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Abstract

The iron pnictide and iron chalchogenide superconductors are studied numerically using
classical Monte Carlo techniques to reproduce experimental data and make predictions about
the nature of the relevant interactions. The focus will be using Spin-Fermion models in
a classical approximation to explore the phase diagram and calculate important physical

properties of these materials over a wide range of temperatures.
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List of Figures

1.1 (Top) The lattice structure and chemical formula for three common cop-
per based superconductors characterized by CuO, layers. This figure is
reproduced from Ref. [6].(Bottom) The lattice structure for the iron based
superconductors and their superconducting transition temperatures T.. The
left three materials exemplify the 1111, 122 and 111 members of the pnictide
family. The green circles are As atoms (pnictides) and the blue are Fe atoms.
These form the FeAs layers that characterize these materials. The compound
on the far right does not contain As and is a representative of the chalcogenides
where here the green circles are Se/Te. This figure is reproduced from Ref. [7] 3

1.2 (Left) A schematic phase diagram for the cuprates. The blue areas denote the
checkerboard AFM phase while the red areas indicate the superconducting
phase. This figure is reproduced from Ref. [10]. (Right) Schematic phase
diagram for 122 pnictides. Ort/AFM denotes the phase with collinear
magnetic order and orthorhombic lattice distortion, SC the superconducting
phase,and PM/Tet the paramagnetic and tetragonal phase. In addition, a
nematic phase appears upon doping. Tetragonal symmetry is only broken
below the nematic/orthorhombic transition line, but nematic fluctuations

remain at higher temperatures. This figure is reproduced from Ref. [11].. . . 4
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1.3

1.4

1.5

1.6

1.7

(a) The copper oxide plane in the cuprate superconductors showing the
@:(Wﬂr), checkerboard AFM order in the Cu spins. The red circles are oxygen
ions and are co-planar with the blue Cu ions. (b) The pnictide FeAs plane.
The blue circles are Fe ions and the red circles are As ions where the darker
(lighter) red circles are the As ions above (below) the Fe plane. The collinear
(m,0) AFM order is indicated in the Fe spins. This figure is reproduced from
Ref. [12] . . o o
An illustration of the five d orbitals where the valence electrons in Fe and Cu
reside. The orbitals can be separated into two groups: te, and e,. For Cu the

ey orbitals, particularly d,- contain the most weight at the FS while for

—y?,
Fe the ty, orbitals are the ones that form the F'S. This figure is reproduced
from Ref. [14] . . . . . . o o
(Left) The LayCuOy4 band structure from LDA calculations. The band that
crosses the Fermi surface has mostly Cu 3d,2_,» character. This figure is
reproduced from Ref. [15]. (Right) Band structure of LaFeAsO from First
Principles calculations. The red and green bands have mainly Fe 3d and
pnictogen/oxygen p characters, respectively. This figure is reproduced from
Ref. [16] . . o o o
(Left) Fermi Surface for the cuprates calculated in a one band Hubbard
model. This figure is reproduced from Ref. [17]. (Right) Fermi Surface for
the pnictides calculated in a five orbital tight-binding model. This figure is
reproduced from Ref. [18]. The blue, red, and green represents the dyy, , dy.,
and d,, orbitals respectively. . . . ... ... .00
(Left) An illustration of four examples of proposed pairing symmetries for
the iron pnictides. The colors (green/orange) represent the sign (+/-) of
the superconducting gap function. This figure is reproduced from Ref. [23].
(Right) An illustration of the d-wave pairing symmetry for the cuprates where
the red/blue color represents the sign of the superconducting gap function.

This figure is reproduced from Ref. [24]. . . . . .. ... ...



1.8

1.9

2.1

Schematic representation of the magnetically driven nematic transition in real
space. (a) The transition from the disordered phase to the AFM phase breaks
an O(3) x Zy symmetry. The O(3) symmetry encompasses the rotations in
spin space while the Z (Ising) symmetry involves the two degenerate ground
states of magnetic stripes with parallel spins along the y axis (ordering vector
Q1 = (7,0)) or along the x axis (ordering vector Q3 = (0,7)). (b) The O(3)
X Zs symmetry can be broken in two steps. First, only the Z; symmetry is
broken, but the system is still paramagnetic (indicated by the gray double
arrow on top of the spins). In the second step, the O(3) symmetry is broken
and the system acquires long-range magnetic order. This figure is reproduced
from Ref. [35]. . . . . .
(Top-Left) Schematic description of the tetragonal to monoclinic distortion
in FeTe where the Fe-Fe distance along the diagonals are elongated in one
direction and shortened in the other. The red circles indicate Te, Fe in the
tetragonal structure is indicated by light-gray circles and dark-gray circles
denote the position of the Fe in the monoclinic phase. (Top-Right) Bicollinear
Magnetic order. (Bottom) The phase diagram temperature (K) vs Se doping
for FeTe;_,Se,. This figure is reproduced from Ref. [42]. . . . ... ... ..

Example of the B, representation of the Dy, group. . . . ... ... .. ..
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2.2

2.3

24

Monte Carlo spin-nematic order parameter, at ggs=0.16 and ;\6620.12. (a) W
vs. T and €g6, measured at a fixed lattice distortion egg for each temperature
(restricted MC). Shown are the T* (see text) and Ts (~ Ty) temperatures.
Data are for an 8x8 cluster with TCA4+TBC (PBC 8x8 clusters with ED
give similar results). Red points are the equilibrium values using unrestricted
MC with ED and PBC 8x8 clusters. (b) U vs. g at fixed temperatures,
illustrating their nearly linear relation in unrestricted MC (red), and also the
linear slopes of the restricted MC curves (green/blue) close to T’s. Results are
obtained with ED/PBC 8x8 clusters. Note that the number of green/blue
points vastly outnumbers the number of red points, highlighting how much
more demanding this effort has been than in Ref. [79].. . . . . ... ... ..
(A) This figure demonstrates the relative change in resistivity anisotropy as
a function of applied strain. These results are for the parent compound
BaFesAsy. (B) This figure demonstrates the temperature dependence of the
nematic response which is the derivative of the results from figure (A) but
dn

across a wider range of temperatures. The red line is the fit to equation p

= ﬁw + X0 that is obtained form a Curie-Weiss formulism. Figures
(A) and (B) are reproduced from Ref. [67]. . . .. .. ... ... ...
Nematic susceptibility xs of the spin-fermion model vs. temperature T
(circles, triangles, and squares) obtained from Fig. 2.2(b), at the realistic
couplings §es=0.16 and Age=0.12 (a=ges/ap). Two MC techniques were
employed: “PBC L=8" is the standard MC method with ED in the fermions
at every step, using 8x8 clusters with PBC. “T'CA L=8" and “TCA L=16"
correspond to the TCA4+TBC method on Lx L clusters. Size effects are small.
Also shown are two GL fits: the light blue (thick) line displays the Curie-Weiss

g6
ao(T—T%) "

equation Yy, & indicating a divergence at a lower temperature 7™,
characteristic of the electronic sector alone. At T < Ty, the lattice follows the
electronic sector. The black (thin) line is Eq.(B.29) with the 3TsW¥? correction

(see text) [91]. . . . o
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2.5

2.6

2.7

2.8

Spin magnetic susceptibility (open circles), lattice distortion susceptibility
(filled circles), spin-nematic order parameter (filled squares), orbital order
(open squares), and lattice distortion (triangles) vs T at couplings ggs = 0.16
and )\;56 = 0.12 . Ty and Ts are indicated by the dashed lines. This is a
reproduction from Ref. [79]. . . . . .. .. oL
This figure shows the temperature dependence of the orbital nematic suscep-
tibility for two iron pnictide compounds. The lines are for the Curie-Weiss fit
in the tetragonal phase. These susceptibilities were calculated using Raman
scattering experiments to measure the orbital anisotropy for a wide range of
temperatures. This figure is reproduced from Ref. [92]. . . .. ... ... ..
(a) The spin and (b) orbital nematic susceptibility obtained from Monte Carlo
simulations for & = 0.0011, ggg = 0.16, and Xss = 0.12. The continuous curves
in light blue are the fittings obtained from the numerically guided Ginzburg-
Landau approach. . . . . . . . . ...
(a) The MC structural transition temperature Tg vs. the orbital-lattice
coupling Ags, at fixed ggg = 0.16. The continuous line is the fit in Eq.(2.5),
from the GL equations. (b) Spin structure factor S(k) vs. temperature T
for the two magnetic wavevectors of relevance. Results were obtained via
MC simulations on PBC 8x8 clusters. Tpg is the pseudogap temperature
[Fig. 2.8(c)]. (c) Density of states N(w) (symmetrized) from unrestricted MC
simulations on 8x8 clusters (gg=0.16; 5\66:0.12), at various temperatures.
Results at Ts=158 K are in red. Tpg~174 K (blue) is the crossover
temperature where the pseudogap opens at the Fermi level (i.e. at w-p=0.0)

upon cooling. . . . ..o
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3.1

3.2

3.3

3.4

Internal structure of dopant sites. Sketch shows the location of a dopant where
the magnitude of the localized spin, Si, is reduced from the original value S.
In addition, the neighboring localized spins are also assumed to be affected
by the presence of the dopant. The four immediate nearest-neighbors have a
new localized spin magnitude Sxy, while the four next nearest-neighbors have
a new localized spin magnitude Synn, such that S; < Syn < Syaan < S (S
is the undoped localized spin magnitude, assumed to be 1 in this publication
unless otherwise stated). . . . . . ... .. Lo
Clean limit and effect of Co doping. The clean limit results (open and solid
red points) indicate that Ts = T and both are approximately constant in
the range studied. For Co doping, the Néel temperature Ty (open circles and
black dashed line) and the structural transition temperature Ts (filled circles
and black solid line) vs. the percentage of impurities z are shown. The on-site
disorder is I1 = —0.1 and the off-diagonal disorder is determined by S; = 0,
Sny = S/4, and Syny = S/2. For both sets of curves, i.e. with and without
quenched disorder, the density of doped electrons equals z to simulate Co
doping. The cluster used has a size 64 x 64. . . . . . . .. ... .. ... ..
The magnetic susceptibility (open black symbols) and the lattice susceptibility
(filled red symbols) vs. temperature. The sharp peaks indicate the Néel
temperature Ty and the structural transition temperature T for the case of

5% Co-doping. The on-site disorder is I; = —0.1 and the off-diagonal disorder

is defined by S; = 0, Syy = 5/4, and Syny = S/2. The cluster used is 64 x 64. 43

Real-space spin-spin correlation functions vs. distance on a 64 x 64 lattice;
(a) corresponds to T" = 120 K (7" > Ts) in the paramagnetic regime, (b) to
T =95K (Tn < T < Ts) in the nematic state, and (c) to T =80 K (7' < Ty)
in the long-range ordered magnetic state. The AFM correlations along x are
indicated with solid circles while the FM correlations along y are denoted with
open circles. The results are for 5% Co-doping with off-diagonal disorder set

by SI = O, SNN = 5/47 and SNNN = 8/2 ....................
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3.5 Contrast of effects of Cu and Co doping. The Néel temperatures Ty (dashed
lines) and the structural transition temperatures T (solid lines) for Co doping
(black open and solid circles) and for Cu doping (blue open and solid triangles)
are shown. Results are presented first (a) vs. the impurity density = and
second (b) vs. the added electronic density n. The off-diagonal disorder is set
at S; =0, Sxy = 5/4, and Syny = S/2. The cluster size is 64 x 64. . . . . . 46

3.6 (a) Temperature (K) vs number of dopants (x) phase diagrams for Ba(Fe;_,TM,)2Asy
where TM=Co, Ni, Cu, Co/Cu. (b) The same as figure (a) however instead
of the x-axis being the added dopants (x), the x-axis is the number of added
electrons per Fe/TM. This figure is reproduced from Ref. [49]. . . . . . . .. 47

3.7 Dependence of results with impurity characteristics. The Néel transition
temperature Ty (dashed lines) and the structural transition temperature Tg
(solid lines) vs. the percentage of impurities = for different settings of the
off-diagonal disorder. Case I corresponds to the clean limit with no impurity
sites (red squares). Case II has S1=S5/2 and Syy=Snnn=95 untouched (blue
triangles). This case may be sufficient for Ru doping, which is magnetic. Case
IIT has S;=0 and Syn=Sxnn=9 untouched (green diamonds). Case IV has
S1=S5/2, Sxn=0.7S5, and Sxynn=0.9S (purple upside-down triangles). Finally,

Case V has S1=0, Syn=5/4, and Sxnn=95/2 (black circles). Case V appears
to be the best to describe experiments for non-magnetic doping. The density
of doped electrons equals = as in Co doping. In all cases the on-site disorder
potential is kept fixed at I; = —0.1. The lattice size is 64 x 64. . . . . . . .. 48

3.8 Phase diagram of Ba(Fe;,Ru,)2Asy showing the structural-magnetic transi-
tion Ts_p (blue) and critical temperatures T, (red) versus Ru content xg,.
Values of T, are taken at the midpoint of superconducting transitions. This

figure is a reproduction from Ref [102]. . . . . . ... ... 49
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3.9

3.10

4.1

Magnetic and nematic order in the paramagnetic regime. The results are for
5% Co-doping at T = 120 K (T' > Ts) and using a 64 x 64 lattice. (a)
The magnetic structure factor S(k), showing that the wavevectors (,0) and
(0,7) have similar intensity. (b) Monte Carlo snapshot of the spin-nematic
order parameter with approximately the same amount of positive (green) and
negative (orange) clusters. The impurity sites are indicated by black dots.

Magnetic and nematic order in the nematic regime. The results are for 5%
Co-doping at 7' = 95 K (Ty < T < Ts) and using a 64 x 64 lattice. (a)
The magnetic structure factor S(k) is shown, with clear dominance of the
(m,0) state. (b) Monte Carlo snapshot of the spin-nematic order parameter.
Impurity sites are indicated by black dots. A positive nematic order (green)
dominates, but there are still small pockets of negative order (orange). (c)
Monte Carlo snapshot displaying the on-site component along the easy axis,
S,, of the localized spin multiplied by the factor (—1)%, with i, the z-axis
component of the location of site i. Both the dominant blue and red clusters
indicate regions with local (m,0) order, but shifted by one lattice spacing.
This shift suppresses long-range order when averaged over the whole lattice,

but short-range order remains. Impurity sites are denoted as black dots. . . .

(Left) Plot Showing the resistance measured along the AFM(p, in green)
and FM(p, in red) directions for BaFeyAsy,. This figure is reproduced
from Ref. [71]. (Right) Plot showing the Resistance(T)/Resistance(300K)
vs Temperature along the AFM(red) and FM (blue) directions as well as for
the twinned sample (black). This demonstrates the resistance anisotropy for
FeTe. The inset shows the magnetization measurement used to find T . This

figure is reproduced from Ref. [148]. . . . . .. ..o o000
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4.2

4.3

4.4

4.5

4.6

(a) The collinear (m,0) AFM ordered state; (b) the bicollinear (7/2,—m/2)
AFM ordered state; (c) schematic drawing of the Fe lattice equilibrium
position in the Tea (black symbols) and O, (red symbols) phases (four Fe’s
are indicated with filled circles and labeled by their site index i); (d) Same as
(c) but for the Moo case. . . . oo oo oL
(a) Example of the By, representation of the Dy, group. (b) Example of the
By, representation of the Dy, group. . . . . . ... ...
Phase diagram along the straight line from (g2, gss) = (0,0.24) to (0.24,0),
at Jy=0.1 eV and Jyn=Jxnn=0. [Inset: same phase diagram but along
the straight line from (gi2,G66) = (0,0.16) to (0.40,0), at Jy=0.1 eV,
Jxn=0.012 eV, and Jynny=0.008 eV. Blue circles (red triangles) denote To
(Tm), the transition temperatures to the Oy, /collinear (M,y,/bicollinear)
phase. . . . .o
Filled (open) circles indicate the bicollinear AFM order parameter WNVV
(the My, lattice distortion /) at g1 = 0.24, ggg = 0, Jy = 0.1 eV, and
Jxn = Junn = 0. Magnetic and lattice susceptibilities, X (r/2,—r/2) and xs,,,
are also shown (filled and open triangles, respectively). Ty denotes the first-
order Néel temperature. . . . . . . . . . . ...
(a) Histogram of the MC time evolution of WMV and §,,, at the critical
temperature of Fig. 4.5 (T' = 72 K), illustrating its bimodal character
compatible with first-order characteristics. (b) Resistance (h/2e? units) vs.
temperature in the bicollinear state (g2 = 0.24, ge¢ = 0, Jg = 0.2 €V, no
Heisenberg terms). Filled (open) symbols denote resistivities along the AFM
(FM) direction. (c,d) Symmetrized Fermi surface (g2 = 0.24, gog = 0, Ju =
0.2 eV, no Heisenberg terms). (c) is in the high temperature paramagnetic
phase (T' = 360 K); (d) is in the bicollinear phase (7" = 10 K). The FS orbital
composition notation is blue (zz), green (yz), and red (zy). In the non-
symmetrized FS (not shown) a gap opens along the AFM diagonal direction

in the xz and yz orbitals, compatible with the resistivity results. . . . . ..
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5.3

5.4

5.9

(a) The bicollinear antiferromagnetic spin order with wavevector (7w /2, —m/2).
(b) same as (a) but for the state lattice-rotated by 90 degrees with wavevector
(m/2,7/2). (c) Schematic drawing of an iron atom at site i (filled symbol)
and its four Te neighbors (open symbols), projected in the z-y plane in their
equilibrium position. The distances d;, between the irons at site i and its
four neighboring Te atoms are indicated as well. The localized spin S; is
also sketched. (d) Schematic drawing of the Fe lattice equilibrium position in
the tetragonal phase (black symbols and lines) and in the monoclinic phase
(red symbols and lines). Four Fe atoms are indicated with filled symbols and
labeled by their lattice site index. . . . . . . . . .. ...
Diagram of the PTCA set-up used to sample the local spin and lattice
variables. The lattice is divided into four quadrants and each of four
processors generates traveling clusters (indicated with 8x8 squares) and
proposes updates for the sites (indicated by small open circles) inside one
quadrant. . . . .. L
Diagram of the PTCA set-up used to sample the global lattice distortion
variables. The lattice is divided into sixteen clusters. FEach of the four
processors diagonalizes four of the clusters. . . . . . . . ... ... ... ...
Magnetic susceptibility xs (squares) and monoclinic lattice susceptibility xs,,
(circles) evaluated using the PTCA algorithm at Aj» = 1 employing a 32 x 32
sites cluster. In this plot, and other plots of susceptibilities shown below, the
fluctuations between subsequent temperatures are more indicative of the error
bars than the intrinsic errors bars of individual points, which for this reason
are not shown. . . . . . . . ..
Magnetic spin structure factor S(mw/2,7/2) (squares) and monoclinic lattice
order parameter d,; (circles) evaluated using the PTCA algorithm for Ays = 1

on a 32 x 32 sites cluster. . . . . ..
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5.6

5.7

5.8

(a) Magnetic susceptibility Xg(r/2x/2) (red squares) with a maximum at
Ty = 165 K (dashed line), and the monoclinic lattice susceptibility ys,,
(blue circles), spin-nematic susceptibility yy (orange diamonds), and orbital-
nematic susceptibility ye (green triangles) all with a maximum at Ts = 193 K.
The susceptibilities were calculated at A\ip = 1 using 32 x 32 lattices.
(b) Monte Carlo measured order parameters associated to (a). Shown are
the magnetic structure factor S(w/2,7/2) (red squares), monoclinic lattice
distortion d,; (blue circles), spin-nematic order parameter Wyyy (orange
diamonds), and orbital-nematic order parameter ®p, (green triangles). The
transition temperatures were obtained from the susceptibilities in (a) and via

numerical derivatives in (b). Both procedures give the same result. . . . . .

(a) Susceptibilities associated with the magnetic spin structure factor S(mw /2, 7/2)

(squares) and with the monoclinic lattice distortion (circles) using Ay = 0.85
and a 32x 32 cluster. Solid lines are guides to the eye. (b) Spin structure factor
S(m/2,m/2) (squares) and monoclinic lattice order parameter &, (circles) for
the same A\jp and cluster size as in (). . . . . . ... ... ... ...
Phase diagram varying temperature and A2, for g2 = 0.24, Jy = 0.1 eV,
and Jyn=Jnnn=0.0. Note the narrow temperature width of stability of the
bicollinear-nematic state, similarly as it occurs for the more standard (7, 0) —
(0,7) nematic state [79]. For values of Ay smaller than 0.75, our numerical

accuracy does not allow us to distinguish between T and Ts. . . . . . . ..
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C.1

D.1

Spin-nematic susceptibility y; vs. temperature 7' (red circles) obtained from
Fig. D.1(b) (at gg=0.16 and Aes=0.84). The standard MC technique on
an 8x8 cluster with PBC was employed (involving ED of the fermions at
every MC step). Also shown are two GL fits, as also employed in Fig. 2.4.
The blue (thick) line indicates a divergence at a temperature 7* (lower than
Ts) characteristic of the electronic sector alone. In the range 7" < Ty, the
lattice follows the electronic behavior. The black (thin) line and black tilted
square points are a fit including the 37sW? correction (see text in the previous
section of this Suppl. Material). The fitting parameters are 7% = 105 K and
Ts = 304 K. The actual Néel temperature for gge=0.16 and 5\66:0.84 is not

ShOWIL. . .

Spin-nematic order parameter from the MC simulations, at gg=0.16 and
5\66:0.84. (a) U vs. T and egg, measured at a fixed lattice distortion egg for
each temperature (restricted MC). Shown are the 7% temperature (see text)
and Ts. Results shown are for an 8x8 cluster with TCA+TBC, but PBC
8x8 clusters with ED give similar results. Red points are the equilibrium
values using unrestricted MC with ED and PBC 8x8 clusters. (b) MC results
illustrating the relation between ¥ and €g6 in unrestricted MC (red) and the
restricted MC curves (green/blue), parametric with temperature. Results are
obtained with ED/PBC 8x8 clusters. Note that U vs. eg (red squares) is
no longer linear which is expected because Eq.(B.7) is valid only for Ag = 0

(and approximately valid for small 5\66). ....................



E.1

G.1

G.2

G.3

(a) Schematic representation of the equilibrium position of the Fe-Te/As
lattice (projected on the z-y plane). Four Fe atoms are indicated with
filled circles and labeled by their site index i. The open circles indicate the
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Chapter 1

Introduction

1.1 High Temperature Superconductors

Several materials have been found to have zero resistivity after they are cooled below
some critical temperature, T.. This phenomenon, called superconductivity, was first
discovered by Heike Omnnes in purified mercury [1]. Since for mercury 7. ~ 4 K, this
discovery was due in large part to Onnes’ ability to liquefy Helium whose temperatures
were the lowest ever produced on Earth at the time. Despite many more superconducting
materials being discovered afterwards, it was not until decades later when Bardeen,
Cooper, and Schrieffer published their theory of superconductivity [2] that the underlying
mechanism was explained. In BCS theory, the superconducting phase arises when the
attractive retarded electron-phonon interactions overcome the Coulomb repulsion among
electrons, forming quasiparticles, known as Cooper pairs. This description was sufficient
to describe superconductivity in the contemporary materials until the first unconventional
superconductor [3], CeCuySip, was discovered that could not be explained by the BCS
mechanism.

In 1986 Bednorz and Miiller [4] discovered the first high temperature unconventional
superconductor when Ba,Las_,CusOs5(3_,) was cooled below T, ~ 35K and the material
became superconducting. This was the highest T, discovered at this time. The subscript
x indicates the replacement of La by Ba which introduces hole doping in the compound.

However other cuprates were later found that become superconductors upon electron



doping [5]. These layered materials characterized by CuOs planes (See Fig. 1.1(Top))
have become collectively known as the cuprate family of high temperature superconductors.
Much attention was given to these materials for the next decade because of the promise of
synthesizing materials with higher 7,.. However, HgBay;Cu3Osg, the cuprate with the highest
T. at T, =134 K was discovered in 1993 [8]. A new breakthrough occurred in 2008 when
the material LaFeAsO;_,F, was discovered to be another unconventional high temperature
superconductor with 7, ~ 26 K [9]. Since that time many other iron based superconductors
(FeSC) have been discovered and currently there are six different families of these materials.
Referencing Fig. 1.1(Bottom), the 1111, 122, and 111 pnictide compounds are categorized
by the ratio of their constituent atoms and this family of materials can be characterized
by their Fe and pnictide (elements in the 15th column of the periodic table) layers. The 11
chalcogenide compounds have the simplest structure and only contain layers of chalcogenides
(elements in the 16th column) and Fe.

The study of the FeSC will be the focus of this dissertation. The FeSC are complex
materials that have multiple degrees of freedom (DOF) whose contributions must be isolated
in order to understand the importance of each. In this manuscript, the focus will be to
determine which DOF are most relevant to describe several of the properties observed in
the pnictides and chalcogenide FeSC. This will be accomplished by developing models that
capture the individual contributions of each DOF over a wide temperature range. In the

remainder of this Chapter, the general properties of the FeSC will be described.

1.2 Properties of the Iron Pnictides

The discovery of unconventional high temperature superconductivity in the Fe-based
superconducting materials prompted comparisons to the cuprates. Both families of materials
have parent compounds that are magnetic and non-superconducting. They are complex
layered materials that become superconducting upon doping with either electrons or
holes (See Fig. 1.2). As previously mentioned, the layers of interest for the cuprates are those
containing the copper oxide planes with CuOs per unit cell. As can be seen in Fig. 1.3(a),

this layer contains the Cu’s in a square lattice with coplanar oxygen in the links that connect
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Figure 1.1: (Top) The lattice structure and chemical formula for three common copper
based superconductors characterized by CuO, layers. This figure is reproduced from
Ref. [6].(Bottom) The lattice structure for the iron based superconductors and their
superconducting transition temperatures T.. The left three materials exemplify the 1111,
122 and 111 members of the pnictide family. The green circles are As atoms (pnictides) and
the blue are Fe atoms. These form the FeAs layers that characterize these materials. The
compound on the far right does not contain As and is a representative of the chalcogenides
where here the green circles are Se/Te. This figure is reproduced from Ref. [7]



nearest neighbor Cu’s. Fig. 1.3(b) shows the planes of relevance that characterize the iron
pnictides. The Fe atoms form a square lattice with the As atoms in the plane above or below
the Fe and located in the center of four Fe ions. In contrast to the cuprates, because the
As ions are staggered above and below the Fe plane, the unit cell for the iron pnictides is
FeyAsy. Although there are physically two Fe per unit cell in the pnictides, due to glide-
mirror symmetry of the lattice, it can be convenient to study systems with a FeAs unit

cell [13].

Temperature

(K)

Tet/PM

Ort/AFM

Electron doping E Hole doping

Figure 1.2: (Left) A schematic phase diagram for the cuprates. The blue areas denote the
checkerboard AFM phase while the red areas indicate the superconducting phase. This figure
is reproduced from Ref. [10]. (Right) Schematic phase diagram for 122 pnictides. Ort/AFM
denotes the phase with collinear magnetic order and orthorhombic lattice distortion,
SC the superconducting phase,and PM/Tet the paramagnetic and tetragonal phase. In
addition, a nematic phase appears upon doping. Tetragonal symmetry is only broken
below the nematic/orthorhombic transition line, but nematic fluctuations remain at higher
temperatures. This figure is reproduced from Ref. [11].

The undoped cuprates are Mott insulators with a “checkerboard” antiferromagnetic
(AFM) phase described by a magnetic structure factor, S(@), that peaks at Q=(m,7) (See
Fig. 1.3(a)), while the undoped pnictides are bad metals with a “collinear” AFM state
defined by an S(@Q) that peaks at cither Q=(r,0) or Q=(0,7) (See Fig. 1.3(b)). The S(Q) is

the Fourier transform of the real space spin-spin correlations between spins on each lattice

site and can therefore be used to describe long range magnetic order.



» O . Fe2* . As

Figure 1.3: (a) The copper oxide plane in the cuprate superconductors showing the
Q:(W,W), checkerboard AFM order in the Cu spins. The red circles are oxygen ions and
are co-planar with the blue Cu ions. (b) The pnictide FeAs plane. The blue circles are Fe
ions and the red circles are As ions where the darker (lighter) red circles are the As ions
above (below) the Fe plane. The collinear (7,0) AFM order is indicated in the Fe spins. This
figure is reproduced from Ref. [12]
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Figure 1.4: An illustration of the five d orbitals where the valence electrons in Fe and Cu
reside. The orbitals can be separated into two groups: to, and e,. For Cu the e, orbitals,
particularly d,2_,2, contain the most weight at the 'S while for Fe the ty, orbitals are the
ones that form the F'S. This figure is reproduced from Ref. [14]

The “base” atoms Cu and Fe are transition metals that have valence electrons occupying

their d orbitals which are outlined in Fig. 1.4. LDA calculations and ARPES measurements



have demonstrated that the Cu d,2_,» band (See Fig. 1.5(Left)) dominates at the Fermi
surface (FS) (See Fig. 1.6(Left)), thus single orbital models have mostly been used to study
the cuprates [19, 20]. However, in the case of the pnictides, LDA calculations have shown that
several Fe 3d bands hybridize (See Fig. 1.5(Right)) at or near the F'S (See Fig. 1.6(Right)) and
produce a more complex FS characterized by hole pockets at the center of the Brillouin zone
and electron pockets at the X and Y points. Although first principles calculations [16, 21]
have shown that the 3d,. and 3d,. Fe orbitals have the dominant weight at the F'S in the
Fe-pnictides, there is a non-negligible contribution from the 3d,, orbital at the electron
pockets, as shown in Fig. 1.6(Right). These orbital contributions have been confirmed by
orbital resolved ARPES experiments [22] that use different polarizations to identify the
dominant orbital characteristic of the individual bands. The multi-orbital nature of the

pnictides greatly increases the complexity for the simplest models needed to describe them.
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Figure 1.5: (Left) The La;CuO4 band structure from LDA calculations. The band that
crosses the Fermi surface has mostly Cu 3d,2_,2 character. This figure is reproduced from
Ref. [15]. (Right) Band structure of LaFeAsO from First Principles calculations. The red
and green bands have mainly Fe 3d and pnictogen/oxygen p characters, respectively. This
figure is reproduced from Ref. [16]
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Figure 1.6: (Left) Fermi Surface for the cuprates calculated in a one band Hubbard model.
This figure is reproduced from Ref. [17]. (Right) Fermi Surface for the pnictides calculated
in a five orbital tight-binding model. This figure is reproduced from Ref. [18]. The blue, red,
and green represents the d,, , d,., and d,, orbitals respectively.
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Figure 1.7: (Left) An illustration of four examples of proposed pairing symmetries for the
iron pnictides. The colors (green/orange) represent the sign (+/-) of the superconducting
gap function. This figure is reproduced from Ref. [23]. (Right) An illustration of the d-
wave pairing symmetry for the cuprates where the red/blue color represents the sign of the
superconducting gap function. This figure is reproduced from Ref. [24].

It is not yet known if superconductivity in both families of materials has the same origin.
Electron-phonon interactions as in BCS appear to be insufficient to overcome the Coulomb

repulsion in the cuprates and it is believed that magnetism plays a role [12]. This leads to a



peculiar SC gap that usually contains nodes in which the gap function changes sign at the
FS. Thus, instead of the uniform S-wave gap of BCS materials, the SC gap in the cuprates
has nodes at (+7,+7) and D-wave symmetry. The pairing symmetries in superconductors
can be characterized by the sign of the gap function. Examples for the proposed pairing
symmetries for the cuprates and pnictides are shown in Fig. 1.7. The pairing symmetry in
the cuprates has been proven to be D-wave [25], but in the pnictides this is still an area
of controversy. S*/~ and D-wave pairing symmetries have been proposed [23] as a result
of the magnetic/Coulomb interactions that are supposed to lead to D-wave pairing in the
cuprates, while ST pairing [26], is the result of the standard electron-phonon interactions
in multi-orbital systems. Despite the multiple experiments that have studied the pairing
symmetries of the pnictides [27, 28, 29], the results are still controversial due to the variety
of materials in the family, the difficulty to distinguish S*+ from S*/~ symmetries, and the
possibility of nodeless D-wave gaps under certain conditions.

It is important to notice that both families of materials also undergo a structural
transition. In the pnictides the Fe ions form a tetragonal arrangement, which becomes
orthorhombic for temperatures below Tg (See Fig. 1.2(Right)). This transition is very
relevant in the pnictides because it breaks the degeneracy between the @:(W,O) and @:(O,W)
collinear states, and the d,, and d,. orbitals. The structural transition from tetragonal
to orthorhombic also occurs in the cuprates, but it is not as relevant as in the pnictides
because the cuprates have a @:(W,W) magnetic state which is not affected by the lattice
distortion. As can be seen in the phase diagram shown in Fig. 1.2(Right)), for the pnictides
Ts may occur above Ty. In fact for several different concentrations of doping for the “122”
compounds and in the “1111” compounds [30] this is the case. Early experiments [9, 30] had
discovered a resistance anomaly associated with this structural transition, and the existence
of a nematic phase of electronic origin [31] was proposed shortly after. Experimentally the
nematic phase has been studied through in-plane resistivity measurements along the two
perpendicular lattice vectors [32]. Due to the small lattice distortion in the orthorhombic
phase (on the order of 6 = (a, — ay)/(a; + a,) ~ 0.003), the lattice is not expected to be

the driver of the resistance anomaly [33, 34]. Here ¢ is the order parameter describing the

orthorhombic distortion and a, (a,) is the average Fe-Fe distance in the 2 () direction. For



this reason it has been suggested that the nematic state may be driven by the spin degrees
of freedom [31, 35, 36] or by the orbital ones [26, 34, 37, 38]. The idea is that the “driver” of
the nematic phase may be the DOF that also drives superconductivity due to the proximity
of the nematic and superconducting phases. However, complexities in experiments (with
external strain required to detwin crystals) and in the theoretical approaches (multiorbital
models, intermediate correlations regimes) have prevented the identification of a primary
driver of the nematic state.

The so-called “magnetic” scenario for the nematic state proposes that the magnetic long-
range order in iron pnictides develops in two stages (See Fig. 1.8): the Ising Zy symmetry is
broken when the short-range degeneracy of the Q=(r, 0) and Q=(0,7) AFM states is lifted
at Ts and the O(3) symmetry is broken when the spins develop long rang order favoring a
direction in spin space [35]. From a magnetic point of view the nematic phase is described
by the broken Z, symmetry while the system remains paramagnetic, and the rotational
O(3) symmetry remains unbroken. In the orbital driven scenario the d,,/d,. symmetry is
broken inducing the structural transition at Ts via an orbital-lattice coupling and before
the long-range magnetic order develops at Ty. As pointed out above, the importance of
understanding which degree of freedom drives this transition is that it may unveil which
DOF is responsible for the superconducting mechanism due to the proximity of the nematic

and SC phases.
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Figure 1.8: Schematic representation of the magnetically driven nematic transition in real
space. (a) The transition from the disordered phase to the AFM phase breaks an O(3) x
Zy symmetry. The O(3) symmetry encompasses the rotations in spin space while the Z
(Ising) symmetry involves the two degenerate ground states of magnetic stripes with parallel
spins along the y axis (ordering vector )y = (7,0)) or along the x axis (ordering vector Qs =
(0,m)). (b) The O(3) x Z3 symmetry can be broken in two steps. First, only the Z; symmetry
is broken, but the system is still paramagnetic (indicated by the gray double arrow on top
of the spins). In the second step, the O(3) symmetry is broken and the system acquires
long-range magnetic order. This figure is reproduced from Ref. [35].

1.3 Properties of Iron Chalcogenides

Another exciting development in the study of Fe-based superconductors was the discovery
of superconductivity in the iron chalcogenides such as FeSe,Te; , [39]. As mentioned
previously, understanding how these materials compare to the other high temperature
superconductors is crucial to the development of a generalized theory that explains this

phenomenon. As can be seen in Fig. 1.1(Right), the chalcogenides are characterized by
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iron/chalcogen planes with the chalcogens being S, Se, or Te [40]. The chalcogenides have
the simplest structures and the highest T, of all the FeSC. They share some properties
with the pnictides. For example, at high temperatures the iron chalcogenides develop
the same tetragonal PbO-type structure (staggered chalcogenide atoms in/out of the Fe
plane) as the FeAs layers in the pnictides, and a similar Fermi surface. However the parent
compound, FeTe, has unique properties. Its lattice undergoes a monoclinic distortion upon
cooling [41, 42, 43](See Fig. 1.9(Top-Left)). This structure is puzzling because it does not
seem to result from FS nesting as in the collinear state of the pnictides. Upon doping the
parent compound, FeTe, with Se, a rich phase diagram that includes superconductivity is
observed. When Te is completely replaced by Se, the material FeSe is superconducting,
but the optimal superconductivity occurs near FeTeq5Seq 5 [41](See Fig. 1.9(Bottom)). The
magnetic order of FeTe is also different from the pnictides because the high temperature
paramagnetic state undergoes a transition to long range “bicollinear” AFM order shown in
Fig. 1.9(Top-Right)). The bicollinear AFM order can be described by a structure factor that
peaks at in(%,:l:g) which are not nesting vectors in the Brillouin zone.

A puzzling characteristic of superconducting FeSe is that it goes through an orthorhombic
structural transition at Ts ~90 K and develops superconductivity at T, ~8 K. The material
appears to be in a nematic state for Ts > T > T, although the collinear AFM state has not

been observed in any region of the phase diagram of FeSe,Te;_, (at ambient pressure).

1.4 Relevant Degrees of Freedom in the Fe-Based
Superconductors

One of the goals of this manuscript is to identify the degrees of freedom that drive the
properties of the FeSC in the intermediate interaction regime. The spin, charge, orbital, and
even lattice DOF are all active in the actual materials. The role that each DOF plays is
a subject of debate. It is necessary to unveil the minimum number of DOF that a model
should contain in order to describe the relevant properties of the material. Since the cuprates

are Mott insulators with mostly one active orbital at the FS, strong coupling, single band
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Figure 1.9: (Top-Left) Schematic description of the tetragonal to monoclinic distortion
in FeTe where the Fe-Fe distance along the diagonals are elongated in one direction and
shortened in the other. The red circles indicate Te, Fe in the tetragonal structure is
indicated by light-gray circles and dark-gray circles denote the position of the Fe in the
monoclinic phase. (Top-Right) Bicollinear Magnetic order. (Bottom) The phase diagram
temperature (K) vs Se doping for FeTe;_,Se,. This figure is reproduced from Ref. [42].
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models are used to describe many of their properties [44]. However, the iron pnictides are
more complex, with several active orbitals and in an intermediate Coulomb regime [12]. Thus,
the models that were successful for the cuprates cannot be used for the pnictides. When
materials are in an intermediate regime it is imperative that numerical tools are developed
to complement the traditional calculations performed in the easier to study strong and weak
coupling limits. Numerical studies are the most useful tool to obtain unbiased results. This
is the approach that will be followed in this manuscript with the goal to propose models
with the minimum number of DOF that capture the observed physical behaviors.

The success of the first principles calculations stated previously [16, 21] led some scientists
to believe that the properties of the pnictides could be obtained from weak coupling
approaches. In fact, the collinear AFM state of the parent compounds of the pnictides can
be guessed from the nesting of their Fermi surface [45]. However, other authors succeeded in
reproducing the magnetic properties of the pnictides using strong coupling approximations by
studying models with localized magnetic moments [46, 47, 48]. Super-Exchange spin models
can be studied numerically [46, 47] and with mean field (MF) techniques [48] and including
nearest neighbor and next-nearest neighbor Heisenberg parameters they can reproduce the
observed collinear magnetic behavior of the pnictides. However, these models are insulating
and fail to describe the metallic parent compounds. The rational for studying this limit is
the experimental observation of localized magnetic moments even at room temperature and
the existence of insulating states in some regions of the phase diagrams of some Cu-doped
pnictides and layered chalcogenides [49, 50]. However, it has been shown that both itinerant
electrons as well as localized magnetic moments [51, 52, 53] are present in the Fe based
superconductors indicating that they are in an intermediate coupling regime.

The standard models proposed to describe the FeSC are multiorbital Hubbard mod-
els that include the on-site Coulomb interactions U (intraorbital), U’'(interorbital), and
J(Hund) [54]. The tight binding multiorbital term can be obtained via Slater-Koster

techniques [55] for a number of d-like orbitals that ranges from two [55] to five [18], and the
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interaction term is given by [56] :

Hint =U Z N oMo, -+ (U/ — J/2) Z N

i, i,a<p

~2J 3 Sia-Sip+J > (dl,dl, dlg dl .+ He),

i,a<f i,a<p

(1.1)

where U is the on-site Coulomb repulsion for electrons in the same orbital, U’ is the Coulomb
repulsion of electrons on the same site but in different orbitals, and J is a ferromagnetic Hund
coupling between electrons on the same site. The indices «, § denote the orbitals (xz, yz) in
a minimal two orbital model [55], xy is added for a three orbital model [56], and the five d
orbitals are included in the five orbital case [18]. The operator diow creates an electron with
spin o on site i in orbital o, n; 4, = d;aﬂdm,g is the electronic number operator, and S; , is
the spin in orbital « at site i given by d;a@ Oap diap Where 7, are the Pauli matrices. Due
to the presence of four fermion operators in these terms, exact calculations can be performed
only for two orbitals in an 8-site cluster [55].

It is crucial to develop multiorbital models that can be studied with unbiased numerical
simulations in larger lattices. The first principles calculations mentioned previously showed
that the 3d,, and 3d,, orbitals have the highest density of states at the F'S, and a minimum
model must include at least these two orbitals. Two-orbital models with the Coulomb
interactions given by Eq. 1.1 can be solved exactly only in small lattices (8 sites) or via
mean field (MF) approximations [55]. These models have successfully provided the metallic,
magnetic ground state as well as a reasonable FS for the pnictides [57, 58]. However,
calculations using only two-orbitals have been criticized because they failed to include the
3d,, orbital that has a non-negligible weight at the electron pockets in the F'S and could
not capture the correct band structure at several points in the Brillouin Zone such as the
[-point. Therefore, it is accepted that the minimum number of itinerant orbitals to describe
the pnictides is three. For this reason, three-orbital models were developed [56].

Unlike the two orbital model, the three orbital model only can be studied using MF
techniques because the addition of the extra orbital makes exact calculations unfeasible due

to limitations in computer memory. Using MF techniques, orbital and magnetic ordering in
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the ground state and a FS that matched the first principles calculations for the pnictides
were obtained [56]. With this model, the optical conductivity was calculated [59], showing
the resistance anisotropy between the ferromagnetic and AFM directions that have been
observed experimentally [60]. While this model reproduces many important properties of
the pnictides, its study is restricted to low temperatures where the MF calculations can be
performed and the region near the structural transition, that is important to understand the
nematic phase, cannot be accessed. Because of the limitations of exact diagonalization and
MF calculations for the three orbital model mentioned above, a three orbital spin fermion
model [61] was proposed for the pnictides that can be studied numerically in large clusters

at finite temperatures.

1.5 Spin Fermion Model

For decades prior to the discovery of the iron pnictides, double exchange models had been
developed to study materials with itinerant and localized DOF [62]. The lattice-Kondo
model, which includes a tight-binding Hamiltonian to describe the itinerant electrons and a
Hund coupling term to couple the itinerant and localized electrons [63], was developed as a
fully quantum model to study transition metal-oxides such as the manganites. Treating the
localized spins as classical fields that could be treated with classical Monte Carlo techniques
was later proposed [64, 65, 66], opening the possibility of studying the quantum system in
large lattices and at any temperature. The classical treatment of the localized spins replaces
the four-fermion interaction terms in the Hamiltonian by two-fermion ones, so that the
problem can be numerically studied in a single particle framework. Because of the success of
this “spin-fermion” approach in the lattice-Kondo model to study the manganites [65, 66], a
spin fermion model was later developed to study the cuprates [19]. When the pnictides
were found to be in the intermediate coupling regime and it was discovered that they
contain both itinerant and localized DOF, spin fermion models were developed for these
materials [52, 57, 61]. The following Chapters of this manuscript will be devoted to the
presentation of numerical results obtained from various adaptations of spin fermion models

which are described in detail in the corresponding chapters. The base Hamiltonian for the
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pnictides is presented in Appendix A. In chapters Ch. 4 and Ch. 5 the addition of spin and
orbital couplings to monoclinic distortions to describe properties of the chalcogenides will
be discussed.

In this dissertation, various adaptations of the spin-fermion model will be developed with
the goal to understand, reproduce, and predict properties of the Fe-based superconducting
pnictides and chalcogenides. The terms added to the spin-fermion model Hamiltonian,
as well as novel numerical techniques developed for their study, will be described in the
following chapters. Ch. 2 is devoted to the understanding of the puzzling behavior of
the nematic susceptibility observed in experiments on Ba(Fe;_,Co,)2Ass under uniaxial
pressure [67]. Via a Ginzburg-Landau analysis and Monte Carlo simulations of the spin-
fermion model with a tunable axial strain affecting the spin/orbital/lattice interactions, the
experimental susceptibility is reproduced and its features interpreted. Ch. 3 is devoted
to understanding how nemacity develops with doping in materials of the 122 family. Our
numerical calculations demonstrate that the phenomenon develops due to the introduction
of non-magnetic impurities in the Fe-As planes as opposed to the loss of FS nesting due to
electronic doping as proposed in the weak coupling regime. The last two chapters present
the studies performed for the chalcogenides. An explanation of the origin of the bicollinear
long-range magnetic order observed in FeTe, the parent compound of the superconductor
FeTe;_,Se,, is presented in Ch. 4 while the possible existence of a bicollinear nematic state
in iron chalcogenides is demonstrated based on analytical and numerical grounds in Ch. 5.

Additional technical aspects are presented in Appendices A to L.
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Chapter 2

Study and Explanation of the
Features of the Magnetic
Susceptibility Under Uniaxial

Pressure in BaFesAs-

This chapter is a modified version of PHYSICAL REVIEW B 90, 184507 [68, 69].

2.1 Introduction

As discussed previously in Sect. 1.4, the complexity of high critical temperature iron-based
superconductors [12, 70], with coupled spin, charge, orbital, and lattice degrees of freedom,
creates exotic regimes such as the widely discussed nematic state with broken rotational
invariance [60, 71, 72]. This state may originate in the spin [31, 36, 73, 74, 75] or in the
orbital [33, 34, 38, 76, 77, 78] degrees of freedom, but subtleties in experiments (with strain
required to detwin crystals) and in theory (employing complicated multiorbital models) have
prevented the identification of the primary driver of the nematic regime.

Previous efforts to study nematicity have considered spin fermion models with electrons
coupled to the lattice [79]. These studies unmasked a considerable electron-lattice feedback,

that led to several results in agreement with experiments, such as anisotropic resistivities
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and a nematic and structural (tetragonal-orthorhombic) transition at Tg, slightly separated
from the Néel temperature Ty (< Ts) [80]. This nematic phase is similar to the results for
the 1111 parent compound LaFeAsO, however, experiments have shown that the transition
temperatures are simultaneous in the 122 parent compound BaFey,As,. Despite the fact that
Ts = Ty for this material, experiments have shown the existence of nematic fluctuations
under strain [60, 71].

More recently, a remarkable experimental development was the report of a diverging
nematic susceptibility x“*? vs. temperature T', with a mysterious characteristic temperature
scale T, for single crystals of Ba(Fe;_,Co,)2As, [67] measured by varying an in-situ uniaxial
strain. Although contrasting x**? against theory and explaining the physical meaning of 7™
are crucial aspects to identify the mechanism that drives nematicity, x“*? and 7™ had not
been addressed theoretically before since temperatures above T are difficult to study with
reliable methods.

In this Chapter results where, this nematic susceptibility was theoretically calculated
for the first time, via the spin-fermion model coupled to the lattice in precisely the same
setup as in Ref. [67] are reported. Note that this susceptibility, which tests a local geometric
property of an enlarged parameter space, is different from the simpler magnetic susceptibility
calculated in Ref. [79] obtained from thermal statistics. The present computational effort
required an order of magnitude more work than in Ref. [79] because the strain is an extra
parameter to vary, rather than being dynamically adjusted in the Monte Carlo (MC) process
as before. To implement this demanding task, modifications in the MC algorithm were
introduced, as explained in Sec. 2.3. Compared to Hubbard multiorbital approaches, a unique
characteristic of the spin-fermion model is that simulations can be carried out for a wide
range of finite temperatures, including the nematic regime above the ordering temperatures.
This is due to the classical approximation of the localized spins that enables the Hamiltonian
to be described by single particle states, greatly reducing the size of the matrix, and now the
Hamiltonian can be exactly diagonalized. Remarkably, our susceptibility is very similar to
the diverging experimental x“*? result. Moreover, we observed that the T™ scale in the Curie-

Weiss behavior is the preexisting Néel critical temperature of the purely electronic sector,
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which is independent of the lattice. We also observed a density-of-states pseudogap and
nematic fluctuations above T, caused by short-range (7, 0)-(0, 7) antiferromagnetic order.

This Chapter is organized as follows: the model is introduced in Section 2.2; the
many-body techniques developed for this work as well as the main results are presented
in Section 2.3; the results for the spin-nematic and orbital-nematic susceptibilities are
analyzed in Section 2.4, while the dependence on the structural transition temperature with
the orbital-lattice coupling is discussed in Section 2.5. The analysis of the spin structure
factors and the pseudogap in the density of states is presented in Section 2.6. Section 2.7 is
devoted to the conclusions. The full Hamiltonian is provided in Appendix A, the numerically
guided Ginzburg-Landau (GL) calculations appear in Appendix B. Appendix C contains
the comparison between total and partial derivatives at the critical temperature Ty, and
numerical results for an unphysically large value of the lattice-orbital coupling are presented

in Appendix D.

2.2 Models

The model employed here combines the purely electronic spin-fermion model [52, 57, 61, 82]

together with lattice orthorhombic distortions:
Hsr = Huopp + Hiuna + Hueis + Hsro + Hovo + Hstifr- (2.1)

This (lengthy) full Hamiltonian is provided in detail in Appendix A. Hypp is the Fe-Fe
hopping of the d,., d,., and d,, electrons (a three orbital model is used with an electronic
bandwidth W~3 eV), with amplitudes that reproduce photoemission results [22, 61]. The
average number of electrons per itinerant orbital is n=4/3 [56], i.e. the undoped regime
will be our focus. This is reasonable since many experiments that address the nematic state
are carried out for the parent compounds. Moreover, technically the study simplifies in the
absence of doping and quenched disorder.

The Hund interaction is canonical: Hyyna=—Ju Zi,a S; - Sia, With S; (si ) the localized

(itinerant with orbital index «) spin. Hyeis is the Heisenberg interaction among the localized
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spins involving nearest-neighbors (NN) and next-NN (NNN) interactions with couplings Jyn
and Jynn, respectively, and ratio Jynn/Jnn=2/3 [61] to favor collinear order.

Within the spin-driven scenario for nematicity, the state between Ty and Ty is charac-
terized by short-range spin correlations that have as an order parameter W;=> jE(Si “Sity —
Si - Sizx)/2 that satisfy (U)>0 [36, 83], where S; is the spin of the iron atom at site i and
X,y are unit vectors along the axes. As described in Appendix A the O,,-distortion €g4(i)
associated to the elastic constant cg [81] will be considered here. The coupling of the spin-
nematic order and the lattice is Hspo=—ges >_; Vi€es(i) [36, 75], where ggg is the lattice-spin
coupling [84]. To also incorporate orbital fluctuations, the term Horo=—Aes ) _; Pi€ss(i) is
added, where Agg is the orbital-lattice coupling, ®;=n; ,.-n; . is the orbital order parameter,
and n;, the electronic density at site i and orbital « [33, 34]. Finally, Hgyug is the spin
stiffness given by a Lennard-Jones potential that speeds up convergence as described in
Appendix A.

Here it must be noted that the lattice, spin-nematic, and orbital order parameters all
transform as the B;, representations of the Dy, point group (See Fig. 2.1). Taking the
basis as along the Fe-Fe directions with the 2 axis out of plane, By, transformations can be
described by 7 rotations about the Z axis that lead to a change of sign in the order parameter
(see Eq. A.8; A.9, and A.13). Since each term couples two of these order parameters that

both have B, symmetry, the overall Hamiltonian is rotationally invariant.

Figure 2.1: Example of the B, representation of the Dy, group.
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2.3 Many-body techniques and main results

The details of the Monte Carlo method used in our study can be found in Ref. [82] and
Ch. 7 of Ref. [85]. However, here an extra computational component had to be introduced
because, compared with Ref. [79], for each temperature 7" now the strain was varied as
an extra parameter. Since for each temperature typically 15 values of strain were used,
this effort is ~15 times more costly than in Ref. [79]. While the standard Monte Carlo is
time consuming because of the fermionic-sector exact diagonalization (ED) at every step, in
the related double-exchange models for manganites an improvement has been used before:
the “Traveling Cluster Approximation” (TCA) (See Ref. [86] and Ref. [87]), where the MC
updates are decided employing a cluster centered at site i but with a size substantially
smaller than the full lattice size [88]. In addition, twisted boundary conditions (TBC) were
also used (See Ref. [89] and Ref. [61]). In fact, this is the first time that TCA and TBC
are employed together. To simplify further the analysis, most couplings are fixed to values
that were used successfully before [61]: Jy=0.1 eV, Jyn=0.012 eV, and Jynny=0.008 eV.
Dimensionless versions of the electron-lattice couplings are constructed via the definitions
Go6 = 2766/ VEW and Ags = 26 / VEW [90], as discussed in the supplementary material of
Ref. [79]. Here, W = 3 eV is the electronic bandwidth and k regulates the spin stiffness, as
shown in Appendix A. These dimensionless constants are fixed to the values 0.16 and 0.12,
respectively, that before were found to be realistic [79]. However, results for other values of

these couplings are provided in Appendix D.

o

86_66|€0’ where ¢, is the

The spin nematic susceptibility calculated here is defined as y, =
value of the lattice distortion obtained from the “unrestricted” numerical simulation, and the
lattice is equilibrated together with the spins, as in Ref. [79]. To calculate the susceptibility x
of our model, a procedure similar to the experimental setup was employed: the spin nematic
order parameter ¥ was measured at various temperatures and at fized values of the lattice
distortion ege=(a, —ay)/(a, +a,). Henceforth, this procedure will be called “restricted” MC

(note that this dimensionless €5 should not be confused with the dimensionful €g6(i) used

in the Hamiltonian and defined in Appendix A). By this procedure, ¥(geg, Nes, T, €66) are
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Figure 2.2: Monte Carlo spin-nematic order parameter, at jg=0.16 and \gs=0.12. (a) U
vs. T and €45, measured at a fixed lattice distortion ez for each temperature (restricted
MC). Shown are the 7™ (see text) and Ts (~ Ty) temperatures. Data are for an 8x8
cluster with TCA+TBC (PBC 8x8 clusters with ED give similar results). Red points are
the equilibrium values using unrestricted MC with ED and PBC 8x8 clusters. (b) W vs.
€66 at fixed temperatures, illustrating their nearly linear relation in unrestricted MC (red),
and also the linear slopes of the restricted MC curves (green/blue) close to Ts. Results are
obtained with ED/PBC 8x8 clusters. Note that the number of green/blue points vastly
outnumbers the number of red points, highlighting how much more demanding this effort

has been than in Ref. [79].
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Figure 2.3: (A) This figure demonstrates the relative change in resistivity anisotropy as
a function of applied strain. These results are for the parent compound BaFeyAss. (B)
This figure demonstrates the temperature dependence of the nematic response which is the
derivative of the results from figure (A) but across a wider range of temperatures. The

red line is the fit to equation %26 = (M}% + Xo that is obtained form a Curie-Weiss

formulism. Figures (A) and (B) are reproduced from Ref. [67].

obtained at fixed couplings, defining surfaces as those shown in Fig. 2.2(a). Allowing the
lattice to relax, the equilibrium curve that is shown with red points in Fig. 2.2(a) is obtained.
Figure 2.2(b) contains the (restricted) MC measured spin-nematic order parameter versus
the (fixed) lattice distortion g6, at various temperatures. In a wide range of temperatures, a
robust linear behavior is observed and x, can be easily extracted numerically. Figure 2.2(b)
is similar to the experimental results in Fig. 2.3(A) [67]. The equilibrium result with both
spins and lattice optimized (unrestricted MC) is also shown (red squares) in Fig. 2.2(b).
Our main result is presented in Fig. 2.4, where the numerically calculated xs vs. T
is displayed, at the realistic couplings used in previous investigations [79]. In remarkable
agreement with experiments, ys grows when cooling down and it develops a sharp peak at
Ts (compare with the experimental results of Fig. 2.3(B) from Ref. [67]). These results were
obtained via two different procedures (standard ED and the TCA+TBC), and for two lattice

sizes, indicating that systematic errors (such as size effects) are small.
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Figure 2.4: Nematic susceptibility x; of the spin-fermion model vs. temperature T (circles,
triangles, and squares) obtained from Fig. 2.2(b), at the realistic couplings gg=0.16 and
Ae6=0.12 (a=gegs/ap). Two MC techniques were employed: “PBC L=8” is the standard
MC method with ED in the fermions at every step, using 8x8 clusters with PBC. “TCA
L=8" and “TCA L=16" correspond to the TCA+TBC method on LxL clusters. Size effects
are small. Also shown are two GL fits: the light blue (thick) line displays the Curie-Weiss
equation y, ~ %, indicating a divergence at a lower temperature 7™, characteristic of
the electronic sector alone. At T < Tk, the lattice follows the electronic sector. The black
(thin) line is Eq.(B.29) with the 3TsW¥? correction (see text) [91].
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2.4 Nematic Susceptibility

2.4.1 Analysis of y, results

Supplementing the computational results, here Ginzburg-Landau (GL) calculations were
also performed, similarly as in Ref. [67] for experiments. Note that the previous GL analysis
considered only a generic nematic order parameter while our study separates the spin and
orbital contributions. The rather complex numerical results presented previously can be
rationalized intuitively by this procedure. The results for y, (Fig. 2.4) are well fitted
quantitatively for T' > Ty, and qualitatively for T' < Tg, by the expression:

Je6

Xo = Gol(T —T%) 1 37597’ (2:2)

where Ts=158 K, T*=105 K, and a¢~0.093. The GL analysis presented in Appendix B
shows that the fitting parameter aq arises from the GL quadratic term aW¥?/2 in a second
order transition where a = ag(T — T*). ¥ is the equilibrium value of the spin nematic order
parameter from the unrestricted MC simulations [red, Fig. 2.2(a)] and it is temperature
dependent. For T > Tg, ¥ vanishes and y, exhibits Curie-Weiss behavior, in excellent
agreement with the experimental x**? [67] and can be seen in Fig. 2.3(B).

Let us discuss the meaning of the parameter T™:

(1) From Fig. 2.2(b), the unrestricted numerical results at the critical temperature
Ts indicate a linear relation between W and egg, while individually both behave as order
parameters, i.e. they change fast near Ts. The lattice distortion is temperature dependent,
i.e. €66 = €g6(1), because the lattice is equilibrated together with the spins. However, this
nearly temperature independent ratio ¥/ege=K (~360) depends on couplings: comparing
results at several values of the coupling ggg, it is empirically concluded that K = g% (where
¢ is a constant).

Note also that xs depends on the partial derivative 0V /0egq,, since x, is obtained

€0
at a constant temperature varying eg via strain to match the procedure followed in
experiments [67], in the vicinity of the equilibrium point ¢, [namely, x, arises from the

green/blue curves of Fig. 2.2(b), not from the red equilibrium curve]. While these slopes
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(restricted vs. unrestricted MC) are in general different, both become very similar at

temperatures close to Ts where, as shown analytically in Appendix C, these derivatives

av. _ ¢ o 0¥ _
dess ~ Jes  Oegs 10 Xs-

are indeed almost the same. Thus, at T: This relation can
be independently deduced from the GL analysis, Eq. (B.7), with é=cy, and ¢, arising from
co€2s/2 in the free energy, providing physical meaning to parameters in the computational
fits.

(2) Since the numerical susceptibility y, can be fit well by Eq.(B.29) including the special
case of Ts where ¥ = 0, then, as shown in Appendix B, Ty = T* + % [10, 67]. Comparing
with Eq (B.10), ¢ is again identified with the uncoupled shear elastic modulus ¢,. In addition,
from previous investigations [61] it is known that at 5766:5\66:0 there is no nematic regime
and Ts=Ty, the Néel temperature. Then, Ty = T + %, that at ges = 0 leads to the
important conclusion that the scale T™ is simply equal to the Néel temperature of the purely
electronic spin-fermion model. In previous work [61] it was reported that T at ?]66:5\66:0
is ~100-110 K, in remarkable agreement with the fitting value of T obtained independently.
Thus, in the Curie-Weiss formula 7™ is solely determined by the magnetic properties of the
purely electronic system.

An important comment is here in order. In principle, by symmetry considerations it
is to be expected that all operators with the same B;, symmetry, as ¥, ®, and €g have,
will simultaneously develop a nonzero expectation value in the ground state if this state
breaks spontaneously the B;, symmetry as in the case of the (7, 0) antiferromagnetic state.
However, the magnitude of these expectation values can be used as an indicator of which one
dominates. For instance, although the lattice (eg5) does develop a distortion in experiments,
its value is widely considered to be too “small” [21] to assume that the lattice is the driver.
Consider now the spin and orbital: for results corresponding to our model see Fig. 2.5. That
figure contains the expectation values of ¥ (spin) and ® (orbital) vs. temperature. The
important point is that in the temperature range of that figure the expectation value of W is
already a large fraction of the small temperature result, but in the same temperature range
® had to be multiplied by 10 to magnify its value to become more visible. Thus, based

on these relative values considerations we arrive to the conclusion that in the spin fermion

model the spin dominates more than the orbital.
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Figure 2.5: Spin magnetic susceptibility (open circles), lattice distortion susceptibility
(filled circles), spin-nematic order parameter (filled squares), orbital order (open squares),
and lattice distortion (triangles) vs T at couplings ggs = 0.16 and Xes = 0.12 . Ty and Ty
are indicated by the dashed lines. This is a reproduction from Ref. [79].

2.4.2 Analysis of y, results

The orbital-based nematic susceptibility, x, = 3‘96—1 |co, Was also numerically calculated varying
the temperature. For small Agg, such as Ags = 0.12, the result is approximately temperature
independent and well fit by Eq. (B.27) in Appendix B, with ¢y = 0.016 and f = 0.33. In
other words, the analog of Fig. 2.2(b) but for the orbital-nematic order parameter presents
blue/green/red curves all with very similar slopes. Then, in x, there is no Curie-Weiss
behavior for T" > Ts. However, Raman scattering studies of charge nematic fluctuations
in BaFeyAsy; and Sr(Fe;_,Co,)2As, have reported Curie-Weiss behavior in the orbital-
nematic susceptibility that was well-fitted by the expression a + T_LTO where a represents the
temperature independent flat continuum and the Curie-Weiss term describes the diverging
behavior of the quasi-elastic peak observed in the Raman spectrum [92] (See Fig. 2.6).

To reproduce the results found in Fig. 2.6 with the spin-fermion model, we considered a

small direct coupling & between the magnetic and orbital degrees of freedom, and introduce

a new term in the model

Hso = —0 » U3 (2.3)
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In Fig. 2.7(a) the spin-nematic susceptibility is displayed after repeating the simulation in
the presence of this new coupling, and it can be seen that its qualitative form is not affected
by the inclusion of a small & = 0.0011. However, the orbital susceptibility shown in panel (b)
of the same figure now displays Curie-Weiss behavior induced by the new coupling between
the orbital and magnetic degrees of freedom. The numerical data are well fitted by the

expression . R
_ Aeo a(geseo + Aest)
eo  aped[T — (T* + d—Q)]

apeo

Xo , (2.4)

that has the form a—i—T_LTO used in Ref. [92] to fit the experimental data. Notice that Eq. (2.4)

has been obtained with the GL approach described in Appendix B.

® BaFeAs,
® Sr(Fe,, Co,,)As
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Figure 2.6: This figure shows the temperature dependence of the orbital nematic
susceptibility for two iron pnictide compounds. The lines are for the Curie-Weiss fit in the
tetragonal phase. These susceptibilities were calculated using Raman scattering experiments
to measure the orbital anisotropy for a wide range of temperatures. This figure is reproduced
from Ref. [92].

The difference between 7™ and Tj is only about 10 K for the parameters used here.
In other words, if a direct coupling between the magnetic and orbital degrees of freedom
is present, the Curie-Weiss divergence still occurs at the Néel temperature for the purely

electronic system now given by 7j. These results demonstrate how experimental data
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Figure 2.7: (a) The spin and (b) orbital nematic susceptibility obtained from Monte Carlo
simulations for & = 0.0011, ggg = 0.16, and A\g¢ = 0.12. The continuous curves in light blue
are the fittings obtained from the numerically guided Ginzburg-Landau approach.
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obtained with different techniques can all be well reproduced by the spin-fermion model

studied here.

2.5 TS VS. 5\66

The study in Figs. 2.2(a,b) was repeated for other values of the coupling Xgs. It was observed

that ¢ varies with \gg, compatible with the GL analysis where ¢(\gg) = co(1— e:\ogcﬁo ), Eq. (B.24).
At small \gg, the total (unrestricted MC) and partial (restricted MC) derivatives of ¥ with
respect to egg are still approximately equal at T ~ T as shown in Appendix C. Then,
Xs & 0(5\66) /Ge6 = %, leading to the novel result

§2
Tg=T" 4+ — 96 (2.5)

(I()C()(l — %)
Numerically, it was found that ag~0.093, co~60 ey=0.016, and T*=105 K, for ge=0.16 (note
that the values of the various GL parameters are the same in all the fits reported here, as
expected). In practice, it was observed that Eq.(2.5) fits remarkably well the numerical
values for T in the range of \gs studied showing that the GL approach provides an excellent

rationalization of the numerical results. This is shown explicitly in Fig. 2.8(a).

2.6 Spin structure factors and pseudogaps

In Fig. 2.8(b), the spin structure factors S(k) calculated with MC at both (7, 0) and (0, 7)
are shown. The results illustrate the development of short-range magnetic order upon cooling
with two coexisting wavevectors. Within the error bars, given roughly by the oscillations
in the plot, these results indicate that the two wavevectors develop with equal weight upon
cooling approximately starting at Tpe where the pseudogap develops (see below) [93].

In the spin-fermion model, dynamical observables can be easily calculated. In particular,
the density of states N(w) is shown in Fig. 2.8(c). This figure indicates the presence of a
Fermi-level pseudogap (PG) in a wide temperature range, in agreement with photoemission

and infrared experiments [94]. A zero temperature pseudogap is to be expected: Hartree-Fock
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Figure 2.8: (a) The MC structural transition temperature T vs. the orbital-lattice coupling
X6, at fixed Ggg = 0.16. The continuous line is the fit in Eq.(2.5), from the GL equations. (b)
Spin structure factor S(k) vs. temperature 7" for the two magnetic wavevectors of relevance.
Results were obtained via MC simulations on PBC 8x8 clusters. Tpg is the pseudogap
temperature [Fig. 2.8(c)]. (c) Density of states N(w) (symmetrized) from unrestricted MC
simulations on 8x8 clusters (gg=0.16; 5\66:0.12), at various temperatures. Results at
Ts=158 K are in red. Tpa~174 K (blue) is the crossover temperature where the pseudogap
opens at the Fermi level (i.e. at w-p=0.0) upon cooling.
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studies of the multiorbital Hubbard model [95] already detected such a feature. However,
our finite temperature studies reveal that upon cooling this pseudogap develops at a Tpqg
clearly above Ts. From the analysis of our results, the pseudogap is present when short-range
spin correlations are present [Fig. 2.8(b)]: the “nematic fluctuations” regime is basically the
range of temperatures where (7,0)/(0, 7) magnetic fluctuations exist. The coupling to the
lattice creates concomitant local orthorhombic distortions: it is important to remark that
the region between Ts and Tpg is tetragonal only on average [96]. All these results are in

good agreement with recent scanning tunneling spectroscopy studies of NaFeAs [97].

2.7 Conclusions

Our combined numerical and analytical study of the spin fermion model leads to results
in agreement with the experimentally measured nematic susceptibility of Ba(Fe;_,Co,)2Asy
[67]. For spins coupled to the lattice our spin-nematic susceptibility has a Curie-Weiss
behavior for T > Tg governed by a T* which we here identify as the critical Ty of the
purely electronic sector, which is preexisting to the introduction of the lattice. For realistic
nonzero electron-lattice couplings, the lattice induces a nematic/structural transition at a
higher temperature Tg. The addition of an orbital-lattice coupling Xes further increases T,
with a Curie-Weiss behavior that continues being regulated by 7.

Our main prediction is that whenever fluctuating nematic order is observed, inelastic
neutron scattering for the same sample should also reveal the existence of short-range
magnetic order: nematic fluctuations, pseudogap, and short-range antiferromagnetic order
should all develop simultaneously in these materials. Although the experiments in Ref. [67]
were conducted over a range of dopings, these numerical results were limited to the parent
compounds. Also, as stated in Sec. 2.1, this nematic susceptibility is dependent on an applied
strain which is different from the 1111 compounds and doped 122 materials. For this reason,

a model that can numerically study the doped 122 compounds will be the focus of Ch. 3.
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Chapter 3

Disorder Induced Nemacity

This chapter is a modified version of PHYSICAL REVIEW B 92, 104512 (2015) [98, 99].

3.1 Introduction

As previously mentioned in Sec. 1.4, the interaction among the many different DOF in
pnictides generates rich phase diagrams when varying temperature and doping [49]. In
addition to the superconducting phase, magnetic and nematic phases, accompanied by
structural distortions, have been identified [49, 67, 71, 100]. To properly address this
difficult problem it is necessary that the spin, orbital, lattice, and charge should all be
incorporated in a treatable model where their respective roles in the properties of these
materials can be monitored. Due to the complexity of the problem, most of the previous
theoretical studies have been performed either in the weak or strong coupling limits. In
weak coupling, the interactions among the electrons are considered small and the physical
properties are studied in momentum space in terms of itinerant electrons, with emphasis on
particular properties of their Fermi Surfaces (FS) such as nesting [33, 34, 36, 73, 75]. On
the other hand, the strong coupling approach is based on the experimental observation of
localized magnetic moments and on the fact that several properties of the pnictides can be
reproduced via Heisenberg models [31, 46, 74]. Both approaches were successful in the study
of the magnetic properties of the parent compounds, indicating that in these materials both

localized and itinerant magnetic moments are important. However, upon doping there are
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challenges explaining experimental data in both approximations. In particular, when doping
is achieved by chemical substitution of iron atoms the effects of disorder and dilution must
also be incorporated into the theoretical considerations.

The parent compound of the 122 family, BaFeyAsy, can be doped with electrons by
replacing Fe by a transition metal (TM) resulting in Ba(Fe;_,TM,)sAsy or with holes by
replacing Ba by an alkali metal (A) leading to Ba;_, A, FeaAsy [101]. It is also possible to dope
in an isovalent manner replacing, for example, Fe with Ru to obtain Ba(Fe;_,Ru,)oAsy [102].
Nominally, replacing Fe with Ru, Co, Ni, and Cu would introduce 0, 1, 2, and 3 electrons
per dopant atom. However, experiments indicate a difference between nominal doping z
and the measured doping concentration x,, usually determined using wavelength dispersive
x-ray spectroscopy (WDS) [49]. This means that in some cases, electrons may get trapped
by the doped impurities but this is still an area of controversy [103, 104, 105]. Chemical
substitution introduces an amount of disorder that is difficult to control experimentally. In
addition to electrons being trapped, other effects such as magnetic dilution and impurity
scattering may also occur [106].

In undoped 122 compounds the structural and the Néel transition temperatures, Tg
and T, are equal to each other. Upon electron doping both are rapidly reduced, with T
decreasing at an equal or slower rate than Ty [49, 102]. The reduction of these temperatures
is explained in weak coupling by a loss of F'S nesting induced by the electronic doping and
in strong coupling by magnetic dilution as in ¢-J models. However, these views seem to
be in contradiction with several experimental results. For example, in Ba(Fe;_,Ru,)2Ass,
which nominally does not introduce electronic doping and associated changes in F'S should
not be expected, both Ts and T decrease with doping and the material eventually becomes
superconducting [102]. In addition, doping with Co, Ni, and Cu is expected to introduce 1, 2,
and 3 extra electrons per doped atom. However, the experimentally observed reduction on Ty
and T was found to be primarily a function of the doping concentration x rather than of the
density of electrons [49, 107]. Experiments, thus, indicate that when dopants are introduced
directly on the Fe-As planes, as it is the case for electron-doped 122 materials, disorder
and dilution must play an important role [33, 34, 49, 108, 109, 110, 111, 112, 113]. Due to

the experimental uncertainty on the doping concentration and the nature of the disorder,
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a theoretical understanding of the phase diagrams under these challenging circumstances
is elusive. Density functional theory (DFT) studies indicated that the rigid band model is
insufficient to describe the carrier density [103], while first-principles methods found that
the interplay between on-site and off-site impurity potentials could induce FS distortions in
nominally isovalent doping [106]. Moreover, a calculation considering two-orbiton processes
predicts a non-symmetric impurity potential which could be responsible for the observed
transport anisotropies [33, 34].

In this Chapter, the effects of electron doping in the 122 pnictides will be studied
numerically using a spin-fermion model (SFM) for the pnictides [52, 57, 61] including the
lattice DOF [79]. The SFM considers phenomenologically the experimentally motivated
evidence that requires a combination of itinerant and localized DOF to properly address the
iron-based superconductors [12, 51, 114, 115]. The itinerant sector mainly involves electrons
in the zz, yz, and xy d-orbitals [56], while the localized spins represent the spin of the other
d-orbitals [52, 57], or in a Landau-Ginzburg context it can be considered as the magnetic
order parameter.

The focus of this effort will be on the structural and the Néel transitions, and the
properties of the resulting nematic phase that will be monitored as a function of the electronic
and impurity densities. Earlier studies performed in the undoped parent compounds
indicated that the coupling between the lattice orthorhombic distortion €g6(i), associated to
the elastic constant Cgg, and the spin-nematic order parameter W; stabilizes the orthorhombic
(7, 0) antiferromagnetic (AFM) ground state [79] with Ts = T as in the 122 materials [49].
The small separation between Ts and T observed in the parent compounds of the 1111
family [30] was found to be regulated by the coupling of the lattice orthorhombic distortion
to the orbital order parameter ®; [79].

The effect of disorder in iron superconductors has been studied before using mainly
analytical or semi-analytical techniques and primarily in the context of Fermi Surface
nesting (for a partial list of references see Refs. [116, 117]). However, ours is the first
time that electronic doping supplemented by quenched disorder and dilution effects is
computationally studied in a system that includes magnetic, charge, orbital, and lattice

DOF. Our numerical approach involves Monte Carlo (MC) calculations on the localized spin
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and lattice components, combined with a fermionic diagonalization of the charge/orbital
sector. Technically, we also employ twisted boundary conditions (TBC) (See Ref. [89] and
Ref. [61]) and the Traveling Cluster Approximation (TCA) is implemented (See Ref. [86] and
Ref. [87]) in order to study large clusters of size 64 x 64, a record for the spin-fermion model.
This numerical approach allows us to incorporate the effects of in-plane chemical doping
and to gather results for temperatures above T, where all DOF develop strong short-range
fluctuations [73, 96], a difficult regime for other many-body procedures. Our main conclusion
is that disorder and dilution are needed to stabilize the broad nematic phase in 122 materials
observed experimentally. That a critical temperature such as T decreases faster with doping
by including disorder than in the clean limit is natural [118, 119], but our most novel result
is the concomitant stabilization of a nematic regime. In other words, Ty and Ty are affected
differently by disorder/dilution. Isotropic dopant profiles are sufficient to obtain these results.
Our analysis illustrates the interdependence of the many degrees of freedom present in real
materials and the need to study models with robust many-body techniques to unveil the
physics that emerges in these complex systems.

The organization of this Chapter is as follows: the model is described in Sec. 3.2 and
the computational methods are presented in Sec. 3.3. Sec. 3.4 is devoted to the main results
addressing the phase diagram upon doping. Sec. 3.5 describes the properties of the nematic
phase stabilized in our study, including a comparison with neutron scattering and scanning

tunneling microscopy experiments. The discussion and summary are the scope of Sec. 3.6.

3.2 Model

3.2.1 Hamiltonian

The spin-fermion model studied in this chapter is based on the Hamiltonian outlined in
Sec. 2.2 and further details can be found in Appendix A. This Hamiltonian consists of the
original purely electronic model [52, 57, 61] supplemented by the addition of spin couplings
to the lattice degrees of freedom [61, 68]:

HSF = HHopp + HHund + HHeis + HSL + HStiff- (31)
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Hyopp is the three-orbitals (d,., dy., ds,) tight-binding Fe-Fe hopping of electrons, with the
hopping amplitudes selected to reproduce ARPES experiments [56]. These amplitudes can
be found in Eqs.(A.3-A.5) and Table A.1 of Appendix A. The average density of electrons
per iron and per orbital is n=4/3 in the undoped limit [56] and its value in the doped case is
controlled via a chemical potential included in Hypp [68]. The Hund interaction is standard:
Huywma=—Ju Zm S; - Si.a, with S; the localized spin at site i (with magnitude 1) and s; ,, the
itinerant spin corresponding to orbital a at the same site [120]. Hpyejs contains the Heisenberg
interaction among the localized spins involving both nearest-neighbors (NN) and next-NN
(NNN) interactions with respective couplings Jyn and Jynn, and a ratio Jynn/Jan = 2/3
(any ratio larger than 1/2 would have been equally effective to favor “striped” spin order).
For specific details see Sec. 3.3 below. Having NN and NNN Heisenberg interactions of
comparable magnitude arise from having comparable NN and NNN hoppings, caused by the
geometry of the material since this is mediated via the As atoms, and NN and NNN hopings
cover roughly the same distance.

The coupling between the spin and lattice degrees of freedom is given by Hgp,=
—ge6 »_; Vices(1) [36, 75], where gg is the spin-lattice coupling [84]. The spin nematic

order parameter is defined as
U; = S; - Sity — Si - Sigxs (3.2)

where x and y are unit vectors along the z and y axes, respectively. This order parameter
becomes 2 in the perfect (7,0) state. The lattice €g6(i) degree of freedom related to the
tetragonal to orthorhombic distortion has a more complex definition in terms of the positions
of the As or Se atoms, and its precise definition can be found in Ref. [79]. Hgyg is the
lattice stiffness given by a Lennard-Jones potential that speeds up convergence, as previously
discussed [68].

Note that the lattice-orbital coupling term, Hop=—\)_; ®iegs(i) [68], with the orbital

nematic order parameter defined as

(I)i = Nixz — Niyz, (33)
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where ny, and ny, are the number operators for the orbitals indicated, is omitted because
previous work indicated that A induces a (small) nematic phase with Ts > Ty directly in the
parent compounds [68, 79]. Since the goal of the present effort is to study the 122 family,
characterized by Ts = Ty in the undoped case, then this term is not included to reduce the

number of parameters.

oS, OS\ww OSuw

Figure 3.1: Internal structure of dopant sites. Sketch shows the location of a dopant
where the magnitude of the localized spin, Si, is reduced from the original value S. In
addition, the neighboring localized spins are also assumed to be affected by the presence
of the dopant. The four immediate nearest-neighbors have a new localized spin magnitude
Snn, while the four next nearest-neighbors have a new localized spin magnitude Synn, such
that S < Syn < Snywn < S (S is the undoped localized spin magnitude, assumed to be 1 in
this publication unless otherwise stated).

We also wish to clarify that when varying the global chemical potential, thus modifying
the electronic density, we assume that all couplings are unaffected. In particular, since the
orbitals that induce the localized spins are assumed to be weakly affected by modifications
in the position of the Fermi level, then there is no obvious reason to modify Jyy and Jynn
with increasing electron doping. This is similar as in studies of manganites via the double-

exchange model where with doping the couplings of the t,, sector are assumed to be fixed [82].
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3.2.2 Quenched Disorder and Dilution

On-site diagonal disorder is introduced through an impurity potential I;(iz) by adding this
same value of potential to N; randomly selected sites i; where transition metal atoms replace
Fe. The density of impurity atoms x is defined as x = N;/N, where N is the total number of
lattice sites. In addition, the value of the localized spin at the impurity site, Sy, is reduced
since, for example, Co dopants in BaFeyAsy are non-magnetic [121]. This effectively reduces
the local Hund coupling Ji; and the spin-lattice coupling ges(i) at the impurity sites. We
also will study the effect of extending the spatial range of the impurity by reducing the
values of the localized spins to Syn (Snnn) at the NN (NNN) of the impurity sites with
the corresponding effective decrease in Jy and ggs at those sites (see Fig. 3.1). Thus, off-
diagonal isotropic disorder results from the effective reduction of the Heisenberg couplings
at the bonds connecting the impurity sites and their neighbors [120]. Note that off-diagonal
disorder could also be introduced in the eight hopping amplitudes present in Hyop, [68] but

for simplicity we decided not to consider hopping disorder at this time.

3.3 Methods

The Hamiltonian in Eq.(3.1) was studied via Monte Carlo methods explained in Ref. [82]
and Ch. 7 of Ref. [85] and are applied to (i) the localized (assumed classical) spin degrees
of freedom S; and (i) the atomic displacements that determine the local orthorhombic
lattice distortion eg6(i) [68, 79]. For each Monte Carlo configuration of spins and atomic
positions the remaining quantum fermionic Hamiltonian is diagonalized. The simulations
are performed at various temperatures, dopings, and disorder configurations and local and
long-range observables are measured. Note that with the exact diagonalization technique
results can be obtained comfortably only on up to 8 x 8 lattices, which may be too small
to provide meaningful data at the low rates of doping relevant in the pnictides. For this
reason we have also used the Traveling Cluster Approximation (See Ref. [86] and Ref. [87])
where a larger lattice (64 x 64 sites in most of this effort) can be studied by performing the
MC updates via a traveling cluster centered at consecutive sites i, with a size substantially

smaller than the full lattice size of the entire system. Twisted boundary conditions were
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also used (See Ref. [89] and Ref. [61]) to obtain (almost) a continuum range of momenta.
For simplicity, most couplings are fixed to values used successfully before [61]: Jy=0.1 eV,
Jan=0.012 eV, and Jynn=0.008 eV. The dimensionless version of the spin-lattice coupling
ges is fixed to 0.16 as in Ref. [79]. The focus of the publication is on the values for the
parameters associated with disorder and the corresponding physical results, as discussed in
the sections below.

An important technical detail is that to improve numerical convergence, and to better
mimic real materials that often display an easy-axis direction for spin orientation, we have
introduced a small anisotropy in the x component of the super-exchange interaction so that

the actual Heisenberg interaction is:

Hpeis = Jan Y _(Si - S + 05757
(ij)
+Ixan Y (St S +0S7SE,),
((im))

(3.4)

with 0 = 0.1. This anisotropy slightly raises Ty, but the magnetic susceptibility yg becomes
much sharper at the transition temperatures, facilitating an accurate determination of Ty.
It is important to clarify that the easy-axis anisotropy affects the direction in which the spins
order, but by no means breaks explicitly the C) lattice rotational invariance that is related
to nematicity via its spontaneous breaking. In other words, we have checked explicitly that
perfect (,0) and (0,7) localized spins configurations have identical energy if their spins are
oriented along the same axis, either the easy-axis which minimizes the global energy or any
other. Of course if, say, (7,0) is oriented along the x axis and (0,7) along the z axis then
there is an energy difference, but as long as the spin orientations are the same then the
expected degeneracies are present. In fact, previously theoretical studies of nematicity have
been performed even in the extreme Ising limit [122].

The Monte Carlo simulations with the TCA procedure were mainly performed using
64 x 64 square lattices [123]. Typically 5,000 MC steps were devoted to thermalization
and 10,000 to 25,000 steps for measurements at each temperature, doping, and disorder

configuration. The results presented below arise from averages over five different disorder
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configurations. The expectation values of observables remain stable upon the addition of
extra configurations due to self-averaging. The magnetic transition was determined by the

behavior of the magnetic susceptibility defined as

Xs(r0) = NB(S(m,0) — (S(r,0)))%, (3.5)

where = 1/kgT, N is the number of lattice sites, and S(m,0) is the magnetic structure
factor at wavevector (m,0) obtained via the Fourier transform of the real-space spin-spin
correlations measured in the MC simulations. The structural transition is determined by the

behavior of the lattice susceptibility defined by

xs = NB(d —(6)), (3.6)

ag—ay)

where § = Ea o and a; is the lattice constant along the ¢ = x or y directions. These lattice
Ty

constants are determined from the orthorhombic displacements egg(i) [68].

3.4 Results

Our first task is to understand the effect of doping and disorder on the magnetic and
structural transitions. For this purpose, we studied the evolution of Ty and Ty vs. doping

concentration under different disorder setups.

3.4.1 Clean limit

Consider first the “clean limit”. The red squares in Fig. 3.2 show the evolution of T and
Ts when the electronic doping does not introduce disorder. In this case Ty is hardly affected
and it continues to be equal to T for all dopings investigated here. This result indicates
that the reduction of Ty and T, and the stabilization of a nematic phase in between the two
transitions observed experimentally upon electron doping [49], does not emerge just from the
reduction of Fermi Surface nesting induced by the electronic doping. This conclusion is not

surprising if we recall that the undoped N-site lattice has 4N electrons which means that
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for z = 10% the number of added electrons is N, = 0.1N and, thus, the percentual change
in the electronic density is just 100 x (0.1N/4N) = 2.5%. Such a small percentual variation
in the electronic density should not produce substantial modifications in the Fermi Surface,
explaining why the changes in nesting are small and, thus, why the critical temperatures
are not significantly affected. In fact, we have calculated explicitly the Fermi Surface and
confirmed that it hardly changes in the range of doping studied and in the clean limit. Then,
disorder and dilution are needed to understand the experiments within the context of the

spin fermion model.
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Figure 3.2: Clean limit and effect of Co doping. The clean limit results (open and solid red
points) indicate that Ts = T and both are approximately constant in the range studied. For
Co doping, the Néel temperature T (open circles and black dashed line) and the structural
transition temperature T (filled circles and black solid line) vs. the percentage of impurities
x are shown. The on-site disorder is I = —0.1 and the off-diagonal disorder is determined
by St = 0, Sxy = S/4, and Sxnn = S/2. For both sets of curves, i.e. with and without
quenched disorder, the density of doped electrons equals x to simulate Co doping. The
cluster used has a size 64 x 64.

3.4.2 Co doping

To study the effect of quenched disorder, let us first focus on Co doping, which nominally
introduces one extra electron per dopant. In Fig. 3.2, the Néel and structural transition

temperatures are presented for the case where one extra electron is contributed by each
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replaced iron atom, which means that x = n, where n is the density of added electrons and
x is the density of replaced iron atoms. We considered several possible values for the on-site
impurity potential and spin values near the impurity (see details discussed below) and we
found that the experimental data of Ref. [49] were best reproduced by setting the on-site
impurity potential as Iy = —0.1 (in eV units) [124] and by using S; = 0 at the impurities
since there is evidence that Co doped in BaFesAs, is non-magnetic [121]. This effectively sets
to zero the Hund coupling Jy 1 and the spin-lattice coupling ggs(I) at the impurity sites. In
addition, we also reduced the localized spins to S/4 (S/2) at the NN (NNN) of the impurity
sites with the corresponding effective decreased in Jy and ggs at those sites. The overall
chemical potential 1 was adjusted so that the density of added impurities equals the density

of added electrons, which corresponds to an ideal Co doping [49].
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Figure 3.3: The magnetic susceptibility (open black symbols) and the lattice susceptibility
(filled red symbols) vs. temperature. The sharp peaks indicate the Néel temperature T and
the structural transition temperature T for the case of 5% Co-doping. The on-site disorder
is I1 = —0.1 and the off-diagonal disorder is defined by S; = 0, Sxy = S/4, and Synn = S/2.
The cluster used is 64 x 64.

The black filled (open) circles in Fig. 3.2 show the evolution with impurity doping of
the structural (Néel) transition temperatures in the presence of the disorder caused by
replacing Fe by Co at random sites. The magnetic dilution induced by doping causes a rapid
reduction in T and Ty, similarly as observed in experiments [49], and remarkably also opens

a robust nematic phase for Ty < T < Ts since disorder affects differently both transition
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temperatures. In fact, the separation between Ty and Ty is very clear in the magnetic and
lattice susceptibilities that are displayed for 5% doping, as example, in Fig. 3.3. The magnetic
properties of the different phases are also clear by monitoring the behavior of the real-space
spin-spin correlation functions presented in Fig. 3.4. In panel (a) for T = 120 K (T > T§) the
spin correlations effectively vanish at distances larger than two lattice constants and there is
no difference between the results along the x and y axes directions, indicating a paramagnetic
ground state. However, at T'= 95 K (Ty < T < Tg), panel (b), the correlations now display
short-range AFM (FM) order along the x (y) directions demonstrating the breakdown of
the rotational invariance that characterizes the nematic phase, but without developing long-
range order as expected. Lowering the temperature to T = 80 K (T" < Ty), panel (c), now
the correlations have developed long range (7, 0) order, as expected in the antiferromagnetic
ground state. To our knowledge, the results in figures such as Fig. 3.2 provide the largest
separation between T and Ty ever reported in numerical simulations of realistic models for

iron-based superconductors.
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Figure 3.4: Real-space spin-spin correlation functions vs. distance on a 64 x 64 lattice;

(a) corresponds to T = 120 K (7" > Ts) in the paramagnetic regime, (b) to 7' = 95 K
(Ty < T < Ts) in the nematic state, and (¢) to T' = 80 K (7" < Ty) in the long-range
ordered magnetic state. The AFM correlations along x are indicated with solid circles while
the FM correlations along y are denoted with open circles. The results are for 5% Co-doping
with off-diagonal disorder set by S; = 0, Sxy = S/4, and Syny = S/2.

3.4.3 Cu doping

Let us consider now the effect of doping with Cu which, nominally, introduces three electrons
per doped impurity [49]. For this purpose we increased the chemical potential at a faster
rate so that the added density of electrons is n = 3z, instead of n = z as for Co doping. The
results are shown in Fig. 3.5. When the critical temperatures for both Cu and Co doping
are plotted as a function of the density of impurities z, in Fig. 3.5(a) it can be seen that
the results are approximately independent of the kind of dopant. This indicates that the
critical temperatures are primarily controlled by the amount of quenched disorder (namely,
by the number of impurity sites) rather than by the actual overall electronic density, at
least in the range studied. This conclusion is in excellent agreement with the experimental
phase diagrams [19] shown, for example, in Fig. 3.6(a), for the case of several transition metal

dopants. Thus, working at a fixed electronic density n, the values of Ty and T are smaller for
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the case of Co doping than for the case of Cu-doping, as shown in Fig. 3.5(b), because more
Co than Cu impurities have to be added to achieve the same electronic density, underlying
the fact that Co doping introduces more disorder than Cu doping at fixed n. These results

are also in good agreement with the experimental phase diagram in Fig. 3.6(b).
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Figure 3.5: Contrast of effects of Cu and Co doping. The Néel temperatures Ty (dashed
lines) and the structural transition temperatures Ts (solid lines) for Co doping (black open
and solid circles) and for Cu doping (blue open and solid triangles) are shown. Results are
presented first (a) vs. the impurity density x and second (b) vs. the added electronic density
n. The off-diagonal disorder is set at S; = 0, Sxy = S/4, and Sxnny = S/2. The cluster size
is 64 x 64.
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Figure 3.6: (a) Temperature (K) vs number of dopants (x) phase diagrams for
Ba(Fe;_,TM,)2Asy where TM=Co, Ni, Cu, Co/Cu. (b) The same as figure (a) however
instead of the x-axis being the added dopants (x), the x-axis is the number of added electrons
per Fe/TM. This figure is reproduced from Ref. [49].

3.4.4 Dependence on impurity characteristics

Let us consider the dependence of the Néel and the structural transitions temperatures on
the local details of the magnetic dilution caused by the disorder. In Fig. 3.7 results for
Ty and Ts are shown as a function of impurity doping with the chemical potential set to
introduce one electron per dopant. The clean limit data (red squares, case I) is displayed
again for the sake of comparison. The blue triangles (case II) are results for I; = —0.1eV
and S = S/2, leaving Syny and Synn untouched (i.e. equal to S). This ultra local magnetic

dilution induces effective NN and NNN reductions in the Heisenberg couplings accelerating
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the rate of decrease of the critical temperatures. However, the nematic phase is still not
stabilized and, thus, it does not reproduce the experimental behavior for the Co-doped
parent compound. Reducing S; to zero, as indicated by the green diamonds in the figure
(case IIT) and keeping Sxn and Syny untouched, slightly increases the rate of reduction of
the critical temperatures with doping and stabilizes the nematic phase only after a finite
amount of doping x ~ 10% has been added but in a very narrow range of temperature. The
conclusion of cases I, II, and III is that a very local description of the dopant is insufficient

to reproduce experiments.

x % doping

Figure 3.7: Dependence of results with impurity characteristics. The Néel transition
temperature Ty (dashed lines) and the structural transition temperature Ts (solid lines)
vs. the percentage of impurities = for different settings of the off-diagonal disorder. Case
I corresponds to the clean limit with no impurity sites (red squares). Case II has S;=S5/2
and Sxy=Snnn=9S untouched (blue triangles). This case may be sufficient for Ru doping,
which is magnetic. Case III has Sj=0 and Sxy=Snyn=29 untouched (green diamonds). Case
IV has S1=5/2, Syn=0.75, and Sxyn=0.95 (purple upside-down triangles). Finally, Case
V has S1=0, Sx\y=5/4, and Synn=S5/2 (black circles). Case V appears to be the best to
describe experiments for non-magnetic doping. The density of doped electrons equals x as in
Co doping. In all cases the on-site disorder potential is kept fixed at I} = —0.1. The lattice
size is 64 x 64.

We have found that in order to generate a robust nematic phase upon doping, extended
effects of magnetic dilution must be considered. The upside-down purple triangles (case IV)

in Fig. 3.7 show results for Sy = 5/2, Sxy = 0.75, and Syny = 0.9S. The nematic regime is
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still too narrow. But the results for S; = 0 with Sxy = S/4 and Sxnn = S/2 (black circles,
case V), already shown in Fig. 3.2, indicate that increasing the strength of the extended off-
diagonal disorder does induce a faster reduction of the critical temperatures and stabilizes
a larger nematic region. Our computer simulations suggest that the range and strength of
disorder, specifically the extended magnetic dilution, is crucial for the stabilization of the
nematic phase when Ty = T in the parent compound.

We have observed that the effect of the on-site impurity potential I7 is weak. In principle,
we could have kept the overall chemical potential ;1 fixed and control the added electronic
density n by merely adjusting the values of the impurity potential. However, this does not
induce noticeable changes in the critical temperatures, due to the small overall modifications
in the electronic density discussed before. This is not the manner in which doping seems to
act in the real electron-doped pnictides. Thus, we believe that working with a fixed value of
the impurity potential and adjusting the electronic density with the overall chemical potential
allows to study the effects of isotropic quenched disorder and varying electronic density in a

more controlled and independent way.
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Figure 3.8: Phase diagram of Ba(Fe;,Ru,)2Asy showing the structural-magnetic transition
Ts_n (blue) and critical temperatures T, (red) versus Ru content xg,. Values of T. are
taken at the midpoint of superconducting transitions. This figure is a reproduction from
Ref [102].

Considering the negligible effect on the critical temperatures caused by pure electronic

doping (clean limit) and, by extension, the on-site impurity potential, the results in
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Fig. 3.7 shed light on the case of isovalent doping in which Fe is replaced by Ru. This
procedure introduces disorder but, at least nominally, no electronic doping. Experimental
efforts have observed that in this case Ty and Ty still decrease with doping, despite no
apparent changes in the Fermi surface, but at a slower rate than with non-isovalent doping.
Moreover, the critical temperatures do not separate from each other, i.e., no nematic phase is
stabilized [102]. Our results lend support to the view that the decrease of Ty and T's observed
with Ru-doping is mainly due to the magnetic dilution introduced by doping rather than
by more subtle effects on the electronic density which in turn would affect the nesting of
the F'S [103, 104, 105, 106]. Experiments have determined that doped Ru is magnetic [125],
which would translate to larger values of Sp, Sy, and Synn in our model. In fact, the blue
triangles (case II) in Fig. 3.7 qualitatively capture the slower decrease rate and negligible
separation with impurity doping for Ty and Ts experimentally observed for Ru doping [102]
shown in Fig. 3.8.

3.5 Properties of the Nematic Phase

Having stabilized a robust nematic regime, let us study its properties.

3.5.1 Neutron scattering

Considering the importance of neutron scattering experiments in iron superconductors, we
studied the electronic doping dependence of the magnetic structure factor S(k) obtained
from the Fourier transform of the real-space spin-spin correlation functions displayed in
Fig. 3.4. Experiments indicate that the low-temperature magnetic phase below T = Ty in
the parent compound develops long range AFM (FM) order along the long (short) lattice
constant direction in the orthorhombic lattice. This results in a sharp peak at k = (7, 0) (or
at (0,7) depending on the direction of the AFM order) that forms above the small spin-gap
energy [101]. More importantly for our discussion and results, upon electron-doping the
(7, 0) neutron peak becomes broader along the direction transverse to the AFM order in the

whole energy range [101], creating an intriguing transversely elongated ellipse.
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Figure 3.9: Magnetic and nematic order in the paramagnetic regime. The results are for
5% Co-doping at T' = 120 K (T > Ts) and using a 64 x 64 lattice. (a) The magnetic structure
factor S(k), showing that the wavevectors (7, 0) and (0, 7) have similar intensity. (b) Monte
Carlo snapshot of the spin-nematic order parameter with approximately the same amount
of positive (green) and negative (orange) clusters. The impurity sites are indicated by black
dots.

The results obtained numerically for 5% Co-doping are shown in Fig. 3.9 for T'= 120 K
(T > Ts), i.e. in the paramagnetic phase. In panel (a) peaks in the spin structure factor S(k)
(that represents the integral over the whole energy range of the neutron scattering results)
with similar intensity at wavevectors (m,0) and (0,7) can be observed. Both of these peaks
are elongated along the direction transversal to the corresponding spin staggered direction, in
agreement with neutron scattering [101]. Our explanation for these results within our spin-
fermion model is not associated with Fermi Surface modifications due to electron doping,

since the percentual doping is small as already discussed, but instead to the development
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of spin-nematic clusters, anchored by the magnetically depleted regions that form at the
impurity sites. A Monte Carlo snapshot of the spin-nematic order parameter W; on a 64 x 64
lattice is shown in panel (b) of Fig. 3.9. Since T" > T, patches with (m,0) and (0, )
nematic order, indicated with green and orange in the figure, coexist in equal proportion.
By eye inspection, we believe that the (7, 0) patches tend to be slightly elongated along the
x direction, while the (0, 7) patches are elongated along the y direction. This asymmetry
could be the reason for the shape of the peaks in the structure factor displayed in panel
(a), since elliptical peaks can be associated to different correlation lengths along the x and y
axes. In Fig. 3.9(a) the elliptical (7, 0) peak has a correlation length larger along the x axis
than the y axis.
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Figure 3.10: Magnetic and nematic order in the nematic regime. The results are for 5%
Co-doping at T' = 95 K (Ty < T < Ts) and using a 64 x 64 lattice. (a) The magnetic
structure factor S(k) is shown, with clear dominance of the (7,0) state. (b) Monte Carlo
snapshot of the spin-nematic order parameter. Impurity sites are indicated by black dots. A
positive nematic order (green) dominates, but there are still small pockets of negative order
(orange). (c) Monte Carlo snapshot displaying the on-site component along the easy axis,
S,, of the localized spin multiplied by the factor (—1)'=, with i, the z-axis component of
the location of site i. Both the dominant blue and red clusters indicate regions with local
(7,0) order, but shifted by one lattice spacing. This shift suppresses long-range order when
averaged over the whole lattice, but short-range order remains. Impurity sites are denoted
as black dots.

The results corresponding to lowering the temperature into the nematic phase (7' = 95 K)
are presented in Fig. 3.10. In this case the subtle effects already observed in the paramagnetic
phase are magnified. In panel (a), it is now clear that the peak at (m,0) has developed a
much larger weight than the peak at (0, ), as expected. Moreover, the elongation along the
transversal direction already perceived in the paramagnetic state is now better developed.

The Monte Carlo snapshot of the spin-nematic order parameter in panel (b) shows that the
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(m,0) (green) regions prevail over the (0,7) (orange) regions, indicating that the symmetry
under lattice rotations in the nematic phase is spontaneously broken. In addition, now the
elongated shape of the (7, 0) green clusters along the AFM direction is more clear to the eye.
But despite the prevalence of (7, 0) clusters the system does not develop long-range magnetic
order (compatible with panel (b) of Fig. 3.4). This is because the many (7,0) clusters are
actually “out of phase” with each other. This is understood via the visual investigation of
Monte Carlo snapshots, as in panel (c¢) of Fig. 3.10, where it is shown the component of
the localized spins along the easy axis, S,, multiplied by a factor (—1)! (see definition in
caption; the location of the impurities is indicated with black dots). The abundant red and
blue patches all indicate clusters with local (7, 0) nematic order, but shifted one with respect
to the other by one lattice spacing. The very small regions with (0, 7) order, as in the orange
regions of panel (b), can be barely distinguished in panel (c¢) with a checkerboard red/blue

structure.

3.5.2 Scanning Tunneling Microscopy

The real space structure of the (m,0) nematic clusters obtained numerically, with an
elongation along the x axis, can be contrasted with Scanning Tunneling Microscopy (STM)
measurements. In fact, STM studies of Co-doped CaFeyAs, at 6% doping [109, 110] have
already revealed the existence of unidirectional electronic nanoestructures. These STM
structures appear to have an average length of about eight lattice spacings along the AFM
direction and it was argued that they may be possibly pinned by the Co atoms. The picture
of elongated structures along the x axis is consistent with our results, as shown in panel
(b) of Fig. 3.10. However, in our simulation the nematic structures are mainly located in
between, rather than on top, the Co dopants. In our case this arises from the fact that the
effect of disorder considered here reduces the magnetic interactions at the Co or Cu dopant
sites because they are not magnetic.

A recently discussed new perspective is that the nematic state could be a consequence of
anisotropic dopant-induced scattering rather than an intrinsic nematic electronic state [108,
126], by studying the anisotropy in the optical spectrum [108] and in the in-plane
resistivity [126] varying Co doping in BaFe;As;. The main argument to attribute the
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observed anisotropies to extrinsic effects of Co doping is that the anisotropy increases
with doping despite the fact that the spin order weakens and the lattice orthorhombicity
diminishes. Our results, by construction, were obtained with impurity profiles that are
symmetric under rotations of the lattice, so nematicity is not induced by asymmetric
Co doping characteristics. However, we agree with the above described experimental
observations that quenched disorder introduced by the dopants is crucial for the stabilization
of the nematic phase, otherwise in the “clean limit” there is no difference between Ty and
Ty as already explained.

In our simulation, the nematic phase develops because the in-plane dopants allowed the
formation of cigar-shaped nematic domains. These domains have shifts in their respective
AFM orders, as it can be seen in panel (c) of Fig. 3.10. For the 122 compounds, the dopants
enhance the (weak) electronic tendency to nematicity, while according to our previous
calculations [79] in the parent compound of materials in the 1111 family, such as ReFeAsO
(Re= La, Nd, Sm), a small temperature range of nematicity can be provided by the coupling
between the lattice and the orbital degrees of freedom. This view may be supported by
studies of the phonon modes in the 1111 materials [127]. Note also that atomic-resolution
variable-temperature Scanning Tunneling Spectroscopy experiments performed in NaFeAs,
which has Ts > Ty, and in LiFeAs, which does not develop neither magnetic order nor a
structural transition, indicate that cigar-like nematic domains develop in the nematic phase

of NaFeAs regardless of the symmetry of the impurities observed in the samples [97].

3.6 Discussion and Conclusions

In the results discussed in this Chapter, the effects of electron doping in materials of the
122 family, such as BaFeyAsy, have been investigated via numerical studies of the spin-
fermion model, including charge, orbital, magnetic, and lattice degrees of freedom. These
materials are electron doped via the in-plane replacement of iron atoms by transition
metals, introducing disorder and dilution effects in the iron layers. The results of our
study suggest that the experimentally observed reduction of the magnetic and structural

transition temperatures upon doping, in such a manner that T < Ty, is primarily triggered
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by the influence of disorder/dilution associated with the chemical substitution of magnetic
Fe atoms by non-magnetic dopants such as Co [121] and Cu [128] as can be seen in Fig. 3.6.
More specifically, reducing the magnitude of the localized spins at and near the dopants
rapidly reduces the values of both transition critical temperatures. A “patchy” nematic
phase is stabilized, which is characterized by a majority of clusters with (7, 0) order. These
patches have out-of-phase magnetic order separated by non-magnetic regions anchored by
the impurities. While the tendency to nematicity is already a property of the purely
electronic spin-fermion model, as already discussed in previous studies [79], the present
spin-fermion model investigations suggest that for the 122 materials this fragile tendency
would not materialize into a robust nematic phase without the influence of disorder/dilution.
Compatible with this conclusion, BaFey(As;_,P,)s (considered among the “cleanest” of
doped pnictides since, for example, quantum oscillations were observed [129]) has a splitting
between Ts and Ty which is very small (if any).

Note that a mere change in chemical potential to increase the electronic doping, without
adding quenched disorder/dilution effects, does not stabilize a nematic regime in our model
and induces a very small decrease in the transition temperatures. This suggests that
nesting effects may not play a major role in the opening of a robust nematic window with
doping in 122 materials. Our results can also rationalize the slower decrease of the critical
temperatures, and lack of separation between T and Tg, observed upon Ru doping. In this
case experiments have shown that Ru dopants in 122 materials are magnetic [125], contrary
to the non-magnetic nature of Co and Cu dopants. Thus, in our study the values of the
Hund and Heisenberg couplings would have to be only slightly reduced at the impurity sites.
As shown in Fig. 3.7, this will reduce the rate of decrease, as well as the separation, of Ty
and Ts. The same effect may explain why Ty = Ts and the decrease rate is slower in hole
doped systems where the holes are introduced by replacing Ba atoms reducing the effects of
disorder/dilution directly in the iron layers.

In addition, the observed clusters are elongated along the AFM direction, results
compatible with observations in STM experiments. Within the spin-fermion model, the
cigar-like shape of the clusters arises because the nearest-neighbor couplings are AFM and,

thus, fluctuations are expected to be larger along the FM (frustrated) direction which reduces
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the associated correlation length. Another consequence of this behavior is the oval shape
observed for the weight distribution of the magnetic structure factor around the momenta
(r,0) and (0,7) for " > Ty, in agreement with the distribution observed in the electron-
doped case in neutron scattering experiments.

In summary, this chapter reports the first computational study of a realistic model for
pnictides that reproduces the rapid drop of Ty and Ts with the chemical replacement of Fe
by transition metal elements such as Co or Cu. Since disorder and dilution affect differently
Ty and Ts, a robust nematic regime is stabilized. The key ingredient is the introduction
of impurity profiles that affect several neighbors around the location of the dopant. Fermi
Surface nesting effects were found to be too small to be the main source responsible for the
fast drop of critical temperatures, at least in our model. In real systems it is conceivable
that a combination of Fermi Surface nesting effects and disorder/dilution effects could be
simultaneously at play. Our results are also compatible with neutron scattering and also with
Scanning Tunneling Microscopy. Considering the present results for doped systems, together
with the previously reported results for the parent compounds in Ch. 2 and Ref. [79], it can
be concluded that the spin-fermion model captures the essence of the magnetic properties of
the pnictide iron superconductors. This, however, is not true of the iron chalcogenide, FeTe,
whose magnetic order and structural distortion are different. In the next Chapter, a spin
fermion model will be proposed that can reproduce these properties through a symmetry

argument similar to the one used to capture the properties of the pnictides.
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Chapter 4

Bicollinear Magnetic order and

Monoclinic Lattice Distortion in Iron

Telluride

This chapter is a modified version of PHYSICAL REVIEW LETTERS 117, 117201 (2016)
[43, 130].

4.1 Introduction

The chalcogenide FeTe is an unusual member of the iron-based superconductors family [12,
70, 131, 132]. Angle-resolved photoemission (ARPES) [133] for FeTe revealed substantial
mass renormalizations indicative of electrons that are more strongly interacting than in
pnictides (see also Ref. [134]). The absence of Fermi surface (FS) nesting instabilities was
also established [135, 136]. Moreover, using single-crystal neutron diffraction, “bicollinear”
magnetism was reported in FeTe [41, 137]. This exotic antiferromagnetic (AFM) state is
known as the E-phase in manganites [82]. Phenomenological approaches rationalize the
bicollinear state based on Heisenberg J;-Jo-J3 models [138] if the furthest distance coupling
J3 is assumed to be robust. Effective spin models [138, 139] are certainly valid descriptions
after the lattice distortion occurs, but they do not illuminate the fundamental reasons for

the bicollinear state stability [140, 141, 142].
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Upon cooling, experimentally the bicollinear state is reached via a robust first-order
phase transition [41, 137, 143, 144], with a concomitant tetragonal (7ea) to monoclinic
(Mono) lattice distortion. The reported distortions in Fejg7¢Te and FeqggsTe are dy =
larr—bar|/(an+bas) ~ 0.007 [41, 137] (aps and by are the low temperature lattice parameters
in the Mgy, notation). This distortion is comparable to the orthorhombic (Oyy) lattice
distortion in BaFeyAsy [145] 0o = |ao — bo|/(ao + bo) ~ 0.004 (now with ap and by the
low temperature lattice parameters in the Oy, notation). Since the lattice is considered
a “passenger” in the pnictides, it may be suspected that it also plays a secondary role for
chalcogenides [146].

Contrary to this reasoning, here we argue that the lattice may play a more fundamental
role in FeTe than previously anticipated. Specifically, we construct a spin-fermion (SF) model
where lattice and spins are coupled in a manner that includes the M,,, distortion of FeTe.
Using Monte Carlo techniques, we found a strong first-order 7o, to Mgy, lattice transition,
as in experiments [41, 137]. Moreover, the bicollinear magnetic order spontaneously arises
at the same critical temperature. All this is achieved with a (dimensionless) spin-lattice
coupling g2 2 0.10 — 0.25 (defined in Appendix E) that is not strong. Surprisingly, we
also find the same puzzling reversed anisotropy in the low temperature resistivity recently
reported [147, 148], with the AFM direction more resistive than the ferromagnetic (FM),

contrary to results in pnictides (See Fig. 4.1).
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Figure 4.1: (Left) Plot Showing the resistance measured along the AFM(p, in green) and
FM(py in red) directions for BaFeyAsy. This figure is reproduced from Ref. [71]. (Right) Plot
showing the Resistance(T)/Resistance(300K) vs Temperature along the AFM(red) and FM
(blue) directions as well as for the twinned sample (black). This demonstrates the resistance
anisotropy for FeTe. The inset shows the magnetization measurement used to find T . This
figure is reproduced from Ref. [148].

We also include the spin-lattice coupling ggg that favors orthorhombicity, although in this
case the crystal’s geometry — with nearest-neighbors (NN) and next-NN (NNN) hoppings of
similar strength and associated F'S nesting — already favors the concomitant (m,0) collinear
magnetism even without the lattice. Our analysis interpolates between (collinear) pnictides
and (bicollinear) chalcogenides using the same hopping amplitudes because band structure
calculations give similar results for both. In fact, the high temperature regime displays a FS
with the canonical hole-electron pockets, naively suggesting that only Oy, and (7, 0) spin
order could be stabilized. However, our calculations show that strong first-order transitions
can induce a low-temperature state with no precursors at high temperatures.

The presence of both itinerant and localized characteristics in neutron experiments for
Fe; 1 Te [149] suggests that the SF model provides a proper framework. While we cannot
fully incorporate the electronic interactions, the Hund coupling of the SF model mimics a
Hubbard U by reducing double occupancy at each orbital [136]. In these respects, our study

has the same accuracy as in the successful description of manganites [82, 150].
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Figure 4.2: (a) The collinear (m,0) AFM ordered state; (b) the bicollinear (7/2, —m/2)
AFM ordered state; (¢) schematic drawing of the Fe lattice equilibrium position in the 7ga
(black symbols) and Oy, (red symbols) phases (four Fe’s are indicated with filled circles and
labeled by their site index i); (d) Same as (c) but for the M,,, case.

4.2 Model

The SF Hamiltonian used here is based on the original purely electronic model [52, 61],
supplemented by couplings to the lattice degrees of freedom [68, 79] similar to Sec. 3.2,

however, a new term as been added to address the By, spin-lattice coupling:
Hsp = Huopp + Huuna + Hueis + Hsu + HsLo + Hsuw- (4.1)

Hyjopp is the three-orbital (dy., dy., dg,) tight-binding Fe-Fe hopping of electrons, with
hopping amplitudes selected to reproduce ARPES data [see Eqgs. A.3-A.5 and Table A.1
of Appendix A]. The undoped-limit average electronic density per iron and per orbital is
n=4/3 [56] and a chemical potential in Hy,pp [68] controls its value. The Hund interaction
18 Haguna=—JH Zm Si - i, Where S; are localized spins at site i and s; , are itinerant spins
corresponding to orbital « at the same site [151]. Electrons in the non-itinerant orbitals
dy2_,2 and ds,2_,2 are assumed to have hopping amplitudes smaller than for the itinerants,
thus effectively increasing their Hubbard U to bandwidth W ratio. For this reason, a strong
coupling expansion generates Hyejs that contains the NN and NNN Heisenberg interactions
among those localized spins, with respective couplings Jyy and Jynn, and ratio Jynw/JInn

= 2/3 [152]. The NN and NNN Heisenberg couplings are comparable because Fe-Fe hopping
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occurs via Te atoms at the center of Fe plaquettes [153]. However, we will show that Jxn
and Jynn are not crucial for our main conclusions. Finally, Hgg is the lattice stiffness
(Lennard-Jones potential) to speed up convergence [68, 79].

Previous SF model investigations addressed the Teira — Oy transition as in SrFeyAss [79)].
The coupling of the spins with the Oy, lattice distortion [79] is given by Hspo=
—ge6 »_; ¥ Vees(i) [35, 75], where ggg is the canonical Oy, spin-lattice coupling [84] and the

spin NN nematic order parameter is
1
\I/iNN = §Si ) (Si—i-y + Si—y — Sitx — Si—X)7 (4’2>

where x and y are unit vectors along the x and y axes, respectively.
UMY is 2 in the perfect (7,0) state shown in Fig. 4.2(a). €g(i) is the lattice Oy, strain
defined in terms of the positions of the As, Se or Te atoms with respect to their neighboring

Fe. Its precise definition is [79]

I S U
€66(1) = VG ;(I% 165,1), (4.3)

where &;,, = ({,,,67,) (v=1,...,4) is the distance between Fe at i and one of its four neighbors
As or Te (Fig. E.1). The As/Te atoms move locally from their equilibrium position only
along the z and ¢ directions since the displacements along the Z direction do not couple to the
orthorhombic lattice distortion. Both W)Y and €gq(i) transform as the Bj, representation
of the Dy, group.

The crucial novel term Hgy=—g12 ) ; \I/fv NN €12(1) introduced here provides the coupling

between the spin and the M,,, lattice distortion [154], with strength gi2. The spin NNN

nematic order parameter is

1
\I’iNNN = §Si ’ (Si+x+y + Sifxfy - Si+xfy - Sifx+y)- (4-4)
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Figure 4.3: (a) Example of the By, representation of the Dy, group. (b) Example of the
B4 representation of the Dy, group.

UVNN becomes 2 in the perfect (%,—75) state of Fig. 4.2(b) [155]. €2(i) is the lattice Moo

strain defined in terms of the Fe-Te/As distances d;, as
. 1
ez(i) = §(|5i,2| + [6i,4] = 1031 — [di3])- (4.5)

€12(1) transforms as the By, representation. For this reason we must use WYYV that also
transforms as Ba,, in Hgp so that it is invariant under the Dy, group (See Fig. 4.3(a)).
This simple symmetry argument is the reason for why the bicollinear state is stabilized by
the monoclinic distortion. As mentioned previously in Sec. 2.2, By, transformations can be
described by 7 rotations that lead to a change of sign in the order parameter (See Fig. 4.3(b)).
By, transformations also lead to a change in sign upon 7 rotations about the Z axis, but
they differ from B, because they are even under reflections on a plane along the diagonal
directions of the Fe plaquette as shown in Fig. 4.3(a).

Hgsp was studied with the same Monte Carlo (MC) procedure employed in [79] (see also
Appendix E and Ref. [156]). Here only a detailed description of the new lattice coupling G2
will be provided. During the simulation the As/Te atoms can move locally away from their
equilibrium positions on the x-y plane, while the Fe atoms can move globally in two ways:
(i) via an Oy, distortion characterized by a global displacement (r,, 7,) from the equilibrium

position (2, 4”) of each iron with ro=1+ A, (Aq < 1; a=z or y) [Fig. 4.2 (c)], and (ii)

7 )
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via a My, distortion where the angle between two orthogonal Fe-Fe bonds is allowed to
change globally to 90° 4+ 6 with the four angles in the M,,, plaquette adding to 360° so
that the next angle in the plaquette becomes 90° — 0, with 6 a small angle [Fig. 4.2 (d)].
In addition, the localized (assumed classical) spins S; and atomic displacements (67,,4;,)
that determine the Oy or My, lattice distortion egg(i) [68, 79] and €15(i) are also MC

evaluated. In Appendix E the spin and lattice susceptibilities xs(,.k,), Xs0, and Xs,,, and

the dimensionless couplings ggs and §io are defined.
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Figure 4.4: Phase diagram along the straight line from (gi2, ges) = (0,0.24) to (0.24,0),
at Jy=0.1 eV and Jyn=Jnnn=0. Inset: same phase diagram but along the straight line
from (g12, ges) = (0,0.16) to (0.40,0), at Jg=0.1 eV, Jyn=0.012 eV, and Jyxn=0.008 eV.
Blue circles (red triangles) denote To (Tu), the transition temperatures to the Oy, /collinear
(Mono/bicollinear) phase.

4.3 Results

In real chalcogenides, both Bj, and By, magnetic fluctuations should be present and the
magnitude of their respective couplings to Oy, and Mg, distortions depends on doping,
replacing Te by Se, or iron excess as in Fe; 1, Te. In addition, weak By, fluctuations may also
exist in pnictides.

For this reason, our study will address the MC phase diagrams varying temperatures
and couplings in a wide range. Consider first the case Jyn = Jynn = 0. One of our most
important results is in Fig. 4.4. At the left, a realistic 73'** ~ 170 K is obtained for the

transition to the collinear/O,y, state, with an Oy, distortion dp = 0.004 — 0.008, compatible
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with experiments [41, 137] and previous studies [79]. As g increases and ggg linearly
decreases, then T{3* naturally decreases. When g2 ~ 0.16 and ggs ~ 0.08, remarkably
now the FeTe bicollinear/ M,,, phase appears at Ty (red triangles). At the right in Fig. 4.4
the critical temperature is ~ 70 K similar to FeTe experiments [157]. Moreover, in the range
shown, the monoclinic lattice distortions are small (for explicit values see Fig. G.3) [158].

Bicollinear order is stabilized because with increasing g¢;» the nematic order parameter
UNVN in Hgiym becomes nonzero to lower the energy. In each odd-even site sublattice,
WNNN favors a state with parallel spins along one diagonal direction and antiparallel in the
other (equivalent to the collinear order but rotated by 45°). The parallel locking of the two
independent spin sublattices leads to the state in Fig. 4.2(b) (or rotated ones).

As already explained, the purely fermionic SF model develops a collinear (7, 0) tendency
because of FS nesting in the tight-binding sector [61]. Since spin and lattice are linearly
coupled, an O, distortion is induced even for an infinitesimal ggg. On the other hand,
regardless of ggs, the coupling g2 needed to stabilize the bicollinear/ M,,, state is finite
because it must first “fight” against the (m,0) order. However, in practice this critical
coupling is small ~ 0.1-0.25 and within experimental range.

To analyze the universality of the Fig. 4.4 phase diagram we also investigated the effect
of adding NN and NNN Heisenberg couplings along the line from (12, ges) = (0,0.16) to
(0.40,0) (inset of Fig. 4.4). Qualitatively the results are similar.

At (0.40,0) in the inset, the largest value of g1 considered here, the M,,, distortion
is 0y ~ 0.004 still compatible with experiments [41, 137]. One interesting difference,
though, between the two cases is the appearance of an intermediate region at g ~ 0.28
in Fig. 4.4(inset) where upon heating a transition Mgy, to Oy, is reached before the
system eventually becomes paramagnetic. Experimentally in Fe;;,Te an intermediate Oy,
phase with incommensurate magnetic order indeed exists between the Te.. and My,
phases [154, 157] with To ~ 60 K and Ty ~ 50 K, at y ~ 0.13. Our finite lattices do not
have enough resolution to study the subtle incommensurate magnetism but we conjecture

that adding Fe to FeTe may effectively increase the spin-lattice coupling to reach the inset

intermediate regime.
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Figure 4.5: Filled (open) circles indicate the bicollinear AFM order parameter UNVV (the
Mo lattice distortion dp7) at g1o = 0.24, ggg = 0, Juy = 0.1 eV, and Jyn = Jynny = 0.
Magnetic and lattice susceptibilities, x(r/2,—x/2) and xs,,, are also shown (filled and open
triangles, respectively). Ty denotes the first-order Néel temperature.

Another interesting result found here is that the bicollinear/M,,, phase transition is
strongly first order, as in experiments [41, 137], as indicated by the order parameters
discontinuities in Fig. 4.5 and by the MC-time evolution histogram Fig. 4.6(a). At high
temperature (m,0) fluctuations first develop (as implied by the inset of Fig. 4.4), leading
to a free energy local minimum. However, upon further cooling the bicollinear minimum
with a different symmetry also develops and eventually a crossing occurs with first-order
characteristics because one local state cannot evolve smoothly into the other.

Remarkably, the correct behavior for the resistivity anisotropy of FeTe [147, 148] is
also observed here (details in Appendix F and I ). In the (7,0) phase, F'S nesting opens
a pseudogap for the yz orbital [61, 79, 159]. Because this orbital relates to electronic
hopping along the ferromagnetic y-axis, then the FM resistivity is the largest in pnictides
(See Fig. 4.1(Left)). However, the reversed anisotropy with lower resistance along the
FM direction (open circles) was found in the bicollinear phase Fig. 4.6(b) (the technique
used is explained in Appendix F). This can be compared to the experimental results in
Fig. 4.1(Right) which shows the same reversed anisotropy for FeTe [148]. Moreover, this
reversed effect is amplified as Jy increases. The key clues to explain the effect are now clear:
(i) an electron hopping along the plaquette diagonal in the AFM direction pays an energy Jy,
but the hopping along the plaquette diagonal FM direction does not; (ii) because F'S nesting

does not involve wavevectors such as (w/2, —7/2), then pseudogaps are not created due to
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nesting as in pnictides. Then, in essence, the reversed resistance found here is characteristic
of large Hund coupling materials [160], such as manganites [82], where it is also known that

the AFM direction is more resistive than the FM direction.
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Figure 4.6: (a) Histogram of the MC time evolution of WY and &y, at the critical
temperature of Fig. 4.5 (T' = 72 K), illustrating its bimodal character compatible with first-
order characteristics. (b) Resistance (h/2e? units) vs. temperature in the bicollinear state
(g12 = 0.24, ge¢ = 0, Ju = 0.2 eV, no Heisenberg terms). Filled (open) symbols denote
resistivities along the AFM (FM) direction. (c,d) Symmetrized Fermi surface (g2 = 0.24,
gés = 0, Ju = 0.2 eV, no Heisenberg terms). (c) is in the high temperature paramagnetic
phase (T' = 360 K); (d) is in the bicollinear phase (T' = 10 K). The FS orbital composition
notation is blue (zz), green (yz), and red (zy). In the non-symmetrized FS (not shown) a
gap opens along the AFM diagonal direction in the xz and yz orbitals, compatible with the
resistivity results.

A paradox of FeTe is that first principles studies predict FS nesting and, thus, (7,0)
order as in pnictides. For this reason, we calculated the FS at couplings where the ground
state is Mopo. Figure 4.6 (c) shows the FS in the high temperature T, state. It is similar
to that of the iron pnictides, suggesting (m,0) order upon cooling (the I' centered features
are blurry because of how a shallow pocket is affected by temperature). However, because of
the sharp first-order transition the M,,, state reached at low temperature has a peculiar FS
[Fig. 4.6 (d)]: while the electron pockets are similar, the squarish I hole pocket is different
from that of pnictides. In addition “shadow bands” at (£7,47%) develop, as in ARPES [135],

indicative of couplings stronger than for pnictides [161].
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4.4 Discussion

Using computational techniques applied to the SF model including a spin-lattice Mgy,
distortion in the By, channel, we showed that the puzzling phenomenology of FeTe
is well reproduced. This includes the presence of bicollinear magnetic order, Mgy,
lattice distortions, a strong first-order Teia-Mono transition, nested Fermi surfaces at high
temperature naively favoring collinear order, and last but not least also the low-temperature
reversed anisotropic resistances between the AFM and FM directions. Moreover, all this
is achieved with spin-lattice dimensionless couplings less than 1, and with associated small
lattice distortions dp; ~ 1073. While in pnictides the resistance anisotropy is related to
FS nesting and a yz orbital pseudogap [159], in chalcogenides the strength of the Hund
coupling is crucial. To our knowledge, the spin-lattice interaction discussed here provides
the first comprehensive explanation of the challenging experimental properties of FeTe. In
these results, the structural and magnetic transitions are simultaneous. This is not surprising
considering that in Ref. [79] an orbital-lattice coupling was necessary to separate the two.
In the following chapter it will be shown that a Bs, orbital-lattice coupling can be added to

the spin fermion model to stabilize a By, nematic phase.
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Chapter 5

Possible Bicollinear Nematic State
with
Monoclinic Lattice Distortions in Iron

Telluride Compounds

This chapter is a modified version of PHYSICAL REVIEW B 96, 035144 (2017) [162, 163].

5.1 Introduction

The theoretical understanding of high critical temperature superconductivity in iron
compounds has evolved from its early qualitative developments based on Fermi surface
nesting to more quantitative efforts incorporating the role of electronic correlations [12,
23, 36, 70, 114, 131]. In particular, experts have focused on several complex regimes
including electronic nematicity [35, 71, 75], an interesting state observed in several high
critical temperature pnictide superconductors [10, 30, 164, 165]. Upon cooling, this nematic
phase is reached at a temperature T, concomitantly with a structural phase transition from
a tetragonal to an orthorhombic lattice. Upon further cooling a magnetically ordered phase
is stabilized at a lower temperature T. The orthorhombic nematic phase between Ty and

Ty exhibits a reduced symmetry under rotations from C}y to Cy. This is also observed in the
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magnetic and orbital degrees of freedom leading to nonzero magnetic and orbital “nematic”
order parameters. Experimental investigations have shown that this nematic phase occurs in
the parent compounds of the 1111 pnictides [30]. Since the orthorhombic lattice distortion
do = lao —bol/(ap + bo) ~ 0.004 [145] is small (ap and bo are the lattice parameters in the
orthorhombic notation), it is often argued that the lattice plays the role of a “passenger”
in the nematic transition, which is believed to be driven by either the magnetic or orbital
degrees of freedom. In addition, it is interesting to notice that the structural transition
occurs simultaneously with the Néel temperature in several other iron-based materials. For
example, members of the 122 family need to be electron doped, with the chemical replacement
occurring directly on the FeAs planes, to develop the nematic phase [10, 164, 165]. Hole
doping, or electron doping via chemical substitution away from the FeAs planes, fails to
establish nematicity [101, 166].

In the chalcogenides, the parent compound FeTe exhibits an unexpected “bicollinear”
magnetic state [41, 82, 137], shown in panels (a,b) of Fig. 5.1, whose Ty coincides with the T
of a structural transition to a phase with a monoclinic lattice distortion, as shown in panel (d)
of the same figure. This joint transition is strongly first order [137, 143, 144]. The reported
lattice distortions in Fej g7Te and Fey ggsTe are oy = |apns — bag|/(aps + bar) ~ 0.007 [137]
(ap; and by, are the low-temperature lattice parameters in the monoclinic notation) where
in Eq. E.7 of Appendix E, it is shown that d,; ~ g. Replacing Te with Se the bicollinear
magnetic order is eventually lost, the material becomes superconducting, and it develops
an orthorhombic nematic phase above its superconducting critical temperature. In recent
theoretical work, using a spin-fermion model we explained the bicollinear magnetic order
using symmetry considerations as a consequence of the monoclinic distortion [43, 132, 167].
Based on this reasoning, the role of the lattice in the case of FeTe appears more important
than previously anticipated.

The aim of the present work is to argue that the pnictides and chalcogenides could
potentially behave more symmetrically with regards to the presence of a nematic state. As
expressed above, the pnictides either already have nematicity without doping, as in the 1111
compounds, or develop nematicity after doping as in the Co-doped 122 compounds. Based

on symmetry arguments, the presence of a nematic regime is theoretically understood as
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follows. In these materials the magnetic ground state has wavevector (m,0), with staggered
spins along the z-axis and parallel spins along the y-axis. However, the (0, 7) state should
have the same energy by symmetry. In cases of two-fold degeneracy in the ground state,
it was predicted that an Ising transition could occur upon cooling [168], with an order
parameter that breaks lattice rotational invariance and involves only short-range magnetic
correlations. Upon further cooling, the O(3) full symmetry breaking process is possible.

Our main observation here is that the bicollinear state shown in Fig. 5.1 (a) with
wavevector ky = (7/2, —m/2) has a partner, displayed in Fig. 5.1 (b), with identical energy
but ke = (7/2,7/2) [169]. Then, the same Ising-O(3) rationale expressed above for the
(m,0) — (0, 7) degeneracy can be repeated for bicollinear states: starting at high temperature
both spin structure factors S(k) will start growing with equal strength upon cooling at
the wavevectors k; and ks. By analogy with the pnictides, it is possible that at a critical
nematic temperature Tg an asymmetry develops such that S(k;) > S(kg), and then at a
lower temperature Ty, S(kz) drops to zero while S(k;) grows like the volume.

While no nematic phase with these characteristics has been reported yet in materials of
the FeTe family with the bicollinear spin order, the present study provides computational
evidence that there are Hamiltonians with spin- and orbital-lattice coupling that display
this new nematic behavior, if the couplings strengths are properly tuned. While our many-
body tools do not allow us to predict what specific material may display this phenomenon,
our symmetry arguments and concrete simulation results are offered as motivation for the
experimental search for this exotic bicollinear-nematic state.

Previous numerical studies of spin-fermion models for pnictides with spin, orbital, and
lattice degrees of freedom provided indications that the structural transition is due to the
coupling between the lattice and spins [79]. Thus, in these regards the lattice follows the
spins. But the spin-lattice coupling leads to Ts = T and, then, the establishment of a
nematic phase with Ts > Ty requires a more subtle mechanism. Investigations by our group
have shown that the nematic regime can be achieved by the addition of an orbital-lattice
coupling [79] (or by the introduction of in-plane magnetic disorder, namely by replacing iron
by non-magnetic atoms [98, 170]). Based on this previous research, here a coupling between

the monoclinic lattice distortion and an orbital nematic parameter with By, symmetry will
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Figure 5.1: (a) The bicollinear antiferromagnetic spin order with wavevector (7/2, —7/2).
(b) same as (a) but for the state lattice-rotated by 90 degrees with wavevector (7/2,7/2). (c)
Schematic drawing of an iron atom at site i (filled symbol) and its four Te neighbors (open
symbols), projected in the -y plane in their equilibrium position. The distances d;,, between
the irons at site i and its four neighboring Te atoms are indicated as well. The localized
spin S; is also sketched. (d) Schematic drawing of the Fe lattice equilibrium position in the
tetragonal phase (black symbols and lines) and in the monoclinic phase (red symbols and
lines). Four Fe atoms are indicated with filled symbols and labeled by their lattice site index.
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be added to the spin-fermion model that already has the spin-lattice coupling previously
developed to study FeTe (See Ch. 4) .

This chapter is organized as follows. In Section 5.2 the model is described including
the new term that must be incorporated in order to stabilize a bicollinear-nematic state.
In Section 5.3 we provide an explanation of the numerical approach that allows for the
parallelization of the Monte Carlo procedure and the concomitant use of clusters of reasonable
size for our purposes. The main results showing the stabilization of the new nematic state
are presented in Section 5.4. The discussion, including possible physical realizations, is in

Section 5.5, with brief conclusions in Section 5.6.

5.2 Model

The spin-fermion (SF) Hamiltonian used here is an extension of Sect. 4.2, supplemented
by a new By, orbital-lattice coupling. The B;, spin-lattice coupling which stabilizes the
orthorhombic/collinear state, was not included since as can be seen in Ch. 4, it competes

with the bicollinear state. The Hamiltonian used is thus given by:
Hsp = Hyopp + Hiund + Hueis + Hsiig + Hsov + Horw. (5.1)

More detail on the Hamiltonian can be found in Appendix A and E. Hy,p,, represents the
three-orbitals (d,., dy., dy,) tight-binding Fe-Fe hopping of electrons, with the hopping
amplitudes selected to reproduce photoemission data [see Egs. A.3-A.5 and Table A.1 of
Appendix A]. In the undoped-limit the average electronic density per iron and per orbital is
set to n=4/3 [56] and a chemical potential in Hypp [68] controls its value. The on-site Hund
interaction is Hguna=—Jg Zi’a S; - 8i.a, Where S; are the localized spins at site i and s;, are
spins corresponding to orbital « of the itinerant fermions at the same site. For computational
simplicity, the localized spins are assumed classical and of norm one [151]. Hpyejs contains
the nearest neighbor (NN) and next-NN (NNN) Heisenberg interactions among the localized
spins, with respective couplings Jyn and Jynn. As explained before [61, 79], both NN and

NNN are in principle needed because of the geometry of the problem, where in each layer the

73



Te atoms (or As, Se, P) are at the centers of iron plaquettes as seen from above. However,
in our previous study of FeTe [43] we observed that the experimental value of Ty for FeTe
could be obtained by simply setting Jyn = Jyny = 0. This is due to the fact that the
intersite spin-spin couplings favor either checkerboard (Jxy) or collinear (Jynn) magnetic
configurations and in order to obtain a bicollinear ground state it is necessary to use a larger
value of the spin-lattice coupling g2 which, in turn, increases Ty [171]. Hgsyg is the lattice
stiffness given by a Lennard-Jones potential to speed up convergence [68] (full expression
can be found in Appendix A).

In the previous chapter, a crucial term was introduced [43] to describe FeTe properly.
This term has the form Hgin=—g12 ) ; Unnn(i)e2(i) and it provides a coupling between
the localized spins and the monoclinic M., lattice distortions [112]. The coupling constant

strength is g;2 and the spin NNN nematic order parameter is defined as
) 1
v () = 581+ (Sivxry + Sicxy = Sty = Sicxry), (5.2)

where i + p &+ v indicates the four NNN sites to i, with © = £x and v = +y representing
unit vectors along the z and y axes, respectively. Note that Wy (i) has the value 2 (-2)
in the perfect bicollinear states shown in Figs. 5.1 (a) and (b), respectively characterized by

a peak at wavevectors (7/2, —m/2) and (7/2,7/2) in the magnetic structure factor. €5(i) is

the lattice My, strain defined in terms of the Fe-Te distances d;, as
] 1
eiz(i) = (02| + [0i.a] = [05.2] = [d13]). (5.3)

where d;, = (67,,0{,) (v=1,...,4) is the distance between Fe at site i and each of its four
Te neighbors (see panel (c) of Fig. 5.1 and also Fig. E.1). As in previous simulations,
the Te atoms are allowed to move locally from their equilibrium position only along the z
and y directions since the z direction does not couple to the monoclinic lattice distortion.
It is important to notice that both Wyny(i) and e2(i) transform according to the By,

representation of the Dy, symmetry group, which means that the spin-lattice term of the

Hamiltonian transforms as A;, as expected. As the spin-lattice coupling gi2 grows and
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induces a monoclinic M,,, distortion, ¥ yyy develops a nonzero expectation value leading
to the bicollinear spin state order as explained in Sec. 4.3.

The Hamiltonian as described thus far is the same as employed in Sec. 4.2 and leads
to a first-order phase transition where both the monoclinic lattice and the bicollinear spin
orders develop simultaneously. Thus, no bicollinear-nematic state was found in the studies
presented in the previous chapter. Based on previous investigations of pnictides using the
spin-fermion model [79], it is natural to introduce a coupling between the lattice and the
orbital degree of freedom in order to induce nematicity. As mentioned in Sec. 4.2, this
requires care with regards to the symmetry of the operators needed for this new term. The

monoclinic orbital-nematic order parameter is defined as

Oy, () = nixz —iyz =3 (o oCiyen = oCivea)s (5.4)

g

where n; g=) c;ﬁﬁciﬁﬂ (B = XZ,YZ), and the By, orbital basis is related to the By,

orbital basis by
1

G XZo = E(Ciwz,a + Ci,yz,a) (55)
and
1
GYZo = E(Ci,mz,a - Ci,yz,a)- (56)

Notice that the x and y axes point along nearest-neighbor irons, i.e. along the sides of the
plaquette formed by four irons, while the X, Y axes point along next nearest-neighbor iron,
i.e. along the diagonals of the iron plaquette. The Z and z axis coincide and they are
perpendicular to the plane formed by the iron layer.

The new term in the Hamiltonian Hopwm that couples the By, orbital and lattice order

parameters is given by

Hopm = — A2 Z Op,, (e (i). (5.7)

Because the monoclinic lattice distortion €;2(i) transforms as the By, representation of Dy,

it must be coupled to an orbital order parameter that also transforms as By,, which is why
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d B2g(i) was constructed. This ensures that Hpopy is invariant under the Dy, symmetry
group.

The full Hgp was studied here with the same Monte Carlo (MC) procedure employed
in [79], supplemented with the recently developed “Parallel Traveling Cluster Approximation
(PTCA)” [87], described in the next section. The values for the couplings Jy = 0.1 eV,

2912

Jan = JIanny = 0, and g9 = N 0.24 were chosen because they provide Ty = Tg = 70 K

for A\j2 = 0 [43], which is the transition temperature experimentally observed in FeTe. The
coupling strength g;» is the dimensionless version of the spin-lattice coupling, employing
W = 3 eV as the bandwidth of the tight-binding term and £ as the constant that appears in
Hsug [79]. Since these couplings were discussed extensively before, in the present effort we
will instead focus on a careful description of the new dimensionless monoclinic orbital-lattice
coupling \j» = \2/’;—17?/ and its effects.

During the simulation the Te atoms are allowed to move locally away from their
equilibrium positions within the x-y plane. The Fe atoms can move globally via a monoclinic
distortion My, where the angle between two orthogonal Fe-Fe bonds is allowed to change
globally to 90° + 6 with the four angles in the iron plaquette adding to 360°, so that the
next angle in the plaquette becomes 90° — 6, with 6 as a small angle (see Fig. 5.1 (d)). In
addition, the localized spins S; and atomic displacements (5;;,, 5;{,/) that determine the value

of the local My, lattice distortion €15(i) [43] (see Fig. 5.1 (c)) are evaluated via a standard

Monte Carlo procedure.

5.3 Methods: the Parallel Traveling Cluster Approxi-
mation

To access the lattice sizes needed to study the existence of a monoclinic nematic phase
we implemented the Parallel Traveling Cluster Approximation (PTCA) [87] which is a
parallelization improvement over the traveling cluster approximation (TCA) previously
introduced [86]. PTCA allows parallelization in order to use multiple CPU cores and by

this procedure we can reach lattices as large as 32 x 32. To perform a Monte Carlo update
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of one of the local variables — either the localized spin S; at the iron site i or the local
distortion of the Fe-Te bonds joining the Fe atom at site i with its four Te neighbors — an
8 x 8 traveling cluster is constructed around site i and the Hamiltonian is diagonalized only
inside that cluster to decide whether the update is accepted. The algorithm is parallelized
by dividing the lattice into four quadrants with 16 x 16 sites, one per different CPU core.
Then, each CPU generates traveling 8 X 8 clusters around the sites belonging to its quadrant,

see Fig. 5.2 for an illustration, and these clusters are then simultaneously diagonalized.

CORE 1 CORE 3

CORE 2 CORE 4

Figure 5.2: Diagram of the PTCA set-up used to sample the local spin and lattice variables.
The lattice is divided into four quadrants and each of four processors generates traveling
clusters (indicated with 8 x8 squares) and proposes updates for the sites (indicated by small
open circles) inside one quadrant.

To update the global monoclinic lattice distortion given by the angles in the rhombus
formed by the four irons shown in Fig. 5.1 (d) an extra new modification in the PTCA
was introduced. The 32 x 32 sites lattice was divided into 16 clusters with 8 x 8 sites
each as shown in Fig. 5.3. Each of four CPU cores was devoted to diagonalize four of the
clusters as indicated in the figure. The same update is proposed in all the clusters which are
simultaneously diagonalized. Then, all the eigenvalues are collected in one of the cores in
order to calculate the probability of the Monte Carlo update and decide whether the update
is accepted or rejected.

For thermalization typically 5,000 Monte Carlo steps were used, while 10,000 to 25,000
steps were performed in between measurements for each set of parameters and temperatures.

The spin-spin correlation functions in real space were measured and the magnetic structure
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CORE 1 CORE 3

CORE 2 CORE 4
Figure 5.3: Diagram of the PTCA set-up used to sample the global lattice distortion
variables. The lattice is divided into sixteen clusters. Each of the four processors diagonalizes
four of the clusters.

factor S(k,, k,) was calculated via their Fourier transform. Notice that in the bicollinear
state the magnetic structure factor diverges for (k.. k,) = (7/2,7/2) or (n/2,—n/2). The
Néel temperature Tl is obtained from the magnetic susceptibility for a given wavevector
which is given by

XS(kadey) = NB(S (ka, ky) — (S(ke, Ky )))?, (5.8)

where § = 1/kgT and N is the number of lattice sites. We also calculated the numerical
derivative of S(m/2,7/2) with respect to temperature to double-check the value of T. The
monoclinic structural transition temperature, Ts, was obtained by calculating the structural
susceptibility given by

Your = NB(Ou — (On))2, (5.9)

where dy; ~ 0/2 and 6 is the deviation from 90° of the angle of the lattice plaquette as shown
in Fig. 5.1 (d) [43]. Ts was also obtained from the numerical derivative of d;; as a function
of temperature and from monitoring the behavior of the spin-nematic and orbital-nematic
order parameters, Uy (i) and ®p, (i) respectively, introduced in the previous section and

their associated susceptibilities.
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5.4 Results

In previous work [43] we found that the magneto-structural transition experimentally
observed in FeTe with Ts = Ty = 70 K, was reproduced by setting Jy = 0.1 eV,
Jan = Jann = 0, and g1 = 0.24. In the present study we keep fixed the values of these
parameters while we vary the orbital-lattice coupling A2 to investigate whether a nematic
phase can be stabilized and obtain the phase diagram varying the orbital-lattice coupling

and temperature.

5.4.1 Special case :\12 =1

In agreement with the behavior reported before for the spin-fermion model in the case of the
pnictides with (7, 0) spin order [79], in the bicollinear case studied here it was indeed also
observed that the novel bicollinear nematic region becomes stable by increasing the value
of the orbital-lattice coupling. Another similarity with the case of the collinear state [79] is
that the addition of the orbital-lattice coupling A12 turns the first order magnetic transition
into a second order one. The temperature width of nematicity remains narrow, as in many
previous investigations, and robust values of Ajy are required. Nevertheless, this is sufficient
to demonstrate the matter-of-principle existence of the bicollinear-nematic state discussed
in this publication. For clarity, first let us address in detail the largest value of the coupling
that we studied which was :\12 =1.

In Fig. 5.4 the magnetic susceptibility Xg(r/2,x/2) Versus temperature is shown. A clear
maximum at 7T = 165 K indicates the magnetic transition to the bicollinear state with long-
range order. The monoclinic lattice susceptibility is also shown. Interestingly, this quantity
has a sharp peak at a clearly larger temperature Ts = 193 K, where the structural transition
from tetragonal to monoclinic takes place, indicating that a bicollinear-nematic state does
indeed occur.

In Fig. 5.5 the magnetic structure factor at wavevector (w/2,7/2) is displayed. The Ty
from the susceptibility, shown with a dashed line, should occur when the rate of increase
of the order parameter is maximized. This has been verified by performing a spline fit of

the S(m/2,7/2) points obtained from the Monte Carlo simulation and taking the numerical
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Figure 5.4: Magnetic susceptibility xs (squares) and monoclinic lattice susceptibility xs,,

(circles) evaluated using the PTCA algorithm at A\j2 = 1 employing a 32 x 32 sites cluster. In
this plot, and other plots of susceptibilities shown below, the fluctuations between subsequent
temperatures are more indicative of the error bars than the intrinsic errors bars of individual
points, which for this reason are not shown.

derivative. The monoclinic lattice order parameter d,; is also presented in Fig. 5.5. The
structural transition temperature is displayed with a dashed line as well. We also verified
that the maximum in the lattice susceptibility from Fig. 5.4 coincides with the maximum

rate of change in the lattice order parameter via a spline fit of the Monte Carlo data.
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Figure 5.5: Magnetic spin structure factor S(7/2,7/2) (squares) and monoclinic lattice

order parameter dy; (circles) evaluated using the PTCA algorithm for A\j5 = 1 on a 32 x 32
sites cluster.

0.0

In between the two transition temperatures T and T, a nematic phase is stabilized.

In this phase both short-range orbital and spin nematic order develop as it can be seen in
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Fig. 5.6, where in panel (a) the susceptibilities associated with various order parameters
are presented. It can be observed that the orbital-nematic and spin-nematic susceptibilities
have maxima at T as does the structural susceptibility. This confirms the presence of a
monoclinic nematic phase characterized by orbital-nematic and spin-nematic orders. These

properties are also reflected in the behavior of the respective order parameters shown in

panel (b) of the figure.
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Figure 5.6: (a) Magnetic susceptibility xg(x/2,x/2) (red squares) with a maximum at Ty =
165 K (dashed line), and the monoclinic lattice susceptibility xs,, (blue circles), spin-nematic
susceptibility xy (orange diamonds), and orbital-nematic susceptibility y¢ (green triangles)
all with a maximum at Ty = 193 K. The susceptibilities were calculated at 5\12 = 1 using
32 x 32 lattices. (b) Monte Carlo measured order parameters associated to (a). Shown are
the magnetic structure factor S(w/2,7/2) (red squares), monoclinic lattice distortion &,
(blue circles), spin-nematic order parameter Wy yy (orange diamonds), and orbital-nematic
order parameter ®p, (green triangles). The transition temperatures were obtained from the
susceptibilities in (a) and via numerical derivatives in (b). Both procedures give the same
result.

Performing spline fits of the order parameters and taking numerical derivatives, the
critical temperatures obtained from the susceptibilities were reproduced. It is important

to notice that the lattice distortions dy; ~ 1072 are quantitatively similar to those reported
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in FeTe experiments while, as shown in Fig. 5.6 (b), the orbital and spin nematic order
parameters develop values an order of magnitude larger. Thus, the strength of the orbital-
lattice coupling used still leads to small lattice distortions but appears to generate robust
magnetic and orbital short-range order inducing substantial anisotropic effects in these

observables.

5.4.2 Special case 5\12 = 0.85

As the value of the orbital-lattice coupling is reduced the separation between the magnetic
and the structural transitions decreases. In panel (a) of Fig. 5.7 the magnetic and structural
susceptibilities at Aj» = 0.85 obtained from Monte Carlo simulations are presented. In
this case Ty = 145 K while Ty = 147 K. The orbital- and spin-nematic order parameters
also have a maximum susceptibility at Ts (not shown for simplicity). The magnetic and
structural order parameters are shown in panel (b) of Fig. 5.7 and their qualitative behavior
is in agreement with panel (a). The indicated transition temperatures have been obtained
from numerical fits of the order parameters and their derivatives as described in the previous
subsection. This case A2 = 0.85 is close to the limit of our numerical accuracy. In principle,
it is possible that simulations using larger systems and with far more statistics may unveil
a very narrow bicollinear nematic state even for small values of \js. However, for our
qualitative purposes simply showing the stability of the new proposed phase in any range of

A9 1s sufficient.

5.4.3 Phase Diagram

The phase diagram obtained as a function of the orbital-lattice coupling A\;» and temperature
is presented in Fig. 5.8. It can be seen that the region with By, nematicity can be stabilized
at robust values of the orbital-lattice coupling. While a very narrow nematic phase may exist
at smaller values of this coupling, numerically we have been able to resolve the separation
between the two critical temperatures only for Aj > 0.75. As described in the previous

sections, the separation between Ty and Ts monotonically increases with 5\12.
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Figure 5.8: Phase diagram varying temperature and Ao, for gio = 0.24, Jy = 0.1 eV, and
Jan=Jnnn=0.0. Note the narrow temperature width of stability of the bicollinear-nematic
state, similarly as it occurs for the more standard (7, 0) — (0, 7) nematic state [79]. For values
of Ajy smaller than 0.75, our numerical accuracy does not allow us to distinguish between

Ty and Ty.

(a) Susceptibilities associated with the magnetic spin structure factor
S(m/2,7/2) (squares) and with the monoclinic lattice distortion (circles) using Aja = 0.85
and a 32 x 32 cluster. Solid lines are guides to the eye. (b) Spin structure factor S(w/2,7/2)
(squares) and monoclinic lattice order parameter 6y, (circles) for the same A5 and cluster
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5.5 Discussion and Possible Physical Realizations

Our results have illustrated the possible existence of a nematic phase involving bicollinear
short-range order, using as explicit example a computational study of the spin-fermion model
incorporating the lattice distortions corresponding to the iron telluride family. Previously
the results in Ch. 4 showed that the addition to the electronic spin-fermion model for
pnictides of a coupling between a spin-nematic order parameter with By, symmetry and
the monoclinic distortions of the iron lattice does induce the monoclinic and spin bicollinear
state experimentally observed in FeTe. That result was remarkable because the spin-fermion
model contains a tight-binding term that favors the (7,0) and (0,7) collinear states that
arise from the nesting of the Fermi surface in weak coupling. However, the g5 spin-
lattice interaction, when sufficiently strong, can overcome these tendencies and stabilize
the monoclinic bicollinear state.

Here, we have included an additional orbital-lattice term with coupling strength 5\12,
involving the monoclinic lattice strain coupled to an orbital order parameter with By,
symmetry. By this procedure we have shown that a novel nematic phase characterized by the
breakdown of the lattice rotational symmetry between the two possible diagonal directions
of the spin bicollinear state can be induced. In this new nematic phase, short-range spin-
and orbital-nematic order develop accompanied by a lattice monoclinic distortion.

The model Hamiltonian studied here only allows us to show explicitly, as a matter
of principle, that indeed the bicollinear-nematic state described above does occur in
computational studies once all of the many degrees of freedom and couplings are properly
incorporated. But it is difficult to predict on what specific material this subtle state will
be realized in practice, thus we can only discuss some scenarios qualitatively. The possible
splitting of Ty and Ts by electron doping was raised in Ref. [75]. However, spin-fermion
model studies including doping but not quenched disorder (i.e. in the “clean” limit from
Sec. 3.4) did not detect such a split, at least in the doping range studied (See Fig. 3.2).
Another generic qualitative observation is that in the pnictides nematicity is observed for
the 1111 compounds even in the undoped limit [30]. Thus, to find the B,, nematic phase

discussed here it may be necessary to synthesize materials with intercalated FeTe planes.
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However, in our opinion the most likely scenario to stabilize the proposed bicollinear-
nematic regime in variations of the FeTe compound is by the chemical replacement of iron
by other transition metal elements, thus simultaneously modifying the electronic density as
well as the amount of quenched disorder. In pnictides, replacing Fe by Co, Ni, or Cu indeed
leads to a wide nematic region. The previously mentioned computational investigations using
the spin-fermion model with doping and disorder(See Ch. 3) clearly showed that indeed by
this procedure a (m,0) nematic temperature range can be induced even in cases where Ty
and Ty coincide in a first-order transition for the undoped parent compound, as in the 122
family. Disorder plays a more important role than doping in this split [98], as observed
experimentally as well [49]. To our knowledge the experimental investigations of (Fe,X)Te,
with X another transition metal element, are very limited. We are aware of three main lines
of investigations and conclusions:

(i) Copper doping of FeTe was studied in [172, 173] for two Cu concentrations using
single crystals. For the case Feq gsCugosTe the presence of strain was detected at 41 K
upon cooling [172]. At lower temperatures approximately 36 K nearly-commensurate long-
range bicollinear magnetic order occurs. The presence of two transitions seems in agreement
with our prediction of bicollinear nematicity. However, in [172] it was argued that between
36 K and 41 K the lattice distortion could be orthorhombic as in pnictides. The possible
competition with orthorhombic tendencies was theoretically addressed and reported in Ch. 4
with further details added in Appendix G. This competition adds an extra complication to
the detection of the here predicted bicollinear-nematic state. For the case FeCug;Te only
cluster glass behavior was found below 22 K, presumably due to disorder [172]. Note that
this glassy state could be nematic.

(i) The case of Ni doping was reported for the compounds Fe;;_,Ni,Te with z =
0,0.02,0.04,0.08, and 0.12 [174]. Magnetization studies show that Ty decreases with
increasing x up to 0.04, while for x = 0.08,0.12 a possible spin glass transition was reported.
In fact, neutron diffraction at x = 0.12 found neither structural nor magnetic transitions at
low temperatures. Since this study focused on long-range magnetic order, the presence of

bicollinear nematicity is still possible.
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(111) Cobalt doping has also been recently studied via single crystals of Fe;,_,Co,Te with
x =0,0.01,0.04,0.07,0.09, and 0.11 [175]. In the range up to x = 0.07 the antiferromagnetic
transition systematically decreases. For x = 0.09 and larger the long-range order transition
disappears.

As a partial summary, the available experimental literature on (Fe,X)Te does not
conclusively show neither the presence nor absence of bicollinear-nematicity, and more
work is needed to clarify this matter now in the light of our present study. For example,
in the context of pnictides the pioneering studies of Ba(Fe;_,Co,)sAse [71] reported the
resistivities vs. temperature along the a and b axes, highlighting their different behavior and
substantial differences particularly below z = 0.07. Similar careful studies in the Te context
must be performed but focusing on the temperature evolution of the resistivities along and
perpendicular to the main spin diagonals in the bicollinear state, as already performed
for FeTe [147, 148]. In addition, recent inelastic neutron scattering studies of nematicity
in BaFe; 935Nig gs5Ase [176] focused on the temperature dependence of the intensity of the
peaks at (m,0) and (0, 7), reporting their split at Ts with cooling, followed by a collapse to
zero of the (0, 7) intensity at T. Similar studies for X-doped FeTe (X=Cu,Ni,Co) should
be carried for the temperature dependence of the neutron intensities corresponding to the
(r/2,7/2) and (7/2, —7/2) wavevectors.

We also would like to point out that our work confirms that magnetoelastic effects tend
to stabilize the bicollinear state while in the absence of this kind of coupling @) plaquette
or orthogonal double stripe order could be stabilized, which may be the case in FeTe with
excess iron [142, 177]. In addition, in a recent publication [178] a double-stage nematic
bond-ordering above the bicollinear state was proposed, but this effect would be difficult to

study numerically due to the narrow range of the nematic phase.

5.6 Conclusions

In this Chapter, based on simple symmetry observations and a concrete model Hamiltonian
numerical simulation, we have argued that the exotic bicollinear state known to be stable in

FeTe admits a possible nematic state above the antiferromagnetic critical temperature. In
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other words, as discussed in the previous section, via chemical substitution it is conceivable
that a split of the first-order transition of FeTe could be generated. Upon cooling, this would
induce first a T's, where the By, monoclinic distortion is stabilized and short-range spin and
orbital order develops breaking the lattice rotational invariance, and second a T at a lower
temperature, where long-range bicollinear order is fully stabilized. Experimentally finding
this new exotic state not only would confirm the theoretical prediction outlined here, but
it would allow us to investigate to what extend nematic fluctuations are needed to induce

superconductivity.
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Chapter 6

Summary

This manuscript presented numerical results that reproduce several important properties
on the iron based superconductors. This was accomplished by applying Monte Carlo
techniques to spin fermion models that were developed to include the relevant degrees
of freedom. In Ch. 2, an experimentally observed diverging nematic susceptibility was
reproduced numerically and explained analytically via a Ginzburg-Landau formalism. For
the 122 compounds, electron doping and disorder where decoupled and studied separately
in Ch. 3. There, it was found that disorder is the driving force that suppresses the magnetic
order more quickly than the orthorhombic distortion leading to the nematic phase. In Ch. 4
the bicollinear magnetic order together with the monoclinic structural distortion observed in
FeTe was stabilized through the addition of a By, spin-lattice coupling. As an extension of
these results, a By, nematic phase was predicted and established numerically via the addition

of a By, orbital-lattice coupling as demonstrated in Ch. 5.
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Appendix A

Full Spin-Fermion Hamiltonian with

B, Lattice Couplings

The full Hamiltonian of the spin-fermion model with lattice interactions incorporated is here
provided.

The same Hamiltonian was also used in Ref. [79]. The model is given by:

Hgr = Hiopp + Hitund + Hueis + Hsro + Horo + Hsir- (A1)

The hopping component is made of three contributions,

HHOpp = Tz, Yz + ny + sz,yz;:vy- (A2>

The first term involves the xz and yz orbitals:
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xz Yz { tl Z( i,xz O'dl-‘ry xTz,0 + d:[ Yz, adl—i-z,yz 0')

i,o

i i
— 1o Z(dl xz o'di—i-fc 2,0 + d i,y2, Odl+y Yz, 0)

T
- t3 Z i,xz,0 1+u+1/ xrz,0 + d 1,yz, ad1+u+u,yz a)
i,a#0,0 (A 3)
T T
+ t4 Z(dl xz O'd1+a:+y Yz,0 + dl JYZ, od1+x+y Tz 0')
i,o
i i
- t4 Z(di,zz,adiJrfcfy,yz,a + d i,yz, ad1+x 9,2 a)

i,o

+he}l—p Z(n‘“ + Niyz)-
The second term contains the hoppings related with the zy orbital:

in - t5 § : i,xy,o 1+u,xy, + hC)

1/1/7

- t6 Z i xy o 1+u+1/ xyY,0 + hC) (A4)

+ Aa:y E Nijgy — U § N zy,
i i
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The last hopping term is:

Hysyony = — 17 Z | d :rxz olitsayo T h.c.]
— 17 Z | ld :rxy,a itizzo T h.c.]
—t7z || tyza lergcya—i-h.c.]
—t7z || :rxya 1+yyza+h.c.]
— 13 Z | ld :rxz oivergayo T h.c.]
+ 13 Z l ld jxy,a ititgazo T h.c.]

(A.5)

— g Z | ld :rxz oliti—gaye T h.c.]
+ 1t Z | ld jxy,a iti—gazye T h.c]
— 13 Z | ld T,yz oUitivgayo T h.c]
+ 13 Z | ld jxyﬂ itz T h.c.]
+t82 Dilal s o ye T heC)
—tsz 8 A XA

In the equations above, the operator d;cw creates an electron at site i of the two-dimensional
lattice of irons. The orbital index is o = xz, yz, or xy, and the z-axis spin projection is
0. The chemical potential used to regulate the electronic density is . The symbols 2 and
y denote vectors along the axes that join NN atoms. The values of the hoppings ¢; are
from Ref. [56] and they are reproduced in Table A.1, including also the value of the energy
splitting A, .
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Table A.1: Values of the parameters that appear in the tight-binding portion of the three-

orbital model Eqs.(A.3) to (A.5). The overall energy unit is electron volts.

t1 ty 3 te ts te  tr  ts Dy
0.02 0.06 003 -0.01 02 03 -—-02 01 04

The remaining terms of the Hamiltonian have been briefly discussed in Ch. 2. The

symbols () denote NN while (()) denote NNN sums. The rest of the notation is standard.

Hyuna = —Jn Z S; - Sias

i,a

Hyeis = Jnn Z Si - S; + Jnnn Z Si - Sm,

(i) ((im))

(I)i = Ni,zz — Niyz

U; = Z(Si - Sity — Si - Siix)/2
+

Hsio = —ges »_, Vices (i),
Horo = —Ass Y Dieo (i),

4
1 .
HStiff - ékz Z(|R}?€—AS| - R0>2+
v=1

i

R [ = 2.

ij
<ij> RFefFe

The O, strain €g4(i) is defined as:

4
. 1 -
€go(1) = W > (87,1 = 167,D),
v=1

(A.6)

(A7)

(A.8)

(A.10)

(A.11)

(A.12)

(A.13)

where 0f,(0{,) is the component along x (y) of the distance between the Fe atom at site

i of the lattice and one of its four neighboring As atoms that are labeled by the index
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v =1,2,3,4. For more details of the notation used see Ref. [79], where the technical aspects

on how to simulate an orthorhombic distortion can also be found.
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Appendix B

Ginzburg-Landau Phenomenological

Approach

In this section, the Monte Carlo data gathered for the spin-fermion model will be described
via a phenomenological Ginzburg-Landau (GL) approach [179] to provide a more qualitative
description of those numerical results. More specifically, the free energy F' of the spin-fermion
model will be (approximately) written in terms of the spin-nematic order parameter ¥, the
orbital-nematic order parameter ®, and the orthorhombic strain egs, as in GL descriptions.
In previous literature a single nematic order parameter was considered without separating
its magnetic and orbital character [10, 35, 67]. In addition, it was necessary to formulate
assumptions about the order of the nematic and structural transitions. In our case, the
MC results in this and previous publications are used as guidance to address this matter at
the free energy level. More specifically, a second order magnetic transition was previously
reported for the purely electronic system [61]. Thus, the spin-nematic portion of F' should
display a free energy with a second order phase transition.

With regards to the terms involving egs, the MC results of Ref. [79] showed that the
coupling of the spin-nematic order parameter to the lattice leads to a weak first order (or
very sharp second order) nematic and structural transition. Naively, this implies that the
order €4y term should have a negative coefficient. However, since in our numerical simulations
a Lennard-Jones potential is used for the elastic term, then the sign of the quartic term is

fixed and positive. Considering that the €45 displacements are very small and the transition
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is weakly first order at best, then just the harmonic (second order) approximation should be
sufficient for egq.

After all these considerations, the free energy is given by:

a b c e f

F =04 -0ty —eZ 4+ -0 + = ¢ B.1
9 + 1 + 2666 + 5 + 1 (B.1)
— o6 Uegs — Moo Pecs — hecs, (B.2)

where a, b, ¢, e, and f are the coefficients of the many terms of the three order parameters,
while gg¢ and Aes are the coupling constants of the lattice with the spin and orbital degrees
of freedom, as described in Ch. 2. Since this and previous MC studies [61, 79] showed that
there is no long-range orbital order in the ground state of the spin-fermion model, at least
in the range of couplings investigated, then a positive quartic term is used for this order
parameter. The parameter h denotes an external stress, as explained in Ref. [67]. Note that
in principle another term, and associated coupling constant, @¥® should be included in F'.
This term will affect the orbital susceptibility and its effects will be described at the end of
this Appendix.

As explained in Ch. 2, our MC results indicate that the leading order parameter guiding
the results is the spin-nematic W. Thus, it is reasonable to assume that only the coefficient
a depends on temperature as a = ao(7T — T*), while other parameters, such as ¢ = ¢ (the
uncoupled shear elastic modulus) and e = ¢y, are approximately temperature independent.

For the special case §gg = Agg = 0 the critical temperature T* for the magnetic transition

can be obtained by setting to zero the derivative of F' with respect to W:

oF
= —av U3 — 0. B.
5y = ¢ +0b 0 (B.3)

Then, for T' < T* the order parameter is given by

Qo

U= |2 =T, (B.4)
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The equation above is valid only when W is small, i.e. close to the transition temperature
from below. Additional terms in the free energy would be needed as T' — 0 since in that
limit |¥| = 2.

Now consider the case when ggg is nonzero, still keeping 5\66 = 0. Setting to zero the

derivative of F' with respect to U and €46 leads to (for h = 0):

oF -
a— = Cp€ee — 966111 = 0, (B5)
€66
OF .
8_\11 = aqV¥ + b\I/3 — Je66€66 — 0. (BG)
From Eq.(B.5),
U= L, (B.7)
966

which reproduces the linear relation obtained numerically before, see Fig. 2.2(b), with a
slope now explicitly given in terms of ggs and a constant that now can be identified with the
bare shear elastic modulus ¢g.

Solving for €45 in Eq.(B.6) and introducing the result in Eq.(B.5) leads to:

~2
(a— 256)g 4y =0, (B.8)

Co

where it is clear that a becomes renormalized due to the coupling to the lattice. The

transition now occurs at a renormalized temperature Ts that satisfies:

g %
ao(T —Ts) = a — =8 = qo(T — T*) — Z£. (B.9)
Co Co

From the expression above, it can be shown that the new nematic transition occurs at
~2
966

Teg =T+ ==, (B.lO)
aopCo

and clearly Ts > T*. Note that Eq.(B.10) has been obtained in previous GL analysis, but
in those studies a generic nematic coupling appeared in the numerator of the second term

while here, more specifically, we identify gg¢ with the spin-nematic coupling to the lattice.
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Reciprocally, solving for ¥ in Eq.(B.5) and introducing the result in Eq.(B.6) leads to:

~2 3

a g be,

%[(CO - %)566 + gz—oaegﬁ] =0, (B.11)
66

where, due to the coupling to the lattice, now the shear constant is renormalized and an
effective quartic term is generated for the lattice free energy. The effective shear elastic
modulus cgg becomes temperature dependent and it is given by:
~2
966
Ce6 = Co — ———, B.12
66 = Co ao(T —T7) ( )
that vanishes at T = Tg. Thus, the structural transition occurs at the same critical
temperature T of the nematic transition.

To obtain the spin-nematic susceptibility, the second derivative of F' with respect to ¥

and A is set to zero:

5)2F 8111 (‘N’ 8666
— 0T 1302 e 0 B.1
ahav ~ “an T gn T gy, =0 (B.13)
and then
ov _ o G _ Jeo (B.14)

7 Dege Zwe a4 3002 ag(T — T7) + 3002
This is an important equation that was used in Ch. 2 to rationalize the MC numerical
results. In the range T" > Ty, i.e. when ¥ = 0, the spin-nematic susceptibility clearly
follows a Curie-Weiss behavior. In practice, it has been observed that b = a¢Ts to a good
approximation.

Consider now the case when the orbital-lattice coupling ) is nonzero as well. Now

OF

a— = Co€ee — §66\I] - 5\66(1) = 0, <B15)
€66

OF N

8_\11 =a¥ + b\DB — J66€66 — O7 <B16)
and a new equation is available:

oF N

a—q) = 60<I> + f(I)S — )\66566 =0. (Bl?)
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Solving for ¥ in Eq.(B.15) leads to:

U — Co€e6 — 5\66(1)

= ) B.18
966 ( )
while solving for €56 in Eq.(B.16) leads to:
U+ b3
€6 — L (Blg)
966

Introducing Eq.(B.19) into Eq.(B.18), ® is obtained in terms of ¥ as follows:

Co G556 3

O = (=—)[(a — =)V + bV~ (B.20)
66966 o

Introducing Egs.(B.19) and (B.20) into Eq.(B.17) a renormalized equation for ¥ is obtained:

T Seb S
[Neocj) (a . @> _ ~66a]\11 i ~€OC~0 b— ~66 + N§C~03 (a _ @)3 ]\113 -0 (B.21)
66366 Co 966 66966 966 Ngs T ‘o

Then, at T' = T the effective coefficient of the linear term in ¥ provides the new transition

temperature:
~2
€0966

ap(T —Ts) =a — —————.
0( S) 6000-)%6

(B.22)

Using that a = ao(T—T"), the dependence of the critical temperature with the two coupling

constants g and A can be obtained:

§2
Tg=T"+—96 (B.23)

2
apgCo (1 — :(;6660 )

This is another interesting formula that nicely describes the MC results, as shown in Ch. 2.
Equation(B.23) is a novel result that shows that T depends in a different way on the spin-
lattice (ges) and the orbital-lattice (5\66) couplings. Moreover, an effective Ags-dependent
elastic modulus ¢(\gg) can be defined as

Ads

0(5\66) =Cy— —. (B24)

€0
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In addition, the effective shear elastic modulus is now given by

12 ~9
As6 966

=c—-—— - — B.25
Ce6 Co o a0<T — T*) ) ( )

which vanishes at the Ty given by Eq.(B.23).
The spin-nematic susceptibility is still given by Eq.(B.14) with the dependence on g
embedded in the actual values of W. The orbital-nematic susceptibility is obtained from

Eq.(B.17) as

€eo + 3fq)2)— — 5\66 — =0. (BQG)

In the absence of an explicit coupling & between the spin-nematic and orbital order

parameters, then the orbital-nematic susceptibility becomes:

op 9 X6
L= 22 on . B.27
X 8666 —8526 € + 3f(I)2 ( )

If a term of the form a¥® is added to the free energy, as discussed in Ch. 2, the expressions
for the susceptibilities can be obtained for T" > Tg. The orbital susceptibility now displays

Curie-Weiss behavior: ~ N
_ @ n a(geseo + Aest)

Xo 5 B.28
eo  aped[T — (T* + a?)io)] ( )
while the spin-nematic susceptibility becomes:
Je6€0 + Aaoll
XS = % &2 9 <B29>
CL[)@()[T — (T + %ﬂ
and the structural transition temperature is given by
52 e @i = )2

Ty =7 4 2y ool T codos)” (B.30)

2
apé 2 Ab6
0€0  gpepcg(l — eoco)
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Appendix C

Partial and Total Derivatives at Tqg

The partial derivative in the definition of x; is at constant temperature varying egs and it
is evaluated at equilibrium egg = €. The slopes of the green and blue curves of Fig. 2.2(b)

provide this derivative. On the other hand, the results of Fig. 2.2(b) in equilibrium (slope

av

o Since ege=¢g6(1"), their relation is

of the red points curve) provide the full derivative

A OU o T 9.
_:_|50+_|€0_|€0:XS+ 66T - 5 (Cl)
d€66 8666 or 8666 5%6 |60

where g—;lf is performed at constant egg and

O¢se
oT

¢, 1s performed at constant W. In general, the
partial and total derivatives of ¥ with respect to e can differ from one another. However, at
small \gg the structural transition is weakly first order [79] (or a very sharp second order)

and then when T =~ Ty the lattice distortion €gg rapidly jumps from 0 to a finite value.

ov

Oege v
oT €0

oT

This means that e, 1s very large while remains finite since it is performed at fix
€. Thus, at T' = Tg, the partial and total derivatives are almost the same. This can be
seen in Fig. 2.2(b) of Ch. 2 where the slopes of the green curves at €55 = 0, when they cross
the equilibrium line, are smaller than the equilibrium slope K but increase with decreasing
temperature until it becomes equal to K at 7' = Tg (red line). The slopes of the blue
curves at the finite value of €56 where they cross the equilibrium line are smaller than K and

decrease with decreasing temperature.
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Figure C.1: Spin-nematic susceptibility xs vs. temperature 7' (red circles) obtained from
Fig. D.1(b) (at ges=0.16 and 5\66:0.84). The standard MC technique on an 8x8 cluster
with PBC was employed (involving ED of the fermions at every MC step). Also shown are
two GL fits, as also employed in Fig. 2.4. The blue (thick) line indicates a divergence at a
temperature 7% (lower than Ts) characteristic of the electronic sector alone. In the range
T < T, the lattice follows the electronic behavior. The black (thin) line and black tilted
square points are a fit including the 3TsW¥? correction (see text in the previous section of
this Suppl. Material). The fitting parameters are 7% = 105 K and Ts = 304 K. The actual
Néel temperature for gge=0.16 and X66=0.84 is not shown.
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Appendix D

Spin-nematic Susceptibility at Large
5‘66

To investigate in more detail the potential role of orbital order in the spin-nematic
susceptibility, simulations were repeated for a robust Ao = 0.84, keeping the other electron-
lattice coupling fixed as ggg = 0.16. Results are shown in Fig. C.1. The increase of N6
substantially increases T, which is to be expected since now the electron-lattice coupling
is larger [79]. However, above Ty still the results can be well fit by a Curie-Weiss law,
with a divergence at T™ which is the critical temperature of the purely electronic system,
as described in Ch. 2. Even the coefficient a¢ in the fit is almost identical to that of the
case \gg = 0.12, in Fig. 2.4. The second fit, with the 37T5¥? correction, is still reasonable.
In summary, as long as Agg is not increased to such large values that the low-temperature
ground state is drastically altered, the computational results can still be analyzed via the
GL formalism outlined here and in Ch. 2, with a 7™ that originates in the (7,0) magnetic
transition of the purely electronic sector.

For completeness, the plots analog to those of Fig. 4.2 but in the present case of Ao = 0.84
are provided in Fig. D.1.
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Figure D.1: Spin-nematic order parameter from the MC simulations, at gg=0.16 and
5\66:0.84. (a) W vs. T and eg6, measured at a fixed lattice distortion egg for each temperature
(restricted MC). Shown are the 7% temperature (see text) and Tg. Results shown are for
an 8x8 cluster with TCA+TBC, but PBC 8x8 clusters with ED give similar results. Red
points are the equilibrium values using unrestricted MC with ED and PBC 8x8 clusters.
(b) MC results illustrating the relation between ¥ and €4 in unrestricted MC (red) and
the restricted MC curves (green/blue), parametric with temperature. Results are obtained
with ED/PBC 8x8 clusters. Note that U vs. €4 (red squares) is no longer linear which is
expected because Eq.(B.7) is valid only for Aes = 0 (and approximately valid for small )\66)
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Appendix E

Definition and Calculations of Lattice
Displacement and Magnetic and

Structural Order Parameters

The lattice variables d;, = (5fy, 5?’”), with v ranging from 1 to 4, that enter in the definition
of €6 and €12, the orthorhombic and monoclinic lattice distortions respectively, denote the
distances between an Fe atom at site i (filled circles in Fig. E.1) and one of its four neighboring
As or Te atoms (open circles in the figure and labeled by the index v). The As/Te atoms are
allowed to move locally from their equilibrium position, but only along the directions x and
y (the z coordinate does not participate in the planar lattice distortions addressed here).
The Hamiltonian Hgp defined in Sect. 4.2 was studied using a Monte Carlo method [61,
82] applied to (i) the localized spin degrees of freedom S; assumed classical, (ii) the
atomic displacements (&7, 4;,) that determine the local orthorhombic or monoclinic lattice
distortions €g6(i) [79] and €12(i) defined in Eq. 4.5, (iii) the global orthorhombic distortion
(rs,ry), and (4v) the global monoclinic distortion . As already explained, the As/Te atoms
are allowed to move from their equilibrium positions on the x — y plane but the Fe atoms
can only move globally in two ways: (i) via a global orthorhombic distortion characterized
by a global displacement (r,,7,) from the equilibrium position (mgo), yfo)) of each Fe atom,

with r, = 1+ A, (A, < 1) and a = x or y [see panel (c) of Fig. 4.2]; (ii) via the angle
between two orthogonal Fe-Fe bonds which is allowed to change globally to 90° 4 6 with the
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Figure E.1: (a) Schematic representation of the equilibrium position of the Fe-Te/As lattice
(projected on the z-y plane). Four Fe atoms are indicated with filled circles and labeled by
their site index i. The open circles indicate the projection of the equilibrium position of
the As/Te atoms on the x-y plane. The distances between an Fe atom at site i and its
four neighboring As/Te atoms are indicated by ¢;, with v running from 1 to 4 (turquoise
arrows). In equilibrium &, = \/§a0/2. The dashed lines indicate a, = a, = ag, the
equilibrium distance between neighboring irons. (b) Sketch representing the variables o7,
and 6, (brown arrows) for labels (i,2) and (i+y,1) in the equilibrium configuration. For
an illustration of the non-equilibrium &;, see [79].

four angles in the monoclinic plaquette adding to 360° so that the following angle in the
plaquette becomes 90° — 6, with 6 a small angle [see panel (d) of Fig. 4.2]. After the global

distortion the new position of the Fe atom is given by

(0)

{ x; = xgo)rx cost —y,; 'rysind E1)
e —a:l(o)rx sin + ygo)ry cosf. .
When an orthorhombic distortion is stabilized, the variables of , satisfy the constrain
N 4
2Na, =Y > 15,1, (E.2)

i=1 v=1

where N is the number of Fe sites, s = x,y, and ay, = agrs is the constant Fe-Fe distance
along the s direction which is equal to a¢ in the undistorted tetragonal phase as shown in

panel (c) of Fig. 4.2). The orthorhombic distortion order parameter do is then given by

|a; — a,| ag|re — 1y
5 = _ _ E.3
© ag + ay ao(ry +1y) (E-3)
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Since vy = 1+ A, and s = z, y, then

1+ A - (1A
O 14 A+1+A,

1
~ S8, =4, (E.4)

On the other hand, when a monoclinic distortion is stabilized the constraint satisfied by

45, is given by

N
2Ndyp iy = Y (1614l + [012]), (E.5)

i=1

and N
2Ndy—y = > (|6i3] + [611]), (E.6)

i=1

where d,, is the length of the plaquette’s diagonal along the p direction of the plaquette

formed by four Fe atoms. In the tetragonal phase d,, = v/2ay while in the monoclinic phase

d, = V2ag/1 — cos(90° & 0) with the plus (minus) sign for p =z —y (z +y) [see panel (d)

of Fig. 4.2]. The monoclinic distortion order parameter d,; is then given by

5M — |d37+y — dwfy’ _
d$+y + dm*y

V2ao|(1 —sin6)/? — (14 sin6)"/?| _ 0 (E.7)
V2ao((1 —sin§)1/2 + (1 +sing)1/2) 2=

In summary, Monte Carlo simulations are performed on the values for the lattice variables
Tz, Ty, 0, and 67, and also on the localized spin variables S;.

For each fixed Monte Carlo configuration of spins, atomic positions and global distortions,
the remaining quantum fermionic Hamiltonian is diagonalized. The simulations were

performed varying the temperature 7" and the spin-lattice dimensionless couplings ggs and

g12. The latter are defined by ggs = \2/1% and o = jil—‘fv where W = 3 eV is the bandwidth

of the tight-binding portion of the Hamiltonian and k is a constant that appears in Hgyg
(for details see [79]). The range of values explored for these dimensionless coupling constants
was chosen so that the orthorhombic and monoclinic distortions (also dimensionless defined)

agree with the experimental values that range from 0.003 to 0.007 [41, 137, 145].
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The fermionic exact diagonalization technique results can be obtained comfortably only
on up to 8 x 8 lattices which is the cluster size used in this work. However, twisted boundary
conditions were also used [89] in the evaluation of the resistivities and Fermi surfaces (FS),
effectively increasing the lattice size as explained in early efforts [79]. Most couplings were
fixed to values used successfully in previous investigations [61] for simplicity: Jy=0.1 eV,
Jan=0.012 eV, and Jynn=0.008 eV. However, results for Jy=0.2 eV and Jyn=Jnnn=0 were
also discussed in Sec. 4.3. As explained there, qualitatively our conclusions do not change
whether the Heisenberg interactions between the localized spins are or not included in the
study.

In the Monte Carlo simulations typically 5,000 MC lattice sweeps were used for
thermalization and 10,000 to 25,000 for measurements, at each temperature and parameter
values investigated. In addition to the By, order parameter, the magnetic transition was

also determined from the magnetic susceptibility defined as

XS(ksdy) = NB(S(ka, ky) = (S(ka, ky)))*, (E.8)

where 8 = 1/kgT, N is the number of lattice sites, and S(k;, k,) is the magnetic structure
factor at wavevector (k,, k,) obtained via the Fourier transform of the real-space spin-spin
correlations measured in the MC simulations. To study the collinear [bicollinear] AFM state
(ky, ky) was set to (m,0) [(7/2, —7/2)].

Besides the lattice order parameter dp given in Eq. E.3, the orthorhombic structural

transition was determined from the behavior of the lattice susceptibility defined as

Yoo = NB{60 — (00))*. (E.9)

Reciprocally, the monoclinic structural transition was studied via its order parameter,
i.e. the monoclinic distortion d,; given in Eq. E.7, and also through the lattice susceptibility

defined as
Xoy = NB{0nm — (6ar))2. (E.10)
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Appendix F

Resistivity Calculation

The method used in Sec. 4.3 to calculate the resistivity is based on the computational
implementation of the Kubo formula for DC conductance described in Ref. [180]. According

to Eq. 8 in Ref. [180] the conductance G is given by:

< Iz>

— 2hr i |0 2M5 o — €5 — hw), (F.1
e ﬂwlgg)%Kw!v Vg > | p— (€a — € ), (F.1)

where f, = (1+e’©=#)~1 is the Fermi distribution for each occupied eigenstate |, > and
vz is the velocity operator whose definition in terms of the fermionic operators is provided
below. The product of the last two factors in the conductance G can be simplified using a

Taylor expansion (A(€) = €, — €3):

(1 4 eflemrtBlON =1 _ (1 4 eflemm)—1
A(e)—0 Al(e)
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The operators for the velocity (v7) in different lattice directions (¥) are given by:

Zh@f - - Z taﬁd:roca 1+ﬁ,ﬂ70+
g a7ﬁ7
ap taﬁ
i+ i i i
\/5 diyayo-di-‘r)h(—‘ry,ﬂ,o' + \/§ di,a,adﬂ'ﬁ—yvﬁao’
Zh’f}g = — Z tgﬁd;a’odpry’ﬁ’a—l—
U?aﬁg’i
t%4s 1 %
i,a,adi*ﬁ+yﬁ,0 + \/_ dl Nej O'ler)Achy:ﬁvU

Zh'&jq_g‘ Z \/— lao 1+yﬁa+
UO[B?
taﬁ
PPN ¥
Zﬁv_f+g: - Z 7 lag 1+yBg+

U7a7/3 1

with the hoppings given by

V2

af
t?@ﬂﬁdexWﬂp4‘j§dhwdwx&o

ap
B i —& gt
ti:ﬁ+ﬁdi,a,adi—ﬁ+§’ﬁ70 + \/_%

ty 0t
0 t 0
0 ts
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ty, 0 0

af %

0 t& t
ts —14 t;
Cvﬁ _ *
tivg = | —ta 3 &3
—tg —tg te

ts 14 tg
Oéﬁ _ *
t@_g— t4 t3 —tg
—t; t; ts
ts 14 —t;
o=t ts ot
—z+y 4 3 8
to—tt i

The parameters t; provided in Table A.1 are the tight-binding hoppings in the three-
orbital model for pnictides from Ref. [56]. Notice that 5 = (—1)"¢; and t§ = (—1)"tg due
to the periodicity of the As atom’s positions (where i and j are the 2 and y coordinates of
lattice site i, respectively). The resistivity anisotropy for the iron-pnictides occurs along the
2 and g directions while in the iron chalcogenides the & 4 ¢ and — + ¢ directions need to be
considered due to the 45° relative rotation of the lattice axis. These are also the directions
along which the magnetic order forms in the respective compounds (see Sec. 4.3).

In order to increase the accuracy of the calculation, Twisted Boundary Conditions (TBC)
were implemented [61]. This multiplies the number of momenta in both the & and ¢ directions
from L — L x M through applying a phase ® = “Tm with m =0, 1, ..., M — 1, at the
boundaries so that the hoppings at the boundaries are now given by t?“%c = (o8 ¢i®,

The velocity matrix elements for each relevant directions v are evaluated using the Monte

Carlo method described in the previous subsection. The directional resistance R is obtained

by inverting the conductance G.
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Appendix G

Additional Phase Diagrams for the
Hamiltonian Studied in Ch. 4

The phase diagram as a function of the couplings ggs and g2 at T' = 10 K is presented in
Fig. G.1 including Heisenberg couplings. It is important to remember that in the absence
of spin-lattice couplings the SF model already develops a collinear AFM ground state due
to the comparable NN and NNN hoppings in the tight-binding term of the Hamiltonian
(and the concomitant NN and NNN Heisenberg interactions between the localized spins if
included [61]). The coupling ggs that couples the short-range Bj, magnetic nematic operator
to the orthorhombic distortion stabilizes a small orthorhombic distortion that increases
monotonically with the value of this spin-lattice coupling, as indicated by the size of the
inverted triangles in the figure. The blue circles indicate the concomitant presence of collinear
(m,0) AFM order. The figure shows that, regardless of ggs, the coupling g2, between the
monoclinic lattice distortion and the By, magnetic nematic operator, has to reach a finite
value close to 0.25 to stabilize the bicollinear AFM state indicated by the red circles in the
figure. The bicollinear magnetic order is accompanied by a monoclinic lattice distortion
indicated by the triangles whose size increases monotonically with gi.

It is interesting to observe that there is a region in the phase diagram Fig. G.1 where the
monoclinic distortion is stabilized, but the magnetic order is neither collinear nor bicollinear.
This is caused by the competition between g2, that after inducing the monoclinic distortion

induces the bicollinear magnetic order, and the NN and NNN Heisenberg couplings that
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Figure G.1: Phase diagram at T'= 10 K of the spin fermion model, including Heisenberg
couplings with the values indicated in the Methods Section, varying the dimensionless
couplings to the orthorhombic and monoclinic distortions. The size of the blue (red) circles is
proportional to the strength of the collinear (bicollinear) AFM order. The size of the bottom

0.3 0.1
0.5 03

30 1.0 x10>

A
8.0 40 2.0 xI10

vy ey 00000000

00000000
00000000
00000000
00000000
00000000
00000000
....‘...‘.‘

020025 030 035 0.40

side up (down) triangles is proportional to the magnitude of the orthorhombic (monoclinic)
distortion. The actual scales used are shown at the top of the figure.



favor a collinear (m,0) magnetic state. Thus, g2 is able to induce the lattice distortion
before it clearly stabilizes the bicollinear magnetic order. The fact that the value of g
that stabilizes the bicollinear state is larger than the value of ggs needed to obtain the
experimentally observed magnitude of the orthorhombic distortion is also a result of the

effect of the Heisenberg terms in the Hamiltonian that favor the collinear AFM state.
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Figure G.2: Phase diagram at T' = 10 K corresponding to the spin-fermion model for
the case Jynn=Jnn=0, varying the spin-lattice couplings that lead to the orthorhombic and
monoclinic distortions. The size of the blue (red) circles is proportional to the strength of
the collinear (bicollinear) AFM order, while the size of the bottom side up (down) triangles
is proportional to the magnitude of the orthorhombic (monoclinic) distortion.

0.05

In Fig. G.2 we display the low-temperature phase diagram in the plane g5 — ggg for

the case Jyn=Jnnn=0. Again the collinear and bicollinear phases are stabilized but, as
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Figure G.3: Orthorhombic, dp (blue), and monoclinic, ), (red), lattice distortions varying
gss and g2 at T' = 10 K using the spin-fermion model with Jyny=Jxn=0. The scale on
the right shows that the lattice distortions obtained numerically are within the correct order
of magnitude when compared with experimental data [41, 137, 145]. The values for the
orthorhombic distortion are plotted with a negative sign for simplicity to display.

expected, smaller values of the monoclinic coupling are needed to induce the monoclinic
phase. Note, however, that a finite value g5 ~ 0.1 is still required to stabilize the bicollinear
phase because the tight-binding term in the Hamiltonian still favors a collinear magnetic
state via F'S nesting.

The strength of the lattice distortion of Fig. G.2 is shown in Fig. G.3. A reasonable
coupling ggs ~ 0.2 is needed to reproduce the experimental value of the orthorhombic
distortion corresponding to the 122 parent compounds. The scale shows that the range
in the values of the stabilized monoclinic distortion is also in qualitative agreement with

experiments [41, 137, 145].
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Figure G.4: Orthorhombic, do (blue open squares), and monoclinic, §,; (red open circles),
lattice distortions and the spin nematic order parameters WY (blue filled squares) and
WNNN (red filled circles) as a function of temperature corresponding to the case gy = 0.29,
Jges = 0.05, and with the inclusion of Heisenberg couplings.
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Appendix H

Unexpected Intermediate
Temperature Range of Finite

Jynn/Inyy for the Hamiltonian
Studied in Ch. 4

When Heisenberg couplings are included, the inset of Fig. 4.4) shows an exotic region
where the bicollinear /monoclinic transition is preceded by an orthorhombic transition upon
cooling. In Fig. G.4 we show the magnetic and structural order parameters for both types of
transitions in this unexpected regime. The transition to the collinear/orthorhombic region
occurs at about 7' = 80 K and it appears to be continuous, while the bicollinear /monoclinic
transition occurs at T" = 60 K and is strongly first order. Note that in our simulations
the orthorhombic phase appears to be accompanied by a collinear magnetic state while
experimentally the orthorhombic phase that precedes the monoclinic state in FeTe with
excess Fe is magnetically incommensurate [154, 157]. We may need either larger lattices or
the explicit addition of extra irons in order to capture the magnetic incommensurability of

this phase.
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Figure H.1: Resistance (h/2¢? units) vs. temperature along the AFM (orange points)
and FM (green points) directions in: (a) the collinear/orthorhombic state at ggs = 0.16,
g12 = 0.00, Jy = 0.10 eV, and nonzero Heisenberg couplings; (b) same as (a) but for
the bicollinear/monoclinic state with ggg = 0 and g1o = 0.40; (c) same as (a) but for
Ju = 0.20 eV; (d) same as (b) but for Jy = 0.20 eV.
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Appendix 1

Reversed Resistivity in FeTe with
Details on the Results Presented in

Ch. 4

An interesting result reproduced by our study is the anisotropy observed in the planar
resistivity of FeTe.

In general, one of the most puzzling behaviors observed in the Fe-based materials is the
anisotropic behavior of the in-plane resistivity as the temperature decreases. In the pnictides
the cause of the anisotropy is usually attributed to nematicity of electronic origin. In isovalent
or electron doped pnictides the resistivity anisotropy develops in the orthorhombic phase and
the resistivity is lower along the direction with the largest lattice constant which becomes
the antiferromagnetic direction below the magnetic critical temperature. This behavior
is in principle counterintuitive because in the colossal magnetoresistive manganites it is
well-known that electrons move better in ferromagnetic states. In principle this is not the
case in the pnictides due to the geometry of the orbitals that appear at the Fermi surface.
Interestingly, a “reversed” or “negative” anisotropy in the resistivity has been observed in
the chalcogenides, both in the parent compound FeTe [147, 148] and also in FeSe [181].

The resistance R along the AFM and FM directions was calculated as a function of
the temperature following the procedure described in [61] implementing twisted boundary

conditions so that the number of accessible momenta along the x and y directions was as large
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Figure I.1: Resistance vs. temperature along the AFM (orange points) and FM (green
points) directions in: (a) the collinear/orthorhombic state for ggg = 0.24, g1o = 0.00, Jy =
0.20 eV, and Jxyn=Jnn=0; (b) same as (a) but for the bicollinear/monoclinic state with
Ges = 0.00, §1o = 0.24, Jy = 0.10 eV, and Jynn=Jnn=0.

as L = 256. The error bars include in these resistivity figures are the standard deviation of
the resistivities calculated from 20 different configurations of the classical MC variables. In
Fig. H.1 (a) we show the planar resistance in the collinear /orthorhombic phase corresponding
to ges = 0.16, g1o = 0.00, Jg = 0.10 eV, and nonzero Heisenberg couplings. In this case,
the resistance is the smallest along the AFM direction (z-direction in the square lattice) in
agreement with previous theoretical investigations [79] and with the experimental data for
pnictides [71]. In the bicollinear phase, obtained for example at ggg = 0 and g2 = 0.40 we
actually observe the reversed behavior as shown in Fig. H.1 (b) although here the anisotropy
is very small [182]. However, it is experimentally known that the magnetic moment measured
in the chalcogenides is larger than the one in the pnictides [41, 137] and, for this reason,
we have repeated the simulation increasing the Hund coupling from 0.10 eV to 0.20 eV. As
it can be observed in Fig. H.1 (d) the reversed anisotropy effect is now enhanced. On the
other hand, a similar increase in Hund coupling decreases the resistance anisotropy in the
orthorhombic phase as shown in panel (c) of the same figure. These results indicate that the
reversed anisotropy is favored (hindered) by the increase (decrease) in the magnitude of the
magnetic moments. A similar response to the Hund coupling is observed for the case where
the Heisenberg couplings are zero, as presented in Ch. 4: in Fig. .1 we display the results
illustrating how the anisotropy is reduced with increasing Hund coupling in the collinear
phase (panel a) while the reversed anisotropy decreases when the Hund coupling is reduced

in the bicollinear phase (panel b).
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As already explained in Ch. 4, we believe that this “reversed” anisotropy occurs for
reasons similar to those unveiled in manganite investigations [82], namely when electrons
move along the AFM direction they must pay an energy as large as Jy, while along the FM
direction there is no such penalization. This is compatible with the observation that the

magnitude of the reversed effect increases with Jy.
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