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ABSTRACT 
 

Critical benchmark experiments are the foundation of validation of the computational codes 
used in criticality safety analyses because they provide a basis for comparison between the 
calculated results and the physical world. These experiments are often performed in series 
varying a limited number of parameters to isolate the effect of the independent parameter. 
The use of common materials, geometries, machines, procedures, detectors, or other shared 
features can create correlations among the resulting experiments. Most validation techniques 
used in criticality safety practice do not treat these correlations explicitly, and the effect of 
this is unclear as the correlations themselves are not well known. Generalized linear least 
squares methods used for advanced validation or in data adjustment studies also rely on 
correlation coefficients to constrain the adjustments allowed in critical experiment results. 
The purpose of this dissertation is to develop a methodology for the calculation of critical 
experiment correlations using a Monte Carlo sampling technique. The use of this technique 
allows for the determination of the uncertainty in each individual experiment, and identical 
perturbations applied to shared parameters provide estimates of the covariance between the 
experiments. The correlation coefficient is then calculated by dividing the covariance 
between any pair of experiments by the product of the individual experiment standard 
deviations. This technique is applied to high-enriched uranium solution experiments and 
low-enriched uranium pin lattice experiments to determine correlation coefficients for these 
types of systems. The important parameters governing the correlation coefficients are 
determined, and the results are compared with correlation coefficients in the literature 
determined using other methods at other institutions. The general method for the 
determination of the correlation coefficients is presented along with other conclusions and 
recommendations for further study in this area. 
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CHAPTER I: INTRODUCTION  

Criticality safety is the branch of nuclear engineering concerned primarily with preventing an 
unintended nuclear chain reaction from occurring during the handling or storage of 
fissionable material [1]. One of the primary metrics used to analyze systems containing 
fissionable material is the neutron multiplication factor, or keff. The keff is calculated as the 
ratio of the neutron production rate to the neutron loss rate [1]. Thus a system that has a keff 
of 1, referred to as “critical,” has a constant neutron population; production is exactly 
balanced by losses to absorption in the system and leakage from the system. A system with a 
decreasing neutron population over time has a keff less than 1, and is called “subcritical”. A 
“supercritical” system has a keff greater than 1 and an increasing neutron population. 
 
The community of criticality safety practitioners is made up of nuclear engineers who 
specialize in analyzing processes and systems to ensure all operations stay safely subcritical. 
The community is further divided into several subdisciplines. The most evident division 
within the criticality safety community is into the types of analyses performed. The three 
main types of analyses that are performed are process criticality safety analysis, 
transportation criticality safety analysis, and burnup credit criticality safety analysis. Each of 
these areas will be discussed in more detail below. It is also important to recognize that in 
the United States (US) multiple regulatory bodies exist. Some facilities are regulated by the 
Department of Energy (DOE) or the National Nuclear Security Administration (NNSA) and 
others are regulated by the Nuclear Regulatory Commission (NRC).  The DOE/NNSA sites 
tend to be related to military applications of nuclear technology, while the NRC regulated 
sites are generally related to civilian nuclear power. The DOE/NNSA sites are generally 
required to follow consensus ANSI/ANS standards and applicable DOE orders. The NRC 
regulated sites are required to follow the various applicable chapters of Title 10 of the Code 
of Federal Regulations (10CFR). Both communities also support transportation operations, 
which are generally similar in most cases because Department of Transportation (DOT) 
regulations are also involved. 
 
Process criticality safety analyses include assessments for operations involving the handling, 
storage, and/or processing of fissionable material. These analyses require consideration of 
both normal conditions of operation and credible upsets. The criticality safety analyst is part 
of multidisciplinary team while performing these analyses so that appropriate, relevant 
aspects of operations are considered. These aspects often include considerations of 
chemistry, operations, human factors, and process engineering and frequently extend to 
broader topics including structural engineering and fire protection. A wealth of information 
is needed to construct the appropriate set of credible upset conditions. In DOE/NNSA 
facilities, the criterion to be satisfied is called the “process analysis” (PA) requirement. The 
ANSI/ANS-8.1 standard [2] defines the PA requirement, “Before a new operation with 
fissionable material is begun, or before an existing operation is changed, it shall be 
determined that the entire process will be subcritical under both normal and credible 
abnormal conditions.” Note that in the standard, the use of the word “shall” indicates a 
requirement. Generally, NRC-regulated sites are required to use the “double contingency 
principle” (DCP). As defined in ANSI/ANS-8.1, the DCP requires that “[p]rocess designs 
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should incorporate sufficient factors of safety to require at least two unlikely, independent, 
and concurrent changes in process conditions before a criticality accident is possible.” Aside 
from the difference in the fundamental requirement, process analyses are largely similar and 
consider the same range of parameters which affect neutron multiplication in fissionable 
material systems. In process criticality analyses it is important to acknowledge that criticality 
safety is just one branch of the overall safety analysis for a facility. Unnecessary controls to 
prevent criticality accidents may reduce overall safety by, for example, increasing worker 
dose or adding heavy lifts. It is also important to generate an appropriate set of controls on 
the operation so that the operation can be performed efficiently and economically. The 
subcriticality requirements can be demonstrated through multiple different approaches. The 
preferred method is by comparison to an experiment confirming the safe limits for the 
process being analyzed. This is nearly never possible, so other alternatives include use of 
reference sources (handbooks or standards) containing data and limits, performing hand 
calculations, or executing computer codes. The overall analysis ranges from simple to very 
complex depending on the process under consideration. 
 
Transportation criticality safety analyses are similar to process criticality safety analyses in 
many regards, but only consider fissionable material during transport. The highest level 
requirements for safe transport of fissionable material are set forth by the International 
Atomic Energy Agency (IAEA) in Specific Safety Requirements No. 6 (SSR-6) [3]. These 
requirements are codified in the US in 10 CFR Part 71 [4], and for NRC-regulated 
transportation further details are included in the Standard Review Plan (SRP) for 
Transportation Packages for Radioactive Material (NUREG-1609) [5]. DOT regulations are 
also applicable, and can be found in 49 CFR parts 107 [6], 171-180 [7], and 390-397 [8]. 
Analyses are required for both normal conditions of transport (NCT) and hypothesized 
accident conditions (HAC). Testing of packages to meet these requirements is required for 
certification, and the specific test procedure for both NCT and HAC is specified in SSR-6. 
The results of explicit tests and structural analyses can be combined to allow the criticality 
safety analyst to demonstrate that subcriticality can be demonstrated in the required 
conditions. As with the process criticality safety analyses, these analyses require the 
coordination of a large amount of information from a range of different disciplines. 
Generally, the final demonstration of subcriticality is made by performing computer 
calculations. 
 
Burnup credit (BUC) criticality safety analyses are primarily used in the storage, 
transportation, and disposal of commercial spent nuclear fuel (SNF). BUC is crediting the 
reduction in fuel assembly reactivity due to the depletion of fissionable materials and the 
buildup of neutron absorbing fission products. SNF storage immediately after discharge 
from the reactor is performed in the spent fuel pool (SFP), where fuel assemblies are placed 
in stainless steel racks. These racks frequently contain fixed neutron absorber panels for 
criticality control. Pressurized-water reactor (PWR) SFPs also contain boric acid dissolved in 
the water to provide additional reactivity control. Storage in the SFP is regulated under 10 
CFR 50.68 [9]. After several years of cooling in the SFP, fuel assemblies can be transferred 
into a storage canister for dry storage at the plant site. The analysis of dry storage 
installations is governed by 10 CFR Part 72 [10]. Additional details are included in the SRP 
for Spent Fuel Dry Storage facilities (NUREG-1567 [11]). In many cases, the canisters may 
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also be analyzed for transportation of SNF. As discussed above, transportation regulations 
are contained in 10 CFR Part 71.  The SRP for Transportation Packages for Spent Nuclear 
Fuel is NUREG-1617 [12]. BUC analyses consider a more limited range of upset conditions 
because the fuel assemblies are the only fuel form considered. Instead, a broad knowledge of 
reactor physics and the impacts of various reactor operating parameters on discharged fuel 
assembly reactivity is required. These parameters are discussed in NUREG/CR-6665 [13], 
and in many cases in subsequent NUREG/CR documents examining specific parameters in 
more detail. The demonstration of acceptable fuel assembly loading conditions is always 
performed via computer calculations because of the complexities involved in the fuel 
depletion calculations. The depletion calculations are performed in a computer code or set of 
codes designed for reactor depletion analysis and the depleted isotopic number densities are 
subsequently input to a criticality analysis code package. 
 
One of the few things that all three types of criticality safety analysis have in common is the 
need for computer code calculations. These codes are used to calculate keff for models of the 
nominal and credible upset scenarios for a system of interest. In this context, the system of 
interest can be a step within a process or procedure, or it could be a storage configuration. 
Unintended criticalities create significant radiation fields which can injure or kill nearby 
workers or cause damage to nearby equipment. It is therefore necessary to demonstrate that 
each state is reliably subcritical, not merely subcritical on a best estimate basis. The 
maximum keff calculated by a computer code that can be asserted to be subcritical is called 
the upper subcritical limit (USL). In many cases, the calculated keff is increased by twice the 
stochastic uncertainty of the calculation before comparison with the USL if a Monte Carlo 
transport code is used. The USL is determined by reducing the physical keff value of 1 by the 
bias of the computational method being used, the uncertainty in the bias, and an additional 
margin of subcriticality (MOS). The MOS, also sometimes called a minimum subcritical 
margin, is selected for each analysis based on characteristics of the system, frequency of the 
operation, accessibility of the components, and other considerations. The bias and bias 
uncertainty are determined by validating the computational method. 
 
The validation process is performed by comparing the results of critical experiments with the 
calculated results from models of the experiments using the computational method [2, 14]. 
Critical experiments are controlled systems that achieve a keff of 1 to investigate the 
parameters at which such a critical condition is achieved [1]. Thousands of critical 
experiments have been conducted, evaluated, and reported in the literature for validation. 
Currently, the most complete source of evaluated critical experiment descriptions is the 
International Handbook of Evaluated Criticality Safety Benchmark Experiments, referred to 
as the ICSBEP Handbook [15]. A key part of the validation process is the selection of 
experiments that are representative of the system or systems to be analyzed. The bias of the 
computational method is dependent on the materials in the model and the neutron energy 
spectrum in the system, so the selection of inappropriate experiments can lead to significant 
errors in the apparent bias for the system of interest. The experiment selection process is 
therefore carefully documented and reviewed during the validation process. All the critical 
experiment models are also developed, documented, and reviewed, to ensure the bias is not 
impacted by modeling errors. 
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For each experiment used in the validation, the difference between the calculated and 
measured keff results is determined. The experiments used in the validation are selected based 
on similarity to the application model being analyzed. It is important to determine the bias 
for the system of interest, and it is expected to be the same for similar systems. Thus the 
estimate of the bias of the computational method used in modeling the experiments, also 
referred to as the computational bias, is determined as the mean of these differences. The 
bias can alternatively be determined as a function of a system parameter using a trending 
technique, most frequently linear regression. The system parameter used is typically a 
property of the fissionable material, such as the enrichment if uranium is used in the 
experiment, or a property of the system, such as the neutron energy spectrum in the system. 
Often several different parameters are used in the trending analysis to determine which 
parameter gives the best prediction of the bias. This approach may improve the accuracy of 
the bias estimate by determining it for the exact value of this independent parameter in the 
application case model. 
 
There is uncertainty in the bias estimate for a number of reasons. First, there are 
uncertainties associated with each experiment. These can be measurement uncertainties, 
dimensional uncertainties, the result of incompletely characterized materials, or come from 
other unknown or uncertain characteristics in the experimental materials or configuration. 
Secondly, there is also uncertainty in the bias estimate because it is the result of sampling a 
fixed set of experiments; the sample is used to estimate the true bias which is not known. 
There is also a computational uncertainty associated with calculating keff for the experiment 
models. Criticality safety calculations most frequently use Monte Carlo neutron transport, 
which is a stochastic technique and therefore yields a keff value with some calculation 
uncertainty. This calculation uncertainty is generally significantly lower than the experimental 
uncertainties. Deterministic methods have uncertainties associated with discretization of the 
problem geometry to conform to the required spatial mesh. Deterministic methods and 
some Monte Carlo implementations use multigroup representation of the energy variable 
which may also contribute to the bias or its uncertainty. The uncertainty in the bias is also 
increased to provide greater statistical confidence that the estimated bias and uncertainty 
bound the actual bias. The population variance, which is a measure of the variability of the 
differences from each experiment, is used in the overall determination of the bias 
uncertainty.  The statistical margins often lead to the bias uncertainty being several times the 
magnitude of the bias itself, so proper quantification of the uncertainty is essential. 
 
An entirely different, and relatively new, method of bias determination is called data 
adjustment or data assimilation, and uses critical experiments quite differently than the 
methods described thus far. These techniques have been used historically in applications 
other than criticality safety validation. Perhaps the most common application historically has 
been in the design and analysis of fast reactors. Data adjustment applications within 
criticality safety, such as those included in the TSURFER tool in the SCALE code system 
[16], perform a generalized linear least squares (GLLS) adjustment to determine a set of 
cross section adjustments that minimize inconsistencies among calculated keff values. The 
same cross section adjustments must be used in all models which use the cross section. 
These data adjustment methods use a larger number of critical experiment models so that a 
large amount of data is available to yield accurate adjustments. The cross section adjustments 
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are constrained by the uncertainties in the cross sections; models that cannot be brought into 
agreement with other cases are rejected. The experimental keff values can also be adjusted 
within their uncertainty bands; experiments that are correlated are further constrained by 
these critical experiment correlations. The correlations between each pair of experiments 
must therefore be determined and supplied as an input to the data adjustment process. The 
measured keff values for the experiments can be adjusted, but must be adjusted consistently 
among correlated experiments. 
 
Verification is distinct from validation, and is the process of confirming the algorithms used 
in the code are coded correctly and functioning properly. This can be accomplished with a 
range of tests including simplified problems with known, often analytical, solutions, 
processing known inputs to ensure the expected outputs are generated, running inputs that 
are designed to fail, and other tests. Generally the verification testing done at installation is 
performed by executing a suite of test problems provided by the code developer and 
comparing the results to those provided. Both verification and validation must be performed 
and documented before results from the computer code can be used in any safety 
assessment. 
 
A series of critical experiments is often performed with a limited number of parameters 
varied systematically to cover a range in some parameter space. This approach serves 
multiple purposes. Primarily, performing experiment series allows for the determination of 
system sensitivity to specific parameters, for example lattice pitch or reflector thickness. 
Unlike some types of experiments, critical experiments cannot vary only a single, 
independent parameter. Any change to a critical system makes it either subcritical or 
supercritical, so an offsetting additional change must be made to restore criticality. Some 
experiments are controlled with the mass of fuel present, while others are controlled with 
material separation, amount of moderating material present, or concentration of neutron 
absorber in the system. Generally, the system response to one parameter change, for 
example material separation, is well understood and is therefore used to offset changes in a 
different parameter. This allows for an estimation of the sensitivity of the system to changes 
in the second parameter, though the sensitivity is not necessarily known with the same 
accuracy as is possible in experiments with single variable controls. An additional benefit to 
performing experiments in series is that several related experiments can be done at lower 
cost per experiment and in less time than if each experiment had been performed in 
isolation. 
 
The use of experiment series in traditional, non-data adjustment validation techniques 
creates additional complexities because of the correlations among the individual experiments 
within the series. The correlation between a pair of experiments is a result of shared 
experimental components which include, but are not limited to, fissile, reflector, or 
absorbing materials, detector systems, and procedures. Many of these shared characteristics 
should have very little effect on the results of the experiments or the independence of the 
data measured or derived from the experiments. The use of common materials and fixtures, 
however, can create correlations among the experiments that demonstrably reduce the 
independence of each experiment in a series. This can impact the determination of the 
computational bias, but is far more likely to affect the uncertainty in the bias. The 
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uncertainty is increased because several measurements of the same system do not provide as 
much unique information as the same number of measurements of different systems. Thus 
the correlation among experiments in a series acts to reduce the effective number of 
experiments in a validation set. The smaller number of effective experiments would lead to a 
larger uncertainty, so neglecting the correlations is nonconservative because it results in a 
lower bias uncertainty. As discussed previously, the existence of correlations is not 
problematic in data adjustment techniques, but the correlations must be provided so that the 
adjustment process is properly constrained. 
 
In some critical experiments, a high degree of correlation is a desired characteristic. The 
maximum amount of information can be extracted from substitution experiments only when 
other parameters are constant or nearly so. For these experiments, a lack of correlation 
would cause the impact of the substitution to be difficult to determine. The value of these 
experiments, especially when incorporated into data adjustment, is greatly increased by a 
high degree of correlation. 
 
A current challenge facing criticality safety practitioners and regulators is to establish a 
reliable method of determining the correlations among the critical experiments, and 
ultimately to determine methods to incorporate them into usable validation techniques. The 
correlations can be quantified as correlation coefficients (both terms are used 
interchangeably in this work) which are calculated by dividing the covariance between two 
experiments by the product of the standard deviations of the two experiments. More detail 
regarding the calculation of correlation coefficients is provided in the last section of the next 
chapter.  
 
A range of methods to determine and implement critical experiment correlation coefficients 
have been introduced since 2003 [17], including both deterministic and Monte Carlo 
techniques [18]. The next chapter reviews existing literature regarding the determination of 
correlation coefficients for critical experiments. After a discussion of codes, methods, and 
models in Chapters III, a description of the new work performed in this dissertation is 
presented in Chapter IV. Chapters V through VII document research intended to establish a 
framework for determining correlation coefficients in low-enriched uranium (LEU) pin 
lattice systems and high-enriched uranium (HEU) solution systems. The recommended 
process for the calculation of critical experiment correlation coefficients is provided in 
Chapter VIII along with other conclusions in Chapter IX. The procedure outlined in 
Chapter VIII can be used to determine correlations among critical experiments, but many 
challenges related to the documentation of the critical experiments themselves remain. 
Potential future work is discussed in Chapter X. 
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CHAPTER II: LITERATURE REVIEW 

An extensive body of literature exists relating to validation of computational methods in 
criticality safety. Attempts to quantify and account for correlations among related critical 
benchmark experiments are a fairly recent innovation and first appear in the literature in 
2003 [17]. The potential for validation errors due to drawing all experiments from a single 
series has been recognized for significantly longer, and practitioners are advised to avoid this 
practice in the current consensus standard on validation [14]. 
 
Literature relevant to the determination of critical experiment correlations can be grouped 
into five areas: statistical techniques needed to develop and compare correlation coefficients, 
current validation guidance documents, a description of the problems introduced in 
validation by correlated experiments, methods for determining correlation coefficients, and 
applications of critical experiment correlation coefficients. Although this research is 
primarily concerned with the 4th category, each of these areas will be discussed in greater 
detail in the following subsections. 
 

Review of Statistics 
The work performed in this dissertation relies extensively on statistics, indeed the correlation 
coefficient is a statistical quantity. The Monte Carlo method, used both to generate 
perturbed models and perform neutron transport calculations, is also a statistical method. 
No discussion is provided here of the Monte Carlo method or its application to neutron 
transport. A complete discussion is provided in [18] and [19]. A brief discussion is provided 
reviewing the definition and calculation of the correlation coefficient since it is the central 
theme of this work. Finally, the Fisher z transformation is reviewed as it can be used to 
determine confidence intervals on determined correlation coefficients. 

Correlation Coefficient 
The correlation coefficient used in this work is the Pearson correlation coefficient (ρ), which 
is a measure of the linear relationship between two variables [20].  It is calculated as shown 
in Equation 1 [20]: 
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=     Eqn (1) 

 Where: ρxy is the correlation coefficient between variables X and Y 
  cov(x,y) is the covariance between the variables X and Y 
  σX is the standard deviation of variable X 
  σY is the standard deviation of variable Y 
 
The covariance between the two variables is estimated as shown in Equation 2 [20]: 
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 Where: cov(x,y) is the covariance between two variables, X and Y 
  ix  is a single sample of the variable x 
  x̂  is the average value of the variable x 
  iy  is a single sample of the variable y 
  ŷ  is the average value of the variable y 
  n  is the total number of samples 
 
It should be noted that the subscripts of x and y are the same because they are compared for 
each sample. Also, in this work, x and y are keff values resulting from calculations of two 
different, potentially correlated, critical experiment models. Each specific sample, i, 
represents a set of perturbations of physical properties within their uncertainty ranges. The 
same perturbations are applied to both systems, x and y, when the physical properties are 
shared between the two systems. It should also be noted that x̂ and ŷ are the average keff 
values of the n realizations of each system and not the nominal results. 
 
The correlation coefficient is essentially a normalized covariance such that all values are 
between -1 and 1. A value of 1 means that a perfect positive linear relationship exists, -1 
indicates a perfect inverse linear relationship exists, and a value of 0 indicates no linear 
relationship between the two variables. Low values should be treated with care because it is 
possible that a strong non-linear relationship exists between the two variables. A purely 
quadratic relationship will result in a correlation coefficient of 0, even though a strong 
relationship exists between the two variables. 
 
It should also be noted that the sample correlation coefficient, rxy, is used to estimate the 
population correlation coefficient, ρxy. The population correlation coefficient is a property of 
a bivariate normal distribution, which typically results when both variables are themselves 
normally distributed. The method for determining a confidence interval for a correlation 
coefficient is strongly reliant on the assumption of a bivariate normal distribution of the two 
variables [20]. If the bivariate normality assumption if violated, the methods discussed will 
not yield accurate results. The primary method of confirming the normality assumption is to 
perform normality testing on each variable separately. Accurate assessment of bivariate 
normality is beyond the scope of this work. 

Assessment of Non-zero Correlation Coefficient 
It is of significant interest to determine whether a calculated correlation coefficient is 
statistically significantly different from zero.  If it is not, then the null hypothesis that the 
correlation coefficient is zero, and that the variables are independent, is accepted. Within the 
context of criticality safety validation, this would allow the use of typical methods which 
assume uncorrelated experiments. The test statistic for this test is shown in Equation 3 [21]: 
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 Where: t*

 is the test statistic 
  rxy is the sampled correlation coefficient between the variables X and Y 
  n is the number of samples 
 
The null hypothesis is that the correlation coefficient is zero.  If this hypothesis is correct, t*, 
calculated from the sampled correlation coefficient, follows a t distribution with n-2 degrees 
of freedom. Therefore, if the absolute value of t* is less than or equal to t(1-α/2; n-2), the 
null hypothesis is accepted and the correlation coefficient is accepted as statistically 
indistinguishable from zero.  If the test statistic t* is larger than the t value, then the null 
hypothesis is rejected and the correlation coefficient is concluded to be nonzero [21]. In the 
above comparison, t(1-α/2; n-2) is the value of Student’s t-distribution with a significance 
level of 1-α/2 and n-2 degrees of freedom. The significance level, α, is the probability of 
rejecting the hull hypothesis when it is true [20]. 

Confidence Interval Estimation for Correlation Coefficients 
 
The confidence interval for a correlation coefficient can be constructed based on the Fisher 
z transformation [21]. The transformation is shown in Equation 4 [21]: 
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 Where: z’ is the Fisher z value 
  rxy is the estimated correlation coefficient between X and Y 
 
For large sample sizes (i.e. more than 25 samples [21]), z’ is distributed normally with an 
expected value and variance of: 
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     Eqn (6)  
 
Equation 5 uses the population statistic, ρxy, as the estimator, rxy, is assumed to be unbiased. 
In the unbiased case, rxy is equal to ρxy. 
 
Because z’ is distributed normally, the confidence interval on the expected value of z’ can be 
determined as shown in Equation 7 [21]: 
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 Where: z’ is the Fisher z value 
  z(1-α/2) is the (1-α/2)100 percentile of the standard normal distribution 
 
Finally, the confidence interval on the correlation coefficient itself can be determined by 
transforming the confidence limit on z’ back into correlation coefficients using Equation 8. 
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 Where: ρCI is the correlation coefficient confidence interval bound 
  z' is the confidence interval bound as the Fisher z value 
 
The confidence interval about the sampled correlation coefficient, rxy, is therefore rxy ± ρCI. 
 

Current Validation Guidance Documents 
A range of validation guidance documents exist currently for use by criticality safety 
practitioners. One of the most important is the consensus standard on validation of 
computational methods in criticality safety validation: ANSI/ANS-8.24 [14]. Other 
documents include ANSI/ANS-8.1 [1], NUREG/CR-6698 [23], NUREG/CR-6361 [24], 
and NUREG/CR-5661 [25]. Only two of these documents, ANSI/ANS-8.24 and 
NUREG/CR-5661, have any statements that address correlation of critical experiments or 
could be interpreted to do so. This speaks to the relative inexperience in the community with 
the quantification and application of these correlation coefficients. 
 
One statement in NUREG/CR-5661 [25] could be interpreted as, in part, warning of 
correlations among critical experiments. The statement comes from Section 5.1, which is 
titled “Selection of Critical Experiments,” and states that a practitioner “should model a 
sufficient variety of critical experiments to demonstrate the capability of the calculational 
method in predicting keff for each individual experiment that has characteristics that are also 
judged to be important to the keff of the package.” This statement is most likely intended to 
ensure that all important processes within the package model are properly validated, but the 
specific wording of “a sufficient variety of critical experiments” could be interpreted as a 
recommendation to select experiments from a range of different experiments. Regardless, 
this discussion is followed in NUREG/CR-5661 with a recommendation to consult 
NUREG/CR-6361 [24] for additional guidance on selecting critical experiments. 
Unfortunately, there is no mention of the correlations among experiments in NUREG/CR-
6361. 
 
NUREG/CR-6698 [23] provides thorough guidance for validating computational tools for 
use in criticality safety. This guidance includes a discussion of the purpose of validation, 
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definition of the range of parameters to be validated, selection and modeling of critical 
experiments, analysis of the results, definition of the area of applicability, and documentation 
of the entire validation process. The recommended method for performing the statistical 
analysis of the results, included in Section 2.4.1, uses uncertainty weighting to determine the 
population variance and bias. No treatment is included for correlations, so the data are 
treated as completely uncorrelated. This approach most likely understates the total 
uncertainty in the bias in many cases, though the magnitude of the difference is 
unquantifiable without correlation coefficients and a validation method that incorporates 
them. 
 
The best discussion of critical experiment correlations is in ANSI/ANS-8.24, although no 
guidance is provided on how to treat the correlations. In Section 5 of the standard, titled 
“Selection and Modeling of Benchmarks,” paragraph 5.6 states “To minimize systematic 
error, benchmarks should be drawn from multiple, independent experimental series and 
sources.” The expressed intent of this statement is to eliminate the possibility that a 
validation will be in error because a single set of experiments contains a large, shared bias. 
This is closely related to some of the effects of correlations, but focuses on the potential for 
an undetected error in the bias and not on the potential to underestimate the uncertainty in 
the bias. An additional, more explicit statement appears in Section 8, “Documentation and 
technical review,” in paragraph 8.1.4 which states that “Limitations of the validation (e.g., 
gaps in the data, correlated data points, missing or limited data) shall be described.” No 
further discussion is provided as to how to identify, treat, or mitigate the “correlated data 
points.” 
 
One additional resource should be discussed in this section. Although it is not a guidance 
document for validation, the International Handbook of Evaluated Criticality Safety 
Benchmark Experiments (ICSBEP handbook) [15] is a repository of critical benchmark 
experiment descriptions used in a wide range of criticality safety validations. The associated 
DICE (Database for the ICSBEP) tool contains some information about correlations among 
critical experiments. Primarily, the interface shows the user sets of experiments that are likely 
to have correlations. Some of the correlation coefficients determined in [17] are included and 
compared to results generated in Chapter VII. 
 

The Problems Introduced in Traditional Criticality Safety Validation by 
Correlated Critical Experiments 

As discussed in the previous section, current validation guidance documents do not consider 
the treatment of correlations among experiments. The methods that are included in these 
documents, such as [23], include statistical methods assuming all data points are 
uncorrelated. One recent publication concerning the effects of correlations includes the 
warning that “validation of calculation methods is another area where the weaknesses [in 
correlation treatments] really show up” [26]. Quantitatively, another study that determined 
and applied correlation coefficients in validation saw the uncertainty in the bias increase by a 
factor of 1.7 [17]. The uncertainty assessment included for each experiment in the ICSBEP 
Handbook [15] also does not treat these correlations, leading to the observation that “a 
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complication in specifying the experimental uncertainty is how to treat the correlations 
among different experiments” [27]. The complication is a result of the correlations acting to 
reduce the amount of independent information contributed to the validation by each 
experiment, thus lowering the effective number of experiments included in the validation 
suite. Reference 17 observed that the uncertainty resulting from the 77 experiments, 
considering correlations, could have been achieved with only 25 experiments had they been 
independent. Clearly, the potential increase in the uncertainty of the bias is of primary 
concern in traditional trending and non-trending validation approaches when correlations 
are present among the critical experiments used. 
 
Proper quantification of correlations is also important where they exist. Some evaluations in 
[15] make qualitative statements regarding correlation. One example is taken from Section 
3.5 of the MIX-SOL-THERM-007 evaluation:  
 

The experiments within this series are highly correlated. All use essentially the same 
fissile solution, the same experimental vessel and reflector tank, and the same 
measurement systems. The only difference is the amount of gadolinium that is present in 
each experiment and this parameter was measured and mixed in the same manner for 
each experiment. 

 
This is a correct assessment of the correlation among the parameters, but without more 
analysis it is difficult to know to what extent the results are correlated and how much 
information is truly shared among the cases. In this particular case, the change in gadolinium 
concentration will also drive a change in neutron spectrum which could significantly reduce 
the correlations. Regardless, there is no current guidance on how to incorporate such 
observations as provided above into the validation of computation methods for criticality 
safety. 
 
The appropriate treatment of the correlations can also change the bias itself. This result 
appears less common and, when present, less extreme than the impacts of the correlations 
on the uncertainty of the bias. Reference 17 presents a validation study using a general linear 
least-squares (GLLS) method including 77 experiments, including results for 5 separate 
subgroups of these experiments. For all 6 scenarios, the average deviation and its uncertainty 
is presented both with and without treatment of the correlations among the 77 experiments. 
The bias changes in all 6 cases, but there is no clear pattern to the changes in the bias values. 
This indicates that the impact of incorporating the correlations will vary among different 
applications. The change in the bias varies from +0.08% Δk to -0.06% Δk; these changes are 
clearly small and are typically less than half of the uncertainty in the bias. 
 
In many criticality safety applications, the bias and bias uncertainty are combined and added 
to the calculated keff value, potentially in combination with other reactivity allowances, to 
determine the design keff value. This design value is then compared to the regulatory limits to 
demonstrate compliance, indicating one more area where an accurate assessment of the 
uncertainty in the bias is important. It is possible that the design keff value will result from a 
case that is not the most reactive calculated configuration if larger uncertainties apply to a 
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different case. This possibility is discussed in [28] and is a scenario which can result from an 
incomplete treatment of uncertainties. 
 
This section has focused on the shortcomings of traditional validation techniques in the face 
of critical experiment correlations. Ultimately, the impact of these correlations will be 
determined in new methods which incorporate the correlation coefficient matrices. Some of 
these methods are discussed in a subsequent section of this proposal. Regardless of the 
magnitude of these effects, it is important to remember that the correlations are also needed 
for data adjustment techniques and must be determined. 
 

Correlation Coefficient Determination 
A range of methods has been proposed for the determination of critical experiment 
correlations. As is often the case, these methods can be broken down into deterministic 
methods and Monte Carlo methods. Each of the methods will be discussed in more detail in 
this section, but some general observations can be made here to compare and contrast the 
two approaches. 
 
There are several key similarities between the deterministic and Monte Carlo methods for 
determining critical experiment correlations. The first similarity is that both require a detailed 
knowledge of the experiments’ design and components. Such details include not just obvious 
parameters, like the materials used in the experiment, but also more subtle details related to 
the uncertainties in the compositions and dimensions of these components. Obviously it is 
also important to know which components and parameters are shared and which are not 
since these are the sources of the correlations. In many cases, information that is needed for 
accurate correlation calculations is not captured in the ICSBEP evaluation or primary source 
documents. These details relate to aspects that often seem irrelevant to modeling a single 
experiment. One example is whether the same rod is always placed in the same location in a 
lattice critical experiment, and another is whether or not reflecting walls are disassembled 
between experiments. Both of these examples can impact whether or not uncertainties 
relating to the fuel rods or reflector dimensions and position are shared among all the 
experiments in a series or are unique to each case. These types of details can have significant 
influence on the correlation coefficients and are needed in all methods. 
 
The deterministic and Monte Carlo approaches to correlation determination also have 
noticeable differences. The deterministic methods tend to calculate sensitivities of keff to 
each uncertain parameter and combine these sensitivities with the parameter uncertainties to 
determine the overall uncertainty in each case. In this section, the reactivity uncertainty 
determined by multiplying the parameter uncertainty and the keff sensitivity is denoted δkx. 
The x subscript is generic in this case, but specific subscripts are used to identify each term 
with a specific uncertain parameter. The shared uncertainties are then combined to 
determine the covariance and thus the correlation coefficient. This approach can lead to 
either a detailed subdivision of uncertainties until each component is clearly shared or unique 
or expert judgment of the correlation of the uncertainty that is partially shared and partially 
unique. The Monte Carlo methods sample dimensions and compositions within the expected 
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ranges, but this leads to potential difficulties in determining appropriate distributions from 
which to sample in many cases. These methods are also prone to questions of sufficiency of 
sampling and convergence. Also, the uncertain components must either use the same 
sampled values, for shared components, or different sampled values, for unique 
components; the methods do not include any methods for partially correlated samples. The 
Monte Carlo methods tend to require more computational time and resources, but are 
capable of handling very complicated problems. One complex model discussed in this 
section is a benchmark on correlation coefficients generated for the Nuclear Energy Agency 
(NEA) Working Party on Nuclear Criticality Safety (WPNCS) Expert Group on Uncertainty 
Analysis for Criticality Safety Assessment (UACSA) considering LEU pin array experiments. 
The Monte Carlo methods are capable of sampling the location of each pin uniquely in each 
case. It would be impossible to determine the sensitivity of keff to the position of each rod 
while each neighboring rod was also perturbed. On the other hand, the deterministic 
approaches are well suited for other examples such as some simple fast metal benchmarks. 
This example is also discussed in more detail later in this section. As would be expected, 
both deterministic and Monte Carlo approaches to calculating correlation coefficients have 
strengths and weaknesses and are best suited for different types of applications. 
 

Deterministic Methods for Calculating Critical Experiment Correlation Coefficients 
A variety of deterministic methods have been proposed for calculating critical experiment 
correlations. All of them involve using keff sensitivities and uncertainties (δkx), combined 
with correlation coefficients among the correlated uncertainty contributors to calculate 
covariances and overall uncertainties. The covariances and δkx values are used in turn to 
determine the correlation coefficients. Generally, the differences among these methods are 
related to how the keff sensitivities are calculated and how much decomposition of uncertain 
parameters is performed. 
 
The first method proposed to quantify critical experiment correlations was proposed by 
Ivanova et al. in 2003 [17]. The uncertainties in the fundamental parameters (e.g., nitric acid 
concentration, impurity concentrations, etc.) are used to determine keff uncertainties derived 
from each uncertain parameter. These reactivity uncertainties are represented as a series of 
δkx terms in [17], with a unique subscript applied for each parameter. The determination of 
these reactivity uncertainties is not described in the reference; the values are simply provided 
in Table I of [17]. In all cases, the reactivity uncertainties are provided in %keff. These 
reactivity uncertainties are then combined using the square root of the sum of squares of the 
individual uncertainty components to calculate the uncertainty in the system keff. The 
covariance is determined using the formula shown in Equation 9, taken from [17]. The 
reactivity uncertainties related to uncertainty in enrichment (δkε), uranium concentration in 
solution (δkU), nitric acid concentration (δkacid), and impurities (δkimp) are all assumed to be 
fully correlated. The reactivity uncertainty due to uncertainty in the solution density (δksol), 
the solution height (δkh), the tank radius (δkR) and the tank wall thickness (δkt) are assumed 
to have variable degrees of correlation. The tank radius and wall thickness uncertainties, and 
associated reactivity uncertainties, are assumed to be fully correlated in the case of shared 
tanks and completely uncorrelated in experiments performed in different tanks. The 
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correlation for the uncertainty in the density determination, and the associated reactivity 
uncertainty, was assumed after discussions with the experimentalists regarding the 
uncertainty in the measurement and an estimate of the systematic and random components. 
Experiments carried out in the 1980s are assumed to be 50% correlated based on the 
assumption that the random and systematic components of the 1 mm solution height 
uncertainty are equal. The resulting reactivity uncertainty due to the solution height 
uncertainty is also therefore assumed to be 50% correlated. The solution height uncertainties 
for experiments carried out in the 1960s are assumed to be fully correlated since the tank 
was filled from the same dispenser. The assumed correlation coefficients for each of these 
individual components is represented as a γx

i,j term in Equation 9. There is no evidence 
presented to defend either the partitioning of the uncertainties in the later experiments or 
the lack of any random uncertainty in the early experiments. This last point is indicative of 
the greatest weakness in this method: correlations of uncertain components are assumed in 
the process of calculating the covariances, which are used to calculate the overall experiment 
correlation coefficient. The resulting coefficients are therefore sensitive to underlying 
assumed correlation coefficients. In different ways all the methods for calculating correlation 
coefficients have shortcomings in areas where this sort of detailed information is lacking, 
and there is no evidence in [17] that the authors undertook a sensitivity study of their 
assumptions. The resulting correlations are therefore at least somewhat open to question, 
but have been included in [15] without such rigorous examination. 
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Where: δki is the total uncertainty in case i 
 Δkj is the total uncertainty in case j 
 ρi,j is the correlation coefficient between cases i and j 
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Another deterministic method was proposed by Ivanova et al. in 2009 [29]. This newer 
method calculates partial correlation coefficients for each uncertainty component and then 
combines the partial correlation coefficients once each set of partial correlation coefficients 
is known. The equation for each partial correlation coefficient (ρn

i,j) is shown in Equation 10 
[29] and for the overall correlation coefficient (ρi,j)in Equation 11 [29]. In both equations, δn

i 
and δn

j are the nth component of uncertainty for experiments i and j, respectively. Additional 
superscripts appear in Equation 10 to denote the random (r) or systematic (s) portions of the 
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components. Systematic portions are shared and random portions are unique to each 
experiment. It is evident from the equations that ultimately this formulation leads to the 
standard statistical formula for the correlation coefficient: covariance divided by the product 
of individual case uncertainties. In other words, Equation 11 is equivalent to Equation 9, 
used in the previous method, and both are detailed implementations of Equation 1. 
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The method generated in [29] is used as the basis for the determination of critical 
experiment correlation coefficients used in data adjustment by the Working Party on 
International Nuclear Data Evaluation Co-operation (WPEC) subgroup 33 [30], and two 
related journal articles [31, 32]. In this implementation, there are three defined stages in the 
evaluation of the correlation coefficients. The first is to explicitly separate uncertainty 
components until each component is either wholly shared (systematic) or entirely 
independent (random). This approach eliminates the requirement in the 2003 Ivanova 
deterministic method [17] to estimate correlation coefficients for partially correlated 
uncertainty components. It is not always possible to make definitive assessments that 
components are either shared or unique, and it is not clear that sensitivity studies were 
attempted to investigate the impact of these determinations. The second stage is the 
summation of the common and independent uncertainties to calculate the total uncertainty 
in each experiment. The total uncertainty values are shown as the diagonal term in the 
covariance matrix, and would be unity in a correlation matrix. In this case, the uncertainties 
are presented in %; in a covariance matrix the diagonal term is typically the variance of the 
experiment. In this case, the standard deviation was shown because the experimental 
uncertainty is typically reported and not the variance. The final stage of the correlation 
coefficient calculation is to determine the correlation coefficients for all the off diagonal 
terms using the standard correlation coefficient formula. In some cases considered in [30], 
there was insufficient information available to determine correlation coefficients so values 
were copied from a different experiment. Once again, no sensitivity studies are provided to 
investigate the impact of this assumption. The experimental covariance matrix generated in 
[30] is shown in Figure 1. The diagonal of the matrix presents the total experimental 
uncertainty for each case and the off-diagonal terms are the correlation coefficients between 
cases. The method proposed in [30] generally works well as applied in part because only 20 
total experiments are considered and the experiments are drawn from different series at 
different laboratories. Most criticality safety validations consider a larger number of 
experiments, and frequently many cases from each of several series. In such cases with a 
great number of common uncertainty components, the method proposed in [30] may 
present intractable problems. The separation of components until they are entirely shared or 
unique, Stage 1, is the most likely source of such difficulties. 
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Figure 1. Experimental uncertainty matrix generated in [30]. 

 
The third deterministic approach in the literature was proposed by Ivanova, Ivanov, and 
Bianchi in 2014 [27]. This approach includes different methods depending on the physics of 
the system being studied. Fast spectrum systems use a method essentially equivalent to that 
proposed in [29], with sensitivities determined in homogenized models and perturbation 
theory algorithms in a neutron diffusion theory code. Reference [27] is also the only 
deterministic method to present an approach for calculating correlation coefficients for LEU 
pin array benchmarks. The experiments considered are LEU-COMP-THERM-007 and 
LEU-COMP-THERM-039 from [15]; these experiments are the primary experiments 
considered in the UACSA benchmark on critical experiment correlations [33]. The 
underlying method for determining the correlation coefficients is the same as for fast 
systems, proposed in [29], but the reactivity sensitivities (δkx) are determined using three-
dimensional (3D) Monte Carlo calculations. The pin arrays in some cases considered from 
LEU-COMP-THERM-039 [15] include two regions: one with a full lattice of fuel rods and 
the other with every other rod removed. Sensitivity coefficients are determined for each 
region of the model after it has been artificially partitioned in this way. Some sensitivities are 
quite well behaved, as shown in Figure 2 (Fig. 5 of [27]). Unfortunately, some of the 
resulting sensitivities are not well behaved. An example of this behavior is shown in Figure 3, 
which is Fig. 7 of [27]. The overall correlations coefficients for the cases within LEU-
COMP-THERM-039 are quite high, between 0.989 and 0.999, which is in good agreement 
with results from a Monte Carlo approach to be discussed in the next section [34]. These 
coefficients result if the spacing among all pairs of pins is assumed to be constant. The 
approach used in [27] cannot be used if the position of each fuel rod is assumed to be 
independent because the number of independent sensitivity calculations that are required 
becomes too large. 
 
The final deterministic method is proposed in [35]. This method uses uncertainties taken 
from the ICSBEP evaluation [15] and identifies the largest contributors to total uncertainty. 
These controlling uncertainties are then classified as shared or unshared, and decision trees 
are used to assign the fraction of shared uncertainty. Unfortunately, the shared uncertainty  
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Figure 2. Well behaved sensitivity calculation presented in [27]. 

 
 

 
Figure 3. Poor sensitivity calculation presented in [27]. 
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fractions are completely subjective and selected without any documented evidence for the 
values chosen. Such values can never be rigorously defended to a regulator, and essentially 
reduce the determination of correlation coefficients to arbitrary choices. The method touts 
its reproducibility and transparency; the method is transparent to the extent that it can be 
documented in a spreadsheet and reproducible if the shared uncertainty fractions can be 
universally identified. No method is proposed in the reference for establishing such universal 
uncertainty sharing rules. The proposed method is rigorous in identifying the controlling 
uncertainties, but does not significantly alter the difficulties in determining the shared or 
unique uncertainty components. There is also no attempt at providing a justification for the 
values chosen to generate a large number of correlation coefficients. 
 

Monte Carlo Methods for Calculating Critical Experiment Correlation Coefficients 
One basic Monte Carlo approach to the determination of critical experiment correlations has 
been proposed [22], and the method has been implemented in at least two code packages. 
One is the Sampler sequence in SCALE 6.2 from Oak Ridge National Laboratory (ORNL) 
[16, 36] and the other is the Sensitivities and Uncertainties in Criticality Inventory and 
Source Term Tool (SUnCISTT) developed at the Gesellschaft für Anlagen- und 
Reaktorsicherheit (GRS) [37]. This section first presents the general Monte Carlo method for 
determination of critical experiment correlations and then reviews several studies using the 
method in the implementations mentioned above. 
 
The primary reference for the development of critical experiment correlations via Monte 
Carlo sampling is [22], which expands on general Monte Carlo applications to criticality 
safety presented in [38]. Conceptually, the Monte Carlo approach is straightforward. A series 
of realizations of the critical experiment model are created with the inputs sampled from 
random distributions describing the underlying distribution believed to represent the 
parameters. Shared quantities, such as the dimension of common parts or the number 
densities of shared materials, use the same sampled values for these common parameters in 
each realization. Unique parameters are sampled independently. After a sufficient number of 
realizations has been generated and used, the calculated keff values are used to determine 
covariance for all pairs of experiments and uncertainty values for each individual experiment. 
These quantities are then used to determine the correlation coefficient. The difficulties in 
this technique primarily arise in the implementation. A large number of realizations is 
required to assure convergence of the correlation coefficient, and distributions must be 
determined that represent the uncertain parameters appropriately. Another difficulty, which 
is shared with the deterministic methods, is the determination of shared and unique 
parameters. As with the deterministic methods, partially correlated uncertainties, those 
coming from a combination of systematic and random contributions, present additional 
challenges. The primary advantage of the Monte Carlo method is that it can be used to 
calculate uncertainties and covariances without separately determining sensitivities for 
individual uncertainty components. As mentioned previously, the correlation coefficient is 
calculated directly from the system keff values resulting from the perturbed models. The 
difficulty of determining a reactivity sensitivity for each independent system parameter is 
exacerbated for LEU pin array systems in which each pin is positioned independently.  
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The fundamental approach to the Monte Carlo sampling sequence Sampler within 
SCALE 6.2 is outlined in [36], and more details are provided in the SCALE manual [16]. The 
first use of Sampler to determine correlations for critical experiments is documented in [36], 
and includes all ten cases in HEU-SOL-THERM-001 [15]. The results presented are 
essentially a proof of principle implementation, and not all uncertain parameters were 
considered. 
 
The next published use of Sampler for the determination of critical experiment correlations 
is presented in [39]. In this case, the seven cases of LEU-COMP-THERM-042 [15] were 
considered. The calculated total uncertainty in keff for each case is not presented, but it is 
noted that the assumptions made regarding fuel pin pitch sampling are the largest influence 
in the calculated correlation coefficients. It is reasonable to assume that this parameter also 
has a significant impact on the resulting uncertainties for each case. A figure is presented in 
[39] showing the dependence of the correlation coefficients on the range of pin pitches 
sampled; this figure is reproduced here in Figure 4. 
 

 
Figure 4. Critical experiment correlations for LEU-COMP-THERM-042 vs. range of pitch sampling [39]. 

Additional studies using Sampler to investigate critical experiment correlations are presented 
in [40] for both LEU-COMP-THERM-042 [15] and the LEU-COMP-THERM-007 and 
LEU-COMP-THERM-039 [15] experiments used in [33]. Similar information is presented 
regarding LEU-COMP-THERM-042, but in this paper the overall case uncertainties are 
reported. In most cases, the reported uncertainty from the Sampler calculations is on the 
order of 1.5 times that reported in the evaluation if the pitch is sampled uniformly over the 
range of ±3σ. This may indicate that the uncertainties are not being sampled within the 
appropriate ranges or with the appropriate distributions. Based on the individual case 
uncertainties presented in Table III of [40], the individual case uncertainties are in good 
agreement with the evaluation when the pitch is sampled over the range of ±0.75σ. It seems 
unlikely that the pin pitches are all within 0.75σ of the nominal value, so this likely is an 
indication that the assumption that all pin pitches are identical is not adequate to capture the 
overall uncertainties correctly. 
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Several different papers have presented preliminary results for the UACSA benchmark 
proposed in [33] and its earlier revisions. As mentioned in the previous section, [34] presents 
results from a draft in which all pin pitches are assumed to be identical. This scenario was 
considered in [27] using a deterministic method, and is also included in [40]. The case 
uncertainties resulting from the uniform pitch assumption are typically on the order of three 
times as large as the evaluated uncertainty, according to Table VII of [40]. This uncertainty is 
most likely the result of the pitch assumption, and is thus shared among all cases. The pitch 
uncertainty causes the large keff uncertainties. It is evident in Figure 4 of [40] that the 
uncertainty is significantly lower for cases with different pitch assumptions. A range of 
different assumptions is investigated in [41], including a fully random pin position treatment. 
This scenario lowers the correlation coefficients to something on the order of 0.6, but still 
considers significant shared uncertainty based on the fuel content in each rod. Different 
assumptions lead to other correlation coefficients, ranging from near 0 [42] to approximately 
0.3 [43]. The results are sensitive to assumptions made about fuel composition in various 
cases and among the fuel rods, to the Monte Carlo uncertainty of each keff calculation, and, 
to some degree, to the number of realizations. It is evident that the treatment of pin pitch 
uncertainties drives the overall correlation coefficients.  Meanwhile, significant work remains 
to understand the dependence of calculated correlation coefficients on other input 
assumptions and it is clear that detailed knowledge of the experiments being modeled is 
required to generate reliable correlations. 
 

Application of Correlation Coefficients 
As discussed in earlier sections, critical experiment correlation coefficients have application 
to multiple types of analyses. Much of the focus of this literature review has been related to 
criticality safety validation, but an equally important implementation of correlation 
coefficients is in data adjustment techniques. There have also been proposals to use data 
adjustment as part of the criticality safety computational method validation process [44, 45]. 
 
Many of the earliest documented investigations of critical experiment correlations included 
validation results demonstrating the impact of the correlations [17, 29]. As discussed 
previously, the primary impact demonstrated in these early references is an increase in the 
bias uncertainty that can be as large as a factor of almost 2 [17]. Other research has 
investigated generic application of correlation coefficients to trending analyses as typically 
performed in validation. One example in the literature uses a CERN statistical package, 
ROOT [46], with an add-on from the Karlsruhe Institute of Technology called RooFiLab 
[47] to perform trending of critical experiments with the independent variable the energy of 
the average lethargy of neutrons causing fission (EALF) [48]. It is clear that something is 
wrong with the implementation in this case, as it claims a positive bias (overprediction of 
keff) despite all benchmarks being calculated with lower than expected keff values. It is 
possible that further development in this area has resolved the issue, but no publications can 
be found providing updated results. 
 
Different approaches have been developed for integrating the effect of critical experiment 
correlations on the results of criticality safety validations using Bayesian updating techniques 
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[49, 43]. The Bayesian updating approach is very different from the frequentist approaches 
used in the guidance documents referenced above [23, 24, 25], but has been favored in 
recent years particularly in Germany [38]. The results presented in [49] consider a toy model 
and the experiments included in the UACSA benchmark [33]. The toy model is defined in 
Appendix I of [33], and is intended to simplify comparisons among different mathematical 
approaches for calculating and applying correlation coefficients without the complications 
associated with modeling real systems. For the toy model, lower correlations lead to a lower 
post-adjustment keff and higher confidence than do higher correlations for the prior 
distribution. The post-adjustment keff is lowered by the Bayesian adjustment process. A 
figure showing the prior and post adjustment distributions for the toy model is included here 
in Figure 5. The results from the UACSA benchmark are not quite as well behaved in that 
the mean of the post adjustment distributions of keff values are closer to the mean of the 
prior distribution than is the post adjustment distribution without accounting for 
correlations, as shown in Figure 6. These results do share the narrowing of the distribution 
post adjustment with the toy model; lower correlation coefficients result in significantly 
narrower distributions of post adjustment keff values. This is consistent with other results 
indicating that the primary effect of critical experiment correlations is to increase the 
uncertainty. This increased uncertainty manifests in Bayesian updating schemes as a wider 
post adjustment distribution. The effect on the bias itself varies among different validations 
because of different benchmarks and application systems. 
 
Another approach has been proposed [50, 51] to integrate correlation coefficients into the 
frequentist validation approaches suggested in the guidance documents discussed earlier [23, 
24, 25]. This method incorporates the covariance matrix into the trending process, but 
potentially suffers from some shortcomings. First, it is assumed that the dependent variable, 
that is keff, has a linear dependence on the independent variable. In this case, the 
independent variable could be any of the typical parameters used in validation trending such 
as EALF, enrichment, fuel pin pitch, or others. Also, the method assumes that the 
computational bias has a multivariate normal distribution with zero mean. It is unclear how 
this multivariate normality assumption would be checked or confirmed. The computational 
bias is also not zero, though the impact of this is not discussed in the literature. 
Furthermore, it is assumed that the distribution of critical experiments is also normal. This 
assumption is frequently violated when multiple series of experiments are considered; the 
data are often clumped because of correlations within the experiment and thus are not 
distributed normally. The method does have positive characteristics as well, including the 
potential to be expanded to multivariate trending. Typically, a series of separate trends is 
generated and the most conservative bias or bias and uncertainty is used. An example 
validation is presented in both papers [50, 51] for a plutonium system and 30 experiments. 
The results are shown in Figure 7, taken from [51]. A comparison is possible for the 
proposed method and other standard methodologies. The USL1 and USL2 values generated 
by the USLSTATS trending program [Appendix C of Reference 24] are shown along with 
the single-sided simultaneous tolerance band recommended in [23]. If all experiments are 
assumed to be uncorrelated, shown in Figure 7 as the red triangles with 0% correlation, the 
proposed methodology replicates the simultaneous tolerance band perfectly. Larger assumed 
correlations lower the USL because the uncertainty in the trend is increasing. The USL is   
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Figure 5. Prior and post update distributions for the Toy Model, from [49]. 

 
 

 
Figure 6. Prior and post update distributions for LEU-COMP-THERM-079, from [49]. 
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Figure 7. Comparison of proposed validation technique including critical experiment correlations with currently 

recommended techniques [51]. 

lowered by ~2.5% Δk if all the experiments have correlation coefficients of 0.5. This is in 
good agreement with other results discussed previously that accounting for the correlations 
present among benchmark experiments can significantly increase the uncertainty of the 
computational bias in a criticality safety validation. 
 
A new area that should include the application of critical experiment correlations is the 
MCNP Whisper methodology for validation [45, 52]. The Whisper methodology 
incorporates many different aspects of sensitivity/uncertainty analysis to select and weight 
experiments for trending in validation. The method utilizes extreme value theory (EVT) [53] 
to generate a conservative USL. EVT has some similarities to the non-parametric methods 
suggested in [23] for use when the benchmark experiments are not normally distributed. 
Whisper also uses a data adjustment process based on the GLLS method, but unlike 
TSURFER [27] the Whisper GLLS implementation does not consider correlations among 
the experiments. Furthermore, there is no treatment of critical experiment correlations 
anywhere else in the methodology. Currently, because “assigning meaningful correlation 
values to the set of benchmarks would require extensive studies taking years of effort, these 
benchmarks are currently assumed to be uncorrelated” [52]. Instead, a 99% confidence 
interval is used because it “should provide enough conservatism to account for this 
approximation” [52]. No quantitative estimates of the conservatism introduced by shifting 
from the 95% confidence interval to the 99% confidence interval is provided, nor is any 
estimate of the impact of accounting for correlations provided. It is therefore impossible to 
draw any conclusion regarding the veracity of the lack of explicit treatment of correlations 
among the benchmark experiments. 
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Another area in which data adjustment techniques, and thus critical experiment correlations, 
have been applied within the literature is in the examination of nuclear data for use in fast 
reactor systems [30, 31, 32]. Recent work in this area has also proposed using these 
techniques within criticality safety validation [44, 45, 52, 54, 55]. The correlations among 
experiments are needed to constrain the data adjustment process. Nonphysical adjustments 
could be determined through the data adjustment process if the proper correlations are not 
supplied to force similar adjustments to be made to correlated systems. The proposals to use 
data adjustment techniques in criticality safety validation are based on using the final data 
adjustments to calculate a bias in the application system [44, 54]. This is accomplished by 
propagating the adjustments with the system sensitivities. The lack of viable critical 
experiment correlations has been a significant impediment to the implementation of these 
methods. No statement is made in Ref. [55] regarding the correlation coefficients assumed in 
the results presented in Appendix C. Ref. [54], however, includes a sensitivity study to 
various assumed correlations, and concludes that statistically significant differences are 
introduced in the data adjustments. This is a strong argument that reliable, high-fidelity 
correlation matrices are needed. 
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CHAPTER III: DESCRIPTIONS OF COMPUTER CODES, 

EXPERIMENTS, AND MODELS 

The primary purpose of determining critical experiment correlations is to enable a more 
accurate accounting for them in criticality safety validation and data adjustment studies. Two 
computer codes are used for the majority of the calculations presented here determining an 
appropriate methodology for the determination of experimental correlations via the Monte 
Carlo sampling method first proposed in [22]. The neutron multiplication factor, keff, for 
each realization of each critical experiment model is generated using the KENO V.a Monte 
Carlo transport code embedded in the CSAS5 sequence in SCALE 6.2 [16]. The Sampler 
sequence from SCALE 6.2 [16] is responsible for the generation of the perturbed models 
used to determine the variances and covariances, and hence the correlation coefficients, of 
the various critical experiments. Each of these sequences is described here in some detail. 
First, a description is provided of the SCALE TemplateEngine, which is used extensively to 
facilitate the creation of repetitive sections of the large KENO and Sampler inputs required 
in several portions of this work. After discussion of KENO and Sampler, this section 
concludes with a brief description of a FORTRAN program written to calculate correlation 
coefficients for the LEU-COMP-THERM-042 and HEU-SOL-THERM-001 experiments. 
 

The SCALE TemplateEngine 
The SCALE TemplateEngine was introduced with the release of SCALE 6.2. It allows for 
variables to be embedded in input and evaluated at the time of execution and expanded or 
replaced with values that support SCALE execution. Templates can also be evaluated off-
line, via command line execution of the TemplateEngine. This tool is particularly useful in 
this research as simple input patterns are repeated hundreds of times in some inputs. This 
use is described in detail, including examples, in this section. 
 
As discussed below, the geometric description of space in the KENO V.a Monte Carlo code 
involves repeated structures, called arrays, that may include multiple instances of the same 
unit cell. Each of these basic, self-contained portions of the problem geometry is called a 
unit. In the LEU lattice systems modeled in this work, a single fuel rod (also referred to as a 
pin) and the surrounding water and support plate make up a unit. The array of rods can thus 
be modeled as a repeating array of this unit; however, unique units are needed for each rod if 
the rods are to be positioned independently from each other within their units. An example 
of the input describing the geometry of a typical fuel rod unit is provided below in Figure 8. 
The geometry and materials for each of the hundreds of fuel rods modeled in the problem 
are identical, but each fuel rod must be created in its own unit to allow the modification of 
its position by Sampler to be performed uniquely. An example of the TemplateEngine input 
used to facilitate this is shown in Figure 9, along with a portion of the input created by the 
TemplateEngine in Figure 10. Note that the for construct on the first line of Figure 9 allows 
the same unit to be created 1170 times. Also, the expression enclosed in braces is evaluated 
such that the unit number generated, as shown in Figure 10, is 20001. The 1170 “fueled 
section” units generated are numbered 20001 to 21170 in the full input. 
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Figure 8. Example input to KENO for a fuel rod unit. 

 
 
 

 

Figure 9. Example TemplateEngine input for the example fuel rod unit provided in Figure 8. 

 
 
 

 
Figure 10. Portion of the KENO input generated by the TemplateEngine input shown in Figure 9. 
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The TemplateEngine is also used to create the Sampler input to modify each of the 
thousands of units created as described above. The looping functionality provided by the for 
construct is used in the same way as described above to loop over all 1170 instances of the 
fuel rod unit cells. Examples of the TemplateEngine input for Sampler are not provided here 
because they are significantly longer than the KENO input. 
 

CSAS/KENO 
The CSAS5 sequence within SCALE [Section 2.1 of 16] provides automated cross-section 
resonance processing and three-dimensional (3D) neutron transport via the Monte Carlo 
technique. The multigroup (MG) processing is provided by XSProc [Section 7.1 of 16], 
incorporating the functions provided in earlier SCALE releases by BONAMI, CENTRM, 
PMC, and WORKER. The working library generated by XSProc is then passed to KENO 
V.a for the calculation of the effective neutron multiplication factor, keff. A flowchart of the 
entire sequence is provided in Figure 11. 
 

 
Figure 11. Flowchart of the CSAS5 sequence for multigroup keff calculations. 

KENO V.a [Section 8.1 of 16] is a 3D Monte Carlo transport program used within SCALE 
primarily to calculate keff values. The geometry capabilities are somewhat restricted, but these 
limitations allow for significantly faster execution times compared to generalized geometry 
alternatives. KENO V.a supports all the geometric descriptions needed in this work, 
including primarily cylinders and rectangular parallelepipeds (called cuboids in KENO). 
Complete descriptions of the geometry capabilities, physics treatments, and numerical 
methods used in KENO V.a can be found in [Section 8.1 of 16] and [56]. 
 
The repeated geometry structure capabilities in KENO are especially useful when modeling 
systems such as LEU pin arrays. The repeated structure is referred to as an array, and is 
composed of several units. Each unit is a self-contained geometry region with a cuboid as its 
outer boundary. These requirements are well suited for fuel pin arrays with a square pitch, or 
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configuration. As discussed in the previous section, a single pin can be defined and used as 
many times as necessary to describe the desired model. Each pin must be modeled in its own 
unit for Sampler to modify unique pin positions. A simple input which contains a single unit 
cell might consist of fewer than 75 lines of input to fully describe a problem containing an 
array of over 1100 rods. The same input, with unique fuel rod units, expands to over 35,000 
lines. This huge volume of input necessitates the use of the TemplateEngine, as discussed in 
the previous section. 
 
Most of the calculations performed in this effort use the 252-group neutron cross section 
library based on ENDF/B-VII.1 [57]. As mentioned above, the MG cross section 
processing is provided by XSProc. The unit cells used for this processing are either the 
SQUAREPITCH LATTICECELL or the infinite, homogeneous medium 
(INFHOMMEDIUM) cell. The fuel rod unit cells are processed as LATTICECELLs, and 
other mixtures are processed as infinite homogeneous medium cells. Some calculations are 
performed with KENO in continuous energy mode to confirm that the MG results are 
accurate. 

Sampler 
The Sampler sequence is the most important computer code used in this research. Sampler 
[Section 6.7 of 16] is referred to as a “super-sequence” within SCALE because it wraps 
around other sequences, such as CSAS, and perturbs inputs via Monte Carlo sampling. This 
section will provide a detailed description of several aspects of Sampler that are used for the 
determination of critical experiment correlations in this work. It should be noted that none 
of the nuclear data sampling capabilities are used at all; these capabilities are described in 
[Section 6.7 of 16]. The composition and dimension sampling used here is activated with the 
perturb_geometry option. 
 

Methodology and Terminology 
As mentioned above, Sampler performs perturbations of input parameters as directed by 
user input to quantify uncertainties in and correlations among various models and model 
parameters. Sampler uses the term case to identify a unique input model; for example, the 
seven experiments within the LEU-COMP-THERM-042 evaluation [15] are seven different 
cases. Each complete perturbed model written by the sequence is referred to as a sample, 
though the term realization will also be used in this work. Each sample or realization is a 
complete input with sampled values used for all specified inputs. The number of individual 
variables sampled, which ranges from a few to over 10,000 depending on the scenario, does 
not change the number of samples reported even though vastly differing numbers of 
random numbers are used.  
 
Sampler generates a nominal model, designated perturbation 0, using nominal values for all 
sampled variables. This case provides an input to confirm that all nominal values are 
correctly specified and that all expressions are evaluated correctly. 
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In the work described here, KENO models for each case are created prior to Sampler input 
generation. The inputs are imported in case blocks in the Sampler input; each case gets a 
unique case identifier in the input. LEU-COMP-THERM-042-001, for example, is 
designated as “Case1” in Sampler input. Because the inputs are imported in the case block, 
and not specified with placeholders, the SCALE Input Retrieval Engine (SIREN) is used to 
create the perturbed inputs. A description of SIREN and its use is provided below. 
 
Sampler has the capability to run the perturbed cases, but this capability is not used in this 
work. Instead, the perturbed inputs are generated and subsequently run on the Romulus 
cluster at Oak Ridge National Laboratory. Romulus is a homogenous cluster consisting of 
over 1200 cores, allowing for the execution of a large number of SCALE calculations at the 
same time. The homogeneity of the cluster hardware and software ensures that only 
differences in the Monte Carlo transport simulations will be a result of input perturbations, 
not different random numbers or round-off errors. This guarantees repeatability for identical 
calculations, but also allows calculations to be run on different nodes without introducing 
differences in calculated results. Such differences introduced by different random numbers 
would act to artificially decrease correlation among experiments. The load leveling of the 
Sampler and subsequent KENO calculations, as well as any other work on the cluster, is 
performed by a scheduler on the cluster. This is usually more convenient than the job 
management capabilities available in Sampler with the SCALE 6.2 release. 
 
The KENO models are developed first, as discussed in a subsequent section of this report. 
The Sampler input can then be developed to perturb the desired values in the KENO input. 
Perturbations are applied to most number densities, temperatures, and dimensions used in 
the models. The details of the distributions available in Sampler and input specifications are 
provided in a subsequent subsection of this section. 
 
Each variable in Sampler is applied to a user specified case or set of cases. This allows for 
the correlation of random variables that is the crux of this research. Inputs that are sampled 
uniquely are applied to just the relevant case, whereas shared values are applied to multiple 
cases. For example, all cases with the same fissile material would use the same sampled value 
of the 235U number density in each sample. This is the situation for LEU lattice experiments 
that use the same fuel rods in all cases within the evaluation. Different values would be 
sampled for cases with differing fissile materials, such as multiple different solutions used in 
solution experiments. The same initial random number seed is used in all Sampler 
executions, so it is possible to replicate the same stream of random numbers in different 
inputs.  In some cases, this behavior is advantageous but in others it is problematic. Further 
details will be provided later in this report, as necessary, in discussing the details of modeling 
for each experiment. 
 
Sampler post-processing capabilities are not used in this work. Instead, a series of scripts 
have been written to collect the keff values resulting from the KENO outputs of the 
perturbed cases. Some correlation coefficients have been calculated in spreadsheets, and 
others have been calculated using a FORTRAN utility written for calculating correlation 
coefficients and their confidence intervals. The FORTRAN utility is described later in this 
section. 
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Variable Blocks 
The majority of the Sampler input is in the form of variable blocks. Following parameter 
inputs and case blocks, the entirety of the input is the definition of variables and desired 
responses. In this work, no responses are collected so no input is provided in the response 
block. Four types of variables are supported in Sampler: uniform distributions, normal 
distributions, beta distributions, and expressions. 
 
The uniform distribution, also called a constant distribution in Sampler, is specified with the 
keywords distribution=uniform. The inputs are a nominal value and the maximum and 
minimum values. The nominal value is used in the nominal case. The value of the variable is 
sampled uniformly between the minimum and maximum values specified for all perturbed 
cases. An example of a uniform variable input block is shown in Figure 12. 
 

 

Figure 12. Example variable input block demonstrating the uniform distribution. 

The normal distribution is specified with the keywords distribution=normal, and samples from 
a user-specified normal (Gaussian) distribution. Sampler supports sampling from either an 
infinite or a truncated normal distribution. In both cases, the nominal value and the standard 
deviation are provided. For the truncated distribution, maximum and/or minimum values 
are also specified. Sampled values beyond the truncation limits are discarded, and the value 
of the variable is resampled until an acceptable value is generated. It should be noted that 
there is no capability to sample directly from an offset normal distribution, that is one that is 
normally distributed about a value other than the nominal value for the variable. Such a 
distribution could be generated by sampling from a normal distribution, and subsequently 
shifting the sampled value appropriately using an expression to account for the difference 
between the average and nominal values. An example of a truncated normal variable input 
block is shown in Figure 13. 
 

 

Figure 13. Example variable input block demonstrating the normal distribution. 

The third distribution that can be used within Sampler is the Beta distribution. This option is 
specified with the keywords distribution=beta. The beta distribution is a family of distributions 
defined by two parameters, α and β, allowing a range of different symmetric or skewed 
distributions to be created. The Beta function is defined as shown in Equation 12 [16]: 
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 Where: f(x; α, β) is the Beta distribution 
  Γ(α+β) is the gamma function of α+β 
  Γ(α) is the gamma function of α 
  Γ(β) is the gamma function of β 
  Γ(n) = (n-1)! [58] 
 
The Beta distribution is defined on the interval from 0 to 1, so the minimum and maximum 
values are input to Sampler so that the distribution can be scaled to the appropriate range 
desired by the user. The α and β parameters are also provided, as is a nominal value. The 
beta distribution is used vary sparingly in this work, as there are essentially no instances in 
which the distribution of a parameter is known or expected to be skewed. An example of a 
beta distribution variable input block is shown in Figure 14. 
 

 

Figure 14. Example variable input block demonstrating the beta distribution. 

The final option for the distribution keyword is expression. This option allows the value of the 
variable to be set as a constant, user-specified value or calculated using other variables 
defined throughout the input. The complete list of supported operations is provided in 
Section 6.7B of [16] and is sufficient for all applications in this work. An example of the use 
of the expression option to calculate a value is inputting atomic weights for the calculation 
of number densities when other parameters, such as density or enrichment, have been 
sampled. Expressions to calculate the value of a variable are used in many instances, 
including calculating the balance of a set of isotopic abundances to ensure that the 
abundances sum to 100%. Expressions are also used in many geometry variables in which an 
outer boundary may be calculated from a sampled inner boundary and a sampled thickness. 
The distribution option is the most common type of variable block used in this work. An 
example of a distribution variable input block is shown in Figure 15. 
 

 

Figure 15. Example variable input block demonstrating an expression. 
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SIREN 
SIREN is used within Sampler to change values within a SCALE input. A complete 
description of SIREN is provided in Appendix 6.7A of [16], and a summary is provided 
here. The discussion here will focus on SIREN input and use, and not on the details of the 
software implementation. 
 
The key concept enabling SIREN use is the creation of a document object model, or DOM, 
from the SCALE input. This allows each individual piece of input, or token, to be identified 
uniquely and specified using an XPath designation.  These XPath designations are akin to a 
dendritic file structure. The DOM can be created and viewed using the InputViewer 
executable provided with SCALE. 
 
The highest level of the DOM is the sequence being executed, which for all the calculations 
performed in this work is CSAS5. The next level is the SCALE input block, for example 
comps for composition block or geom for the geometry block. The names used in the DOM 
for each input block are fixed, regardless of the specific declaration used in the CSAS input. 
This can be very useful when modifying several cases at once because the underlying CSAS 
inputs may have been developed with different terse block names. The lower levels of the 
XPath depend on the block, but ultimately each numerical input is a leaf in the DOM. Each 
of these leaves can be selected and changed via SIREN statements. Figure 16 shows an 
example variable block including a SIREN statement for changing an isotopic number 
density. Figure 17 shows a similar variable block with a SIREN statement for changing the 
diameter of the fuel in the celldata block. As shown in both figures, the sequence level of the 
DOM can be omitted in these cases since both instances occur in the only sequence in this 
input file: CSAS5. The slash is still required to maintain the appropriate hierarchy level, 
hence the consecutive forward slashes at the beginning of the SIREN statements. 
 

 

Figure 16. Example variable block with a SIREN statement modifying 235U number density. 

 

Figure 17. Example variable block with a SIREN statement modifying the fuel diameter in the celldata block. 

SIREN supports a range of options for resolving potential conflicts within the DOM. This 
disambiguation can be performed with names, for example, when changing standard 
compositions. An example of this is shown in Figure 16, using “stdcomp[name=‛u-235’]”. 
This can be interpreted as “select the standard composition whose name is u-235.” Mixture 
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numbers can also be used to select one or more instances to be modified, as shown in Figure 
18. In this instance, the chromium number density will be modified in mixtures 4, 5, and 6. 
 

 

Figure 18. Example variable block with a SIREN statement selecting multiple compositions. 

More complicated cases arise in geometry modification. The origin of multiple cylinders 
must all be changed to the same sampled value so that the fuel material and its cladding 
move to the same location. The top or bottom surface of a number of geometry elements 
must be modified consistently as the length of that section changes. In some of these cases, 
it can be convenient to pool all the dimensions used in a unit and then subsequently select 
specific elements from this list. SIREN also supports selection of ranges, such as selecting 
units 1 through 4.  It is also possible to define ranges with nonconsecutive elements.  For 
example, the range can be defined as 1 to 5 by 2. This allows for the selection of the 1st, 3rd, 
and 5th entry, which can represent the positive X, Y, and Z faces of a cuboid in CSAS5 
geometry. Finally, the range can also be created as a comma delimited list of elements. An 
example of this approach is shown in Figure 19, which selects the positive X and Y faces of 
the cuboid setting the fuel rod pitch in the first four units of the LEU-COMP-THERM-042 
models. 
 

 

Figure 19. Example variable block with a complex SIREN statement. 

It is important to check SIREN statements generated while developing Sampler input, 
especially complex statements such as those shown in Figure 19. This can be done with the 
InputSelector utility included in with SCALE. The arguments for command line execution 
include the file name and the SIREN statement. InputSelector then returns the values of the 
leaf or leaves selected from the DOM by the specified SIREN statement. 
 

correlations_single 
The simple FORTRAN program developed to calculate the correlation coefficients for some 
of the experiments examined in this work is named correlations_single. It is an outgrowth of 
an earlier program for calculating correlation coefficients for the LEU-COMP-THERM-007 
and LEU-COMP-THERM-039 experiments as part of the WPNCS/UACSA benchmark 
[33]. This earlier code is not documented here as it is a reduced version of the final 
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FORTRAN program. As mentioned previously, correlations_single is used here only for the 
correlations among cases with the LEU-COMP-THERM-042 and HEU-SOL-THERM-001 
experiments.  The source code, correlations_single.f90, is provided in Appendix A. The four 
inputs provided to correlations_single in each execution are described below, followed be a 
discussion of the program flow and outputs. 

Inputs 
The first input is a list of data files containing the keff values for all realizations for the cases 
to be considered. Each of these files must contain the unlabeled keff values in the first 8 
columns of each line; additional information can be provided in columns further to the right 
on each line as this information is not read or processed by the program. An example of the 
first few lines of such a data file is provided in Figure 20. 
 

 
Figure 20. First 10 lines of a data file containing keff values for use in correlations_single. 

The second input is a file containing the case names for the experiments in the series under 
consideration. These case names are used for labeling in output files, and are expected to be 
character strings of 10 or fewer characters. Each label must be on a separate line. Ten 
characters is viewed to be sufficient because the prefix identifying the experiment, HST for 
HEU-SOL-THERM for example, is not included since correlations among different types of 
systems are not investigated here. The evaluation number and case number have been used, 
though this shorthand only requires 7 characters. The case names used for the HEU-SOL-
THERM-001 evaluation are shown in Figure 21. 
 

 

Figure 21. File listing case names for the HEU-SOL-THERM-001 evaluation. 
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The final two inputs are the number of cases in the matrix and the number of realizations 
for each case. Both of these values could be determined during execution, but soliciting 
input from the user simplifies the program. 
 

Program Flow 
The code for correlations_single is organized into several sections. First is various header 
comment information and variable declarations, followed by collecting the four inputs 
discussed in the previous section from the user. A small section provides some statistical 
values, followed by processing data out of the user-supplied files. The average keff value and 
the standard deviation of the realizations are then calculated for each case. The next steps are 
the calculation of the correlation coefficients, significance testing, and confidence interval 
generation. The last section of the code provides the format statements for generating legible 
output. Further details for relevant portions of the code are provided in this section. 
 
The first portion of the program declares array variables, solicits input from the user, and 
dimensions the array variables based on the input number of cases and realizations. The 
Student’s t value and z values are hardcoded in this section as well. Both are set for 95% 
confidence, and the Student t also includes 297 degrees of freedom, which is appropriate for 
300 samples. All correlation coefficients calculated using this program used 300 realizations 
per case, so this approach is acceptable. General implementation would require access to 
statistical distribution libraries for the t and z scores. The confidence interval half-width for 
the correlations in Fisher z space is also calculated here. The confidence interval width is 
ultimately only a function of the z score and the number of samples, as shown in 
Equation 6. 
 
The next section processes the user-supplied data files. Primarily, this simply requires reading 
data into the appropriate arrays. The number of realizations in the first half of the sample is 
also calculated here and stored in the variable nfirsthalf. The first realization of the second 
half of the sample is called nsecondhalf, and is simply nfirsthalf plus one. This represents a 
slightly inconsistent nomenclature, but the last realization of the second half of the sample is 
also the last realization and already assigned to the variable numreal. The determination of this 
split between the first half and second half is used later to determine separate correlation 
coefficients for the first half and second half of the realizations separately as an indication of 
convergence. 
 
The average of all the perturbed realizations is calculated for each case along with the 
standard deviation of these keff estimates. The average keff value can be compared to the 
nominal result to ensure that the sampling has not generated any unexpectedly skewed 
results. The standard deviation of the keff values gives an estimate of the uncertainty in the 
experiment if all the variable quantities are sampled correctly. The standard deviation from 
the samples is compared to the estimate of the benchmark uncertainty from Section 2 of the 
evaluation [15]. It is not clear at this writing that these values should be in agreement because 
of differences between the recommended approach to evaluating some uncertainties for the 
ICSBEP Handbook [15] and the sampling approach used here. Some studies have indicated 
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that the sampling approach results in more accurate estimates of the experimental 
uncertainty [59]. The averages of the perturbed cases in the first and second half of the 
sample are also determined separately, along with their associated standard deviations, for 
use in determining the correlations coefficients later in the program. The average and 
standard deviation of all realizations are written to an output file for review by the user. 
 
The correlation coefficients are then calculated for each pair of cases using all the 
realizations. Once each coefficient is calculated, it is transformed to a Fisher z, see Equation 
4, and the confidence interval is determined. The confidence interval half-width had already 
been determined in the first section of the program, as discussed previously. The confidence 
interval boundaries are then translated back into correlation coefficients using Equation 8. 
The t-test on significance is also executed, see Equation 3, at this point for each correlation 
coefficient. The correlation coefficients are written to an output file, the confidence intervals 
are written to a second, and the results of the t-test are written to a third. 
 
Finally, the correlation coefficients for the first half and second half of the realizations are 
calculated and written to two additional output files. As mentioned previously, the purpose 
of this step is provide an indication that the correlation coefficients have converged. More 
detailed studies were performed, as described below, to investigate the number of 
realizations needed to achieve convergence of the correlation coefficient. These studies 
require a significant amount of additional post-processing of the keff results, and are 
therefore not repeated frequently. A more robust correlation coefficient calculation program 
could include this additional check as an optional step when desired by the user. 
  

Outputs 
The outputs generated by correlations_single are touched on in the description of the 
program flow in the previous section. This section provides a description of the six output 
files generated by the execution of the program. These files are named: mean_stdev.dat, 
significant.dat, correlations.dat, confidence_intervals.dat, correlations_firsthalf.dat, and 
correlations_secondhalf.dat. 
 
The file mean_stdev.dat contains the mean and standard deviation for each of the cases. As 
discussed previously, the mean is calculated over all 300 perturbed realizations. The standard 
deviation is similarly calculated over all realizations. These values can be compared with the 
nominal case keff and the evaluated benchmark uncertainty; again, the uses of these values 
has been discussed previously. Each line in the output file contains a case label, the average 
keff, and the standard deviation of sampled keff values. A portion of this file is shown in 
Figure 22. 
 
The results of the t-test on statistical significance are printed in significant.dat. These results 
indicate whether there is at least 95% confidence that the correlations coefficient is non-
zero. The test statistic, t*, is calculated using Equation 3. The correlation coefficient is 
accepted as significant if the absolute value of the test statistic is greater than the Student’s t 
value for 95% confidence and n-2 degrees of freedom. A pair of case identifiers is printed to 
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Figure 22. A portion of the mean_stdev.dat output from correlations_single. 

each line of the output file along with either the word “nonzero” or “insignificant”. The 
correlation coefficients are not printed in this file. The test on significance is informative, but 
is probably not as useful as the confidence intervals determined via the Fisher z 
transformation. The first few lines of an example output file for the t-test are shown in 
Figure 23. 

 

Figure 23. First several lines of the significant.dat output file from correlations_single. 

The aforementioned confidence intervals are printed in confidence_intervals.dat. The calculation 
of these confidence intervals is discussed in the previous section on the program flow. The 
confidence intervals are printed in a matrix; each element in the matrix contains the 95% 
confidence interval for the correlation coefficient between the two cases. The confidence 
intervals are derived only from the variability of the sampled results, and do not include any 
uncertainty derived from the assessments of correlated uncertainties, distributions of variable 
parameters, or any related inputs. In other words, the confidence interval determination 
assumes perfect knowledge and description of the benchmark experiments and the 
correlated and independent uncertainty components of the experiments. Part of a 
representative output file is shown in Figure 24. 
 

 

Figure 24. First few lines of the confidence_intervals.dat output file from correlations_single. 

The correlation coefficients themselves are printed in correlations.dat for all realizations, and 
for the first and second half of the realizations in correlations_firsthalf.dat and 
correlations_secondhalf.dat, respectively. The correlations are printed in a matrix format, akin to 
confidence_intervals.dat, except that only a single number is printed to each matrix element. The 
format of all three files is identical, so a portion of only one of them is provided here in 
Figure 25. 
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Figure 25. Beginning section of a correlation coefficient output file from correlations_single. 

Description of Experiments and Models 
A number of KENO models are needed for this work. A total of four ICSBEP handbook 
[15] evaluations are used here: LEU-COMP-THERM-007, LEU-COMP-THERM-039, 
LEU-COMP-THERM-042, and HEU-SOL-THERM-001. The following subsections 
provide additional details of the KENO models used here and their sources. 
 

LEU-COMP-THERM-007 and LEU-COMP-THERM-039 
LEU-COMP-THERM-007 (LCT-007) and LEU-COMP-THERM-039 (LCT-039) are used 
in the WPNCS/UACSA benchmark on critical experiment correlations [33]. These 
evaluations are the subject of the benchmark because both series of experiments used the 
same fuel rods and were performed at Valduc, France, on “Apparatus B” [15]. Only the first 
four, square-pitched cases of LCT-007 are included, as are all 17 cases of LCT-039. These 
cases were initially expected to have significant correlation because of the shared fuel 
material, though the range of pitches and loading patterns used in the two series provides an 
opportunity to investigate the effect of other parameters on the correlation coefficients. 
 
The first case of LCT-007 and all cases in LCT-039 use a 1.26 cm center-to-center fuel rod 
spacing. The other three cases considered from LCT-007 have fuel rod spacing of 1.6 cm, 
2.1 cm, and 2.52 cm. The 4 cases from LCT-007 use uniform arrays of rods, but the 17 cases 
in LCT-039 each have different patterns of fuel rods and empty lattice locations [15]. The 
simple lattices used in LCT-007 are shown in Figure 26, and some example configurations 
from LCT-039 are shown in Figure 27. In all cases from both evaluations, water height is the 
controlled parameter to approach criticality. 
 
The models for these experiments were built for use in the benchmark. The details of the 
fuel rods, including end plugs, fissile material, and plenum space, coupled with the grid plates 
necessitate 9 axial units for each rod. Radial arrays are constructed for each of the 9 axial 
levels, and these 9 radial arrays are used in an axial array to build the complete model of the 
fueled portion of the model. The number of fuel rods in each model ranges from 225 to 484. 
In cases with individual rod positioning, thousands of units must be created and perturbed. 
Also, the 9 axial units must be uniformly perturbed; much of this input is created using the 
TemplateEngine, as discussed previously. The details of the benchmark models are provided 
in Section 3 of the ICSBEP evaluations for these experiments [15]. The dimensions, isotopic 
or elemental number densities, and mixture temperatures are all provided. In all cases, the 
dimensions provided in the evaluation are nominal. The nominal input for Case 1 of LCT- 
007 is included in Appendix B. No example input is provided for the cases supporting   
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Figure 26. Fuel rod arrays for Cases 1-3 of LCT-007 [15]. 

 
 

 
Figure 27. Fuel rod arrays for Cases 1, 2, 5, 6, 9, and 14 of LCT-039 [15]. 

  



 

41 
 

individual fuel rod placement because of the length of these models. 
 
The variable parameter distributions and associated distribution parameters are all taken 
from the WPNCS/UACSA Benchmark specification [33]. No attempt has been made here 
to independently confirm the accuracy or appropriateness of these choices. The parameters 
and their distributions will be discussed later. Also, a range of scenarios is defined in the 
benchmark correlating different uncertain parameters to examine the impact of these 
variations on the correlation coefficients. This work only considers Scenarios A and E. 
Scenario A corresponds to fully correlated fuel rod spacing and Scenario E represents each 
fuel rod positioned independently within randomly positioned holes in the grid plates. 
 

LEU-COMP-THERM-042 
LEU-COMP-THERM-042 (LCT-042) is used in this work as another LEU pin array 
experiment. The experiments were performed at the Critical Mass Laboratory of the Pacific 
Northwest Laboratories in 1979 and 1980. This evaluation is used in this work because all 7 
cases share the same fuel rods and same pitch, but different neutron absorber panels are 
included in each case. Experiments like LCT-042 are frequently used in the validation of fuel 
storage and transportation systems, so it is also useful to investigate because of this common 
implementation. Finally, with only 7 cases, as compared to the 21 in the original 
WPNCS/UACSA benchmark, LCT-042 represents a more manageable challenge in terms of 
the computer time needed to determine correlation coefficients. 
 
All 7 cases have a fuel rod pitch of 1.684 cm. The rods are placed in three fuel rod clusters, 
and separation between the central cluster and the side clusters is the controlled parameter to 
achieve criticality. The central cluster is a 25 x 18 array and the side clusters are both 20 x 18 
arrays. Stainless steel walls are included as neutron reflectors approximately 1.3 cm from the 
long faces of the fuel rod clusters. The general layout of the experiments is shown in Figure 
28. A different neutron absorbing material is included in each experiment on the short outer 
faces of the central cluster. The panel locations are indicated in Figure 28. The neutron 
absorber materials are: 304L stainless steel, 1.1 wt% borated stainless steel, Boral, Boraflex, 
cadmium, copper, and a copper-cadmium mixture with approximately 1 wt% cadmium. The 
arrays are fully flooded with water, and a minimum of 30 cm of reflection is present on all 
four sides of the fuel arrays. Nearly 10 cm of water reflection exists above the top of the fuel 
rods and more than 15 cm of water reflection is below the rods. The rods contain 5 cm top 
end plugs and 1.27 cm bottom end plugs, so the distance from the ends of the fuel material 
to the end of the water reflector are greater than the dimensions provided from the ends of 
the fuel rods. 
 
The models for these experiments are taken from the Verified, Archived Library of Inputs 
and data (VALID library), maintained by the Reactor and Nuclear Systems Division at Oak 
Ridge National Laboratory [60]. The VALID procedure requires models to be built in 
accordance with an acceptable reference, which in this case was the LCT-042 evaluation 
from the ICSBEP Handbook [15]. The models and associated outputs are reviewed by an 
independent, qualified individual to provide higher confidence that the models are correct. 
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Figure 28. Plan view of the LCT-042 experiments [15]. 

These models are therefore expected to be of high quality and are judged to be reliable for 
inclusion in this work. The nominal input for Case 1 of LCT-042 is included in Appendix C. 
 
Modifications were made to the models taken from VALID to allow independent fuel rod 
positioning via Sampler. The addition of units is automated, so it is highly reliable. There are 
fewer axial units needed for modeling LCT-042, so fewer total units are needed even though 
a total of 1170 fuel rods are present in the experiments. 
 
The variable parameter distributions and associated distribution parameters are developed 
based on the uncertainty analysis performed in Section 2 of the ICSBEP Handbook 
evaluation [15]. The vast majority of the input parameters are modified. The uncertainty 
treatment for LCT-042 is more complete than the simplified list of parameters modified in 
LCT-007 and LCT-039 as part of the WPNCS benchmark. In this respect, the LCT-042 
correlations are a more exhaustive examination of the potential correlations among critical 
experiments. The details of these parameters, distributions, and distribution parameters will 
be discussed in detail in a later section. As with the LCT-007 and LCT-039 cases, a range of 
parameters is investigated to examine the sensitivity of the correlation coefficients to these 
parameters. 
 

HEU-SOL-THERM-001 
HEU-SOL-THERM-001 (HST-001) is used in this work as a representative solution 
experiment. It is selected as it was in the earliest study to provide quantitative estimates of 
critical experiment correlations [17]. The experiments were performed at the Rocky Flats 
Plant in the mid-1970s, and consist of an individual tank containing the solution inside a 
concrete room [15]. The concrete room is not included in the benchmark model, leaving an 
extremely simple model containing just the solution and tank. The simplicity of this model 
makes it attractive to study the contribution of several different uncertain parameters to the 
correlation coefficient. 
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A total of 10 cases are included in the HST-001 evaluation. Four different tanks are used, 
including one stainless steel tank and three different aluminum tanks. Eight different 
solutions are used in the ten cases; there are two solutions that are used twice each. 
 
The models for this evaluation are taken from the VALID library. No modifications to the 
models are required for this work as there is only the single tank in the model. The nominal 
input for Case 1 of HST-001 is included in Appendix D. A radial slice of the model for Case 
1 is shown in Figure 29. 
 

 
Figure 29. Radial slice of HST-001 Case 1, with a tank inner diameter of 27.92 cm. 

The variable parameter distributions and associated distribution parameters are developed 
based on the uncertainty evaluation performed in Section 2 of the ICSBEP Handbook 
evaluation dated September 30, 2004 [15]. As with LCT-042, most of the parameters are 
perturbed in HST-001. Given the significantly smaller number of parameters, correlation 
coefficients are determined including different groups of uncertain parameters, including the 
geometry, the tank composition, the uranium enrichment, and the solution composition. The 
details of these studies are provided below, and the purpose of this phased approach is to 
examine which parameters have the largest impact on the correlation coefficients. Some of 
the parameters are also varied assuming each set of uncertain parameters are shared and 
unique to examine these impacts on the correlation coefficients. These studies are feasible 
for this simple model in a way they are not for the complex geometrical arrangements used 
in the LEU pin array cases. 
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CHAPTER IV: DESCRIPTION OF NEW WORK 

This work extends the state of the art of nuclear criticality safety validation methods by 
developing a method for practitioners to use in the determination of reliable critical 
experiment correlations. The determination of critical experiment correlations via the Monte 
Carlo sampling method as implemented in Sampler began with the capability demonstration 
in 2013 discussed in Chapter II [36]. This capability demonstration was not performed by 
the author, but all other results presented from Sampler are the result of the author’s work. 
Initial results for experiments included here were published in 2014 [39], and led to further 
involvement with the international community efforts in this area. This involvement 
included being a contributing author on the WPNCS/UACSA benchmark on critical 
experiment correlations [33] and presenting results for the benchmark and other results in 
the open literature [40] and at meetings related to the benchmark [42, 43]. Results presented 
in the relevant references [39, 40, 42, 43] form the basis for further results expanding those 
investigations and the development of a recommended procedure for the determination of 
critical experiment correlations via the Monte Carlo technique. The purpose of this 
dissertation is to develop this recommended approach for critical experiment correlation 
determination. The approach is detailed in Chapter VIII, and is developed through a series 
of investigations on three different sets of potentially correlated critical experiments. 
 
Chapter V contains the results for the LCT-007 and LCT-039 experiments used in the 
WPNCS/UACSA benchmark [33]. Some of the results in this chapter have been published 
previously [40, 42, 43], including most of the work on pin positioning, some investigation of 
the effect of the stochastic uncertainty of the KENO calculations, initial investigations of 
correlation coefficient convergence, and some of the work on the reproducibility of the 
calculated correlation coefficients. Many of the previously presented results have been 
updated, and the summary and observations are derived from all the most recent and 
complete results. 
 
Chapter VI contains the results for the LCT-042 experiments. Initial results for these 
correlations were presented in [39, 40], and are discussed in Chapter II. Most of the results 
presented in Chapter VI are extensions of those preliminary results, and are generally 
intended to confirm results generated as part of the work on LCT-007 and LCT-039. It is 
important to ensure that the observed impacts of pin position modeling, the stochastic 
uncertainty, and the convergence of correlation coefficients are applicable to different LEU 
pin array experiments. Unlike LCT-007 and LCT-039, each case in LCT-042 contains a 
unique absorber panel, ensuring at least a modest source of unique uncertainty in each 
experiment. Another unique aspect of the work on LCT-042 is the derivation of the 
sampling inputs for the uncertain parameters in the benchmark description provided in [15]. 
The vast majority of the results presented in Chapter VI have not been published elsewhere. 
 
Chapter VII presents results for the HST-001 experiments. This particular experiment was 
selected to allow comparisons with other published results [17]; the methodology used to 
generate the reference results is presented in Chapter II. All of the results presented in 
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Chapter VII are new, and are primarily concerned with the impact of different uncertainties 
and their treatments on the resulting correlation coefficients. 
 
Taken together, a significant amount of new work is presented in this dissertation. It is also 
worth noting, however, that the results that have been published previously are also part of 
the methodology development documented here for the determination of critical experiment 
correlations. The work that has been performed as a part of the international community 
and has established the reputation of the author within that community as an expert in this 
area. 
  



 

46 
 

CHAPTER V: ANALYSIS OF CORRELATIONS AMONG CASES 

FROM LEU-COMP-THERM-007 AND LEU-COMP-THERM-039 

The WPNCS/UACSA benchmark for critical experiment correlations originally used Case 1-
4 of LCT-007 and all 17 Cases of LCT-039. The final, published benchmark uses a reduced 
set of these cases [33]. The results presented here include the initial 20 cases considered. 
Later results include 21 cases since the 4th case of LCT-007 was added. The benchmark 
includes a range of scenarios with different degrees of correlation among the variable 
parameters. This work includes only Scenario A and Scenario E: Scenario A, as discussed 
below, models fully correlated fuel rod spacing. Scenario E is the opposite, with completely 
independent positioning of fuel rods. 
 
This section presents several aspects of the LCT-007 and LCT-039 work. First, the variable 
parameters are discussed, including the distributions and distribution parameters chosen for 
the benchmark effort. This section will include a more detailed discussion of the two 
scenarios examined for these experiments. The next subsection will provide the base case 
results for both scenarios included in this work. A variety of studies performed with these 
cases is also presented. These studies include examining the number of realizations needed 
to achieve convergence of the correlation coefficients, the effect of the uncertainty in the 
KENO calculations for each realization, the repeatability of the correlation coefficient 
determination, and the use of continuous-energy (CE) KENO in place of MG calculations. 
Finally, a summary of the results and studies performed with these experiments will be 
presented. 

Variable Parameters 
The parameters chosen to vary and the assignment of these variations as shared or unique 
are defined in the benchmark for these cases [33]. The variable parameters and their assigned 
distributions are discussed first, followed by a discussion of the two scenarios included in 
this work. 

Parameters and Their Distributions 
The majority of the inputs in the LCT-007 and LCT-039 models are sampled from variable 
distributions defined in the benchmark specification [33]. The sampled inputs include fuel 
rod dimensions, fuel rod positions, the uranium isotopic distribution, and critical water 
heights, among others. Most of the variable inputs are assumed to be normally distributed, 
using the standard deviation provided in Section 2 of the ICSBEP Handbook reports [15]. 
The fuel rod cladding inner diameter, fuel rod cladding thickness, and the angular position of 
fuel rods within the support grid holes (in Scenario E) are distributed uniformly. The 
complete list of variable parameters, their distributions, and distribution parameters are 
provided in Table 1. 

Scenario Descriptions 
The WPNCS/UACSA benchmark includes a series of scenarios examining the effect of 
different parameters on the resulting critical experiment correlations. The set of cases varies   
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Table 1. Variable Parameters, Distributions, and Distribution Parameters for LCT-007 and LCT-039 [33] 

Input Parameter Distribution Distribution Parameters 
Fuel rod cladding inner diameter Uniform [0.81, 0.83] (cm) 
Fuel rod cladding thickness Uniform [0.055, 0.065] (cm) 
Fuel pellet diameter Normal μ=0.7892, σ=0.0017 (cm) 
x-displacement of hole relative to 
nominal  Normal μ=0, σ=0.000742 (cm) 

y-displacement of hole relative to 
nominal Normal μ=0, σ=0.000742 (cm) 

Angle of rod center within its grid 
hole Uniform [0, 2π] (radians) 

Hole diameter Normal μ=1.0105, σ=0.0085 (cm) 
Height of fissile column Normal μ=89.7, σ=0.3 (cm) 
Fuel density Normal μ=10.38, σ=0.0133 (g/cm3) 
Fuel impurity (modeled as 10B) Normal μ=6.9037 x 10-8, σ=8 x 10-9 (a/b-cm) 
234U content in U Normal μ=0.0307, σ=0.0005 (at%) 
235U content in U Normal μ=4.79525, σ=0.002 (at%) 
236U content in U Normal μ=0.1373, σ=0.0005 (at%) 
238U content in U Normal μ=95.03675, σ=0.01 (at%) 
Critical water height LCT-007-001 Normal μ=90.69, σ=0.1 (cm) 
Critical water height LCT-007-002 Normal μ=73.53, σ=0.1 (cm) 
Critical water height LCT-007-003 Normal μ=77.98, σ=0.06 (cm) 
Critical water height LCT-007-004 Normal μ=79.85, σ=0.1 (cm) 
Critical water height LCT-039-001 Normal μ=81.36, σ=0.07 (cm) 
Critical water height LCT-039-002 Normal μ=77.69, σ=0.06 (cm) 
Critical water height LCT-039-003 Normal μ=73.05, σ=0.06 (cm) 
Critical water height LCT-039-004 Normal μ=89.07, σ=0.06 (cm) 
Critical water height LCT-039-005 Normal μ=84.37, σ=0.06 (cm) 
Critical water height LCT-039-006 Normal μ=58.77, σ=0.06 (cm) 
Critical water height LCT-039-007 Normal μ=69.71, σ=0.06 (cm) 
Critical water height LCT-039-008 Normal μ=66.79, σ=0.06 (cm) 
Critical water height LCT-039-009 Normal μ=64.47, σ=0.07 (cm) 
Critical water height LCT-039-010 Normal μ=58.37, σ=0.07 (cm) 
Critical water height LCT-039-011 Normal μ=81.34, σ=0.06 (cm) 
Critical water height LCT-039-012 Normal μ=75.38, σ=0.07 (cm) 
Critical water height LCT-039-013 Normal μ=72.52, σ=0.06 (cm) 
Critical water height LCT-039-014 Normal μ=71.14, σ=0.06 (cm) 
Critical water height LCT-039-015 Normal μ=69.88, σ=0.06 (cm) 
Critical water height LCT-039-016 Normal μ=69.4, σ=0.06 (cm) 
Critical water height LCT-039-017 Normal μ=68.75, σ=0.06 (cm) 
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from correlated uncertainties for fuel rod positions and dimensions to fully uncorrelated 
parameters. Scenario A includes fully correlated dimensions and rod positions. This scenario 
also models the fuel rods as centered in the holes in the grid plates; this is a common 
nominal assumption in critical experiment modeling despite being physically impossible. 
Scenario B randomly positions the grid holes, but maintains correlations for the rod 
dimensions and positions. Progressing through the remaining scenarios to Scenario E 
switches various parameters from correlated to uncorrelated to isolate the effect each one 
has on the critical experiment correlations. The complete matrix of scenarios is provided in 
Table 2. Given the extensive computational effort needed for each scenario and the fact that 
Scenarios B, C, and D are optional in the final benchmark specification, only Scenarios A 
and E are examined here. 
 
Table 2. Correlation of Uncertain Parameters in WPNCS/UACSA Benchmark [33] 

Scenario Displacement 
of grid hole 
position 

Radial 
displacement of 
rod center from 
hole center 

Grid hole 
diameters 

Fuel rod 
cladding 
inner 
diameters 

Fuel rod 
cladding 
thicknesses 

A None R=0 Correlated Correlated Correlated 
B Uncorrelated R = rh – rgap - 

tclad 

Correlated Correlated Correlated 

C Uncorrelated R = rh – rgap - 
tclad 

Uncorrelated Correlated Correlated 

D Uncorrelated R = rh – rgap - 
tclad 

Uncorrelated Uncorrelated Correlated 

E Uncorrelated R = rh – rgap - 
tclad 

Uncorrelated Uncorrelated Uncorrelated 

Note: rh is hole radius, rgap is gap radius, and tclad is cladding thickness 
 
Some evidence is available indicating that Scenario E is the more plausible of the scenarios 
for representing the actual experiments. Measurements of the grid plates used in LCT-007 
and LCT-039 are not available, but measurements are available for a similar series of 
experiments also performed at the critical experiment facility at Valduc, France. The Haut 
Taux de Combustion (HTC) experiments [61-64] were performed a few years after LCT-007 
and LCT-039, and the grid plates used in those experiments were measured at the request of 
ORNL. The results of these measurements [65] (included in Appendix E) indicate that there 
is no accumulating error in the placement of the holes in the grid plates. The grid plates 
contain 2500 holes in a 50 x 50 array, creating 49 pitches in the x and y directions. Multiple 
measurements are made across each plate in both directions as well as along the diagonals. 
For the 1.3 cm pitch grid plate, the largest deviation from nominal in these measurements is 
0.053 mm. The average pitch indicated by the 12 measurements of these two grid plates is a 
maximum of 0.001 mm, or 1 μm, off from nominal. Individual hole separation distances are 
not reported, so it is not possible to evaluate the uncertainty in each hole placement, but the 
results provide a very strong indication that the fuel rod locations are not systematically 
biased. 
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Initial Results 
This section presents initial results for the WPNCS/UACSA benchmark for LCT-007 and 
LCT-039. These results were used as the baseline for the studies discussed in the next 
section. 

Scenario A 
Scenario A, as described above, assumes that all fuel rods are centered in the holes in the 
grid plates. It is further assumed that the spacing between all pairs of rods is identical. This 
uniform pitch assumption leads to large reactivity variations between realizations since the 
spacing between all fuel rods expands or contracts simultaneously. This relatively large 
reactivity effect is also shared among all cases, thus increasing the correlation coefficients. It 
should be noted that LCT-007 Case 4 was never included in the Scenario A results; this has 
no bearing on the usefulness of the other results.  
 
The nominal keff for each case along with the average keff over all samples and its standard 
deviation are provided in Table 3. The expected keff value and its uncertainty from the 
ICSBEP Handbook evaluation [15] are also included in Table 3. The critical experiment 
correlations were generated with 150 realizations per experiment. The Monte Carlo 
uncertainty of the individual KENO calculations for these calculations ranged between 
approximately 0.00050 Δk and 0.00080 Δk. Each individual calculation was finished in under 
15 minutes, leading to a total run time on the order of 550 CPU-hours. The correlation 
coefficient results are shown in Figure 30. 
 
The nominal keff value for each of the 20 cases considered here is slightly below the expected 
value from the evaluation of 1.0 [15]. This is expected as there has been a slight negative bias 
for LEU array systems in KENO for some time [66]. The first important result from Table 3 
is that the average of the 150 realizations is within one standard deviation of the nominal 
value for all 20 cases. While the average over the realizations is in good agreement, it should 
be noted that the average keff value is higher than the nominal value for all 20 cases. Second, 
the standard deviation of the realizations is significantly larger than the benchmark 
uncertainty provided in the evaluation for all 20 cases. The ratio of sampling uncertainty to 
evaluation uncertainty ranges from approximately 1.9 for LCT-007 Case 3 to about 3.4 for 
LCT-039 Case 7. It is worth noting that the ratio is 1.9 for LCT-007 Case 3, 2.8 for LCT-007 
Case 2, and generally around 3 or slightly higher for the remainder of the cases. This result 
suggests that the overprediction of the uncertainty is more pronounced for the smaller pitch 
cases, with correspondingly higher sensitivity to fuel rod pitch. This may indicate that the 
fully correlated pitch modeling is driving this higher estimation of the uncertainty. 
 
The correlation coefficient results show extremely high correlations for most experiment 
pairs. It is evident that LCT-007 Case 3 has much lower correlation coefficients with the 
other experiments than the rest of the sample examined. This is caused by the fuel rod 
pitchof LCT-007 Case 3 being significantly higher (2.1 cm) than that for the other cases. It is 
in fact overmoderated, so the response of the system to changes in pitch is significantly 
different than for the other cases. LCT-007 Case 1 and all cases in LCT-039 have a 1.26 cm 
pitch; LCT-007 Case 2 has a pitch of 1.60 cm. This latter case is slightly undermoderated,   
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Table 3. keff Results for Scenario A Calculations 

Case Expected 
keff 

Evaluation 
Uncertainty 

Nominal 
keff 

Nominal 
keff 

Uncert. 

Average of 
Realizations 

Standard 
Deviation 

7-1 1.00000 0.00140 0.99392 0.00010 0.99594 0.00461 
7-2 1.00000 0.00080 0.99614 0.00010 0.99768 0.00226 
7-3 1.00000 0.00070 0.99654 0.00010 0.99736 0.00130 
39-1 1.00000 0.00140 0.99539 0.00010 0.99742 0.00426 
39-2 1.00000 0.00140 0.99460 0.00010 0.99676 0.00409 
39-3 1.00000 0.00140 0.99627 0.00010 0.99838 0.00383 
39-4 1.00000 0.00140 0.99348 0.00010 0.99558 0.00376 
39-5 1.00000 0.00090 0.99552 0.00010 0.99737 0.00293 
39-6 1.00000 0.00090 0.99484 0.00010 0.99697 0.00296 
39-7 1.00000 0.00120 0.99377 0.00010 0.99588 0.00404 
39-8 1.00000 0.00120 0.99383 0.00010 0.99613 0.00389 
39-9 1.00000 0.00120 0.99365 0.00010 0.99599 0.00389 
39-10 1.00000 0.00120 0.99466 0.00010 0.99703 0.00336 
39-11 1.00000 0.00130 0.99266 0.00010 0.99465 0.00426 
39-12 1.00000 0.00130 0.99287 0.00010 0.99502 0.00424 
39-13 1.00000 0.00130 0.99284 0.00010 0.99517 0.00416 
39-14 1.00000 0.00130 0.99346 0.00010 0.99559 0.00408 
39-15 1.00000 0.00130 0.99384 0.00010 0.99619 0.00398 
39-16 1.00000 0.00130 0.99687 0.00010 0.99901 0.00394 
39-17 1.00000 0.00130 0.99353 0.00010 0.99577 0.00400 
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but near optimum moderation. A careful examination of the results in Figure 30 shows that 
the correlations coefficients with the LCT-039 cases are also lower for LCT-007 Case 2 than 
for the LCT-007 Case 1. The correlations for Case 2 with the LCT-039 cases is around 0.93; 
while still a high correlation this is a noticeably lower value than the 0.96 to 0.98 correlation 
coefficients generated among the experiments with the same fuel rod pitch. 
 
All the correlations shown in Figure 30 are statistically significantly different from 0 at the 
95% level. In fact, for 150 samples, any correlation coefficient exceeding 0.161 is statistically 
significant. The highest correlation coefficient between LCT-007 Case 2 and any other case 
is 0.940, with LCT-039 Case 10. The 95% confidence interval on this correlation coefficient 
is from 0.918 to 0.956. This indicates that the correlation coefficients for all cases, except 
LCT-007 Case 3, are statistically equivalent. One of the lower correlation coefficients among 
other cases is 0.956, between LCT-007 Case 1 and LCT-039 Case 5. The 95% confidence 
interval on this coefficient ranges from 0.940 to 0.968. This confirms that these two 
confidence intervals just overlap. It is also worth noting that most other correlation 
coefficients are higher than 0.97 for LCT-007 Case 1. The correlation coefficients between 
LCT-039 Cases 5 and 6 all appear to be lower than many other correlation coefficients. 
These cases stand out as different as they are the only cases with every other rod removed 
from the lattice. The energy of the average lethargy causing fission (EALF) for these two 
cases is much lower, around 0.14 eV, than for the other LCT-039 cases. The other LCT-039 
cases have EALF values of approximately 0.18 to 0.23 eV, with most of the values over 
0.20 eV. The correlation coefficients for all cases are therefore consistent with the underlying 
physics similarities and differences exhibited by each system. 
 
These results indicate that statistically significant correlation coefficients may be able to be 
determined with a relatively modest computational burden. Certainly more than 500 CPU-
hours is not a trivial amount of calculation, but for even some large desktop computers this 
represents little more than a weekend of time. On some computing clusters, this amount of 
computing time could be dedicated within just one or two hours. 
 
The results presented in Figure 30 also indicate that shared fissile material is not necessarily 
the only consideration to driving large correlation coefficients. LCT-007 Case 3 uses the 
same fuel rods as all the other cases, yet correlation coefficients of only approximately 0.4 
result. At this point it is evident that LEU fuel rod array experiments must have the same 
fissile material and a similar fuel rod pitch for very high correlation to exist. In this context, 
“similar” means at least being on the same side of optimum moderation. This conclusion is 
logical given the different moderation regimes that these differing cases could occupy. 
 

Scenario E 
Scenario E presents a significantly greater challenge than Scenario A. The individual 
placement of each fuel rod requires models of much greater length and complexity. The 
complexity drives the use of the TemplateEngine, as discussed in Chapter III, to create up to 
484 copies of the individual fuel rod used in nominal models such as those shown in 
Appendix B. Random pin locations should also result in lower reactivity effects that are also 
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Figure 30. Initial Critical experiment correlations for WPNCS/UACSA benchmark for LCT-007 and LCT-039, Scenario A.
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less correlated. The reactivity effects are lower because the overall moderation ratio within 
the lattice of fuel rods is largely unchanged by the random perturbations. The effects are 
uncorrelated because the perturbations of fuel rod locations are unique to each case. 
 
The assumption of random pin placement is predicated on the belief that the fuel rods must 
move to some degree between experiments. This belief can be difficult to impossible to 
confirm given the level of information currently contained in ICSBEP Handbook 
evaluations. These evaluations are mostly concerned with the nominal description of the 
experiment. An uncertainty evaluation is also included to examine the confidence that can be 
placed in the specific configuration, but many aspects of this uncertainty assessment are not 
captured in the primary experiment reports used in the generation of the evaluations. 
 
Many factors influence the degree of randomness of fuel rod locations and the variability of 
those locations between experiments. The two primary considerations are the preparation of 
the grid plates used in the experiment and the handling of fuel rods between experiments. 
Each of these factors merits some discussion here. 
 
The first consideration is the method for laying out and drilling the holes in the support 
plates used in the experiments. Most fuel rod array experiments use support plates of some 
type to keep the fuel rods aligned. Some are various forms of plastic and others are metal, 
but the requirement for holes is obvious and independent of material. The locations of these 
holes may be determined independently from a single reference point, or each hole may be 
positioned relative to the previous hole. It is also conceivable that lines are measured for the 
rows and columns of holes, again either from a single reference point or from the previous 
rank or file. Each of these options leads to a different degree of correlation among the hole 
locations. Holes that are each located relative to a single reference point are likely to have 
fairly low correlations among themselves; the correlation is likely higher for holes positioned 
relative to the previous hole. This correlation can be exacerbated if a gauge is used to control 
the spacing instead of independent measurements. Finally, it is possible to create correlations 
within rows or columns of holes if they are laid out along lines that are placed on the plates. 
The WPNCS/UACSA benchmark scenarios include either fully correlated or uncorrelated 
hole locations; no scenario examines partial correlations such as those resulting from lines of 
holes. Other factors can also influence the correlation, such as the order in which the holes 
are drilled and the frequency with which drill bits are replaced. A significant amount of 
information must be obtained about the fabrication of the plates and retained in 
documentation to allow these factors to be understood and addressed in attempts to 
understand the correlations that exist among critical experiments using these plates. 
Reference measurements of the spacing among various pairs of holes would be quite helpful 
in quantifying the uncertainty and correlation among grid plate holes. Measurements of the 
overall envelope of the holes, such as those reported in [65], can also be helpful. A 
combination of both would be nearly ideal documentation. Newer experiments may also be 
able to provide descriptions of the computerized machining performed to create the grid 
plates. 
 
The handling and use of individual fuel rods in each experiment within a series can also have 
profound impacts on the correlations between the individual experiments. Some of these 
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aspects impact the degree of correlation of the fuel rod positions, while others are related to 
the composition and dimensions of the rods themselves. These latter factors are more 
obvious. A higher degree of correlation will be created between experiments if the same rods 
are used in all cases, and even more so if the same rods are used in the same locations. While 
Scenario A assumed that all fuel rods were identical, Scenario E samples the physical 
dimensions of each rod separately. There is no consideration of the possibility that the same 
rod may be used in the same location in each experiment. This possibility has been examined 
to some degree in the literature [41], and bears further study. The placement of the fuel rods 
within the assembly also has a bearing on the correlation of the experiments. It is possible 
that some aspect of the loading of the rods, manipulation of the hardware, or tilt in the 
experimental facility could lead all rods to shift in the same direction within the support plate 
holes. This will create stronger correlations of rod positions within an experiment and also 
strong correlations between experiments. No scenario within the WPNCS/UACSA 
benchmark considers this type of correlation. The operational aspects involved in this 
include questions about the unloading and reloading of fuel rods between experiments. In 
LCT-039, many locations have a fuel rod in different experiments; it is not known if the fuel 
rods were offloaded and reloaded into Apparatus B for each experiment. The stand holding 
the rods (see Figure 2 of the ICSBEP Handbook evaluation of LCT-039 [15]) was removed 
from the tank between experiments so that the new fuel rod patterns could be created. The 
handling of this stand with a crane is likely to have randomized the locations of the rods 
within the holes, but also presents an opportunity for all the rods to shift the same direction 
depending on crane movement. Again, the collection and retention of a large amount of 
extremely detailed information is needed to make informed assessments of the degree of 
correlation of fuel rod positions within and between experiments. Unfortunately, much of 
this information was never collected and is lost to history. 
 
Table 4 provides the keff results for Scenario E. The expected keff values, their uncertainties, 
the nominal keff values, and their uncertainties are all the same as those shown in Table 3. 
The values are repeated to simplify comparisons. The results were again generated using 150 
realizations, with each KENO calculation converged to an uncertainty of 0.00050 Δk to 
0.00080 Δk. The total computational burden was once again approximately 550 CPU-hours. 
The initial results for Scenario E correlation coefficients are shown in Figure 31. 
 
The average over the 150 realizations for Scenario E is not, in most cases, within two 
standard deviations of the average value. This is apparent because the uncertainties are so 
much lower for each case in Scenario E than for Scenario A. In general, the differences 
between the average keff value and the nominal values are very similar between Scenario A 
and Scenario E. No reason has been identified that causes the average of the realizations to 
be more reactive than the nominal case, but it cannot be related to the fuel rod position 
modeling given that the differences from nominal are in good agreement for both scenarios.  
 
The keff values for the individual realizations are shown in Figure 32 for LCT-007 Case 1 and 
Figure 33 LCT-007 Case 3. These cases are selected as LCT-007 Case 1 has the same pitch 
as the LCT-039 cases and has the highest standard deviation of realizations, while LCT-007 
Case 3 has the lowest standard deviation. The low variability of realizations for the latter case 
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Table 4. keff Results for Scenario E Calculations 

Case Expected 
keff 

Evaluation 
Uncertainty 

Nominal 
keff 

Nominal 
keff 

Uncert. 

Average of 
Realizations 

Standard 
Deviation 

7-1 1.00000 0.00140 0.99392 0.00010 0.99605 0.00102 
7-2 1.00000 0.00080 0.99614 0.00010 0.99911 0.00060 
7-3 1.00000 0.00070 0.99654 0.00010 0.99796 0.00063 
39-1 1.00000 0.00140 0.99539 0.00010 0.99592 0.00074 
39-2 1.00000 0.00140 0.99460 0.00010 0.99680 0.00071 
39-3 1.00000 0.00140 0.99627 0.00010 0.99624 0.00069 
39-4 1.00000 0.00140 0.99348 0.00010 0.99556 0.00063 
39-5 1.00000 0.00090 0.99552 0.00010 0.99733 0.00068 
39-6 1.00000 0.00090 0.99484 0.00010 0.99690 0.00084 
39-7 1.00000 0.00120 0.99377 0.00010 0.99590 0.00075 
39-8 1.00000 0.00120 0.99383 0.00010 0.99609 0.00066 
39-9 1.00000 0.00120 0.99365 0.00010 0.99610 0.00064 
39-10 1.00000 0.00120 0.99466 0.00010 0.99689 0.00071 
39-11 1.00000 0.00130 0.99266 0.00010 0.99475 0.00072 
39-12 1.00000 0.00130 0.99287 0.00010 0.99499 0.00075 
39-13 1.00000 0.00130 0.99284 0.00010 0.99498 0.00072 
39-14 1.00000 0.00130 0.99346 0.00010 0.99555 0.00071 
39-15 1.00000 0.00130 0.99384 0.00010 0.99570 0.00069 
39-16 1.00000 0.00130 0.99687 0.00010 0.99609 0.00075 
39-17 1.00000 0.00130 0.99353 0.00010 0.99580 0.00071 

 
  



 

56 
 

 
Figure 31. Initial Critical experiment correlations for WPNCS/UACSA benchmark of LCT-007 and LCT-039, Scenario E.
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Figure 32. Individual realization keff values for LCT-007 Case 1. 

 

 
Figure 33. Individual realization keff values for LCT-007 Case 3. 
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is due to the near-optimum pitch used in the array. The figures illustrate the dramatically 
reduced variation in system reactivity associated with Scenario E and random pin placement 
as opposed to Scenario A and systematic pin pitch changes. It is also clear that the 
uncertainty is lower in both scenarios in LCT-007 Case 3 with the larger nominal pitch. The 
standard deviation of the realizations is on the order of 50% of the uncertainty from the 
ICSBEP evaluation [15]. As mentioned in Chapter III, other studies [59] have indicated that 
the current uncertainty guide in the ICSBEP Handbook [15] overestimates the uncertainty of 
LEU pin array experiments. These results could be further support for this observation or 
could indicate that the random, independent fuel rod placement model underestimates 
uncertainty.  
 
The correlation coefficients shown in Figure 31 are quite low. There is no apparent pattern 
to the results. There are a few cases that appear to have higher correlation coefficients, such 
as LCT-039 Case 16 with Cases 5, 6, and 13. LCT-039 Cases 5 and 6 have fuel rods loaded 
in every other location, as shown in Figure 27. LCT-039 Case 16 has a similar loading 
configuration to LCT-039 Case 14 (see Figure 27), except that the lower left corner of the 
2x2 loading region is in location (6,6) instead of (4,4). It is entirely possible that high 
correlations exist between Cases 5 and 6 with Cases 11 through 17, which also have a region 
with removed fuel rods. Such a scenario should include higher correlations for all these 
cases, but this is not evident in the results. Also, it seems logical that the correlation between 
Cases 5 and 6 would be at least as high. This is also not evident in Figure 31.  
 
Further investigation shows that the 95% confidence interval on the correlation coefficient 
between LCT-039 Case 13 and LCT-039 Case 16 is from 0.133 to 0.428. This indicates that 
correlations coefficients for LCT-039 Case 16 with Cases 5 and 6 are all statistically 
equivalent. The remaining 16 cases in the matrix have lower correlation coefficients that are 
statistically significantly different. There is no clear explanation for this result. This apparent 
anomaly is one of the reasons additional studies were performed on the cases considered in 
the WPNCS/UACSA benchmark. 
 
An examination of the correlations among LCT-039 Cases 11 through 17 is also warranted 
given the qualitative similarities evident in the loading configurations noted above. LCT-039 
Case 11 does not appear to be correlated at all with Cases 12 through 17. Case 12 appears to 
be moderately correlated with Cases 13 and 14, but not Cases 15 through 17. Case 13 
appears to have correlations with Cases 14 through 17, and potentially more strongly with 
Cases 14 through 16 than with Case 17. Case 14 appears to be correlated with Case 15, but 
not with Cases 16 or 17. Case 15 does not appear to be correlated with Case 16 or 17, and 
Case 16 also appears to be uncorrelated to Case 17. These results are puzzling, and also 
contribute to the desire for additional studies to explain the apparently anomalous results. 
 
Ignoring the apparent anomalies for the moment, only 28 of the 190 correlation coefficients 
are statistically significantly nonzero. No correlation coefficient is as high as 0.3, which is a 
dramatic departure from the Scenario A results. These results make it clear that the 
treatment of fuel rod pitch has a significant impact on calculated correlation coefficients. 
This conclusion is physically intuitive, especially given the obvious impact of the pitch 
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modeling shown in Figure 32 and Figure 33. Further investigation, presented in the next 
section, is clearly necessary to confirm these results and the associated conclusion. 

Additional Studies 
The results presented in the previous section are the result of an initial attempt at calculating 
critical experiment correlations for these experiments. There are some anomalous results, 
especially in Scenario E, and further investigation of these results is warranted given the 
general lack of experience with the Monte Carlo sampling method for calculating critical 
experiment correlations. The two primary studies both regard convergence. The first looks at 
the convergence of the correlation coefficients to determine if enough realizations have been 
created and run to achieve converged correlation coefficient estimates. The second study 
investigates the impact of the final Monte Carlo uncertainty in each realization on the 
correlation coefficients. Lower numbers of realizations and higher stochastic uncertainties 
are both advantageous for practitioners to minimize the run-time investment in the 
determination of the correlations. The final study documented in this section compares 
KENO calculations performed in CE mode to the correlation resulting from MG 
calculations. Again, MG calculations are faster and therefore desirable in comparison to CE 
calculations. Essentially all of these studies are attempts to establish the minimum run-time 
investment to generate useful, reliable, and plausible correlation coefficients. 
 

Correlation Coefficient Convergence 
This study examines the number of realizations that are necessary to generate converged 
correlation coefficient estimates from the Monte Carlo sampling technique. All Monte Carlo 
sampling problems require this type of study, as the random sampling generates a string of 
estimates of the quantity of interest. After enough samples are generated, the average 
estimate of the quantity, in this case the correlation coefficient, stops changing. In most 
cases, this final result is used as the best estimate of the quantity of interest. The sampling 
approach to generate correlation coefficients does not suffer from the correlated sampling 
effects that are endemic to Monte Carlo calculations of keff because each sample is 
uncorrelated from the others. In this instance, sequential realizations of particular 
experiments are uncorrelated. Each realization of potentially correlated experiments will 
share identical sampled values for shared uncertain parameters. 
 
The method for examining convergence of the correlation coefficient is simple. The 
correlation coefficient is calculated with increasing number of realizations until the estimated 
correlation coefficient stabilizes on a value. This convergence will be judged graphically, 
though in principle more advanced statistical methods could be used to determine 
convergence. It is also worth noting that there is no requirement to discard initial estimates 
because there is no initial guess at the correlation coefficient. In this regard, the Monte Carlo 
sampling technique for determining correlation coefficients is analogous to fixed source 
Monte Carlo transport calculations and not eigenvalue calculations. 
 
Two example convergence checks are provided in Figure 34 for Scenario A. Both correlation 
coefficients examined involve LCT-007 Case 1. The correlation to LCT-007 Case 3 is 
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included as an example of a moderate correlation coefficient, and the correlation with LCT-
039 Case 1 is included to represent high correlation cases. As shown in the figure, the high 
correlation coefficient case convergences more quickly, as expected, and probably needs only 
approximately 75 realizations to achieve convergence. The lower convergence case is 
probably converged by about 95 realizations. It appears that 150 is a sufficient number of 
realizations for both situations in Scenario A. 
 

 
Figure 34. Convergence summary for two correlation coefficients, Scenario A. 

Similar convergence checks are performed for Scenario E, as shown in Figure 35. The 
correlation between the same two pairs of cases is used for consistency. The correlation 
coefficient between LCT-039 Cases 13 and 16 is also included because that is the largest 
correlation coefficient in the Scenario E results, as shown in Figure 31. The correlation 
between LCT-039 Cases 1 and 14 is also added as it is an intermediate value for the range of 
coefficients observed in Scenario E. The results shown in Figure 35 generally look 
acceptable. The LCT-007 Case 1 coefficients both look well converged, as does the 
correlation between LCT-039 Cases 13 and 16. There may be a slight indication of 
nonconvergence for LCT-039 Cases 1 and 14, especially at approximately realization 125. 
Based on these results, a study expanding to 300 realizations was conducted to ensure 
convergence had been achieved, specifically in Scenario E. 
 
The keff values and their standard deviations from all 300 realizations are provided in Table 
5. These values are in good agreement with the average values shown in Table 4, indicating 
that the average keff estimates converge more quickly than the correlation coefficients. A plot 
of the convergence of keff as a function of realizations is shown in Figure 36. The 
convergence of the average keff value for LCT-007 Cases 1 and 3 and LCT-039 Case 1 are 
presented. The keff values are converged in all cases by realization 100, and in LCT-007 Case 
3 and LCT-039 Case 1 by approximately realization 40. Clearly, the convergence of the keff 
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Figure 35. Convergence summary for four correlation coefficients, Scenario E, 150 realizations. 

Table 5. keff Results for Scenario E Calculations with 300 Realizations 

Case Expected 
keff 

Evaluation 
Uncertainty 

Nominal 
keff 

Nominal 
keff 

Uncert. 

Average of 
Realizations 

Standard 
Deviation 

7-1 1.00000 0.00140 0.99392 0.00010 0.99609 0.00095 
7-2 1.00000 0.00080 0.99614 0.00010 0.99910 0.00066 
7-3 1.00000 0.00070 0.99654 0.00010 0.99797 0.00067 
39-1 1.00000 0.00140 0.99539 0.00010 0.99582 0.00073 
39-2 1.00000 0.00140 0.99460 0.00010 0.99675 0.00071 
39-3 1.00000 0.00140 0.99627 0.00010 0.99625 0.00072 
39-4 1.00000 0.00140 0.99348 0.00010 0.99555 0.00064 
39-5 1.00000 0.00090 0.99552 0.00010 0.99734 0.00067 
39-6 1.00000 0.00090 0.99484 0.00010 0.99688 0.00077 
39-7 1.00000 0.00120 0.99377 0.00010 0.99586 0.00073 
39-8 1.00000 0.00120 0.99383 0.00010 0.99609 0.00071 
39-9 1.00000 0.00120 0.99365 0.00010 0.99608 0.00064 
39-10 1.00000 0.00120 0.99466 0.00010 0.99691 0.00071 
39-11 1.00000 0.00130 0.99266 0.00010 0.99474 0.00072 
39-12 1.00000 0.00130 0.99287 0.00010 0.99501 0.00073 
39-13 1.00000 0.00130 0.99284 0.00010 0.99501 0.00070 
39-14 1.00000 0.00130 0.99346 0.00010 0.99558 0.00068 
39-15 1.00000 0.00130 0.99384 0.00010 0.99573 0.00065 
39-16 1.00000 0.00130 0.99687 0.00010 0.99607 0.00070 
39-17 1.00000 0.00130 0.99353 0.00010 0.99580 0.00068 
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Figure 36. Convergence summary for keff, Scenario E, 150 realizations. 
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values cannot be used to confirm convergence of the correlation coefficients. As indicated in 
Table 5, the standard deviation of the keff estimates is reduced slightly with 300 realizations 
compared to the results from 150 realizations provided in Table 4. Doubling the number of 
realizations appears to lower the standard deviation of the keff estimates by approximately 
10%. 
 
The convergence of the same four cases used in Figure 35 is examined after 300 realizations 
in Figure 37. The convergence of the average keff values is provided in Figure 38. The entire 
set of correlation coefficients generated with 300 realizations is shown in Figure 39. The 
convergence results again look generally good, though there is still a question as to whether 
or not the correlation coefficient between LCT-039 Cases 1 and 14 has converged. The 
average keff values are clearly converged by 150 realizations, reinforcing the conclusion that 
convergence of the average keff values is not an indicator of convergence of the correlation 
coefficient. Given that a sampling of only 4 of the 190 correlation coefficients has been 
examined, it is difficult to assert that 300 realizations are always sufficient. The results shown 
in Figure 39 show the same general pattern as those shown in Figure 31. A careful 
examination shows that a smaller number of correlations are still significantly different from 
zero. After 300 realizations, only 9 of 190, or about 4.7%, are statistically significant. This 
also provides some evidence that 150 realizations may not be sufficient. Many, but not all, of 
the anomalous correlations have resolved themselves by reducing to a level of insignificance. 
It seems that 300 realizations are probably sufficient for most cases. The results of the study 
on the effect of the KENO uncertainty presented in the next section further bolster this 
observation. 

Stochastic Uncertainty in KENO Calculations 
The Monte Carlo (stochastic) uncertainty associated with the keff calculation in KENO may 
impact the correlation coefficients determined via the Monte Carlo sampling method. The 
estimate of the correlation coefficient is calculated deterministically, as shown in Equation 1, 
assuming a string of keff estimates with no uncertainty. In truth, uncertainty of the keff 
determination is unavoidable using Monte Carlo transport. This study is intended to examine 
the potential impact of this calculational uncertainty in the keff estimates. The correlation 
coefficients in Scenario E are particularly susceptible to this effect given the lower 
uncertainties in this approach to locating fuel rods. 
 
The initial results, presented in the previous section, were performed with a Monte Carlo 
uncertainty of approximately 0.00060 – 0.00080 Δk. This is on the same order as the overall 
uncertainty in the keff value averaged over all realizations. The keff values for LCT-007 Case 3 
Scenario E, also shown in Figure 33, are shown in Figure 40 including the uncertainty 
reported by KENO. The magnitude of the uncertainty is evident in the figure. 
 
The study performed here aims to reduce the uncertainty in the individual keff calculations to 
0.00010 Δk. This is accomplished by setting the SIG= parameter in KENO to 0.00010. The 
number of generations to be run (GEN= parameter) is set to a sufficiently large number to 
allow the calculation to reach the requested uncertainty. A total of 300 realizations is used 
for this study, based on the results presented in the previous section. Each individual KENO 
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Figure 37. Convergence summary for four correlation coefficients, Scenario E, 300 realizations. 

 

 
Figure 38. Convergence summary for keff, Scenario E, 300 realizations. 
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Figure 39. Critical experiment correlations for WPNCS/UACSA benchmark of LCT-007 and LCT-039, Scenario E, 300 realizations.
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Figure 40. Initial 150 keff results, Scenario E, showing stochastic uncertainty of each realization. 

case completes in about 4 hours. This run-time increases the requirement for completing the 
WPNCS/UACSA benchmark matrix from approximately 550 CPU-hours to something on 
the order of 24,000 CPU-hours. The increase is a combination of both doubling the number 
of realizations and reducing the stochastic uncertainty of each realization. 
 
The remaining case, LCT-007 Case 4, has been added in this set of calculations. This case 
has 306 fuel rods in an 18x17 fuel rod array with a 2.52 cm pitch. The fuel rod spacing is 
established using the same grid plate as LCT-007 Case 1, but with three out of every 4 holes 
empty to double the separation between rods. In reality, this would likely create a shared 
uncertainty component with Case 1, but this effect is not specified in the benchmark. It is 
therefore also omitted from this analysis. 
 
The average of the 300 realizations with lower KENO uncertainties are provided in Table 6. 
These average values are in good agreement with those shown in Table 4 and Table 5, again 
indicating that the average keff value is converged prior to the correlation coefficient. The 
standard deviation of the 300 realizations, however, is much smaller than those shown in 
Table 4 or Table 5. The uncertainty is reduced by a factor of about 3 for most cases 
compared to the initial estimates provided in Table 4. This means a significant portion of the 
uncertainty is a result of the stochastic uncertainty of the individual KENO calculations. 
This component should be random, and thus not shared among the cases. Reducing the 
Monte Carlo uncertainty in the individual KENO calculations should therefore increase the 
correlation coefficient for all cases. This is an intuitive conclusion that does not need to be 
proven; determining the magnitude of the effect on the correlation coefficients is the goal of 
this study.  
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Table 6. keff Results for Scenario E Calculations with 300 Realizations Converged to 0.00010 Δk 

Case Expected 
keff 

Evaluation 
Uncertainty 

Nominal 
keff 

Nominal 
keff 

Uncert. 

Average of 
Realizations 

Standard 
Deviation 

7-1 1.00000 0.00140 0.99392 0.00010 0.99609 0.00029 
7-2 1.00000 0.00080 0.99614 0.00010 0.99908 0.00027 
7-3 1.00000 0.00070 0.99654 0.00010 0.99785 0.00032 
7-4 1.00000 0.00080 0.99837 0.00010 0.99861 0.00041 
39-1 1.00000 0.00140 0.99539 0.00010 0.99574 0.00033 
39-2 1.00000 0.00140 0.99460 0.00010 0.99672 0.00029 
39-3 1.00000 0.00140 0.99627 0.00010 0.99625 0.00030 
39-4 1.00000 0.00140 0.99348 0.00010 0.99549 0.00029 
39-5 1.00000 0.00090 0.99552 0.00010 0.99728 0.00030 
39-6 1.00000 0.00090 0.99484 0.00010 0.99686 0.00029 
39-7 1.00000 0.00120 0.99377 0.00010 0.99581 0.00029 
39-8 1.00000 0.00120 0.99383 0.00010 0.99604 0.00030 
39-9 1.00000 0.00120 0.99365 0.00010 0.99601 0.00022 
39-10 1.00000 0.00120 0.99466 0.00010 0.99687 0.00031 
39-11 1.00000 0.00130 0.99266 0.00010 0.99473 0.00029 
39-12 1.00000 0.00130 0.99287 0.00010 0.99501 0.00030 
39-13 1.00000 0.00130 0.99284 0.00010 0.99504 0.00029 
39-14 1.00000 0.00130 0.99346 0.00010 0.99560 0.00030 
39-15 1.00000 0.00130 0.99384 0.00010 0.99565 0.00031 
39-16 1.00000 0.00130 0.99687 0.00010 0.99609 0.00031 
39-17 1.00000 0.00130 0.99353 0.00010 0.99581 0.00029 
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The correlation coefficients presented in Figure 41 are clearly different than the initial results 
for Scenario E (see Figure 31) or the results with 300 realizations and higher KENO 
uncertainties (see Figure 39). Interestingly, it appears that LCT-007 Cases 3 and 4 are more 
correlated with the LCT-039 cases than LCT-007 Case 1 despite the latter experiment having 
the same pitch. This is likely a result of the fact that LCT-007 Case 3 is near optimum 
moderation and Case 4 is slightly overmoderated, so the fuel rod location uncertainty 
contributes less to the uncertainty in these cases. The elimination of the fuel rod position 
uncertainty leaves the fuel composition as a dominant, and shared, uncertainty component. 
The results also indicate that LCT-039 Case 9 has the highest correlation coefficient with 
most of the other cases. In many cases, the 95% confidence interval for the coefficients with 
LCT-039 Case 9 overlap the confidence intervals for adjacent experiments in the matrix, but 
this does not offer an explanation for the observed behavior. While this behavior is 
anomalous, the majority of the anomalies identified in the initial results have been resolved. 
The correlation coefficients are in much better agreement for similar experiments, which is 
the expected behavior. It is therefore concluded that the individual realization stochastic 
uncertainty must be reduced to about 0.00010 Δk to determine accurate correlation 
coefficients. This effect is also studied with the LCT-042 correlations presented later. The 
LCT-042 experiment has only seven cases, so it provides a less costly computational test bed 
for driving the Monte Carlo uncertainty of each realization to lower values. 
 
The convergence of the correlation coefficient with the number of realizations is also 
potentially impacted by lower uncertainty values for the individual realization keff 
calculations. The same four correlation coefficients examined in Figure 35 and Figure 37 are 
examined, as is the correlation of LCT-007 Cases 3 and 4. This last correlation is added 
because it has the highest correlation coefficient for any pair of experiments in Scenario E. 
The results, shown in Figure 42, indicate much faster convergence for the cases with more 
rigorous KENO calculations. It appears that the correlation coefficients are converged 
within 150-200 realizations. This result bolsters the confidence that 300 realizations is 
sufficient, as concluded in the prior section. 
 

Repeatability of Correlation Coefficient Determination 
The goal of this study is to determine if the correlation coefficient determination process is 
repeatable and generates a unique solution. There are two aspects of this question: the first is 
with respect to the random sampling of input parameters by Sampler and the second is 
related to the KENO calculations for each realization. The effect of input generation in 
Sampler is not examined here as there is currently no simple way to change random number 
seeds and thus change the sampled parameters. This study therefore focuses on the effects 
of changing KENO random number seeds. 
 
The study consists of running 9 additional sets of KENO calculations for all 300 
realizations. The only correlation coefficient examined in this study is the correlation of 
LCT-039 Cases 6 and 7, due to the large run-time associated with these calculations. The 
average keff values for all 300 realizations of each case for each trial are shown, with their 
standard deviations, in Table 7. The 10 correlation coefficients are also shown in Table 7. 
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Figure 41. Critical experiment correlations for WPNCS/UACSA benchmark of LCT-007 and LCT-039, Scenario E, 300 realizations, individual realization 

calculations converged to 0.00010 Δk.
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Figure 42. Convergence summary for five correlation coefficients, Scenario E, 300 realizations, individual 

calculations converged to 0.00010 Δk.  

  
Table 7. Results for 10 Trials of Calculating the Correlation Coefficient Between LCT-039 Cases 6 and 7 

Trial LCT-039 Case 6 LCT-039 Case 7 Correlation 
Coefficient Average keff Std. Dev. Average keff Std. Dev. 

0 0.99686 0.00029 0.99581 0.00029 0.337 
1 0.99688 0.00029 0.99582 0.00028 0.281 
2 0.99687 0.00029 0.99582 0.00029 0.310 
3 0.99686 0.00028 0.99582 0.00029 0.301 
4 0.99687 0.00029 0.99582 0.00028 0.302 
5 0.99687 0.00028 0.99582 0.00028 0.283 
6 0.99686 0.00027 0.99583 0.00028 0.298 
7 0.99686 0.00028 0.99583 0.00028 0.316 
8 0.99687 0.00030 0.99582 0.00029 0.250 
9 0.99687 0.00028 0.99583 0.00030 0.289 
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Trial 0 is the default random number seed. All 600 KENO calculations have the same 
random number seed in each trial. 
 
The average keff for both LCT-039 Cases 6 and 7 are very similar for all 10 trials. The 
difference between the maximum and minimum values for each case is 0.00002 Δk, which is 
much smaller than the standard deviation of the keff estimates. The variation in the standard 
deviations is also fairly small, though slightly larger than the variability in the average values 
themselves. 
 
The average of the 10 estimates of the correlation coefficient is 0.297 and the standard 
deviation is 0.023. The Fisher transformation one-sigma uncertainty for a correlation 
coefficient of 0.297 is approximately 0.025.  This is very good agreement, though more 
extensive studies would be needed to confirm any general agreement between these methods 
of estimating the uncertainty in the correlation coefficient. 
 
Convergence of the correlation coefficients for Trials 0, 6, and 8 is examined in Figure 43. 
The trials are selected as they represent the maximum correlation coefficient (Trial 0), the 
minimum coefficient (Trial 8), and the coefficient closest to the average of all trials (Trial 6). 
All three trials shown here appear well converged, with convergence achieved by around 
realization 200. The general shape of the curves is similar because the same realizations are 
used, only the random number seed is changed. The variation in each calculated keff should 
be less than 0.00020 Δk in most cases because the one-sigma uncertainty for each calculation 
is set to 0.00010 Δk. 
 
All 10 estimates are within two standard deviations of the average, though it should be noted 
that the original estimate is the maximum coefficient of the 10 trials. The 95% confidence 
interval on the original estimate of the correlation coefficient (0.337), based on the Fisher 
transformation, is from 0.233 to 0.434. All 10 trials result in correlations within this range. 
All 9 additional trials are more than one standard deviation away from the correlation 
calculated with the default random number seed in KENO. This is not a particularly 
comforting result, and may indicate that this single result is an outlier. Further investigation 
of the repeatability of the correlation coefficient determination may be warranted. 

Continuous-energy KENO Calculations 
The KENO calculations for all the individual realizations in all previous studies have used 
MG KENO. This decision is primarily based on the run-time savings for MG compared to 
CE calculations. As will be discussed shortly, the CE calculations take about 5 times as long 
as the MG calculations for these models. This factor would indicate a total of about 120,000 
CPU-hours when applied to the entire suite of calculations needed to determine correlation 
coefficients for all the experiments in this benchmark. This represents almost 3 weeks of 
run-time with 256 cores continuously; this level of computational expense is prohibitive for 
the practical use of the Monte Carlo sampling method to determine critical experiment 
correlations. 
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Figure 43. Convergence summary for three trials of LCT-039 Cases 6 and 7 correlation coefficient. 

One concern with the MG calculations is that proper self-shielding of the cross section is 
not possible. The latticecell treatment used in SCALE assumes an infinite array of pins, but is 
a very good approximation when applied to large, uniform arrays. In Scenario E, the array is 
nonuniform in every direction as each rod is positioned independently. It is therefore 
possible that a bias is introduced in the KENO results using the MG approximation. 
 
This possibility is investigated with a small and fairly simple study involving only the 
correlation coefficient between LCT-007 Cases 1 and 3. All 300 perturbed realizations for 
both cases are rerun with CE KENO, converging to a stochastic uncertainty of 0.00010 Δk. 
The perturbed inputs are identical between MG and CE, except for the single line declaring 
which cross section library should be used for the calculations. The CE library based on 
ENDF/B-VII.1 is used to ensure that the primary source of difference between the two sets 
of calculations is just the energy treatment. 
 
The average keff values for both the MG and CE calculations, and their associated standard 
deviations, for both LCT-007 Cases 1 and 3 are provided in Table 8. A bias correction is 
applied to provide a direct, unbiased comparison. According to [67], the ENDF/B-VII.1 
libraries in KENO V.a have a bias of -0.00085 Δk for MG calculations and -0.00030 Δk for 
CE calculations. Subtracting the appropriate bias from each average value provides the best 
estimate of the actual average keff value for each set of calculations. This step is not necessary 
for calculating correlation coefficients because the adjustment cancels exactly; the variation 
of the calculated keff values is measured to determine the correlation coefficients. The results 
shown in Table 8 indicate good agreement between the CE and MG results for these cases. 
In both cases, the difference between the average calculated keff value is less than the 2σ 
uncertainty in the difference. 
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Table 8. Average keff Results and Standard Deviations for MG and CE Calculations, LCT-007 Cases 1 and 3 

LCT-
007 
Case 

MG KENO CE KENO Bias Adjusted keff 
Values 

Difference 
(MG – CE) 

Avg keff σ Avg keff σ MG CE Δk σ 
1 0.99609 0.00029 0.99741 0.00030 0.99694 0.99771 -0.00078 0.00042 
3 0.99785 0.00034 0.99827 0.00033 0.99870 0.99857 0.00013 0.00047 

 
As indicated previously, the run-time differences are significant. For LCT-007 Case 1, the 
total CSAS execution time ratio range from 4.0 to 9.0. For Case 3, the ratios vary from 3.6 to 
8.3. The average run-time ratios are 6.2 for Case 1 and 5.3 for Case 3. As shown in Figure 
41, the correlation coefficient determined between LCT-007 Cases 1 and 3 with MG KENO 
calculations is 0.457. The correlation coefficient resulting from the CE calculations is 0.394. 
The 95% confidence interval for the correlation coefficient based on the MG KENO 
calculations is (0.363, 0.542), while for the CE KENO calculations it is (0.294, 0.486). The 
correlation coefficients are therefore statistically indistinguishable from each other. There is 
no evidence in this limited study that the MG KENO calculations are insufficient for 
determination of accurate correlation coefficients. A more extensive study would be needed 
to reach a definitive conclusion. 

Summary of Correlations for LCT-007 and LCT-039 
The WPNCS/UACSA benchmark [33] has been used as a vehicle to examine several aspects 
of critical experiment correlations. One of the primary points of investigation specific to  
modeling LEU pin array experiments is the treatment of the fuel rod pitch or location 
uncertainty. The other studies, regarding the number of realizations needed to establish 
correlation coefficients, the convergence of the individual KENO calculations, the 
reproducibility of the coefficients, and the agreement between CE and MG KENO, are all 
expected to be generically applicable to other systems. A brief synopsis of each of these 
studies is presented here, along with observations based on the results generated in these 
studies. 
 

Fuel Rod Placement/Pitch 
One of the primary areas to be investigated with the WPNCS/UACSA benchmark [33] is 
the impact of fuel rod placement on the correlation coefficient. This can also be interpreted 
as the effect of various treatments of the fuel rod pitch uncertainty. Scenario A assumes that 
the spacing between all pairs of rods is exactly the same, and that the uncertainty is therefore 
applied to all rods in the same way. This approach can introduce a large uncertainty in keff for 
cases that are far from optimum moderation, and the uncertainty is shared among all cases 
with the same pitch. The opposite extreme is embodied in Scenario E which assumes each 
rod is independently and randomly positioned. With this assumption, the uncertainty in keff 
is driven down because of the elimination of global moderation changes, and each 
experiment has a unique set of fuel rod locations. 
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The results for Scenario A are shown in Figure 30, and show a very high correlation among 
all cases with the same fuel rod pitch. The final results for Scenario E are provided in Figure 
41, and show much lower correlations among the various cases. The different fuel rod pitch 
assumptions had the expected effects, and the magnitude of the difference is on the order of 
0.6 in the correlation coefficients. The magnitude of the change in the correlation 
coefficients indicates that the treatment of the pin pitch uncertainty is extremely important 
in the determination of correlations among LEU pin array experiments. The pin pitch 
uncertainty has more impact on the correlation coefficient among these experiments than 
the shared fissile material. 
 

Studies on Calculation of Correlation Coefficients 
Several studies were performed with the cases in this benchmark to examine the calculation 
parameters necessary to determine accurate correlation coefficients. These studies examined 
the number of realizations needed to achieve convergence, the impact of lower stochastic 
uncertainties of the individual realization calculations, the repeatability of the correlation 
coefficient calculation, and the difference between CE and MG KENO calculations of the 
individual realizations. 
 
The number of realizations necessary to converge the correlation coefficient appears to be 
somewhat variable with a dependence on the correlation coefficient itself. High correlations 
coefficients, such as those resulting from Scenario A, appear to reliably converge in fewer 
than 150 realizations. Lower correlation coefficients, such as those observed with Scenario 
E, require more realizations. A total of 200 to 250 realizations is sufficient in most cases, 
though 300 realizations were used in for the results presented in Figure 38 and Figure 41. 
 
The impact of the stochastic uncertainty was examined specifically in Scenario E. As 
expected, a lower Monte Carlo uncertainty increases the correlation coefficients. This results 
because the stochastic uncertainty is unique to each case, so minimizing it reduces the unique 
uncertainty contribution. The correlation coefficients increase from 0.1 or less to values 
between 0.2 and 0.4. This difference appears small, but it is important because it increases 
the correlation coefficients sufficiently that all coefficients are statistically significant and 
nonzero. 
 
A single correlation coefficient was calculated using the same set of 300 realizations with 10 
different initial random number seeds in KENO. All ten estimates of the correlation 
coefficient are within two standard deviations of the average coefficient. It is not clear from 
the results of this study that a single set of realizations can be relied upon for accurate 
correlation coefficient determination, but since all results are with two standard deviations of 
the average value no definitive outliers exist. More study in this specific area may be 
warranted. 
 
The last study presented relates to the reliability of MG KENO calculations to determine the 
keff value for each realization. The general disarray present in Scenario E may cause some 
inaccuracy in the MG cross section processing, so the calculations are also performed for 
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two cases with CE KENO to examine the accuracy of the MG calculations. The results for 
the single correlation examined indicate that the MG calculations are sufficiently accurate. A 
more extensive study is advisable to confirm this conclusion, but such a study was not 
undertaken as part of this work. 
 

Observations 
A variety of observations are noted here based on the results of the calculations and studies 
documented in this section. 
 

• The computational resources necessary to perform the calculations to determine 
correlation coefficients among critical experiments are quite large. The generation of 
a matrix of correlation coefficients among 21 experiments consumed approximately 
24,000 CPU-hours. 

• The treatment of the pin pitch uncertainty in LEU pin array experiments can be the 
most important factor in the calculated correlation coefficients. 

• The number of realizations needed for convergence of calculated correlation 
coefficients depends somewhat on the magnitude of the coefficient. High correlation 
coefficients appear to converge with 150 or fewer realizations, while lower 
correlation coefficients may require 200 to 250 realizations. 

• The individual realization keff values need to be determined with the minimum 
feasible stochastic (Monte Carlo) uncertainty. Significant changes in the correlation 
coefficients are observed when the uncertainty is reduced from approximately 
0.00050 Δk to 0.00010 Δk. 

• MG KENO calculations appear to be provide sufficient accuracy for the 
determination of correlation coefficients. A more extensive study is needed to 
confirm this observation. 

• It is not clear that a single set of realizations provides an accurate estimate of the 
correlation coefficient. This is potentially extremely problematic given the 
computational investment necessary to determine critical experiment correlations 
with the Monte Carlo sampling method. 

• In-depth knowledge of the critical experiment materials, configurations, procedures, 
and setup are required for correct assessment of shared and unique uncertainty 
contributions. This level of information is typically not available in the ICSBEP 
Handbook [15], which is the primary reference at this time for critical experiment 
descriptions. Without this in-depth knowledge, it is difficult to make defensible 
determinations regarding the uncertainty sharing among different cases. 

  



 

76 
 

CHAPTER VI: ANALYSIS OF CORRELATION COEFFICIENTS 

AMONG THE CASES OF LEU-COMP-THERM-042 

Critical experiment correlations among the seven cases in LCT-042 are examined here to 
provide another set of results for LEU pin array experiments. These experiments contain 
different neutron absorber panels, which contribute unique uncertainty components due to 
differing compositions, shapes, and array spacing. The correlation coefficients are likely to 
be quite different for these experiments, compared to the LCT-007 and LCT-039 cases, 
because of these unique uncertainty contributions. Also, the smaller number of cases reduces 
the computational burden to perform studies on the correlation coefficients. The LCT-042 
experiments were performed at the Battelle Pacific Northwest Laboratory (PNL) in 1979 
and 1980. 
 
Three primary studies are performed on the LCT-042 correlation coefficients. The first two 
are related to the pin pitch uncertainty treatment and the third is related to the impact of the 
stochastic uncertainty in the individual realization calculations on the correlation coefficient 
estimates. The pin pitch studies examine the effect of the sampled variation with the 
assumption that the spacing between all pairs of rods is identical, and the second compares 
the uniform pitch assumption with correlation coefficients resulting from random pin 
placement. The first study is analogous to Scenario A in the WPNCS/UACSA benchmark 
[29], but investigates the effect of varying the uncertainty in pin pitch on the correlation 
coefficients. The second study is similar to the comparison of Scenario A and Scenario E 
from the benchmark. The final study is a more exhaustive examination of the effect of the 
stochastic uncertainty of the KENO calculations on the correlation coefficients. The results 
of the second and third studies can be directly compared with the results from the similar 
studies from the previous chapter. 
 
The determination of critical experiment correlations for LCT-042 is performed with 
uncertainty information presented in Section 2 of the ICSBEP Evaluation [15]. The 
uncertain parameters, their distributions, and the distribution parameters are developed from 
the information provided in the evaluation. This is another key difference from the 
WPNCS/UACSA benchmark results presented in the last chapter. This approach is 
prototypic of how criticality safety practitioners will have to develop critical experiment 
correlations in the field, and highlights some of the challenges they are likely to face. 
 
The discussion of the variable parameters and their development is presented in the next 
subsection. The following subsection provides preliminary results for the uniform pin pitch 
study. These initial results were determined prior to the WPNCS/UACSA benchmark 
discussed previously. A reexamination of the pin pitch study is subsequently presented, 
incorporating the lessons learned from the benchmark effort. The results of the stochastic 
uncertainty study are presented, followed by a summary of results and observations. 
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Variable Parameters 
The variable parameters, the appropriate distributions, and the distribution parameters all 
must be developed for the LCT-042 correlations before any realizations can be created or 
calculated. As mentioned previously, this is a significant difference from the work described 
in the previous chapter on the WPNCS/UACSA benchmark. The uncertain parameters, 
their uncertainties, and the distributions to assume are all defined as part of the benchmark. 
For LCT-042, the uncertainty information provided in Section 2 of the evaluation in the 
ICSBEP Handbook [15] is used to develop the inputs to Sampler for all variable parameters.  
 
The discussion of the variable parameter input is provided in the five subsections below. 
First, the general considerations and approaches are discussed. Then the treatment of the 
fuel composition is discussed, followed by details of the other compositions. A discussion of 
the fuel pin pitch uncertainty is provided before the rest of the dimension uncertainties are 
discussed in the last portion of this section. 
 

General Considerations and Approaches 
The most important part of the assessment of correlations among critical experiments is the 
determination of uncertain parameters, the distribution of these parameters, and the 
assignment of the uncertainties to individual or multiple experiments. All of these topics are 
extremely important; the correlation coefficient is the ratio of the shared uncertainty 
(covariance) to the total uncertainty in each experiment. Each the areas is discussed here in 
some detail. 
 
The determination of the uncertain parameters is largely contained in Section 2 of the 
ICSBEP Handbook evaluation [15]. This can be problematic in general because the 
evaluations are not uniformly rigorous in the assessment of uncertainties. In the specific case 
of LCT-042, the uncertainty in most parameters is assessed. Some compositions do not have 
uncertainties for all constituents, and the pin pitch uncertainty is questionable. This last issue 
will be discussed fully below in the section regarding the uncertainty of the pin pitch. The 
overall quality of the uncertainty treatment is therefore judged to be adequate for this 
exercise, and it is envisioned that individual criticality safety practitioners would not be 
expected or able to perform their own assessments of the uncertainties beyond those 
available in the ICSBEP Handbook evaluations. 
 
No information is available to form a basis for the distribution of the uncertainty in any of 
the parameters. This is a level of detail that has not been required or necessarily even 
envisioned in the evaluation process to date. The uncertainty in the parameter comes from a 
lack of precise knowledge of material constituents, geometric dimensions, or object 
positions. It is not necessarily correct to think about a range of enrichments being present 
within the fissile material, but the single average is unknown because a finite number of 
samples were analyzed to characterize the entire allotment. To some degree, this is also a 
question of homogeneity of material within an experiment, which is a discussion beyond the 
scope of this work. The distribution from which the parameter values are drawn should have 
a significantly lower effect on the correlation coefficient than the proper assignment of the 
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uncertainty as shared or unique. Most parameters are therefore assumed to be uniformly 
distributed, especially within tolerance bands if no further information is given. Variables 
with a standard deviation provided are assumed to be normally distributed. There is 
fundamentally no justification for these assumptions, but the effect of distributions was 
examined in [37] and found to have only small impact. No similar study on the impact of the 
assumed distributions of uncertain parameters has been performed as part of this work. 
 
The ICSBEP evaluation does not contain sufficient detail regarding parameters that are 
shared by multiple cases or unique to a single case. In the specific case of LCT-042, it is not 
clear if the steel reflecting walls were assembled once, if they were rebuilt separately for each 
experiment, or if they remained assembled for some of the experiments but were 
reassembled later for others. This impacts the sampling of the position and size of the walls, 
in this instance, but there are several other similar aspects of the experiment descriptions for 
which sufficient detail is not supplied. A more subtle instance of this problem regards the 
fuel rods themselves. The variability of fuel rod loading is unknown, both in mass and in 
enrichment, and it is unknown if the same rods are used in the same locations in all 
experiments. This is more plausible for the LCT-042 experiments than for LCT-007 and 
LCT-039 because the same number of rods are used. Different rods could be used, or the 
locations could be changed if other experiments using other grid plates were performed 
between cases contained in the LCT-042 evaluation. Many additional details are needed to 
fully characterize the shared components among the cases included in this evaluation. 
 

Fuel Composition Uncertainty Treatment 
The uncertainty in the fuel composition is an important uncertainty, and because the same 
fuel material is used in all seven cases the uncertainty is treated as shared among all cases. It 
will therefore be an important contributor to the calculated correlation coefficients. The 
ICSBEP evaluation [15] provides number densities for each constituent. The uncertainties, 
however, are in other quantities, such as enrichment, density, and mass loading. This section 
discusses the uncertainties expressed in the evaluation and the process used to translate 
those uncertainties into perturbed isotopic number densities. 
 
The mass of 235U per rod and total mass of UO2 are treated as fundamental parameters for 
the evaluation of isotopic number densities in the ICSBEP Evaluation [15]. The mass of 235U 
is sampled early and is one of the primary variables sampled. No uncertainty in the mass of 
235U per rod is provided in the evaluation, despite this quantity being used as the 
fundamental known quantity related to the fissile material mass in the experiment. Instead, a 
range of different methods is used to determine the total uranium mass in Table 11 of the 
evaluation. This range (726g to 727.22g uranium) translates to a range of 235U loadings of 
±0.0287g (±0.17%), which is applied in both directions about the nominal value of 17.08g 
235U per rod. The mass of 235U per rod is thus sampled uniformly over the range from 
17.0513 to 17.1087. This is twice the difference resulting from the total uranium mass range 
of 726g to 727.22g, but this is viewed as appropriate because it is indicative of the 
uncertainty in the mass per rod but not intended to be a bounding estimate. 
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The fuel diameter and fuel length are also sampled and subsequently used to calculate the 
volume of UO2 in the fuel rod. The gram density of 235U is then calculated based on the 
sampled gram loading and calculated volume. The resulting gram density is used to calculate 
the atom densities applied to all rods. This approach guarantees that the overall gram loading 
of 235U stays within the desired range once isotopic number densities are generated and input 
to KENO. In other words, the volume and mass density are used consistently to ensure the 
desired range of mass loadings in the different realizations. 
 
The enrichment of the fuel in LCT-042 is reportedly known quite accurately. The three-
sigma uncertainty on the 235U enrichment is reported as ±0.01 wt%, though this may also be 
the 95% confidence interval (two-sigma). Other reports cited in the ICBEP evaluation 
indicate the enrichment uncertainty to be ±0.05 wt%. Ultimately, the evaluation settles on 
the one-sigma uncertainty as ±0.003 wt%; this is in agreement with the reported three-sigma 
uncertainty and also a reported one-sigma uncertainty found in yet another reference. The 
uncertainty values in the other isotopes are not discussed as much, but are used as reported 
in Table 3 of the evaluation. The atomic masses of the uranium isotopes and oxygen, along 
with Avogadro’s number, are taken from the 16th edition of the Chart of the Nuclides [68] 
and used to convert the sampled weight fractions to atom fractions. 
 
The number density of 235U is calculated based on the 235U gram density calculated above, its 
atomic mass, and Avogadro’s number. The isotopic number densities of 234U, 236U, and 238U 
are next calculated based on the ratios of atomic fractions to 235U and the 235U isotopic 
number density. These four values are subsequently summed to determine the overall U 
number density. This uranium number density is multiplied by 2.012 to determine the 
oxygen number density; the stoichiometric value is taken from footnote (e) to Table 11 in 
the evaluation. 
 
The uranium and oxygen isotopic number densities are assumed to be fully correlated among 
all 7 experiments. Each case therefore contains the same number densities for each specific 
realization. The number densities vary among the individual realizations based on newly 
sampled and recalculated values. The average 235U number density over 300 realizations is 
0.004% higher than the nominal value, and the standard deviation of the sampled number 
densities is 0.14% of the average.  
 

Uncertainty Treatment for Other Compositions 
The other compositions in the experiment include aluminum alloys, steel, poison panels, and 
water. Uncertainties are reported in different ways for each of the different materials, so a 
range of different treatments are implemented in the Sampler input. The uncertainties in the 
7 poison panels are also reported in a variety of ways, so a range of different sampling 
techniques are used. A brief synopsis of each approach is provided in this section.  
 
Three different aluminum alloys are used in the fuel rods used in the LCT-042 experiments. 
The cladding material is made from 6061 aluminum, the top end plug uses 1100 aluminum, 
and bottom end plug uses 5052 aluminum. The standard composition definitions of each of 
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these alloys is included in Table 4 of the evaluation. Most constituents have a specified 
maximum value, some have a nominal value and a range, and aluminum makes up the 
balance of the alloy. The nominal weight percent assumed for each constituent is provided in 
Table 24 of the evaluation. A relative multiplier is sampled uniformly over the range of the 
weight percents for each element in the alloy.  For example, chromium in 6061 aluminum is 
present in a range of 0.04 to 0.35 weight percent. The nominal value assumed is 0.2 weight 
percent. The relative multiplier is therefore sampled uniformly between 0.2 and 1.75, so that 
the sampled weight percent ranges from 0.04 to 0.35. The relative multipliers are used 
directly to determine the perturbed number densities for the minor elemental constituents of 
the alloys so that perturbed mass densities need not be determined. The weight percent for 
each element in each of each alloy is determined in each realization by multiplying the 
relative multiplier by the nominal weight percent. The perturbed values are then each 
subtracted from 100 to determine the remainder that is aluminum. This perturbed aluminum 
weight percent is then divided by the nominal weight percent to determine the relative 
multiplier for the aluminum. The nominal number density is then multiplied by the relative 
multiplier. The perturbed mass densities for the alloys are unchanged in all realizations. A 
flow chart for this process is provided in Figure 44. 
 

 
Figure 44. Flow chart of calculation of perturbed number densities in aluminum alloys. 

The composition of the steel used in the reflecting wall is sampled using a different process. 
First, the uncertainty in the density of the steel is provided as ±0.005 g/cm3. This uncertainty 
is used in the evaluation because it is half of the last significant digit for the reported density 
of 7.84 g/cm3. Uncertainties are also provided for 6 of the 10 elements in the steel in Table 5 
of the evaluation. The weight percent values for these 6 elements (Fe, Mn, Ni, Mo, Cr, and 
Cu) are sampled uniformly over the range provided. The sum of the weight percents for 
these elements is normalized to the 99.58 wt% nominal sum. The normalization factor is 
used to adjust each individual weight fraction. The remaining 4 elements (C, P, S, and Si) 
have the same weight percent in all realizations. The perturbed number densities are then 
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calculated using the final weight percent values, molar masses and Avogadro’s number [68], 
and the sampled mass density of the steel. 
 
The 10B content in boron is sampled for several of the poison panel materials. The same 
process, described here, is used for the borated stainless steel used in Case 2, the Boral used 
in Case 3, and the Boraflex used in Case 4. The 10B atom percent is sampled uniformly 
between 19.1 and 20.8, with the remaining 11B atom percent calculated. The atomic mass for 
the sampled boron composition is calculated prior to determining new boron number 
densities for each realization of each case. 
 
Case 1 uses a stainless steel panel and Case 2 uses a borated stainless steel one. The general 
approach is the same as for the stainless steel reflecting wall. The weight percent of each 
element is sampled uniformly based on the uncertainties provided in Table 6 of the 
evaluation, the sum of the weight percents is normalized, and new number densities are 
calculated. No uncertainties are provided for the overall mass densities. Additionally, the 
boron composition is sampled as described above for the borated stainless steel panel in 
Case 2. 
 
The poison panel in Case 3 is Boral with a nominal boron loading of 30.36 wt%. The total 
boron loading is sampled uniformly on a range of ±0.005 weight percent, based on the 
information provided in Table 18 of the evaluation, though no basis of this uncertainty is 
provided. The boron is present in Boral in the form of boron carbide (B4C), so the increase 
in the carbon content is assumed to be proportional to the increase in total boron. The 
weight percent of aluminum is modified to maintain full density between the boron carbide 
and aluminum components. Lastly, the boron distribution is treated as discussed previously. 
 
Case 4 contains Boraflex poison panels. Table 8 of the evaluation provides uncertainties for 
the weight percent of each of the 7 elements that are present in Boraflex. The sampling 
approach is essentially the same as that used in stainless steel, described earlier. The weight 
percent of each element is sampled, then the sampled weight percents are normalized and 
used to calculate perturbed number densities. 
 
Case 5 uses a cadmium foil, with a trace of zinc the only other element in the poison 
material. The cadmium content is specified as 99.7 ± 0.3 weight percent in the evaluation, 
with zinc making up 0.3 weight percent. The cadmium content is sampled uniformly within 
the range, and the opposite change is made in zinc to maintain full density in the foil. No 
uncertainty is provided in the overall mass density, so once the weight percents are 
determined they are used to calculate the perturbed number densities. 
 
The poison panels in Cases 6 and 7 are copper and copper with a nominal 1 wt% Cd, 
respectively. The composition of these panels, including some uncertainty data, is provided 
in Table 9 of the evaluation. The only element with reported uncertainty information for the 
copper panel is the copper itself, so the weight percent is sampled uniformly across the 
reported range. The perturbed number densities are calculated using the ratio of the sampled 
to the nominal weight percents. While this will result in a change in the material density, 
neither the other elements nor the overall mass density have reported uncertainties. The 
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cadmium and copper contents of the panel in Case 7 both have reported uncertainties, and 
are therefore sampled uniformly over the reported ranges. The uncertainties are different by 
about two orders of magnitude, so the sampling is performed independently. The perturbed 
number densities are determined based on sampled and nominal weight percent ratios. The 
trace of boron in the copper/cadmium panel is also treated for variable isotopic composition 
as described above. 
 
Measurements of the uncertainty in the impurities in the water in the experiment tank are 
discussed in Sections 1.3.5 and 2.3 of the evaluation. The nominal benchmark model 
contains only hydrogen and oxygen, so no impurities are introduced or sampled for the 
water. The density is also not sampled or calculated to be consistent with the sampled 
temperature value for each experiment. Similarly, no uncertainty information is provided or 
assumed for the acrylic support plate on which the fuel rods rest. 
 

Fuel Pin Pitch Uncertainty 
The fuel pin pitch uncertainty is one of the key uncertainties for the determination of 
correlation coefficients among the 7 cases of LCT-042, and it is therefore of special interest. 
This section provides a discussion of the pin pitch uncertainty provided in the evaluation as 
well as the range of treatments used in the results presented later in this chapter regarding 
the correlations of and uncertainties in these cases. 
 
The pin pitch uncertainty included in the evaluation is ±0.0076 cm, and the use of this value 
is explained in footnote (c) to Table 13 of the evaluation. The entire footnote is quoted here 
[15]: 
 

The largest standard deviation for sets of center-to-center spacing measurements for 
triangular-pitched lattice plates of Reference 8 [69] (Appendix E) was 0.003 inch 
(0.0076 cm). References 7 [70] (p. 2) and 8 [69] (p. 36 [sic]) give the uncertainty in 
pitch as ±0.005 cm. Reference 9 [71] (p 3.2) and Appendix D of Reference 10 [72] 
give the uncertainty in pitch as ±0.001 cm. Therefore, the calculated uncertainty for 
±0.0076 cm is conservative. 

 
There are several relevant facts that need to be discussed from this quote. First, the pitch 
uncertainty for the grid plates used in this experiment is unknown. No measurements of the 
plate are known to exist in any reference, so the uncertainty to be used is at best an estimate 
of the true uncertainty. This fact alone is enough to call into question any correlation 
coefficients calculated for these experiments. 
 
LCT-042 is a series of square-pitched fuel array experiments. The use of a pitch uncertainty 
from a triangular-pitched lattice place is therefore difficult to justify. It is possible that similar 
fabrication techniques were used for both square- and triangular-pitched plates, but this 
assumption is not stated or justified in the evaluation. Page 3.6 of [69] does quote an 
uncertainty of ±0.005 cm, which is only about 2/3 of the value used in the evaluation. 
Furthermore, no pin pitch uncertainty of ±0.003 inch is found on review of the data 
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included in Appendix E of [69]. Also, none of the grid plates measured have the same pitch 
as was used in the LCT-042 experiments. 
 
Similar problems also apply to the square-pitched experiments referenced in the evaluation. 
The fuel rods used in [70] have an outer diameter of 1.41 cm, which is considerably larger 
than the 1.27 cm outer diameter of the rods used in LCT-042. As with the cases discussed 
above, the pitch is different in both experiments included in [70] than in LCT-042. The 
experiments contained in [71] and [72] also use the larger fuel rods in the larger pitch. 
 
The quote also makes evident that there are at least three different values with some 
pedigree that could have been used as the uncertainty value for the pin pitch. Ultimately, the 
evaluators chose to use the largest pitch uncertainty because its use was judged to be 
“conservative.” Use of the largest pitch uncertainty is conservative in as much as it leads to 
the largest overall uncertainty, but this may not be conservative with regards to safety limits 
or other parameters of interest. In many validation studies the uncertainty of the experiment 
is used is a weighting factor so that uncertainties with lower experiments have more weight 
in the bias and bias uncertainty determinations [14, 23]. Mischaracterizing a shared 
uncertainty component will also impact the correlation coefficients developed from this 
evaluation. Overstating the magnitude of the shared uncertainty will increase the resulting 
correlation coefficients. 
 
The uncertainty value selected in the evaluation is used here, despite being largely 
inappropriate for the experiment, because it is expected that individuals calculating critical 
experiment correlations will do so based on the information provided in the ICSBEP 
Handbook evaluations [15]. This task is already quite difficult and requires a significant, in-
depth review of the evaluation. It is unreasonable to assume that the individual tasked with 
developing critical experiment correlations will also re-evaluate the experiments. This 
stretches the use of the uncertainty evaluations beyond their originally intending purpose, 
but other methods proposed for the determination of critical experiment correlations [35] 
depend exclusively on the use of these uncertainty values. In this regard, the expectation 
expressed here is no more radical than the prevailing opinion among other members of the 
community. 
 
The implementation of the pin pitch uncertainty is examined using the same two 
assumptions that were used in the WPNCS/UACSA benchmark [33] discussed previously. A 
set of studies is performed assuming the pin pitch is the same between all pairs of rods, and 
subsequently random pin placement is examined as well. The pin pitch is sampled from a 
normal distribution, consistent with the general considerations discussed above. 
 
The pin pitch distribution is truncated for the case in which all pin pitches are assumed to be 
the same; this approach is the same as Scenario A in the WPNCS/UACSA benchmark [33]. 
This assumption avoids unreasonable geometrical changes, and a series of different 
truncation ranges is examined to determine the sensitivity of the correlation coefficients to 
this parameter. The standard deviation for the normal distribution is assumed to be the 
±0.0076 cm uncertainty from the evaluation, and the sampling is truncated at ±3σ, ±1.5σ, 
and ±0.75σ. Correlations are also determined assuming the rods are fixed in their nominal 
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locations. This study provides an indication of the impact of the magnitude of the assumed 
pin pitch uncertainty. These results should provide useful insight on the general impact of 
the pin pitch uncertainty, but also in this specific case can be indicative of how sensitive the 
calculated correlation coefficients are to the questionable pin pitch uncertainty assumed in 
the evaluation. This study replicates the previous study documented in [39], but with lower 
stochastic uncertainties to yield more reliable correlation coefficients. 
 
The random pin location study is akin to Scenario E from the WPNCS/UACSA benchmark. 
The displacement of each pin is sampled from a normal distribution with a standard 
deviation of ±0.0054 cm. This standard deviation is determined using the assumption that 
each pin is independently positioned. The uncertainty in each pin placement can then be 
combined with another using the square root of the sum of squares. Combining the standard 
deviation of 0.0054 cm for two pins with this technique yields the evaluation uncertainty of 
0.0076 cm. Different assumptions could be made or investigated, but this is intended to give 
a direct comparison to the results of the uniform pin pitch models. 
 

Uncertainty Treatment for Other Dimensions 
Nearly every dimension in the model is perturbed based on the uncertainties provided in the 
evaluation. These uncertainties are related to poison panel dimension, reflecting wall 
placement and dimensions, and the array separations. Each of these is discussed in this 
section. 
 
The uncertainties in poison panel dimensions are provided in Table 2 of the evaluation. The 
thicknesses of the poison panels are sampled uniformly over the range provided. The 
aluminum cladding of the Boral panels used in Case 3 has no specified thickness uncertainty, 
so it remains constant. The thickness of the plexiglass supports for the Boraflex used in Case 
4 also has no specified uncertainty, so is left constant instead of using an assumed 
uncertainty with no basis. 
 
The cadmium foil used in Case 5 presents a more complicated problem. No information was 
reported in the original references regarding the use of stiffeners with the foil, but the 
experimenter reported that plexiglass sheets were probably used [15]. The evaluation 
considered different thicknesses of plexiglass, and positioned the cadmium foil both closer 
to and farther away from the central fuel rod array. These conditions cannot be duplicated 
with Sampler, so a skewed distribution is used to determine the plexiglass thickness. The 
skewed distribution is a beta distribution with α=4 and β=2. These constants are arbitrary 
since no information is available to guide the selection. The nominal value of the thickness is 
0.296 cm, which is the thickness used in the evaluation, and the minimum thickness is 0 cm. 
The mode of a beta distribution can be calculated as shown in Equation 13 [73]:  
 

Mode = 
2

1
−+

−
βα

α     Eqn (13) 

  
Where: Mode is the most likely value to be chosen 
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  α is one of the distribution parameters 
  β is the other distribution parameter. 
 
For the distribution chosen, the most frequently chosen thickness occurs 75% of the way 
through the range; it is desired that this thickness should be the nominal value of 0.296 cm. 
The maximum is thus set to 0.394667 cm so that the nominal value is the peak of the 
probability density function (PDF). A plot showing the resulting PDF is provided in Figure 
45. Consistent with the assumption made in the evaluation, the plexiglass is assumed to be 
on the outboard side of the cadmium foil. 
 

 
Figure 45. PDF for the plexiglass stiffener thickness in LCT-042 Case 5. 

The thickness and width of the stainless steel reflecting walls are provided, along with 
uncertainties, in Figure 5 of the evaluation. The wall thickness uncertainty is stated to be 
±0.4 mm and the width uncertainty is stated as ±0.32 cm. The wall thickness is therefore 
sampled uniformly between 17.81 cm and 17.89 cm. The plus and minus x coordinates of 
the ends of the wall are sampled independently, and the model is built with the origin at the 
center of the middle fuel pin array in the nominal model. Each end of the wall is sampled 
uniformly over a half-length range of 73.49 cm to 73.81 cm. Each end is sampled over the 
full range of uncertainties. A more accurate approach would have been to sample each end 
with a range of ±0.226 cm so that when the two uncertainties were combined using the 
square root of the sum of squares the total uncertainty would have been ±0.32 cm. The 
impact of this error is likely negligible as the ends of the reflecting walls are on the order of 
20 cm beyond the ends of the fuel arrays. The same sampled values of the wall thickness and 
width are used in all 7 cases, based on the assumption that walls were built once and not 
changed within the series of experiments. Another simplifying assumption is that both walls 
are identical. While this is an unlikely assumption, the small differences between the wall 
dimensions are unlikely to have any impact on the resulting correlation coefficients. 
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The separation distance from the fuel rod arrays to the reflecting walls is also provided in 
Figure 5 of the evaluation, and is stated to be 1.321 ± 0.076 cm. The separation distance is 
sampled uniquely for each wall, so the walls are identical in dimension but are positioned 
independently in relation to the fuel arrays. The separation distance is sampled uniformly 
over the stated uncertainty range. The separation distances are also assumed to be the same 
among all 7 cases, consistent with the assumption that the walls were assembled and not 
changed during the experiment series. 
 
The uncertainty in the fuel array separation distances is provided in Table 2 of the 
evaluation. The reported uncertainty is between fuel rod surfaces, so this dimension needs to 
be adjusted by the difference between the nominal fuel rod outer radius and the nominal half 
pitch for use in the KENO model. The uncertainty on the separation distance is applied 
entirely to this derived model dimension even though some of the uncertainty likely results 
from uncertainties in the fuel rod dimensions and positions. The separation distances are 
sampled uniformly over the range provided in the evaluation. The separations are also 
sampled independently since the separation distance is the control parameter for the 
experiment, and thus is a unique value for each case. Inherently this assumes that there is no 
correlated uncertainty in the measurement of the array separations. This assumption may not 
be entirely justified or defensible, but seems appropriate given that each measurement is 
unique and, at least to some degree, independent. 
 

Initial Studies 
Initial studies of the correlation coefficients among the 7 cases of the LCT-042 evaluation 
[15] are presented in Chapter II, the literature review. The results were published previously 
in [39] and [40], and the primary results will be summarized here. The analyses summarized 
here were performed in 2013 and 2014, prior to work on the WPNCS/UACSA benchmark 
[33]. 
 

Preliminary Results 
The first set of correlation coefficients generated for LCT-042 are provided in [39, 40] and 
are shown in Figure 46. The initial studies only considered the uniform pitch assumption; 
these results assumed the pitch to be normally distributed over a range of ±3 standard 
deviations. A total of 275 realizations was used, and each realization was run until it achieved 
a Monte Carlo uncertainty of less than 0.00100 Δk. These correlations are those shown on 
the right-hand endpoint of the curves provided in Figure 4. The average keff values and the 
standard deviation of these estimates for each case is provided in Table 9, along with the 
uncertainty in the benchmark evaluation [15]. As mentioned previously, these correlations 
were developed prior to the studies on the effect of stochastic uncertainties on the 
correlation coefficients as a part of the WPNCS/UACSA benchmark [33]. Those studies are 
described in the Chapter V, and one outcome was that a similar study was performed with 
the LCT-042 experiments as well. The results of the study of the stochastic uncertainty of 
the individual realization calculations for LCT-042 are provided in the next section. 
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Figure 46. Initial estimates of the correlation coefficients for LCT-042. 

 
Table 9. Average keff Values and Their Standard Deviations, Initial Results for LCT-042 

Case Average keff Standard Deviation Evaluation Unc. 
1 0.99642 0.00271 0.0016 
2 0.99624 0.00285 0.0016 
3 0.99763 0.00278 0.0016 
4 0.99826 0.00288 0.0017 
5 0.99801 0.00277 0.0033 
6 0.99770 0.00266 0.0016 
7 0.99594 0.00279 0.0018 
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The results provided in Table 9 indicate that the sampled uncertainty is generally 1.5 to 1.75 
times higher than that provided in the evaluation. The exception is Case 5, which includes 
the Cd foil with its poorly characterized Plexiglas stiffener. The poor agreement of the 
uncertainty prediction for this case can be generally dismissed because it is impossible to 
evaluate the uncertainty in the stiffener over as wide a range as was done in the evaluation. 
The remaining cases provide evidence that the uniform pitch assumption, akin to Scenario A 
in the WPNCS/UACSA benchmark [33], introduces too much variability into the 
realizations. 
 
The correlation coefficients are high and remarkably uniform. The large uncertainties are 
apparently mostly shared, indicating that they are related to compositions and/or the pin 
pitch. The desire to understand the contribution of each of these parameters led to the study 
varying the range over which the pitch is sampled. The results of this study are summarized 
in the next section. 

Pitch Sampling Study 
A study of the impact of the pin pitch impacts on the correlation coefficients is needed 
because of the lack of reliable information regarding the pin pitch and its uncertainty. When 
these initial results were generated in 2013, there was also considerable uncertainty on how 
to model pin placement. The uniform pitch approach was adopted because it was simple and 
straightforward to implement; results of a random pin positioning study are presented in the 
next section. 
 
The 2013 study considered uniform pitch throughout the entire experiment, so the spacing 
between all pairs of rods in all three arrays of rods was assumed to be identical. This single 
parameter was sampled from a normal distribution as described above. The range over 
which the pitch was varied was selected at ±3 standard deviations in the initial results, 
presented in the previous section. Additional series of correlation coefficients were generated 
assuming different sampling ranges of ±1.5 standard deviations, and ±0.75 standard 
deviations. A final set of correlations was generated with the rod positions fixed. The results 
of this study should provide insight on the sensitivity of the correlations to the pin pitch 
uncertainty and the relative importance of the fuel material uncertainties and the pin 
positioning uncertainties. 
 
The average keff for each case with each sampling range and their standard deviations are 
provided in Table 10. As shown in the table, the average value is unaffected by the different 
range but the standard deviations are reduced. These results are consistent with expectations 
given symmetric sampling and a shrinking uncertainty range. The fixed pin uncertainty 
provides an indication of the overall system keff uncertainty associated with material 
composition uncertainties, poison panel dimensional uncertainties, and fuel array spacing 
uncertainties. 
 
The correlation coefficients are plotted as a function of sampling width in Figure 4, but the 
individual values are difficult to discern there. The actual coefficients are provided here for 
the scenario of ±1.5 standard deviations, Figure 47, ±0.75 standard deviations, Figure 48, 
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Table 10. Average keff Values and Their Standard Deviations, Initial Results of Pin Pitch Sampling Study for 

LCT-042 

Case ±1.5σ Sampling Range ±0.75σ Sampling Range Fixed Fuel Rods 
Average keff Std. Dev. Average keff Std. Dev. Average keff Std. Dev. 

1 0.99649 0.00223 0.99635 0.00167 0.99666 0.00135 
2 0.99681 0.00222 0.99641 0.00164 0.99660 0.00126 
3 0.99783 0.00218 0.99761 0.00158 0.99778 0.00125 
4 0.99853 0.00230 0.99837 0.00166 0.99842 0.00139 
5 0.99837 0.00221 0.99814 0.00151 0.99820 0.00117 
6 0.99790 0.00219 0.99783 0.00163 0.99800 0.00122 
7 0.99619 0.00232 0.99593 0.00179 0.99628 0.00126 

 
 
 

 
Figure 47. Initial estimates of the correlation coefficients for LCT-042, sampling pitch ±1.5σ. 

 
 

 
Figure 48. Initial estimates of the correlation coefficients for LCT-042, sampling pitch ±0.75σ. 
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and fixed rod positions, Figure 49. The same trend is of course evident in an analysis of the 
detailed results as is available in the summary presentation in Figure 4: the correlations drop 
significantly as the range of pin pitch sampling drops. This is also consistent with the 
reduced uncertainty shown in Table 10. The change between ±3σ and ±1.5σ is modest, but 
larger changes are evident in the ±0.75σ scenario and the fixed rod case. This entire study 
was redone with lower stochastic uncertainties on the individual realizations after the impact  
of that parameter was shown to be significant during the investigation of the 
WPNCS/UACSA benchmark. 
 

 
Figure 49. Initial estimates of the correlation coefficients for LCT-042, fixed rod positions. 

Additional Studies 
Additional studies have been performed for the LCT-042 correlation coefficients after the 
completion of the work on the WPNCS/UACSA benchmark [33] presented in the 
Chapter V. The previous study of the impact of the range of pitch sampling on the 
correlation coefficients has been redone with the stochastic uncertainty on each of the 
realizations reduced to ±0.00010 Δk. The effect of the stochastic uncertainty on the LCT-
042 correlations is examined in a study similar to the one performed for the 
WPNCS/UACSA benchmark, but with a greater range of stochastic uncertainties. Some 
work has also been done to examine the effect of random fuel rod positions on the 
correlation coefficients. 
 

Pitch Sampling Study Revisited 
Critical experiment correlation coefficients have been developed among the 7 cases of LCT-
042 including the uniform pitch assumption. In all cases, the fuel rod is centered inside a unit 
cell and the size of the unit cell is varied to control the center-to-center pitch of the arrays. 
As with the study presented in the previous section, the pin pitch is sampled from a normal 
distribution truncated at ±3 standard deviations, ±1.5 standard deviations, and ±0.75 
standard deviations as well as with fixed fuel pin locations. Each set of correlations is 
determined based on 300 realizations for each case, and the stochastic uncertainty of each 
realization is approximately 0.00010 Δk. Each set of correlations is presented here, along 
with a comparison of the results with each other and with the previous results. 
 
The mean and standard deviation of the keff values for the 300 realizations assuming a pitch 
sampling range of ±3σ are provided in Table 11 for each of the 7 cases in LCT-042. The 
uncertainty in the benchmark evaluation is also provided for reference. The difference in the 
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absolute reactivity of the system compared to the initial results provided in Table 9 is most 
likely due to differences between the versions of KENO used in the previous study (SCALE 
6.2 Beta 1) and this study (SCALE 6.2.1). The standard deviation of the keff values can be 
compared directly, and it is evident that the variability is somewhat lower with the new 
results. This is the expected outcome given the lower uncertainty in each calculation. The 
standard deviations are still noticeably larger than the evaluation, except for Case 5. Recall 
that Case 5 is the experiment with the Cd foil with a stiffener of indeterminant dimension. 
The stochastic uncertainty should not be shared among the different cases, so the overall 
effect is likely to be an increase in the correlation coefficients. The new correlation 
coefficients are provided in Figure 50, and bear out the prediction that the correlation 
coefficients are larger with lower stochastic uncertainties. The increase in correlation 
coefficients with reduced stochastic uncertainty in the individual realization calculations is 
consistent with the results observed for the WPNCS/UACSA benchmark. The 95% 
confidence intervals for these correlation coefficients are provided in Figure 51. 
 
Table 11. Updated Average keff Values and Standard Deviations for LCT-042 

Case Average keff Standard Deviation Evaluation Unc. 
1 0.99836 0.00238 0.0016 
2 0.99800 0.00242 0.0016 
3 0.99884 0.00253 0.0016 
4 0.99955 0.00255 0.0017 
5 0.99948 0.00246 0.0033 
6 0.99960 0.00235 0.0016 
7 0.99774 0.00250 0.0018 

 
Table 12 provides the means and standard deviations for the 300 realizations of each case 
assuming a pin pitch sampling range of ±1.5σ. The average values are in good agreement 
with the values in Table 11, and the standard deviations are lower for all 7 cases. The 
uncertainties are still higher than those provided in the evaluation, except for Case 5. In this 
instance, the reduced uncertainty is expected to be dominated by the shared pin pitch 
uncertainty, so the correlation coefficients should drop relative to those shown in Figure 50. 
The correlation coefficients are provided in Figure 52, and are slightly lower than those in 
Figure 50. The 95% confidence intervals for the correlation coefficients sampling within 
±1.5σ on pin pitch are provided in Figure 53, for comparison with those in Figure 51. While 
the correlation coefficients are modestly lower for the more restricted pin pitch sampling 
range, they are still significantly higher than the results considering higher stochastic 
uncertainties (Figure 47). 
 
The updated means and standard deviations for the case sampling the pin pitch over the 
range ±0.75 standard deviations are provided in Table 13. The standard deviations have 
dropped more, and are lower than the evaluation estimates for all seven cases. The 
correlation coefficients, shown in Figure 54, are lower as expected. The difference from the 
initial, high uncertainty results provided in Figure 48, is dramatic. The coefficients are around 
0.9 with the higher convergence of the individual realizations, as compared to values of 
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Figure 50. Updated estimates of the correlation coefficients for LCT-042, pitch sampled ±3σ. 

 

 
Figure 51. 95% confidence intervals for updated estimates of correlation coefficients for LCT-042. 

 
Table 12. Updated Average keff Values and Standard Deviations for LCT-042, Pin Pitch Sampled ±1.5σ 

Case Average keff Standard Deviation Evaluation Unc. 
1 0.99823 0.00177 0.0016 
2 0.99788 0.00184 0.0016 
3 0.99873 0.00188 0.0016 
4 0.99942 0.00194 0.0017 
5 0.99936 0.00184 0.0033 
6 0.99948 0.00176 0.0016 
7 0.99761 0.00185 0.0018 

 
 

 
Figure 52. Updated estimates of the correlation coefficients for LCT-042, sampling pitch ±1.5σ. 
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Figure 53. 95% confidence intervals for updated estimates of correlation coefficients for LCT-042; pin pitch 

sampled within ±1.5 σ. 

 
Table 13. Updated Average keff Values and Standard Deviations for LCT-042, Pin Pitch Sampled ±0.75σ 

Case Average keff Standard Deviation Evaluation Unc. 
1 0.99849 0.00128 0.0016 
2 0.99814 0.00138 0.0016 
3 0.99900 0.00136 0.0016 
4 0.99969 0.00146 0.0017 
5 0.99963 0.00133 0.0033 
6 0.99974 0.00127 0.0016 
7 0.99790 0.00137 0.0018 

 
 

 
Figure 54. Updated estimates of the correlation coefficients for LCT-042, sampling pitch ±0.75σ. 
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about 0.5. The standard deviation of the cases with the range of pin pitch reduced to ±0.75σ 
is on the order of 0.00130 Δk; the impact of the increased convergence requirement is more 
pronounced as the overall uncertainty is reduced. The stochastic uncertainty, 0.00010 Δk in 
the updated calculations, is no longer on the same order as the variability introduced by 
sampling the uncertain parameters. The reactivity variation from the pin pitch sampling is 
larger in the scenarios sampling the fuel rod pitch over larger ranges, thus reducing the 
impact of lowering the stochastic uncertainties. This effect is not surprising, but is also not 
exposed in the two scenarios examined in the WPNCS/UACSA benchmark. The 
convergence of the correlation coefficients between Case 2 and Case 4 and between Case 2 
and Case 7 are checked graphically, as shown in Figure 55. As expected for correlation 
coefficients near 0.9, the convergence is excellent and is probably achieved within about 100 
realizations. 
 
Finally, the means and standard deviations for the fixed rod position scenario are provided 
below in Table 14. The standard deviations have dropped farther below the evaluation 
uncertainties with the removal of all uncertainty in fuel pin placement. The resulting 
correlation coefficients are shown in Figure 56. These correlations are obviously lower than 
any realistic correlation coefficients because the fuel rod locations cannot be known 
perfectly. The convergence of two of the lowest correlation coefficients is checked 
graphically, as shown in Figure 57. The correlation coefficient between Case 4 and Case 5 
appears to be well converged by about 150 realizations. The coefficient between Case 4 and 
Case 7 may be converged, but may also still be drifting lower even by 300 realizations. 
Another indication of potential nonconvergence is a comparison of the correlation 
coefficients resulting from the first half and second of the realizations. These results are 
shown in Figure 58 for the first half of the realizations and Figure 59 for the second half. 
 
The correlation coefficient between Cases 4 and 5 is in good agreement between the two 
halves and thus also for all realizations. The first half and second of the realizations are not 
in good agreement for Case 4 and Case 7. Low correlation coefficients resulting from cases 
with small uncertainties may require more than 300 realizations to converge reliably. 
 
The standard deviations for each case and each pin pitch sampling range are plotted in 
Figure 60. The data are also shown in Table 11 through Table 14, but the plot shows the 
trends in the uncertainties. The uncertainty trend as a function of sampling range is generally 
the same among all 7 cases. The uncertainty increases significantly as the pin locations are 
first perturbed. The increase slows slightly at larger sampling ranges. Eventually, the 
uncertainty would cease increasing with larger pitch sampling ranges as the pin pitch reaches 
optimum moderation. Additional moderation near the peak has much less impact than 
additions in the significantly under-moderated nominal lattice. Pitch increases beyond peak 
moderation would lower reactivity, so the uncertainty would cease increasing at all despite a 
larger sampling range. Also, the same standard deviation is used in all cases, so increasing the 
sampling range beyond ±3 standard deviations does not add many realizations in the far tails 
of the distribution. The uncertainty as a function of pin pitch sampling will differ among 
different experiments with different gross moderation characteristics. For example, an 
evaluation containing a series of arrays with different pitches will not manifest the similarity 
of behavior apparent among the cases within the LCT-042 evaluation.  
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Figure 55. Convergence of two correlation coefficients, sampling pitch ±0.75σ. 

 
Table 14. Updated Average keff Values and Standard Deviations for LCT-042, Fixed Pin Pitch Positions 

Case Average keff Standard Deviation Evaluation Unc. 
1 0.99818 0.00046 0.0016 
2 0.99781 0.00068 0.0016 
3 0.99864 0.00052 0.0016 
4 0.99933 0.00065 0.0017 
5 0.99926 0.00044 0.0033 
6 0.99941 0.00042 0.0016 
7 0.99757 0.00066 0.0018 

 
 

 
Figure 56. Updated estimates of the correlation coefficients for LCT-042, fixed fuel rod positions. 

 



 

96 
 

 
Figure 57. Convergence of two correlation coefficients, fixed fuel rod positions. 

 

 
Figure 58. Estimates of correlation coefficients for LCT-042, fixed fuel rod positions, only first half of 

realizations. 

 

 
Figure 59. Estimates of correlation coefficients for LCT-042, fixed fuel rod positions, only second half of 

realizations. 
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Figure 60. Standard deviation of keff values for 300 realizations converged to 0.00010 Δk. 

The correlation coefficients between each pair of cases are shown as a function of pin pitch 
sampling range in Figure 61. The behavior of the correlation coefficients is more extreme 
than that of the uncertainties. With fixed pin locations, the coefficients range from 0.30 to 
0.79 as shown in Figure 56. All the correlation coefficients increase dramatically with the 
introduction of shared uncertainty in pin locations. The coefficients are provided in Figure 
54 when the pitch is sampled in the range of ±0.75 standard deviations, and range from 0.87 
to 0.98. The variability among the coefficients is much lower, and is reduced as the pin pitch 
sampling range increases. These general trends are similar to those reported in the initial 
results, discussed in the previous section and in Chapter II. The correlation coefficients in 
this study are uniformly higher than the initial results shown in Figure 4, which is consistent 
with the studies performed as a part of the WPNCS/UACSA benchmark and presented 
earlier. The results presented in this section are likely a more realistic estimate of the 
magnitude of the correlations among the cases in LCT-042 under the uniform pin pitch 
assumption than the initial results presented previously. Results considering random pin 
placement are provided in a later section. 
 
The results in Figure 61 summarize the correlation coefficients determined with the uniform 
pitch assumption for LCT-042. The next section presents results of a study examining the 
effect of stochastic uncertainty in each realization, analogous to the similar study performed 
for LCT-007 and LCT-039 in the WPNCS/UACSA benchmark. The subsequent section 
presents correlation coefficients for a random pin placement approach. It is worth pausing 
to reflect on the results shown here, and the implications for criticality safety validation and 
data adjustment techniques. It is unreasonable to believe that there is no uncertainty in pin 
locations or spacing. It seems likely that at least one standard deviation of variability must be 
considered in the analysis, and the correlation coefficients have already increased and 
converged with each other to a large degree by this point. The correlation coefficients likely 
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Figure 61. All 21 correlation coefficients for LCT-042 as a function of pin pitch sampling range. 

vary between about 0.87 and 0.97 at this point; these correlations are quite high given the 
impacts seen in [50] and [51] considering correlations only as high as 0.5. 
 

Effect of Stochastic Uncertainty in KENO Calculations 
The effect of the stochastic uncertainty in each of the individual realizations is studied for 
LCT-042, as it was for LCT-007 and LCT-039 as part of the WPNCS/UACSA benchmark. 
A more complete study is possible for LCT-042 because of the reduced number of cases in 
the evaluation. A single set of 300 evaluations was generated, and subsequently run 5 
different times with stochastic uncertainties of 0.00100 Δk, 0.00050 Δk, 0.00020 Δk, 
0.00010 Δk, and 0.00005 Δk. The results of these calculations are presented in this section. 
 
The average keff values for each case and each uncertainty level are provided in Table 15. The 
average values agree quite well for the cases with uncertainties of 0.00020 Δk, 0.00010 Δk, 
and 0.00005 Δk. All cases except Case 3 show small, but noticeable, deviation at 0.00050 Δk 
uncertainty. Larger differences are evident for all cases with uncertainties of 0.00100 Δk. 
 
The standard deviation of the keff values from the realizations for each uncertainty level are 
shown in Table 16. The standard deviations are the same for all 7 cases between 0.00005 and 
0.00010 Δk. Most cases show a very modest increase of about 0.00001 Δk between 0.00010 
and 0.00020 Δk. Clearly as the uncertainty in the realizations increases it starts to influence 
the overall uncertainty. Uncertainties of 0.00020 Δk are still very small compared to the 
variability resulting from sampling the compositions, dimensions, and pin positions in the 
model. The stochastic uncertainty in each calculation becomes a more significant component 
of the uncertainty as it gets large, obviously, and this effect becomes apparent in the results 
at 0.00050 Δk an especially at 0.00100 Δk. The stochastic uncertainty will become a 
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Table 15. Average keff Values for Various Stochastic Uncertainties for Realizations 

Case 0.00100 Δk 0.00050 Δk 0.00020 Δk 0.00010 Δk 0.00005 Δk 
1 0.99766 0.99821 0.99835 0.99836 0.99836 
2 0.99761 0.99791 0.99799 0.99800 0.99801 
3 0.99862 0.99883 0.99883 0.99884 0.99885 
4 0.99931 0.99947 0.99953 0.99955 0.99955 
5 0.99919 0.99942 0.99946 0.99948 0.99948 
6 0.99894 0.99948 0.99958 0.99960 0.99960 
7 0.99748 0.99765 0.99773 0.99774 0.99774 

 
Table 16. Standard Deviation of keff Values from Realizations with Differing Uncertainties 

Case 0.00100 Δk 0.00050 Δk 0.00020 Δk 0.00010 Δk 0.00005 Δk 
1 0.00264 0.00240 0.00239 0.00238 0.00238 
2 0.00256 0.00245 0.00243 0.00242 0.00242 
3 0.00276 0.00262 0.00255 0.00253 0.00253 
4 0.00265 0.00258 0.00254 0.00255 0.00255 
5 0.00261 0.00251 0.00247 0.00246 0.00245 
6 0.00254 0.00241 0.00236 0.00235 0.00236 
7 0.00278 0.00252 0.00251 0.00250 0.00250 

 
significant contributor to overall uncertainty at lower stochastic uncertainties in other 
scenarios with smaller pin pitch sampling ranges. 
 
The correlation coefficients resulting from the realizations with uncertainties of 0.00100 Δk 
are provide in Figure 62, 0.00050 Δk in Figure 63, 0.00020 Δk in Figure 64, and 0.00005 Δk 
in Figure 65. The coefficients with uncertainties of 0.00010 Δk are shown in Figure 50. As 
with the standard deviations, the correlation coefficients are largely unchanged from 
0.00020 Δk to 0.00005 Δk. Slightly reduced correlations are apparent for uncertainties of 
0.00050 Δk, and the coefficients drop to about 0.8 in the scenario with realization stochastic 
uncertainties of 0.00100 Δk. All 21 sets of correlation coefficients are plotted as a function 
of realization uncertainty in Figure 66 to ease the visual comparisons of the data. 
 
The general trend of all 21 correlation coefficients is very similar as a function of stochastic 
uncertainty. The correlation coefficients increase, and the variability among the coefficients 
also reduces somewhat.  The minimum and maximum correlation coefficients with 
0.00100 Δk uncertainty are 0.76 and 0.84, respectively, for a total range of 0.08. With the 
uncertainty reduced to 0.00005 Δk, the range is reduced to 0.03 with a minimum correlation 
of 0.96 and a maximum of 0.99. 
 
For LCT-042 and the shared pin pitch assumption, sampled over a range of ±3σ, it appears 
that the stochastic uncertainty of the individual realization KENO calculations should not 
exceed 0.00020 Δk. The required uncertainty will decrease as the sampling range of the pin 
pitch decreases. Smaller pin pitch sample ranges lead to smaller keff variability, as shown in  



 

100 
 

 

 
Figure 62. Correlation coefficients resulting from realizations with uncertainties of 0.00100 Δk. 

 

 
Figure 63. Correlation coefficients resulting from realizations with uncertainties of 0.00050 Δk. 

 
 

 
Figure 64. Correlation coefficients resulting from realizations with uncertainties of 0.00020 Δk. 

 

 
Figure 65. Correlation coefficients resulting from realizations with uncertainties of 0.00005 Δk. 
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Figure 66. Correlation coefficients as a function of realization statistical uncertainty. 

the previous section, and the stochastic uncertainty will make a significant contribution to 
the uncertainty at a correspondingly lower level. 
 
Each of these LCT-042 KENO realizations with an uncertainty of 0.00020 Δk can be 
executed in about 1 hour on the Romulus cluster at ORNL, leading to a total run-time of 
approximately 2100 CPU-hours to determine a complete matrix of correlation coefficients. 
The ability to relax the uncertainty requirement reduces the required run-time by 
approximately a factor of 4, as expected for a doubled Monte Carlo uncertainty. 
 

Random Fuel Pin Placement 
Critical experiment correlations are also developed for the 7 cases of LCT-042 with random 
pin locations. This set of correlations is analogous to Scenario E from the WPNCS/UACSA 
benchmark [33] discussed in the previous chapter. The TemplateEngine is used to generate 
KENO models with each fuel rod in a unique unit and Sampler inputs to perturb the 
location of each rod. A total of 300 realizations is created for each case, and the location of 
each rod is sampled uniquely in each case. In other words, the position of each fuel rod is 
assumed to be independent in each of the 7 cases. As discussed in the section regarding 
Scenario E of the WPNCS/UACSA benchmark, there is some evidence [59, 65] that random 
pin location is a more accurate model of fuel pin array critical experiments than a uniform 
pitch uncertainty. 
 
The average keff and its standard deviation from all 300 realizations for each case is provided 
in Table 17. The average keff values are in good agreement with the results from the uniform 
pitch scenarios, but the uncertainties are noticeably smaller. The individual fuel rods can 
move significantly, but since each one is positioned uniquely there are no overall changes in 
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moderation within the array. The elimination of moderation changes is the primary cause of 
reduced uncertainty in the random fuel rod position scenario. Also, the rod inner diameter 
and fuel length are sampled uniquely in each rod. The uniform pitch scenarios model a single 
fuel rod repeated for each array location, so fuel volume changes occur in all the fuel rods. 
The magnitude of the overall fuel volume changes is much lower while each rod is sampled 
independently. The reduced uncertainty in the random pin placement models is therefore 
also a result of smaller changes in fuel volume (and mass) and not entirely because of the rod 
positioning differences. The evaluation uncertainties are also provided in Table 17 for 
reference. The variability of the realizations in the random pin placement scenario is 
significantly less than those provided in the evaluation. Most cases have only a quarter to a 
third of the uncertainty in the evaluation. Approximately half of the uncertainty reported in 
the evaluation is related to the pin pitch uncertainty, so the logical outcome of random pin 
placement is the observed lowering of the overall uncertainty. It should be noted that the keff 
variability is still on the order of 3 to 6 times that of the individual realization keff uncertainty, 
so further reduction of the uncertainty is likely not needed for these cases. Lower KENO 
uncertainties would be advisable for experiments with keff variability on the same order as 
the stochastic uncertainty. 
 
Table 17. Average keff Values and Standard Deviations for LCT-042, Random Pin Pitch Positions 

Case Average keff Standard Deviation Evaluation Unc. 
1 0.99820 0.00036 0.0016 
2 0.99773 0.00058 0.0016 
3 0.99862 0.00046 0.0016 
4 0.99932 0.00056 0.0017 
5 0.99927 0.00034 0.0033 
6 0.99941 0.00033 0.0016 
7 0.99763 0.00061 0.0018 

 
 
The correlation coefficients resulting from the random pin pitch modeling are provided in 
Figure 67. The coefficients are generally somewhat less than the fixed rod scenario results 
shown in Figure 56. This is a result of the differences discussed previously in the fuel rod 
dimension treatment, and the corresponding elimination of shared uncertainty related to fuel 
radius and length. The 95% confidence intervals for the random placement scenario 
correlation coefficients are provided in Figure 68. The confidence intervals demonstrate that 
while the best estimate coefficients are lower than the fixed rod coefficients, these 
differences are generally not statistically significant. Finally, the convergence of the 
correlation coefficients between Case 2 and Case 7 and between Case 6 and Case 7 is 
provided in Figure 69. As with the fixed pin location scenario, there is an indication that 300 
realizations may not be sufficient for the convergence of low correlation coefficients 
resulting from pairs of low uncertainty systems. 
 
An additional 600 realizations were created for Case 2 and Case 7 to examine the 
convergence behavior of the lowest correlation coefficient among the 7 cases of LCT-042 in   
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Figure 67. Correlation coefficients for the random fuel rod placement scenario. 

 

 
Figure 68. 95% confidence intervals for the random fuel rod placement scenario correlation coefficients. 

 

 
Figure 69. Convergence of two correlation coefficients, random fuel rod positions. 
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the random fuel rod placement scenario. The correlation coefficient considering all 900 
realizations is 0.250 and the 95% confidence interval spans from 0.188 to 0.310. The 
estimate from 300 realizations, 0.190, is narrowly within this interval. The convergence 
behavior is shown in Figure 70, and indicates that convergence is likely achieved between 
400 and 500 realizations. There appears to be a slight dip in the correlation coefficient 
estimate just before realization 300, but the estimate of the coefficient changes only slightly 
above about realization 200. It therefore is difficult to draw a generic conclusion regarding 
the number of realizations needed to assure convergence of the estimate of the correlation 
coefficient. High correlation coefficients converge quickly, in perhaps as few as 100 to 150 
realizations. Moderate coefficients generally appear converged within about 300 realizations, 
but low correlation coefficients may take longer to converge. It is advisable to check 
convergence of correlation coefficients resulting from the Monte Carlo sampling technique; 
this same conclusion is well known in estimated keff using Monte Carlo transport. 

 

Summary of Correlation Coefficients for LCT-042 
The LCT-042 evaluation [15] has been used to examine several aspects of critical experiment 
correlations. The primary point of investigation specific to modeling LEU pin array 
experiments is the treatment of the fuel rod pitch or location uncertainty. Other studies, 
regarding the stochastic uncertainty of the individual realizations and the convergence of the 
correlation coefficients, are expected to be generically applicable to other systems. A brief 
synopsis of each of these studies is presented here, along with observations based on the 
results generated in these studies. 
 

Fuel Rod Pitch/Position Uncertainty Effects  
Two scenarios are examined for the fuel rod pitch uncertainty. The first is a uniform pitch 
assumption which is analogous to Scenario A in the WPNCS/UACSA benchmark described 
in the previous chapter. The second assumption for LCT-042 correlations is random pin 
placement, which results in a variety of pin pitches. This second assumption is similar to 
Scenario E from the WPNCS/UACSA benchmark. 
 
Previous studies [39] examined correlation coefficients for the LCT-042 evaluation with the 
uniform pitch assumption, as shown in Figure 4. These studies were updated using the 
number of realizations and individual realization stochastic uncertainty constraints suggested 
by the results from the WPNCS/UACSA benchmark results. The updated results, as a 
function of pitch sampling range, are provided in Figure 61 and are much more reliable 
estimates of the correlation coefficients for the LCT-042 experiments given the uniform 
pitch assumption. The individual correlation coefficients are provided in Figure 50, Figure 
52, Figure 54, and Figure 56. The results indicate that the correlations increase rapidly once 
the fuel rods are no longer fixed. Changes from a range of ±0.75 up to ±3 standard 
deviations show relatively modest increases in the correlation coefficients as the pin pitch 
uncertainty comes to dominate the overall case keff uncertainty. The conclusion of this study 
is that correlation coefficients will be high once a realistic pin pitch uncertainty range is  
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Figure 70. Convergence of LCT-042 Case 2 and Case 7 for 900 realizations. 
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sampled. In this case, it is assumed that a range of ±1 standard deviation or more represents 
a realistic uncertainty range. 
 
The second assumption for treating the pin pitch uncertainty is to assume that each pin is 
located individually and that the uncertainty in pitch is a result of the variability of these 
locations. In the study presented here, the fuel rod dimensions are also varied individually. 
The resulting correlation coefficients are presented in Figure 67, and are much lower than 
those generated using the uniform pitch assumption. This conclusion is the same as that for 
the WPNCS/UACSA benchmark, and is an important conclusion of this work. The fuel rod 
modeling differences account for the change from the fixed pin location correlation 
coefficients presented in Figure 56. The individual rod positions are allowed to vary 
significantly more than ±3 standard deviations, but the random nature of the variability 
among the pins reduces the impact on keff and thus reduces its variability. The random rod 
locations are also assumed to be different in each case, eliminating a source of shared 
uncertainty. The overall uncertainty is very low compared to the evaluation, and more 
realizations may be required to achieve convergence of the correlation coefficients, as shown 
in Figure 69 and Figure 70. 
 

Effect of Stochastic Uncertainty 
The effect of the stochastic uncertainty on the correlation coefficients is examined for the 
uniform pitch scenario. Correlation coefficients are determined with realization stochastic 
uncertainties of approximately 0.00100 Δk, 0.00050 Δk, 0.00020 Δk, and 0.00005 Δk in 
addition to the base set of correlation coefficients which have a stochastic uncertainty of 
0.00010 Δk. As shown in Figure 66, the correlation coefficients increase noticeably until the 
uncertainty is reduced to below about 0.00020 Δk, at which point the increase largely ends. 
A similar study is presented in the previous chapter for the WPNCS/UACSA benchmark, 
but that study did not extend below an uncertainty of 0.00010 Δk. It is likely, as mentioned 
in the discussion of the random rod placement scenario, that the required convergence of 
the stochastic uncertainty varies from evaluation to evaluation. Higher stochastic 
uncertainties will be acceptable for cases with higher total uncertainties; the stochastic 
uncertainty need only be small enough that it is not a significant contributor to the overall 
uncertainty. 
 

Observations 
A variety of observations are noted here based on the results of the calculations and studies 
documented in this chapter. 
 

• The computational resources necessary to perform the calculations to determine 
correlation coefficients among critical experiments can be large. The generation of a 
matrix of correlation coefficients among 7 experiments consumed approximately 
8,700 CPU-hours. With increased stochastic uncertainties in the individual realization 
calculations, this total may be reduced to approximately 2,100 CPU-hours. Further 
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increases in stochastic uncertainty, and associated decreases in run-time, are likely to 
result in less accurate correlation coefficient estimates. 

• The treatment of the pin pitch uncertainty in LEU pin array experiments can be the 
most important factor in the calculated correlation coefficients. The uniform pitch 
assumption will likely lead to high correlation coefficients, while a random fuel rod 
placement approach will result in lower correlation coefficients. 

• The evidence generated in this chapter indicates that for LCT-042 the correlations 
may be largely insensitive to the sampled pitch range given that a realistic range, that 
is at least ±1 standard deviation, is used. The resulting correlations are generally 
higher than 0.9 and represent a significant potential impact on validation and/or data 
adjustment. 

• The number of realizations needed for convergence of calculated correlation 
coefficients depends on the magnitude of the coefficient. High correlation 
coefficients appear to converge with 150 or fewer realizations, while lower 
correlation coefficients may require 300 to 500 realizations. 

• The individual realization keff values need to be determined with the minimum 
feasible stochastic (Monte Carlo) uncertainty. Significant changes in the correlation 
coefficients are observed when the uncertainty is reduced from approximately 
0.00100 Δk to 0.00020 Δk. Further reductions in uncertainty have smaller effects for 
the LCT-042 experiments, but may be needed for other cases with lower 
uncertainties. Lower uncertainties may also be desired in the random fuel rod 
placement scenario. 

• In-depth knowledge of the critical experiment materials, configurations, procedures, 
and setup are required for correct assessment of shared and unique uncertainty 
contributions. This level of information is typically not available in the ICSBEP 
Handbook [15], which is currently the primary reference for critical experiment 
descriptions. Without this in-depth knowledge, it is difficult to make defensible 
determinations regarding the uncertainty sharing among different cases. 
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CHAPTER VII: ANALYSIS OF CORRELATION COEFFICIENTS 

AMONG THE CASES OF HEU-SOL-THERM-001  

The HST-001 evaluation contains 10 unreflected HEU solution experiments performed at 
the Rocky Flats Plant in the mid-1970s [15]. Four different tanks were used, including one 
stainless steel tank and three aluminum tanks with different radii. The ten experiments use 8 
different solutions, and the solution height is the variable controlled to establish criticality. 
 
The correlation coefficients determined in [17] are included in the ICSBEP Handbook [15], 
allowing a comparison of the results generated here with the previously published results. 
While it may seem logical to present the results from this evaluation first, given the simplicity 
of the models and the existence of other coefficients with which to compare results, these 
experiments are presented last as a demonstration that the approaches developed from the 
LEU fuel rod array cases can be reliably applied to other systems. The results presented in 
[17] are developed using a deterministic method, as discussed in Chapter II, and different 
assumptions are made about the uncertainty of parameters and the degree to which the 
uncertainty is shared among the cases. Agreement should therefore be expected in general 
trends in the correlation coefficients, though perhaps only to a limited extent in the absolute 
values presented for the correlation coefficients. The comparisons presented here, along 
with the results published by the OECD/NEA for the WPNCS/UACSA benchmark [33], 
should provide a basis for comparison for other methods of quantifying critical experiment 
correlations. 
 
The previous two sets of critical experiment correlations have been determined for LEU fuel 
rod array experiments, and similarities and differences in the results and sensitivities have 
been discussed. The last set of experiments examined in detail is for the HST-001 evaluation. 
The parameters involved in this experiment are radically different than in the array cases. 
Primarily, the uncertainties pertain only to the geometry of the tank, the only significant 
geometry in the model, and the compositions of the tank and the solution itself. The 
simplicity of these experiments allows for careful examination of the effects of assumptions 
regarding independence of these variable parameters. 
 

Variable Parameters 
The uncertainties in the dimensions and compositions present in HST-001 are described in 
the evaluation. As with the LCT-042 experiments, the descriptions provided lead to varied 
approaches to modeling the uncertainties. For these experiments, most geometric 
uncertainties are sampled uniformly over the specified ranges and most composition 
uncertainties sample from untruncated normal distributions. As with previous series, these 
decisions are largely arbitrary. 
 
Little information is provided in the evaluation to clarify the shared and unique uncertainty 
components. It is clear which cases shared the same tank and which cases shared the same 
solution, but no additional information is provided to clarify potential additional sources of 
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correlation. For example, the 8 solutions could have been separately diluted from a single 
stock of material. This would definitely introduce correlations in the uranium enrichment, 
and potentially in other solution parameters as well. It is also not discussed if the three 
aluminum tanks are made from the same material batch, which could also introduce 
additional correlation among the 8 cases in aluminum tanks. A series of studies is performed 
using these 10 experiments to investigate the sensitivity of the correlation coefficients to 
different assumptions about shared uncertainty parameters. Also, uncertain parameters are 
examined in groups to differentiate the importance of the different parameters to the 
apparent correlation. The geometry uncertainties are examined first, then tank compositions 
are introduced followed by treatment of the enrichment uncertainties. Finally, the remaining 
solution composition parameters are varied such that all known variable parameters are 
being sampled. For the tank composition and enrichment uncertainties, the new set of 
parameters is considered as both a shared and unique source of uncertainty. The previous 
uncertainty groups are all assumed to be fully correlated; this approach is taken to reduce the 
number of cases that must be considered compared to the full matrix. Each of the 
uncertainty groups is discussed in the remainder of this section. 
 

Uncertainty Treatment for Dimensions 
There are four different tanks used in the HST-001 experiments; one is fabricated from 
stainless steel and the other three from 6061 aluminum. The inner diameter and its 
uncertainty are provided for each tank in Table 1 of the evaluation. The provided 
uncertainties are taken as tolerances, and the inner diameters are sampled uniformly over the 
range. The same sampled diameters are used in each realization for cases that share a tank. 
 
The thickness uncertainties of the sidewall and tank bottom are unknown. The evaluation 
states in a footnote that the original experimenter believed that “standard specification 
tolerances for metal plate are appropriate for estimating thickness and composition 
uncertainties” [15]. For each material, a range of thickness uncertainties is discussed in the 
evaluation. The uncertainties vary depending on the final heat and rolling treatment of the 
plate; the largest tolerances are assumed by the evaluator. The stainless steel tank therefore 
uses an uncertainty of ±0.135 cm for the sidewall and ±0.114 cm for the tank bottom. The 
aluminum tank is assumed to have uncertainties of ±0.018 cm for the sidewall and ±0.051 
cm for the tank bottom. All tank dimensions are sampled uniformly across the specified 
range for each tank. 
 
The uncertainty in the solution heights are provided in Table 3 of the evaluation. The 
solution height is sampled uniformly over the range, and all 10 solution heights are treated 
independently. 
 

Uncertainties in Tank Compositions 
The uncertainties in the tank compositions are provided in the text of Section 2.3.2 of the 
evaluation. The illegible dot characters are assumed to be less than symbols. For example, it 
is assumed that the carbon content of 304 stainless steel should be stated as C < 0.08. This 
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assumption seems to be consistent with the best estimate concentrations provided in Table 4 
of the evaluation. 
 
The stainless steel composition in the nominal benchmark model is provided in Table 17 of 
the evaluation, and includes C, Si, P, S, Cr, Mn, Fe, Ni, and Mo. Uncertainties are provided 
for each of these constituents except for Mo, so its trace concentration is treated as a 
constant. The other alloying elements, aside from iron, are sampled uniformly within the 
uncertainty ranges provided. The weight percent of iron is then determined by subtraction as 
it makes up the remainder of the material. Each of the sampled or calculated weight percents 
is then divided by the nominal weight percent to determine a correction factor to apply to 
that element. The correction factors are multiplied by the nominal number density to 
determine the perturbed number densities. 
 
The aluminum tank compositions are modeled in the benchmark model as pure aluminum. 
The nominal number density is calculated from the nominal density of the alloy, 
2.737 g/cm3, and the 97.35 wt% nominal aluminum content. The weight percent of each 
minor constituent is sampled from the range provided in Section 2.3.2 of the evaluation, and 
the perturbed weight percent of aluminum is calculated as the difference between the sum of 
the minor and constituents and 100. The perturbed weight percent is divided by the nominal 
weight percent, and the correction factor is then applied to the nominal number density to 
determine the perturbed number density. None of the elements other than aluminum is 
included in the benchmark model, so they are also excluded from the perturbed models. 
 
The tank compositions are treated differently in two sets of calculations. In the first case, 
each of the three aluminum tanks is assumed to be fabricated from different material and 
therefore the alloying constituents are sampled separately for each tank. Cases 3 and 4 share 
one tank, Cases 5 through 9 share a second tank, and Case 10 has a unique tank. The cases 
that share a tank also share compositions in all realizations. The second part of the study 
assumes that all tanks are fabricated from the same aluminum material. In this case, all 8 
cases that use the aluminum tanks are assumed to have the same composition. No similar 
treatment is applied to Cases 1 and 2 because they share the only stainless steel tank in the 
series of experiments. 
 

Enrichment Uncertainties 
The enrichment of the uranium in the solutions is provided in Table 5, along with 
uncertainties in each weight percent. This presentation implies that a single stock solution 
with a single enrichment was used for all solutions, but this is neither stated nor refuted in 
the evaluation. Two sets of correlations are calculated including the effects of the 
enrichment uncertainties. Consistent with the treatment of the tank compositions in the 
previous section, the first assumes unique uncertainties for all experiments and the second 
assumes shared uncertainties across all 10 cases. The two pairs of cases which share the same 
solution are assumed to have shared enrichment uncertainties in both cases because of the 
shared solution. The enrichment uncertainty is the only uncertainty component considered 
for HST-001 that has the potential to create correlations among all 10 cases. The other 
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potentially shared sources of uncertainty have applicability only to some cases via a shared 
tank or solution. 
 
New number densities are calculated for each sample. The atomic masses of the uranium 
isotopes and Avogadro’s number were determined to reproduce the number densities 
provided in the evaluation to 4 decimal places. Equation 14 [15] is then used with sampled 
weight fractions for each isotope. The sampled weight fractions are not forced to sum to 1 
since the atom densities are calculated and input. 
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 Where: Ni is the number density of isotope i 
  Wf,i is the weight fraction of isotope i 
  ρU is the density of uranium in the solution 
  NA is Avogadro’s number 
  Aw, i is the atomic mass of isotope i 
 

Solution Composition Uncertainties 
The solution compositions vary along with the uranium concentration, excess nitric acid, and 
overall solution density. The values of each of these parameters, and their uncertainties, are 
provided for each case in Table 6 of the evaluation. The number density equations are 
provided for each solution component in Section 3.3.1 of the evaluation, but most of the 
symbols have not been rendered correctly and appear as dots. The correct equations, used in 
determining the perturbed number densities for all 10 cases, are provided in Equations 14 – 
20. The uranium concentration in each solution, excess acid concentration, and solution 
densities are all sampled from normal distributions. The solution parameters are all assumed 
to be unique in each of the 8 solutions. Cases 1 and 8 share a solution, and Cases 4 and 9 
share a different solution. These two pairs of cases therefore share perturbed number 
densities. The solutions are assumed to be independent as there is no known mechanism for 
diluting each solution with a common error or uncertainty, given the range of concentrations 
and densities present in the set of solutions. 
 

 

A

NOUOwU
NOUO N

MN
232

232

)(,
)(

⋅
=ρ     Eqn (15) 

 
 Where: ρUO2(NO3)2 mass density of uranyl nitrate 
  NU is the total uranium atom density 
  Mw,UO2(NO3)2 is the molecular weight of uranyl nitrate 
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 Where: ρHNO3 is the mass density of nitric acid 
  Na

HNO3 is the excess acid molarity 
  Mw, HNO3 is the molecular weight of nitric acid 
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 Where: ρH2O is the mass density of water 
  ρsolution is the mass density of the solution 
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 Where: NO is the total atom density of oxygen 
  Mw,H2O is the molecular weight of water 
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 Where: NN is the total atom density of nitrogen 
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 Where: NH is the total atom density of hydrogen 
 

Results 
Several sets of critical experiment correlations are calculated for the HST-001 experiment 
series. Each of these results is presented in this section and compared with reference results 
included in [15] as originally determined in [17]. It is difficult, if not impossible, to determine 
which set of correlations is the best estimate of the real coefficients because of the 
information missing from the evaluation. The reference results are also not considered to be 
more or less accurate than any of the results determined as part of this effort. The relative 
importance of each set of uncertain parameters is also assessed. This information will 
provide potentially useful guidance to future evaluators related to how important each 
component of uncertainty is to the final correlation coefficients. The reference results from 
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the ICSBEP Handbook [15] are presented first, and compared with the results calculated 
here in each subsequent section. 
 

ICSBEP Handbook Reference Results 
The results included in the ICSBEP Handbook [15], originally generated in [17], are 
presented in Figure 74. In general, the correlation coefficients are between 0.4 and 0.5, and 
are fairly uniformly distributed. There are some pairs of cases that have noticeably higher 
correlations than the remainder of the cases. The highest correlation coefficient is between 
Cases 4 and 9, with a value of 0.77. The same solution is used in both cases, explaining the 
higher correlation for this pair. The experiments are performed in different tanks, but both 
tanks are aluminum. Cases 1 and 8 also share a solution, but Case 1 is in the stainless steel 
tank and Case 8 is in an aluminum tank. The correlation coefficient between Cases 1 and 8 is 
somewhat larger than others at 0.57. 
 
There is no definitive reason that the correlations between Case 2 and Cases 4 and 9 should 
be higher than rest of the correlation coefficients. Cases 4 and 9 appear to be relatively 
strongly correlated, as noted previously, but they are not strongly correlated with Case 1. It 
appears that the reason for the higher correlation with Case 2 is a similar uranium 
concentration; the solution in Case 2 is 346.73 gU/cm3 and for Cases 4 and 9 is 357.71 
gU/cm3. The other solution parameters are also very similar, so it is apparent that the 
solutions are similar. No detail is provided in [17] describing the details of the evaluation 
process for the HST-001 series, so no concrete conclusion can be drawn about why these 
cases are more strongly correlated than others. 
 
In general, it appears that the primary driver of the correlation coefficients is the presumably 
shared enrichment and possible solution parameters among all 10 solutions. No detailed 
description of the development of these correlations is provided in [17], but the detailed 
description provided for a different set of experiments indicates that at least the solution 
densities are treated as correlated. Higher values, especially as noted for Cases 4 and 9, show 
pairs of cases that have greater shared uncertainty because of the shared solution. The 
increase in correlation caused by the shared solution does not appear to be as great for Cases 
1 and 8, but Case 8 clearly has the highest correlated coefficient of any of the 9 other cases 
with Case 1. It is not clear why the correlation caused by the shared solution should create a higher 
correlation than the shared tank. The largest uncertainty contribution in the ICSBEP evaluation for 
the cases in the stainless steel tank is the inner diameter of the tank. This should lead to a strong 
correlation between Cases 1 and 2 which is not present in Figure 71. There is no cause reason for 
the higher correlations between Case 2 and Cases 4 and 9.  
 

Results Considering Only Geometric Uncertainties 
The results presented in this section are newly generated via Sampler, but include only the 
effects of sampling on geometry parameters. The geometry parameters include tank 
dimensions and solution height. The dimensions are assumed to be the same for each tank, 
but obviously differ between tanks. It is possible that the sidewalls and base plates of the 
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Figure 71. Reference correlation coefficients as calculated in [17] and reported in [15]. 

aluminum tanks were made from the same lot of material and should have the same values 
assigned. This particular case was not examined. 
 
A total of 300 realizations were created and run for each case, and each of the 3000 resulting 
KENO calculations were converged to a stochastic uncertainty of ±0.00010 Δkeff. The mean 
of the 300 perturbed keff results and their standard deviation are shown in Table 18. The 
benchmark uncertainties, provided in Table 18 of the evaluation [15], are also provided in 
Table 18. The uncertainty in most cases is significantly lower than the evaluation uncertainty, 
as would be expected since most of the uncertain parameters are not perturbed. The 
uncertainty is Case 1, however, is larger than the uncertainty in the evaluation. A review of 
the uncertainty assessment in Section 2 of the evaluation [15] indicates that the largest 
contributors to uncertainty in Case 1 are the tank wall thickness and solution radius. Both of 
these parameters are included in this set of perturbed parameters. The other experiment in 
the stainless steel tank, Case 2, also has a large uncertainty compared to the 8 cases 
performed in the aluminum tanks. 
 
The resulting correlation coefficients are shown in Figure 72. As expected, the cases which 
share a tank have very strong correlations and the other cases are largely uncorrelated. The 
95% confidence interval for each correlation coefficient is provide in Figure 73. The results 
indicate that the correlations between cases in different tanks are statistically insignificant. 
Interestingly, 4 of the 5 cases in the 33 cm inner diameter aluminum tank are very highly 
correlated. Case 7 is significantly less correlated with the other four cases. The convergence 
of the correlations coefficients between Cases 1 and 10 and Cases 5 and 7 are shown in 
Figure 74. These results indicate that the correlation coefficients are well converged. The 
correlation coefficient between Cases 5 and 7 is particularly well converged, largely because 
of its high value. The correlation coefficient estimate for Cases 1 and 10 does not converge 
nearly as quickly. 
 
The correlation coefficients calculated by perturbing only the geometric variables bear little 
resemblance to the reference results shown in Figure 71. This is the expected result since 
only some of the variables are considered. The effect of shared tanks is not clearly visible in 
the reference results, which is somewhat puzzling given that the main uncertainty 
components in at least some cases are geometric parameters.   
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Table 18. Average and standard deviation of 300 perturbed keff values sampling dimensions, HST-001 

Case Average keff Standard Deviation Benchmark Uncertainty 
1 0.99557 0.00628 0.0060 
2 0.99363 0.00627 0.0072 
3 0.99947 0.00198 0.0035 
4 0.99645 0.00194 0.0053 
5 0.99596 0.00243 0.0049 
6 0.99928 0.00248 0.0046 
7 0.99551 0.00245 0.0040 
8 0.99578 0.00222 0.0038 
9 0.99228 0.00213 0.0054 
10 0.98999 0.00413 0.0054 

 
 

 
Figure 72. Correlation coefficients among HST-001 cases perturbing only geometry variables. 

 

 
Figure 73. Confidence intervals for HST-001 correlation coefficients, only geometric perturbations. 
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Figure 74. Convergence of two selected correlation coefficients, only geometric perturbations. 

Results Considering Geometric and Tank Composition Uncertainties 
The next set of parameters to be perturbed are the tank compositions. These variables are 
sampled in addition to the dimensions sampled in the previous section. As mentioned 
previously, there is no discussion in the evaluation to indicate whether the aluminum tanks 
were fabricated from the same lot of material. It is reasonable to conclude that this is likely 
true, but if the tanks were built at different times they would like have come from different 
lots with different impurities. These effects are somewhat mitigated for the aluminum tanks 
by the fact that only the aluminum itself is included in the benchmark model. The impurities 
in these tanks only impact reactivity by causing slight differences in the resulting effective 
density of the tank material. Regardless, correlation coefficients are calculated with the tank 
compositions sampled identically for all three aluminum tanks and also independently for 
each tank. The stainless steel tank used for Cases 1 and 2 is sampled uniquely in both 
scenarios since it is clearly a different material than the 6061 aluminum alloy used for the 
other tanks. 
 
Correlation coefficients are calculated assuming independent tank compositions with 300 
realizations for each of the 10 cases. As with the previous study, each of the KENO 
calculations is converged to ±0.00010 Δk. The average and standard deviation of the keff for 
each case is provided in Table 19. As before, the uncertainty from the evaluation is also 
included for reference. The uncertainties do not change appreciably for any case. Very small 
increases are noted for Cases 1 and 2. The variation is higher for these two cases because 
more constituents are included in the benchmark model for the steel tank than for the 
aluminum models. The tank compositions are clearly not a significant contributor to 
uncertainty. 
 
The correlation coefficients are provided in Figure 75. The results are nearly identical to the 
correlations resulting from only dimension perturbations, shown in Figure 72. This is the 
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Table 19. Average and standard deviation of 300 perturbed keff values sampling dimensions and unique tank 

compositions, HST-001 

Case Average keff Standard Deviation Benchmark Uncertainty 
1 0.99748 0.00630 0.0060 
2 0.99556 0.00630 0.0072 
3 1.00123 0.00198 0.0035 
4 0.99819 0.00194 0.0053 
5 0.99782 0.00243 0.0049 
6 1.00114 0.00246 0.0046 
7 0.99728 0.00246 0.0040 
8 0.99756 0.00220 0.0038 
9 0.99401 0.00214 0.0054 
10 0.99182 0.00412 0.0054 

 
 
 

 
Figure 75. Correlation coefficients among HST-001 cases perturbing geometry and unique tank composition 

variables.  
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expected result given that there is virtually no difference in the uncertainties introduced with 
the sampling of tank compositions. Given the similarities, neither confidence intervals on 
the correlation coefficients nor a convergence plot are presented for these results. 
 
The means and standard deviations for the scenario with all aluminum tank compositions 
identically sampled are provided in Table 20. The results are changed only very slightly from 
the previous scenario with unique compositions for each tank. This is as it should be as no 
new uncertainty is introduced, but how the uncertainty varies from one case to another is 
changed. There are correspondingly small changes in the correlation coefficients presented 
in Figure 76. Again, confidence intervals and correlations plots are not provided because of 
the small magnitude of the changes. 
 
Sampling the tank compositions does not change the correlation coefficients appreciably 
whether the tanks are assumed to be fabricated from material drawn from the same lot or 
not. The correlation coefficients which result are provided in Figure 75 and Figure 76 and, as 
stated, are nearly identical to the results considering only dimensional uncertainties provided 
in Figure 72. The results still differ dramatically from the reference results provided in [15], 
as shown in Figure 71. 
 

Results Considering Geometric, Tank Composition, and Enrichment Uncertainties 
The enrichment uncertainty is added next, implemented as described earlier. The first set of 
calculations assumes that each unique solution is drawn from a different source and so has 
different enrichments. All 8 solutions are assumed to be described by the same uncertainties, 
as described above and described in Table 5 of the ICSBEP evaluation [15], but the exact 
enrichment for each solution is assumed to be unique. A more likely assumption, but one 
that cannot be confirmed with information included in the ICSBEP evaluation, is that all 8 
solutions were diluted from a single original source. This scenario results in all 8 solutions 
having an identical enrichment, and therefore an additional source of shared uncertainty. 
 
The average and standard deviation of the 300 realizations assuming unique solution 
enrichments are provided in Table 21, again with the evaluation uncertainty for reference. 
The results are not significantly different from those shown in the previous section. This 
indicates that the enrichment uncertainty does not have a significant impact on the 
uncertainty of the system keff. The correlation coefficients are provided in Figure 77, and also 
show essentially no difference from the previous correlations. 
 
Table 22 provides the average and standard deviations of the 300 realizations for all 10 cases 
for the scenario assuming the enrichment is the same for all solutions. The results are nearly 
identical with the results assuming unique solution enrichments. This is expected because the 
same uncertainties are used in both scenarios, but in this scenario the sampled values are 
identical for all 8 solutions. The correlation coefficients are shown in Figure 78, and show no 
appreciable change from the first scenario. Convergence plots and confidence intervals are 
not provided because the coefficients are largely unchanged from those provided in previous 
sections. 
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Table 20. Average and standard deviation of 300 perturbed keff values sampling dimensions and shared tank 

compositions, HST-001 

Case Average keff Standard Deviation Benchmark Uncertainty 
1 0.99748 0.00630 0.0060 
2 0.99556 0.00630 0.0072 
3 1.00123 0.00198 0.0035 
4 0.99819 0.00194 0.0053 
5 0.99783 0.00243 0.0049 
6 1.00114 0.00247 0.0046 
7 0.99730 0.00246 0.0040 
8 0.99757 0.00221 0.0038 
9 0.99401 0.00215 0.0054 
10 0.99181 0.00414 0.0054 

 

 
Figure 76. Correlation coefficients among HST-001 cases perturbing geometry and shared tank composition 

variables. 

 

Table 21. Average and standard deviation of 300 perturbed keff values sampling dimensions, shared tank 

compositions, and unique enrichment uncertainties, HST-001 

Case Average keff Standard Deviation Benchmark Uncertainty 
1 0.99748 0.00630 0.0060 
2 0.99556 0.00631 0.0072 
3 1.00123 0.00198 0.0035 
4 0.99820 0.00194 0.0053 
5 0.99784 0.00244 0.0049 
6 1.00117 0.00247 0.0046 
7 0.99728 0.00247 0.0040 
8 0.99757 0.00221 0.0038 
9 0.99400 0.00215 0.0054 
10 0.99180 0.00414 0.0054 
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Figure 77. Correlation coefficients among HST-001 cases perturbing geometry, shared tank composition and 

unique enrichment variables. 

 
Table 22. Average and standard deviation of 300 perturbed keff values sampling dimensions, shared tank 

compositions, and shared enrichment uncertainties, HST-001 

Case Average keff Standard Deviation Benchmark Uncertainty 
1 0.99748 0.00630 0.0060 
2 0.99556 0.00630 0.0072 
3 1.00123 0.00199 0.0035 
4 0.99820 0.00196 0.0053 
5 0.99783 0.00244 0.0049 
6 1.00115 0.00246 0.0046 
7 0.99730 0.00246 0.0040 
8 0.99757 0.00221 0.0038 
9 0.99401 0.00213 0.0054 
10 0.99181 0.00412 0.0054 

 

 
Figure 78. Correlation coefficients among HST-001 cases perturbing geometry, shared tank composition and 

shared enrichment variables. 
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The enrichment uncertainty, like the tank composition uncertainty, does not significantly 
impact the overall system keff uncertainty. It therefore also has no appreciable effect on the 
correlation coefficients of the 10 cases in the HST-001 evaluation. The correlation 
coefficients shown in Figure 77 and Figure 78 are statistically indistinguishable from those 
shown in Figure 72, Figure 75, and Figure 76. As noted in the previous sections, these results 
are significantly at odds with the reference results from the ICSBEP evaluation. 
 

Results Considering All Uncertain Parameters 
The last set of parameters to be included in the analysis of correlations among the 10 cases 
in the HST-001 evaluation relates to the composition of the solution. These parameters 
include the concentration of uranium in the solution, the excess acid, and the solution 
density. The implementation of these variables is described earlier, and involves Equations 
14-20. It is unclear how any of solution parameters could be shared between different 
solutions, so the only scenario investigated here is that these parameters are unique to each 
solution. It is worth reiterating that there are only 8 solutions used, as Cases 1 and 8 and 
Cases 4 and 9 use the same solution. 
 
The average and standard deviation for each of the 10 cases for all 300 realizations is 
provided in Table 23. The average keff value changes very little, indicating unbiased sampling, 
but the standard deviation of the results increases noticeably compared with the prior sets of  
results. This increase is especially noticeable for the experiments in aluminum tanks, that is 
Cases 3 through 10. The dimensional uncertainties are smaller for these cases than for the 
stainless steel tank used in Cases 1 and 2. The aluminum tank cases continue to exhibit 
significantly lower uncertainties than those reported in the evaluation [15]. 
 
The correlation coefficients are provided in Figure 79, and show dramatic differences 
compared to previous sets of results. The correlations are markedly lower among Cases 5 
through 9, and a significant increase is noted in the correlation between Cases 4 and 9. The 
decreases are caused by the use of different solutions, and, in the same vein, the increase in 
the correlation between Cases 4 and 9 results from use of the same solution. There is no 
noticeable increase in the correlation between Cases 1 and 8 because the uncertainties in the 
tank dimensions in Case 1, using the stainless steel tank, overwhelm the effects of the 
solution uncertainties. The 95% confidence intervals for the correlations are shown in Figure 
80. The convergence of three correlation coefficients is provided in Figure 81, and indicates 
the selected correlation coefficients are well converged. The representative coefficients were 
selected from high, medium, and low correlation cases with the intent of providing 
confidence that all correlation coefficients are likely well converged. The coefficients 
considering only the first half of the realizations are shown in Figure 82 and considering only 
the second half of the realizations in Figure 83. These results show good quantitative 
agreement for all statistically significant correlations, and good qualitative agreement for 
which correlations are not significant. 
 
These results incorporate perturbations of all uncertain parameters for which information is 
provided in the evaluation. It is also apparent that the treatment of the tank composition and 
  



 

122 
 

Table 23. Average and standard deviation of 300 perturbed keff values sampling all uncertainties, HST-001 

Case Average keff Standard Deviation Benchmark Uncertainty 
1 0.99743 0.00633 0.0060 
2 0.99549 0.00647 0.0072 
3 1.00142 0.00254 0.0035 
4 0.99815 0.00362 0.0053 
5 0.99786 0.00248 0.0049 
6 1.00106 0.00267 0.0046 
7 0.99726 0.00256 0.0040 
8 0.99753 0.00232 0.0038 
9 0.99395 0.00358 0.0054 
10 0.99180 0.00427 0.0054 

 
 

 
Figure 79. Correlation coefficients among HST-001 cases perturbing all variables. 

 

 
Figure 80. Confidence intervals for HST-001 correlation coefficients. 
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Figure 81. Convergence of three selected correlation coefficients. 

 
Figure 82. Correlation coefficients among HST-001 cases perturbing all variables, only first half of realizations. 

 
Figure 83. Correlation coefficients among HST-001 cases perturbing all variables, only last half of realizations. 
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enrichment uncertainties do not impact the correlation coefficients. The correlation 
coefficients presented in Figure 79 can therefore be considered as the best estimate 
correlation coefficients using the Monte Carlo sampling method and information available in 
the ICSBEP evaluation [15]. The correlation coefficients developed here bear little 
resemblance to the reference results included in the ICSBEP. Further discussion of possible 
explanations for these discrepancies is provided in the next section. 
 

Summary of Correlation Coefficients for HST-001  
Correlation coefficients have been generated for the 10 cases in the HST-001 evaluation 
considering the uncertain parameters in related groups. Each group was added together, and 
two of the four groups were considered separately as both shared and unique uncertainties. 
The detailed results are reported in the previous sections, and only summarized here. The 
simplified geometry and shorter run-times for these models allows a more systematic 
approach to determine the parameters that have the strongest impact on correlation 
coefficients compared to the LEU pin array systems examined in Chapters V and VI. These 
results can also be compared with a set of reference results taken from [15] which were 
originally generated using a deterministic approach as documented in [17]. 
 

Comparison With Reference Results 
At this point, comparisons can be made between the final correlation coefficients generated 
in this study (Figure 79) with the reference results included in the ICSBEP [15]. The results 
from the ICSBEP are taken from [17], which developed a deterministic approach for 
calculating correlation coefficients. Several uncertainties were arbitrarily partitioned into 
random and systematic uncertainty components, and the systematic portions were declared 
to be shared among all cases in an evaluation. These breakdowns were developed based on 
discussions with experimental personnel at one facility, and apparently assumed to apply to 
other laboratories as well. The arbitrary decision that half of the solution property 
uncertainty is shared appears to be responsible for the uniformity of the reference 
correlation coefficients. This uniformity is at odds with the greater dimensional uncertainties 
associated with the stainless steel tank in the evaluation. In general, if the uncertainties 
presented in the evaluation are viewed as credible the reference correlation coefficients are 
less plausible in their gross characteristics than the ones developed here. 
 
There is another potential source of the differences in the reported correlation coefficients. 
This alternative explanation is that the correlations being reported are in fact different 
quantities. The reference correlation coefficients could be an attempt to generate correlation 
coefficients for the uncertainties in each case, while those developed here are intended as 
correlation coefficients for the experimental measurements themselves. This is a very fine 
point, but can have a significant impact on the approach to correlation coefficient generation 
and use. 
 
Criticality safety validation is primarily concerned with the keff estimate for each critical 
experiment, especially in comparison to the expected model. This is the reason that 



 

125 
 

validation considers calculated-to-expected ratios (C/E) or differences (C-E). In this context, 
it is the correlation of the measurements themselves that are important. The uncertainties in 
the measurements are frequently used as a weighting factor such that experiments with lower 
uncertainties are weighted more heavily in the validation. Thus the important correlation is 
among measurements, because correlated measurements do not provide as much 
information as independent measurements. The correlations, if properly treated, will also act 
to increase the uncertainty in the bias once the amount of unique information provided by 
each measurement is accounted for more correctly. In the final validation analysis, the 
correlations will have a modest impact on the bias and a potentially significant impact on the 
uncertainty of the bias. 
 
Data adjustment analyses must account for correlations in the uncertainties of the 
measurements. These correlations act as a constraint on the adjustments that can be made to 
the measurements included in the adjustment process. Thus the correlation of uncertainties 
is more important for these analyses than the correlations of the measurements themselves. 
The final result of the adjustment process is affected by the correlations, so both the bias 
and its uncertainty can be expected to change significantly once the correlations are properly 
incorporated into the calculations. 
 
The final analysis thus appears to point to the fact that there are two different possible sets 
of correlation coefficients to be determined for critical experiments. The correlation 
coefficients do not necessarily agree well, and either set can be generated from a Monte 
Carlo or a deterministic approach. It is thus essential that correlation coefficients be correctly 
identified as for measurements or uncertainties and implemented correctly. This will 
continue to be a very challenging proposition given the dearth of understanding of the 
correlation impacts within the criticality safety community. 

Relative Importance of Parameters on Correlation Coefficients 
The uncertain parameters in the HST-001 experiments are grouped into four sets: geometry, 
tank composition, uranium enrichment, and solution parameters. The geometry variables 
include the inner diameter of the tank, the tank wall and bottom thicknesses, and the 
solution height. The tank composition is solely aluminum for the 6061 aluminum tanks used 
in Cases 3-10, and the constituents of the stainless steel for the tank used in Cases 1 and 2. 
The enrichment uncertainty relates to the weight fractions of each of the four isotopes of 
uranium, and the solution parameters include the uranium concentration, the excess acid 
molarity, and the solution density. 
 
The geometry parameters are perturbed first because the shared and independent geometric 
parameters appear simple to determine. There are 4 tanks, and it is clear which experiments 
used each tank. The geometric parameters thus apply identically to all cases in the same tank. 
The solution height is assumed to be independent for each case. The uncertainty in the inner 
diameter of each tank is a dominating source of uncertainty. As shown in Figure 72, this 
results in strong correlations for experiments carried out in the same tank and no correlation 
among the cases performed in different tanks. 
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The tank composition variables are added next. It is clear that the stainless steel tank should 
be treated differently from the aluminum tanks, but it is not necessarily clear that the 
aluminum used in the remaining three tanks has the same composition. Correlations are 
determined assuming both shared and unique tank compositions, as shown in Figure 75 and 
Figure 76. System reactivity is not very sensitive to the tank compositions, so the correlations 
are largely the same as those resulting from only geometry perturbations. The different 
assumptions related to shared or unique compositions have no effect on the correlation 
coefficients. 
 
The third set of parameters introduced is the uranium enrichment. As with the tank 
compositions, it is not clear if a single feedstock was the source for all solutions or if 
multiple independent batches were the initial source. The enrichment was therefore sampled 
both shared across all 8 solutions (10 cases) and unique to each solution. It is also possible 
that there were a small number of initial feed solutions, and that the enrichment was truly 
the same for some groups of cases. This possibility was not examined here. The results, 
shown in Figure 77 and Figure 78, indicate that the enrichment uncertainties were too small 
to impact the keff uncertainties to any significant extent and the correlation coefficients were 
thus also unchanged. As with the tank compositions, the assumptions related to shared or 
unique enrichment have no effect on the correlation coefficients. 
 
The final uncertain parameters to be included are the solution parameters. There is no 
known mechanism that can plausibly cause correlations among the different solutions in the 
state in which they were used in the experiments. Multiple solutions may have been diluted 
from the same feedstock, but each would have to be diluted by a unique amount to reach its 
uranium concentration and associated excess acid molarity and density. The solution 
parameters were thus considered as unique for each solution. Two solutions are used in two 
cases each; Cases 1 and 8 use the same solution and Cases 4 and 9 also use an identical 
solution. Incorporation of the solution parameter uncertainties increase the uncertainty in 
system reactivity for the experiments in aluminum tanks. The geometric uncertainties in the 
stainless steel tank used in Cases 1 and 2 are the dominant sources of uncertainty in these 
cases. The resulting correlations shown in Figure 79 show lower correlations among the five 
cases in the 33.01 cm aluminum tank, and an increased correlation between Cases 4 and 9. 
 
The final results of this study indicate that the important sources of uncertainty in system keff 
are also the parameters which dominate the correlation of the experiments. This evaluation 
included 10 experiments performed in 4 tanks with 8 solutions. In two cases, the geometry 
uncertainties were dominant. In the other 8 cases, the tank geometry and solution parameter 
uncertainties combined to influence the correlation coefficients. It is critically important to 
understand the sources of uncertainty, the sensitivity of the experiments to these sources, 
and whether the parameters are shared among experiments or unique to each case. There is 
clearly not a single set of assumptions that can be made about how the uncertain parameters 
should be combined to determine the correlations between cases. 
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CHAPTER VIII: RECOMMENDED APPROACH FOR 

CALCULATION OF CRITICAL EXPERIMENT CORRELATIONS 

VIA THE MONTE CARLO SAMPLING TECHNIQUE 

The primary purpose of determining critical experiment correlations is to enable a more 
accurate accounting for them in criticality safety validation and data adjustment studies. A 
robust, reliable approach must be developed whereby these correlations can be determined 
and applied in these applications. The correlation coefficient determinations presented over 
the previous three chapters have served to develop and test such a recommended procedure. 
This chapter provides that procedure in four steps; each step is described generically here 
and then in more detail in the subsequent subsections. The procedure described here 
assumes, for the most part, that sufficient detailed information is available describing the 
uncertain components. This includes the range of the uncertainties as well as which 
components are shared and which are unique. At this point, much of this detailed 
information is lost to history and reasonable assumptions must be made. Some discussion is 
provided to guide the practitioner in the common circumstances in which this information is 
not available. 
 
The first step is the analysis and study of the evaluation of the critical experiment. In general, 
this presupposes that the critical experiment or experiments have been included in the 
ICSBEP handbook [15], but other experiments are available outside the handbook which 
have been evaluated with similar rigor. These experiments may be held out of the ICSBEP 
Handbook for commercial or classification reasons. The French HTC experiments [61-64] 
are an example of a rigorously evaluated set of experiments that have been kept out of the 
open literature for commercial reasons. Step one includes identification of correlated or 
potentially correlated experiments, sources of shared and unique uncertainty, and evaluation 
of these uncertain components. 
 
The second step is the implementation of Monte Carlo sampling for the uncertain 
parameters. In this work, the implementation has been performed within the Sampler 
sequence of the SCALE code package [16], but other implementations such as SUnCISTT 
[37] are equally valid. Portions of the implementation step are largely inseparable from the 
evaluation of the uncertain components in the first step. 
 
The third step is the execution of the Monte Carlo sampling and subsequent execution of 
the individual realization calculations. This step is primarily concerned with the mechanics of 
how many realizations are needed and how low the stochastic uncertainty must be in each 
realization. Only Monte Carlo transport codes have been used within the Monte Carlo 
sampling method here or in the literature [34, 36-43], but deterministic transport codes could 
be used within the Monte Carlo sampling technique with equal validity. The assessment of 
the third step is inextricably linked to the fourth and final step. 
 
The fourth and final step of procedure for determination of critical experiment correlations 
is the evaluation of the final correlation coefficients themselves. This mostly consists of 
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checking that the coefficients are reasonable and can be explained given the input 
assumptions of shared and unique uncertainties and their magnitudes. It is also important to 
assess the convergence of the correlation coefficient estimates, as is common to all 
implementations of Monte Carlo sampling. 
 

Step One: Review the Evaluation 
Recommendations for selecting critical experiments to use in validation are included in 
validation guidance documents available in the literature [23-25]. One of the 
recommendations is that good documentation is available from which models can be 
developed; over the last 20 years the best source for such documentation has been the 
ICSBEP Handbook [15]. Each evaluation in the Handbook contains a description of the 
experiment, the facility in which it was performed, and often other related experiments in 
Section 1. Section 2 of the evaluation contains an uncertainty assessment, which is the most 
important part of the evaluation for this work. The benchmark model itself is described in 
Section 3. A thorough review of the evaluation is the starting place for any attempt to 
develop critical experiment correlations. The key aspects of this review are discussed in this 
section, including the identification of potentially correlated evaluations and experiments, the 
identification of uncertainty components within each experiment, and most importantly the 
identification of shared and unique uncertainty components. 
 

Correlated Evaluations and Experiments 
The identification of potentially correlated evaluations and experiments is an obvious first 
step in the development of critical experiment correlations. Sources of correlation are 
primarily fissile or non-fissile material, experimental facilities, or experimental hardware. In 
the work documented here, shared fissile material is included in the LCT-007 and LCT-039 
evaluations, the LCT-042 evaluation, and in two pairs of experiments in the HST-001 
evaluation. Shared non-fissile material includes the steel reflecting wall in the LCT-042 
evaluation. Shared facilities are included in the LCT-007 and LCT-039 experiments, both 
performed on Apparatus B at Valduc, within the LCT-042 experiments performed at PNL, 
and within the HST-001 experiments performed at Rocky Flats. An example of shared 
experimental hardware would be support plates for lattice experiments, such as in Case 1 of 
LCT-007 with the LCT-039 experiments, and within the 7 cases of LCT-042. 
 
The shared materials are usually easy to identify. Exact enrichment matches are indicative of 
shared fissile material, as are exact matches for solution parameters such as uranium 
concentration and solution density. These parameters can be identified by searching in the 
DICE tool. DICE also identifies some evaluations as or containing potentially correlated 
experiments. In many cases, the evaluation will also identify related experiments at the 
beginning of Section 1 of the evaluation. The other evaluations can be consulted if there is 
doubt about shared materials. Non-fissile materials that may be relevant would include 
reflector walls, such as the steel walls in LCT-042, poison panels such as those used in LCT-
042, and tanks such as those used in HST-001. Tanks may also be shared experimental 
hardware if the same tank is used in multiple cases; HST-001 includes both shared tank 
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materials used in multiple tanks, 6061 aluminum, and tanks used in multiple experiments. In 
some cases, the same material may be used in multiple experiments or evaluations but it may 
be ambiguous if the components were used. The HST-001 tanks are again a good example as 
it is not clear if the three different aluminum tanks were fabricated from the same lot of 
material or if they are from different lots and thus have slightly different compositions. More 
discussion of how to handle these ambiguous situations is provided below. 
 
Each series of experiments is performed in a single facility and is therefore at least 
potentially subject to correlation among experiments within the series. Some shared 
uncertainty, for instance related to the same detectors being used in all cases, has very small 
impact on the systems being measured. Other sources of shared uncertainty, such as 
contaminants in water, may introduce significant uncertainty. The facility in which each 
benchmark experiment was performed is well known, so this particular source of shared 
uncertainty can be identified definitively. 
 
Shared experimental hardware can usually be identified readily for lattice experiments by 
checking the pitch of the arrays. The pitch by itself is not necessarily irrefutable evidence of 
shared support plates. Obviously the array shape must be the same as well; for instance, 
LCT-020 and LCT-050 both contain experiments with a 1.3 cm pitch. The LCT-050 
experiments use a square pitch array, but LCT-020 is a triangular pitch array. Clearly the grid 
plate was not shared between these two experiments. On the other hand, as discussed in 
Chapter V, the 2.52 cm pitch in LCT-007 Case 4 was achieved by placing fuel rods in one 
out of every four locations in a 1.26 cm pitch grid plate. This shared component would not 
have been identified by a simple search on pitch size. Fortunately, other shared components 
like tanks in solution experiments are identified explicitly as shared components because of 
the importance of the tank to the experiment. 
 
The identification of evaluations and experiments with shared uncertainty components is the 
most important step in the determination of critical experiment correlations. Correlation 
coefficients do not need to be developed for uncorrelated experiments. Also, the 
identification of correlations among experiments supports the following steps in examining 
uncertainty components and whether the components are shared or unique. It is somewhat 
desirable to avoid the use of correlated experiments in validation, but all the experiments can 
still be used if the correlations among the cases can be quantified and incorporated into the 
validation methodology or data adjustment technique. 
 

Uncertainty Components 
The identification of uncertain components in the evaluation is simple as all material 
compositions, temperatures, and dimensions are uncertain. The challenges in this area are 
understanding the uncertainty associated with each component, and whether the 
components are shared or unique to each case.  The uncertainties, as assessed in the 
evaluation, are discussed in Section 2 of an ICSBEP evaluation [15]. The identification and 
assessment of uncertainties also involves the implementation of the sampling, which is 
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discussed in the next section. It is impossible to completely separate these two activities, so 
there will be some overlap and repetition of the discussion. 
 
Material composition uncertainties can take several forms. One common form is to provide 
ranges for each constituent element. This is a common approach for alloys; the specification 
for the alloy will provide acceptable weight percent ranges for each element. In many cases 
there is no specified nominal value, so it may be impossible to assign a nominal value 
without an assay of the material used in the experiment. Lacking other information, the mid-
range value is typically assumed though this is often not possible for all constituents to sum 
to 100%. Material specifications can also be provided as nominal values with tolerances. 
Alternatively, the result of assays of materials can be provided. The assay typically provides a 
nominal value for constituents in a material, and the uncertainties in the assay are then the 
uncertainties in the composition. As an example, the fissile material isotopic composition is 
often measured and reported. With any of these methods of specification, the practitioner 
still must select a distribution from which to sample. Discussion of this decision is left to the 
implementation section. 
 
Dimensional uncertainties are most often encountered as nominal values with tolerances. 
This is particularly true for fabricated parts and their associated dimensions. The application 
of these uncertainties is generally straightforward. In some cases, a reported uncertainty is or 
may be composed of more than one underlying uncertain dimension or position. The fuel 
rod pitch uncertainty is the best example of this situation. The uncertainty in the position of 
adjacent rods leads to an uncertainty in the pitch of rods. In these situations, it is important 
to understand uncertainty propagation to maintain the appropriate uncertainty. The equal, 
independent uncertainty in the location of adjacent rods is combined by the square root of 
the sum of the squares. The resulting pitch uncertainty is the square root of two times the 
individual rod placement uncertainty, so it is larger than the individual rod position 
uncertainty but smaller than twice the uncertainty. This can also lead to complications in 
implementation, to be discussed below. 
 

Determination of Uncertainty Component Uniqueness 
The most important determination to be made regarding uncertainties in this process is the 
determination of unique and shared uncertainty components. All the uncertainty 
components must be accounted for so that the total uncertainty is correct. The standard 
deviation of each case is accounted for in the denominator of the correlation coefficient, as 
shown in Equation 1. The shared uncertainty components create the covariance, which must 
also be accurate to calculate the correct correlation coefficient. Other complicating details, 
such as the uniform pitch or individual rod placement scenarios for fuel array experiments, 
are discussed in the following section on implementation. 
 
The ideal scenario is a clear delineation in the evaluation of the components that are shared 
between experiments and those that are not. Typically this is the case for fissile material and 
some non-fissile materials. Fuel rods drawn from the same population are treated as a shared 
source of uncertainty, though there may still be some unique effects if different rods or 
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different numbers of rods are used each experiment. The LCT-007 and many of the LCT-
039 cases use different numbers of rods, though some use the same number of rods. It is 
impossible to establish if the same exact rods were used in each case. The LCT-042 
experiments all use the same number of rods, but it is still unknown if some rods were 
switched between experiments. The steel reflecting walls from LCT-042 are another example 
of an apparently shared uncertainty component. No information is provided in the 
evaluation, however, regarding possible disassembly or relocation of the walls between 
experiments. The ideal scenario of a clear and complete description of shared and unique 
uncertainty components is extremely rare in any evaluation. Other techniques must therefore 
be used to assess the impact of different assumptions and/or the most likely shared 
uncertainties. 
 
One approach is to assess the impact of the assumption of uniqueness on the correlation 
coefficient. This is demonstrated with the tank composition uncertainties and enrichment 
uncertainties in the HST-001 results presented above. In both cases, the correlation 
coefficients were largely invariant to the uniqueness of the uncertainties. This is a best case 
scenario as the result is the same in both scenarios. For other experiments, the correlation 
coefficients may be impacted and a choice is needed regarding the most likely scenario. 
 
The best approaches for determining the most likely scenario for uncertainty component 
uniqueness are consideration of hypothesized mechanisms for sharing and examination of 
the dates of the various relevant experiments. The dates of the experiments may be 
documented precisely in the evaluation, or may be available in supporting references. The 
chances of independence increase as time passes between experiments for most parameters. 
This does not apply for fixtures and other equipment, but is relevant for components that 
would be moved, disassembled, and reassembled. The steel reflecting walls in LCT-042 are a 
prime example of this kind of component that is more likely to change as the time between 
experiments increases. Another key aspect of the process of determining the most likely case 
for uniqueness is the consideration of possible mechanisms for sharing materials and fixtures 
between experiments. The use of the same fissile material, whether rods, solutions, disks, or 
some other form, is usually readily explained as being used in the same facility in multiple 
experiments. The solution parameters for HST-001 are an example of a component for 
which it is difficult to explain shared uncertainty. Shared measurement devices will result in 
correlations of the uncertainties of the measurements of the parameters, but they cannot, 
however, create a correlation in unique solutions prepared using different quantities of water, 
acid, and salt. 
 
In many circumstances, the best plausible assignment of unique and shared uncertainties is 
all that is possible. Engineering judgment and, when possible, consultation with the 
experimentalists are needed to make these determinations. It is not feasible, however, for 
each engineer performing computer code validations to contact the original experimentalists. 
This information must be captured more completely in evaluations in the future. 
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Step Two: Implementation 
As mentioned several times throughout this document, the implementation of the Monte 
Carlo sampling method used here is in the SCALE code system [16]. Other Monte Carlo 
implementations can be used with equal validity. Most of the details discussed here are 
applicable to any other code because they are generic issues associated with determination of 
critical experiment correlations. Some details associated specifically with Sampler will be 
discussed, and identified as uniquely applying to Sampler. 
 

Variables and Cases 
The nomenclature of variables and cases is somewhat specific to Sampler, but the concepts 
are generically applicable. Within Sampler, variable blocks are used for random sampling of 
variables or for the evaluation of expressions. The cases each variable applies to are also 
identified in each variable block. The variable blocks represent the overwhelming majority of 
the Sampler input, and are discussed in this section and the next two sections as well. 
 
The variable parameters are identified as discussed above in step one through careful study 
of the evaluation. In many cases, these parameters can be sampled directly. An example of 
this type of variable might be the temperature at which the experiment was performed. 
Other variable parameters, such as clad thickness, can be sampled but must also be 
processed for application in the model. The outer radius of the cladding is typically specified 
in the model and must be calculated from the cladding thickness and its inner radius. The 
inner radius is probably also sampled, so the clad outer diameter is calculated “on-the-fly” as 
part of the creation of the realizations. 
 
Sampling on number densities is typically much more complicated, and merits a separate 
discussion. Composition descriptions provided in the ICSBEP Handbook [15] are specified 
in terms of isotopes or elements and associated number densities. The uncertainties are 
never expressed directly in terms of the number densities. In some cases, multiple isotopes 
or elements are changed at the same time and the largest constituent is calculated for each 
sample as the remainder of the material. This is common for 238U with the specifications for 
low enrichment uranium material. In Sampler, it is frequently necessary to set atomic masses 
in expression variable blocks for subsequent use in other expressions to calculate perturbed 
number densities. In other cases, perturbed number densities can be calculated based on 
sampling a ratio or multiplier relative to the nominal number density. Several examples of 
both these techniques have been described in the discussions of sampling materials in the 
experiments used in this work. 
 
Significant discussion has been provided in the previous section on determination of 
uncertainty component uniqueness. The implementation of this in Sampler is provided via 
the cases = … end portion of the variable block. Each case specified will share the sampled 
values for the variable, contributing to the covariance between each pair of specified cases. 
There is no direct implementation available in Sampler at this time to provide partial 
correlations or correlated sampling. This would be a desirable feature for modeling 
correlation between experiments in which the direction of the variation might be shared but 
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its magnitude would differ. An example of this type of uncertainty could be the volume of 
diluent added to different samples from a shared stock solution. 
 

Sampling Ranges 
The range over which each variable is sampled is an important parameter in the Monte Carlo 
sampling method. Generally, ranges can be provided directly in the evaluation, indirectly via 
a material specification, or not at all. The first two cases are easy to implement, but the third 
is obviously more challenging. 
 
Explicit ranges are often provided directly or indirectly for material specifications. 
Sometimes these are provided directly in the evaluation, and in other cases they may be 
provided in the specification for the material in use. Materials with multiple constituents can 
still pose difficulties because the fractional components must sum to 1. This is a challenge 
often encountered with alloy specifications. Tolerance values are also provided in some 
circumstances for thicknesses or other dimensions. These scenarios are typically 
straightforward to implement. 
 
In other cases, an uncertainty or standard deviation may be provided without absolute 
bounds on the value of the sampled parameter. In Sampler, it is possible to sample from an 
unbounded or from a truncated normal distribution. More discussion on considerations of 
distributions are provided in the next section. Unbounded distributions can be used for 
sampling some material constituents and some dimensions. In many other cases, restrictions 
on acceptable or realistic variability are provided by other model components. For example, 
the inner radius of the cladding must be greater than or equal to the outer radius of the fuel 
material. At this time, Sampler does not allow variables to be used as limits for sampling 
other variables. The user must therefore decide on some of these limits as part of 
implementation and include them in the input prior to execution. Generally, these decisions 
are based on the sensitivity of the parameters or the ranges allowed to each parameter. One 
parameter should not generally be limited to a small number of standard deviations if 
another parameter would be varying by more than two or three. The implementation of 
variable ranges for parameters with no specified tolerances or limits on variability are more 
difficult and require some engineering judgment. 
 

Variable Distributions 
An essential input for any Monte Carlo sampling process is the distribution from which to 
sample random variates. Essentially no work has been here investigating the effect of 
sampling from different distributions. There is some evidence in the literature [41] that the 
distribution from which the parameters are sampled does not have a significant impact on 
the critical experiment correlations. 
 
In the work presented here, most variables were sampled uniformly across the specified 
uncertainty band. This approach was adopted because the resulting uncertainty is larger for 
the uniform distribution than for the normal distribution [74], assuming both are sampled 
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over the same range. Larger uncertainties lead to larger correlation coefficients for shared 
parameters, but lower correlation coefficients when applied to unique uncertainty 
components. Differences in the ranges of the various parameter uncertainties should have a 
larger effect on the correlation coefficients than the distribution from which the parameter 
values are sampled. This is an area that represents a potential for further investigation in the 
future; the HST-001 evaluation would make a good test bed for these investigations since it 
has a much lower number of variables than the LEU fuel rod array experiments. 
 

Step Three: Execution 
The third step in the process of determining critical experiment correlations is the execution 
of the sampling to generate the necessary realizations, and the execution of these 
realizations. This step represents essentially all the computer time needed in the analysis, and 
the least practitioner time. The two primary concerns in the is phase are how many 
realizations must be created and run, and how low must the uncertainty be in the individual 
realization calculations. Each of these issues has been studied here, and the results will be 
summarized here. 
 

Number of Realizations 
The number of realizations is controlled by the convergence behavior of the correlation 
coefficient. High correlation coefficients resulting from strongly correlated experiments 
converge much more quickly than low correlation coefficients. This is illustrated in, for 
example, Figure 81, for three of the HST-001 correlation coefficients. Correlation 
coefficients converged in fewer than 150 realizations for most LEU fuel rod array cases 
performed with the uniform pitch assumption. The coefficients took more realizations to 
converge in the random rod location scenario. As shown in Figure 70, nearly 500 realizations 
are needed to converge at least one correlation coefficient in the LCT-042 evaluation in this 
latter scenario. It is therefore difficult to make any categorical recommendation, but 200 – 
300 realizations are likely sufficient for high correlation coefficients. More realizations are 
likely required for lower correlation coefficients, potentially on the order of 300 – 500. As 
will be discussed later in Step Four, additional realizations can be created and executed to 
assure convergence as needed for correlation coefficients with questionable convergence. 
 
The visual examination recommended here for assessing convergence is equivalent to most 
source convergence assessment techniques in Monte Carlo transport calculations. Visual 
inspection of the convergence of keff has been recommended for decades. More recent 
advances, such as Shannon entropy testing [16], are also primarily trying to identify the point 
at which the entropy has stopped changing. The visual convergence technique, while less 
than ideal, has a lengthy pedigree in assessing the convergence of Monte Carlo processes in 
nuclear engineering problems. 

Individual Realization Uncertainty 
The individual realizations used to calculate correlation coefficients in this work use Monte 
Carlo transport and therefore have stochastic uncertainty. Other transport techniques could 
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be used, but deterministic transport codes are rarely used in criticality safety calculations and 
thus rarely in need of validation for such use. Much of the discussion here on stochastic 
uncertainty would also be applicable to the convergence criteria in deterministic transport 
methods if they were used. 
 
The effects of the Monte Carlo, or stochastic, uncertainty on the correlation coefficients 
have been studied in both LEU fuel rod array evaluations considered in this work. A 
comparison of Figure 4 and Figure 61 or an examination of Figure 66 illustrates the dramatic 
effects that the stochastic uncertainty can have on the estimated correlation coefficient. As 
discussed earlier, the stochastic uncertainty is a source of unique uncertainty which, if not 
appropriately limited, can reduce the estimated correlation coefficient. The uncertainty in 
each realization must be significantly less than the variability in keff resulting from the 
sampling of the uncertain input parameters. In most cases, stochastic uncertainty on the 
order of 0.00020 Δk should be acceptable. Some scenarios, such as random fuel rod location 
scenarios for well characterized fuel array experiments, may require lower uncertainties. 
Unfortunately, the best method for determining that the individual realization stochastic 
uncertainties are low enough is to reduce the uncertainty and recalculate the correlation 
coefficient. This can be a computationally expensive process, but in some cases it may be 
necessary to provide confidence that the correlation coefficient estimates are not 
contaminated by excessive stochastic uncertainty. 
 

Step Four: Generate and Review Correlation Coefficients 
The final step of the process is to generate and review the correlation coefficients. There are 
a wide variety of ways to generate the correlation coefficients and then the results must be 
assessed. Each of these will be covered briefly in this section. 
 

Generation of Correlation Coefficients 
The generation of correlation coefficients is straightforward. The keff values must be 
collected from all the realizations for each of the cases. Each pair of cases must have the 
same number of realizations for the calculation of covariance and therefore a correlation 
coefficient. In all the work performed here, all cases had the same number of realizations. It 
is possible to generate more realizations for some cases then for others, and to ignore the 
extra realizations for the case with a greater number. This must be done carefully if there are 
some shared components of uncertainty to ensure that the covariance is calculated correctly. 
 
Once the keff values are collected, the correlation coefficient is calculated as shown in 
Equation 1. In this work, the final correlation coefficients were calculated by Sampler in 
post-processing mode for some cases, in spreadsheets for others, and using the 
correlations_single FORTRAN program described in Chapter III. The custom written 
correlations_single program includes statistical significance testing and generation of 95% 
confidence intervals, but these capabilities may be incorporated into Sampler in future 
releases. These steps can also be performed in a spreadsheet whether the rest of the 
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correlations are generated in a spreadsheet or not. The statistical testing may be helpful in 
the assessment of the correlation coefficients, described next. 
 

Assessment of Correlation Coefficients 
The first assessment to perform is that the correlation coefficient estimates have converged. 
This is described in the previous section on executing the calculations, and overlaps both 
steps. Visual examination of the convergence behavior is the primary technique that has 
been used and investigated in this work. The correlation coefficient for the first half and the 
second half of the realizations is calculated in addition to the overall coefficient in 
correlations_single as another crude assessment of convergence, but other techniques and 
statistical tests would also be applicable. This is an area in which future work could enhance 
the process of correlation coefficient generation. 
 
A second assessment that should be made is that the stochastic uncertainty of the 
realizations has been controlled sufficiently. Generally this requires a comparison of the 
uncertainty in each of the realizations with the variation of the keff values, typically as 
measured by their standard deviation. From the results presented in Table 16, it appears that 
the stochastic uncertainty should be approximately an order of magnitude lower than the 
standard deviation of the keff values. As mentioned in the previous section, this is best 
assessed by reducing the stochastic uncertainty and comparing the resulting correlation 
coefficients. 
 
The final and perhaps most important check is an assessment of the reasonableness of the 
correlation coefficients. The results presented for all the evaluations considered in this work 
ultimately are logical and consistent results of the assumptions made in the implementation 
of the uncertainty assessment (Step One). Cases with more shared uncertainty should result 
in higher correlation coefficients. This is demonstrated with Case 1 of LCT-007 having 
much higher correlation coefficients with the LCT-039 cases than the other LCT-007 cases. 
In this case, the shared pitch provides the additional shared uncertainty and higher 
correlation coefficients. The LCT-042 correlations are relatively homogenous, as would be 
expected since there is no obvious reason for any pair of cases to be more strongly 
correlated than others. For HST-001, Cases 4 and 9 have a higher correlation coefficient 
because of the shared solution in tanks with relatively tight geometrical tolerances.  Cases 1 
and 8 share a solution but do not have a high correlation coefficient because the uncertainty 
in Case 1 is driven by dimensional uncertainties in the stainless steel tank. Unfortunately, 
these relative trends do not necessarily provide an indication of the absolute magnitude of 
the correlation coefficients. More work is needed to develop a predictive capability for the 
absolute magnitude of the correlation coefficients between critical experiments. 
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CHAPTER IX: CONCLUSIONS 

A range of conclusions can be drawn from the results presented in Chapters V through VII. 
The most important of these conclusions are presented in the previous chapter describing 
the methodology for determining critical experiment correlations. Some conclusions have 
also been developed at the end of each chapter describing correlation coefficients. These will 
be consolidated here, followed by overarching conclusions and recommendations. 
Suggestions for future work are presented in Chapter X. 
 

Conclusions Regarding LEU Fuel Rod Arrays 
Correlation coefficients have been developed for up to 21 cases from the LCT-007 and 
LCT-039 evaluations as well for the seven cases in the LCT-042 evaluation. The conclusions 
presented here focus on the determination of correlation coefficients, and not on the values 
that were generated. There is insufficient justification for the use of any specific set of 
assumptions or associated correlation coefficients. All results presented in this work should 
be regarded as little more than potentially indicative of the real correlation coefficients for 
the cases studied. 
 

• The computational resources necessary to perform the calculations to determine 
correlation coefficients among critical experiments can be large. The generation of a 
matrix of correlation coefficients may require on the order of 4 hours per realization, 
which will likely be 1200 CPU-hours or more per case. The creation of each 
realization also requires a few seconds for simple models to 7 minutes or more for 
random fuel rod location models. This only adds approximately 35 CPU-hours, but 
this cannot currently be parallelized in Sampler and must be complete before the 
realizations can be run. The realizations can be executed completely in parallel as 
they are all separate executions. 

• The treatment of the pin pitch uncertainty in LEU fuel rod array experiments is 
likely the most important factor in the calculated correlation coefficients. The 
uniform pitch assumption will likely lead to high correlation coefficients, while a 
random fuel rod placement approach will result in lower correlation coefficients. 

• The evidence indicates that the correlations may be largely insensitive to the sampled 
pitch range in a uniform pitch scenario.  A reasonably realistic range, that is at least 
±1 standard deviation, must be used. The resulting correlations are generally higher 
than 0.9 and represent a significant potential impact on validation and/or data 
adjustment. 

• The number of realizations needed for convergence of calculated correlation 
coefficients depends largely on the magnitude of the coefficient. High correlation 
coefficients appear to converge with 150 or fewer realizations, while lower 
correlation coefficients may require 300 or more realizations. 

• The individual realization keff values need to be determined with the minimum 
feasible stochastic (Monte Carlo) uncertainty. Significant changes in the correlation 
coefficients are observed when the uncertainty is reduced from approximately 
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0.00100 Δk to 0.00020 Δk. Further reductions in uncertainty have smaller effects for 
the cases examined here, but may be needed for other cases with lower overall 
uncertainties. 

• MG KENO calculations appear to provide sufficient accuracy for the determination 
of correlation coefficients, even for the random rod placement models. This is a 
significant finding as it saves a significant amount of runtime for every realization. 
CE calculations could extend the runtime requirements for executing the realizations 
by a factor of 2 to 4 [75]. 

 

Conclusions Regarding HEU Solution Experiments 
Correlation coefficients have been developed for the 10 cases in the HST-001 evaluation. 
Again, the conclusions here focus on the conclusions that are relevant for the methodology 
and not on the specific correlation coefficient results. In this case, a more thorough 
examination of the reasonable assumptions is possible because of the more limited number 
of variable parameters. The correlation coefficients provided in Figure 79 are plausible 
correlation coefficients for the evaluation. 
 

• The computational investment will likely be large for solution systems. In this case, 
the runtime per realizations is on the order of 2. The resulting runtime per case is 
therefore likely between 600 and 1000 CPU-hours per case. Sampler creates the 
realizations in seconds because the models are very simple. 

• The impact of sharing a solution in two cases can differ dramatically based on the 
relative effects of other parameters. In this case, the uncertainty due to dimensional 
uncertainties in the stainless steel tank overwhelmed the correlation due to a shared 
solution. In the aluminum tanks with smaller dimensional uncertainties, the pair of 
cases using the same solution had a significantly higher correlation coefficient. 

 

Conclusions for All Systems 
Fortunately, several conclusions relevant to both types of systems studied in this work can 
also be drawn. These conclusions are likely applicable to generating critical experiment 
correlations for all types of systems. 
 

• A general methodology for generation of critical experiment correlations has been 
outlined in Chapter VIII. This methodology contains some specific guidance for 
implementation with the Sampler sequence in the SCALE code system, but is largely 
applicable to any Monte Carlo sampling system. 

• It is possible to determine which variables control the uncertainty in each case, and 
therefore which variable parameters are most important to the correlation 
coefficients. Many variables, while important to the overall system behavior, are 
tightly controlled and thus have little impact on the correlation coefficients. 
Enrichment is an excellent example of this type of high importance, low uncertainty 
parameter. 
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• The correlation coefficients relevant to the critical experiment itself are different 
from the correlation coefficients of the uncertainties in the experiments. The former 
are necessary for validation, especially in traditional trending techniques. The 
correlation coefficients of the uncertainties are necessary for data adjustment 
techniques. This work has been concerned with the correlations of the experiments, 
not the correlations of the uncertainties. 

• In-depth knowledge of the critical experiment materials, configurations, procedures, 
and setup are required for correct assessment of shared and unique uncertainty 
contributions. This level of information is not available in the ICSBEP Handbook 
[15], which is currently the primary reference for critical experiment descriptions. 
Without this in-depth knowledge, it is nearly impossible to make defensible 
determinations regarding the uncertainty sharing among different cases. The lack of 
this quality information will be a significant impediment to the generation of reliable, 
defensible critical experiment correlations. 
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CHAPTER X: FUTURE WORK 

Several aspects of the generation of critical experiment correlations could be studied in the 
future. Several of these areas are outlined here. 
 

• Critical experiment correlations need to be generated for metal systems. Many critical 
experiments involving metal systems have the potential for high correlation because 
of shared components. Many experiments have been performed using the same 
metal system but with different reflectors. In other cases, shells of fissile or reflecting 
materials have been used in multiple experiments. Thus there is a potential for a large 
number of correlated experiments within this category of systems. 

• More work can be done to investigate the convergence of the correlation coefficient 
estimates. Many of the same statistical tests used for source convergence in Monte 
Carlo transport problems can be applied to this Monte Carlo convergence problem. 
Some of these tests might include comparison of the first and last half of the 
realizations, the slope of the correlation coefficient estimate as a function of 
realization number, or other techniques. 

• Additional work could be performed on the use of MG KENO for individual 
realizations. Some critical systems cannot be calculated accurately with MG methods 
because proper self-shielding models are impossible. These systems would require 
significantly more computational effort if the correlation coefficients must be 
established with CE Monte Carlo. 

• Some comparisons of correlation coefficients from different code systems have been 
performed as part of the WPNCS/UACSA benchmark [33]. By the nature of the 
benchmark, these comparisons only include LEU fuel array systems. Comparisons 
should be expanded to include more types of critical experiments and more code 
packages. 

• A complete validation technique including critical experiment correlations needs to 
be developed. This work has begun [50, 51], but further work is needed to complete 
development and demonstration of the methodology. 

• Collaboration with experimentalists is necessary to provide more basis for plausible 
critical experiment correlations. It may be possible to design a set of experiments to 
investigate correlations, or repeated measurements of the same configuration may be 
useful in providing bounding estimates of the correlation coefficients. Some of this 
information may already exist for repeatability measurements. 

• Information about critical experiment correlation determinations should be shared 
with experimentalists both so that they can look for design features to control 
correlation and to improve documentation of the uniqueness of uncertainties. 

• Additional work can be applied to evaluations such as LEU-COMP-THERM-097. 
Experiments such as this one, performed at Sandia National Laboratories, are known 
to have exceptionally well characterized uncertainty components. These experiments 
also have a unique correspondence of fuel rod to grid plate location, eliminating 
uncertainty as to which rods are used in each case. 
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• The brief study on the repeatability of critical experiment correlation determination 
presented in Chapter V should be expanded to other pairs of cases and other 
evaluations. The result of that study, if confirmed, would undermine the validity of 
correlation coefficient estimates from the Monte Carlo sampling method. 

• The integration of a deterministic transport code into the Monte Carlo sampling 
technique may provide useful insights by eliminating stochastic uncertainties. 
Generally, convergence criteria in these codes can be smaller than Monte Carlo 
uncertainties. 

• A thorough investigation of the impact of the distribution from which random 
samples are drawn should be performed. 
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Appendix A: Source code for correlations_single.f90 
program correlations_single 
! 
! correlations - This program reads dat files that contain keff results 
!                from Sampler-generated KENO inputs and calculates the 
!                average and standard deviation for each Case, as well 
!                as the correlation coefficients for each pair of 
Cases. 
!                This is being modified in December of 2016 to 
!                support work on the LCT-042 correlations as part of my 
!                dissertation.  The primary modification here is that  
!                each case has a unique number of variables so two sets 
!                of calculations aren't needed.  This version may see 
!                more use later. 
! 
! variables 
! 
!  numcases is the number of separate cases 
!  numreal  is the number of realizations for each case 
!  datfile  is the name of the file containing the names of the dat 
files 
!  datnames is the array variable with the dat file names in it 
!  casenamefile is a file with Case designators, like 007-001 
!  casename(i) is the Case designator for each case, 10 characters for 
now 
!  avg(i) is the average keff value for case(i) 
!  delta(i,j) is (x-xbar) for each realization(j) for each case(i) 
!  sumdelsq is a running sum of the delta(i,j) values squared 
!  var(i) is the variance for each case(i) 
!  stdev(i) is the standard deviation for each case(i) 
!  top is the product of delta(i,j) values for a realization for two 
cases 
!  sumtop is the running sum of the numerator for one covariance 
calculation 
!  covar(ifirst,isecond) is the covariance between two cases 
!  corr(ifirst,isecond) is the correlation coefficient between the two 
cases 
!  fhavg, fhvar, fhstdev, fhdelta are for the first half of 
realizations 
!  shavg, shvar, shstdev, shdelta are for the second half of 
realizations 
! 
      character*120 datfile, casenamefile 
      character*10, dimension(:), allocatable :: casename 
      character*120, dimension(:), allocatable :: datnames 
      real*8, dimension(:, :), allocatable :: kcase, delta 
      real*8, dimension(:, :), allocatable :: fhdelta, shdelta 
      real*8, dimension(:, :), allocatable :: covar, corr, squiggle 
      real*8, dimension(:, :), allocatable :: cihigh, cilow 
      real*8, dimension(:, :), allocatable :: rhocihigh, rhocilow 
      real*8, dimension(:), allocatable :: avg, var, stdev 
      real*8, dimension(:), allocatable :: fhavg, fhvar, fhstdev 
      real*8, dimension(:), allocatable :: shavg, shvar, shstdev 
      real*8 casesum, sumdelsq, sumtop, denom 
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! 
! print some general info about the program to the user 
! 
      print *, '======================================================& 
       ========================= ' 
      print *, 'This program will read a file dat files from KENO & 
       calculations and determine ' 
      print *, 'the correlation coefficient between pairs of cases.' 
      print * 
      print *, '======================================================& 
       ========================= ' 
! 
! get info from user about the paths to the templates and profile file 
! 
      print *, 'What is the path to the file listing dat files?' 
      read '(a)', datfile 
      print *, 'What is the path to the file listing Case names?' 
      read '(a)', casenamefile 
      print *, 'How many cases are in the matrix?' 
      read *, numcases 
      print *, 'How many realizations are there for each case?' 
      print *, 'At this point, all cases have equal realizations.' 
      read *, numreal 
      print *, 'Note that all statistical testing performed by this' 
      print *, 'program assumes 300 samples at 95% confidence!' 
! 
! allocate size of arrays 
! 
      allocate (kcase(numcases,numreal)) 
      allocate (delta(numcases,numreal)) 
      allocate (fhdelta(numcases,numreal)) 
      allocate (shdelta(numcases,numreal)) 
      allocate (covar(numcases, numcases)) 
      allocate (corr(numcases, numcases)) 
      allocate (squiggle(numcases, numcases)) 
      allocate (cilow(numcases, numcases)) 
      allocate (cihigh(numcases, numcases)) 
      allocate (rhocilow(numcases, numcases)) 
      allocate (rhocihigh(numcases, numcases)) 
      allocate (datnames(numreal)) 
      allocate (avg(numcases)) 
      allocate (var(numcases)) 
      allocate (stdev(numcases)) 
      allocate (fhavg(numcases)) 
      allocate (fhvar(numcases)) 
      allocate (fhstdev(numcases)) 
      allocate (shavg(numcases)) 
      allocate (shvar(numcases)) 
      allocate (shstdev(numcases)) 
      allocate (casename(numcases)) 
! 
! Set zscore and tscore variables 
!  tscore is taken from Excel 2016 t.inv(0.975,297) after comparisons 
with 
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!    references - Neter, Kutner, Nachtsheim, & Wasserman, and the NIST 
table 
!  zscore is taken from Excel 2016 norm.s.inv(0.975,sqrt(297)) which is 
in good 
!    agreement with the known value of 1.96. 
! 
! NOTE THAT THESE VALUES ARE ONLY GOOD for: 
!    95% confidence 
!    300 samples (t score is selected with 297 degrees of freedom) 
! 
      tscore=1.967957 
      zscore=1.959964 
! civar is variance for confidence interval = 1/n-3 
! cistdev is standard deviation for confidence interval 
! zsig is product of zscore multiplier and cistdev 
      civar=1.0/(numreal-3.0) 
      cistdev=sqrt(civar) 
      zsig = zscore * cistdev 
!      print *, 'zsig= ',zsig 
!      print *, 'zscore= ',zscore 
!      print *, 'civar= ',civar 
      
! 
! test all data are read correctly 
! 
!      print *, datfile 
!      print *, casenamefile 
!      print *, numcases 
!      print *, numreal 
! 
! open file with casenames and read it to casename array 
! 
      open(unit=10,file=casenamefile) 
      do i = 1,numcases 
         read (10,'(a10)') casename(i) 
      enddo 
      close (10) 
! test reading 
!      do itest = 1,numcases 
!         print '(a)', casename(itest) 
!      enddo 
! 
! open file with datfile names and read names to datnames array 
! 
      open(unit=11,file=datfile) 
      do ifiles = 1,numcases 
         read (11,'(a120)') datnames(ifiles) 
      enddo 
      close(11) 
! test reading 
!      do itest = 1,numreal 
!         print '(a)', datnames(itest) 
!      enddo 
! 



 

152 
 

      nfirsthalf = numreal / 2.0 
      nsecondhalf = nfirsthalf + 1.0 
! 
! define kcasecount to keep track of dat file name 
! 
!      kcasecount = 1 
! 
! read keff for first case.  There is only one set for this case 
! 
!      open(unit=10,file=datnames(kcasecount)) 
!      kcasecount = kcasecount + 1 
!      do i=1,numreal 
!         read (10,'(f7.5)') kcase(1,i,1) 
!      enddo 
!      close(10) 
! test reading 
!      open(unit=12,file="tmp.txt") 
!      do itest=1,numreal 
!         write(12,'(f7.5)') kcase(1,itest,1) 
!      enddo 
!      close(12) 
! 
! read keff for cases with two sets.  This is now all of them. 
! 
      do icase=1,numcases 
         open(unit=10,file=datnames(icase)) 
         do i=1,numreal 
            read (10, '(f8.6)') kcase(icase,i) 
         enddo  ! on number of realizations 
         close(10) 
      enddo  ! on cases 
! 
!      print *, 'Past reading k effectives' 
! 
! test read 
!      open(unit=12,file="tmp.txt") 
!      do itest=1,numreal 
!         write(12,'(f8.6,1x,f8.6)') (kcase(j,itest), j=1,numcases) 
!      enddo 
!      close(12) 
!      stop 
! 
! now calculate averages for each case 
! 
      do icases=1,numcases 
         casesum=0 
         do i=1,numreal 
            casesum = casesum + kcase(icases,i) 
         enddo 
         avg(icases) = casesum / numreal 
!         print *, 'casesum(',icases,') = ',casesum 
!         print *, 'Avg(',icases,') = ',avg(icases) 
      enddo 
! 
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! first half average 
      do icases=1,numcases 
         casesum=0 
         do i=1,nfirsthalf 
            casesum = casesum + kcase(icases,i) 
         enddo 
         fhavg(icases) = casesum / nfirsthalf 
      enddo 
! 
! second half average 
      do icases=1,numcases 
         casesum=0 
         do i=nsecondhalf,numreal 
            casesum = casesum + kcase(icases,i) 
         enddo 
         ndivisor = numreal - nfirsthalf 
         shavg(icases) = casesum / ndivisor 
      enddo 
! 
! calculate delta values for each realization in each case for both 
sets 
! also calculate standard deviation for each case and set 
! 
      do icases=1,numcases 
         sumdelsq=0 
         do jreal=1,numreal 
            delta(icases,jreal)=kcase(icases,jreal)-avg(icases) 
            sumdelsq = sumdelsq + delta(icases,jreal)**2 
         enddo ! on realizations for middle cases 
         var(icases) = sumdelsq / (numreal - 1.0) 
!         print *, 'Variance of case: ', icases, 'is: ',var(icases) 
         stdev(icases) = sqrt(var(icases)) 
!         endif 
      enddo ! on cases 
! test delta calculation 
!      open(unit=12,file="tmp.txt") 
!      do itest=1,numreal 
!         write(12,'(f8.6,1x,f8.6)') (delta(i,itest), i=1,numcases) 
!      enddo 
!      close(12) 
! 
! write stdev and stdev for each case to file 
      open(unit=12,file="mean_stdev.dat") 
      do iprt=1,numcases 
         write(12,100) casename(iprt), avg(iprt),stdev(iprt) 
      enddo 
      close(12) 
!      stop 
! 
! Calculate standard deviations for the first half and second half 
!  of the realizations 
! 
! first half 
      do icases=1,numcases 
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         sumdelsq=0 
         do jreal=1,nfirsthalf 
            fhdelta(icases,jreal)=kcase(icases,jreal)-fhavg(icases) 
            sumdelsq = sumdelsq + fhdelta(icases,jreal)**2 
         enddo ! on realizations for middle cases 
         fhvar(icases) = sumdelsq / (nfirsthalf - 1.0) 
!         print *, 'Variance of case: ', icases, 'is: ',var(icases) 
         fhstdev(icases) = sqrt(fhvar(icases)) 
!         endif 
      enddo ! on cases 
! 
! second half 
      do icases=1,numcases 
         sumdelsq=0 
         do jreal=nsecondhalf,numreal 
            jnum = jreal - nfirsthalf 
            shdelta(icases,jnum)=kcase(icases,jreal)-shavg(icases) 
            sumdelsq = sumdelsq + shdelta(icases,jnum)**2 
         enddo ! on realizations for middle cases 
         shvar(icases) = sumdelsq / (ndivisor - 1.0) 
!         print *, 'Variance of case: ', icases, 'is: ',var(icases) 
         shstdev(icases) = sqrt(shvar(icases)) 
!         endif 
      enddo ! on cases 
 
! test math 
!      do i=1,numcases 
!         print *, 'Case #', i 
!         print *, 'Avg and stdev are:', avg(i), stdev(i) 
!         print *,'First half avg and stdev are:',fhavg(i),fhstdev(i) 
!         print *,'Scnd half avg and stdev are:',shavg(i),shstdev(i) 
!      enddo 
!      stop 
!======================================================================
= 
! 
! Here we calculate correlation coefficients.   
! 
!----------------------------------------------------------------------
- 
! 
! Loop through cases from 1 to n-1 
!   calculate covariance for each pair (first,second) 
!   calculate correlation coefficient for each pair 
! 
! Open unit 15 (signficant.dat) to contain results of t testing 
      open(unit=15,file="significant.dat") 
! 
!      open(unit=12,file="tmp.txt")  ! for checking sumtop 
      do ifirst=1,numcases-1 
         do isecond=ifirst+1,numcases 
            sumtop=0 
            do j=1,numreal 
               sumtop = sumtop+delta(ifirst,j)*delta(isecond,j) 
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! test sumtop calculation 
!               write(12,'(e12.5,1x,e12.5)') sumtop 
            enddo ! realizations 
            covar(ifirst,isecond) = sumtop/(numreal-1) 
            denom=stdev(ifirst)*stdev(isecond) 
! calculate correlation coefficient 
            corr(ifirst,isecond) = covar(ifirst,isecond) / denom 
! fisher transformed to z' aka squigle 
            squiggle(ifirst,isecond) = 
0.5*log((1+corr(ifirst,isecond))& 
              / (1-corr(ifirst,isecond))) 
!            if (ifirst .eq. 1) then 
!               print *, ifirst, isecond, corr(ifirst,isecond), 
squiggle(ifirst,isecond) 
!            endif 
! confidence interval top and ottom values 
            cihigh(ifirst,isecond) = squiggle(ifirst,isecond) + zsig 
            cilow(ifirst,isecond) = squiggle(ifirst,isecond) - zsig 
!            if (ifirst .eq. 1) then 
!               print *, ifirst, isecond, cihigh(ifirst,isecond), 
cilow(ifirst,isecond) 
!            endif 
! untransform cihigh and cilow to correlation coefficient space 
(rhocihigh and 
! rhocilow) 
            rhocihigh(ifirst,isecond)=(exp(2*cihigh(ifirst,isecond))-
1)& 
                                     /(exp(2*cihigh(ifirst,isecond))+1) 
            rhocilow(ifirst,isecond)=(exp(2*cilow(ifirst,isecond))-1) & 
                                    /(exp(2*cilow(ifirst,isecond))+1) 
!            if (ifirst .eq. 1) then 
!               print *, ifirst, isecond, rhocihigh(ifirst,isecond), & 
!                                          rhocilow(ifirst,isecond) 
!            endif 
! calculate tstar test sttistic for testing non-zero null hypothesis 
            radicand=numcases - 2 
            tstar=corr(ifirst,isecond)*sqrt(radicand)/sqrt(1- & 
                      corr(ifirst,isecond)**2) 
!     do test on tstar and write result to significant.dat 
            if (tstar .gt. tscore) then 
               write(15,1100) casename(ifirst), casename(isecond), & 
                             "nonzero" 
            else 
               write(15,1100) casename(ifirst), casename(isecond),& 
                            "insignificant" 
            endif 
!            print *, ifirst, isecond, corr 
!            print *, 'covariance: 
',ifirst,isecond,covar(ifirst,isecond) 
!            print '(a,2i3,f6.3)', 'correlation: 
',ifirst,isecond,corr(ifirst,isecond) 
         enddo ! second cases 
       enddo ! first cases 
       close(15) 
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!       close(12)  ! for checking sumtop 
! 
! write data to file 
! 
      open(unit=12,file="correlations.dat") 
      open(unit=13,file="confidence_intervals.dat") 
      write(12,1000) (casename(i),i=1,numcases) 
      write(13,2000) (casename(i),i=1,numcases) 
      if (numcases .eq. 10) then 
         write(12,1001) casename(1), (corr(1,j),j=2,numcases) 
         write(12,1002) casename(2), (corr(2,j),j=3,numcases) 
         write(12,1003) casename(3), (corr(3,j),j=4,numcases) 
         write(12,1004) casename(4), (corr(4,j),j=5,numcases) 
         write(12,1005) casename(5), (corr(5,j),j=6,numcases) 
         write(12,1006) casename(6), (corr(6,j),j=7,numcases) 
         write(12,1007) casename(7), (corr(7,j),j=8,numcases) 
         write(12,1008) casename(8), (corr(8,j),j=9,numcases) 
         write(12,1009) casename(9), (corr(9,j),j=10,numcases) 
! 
! write CIs 
! 
         write(13,2001) casename(1),('(',rhocilow(1,j),',', & 
                                     rhocihigh(1,j),')',j=2,numcases) 
         write(13,2002) casename(2),('(',rhocilow(2,j),',', & 
                                     rhocihigh(2,j),')',j=3,numcases) 
         write(13,2003) casename(3),('(',rhocilow(3,j),',', & 
                                     rhocihigh(3,j),')',j=4,numcases) 
         write(13,2004) casename(4),('(',rhocilow(4,j),',', & 
                                     rhocihigh(4,j),')',j=5,numcases) 
         write(13,2005) casename(5),('(',rhocilow(5,j),',', & 
                                     rhocihigh(5,j),')',j=6,numcases) 
         write(13,2006) casename(6),('(',rhocilow(6,j),',', & 
                                     rhocihigh(6,j),')',j=7,numcases) 
         write(13,2007) casename(7),('(',rhocilow(7,j),',', & 
                                     rhocihigh(7,j),')',j=8,numcases) 
         write(13,2008) casename(8),('(',rhocilow(8,j),',', & 
                                     rhocihigh(8,j),')',j=9,numcases) 
         write(13,2009) casename(9),('(',rhocilow(9,j),',', & 
                                     rhocihigh(9,j),')',j=10,numcases) 
      else 
         write(12,1001) casename(1), (corr(1,j),j=2,numcases) 
         write(12,1002) casename(2), (corr(2,j),j=3,numcases) 
         write(12,1003) casename(3), (corr(3,j),j=4,numcases) 
         write(12,1004) casename(4), (corr(4,j),j=5,numcases) 
         write(12,1005) casename(5), (corr(5,j),j=6,numcases) 
         write(12,1006) casename(6), (corr(6,j),j=7,numcases) 
! 
! write CIs 
! 
         write(13,2001) casename(1),('(',rhocilow(1,j),',', & 
                                     rhocihigh(1,j),')',j=2,numcases) 
         write(13,2002) casename(2),('(',rhocilow(2,j),',', & 
                                     rhocihigh(2,j),')',j=3,numcases) 
         write(13,2003) casename(3),('(',rhocilow(3,j),',', & 
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                                     rhocihigh(3,j),')',j=4,numcases) 
         write(13,2004) casename(4),('(',rhocilow(4,j),',', & 
                                     rhocihigh(4,j),')',j=5,numcases) 
         write(13,2005) casename(5),('(',rhocilow(5,j),',', & 
                                     rhocihigh(5,j),')',j=6,numcases) 
         write(13,2006) casename(6),('(',rhocilow(6,j),',', & 
                                     rhocihigh(6,j),')',j=7,numcases) 
      endif 
      close(12) 
      close(13) 
      covar=0 
      corr=0 
! 
! Calculate correlations for first half of realizations 
! 
      do ifirst=1,numcases-1 
         do isecond=ifirst+1,numcases 
            sumtop=0 
            do j=1,nfirsthalf 
               sumtop = sumtop+fhdelta(ifirst,j)*fhdelta(isecond,j) 
            enddo ! realizations 
            covar(ifirst,isecond) = sumtop/(nfirsthalf-1) 
            denom=fhstdev(ifirst)*fhstdev(isecond) 
            corr(ifirst,isecond) = covar(ifirst,isecond)/denom 
!            print *, 'covariance: 
',ifirst,isecond,covar(ifirst,isecond) 
!            print '(a,2i3,f6.3)', 'correlation: 
!            ',ifirst,isecond,corr(ifirst,isecond) 
         enddo ! second cases 
       enddo ! first cases 
! 
! write data to file 
! 
      open(unit=12,file="correlations_firsthalf.dat") 
      write(12,1000) (casename(i),i=1,numcases) 
      if (numcases .eq. 10) then 
         write(12,1001) casename(1), (corr(1,j),j=2,numcases) 
         write(12,1002) casename(2), (corr(2,j),j=3,numcases) 
         write(12,1003) casename(3), (corr(3,j),j=4,numcases) 
         write(12,1004) casename(4), (corr(4,j),j=5,numcases) 
         write(12,1005) casename(5), (corr(5,j),j=6,numcases) 
         write(12,1006) casename(6), (corr(6,j),j=7,numcases) 
         write(12,1007) casename(7), (corr(7,j),j=8,numcases) 
         write(12,1008) casename(8), (corr(8,j),j=9,numcases) 
         write(12,1009) casename(9), (corr(9,j),j=10,numcases) 
      else 
         write(12,1001) casename(1), (corr(1,j),j=2,numcases) 
         write(12,1002) casename(2), (corr(2,j),j=3,numcases) 
         write(12,1003) casename(3), (corr(3,j),j=4,numcases) 
         write(12,1004) casename(4), (corr(4,j),j=5,numcases) 
         write(12,1005) casename(5), (corr(5,j),j=6,numcases) 
         write(12,1006) casename(6), (corr(6,j),j=7,numcases) 
      endif 
      close(12) 
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      covar=0 
      corr=0 
! 
! Calculate correlations for second half of realizations 
! 
! 
      do ifirst=1,numcases-1 
         do isecond=ifirst+1,numcases 
            sumtop=0 
            do j=nsecondhalf,numreal 
               jnum = j - nfirsthalf 
               sumtop=sumtop+shdelta(ifirst,jnum)*shdelta(isecond,jnum) 
            enddo ! realizations 
            covar(ifirst,isecond) = sumtop/(nfirsthalf-1) 
            denom=shstdev(ifirst)*shstdev(isecond) 
            corr(ifirst,isecond) = covar(ifirst,isecond)/denom 
!            print *, 'covariance: 
',ifirst,isecond,covar(ifirst,isecond) 
!            print '(a,2i3,f6.3)', 'correlation: 
!            ',ifirst,isecond,corr(ifirst,isecond) 
         enddo ! second cases 
       enddo ! first cases 
! 
! write data to file 
! 
      open(unit=12,file="correlations_secondhalf.dat") 
      write(12,1000) (casename(i),i=1,numcases) 
      if (numcases .eq. 10) then 
         write(12,1001) casename(1), (corr(1,j),j=2,numcases) 
         write(12,1002) casename(2), (corr(2,j),j=3,numcases) 
         write(12,1003) casename(3), (corr(3,j),j=4,numcases) 
         write(12,1004) casename(4), (corr(4,j),j=5,numcases) 
         write(12,1005) casename(5), (corr(5,j),j=6,numcases) 
         write(12,1006) casename(6), (corr(6,j),j=7,numcases) 
         write(12,1007) casename(7), (corr(7,j),j=8,numcases) 
         write(12,1008) casename(8), (corr(8,j),j=9,numcases) 
         write(12,1009) casename(9), (corr(9,j),j=10,numcases) 
      else 
         write(12,1001) casename(1), (corr(1,j),j=2,numcases) 
         write(12,1002) casename(2), (corr(2,j),j=3,numcases) 
         write(12,1003) casename(3), (corr(3,j),j=4,numcases) 
         write(12,1004) casename(4), (corr(4,j),j=5,numcases) 
         write(12,1005) casename(5), (corr(5,j),j=6,numcases) 
         write(12,1006) casename(6), (corr(6,j),j=7,numcases) 
      endif 
      close(12) 
! 
! deallocate arrays 
! 
      deallocate (kcase) 
      deallocate (delta) 
      deallocate (fhdelta) 
      deallocate (shdelta) 
      deallocate (covar) 
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      deallocate (corr) 
      deallocate (datnames) 
      deallocate (avg) 
      deallocate (var) 
      deallocate (stdev) 
      deallocate (fhavg) 
      deallocate (fhvar) 
      deallocate (fhstdev) 
      deallocate (shavg) 
      deallocate (shvar) 
      deallocate (shstdev) 
      deallocate (casename) 
! 
!----------------------------------------------------------------------
- 
! format statements 
100   format(a9,4f9.6) 
1000  format(12x,21a11) 
1001  format(a9,11x,9f11.3) 
1002  format(a9,22x,8f11.3) 
1003  format(a9,33x,7f11.3) 
1004  format(a9,44x,6f11.3) 
1005  format(a9,55x,5f11.3) 
1006  format(a9,66x,4f11.3) 
1007  format(a9,77x,3f11.3) 
1008  format(a9,88x,2f11.3) 
1009  format(a9,99x,1f11.3) 
1100  format(1x,2a11,a13) 
2000  format(10x,10(3x,a9,4x)) 
2001  format(a9,15x,9(a,f6.3,a,f6.3,a,1x)) 
2002  format(a9,31x,8(a,f6.3,a,f6.3,a,1x)) 
2003  format(a9,47x,7(a,f6.3,a,f6.3,a,1x)) 
2004  format(a9,63x,6(a,f6.3,a,f6.3,a,1x)) 
2005  format(a9,79x,5(a,f6.3,a,f6.3,a,1x)) 
2006  format(a9,95x,4(a,f6.3,a,f6.3,a,1x)) 
2007  format(a9,111x,3(a,f6.3,a,f6.3,a,1x)) 
2008  format(a9,127x,2(a,f6.3,a,f6.3,a,1x)) 
2009  format(a9,143x,1(a,f6.3,a,f6.3,a,1x)) 
! 
      stop 
      end 
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Appendix B: Input for LEU-COMP-THERM-007-001, Uniform Pitch 
Assumption 

The model supporting calculations with the uniform pitch assumption is provided here for 
the sake of brevity. This input is just under 500 lines, while the model with each fuel rod in 
its own unit for random placement is in excess of 17,500 lines. 
 
=csas25 
LEU-COMP-THERM-007-001 
v7.1-252n 
read comp 
' 
'uo2 fuel - in water 
' 
u-234  1 0 7.1087e-6 295.15 end 
u-235  1 0 1.1104e-3 295.15 end 
u-236  1 0 3.1792e-5 295.15 end 
u-238  1 0 2.2006e-2 295.15 end 
o      1 0 4.1202e-2 295.15 end 
al     1 0 4.1701e-6 295.15 end 
fe     1 0 9.5140e-6 295.15 end 
si     1 0 2.2479e-5 295.15 end 
b-10   1 0 6.9037e-8 295.15 end 
b-11   1 0 2.7788e-7 295.15 end 
' 
'uo2 fuel - in air 
' 
u-234  10 0 7.1087e-6 295.15 end 
u-235  10 0 1.1104e-3 295.15 end 
u-236  10 0 3.1792e-5 295.15 end 
u-238  10 0 2.2006e-2 295.15 end 
o      10 0 4.1202e-2 295.15 end 
al     10 0 4.1701e-6 295.15 end 
fe     10 0 9.5140e-6 295.15 end 
si     10 0 2.2479e-5 295.15 end 
b-10   10 0 6.9037e-8 295.15 end 
b-11   10 0 2.7788e-7 295.15 end 
' 
' 
'AGS - used for gapd=0.82 3 cladding and end plugs - in water 
' 
al  2 0 5.9569e-2 295.15 end 
mg  2 0 3.1442e-4 295.15 end 
si  2 0 2.4894e-4 295.15 end 
zn  2 0 7.4597e-6 295.15 end 
fe  2 0 6.4052e-5 295.15 end 
' 
'AGS - used for gapd=0.82 3 cladding and end plugs - in water 
' 
al  20 0 5.9569e-2 295.15 end 
mg  20 0 3.1442e-4 295.15 end 
si  20 0 2.4894e-4 295.15 end 
zn  20 0 7.4597e-6 295.15 end 
fe  20 0 6.4052e-5 295.15 end 
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' 
'air 
' 
n   3 0 4.1985e-5 295.15 end 
o   3 0 1.1263e-5 295.15 end 
' 
'air 
' 
n   30 0 4.1985e-5 295.15 end 
o   30 0 1.1263e-5 295.15 end 
' 
'water - in lattice 
' 
o   4 0 3.3353e-2 295.15 end 
h   4 0 6.6706e-2 295.15 end 
' 
' 
'water - first 5 cm outside of the lattice 
' 
o   40 0 3.3353e-2 295.15 end 
h   40 0 6.6706e-2 295.15 end 
' 
' 
'water - outside of first 5 cm outside of lattice 
' 
o   400 0 3.3353e-2 295.15 end 
h   400 0 6.6706e-2 295.15 end 
' 
'stainless steel - used for grid and pedistal 
' 
c    1000 0 5.9414e-5 295.15 end 
cr   1000 0 1.6469e-2 295.15 end 
fe   1000 0 6.0014e-2 295.15 end 
mn   1000 0 8.6597e-4 295.15 end 
ni   1000 0 8.1061e-3 295.15 end 
si   1000 0 8.4696e-4 295.15 end 
s    1000 0 2.2256e-5 295.15 end 
p-31 1000 0 3.0719e-5 295.15 end 
' 
end comp 
' 
read cell 
 latticecell squarepitch pitch=1.26 4 fueld=0.7892 1 gapd=0.82 3 
cladd=0.940 2 end 
end cell 
' 
read parm 
  tme=10000 tba=60 
  npg=10000 nsk=100 sig=0.00100 htm=no gen=10100 
end parm 
' 
read geometry 
' 
unit 1 
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' bottom end plug - below lower grid plate 
 cylinder 2 1  0.47                    1.50 0.53 origin 0.63 0.63 
 cuboid   4 1  1.26 0.0  1.26  0.0  1.50 0.53 
' 
unit 11 
'array of bottom end plugs -  below lower grid plate 
 array 11 -13.86 -13.86 0.53 
 cuboid 40   1  18.86 -18.86 18.86 -18.86 1.50 0.53 
 cuboid 400  1  60.00 -60.00 60.00 -60.00 1.50 0.53 
 cuboid 1000 1  60.30 -60.30 60.30 -60.30 1.50 0.53 
' 
 unit 2 
' bottom end plug - in lower grid plate 
 cylinder 2 1     0.47                   1.75 1.50 origin 0.63 0.63 
 cylinder 4 1     0.5                    1.75 1.50 origin 0.63 0.63 
 cuboid   1000 1  1.26 0.0  1.26  0.0    1.75 1.50 
' 
unit 22 
'array of bottom end plugs - in the bottom grid plate 
 array 22 -13.86 -13.86 1.50 
 cuboid 1000 1  30.00 -30.00 30.00 -30.00 1.75 1.50 
 cuboid 400  1  60.00 -60.00 60.00 -60.00 1.75 1.50 
 cuboid 1000 1  60.30 -60.30 60.30 -60.30 1.75 1.50 
' 
 unit 3 
' bottom end plug - above lower grid plate 
 cylinder 2 1  0.47                   1.80 1.75 origin 0.63 0.63 
 cuboid   4 1  1.26 0.0  1.26  0.0 1.80 1.75 
' 
unit 33 
' array for bottom end plugs above the bottom grid plate 
 array 33 -13.86 -13.86 1.75 
 cuboid 40   1  18.86 -18.86 18.86 -18.86 1.80 1.75 
 cuboid 400  1  60.00 -60.00 60.00 -60.00 1.80 1.75 
 cuboid 1000 1  60.30 -60.30 60.30 -60.30 1.80 1.75 
' 
unit 4 
' submerged portion of fuel stack 
 cylinder 1 1 0.3946                  89.70  0.0  origin 0.63 0.63 
 cylinder 30 1 0.41                    89.70  0.0  origin 0.63 0.63 
 cylinder 2 1 0.47                    89.70  0.0  origin 0.63 0.63 
 cuboid   4 1 1.26 0.0  1.26 0.0      89.70  0.0 
' 
unit 44 
' array for submerged fuel 
 array 44 -13.86 -13.86 0.0 
 cuboid 40   1  18.86 -18.86 18.86 -18.86 89.70  0.0 
 cuboid 400  1  60.00 -60.00 60.00 -60.00 89.70  0.0 
 cuboid 1000 1  60.30 -60.30 60.30 -60.30 89.70  0.0 
' 
unit 5 
'water above fuel level 
 cylinder 30  1 0.41                   90.69  89.70  origin 0.63 0.63 
 cylinder 2  1 0.47                   90.69  89.70  origin 0.63 0.63 
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 cuboid   4  1 1.26 0.0  1.26 0.0     90.69  89.70 
' 
unit 55 
'water above fuel level 
 array 55  -13.86 -13.86 89.70 
 cuboid 40   1  18.86 -18.86 18.86 -18.86 90.69  89.70 
 cuboid 400  1  60.00 -60.00 60.00 -60.00 90.69  89.70 
 cuboid 1000 1  60.30 -60.30 60.30 -60.30 90.69  89.70 
' 
unit 6 
'spring region of fuel rod - below grid plate 
 cylinder 30  1 0.41                   96.45  90.69   origin 0.63 0.63 
 cylinder 2  1 0.47                   96.45  90.69   origin 0.63 0.63 
 cuboid   3  1 1.26 0.0  1.26 0.0     96.45  90.69 
' 
unit 66 
'array of springs in fuel rods - below grid plate 
 array 66  -13.86 -13.86 90.69 
 cuboid   3  1  60.00 -60.00 60.00 -60.00 96.45  90.69 
 cuboid 1000 1  60.30 -60.30 60.30 -60.30 96.45  90.69 
' 
unit 7 
'spring region of fuel rod - in grid plate 
 cylinder 30  1 0.41                 96.70   96.45  origin 0.63 0.63 
 cylinder 2  1 0.47                 96.70   96.45  origin 0.63 0.63 
 cylinder 3  1 0.50                 96.70   96.45  origin 0.63 0.63 
 cuboid  1000  1 1.26 0.0  1.26 0.0 96.70   96.45 
' 
unit 77 
'array of springs in fuel rods - in grid plate 
 array 77   -13.86 -13.86 96.45 
 cuboid 1000 1  30.00 -30.00 30.00 -30.00   96.70   96.45 
 cuboid   3  1  60.00 -60.00 60.00 -60.00   96.70   96.45 
 cuboid 1000 1  60.30 -60.30 60.30 -60.30   96.70   96.45 
' 
unit 8 
'spring region of fuel rod - above grid plate 
 cylinder 30  1 0.41                   96.90 96.70    origin 0.63 0.63 
 cylinder 2  1 0.47                   96.90 96.70    origin 0.63 0.63 
 cuboid   3  1 1.26 0.0  1.26 0.0     96.90 96.70 
' 
unit 88 
'array of spring region of fuel rod - above grid plate 
 array 88  -13.86 -13.86 96.70 
 cuboid   3   1  60.00 -60.00 60.00 -60.00  96.90 96.70 
 cuboid 1000  1  60.30 -60.30 60.30 -60.30  96.90 96.70 
' 
unit 9 
'top end plug 
 cylinder 2  1 0.47                98.20  96.90    origin 0.63 0.63 
 cuboid   3  1 1.26 0.0  1.26 0.0  98.20  96.90 
' 
unit 99 
'array of top end plugs 
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 array 99  -13.86 -13.86 96.90 
 cuboid   3   1  60.00 -60.00 60.00 -60.00   98.20  96.90 
 cuboid 1000  1  60.30 -60.30 60.30 -60.30   98.20  96.90 
' 
unit 100 
'pedestal 
 cuboid 1000 1 47.5 -47.5  47.5 -47.5 0.0 -0.8 
' 
unit 101 
'lower portion of the tank 
cuboid 400  1  60.00 -60.00 60.00 -60.00   0.53 -20.0 
hole 100 0.0 0.0 0.0 
cuboid 1000  1  60.30 -60.30 60.30 -60.30   0.53  -20.30 
' 
global unit 102 
'final assembly of axial slices 
array 102 0.0 0.0 0.0 
' 
end geom 
' 
read array 
' 
' 
ara=11  nux=22 nuy=22 nuz=1 
'array of bottom end plugs -  below support grid 
 fill 
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
 end fill 
' 
ara=22  nux=22 nuy=22 nuz=1 
'array of bottom end plugs - in support grid 
 fill 
   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
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   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
 end fill 
' 
ara=33  nux=22 nuy=22 nuz=1 
'array of bottom end plugs - above support grid 
 fill 
   3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
   3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
   3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
   3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
   3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
   3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
   3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
   3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
   3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
   3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
   3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
   3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
   3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
   3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
   3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
   3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
   3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
   3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
   3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
   3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
   3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
   3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
 end fill 
' 
ara=44  nux=22 nuy=22 nuz=1 
 fill 
' array for submerged fuel 
   4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
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   4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
   4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
   4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
   4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
   4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
   4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
   4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
   4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
   4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
   4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
   4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
   4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
   4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
   4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
   4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
   4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
   4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
   4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
   4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
   4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
   4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
 end fill 
' 
ara=55  nux=22 nuy=22 nuz=1 
'array for water above fuel level 
 fill 
   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
   5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
 end fill 
' 
ara=66  nux=22 nuy=22 nuz=1 
'array of springs in fuel rods - below grid plate 
 fill 
   6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
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   6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
   6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
   6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
   6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
   6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
   6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
   6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
   6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
   6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
   6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
   6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
   6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
   6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
   6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
   6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
   6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
   6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
   6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
   6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
   6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
   6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
 end fill 
' 
ara=77  nux=22 nuy=22 nuz=1 
'array of springs in fuel rods - in grid plate 
 fill 
   7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
   7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
   7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
   7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
   7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
   7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
   7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
   7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
   7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
   7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
   7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
   7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
   7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
   7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
   7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
   7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
   7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
   7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
   7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
   7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
   7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
   7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
 end fill 
' 
ara=88  nux=22 nuy=22 nuz=1 
'array of springs in fuel rods - above grid plate 
 fill 
   8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
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   8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
   8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
   8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
   8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
   8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
   8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
   8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
   8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
   8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
   8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
   8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
   8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
   8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
   8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
   8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
   8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
   8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
   8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
   8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
   8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
   8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
 end fill 
' 
ara=99  nux=22 nuy=22 nuz=1 
'top end plugs 
 fill 
   9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
   9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
   9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
   9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
   9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
   9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
   9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
   9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
   9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
   9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
   9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
   9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
   9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
   9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
   9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
   9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
   9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
   9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
   9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
   9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
   9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
   9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
 end fill 
' 
ara=102 nux=1 nuy=1 nuz=10 
'final assembly of axial slices 
 fill 
 101 
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 11 
 22 
 33 
 44 
 55 
 66 
 77 
 88 
 99 
 end fill 
end array 
' 
read bounds 
 all=void 
end bounds 
' 
end data 
end 
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Appendix C: Input for LEU-COMP-THERM-042-001, Uniform Pitch 
Assumption 

As with the LCT-007-001 model, the uniform pitch assumption model is included here to 
save space. Tis input is 184 lines, compared to almost 39,000 lines for the expanded model 
supporting independent fuel pin location perturbations. 
 
=csas25     parm=centrm 
LEU-COMP-THERM-042-001 
v7.1-252n 
read comp 
'uo2 fuel 
u-234  1 0 2.8563e-6 295.15 end 
u-235  1 0 4.8785e-4 295.15 end 
u-236  1 0 3.5348e-6 295.15 end 
u-238  1 0 2.0009e-2 295.15 end 
o      1 0 4.1202e-2 295.15 end 
' Al 1100 - top end plug alloy 
al  2 0 5.9660e-2 295.15 end 
cu  2 0 3.0705e-5 295.15 end 
mn  2 0 7.3991e-6 295.15 end 
zn  2 0 1.2433e-5 295.15 end 
si  2 0 2.3302e-4 295.15 end 
fe  2 0 1.1719e-4 295.15 end 
' Al 5052 - bottom end plug alloy 
al  3 0 5.8028e-2 295.15 end 
cr  3 0 7.7888e-5 295.15 end 
cu  3 0 1.2746e-5 295.15 end 
mg  3 0 1.6663e-3 295.15 end 
mn  3 0 1.4743e-5 295.15 end 
zn  3 0 1.2387e-5 295.15 end 
si  3 0 1.2978e-4 295.15 end 
fe  3 0 6.5265e-5 295.15 end 
' Al 6061 - clad alloy - top end plug 
al  4 0 5.8433e-2 295.15 end 
cr  4 0 6.2310e-5 295.15 end 
cu  4 0 6.3731e-5 295.15 end 
mg  4 0 6.6651e-4 295.15 end 
mn  4 0 2.2115e-5 295.15 end 
ti  4 0 2.5375e-5 295.15 end 
zn  4 0 3.0967e-5 295.15 end 
si  4 0 3.4607e-4 295.15 end 
fe  4 0 1.0152e-4 295.15 end 
' Al 6061 - clad alloy - bottom end plug 
al  5 0 5.8433e-2 295.15 end 
cr  5 0 6.2310e-5 295.15 end 
cu  5 0 6.3731e-5 295.15 end 
mg  5 0 6.6651e-4 295.15 end 
mn  5 0 2.2115e-5 295.15 end 
ti  5 0 2.5375e-5 295.15 end 
zn  5 0 3.0967e-5 295.15 end 
si  5 0 3.4607e-4 295.15 end 
fe  5 0 1.0152e-4 295.15 end 
' Al 6061 - clad alloy - fuel 
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al  6 0 5.8433e-2 295.15 end 
cr  6 0 6.2310e-5 295.15 end 
cu  6 0 6.3731e-5 295.15 end 
mg  6 0 6.6651e-4 295.15 end 
mn  6 0 2.2115e-5 295.15 end 
ti  6 0 2.5375e-5 295.15 end 
zn  6 0 3.0967e-5 295.15 end 
si  6 0 3.4607e-4 295.15 end 
fe  6 0 1.0152e-4 295.15 end 
' steel reflector wall 
fe  7 0 8.1810e-2 295.15 end 
c   7 0 7.4686e-4 295.15 end 
mn  7 0 1.1000e-3 295.15 end 
p   7 0 6.0971e-6 295.15 end 
s   7 0 8.8332e-6 295.15 end 
si  7 0 3.6983e-4 295.15 end 
ni  7 0 6.3552e-4 295.15 end 
mo  7 0 2.4114e-4 295.15 end 
cr  7 0 1.0896e-4 295.15 end 
cu  7 0 9.6587e-5 295.15 end 
' steel absorber panels 
cr  8 0 1.7046e-2 295.15 end 
cu  8 0 2.0291e-4 295.15 end 
fe  8 0 5.8353e-2 295.15 end 
mn  8 0 1.3734e-3 295.15 end 
mo  8 0 1.2942e-4 295.15 end 
ni  8 0 9.0238e-3 295.15 end 
' water moderator 
h  9 0 6.6706e-2 295.15 end 
o  9 0 3.3353e-2 295.15 end 
' water reflector 
h  10 0 6.6706e-2 295.15 end 
o  10 0 3.3353e-2 295.15 end 
' acrylic bottom support plate 
h-poly 11 0 5.6642e-2 295.15 end 
c      11 0 3.5648e-2 295.15 end 
o      11 0 1.4273e-2 295.15 end 
end comp 
' 
read cell 
 latticecell squarepitch pitch=1.684 9 fueld=1.1176 1 cladd=1.270 6 end 
end cell 
' 
read parm 
  tme=10000 tba=60 
  gen=10010 npg=10000 nsk=10 htm=no sig=0.00010 
end parm 
' 
read geometry 
' 
 unit 1 
' bottom end plug 
 cylinder 3 1  0.5588 1.27 0 
 cylinder 5 1  0.6350 1.27 0 
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 cuboid  10 1  0.842 -0.842  0.842 -0.842  1.27 0 
' 
 unit 2 
' fueled section 
 cylinder 1 1  0.5588 91.44 0 
 cylinder 6 1  0.6350 91.44 0 
 cuboid   9 1  0.842 -0.842  0.842 -0.842  91.44 0 
' 
 unit 3 
' clad top end plug 
 cylinder 2 1  0.5588 0.48 0 
 cylinder 4 1  0.6350 0.48 0 
 cuboid  10 1  0.842 -0.842  0.842 -0.842  0.48 0 
' 
 unit 4 
' top end plug 
 cylinder 2 1  0.6350 4.6 0 
 cuboid  10 1  0.842 -0.842  0.842 -0.842  4.6 0 
' 
 unit 5 
' axial stack of fuel rod 
 array 1 0.0 0.0 0.0 
' 
 unit 6 
' absorber panel  
 cuboid  8 1 0.302 0.0  15.1 -15.1  92.77 1.27 
' 
 unit 7 
' middle array of fuel rods 
 array 10 -21.05 -15.156 0.0 
' 
 unit 8 
' flanking array of fuel rods 
 array 11 -16.840 -15.156 0.0 
' 
 unit 9 
' acrylic support plate 
 cuboid 11 1 62.596 -62.596  15.156 -15.156  2.54 0 
' 
 unit 11 
' steel reflector walls 
 cuboid 7 1  73.65 -73.65  17.85 0  104.06 -17.84 
' 
 global unit 12 
' insert components as holes into large cuboid of water 
 cuboid 10 1  104.15 -104.15  45.656 -45.656  107.71 -17.84 
' first is central array of fuel rods 
 hole 7 0 0 0 
' next is poison to the left and to the right 
 hole 6  -21.352  0 0 
 hole 6   21.050  0 0 
' then side arrays 
 hole 8  -45.756 0 0 
 hole 8   45.756 0 0 
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' then acrylic support plate 
 hole 9  0 0 -2.54 
' finally reflecting walls 
 hole 11  0  16.477 0 
 hole 11  0 -34.327 0 
end geom 
' 
read array 
' 
' axial stack of fuel rod 
ara=1  nux=1 nuy=1 nuz=4 
 fill 1 2 3 4 end fill 
' 
' middle fuel rod array 
ara=10  nux=25 nuy=18 nuz=1 
 fill 450r5 end fill 
' 
' flanker fuel rod array 
ara=11  nux=20 nuy=18 nuz=1 
 fill 360r5 end fill 
' 
end array 
' 
read bounds 
 all=void 
end bounds 
' 
end data 
end 
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Appendix D: Input for HEU-SOL-THERM-001-001 
Only one set of inputs is needed for the HST-001 evaluation. The input for Case 1 is 
provided here. 
 
=csas25 
HEU-SOL-THERM-001-001 
v7-238 
read composition 
 u-235       1 0 0.00034777 300   end 
 u-234       1 0 3.831e-06 300   end 
 u-236       1 0 1.613e-06 300   end 
 u-238       1 0 1.9798e-05 300   end 
 o           1 0 0.035037 300   end 
 n           1 0 0.00092307 300   end 
 h           1 0 0.06322 300   end 
 c           2 0 0.00026231 300   end 
 si          2 0 0.0013768 300   end 
 p           2 0 3.853e-05 300   end 
 s           2 0 2.8282e-05 300   end 
 cr          2 0 0.016985 300   end 
 mn          2 0 0.0011209 300   end 
 fe          2 0 0.059852 300   end 
 ni          2 0 0.00754 300   end 
 mo          2 0 8.9563e-06 300   end 
end composition 
read celldata 
 multiregion cylindrical left_bdy=reflected right_bdy=vacuum end 
 1 13.96 
 2 14.28 
 end zone 
end celldata 
read parameter 
 gen=100000 
 npg=10000 
 nsk=20 
 htm=no 
 sig=0.0001 
end parameter 
read geometry 
global unit 1 
com='he uranyl nitrate in tank suspended in large room' 
 zcylinder 1 1   13.96     31.2        0 
 zcylinder 0 1   13.96     41.6        0 
 zcylinder 2 1   14.28     41.6    -0.64 
 cuboid 0 1    14.28   -14.28    14.28   -14.28     41.6    -0.64 
end geometry 
end data 
end 
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Appendix E: HTC Grid Plate Measurements 
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