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ABSTRACT 

 

 

Polymer electrolyte membrane fuel cells(PEMFCs) are energy conversion devices 

with significant potential. The factors preventing them from becoming widespread 

concern production and distribution of hydrogen. Developing an efficient hydrogen 

infrastructure with an approachable rollout plan is an essential step towards the 

future of fuel cells. Water electrolysis is limited by the thermodynamics of the 

process, which leads to high electrical consumption and significant materials 

challenges. Alternative methods for cleanly generating hydrogen while using a 

lower cell voltage are required. PEM based electrolyzers can operate with a 

“depolarized anode”, whereby they become significantly less power hungry. 

This thesis explores two techniques for chemically depolarized electrolyzer 

anodes. These include a methanol anode and a phosphomolybdic acid anode. To 

improve the phosphomolybdic acid anode we have characterized the basic 

electrochemical behavior of phosphomolybdic acid, the anode behavior in a zero-

gap electrochemical cell, and the biomass oxidation characteristics of several 

Keggin ions and potential oxidation promoters.  

The methanol cathode was evaluated using a dynamic hydrogen electrode and 

shown to be significantly more sensitive to crossover induced voltage losses than 

was previously reported.  



vi 
 

Phosphomolybdic acid oxidation kinetics were examined and found to be facile, 

despite a change in mechanism which occurs after bulk reduction. The 

temperature dependent diffusion coefficient was found to be on the same order as 

other likely small, redox active molecules. A previously unreported crossover 

phenomena was noted and the diffusion coefficient through NAFION was 

calculated as on the same order as vanadium. 

The whole cell performance of the phosphomolybdic acid mediated electrolyzer 

was examined and found to be highly dependent on supporting electrolyte, 

temperature, and electrode materials. The optimized condition of 5 M HCl and 80 

Celsius showed significant improvement in exchange current density, versus the 

standard conditions of room temperature and no supporting acid, used in the 

literature. The electrode kinetics have now been removed as a major problem in 

the system design. 

While the electrochemical performance of the POM mediated electrolyzer was 

sufficient, the glycerol oxidation rates were found to be lacking. Vanadium, iron, 

and hydrochloric acid were the most effective additives; while sulfuric acid 

decreased reaction rates.  

 

  



vii 
 

TABLE OF CONTENTS 

CHAPTER 1 Introduction ...................................................................................... 1 

Scale of the challenge ....................................................................................... 2 

Energy Storage .................................................................................................. 3 

Fuel Cell Status ................................................................................................. 4 

Hydrogen Production ......................................................................................... 5 

Water Electrolysis .............................................................................................. 8 

Electrolysis Efficiency ........................................................................................ 9 

Alkaline Electrolysis ......................................................................................... 11 

Proton Exchange Membrane Electrolysis ........................................................ 13 

PEM Methanol Electrolysis .............................................................................. 17 

Polyoxometalates ............................................................................................ 21 

Mediator Cost .................................................................................................. 27 

Mechanisms for Polyoxometalate Mediated Oxidation of Organics ................. 28 

Locations of Common Mediator Redox Potentials ........................................... 29 

Glycerol ........................................................................................................... 29 

Glycerol Thermodynamics ............................................................................... 34 

The Goal and Scope of This Dissertation ........................................................ 36 

CHAPTER 2 Materials and Methods ................................................................... 39 



viii 
 

Cyclic Voltammetry at the Macroelectrode Theory .......................................... 40 

CV For Analysis of Solution Reactions ............................................................ 43 

Square Wave Voltammetry .............................................................................. 43 

Thin Layer Voltammetry ................................................................................... 44 

Rotating Disk Electrode Theory ....................................................................... 44 

Polarization Curves .......................................................................................... 45 

Potential Step Polarization Curves .................................................................. 45 

Current Step Polarization Curves .................................................................... 46 

Reasons for Choosing the PEMFC-Based Flow-Battery Architecture ............. 46 

Resistance Measurements .............................................................................. 48 

Chemical Methods ........................................................................................... 49 

CHAPTER 3 Direct Electrochemical Oxidation of Methanol Coupled to Hydrogen 

Evolution ............................................................................................................. 52 

Chapter Goals ................................................................................................. 53 

Materials and Methods .................................................................................... 55 

Results and Discussion ................................................................................... 57 

Conclusions ..................................................................................................... 62 

CHAPTER 4 Electrochemistry of Phosphomolybdic Acid ................................... 64 

Polyoxometalates Motivation ........................................................................... 65 



ix 
 

Polyoxometalates Background ........................................................................ 65 

Materials and Methods .................................................................................... 68 

Results and Discussion ................................................................................... 69 

Peak Splitting ................................................................................................... 72 

H-Cell Cycling .................................................................................................. 76 

Thin Layer Voltammetry ................................................................................... 77 

Rotating Disk Electrode Voltammetry-Levich Analysis .................................... 80 

Levich Analysis-Concentration Dependence ................................................... 84 

Levich Analysis-Temperature Dependence ..................................................... 85 

Koutecky Levich Analysis ................................................................................ 87 

Conclusions ..................................................................................................... 90 

CHAPTER 5 Zero Gap Cell Electrochemistry of Phosphomolybdic Acid ............ 93 

Introduction ...................................................................................................... 94 

Materials and Methods .................................................................................... 96 

Results ............................................................................................................. 98 

State of Charge Effects .................................................................................... 98 

Effect of Supporting Acid, Temperature, and Flow-rate ................................. 107 

Flow-Rate ...................................................................................................... 108 

Temperature Effect ........................................................................................ 111 



x 
 

Effect of Temperature and Acid on Exchange Current Density ..................... 114 

Effect of Temperature and Acid on ASR ........................................................ 115 

Carbon Felt vs Carbon Paper ........................................................................ 116 

Voltage Stabilization at Each Step ................................................................. 120 

Phosphomolybdic Acid Diffusion in Nafion .................................................... 121 

Conclusions ................................................................................................... 124 

CHAPTER 6 Glycerol Oxidation by Polyoxometalates ...................................... 126 

Introduction and Goals ................................................................................... 127 

Materials and Methods .................................................................................. 128 

Studying Glucose Oxidation Kinetics Using Cyclic Voltammetry ................... 129 

Screening of Additives and Supporting Acids for Glycerol Reduction ............ 132 

Chronocoulometry of Polyoxometalate Based Glycerol Oxidation Catalysts . 133 

Understanding the Relationship Between Steady State Current and Total 

Charge Passed .............................................................................................. 137 

Catalyst Selection .......................................................................................... 140 

Reaction Rate vs Conversion Percentage ..................................................... 141 

Kinetic Analysis.............................................................................................. 143 

Implications for Scale Up ............................................................................... 146 

Conclusions and Future Work ....................................................................... 148 



xi 
 

CHAPTER 7 Conclusion ................................................................................... 149 

Future Direction ............................................................................................. 153 

REFERENCES ................................................................................................. 156 

APPENDIX ........................................................................................................ 171 

VITA .................................................................................................................. 259 

 

s



xii 
 

LIST OF TABLES 

 

Table 1: Components of Fuel Cells and Electrolyzers ........................................ 14 

Table 2: Peak Height vs Scan Number ............................................................... 75 

Table 3: Redox Metrics vs Rotation Rate ............................................................ 83 

Table 4: E1/2 (V vs Ag/AgCl) vs Temperature & Rotation Rate............................ 86 

Table 5: Ilim vs Temperature & rotation Rate ....................................................... 87 

Table 6: Exchange Current Density Dependence on SOC ............................... 106 

Table 7: Properties of Electrode Materials ........................................................ 118 

Table 8: Reaction Order Equations and Plots ................................................... 144 

Table 9: Kinetic Parameters Dependence on Temperature and Acid ............... 247 

 

  



xiii 
 

LIST OF FIGURES 

 

 

Figure 1: Performance of a PEM Water Electrolyzer With State of the Art Anodes 

at 80 ℃ (Reproduced from Reference 21) ........................................................ 172 

Figure 2: Keggin Ion .......................................................................................... 173 

Figure 3: Cyclic Voltammetry (CV) of 0.5 M Phosphomolybdic Acid on a Pt 

Electrode. (Reproduced from Reference 42) .................................................... 174 

Figure 4:  The system proposed by Bloor and Cronin whereby water is oxidized 

at the photoanode and the resulting hydrogen is stored in the polyoxometalate 

cathode. The polyoxometalate is then reoxidized electrochemically after the 

oxygen is no longer present. (Reproduced from Reference 43) ....................... 175 

Figure 5: Table of Selected Redox Potentials(Reproduced from Reference 54)

 .......................................................................................................................... 176 

Figure 6: Production of Glycerol (Reproduced from Reference 57) .................. 177 

Figure 7: CV Potential Waveform (Reproduced from Reference 64) ................ 178 

Figure 8: CV of a Single Electron Reduction-Oxidation (Reproduced from 

Reference 64) ................................................................................................... 179 

Figure 9: Square Wave Voltammetry Potential and Current Waveform 

(Reproduced from Reference 65) ..................................................................... 180 

Figure 10: Generalized Polarization Curve (Reproduced from Reference 66) .. 181 

Figure 11: Nyquist Plot for a Fuel Cell .............................................................. 182 

file:///C:/Users/Brian%20Fane/Dropbox/Fane%20Dissertation%20Chapters/Fane%20Dissertation%20+all%20committee%20corrections.docx%23_Toc489352033
file:///C:/Users/Brian%20Fane/Dropbox/Fane%20Dissertation%20Chapters/Fane%20Dissertation%20+all%20committee%20corrections.docx%23_Toc489352033


xiv 
 

Figure 12: Hydrogen/Hydrogen Symmetric Cell, Anode: Pt/Ru 5.3 mg/cm2, 

Cathode: Pt 5.4 mg/cm2, Anode/Cathode Gas: Hydrogen, Flow-rate: 100 sccm, 

Back pressure: 15 PSI, NAFION 117 Membrane, 80 ºC, Curves are not IR 

Corrected, ASR 0.2 Ohm-cm2 ........................................................................... 183 

Figure 13: Effect of IR Compensation: Fuel 8M Methanol, Anode: Pt/Ru 2.9 

mg/cm2, Cathode: Pt 2.9 mg/cm2, Cathode Gas: Argon, Flow-rate: 100 sccm, 

Back pressure: 15 PSI, NAFION 117 Membrane, Curves are IR Corrected, 60 ºC,

 .......................................................................................................................... 184 

Figure 14: Fuel: 4 Molar MeOH, Anode: Pt/Ru 4.6 mg/cm2, Cathode: Pt 4.5 

mg/cm2, Cathode Gas: Argon, Flow-rate: 100 sccm, Back pressure: 15 PSI, 

Temperature: 80 ºC, NAFION 117 Membrane, Curves are IR Corrected ......... 185 

Figure 15: Fuel: MeOH, Anode: Pt/Ru 4.6 mg/cm2, Cathode: Pt 4.5 mg/cm2, 

Cathode Gas: Argon, Flow-rate: 100 sccm, Back Pressure: 15 PSI, Temperature: 

100 ºC, NAFION 117 Membrane, Curves are IR Corrected .............................. 186 

Figure 16: Fuel: 4 M Methanol, Anode: Pt/Ru 2.9 mg/cm2, Cathode: Pt 2.9 

mg/cm2, Cathode Gas: Argon, Flow-rate: 100 sccm, Back pressure: 15 PSI, 

NAFION 117 Membrane, Curves are IR Corrected, ASR < 0.2 Ohm-cm2 ........ 187 

Figure 17: H-cell used for diffusion experiments with NAFION separator. ........ 188 

Figure 18: A: Cyclic Voltammetry of Phosphomolybdic Acid on Glassy Carbon. 

0.5 M H3PMo12O40, We: 3mm GC disk, Ce: Pt wire, Ref: Ag/AgCl (0.205 V vs 

NHE), T = 25 ℃; B: Scan Rate vs EpOX-EpREDs for Peak 1; C: Scan Rate vs 

Peak Current for Peak 1 ................................................................................... 189 



xv 
 

Figure 19: Cyclic Voltammetry of Phosphomolybdic Acid on Platinum. 0.5 M 

H3PMo12O40, We: 1.6 mm Pt disk, Ce: Pt wire, Ref: Ag/AgCl (0.205 V vs NHE)

 .......................................................................................................................... 190 

Figure 20: Cyclic Voltammetry of Phosphomolybdic Acid Bulk Reduced One 

Electron. 0.25 M H3PMo12O40/0.25 M H5PMo12O40, We: 3mm GC disk, Ce: Pt 

wire, Ref: Ag/AgCl (0.205 V vs NHE) ................................................................ 191 

Figure 21: Cyclic Voltammetry of Phosphomolybdic Acid Bulk Reduced Two 

Electrons. 0.5 M H5PMo12O40, We: 3mm GC disk, Ce: Pt wire, Ref: Ag/AgCl 

(0.205 V vs NHE) .............................................................................................. 192 

Figure 22: Repeated CV of Phosphomolybdic Acid During Bulk Reduction by 

Glucose. 0.01 M H3PMo12O40, 1M HCl, We: 1.6mm Pt disk, Ce: Pt wire, Ref: 

Ag/AgCl (0.205 V vs NHE), 90℃, ν = 25 mV/sec ............................................. 193 

Figure 23: Repeated CV of Phosphomolybdic Acid. 0.01 M H3PMo12O40, 1M HCl, 

We: 1.6mm Pt disk, Ce: Pt wire, Ref: Ag/AgCl (0.205 V vs NHE), 90℃, ν = 25 

mV/sec .............................................................................................................. 194 

Figure 24: 2 Electron Potentiostatic Coulometry, 0.015 M H3PMo12O40 in 1 M HCl. 

An H-Cell with a NAFION divider was used. We: Pt mesh, Ce: Pt wire in 0.5 M 

0.5 M H2SO4, Ref: Ag/AgCl. The voltage window was 0.35 to 0.8 V Vs Ag/AgCl

 .......................................................................................................................... 195 

Figure 25: Thin layer voltammogram of phosphomolybdic acid supported in 

hydrochloric acid. This scan was performed in a flow battery type cell with the 



xvi 
 

pump stopped and a hydrogen-Pt cathode. ν:10 mV/Sec, We: 5 cm2
 SGL 35AA, 

Ce: H2 on Pt, Anolyte: 0.1 M H3PMo12O40 in 1M HCl, T: 30 ℃ ......................... 196 

Figure 26: Charge Transferred in Thin layer voltammogram of phosphomolybdic 

acid supported in hydrochloric acid. This scan was performed in a flow battery 

type cell with the pump stopped and a hydrogen-Pt cathode. ν:10 mV/Sec, We: 5 

cm2
 SGL 35AA, Ce: H2 on Pt, Anolyte: 0.1 M H3PMo12O40 in 1M HCl, T: 30 ℃ 197 

Figure 27: Reversible Component of Charge Transfer in a Thin layer 

voltammogram of phosphomolybdic acid supported in hydrochloric acid. This 

scan was performed in a flow battery type cell with the pump stopped and a 

hydrogen-Pt cathode. ν:10 mV/Sec, We: 5 cm2
 SGL 35AA, Ce: H2 on Pt, Anolyte: 

0.1 M H3PMo12O40 in 1M HCl, T: 30 ℃ ............................................................. 198 

Figure 28: Kinetic Hysteresis in a Thin layer voltammogram of phosphomolybdic 

acid supported in hydrochloric acid. This scan was performed in a flow battery 

type cell with the pump stopped and a hydrogen-Pt cathode. ν:10 mV/Sec, We: 5 

cm2
 SGL 35AA, Ce: H2 on Pt, Anolyte: 0.1 M H3PMo12O40 in 1M HCl, T: 30 ℃ 199 

Figure 29: Impedance Contribution to the Hysteresis in a Thin layer 

voltammogram of phosphomolybdic acid supported in hydrochloric acid. This 

scan was performed in a flow battery type cell with the pump stopped and a 

hydrogen-Pt cathode. ν:10 mV/Sec, We: 5 cm2
 SGL 35AA, Ce: H2 on Pt, Anolyte: 

0.1 M H3PMo12O40 in 1M HCl, T: 30 ℃ ............................................................. 200 



xvii 
 

Figure 31: Effect of Rotation Rate on Rotating Disk Electrode Voltammograms. 

0.2 M H3PMo12O40/ 0.2 M H5PMo12O40, ν=20 mV/sec, We: 5mm GC disk, Ce: Pt 

mesh, Ref Ag/AgCl (0.205 V vs NHE), T=25℃, Levich Plot at 1.5 V vs Ag/AgCl 201 

Figure 31: Levich Plot of Phosphomolybdic Acid, V = 1.5 V vs Ag/AgCl, We: GC 

disk, Ce: Pt mesh, REF: Ag/AgCl (0.205 V vs NHE) ......................................... 202 

Figure 32: Effect of H3PMo12O40/H5PMo12O40  Ratio on the Levich Slope ........ 203 

Figure 33: 0.2 M H3PMo12O40/ 0.2 M H5PMo12O40, ν=20 mV/sec, We: 5mm GC 

disk, Ce: Pt mesh, Ref Ag/AgCl (0.205 V vs NHE), ω: 2500 RPM; ................... 204 

Figure 34: Effect of Overpotential on the Koutecky-Levich Slope. The data was 

extracted from Figure 31 ................................................................................... 205 

Figure 35: Kinetic current extracted from Figure 31 .......................................... 206 

Figure 37: The voltammogram of several different states of charge. 0.1 M 

Phosphomolybdic Acid, NAFION 117 Membrane, 2-layer WOS 1002 Anode 

GDL. Curves are IR Corrected ASR = 1.5 Ohm-cm2 ........................................ 207 

Figure 37: The voltammogram of several different states of charge. 0.1 M 

Phosphomolybdic Acid, NAFION 117 Membrane, 2-layer WOS 1002 Anode 

GDL. No IR correction, ASR = 1.5 Ohm-cm2 .................................................... 208 

Figure 38: Linear Representation of Overpotential vs SOC in the Kinetic Region

 .......................................................................................................................... 209 

Figure 39: The Tafel plot of several different states of charge. 0.1 M 

Phosphomolybdic Acid, NAFION 117 Membrane, 2-layer WOS 1002 Anode 

GDL. Curves are IR Corrected ASR = 1.5 Ohm-cm2 ........................................ 210 

file:///C:/Users/Brian%20Fane/Dropbox/Fane%20Dissertation%20Chapters/Fane%20Dissertation%20+all%20committee%20corrections.docx%23_Toc489352060
file:///C:/Users/Brian%20Fane/Dropbox/Fane%20Dissertation%20Chapters/Fane%20Dissertation%20+all%20committee%20corrections.docx%23_Toc489352060
file:///C:/Users/Brian%20Fane/Dropbox/Fane%20Dissertation%20Chapters/Fane%20Dissertation%20+all%20committee%20corrections.docx%23_Toc489352060
file:///C:/Users/Brian%20Fane/Dropbox/Fane%20Dissertation%20Chapters/Fane%20Dissertation%20+all%20committee%20corrections.docx%23_Toc489352066
file:///C:/Users/Brian%20Fane/Dropbox/Fane%20Dissertation%20Chapters/Fane%20Dissertation%20+all%20committee%20corrections.docx%23_Toc489352066
file:///C:/Users/Brian%20Fane/Dropbox/Fane%20Dissertation%20Chapters/Fane%20Dissertation%20+all%20committee%20corrections.docx%23_Toc489352066


xviii 
 

Figure 40: Flow-rates and Supporting Acids, 0.25 M Phosphomolybdic Acid, 

NAFION 117 Membrane, 2-layer WOS 1002 Anode GDL. ............................... 108 

Figure 41: Utilization Normalized Polarization Curves, 0.25 M Phosphomolybdic 

Acid, , NAFION 117 Membrane, 2-layer WOS 1002 Anode GDL. .................... 212 

Figure 42: Effect of Temperature on Polarization Curves of 0.25 M 

Phosphomolybdic Acid, NAFION 117 Membrane, 2-layer WOS 1002 Anode 

GDL. ................................................................................................................. 213 

Figure 43: Effect of Temperature on Oxidation Polarization Curves of Neat 

Phosphomolybdic Acid, NAFION 117 Membrane, 2-layer WOS 1002 Anode 

GDL. ................................................................................................................. 214 

Figure 44: Effect of Temperature on Oxidation Polarization Curves of 0.25 M 

Phosphomolybdic Acid in 1M HCl, NAFION 117 Membrane, 2-layer WOS 1002 

Anode GDL. ...................................................................................................... 215 

Figure 45: Effect of Temperature on Oxidation Polarization curves of 0.25 M 

Phosphomolybdic Acid in 5M HCl, NAFION 117 Membrane, 2-layer WOS 1002 

Anode GDL. ...................................................................................................... 216 

Figure 46: Exchange Current Densities Dependence on Temperature and 

Supporting Acid................................................................................................. 217 

Figure 47: ASR vs Temperature and HCl Concentration .................................. 218 

Figure 48: SEM Images of WOS 1002 Carbon Cloth A (50x), B (200x), C (250x 

Transverse), and Carbon Paper D (50x), E (2c00x), F (250x Transverse) ....... 219 



xix 
 

Figure 49: CE Tech WOS1002 Carbon Cloth Vs SGL 35AA Carbon Paper, Step 

Time 30 Seconds .............................................................................................. 220 

Figure 50: Anodic Chronopotentiometry ........................................................... 221 

Figure 51: Cathodic Chronopotentiometry ........................................................ 222 

Figure 52: Calibration Curve Square Wave Voltammetry of Phosphomolybdic 

Acid in Phosphoric Acid. We: Pt disk, Ce: Pt wire, Ref: Ag/AgCl. E_Step: 10 

mV,Pulse Height:25 mV, τ:100ms ..................................................................... 223 

Figure 53: Calibration Curve of Peak Heights to Concentration ........................ 224 

Figure 54: Phosphomolybdic Acid Crossover vs Time ...................................... 225 

Figure 55: Effect of chemical kinetics on the cyclic voltammetry of the catalytic 

mechanism at a macroelectrode (Reproduced from Reference 63) ................... 226 

Figure 56: Glucose Cyclic Voltammetry,ν=100 mV/sec, 0.01 M H3PMo12O40, 1 M 

HCl, 1 M glucose T= 60 ℃, We: 3mm Pt disk, Ce: Pt wire, Ref: Ag/AgCl. ........ 227 

Figure 57: Glucose Cyclic Voltammetry. ν=1 mV/sec, 0.01 M H3PMo12O40, 1 M 

HCl, 1 M glucose T= 60 ℃, We: 3mm Pt disk, Ce: Pt wire, Ref: Ag/AgCl. ........ 228 

Figure 58: Glucose Cyclic Voltammetry. ν=0.1 mV/sec, 0.01 M H3PMo12O40, 1 M 

HCl, 1 M glucose T= 60 ℃, We: 3mm Pt disk, Ce: Pt wire, Ref: Ag/AgCl. ........ 229 

Figure 59: Coulometric Monitoring of the Time Course of Glycerol Oxidation, as 

Revealed by the POM Re-Oxidation Charge, for Various POM Catalysts in 0.5 M 

Glycerol ............................................................................................................. 230 



xx 
 

Figure 60: Coulometric Monitoring of the Time Course of Glycerol Oxidation, as 

Revealed by the POM Re-Oxidation Charge, for Various POM Catalysts in 0.5 M 

Glycerol + 5M H2SO4 ........................................................................................ 231 

Figure 61: Coulometric Monitoring of the Time Course of Glycerol Oxidation, as 

Revealed by the POM Re-Oxidation Charge, for Various POM Catalysts in 0.5 M 

Glycerol + 5M HCl ............................................................................................. 232 

Figure 62: 4 Hour, Q Measured vs Q Predicted ................................................ 233 

Figure 63: 6 Hour, Q Measured vs Q Predicted ................................................ 234 

Figure 64: 8 Hour, Q Measured vs Q Predicted ................................................ 235 

Figure 65: Formation of Starch-POM Complexes(Reproduced from Reference 

38) ..................................................................................................................... 236 

Figure 66: Reaction Rate vs Electrons Transferred, Neat Solution ................... 237 

Figure 67: Reaction Rate vs Electrons Transferred, H2SO4 Solution ................ 238 

Figure 68: Reaction Rate vs Electrons Transferred, HCl Solution .................... 239 

Figure 69: R2 for Linear Fit vs Reaction Order Plot-Neat .................................. 240 

Figure 70: R2 for Linear Fit vs Reaction Order Plot-H2SO4 ................................ 241 

Figure 71: R2 for Linear Fit vs Reaction Order Plot-HCl .................................... 242 

Figure 72: k’ Values for all solvent and catalyst combinations .......................... 243 

Figure 73: Schematic of Proposed System Design ........................................... 244 

Figure 74: Koutecky-Levich Plot, Rotating Disk Electrode, 0.2 M H3PMo12O40/ 0.2 

M H5PMo12O40, ν=20 mV/sec, We: 5mm GC disk, Ce: Pt mesh, Ref Ag/AgCl 

(0.205 V vs NHE), T=25℃, Levich Plot at 1.5 V vs Ag/AgCl ............................... 245 



xxi 
 

Figure 75: Koutecky-Levich Plot, Rotating Disk Electrode, 0.2 M H3PMo12O40/ 

0.2 M H5PMo12O40, ν=20 mV/sec, We: 5mm GC disk, Ce: Pt mesh, Ref 

Ag/AgCl (0.205 V vs NHE), T=25℃, Levich Plot at 1.5 V vs Ag/AgCl ............... 246 

Figure 76: 𝒌𝒉 vs Overpotential ......................................................................... 246 

Figure 77: Zeroth Order POM Concentration vs Time-Neat .............................. 248 

Figure 78: Zeroth Order POM Concentration vs Time-HCl ............................... 248 

Figure 79: Zeroth Order POM Concentration vs Time-H2SO4 ........................... 249 

Figure 80: First Order POM Concentration vs Time-Neat ................................. 249 

Figure 81: First Order POM Concentration vs Time-H2SO4 .............................. 250 

Figure 82: First Order POM Concentration vs Time-HCl ................................... 250 

Figure 83: Second Order POM Concentration vs Time-Neat ............................ 251 

Figure 84: Second Order POM Concentration vs Time-H2SO4 ......................... 251 

Figure 85: Second Order POM Concentration vs Time-HCl ............................. 252 

Figure 86: UV-VIS Absorption Spectra of V- Phosphomolybdic Acid in Various 

Media ................................................................................................................ 253 

Figure 87: UV-VIS Absorption Spectra of Cu-Phosphomolybdic Acid in Various 

Media ................................................................................................................ 253 

Figure 88: UV-VIS Absorption Spectra of Phosphomolybdic Acid in Various 

Media ................................................................................................................ 254 

Figure 89: UV-VIS Absorption Spectra of Fe-Phosphomolybdic Acid in Various 

Media ................................................................................................................ 254 



xxii 
 

Figure 90: UV-VIS Absorption Spectra of Phosphomolydbotunsgtinic Acid in 

Various Media ................................................................................................... 255 

Figure 91: Square Wave Voltammetry of 0.01 M H3PMo12O40 . We: Pt disk, Ce: 

Pt wire, Ref: Ag/AgCl. E_Step: 10 mV,Pulse Height:25 mV, τ:100ms............... 255 

Figure 92: Square Wave Voltammetry of  0.01 M  Fe-H3PMo12O40 . We: Pt disk, 

Ce: Pt wire, Ref: Ag/AgCl. E_Step: 10 mV,Pulse Height:25 mV, τ:100ms ........ 256 

Figure 93: Square Wave Voltammetry of  0.01 M H3PWMo11O40 . We: Pt disk, 

Ce: Pt wire, Ref: Ag/AgCl. E_Step: 10 mV,Pulse Height:25 mV, τ:100ms ........ 256 

Figure 94: Square Wave Voltammetry of 0.01 M  VOSO4-H3PMo12O40 . We: Pt 

disk, Ce: Pt wire, Ref: Ag/AgCl. E_Step: 10 mV,Pulse Height:25 mV, τ:100ms 257 

Figure 95: Square Wave Voltammetry of 0.01 M CuSO4-H3PMo12O40 . We: Pt 

disk, Ce: Pt wire, Ref: Ag/AgCl. E_Step: 10 mV,Pulse Height:25 mV, τ:100ms 257 

Figure 96: Square Wave Voltammetry of  0.01 M TiO2-H3PMo12O40 . We: Pt disk, 

Ce: Pt wire, Ref: Ag/AgCl. E_Step: 10 mV,Pulse Height:25 mV, τ:100ms ........ 258 

 



1 
 

CHAPTER 1 

Introduction 
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Scale of the challenge 

In recent years, the world has begun to awaken to the challenges posed by carbon 

emissions from burning fossil fuels. The likely hazards of our massive carbon 

dioxide emissions include ocean acidification, sea level rise, desertification, 

increasing storm intensity, loss of sea ice, receding glaciers, and changing 

precipitation patterns.1 In addition to the challenges posed by climate change, 

extractive resources such as fossil fuels are not evenly distributed throughout the 

world. Many countries have insufficient resources to meet their peacetime or 

potential wartime energy needs. This creates a strategic liability for places like the 

United States and her allies. This weakness has always been exploited by 

producer states. For example, during the Arab oil embargo of the 1970s and 

recently Russia threatened to cutoff natural gas supplies to Europe during their 

invasions of Crimea and Georgia. 

To address these liabilities, we are pursuing a variety of domestic, low carbon 

emissions energy resources. These include: 

• Geothermal power 

• Hydroelectric power 

• Nuclear power 

• Wind power 

• Solar power 
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• Biomass 

Each of these power sources has significant limitations. Besides biomass they are 

all either largely tapped out or unable to load follow in any significant way. Wind 

and solar power are particularly notorious for their intermittent nature. This is 

problematic since the electric grid has almost no ability to store energy.  

Energy Storage 

Energy storage could provide the electric grid with decreased need for additional 

infrastructure, improved resiliency, better tolerance of renewable energy, and 

decreased need to run excess capacity.2 As of 2013, over 95% of grid level storage 

was pumped hydropower; the remainder was split between flywheels, batteries, 

compressed air, and thermal storage.  

A largely undeveloped but promising energy storage methodology is hydrogen. 

Electrolysis can be used to produce hydrogen when electricity is in excess, the 

hydrogen can be stored, and then recombined with oxygen from the air as 

necessary to produce electricity. Importantly, this is not how hydrogen is mass 

produced currently. A hydrogen based energy storage system has the advantage 

of potentially limitless capacity. If considered as a battery it has decoupled charge 

power, discharge power, and capacity. Capacity is increased by building more 

pressure vessels to store hydrogen. It is also convenient to use the stored 

hydrogen to fuel vehicles and to move energy using hydrogen pipelines instead of 

electrical wires. Such a system would likely require a single unit electrolyzer and 
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fuel cell to control capital cost, this device has not yet been commercialized. 

Discharge power can be increased by adding fuel cells or potentially using 

hydrogen distribution and grid connected fuel cell vehicles.  

Fuel Cell Status 

Polymer electrolyte membrane fuel cells(PEMFC’s) are often considered to be 

ideal energy conversion devices. This is because they have the potential for high 

efficiency, fast refuel times, quiet and scalable electrical energy generation.3 

Hydrogen is an ideal fuel for PEMFC’s because of its high reactivity and negligible 

pollution concerns, but production, storage and transport still pose issues.3 

Hydrogen is currently used as an important feedstock for the production of 

chemicals and fertilizer. Hydrogen production worldwide is already significant at 

over 50 million tons produced annually, the majority coming from the steam 

reforming of natural gas.4  

Progress is being made, the estimated cost of hydrogen fuel cells has decreased 

by a factor of 6 since 2002, down to 49$/kW and hydrogen storage capacity has 

increased by 50% since 2007.4 This has led many to believe that the hydrogen 

economy is close fruition, auto manufacturers are even releasing hydrogen 

powered cars in limited cases.5 Hydrogen fuel cells are also gaining prominence 

in large warehouses for their fast refuel times and zero emissions operation.6  
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Hydrogen Production 

Progress in hydrogen production has not kept pace with these advances on the 

use side. The production of hydrogen is currently accomplished via steam 

reforming of natural gas. The steam reforming reaction is a two stage reaction 

performed on two catalysts at two different temperatures. Equation 1 shows the 

higher temperature, endothermic ((∆𝐻 = 206
𝑘𝐽

𝑚𝑜𝑙
), first stage which takes place on 

a nickel catalyst. Equation 2 shows the lower temperature, exothermic ((∆𝐻 =

−41
𝑘𝐽

𝑚𝑜𝑙
),  second stage, for which a on a copper catalyst is often used.  

1 𝐶𝐻4 + 𝐻2𝑂 ↔ 𝐶𝑂 + 3𝐻2 

2 𝐶𝑂 + 𝐻2𝑂 ↔ 𝐶𝑂2 + 𝐻2 

This system uses large, centralized plants and necessarily emits a minimum of 5.5 

tons of CO2 per ton of H2 produced, not including the energy used for reforming or 

compression of the hydrogen gas.  

The resulting hydrogen gas must be purified or the anode catalysts will be 

poisoned by carbon monoxide. This purification is generally accomplished using 

pressure swing absorption. Even moderate amounts of CO can be problematic for 

a low temperature PEM fuel cell. An 85% voltage loss has been reported at only 6 

hours of exposure to 70 ppm CO feed, using pure Pt catalyst at 80ᵒ C 7. This is 

because CO adsorbs on the platinum catalyst and requires several hundred mV of 

additional voltage to oxidize to CO2. 
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These production facilities must then ship the hydrogen out to fueling stations 

using either a hydrogen pipeline network or tanker trucks. Estimates of the cost of 

a national hydrogen pipeline network are on the order of tens or hundreds of 

billions of dollars. This extreme cost is based on the analysts assumption of the 

creation of a hydrogen pipeline system similar to the natural gas pipeline system.8 

Delivery by tanker trucks is also cost prohibitive. Due to the volume constrains, a 

tanker truck deliver system would almost certainly require the use of liquefied 

hydrogen rather than compressed hydrogen. Nearly half the delivered cost of 

hydrogen obtained steam reforming and liquefied delivery comes from the 

liquefaction process.9 

It has been shown that the use of distributed, small scale hydrogen production has 

the potential to significantly lower the rollout cost and cost per vehicle, especially 

in the early stages.8 It is widely believed that the best way to achieve distributed 

production of hydrogen is either from electrolysis or steam/catalytic reforming of 

hydrocarbons.  

On-board reforming was initially the preferred choice of automakers.9 They 

believed that hydrogen production on the vehicle would help eliminate 

complications arising from the storage of hydrogen. Hydrogen has a low volumetric 

energy and a tendency to leak. Compression or cryogenic storage consume a 

significant portion of the energy used to make the hydrogen. Unfortunately, on-

board reforming is costly in terms of energy, weight, and money.  
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An econometric study done by Thomas et al. suggests that on-board reforming 

does not make economic sense.9 They show that the total costs of a distributed 

hydrogen infrastructure per vehicle will be significantly lower than the costs of 

adding reforming capability to each vehicle.  These savings come primarily from 

scale, durability, and utilization. The reformer lifespan can be adversely affected 

by vibration, startup/shutdown, temperature extremes, load changes and other 

characteristics common to a moving vehicle. The capital cost per unit hydrogen 

produced by a stationary, multi-user system will be significantly lower than an on-

board reformer. This is due to the increased load factor. While an on-board 

reformer might have a load factor of only 0.6%, a stationary reformer can be 

appropriately sized to run at nearly 100% load factor.9 This will have a significant 

effect on cost since a much lower capacity reformer can be specified for the same 

output over a given timeframe.  

On-board reforming could take place using steam reforming of nearly any 

hydrocarbon fuel. It can also be direct electrochemical reforming of hydrocarbon 

fuels. Many small molecules have been explored as direct electrochemical 

hydrogen sources including  methanol, ethanol and dimethyl ether but only 

methanol has been shown to be feasible.3  The other, larger molecules have 

suffered from incomplete combustion, excessive overpotential requirements and 

catalyst poisoning in low temperature fuel cells.  

While steam reforming is a well-established technology currently used to generate 

hydrogen all over the world, it has important drawbacks. In addition to its inability 
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to directly produce pure hydrogen, steam reforming does not change the 

dependence on fossil fuels or prevent the emission of carbon dioxide. Steam 

reforming also requires longer startup times than a low temperature electrolyzer 

due to its high temperature nature. Electrolysis or electrochemical reforming is 

perhaps the most obvious solution to the problem of creating pure hydrogen while 

maintaining the potential for zero emissions. The electricity could potentially be 

supplied by renewable generation such as wind, solar, or hydroelectric. Production 

can be ramped up during times of excess production and decreased during times 

of high electricity demand to help stabilize the power grid.   

Water Electrolysis 

Water electrolysis is a process in which electrodes are submerged in an aqueous 

solution and current is run between them. If the applied potential is wider than the 

solvent window, then the water will be split into hydrogen and oxygen. Although 

different reactions hold in acidic versus aqueous media, they both require a 

minimum or thermodynamic potential of 1.23V vs SHE at standard conditions. The 

use of a separator is also required to prevent the mixing of hydrogen and oxygen, 

both for safety and efficiency.  

The following equations describe water electrolysis in acidic media:  

Anode: 2𝐻2𝑂 → 4𝐻+ + 𝑂2 + 4𝑒−         

 3  E=1.23V vs SHE 

Cathode: 4𝐻+ + 4𝑒+ → 2𝐻2                 
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4  E=0.00V vs SHE 

Whole cell reaction: 2𝐻2𝑂 → 2𝐻2 + 𝑂2  

5  E=1.23V vs SHE 

The following reactions describe water electrolysis in alkaline media: 

6  Anode: 4𝑂𝐻− → 𝑂2 + 2𝐻2𝑂 + 4𝑒− 

7  Cathode: 4𝐻2𝑂 + 4𝑒− → 2𝐻2 + 4𝑂𝐻− 

8  Whole cell reaction: 2𝐻2𝑂 → 2𝐻2 + 𝑂2 

The following equation 9 can be used to calculate the actual voltage in any 

electrochemical cells. The voltages given above are the 𝑉𝑡ℎ𝑒𝑟𝑚𝑎𝑙. 

9  𝑉𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑉𝑡ℎ𝑒𝑟𝑚𝑎𝑙 + 𝑉𝑘𝑖𝑛𝑒𝑡𝑖𝑐 + 𝑉𝑜ℎ𝑚𝑖𝑐 + 𝑉𝑀𝑎𝑠𝑠 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 

Electrolysis Efficiency 

The efficiency of any process is essential to understanding its viability. The 

efficiency of electrochemical processes is described in terms of voltage and current 

efficiency. They are functions of device architecture, reaction fundamentals, 

materials selection, catalyst choice, and operating parameters. 

Current efficiency is defined as the proportion of the current which goes into 

making the desired product. Current efficiency can be decreased by side reactions 

or through crossover of the active species. For example, in an electrolyzer 

hydrogen could back diffuse to the water/oxygen side (anode) and then have to be 
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pumped to the cathode again. It can also react with oxygen to form water while it’s 

there, requiring the water to be split again. Current efficiency of electrolyzers can 

be decreased at extremely low current densities. This is primarily a function of 

permeability of the membrane.  

Voltage efficiency relates directly to the overpotential of a given electrochemical 

process. Voltage efficiency of an electrochemical device is given by equation 10. 

The 𝑉𝑎𝑐𝑡𝑢𝑎𝑙 is calculated per equation 9. The 𝑉𝑘𝑖𝑛𝑒𝑡𝑖𝑐 depends on reaction choice, 

pH, and catalyst choice. 𝑉𝑜ℎ𝑚𝑖𝑐 is primarily a function of the electrolyte resistance 

and the distance between the electrodes. 𝑉𝑚𝑎𝑠𝑠 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 is controlled by the ability 

to supply reactants to the electrode. Concentration overpotential results when the 

reactant at the electrode becomes depleted and the reaction becomes 

unfavorable.  

10 𝑉𝑒𝑓𝑓i𝑐𝑖𝑒𝑛𝑐𝑦 = 100 ∗
𝑉𝑡ℎ𝑒𝑟𝑚𝑎𝑙−𝑉𝑎𝑐𝑡𝑢𝑎𝑙

𝑉𝑡ℎ𝑒𝑟𝑚𝑎𝑙
  

A key performance metric for electrical energy time shifting is roundtrip combined 

efficiency of about 80%. Some secondary battery systems are already achieving 

this benchmark. Reaching it in either flow batteries or a combined electrolyzer/fuel 

cell will require overpotentials within 10% of theoretical voltage in each direction. 

Assuming a current density of 50 mA/cm2
 and a roughness factor of 10, exchange 

current density must be greater than 0.3 mA/cm2 and a standard rate constant K0 

greater than 10-5 cm/s.10 
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Unitized PEM hydrogen electrolyzers/fuel cells achieved 85% efficiency 

electrolysis and 37% efficiency for fuel cell mode, a round trip efficiency of just 

31.5%. They reported cell voltages of 1.74 V and 0.55 V at 0.5 A/cm2. The utilized 

unsupported Pt-Ir catalysts for water oxidation and oxygen reduction. The fuel cell 

ran on pure hydrogen and oxygen to further improve efficiency.11 Researchers at 

NASA developed a similar closed cycle regenerative fuel cell. They saw round trip 

efficiency below 50%.12,13  

More recent work has shown that low temperature PEM regenerative fuel cells can 

achieve round trip efficiencies between 40-50%. Some of this efficiency may have 

been gained by decreasing operating current densities. Alkaline systems are 

slightly less efficient at 30-40%. The relatively low   efficiency is caused by 

sluggishness of the oxygen reactions(both reduction and oxidation).14  This kind of 

efficiency comparison is important to understanding the viability of the system but 

it’s also fraught with questions. The efficiency numbers are highly dependent on 

the current density chosen by the author and are therefore highly variable. 

Alkaline Electrolysis 

Historically, alkaline water electrolysis became common even before the invention 

of ion exchange membranes. Mass production of over 400 units was achieved by 

1902.15 Early designs utilized an asbestos diaphragm submerged in a solution of 

20-30% KOH. Common catalysts include nickel, cobalt, iron, and platinum. The 

use of nonprecious metal catalysts, a common separator material, and high purity 

products were all drivers of its growth. The alkaline environment is less corrosive 
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than the acidic system allowing for the use of stainless steel bipolar plates, 

lowering cost relative to the acidic system.  

Its use is limited by low partial load range, limited current densities, and low 

operating pressure. The tendency of products to back diffuse causes the issues 

with low load range and low operating pressures. When oxygen diffuses to the 

cathode compartment it causes safety concerns and must be catalytically 

recombined with hydrogen, reducing efficiency. Hydrogen also diffuses to the 

anode compartment creating similar safety issues. Hydrogen is particularly 

problematic due to its wide explosive window, from 4% to 75% by volume.16 The 

problem becomes more pronounced at low loads since the electrochemical driving 

force keeping products on their respective sides of the diaphragm disappears. In 

larger systems, the marginal cost of increasing capacity scales linearly with surface 

area. Relatively low current density of .2-.4 A/cm2 necessitates a large surface 

area and contributes to increased system cost.17 

There have been significant recent advances in two main areas; efficiency and 

current density. Operational costs are almost entirely dependent on overpotential 

(efficiency), so the best way to improve these devices has been to decrease the 

resistances that cause increased overpotential. Capital costs can also be quite 

significant, therefore increasing current density will help to decrease cost. These 

advances were achieved using several techniques: 

• Decreased distance between electrodes: One of the major sources of 

resistance is  𝑉𝑜ℎ𝑚𝑖𝑐. Since 𝑉𝑜ℎ𝑚𝑖𝑐 = 𝐼𝑅 and current is directly proportional to 
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hydrogen production, decreasing resistance is a major goal. The area specific 

resistance is defined as 𝐴𝑆𝑅 = 𝜌𝐿. Decreasing the distance (L) between 

electrodes under one millimeter is now standard and some manufacturers use 

a zero-gap architecture where the electrodes are pressed right up against the 

separator.   

• Development of new separators: New separator technologies have reduced 

the resistivity (𝜌) of the separator. This has been achieved by replacing 

asbestos diaphragms with inorganic ion exchange membranes. 

• Development of high temperature alkaline electrolyzers: Operating at 150ᵒ 

C, these increase electrolyte conductivity (decreasing 𝑉𝑜ℎ𝑚𝑖𝑐), improve catalytic 

activity (decreasing 𝑉𝑘𝑖𝑛𝑒𝑡𝑖𝑐), and supply some of the required energy as heat 

instead of electricity. Since heat is generally cheaper than electricity this also 

lowers cost.  

• Development of new electrocatalysts: Ni, Co, and Fe catalysts can be used 

to decrease the 𝑉𝑘𝑖𝑛𝑒𝑡𝑖𝑐 

Proton Exchange Membrane Electrolysis 

Proton exchange membrane (PEM) electrolysis overcomes many of the issues 

associated with alkaline water electrolysis but introduces its own difficulties. The 

PEM based electrolyzer was first commercialized by General Electric in 1966.18 

The initial use of sulfonated polystyrene membranes as an electrolyte has been 

superseded by NAFION, a sulfonated tetrafluoroethylene based fluoropolymer 
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membrane (PFSA).  The PFSA membranes have the advantages of high proton 

conductivity, low gas crossover, high pressure tolerance, and mature fabrication 

methods resulting in extremely thin membranes.  

PEM electrolyzers have all the same components as fuel cells and alkaline 

electrolyzers but most of the components require different materials. Gas diffusion 

layers(GDL), flow-fields, catalysts, and methods of catalyst application all vary. 

Components of both electrolyzers and fuel cells are described in Table 1 

Table 1: Components of Fuel Cells and Electrolyzers 

 

PEM electrolyzers can operate at much higher current densities than alkaline 

electrolyzers while still maintaining high voltage efficiency. They reached 1 A/cm2 

@ 1.88V and 2A/cm2  @ 2.14V by the early 1970’s.18 The use of PSFA type 

membranes also enables both high pressure and high differential pressure. High 

Major Components PEM Fuel Cell PEM Electrolyzer17 

Membrane NAFION NAFION 

Anode Catalyst Pt IrO2 

Cathode Catalyst Pt Pt 

GDL Carbon paper/cloth Sintered Ti  

Bipolar plate (cathode) Graphite Ti, gold plated(Cathode) 

Bipolar Plates(anode) Graphite Ti, Coated Stainless 

Steel 
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system pressure improves anode kinetics. High differential pressure enables 

electrochemical compression of product gas instead of mechanical compression.19 

The relevant form of the Nernst equation across a membrane is as follows: 

11   𝐸 = 𝐸0 +
𝑅𝑇

𝑛𝐹
ln 

𝑃𝐼𝐼

𝑃𝐼
 

This leads to the conclusion that it is possible to increase pressure to 10,000 psi 

using 1/3 of the energy of 3 stage mechanical compression.20 In practice this 

degree of compression, requires multiple stages although it is still likely be cheaper 

and simpler than mechanical compression.  

Fast ionic transport across NAFION membranes allows quick response to changes 

in input power while alkaline systems have a somewhat delayed response due to 

the inertia of moving products across the liquid electrolyte.17 PEM based systems 

also have lower gas crossover than traditional alkaline electrolyzers, improving 

partial load range. The solid electrolyte enables compact system design.  

PEM electrolyzers are not without their drawbacks which include expensive 

components and durability issues. The choice of an acid environment means that 

the inexpensive catalysts used in alkaline fuel cells are not electrocatalytically 

active. Many of the catalysts that do show sufficient activity are not stable in the 

acid environment. This leads to the use of significant quantities of precious metals, 

including platinum, ruthenium, and iridium. The use of precious metals is an 

important cost driver in PEM electrolyzers.  
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Figure 1 shows the performance of a PEM water electrolysis cell with several 

advanced anodes. While the performance is considered to be quite efficient, the 

current does not even begin to flow until nearly 1.4 V. Operating at about 1.55 V 

and 0.5 A/cm2 is roughly 75% efficient.  

Iridium dioxide (IrO2) is generally recognized to be the state of the art anode 

electrocatalyst for water electrolysis. Ruthenium dioxide has been shown to require 

a lower overpotential than Ir but it experiences extreme corrosion issues.17 Iridium 

is one of the rarest metals on earth and the worldwide usage was only 5500 kg in 

2012. 22,23 This means that there would likely be a large increase in the price of 

iridium if it were to be widely deployed in electrolysis.  

For the case of cation exchange membrane with platinum electrocatalysts, the 

hydrogen reduction reaction is highly reversible. The current state of the art 

cathode catalysts are therefore based on high surface area platinum on carbon. 

Current loadings range between 0.5-1.0 mg/cm2. While the reaction is 

electrochemically facile, there is still a strong overpotential dependence on Pt 

loading at high current densities.17  

PEM water electrolysis is already highly mature but still has issues with durability, 

the overpotential required for water electrolysis and the low partial load range 

problems of alkaline water electrolysis. 

Reducing the potential required is an essential component of increasing efficiency. 

One solution for reducing the electrochemical potential is to chemically depolarize 
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the anode. This involves replacing water electrolysis at the anode with a more 

electrochemically favorable reaction. A great variety of reactions have been 

explored as anode depolarizers including methanol, ethanol, glucose, Keggin ions, 

SO2, and nearly every other reaction that can be used to run a fuel cell.  

PEM Methanol Electrolysis 

Direct electrochemical oxidation of liquid fuels has always been the ideal solution 

for increasing the market viability of fuel cells. The option of an easily transportable, 

energy dense, liquid fuel would solve the issues that surround production, 

transportation, and storage of hydrogen.  

Methanol is the most feasible of the small organic molecules for electrochemical 

oxidation. This is due to the lack of a carbon-carbon(C-C) bond. The C-C bond is 

much stronger than carbon-hydrogen bonds, so methanol is easier to oxidize than 

other candidate fuels like ethanol and ethylene glycol. 3,24 Additionally the lower 

carbon to hydrogen ratio means less CO2 is generated per unit energy. Methanol 

is a liquid at room temperature/pressure and is only slightly toxic, which makes it 

easy to store and transport.3 While the bulk of methanol today is made from 

reforming of natural gas, it  can be obtained from a variety of sources including 

renewables.25  

Much progress has been made in the design of direct methanol fuel cells over the 

years. The major scientific discovery that increased their viability was the discovery 

of the Pt-Ru anode catalyst.  
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Early methanol electro-oxidation experiments used platinum electrodes but Pt is 

poisoned by adsorption products. On pure platinum, it was determined that the 

initial rate limiting step was the removal of the first hydrogen from the methanol. 

After a short time, on the order of milliseconds, the rate limiting step would then 

shift to the removal of adsorbed products.26,27  

The Pt surface is covered with carbon monoxide and the reaction cannot be 

sustained at a high rate until the potential is raised by several hundred millivolts. 

To counter these effects, binary and ternary catalyst promoters have been used, 

the most effective of which has been mixtures of roughly 1:1 Pt:Ru. This is due to 

the bi-functional mechanism whereby Pt adsorbs and disassociates methanol (12). 

The CO binds strongly to the Pt surface and cannot be removed or further oxidized 

at modest over potentials.26 The Ru reactively adsorbs a water molecule (13) to 

form surface hydroxyls.  The adsorbed oxygen species diffuses to the Pt to further 

oxidize the CO to CO2 (14).  

12 𝑃𝑡 + 𝐶𝐻3𝑂𝐻 → 𝑃𝑡 − 𝐶𝑂(𝑎𝑑𝑠) +  4𝐻++4𝑒− 

13 𝑅𝑢 +  𝐻2𝑂 → 𝑅𝑢 − 𝑂𝐻(𝑎𝑑𝑠) + 𝐻++𝑒− 

14 𝑃𝑡 − 𝐶𝑂(𝑎𝑑𝑠) + 𝑅𝑢 − 𝑂𝐻(𝑎𝑑𝑠) →  𝐶𝑂2 + 𝐻++𝑒− 

The two main obstacles to the implementation of the direct methanol fuel 

cells(DMFC) are the high precious metal loadings required and crossover of 

methanol from the anode to the cathode. The state of the art anode for a DMFC 

contains 2-4 mg/cm2 of unsupported Pt-Ru and the cathode must contain 



19 
 

additional Pt catalyst to help deal with crossover oxidation, this results in 10 times 

the loadings required for a H2 PEMFC.3 Crossover of methanol from the anode to 

the cathode results in poor cell performance due to the formation of a mixed 

potential, poisoning of the cathode catalyst and fuel waste.3 Limiting crossover 

requires the use of a thick membrane such as NAFION 117 (0.007 in) rather than 

a thinner NAFION 211 (0.001 in). This thicker membrane is both more expensive 

and induces a higher cell resistance than a thinner membrane would. Platinum 

catalysts at the cathode can be poisoned by the buildup of CO from methanol 

partial oxidation on their surface which requires increased voltage to remove.7 A 

mixed potential is when multiple reactions are happening at a single electrode. In 

this case the undesired reaction would lower the overall cell potential and power. 

These effects limit the concentration of methanol which can be used, requiring 

additional storage space and complexity for dilution of the methanol3.  in spite of 

these issues, DMFC’s are a mature technology with products offered for sale. They 

are particularly gaining traction in the operation of forklift trucks and military 

applications.28–30 

It is possible to physically separate the steps of electrochemical oxidation of 

methanol and the reduction of oxygen. With this physical separation, a temporal 

separation also becomes possible. A separate electrochemical reformer could be 

used to oxidize the methanol and pipe the hydrogen to the fuel cell. Some of the 

power from the fuel cell can be used to operate the electrolyzer, while the 

remainder provides power. The electrochemical reformer could also operate to fill 
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a hydrogen tank when plugged into the wall. The hydrogen produced in methanol 

electrolyzers has been shown to be of sufficient quality for direct use in fuel 

cells.31,32 

This design has certain advantages over a DMFC. Crossover does not decrease, 

but its significance may, due to the potentials and chemicals present at the cathode 

of an electrolysis cell versus a DMFC. The methanol that crosses over will have 

no oxygen to react with and will not oxidize at the reductive potentials present. It 

can then be recycled with a mechanical trap, solving both the mixed potential and 

fuel loss issues. Studies have indicated that there is improved tolerance to high 

concentration methanol feeds relative to DMFCs.31,32  

If the cost, weight, volume, or energy requirements of separate electrolyzers on-

board vehicles proves prohibitive there is another option: Utilizing electrochemical 

reforming of the methanol to hydrogen in distributed sites. By concentrating 

methanol reforming at the gas station level, the increased load factor would 

decrease capital costs.9 The distributed reforming approach is expected to be far 

cheaper than on-board reforming or the buildout of a nationwide hydrogen 

infrastructure.8,9 The grid connected nature of these hydrogen supply nodes will 

also enable them to take advantage of dispatchable demand in a demand 

response market. That means purchasing power when there is an excess of 

(hopefully renewable) electricity supply.  

While much of the design knowledge will be shared with a direct methanol fuel cell, 

an appropriate benchmark technology is water electrolysis. Relative to water 
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electrolysis, methanol electrolysis has the main advantage of reducing the 

theoretical potential from 1.23V to 0.016V.32 It has been estimated that hydrogen 

production by methanol electrolysis has the potential to cost 50% less than water 

electrolysis, including the cost of methanol.33 In acid, the following equations 

describe hydrogen production from methanol: 

15 Anode: 𝐻3𝑂𝐻 + 𝐻2𝑂 → 6𝐻+ + 𝐶𝑂2 + 6𝑒−   

 E=0.016 V vs SHE32 

16 Cathode: 6𝐻+ + 6𝑒+ → 3𝐻2 

 E=0.0V vs SHE 

17 Whole cell reaction: 𝐶𝐻3𝑂𝐻 + 𝐻2𝑂 → 3𝐻2 + 𝐶𝑂2 

 E=0.016V vs SHE32 

The presence of free oxygen and a strongly oxidizing environment at the anode of 

a PEM electrolyzer necessitates the use of expensive titanium bipolar plates, 

especially at the anode. DMFC anode current collectors are frequently stainless 

steel. This can result in a significant cost savings as bipolar plates are nearly 40% 

of capital cost in a PEM electrolyzer.34 

Polyoxometalates 

The overarching goal of this work is to develop clean and affordable methods of 

generating hydrogen from renewable feedstocks. The direct(heterogeneous) 

oxidation of methanol and other organics is slow and fraught with potential fouling 
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of the electrodes. In this case the electrode reaction occurs only at high 

overpotential or with large quantities of electrocatalysts. 

An indirect approach may therefore be a useful way to circumvent these issues. In 

indirect electrochemistry, a mediator reacts heterogeneously at an electrode 

surface to become activated and then flows into a solution to undergo redox 

reactions with a substrate. The mediator carries electrons and other ions between 

the substrate and the electrode. This moves the catalytically slow step away from 

the electrode to the following effect:  

• enabling increased current density  

• decreasing or eliminating heterogeneous catalyst loading 

• preventing passivation of the electrode 

We have chosen the Keggin ion phosphomolybdic acid (PMo12O40
3-) as our 

homogenous catalyst. Keggin ions are polyoxometalates(POM) of the general 

form  𝑋𝑌𝑍𝑀(12−𝑍)
𝑛−, where X is the hetero atom, M and Y are addenda atoms. M 

and Y are transition metal atoms. POMs tend to exhibit stronger acidity than typical 

mineral acids and the properties can be tuned by changing the hetero and addenda 

atoms. This tunability and acidity combine to create a set of highly attractive acid 

and oxidation catalysts. Figure 2 is a ball and stick representation of a Keggin ion. 

For phosphomolybdic acid, the orange center is phosphorus, the blue molecules 

are molybdenum, and the red molecules are oxygen.  
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Higher redox potential POM’s are expected to more rapidly oxidize substrates but 

will require more energy to reoxidize. Therefore we must choose a POM that 

optimizes both of these requirements.35 It has been shown in that 

polyoxometalates can convert cellulose to glucose and 5-

hydroxymethlfurfual(HMF) at significantly higher rates than equivalent 

concentrations of mineral acids.36 Solar and thermal oxidation of starch, cellulose, 

raw poplar and lignin were demonstrated to operate a fuel cell using Keggin 

ions.37,38 Glucose and cellulose oxidation to produce hydrogen and syngas has 

also been confirmed and patented using Keggin ions.39,40 

PMo12O40
3- also written 𝐻3𝑃𝑀𝑜12𝑂40, can undergo four reversible reductions of 

two, two, two, and four electrons followed by an irreversible reduction of two 

electrons.41 The reduction potentials depend on pH as the electron transfer is 

coupled with protonation as shown in the following equations.41 The stability is also 

a function of pH and solvent choice.  

18 𝐻3𝑃𝑀𝑜12𝑂40 + 2𝑒− + 2𝐻+ = 𝐻5𝑃𝑀𝑜12𝑂40 

19 𝐻5𝑃𝑀𝑜12𝑂40 + 2𝑒− + 2𝐻+ = 𝐻7𝑃𝑀𝑜12𝑂40 

 20 𝐻7𝑃𝑀𝑜12𝑂40 + 2𝑒− + 2𝐻+ = 𝐻9𝑃𝑀𝑜12𝑂40
3− 

At a concentration of 0.5 M in deionized water, the first redox step occurs at 0.65 

V vs NHE as shown in Figure 3. The dashed red line shows CV of 1 M phosphoric 

acid as a background. The CVs were performed under air with a Pt counter 

electrode, Ag/AgCl reference, and a 100 mV/Sec scan rate. Significantly the plot 
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of peak current vs square root of scan rate is linear, indicating that the reaction 

may be electrochemically reversible. Phosphomolybdic acid can be readily 

oxidized on multiple media including high surface area carbon paper.38,42 

PMo12O40
3- is a large ion of molar mass 1822 kg/mol and a 3- charge, making it 

extremely resistant to crossing over cation exchange membranes. An experiment 

on using phosphomolybdic acid for time shifted water electrolysis showed no 

noticeable crossover with NAFION or neutral benzoylated cellulose dialysis 

membranes.42 This lack of crossover suggests that the use of traditional PEM 

electrolysis cathodes for the production of hydrogen will be successful. 

 The use of a hydrogen on platinum cathode provides an additional benefit; it 

enables the cathode to perform as a dynamic hydrogen electrode (DHE). A DHE 

is a form of reference electrode based on the reversibility of the hydrogen on 

platinum reaction in acid. The use of an in-situ reference electrode allows for the 

examination of anode kinetics in a way that has not been done before with this 

system. Previous authors have either focused on fundamentals of POM behavior 

or the operation of biomass based fuel cells. 

Liu et al.showed the creation of a “solar induced direct biomass to electricity” fuel 

cell.38 The authors showed the photocatalytic activity of phosphomolybdic acid was 

sufficient to oxidize starch, cellulose, lignin, and poplar. They also showed a 

significant increase in catalytic effect from elevated temperature. When the two 

effects were isolated, the thermal effect was greater than the solar effect.  They 

only presented results which allow inferences from the operation of the cell. They 
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show the comparison of fuel cell polarization curves using different biomass 

substrates and promoter ions. Their cell had poor power output and they did not 

attempt to decouple the anode and cathode losses. We are left to make inferences 

about the oxidation of the biomass based upon how the cell operates. This is 

inappropriate because polarization curves can be affected by the complex 

behavior of the POM anode and the ORR cathode. They use peak power as a 

surrogate for degree of reduction. This also leaves the question of anode 

performance untouched. 

Bloor and Cronin have demonstrated solar driven water oxidation with decoupled 

hydrogen production using phosphomolybdic acid and a tungsten oxide 

photoanode.43 This cell oxidized water at 1
𝑚𝐴

𝑐𝑚2 under sunlight, storing the produced 

hydrogen in phosphomolybdic acid. Their designed system is shown in figure 

Figure 4. Their work showed the ability to completely reoxidize this mediator on 

carbon felt at 0.75 V vs Ag/AgCl, a voltage well below that required for water 

oxidation. They were only making a proof of concept and did not explain the anode 

performance on reoxidation of the biomass.  

Several authors have shown the creation of a homogenous POM-TiO2 co-catalyst 

system for enhancement of the photo catalytic ability of the system.44,45 All authors 

used TiO2 nanoparticles with Keggin type polyoxometalates and showed 

significant increases in reaction rates. The substrates used were methanol and 

1,2-dichlorobenzene (DCB). The work by Gu showed a 4-fold increase in reaction 

rates compared to POM alone. This work was done at low concentrations of POM 
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to reduce the quantity of substrate oxidized by the POM rather than by TiO2, despite 

increasing photocurrent with increasing POM concentration. It is possible that the 

addition of significant quantities of POM would reduce the effectiveness of the TiO2 

by acting as a local UV filter. 

Dumesic et al.showed the creation of a polyoxometalate based fuel cell which ran 

on CO.46 This is a particularly promising concept because the  water-gas shift 

reaction is more efficient at low temperature.39 The authors used gold 

nanoparticles in solution with H3PMo12O40 to oxidize CO at room temperature. 

They achieved a maximum transfer of nearly 5 electrons per Keggin unit. The 

authors also showed 20-50% higher performance for anodes containing precious 

metals versus their unspecified carbon cloth anode. They found the rate of POM 

reduction to be first order with respect to CO partial pressure. They also achieved 

5 electrons per Keggin unit reduction. As with the others, they are again only 

showing full cell polarization curves. They did not isolate the operation of the 

anode.  

Roger Carson and Bruce Bremer have filed patent applications on a variety of 

waste oxidation methodologies, including one entitled “Mediated electrochemical 

oxidation processes used as a hydrogen fuel generator”.47 In this application they 

explain nearly every possible way such a mediated biomass to hydrogen generator 

could work. The authors explain how polyoxometalates interact with the solvent 

and other ions which may be present to synergistically increase the substrate 

destruction rate. They introduce the concept of superoxidizers, secondary oxidizer 
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free radicals such as O2H, OH, SO4, etc. The patent claims acid, alkaline, or neutral 

solutions with nearly every combination of simple anion mediators or heteropoly or 

isopoly anion mediators.  

Mediator Cost 

Cost is of great importance in the design of a system intended for widespread 

deployment. Many competing solutions require the extensive use of precious 

metals, which are both expensive and exhibit great price volatility.  

The key components of phosphomolybdic acid, phosphorous and molybdenum 

are both abundant and widely used materials. 5.4 million tons of molybdenum are 

considered identified resources in the US alone, and 266,000 metric tons were 

mined in 2014.48 Molybdenum oxide is a commodity chemical used in metal 

refining while phosphorus is used in the production of fertilizer. Their status as 

commodity chemicals will help to prevent massive price increases should this 

system become widespread.  

Phosphomolybdic acid is currently a specialty chemical, priced on the order of $1 

per gram. This need not be the case if mass production were to begin. As of 

June, 2017, the molybdenum spot price is $15 per kg.49 Phosphorus can be 

purchased for as little as $0.55 per kg.50 The metal content of phosphomolybdic 

acid is not the only price driver, synthesis and refining will also play a significant 

role in setting the cost. Phosphomolybdic acid is synthesized by mixing 

phosphoric acid with molybdenum trioxide and strong acid. The Keggin ion is 
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then extracted with ether and crystallized.51 While not particularly complicated, 

this process does require several steps and results in significant waste, although 

most of the waste can likely be recovered.  

Mechanisms for Polyoxometalate Mediated Oxidation of 

Organics 

Two mechanisms have been proposed for the oxidation of biomass by Keggin ions. 

First is the proton coupled electron transfer (PC-ET). Using the notation of 

Neumann, the reaction is shown in equations 21 and 22.  

21  𝑆𝐻2 + 𝑃𝑀𝑜12𝑂40
3− → 𝑆 + 2𝐻+ + 𝑃𝑀𝑜12𝑂40

5− 

22  2𝐻+ +  𝑃𝑀𝑜12𝑂40
5− + 

1

2
𝑂2 → 𝑃𝑀𝑜12𝑂40

3− + 𝐻2𝑂 

Neumann’s work also posits an electron transfer-oxygen transfer (ET-OT) 

mechanism, summarized below where S is once again the substrate. 52 

23 𝑆 + 𝐻3𝑃𝑀𝑜12𝑂40 → 𝑆 − 𝑂 + 𝐻3𝑃𝑀𝑜12𝑂39 

24 𝐻2𝑂 +  𝐻3𝑃𝑀𝑜12𝑂39→ 𝐻5𝑃𝑀𝑜12𝑂40 

25 𝐻5𝑃𝑀𝑜12𝑂40 + 2𝑒−  → 𝐻3𝑃𝑀𝑜12𝑂40 +  𝐻2 

The authors state that the phosphomolybdovanadate anion 𝑃𝑉2𝑀𝑜10𝑂40
5− is more 

reactive than 𝑃𝑉𝑀𝑜11𝑂40
4− , which is more reactive than 𝑃𝑀𝑜12𝑂40

3−. The stability 

trend runs the opposite direction, while the redox potentials and acidity of all of 

three species are roughly the same. This increased reactivity is believed to be due 
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to faster re-oxidation by molecular oxygen. Our proposed process would take place 

in the absence of molecular oxygen so this may be an unimportant or even 

counterproductive characteristic. In the proposed systems, re-oxidation by oxygen 

is a competing reaction which would produce water instead of hydrogen.  

In the presence of strong acids, Keggin ions have been found to catalyze the 

oxidation of vicinal diols via the ET-OT(electron transfer-oxygen transfer) 

mechanism and insertion of oxygen into the C-C bond.53 Neumann’s group has 

also developed and patented a phosphomolybdovanadate based system to 

oxidize cellulose and hemicellulose to carbon monoxide and hydrogen 

gas.39,40,52,53 They found that the presence of strong acid shifts the reaction from 

PC-ET to ET-OT. This should enable a more complete oxidation reaction.  

Locations of Common Mediator Redox Potentials  

Figure 5, shows the redox potentials of many common redox couples used for 

batteries and mediated electrochemistry. Phosphomolybdic acid redox potential is 

dependent upon pH but the first two, two electron redox couples are located at 

0.64 V and 0.43 V respectively. That places them between the iron and vanadium 

redox couples shown in Figure 5. The first 2 electron redox couple is shown on the 

figure below.  

Glycerol 

One of the most important choices for any proposed biofuels program is the 

question of substrates. An appropriate starting material for a biofuel will be 
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inexpensive, carbon neutral, and available in sufficient quantities. One trap to avoid 

is the use of a starting material that is currently cheap but will become expensive 

as the scale of the operation grows. According to a study done by the US EPA, the 

growth of corn based biofuels is believed to have increased corn prices 2-3% for 

each billion gallons of fuel produced.55 For reference the US consumed about 140 

billion gallons of gasoline in 2015.56 The authors at the EPA also claim that 

increased use of biofuels will significantly increase the cost of food and raise the 

number of people at risk for poverty and starvation worldwide. We are driven to 

find waste streams available in sufficient quantity to serve as resources worth 

exploiting commercially.  

Glycerol is the main component of triglycerides, found in animal fat and vegetable 

oils. It has been in continuous production for nearly 5000 years.57 It was once a 

valuable commodity chemical but it is now available in large excess due to the 

production of biodiesel. Glycerol is produced as a byproduct of biodiesel at a rate 

of roughly 10% by weight.58,59 Biodiesel has been in production in the EU 

commercially since 1992 but its production and adoption have grown worldwide.57  

Glycerol is produced from a process known as saponification. Triglycerides are 

reacted with sodium or potassium salts in strong base to yield glycerol and soaps 

the reaction shown in Figure 6.57 Increasing the concentration of NaOH will 

eventually cause a phase separation between the glycerol and the soap.  

The biodiesel production process shown in Figure 6 is similar to the soap 

production process. It uses the same reagents as saponification but with the 
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addition of alcohol. This process is known as transesterification. The most common 

choice of alcohols for biodiesel production is methanol.57 

From the 1970s until about 2004, the price of glycerol was stable between $1200 

and $1800 per ton. Starting in 2004, the price of crude glycerol began to crash. 

This is attributed to the introduction of biodiesel mandates, subsidies, and vehicles. 

Crude glycerol prices reached between $0 and $70 per ton in 2007.57 The market 

is fully saturated with glycerol and that is unlikely to change as biodiesel production 

is expected to increase.   

Raw (unrefined or crude) glycerol contains 62-68% glycerol, 23-38% methanol, 

and the balance salts, water, and other free fatty acids. The exact composition of 

the raw glycerol depends primarily on the source of triglycerides for biodiesel 

production. It is nontoxic, not flammable, noncorrosive and nonvolatile liquid 

making it easy to handle.  There are two primary handling concerns, high viscosity 

and susceptibility to oxidation.  

Glycerol is stable against atmospheric oxidation although it is relatively easy to 

oxidize. Ferrous and copper materials must be kept away from glycerol due to their 

propensity to catalyze the oxidation of glycerol. This process is especially rapid at 

elevated temperatures.60   

The simplest method of using glycerol for energy would seem to be combustion. 

Combustion occurs when a reductant(glycerol) is combined with an 

oxidant(oxygen) to release heat, forming 𝐶𝑂2 and water. The combustion of crude 
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glycerol is a more complicated proposition than might be expected for the following 

reasons: 

• Glycerol has a low caloric energy density of 16 MJ/kg which makes it difficult 

to maintain a stable flame.  

• It is hygroscopic and crude glycerol contains significant amounts of water. 

This high water content further decreases the energy density 

• Its self-ignition temperature is relatively high at 370 ℃, compared to 210℃ 

for kerosene.  

• It is highly viscous which makes it hard to atomize 

• Presence of sufficient quantities of salt to clog atomizers without additional 

purification.  

For an ideal combustion reaction, a spray of the fluid should be ignited from a 

single spark to yield a sustained flame. Due to the low energy density and high 

self-ignition temperature, even passing a glycerol spray over a flame is insufficient 

and will extinguish the flame. Glycerol must therefore be co-burned with other fuels 

in specialized setup.57   

When used in an electrochemical reactor, crude glycerol must have some 

impurities removed. Crude glycerol can contain significant quantities of salt. These 

salts must be removed before the solution reaches an electrochemical reactor, as 

they will tend to clog the fragile gas diffusion layer. Indeed, fuel cells exposed to 
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vapor laden with salt from sea water will form a salt crust. The other major impurity 

in crude glycerol is methanol. Methanol is traditionally recovered for use as a 

reagent in the saponification process. The excess methanol in the presence of 

strong acid can cause an etherification reaction instead of the desired oxidation 

reaction. Full removal of the methanol is likely unnecessary because the presence 

of oxygen containing organics is known to stabilize Keggin ions in their reduced 

form.  

One of the biggest potential hazards of glycerol oxidation is the byproduct acrolein. 

Acrolein is a toxic chemical formed by the dehydration of glycerol at high 

temperatures(equation 26). Occupational exposure is regulated by OSHA. 

Acrolein can also undergo polymerization reactions which might render it 

inaccessible to the polyoxometalate. The production of acrolein can be minimized 

by either preventing formation or consuming the acrolein. The formation of acrolein 

generally requires elevated temperatures so strategies to minimize the 

temperature make the formation of acrolein less likely. The other possibility is to 

consume the produced acrolein in the reactor where it is generated. In an ideal 

system, acrolein can be overoxidized to acrylic acid and then all the way to carbon 

dioxide.   

26 (𝐶𝐻2𝑂𝐻)2𝐶𝐻𝑂𝐻) → 𝐶𝐻2 = 𝐶𝐻𝐶𝐻𝑂 + 2𝐻2𝑂 
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Glycerol Thermodynamics 

One of the advantages of glycerol oxidation versus glucose or cellulose oxidation 

is the ratio of hydrogen to carbon dioxide released. Complete oxidation of glycerol 

(equation 29) yields 10 𝐻2 molecules per 3 molecules of carbon dioxide or a 
𝐻2

𝐶𝑂2
 

ratio of 3.33. Glucose oxidation (equation 27) only yields 12 molecules of 𝐻2 per 6 

moles of carbon dioxide or a 
𝐻2

𝐶𝑂2
 ratio of 2. This will either lead to lower carbon 

emissions or less stress on any carbon capture system employed. 

Glucose oxidation to carbon dioxide and hydrogen. 

27 𝐶6𝐻12𝑂6 + 𝐻2𝑂 → 6𝐶𝑂2 + 12𝐻2 

Glycerol partial oxidation to CO and H2 is given by 28. This mixture is known as 

syngas. The production of syngas may be economically valuable in certain 

conditions. It is used for producing methanol, ammonia, and synthetic 

hydrocarbons for fuel or lubricant.  

 28 𝐶3𝑂3𝐻8(𝑙) → 3𝐶𝑂(𝑔) + 4𝐻2(𝑔) 

 Glycerol Carbon Monoxide Hydrogen 

∆𝑓𝐻𝜃 -669 kJ/mol -110.5 kJ/mol 0 kJ/mol 

∆𝐻𝑅𝑋𝑁 =  337.5
𝑘𝐽

𝑚𝑜𝑙
  is required for the partial oxidation of glycerol. 

Glycerol complete oxidation to carbon dioxide and hydrogen is given by equation 

29. 



35 
 

29 𝐶3𝑂3𝐻8(𝑙) + 3𝐻2𝑂 (𝑙) → 3𝐶𝑂2(𝑔) + 10𝐻2(𝑔) 

 Glycerol Water Carbon 

Dioxide 

Hydrogen 

∆𝑓𝐻𝜃 -669 kJ/mol -286 kJ/mol -393.15 kJ/mol 0 kJ/mol 

     

∆𝐻𝑅𝑋𝑁 = 348
𝑘𝐽

𝑚𝑜𝑙
 is required for the complete oxidation of glycerol in the absence 

of molecular oxygen. The oxidation of glycerol to hydrogen and CO or CO2 is 

endothermic. Some of this energy will be supplied by waste heat but some will be 

required as electrical energy to accomplish the final oxidation.  

An alternative oxidation system would be the operation of a glycerol fuel cell as 

described by equation 30). 

30 𝐶3𝑂3𝐻8(𝑙) + 𝑂2(𝑔) → 3𝐶𝑂2(𝑔) + 4𝐻2𝑂(𝑙) 

 Glycerol Water Carbon Dioxide Oxygen 

∆𝑓𝐻𝜃 -669 kJ/mol -286 kJ/mol -393.15 kJ/mol 0 kJ/mol 

∆𝐻𝑅𝑋𝑁 =  −393.15 ∗ 3 − 286 ∗ 4 + 669 = −1654
𝑘𝐽

𝑚𝑜𝑙
 could be obtained from the 

operation of a glycerol fuel cell if all of the heat were converted to electricity. The 

choice between the two modes of operation would depend of the economics of 

electricity and hydrogen at the time of implementation.  
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The Goal and Scope of This Dissertation 

The goal of a vibrant, carbon free hydrogen economy will require the electrolytic 

production of hydrogen in the most efficient way possible. Current systems of water 

electrolysis are attractive but require large overpotentials and expensive materials. 

These two drawbacks speak to the operating cost and capital cost respectively.  

Since nearly 80% of the cost of electrolytically produced hydrogen is electricity, 

most plans for addressing the operating cost of the stack revolve around reducing 

the potential. The three options for decreasing the overpotential mirror the sources 

of loss in an electrochemical cell. The goal is to decrease kinetic, ohmic, or mass 

transfer losses. Decreasing the kinetic potential requires advances in catalysis but 

will never advance beyond the thermodynamic voltage of 1.23 V. The ohmic 

potential is already quite low in zero gap flow cells. Advances traditionally come 

from thinner membranes, thinner electrodes, and improved contact between the 

cell components. The titanium surfaces required in PEM electrolysis present 

special challenges here because the titanium forms a passivating layer which both 

protects it and hinders electrical contacts. Improving the mass transport 

characteristics here tends to come from a better understanding of bubble 

formation, critically PEM electrolyzers tend to have less significant mass transport 

concerns since the pure reactant(water) is supplied in great excess.  

Catalysts make up about 6% of total cost and flow-fields/separators make up a 

further 20% of installed cost.34,61,62 Attempts to decrease the capital cost of the 

stack (40-50% of total cost) generally focus on three areas, the current, the 
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catalysts and the bipolar plates. The elimination or reduction of precious metals in 

all electrochemical devices is a longstanding goal. The advanced catalysts can 

decrease the precious metal loadings. Stack cost scales almost linearly with stack 

size, so decreased stack size is an important goal. Towards decreasing stack size 

the most important goal is increased current density.  

These proposals are all fundamentally limited by the thermodynamics and the 

environment of water oxidation. An innovative approach will be required to 

circumvent many of these issues.  

To further the goal of clean, abundant, and inexpensive hydrogen, we have 

explored the process of electrolytic hydrogen production from organic materials. 

The two systems used were direct methanol oxidation in an electrolyzer and 

indirect glycerol oxidation using polyoxometalates. The central points of this thesis 

are understanding ways to use electrochemical systems to harvest the energy 

content of biomass and increase the efficiency of hydrogen production processes. 

In this work we have shown that an aqueous system with a phosphomolybdic acid 

based anode is feasible using a carbon electrode. Despite this, substantial 

challenges remain in increasing the reaction rate of the biomass substrates. 

In chapter 3 we constructed a direct methanol electrolysis cell. We utilized a 

dynamic hydrogen electrode to isolate the performance of the anode and cathode.  

We confirmed the expected decreases in cell potential with temperature. Overall 

cell performance and cathode performance were more negatively impacted by 

increasing methanol concentration than was expected.  
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To our knowledge, no group has performed kinetic studies of POMs in a zero gap 

electrochemical cell. Much work has been done to examine the electrochemistry 

of polyoxometalates in general and phosphomolybdic acid in particular, but only at 

low surface area electrodes.  

To begin to solidify our understanding of the electrochemistry of 

phosphomolybdates, chapter 4 begins to characterize the electrochemistry of 

phosphomolybdic acid using cyclic voltammetry and rotating disk voltammetry. We 

find only some of the characteristics of electrochemical reversibility are met. We 

also find unexpected differences in the voltammetry based on state of charge. 

Finally kinetics and diffusion are examined using rotating disk voltammetry.  

Chapter 5 is written with the goal of understanding the properties of the system in 

an operational configuration. The idea is to use polarization curves and cycling 

measurements to determine if operation in a PEM electrolyzer is a feasible 

proposition. By varying state of charge, temperature, electrode material, 

concentration, and pump speed we can understand what proportion of the loss 

comes from mass transfer, kinetics, and ohmic losses. This will direct future 

research towards how best to decreases these losses.  

Chapter 6 begins to examine the chemical reduction of polyoxometalates by 

glycerol. We begin screening a variety of polyoxometalates, additives, and 

supporting acids to find sufficient reactivity with the glycerol.   
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CHAPTER 2 

Materials and Methods 
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Cyclic Voltammetry at the Macroelectrode Theory 

Cyclic voltammetry (CV) is a versatile electrochemical technique well suited to both 

rapid initial examination of systems and semi-quantitative kinetic analysis.  

The CV experiment is an extension of linear scan voltammetry. A potential is 

applied, that cycles linearly up and down with time (Figure 7); the current response 

is recorded. The experimental results depend on the potential ranges scanned, the 

scan rate, diffusion coefficients, and the electrochemical rate constant 𝑘0. Large 

current peaks which do not decrease at either end of a scan indicate electrolyte 

breakdown. The transport equations for the concentration profiles are not easily 

solved analytically for cyclic voltammetry experiments.63 The key measured 

parameters for CV are shown in Figure 8. Initial analysis of the waveform reveals 

the formal potential 𝐸0′ (Equation 31) and the locations of 𝐸𝑝𝑎 and 𝐸𝑝𝑐. 31 𝑬𝟎′ =

𝑬𝒑𝒂+𝑬𝒑𝒄

𝟐
 

Scans can immediately reveal the limits of the solvent electrochemical window and 

the locations of redox peaks. CV also allows a certain degree of analysis in aid of 

determining the mechanism of electrochemical reactions. By judicious choice of 

parameters such as scan rate and reversal potentials, the interconnections 

between peaks and the relation between electron transfer and homogenous 

processes can be revealed. Further analysis and planned experiments are 

required to determine kinetic parameters of the electron transfer reaction assuming 

the mechanism is known. This analysis, however, is rather difficult to perform to 
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high levels of accuracy unless a variety of aspects, notably solution IR and current 

distribution, are carefully controlled. CV can also be used in conjunction with 

modeling to confirm mechanistic information concerning the electron transfer 

reaction or to understand the kinetics of pure chemical reactions.  

One of the important uses of CV is to determine reversibility of the electrode 

reaction. Electrochemical reactions can be reversible, quasi-reversible, or 

irreversible, while still maintaining chemical reversibility. This is because 

electrochemical reversibility is a kinetic condition rather than a thermodynamic 

one. Three characteristics must be met to determine reversibility from CV: ∆𝐸𝑝 <

59

𝑛
𝑚𝑉 (independent of scan rate), 𝑖𝑝𝑎 = 𝑖𝑝𝑐, and a linear relationship between peak 

height and square root of scan rate. In reversible reactions, the following condition 

holds(equation 32). The determination of peak heights is often not a 

straightforward affair. It can require the use of potential hold experiments where 

on the second cycle the potential is held just before the start of the peak and the 

current at the time which would correspond to the peak is sampled. The recorded 

peak height minus the current sampled at that time is the peak height to be used 

in the experiment.63  

32 𝑖𝑝 = 2.69x105𝐴𝐷
1

2[𝐶𝐵𝑢𝑙𝑘] 𝜈
1

2] 

In quasi-reversible and irreversible reactions, additional mechanistic information 

can be gained although the use of simulation is required. However, any residual 
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IR loss between the working and reference electrode as well as maldistribution of 

the current flow can have a significant impact on peak separation and morphology. 

To maximize the utility of CV, it is recommended to perform an experiment across 

a wide range of scan rates. An initial scan at a high scan rate is often performed 

to determine the electrochemical window (the range of voltages where solvent 

breakdown begins).  Additionally, the bounds of the scan must be selected such 

that they are far enough away from the target reaction to prevent interference. The 

conditions in this section apply to the first scan, if multiple scans are used then 

these diagnostics do not necessarily apply. This is because the environment 

around the electrode changes locally from the bulk during a scan.63  

Scan rates are limited by capacitive charging on the high end and 

diffusion/convection at the low end. Capacitive charging introduces an additional 

contribution to the current that is linearly dependent on scan rate. This can make 

peaks difficult to resolve. CV relies on the assumption that all mass transport to 

the electrode is controlled by semi-infinite linear diffusion. If this assumption breaks 

down due to convection, then the results will be incorrect. This is most likely to 

happen in slow scan experiments since convection due to vibrations of the cell 

apparatus are most significant. The value P defined in chapter 4 describes the 

relationship between scan rate and the diffusion assumption in quiescent solutions.  
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CV For Analysis of Solution Reactions  

CV can be used to determine the existence and kinetics of solution reactions 

coupled to electrochemical reactions. The coupled solution reaction will cause 

either an abundance or disappearance of one of the electrochemical reactants. 

The voltammogram will additionally depend on the solution reaction kinetics, 

concentration, and scan rate. This technique is described in chapter 6 where it is 

used.  

Square Wave Voltammetry 

Square wave voltammetry (SWV) is a type of potential step experiment useful for 

analytical studies due to its sensitivity. The name derives from the potential 

waveform shown in Figure 9. The current is sampled at the end of each step as is 

shown in the figure. The 𝑖𝐹𝑜𝑟𝑤𝑎𝑟𝑑 (𝑖1) and 𝑖𝑅𝑒𝑣𝑒𝑟𝑠𝑒 (𝑖2) curves each will approximate 

a standard cyclic voltammetry sweep. The value 𝑖Δ derived by subtracting forward 

and reverse scans, subtracting capacitive current while increasing faradaic 

response. This enables extremely high effective scan rates with high sensitivity. 

Effective scan rate is given as equation 34. SWV is most commonly used for 

concentration analysis where it is used with a calibration curve. While detailed 

mechanistic analysis is possible using SWV even for solutions of very low 

concentration, the analysis is strongly dependent on modeling of the results. 65 
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33 𝑖Δ = 𝑖𝐹𝑜𝑟𝑤𝑎𝑟𝑑 − 𝑖𝑅𝑒𝑣𝑒𝑟𝑠𝑒 

34 𝑆𝑐𝑎𝑛 𝑅𝑎𝑡𝑒 =  
𝐸𝑆𝑡𝑒𝑝

𝜏
 

Thin Layer Voltammetry  

Thin layer voltammetry is a cross between cyclic voltammetry and bulk electrolysis 

techniques. A cell is constructed with a separation between electrodes on the order 

of the thickness of the diffusion layer. Thus, an appropriately slow scan will 

completely convert the material in the gap. It is useful because it is the most 

convenient technique to conduct rapid and complete bulk electrolysis. The major 

difference is that the system does not depend on semi-infinite diffusion, it is a 

complete electrolysis process. The potential waveform again follows Figure 7. 

Peaks should be stacked one atop the other, any differentiation from this condition 

is known as hysteresis. Hysteresis can be used to analyze the kinetics of the 

reaction (described in chapter 4).  

Rotating Disk Electrode Theory 

Rotating disk electrode (RDE) experiments employ a disk of electrode material 

placed within an insulating plane and mounted in a rotator which spins at high 

speed. The spinning electrode draws fresh solution to the center of the electrode 

and then spins it out to the edges. This controls the solution hydrodynamics and 

diffusion layer thickness in a well understood manner. Relatively high convective 

transport leads to a decreased diffusion layer thickness, yielding a steady state 

current-voltage response with increased currents and low sensitivity to extraneous 
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convection, relative to quiescent solution methods. The steady state curves quickly 

produced in RDE experiments enable rapid interpretation of data relative to CV. 

More detail is provided where this method is used in chapter 4.  

Polarization Curves 

Polarization curves are a common methodology for analysis of flowing 

electrochemical systems. Curves are generally taken as a series or potential or 

current steps, the dependent variable is then allowed to decay to a steady state 

before being sampled. Different portions of the curve correspond the three 

dominating sources of loss(Figure 10). The advantage of this methodology is that 

it can quickly distinguish between these sources of loss while also providing 

realistic information about different operating regimes. Polarization curves can be 

obtained under either potential or current control. 

Potential Step Polarization Curves  

In a potential step experiment the potential is stepped to a new potential and held 

for a time t; current will spike initially and decay to a steady state value. Performing 

the polarization curve in a potential step mode has the advantage of controlling the 

potential. This means that side reactions can be minimized, as can damage to the 

electrodes from potential excursions. For example, a vanadium battery operating 

on current control may become electrolyte starved; if this happens the potential will 

increase until something provides that current, either solvent breakdown or carbon 

corrosion. Electrolyte starvation in the case of potential control will simply result in 

no additional current rather than damage. Achieving the desired potentials for 
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analysis can require the use of active IR correction between each step. This 

experiment is used in chapter 3. 

Current Step Polarization Curves 

In a current step experiment the current is stepped to a new value and held for a 

time t; potential will tend to decay to a steady state value. If the system is mass 

transport limited and the demanded current is unachievable, the potential will 

continue to increase until other reactions meet the current demand. Despite this 

danger, current step experiments enable precise control of state of charge in 

batteries by allowing rapid alternation between reduction and oxidation. 

Furthermore, most power-generating electrochemical devices are operated under 

current control in real applications since some total current is typically demanded 

from a system. This experiment is used in chapter 5.  

Reasons for Choosing the PEMFC-Based Flow-Battery 

Architecture 

In chapters 4, 5, and 6 of this work we have used the PEMFC based flow battery 

architecture manufactured by Fuel Cell Technologies LLC. This cell design 

consists of two brass end plates, gold current collector, and serpentine flow-fields 

engraved in POCO graphite blocks. To this we added Teflon gaskets, carbon 

GDLs(gas diffusion layers), and Nafion 117 membranes. 

Nafion 117 was chosen as the membrane for its ion selective properties, high 

conductivity, and mechanical properties. This is the thickest Nafion membrane sold 
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and accordingly is mechanically robust. It is capable of withstanding significant 

differential pressures and will not crack during assembly. As a perfluorosulfonated 

membrane, Nafion is ion selective for cations while maintaining high degrees of 

resistance to chemical attack. This is accomplished by binding sulfonate groups 

within the polymer which allows cations to transport across the membrane though 

acid sites. The resistance to chemical attack comes from the presence of fluorine 

within the polymer. The thickness of the membrane adds to the ohmic resistance 

of the cell; therefore a thinner membrane could be used in a production cell. The 

relative importance of the membrane thickness and concomitant resistance 

depends on the operating current density. Membrane thickness also represents a 

trade-off between the resistance and any unwanted transport through the 

membrane, generally referred to as ‘cross-over.’ 

The cell components are pressed together to improve electrical and ohmic contact, 

this design feature minimizes resistance. The presence of flow-fields can help to 

mitigate mass transport issues, resulting in high current densities.  

A major downside of this design is high cost. Nafion membranes are expensive 

and cost scales linearly with area. Accordingly, the increased current densities of 

this design can be useful to mitigate this issue. It is important to note that the price 

of Nafion and similar products is somewhat artificial; competition from other 

membrane types and increased production scale expected as large-scale users 

come on line will drive this price down.67 Cells must be constructed to high 

precision and therefore construction is labor intensive and costly.  
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Resistance Measurements 

In the ohmic region of the polarization curve shown in Figure 10, internal losses 

within the cell are nearly linear with current density and are caused primarily by 

internal resistance within the cell. The ohmic losses are caused by the sum of the 

cell resistances as shown in equation 35. 𝑅𝑗 denotes the areal specific resistance 

of each of the cell components including electrolyte, bipolar plates, electrodes, 

current collectors, contact resistances, and electrical contacts.  

35 𝜂Ω = 𝑖𝐴(∑𝑅𝑗) 

Well-built fuel cells will have an ohmic polarization dominated by ionic resistance, 

both within the separator and within the electrodes.3 Other sources of ionic 

resistance could include contact resistances due to corrosion or insufficient 

compression. Tracking the areal specific resistance over time and current/potential 

space gives the opportunity to examine the performance state of the cell. Changes 

with time can indicate corrosion, formation of passivating layers, or other types of 

degradation. Changes with current, potential, or temperature tend to indicate 

fluctuation of the hydration state of the membrane.3  

An electrochemical cell can be modeled as a series of resistors and capacitors. 

The capacitors represent double layer capacitance while charge and mass transfer 

are typically treated as resistances or possibly networks of resistors and 

capacitors.  
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It is possible to determine these cell resistances using a technique based upon 

alternating current called electrochemical impedance spectroscopy (EIS). One 

(physically questionable) method of analyzing the electrochemical circuit entails 

fitting the measured impedance to ‘equivalent circuits’ representing the various 

elements of the electrochemical response.  Building a full equivalent circuit model 

requires knowledge of the physical processes within the cell and therefore should 

be approached with caution. At high frequency, capacitive elements will be shorted 

out and the remaining resistance is referred to as the high-frequency resistance 

(HFR). A Nyquist plot shows the real vs imaginary components of the impedance. 

An example is given in Figure 11 The zero intercept of the Nyquist plot shows the 

HFR, which contains all the ohmic ‘DC’ series resistance losses within the cell. The 

HFR must then be corrected to the ASR by multiplying by the geometric surface 

area. The HFR shown in Figure 11 is 0.042 Ohm and the surface area is 5 cm2 so 

the ASR is 0.21 Ohm-cm2. 

Chemical Methods 

All gasses used were ultra-high purity and supplied by AIRGAS. Millipore 18 MΩ 

water was used in all experiments.  

Nafion membranes were cleaned and converted to proton form by boiling in 3% 

hydrogen peroxide for one hour, boiling in deionized water for 1 hr, 0.5 molar 

H2SO4for one hour and then deionized water for one hour.68   
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The hydrogen evolution cathode in the phosphomolybdic acid system served as a 

pseudo-reference electrode in addition to its role as a cathode. This methodology 

was pioneered in understanding the direct methanol fuel cell anode and PEM fuel 

cell cathode.69 The phosphomolybdic acid cathode catalyst was 20% Pt on Hi-

Spec 3000 carbon. A representative preparation contained 1080 mg Pt/C, 2 grams 

water, 1 gram isopropanol, 600 mg 5% NAFION, and 56 mg 35% PTFE. The dry 

percentages are therefore 20% Pt, 2.7% ionomer, and 1.7% PTFE. The solution 

was sonicated for a minimum of 30 minutes, then sprayed onto a Teflon coated 

Sigracet 25 BC GDL with a dry weight catalyst loading of 3 mg/cm2. Cathodes were 

hot pressed onto a NAFION 117 membrane except where otherwise specified. 

Except in chapter 6, humidified hydrogen flowed across the cathode at all times.  

The phosphomolybdic acid anodes were not hot pressed onto the membrane. 

Phosphomolybdic acid polarization curves were acquired using the Biologic 

VMP3-B potentiostat with 20A booster. The curves were taken under current 

control. The current was cycled from reduction to oxidation on each potential step 

to keep the overall state of charge constant. The potential was sampled at the end 

of each voltage step. The resistance was measured at the start of each polarization 

curve using galvanostatic electrochemical impedance spectroscopy. The 

membrane resistance to be corrected was taken to be the zero intercept of the 

Nyquist plot.  
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In Situ cyclic voltammetry experiments were conducted by flowing hydrogen gas 

over the cathode of the battery hardware and turning off the peristaltic pump 

supplying phosphomolybdic acid solution.  
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CHAPTER 3 

Direct Electrochemical Oxidation of Methanol Coupled to 

Hydrogen Evolution 
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Chapter Goals  

In this chapter, we seek to use the relatively well-understood methanol oxidation 

reaction as a source of protons for hydrogen evolution. We initially regarded this 

as a model implementation of our eventual target, which is the ability to strip ‘H’ 

from organics by an oxidation (or partial oxidation) process to couple to the 

hydrogen evolution reaction on the cathode. The methanol oxidation anode is a 

mature technology. We therefore seek to understand the performance of the 

hydrogen reduction cathode in the environment arising from a methanol fed cell. 

Hydrogen reduction in an acidic environment is the prototypically reversible 

process and we thought it would be instructive to see any alteration in this reaction 

driven by the cross-over of methanol through the electrode. In general, sluggish 

reactions(DMFC anode or PEMFC cathode) are often examined by using a 

reversible hydrogen electrode as a counter electrode in a two-electrode system. 

Maintaining the conditions for reversibility requires high flow-rates of hydrogen 

across the counter electrode.  

In a direct methanol fuel cell, crossover of methanol fuel from the anode to the 

cathode is a major source of both current and voltage (coulombic and voltage 

efficiency) loss. Current loss occurs because the fuel is no longer where it is 

needed. The crossover methanol either evaporates or is oxidized at the cathode 

but both options provide no energy to the device. In short, our fuel efficiency 

declines because it is not utilized at the reactive anode. Voltage loss occurs 

because the cathode catalyst is poisoned by adsorbed methanol oxidation 
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products, mostly carbon monoxide or because a ‘mixed’ potential occurs. To 

minimize the effect of crossover DMFC, designers have settled on the use of low 

methanol concentrations, which results in correspondingly lowered power and 

system energy densities.  

Again, we want to probe whether such effects have a major impact on the hydrogen 

evolution reaction.  The presence of methanol and hydrogen together at the anode 

has little effect on the hydrogen oxidation reaction and simultaneous anode feed 

is often used to probe the rate of cross-over. 

The intention here is to use a reference electrode called a dynamic hydrogen 

electrode (DHE) to track the potential/current response of the hydrogen evolution 

cathode. Hydration of the membrane is rarely a concern in liquid feed DMFC’s due 

to the presence of liquid water at one side of the membrane and the generation of 

water at the other. Considering the absence of water generation at the cathode, 

we investigated whether membrane hydration would become a concern. We also 

examined the effects of temperature, and feed concentration on the cathode and 

whole cell overpotential.  

The crossover issue combined with the inherent catalytic difficulties of the oxygen 

reduction reaction make the DMFC cathode highly sensitive to these parameters. 

It is expected that the reversibility of hydrogen reduction on platinum should make 

the hydrogen evolution cathode relatively impervious to changes in the specified 

parameters. The electrode should be insensitive to changes in methanol feed 
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concentration and therefore crossover because the methanol will not be oxidized 

at these cathode potentials in the absence of oxygen.  

Materials and Methods  

Methanol electrode preparation: 5 cm2 Electrodes were fabricated by painting a 

catalyst ink directly on the Sigracet 25 BC gas diffusion layer. The painted gas 

diffusion layers were then dried in an oven at 140 oC for 1 hour between layers and 

then for 12 hours after reaching the desired loading. Catalyst loading was 

calculated from before and after weights of the GDL and the ratio of metal to 

nonvolatile components in the ink.  

Methanol electrolysis: Anode and cathode inks were glycerol based as described 

previously, employing 50/50 Pt/Ru black (Alfa Aesar) for the anode and Pt black 

for the cathode (Alfa Aesar). PTFE was added to the cathode ink to prevent 

flooding.70  Inks were stirred for a minimum of 48 hours and sonicated before 

painting to improve dispersion. Nafion 117 membranes were used in all methanol 

tests. The catalyst coated GDL’s were hot pressed onto the membranes with a 

pressure of 200 kg/cm2 at 140 oC for 10 minutes.  

Methanol cell testing was performed using a Fuel Cell Technology test stand and 

Fuel Cell Technology 5 cm2 direct methanol fuel cell hardware. The endplates had 

heated flow channels for the methanol. The hardware included gold plated current 

collectors and POCO graphite flow-fields. Electrochemical tests were performed 
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using a Biologic VMP 3-B potentiostat with a 20A booster. A back pressure of 15 

psi was placed on both anode and cathode streams.  

The cell was allowed to equilibrate to temperature, pressure, and humidity settings 

at OCV for a minimum of 15 minutes. Potential steps of 0.05 V were held for 120 

seconds and the recorded current was averaged across the final 10 seconds. 

Argon or nitrogen flowed over the cathode. The presence of flowing, inert gas 

allows control over humidity, backpressure and removes the produced hydrogen. 

If hydrogen were flowed over the cathode it could affect the measured cathode 

polarization. The hydrogen production rate alone was insufficient to attain the 

desired backpressure. The system was evaluated under potential control and the 

resistance was evaluated as high frequency intercept of the Nyquist Plot.  

Reference Electrode: A dynamic hydrogen electrode (DHE) was constructed 

based on the design described previously.71 The reason for including a reference 

electrode is to provide a stable voltage against which to compare the working and 

counter electrode potentials. The DHE was constructed using 2, 0.1 mm Pt wires, 

a 1.5 MOhm resistor, and a 9 Volt battery, connected to form a circuit. The wires 

were sandwiched between the NAFION membrane and the Teflon gasket, 

approximately 1mm apart and 1mm from the edge of the cathode GDL. This placed 

them in ionic contact with each other and the working and counter electrodes. The 

reference lead was connected to the platinum wire on the DHE side of the resistor. 

The DHE works by oxidizing water at one of the platinum wires, thereby generating 

hydrogen. If the other platinum wire is in close enough proximity, then it will reduce 
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the generated hydrogen and provide a stable voltage. The current passed is limited 

by a large resistor within the potentiostat, therefore it does not affect the potential 

or deplete the hydrogen supply. The reference electrode was always placed on the 

cathode side of the membrane to minimize interference from methanol. 

Recall that the whole cell potential can be determined by subtracting cathode 

potential from anode potential. This is not possible using the data in this chapter 

because overpotentials are used instead of potentials. Overpotential is the 

potential required to overcome kinetic, ohmic, and mass transport losses but it 

does not include the thermodynamic potential. This is used because DHE 

electrodes are known to drift slowly. The potential was stable on the time scale of 

the experiment but was not zero. 

Results and Discussion 

Figure 12 shows performance of a hydrogen pump cell with hydrogen gas at the 

anode and cathode. The cell is similar in construction to the methanol fed reactive 

hydrogen pumps shown later in the chapter. The anode and cathode reactions are 

the forward and reverse of equation 16. It is noteworthy that cathode polarization 

is only 6 mV at 250 mA/cm2, roughly 10% of the whole cell polarization. The whole 

cell polarization is 60 mV at 250 mA/cm2. Nearly all the whole cell polarization 

comes from IR losses. At 250 mA/cm2 the IR corrected, whole cell polarization is 

11 mV, 49 mV lower than the uncorrected value. This experiment shows the 

viability of the hydrogen cathode both as a reference electrode and when used in  
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the production of hydrogen. These results also help to confirm that the DHE is 

functioning as a stable reference electrode.  

Minimizing the resistance between reference electrodes and the electrodes to be 

studied is always of great importance in designing electrochemical experiments. 

The asymmetry between anode and cathode in Figure 12 can be attributed to the 

placement of the reference electrode. The DHE was on the cathode side of the 

membrane, exhibiting significantly lower resistance between the reference – 

cathode vs reference – anode. The reference electrode was always placed on the 

cathode side of the membrane to minimize interference from methanol. The whole 

cell ASR is 0.2 Ohm-cm2 while the ASR measured from the cathode to the DHE is 

only 0.04 Ohm-cm2. The validity of this argument is backed up by modeling data 

showing nearly identical Tafel slopes for HOR and HER on Pt surfaces.72 

Figure 13 shows polarization data for the operation of a DMFC based methanol 

electrolyzer. The overpotential required to accomplish the reactions is far greater 

than that required in the hydrogen pump cell. The ASR fluctuates but stays within 

the range of 0.1 to 0.12 Ohm-cm2, near DOE 2015 estimates for an automotive 

fuel cell. For reference, DOE estimates 0.072 Ohm-cm2 as the maximum ASR for 

an automotive fuel cell in 2015.73 The significantly lower ASR achievable in fuel 

cells is due to the use of thinner membranes. The thicker membranes in methanol 

cells are preferred to help prevent fuel crossover.  

The cell stays fully humidified and does not show signs of drying out. Drying out 

would be noticeable as an increase in ASR. The significant performance 
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differences between the corrected and uncorrected curves shows the importance 

of IR correction at these high current densities. Below 200 mA/cm2, there is little 

variation between the corrected and uncorrected curves. At 1A/cm2, there is a 110 

mV difference between corrected and uncorrected polarizations.  

Both the anode and cathode polarizations are quite significant despite the high 

loadings of precious metal catalyst. The oxidation of methanol is electrochemically 

slow. At 1 A/cm2 it resulted in 430 mV overpotential and 320 mV at 250 mA/cm2. 

Interestingly and unexpectedly, the reduction of hydrogen in this environment is 

far slower than expected. It results in 240 mV at 1 A/cm2 and 180 mV at 250 

mA/cm2. There is a whole cell polarization of 925 mV at 1 A/cm2 and 670 mV at 

250 mA/cm2.  

Figure 14 shows the effect of changing cathode humidity levels on a cell operating 

at 80 ºC. There is little sensitivity to changing humidity levels with respect to ASR, 

whole cell polarization, or individual electrode polarizations. This is believed to be 

due to full humidification being achieved by the liquid electrode. Although there is 

little difference in the ASR between the 60 ºC and 100 ºC humidified gasses, there 

is a small decrease in ASR when no cathode gas is flowing. The ASR was 

approximately 0.01 Ohm-cm2 lower in that experiment.  

The regime with no gas flowing is the closest to what might be encountered in an 

operational cell. The cell was not operated in this regime at all times due to 

concerns of flooding and a desire to maintain consistent conditions at the cathode. 

The IR corrected cell voltage of all 4 curves is similar until about 600 mA/cm2. After 
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that point the voltage seems to increase with humidity level. This could be caused 

by cathode flooding at higher current densities. In a fuel cell, water is produced at 

the cathode. No water is produced at the cathode of this cell but the movement of 

hydrogen ions across the membrane drag water or methanol across. This process 

is known as electroosmotic drag. The presence of additional humidified gasses at 

the cathode could exacerbate any possible flooding.  

Figure 15 shows the effect of changing methanol concentrations at a steady 

temperature of 100 ºC. Eight molar methanol was chosen at the maximum to 

explore. 8 molar methanol corresponds to about 22 mole %. 4 and 1 molar 

methanol correspond to molar ratios of roughly 9% and 2%. These ratios are 

significantly leaner than the 50% molar ratio of methanol to water expected from 

the stoichiometry in equation 17. In DMFCs it’s known that increasing methanol 

concentration leads to decreasing whole cell performance. This performance 

drop is caused by methanol crossover from the anode to the cathode. One of the 

central goals of this chapter is understanding how the phenomena of crossover 

induced performance inhibition translates from a DMFC to a methanol based 

hydrogen pump cell.  

Increasing concentrations of methanol led to improved anode performance but 

decreased cathode performance. The losses in cathode performance dominated 

cell performance while whole cell performance was also diminished. The link 

between cathode polarization and methanol concentration was unexpected. We 
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have established that just as in DMFC’s, performance is enhanced by operation 

at lower methanol concentrations 

 Anode operation improved significantly when moving from 1 molar methanol to 4 

molar methanol. The improvement from 4 molar to 8 molar methanol was 

noticeably less significant. This performance improvement begins in the kinetic 

region but becomes more noticeable as the cell moves into the ohmic regime. 

Since the data is IR corrected, we attribute this improvement to a combination of. 

increasing kinetics at low overvoltages and reduced concentration polarization at 

higher overvoltages. 

Figure 16 shows the effect of several different likely cell operating temperatures 

on whole cell and half cell polarizations The curves show improving performance  

with increasing temperature. This phenomena was expected as the kinetically slow 

reaction at the anode has been shown to improve with temperature in DMFC’s.3 

At 80 ºC and 250 mA/cm2, the symmetric cell hydrogen cathode polarization was 

6 mV. In the DMFC based electrolyzer with 4M methanol feed at the same 

temperature a cathode polarization of 145 mV was recorded. The cathode 

polarization had a weak dependence on temperature. At higher current densities, 

this relationship appears to become stronger. At very low current densities(<100 

mA/cm2), there appears to be almost no relationship between cathode polarization 

and temperature. Anode onset potential is strongly dependent on temperature as 

is whole cell polarization.  
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As for the effect of increasing temperature on the cathode, improved performance 

must be due to decreased accumulation of methanol and water at the cathode or 

improved cathode kinetics. Improved cathode kinetics appears unlikely due to the 

identical onset potential. The position of this change well outside the kinetic region 

indicates that the change is either mass transport or ohmic related. The curves are 

IR corrected so mass transport is the more likely possibility. Increased 

temperatures may improve mass transport at the cathode by speeding evaporation 

of liquid products and preventing the need for bubble formation.  

Conclusions 

All tests showed significant polarization of the cathode. Increased concentrations 

of methanol feed led to increased cathode polarization, decreased anode 

polarization, and increased whole cell polarization.  

 Increasing temperature led to improved performance, mostly due to the anode. 

Operation with a vapor fed methanol-water system may therefore be preferable by 

allowing increased operating temperature.  

Increased methanol crossover causes increased cathodic overpotential, while 

changes in temperature do not substantially affect the cathodic overpotential. This 

likely indicates a mixed potential type mechanism rather than a kinetic explanation. 

We come to this understanding because increased temperature will tend to 

improve kinetics.  



63 
 

Overall, the cathode polarization is far greater than expected from the hydrogen 

symmetric cell cathode. This will limit the utility of such a system when compared 

with a DMFC. The significant capital cost incurred due to the additional equipment 

and high catalyst loadings required will also present hurdles to this approach  

When compared to a PEM electrolyzer, this system shows promise. The onset 

potential of a PEM electrolyzer is over 1 V higher than is shown in the methanol 

electrolysis cell. This significant difference in electrical power consumption means 

a stationary methanol electrolysis plant could become feasible.  
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CHAPTER 4 

Electrochemistry of Phosphomolybdic Acid 
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Polyoxometalates Motivation 

In the work reported throughout the next three chapters, we will attempt to use 

polyoxometalate compounds(POM) as redox mediators to in the oxidation of 

organic compounds. To proceed systematically, we first carry out studies of the 

electrochemical behavior of POMs and particularly of phosphomolybdic acid. It is 

important to understand the basic electrochemical behavior of this potential 

mediator in isolation and in simple electrochemical cells before proceeding to study 

more complex situations. 

Polyoxometalates Background 

Berzelius prepared and analyzed the first Keggin ion (𝑁𝐻4)3𝑃𝑀𝑜12𝑂40 in 1826 and 

the tungstosilic acid was prepared by Margnac in 1862. The first systematic 

attempt to understand the nature of heteropoly compounds occurred in 1908 by 

Miolati.74 Some of the most significant work was done by Tsigdinos and Wu, who 

have independently published methods using ether extraction for the synthesis and 

purification of phosphomolybdic acid.74,75 

Tsigdinos studied the redox behavior of 12-phosphomolybdic acid which he refers 

to as dodeca-molybdophosphoric acid. He found multiday stability of polarograms 

in 0.5 M 𝐻2𝑆𝑂4, indicating stability in that solvent. He also found that solutions more 

dilute than 10-4 M gave less well defined polarograms. These polarograms showed 

the presence of multiple waves at increasing oxidation potentials.  Reversibility of 

the first 3 waves was ascertained using cyclic voltammetry at a platinum electrode 

in water-dioxane solutions. He stated that it is important not to use earlier work due 
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to an unrecognized hydrolytic instability of polyoxometalates on mercury 

electrodes and at elevated pH values.74 Tsigdinos also prepared many of the 

polyoxometalates including 𝐹𝑒𝑃𝑀𝑜12𝑂40, 𝑃𝑉𝑀𝑜12𝑂40, 𝑃𝑉2𝑀𝑜10𝑂40, and 

𝑃𝑊𝑀𝑜11𝑂40.51,74,76,77 

Based upon these reports it became clear that the electrochemistry of Keggin ions 

varied widely with solvent, necessitating study of the electrochemistry of 

phosphomolybdic acid in the proposed reaction conditions. In this work, the 

reaction of phosphomolybdic acid on glassy carbon was studied to determine if a 

heterogeneous catalyst is necessary. The oxidation of phosphomolybdic acid was 

then studied using a glassy carbon rotating disk electrode to attempt to elucidate 

the kinetics of the oxidation reaction. Then a small cell with a hydrogen counter 

electrode was assembled to test the anode performance of a phosphomolybdic 

acid based fuel cell/hydrogen pump.  

The literature shows several promising examples of fuel cells and hydrogen pumps 

using phosphomolybdic acid as a mediator but the performance of such devices is 

hard to ascertain due to the coupling of cell performance and solution 

reaction.37,38,42,43 There is significant discussion concerning the current efficiency 

but little to no discussion of voltage efficiency. We need to understand what are 

the sources of voltage loss, the kinetic, ohmic, and mass transport overpotential 

required to reoxidize the phosphomolybdic acid.  

One important characteristic which will significantly affect the overpotential 

required in a flow cell is the degree of reversibility. Based upon the literature we 
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know that the electrochemical stability and therefore reversibility of 

phosphomolybdates will vary with solvent. It is highly desirable to use an aqueous 

solvent because aqueous solvents tend to provide excellent solubility (900+ g/L for 

phosphomolybdic acid), low cost, and high conductivity.  

A reaction can be chemically reversible and simultaneously be electrochemically 

reversible, quasi-reversible, or irreversible. The nomenclature related to 

electrochemical reversibility qualitatively describes the rate of electron transfer 

between the electrode and the molecule. In this work, reversibility will be evaluated 

using cyclic voltammetry. An electrochemical reaction is said to show reversibility 

when three criteria are met in the CV experiment: peak height vs square root of 

the scan rate is linear, 
𝐼𝑝

𝑂𝑋

 𝐼𝑝
𝑅𝐸𝐷 = 1 and 𝐸𝑝

𝑂𝑋 − 𝐸𝑝
𝑅𝐸𝐷 =

59

𝑛
𝑚𝑉, independent of scan 

rate. Electrochemical reversibility is quantitatively defined by the value of k0 for the 

electron transfer reaction 𝑂𝑋 + 𝑛𝑒− 𝑘0

↔
𝑅𝐸𝐷. The standard heterogeneous rate 

constant k0 describes the time required for returning to equilibrium after the 

application of a potential. We note that the appearance of reversibility is 

significantly affected by the scan rate used. The scan rate provides an 

experimentally variable time window for investigation of the reaction. Approximate 

ranges of k0 are given below.78  

Reversible: k0 > 0.020 cm/s 

Quasi-reversible: 0.020 cm/s > k0 > 5x10-5 cm/s 

Irreversible: k0 < 5x10-5 cm/s 
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Materials and Methods 

Ex situ cyclic voltammetry experiments were performed using a custom 25 ml H-

cell made from Pyrex glass with a NAFION separator. The counter electrode 

compartment consisted of a Pt wire electrode and 0.5 M 𝐻2𝑆𝑂4. The working 

electrode compartment contained either a 1.6 mm diameter platinum disk 

electrode or a 3-mm diameter glassy carbon disk electrode and an ALS brand 

single junction Ag/AgCl reference electrode.  

The above-mentioned H-cell was also used for quantitative electrolysis with a large 

area platinum mesh electrode replacing the disk electrode.  

Rotating disk experiments were performed using a water jacketed electrochemical 

RDE cell with an electronic rotator and speed controller (all from Pine Instruments). 

The counter electrode used was platinum mesh and the reference was the same 

ALS single junction Ag/AgCl electrode. Where applicable cells were degassed with 

ultra-high purity nitrogen for 10 minutes and maintained under nitrogen 

atmosphere. A 3mm diameter glassy carbon Pine Rotating Disk Electrode was 

used for all experiments. The electrode was jacketed with PEEK plastic. 

Diffusion of phosphomolybdic acid across the Nafion 117 membrane was 

measured using the H cell pictured below (Figure 17). Square wave voltammetry 

was conducted to track the concentration of active species in the low concentration 

side. Peak currents were used with a calibration curve to determine the 

concentration of phosphomolybdic acid which had crossed over. The working 
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electrode was a Pt disk, the counter electrode was a Pt wire, and the reference 

was Ag/AgCl. Although the picture shows the electrodes on the yellow POM side, 

they were on the clear(water) side for the diffusion testing. The high concentration 

side was 0.25 M POM, the low concentration was 1M Phosphoric Acid. The 

membrane used was Nafion 117. The surface area available for diffusion was one 

square inch.  

Results and Discussion 

The first priority when preparing a new electrochemical system is to understand 

the electrochemical reactions which may be occurring within the window of 

operation. Cyclic voltammetry (CV) is an ideal technique by which to do this, 

providing rapid insight into the locations of relevant reactions. Careful analysis of 

CV results(including modeling) can provide a wealth of kinetic information as the 

reaction is better understood.  

Figure 18A gives the cyclic voltammograms of phosphomolybdic acid on a glassy 

carbon electrode. Glassy carbon (GC) is an ideal surface on which to conduct this 

experiment; it provides an electrochemical surface area near its geometric surface 

area, resists corrosion well, is conductive, and has comparable electrochemical 

properties to other carbon materials. However, carbon surfaces can be highly 

variable and such GC electrodes do not perfectly mimic the behavior of a given 

graphitized carbon electrode.  
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In Figure 18A, we see the typical CV of phosphomolybdic acid in water. Three 

peaks are observed, the approximate half wave potentials of the first two are 0.63 

V and 0.36 V vs NHE.  

Peaks 1, 2, and 3 are each 2 electron redox reactions.74 The two electron nature 

of peak 1 was confirmed by exhaustive electrolys in both H-type and zero gap flow 

type electrochemical cells. The reactions are listed below.  

Peak 1: 𝐻3𝑃𝑀𝑜12𝑂40 + 2𝑒− + 2𝐻+ = 𝐻5𝑃𝑀𝑜12𝑂40 

Peak 2: 𝐻5𝑃𝑀𝑜12𝑂40 + 2𝑒− + 2𝐻+ = 𝐻7𝑃𝑀𝑜12𝑂40 

Peak 3: 𝐻7𝑃𝑀𝑜12𝑂40 + 2𝑒− + 2𝐻+ = 𝐻9𝑃𝑀𝑜12𝑂40
3− 

To help elucidate some of the kinetic information contained within Figure 18A, 

Figure 18B and Figure 18C were constructed. Figure 18B contains the plot of peak 

separation vs scan rate. An ideally reversible reaction would show no dependence 

of peak separation on scan rate. Figure 18C is the plot of peak current vs the 

square root of scan rate. Reversible reactions show a linear relationship between 

these variables.  

Peak 1 has features of both reversible and irreversible waves. The reduction of 

peak 1 is linear with square root of scan rate, and 
𝐼𝑝

𝑂𝑋

 𝐼𝑝
𝑅𝐸𝐷 = 1; shown in Figure 18C. 

The determination of 𝐼𝑝
𝑂𝑋 required the use of a potential hold at 0.4 V to remove 

the contribution of peak 2 from the resulting signal. Those are 2 of the 3 main 

criteria for reversibility. The remaining criteria is that the separation between the 



71 
 

two peaks should be 59/n mV, independent of scan rate. The peak separation, as 

shown in Figure 18B, is almost linearly dependent on square root of scan rate and 

is always greater than 59/n mV(where n is the number of electrons). Peak 

separation is relatively unreliable for determining reversibility due to the way it is 

affected by experimental conditions, including IR loss, current distribution, and 

extreme scan rates.  

Meeting some, but not all of the tests for reversibility is evidence of quasi-

reversibility. Peak 1 also shows a shift in the calculated E0 of 10 mv, linear with 

square root of scan rate, from 424 mV to 432mV vs Ag/AgCl. To convert an 

Ag/AgCl reference electrode to NHE, add roughly 205 mV to the potential.  

Peak 2 is significantly less well resolved than peak 1 yet still exhibits linearity of 

𝐼𝑝
𝑅𝐸𝐷vs square root of scan rate. Determining an acceptable value for 𝐼𝑝

𝑂𝑋 was 

complicated by the proximity to the other waves. The peak separation was strongly 

dependent on scan rate.  

The kinetics of an electrochemical reaction can often be strongly affected by the 

heterogeneous electrode surface. Metals in general are known to catalyze many 

electrochemical reactions. Precious metals often exhibit the highest 

electrochemical activity due to optimum binding strengths with important reactants. 

Platinum in particular is prized for its activity and stability in a variety of harsh 

reaction environments. To determine if the phosphomolybdic acid electrochemistry 

was different on platinum, CVs of phosphomolybdic acid were conducted on a 

platinum surface (Figure 19).  
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The voltammograms in Figure 18A  and Figure 19 are essentially similar.  For peak 

1 they share the linearity of peak heights with square root of scan rate, 
𝐼𝑝

𝑂𝑋

 𝐼𝑝
𝑅𝐸𝐷 = 1, 

and the dependence of 𝐸𝑝
𝑂𝑥 − 𝐸𝑝

𝑅𝑒𝑑 on scan rate. The peaks are slightly sharper 

and more resolved but still exhibit the same quasi-reversible features as the glassy 

carbon voltammograms, indicating that the platinum does not sufficiently catalyze 

the reaction to achieve reversibility.  

Peak Splitting 

An unexpected characteristic was noticed when preparing bulk reduced solutions 

for other experiments; cyclic voltammograms of bulk reduced phosphomolybdic 

acid are different in appearance from their fully oxidized counterparts. When a 

cyclic voltammetric scan is performed, the reaction occurs entirely within the 

boundary layer. This assumption is valid when the ratio of diffusion coefficient to 

scan rate is sufficiently low. At these scan rates the assumption is valid. This 

means that the ratio of 𝑃𝑀𝑜12𝑂40
−3

Bulk to 𝑃𝑀𝑜12𝑂40
−5

 Bulk should have no effect on 

the cyclic voltammetric response after the first cycle.  

To better understand this phenomena, solutions of phosphomolybdic acid were 

bulk reduced by 0 (Figure 18A), 1 (Figure 20) and 2 (Figure 21) electrons. This 

bulk reduction was conducted using an H-cell and a large area platinum electrode. 

Cyclic voltammetry was then performed and the results of the 6th cycle were used 

in the generation of this data. The first CV scan will often depend upon the solution 

redox state, but by the 6th scan the results will be stable.  
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We can see very little effect on the shape of peaks 2 and 3 from Figure 18A. Peak 

1 shows significant changes based on the ratio of 𝑃𝑀𝑜12𝑂40
−3

Bulk to 𝑃𝑀𝑜12𝑂40
−5

 

Bulk. 𝑃𝑒𝑎𝑘1
𝑅𝐸𝐷

gets slightly smaller but shows no change in shape. 𝑃𝑒𝑎𝑘1
𝑂𝑋

 begins 

to split into two separate waves at 0.55 V and 0.85 V vs Ag/AgCl. This change 

indicates the formation of a third species in solution but it must be occurring on a 

time scale longer than the characteristic time of the CV scans. The third species is 

likely to be a decomposition product of phosphomolybdic acid, perhaps one or 

more of the molybdenum oxide compounds.  

This type of reaction is known as an ECE reaction in electrochemical notation. E 

stands for an electron transfer step, C stands for a chemical step. What we 

believed to be occurring is that an electron is transferred to the POM complex, then  

a slow chemical step occurs in solution, then the newly formed chemical reacts on 

the electrode. This is competing with the 3 EE reactions which occur within each 

individual scan.  

One possibility considered for explaining the peak splitting was that it was caused 

by hydrolysis of the phosphomolybdic acid on the surface of the electrode where 

it was being reduced. To better distinguish between this possibility and the ECE 

reaction hypothesis, we conducted cyclic voltammetry in a phosphomolybdic acid 

solution which was being reduced by glucose (Figure 22).  

Figure 22 demonstrates repeat cyclic voltammograms of a 90 ᵒC mixture of 

phosphomolybdic acid, hydrochloric acid, and glucose. The experiment consisted 
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of heating a single chamber containing the solution, a Pt working and counter 

electrode, and the reference. The potential was cycled between 0.3 V and 1.0 V 

vs Ag/AgCl to isolate peak 1 from Figure 20 and Figure 21. The phosphomolybdic 

acid was reduced chemically by the glucose during this period and experienced no 

bulk electrochemical reduction as was evidenced by integrating the current over 

all the cycles. The overall electrochemical charge transferred to the 25 ml solution 

was a 16 coulomb oxidation in 51 hours. 

The 0.4 V reductive peak can be clearly identified in all scans, although the peak 

height decreases with time and the peak begins to split, showing another peak 

near 0.5 V. The oxidative peak clearly splits with peak 1 showing a decrease in 

potential from 0.55 V to 0.45 V and peak 2 increasing in potential from 0.541 V to 

0.6 V. 

Table 2 below shows the change in peak location as the solution is progressively 

reduced. Reduction peak 1 does not shift appreciably with the increasing 

concentration of the reduced species in the bulk. Oxidation peak 1 shifts closer to 

reduction peak 1 as the concentration of REDBulk increases, beginning to appear 

more reversible. Oxidation peak 2 shifts in the other direction, away from both 

oxidation and reduction peak 1. This makes for a very clear split in the two 

oxidation peaks. There is a possible reduction peak forming at 0.55 V but it is 

unclear due to the background current.  

It is clear that the phosphomolybdic acid peak splits regardless of whether the 

solution is reduced chemically(Figure 22 and Table 2) or electrochemically(Figure 
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21). This peak splitting is further evidence that the reduced form of the 

phosphomolybdic acid is unstable in these conditions, either succumbing to its 

known hydrolytic instability or some other solution reaction. 74  

Table 2: Peak Height vs Scan Number 

Cycle 

Number 

Starting 

Time (h) ERED EOX-1 EOX-2 

2 0.0073 0.405 0.541 N/A 

200 2.91 0.398 Not Identifiable 0.557 

400 5.84 0.3952 0.459 0.5795 

800 11.7 0.3989 0.458 0.5883 

3400 51 0.396 0.471 0.597 

 

To further confirm the bulk reaction hypothesis, we conducted the experiment from 

Figure 22 with no glucose added. This solution maintained its original state of 

charge throughout the experiment. Figure 23 shows the cyclic voltammograms of 

phosphomolybdic acid in hydrochloric acid on a platinum electrode. There is 

almost no change over 4000 cycles. This shows that the reaction causing the peak 

splitting is occurring in the solution rather than at the electrode since the peak 

splitting does not occur without bulk reduction.  
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H-Cell Cycling 

During various full scale experiments, the phosphomolybdic acid solution turned 

dark blue and would not reoxidize (indicated by turning yellow). Single 

compartment cyclic voltammetry experiments also exhibited unusual behavior, a 

dark blue compound diffused away from both electrodes during cycling. It became 

necessary to determine if the cause of this was related to a chemical irreversibility 

or contamination.  

Potentiostatic coulometry (or bulk electrolysis) is a useful technique by which the 

state of charge of the entire solution can be controlled at will. The state of charge 

can be tracked by integrating the current(equation 70). The experiments take place 

on a longer time scale than most electrochemical experiments, enabling access to 

slower chemical steps. The most common metric for bulk electrolysis experiments 

in batteries is current efficiency at a given pair of potentials. Current efficiencies 

less than 1 are indications of irreversible reactions, although not necessarily of the 

intended compound. Imperfect current efficiency can be caused by side reactions 

at the electrode, instability of an active compound, solvent breakdown, or 

crossover of active species.  

The afore-mentioned H-cell was used for these experiments with a platinum mesh 

working electrode and stirring. To minimize the opportunity for contamination, the 

apparatus was designed such that it is easy to confirm only glass, NAFION, 

platinum, and the reference electrode were in contact with the solution.  
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The solution was cycled a total of 60 times(Figure 24) between 0.35 V and 0.8 V, 

isolating peak 1 from the previous figures. The initial capacity of 35 coulombs 

corresponds almost perfectly to 2 electron transfer, confirming the literature reports 

that peak 1 is a 2 electron transfer redox reaction.  

The capacity starts at 35 coulombs and drops to 32 coulombs, a loss of 9% 

capacity over 60 cycles. The capacity fades and recovers several times although 

there is a general downward trend. After each cycle, the solution recovered its fully 

oxidized, pale yellow color. No crossover of phosphomolybdic acid was noted on 

visual inspection of the apparatus. This provided sufficient support to consider 2 

electron reduction a safe 100% state of charge for battery experiments. It is 

possible and advantageous to reduce the solution further, but the stability of further 

reduction is not examined in this work.  

Thin Layer Voltammetry 

Figure 25 is a thin layer cyclic voltammogram of phosphomolybdic acid in a flow 

battery with the pump turned off. This type of experiment is convenient to do for 

several reasons; bulk electrolysis is performed quickly, the capacitive current gives 

a measure of the accessible surface area, comparing the peak hysteresis allows 

inferences concerning activity on the actual electrode surface, and the counter 

electrode is hydrogen on platinum in acid (0 V by definition). When a reaction is 

reversible the peaks will be stacked directly above one another since the reaction 

is exhaustive electrolysis within the thin layer of material that is available. Figure 

25 exhibits a feature known as a vertical hysteresis, where the system takes two 
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different states at a given potential based on the direction of the potential scan. 

This can be divided into the reversible charge transfer and the hysteresis 

component of the charge transfer. The hysteresis component is used to quantify 

the deviation from ideality. 79 This type of hysteresis is called dynamic hysteresis, 

it is caused by a kinetically slow step which causes the reaction to exhibit 

irreversible behavior.  

36 𝑄𝑅𝑒𝑣(𝐸) =
𝑖𝐵(𝐸)∗𝑄𝐴(𝐸)−𝑖𝐴(𝐸)∗𝑄𝐵(𝐸)

𝑖𝐵(𝐸)−𝑖𝐴(𝐸)
 

37 𝐻𝑌(𝐸) =
𝑄𝐴(𝐸)−𝑄𝐵(𝐸)

𝑖𝐵(𝐸)−𝑖𝐴(𝐸)
 

38 𝐻𝑥(𝑄) =
𝐸𝐴(𝑄)−𝐸𝐵(𝑄)

𝑖𝐵(𝐸)−𝑖𝐴(𝐸)
 

The scan rate used in Figure 25 was optimized to the minimum achievable without 

inducing excessive noise from convection. No fluid was noted to be flowing through 

the tubing and the results were steady for several cycles.  

Peak 1 is centered at 0.646 and peak 2 is centered around 0.431 V. Peak 1 shows 

a peak separation of 181.5 mV and 
𝑖𝑂𝑋

𝑖𝑅𝐸𝐷
 of 1.11. Peak 2 shows a peak separation 

of 207.3 mV and 
𝑖𝑂𝑋

𝑖𝑅𝐸𝐷
 of 0.75. This significant hysteresis indicates quasi-reversibility 

with peak 1 being more reversible than peak 2.  

Repeated exhaustive electrolysis was performed with reduction at 0.5 V. It is also 

interesting to note that the peak splitting shown in Figure 18 to Figure 22 do not 

appear here, despite full oxidation and reduction of the phosphomolybdic acid. This 
1 

2 

1 

2 
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gives more support to the hypothesis that the peak splitting is not caused by the 

formation of an intermediate but rather a slower following reaction i.e. EEC 

mechanism instead of ECE.  

Figure 26 shows the charge transferred to the solution (Q) vs potential in a thin 

layer voltammogram. In a fully reversible system this would be a single line as is 

represented in Figure 27 below. The significant hysteresis present here is more 

evidence of quasi-reversibility, the electrochemical reaction rate is not sufficient to 

drive the reaction to completion. It was not feasible to scan at slower scan rates 

due to noise, faster scan rates failed to reach the conditions of thin layer 

voltammetry (the ratio of scan rate to solution volume is such that the impact of 

diffusion and migration can be ignored). This indicates that there is a significant 

dynamic as opposed to stationary hysteresis, suggesting a kinetic rather than 

chemical origin for the hysteresis.79  

The fact that Q returns to zero further suggests that the limitations are kinetics 

rather than chemical irreversibility. If the reaction was chemically irreversible, the 

solution and would not return to its original state (Q=0),  

The kinetic hysteresis, shown in Figure 28, is isolated through the application of 

equation 37 to the data in Figure 25 and Figure 26. The peaks at 0.63 V and 0.43 

V correspond to peaks 1 and 2 from Figure 25. Peak 2 is larger than peak 1 

indicating a greater degree of hysteresis, which follows from the greater deviation 

of 
𝑖𝑂𝑥

𝑖𝑅𝑒𝑑
 from 1 and the increased peak separation of peak 2(Figure 25). Peak 2 is 
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also highly symmetrical in appearance, indicating that the hysteresis is roughly the 

same for the forward and backward sweep.  

Peak 1 is smaller, commensurate with its decreased deviation of 
𝑖𝑂𝑥

𝑖𝑅𝑒𝑑
 from 1 and 

decreased peak separation. The asymmetry of peak 1 indicates that the hysteresis 

may not be the same in the forward and reverse potential sweeps.  

The presence of an impedance element in series with the electrochemical system 

will also cause hysteresis due to the current dependence of the apparent potential. 

Figure 29 represents the ohmic contribution to the hysteresis. The near zero 

contribution of the ohmic hysteresis for most of the potential range indicates that 

uncompensated resistance is not the limiting factor in understanding this charge 

transfer.  

Rotating Disk Electrode Voltammetry-Levich Analysis 

Convection has the potential to easily disturb the current recorded during an 

electrochemical experiment; therefore, controlling the influence of convection is 

critical. Cyclic voltammetry, chronoamperometry, and other electroanalytical 

techniques rely on a condition of quiescence in the hopes of avoiding the influence 

of convection. They therefore have to be performed on a relatively short timescale 

because any solution will experience some thermal convection. This also makes 

reaction at elevated temperatures difficult since heating the exterior of the vessel 

will cause significant thermal convection. While these experiments can generate a 

wealth of kinetic information, it requires a great deal of knowledge to interpret.  
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Hydrodynamic techniques represent a radically different solution to these 

problems. By forcing the convection to occur, flowing systems such as rotating disk 

voltammetry and rotating ring disk voltammetry control the diffusion layer thickness 

in a manner such that it can be solved analytically. This causes the diffusion layer 

thickness to be a known function of an independent parameter such as rotation 

rate. It also decreases the susceptibility to perturbations such as thermal 

convection or vibrations. Some kinetic information is now apparent from simple 

observation while more is available through straightforward data processing 

techniques and graphs. Common metrics are the half wave potential, onset 

potential, and ¼ and ¾ wave potentials. The diffusion coefficients and kinetic 

currents can be extracted using the Levich and Koutecky-Levich equations 

respectively.   

Figure 30 shows the results of rotating disk electrode voltammetry. The bulk 

solution was 50% 𝐻3𝑃𝑀𝑜12𝑂40: 50% 𝐻5𝑃𝑀𝑜12𝑂40 and the scan rate was 20 

mV/sec. The voltammograms show about 200 mV from the onset of oxidation until 

the curves reach the limiting current, with the overpotential required to reach 

limiting current increasing with rotation rate. The figure inset shows the perfect 

linearity and zero intercept of current density vs square root of rotation rate at 1.4 

V vs Ag/AgCl. With those conditions met, it is appropriate to use the Levich 

equation (39) to extract the unknown variable, diffusion coefficient in this case.  
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Table 3 quantifies the upward apparent shift in potentials with rotation rate. 

Rotating faster increases the flux of the 𝐻5𝑃𝑀𝑜12𝑂40 to the electrode. The upward 

shift in potential with rotation rate shows that the kinetic current is limiting at the 

increased rotation rates. This indicates a mixed kinetic and diffusion control for 

much of the potential regime. In a purely diffusion controlled regime, the current 

would change with rotation rate but the potentials would not. 

The curves in Figure 37 should exhibit a uniform ascent from zero current density 

to the limiting current. The curves shown do not do this, they exhibit the 

characteristic plateaus of a stepwise two electron transfer occurring at two different 

oxidation potentials.80 This is the same two electron transfer reaction identified 

previously. It is still possible to use the total limiting current to diagnose the average 

diffusion coefficient for the two electron transfer using a Levich plot.81 The Levich 

equation is  

39 𝐼𝐿 = (0.62)𝑛𝐹𝐴𝐷
2

3𝜔
1

2𝜈
−1

6 𝐶𝐵𝑢𝑙𝑘 

The Levich plot is a plot of limiting current vs the square root of rotation rate. This 

should yield a straight line across a wide range of rotation rates, indicating that it 

is appropriate to treat the reaction as a single step characterized by a large 

heterogeneous rate constant(kh). Since this is the case we can use the literature 

values of 𝜈(kinematic viscosity) and the previously determined n=2 to calculate the  
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Table 3: Redox Metrics vs Rotation Rate 

RPM 

E1/4 (V-

Ag/AgC

L) 

E1/20 (V-

Ag/AgC

L) 

E3/4 (V-

Ag/AgC

L) 

I1/4 

(mA/cm

2) 

I1/2 

(mA/cm

2) 

I3/4  

(mA/cm

2) 

Ilim 

(mA/cm

2) 

100 0.47 0.55 0.58 5.8 11.6 17.4 23.3 

400 0.50 0.57 0.62 11.4 22.9 34.3 45.7 

900 0.51 0.59 0.65 17.1 34.1 51.2 68.3 

1600 0.52 0.61 0.67 22.6 45.2 67.8 90.4 

2500 0.53 0.63 0.72 28.0 56.0 84.1 112.1 

3600 0.54 0.64 0.76 33.4 66.8 100.2 133.7 

4900 0.54 0.66 0.79 38.8 77.5 116.3 155.1 

6400 0.56 0.68 0.81 44.1 88.2 132.3 176.4 
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diffusion coefficient.82 The inset on Figure 37 contains the Levich plot, which is 

linear from 100 RPM to 6400 RPM and intercept 0. The diffusion coefficient of 

3.85 ∗ 10−6 𝑐𝑚2

𝑆𝑒𝑐
  @25 ℃ was calculated using the slope of this Levich plot. This 

diffusion coefficient is lower than other small molecules have a diffusion coefficient 

on the order of 10−5 𝑐𝑚2

𝑆𝑒𝑐
.82 This lowered diffusion coefficient will lead to increased 

mass transport challenges in cell and stack design. 

Levich Analysis-Concentration Dependence 

The Levich analysis was performed at room temperature and a series of different 

concentrations(Figure 31). The goal of this experiment was to determine if the 

limiting current followed the Levich equation at all the degrees of reduction 

expected in an operating battery. If the Levich equation was not followed, the 

diffusion coefficient of the active species, the kinematic viscosity, or the CBulk 

concentration is not as expected. The Levich analysis would not detect changes in 

the E0 unless the redox potential was shifted outside the window scanned.81,82  

One of the requirements for the use of the Levich equation is that the system is 

entirely under mass transport control (as confirmed by the zero intercept of the 

Levich plot). These conditions are perfectly met in the Levich plot shown in Figure 

31. The limiting current should rise linearly with the square root of scan rate as 

shown. The only parameter which changes between the curves is the slope, which 

derives from the Cbulk.  
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To determine that the state of charge does not affect the operating parameters of 

the battery, the Levich analysis was performed on the curves shown above (Figure 

32). Different states of charge can lead to changing average diffusion coefficients 

or number of electrons transferred.  

The experiment in Figure 32 was performed under inert gas, in 0.4 M 

phosphomolybdic acid on a glassy carbon electrode with an Ag/AgCl reference 

and platinum mesh counter. The solution was bulk reduced separately in a stirred, 

NAFION divided H-Cell with a platinum mesh working electrode. The # of electrons 

was determined by counting coulombs transferred. 

Figure 32 shows a linear trend in Levich slope with increasing the degree of bulk 

reduction. The high R2 value confirms that the linear fit is appropriate. The linear 

nature of this plot confirms that n, D, and 𝜐 are not changing and 𝐶𝐵𝑢𝑙𝑘 is changing 

as expected. This further confirms the validity of the Levich approach here.  

Levich Analysis-Temperature Dependence 

Temperature changes can lead to changes in electrochemical activity and diffusion 

coefficients. To better understand the impact of temperature on this system, RDE 

experiments were performed at several temperatures(Figure 33). The figure shows 

a steep increase in limiting current with increasing temperature and a large feature 

around 0.5 V vs Ag/AgCl. The zero intercept is roughly 0.39 V vs Ag/AgCl.   

As the temperature is increased in Figure 33, the visible significance of the feature 

at ~0.5V begins to fade. There is no discernable pattern between E3/4-E1/2 and E3/4-
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E1/4, indicating that temperature does not significantly affect the overpotential 

required to reach the limiting current. Table 4 lists the E1/2 values for the experiment 

shown in Figure 33. The E1/2 values do decrease with temperature as would be 

expected based on improved kinetics from the elevated temperature. There is also 

a trend of increased E1/2 with rotation rate, except at 80 ℃. It is possible that the 

reaction is becoming somewhat more electrochemically facile at elevated 

temperatures although the change is small.  

The Levich analysis was then repeated using the data in Table 5 to determine a 

temperature dependence. The temperature dependence of the diffusion coefficient 

was determined to be 𝐷 = 2 ∗ 10−6𝑒0.0214𝑇( ℃) 
𝑐𝑚2

𝑆𝑒𝑐
 𝑎𝑡 0.01𝑀. Increased 

temperature is therefore a useful way to improve the mass transport limitations 

inherent in the system.  

Table 4: E1/2 (V vs Ag/AgCl) vs Temperature & Rotation Rate  

E1/2  400 RPM 900 RPM 1600 RPM 2500 RPM 

25 ℃ 0.499 0.505 0.50975 0.51625 

40 ℃ 0.499 0.504 0.50725 0.50943 

60 ℃ 0.4905 0.485 0.4883 0.4911 

80 ℃ 0.472 0.4785 0.47835 0.4692 
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Koutecky Levich Analysis 

The rotating disk electrode experiment can also be used to determine the kinetic 

parameters governing electron transfer (𝑘ℎ, k0 and 𝛼), using what is known as a 

Koutecky-Levich analysis. The Koutecky-Levich equation (Equation 40), allows 

extraction of the kinetic and mass transfer currents from a rotating disk electrode 

experiment.  

Table 5: Ilim vs Temperature & rotation Rate 

ILIM (mA) 400 RPM 900 RPM 1600 RPM 2500 RPM 

25 ℃ 2.197613 3.156618 4.182341 5.210101 

40 ℃ 2.710475 4.062656 5.413819 6.748175 

60 ℃ 3.815647 5.709211 7.537584 9.309935 

80 ℃ 4.935081 7.603793 10.19102 13.03289 
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When the disk is rotated at an infinite speed, electron transfer kinetics will govern 

the current per equation 41 and equation 42. 

41 𝑖 = 𝑛𝐹𝐴𝑘ℎ𝐶 

where 
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42 𝑘ℎ = 𝑘0exp 
−𝛼𝐹𝜂

𝑅𝑇
 

The condition of infinite rotation speed can be simulated by plotting 
1

𝑖
𝑣𝑠

1

𝜔
1
2

 and 

finding the intercept of this line. The Koutecky-Levich approach is tempting 

whenever the plots of 
1

𝑖
𝑣𝑠

1

𝜔
1
2

 are linear, but it is important to confirm that the slopes 

of the Koutecky-Levich plots are independent of applied overpotential.82 To this 

end, we have prepared a plot of Koutecky-Levich slopes vs applied overpotential 

(Figure 34). The Koutecky-Levich plots are shown in appendix Figure 73 and 

Figure 74. 

Figure 34 shows the dependence of the Koutecky-Levich slope on applied 

overpotential in a bulk solution which is 50% 𝐻3𝑃𝑀𝑜12𝑂40: 50% 𝐻5𝑃𝑀𝑜12𝑂40. The 

Koutecky-Levich slope is the inverse of the Levich equation and has no 

dependence on 𝜂, only the intercept depends on 𝜂. This apparent dependence of 

slope on 𝜂 is likely due to a changing 𝑛𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡. That would confirm that only one 

of the two electrons in the final reaction is participating below the ~150 mV 

overpotential. It also shows that the Koutecky-Levich approach is only valid above 

200 mV.  

The point of performing a Koutecky-Levich analysis is to extract the kinetic 

current(Figure 35). The kinetic current can then be used with equations 41 and 42 

to determine the rate constant 𝑘0, which can be used to determine the exchange 
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current density. The kinetic current is also useful on its own as it describes the 

reaction in the absence of mass transport limitations.  

The green line in Figure 35 is the R2 value for the linear fit used to determine the 

data. The red markers show the kinetic current. The fit of 𝟏/𝒊 𝒗𝒔 𝝎
−𝟏

𝟐  is linear across 

the entire potential range accessed except for the area around 0 V overpotential.  

The kinetic current shows a linear region around -50 to 50 mV where there is no 

significant activation overpotential required before the current begins to increase. 

The region between 50 mV and 200 mV overpotential shows very little increase 

in current indicating that either the redox potential for a second step is higher or it 

requires significantly more activation energy above its redox potential.  

Figure 19 and Figure 22 show that the redox potential for the second redox reaction 

is approximately 200 mV higher than for the first, indicating good agreement with 

Figure 35. What this does show is that the round trip efficiency for a time shifted 

water electrolysis system such as that suggested by Symes and Bloor using 

phosphomolybdic acid would face an additional 200 mV penalty on the re-oxidation 

side. 42,43  

The calculated 𝑘ℎ is shown in Figure 75. The curve appears the same as in Figure 

35, since they are the same data simply rescaled. Calculation of 𝑘0 and 𝛼 are 

performed by fitting equation 42 to this curve. 𝑘0 is 2x10-6 cm2/sec and 𝛼 is 

0.000135. These numbers are not physically reasonable. The K0 value is clearly 

irreversible yet the kinetics shown are facile. These numbers don’t make physical 
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sense.  This probably indicates that our analysis approach is incorrect, most likely 

because of the simultaneous presence of multiple processes or a complex 

mechanism.  For example, if an ECE mechanism is operating, it could distort the 

wave shape. If we fit the curve with a simple electron transfer mechanism, such 

distortion (e.g. peak spreading if the second electron transfer step is slow) would 

lead to a poor fit of kinetics. 

Conclusions 

This is one of the first electrochemical studies of phosphomolybdic acid performed 

in many decades. Much of the original work dates to the 1970s or significantly 

earlier. The experimental and analytical techniques available have changed 

notably since then.  

In this chapter, we have described the chemical and electrochemical behavior of 

phosphomolybdic acid. We have shown that on glassy carbon surfaces, the 

reaction is quasireversible. This will lead to increased overpotentials and 

associated wasted energy in an operating battery or electrolyzer.  

The presence of platinum does not catalyze the reaction which is both good and 

bad, it lowers device cost by not requiring large quantities of electrocatalyst but it 

doesn’t allow us to lower overpotentials by simply adding platinum.  

The reactions proceed in a series of 2 electron steps and the two-electron nature 

of the first redox peak is confirmed by exhaustive electrolysis, in both the H-cell 

and the electrochemical flow cell.  
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The highest potential reoxidation peak splits into two one electron oxidation peaks 

several hundred millivolts apart following bulk reduction of the solution. This 

instability is believed to be caused by a solution reaction with the reduced species 

of phosphomolybdic acid. It is likely due to reaction conditions and needs further 

investigation. A full study of the reversibility and peak splitting against pH, 

supporting electrolyte choice, and the potential addition of a stabilizing organic 

species should be considered.  

It had been contemplated that the reversibility in the thin layer voltammetry might 

be better than in the cyclic voltammetry cell. Some reactions can appear this way 

due to the massively increased surface area of carbon paper electrodes. This is 

not the case here as there is significant hysteresis.  

The reaction in solution shows acceptable stability over many cycles. This is a 

fundamental requirement for use in an operating electrolyzer or battery. The lack 

of crossover is also a telling and positive sign for potential scale up. Nafion is an 

acceptable divider material. 

Diffusion coefficient dependence on concentration and temperature was evaluated 

from rotating disk experiments. The diffusion coefficients are relatively low, which 

is to be expected from the size of the molecules. It shows that achieving high 

current densities will require that attention be paid to the nature of the carbon 

electrodes used.  
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A Koutecky-Levich analysis was also performed on the rotating disk electrode 

data. The analysis was inconclusive, likely due to the change in number of 

electrons near the open circuit voltage. The apparent change in the number of 

electrons throughout the 0-200 mV overpotential region is attributed to the 

instability identified earlier. This means any device operating within this region will 

only be able to access one electron, leading to further increased flow-rates and 

losses. It was identified that the entire 2 electrons are able to be accessed above 

this region.  
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CHAPTER 5 

Zero Gap Cell Electrochemistry of Phosphomolybdic Acid 
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Introduction 

The goal of chapters 4, 5, and 6 is to examine the feasibility of constructing a 

working electrochemical flow cell, capable of oxidizing a redox mediator to 

hydrogen in a more cost-effective manner than water oxidation. To analyze the 

more complex mediated process, we need to understand the heterogeneous 

electrochemical mediator kinetics, the full cell heterogeneous mediator 

performance, and the performance of the mediator in oxidizing the substrates. The 

device architecture used in this chapter is typical of flow reactor systems used in 

our lab and is the most likely option for scale up, although all materials challenges 

are not yet solved.  

The previous literature tends to show operating curves for fuel cells that utilized 

phosphomolybdic acid based anodes with different fuels.38,46,83 Other researchers 

focused on proving portions of the concept of using POM’s as a charge carrier but 

did not apply it to a full size cell with all the attendant challenges.42,43,84  

One significant challenge was with mass transport. Keggin ions are extremely 

large, phosphomolybdic acid for example is one of the smaller anions with a molar 

mass of 1825 g/mol. While they are extremely soluble on a mass basis, 

concentrations above 0.5 mol/L begin to reach saturation. This means that it is 

difficult to achieve the stoich ratios used in fuel cells and other aqueous batteries. 

Mass transport within the electrode is also more difficult than it would be in a 

system with smaller anions. The diffusion coefficient, calculated in chapter 4, is on 
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order of 10−6 𝑐𝑚2

𝑆𝑒𝑐
, an order of magnitude lower than is typical of small molecules in 

aqueous solutions. One of the possible future solutions to this issue of reduced 

molar concentration is the ability of these large anions to stabilize multiple degrees 

of reduction, increasing the number of electrons transferred and with the power 

density.  

The availability of multiple oxidation states opens the opportunity to select which 

redox couple is optimal for balancing biomass oxidation with electrochemical cell 

operation. Operation in this regime would provide more power for a fuel cell or 

require lower potential in an electrolyzer. This is a trade off against the goals of 

rapid oxidation of biomass. For example, Sarma et al.used the vanadium POM-5/-7 

(2/4 electron) redox couple in their POM based cellulose oxidation process.39  

Other sources of potential problems lie in the stability of the polyoxometalate to 

reduction in the aqueous regime. The POM phosphomolybdic acid appears to 

become unstable in aqueous solutions at greater levels of reduction. For this 

reason, we have defined 100% state of charge (SOC) as 2-electron reduced 

(𝐻5𝑃𝑀𝑜12𝑂40) and 0% SOC as fully oxidized(𝐻3𝑃𝑀𝑜12𝑂40).  

The electrochemical kinetics of the mediator at the high surface area carbon 

electrode are also of significant interest. It is known that in vanadium flow battery 

systems, quasireversible behavior on glassy carbon does not mean that a catalyst 

will be required on high surface area carbon materials. Systems often behave in 

different and somewhat unexpected ways as the device architecture is changed. 



96 
 

For the vanadium case, the 3-D nature of the porous electrode provides a high 

surface area, enhancing the rate of reaction.  

We hope to apply what has been learned in vanadium and other aqueous batteries 

to improving the performance of a phosphomolybdic acid based anode. To this 

end, we have used hydrophilic, high surface area carbon GDLs, supporting 

electrolytes, zero gap architecture, and a reference electrode.  

To the best of our knowledge, no group has attempted to examine the performance 

of a POM based fuel cell or electrolyzer in a systematic way. In this chapter, we 

use a hydrogen cathode to isolate the anode performance. Recall the hydrogen 

electrode has a potential defined as zero, which will enable comparison with other 

systems. We explore the effect of states of charge, GDL materials, flow-rates, and 

temperatures.  

Materials and Methods 

Phosphomolybdic acid polarization curves were acquired using the Biologic VMP3 

B potentiostat with 20A booster. The curves were taken under current control. 

Current was cycled from reduction to oxidation on each potential step to keep the 

overall state of charge constant. Each voltage step lasted for one minute (except 

where otherwise stated) and the potential was sampled at the end. The resistance 

was measured at the start of each polarization curve using potentiostatic 

electrochemical impedance spectroscopy (PEIS). The membrane resistance to be 

corrected was taken to be the zero intercept of the Nyquist plot. Humidified 
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hydrogen flowed across the cathode at all times to ensure the accuracy of the DHE 

assumption.  

The solution was initially oxidized electrochemically until only a background current 

was flowing. Then the solution was charged (reduced) while flowing hydrogen 

across the cathode. The desired state of charge was determined by integrating 

current in either direction.  

A simple pump buffer was constructed to smooth out the periodic noise from the 

pump. The pump buffer consisted of a sealed beaker with inlet and outlet tubing. 

Air pressure within the beaker forces electrolyte through the cell at a consistent 

rate.  

The diffusion experiment was conducted in an H-cell. One compartment contained 

0.25 M phosphomolybdic acid, the other compartment contained 1 M phosphoric 

acid as a supporting electrolyte. The phosphoric acid also helped to prevent 

osmotic pressure from causing crossover. The chambers were controlled at room 

temperature (25 ℃) and were not degassed. The phosphomolybdic acid chamber 

was stirred to maintain 𝐶𝑆𝑢𝑟𝑓𝑎𝑐𝑒 = 𝐶𝐵𝑢𝑙𝑘. A calibration curve was developed to aid 

in understanding the peak height-concentration relationship. The interconnection 

between the chambers was a 1 in diameter piece of NAFION. The H-cell used for 

this experiment had no neck connecting the surface of the membrane to the bulk 

of the chamber. A platinum working electrode, platinum wire counter electrode, 

and an Ag/AgCl reference electrode were used. The working and reference 
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electrode were in the phosphoric acid chamber while the counter electrode was in 

the phosphomolybdic acid chamber.  

All other experiments were conducted in the Fuel Cell Technologies flow battery 

hardware described in chapter 2.  

Results 

State of Charge Effects 

The first characteristic chosen for study was the effect of state of charge on the 

operation of a phosphomolybdic acid based electrochemical reactor (Figure 36). 

The importance of studying the state of charge effects come from a gap in the 

literature. A common way to study the performance of a biomass-phosphomolybdic 

acid fuel cell is to show the dependence of polarization curves on charging with 

different kinds of biomass. When studying the effect of “charging” this sort of cell 

with different types of biomass, we hypothesized that the authors are studying the 

effects of state of charge indirectly. To conduct a more rigorous analysis of the 

effect of state of charge we charged the phosphomolybdic acid solution 

electrochemically. Precise control over state of charge becomes possible, as does 

elucidating the difference between state of charge effects and the effect of other 

solutes on electrochemical performance.  

Several things become immediately apparent from the observations of Figure 36. 

First is that even at relatively low current densities, the lowest states of charge are 

reaching mass transport limiting currents. The stoich at 40 mA/cm2 for the 10% 
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SOC curve is almost 3. Stoich is a term which normalizes the flow-rate based on 

the stoichiometric ratio of reagent input to that demanded by the current. Fuel cells 

often operate with a stoich between 1 and 3, but stoich close to 1 is preferred on 

the fuel (anode) side, since this represents the fuel efficiency. The inverse of the 

stoich is the utilization of reagent in a single pass. The mass transport limited 

current at 100 % utilization for the 10% SOC curve would be roughly 115 mA/cm2, 

as is shown in Table 6. This shows that at lower concentrations it becomes difficult 

to maintain current due to mass transport limitations. The large stoich required to 

attain near theoretical performance is likely due to the large size of the ion, the low 

diffusion coefficient, and low concentration of active species.  

Mass transport in a flowing, porous electrode, electrochemical cell can be divided 

into two aspects: mass transport in the flow stream and mass transport within the 

porous electrode. Because the stoich ratio is so far above 1, mass transport within 

the porous electrode is more likely to be the cause of concern. Increasing the flow-

rate will improve mass transport characteristics by increasing the tendency 

towards turbulent mixing. Additional turbulent mixing decreases boundary layer 

thickness and speeds transport yet flow into the electrode is still a diffusion 

controlled process. Fuel must diffuse into the electrode and products must diffuse 

out. Further increasing the flow rate can force the electrolyte through the electrode 

and under the “lands” on the flow-fields, rather than through the channels. This will 

tend to promote convective flow within the porous electrode itself.  
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The mass transport limitation is particularly significant in electrochemical 

conversion systems due to a phenomenon known as concentration overpotential, 

the rapid increase in overpotential required as the reactants at the electrode 

become depleted. Concentration overpotential results from local concentrations at 

the electrode, which can be vastly different from the bulk concentration. The 

concentration overpotential will logarithmically increase with conversion of active 

species at the electrode, as shown in equation 43, which is a form of the Nernst 

equation (50).85 

43 𝜂𝑐𝑜𝑛𝑛 =
𝑅𝑇

𝑛𝐹
𝑙𝑛

𝐶0

𝐶𝑏
 

𝐶0 is the concentration at the electrode surface, 𝐶𝑏 is the concentration in the 

bulk solution. Fick’s first law is then applied to determine the maximum current 

density.  

44 𝑖 = 𝑛𝐹𝐷
(𝐶𝑏−𝐶0)

𝛿
 

At limiting current densities, equation 44 becomes  

45 𝑖𝐿 = 𝑛𝐹𝐷
𝐶𝑏

𝛿
 

Equation 45 can be written as  

46 𝑖𝐿 = 𝑛𝐹𝐾𝑚𝐶𝑏 

𝐾𝑚is a local mass transfer coefficient, it is often approximated as 𝐾𝑚 = 𝑉0.4𝑥1.6 ∗

10−4 in aqueous systems.86 The approximation comes from chromium systems but 
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is commonly applied to vanadium and other RFB systems. V is the fluid velocity in 

meters per second squared. Using this approximation with equations 43 and 46 

yields equation 47. 

47 𝜂𝑐𝑜𝑛𝑛 =
𝑅𝑇

𝑛𝐹
ln (1 −

𝑖

10−4𝑥
𝑛𝐹𝑄

𝐴
∗𝐶𝑏

) 

Alternatively  

48 𝜂𝑐𝑜𝑛𝑛 =
𝑅𝑇

𝑛𝐹
ln (

𝑖𝐿

𝑖𝐿−𝑖
) 

Which becomes  

49 𝜂𝑐𝑜𝑛𝑛 =
𝑅𝑇

𝑛𝐹
ln (

𝑛𝐹𝐾𝑚𝐶𝑏

𝑛𝐹𝐾𝑚𝐶𝑏−𝑖
) 

Where Q is the volumetric flow-rate and A is the cross-sectional area of the porous 

electrode. Both equations show a rapid increase in 𝜂𝑐𝑜𝑛𝑛 as currents increase 

relative to limiting currents. This effect will become significant at lower current 

densities in a phosphomolybdic acid cell than in a vanadium battery because 𝐶𝑏 

for a vanadium battery can be 6 times higher than for a phosphomolybdic acid 

battery.  

Vanadium exhibits a similar diffusion coefficient which is contained within the 𝐾𝑚 

and 𝑖𝐿 values. The vanadium diffusion coefficients vary by oxidation state but are 

on the order of 10-6 cm2 sec-1.87 Room temperature diffusion coefficients calculated 

in chapter 4 for phosphomolybdic acid are also on the order of 10-6 cm2 sec-1. The 
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similar diffusion coefficients and lowered concentration will require higher flow-

rates relative to vanadium systems.  

This need for high flow-rates will require significantly increased pumping power. 

Pumping power is a major concern for battery design, it can consume 3.5% of cell 

power in some flow battery systems.88 Decreased flow-rates will result in increased 

concentration overpotential so this characteristic must be optimized during scale 

up. Other types of flow-fields may be used such as flow-through or interdigitated 

which can achieve higher mass transfer rates within the porous electrode than the 

serpentine (flow-by) flow-fields used in this work.  

As the state of charge increases in Figure 36, the OCV (zero current) point begins 

to decrease. This follows from the Nernst equation (50). 

50 𝐸 = 𝐸0 −
𝑅𝑇

𝑛𝐹
𝑙𝑛

[𝑂𝑋]

[𝑅𝐸𝐷]
  

None of the curves exhibit the logarithmic performance expected when activation 

overpotential is a major factor. The curves are nearly flat within the kinetic regime. 

Current begins to flow with even a minimal change in potential, indicating facile 

kinetics on high surface area carbon electrodes. This is a major beneficial attribute 

of these cells since there is no need to have a metal electrocatalyst to improve 

anode performance.  

Most of the loss in the higher SOC curves appears to be linear, even though the 

curves are IR corrected. The IR correction makes ohmic loss an unlikely culprit, 

although it is possible the IR correction is incomplete.  
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Reduction performance of the cell appears linear, except the 90% SOC curve. The 

lower SOC curves appear much less spread out in reduction than in oxidation. As 

current densities increase, they stay extremely tight. This could be due to the 

relatively high stoich they are experiencing. Within the current window scanned, 

the potential stayed above the 4-electron reduction potential. This shows that the 

system was not mass transport limited. A mass transport limited system would 

have begun 4 electron reduction once the ability to convert sufficient material with 

2 electron reduction was exhausted. 

To show the effects of IR loss, Figure 37 shows the IR and non IR corrected curves. 

The IR corrected curves have a noticeably flatter profile except the 10% SOC 

curve. There is roughly 100 mV of additional loss at 70 mA/cm2 due to IR effects. 

The power loss depends on the overall potential and therefore the SOC but is 

generally in the area of 20%. This cell is not optimized to prevent IR loss but is 

characteristic of an early generation design.   

To better understand the kinetics of the reaction, we have prepared a plot of only 

the kinetic portion of the polarization curve (Figure 38). This type of view allows 

examination of the effect of potential on activation kinetics. The differentiation here 

is based upon physical understanding of the system. At the extremely low currents 

shown, mass transport and ohmic losses are unlikely to play a significant role. 

When the exchange current density is much smaller than the anodic and cathodic 

currents, the overpotential is mainly due to poor charge transfer.89 
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The oxidation portion of the graph also referred to as anodic or positive, shows 

decreasing overpotential with increasing states of charge, the same as the 

general trends in Figure 36. The region with extremely low overpotential allows 

for the use of the linearized Butler-Volmer (B-V) equation ( 

53), to calculate the exchange current density (𝑖0). Equation 54 then relates the 

exchange current density (𝑖0), the overpotential (𝜂) and the charge transfer 

resistance. These values help to provide comparisons between systems and can 

be used for calculations. They are specific to the compound, electrode, and 

supporting electrolyte.  

The Butler-Volmer equation (equation 52) has no dependence on concentration 

which removes the concentration influence from the state of charge influence. This 

description of the kinetics is only valid at low current densities, where the reaction 

is controlled by charge transfer at the electrode rather than transport to and from 

the electrode. The exchange current density and charge transfer resistances are 

different in the anodic and cathodic directions, with cathode generally showing 

more facile kinetics. This is quantified in Table 6. 

Both the anodic and cathodic exchange current densities tend to increase with 

increasing state of charge. One possibility is that this is due to more facile kinetics 

at increased states of charge. The exchange current density dependence on state 

of charge is given in equation 51.  
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51 𝑗0 = 𝐹𝑘0(𝐶𝑂𝑋
1−𝛽 ∗ 𝐶𝑅𝐸𝐷

𝛽) 

On the anodic side, there is a clear trend towards decreasing charge transfer 

resistance with increasing states of charge. This is expected since there is a 

greater concentration of the active species to be oxidized. The cathodic charge 

transfer resistances don’t show such a clear trend. They improve until 50% SOC 

and then begin to increase sharply.  

The exchange current densities reached here are quite high, this is a strong 

indicator of facile kinetics. Part of the reason why these exchange current densities 

are so high is the way they are measured. They are measured as current density 

per geometric area but the actual surface area of a porous electrode is much higher 

than the geometric surface area. Hydrogen on platinum in 1 M sulfuric acid, a 

prototypically “fast” reaction often has exchange current densities around 0.07 

mA/cm2
 of actual surface area. 90 

52 𝑗 = 𝑗0 ∗ [exp(
𝛼𝑎𝑍𝐹𝜂

𝑅𝑇
) − exp(−

𝛼𝑐𝑍𝐹𝜂

𝑅𝑇
)]  

53  𝑖 = −𝑖0𝐹
𝜂

𝑅𝑇
 

54  𝑅𝑐𝑡 = −
𝜂

𝑖
=

𝑅𝑇

𝑖0𝐹
 

55   𝜂 =
𝑅𝑇𝑖

𝑛𝐹
(

1

𝑖0
+

1

𝑖𝑙,𝑐
+

1

𝑖𝑙,𝑎
) 
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Table 6: Exchange Current Density Dependence on SOC 

SOC 10% 25% 40% 50% 60% 75% 90% 

Calculated 

ILim-OX (mA)  

115.8 289.5 463.1 578 694.7 868.3 1042 

+Slope 

(mA/V) 

258.27 

 

440.46 434 446 686 724 686 

-Slope 

(mA/V) 

336.73 532 569 632 1163 3088 1032 

+I0 (mA) 6.625 11.298 11.144 11.452 17.615 18.591 17.615 

+RCT (V/A) 3.876 2.272 2.304 2.242 1.457 1.381 1.457 

-I0 (mA) 8.628 13.661 14.611 16.229 29.864 79.295 26.5 

-RCT (V/A) 2.976 1.879 1.757 1.582 8.598 3.238 9.689 

 

Figure 39 shows the Tafel plot of the various states of charge. Tafel plots are the 

method commonly used for determining exchange current densities in kinetically 

slow reactions. To perform this operation the portion of the line where the Tafel 

plot shows a linear response is used. The plot shown has no linear region within 

the current densities achieved, this indicates that the reaction is likely kinetically 
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too fast for Tafel; linearized Butler-Volmer is more appropriate when the reaction 

is fast.  

Effect of Supporting Acid, Temperature, and Flow-rate 

It is important to separate the effects of operating conditions, which can have a 

significant effect on the performance of electrochemical systems. Some of the 

most important operating parameters of flow-rate, temperature, and supporting 

acid are examined in the following section. Flow-rate primarily affects the mass 

transport resistance. Temperature and supporting acids affect the electrode 

kinetics, mass transport resistance, and resistance. 

Increased flow-rates can decrease mass transport resistance by increasing the 

flux of reactant to and from the active surface of the electrode. This is exemplified 

by equation 44, where flow-rate can affect the diffusion layer thickness 𝛿. 

Temperature affects mass transport by changing diffusion coefficients, it affects 

ASR in some cases by changing membrane hydration or by changing diffusion 

coefficients. ASR depends on ionic movement through the electrodes and the 

membrane, therefore decreasing the resistance to ionic movement will decrease 

the ASR.  

Supporting acids are useful for a variety of the properties they provide to the 

system. They increase the overall ionic concentration, decreasing solution 

resistance. There is often improvement in the electrochemical rate constants. This 

improvement comes because solution phase species must be within 10-20 
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angstroms of the electrode surface to allow quantum tunneling of the electrons; 

the potential drop must also occur within this distance. In insufficiently supported 

media the potential drop can take place over a longer distance, not allowing all the 

potential to be used for the electrochemical reaction.63 Complexation is another 

important factor, ions tend to cluster and form stable complexes. Providing 

additional reactants can drive the complex into or out of formation. 

Polyoxometalates are stabilized at low pH, so increasing acid concentrations will 

tend to improve stability. Increasing hydrogen ion concentration will also act to 

stabilize the more reduced forms of polyoxometalates.  

Flow-Rate 

Figure 40 shows the effect of changing flow-rate on the polarization curves of a 

phosphomolybdic acid-hydrogen flow cell. Sources of loss in each section of the 

polarization curve are controlled by kinetics, mass transport, and ohmic losses. 

The curves below are IR corrected to remove the influence of ohmic losses. The 

figure presents data with phosphomolybdic acid and water (neat POM), and 1 M 

HCl with the phosphomolybdic acid and water. 

The Neat POM curves show only minimal dependence on flow-rate. This is a 

strong indicator that the systems represented by those curves are under kinetic, 

rather than mass transport control. There becomes a slight dependence of 

potential on flow-rate at extremely high overpotentials, a sign that the system is 

beginning to influence mass transport effects. The fact that the system stays 

entirely under kinetic control for over 600 mV shows the severe kinetic limitations 
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experienced by this system. This data alone shows that phosphomolybdic acid in 

the absence of supporting electrolyte or surface electrocatalyst is a highly 

undesirable anode system.  

The 6 ml/min voltammogram with 1M HCl show noticeable improvement over the 

POM only voltammograms. It shows a steep voltage increase around 100-150 

mA/cm2. This cutoff is indicative of mass transport control.  

Also of significance is that the 1 M HCL samples begin to experience fuel starvation 

at about the same stoich numbers. This leads to the question of whether the supply 

of POM or some other reactive component to the electrode is limiting, rather than 

diffusion within the electrode. 

The mass transport limited current is the maximum current achievable at a given 

flow-rate if the stoich value is equal to 1. This mass transport control regime begins 

when the stoich is as low as about 5.  

The 1M HCl and 13 ml/min curve show the onset of mass transport control at a 

higher current density of nearly 200 mA/cm2, this is a stoich value of about 5 again. 

The 1M HCl and 30 ml/min curve shows no onset of mass transport control at all 

within the potential regime that was accessible without damaging equipment. The 

experiment had to be stopped at 350 mA/cm2 because the potential on the 

recharging step was reaching the safety limits of the equipment. For reference a 

stoich value of 5 at this flow-rate would be about 500 mA/cm2. 
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Normalizing Figure 40 using the mass transport limited current yields Figure 41. In 

Figure 41, the dependence of potential on utilization for the POM only curves is 

misleading because the current is changing while the potential required is not. This 

occurs because the system is not under mass transport control. For the 1M HCl + 

POM samples, the 6 ml/min and 13 ml/min curves are similar in shape with the 6 

ml/min sample appearing to have the best performance. It is important to note that 

the 6 ml/min sample appears the best because the flow-rates are so much lower. 

The performance of the 13 ml/min sample shows that the mass transport 

limitations are not yet resolved. The performance of the 30 ml/min sample shows 

that mass transport is not controlling out to 350 mA/cm2. The kinetics must 

therefore be sluggish enough to prevent mass transport from taking over until 

roughly 400 mV overpotential.  

Also of significance is that the 1 M HCL samples begin to experience fuel starvation 

at about the same stoich numbers. This leads to the question of whether the supply 

of POM or some other reactive component to the electrode is limiting, rather than 

diffusion within the electrode. 

Mass Transport Limited Current 

 
Flow-rate 6 ml/min 13 ml/min 30 ml/min 

Imax (mA/cm2) 482 1045 2412 
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Temperature Effect 

The presence of increased acid and high flow-rates generated improved but still 

insufficient performance. One of the most trusted ways to increase the rate of any 

reaction is to increase the temperature, although not all the effects of increased 

temperature will improve system performance. In the case of a flow battery, it can 

affect the operation by speeding kinetics, increasing diffusion coefficients, 

decreasing viscosity, drying membranes, altering solubility, evaporating solvents, 

and speeding side reactions.  

The effect of supporting acid in the previous section led us to try increased acid 

concentrations as well. The work in chapter 6 suggested that a hydrochloric acid 

system would be preferable to a sulfuric acid system. Hydrochloric acid is also an 

excellent choice because it is inexpensive and widely available. Temperatures 

were varied from 35 ℃ to 80 ℃, higher temperatures were not feasible with the 

equipment used although they may be beneficial. Further elevating temperatures 

will require pressurizing the anolyte compartment to prevent excessive moisture 

loss.  

Figure 42 shows the effect of temperature on the operation of a phosphomolybdic 

acid electrolysis cell at 50% SOC. The parameters varied are temperature and 

concentration of hydrochloric acid supporting electrolyte. The ideal mass transport 

limited current is 2500 mA/cm2. The general trends of decreasing overpotential 

with increasing acid concentration and temperature are present. The initial addition 
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of acid from 0->1 M makes the biggest difference in polarization required. There is 

no temperature where the neat POM outperforms the 1 or 5 M HCl-POM systems.  

Operation of a room temperature electrolysis cell in the absence of supporting 

electrolyte at 100 mA/cm2 would require over 1000 mV of additional overpotential 

(nearly 3 times the total energy) relative to the room temperature system with 5 M 

hydrochloric acid added.  

To clarify the results of Figure 42, we have prepared separate plots of each acid 

concentration (Figure 43, Figure 44, and Figure 45) 

Figure 43 shows the effect of temperature on the 1 electron reduced, 

phosphomolybdic acid only system. The effect of temperature is quite pronounced. 

A significant difference is noted in the angle of the polarization curves right 

beginning in the kinetic region, this angle difference is quantified as the exchange 

current density in c. There is roughly 600 mV additional overpotential required to 

move the reaction from 80 ℃ down to 35 ℃ at 100 mA/cm2. The potentials required 

to reach 100 mA/cm2 at any temperature below 80 ℃ are within the realm of water 

oxidation given the proper electrocatalyst. It is unlikely although not impossible that 

significant water electrolysis is occurring in this system, given that no effective 

water oxidation catalyst is present on the anode side. The effect of temperature on 

oxidation potential is not linear and changes with current density.  

Figure 44 shows the temperature dependence of the electrolyzer when the anode 

is supplied with a 1M HCl-POM solution. The electrolyzer performance is 
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significantly improved versus the neat system. In the neat system, the maximum 

current density reached was about 130 mA/cm2. In the 1M HCl system, a maximum 

current density was reached at 500 mA/cm2. The dependence on temperature here 

is much clearer than in the neat system. The 35 ℃ curve still shows significantly 

worse performance than the other temperatures. The slope is much steeper and it 

sits at higher potentials by 100 mA/cm2 than the higher temperatures do at 400 

mA/cm2. At low overpotential, the 50 ℃, 65 ℃, and 80 ℃ curves all show similar 

slopes but sit roughly 10 mV apart. The polarization curves all track closely to 400 

mA/cm2. The difference between 50 ℃ and 80 ℃ is smaller than the difference 

between 35 ℃ and 50 ℃. The slopes of the 50 ℃ to 80 ℃ polarization curves 

continue to improve with temperature within the kinetic region, this is quantified in 

Figure 46 and Table 9. All of this indicates kinetic limitations that are greatly 

improved by increasing temperature. The potential decrease in the kinetic region 

as the temperature increases can be attributed to the falling Nernst potential.  

Figure 45 shows the performance of the electrolyzer with an anode feed of 5M HCl 

and POM. The performance at 35 ℃ slightly improved relative to that with 1M and 

significantly improved relative to the neat solution. At 50 ℃ and 65 ℃ the 1M and 

5M performance is nearly identical. At 80 ℃ the 5 M performance is slightly 

improved again relative to the 1M. In the 5M HCl solution, all of the curves are 

much closer together than in any of the other solutions. This indicates decreased 

kinetic limitations relative to the 1 M HCl and neat solutions. All the kinetic slopes 
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appear flatter in the 5 M HCl solution but that will be quantified in Figure 45 and 

Table 9. 

The subjective analysis above provides a basic understanding of the trends 

present in the system. We can further characterize the system through the 

calculation of basic parameters. Understanding the exchange current densities 

and charge transfer resistances will enable quantitative comparison between 

various iterations of the designs.  

Effect of Temperature and Acid on Exchange Current Density 

The anodic exchange current densities are presented in Figure 46 and Table 9. As 

expected the exchange current densities increase significantly with acid 

concentration. The temperature dependence is also quite strong and increases 

with increasing acid concentration. This significant improvement with acid 

concentration and temperature has the potential to result in large energy savings 

and increase the viability of these system designs.  

The neat phosphomolybdic acid solution displays a linear dependence of i0 (mA) 

on temperature (K). The slope for this dependence is roughly 0.0903 mA/K. The 1 

M HCl-phosphomolybdic acid solution 
i0

𝑘
 dependence has a slope of 0.746 mA/K. 

The plot is not linear in this case, it exhibits a steep rise until 338 K and then levels 

off, showing no more improvement with elevated temperature. The 5 M HCl-

phosphomolybdic acid solution 
i0

𝑘
 dependence has an exponential dependence on 

temperature of i0 = 0.0009𝑒0.337𝑡. This figure shows the immense impacts 
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temperature and acid on the kinetics of phosphomolybdic acid oxidation. The 

exchange current density can be increased 11,167% by transitioning from 35 ℃, 

neat solution to 80 ℃, 5M HCl solution (raw data is given in appendix Table 9). 

The use of room temperature and no supporting acid may explain some of the poor 

performance of the previously constructed cells in the literature.  

Effect of Temperature and Acid on ASR 

Recall that the sources of voltage loss in electrochemical system is a sum of 

resistances, kinetic, ohmic, mass transport, and contact(equation 9). Ohmic 

resistance often plays a large role in the overall potential loss in an operating 

electrochemical conversion device, especially at high current densities. Ohmic 

resistance in the cell is characterized by ASR.  

The loss from ASR does not substantially affect the data presented in this chapter 

because the data is corrected to remove the influence of IR loss. This is done to 

better isolate the effects of mass transport and kinetic losses. The open circuit ASR 

dependence on temperature and HCl concentration is presented in Figure 47. The 

neat phosphomolybdic acid cell exhibited 4-5 times the ASR of the 1 M and 5 M 

HCl systems at all temperatures. There is a decreasing trend in ASR vs 

temperature, with 308 K being the exception. The lowest ASR achieved is nearly 

the same for the 1 M and 5 M HCl samples, at 80 ℃. Resistance in the membrane 

will tend to decrease with increasing acid concentration. It is also common in flow 

batteries that much of the resistance is due to conductivity within the electrodes. 
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Increased solution acid concentration will increase solution conductivity and 

decrease IR loss through the electrodes.  

There are two main strategies commonly used to decrease ASR, increasing the 

conductivity of the membrane and decrease the total path for the ions to flow 

though. Conductivity of the membrane is generally increased by increasing the 

hydration level. Overall ASR is reduced most effectively by decreasing the path 

length. This can be done using thinner electrodes and thinner membranes. The 

membrane used in these experiments was NAFION 117, the thickest NAFION 

membrane sold. It was chosen for stability and ease of handling, rather than 

optimization of IR loss. Operational batteries are expected to use a membrane 

1/7th to 2/7th the thickness of this membrane. There are some indications in the 

literature that a size selective membrane rather than a charge selective membrane 

may be suitable here. That could be a positive development because dialysis 

membranes are not as dependent on hydration levels and are generally less 

expensive than PSFA membranes.  

Carbon Felt vs Carbon Paper  

Kinetic and mass transport properties of electrochemical devices are highly 

dependent on the environment around the electrode. Electrodes in electrochemical 

conversion devices work by decreasing the length of the diffusion layer by 

promoting turbulent flow, while providing a high surface area for the reaction to 

occur on. Two components of a flow battery are responsible for minimizing the 
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diffusion length, the liquid-gas diffusion layer (GDL) and the flow-fields. Flow-fields 

are not addressed in this work.  

In a fuel cell, the reaction takes place at the electrode/electrolyte/catalyst interface, 

directly against the membrane. For this reason, increasing the GDL surface area 

is unlikely to provide significant benefit. Fuel cells also use a GDL with a 

microporous layer on the surface to trap catalyst on the surface during deposition. 

Finally fuel cell GDLs are treated with a hydrophobic coating to prevent flooding.  

In the flow battery, it has been found that the reaction can take place throughout 

the GDL thickness and therefore increased GDL surface area can provide tangible 

benefits to operational efficiency. Flow battery researchers have also discovered 

that microporous layers are detrimental to efficiency by hampering diffusion of 

liquid electrolytes to the membrane. Because flow battery reactions take place on 

the surface of the GDL instead of on the surface of the catalyst, they require a 

hydrophilic surface. Wettability is important to maximizing the usable surface area 

of the GDL for the electrochemical reaction.  

We have chosen to explore two common battery GDL materials WOS1002 carbon 

cloth and SGL 35AA carbon paper. Their properties are described in Table 7. Both 

are hydrophilic carbon electrode materials with similar thicknesses and through 

plane resistances. Carbon cloths are expected to have lower mass transport 

resistance than carbon papers due to their looser weave. This is quantified in the 

air permeability.  
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Air permeability is calculated using the Gurley method. In this method, two 

chambers of air are connected by a tube, divided by a piece of GDL. One chamber 

is pressurized and the other is evacuated. The air permeability is given as the 

amount of air which can pass through a set area of membrane in a set amount of 

time.91 The air permeability of the carbon cloth is 4x higher than the carbon paper.  

Table 7: Properties of Electrode Materials 

Property Units WOS 1002 Carbon 

Cloth92 

SGL 35AA Carbon 

Paper93 

Thickness µm 360 300 

Weight g/m2 125 51 

Air Permeability cm3/(cm2-

sec) 

465 170 

TPR mΩ-cm2 <5 <12 

Porosity % 50 90 
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This difference in permeability may be explained by the noticeable differences in 

construction. The carbon cloth is a woven material while the carbon paper is a 

mixture of carbon fibers and binders. SEM images are given in Figure 48. Even at 

50X magnification, the carbon cloth looks much more accessible than the carbon 

paper. Although the rated thicknesses are similar, the carbon cloth looks much 

thinner in the 20X transverse view. The carbon paper also appears to have a series 

of sheets with high density while the carbon cloth is more uniform. This likely 

contributes to the higher air permeability. Electrolyte may become trapped within 

the layers of the carbon paper and rely on diffusion rather than convection to 

exchange material with the bulk.  

The exchange current densities approximately double with the addition of the 

second layer. That is expected if the mechanism is increasing surface area. It may 

not be exactly double due to inconsistencies in compression or other details of cell 

construction. The exchange current density of the carbon cloth is roughly double 

that of the carbon paper, again suggesting that increased activity may be playing 

a large role in differing performances.  

In Figure 49, the polarization curves of 2 layer carbon cloth and carbon paper GDLs 

diverge until about 50 mA/cm2 and then begin to track together. The low 

current/overpotential region is known as the kinetic region and represents kinetic 

losses. The fact that they begin to track together at higher current densities is 

indicative that the mass transport controlled region has been reached and that the 

mass transport limitations are similar. 
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Carbon Cloth vs Carbon Paper Exchange Current Densities 

 1-layer 

WOS 

1002 

2-layer 

WOS 1002 

1-layer 

SGL 35AA 

2-layer 

SGL 35A 

J0 (mA/cm2) 11.26 28.12 7.23 12.88 

Voltage Stabilization at Each Step 

An alternative hypothesis to the surface area one is that the added electrode 

thickness is retaining more electrolyte. If this were the culprit, the polarization curve 

would not reach steady state within the step time. Once the current is stepped to 

a new value, the reactants within the diffusion layer thickness are rapidly 

consumed. To compensate the diffusion layer thickness grows until it is sufficient 

to maintain the set current. The driving force required for this increased current is 

increased overpotential.   

The experiment was conducted as galvanic step chronopotentiometry. The 

maintenance of stable state of charge in a flow battery is essential for 

characterization as shown in Figure 36. The charge passed in a single polarization 

curve could affect the state of charge by 10% or more. To maintain a stable state 

of charge for the anodic portion of the curve, an equal reduction step preceded 

each oxidation step. 

Figure 50 shows the anodic chronopotentiometry of each of the current steps in 

Figure 49. The two layer carbon paper experiments reached stability faster than 
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the 1 layer. If electrolyte depletion were causing concern, the potentials would be 

peaking at the end of each galvanic step. The potential shows a spike at the 

beginning of each step and begins to decrease. The initial spike may be caused 

by capacitive charging. The experiment was stopped when the current spiked 

outside of the safety limits of the equipment. Data was only recorded from steps 

where the potential appeared stable.  

Figure 51 gives the cathodic chronopotentiometry of each current step. At higher 

current densities neither of the cathodic curves reach stability. The 35AA 2-layer 

stays stable at higher current densities than the 1-layer does. For this reason, the 

cathodic portion of the polarization curve in Figure 49 is not shown. The extremely 

large overpotentials reached are well within the range required for 4 and 6 electron 

reduction.  

Phosphomolybdic Acid Diffusion in Nafion 

Most authors proposing polyoxometalate based flow systems state that there will 

be no crossover issues. They reason that the large size (1800+ g/mol) and 

negative charge provide sufficient charge and size exclusion for a NAFION 

membrane.38,43 The only experimental evidence for this theory utilized UV-Vis 

spectroscopy to track the crossover concentration. We experienced unexpected 

crossover levels as evidenced by visual inspection. To better understand the issue 

of crossover, we turned our attention to developing sensitive methods for detection 

of crossover species. Initially cyclic voltammetry was used to track the 

concentration of the crossover POM but the data appeared noisy and unreliable. 
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Square wave voltammetry was chosen as it is considered to be one of the most 

sensitive electroanalytical techniques. This sensitivity is owing to the removal of 

the influence of capacitive contributions to the current.  

A diffusion cell was constructed and diffusion was measured across a NAFION 

membrane. The cell consisted of two chambers, one containing phosphoric acid 

and the other containing phosphomolybdic acid. The chambers were connected 

by a NAFION 117 membrane. Phosphoric acid was necessary in the low 

concentration side to control osmotic crossover of water and to provide sufficient 

conductivity for the reaction. The concentration of phosphomolybdic acid in the 

water chamber was tracked using peak currents in square wave voltammetry. 

Peak currents are described by the Randles-Sevcik equation shown in equation 

56.  

56 𝑖𝑝 = 0.4463𝑛𝐹𝐴𝐶(
𝑛𝐹𝜐𝐷

𝑅𝑇
)

1

2 

Figure 52 is representative of the square wave voltammetry of the calibration 

curve. The first peak at roughly 0.179 V was chosen for analysis for its strong 

correlation to the concentration of phosphomolybdic acid in the system, especially 

at low concentrations. Figure 53 Shows the peak height-concentration ratio for 

square wave voltammetry of phosphomolybdic acid in phosphoric acid. There is 

generally good agreement between the calibration curve and the data, as is 

evidence by the high R2 value. Figure 54 gives the crossover vs time as calculated 

using square wave voltammetry. The slope of the line is plotted as 2x10−7  
Mol

𝑆𝑒𝑐
. 
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Because crossover is so minimal, the concentration difference stays nearly the 

same, allowing the use of Ficks first law of diffusion (equation 57). The slope of the 

crossover is divided by the surface area to give the flux as applied in equation 58. 

The diffusion coefficient for phosphomolybdic acid across a NAFION membrane is 

calculated to be D=7.2475x10-7 
𝑐𝑚2

𝑆𝑒𝑐
. 

57 Q=
𝐷

𝐿
(𝐶2 − 𝐶1) 

58  
2x10−7 

Mol

𝑆𝑒𝑐

20.2 cm2 =
𝐷

0.0183 𝑐𝑚
(0 − 0.25

𝑀𝑜𝑙

𝐿
∗

1L

1000 𝑐𝑚3) 

This diffusion coefficient is similar to that of other small molecules. For reference 

the diffusion coefficients of vanadium in NAFION varies, but are on the order of 

D=10-7 
𝑐𝑚2

𝑆𝑒𝑐
.94 Vanadium systems are known to have significant issues concerning 

crossover. This means that crossover could become a concern in 

phosphomolybdic acid systems too. Diffusion is not the only or even the most 

important driver of crossover in an electrochemical cell but it is an easy to measure 

surrogate to describe the expected relative crossover rates. In many systems, 

electroosmotic drag can have a more significant effect on crossover than diffusion.  

Crossover can also be detected by visual examination and UV vis spectrometry 

but those methods are less sensitive than electrochemical techniques. They are 

also more susceptible to errors caused by state of charge, since each state of 

charge is a distinct color. Anecdotally, no crossover was visible using visual 

examination in H-cell systems. Crossover was clearly occurring during electro-
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oxidation of the phosphomolybdic acid in the flow cell systems. A dark blue liquid 

collected at the cathode during oxidation experiments and had to be washed off. 

The reduced form of the phosphomolybdic acid is dark blue. It is unclear whether 

this is entirely electroosmotic drag driven or if the phosphomolybdic acid becomes 

unstable during oxidation.  

This measurement combined with observations of operating cells shows that 

crossover is a more significant concern in these systems than previously noted in 

the literature.  

Conclusions 

In this chapter, we have begun the exploration of the challenges associated with 

operating an electrochemical flow cell utilizing using phosphomolybdic acid as a 

model POM feed. We have studied the effect of state of charge, stoich, 

temperature, supporting acid, and gdl choice. The highest performance design 

exhibited an exchange current density of 153 mA and an ASR of 0.4 ohm-cm2. The 

standard conditions yielded an exchange current density of 1.37 and an ASR of 

2.1 ohm-cm2. Despite this immense improvement, many opportunities are 

identified to further increase performance.  

We have found the effect of supporting acid is profound and not studied in the 

literature. Some prior authors have used supporting acids such as phosphoric acid 

to control pH but they did not study the effect of the acid. Many of the reports do 

not include a supporting acid at all and none have studied hydrochloric acid. 
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Increasing HCl concentrations is also shown to be beneficial to performance by 

increasing exchange current density and decreasing cell resistance. Future work 

could include testing the effect of other acids and further increasing acid 

concentrations.  

The effect of GDL and temperature is expected although untested in the literature. 

Additional surface area beyond that achieved with one layer of carbon cloth or 

carbon paper was required to optimize the cell performance. It would be beneficial 

to test higher surface area carbon materials or still thicker electrodes. The 

influence of mass transport on the electrodes was determined to be significant. 

This can be improved by increasing SOC and increasing concentration.  

Crossover was another issue identified of unexpected consequence. Crossover 

issues were dismissed in the literature and considered to be unlikely. Crossover 

was noticed visually and diffusion coefficients in NAFION were calculated. 

Crossover was clearly occurring and diffusion coefficients were of the same order 

as vanadium systems which exhibit significant crossover issues. Crossover POM 

was removed from the counter electrode by flushing with DI water. This water ran 

blue (reduced phosphomolybdic acid) and could be turned yellow (oxidized 

phosphomolybdic acid) with a few drops of hydrogen peroxide. The crossover 

appears easy to remove and the material could likely be cycled back to the anolyte 

after flushing although this was not tested.  

Long term stability of battery materials and the POM have not been studied but will 

be important to the functioning of a completed device.   



126 
 

CHAPTER 6 

Glycerol Oxidation by Polyoxometalates  
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Introduction and Goals 

The overarching goal of this work is the use of organic compounds as a source of 

protons to decrease the potential required for the electrolytic generation of 

hydrogen. Chapters 4 and 5 explored the electrochemical stability and reactivity of 

a polyoxometalate mediated hydrogen production system. Such a system requires 

a mediator which is not only efficient at reducing the anode potential but is also 

able to oxidize the biomass model compounds at sufficient rates.  

To better understand the rates present, we began by using cyclic voltammetry. The 

shape of the cyclic voltammograms changes with the reaction rate constant and 

scan rate in a predictable manner.  

Insufficient reaction rates between glucose and POMs made CV an impractical 

choice. This led to the development of another methodology for tracking the 

solution redox reaction, repeated bulk electrolysis for changing time periods. This 

technique was used to search for an acceptable combination of mediator, organic 

compound, and conditions for the oxidation of organics and reduction of the 

mediator. 

The reagents chosen were selected from literature reports of biomass oxidation 

using pure polyoxometalate systems, POM mixed with mineral acid, and metallic 

catalysts. 36–39,52,53,95,96 Iron and copper additives were explored due to their known 

ability to oxidize glycerol.57 TiO2 was chosen for its reported ability to catalyze the 

oxidation of methanol in energetic conditions. To that end, we undertook the 
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screening of a variety of polyoxometalates, acidities, and other additives for their 

reactivity with glycerol.  

Materials and Methods 

CV experiments: 25 ml solutions of 0.01 M phosphomolybdic acid, with 1 M HCl, 

and 1 M glucose were prepared. The electrolyte was placed in a 3-electrode cell 

which was heated from the sides and bottom. A Pt disk working electrode, Pt wire 

counter electrode, and Ag/AgCl reference electrode were used.   

The oxidation screening and kinetic constant experiments were performed using 

50 ml solution volume. The solutions were 0.025 M POM with 0.5 M Glycerol and 

other additives as noted. Solutions were mixed under ice and stored under 

refrigeration if not used immediately. Solutions were then heated to 90 ℃ and 

stirred, while flowing into the electrochemical flow cell. The flow cell used was as 

described in the previous chapter. The flow cell had a steady bleed of nitrogen 

across the cathode to prevent flooding or back diffusion of hydrogen during OCV 

periods. The solution was oxidized at 1 V cell potential for 2 hours, then a series 

of 2, 4, 6, and 8 hour OCV periods were each followed by 2 hours of oxidation at 

0.8 V. Current, total charge, and time were all recorded using a Biologic VMP-3 B 

potentiostat.  

Preparation of solutions: The metal catalyst combinations were prepared by mixing 

the co-catalyst with phosphomolybdic acid, then boiling and stirring for 1 hour, 

before refrigerating until use. The FePMo12O40 was prepared from the FeNo3 salt 
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and H3PMo12O40. The nitrate salt was chosen because it contains Fe(III) which will 

not reduce the POM. The H3PWMo11O40 was prepared by mixing stoichiometric 

amounts of PW12O40 with PMo12O40. CuPMo12O40 was prepared from H3PMo12O40 

and CuSO4. The VPMo12O40 was prepared from H3PMo12O40 and VOSO4.  

UV-vis Spectroscopy was performed on the prepared solutions. Some solutions 

were immediately reduced upon preparation so 100 µL 30% hydrogen peroxide 

was added to the 3 mL UV-Vis samples to reoxidize them. The samples were 

stored for several days in the refrigerator and sonicated for 90 minutes prior to the 

UV-Vis spectroscopy being performed. A Thorlabs light source and ALS detector 

were used with a 1 mm path length quartz cuvette. UV-Vis results are shown in the 

appendix(Figure 85, Figure 86, Figure 87, Figure 88, and Figure 89) 

Square wave voltammetry was performed on each of the solutions to help 

elucidate peak heights. Cyclic voltammetry was performed initially but the scans 

revealed little. Square wave voltammetry is explained in chapter 4. The scans are 

given in appendix Figure 90, Figure 91, Figure 92, Figure 93, Figure 94 and Figure 

95. 

Studying Glucose Oxidation Kinetics Using Cyclic Voltammetry 

Cyclic Voltammetry can be used to determine reaction rate constants of coupled 

chemical and electrochemical reactions. When describing coupled electrochemical 

and chemical reactions, “E” refers to an electron transfer and “C” refers to any 

homogeneous elementary chemical reaction step. The order of the letters 
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describes the order in which the steps take place. For example, an EC reaction 

(59 and 60) would mean an electron transfer step followed by a chemical step.  

59 𝑅𝑒𝑑 ↔ 𝑂𝑥 + 𝑛𝑒− 

60 𝑂𝑥 + 𝐴
𝐾𝑓

→
𝐵 + 𝐶 

There is a special case of the EC reaction called the EC’ reaction whereby the 

electrochemical reactant is regenerated in the chemical step.  

61 𝑅𝑒𝑑 ↔ 𝑂𝑥 + 𝑛𝑒− 

62 𝑂𝑥 + 𝐴
𝐾𝑓

→
𝑅𝑒𝑑 + 𝐵 

The EC’ reaction, also known as the electro-catalytic case, perfectly describes the 

oxidation of biomass by polyoxometalate in the proposed system. Equations 63 

and 64 show the electrocatalytic case applied to the POM-organic system. 

Equation 65 gives the rate equation for the accumulation of reduced POM in the 

absence of systemic reoxidation.  

63 𝐻5𝑃𝑀𝑜12𝑂40 ↔ 2𝐻+ + 𝐻3𝑃𝑀𝑜12𝑂40+2𝑒− 

64 𝐻3𝑃𝑀𝑜12𝑂40+ Organic
𝐾𝑓

→
 𝐻5𝑃𝑀𝑜12𝑂40+Oxidized Organic 

65 
𝜕[𝐻5𝑃𝑀𝑜12𝑂40]

𝜕𝑡
= 𝑘𝑓[𝑂𝑟𝑔𝑎𝑛𝑖𝑐]𝑥[𝐻3𝑃𝑀𝑜12𝑂40]𝑦 

Cyclic voltammetry of the EC’ reaction shows a significant change in the recorded 

voltammograms with scan rate (Figure 55). As the ratio of 
𝑘𝑓

𝜐
 (where 𝜐 is the scan 
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rate) increases, the reduction peak will shrink relative to the oxidation peak since 

the substrate is replenishing the reduced POM in the area of the electrode before 

the reductive sweep can occur. Simple modeling is then required to turn this 

qualitative data into values of 𝑘𝑓 . This technique is a popular option for 

understanding fast chemical redox reactions.  

This technique is fundamentally limited in its ability to understand slow chemical 

reactions. This limit comes from the necessity of maintaining semi-infinite linear 

diffusion in a quiescent solution. Extremely low scan rates are not feasible because 

when scan rates get low enough, other effects will begin to dominate. This will have 

a similar appearance to increasing K values so it is important to ensure operation 

above the minimum scan rate. The value P (equation 66), quantifies the validity of 

the linear diffusion assumption for cyclic voltammetry. The minimum P value for 

successful cyclic voltammetry experiments is 1.97 The P value for the studied 

systems was ranged from over 20 to 4.5.  

66 𝑃 = √
𝑛𝜐𝐹𝑟𝑒

𝑅𝑇𝐷
 

Glucose was used as the organic substrate in these experiments because it is 

expected to react with the polyoxometalate readily.36,38,98 Cyclic voltammetry of the 

solution is presented in Figure 56, Figure 57, and Figure 58. Upon first 

examination, the voltammograms appear to show a change similar to what is 

expected for a coupled reaction. The change in the background curves leads to 

the belief that a different effect must be occurring.  
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 We theorize that the condition of quiescence was disrupted by convection. The 

container was heated from the bottom and sides to attain the required temperature, 

this is likely inducing convection. Due to the extremely low value of 𝑘𝑓 and the 

conditions required to increase it, we cannot access scan rates slow enough to 

determine its value through cyclic voltammetry.  

Visual inspection of the solution revealed a change from yellow to blue, indicative 

of bulk reduction. Figure 58 also shows a reaction is occurring on a slower time 

scale. The time required to scan at 0.1 mV/sec over a 1400 mV range is nearly 4 

hours. By the time multiple scans has occurred, the solution appears to have 

undergone bulk reduction. The glucose curve contains several of the same 

features as the bulk reduced, RDE curves did. There is the shoulder at roughly 0.5 

V vs Ag/AgCl, and an increase in the diffusion limited current above 0.6 V. This is 

due to an increased concentration of the reduced species in the bulk.  

Screening of Additives and Supporting Acids for Glycerol 

Reduction 

Once it was determined that the kinetics of glucose oxidation by phosphomolybdic 

acid could not be readily studied with cyclic voltammetry, we turned to bulk 

oxidation experiments. Glycerol was selected as a model substrate due to its 

desirable combination of price, availability, and renewable nature. Excess glycerol 

was placed in a sealed glass reactor with catalyst and thermostatted to 90 ℃. The 

glass reaction chamber was connected to an electrochemical flow cell. The steady 
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state current was recorded as R (equation 67). To increase signal, a series of 

reduction and reoxidation steps were performed.  

The batch experiment is expected to be pseudo first order in the mediator, since 

the experiment has excess substrate (20:1) with the mediator concentration 

changing. In the continuous experiment, the substrate is supplied in excess(20:1) 

and the POM is being regenerated. This is a pseudo zeroth order reaction since 

none of the reagent concentrations are changing. The results of these two 

experiments are correlated later to help provide confirmation of results and to 

develop additional parameters. 

 67 𝑅 = 𝐾 ∗ [𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒]𝑋 ∗ [𝑃𝑂𝑀𝑂𝑋]𝑌[𝐶𝑜 − 𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡]𝑧 

The conversion of charge passed to moles is accomplished using the equation 68. 

68 𝑄 = 𝑛𝐹𝑁 

Where Q is charge passed in coulombs, n is the number of electrons per 

equivalent, N is the number of moles reacted, and F is the Faraday constant(96485 

C/Mol). For consistency and ease of conversion we work in moles of H+ or e-, which 

directly translates to grams of hydrogen.  

Chronocoulometry of Polyoxometalate Based Glycerol Oxidation 

Catalysts 

This section compares the effect of several additives in either water, HCl or H2SO4. 

The presence of sulfuric acid has been shown to increase the rate and alter the 
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mechanism (PC-ET to ET-OT) for the oxidation of the primary and secondary 

alcohols by polyoxometalates.53  

Figure 59: Coulometric Monitoring of the Time Course of Glycerol Oxidation, as 

Revealed by the POM Re-Oxidation Charge, for Various POM Catalysts in 0.5 M 

Glycerol  shows the chronocoulometry during reoxidation of several catalyst 

combinations in a solution consisting of catalyst, glycerol, and water. The copper 

and titanium-dioxide POM solutions show a decrease in activity relative to the base 

line of the pure phosphomolybdic acid.  

They show far lower activity than the pure phosphomolybdic acid for the oxidation 

of glycerol. The best performing combinations in this system are the iron and 

vanadium POM complexes. The reoxidation profiles of the iron and vanadium 

systems are such that they continue to show significant current for their entire 

reoxidation time. The other combinations undergo rapid reoxidation until they 

reach a steady state of low constant current. The pure phosphomolybdic acid, 

vanadium-phosphomolybdic acid, and phosphomolydbdotungstic acid solutions 

show increasing levels of reduction with each increasing time step of 2, 4, 6, and 

8 hours. The iron system approaches its maximum reduction by the second 

reduction step of 4 hours. The best of these systems still only yield about 70 

coulombs or 0.00073 g of hydrogen in 10 hours.  

The rates of glycerol oxidation presented in Figure 58 are thoroughly insufficient 

for the development of a device. It has been suggested that the presence of sulfuric 

acid can catalyze the oxidation process two separate ways. Several authors 
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discuss a change in the reaction mechanism from electron transfer to oxygen 

insertion in the presence of sulfuric acid.53  

Another possibility is that at higher temperatures(above 50 ℃), the mediators can 

react with water to produce a variety of oxidizing and super oxidizing compounds. 

Super oxidizers are species with redox potentials greater than that of the 

𝐶𝑒3+/𝐶𝑒4+ redox couple (1.7 V). For example, Fe(III) can be oxidized at the anode 

of an electrochemical cell to form the super oxidizer Fe(VI) as is shown in equation  

69. The Fe(III) to Fe(VI) reaction potential is highly dependent on pH, varying from  

2.20 V (acidic medium) to 0.72 V (basic medium).  

69  𝐹𝑒3+ + 4𝐻2𝑂 ↔ 𝐹𝑒𝑂4
2− + 8𝐻+ + 3𝑒− 

Mediators can also react with anions in the solution such as 𝑆𝑂4
2− to produce 𝑆𝑂4

− 

radicals which are also powerful oxidizers.47  

Figure 59 shows the oxidation profile of the catalysts shown in Figure 59: 

Coulometric Monitoring of the Time Course of Glycerol Oxidation, as Revealed by 

the POM Re-Oxidation Charge, for Various POM Catalysts in 0.5 M Glycerol  when 

exposed to 5 M sulfuric acid. All combinations tested are significantly less reactive 

in the sulfuric acid except for the neat phosphomolybdic acid which stayed roughly 

the same. The iron system was once again the most reactive although far less  

reactive than without the acid. It achieved a 10 hour reduction charge of roughly 

45 coulombs The extended time period of elevated current for the iron and 

vanadium systems is no longer present. This could be due to improved electrode 
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kinetics at lowered pH values. It could also be due to lowered reactivity with the 

glycerol substrate. The titanium dioxide and copper solutions once again provided 

little activity. The vanadium system was the worst of the remaining combinations. 

All systems showed continued reduction across the increased time ranges. This 

indicates that they were not approaching the end of their ability to continue to 

oxidize the glycerol. This is due to their extremely low reactivity. 

In the search for increased reaction rates, hydrochloric acid was also chosen to 

explore due to its ability to form various chloride radicals, similar to the iron and 

sulfuric acid systems.  

 shows the reoxidation profiles of the selected catalyst combinations in 5 M HCl. It 

becomes immediately apparent that all the catalyst combinations offer improved 

performance in the presence of HCl versus neat or with sulfuric acid. Even the 

titanium dioxide and copper systems showed measurable activity in the presence 

of hydrochloric acid. In this case the copper showed the lowest activity and 

vanadium showed the highest. The iron system showed a cutoff at about 60 

coulombs, similar to the 70 where it began to cutoff during the neat experiments. 

Here it reached the cutoff charge in 4 hours instead of 6 hours as in the neat 

system. The phosphomolydbdotungstic acid combination showed greatly 

improved performance in the presence of HCl. It rivaled iron within 6 hours and did 

not show the same type of cutoff as iron, gradually increasing to 82 coulombs in 

10 hours. 
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The vanadium performance in HCl was the most promising with over 112 coulombs 

or .00116 g hydrogen in 10 hours. One possible explanation for this is that 

vanadium can form a variety of highly reactive vanadium chloride complexes in 

acidic conditions.99 

Understanding the Relationship Between Steady State Current 

and Total Charge Passed 

After examining the above chronocoulometry, it was necessary to understand the 

influence of the abrupt decrease in current experienced shortly after each 

reoxidation step occurs. This is shown as the decreasing slope at the beginning of 

each curve in Figure 59: Coulometric Monitoring of the Time Course of Glycerol 

Oxidation, as Revealed by the POM Re-Oxidation Charge, for Various POM 

Catalysts in 0.5 M Glycerol , Figure 59, and  

. The charge to current relationship is shown in equation 70. It is desirable to use 

a simplification of equation 70, shown in equation 71.  

70 𝑞 =  ∫ 𝑖 𝑑𝑡 

71 𝑞 =  𝑖𝑓𝑖𝑛𝑎𝑙 ∗ ∆𝑡 

If this simplification holds, then 𝑖𝑓𝑖𝑛𝑎𝑙 will be shown as a suitable surrogate for R in 

equation 67.  

Figure 61, Figure 62, and Figure 63 show the total charge passed (Y-axis) and the 

predicted charge from the 𝑖𝑓𝑖𝑛𝑎𝑙 (X-Axis), effectively comparing equations 70 and 
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71. The final values lie along the red line when they are equivalent and the 

assumption holds. For reference, 1 electron reduction per Keggin unit corresponds 

to roughly 120 coulombs, 100% SOC as referenced in chapter 4 and 5 

corresponds to 240 coulombs.  

Figure 61 shows the comparison of predicted and recorded Q values for the 4-hour 

time step. That is 2 hours of chemical reduction, followed by 2 hours of concurrent 

chemical reduction and electrochemical oxidation. The simplification inherent in 

equation 71 appears valid for all samples except the FePMo12O40, FePMo12O40 – 

HCl, and VPMo12O40 – HCl. These are the samples showing the highest 𝑖𝑓𝑖𝑛𝑎𝑙. 

Interestingly, none of the samples except for the TiO2-PMo12O40 outperformed the 

Q predicted. 

Figure 62 shows the same comparison of the two Q values as before but with 4 

hours reduction, followed by 2 hours of chemical reduction and electrochemical 

reoxidation. As before, the FePMo12O40, FePMo12O40 – HCl, and VPMo12O40 – HCl 

samples are showing significant differences between the predicted and 

experienced Q values. Additionally, PWMo11O40 – HCl is added to the list of 

samples which are showing this difference.  

Figure 63 further shows this difference at the 8 hour mark, 6 hours of chemical 

reduction, followed by 2 hours of chemical reduction and electrochemical 

oxidation. By this point, the top 6 performing catalyst combinations are showing 

Qpredicted/Qactual far less than 1. Those samples are FePMo12O40, FePMo12O40 – HCl, 

PWMo11O40 – HCl, PMo12O40, VPMo12O40 – HCl, and FePMo12O40 – HCl. It can be 
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reasonably assumed that all of these samples are now showing sufficient degrees 

of reduction to require the use of the full equation 67, rather than the simplified 

version.  

We consider three possible reasons for this consistent movement away from the 

1:1 ratio of Q to Q-predicted with time. The first is the production of inhibiting 

products. Inhibiting products could be glycerol oxidation products or compounds 

formed by the reduction of catalyst complexes. A second is the reduction in the 

concentration of active catalyst species. The concentration of glycerol is not 

changing by more than 2.5% based on coulometry. The other plausible explanation 

is that the electrochemical performance is too low to allow the samples to be fully 

reoxidized before reaching the end of the 2 hour oxidation period. The latter is 

unlikely since all samples returned to their initial color, indicating full reoxidation. 

We believe that inhibiting glycerol oxidation products are likely not the culprit. The 

4, 6, 8 ,and 10 hour steps were all run on the same solution, one after the other. 

The known glycerol oxidation products are not able to be electrochemically 

oxidized on carbon felt, so they would still likely be present after the 

electrooxidation phase. The cell appears to regenerate after each reoxidation step. 

A chemical study of the products in solution could be used to determine the 

presence of any inhibiting products and their activity on carbon felts in the 

presence of POM.  

Liu showed the formation of starch-phosphomolybdic acid complexes(Figure 64).38 

Similar complexes with glycerol or glycerol oxidation products and 
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phosphomolybdic acid may be hindering the reaction progress until they can be 

oxidized electrochemically. The other likely cause is that the quantity of oxidized 

phosphomolybdic acid available for reaction is decreasing as it is reduced. This 

could be due to reduction or due to the formation of the aforementioned glycerol-

POM complexes. They may show similar kinetic response, requiring spectroscopy 

to differentiate. 

Catalyst Selection  

The purpose of Figure 61, Figure 62, and Figure 63 is to assist in the understanding 

and selection of catalyst combinations. An ideal biomass oxidation catalyst has 

both the highest steady state current and the highest Q-transferred. The top 

performing catalysts in one metric are not necessarily the same as the top 

performing in the other metric. The choice of which metric to optimize depends on 

the intended mode of operation.  

One proposed mode of operation is pulsed, or semi-batch in response to electricity 

pricing. The solution reaction occurs in the presence of sunlight or waste heat for 

many hours, then a hydrogen tank is filled quickly when electrical power is cheap. 

This mode of operation favors the catalyst with the highest Q-transferred, namely 

the VPMo12O40 – HCl and VPMo12O40 based systems.  

The continuous process has a higher conversion rate, for this process the higher 

Iss
 and associated Q-predicted is preferable. The iron based systems appear to 

have the highest steady state currents at every time step. Iron has an important 
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weakness as a catalyst: it is known to be unstable and destructive to NAFION 

membranes. For this reason iron systems may require a complexing agent to 

control their activity, such as amino acid complexes.  

Reaction Rate vs Conversion Percentage 

To better understand the reaction rate, Figure 65, Figure 66, and Figure 67 show 

the reaction rate vs electrons transferred. The Y axis represents the number of 

coulombs passed per hour over each time step. The X axis shows the number of 

electrons transferred. Electrons transferred can also be used as a proxy for time 

at a constant rate. When read from left to right, each marker represents the time 

points 4, 6, 8, and 10 hours respectively. This allows a subjective understanding 

of the effect of changing POMOX concentration when selecting a rate equation. A 

more rigorous examination of the kinetics will occur in the next section.  

Figure 65 shows this for the glycerol-catalyst combination with no supporting acid. 

As discussed previously, the iron and vanadium systems show the highest activity. 

The iron data is noisy but no system passes 0.65 electrons per Keggin unit. The 

dependence of iron reaction rate on conversion appears unclear, unless the 

first(4hr) data point is erroneous. Iron experiences a sharp reduction in reaction 

rate around 0.65 electrons per Keggin unit. The phosphomolybdotungstinic acid 

system is slightly more active than the phosphomolybdic acid only system, 

showing both a higher rate and a higher conversion. Only the Vanadium system 

shows an expected dependence of reaction rate on electrons transferred.  
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Figure 66 shows the reaction rate vs electrons transferred for the polyoxometalate-

sulfuric acid systems. All combinations were notably less active when exposed to 

sulfuric acid. Here the highest activity catalyst by a large margin is the iron 

phosphomolybdate combination. The last data point was lost, but it outperforms 

the others in both rate and electrons transferred at every step recorded. The 

vanadium system underperforms in the presence of sulfuric acid. The pure 

phosphomolybdic acid-sulfuric acid combination performs quite well. Curiously, the 

reaction rate appears to increase with conversion. This could be due to sluggish 

electrode kinetics, causing incomplete reoxidation of the reduced catalyst in the 

electrochemical step. Once the number of electrons reaches a high enough level, 

then the reoxidation step may proceed at a higher rate. The vanadium, iron, and 

tungsten containing systems all appear to follow the expected trend of decreasing 

reaction rate with decreasing concentration of oxidized mediator.  

Figure 67 shows the reaction rate vs electrons transferred plot for the hydrochloric 

acid-phosphomolybdic acid solution. Hydrochloric acid shows the highest activity 

of any combination tested. All catalysts showed higher reaction rates than in 

sulfuric acid or water. Vanadium showed the highest activity and a clear linear 

trend of decreasing activity vs electrons transferred. Iron showed the highest initial 

activity, then the activity sharply decreased around 0.5 electrons per Keggin unit. 

The tungsten system exhibited a rapid but more controlled decrease in activity with 

electrons transferred. The pure phosphomolybdic acid system showed no clear 

trend of rate vs electrons transferred.  
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Kinetic Analysis 

The experiment performed was designed such that the only reagent changing 

concentration significantly was the catalyst, the supporting acid and glycerol were 

supplied in large excess. The reaction rate should only depend on the 

concentration of catalyst supplied, rolling the effects of the other reagents into the 

reaction rate 𝑘’. This is intended to enable discovery of the reaction order with 

respect to the catalyst. The experiment can then to be performed at a variety of 

concentrations for the other reagents. The 𝑘’ values can then be plotted against 

concentration to determine k and the reaction orders. 

Reaction order is determined by tracking the change in concentration vs time. A 

zeroth order reaction shows no depenence of reaction rate on concentration, this 

can occur in systems where there is a limiting factor other than the reagent 

concentrations. Catalyzed systems where the catalyst surface is saturated with an 

intermediate or byproduct are the most common example of such zeroth order 

reactions. It is unlikely that this system is zeroth order because there is no solid 

catalyst used. First order reactions show a linear relationship between reagent 

concentration and reaction rate. Vanadium appears to have this relationship in 

water and hydrochloric acid (Figure 65 and Figure 67). Second order reactions 

show reaction rates proportional to the square of the concentration. This commonly 

occurs when two molecuules of the reagent are required to meet in time and space 

for the reaction to occur. From what is known about the mechanism of biomass 

oxidation by phosphomolybdic acid, this is unlikely.  
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Each reaction order will show linear behavior on a different representation of 

concentration and time. The slope of the appropriate linear plot is then used to 

determine the value of k’. The reaction rate laws and the appropriate linear plots 

for different reaction orders are given in Table 8. 

The zeroth order plots are given in appendix Figure 76, Figure 77, and Figure 78. 

The first order plots are given in appendix Figure 79, Figure 80, and Figure 81. The 

second order plots are given in appendix Figure 82, Figure 83, and Figure 84.  

Below is shown the R2 values of the linear fits. This is done to determine which plot 

is most appropriate. When multiple reaction orders are linear, it is assumed that 

the reaction first order. This assumption is made because the reaction mechanism 

suggests first order kinetics.  

Table 8: Reaction Order Equations and Plots 

 Zeroth Order First Order Second Order 

Rate Law −𝑑[𝐴]

𝑑𝑡
= 𝑘 

−𝑑[𝐴]

𝑑𝑡
= 𝑘[𝐴] 

−𝑑[𝐴]

𝑑𝑡
= 𝑘[𝐴]2 

Integrated Rate 

Law 

[𝐴] = [𝐴0] − 𝑘𝑡 [𝐴] = [𝐴0]𝑒−𝑘𝑡 1

[𝐴]
=

1

[𝐴]
+ 𝑘𝑡 

Linear Plot  [A] vs t Ln([A]) vs t 1

[𝐴]
 vs t 
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The reaction is assumed not to be zeroth order. The different rates afforded by the 

different catalyst molecules chosen suggest a significant involvement in the 

reaction, making zeroth order kinetics less likely. It is expected that the extremely 

low reaction rates and corresponding extents of reaction will lead to high degrees 

of linearity. The degree of conversion may be further complicated by the continuing 

presence of reduced POM in solution. The 2/4 electron reduced POM couple is 

used by some similar systems for the oxidation of biomass. This means that the 

concentration of active species does not decrease linearly. The active species 

becomes reduced and forms a second active species, albeit likely one of reduced 

activity relative to the fully oxidized species.  

Figure 68 shows the R2 for the neat solutions, none of the samples show a 

significant change in linearity with increasing the assumed reaction orders. 

Vanadium appears linear in all graphs, with the degree of linearity increasing 

slightly in the 1st order plot. The phosphomolybdic acid and 

phosphomolybdotungstinic acid systems show slighly decreasing linearity with 

increasing assumed reaction order, although the correlations are still above 0.95.  

Figure 69 shows the R2 of the sulfuric acid containing solutions. The pure 

phosphomolybdic acid system appears to be zeroth order, correlation decreases 

with reaction order. The iron system appears to be first order, The correlation is 

extremely low for the zeroth order plot(~0.2) and jumps up to almost 1 for first order 

plot. 
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Figure 70 gives the R2 data for the hydrochloric acid containing systems, the 

highest activity combinations tested. Again, the iron system is clearly first order 

with an extremely low correlation (~0.2) in the zeroth order plot. The vanadium 

system exhibits a slight peak in the first order plot. The other systems can all be 

modeled as zeroth order or first order.  

All of this is to suggest that a k’ value can be calculated assuming the reactions 

are first order. Figure 71 gives the k’ values for all catalyst combinations tested, 

note the units are 10-3 hr-1. These are extremely low reaction rates. Further 

experimentation is still required to transform the k’ values into k values. k values 

can be used with the rate equation to determine the size and concentration of 

reaction chambers necessary for given production rates of hydrogen. 

Further optimization is likely possible, especially with respect to the catalyst POM 

ratios. It may be possible to do away with the expensive POM and use a larger 

ratio of the relatively inexpensive co-catalyst.  

Implications for Scale Up 

Construction of hydrogen fueling stations is the definition of eventual success for 

the ideas presented in this work. The data presented in chapter 5 suggests that 

phosphomolybdic acid can be reliably oxidized in an electrolysis cell. The current 

densities shown will allow for reasonable stack sizes.  

Stack construction is only half the chemical side of the proposed design (shown in 

Figure 72). Determining the composition, size, and concentration of the chemical 
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reduction chamber is essential to understanding scale up feasibility. Hydrogen fuel 

cell vehicles travel roughly 70 miles per kilogram of hydrogen.100 According to the 

Federal Highway Administration, the average American drives roughly 13,500 

miles per year.101 That means the average American vehicle would require 192 

kg/yr or  0.022 kg/hr of hydrogen. The electrolytic production of hydrogen fuel will 

therefore require an average of 590 Amps current at all times per vehicle to be 

fueled. This is irrespective of what is being electrolyzed. This number creates great 

challenges and opportunities. Scaling up to the required size will be difficult and 

costly, but any voltage efficiencies gained will be multiplied over 590 Amps. 

Assuming 1.6 V for water electrolysis and 0.8 V for POM electrolysis the electrical 

demand is 944 Watts and 472 Watts respectively.  

The highest steady state current achieved was 6.9 mA with POM concentration of 

0.025 M, although concentrations of 0.5 M POM are possible. Assuming the 

reaction is first order in everything, 138mA are possible from a 0.5 M POM solution 

with 0.5 M glycerol. Much higher glycerol concentrations are also possible, 

assuming 5M glycerol would yield 1.38 A from a 50 mL reactor. This is based on 

the assumption that the possibly suspect assumption that the reaction is first order 

in glycerol. In this ideal situation, a 56 gallon tank containing $3000 worth of 

molybdenum is required per vehicle. That is based on the molybdenum spot price 

of $15 per kg.49 
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Conclusions and Future Work 

This section is regarded as the most critical for the development of a biomass to 

hydrogen electrolysis system. The previous chapters 4 and 5 have shown that 

the Keggin polyoxometalate phosphomolybdic acid can be used as a suitably 

reversible depolarized anode. The potential is higher than may be desired but still 

provides a significant benefit over water oxidation.  

This chapter has explored relative activities of polyoxometalates and additives, 

but absolute rates have not been studied. The k’ values need to be transformed 

into k values, to allow further generalization of their results. It is also 

recommended to examine the reaction rates as the substrate is consumed; do 

the oxidation products react at the same rate as the glycerol? 

While we do not have this portion solved, the reaction rates are quite low. Iron, 

vanadium, and hydrochloric acid are the most effective promoters studied but 

they do not push the reaction to sufficient rates for commercialization based on 

our analysis above. Previous literature had focused on proving the reaction of 

POM with organics occurred and understanding the mechanism. Most authors 

did not discuss the rate of reaction. Previous researchers had also conducted 

their studies in water or sulfuric acid, which we found to be inferior to hydrochloric 

acid.38,39,52,53 Note also that the iron system may  be significantly more 

economical than one based on molybdenum. We conclude that while the 

electrochemical kinetics may be sufficient to run the POM based fuel cell, unless 

faster reaction rates can be achieved this system is not particularly promising.   
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CHAPTER 7 

Conclusion 
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This thesis focused on the exploration of systems useful for the anode depolarized, 

electrochemical production of hydrogen. Methanol was examined as an initial 

surrogate. The work then shifted to a relatively novel system, polyoxometalate 

mediated oxidation of biomass. To understand the performance of the 

polyoxometalate we broke it down into three areas, intrinsic electrochemical 

properties, zero gap cell performance, and reaction with complex substrate 

molecules.  

The use of methanol as a substrate for the anode depolarized production of 

hydrogen is a complicated proposition. Over 1 V savings can be achieved vs the 

water electrolysis system, resulting in lowered electrical demand. Nonetheless the 

proposed benefit of methanol electrolysis vs DMFCs was mitigation of the 

challenges posed by crossover. Some of the prior literature had indicated a relative 

insensitivity to crossover in electrolysis systems. 32 We have shown a significant 

contribution of cathode polarization to whole cell polarization in methanol 

electrolysis. We have also shown a sensitivity of cathode polarization to methanol 

concentration. Taken together, these two attributes show that methanol crossover 

is contributing to the voltage loss in a methanol electrolyzer. Considering that the 

crossover issue is not significantly improved, it may make more sense to proceed 

with DMFC development over methanol electrolysis since liquid methanol is much 

easier to handle than hydrogen. However, in the context of this effort, the methanol 

tests simply served as a jumping off point to indicate possible issues. 
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When we moved to the phosphomolybdic acid system, we noticed that the intrinsic 

electrochemical properties of phosphomolybdic acid have not been studied since 

many modern electrochemical techniques were developed. Cyclic voltammetry 

was performed to understand the locations of relevant redox peaks and their 

reversibility. Multiple (3) redox peaks were observed in the potential range of 

interest. The first redox peak of phosphomolybdic acid was determined to be a 2 

electron, quasi-reversible reaction in this medium. It was also shown that this peak 

splits into what is believed to be 2, 1 electron reactions as the solution is bulk 

reduced. Whether the cause of this bulk reduction is chemical or electrochemical, 

the separation of the two peaks still occurs. Despite this solution reaction, the 

anolyte solution was shown to be stable over many cycles, a fundamental 

requirement for use in an eventual production system.  

An average diffusion coefficient was calculated for the 2 electron reduced species 

of phosphomolybdic acid as 𝐷 = 2 ∗ 10−6𝑒0.0214𝑇( ℃) 
𝑐𝑚2

𝑆𝑒𝑐
. This diffusion coefficient 

is in the same range as other small molecules such as vanadium yet the solubility 

is only 1/6th that of vanadium, leading to significantly worse mass transport 

characteristics. However, this is partly offset by the two electron reaction and by 

the fact that the POM is being used as a mediator, for which the concentration 

requirements may be less critical than they are in a battery. 

Any program to make use of an aqueous phosphomolybdic acid system is 

expected to require the use of the zero-gap electrochemical cell architecture used 

in redox flow batteries and fuel cells. We have successfully applied the model of 
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zero gap cells, employing a NAFION membrane, hydrophilic, high surface area 

carbon electrodes, and flow-fields to maximize efficiency. We also studied the 

effect of supporting acids on current density and exchange current densities. In the 

unsupported phosphomolybdic acid solutions, electrode kinetics was found to be 

the limiting factor. Unsupported exchange current densities were as low as 1.37 

mA/cm2. The transition to 5 molar HCl supporting electrolyte resulted in 35x 

increase in exchange current densities. The optimum conditions tested were 80 ℃ 

and 5M HCl which showed a 110x increase in exchange current density over the 

unsupported 35 ℃ system. This massive improvement will be beneficial for the 

variety of biomass oxidation systems and time shifted water electrolysis systems 

which have been proposed. Further optimization of operating conditions and 

materials selection are still warranted but it has been shown that the system is 

feasible for anode oxidation in a flow battery cell.  

Most authors describing these systems have noted a lack of crossover of POM 

species when using a NAFION membrane. They used UV-Vis or visual inspection 

to determine this. Those authors were using H-cells or different operating 

conditions. We noted visible crossover during electrochemical cell testing and 

decided to use an electrochemical detector to track the crossover of these species. 

The diffusion coefficient of phosphomolybdic acid in NAFION is on the same order 

as vanadium (D=10-7 
𝑐𝑚2

𝑆𝑒𝑐
) which is known to have significant crossover issues. In 

this case, the lower concentration will be of substantial benefit in operation. A 
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better understanding of the issues related to POM crossover will be needed as this 

system becomes more developed.  

The final piece of the puzzle is obtaining sufficient reaction rates with a suitable 

renewable substrate. Glycerol was chosen for this study as a relatively simple 

molecule which is available at the appropriate scale and price. Researchers had 

shown that molecules with similar characteristics may be oxidized by POM based 

compounds. To the best of our knowledge, no researchers have studied aqueous 

oxidation of glycerol by POM compounds. 

 We tested 5 catalyst combinations, dissolved in water, 5 M H2SO4 and 5 M HCl 

for their ability to oxidize glycerol. The iron and vanadium complexes consistently 

showed the highest reaction rates, as did the HCl electrolyte. The highest 

performing combination was V-PMo12O40 supported in 5 M HCl. The most 

optimistic projections require a 211 L tank with 105.5 mol V-PMo12O40, to fuel an 

average vehicle. That is roughly $3000 worth of molybdenum, $300 of vanadium 

and a negligible amount of phosphorus. While this adds significant space and 

capital cost to a hydrogen production system, the greatly decreased electrical 

requirements may make this system worthy of further investigation. These 

projections rely on the assumption of first order kinetics in the glycerol oxidation 

process, an assumption which is only weakly supported at this time. 

Future Direction 

As an early stage exploration of phosphomolybdic acid based electrolyzers, this 

work leaves much to future researchers. We have largely established the 
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electrochemical viability of this system. The key issue remaining to determining 

viability is the oxidation rates of organic substrates. The reaction rates and k’ 

values calculated are based on an assumed reaction order. K’ values are 

transformed into k values by repeating the experiment across a variety of 

concentrations for the unchanging constituents. Product characterization should 

also be performed on the highest activity combinations to better understand the 

reaction and to track the reaction progress through the depletion of the substrate.  

A large number of variations are possible to increase reaction rates in this type of 

system. Keggin ion based ionic liquids, additional co-catalysts, different or more 

concentrated acids, different substrates, ultrasonic stirring, and solar activation are 

all likely methods to further increase reaction rates.  

While cell design is already sufficient for basic operation, higher surface area 

electrodes and thinner membranes are expected to further improve cell 

performance. Further understanding the relationship between supporting 

electrolytes and kinetics will also be useful to optimize cell performance. From a 

cost perspective, the option of uncharged dialysis or porous membranes instead 

of NAFION may be worthy of investigation. These membranes work on a size 

exclusion principle rather than a charge exclusion principle but 

phosphomolybdates are large molecules so this may be viable. Porous 

membranes have been applied successfully in vanadium systems, for example. 

Crossover will also need to be understood in both systems to allow for continued 
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performance over time. One method which was anecdotally successful in 

mitigation of crossover was periodic flushing of the cathode with DI water. 
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Figure 1: Performance of a PEM Water Electrolyzer With State of the Art Anodes 

at 80 ℃ (Reproduced from Reference 21) 
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Figure 2: Keggin Ion 
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Figure 3: Cyclic Voltammetry (CV) of 0.5 M Phosphomolybdic Acid on a Pt 

Electrode. (Reproduced from Reference 42) 
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Figure 4:  The system proposed by Bloor and Cronin whereby water is oxidized 

at the photoanode and the resulting hydrogen is stored in the polyoxometalate 

cathode. The polyoxometalate is then reoxidized electrochemically after the 

oxygen is no longer present. (Reproduced from Reference 43) 
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Figure 5: Table of Selected Redox Potentials(Reproduced from Reference 54) 
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Figure 6: Production of Glycerol (Reproduced from Reference 57) 
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Figure 7: CV Potential Waveform (Reproduced from Reference 64) 
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Figure 8: CV of a Single Electron Reduction-Oxidation (Reproduced from 

Reference 64) 
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Figure 9: Square Wave Voltammetry Potential and Current Waveform 

(Reproduced from Reference 65) 
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Figure 10: Generalized Polarization Curve (Reproduced from Reference 66)
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Figure 11: Nyquist Plot for a Fuel Cell 
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Figure 12: Hydrogen/Hydrogen Symmetric Cell, Anode: Pt/Ru 5.3 mg/cm2, 

Cathode: Pt 5.4 mg/cm2, Anode/Cathode Gas: Hydrogen, Flow-rate: 100 sccm, 

Back pressure: 15 PSI, NAFION 117 Membrane, 80 ºC, Curves are not IR 

Corrected, ASR 0.2 Ohm-cm2 
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Figure 13: Effect of IR Compensation: Fuel 8M Methanol, Anode: Pt/Ru 2.9 

mg/cm2, Cathode: Pt 2.9 mg/cm2, Cathode Gas: Argon, Flow-rate: 100 sccm, 

Back pressure: 15 PSI, NAFION 117 Membrane, Curves are IR Corrected, 60 ºC, 

  



185 
 

 

 

Figure 14: Fuel: 4 Molar MeOH, Anode: Pt/Ru 4.6 mg/cm2, Cathode: Pt 4.5 

mg/cm2, Cathode Gas: Argon, Flow-rate: 100 sccm, Back pressure: 15 PSI, 

Temperature: 80 ºC, NAFION 117 Membrane, Curves are IR Corrected 
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Figure 15: Fuel: MeOH, Anode: Pt/Ru 4.6 mg/cm2, Cathode: Pt 4.5 mg/cm2, 

Cathode Gas: Argon, Flow-rate: 100 sccm, Back Pressure: 15 PSI, Temperature: 

100 ºC, NAFION 117 Membrane, Curves are IR Corrected 
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Figure 16: Fuel: 4 M Methanol, Anode: Pt/Ru 2.9 mg/cm2, Cathode: Pt 2.9 

mg/cm2, Cathode Gas: Argon, Flow-rate: 100 sccm, Back pressure: 15 PSI, 

NAFION 117 Membrane, Curves are IR Corrected, ASR < 0.2 Ohm-cm2 
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Figure 17: H-cell used for diffusion experiments with NAFION separator. 
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Figure 18: A: Cyclic Voltammetry of Phosphomolybdic Acid on Glassy Carbon. 

0.5 M H3PMo12O40, We: 3mm GC disk, Ce: Pt wire, Ref: Ag/AgCl (0.205 V vs 

NHE), T = 25 ℃; B: Scan Rate vs 𝑬𝒑
𝑶𝑿-𝑬𝒑

𝑹𝑬𝑫 for Peak 1; C: Scan Rate vs Peak 

Current for Peak 1 
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Figure 19: Cyclic Voltammetry of Phosphomolybdic Acid on Platinum. 0.5 M 

H3PMo12O40, We: 1.6 mm Pt disk, Ce: Pt wire, Ref: Ag/AgCl (0.205 V vs NHE) 
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Figure 20: Cyclic Voltammetry of Phosphomolybdic Acid Bulk Reduced One 

Electron. 0.25 M H3PMo12O40/0.25 M H5PMo12O40, We: 3mm GC disk, Ce: Pt 

wire, Ref: Ag/AgCl (0.205 V vs NHE) 
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Figure 21: Cyclic Voltammetry of Phosphomolybdic Acid Bulk Reduced Two 

Electrons. 0.5 M H5PMo12O40, We: 3mm GC disk, Ce: Pt wire, Ref: Ag/AgCl 

(0.205 V vs NHE) 
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Figure 22: Repeated CV of Phosphomolybdic Acid During Bulk Reduction by 

Glucose. 0.01 M H3PMo12O40, 1M HCl, We: 1.6mm Pt disk, Ce: Pt wire, Ref: 

Ag/AgCl (0.205 V vs NHE), 90℃, ν = 25 mV/sec 
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Figure 23: Repeated CV of Phosphomolybdic Acid. 0.01 M H3PMo12O40, 1M HCl, 

We: 1.6mm Pt disk, Ce: Pt wire, Ref: Ag/AgCl (0.205 V vs NHE), 90℃, ν = 25 

mV/sec 
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Figure 24: 2 Electron Potentiostatic Coulometry, 0.015 M H3PMo12O40 in 1 M HCl. 

An H-Cell with a NAFION divider was used. We: Pt mesh, Ce: Pt wire in 0.5 M 

0.5 M H2SO4, Ref: Ag/AgCl. The voltage window was 0.35 to 0.8 V Vs Ag/AgCl 
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Figure 25: Thin layer voltammogram of phosphomolybdic acid supported in 

hydrochloric acid. This scan was performed in a flow battery type cell with the 

pump stopped and a hydrogen-Pt cathode. ν:10 mV/Sec, We: 5 cm2
 SGL 35AA, 

Ce: H2 on Pt, Anolyte: 0.1 M H3PMo12O40 in 1M HCl, T: 30 ℃ 
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Figure 26: Charge Transferred in Thin layer voltammogram of phosphomolybdic 

acid supported in hydrochloric acid. This scan was performed in a flow battery 

type cell with the pump stopped and a hydrogen-Pt cathode. ν:10 mV/Sec, We: 5 

cm2
 SGL 35AA, Ce: H2 on Pt, Anolyte: 0.1 M H3PMo12O40 in 1M HCl, T: 30 ℃ 
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Figure 27: Reversible Component of Charge Transfer in a Thin layer 

voltammogram of phosphomolybdic acid supported in hydrochloric acid. This 

scan was performed in a flow battery type cell with the pump stopped and a 

hydrogen-Pt cathode. ν:10 mV/Sec, We: 5 cm2
 SGL 35AA, Ce: H2 on Pt, Anolyte: 

0.1 M H3PMo12O40 in 1M HCl, T: 30 ℃ 
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Figure 28: Kinetic Hysteresis in a Thin layer voltammogram of phosphomolybdic 

acid supported in hydrochloric acid. This scan was performed in a flow battery 

type cell with the pump stopped and a hydrogen-Pt cathode. ν:10 mV/Sec, We: 5 

cm2
 SGL 35AA, Ce: H2 on Pt, Anolyte: 0.1 M H3PMo12O40 in 1M HCl, T: 30 ℃ 
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Figure 29: Impedance Contribution to the Hysteresis in a Thin layer 

voltammogram of phosphomolybdic acid supported in hydrochloric acid. This 

scan was performed in a flow battery type cell with the pump stopped and a 

hydrogen-Pt cathode. ν:10 mV/Sec, We: 5 cm2
 SGL 35AA, Ce: H2 on Pt, Anolyte: 

0.1 M H3PMo12O40 in 1M HCl, T: 30 ℃ 
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Figure 30: Effect of Rotation Rate on Rotating Disk Electrode Voltammograms. 

0.2 M H3PMo12O40/ 0.2 M H5PMo12O40, ν=20 mV/sec, We: 5mm GC disk, Ce: Pt 

mesh, Ref Ag/AgCl (0.205 V vs NHE), T=25℃, Levich Plot at 1.5 V vs Ag/AgCl 
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Figure 31: Levich Plot of Phosphomolybdic Acid, V = 1.5 V vs Ag/AgCl, We: GC 

disk, Ce: Pt mesh, REF: Ag/AgCl (0.205 V vs NHE) 
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Figure 32: Effect of H3PMo12O40/H5PMo12O40  Ratio on the Levich Slope 

 

  



204 
 

 

Figure 33: 0.2 M H3PMo12O40/ 0.2 M H5PMo12O40, ν=20 mV/sec, We: 5mm GC 

disk, Ce: Pt mesh, Ref Ag/AgCl (0.205 V vs NHE), ω: 2500 RPM; 
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Figure 34: Effect of Overpotential on the Koutecky-Levich Slope. The data was 

extracted from Figure 30 
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Figure 35: Kinetic current extracted from Figure 30 
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Figure 36: The voltammogram of several different states of charge. 0.1 M 

Phosphomolybdic Acid, NAFION 117 Membrane, 2-layer WOS 1002 Anode 

GDL. Curves are IR Corrected ASR = 1.5 Ohm-cm2 
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Figure 37: The voltammogram of several different states of charge. 0.1 M 

Phosphomolybdic Acid, NAFION 117 Membrane, 2-layer WOS 1002 Anode 

GDL. No IR correction, ASR = 1.5 Ohm-cm2 
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Figure 38: Linear Representation of Overpotential vs SOC in the Kinetic Region 
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Figure 39: The Tafel plot of several different states of charge. 0.1 M 

Phosphomolybdic Acid, NAFION 117 Membrane, 2-layer WOS 1002 Anode 

GDL. Curves are IR Corrected ASR = 1.5 Ohm-cm2 
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Figure 40: Flow-rates and Supporting Acids, 0.25 M Phosphomolybdic Acid, 

NAFION 117 Membrane, 2-layer WOS 1002 Anode GDL. 
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Figure 41: Utilization Normalized Polarization Curves, 0.25 M Phosphomolybdic 

Acid, , NAFION 117 Membrane, 2-layer WOS 1002 Anode GDL. 
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Figure 42: Effect of Temperature on Polarization Curves of 0.25 M 

Phosphomolybdic Acid, NAFION 117 Membrane, 2-layer WOS 1002 Anode 

GDL. 
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Figure 43: Effect of Temperature on Oxidation Polarization Curves of Neat 

Phosphomolybdic Acid, NAFION 117 Membrane, 2-layer WOS 1002 Anode 

GDL. 
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Figure 44: Effect of Temperature on Oxidation Polarization Curves of 0.25 M 

Phosphomolybdic Acid in 1M HCl, NAFION 117 Membrane, 2-layer WOS 1002 

Anode GDL. 
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Figure 45: Effect of Temperature on Oxidation Polarization curves of 0.25 M 

Phosphomolybdic Acid in 5M HCl, NAFION 117 Membrane, 2-layer WOS 1002 

Anode GDL. 
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Figure 46: Exchange Current Densities Dependence on Temperature and 

Supporting Acid 
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Figure 47: ASR vs Temperature and HCl Concentration 
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Figure 48: SEM Images of WOS 1002 Carbon Cloth A (50x), B (200x), C (250x 

Transverse), and Carbon Paper D (50x), E (2c00x), F (250x Transverse) 
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Figure 49: CE Tech WOS1002 Carbon Cloth Vs SGL 35AA Carbon Paper, Step 

Time 30 Seconds 
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Figure 50: Anodic Chronopotentiometry 
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Figure 51: Cathodic Chronopotentiometry 
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Figure 52: Calibration Curve Square Wave Voltammetry of Phosphomolybdic 

Acid in Phosphoric Acid. We: Pt disk, Ce: Pt wire, Ref: Ag/AgCl. E_Step: 10 

mV,Pulse Height:25 mV, τ:100ms 
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Figure 53: Calibration Curve of Peak Heights to Concentration 
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Figure 54: Phosphomolybdic Acid Crossover vs Time 
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Figure 55: Effect of chemical kinetics on the cyclic voltammetry of the catalytic 

mechanism at a macroelectrode (Reproduced from Reference 63) 
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Figure 56: Glucose Cyclic Voltammetry,ν=100 mV/sec, 0.01 M H3PMo12O40, 1 M 

HCl, 1 M glucose T= 60 ℃, We: 3mm Pt disk, Ce: Pt wire, Ref: Ag/AgCl. 
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Figure 57: Glucose Cyclic Voltammetry. ν=1 mV/sec, 0.01 M H3PMo12O40, 1 M 

HCl, 1 M glucose T= 60 ℃, We: 3mm Pt disk, Ce: Pt wire, Ref: Ag/AgCl. 
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Figure 58: Glucose Cyclic Voltammetry. ν=0.1 mV/sec, 0.01 M H3PMo12O40, 1 M 

HCl, 1 M glucose T= 60 ℃, We: 3mm Pt disk, Ce: Pt wire, Ref: Ag/AgCl. 
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Figure 59: Coulometric Monitoring of the Time Course of Glycerol Oxidation, as 

Revealed by the POM Re-Oxidation Charge, for Various POM Catalysts in 0.5 M 

Glycerol  
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Figure 59: Coulometric Monitoring of the Time Course of Glycerol Oxidation, as 

Revealed by the POM Re-Oxidation Charge, for Various POM Catalysts in 0.5 M 

Glycerol + 5M H2SO4 
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Figure 60: Coulometric Monitoring of the Time Course of Glycerol Oxidation, as 

Revealed by the POM Re-Oxidation Charge, for Various POM Catalysts in 0.5 M 

Glycerol + 5M HCl 
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Figure 61: 4 Hour, Q Measured vs Q Predicted 
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Figure 62: 6 Hour, Q Measured vs Q Predicted 
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Figure 63: 8 Hour, Q Measured vs Q Predicted 
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Figure 64: Formation of Starch-POM Complexes(Reproduced from Reference 

38) 
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Figure 65: Reaction Rate vs Electrons Transferred, Neat Solution 
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Figure 66: Reaction Rate vs Electrons Transferred, H2SO4 Solution 
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Figure 67: Reaction Rate vs Electrons Transferred, HCl Solution 
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Figure 68: R2 for Linear Fit vs Reaction Order Plot-Neat 
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Figure 69: R2 for Linear Fit vs Reaction Order Plot-H2SO4 
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Figure 70: R2 for Linear Fit vs Reaction Order Plot-HCl 

 

  



243 
 

 

Figure 71: k’ Values for all solvent and catalyst combinations 
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Figure 72: Schematic of Proposed System Design 
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Figure 73: Koutecky-Levich Plot, Rotating Disk Electrode, 0.2 M H3PMo12O40/ 0.2 

M H5PMo12O40, ν=20 mV/sec, We: 5mm GC disk, Ce: Pt mesh, Ref Ag/AgCl 

(0.205 V vs NHE), T=25℃, Levich Plot at 1.5 V vs Ag/AgCl 
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Figure 74: Koutecky-Levich Plot, Rotating Disk Electrode, 0.2 M H3PMo12O40/ 

0.2 M H5PMo12O40, ν=20 mV/sec, We: 5mm GC disk, Ce: Pt mesh, Ref 

Ag/AgCl (0.205 V vs NHE), T=25℃, Levich Plot at 1.5 V vs Ag/AgCl 

 

Figure 75: 𝒌𝒉 vs Overpotential 
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Table 9: Kinetic Parameters Dependence on Temperature and Acid 

Acid(M) Temp ℃ mA/mV Rct (V/A) i0 (mA) 

ASR (Ohm-

cm2) 

0.00 35.00 52.87 19.33 1.37 2.10 

0.00 50.00 89.21 11.46 2.43 2.60 

0.00 65.00 135.29 7.56 3.85 2.50 

0.00 80.00 181.64 5.63 5.41 2.25 

1.00 35.00 463.25 2.21 12.03 0.65 

1.00 50.00 1201.68 0.85 32.72 0.50 

1.00 65.00 1511.46 0.68 43.07 0.45 

1.00 80.00 1541.90 0.66 45.89 0.40 

5.00 35.00 1300.55 0.79 33.77 0.45 

5.00 50.00 1474.99 0.69 40.16 0.60 

5.00 65.00 2375.21 0.43 67.68 0.50 

5.00 80.00 5141.63 0.20 153.01 0.40 
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Figure 76: Zeroth Order POM Concentration vs Time-Neat 

 

 

Figure 77: Zeroth Order POM Concentration vs Time-HCl 
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Figure 78: Zeroth Order POM Concentration vs Time-H2SO4 

 

Figure 79: First Order POM Concentration vs Time-Neat 
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Figure 80: First Order POM Concentration vs Time-H2SO4 

 

Figure 81: First Order POM Concentration vs Time-HCl 



251 
 

 

Figure 82: Second Order POM Concentration vs Time-Neat 

 

Figure 83: Second Order POM Concentration vs Time-H2SO4 
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Figure 84: Second Order POM Concentration vs Time-HCl 
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Figure 85: UV-VIS Absorption Spectra of V- Phosphomolybdic Acid in Various 

Media 

 

Figure 86: UV-VIS Absorption Spectra of Cu-Phosphomolybdic Acid in Various 

Media 
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Figure 87: UV-VIS Absorption Spectra of Phosphomolybdic Acid in Various 

Media 

 

Figure 88: UV-VIS Absorption Spectra of Fe-Phosphomolybdic Acid in Various 

Media 
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Figure 89: UV-VIS Absorption Spectra of Phosphomolydbotunsgtinic Acid in 

Various Media 

 

Figure 90: Square Wave Voltammetry of 0.01 M H3PMo12O40 . We: Pt disk, Ce: 

Pt wire, Ref: Ag/AgCl. E_Step: 10 mV,Pulse Height:25 mV, τ:100ms 
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Figure 91: Square Wave Voltammetry of  0.01 M  Fe-H3PMo12O40 . We: Pt disk, 

Ce: Pt wire, Ref: Ag/AgCl. E_Step: 10 mV,Pulse Height:25 mV, τ:100ms 

 

Figure 92: Square Wave Voltammetry of  0.01 M H3PWMo11O40 . We: Pt disk, 

Ce: Pt wire, Ref: Ag/AgCl. E_Step: 10 mV,Pulse Height:25 mV, τ:100ms 
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Figure 93: Square Wave Voltammetry of 0.01 M  VOSO4-H3PMo12O40 . We: Pt 

disk, Ce: Pt wire, Ref: Ag/AgCl. E_Step: 10 mV,Pulse Height:25 mV, τ:100ms 

 

Figure 94: Square Wave Voltammetry of 0.01 M CuSO4-H3PMo12O40 . We: Pt 

disk, Ce: Pt wire, Ref: Ag/AgCl. E_Step: 10 mV,Pulse Height:25 mV, τ:100ms 
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Figure 95: Square Wave Voltammetry of  0.01 M TiO2-H3PMo12O40 . We: Pt disk, 

Ce: Pt wire, Ref: Ag/AgCl. E_Step: 10 mV,Pulse Height:25 mV, τ:100ms 
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