter of 2, 30 minute cycles.  Ru on carbon has shown excellent 

stability in hydrogen environments as previously reported36.  In order to  
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a)  

b)  

Figure 4-4 As synthesized conformal coatings for 13%Ru on CDP via single 

step CVD onto CDP 
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investigate this rapid cell degradation, we analyzed the electrode structure after 

cell testing. 

 

 

Figure 4-5 iR-free polarization curves acquired in hydrogen at 250 °C with 

variable conformal coatings of Ru on CDP and 1.05mg/cm² Pt anode. 

 

SEM analysis is shown in Figure 4-6 shows the rapid rearrangement of 

the conformal coatings to form large particles, thus hindering conduction through 

the electronic network.  Similar effects have been seen with conformal coatings 

of Pd as well57.  These Ru particles could possibly be reacting with the CDP, but 

due to the nature of the electrode containing only hydrogen and water, we do not 

suggest this.  It is possible that the Ru from the chemical vapor deposition 

reaction without the presence of a carbon support could form an oxide instead of   
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Figure 4-6 Post cell electrode for 13%Ru on CDP 
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the metal.  Pd-O species have shown reactivity with CDP57 so we expect Ru-O to 

have a similar effect.  However, as noted previously, there are not any other 

methods of CVD that deposits uniform conformal coatings as this technique46. 

In an analogous process to our Ru loadings study, we applied the same 

approach to preparing and optimizing Ni electrodes.  Unlike Ru, Ni does not 

cause combustion of carbon with metal loadings higher than 60% so were able to 

determine the limiting weight limit at which our electrode becomes saturated with 

catalyst.  This amount was found to be 75% by mass Ni supported on carbon.  

Decreasing the amount of Ni showed a large decrease in performance.  IR-free 

polarization curves for the Pt-Ru MEA acquired in pure H2 at 250 °C are shown in 

Figure 4-7.  

 While we discuss more of the possible Ni mechanics in chapter 2, the 

asymmetry in the rate of the HOR/HER could possibly indicate a different 

mechanism between the two.  For the HOR reaction, the charge transfer 

resistance increases with over potential, possibly indicating poisoning of binding 

sites or mass transport limitation.  For the HER reaction, the charge transfer 

resistance decreases with overpotential.  In low temperature studies, Ni reactions 

tend to be limited by the electrochemical desorption step of Hads.80,103 

 Preferential crystal phases for electrochemical reactions have been 

demonstrated in the past for various electrochemical reactions.  HCP Ni has also 

been shown to have a hydrogen storage properties in the metastable crystal 
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Figure 4-7 iR-free polarization curves acquired in hydrogen at 250 °C with 

variable Ni cathode and 1.05mg/cm² Pt anode 

 

phase104.  Ni nanoparticles were deposited onto Vulcan XC-72R via a vapor-

phase decomposition from its respective metal acetylacetonate Ni(acac)2 after 

drying for 48 hours in a dry box.  These reactions were carried out using a fixed 

bed wherein the crystalline solid precursors were mechanically mixed with the 

Vulcan XC-72R carbon, in a N2-water vapor atmosphere at elevated 

temperatures via a method that we have demonstrated previously52,56,68.  The 

ultimate deposition temperature was 260 °C.  These two modifications yielded 

HCP Ni over FCC Ni.  HCP Ni is normally a very complicated synthesis105–107, but 

we have found a simple one step procedure.  By heat treating this supported Ni 
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HCP Ni at 500°C for 3 hours, we were able to revert the HCP Ni to FCC Ni.  HCP 

Ni is known to form due to carbon or hydrogen impurities in the crystal structure, 

thus the heat treatment reverting to FCC Ni could result in the removal of these 

impurities.  The XRD diffraction results for as synthesized HCP Ni and are shown 

in Figure 4-8.  

 

 

Figure 4-8 XRD with Scherrer analysis of {011} peak showing a d-spacing of 

2.034 Å and mean grainsize of 34 nm. 

 

 From use of the Scherrer equation the mean particle size are found to be 

34nm.  While the FCC nanoparticles are slightly smaller at 31 nm, the 34nm 

particles show an increase in performance as shown in Figure 4-9.  This could 

have potential implications for improved catalytics based on the HCP structure.   
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Figure 4-9 iR-free polarization curves acquired in hydrogen at 250 °C with 

variable 2.1 mg/cm² Ni cathode and 1.05mg/cm² Pt anode 

 

 Using the low field approximation we estimate the geometric exchange 

current density to be 32.0 mA/cm2 for the HCP nickel and 27.3 mA/cm2 for the 

FCC nickel.  This is based off the charge transfer coefficient found at OCV.  

Future studies need to be conducted on HCP Ni in a more controlled 

environment in order to determine the true effect of the crystal effect for HER.  

Figure 4-10 shows an EIS spectra collected at 50mV of overpotential. 
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Figure 4-10 EIS spectra collected at 50mV in hydrogen at 250°C for Ni 

electrodes 

 

 Unfortunately interpreting this second arc for our system is complicated 

due to the number of variables in our experimental setup.  We could speculate 

that due to the change in crystal phase, the activation energy for HCP Ni to 

accept a proton could be lower.  HCP Ni has very little experimentation for 

catalysis for the HER reaction and a more rigorous study would need to be 

carried out in order to quantify the reasoning for the increased performance.  

Normalizing to the electrode catalyst surface area bound by the ECSA for 

aqueous environments and the electrolyte surface area, we find an exchange 

current density of 2.09-7.13 mA/cm2. 
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Due to the low cost of Ni we can also consider other approaches to 

electrode synthesis.  Due to the large size of the Ni nanoparticles, conformal 

coats on CDP are not achievable.  However we can apply this technique of using 

the catalyst as an electron carrier in a different way.  By using Ni FCC 

nanoparticles from Alfa-Aesar (Sigma-Aldrich,>99%, P/N 577995, lot 

MKBK8685V) at 500 °C in N2 for 3 hours, a porous interconnected “sponge” is 

synthesized as seen in Figure 4-11. 

 

 

Figure 4-11 Ni sponge as synthesized via as received Ni nanoparticles at 

500°C for 3 hours in nitrogen 

 

 This electrode sponge is then saturated with CDP by first dissolving CDP 

in water and adding this aqueous solution to the sponge.  This was repeated until 
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excess CDP was observed on all sides of the electrode.  Once saturated, this 

electrode was laminated directly onto the surface of the MEA as seen in Figure 

4-12. 

 

 

Figure 4-12 Ni sponge as synthesized via as received Ni nanoparticles at 

500°C for 3 hours in nitrogen after CDP has been added and the electrode 

has been laminated to the membrane 

 

These electrodes show limited activity at first (Figure 4-13) but by taking 

advantage of the HER reaction mechanics, a potential can be applied in order to 

induce porosity into the electrode.  By applying a large enough potential (0.4V) 

we can take advantage of CDPs super plasticity to locally evolve hydrogen.  This 
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could potentially pressurize  the electrode forcing pores in the CDP, or by forcing 

CDP to creep, which has been shown to be quite trivial to achieve58. 

 

 

Figure 4-13 iR-free polarization curves acquired in hydrogen at 250 °C with 

a Ni sponge cathode and 1.05mg/cm² Pt anode at the start of the 

experiments. 

 

The potential sequence applied can be seen in Figure 4-14.  At lower 

potentials of 0.1V there is relatively little change in the current response.  

However, when the overpotential is increased to 0.4V, there is a rapid increase in 

current density, eventually flattening out after 7 minutes. 
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Figure 4-14 CA acquired in hydrogen at 250 °C with Ni sponge cathode and 

1.05mg/cm² Pt anode.  This overpotential was used to induce porosity into 

the cathode. 

 

Observation of an iR-free polarization curve on the same electrode is 

shown in Figure 4-15.  At lower overpotentials, the HCP carbon supported 

catalyst shows better performance. However as the potential increases the 

fabricated all Ni electrode shows an increase in performance.  The carbon 

supported FCC Ni has lower performance throughout the polarization curve.  

This stresses the importance of increasing the tri-phase boundary of the 

electrode to increase the cell performance. 
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Figure 4-15 iR-free polarization curves acquired in hydrogen at 250 °C with 

variable Ni cathodes and 1.05mg/cm² Pt anode 

 

While Ru and Ni have shown promise for potential catalysts for solid acid 

hydrogen separation systems, Pt currently is the most effective catalyst.  An 

alternative strategy to maintaining performance and reducing overall cost is 

reducing the amount of Pt to low loadings.  In order to increase Pt utilization, we 

will need to increase the amount of the three phase interface.  Maximizing the 

catalyst-electrolyte interfacial area has been a daunting problem in solid acid 

electrochemical devices since implementation58.  In order to further optimize the 

tri-phase boundary for HOR we will try approaching the problem with a new 

carbon structure different from the mechanical mixing process of using Vulcan 
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XC72.  As a first stage of testing, symmetric cells using Vulcan-XC72 carbon and 

various loadings of Pt nanoparticles were tested in order to determine if a simple 

reduction in Pt loading could maintain performance.  This is shown in Figure 4-16 

 

 

Figure 4-16 EIS at OCV of Pt loadings on XC72-Vulcan carbon 

 

As seen in Figure 4-16, lowering the Pt loading in the electrode drastically 

reduces performance of the cells for this electrode construct. 

 In solid acid fuel cell cathodes, using higher surface area carbons such as 

single walled nanohorns (SWNH) can increase the performance.  The SWNHs 

reveal a structure consisting of individual cone-shaped nanohorns with walls 

consisting of a single graphene layer and diameters of approximately 2 nm and 
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lengths of approximately 10 nm, clustered into a secondary dahlia-like aggregate 

structure. MWNTs also contained approximately 1 wt% encapsulated Co 

remnant from CVD synthesis.  SAFC electrodes were then fabricated by 3:1 (by 

mass) mixture of carbon supported Pt nanoparticles and CDP.  The electrode 

thicknesses remained constant at 35 microns108.  EIS spectra was collected at 

OCV for the SWNH are shown in Figure 4-17. 

 

 

Figure 4-17 EIS at OCV of Pt loadings on carbon single walled nano horns 

(SWNH) 

 

Again, lowering the Pt loading in the electrode drastically reduces performance of 

the cells.  SWNH have showed promise for potential applications in fuel cells108.  
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However, their activity drastically decreases due to the rapid oxidation of the 

carbon as well as the carbon corrosion reaction with water.  In hydrogen 

separation systems, we do not expose electrodes to oxygen, and the potentials 

are low enough to minimize the carbon corrosion reaction.  However, the 

performance is less than the performance on XC72 regardless.  Thus higher 

surface area carbons do not necessarily equate to increased electrode 

performance. 

 Our next carbon nanostructure that was investigated was multiwall carbon 

nanotubes (MWNTs).  These MWNTs show structures 10-20 nm in diameter with 

walls comprised of 10-20 graphene layers, closed ends, and internal herringbone 

nanostructure. MWNTs also contained approximately 1 wt% encapsulated Co 

remnant from CVD synthesis66.  These MWNTs were further modified by an 

aqueous infiltration process as well as a low energy ball milling process for 15 

hours.  The post milled MWNTs are shown in Figure 4-18. 

 After ball milling, Platinum nanoparticles were deposited onto MWNT/CDP 

mixture via a chemical vapor-phase decomposition from its respective metal 

acetylacetonate, Pt(acac)2  This reactions was carried out using a fixed bed 

wherein the crystalline solid precursors was mechanically mixed with the 

MWNT/CDP mixture, in a N2-water vapor atmosphere at elevated temperatures 

via a method that we have demonstrated previously52,56,68.  The ultimate 

deposition temperature was 210 °C.  The electrodes using multi-walled  
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Figure 4-18 SEM micrograph of MWNTs infiltrated with CDP 

 

  



133 
 

nanotubes shows a large increase in electrode performance over the other 

carbon supports while drastically reducing the Pt loading, as observed in the EIS 

spectra   at OCV in Figure 4-19.  These electrodes have also shown promise as 

a more stable alternative to SWNH in cathodes for SAFCs108. 

 

 

Figure 4-19 EIS at OCV of Pt loadings on carbon multi walled nano tubes 

 

 This is in contrast to the cathode performance reported previously in which 

the SWNHs had better performance during the first cycles.  We contribute this 

increase in performance to the further increase of the ECSA of the MWNTs by 

the infiltration process.  The surface area for these infiltrated materials started out 

as 22 m2/g and after 16 hours at 250°C, increased to 26 m2/g.  From CO TPD 

measurements, there was a 96.8% Pt surface area retention.  This slight Pt 
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surface area decrease is due to the coarsening of the Pt particles.  This is 

consistent with previous studies using Pt nanoparticles46.  We expect that further 

decreasing the Pt loading will lead to less particle coarsening and an increased 

Pt surface area retention rate. 

 Figure 4-20shows that even with a 6x reduction in Pt, performance is still 

better than previous generations of Pt electrodes.  This increase is likely due to 

the increase of the ECSA, which is currently unknown for solid acid electrodes. 

 

 

Figure 4-20 Polarization curves with the old generation Pt electrodes (solid 

lines) with a multistep electrode fabrication process on multi-walled carbon 

nanotubes 

 

 The lower loadings of Pt with the higher performance have shown that a 

more efficient electrode structure has been developed.  While Pt is the superior 
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HOR catalysts, anodes for actual hydrogen separation will involve other 

impurities in the feed stream.  While pure hydrogen streams are beneficial for 

laboratory experiments, in a real application separating hydrogen from hydrogen 

seems to be a silly endeavor.  Syngas streams containing H2, CO and CO2 are 

much more probably feed streams in today’s current hydrogen production 

scheme.  Platinum has no interaction with carbon monoxide, which could 

potentially utilized as another source of hydrogen.  Ru is a catalyst that oxidizes 

the CO (in the presence of water) in order to produce more protons.  This is 

depicted in detail in chapter 3 but is also summarized in Figure 4-21 

 

 

Figure 4-21 Hydrogen polarization curves for hydrogen (solid lines) and CO 

(dashed lines) for Pt and Ru anodes 
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 In the infiltrated carbon nanotube support, Ru is deposited in similar 

fashion to Pt.  .  Ruthenium nanoparticles were deposited onto MWNT and CDP 

mixture via a chemical vapor-phase decomposition from its respective metal 

acetylacetonate, Ru(acac)3  This reaction was carried out using a fixed bed 

wherein the crystalline solid precursors were mechanically mixed with the 

MWNT/CDP mixture, in a N2-water vapor atmosphere at elevated temperatures 

via a method that we have demonstrated previously52,56,68.  The ultimate 

deposition temperature was 240 °C. To examine if this new structure is suitable 

for use in a hydrogen pump cell, we probed the electrochemical cell 

performance.  The iR-free polarization curves are shown Figure 4-22.  While the 

performance decreases with the decrease of metal loading, similar to the XC72, 

the performance is better compared to Ru metal on Vulcan. 

 Based on these results, the optimal catalyst for HOR electrodes in solid 

acid separation devices could be a combination of Ru and Pt catalyst.  A sample 

containing 0.89 mg/cm2 Ru and 0.16 mg/cm2 Pt was synthesized on infiltrated 

nanotubes via a simultaneous deposition at 240 °C in similar fashion to that 

above.  Initial synthesis may form an alloy of Pt and Ru, but in operational 

conditions at 250°C containing hydrogen and carbon monoxide, these samples 

phase segregate leading to a bi-metallic catalyst of discrete Pt and Ru 

nanoparticles94.   
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Figure 4-22 Polarization curves with the old generation XC72 electrodes 

(solid lines) with a multistep electrode fabrication process on multi-walled 

carbon nanotubes 
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 An iR-free polarization curve obtained for a dual metallic Pt and Ru anode 

is shown in Figure 4-23 in pure hydrogen at 250°C.   

 

 

Figure 4-23 Polarization curves with the old generation Pt electrodes (solid 

lines) with a multistep electrode fabrication process on multi-walled carbon 

nanotubes 

 

 The bi-metallic catalyst out performs all infiltrates despite having less Pt.  

This performance increase is also shown in simulated methane reformate 

(10%CO 43% H2 0.25% CH4 ) as shown in Figure 4-24.  The nonlinearity of the 

bimetallic curve at lower overpotentials has been reported before in previous 
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studies36 and is attributed to the CO electrooxidation reaction as described in 

chapter 3. 

 

 

Figure 4-24 Polarization curves in simulated methane reformate with the 

old generation Pt electrodes (solid lines) with a multistep electrode 

fabrication process on multi-walled carbon nanotubes 

 

Thus combination electrodes of Pt and Ru are the best performing electrodes for 

the HOR reaction in reformate streams.  Further optimization can be achieved by 

development of more selective deposition techniques for the Pt and the Ru 

nanoparticles.  Currently, these nanoparticles are not all deposited at interfaces 

where both CDP and MWNTs are present.  Some are deposited on the carbon 
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as well as on the CDP.  A more precise nanoparticle deposition technique could 

lead to drastic improvement in mass activity for solid acid electrodes. 

 

Conclusion 

 

 We have shown that re-engineered anodes are superior to their previous 

iterations by increasing performance while simultaneously decreasing the overall 

Pt loading.  While not as active as Pt, cathodes based off of low loadings of Ru 

and Ni show promise for cost effective hydrogen evolution catalysts. 
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CHAPTER 5  

THERMAL STUDIES OF SOLID ACID FUEL CELLS USING 

ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY 
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Abstract 

 

 While fuel cells are a more thermodynamically efficient system than 

traditional combustion processes, significant amounts of waste heat must still be 

rejected to regulate cell temperatures and for the case of systems based on the 

solid acid cesium dihydrogen phosphate (CDP), prevent undesirable phase 

transitions. CDP has a comparatively low thermal conductivity (0.41 Wm-1K-1), 

which limits its capacity for heat exchange. In order to better understand the flow 

of waste heat and the thermal distribution in operating cells, experiments were 

designed using the CDP membrane as an in situ temperature probe. Analyses 

included using high frequency impedance spectroscopy measurements of proton 

conductivity, transient plane source measurements of thermal conductivity and 

development of a 1-D thermal model.  In order to increase the thermal 

conductivity of cell components, β-silicon carbide whiskers were selected for use 

in composites, due to a relatively high thermal conductivity of 120 Wm-1K-1. 

Analyses of these new composites included using high frequency impedance 

spectroscopy measurements for proton conductivity and transient plane source 

measurements for thermal conductivity. 
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Introduction 

 

 The hydrogen fuel cell is a promising electrical generation system.  

However even the most efficient automotive PEM fuel cells still generate roughly 

1:1 electrical power to thermal power.  Polarization curve for a mock hydrogen/air 

fuel cell is shown in Figure 5-1. 

 

 

Figure 5-1 Mock hydrogen/air fuel cell polarization curve to illustrate the 

ratio of waste power to usable power 

 

 The electric power is shown under the curve in blue and is described by 

equation 5.1. 
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 Pgen = Ecell ∗ J (5-1) 

Where Ecell is the cell potential in V and J is the current density in A/cm2.  The 

“waste” power is generated at rate given in equation 5.2 

 Pwaste = J ∗ (Eth − Ecell) (5-2) 

Where Eth is the thermal voltage derived from the overall enthalpy of reaction.  In 

order to increase the overall efficiency of the system, thermal recycling of the 

“waste” power is crucial.  One application is to apply the heat generated to 

reactions required to generate hydrogen for fuel cell operation.  The steam 

reformation of methanol, equation (1-5) is an endothermic reaction which has 

potential applications for consuming thermal energy generated as a byproduct of 

the electrochemical process.  

 The steam reformation reaction for methanol is optimal using commercial 

copper based catalyst at an intermediate temperature range of 230-260°C.  A 

relatively new electrolyte that operates in these temperature ranges is based on 

the electrolyte cesium dihydrogen phosphate (CDP).  These cells have already 

showed promise in the past using steam reformed methanol as an anode input.  

However, the thermal conductivity is low for CDP (0.41 W/mK) and in fuel cell 

operation, most of the thermal energy is generated at the cathode.  With the 

steam reformation reaction occurring on the anode, a thermal conduction 

network must be implemented in order to transport the heat effectively into the 

reformer.  Here we investigate the thermal properties of solid acid fuel cells as 
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well as design composites for increased thermal conductivity while minimizing 

the proton conductivity lost.  This is achieved 

 

Experimental Methods 

 

CsH2PO4 was synthesized by reaction of CsCO3 (Alfa Aesar, 99%) with H3PO4 

(Alfa Aesar, 85%) followed by precipitation in methanol and drying.  The as-

synthesized CDP was low-energy ball-milled to reduce its initial particle size, 

yielding a fine particulate powder with a BET surface area of approximately 2 

m2/g.   Carbon-supported metallic nanoparticles were synthesized as hydrogen 

oxidation and evolution catalysts. Platinum nanoparticles were deposited onto 

Vulcan XC-72R via a vapor-phase decomposition from their respective metal 

acetylacetonates Pt(acac)2 (Strem Chemical).  These reactions were carried out 

using a fixed bed wherein the crystalline solid precursors were mechanically 

mixed with the Vulcan XC-72R carbon, in a N2-water vapor atmosphere at 

elevated temperatures (210°C) via a method that we have demonstrated 

previously.  

Composite electrocatalyst powders were synthesized by dry-grinding the fine 

CDP with the various metal/carbon catalyst and naphthalene (a fugitive binder).  

These mixtures kept the mass ratio of CDP, naphthalene and carbon to 3: 1: 0.4 

(mass) allowing for variation of the electrode catalyst mass without modifying the 

electrode thickness.  Solid acid membrane-electrode assemblies (MEAs) were 
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then fabricated using these electrocatalysts by lamination of active layers in a 

2.85 cm2 diameter hardened steel die.  Stainless steel mesh was used for current 

collector and PTFE tape for a sealant.  Each MEA had a membrane thickness of 

approximately 40, 80 and 170 microns.  The mass of a given electrode varied 

between 22 to 28 mg dependent on the metal loading on the carbon support.  In 

each cell, the hydrogen evolution electrode was laminated at 125 MPa while the 

hydrogen oxidation electrode was laminated at 25 MPa.   

Prior to electrochemical testing, the cell assembly was heated to 150 °C in dry 

Ar.  Both electrodes were then switched to a wet Ar purge at 75 °C dew point and 

heated to the testing temperature of 250 °C.  Electrochemical testing was 

conducted at 250 °C.  At the start of the experiment, the anode was supplied 30 

sccm of humidified ultrahigh purity hydrogen at a 75 °C dew point and the 

cathode was supplied air at 70 sccm at a 75°C dew point. Polarization curves 

were recorded at 30 minute intervals with a Bio-Logic VSP potentiostat by 

scanning the working electrode potential at 5 mV s-1 from the open circuit voltage 

(OCV) to 0 V. Potentiostatic electrochemical impedance spectroscopy (PEIS) 

spectra were also recorded at 0.8 V in a frequency range from 200 kHz to 200 

mHz with a single sine perturbation amplitude of 10 mV.  Polarization curves free 

of the ohmic losses due to membrane resistance were derived by the subtraction 

of the current multiplied by the high frequency resistance measured at OCV. 

Cells were held at 0.6 for 30 minutes between testing cycles.  After 15 hours the 
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solid acid electrochemical device will be run as a hydrogen/air fuel cell at 250 °C 

using the protocol shown in Figure 5-2.  

 In order to measure the proton conductivity of composites, a 4-probe 

conductivity probe was built using a quartz tube furnace.  A 4 bore alumna tube 

was used to separate the Inconel wire and the sample was attached using silver 

paint and silver paste.  Silver paint was first applied unto the surface of the 

sample in order to ensure that a uniform silver coat was applied to the electrode 

surface.  

 

 

Figure 5-2 Experimental procedure for measuring the average membrane 

temperature change based on conductivity. 

 

 The painting a paste technique is shown in Figure 5-3.  Composites were 

synthesized by low-energy ball milling CDP with the respective material for 15 
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hours in methanol.  These solutions were then sieved in a 53 micron sieve in 

order to remove the milling media.  These materials were then dried in toluene 

overnight at 120°C in order to remove the methanol and any residual water.  

Pellets were fabricated by laminating powders using a 6.03mm dye and 125 MPa 

pressure for 5 minutes.   

 

 

Figure 5-3 System built for measuring the proton conductivity of CDP and 

the solid acid composites. 

 

 TPS measurements were gathered using a Hot Disk thermal constants 

analyzer TPS 1500.  Symmetric measurements were carried utilizing samples of 

similar dimensions.  This setup was used in order to minimize the experimental 

drift error and help ensure accurate measurements.  In order to create consistent 

contact pressure, stainless steel weights were placed on top of the sample to 

increase the pressure to the sensor. 
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Results and Discussion 

 

The process of electrochemical hydrogen separation produces heat as a by-

product of the reaction.  In CDP based devices using endothermic steam 

reformation as a hydrogen producing technique, proper heat management can 

lead to an increase in system efficiency.  Modeling such a system will allow for 

the determination of the optimal operational voltage, as well as the amount of 

thermal energy that is not being utilized.  A model to describe the polarization 

losses must be used in order to define the amount of heat generated in a 

hydrogen separation system.  A zero-dimensional model equation to define the 

cell potential as a departure from ideal voltage is described by equation (1-10).  

These inefficiencies lead to the generation of heat at a rate defined by equation 

(5-2).  By taking advantage of the Arrhenius relationship, equation (1-23), of the 

super-protonic conductivity, a relationship can be derived to describe the average 

change in electrolyte temperature based on conductivity changes.  Conductivity 

in relationship to resistance is described by equation 5.3. 

 
R =  

1

σ
 (5-3) 

Where R is the resistance and σ is the conductance.  Intermediate temperature 

CDP has a conductivity defined by an Arrhenius relationship with the 

temperature.  Thus a ratio of two  

σ(𝑇1)

σ(𝑇2)
=  

𝑅2

𝑅1
=  

e
−(

Ea
k𝑇1

)

e
−(

Ea
k𝑇2

)
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σ(𝑇1)

σ(𝑇2)
= exp [−

𝐸𝑎(𝑇2−𝑇1)

𝑘∗𝑇2∗𝑇1
]  → exp [−

𝐸𝑎∆𝑇

𝑘∗𝑇2∗𝑇1
]  

Let   

𝛼 =  
𝐸𝑎

𝑘
 

Therefore 

𝑅2

𝑅1
= exp [− 

𝛼∆𝑇

𝑇2 ∗ 𝑇1
] 

𝑙𝑛 [
𝑅2

𝑅1
] = 

 − 
𝛼∆𝑇

𝑇2 ∗ 𝑇1
 →

𝛼𝑇1 − 𝛼𝑇2

𝑇2 ∗ 𝑇1
 →

𝛼

𝑇2
−  

𝛼

𝑇1
 

Solving for T2 

 
𝛼

𝑇1
+  𝑙𝑛 [

𝑅2

𝑅1
] = 

𝛼

𝑇2
 

 
𝑇2 =  

𝛼 ∗ 𝑇1

𝛼 + 𝑇1 ∗ 𝑙𝑛 [
𝑅2

𝑅1
]
 

(5-4) 

Remembering that 

 

𝛼 =  
𝐸𝑎

𝑘
 

Where 𝐸𝑎 = 0.42eV for CDP. 

 A base-line overpotential was applied for a fixed amount of time to allow 

the system to equilibrate to the operational temperature of 250 °C followed by an 

EIS measurement to determine R1.  Next an increased overpotential will be 

applied to the cell followed by an EIS measurement to determine R2.  The 
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difference in these resistances correlate to a difference in the average 

temperature in the electrolyte.  Three different membrane thicknesses were used 

to test the model.(40, 80 and 170 µm). 

 

 

Figure 5-4 Cross section of the 170 micron fuel cell used for testing the 

thermal model.  The cathode is at the top, with the anode at the bottom. 

 

The measured high frequency resistances for the procedure are shown in Figure 

5-5 using the technique described in Figure 5-2.  The insert shows a measured 

resistance as well as a depiction of R1 and R2 for 0.1V of cell potential.  For the 

170 and 80 micron membranes, the baseline remained consistent throughout 

testing.  The 40 micron membrane showed an increase in baseline resistance.  

This is most likely due to creep of the CDP or possibly dehydration.   
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Figure 5-5  High frequency resistance of three cells with variable membrane 

thickness used to determine the average membrane temperature. 
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Transient plane source (TPS) measurements were performed under room 

temperature conditions to determine the thermal conductivities of materials used 

in solid acid electrochemical devices.  TPS data is shown for CDP and GDL in 

Figure 5-6.  In order to determine the thermal conductivity, the TPS data is fit to 

(1-30).  The average membrane temperature was calculated using the equation 

(5-4).  Summary of TPS acquired thermal conductivity results are shown in Table 

5-1. 

 

Table 5-1 Thermal conductivities of solid acid fuel cell’s MEA 

Sample 

 

Thermal 

Conductivity 

(W/(m*K)) 

Length 

(microns) 

 

Stainless Steel support 0.17 6300000 

Micro Porous layer 0.35 90 

Anode 0.44 35 

Membrane 0.41 (40,80,170) 

Cathode 0.46 160 

Carbon Paper 0.17 190 

 

 

 In order to investigate the effect of the solid-solid phase transition, cesium 

hydrogen sulfate (CHS) was used a substitute solid acid.  Cesium hydrogen 
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sulfate does not have the humidity requirements of CDP and undergoes the 

superprotonic phase transition at 140°C.  Cesium hydrogen sulfate was used 

previously as a solid acid electrolyte, however it undergoes a reaction in the 

presence of Pt and hydrogen to form hydrogen sulfide.  This leads to a 

breakdown of the proton conducting network in the electrode. 

 

 

Figure 5-6 TPS measurements for CDP and the 35AA carbon paper 

 

 The proton conductivity of CHS can be seen in Figure 5-7.  Where the 

thermal conductivity was measured to be slightly lower than CDP at 0.3 W/(m K) 
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at 25°C and 0.32 W/(m K) at 150°C.  From these results, we assume that CDP 

has a minimal increase to thermal conductivity due to the phase transition. 

 

 

Figure 5-7 Cesium hydrogen sulfate proton conductivity versus 

temperature. 

 

 A fuel cell thermal model is created making the assumption that the heat 

generation is isolated to an infinitely small plane between the membrane and the 

cathode.  This model also assumes that the heat is transferred by conduction 

only.  A temperature profile based on the overpotential using this model is shown 

in Figure 5-8.  The 40 micron model shows the largest variation and deviation 

from the experimental results.  The higher temperatures generated in the cell  
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a)   

b)  c)   

Figure 5-8 Average membrane temperature of the model compared to 

experimental temperature calculated from the high frequency resistance 

differential 
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lead to cell degradaton.  This degradation can also be seen in Figure 5-5 with the 

40 micron membrane showing a baseline resistance increase of over 30%.  We 

contribute this decrease to the changes in the cathode microstructure related to 

the properties of the CDP electrolyte.  CDP is a superplastic in its superprotonic 

phase, leading to large enhancement of the sintering rate of the individual Pt 

particles, which effectively reduces the overal catalystic activity and impairing gas 

diffusion.  This is in contrast with the 80 micron and 170 micron cells which 

stayed relatively constant throughout the experiment. A cell temperature profile is 

generated in Figure 5-9 for a viewing distibution of the temperatures while a cell 

is held at 0.1V  The majority of heat is conducted through the cathode of the cell.  

This is due to the low thermal conductivity of CDP leading to poor heat transfer 

across the membrane.  Also while stainless steel has a bulk thermal conductivity 

of 11 W/mK, we have measured a much lower value of 0.17 W/mK.  This is due 

to the porosity of the stainless steel GDL.  Also the thickness of the stainless 

steel GDL leads to a very low overall thermal conductance.  This leads to our 

stainless steel support act as an insulator.  This could be used advantageously in 

order to sink thermal energy into one electrode.  In our case, we are interested in 

sinking thremal energy into the anode in order to support endothermic steam 

reformation reactions.  Thus a redesign of cell archetecture would need to be 

achieved.  However, due to the confrmal coatings of Pt on the CDP, we can not 

currently fabricate such a design.  This is due to  
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Figure 5-9 1d temperature profile of the 80 micron solid acid fuel cell at 

0.1V 
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our lamination procedure for the membrane.  Due to the high pressure required, 

we would remove the porosity of our cathode if we tried to laminate it first.  For 

the anode, we induce porosity by use of a fugitive binder.  However this leads 

micron size voids in the electrode.  This would greatly reduce the electron 

network in the cathode leading to lower performance. 

 In order to address the issue of CDP’s low thermal conductivity, SiC was 

selected as an additive agent for composites.  In order to achieve desired 

dispersion, a mixing and milling technique was developed by first mixing the SiC 

and CDP mechanical then by a low energy ball milling technique in methanol.   

The effects of the low energy ball milling technique can be observed in Figure 

5-10.  The darker areas are group of SiC particles.  Ball milling and mixing leads 

to a greatly enhanced dispersion with no noticeable groups of SiC.  

 While we note that we have achieved effective dispersion, this does not 

create the desired single connected thermal network.  With our current 

procedure, we are unable to laminate SiC into a solid like we do with CDP.  This 

leads to dispersed SiC particles throughout the composite but not a network.  In 

order to greatly increase the thermal conductivity, a single network that leads 

directly to the heat sink (or in our ideal case a steam reformer) would be 

desirable.  Our current work is designed as a proof of concept for potential 

materials for this network. 
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a)

 

b)

 

Figure 5-10 Mixing procedure effect on 10%SiC/CDP composites. a) No 

mixing b) After mixing 
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 Figure 5-11 depicts the proton conductivity of three different mass 

percentages (5%, 10% and 15%) of SiC mixed with CDP.  When temperatures 

are below the solid-solid phase transition of 228°C, the SiC composites show an 

increase in the proton conductivity.  This is most likely due to residual silica and 

other impurities that lead to a different manor of proton conductivity similar to 

what was reported for silica and CDP composites35. 

 

 

Figure 5-11 Proton conductivity of various weight percentages of SiC and 

CDP. 

 

 Post 228°C, the proton conductivities show a trend that is not represented 

by a volumetric decrease.  At 250°C, the proton conductivities are 0.022, 0.017, 
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0.014, and 0.009 (S cm-2) for CDP, 5%, 10% and 15% SiC.  Based off the trend 

seen in the lower temperature conductivities, we contribute this non volumetric 

decrease to residual impurities. 

 

 

Figure 5-12 Intermediate temperature proton conductivities for 

10%SiC/CDP and 10%Silica/CDP. 

 

 The effects of silica to the high temperature proton conductivity of CDP 

are detrimental.  At 250°C and 10wt% silica the proton conductivity is 0.007 S 

cm-2.  This reduction of proton conductivity is due to the hydrogen bonds that 

form between the solid acid and the silica.  These hydrogen bonds inhibit the 

phosphate tetrahedron which is responsible for the high temperature proton 

conduction mechanism in CDP.  This trend can also be seen in the activation 
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energy with CDP being 0.413eV, 5%SiC being 0.4eV, 10%SiC being 0.34eV, 

15%SiC being 0.31eV 10% silica being 0.197eV. 

 In order to minimize the loss of proton conductivity to impurities, various 

other SiC were tested with different synthesis methods from vendors.  These can 

be seen in Figure 5-13. 

 

 

Figure 5-13 SiC from various vendors and CDP composites with weight 

percentages 10% and 90% respectively. 

 

A concentrated base wash of KOH was applied to the 059N SiC powder in order 

to further purify the sample from impurities.  A control composite sample was 
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created using micron diamond particles of similar size to the 059N SiC sample.  

The proton conductivities of these composites can be seen in Figure 5-14 

 The pre transition proton conductivity has changed with our washed 

sample to the similar form of CDP.  The post transition proton conductivity at 

250°C is 0.016 (S cm-2) for 10%SiC and 0.0197 (S cm-2) for 10% diamond.  The 

activation energy is 0.38eV for 10%SiC based washed samples and 0.410eV for 

10% diamond samples.  These results are summarized in Table 5-2.  Composite 

thermal conductivities for SiC showed little variation based off of vendor or base 

washing. Composite thermal conductivities corrected for the volume fraction for  

 

 

Figure 5-14 Proton conductivity of CDP mixed with 10% diamond and 10% 

SiC after base washing. 
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Table 5-2 Proton conductivity of CDP mixed with 10% diamond and 10% 

SiC after base washing. 

Sample 

 

Activation 

Energy 

(eV) 

Proton Conductivity 

at 250°C 

(S cm-2) 

Volume Corrected 

Proton Conductivity 

at 250°C (S cm-2) 

CDP 0.413 0.0223 0.0223 

10% 

Diamond 
0.41 0.0197 0.0217 

10% SiC 

Washed 
0.38 0.0159 0.0181 

5%   SiC 0.4 0.0165 0.018 

10% SiC 0.33 0.0138 0.014 

15% SiC 0.31 0.00853 0.012 

10% 

Silica 
0.197 0.007 0.01 
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SiC samples showed little variation based off of vendor or base washing.  

Combining the 10% KOH was SiC with CDP has led to an increase of 221% in 

thermal conductivity while maintaining 77% proton conductivity.  A more careful 

and controlled synthesis method of SiC would likely lead to a further increase in 

proton conductivity while maintaining or increasing the thermal conductivity.

 Figure 5-15 depicts a summary of overall conductivities for the highest 

CDP/SiC thermal conducting species.  While the overall proton conductivity of 

the composite has decreased by 23%, we must also consider the possibilities for 

 

 

Figure 5-15 Best performing proton conductivity and thermal conductivity 

of CDP and 10%SiC/CDP composites. 
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an increase in conductance by decreasing the thickness of the membrane itself.  

 While low temperature fuel cells based off of polymer membranes must 

consider membrane thickness in order to minimize crossover, this is not the case 

with a solid membrane.  However, little has been invested into fabrication of 

thinner membranes in solid acid systems.  One reason for this is the mechanical 

properties of solid acids are not well known.  Some research has been done to 

analyze the properties of cesium hydrogen sulfate, but measuring the mechanical 

properties of CDP remains even more difficult due to the humidity requirements.  

From the CHS research, we have learned that the creep for solid acids is 

relatively high.  This has also been observed in CDP based systems.  In order to 

make a truly stable membrane, composite materials seem advantageous.  This 

has been demonstrated in the CHS109. 

 Another consideration is the effect of local heat generation with the effect 

on the CDP electrolyte.  By observing the phase diagram, the acceptable 

temperature range for our operating humidity (0.3 atm) the temperature should 

not exceed 260°C35.  However, even in our own experiments and a 40 micron 

membrane, we approach 256°C for the average membrane temperature.  The 

interfacial temperature can be calculated to slightly higher than that at 258°C.  

We can easily extrapolate to making a thinner membrane leading to a larger 

increase in interfacial temperature which approaches the dehydration 

temperature.  Multiple optimizations solutions exist and should be considered to 

address this problem.  Two potentials are increasing the amount of water, 
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however this will decrease the overall cell performance due to lower 

concentrations of reactants.  Another is decreasing the temperature of operation 

which decreases the reaction kinetics as well as the membrane conductivity.  

Thus the only viable solution to increasing the cell performance while maintaining 

stability is development of a composite membrane based on a SiC thermal 

network.  One possible technique for this network development is to use 

electrospinning for SiC mats and impregnating with CDP via aqueous solution. 

 

Conclusion 

 

 Using high frequency impedance spectroscopy measurements of proton 

conductivity and transient plane source measurements of thermal conductivity we 

developed a 1-D model for heat conduction in an operational solid acid fuel cell 

at 250°C.  In order to increase the thermal conductivity of cell components, β-

silicon carbide whiskers were selected for use in composites, due to a relatively 

high thermal conductivity of 120 Wm-1K-1.  Composites of 10% SiC by volume 

increased the thermal conductivity by 221% while maintaining 77% of the proton 

conductivity.  We expect further optimization can be achieved by development of 

a SiC mats and aqueous impregnation with CDP. 
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CHAPTER 6  

CONCLUSION 
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 We have investigated the solid acid electrolyte cesium dihydrogen 

phosphate for an electrochemical hydrogen separation system.  We first 

demonstrated a suite of carbon-supported catalysts (Pt, Pd, Ru, Ni and Cu) on 

XC72 for implementation in electrodes at a metal loading of 1.05 mg/cm2 for both 

the anode and the cathode.  Pt showed the highest performance with a current of 

591 mA/cm2 at a cell overpotential of 300mV.  When comparing the total cell 

performance to other Pt hydrogen separation systems, we note that at 600 

mA/cm2 the over potential for a PFSA system operating at 80°C is 20mV at a 

metal loading of 0.4 mg/cm2 per electrode92 and for PBI based systems is 125mV 

for 1 mg/cm2 at 160°C25.  The large difference in performance stems from the 

large ohmic resistance in our current solid acid hydrogen pump design.  80% of 

the cell overpotential was due to the ohmic losses.  While the conductivity of 

CDP is lower than that of PFSA and PBI, we can decrease the overall resistance 

by utilizing thinner membranes.  Our average high frequency resistance is 0.4 Ω-

cm2 for membranes that are 80 microns thick.  For the PFSA system, the HFR 

was measured as 0.044 Ω-cm2.  Thus, in order to obtain comparative results, we 

must reduce our membrane thickness by 10, to 8 microns.  For the PBI system, 

the measured HFR was 0.1 Ω cm2.  Thus we need to decrease our membrane by 

a factor of 4 in order to obtain similar ohmic loses.  From an electrode standpoint, 

our measured charge transfer resistances, 0.07 Ω cm2, were notably higher than 

the reported values of 0.02 Ω cm2 and 0.015 Ω cm2 for PFSA and PBI 

respectively.  This is likely due to the poor electrode optimization in our SAHP 
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systems.  The mechanical mixing of CDP with supported carbon nanoparticles 

electrode design leads to less utilization of the catalyst surface area.  However, 

we note the diversity of catalyst in our current study leads to other potential 

catalyst for our solid acid systems. 

 We prepared electrodes from several metals, using the ‘PMCVD’ 

technique to synthesize metallic nanoparticles on carbon supports. Ru shows 

promise as a catalyst for both the hydrogen oxidation reaction as well as the 

evolution reaction despite not being as active as Pt.  In order to compare 

catalysts, we will remove the voltage lost to the ohmic resistances.  We use 

performance at 60 mV of IR-free (300 mV for total cell potential in a symmetric Pt 

system) as a comparison point. At 60 mV of IR free overpotential for a 1.05 

mg/cm2 Ru anode and a 1.05 mg/cm2Pt cathode, the current density obtained is 

391 mA/cm2.  At 60 mV of IR free overpotential for a 1.05 mg/cm2 Pt anode and a 

1.05 mg/cm2 Ru cathode, the current density is 555 mA/cm2, an increase of 25%.  

The non-PGM catalysts tested in this study, nickel and copper, showed negligible 

HOR performance.  Copper was not as active as nickel for hydrogen evolution, 

but showed a drastic increase in performance from previously reported values.  

Ni based cathodes with Pt anodes showed current values of 50 mA/cm2 at 60 mV 

of IR-free cell potential at 1.05 mg/cm2. 

 We then demonstrated that methanol can be steamed reformed and the 

hydrogen purified by ‘hydrogen pumping’ using an inexpensive solid acid 

electrolyte and zero Pt at 250°C.  This exploits the excellent ability of CDP to 



172 
 

tolerate impurities in the anode feed. Although Ru is not as active as Pt for the 

HOR reaction, the metal is considerably less expensive and shows other 

advantages in the ability to electrooxidize CO.  At 60mV of overpotential, the CO 

electrooxidation was 60mA/cm2 for 90% CO balance of Ar with an anode of 1.05 

mg/cm2 Ru and a cathode of 1.05 mg/cm2 Pt.  We also demonstrated a pure CO 

fuel and air fuel cell design using our Ru anode with a Pt cathode.  This showed 

a peak power density of 60mW/cm2 with 90%CO balance Ar anode feed on a 

1.05 mg/cm2 Ru electrode and an air cathode feed on a 1.75 mg/cm2 Pt 

electrode.  In situ methanol steam reformation and hydrogen separation was then 

achieved by combining commercial Cu Hi-Fuel catalyst with Ru anodes.  Ni 

cathodes were also implemented in order to demonstrate a non-Pt hydrogen 

separation system.  At 60mV of IR-Free overpotential at for 1.05 mg/cm2 Ru 

anode and Ni cathode operating at 250°C, we recorded a performance of 50 

mA/cm2. 

 In order to further optimize our SAHP system, we turned our focus to 

maximizing the tri-phase interface in the electrodes.  Switching to a carbon 

nanotube infiltrate, we were able to reduce the Pt loading by a factor of 11 from 

1.05 mg/cm2 using our mechanical mixed XC72 design, to 0.09 mg/cm2 while still 

maintaining a similar charge transfer resistance of 0.09 Ω cm2.  These re-

engineered anodes are superior to their previous iterations by maintaining 

performance while simultaneously decreasing the overall Pt loading.   
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From all of these studies, we conclude that there is a substantial flexibility 

in our choice of catalyst enabling us to optimize our electrodes for a variety of 

fuel inputs.  By observing only current response, streams that involve low 

amounts of CO (like reformed methanol at 1% CO), Pt remains the superior 

catalyst for all measured values.  For higher concentrations of CO (reformed 

methane at 10%), Ru becomes the better option due to the CO electrooxidation 

in synergy with the HOR at current densities higher than 500 mA/cm2.  However 

for a systems applications, materials and operational cost must be considered.  

For materials cost, Pt is about 14 times more expensive than Ru.  From the 

operational stand point, at 60 mV of IR free cell potential, Pt is 51% better than 

Ru for HOR and 6.5% better for HER.  If cell size is a concern, a dual metal 

electrode using both Pt and Ru may be implemented to take advantages of Pt’s 

intrinsically higher HOR kinetics and Ru’s CO and HOR oxidation ability.  If size 

is not a concern, a larger cell area may be implemented in order to maintain an 

overall current, but operate at a similar system voltage.  The relatively low cost of 

the electrolyte is also beneficial to a larger cell design.  Larger cells operating at 

lower overvoltages are key to achieving the combination of sufficient production 

rates and higher efficiencies for electrochemical hydrogen separation systems.  

When size is not a concern, Ru currently has all the characteristics that make it a 

suitable catalyst choice for anodes in both solid acid hydrogen pumps and for 

solid acid fuel cells. 
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 After reducing the required electrode catalyst required, we turned our 

focus to determine the thermal energy generated in our solid acid 

electrochemical systems.  By recycling the thermal energy generated as a 

byproduct of the electrochemical process into an endothermic steam reformation 

reaction (such a methanol steam reformation), an overall higher system 

efficiency can be achieved.  Also, due to the phase requirements of CDP, careful 

management of the cell temperature must be maintained in order to achieve 

stable proton conduction.  By taking advantage of the Arrhenius dependence of 

the intermediate temperature proton conductivity, we derived a relationship in 

order to determine the average membrane temperature based off of the 

resistance. We then applied this to experiments by using high frequency 

impedance spectroscopy measurements at various overpotentials.  Transient 

plane source measurements were performed in order to determine the thermal 

conductivity of solid acid fuel cell components.  These were subsequently used in 

to generate a 1-D model for heat conduction in an operational solid acid fuel cell 

at 250°C.  In order to increase the thermal conductivity of the cell membrane, β-

silicon carbide whiskers were selected for use in composites, due to a relatively 

high thermal conductivity of 120 Wm-1K-1.  Composites of 10% SiC by volume 

increased the thermal conductivity by 221% while maintaining 77% of the proton 

conductivity.  We expect further optimization can be achieved by development of 

a SiC mats and aqueous impregnation with CDP.  These advancements could 

also enable drastically decreased membrane thickness allowing for a lower 
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ohmic resistance.  This would greatly increase the electrochemical hydrogen 

separation efficiency considering that the ohmic losses are 80% of the voltage 

loss in the system. 
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