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Abstract

The iron pnictide and iron chalchogenide superconductors are studied numerically using

classical Monte Carlo techniques to reproduce experimental data and make predictions about

the nature of the relevant interactions. The focus will be using Spin-Fermion models in

a classical approximation to explore the phase diagram and calculate important physical

properties of these materials over a wide range of temperatures.
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Chapter 1

Introduction

1.1 High Temperature Superconductors

Several materials have been found to have zero resistivity after they are cooled below

some critical temperature, Tc. This phenomenon, called superconductivity, was first

discovered by Heike Onnes in purified mercury [1]. Since for mercury Tc ∼ 4 K, this

discovery was due in large part to Onnes’ ability to liquefy Helium whose temperatures

were the lowest ever produced on Earth at the time. Despite many more superconducting

materials being discovered afterwards, it was not until decades later when Bardeen,

Cooper, and Schrieffer published their theory of superconductivity [2] that the underlying

mechanism was explained. In BCS theory, the superconducting phase arises when the

attractive retarded electron-phonon interactions overcome the Coulomb repulsion among

electrons, forming quasiparticles, known as Cooper pairs. This description was sufficient

to describe superconductivity in the contemporary materials until the first unconventional

superconductor [3], CeCu2Si2, was discovered that could not be explained by the BCS

mechanism.

In 1986 Bednorz and Müller [4] discovered the first high temperature unconventional

superconductor when BaxLa5−xCu5O5(3−y) was cooled below Tc ∼ 35K and the material

became superconducting. This was the highest Tc discovered at this time. The subscript

x indicates the replacement of La by Ba which introduces hole doping in the compound.

However other cuprates were later found that become superconductors upon electron
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doping [5]. These layered materials characterized by CuO2 planes (See Fig. 1.1(Top))

have become collectively known as the cuprate family of high temperature superconductors.

Much attention was given to these materials for the next decade because of the promise of

synthesizing materials with higher Tc. However, HgBa2Cu3O8, the cuprate with the highest

Tc at Tc =134 K was discovered in 1993 [8]. A new breakthrough occurred in 2008 when

the material LaFeAsO1−xFx was discovered to be another unconventional high temperature

superconductor with Tc ∼ 26 K [9]. Since that time many other iron based superconductors

(FeSC) have been discovered and currently there are six different families of these materials.

Referencing Fig. 1.1(Bottom), the 1111, 122, and 111 pnictide compounds are categorized

by the ratio of their constituent atoms and this family of materials can be characterized

by their Fe and pnictide (elements in the 15th column of the periodic table) layers. The 11

chalcogenide compounds have the simplest structure and only contain layers of chalcogenides

(elements in the 16th column) and Fe.

The study of the FeSC will be the focus of this dissertation. The FeSC are complex

materials that have multiple degrees of freedom (DOF) whose contributions must be isolated

in order to understand the importance of each. In this manuscript, the focus will be to

determine which DOF are most relevant to describe several of the properties observed in

the pnictides and chalcogenide FeSC. This will be accomplished by developing models that

capture the individual contributions of each DOF over a wide temperature range. In the

remainder of this Chapter, the general properties of the FeSC will be described.

1.2 Properties of the Iron Pnictides

The discovery of unconventional high temperature superconductivity in the Fe-based

superconducting materials prompted comparisons to the cuprates. Both families of materials

have parent compounds that are magnetic and non-superconducting. They are complex

layered materials that become superconducting upon doping with either electrons or

holes (See Fig. 1.2). As previously mentioned, the layers of interest for the cuprates are those

containing the copper oxide planes with CuO2 per unit cell. As can be seen in Fig. 1.3(a),

this layer contains the Cu’s in a square lattice with coplanar oxygen in the links that connect
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Figure 1.1: (Top) The lattice structure and chemical formula for three common copper
based superconductors characterized by CuO2 layers. This figure is reproduced from
Ref. [6].(Bottom) The lattice structure for the iron based superconductors and their
superconducting transition temperatures Tc. The left three materials exemplify the 1111,
122 and 111 members of the pnictide family. The green circles are As atoms (pnictides) and
the blue are Fe atoms. These form the FeAs layers that characterize these materials. The
compound on the far right does not contain As and is a representative of the chalcogenides
where here the green circles are Se/Te. This figure is reproduced from Ref. [7]
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nearest neighbor Cu’s. Fig. 1.3(b) shows the planes of relevance that characterize the iron

pnictides. The Fe atoms form a square lattice with the As atoms in the plane above or below

the Fe and located in the center of four Fe ions. In contrast to the cuprates, because the

As ions are staggered above and below the Fe plane, the unit cell for the iron pnictides is

Fe2As2. Although there are physically two Fe per unit cell in the pnictides, due to glide-

mirror symmetry of the lattice, it can be convenient to study systems with a FeAs unit

cell [13].

Figure 1.2: (Left) A schematic phase diagram for the cuprates. The blue areas denote the
checkerboard AFM phase while the red areas indicate the superconducting phase. This figure
is reproduced from Ref. [10]. (Right) Schematic phase diagram for 122 pnictides. Ort/AFM
denotes the phase with collinear magnetic order and orthorhombic lattice distortion,
SC the superconducting phase,and PM/Tet the paramagnetic and tetragonal phase. In
addition, a nematic phase appears upon doping. Tetragonal symmetry is only broken
below the nematic/orthorhombic transition line, but nematic fluctuations remain at higher
temperatures. This figure is reproduced from Ref. [11].

The undoped cuprates are Mott insulators with a “checkerboard” antiferromagnetic

(AFM) phase described by a magnetic structure factor, S( ~Q), that peaks at ~Q=(π,π) (See

Fig. 1.3(a)), while the undoped pnictides are bad metals with a “collinear” AFM state

defined by an S( ~Q) that peaks at either ~Q=(π,0) or ~Q=(0,π) (See Fig. 1.3(b)). The S( ~Q) is

the Fourier transform of the real space spin-spin correlations between spins on each lattice

site and can therefore be used to describe long range magnetic order.
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Figure 1.3: (a) The copper oxide plane in the cuprate superconductors showing the
~Q=(π,π), checkerboard AFM order in the Cu spins. The red circles are oxygen ions and
are co-planar with the blue Cu ions. (b) The pnictide FeAs plane. The blue circles are Fe
ions and the red circles are As ions where the darker (lighter) red circles are the As ions
above (below) the Fe plane. The collinear (π,0) AFM order is indicated in the Fe spins. This
figure is reproduced from Ref. [12]

Figure 1.4: An illustration of the five d orbitals where the valence electrons in Fe and Cu
reside. The orbitals can be separated into two groups: t2g and eg. For Cu the eg orbitals,
particularly dx2−y2 , contain the most weight at the FS while for Fe the t2g orbitals are the
ones that form the FS. This figure is reproduced from Ref. [14]

The “base” atoms Cu and Fe are transition metals that have valence electrons occupying

their d orbitals which are outlined in Fig. 1.4. LDA calculations and ARPES measurements
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have demonstrated that the Cu dx2−y2 band (See Fig. 1.5(Left)) dominates at the Fermi

surface (FS) (See Fig. 1.6(Left)), thus single orbital models have mostly been used to study

the cuprates [19, 20]. However, in the case of the pnictides, LDA calculations have shown that

several Fe 3d bands hybridize (See Fig. 1.5(Right)) at or near the FS (See Fig. 1.6(Right)) and

produce a more complex FS characterized by hole pockets at the center of the Brillouin zone

and electron pockets at the X and Y points. Although first principles calculations [16, 21]

have shown that the 3dxz and 3dyz Fe orbitals have the dominant weight at the FS in the

Fe-pnictides, there is a non-negligible contribution from the 3dxy orbital at the electron

pockets, as shown in Fig. 1.6(Right). These orbital contributions have been confirmed by

orbital resolved ARPES experiments [22] that use different polarizations to identify the

dominant orbital characteristic of the individual bands. The multi-orbital nature of the

pnictides greatly increases the complexity for the simplest models needed to describe them.

Figure 1.5: (Left) The La2CuO4 band structure from LDA calculations. The band that
crosses the Fermi surface has mostly Cu 3dx2−y2 character. This figure is reproduced from
Ref. [15]. (Right) Band structure of LaFeAsO from First Principles calculations. The red
and green bands have mainly Fe 3d and pnictogen/oxygen p characters, respectively. This
figure is reproduced from Ref. [16]
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Figure 1.6: (Left) Fermi Surface for the cuprates calculated in a one band Hubbard model.
This figure is reproduced from Ref. [17]. (Right) Fermi Surface for the pnictides calculated
in a five orbital tight-binding model. This figure is reproduced from Ref. [18]. The blue, red,
and green represents the dxy , dxz, and dyz orbitals respectively.

Figure 1.7: (Left) An illustration of four examples of proposed pairing symmetries for the
iron pnictides. The colors (green/orange) represent the sign (+/-) of the superconducting
gap function. This figure is reproduced from Ref. [23]. (Right) An illustration of the d-
wave pairing symmetry for the cuprates where the red/blue color represents the sign of the
superconducting gap function. This figure is reproduced from Ref. [24].

It is not yet known if superconductivity in both families of materials has the same origin.

Electron-phonon interactions as in BCS appear to be insufficient to overcome the Coulomb

repulsion in the cuprates and it is believed that magnetism plays a role [12]. This leads to a
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peculiar SC gap that usually contains nodes in which the gap function changes sign at the

FS. Thus, instead of the uniform S-wave gap of BCS materials, the SC gap in the cuprates

has nodes at (±π
2
,±π

2
) and D-wave symmetry. The pairing symmetries in superconductors

can be characterized by the sign of the gap function. Examples for the proposed pairing

symmetries for the cuprates and pnictides are shown in Fig. 1.7. The pairing symmetry in

the cuprates has been proven to be D-wave [25], but in the pnictides this is still an area

of controversy. S+/− and D-wave pairing symmetries have been proposed [23] as a result

of the magnetic/Coulomb interactions that are supposed to lead to D-wave pairing in the

cuprates, while S++ pairing [26], is the result of the standard electron-phonon interactions

in multi-orbital systems. Despite the multiple experiments that have studied the pairing

symmetries of the pnictides [27, 28, 29], the results are still controversial due to the variety

of materials in the family, the difficulty to distinguish S++ from S+/− symmetries, and the

possibility of nodeless D-wave gaps under certain conditions.

It is important to notice that both families of materials also undergo a structural

transition. In the pnictides the Fe ions form a tetragonal arrangement, which becomes

orthorhombic for temperatures below TS (See Fig. 1.2(Right)). This transition is very

relevant in the pnictides because it breaks the degeneracy between the ~Q=(π,0) and ~Q=(0,π)

collinear states, and the dxz and dyz orbitals. The structural transition from tetragonal

to orthorhombic also occurs in the cuprates, but it is not as relevant as in the pnictides

because the cuprates have a ~Q=(π,π) magnetic state which is not affected by the lattice

distortion. As can be seen in the phase diagram shown in Fig. 1.2(Right)), for the pnictides

TS may occur above TN . In fact for several different concentrations of doping for the “122”

compounds and in the “1111” compounds [30] this is the case. Early experiments [9, 30] had

discovered a resistance anomaly associated with this structural transition, and the existence

of a nematic phase of electronic origin [31] was proposed shortly after. Experimentally the

nematic phase has been studied through in-plane resistivity measurements along the two

perpendicular lattice vectors [32]. Due to the small lattice distortion in the orthorhombic

phase (on the order of δ = (ax − ay)/(ax + ay) ∼ 0.003), the lattice is not expected to be

the driver of the resistance anomaly [33, 34]. Here δ is the order parameter describing the

orthorhombic distortion and ax (ay) is the average Fe-Fe distance in the x̂ (ŷ) direction. For
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this reason it has been suggested that the nematic state may be driven by the spin degrees

of freedom [31, 35, 36] or by the orbital ones [26, 34, 37, 38]. The idea is that the “driver” of

the nematic phase may be the DOF that also drives superconductivity due to the proximity

of the nematic and superconducting phases. However, complexities in experiments (with

external strain required to detwin crystals) and in the theoretical approaches (multiorbital

models, intermediate correlations regimes) have prevented the identification of a primary

driver of the nematic state.

The so-called “magnetic” scenario for the nematic state proposes that the magnetic long-

range order in iron pnictides develops in two stages (See Fig. 1.8): the Ising Z2 symmetry is

broken when the short-range degeneracy of the ~Q=(π, 0) and ~Q=(0,π) AFM states is lifted

at TS and the O(3) symmetry is broken when the spins develop long rang order favoring a

direction in spin space [35]. From a magnetic point of view the nematic phase is described

by the broken Z2 symmetry while the system remains paramagnetic, and the rotational

O(3) symmetry remains unbroken. In the orbital driven scenario the dxz/dyz symmetry is

broken inducing the structural transition at TS via an orbital-lattice coupling and before

the long-range magnetic order develops at TN . As pointed out above, the importance of

understanding which degree of freedom drives this transition is that it may unveil which

DOF is responsible for the superconducting mechanism due to the proximity of the nematic

and SC phases.
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Figure 1.8: Schematic representation of the magnetically driven nematic transition in real
space. (a) The transition from the disordered phase to the AFM phase breaks an O(3) x
Z2 symmetry. The O(3) symmetry encompasses the rotations in spin space while the Z2

(Ising) symmetry involves the two degenerate ground states of magnetic stripes with parallel

spins along the y axis (ordering vector Q1 = (π,0)) or along the x axis (ordering vector ~Q2 =
(0,π)). (b) The O(3) x Z2 symmetry can be broken in two steps. First, only the Z2 symmetry
is broken, but the system is still paramagnetic (indicated by the gray double arrow on top
of the spins). In the second step, the O(3) symmetry is broken and the system acquires
long-range magnetic order. This figure is reproduced from Ref. [35].

1.3 Properties of Iron Chalcogenides

Another exciting development in the study of Fe-based superconductors was the discovery

of superconductivity in the iron chalcogenides such as FeSexTe1−x [39]. As mentioned

previously, understanding how these materials compare to the other high temperature

superconductors is crucial to the development of a generalized theory that explains this

phenomenon. As can be seen in Fig. 1.1(Right), the chalcogenides are characterized by
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iron/chalcogen planes with the chalcogens being S, Se, or Te [40]. The chalcogenides have

the simplest structures and the highest Tc of all the FeSC. They share some properties

with the pnictides. For example, at high temperatures the iron chalcogenides develop

the same tetragonal PbO-type structure (staggered chalcogenide atoms in/out of the Fe

plane) as the FeAs layers in the pnictides, and a similar Fermi surface. However the parent

compound, FeTe, has unique properties. Its lattice undergoes a monoclinic distortion upon

cooling [41, 42, 43](See Fig. 1.9(Top-Left)). This structure is puzzling because it does not

seem to result from FS nesting as in the collinear state of the pnictides. Upon doping the

parent compound, FeTe, with Se, a rich phase diagram that includes superconductivity is

observed. When Te is completely replaced by Se, the material FeSe is superconducting,

but the optimal superconductivity occurs near FeTe0.5Se0.5 [41](See Fig. 1.9(Bottom)). The

magnetic order of FeTe is also different from the pnictides because the high temperature

paramagnetic state undergoes a transition to long range “bicollinear” AFM order shown in

Fig. 1.9(Top-Right)). The bicollinear AFM order can be described by a structure factor that

peaks at ~Q=±(π
2
,±π

2
) which are not nesting vectors in the Brillouin zone.

A puzzling characteristic of superconducting FeSe is that it goes through an orthorhombic

structural transition at TS ∼90 K and develops superconductivity at Tc ∼8 K. The material

appears to be in a nematic state for TS > T > Tc, although the collinear AFM state has not

been observed in any region of the phase diagram of FeSexTe1−x (at ambient pressure).

1.4 Relevant Degrees of Freedom in the Fe-Based

Superconductors

One of the goals of this manuscript is to identify the degrees of freedom that drive the

properties of the FeSC in the intermediate interaction regime. The spin, charge, orbital, and

even lattice DOF are all active in the actual materials. The role that each DOF plays is

a subject of debate. It is necessary to unveil the minimum number of DOF that a model

should contain in order to describe the relevant properties of the material. Since the cuprates

are Mott insulators with mostly one active orbital at the FS, strong coupling, single band
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Figure 1.9: (Top-Left) Schematic description of the tetragonal to monoclinic distortion
in FeTe where the Fe-Fe distance along the diagonals are elongated in one direction and
shortened in the other. The red circles indicate Te, Fe in the tetragonal structure is
indicated by light-gray circles and dark-gray circles denote the position of the Fe in the
monoclinic phase. (Top-Right) Bicollinear Magnetic order. (Bottom) The phase diagram
temperature (K) vs Se doping for FeTe1−xSex. This figure is reproduced from Ref. [42].
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models are used to describe many of their properties [44]. However, the iron pnictides are

more complex, with several active orbitals and in an intermediate Coulomb regime [12]. Thus,

the models that were successful for the cuprates cannot be used for the pnictides. When

materials are in an intermediate regime it is imperative that numerical tools are developed

to complement the traditional calculations performed in the easier to study strong and weak

coupling limits. Numerical studies are the most useful tool to obtain unbiased results. This

is the approach that will be followed in this manuscript with the goal to propose models

with the minimum number of DOF that capture the observed physical behaviors.

The success of the first principles calculations stated previously [16, 21] led some scientists

to believe that the properties of the pnictides could be obtained from weak coupling

approaches. In fact, the collinear AFM state of the parent compounds of the pnictides can

be guessed from the nesting of their Fermi surface [45]. However, other authors succeeded in

reproducing the magnetic properties of the pnictides using strong coupling approximations by

studying models with localized magnetic moments [46, 47, 48]. Super-Exchange spin models

can be studied numerically [46, 47] and with mean field (MF) techniques [48] and including

nearest neighbor and next-nearest neighbor Heisenberg parameters they can reproduce the

observed collinear magnetic behavior of the pnictides. However, these models are insulating

and fail to describe the metallic parent compounds. The rational for studying this limit is

the experimental observation of localized magnetic moments even at room temperature and

the existence of insulating states in some regions of the phase diagrams of some Cu-doped

pnictides and layered chalcogenides [49, 50]. However, it has been shown that both itinerant

electrons as well as localized magnetic moments [51, 52, 53] are present in the Fe based

superconductors indicating that they are in an intermediate coupling regime.

The standard models proposed to describe the FeSC are multiorbital Hubbard mod-

els that include the on-site Coulomb interactions U(intraorbital), U ′(interorbital), and

J(Hund) [54]. The tight binding multiorbital term can be obtained via Slater-Koster

techniques [55] for a number of d-like orbitals that ranges from two [55] to five [18], and the
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interaction term is given by [56] :

Hint = U
∑

i,α

ni,α,↑ni,α,↓ + (U ′ − J/2)
∑

i,α<β

ni,αni,β

−2J
∑

i,α<β

Si,α · Si,β + J
∑

i,α<β

(d†i,α,↑d
†
i,α,↓d

†
i,β,↓d

†
i,β,↑ +H.c),

(1.1)

where U is the on-site Coulomb repulsion for electrons in the same orbital, U ′ is the Coulomb

repulsion of electrons on the same site but in different orbitals, and J is a ferromagnetic Hund

coupling between electrons on the same site. The indices α, β denote the orbitals (xz, yz) in

a minimal two orbital model [55], xy is added for a three orbital model [56], and the five d

orbitals are included in the five orbital case [18]. The operator d†i,α,σ creates an electron with

spin σ on site i in orbital α, ni,α,σ = d†i,α,σdi,α,σ is the electronic number operator, and Si,α is

the spin in orbital α at site i given by d†i,α,a ~σa,b di,α,b where ~σa,b are the Pauli matrices. Due

to the presence of four fermion operators in these terms, exact calculations can be performed

only for two orbitals in an 8-site cluster [55].

It is crucial to develop multiorbital models that can be studied with unbiased numerical

simulations in larger lattices. The first principles calculations mentioned previously showed

that the 3dxz and 3dyz orbitals have the highest density of states at the FS, and a minimum

model must include at least these two orbitals. Two-orbital models with the Coulomb

interactions given by Eq. 1.1 can be solved exactly only in small lattices (8 sites) or via

mean field (MF) approximations [55]. These models have successfully provided the metallic,

magnetic ground state as well as a reasonable FS for the pnictides [57, 58]. However,

calculations using only two-orbitals have been criticized because they failed to include the

3dxy orbital that has a non-negligible weight at the electron pockets in the FS and could

not capture the correct band structure at several points in the Brillouin Zone such as the

Γ-point. Therefore, it is accepted that the minimum number of itinerant orbitals to describe

the pnictides is three. For this reason, three-orbital models were developed [56].

Unlike the two orbital model, the three orbital model only can be studied using MF

techniques because the addition of the extra orbital makes exact calculations unfeasible due

to limitations in computer memory. Using MF techniques, orbital and magnetic ordering in
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the ground state and a FS that matched the first principles calculations for the pnictides

were obtained [56]. With this model, the optical conductivity was calculated [59], showing

the resistance anisotropy between the ferromagnetic and AFM directions that have been

observed experimentally [60]. While this model reproduces many important properties of

the pnictides, its study is restricted to low temperatures where the MF calculations can be

performed and the region near the structural transition, that is important to understand the

nematic phase, cannot be accessed. Because of the limitations of exact diagonalization and

MF calculations for the three orbital model mentioned above, a three orbital spin fermion

model [61] was proposed for the pnictides that can be studied numerically in large clusters

at finite temperatures.

1.5 Spin Fermion Model

For decades prior to the discovery of the iron pnictides, double exchange models had been

developed to study materials with itinerant and localized DOF [62]. The lattice-Kondo

model, which includes a tight-binding Hamiltonian to describe the itinerant electrons and a

Hund coupling term to couple the itinerant and localized electrons [63], was developed as a

fully quantum model to study transition metal-oxides such as the manganites. Treating the

localized spins as classical fields that could be treated with classical Monte Carlo techniques

was later proposed [64, 65, 66], opening the possibility of studying the quantum system in

large lattices and at any temperature. The classical treatment of the localized spins replaces

the four-fermion interaction terms in the Hamiltonian by two-fermion ones, so that the

problem can be numerically studied in a single particle framework. Because of the success of

this “spin-fermion” approach in the lattice-Kondo model to study the manganites [65, 66], a

spin fermion model was later developed to study the cuprates [19]. When the pnictides

were found to be in the intermediate coupling regime and it was discovered that they

contain both itinerant and localized DOF, spin fermion models were developed for these

materials [52, 57, 61]. The following Chapters of this manuscript will be devoted to the

presentation of numerical results obtained from various adaptations of spin fermion models

which are described in detail in the corresponding chapters. The base Hamiltonian for the
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pnictides is presented in Appendix A. In chapters Ch. 4 and Ch. 5 the addition of spin and

orbital couplings to monoclinic distortions to describe properties of the chalcogenides will

be discussed.

In this dissertation, various adaptations of the spin-fermion model will be developed with

the goal to understand, reproduce, and predict properties of the Fe-based superconducting

pnictides and chalcogenides. The terms added to the spin-fermion model Hamiltonian,

as well as novel numerical techniques developed for their study, will be described in the

following chapters. Ch. 2 is devoted to the understanding of the puzzling behavior of

the nematic susceptibility observed in experiments on Ba(Fe1−xCox)2As2 under uniaxial

pressure [67]. Via a Ginzburg-Landau analysis and Monte Carlo simulations of the spin-

fermion model with a tunable axial strain affecting the spin/orbital/lattice interactions, the

experimental susceptibility is reproduced and its features interpreted. Ch. 3 is devoted

to understanding how nemacity develops with doping in materials of the 122 family. Our

numerical calculations demonstrate that the phenomenon develops due to the introduction

of non-magnetic impurities in the Fe-As planes as opposed to the loss of FS nesting due to

electronic doping as proposed in the weak coupling regime. The last two chapters present

the studies performed for the chalcogenides. An explanation of the origin of the bicollinear

long-range magnetic order observed in FeTe, the parent compound of the superconductor

FeTe1−xSex, is presented in Ch. 4 while the possible existence of a bicollinear nematic state

in iron chalcogenides is demonstrated based on analytical and numerical grounds in Ch. 5.

Additional technical aspects are presented in Appendices A to I.
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Chapter 2

Study and Explanation of the

Features of the Magnetic

Susceptibility Under Uniaxial

Pressure in BaFe2As2

This chapter is a modified version of PHYSICAL REVIEW B 90, 184507 [68, 69].

2.1 Introduction

As discussed previously in Sect. 1.4, the complexity of high critical temperature iron-based

superconductors [12, 70], with coupled spin, charge, orbital, and lattice degrees of freedom,

creates exotic regimes such as the widely discussed nematic state with broken rotational

invariance [60, 71, 72]. This state may originate in the spin [31, 36, 73, 74, 75] or in the

orbital [33, 34, 38, 76, 77, 78] degrees of freedom, but subtleties in experiments (with strain

required to detwin crystals) and in theory (employing complicated multiorbital models) have

prevented the identification of the primary driver of the nematic regime.

Previous efforts to study nematicity have considered spin fermion models with electrons

coupled to the lattice [79]. These studies unmasked a considerable electron-lattice feedback,

that led to several results in agreement with experiments, such as anisotropic resistivities
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and a nematic and structural (tetragonal-orthorhombic) transition at TS, slightly separated

from the Néel temperature TN (< TS) [80]. This nematic phase is similar to the results for

the 1111 parent compound LaFeAsO, however, experiments have shown that the transition

temperatures are simultaneous in the 122 parent compound BaFe2As2. Despite the fact that

TS = TN for this material, experiments have shown the existence of nematic fluctuations

under strain [60, 71].

More recently, a remarkable experimental development was the report of a diverging

nematic susceptibility χexp vs. temperature T , with a mysterious characteristic temperature

scale T ∗, for single crystals of Ba(Fe1−xCox)2As2 [67] measured by varying an in-situ uniaxial

strain. Although contrasting χexp against theory and explaining the physical meaning of T ∗

are crucial aspects to identify the mechanism that drives nematicity, χexp and T ∗ had not

been addressed theoretically before since temperatures above TS are difficult to study with

reliable methods.

In this Chapter results where, this nematic susceptibility was theoretically calculated

for the first time, via the spin-fermion model coupled to the lattice in precisely the same

setup as in Ref. [67] are reported. Note that this susceptibility, which tests a local geometric

property of an enlarged parameter space, is different from the simpler magnetic susceptibility

calculated in Ref. [79] obtained from thermal statistics. The present computational effort

required an order of magnitude more work than in Ref. [79] because the strain is an extra

parameter to vary, rather than being dynamically adjusted in the Monte Carlo (MC) process

as before. To implement this demanding task, modifications in the MC algorithm were

introduced, as explained in Sec. 2.3. Compared to Hubbard multiorbital approaches, a unique

characteristic of the spin-fermion model is that simulations can be carried out for a wide

range of finite temperatures, including the nematic regime above the ordering temperatures.

This is due to the classical approximation of the localized spins that enables the Hamiltonian

to be described by single particle states, greatly reducing the size of the matrix, and now the

Hamiltonian can be exactly diagonalized. Remarkably, our susceptibility is very similar to

the diverging experimental χexp result. Moreover, we observed that the T ∗ scale in the Curie-

Weiss behavior is the preexisting Néel critical temperature of the purely electronic sector,
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which is independent of the lattice. We also observed a density-of-states pseudogap and

nematic fluctuations above TS, caused by short-range (π, 0)-(0, π) antiferromagnetic order.

This Chapter is organized as follows: the model is introduced in Section 2.2; the

many-body techniques developed for this work as well as the main results are presented

in Section 2.3; the results for the spin-nematic and orbital-nematic susceptibilities are

analyzed in Section 2.4, while the dependence on the structural transition temperature with

the orbital-lattice coupling is discussed in Section 2.5. The analysis of the spin structure

factors and the pseudogap in the density of states is presented in Section 2.6. Section 2.7 is

devoted to the conclusions. The full Hamiltonian is provided in Appendix A, the numerically

guided Ginzburg-Landau (GL) calculations appear in Appendix B. Appendix C contains

the comparison between total and partial derivatives at the critical temperature TS, and

numerical results for an unphysically large value of the lattice-orbital coupling are presented

in Appendix D.

2.2 Models

The model employed here combines the purely electronic spin-fermion model [52, 57, 61, 82]

together with lattice orthorhombic distortions:

HSF = HHopp +HHund +HHeis +HSLO +HOLO +HStiff . (2.1)

This (lengthy) full Hamiltonian is provided in detail in Appendix A. HHopp is the Fe-Fe

hopping of the dxz, dyz, and dxy electrons (a three orbital model is used with an electronic

bandwidth W∼3 eV), with amplitudes that reproduce photoemission results [22, 61]. The

average number of electrons per itinerant orbital is n=4/3 [56], i.e. the undoped regime

will be our focus. This is reasonable since many experiments that address the nematic state

are carried out for the parent compounds. Moreover, technically the study simplifies in the

absence of doping and quenched disorder.

The Hund interaction is canonical: HHund=−JH

∑
i,α Si · si,α, with Si (si,α) the localized

(itinerant with orbital index α) spin. HHeis is the Heisenberg interaction among the localized
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spins involving nearest-neighbors (NN) and next-NN (NNN) interactions with couplings JNN

and JNNN, respectively, and ratio JNNN/JNN=2/3 [61] to favor collinear order.

Within the spin-driven scenario for nematicity, the state between TN and TS is charac-

terized by short-range spin correlations that have as an order parameter Ψi=
∑
±(Si · Si±y−

Si · Si±x)/2 that satisfy 〈Ψ〉>0 [36, 83], where Si is the spin of the iron atom at site i and

x,y are unit vectors along the axes. As described in Appendix A the Orth-distortion ε66(i)

associated to the elastic constant c66 [81] will be considered here. The coupling of the spin-

nematic order and the lattice is HSLO=−g66

∑
i Ψiε66(i) [36, 75], where g66 is the lattice-spin

coupling [84]. To also incorporate orbital fluctuations, the term HOLO=−λ66

∑
i Φiε66(i) is

added, where λ66 is the orbital-lattice coupling, Φi=ni,xz-ni,yz is the orbital order parameter,

and ni,α the electronic density at site i and orbital α [33, 34]. Finally, HStiff is the spin

stiffness given by a Lennard-Jones potential that speeds up convergence as described in

Appendix A.

Here it must be noted that the lattice, spin-nematic, and orbital order parameters all

transform as the B1g representations of the D4h point group (See Fig. 2.1). Taking the

basis as along the Fe-Fe directions with the ẑ axis out of plane, B1g transformations can be

described by π
2

rotations about the ẑ axis that lead to a change of sign in the order parameter

(see Eq. A.8, A.9, and A.13). Since each term couples two of these order parameters that

both have B1g symmetry, the overall Hamiltonian is rotationally invariant.

Figure 2.1: Example of the B1g representation of the D4h group.
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2.3 Many-body techniques and main results

The details of the Monte Carlo method used in our study can be found in Ref. [82] and

Ch. 7 of Ref. [85]. However, here an extra computational component had to be introduced

because, compared with Ref. [79], for each temperature T now the strain was varied as

an extra parameter. Since for each temperature typically 15 values of strain were used,

this effort is ∼15 times more costly than in Ref. [79]. While the standard Monte Carlo is

time consuming because of the fermionic-sector exact diagonalization (ED) at every step, in

the related double-exchange models for manganites an improvement has been used before:

the “Traveling Cluster Approximation” (TCA) (See Ref. [86] and Ref. [87]), where the MC

updates are decided employing a cluster centered at site i but with a size substantially

smaller than the full lattice size [88]. In addition, twisted boundary conditions (TBC) were

also used (See Ref. [89] and Ref. [61]). In fact, this is the first time that TCA and TBC

are employed together. To simplify further the analysis, most couplings are fixed to values

that were used successfully before [61]: JH=0.1 eV, JNN=0.012 eV, and JNNN=0.008 eV.

Dimensionless versions of the electron-lattice couplings are constructed via the definitions

g̃66 = 2g66/
√
kW and λ̃66 = 2λ66/

√
kW [90], as discussed in the supplementary material of

Ref. [79]. Here, W = 3 eV is the electronic bandwidth and k regulates the spin stiffness, as

shown in Appendix A. These dimensionless constants are fixed to the values 0.16 and 0.12,

respectively, that before were found to be realistic [79]. However, results for other values of

these couplings are provided in Appendix D.

The spin nematic susceptibility calculated here is defined as χs = ∂Ψ
∂ε66
|ε0 , where ε0 is the

value of the lattice distortion obtained from the “unrestricted” numerical simulation, and the

lattice is equilibrated together with the spins, as in Ref. [79]. To calculate the susceptibility χs

of our model, a procedure similar to the experimental setup was employed: the spin nematic

order parameter Ψ was measured at various temperatures and at fixed values of the lattice

distortion ε66=(ax−ay)/(ax+ay). Henceforth, this procedure will be called “restricted” MC

(note that this dimensionless ε66 should not be confused with the dimensionful ε66(i) used

in the Hamiltonian and defined in Appendix A). By this procedure, Ψ(g̃66, λ̃66, T, ε66) are
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Figure 2.2: Monte Carlo spin-nematic order parameter, at g̃66=0.16 and λ̃66=0.12. (a) Ψ
vs. T and ε66, measured at a fixed lattice distortion ε66 for each temperature (restricted
MC). Shown are the T ∗ (see text) and TS (∼ TN) temperatures. Data are for an 8×8
cluster with TCA+TBC (PBC 8×8 clusters with ED give similar results). Red points are
the equilibrium values using unrestricted MC with ED and PBC 8×8 clusters. (b) Ψ vs.
ε66 at fixed temperatures, illustrating their nearly linear relation in unrestricted MC (red),
and also the linear slopes of the restricted MC curves (green/blue) close to TS. Results are
obtained with ED/PBC 8×8 clusters. Note that the number of green/blue points vastly
outnumbers the number of red points, highlighting how much more demanding this effort
has been than in Ref. [79].
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Figure 2.3: (A) This figure demonstrates the relative change in resistivity anisotropy as
a function of applied strain. These results are for the parent compound BaFe2As2. (B)
This figure demonstrates the temperature dependence of the nematic response which is the
derivative of the results from figure (A) but across a wider range of temperatures. The
red line is the fit to equation dη

dε66
= λ66

a0(T−T ∗)+3bη2
+ χ0 that is obtained form a Curie-Weiss

formulism. Figures (A) and (B) are reproduced from Ref. [67].

obtained at fixed couplings, defining surfaces as those shown in Fig. 2.2(a). Allowing the

lattice to relax, the equilibrium curve that is shown with red points in Fig. 2.2(a) is obtained.

Figure 2.2(b) contains the (restricted) MC measured spin-nematic order parameter versus

the (fixed) lattice distortion ε66, at various temperatures. In a wide range of temperatures, a

robust linear behavior is observed and χs can be easily extracted numerically. Figure 2.2(b)

is similar to the experimental results in Fig. 2.3(A) [67]. The equilibrium result with both

spins and lattice optimized (unrestricted MC) is also shown (red squares) in Fig. 2.2(b).

Our main result is presented in Fig. 2.4, where the numerically calculated χs vs. T

is displayed, at the realistic couplings used in previous investigations [79]. In remarkable

agreement with experiments, χs grows when cooling down and it develops a sharp peak at

TS (compare with the experimental results of Fig. 2.3(B) from Ref. [67]). These results were

obtained via two different procedures (standard ED and the TCA+TBC), and for two lattice

sizes, indicating that systematic errors (such as size effects) are small.
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Figure 2.4: Nematic susceptibility χs of the spin-fermion model vs. temperature T (circles,
triangles, and squares) obtained from Fig. 2.2(b), at the realistic couplings g̃66=0.16 and
λ̃66=0.12 (α=g̃66/a0). Two MC techniques were employed: “PBC L=8” is the standard
MC method with ED in the fermions at every step, using 8×8 clusters with PBC. “TCA
L=8” and “TCA L=16” correspond to the TCA+TBC method on L×L clusters. Size effects
are small. Also shown are two GL fits: the light blue (thick) line displays the Curie-Weiss
equation χs ≈ g̃66

a0(T−T ∗)
, indicating a divergence at a lower temperature T ∗, characteristic of

the electronic sector alone. At T ≤ TS, the lattice follows the electronic sector. The black
(thin) line is Eq.(B.29) with the 3TSΨ2 correction (see text) [91].
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2.4 Nematic Susceptibility

2.4.1 Analysis of χs results

Supplementing the computational results, here Ginzburg-Landau (GL) calculations were

also performed, similarly as in Ref. [67] for experiments. Note that the previous GL analysis

considered only a generic nematic order parameter while our study separates the spin and

orbital contributions. The rather complex numerical results presented previously can be

rationalized intuitively by this procedure. The results for χs (Fig. 2.4) are well fitted

quantitatively for T > TS, and qualitatively for T < TS, by the expression:

χs =
g̃66

a0[(T − T ∗) + 3TSΨ2]
, (2.2)

where TS=158 K, T ∗=105 K, and a0∼0.093. The GL analysis presented in Appendix B

shows that the fitting parameter a0 arises from the GL quadratic term aΨ2/2 in a second

order transition where a = a0(T − T ∗). Ψ is the equilibrium value of the spin nematic order

parameter from the unrestricted MC simulations [red, Fig. 2.2(a)] and it is temperature

dependent. For T ≥ TS, Ψ vanishes and χs exhibits Curie-Weiss behavior, in excellent

agreement with the experimental χexp [67] and can be seen in Fig. 2.3(B).

Let us discuss the meaning of the parameter T ∗:

(1) From Fig. 2.2(b), the unrestricted numerical results at the critical temperature

TS indicate a linear relation between Ψ and ε66, while individually both behave as order

parameters, i.e. they change fast near TS. The lattice distortion is temperature dependent,

i.e. ε66 = ε66(T ), because the lattice is equilibrated together with the spins. However, this

nearly temperature independent ratio Ψ/ε66=K (∼360) depends on couplings: comparing

results at several values of the coupling g̃66, it is empirically concluded that K = ĉ
g̃66

(where

ĉ is a constant).

Note also that χs depends on the partial derivative ∂Ψ/∂ε66|ε0 , since χs is obtained

at a constant temperature varying ε66 via strain to match the procedure followed in

experiments [67], in the vicinity of the equilibrium point ε0 [namely, χs arises from the

green/blue curves of Fig. 2.2(b), not from the red equilibrium curve]. While these slopes
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(restricted vs. unrestricted MC) are in general different, both become very similar at

temperatures close to TS where, as shown analytically in Appendix C, these derivatives

are indeed almost the same. Thus, at TS: dΨ
dε66

= ĉ
g̃66
≈ ∂Ψ

∂ε66
|ε0 = χs. This relation can

be independently deduced from the GL analysis, Eq. (B.7), with ĉ=c0, and c0 arising from

c0ε
2
66/2 in the free energy, providing physical meaning to parameters in the computational

fits.

(2) Since the numerical susceptibility χs can be fit well by Eq.(B.29) including the special

case of TS where Ψ = 0, then, as shown in Appendix B, TS = T ∗ +
g̃266
a0ĉ

[10, 67]. Comparing

with Eq (B.10), ĉ is again identified with the uncoupled shear elastic modulus c0. In addition,

from previous investigations [61] it is known that at g̃66=λ̃66=0 there is no nematic regime

and TS=TN , the Néel temperature. Then, TN = T ∗ +
g̃266
a0c0

, that at g̃66 = 0 leads to the

important conclusion that the scale T ∗ is simply equal to the Néel temperature of the purely

electronic spin-fermion model. In previous work [61] it was reported that TN at g̃66=λ̃66=0

is ∼100-110 K, in remarkable agreement with the fitting value of T ∗ obtained independently.

Thus, in the Curie-Weiss formula T ∗ is solely determined by the magnetic properties of the

purely electronic system.

An important comment is here in order. In principle, by symmetry considerations it

is to be expected that all operators with the same B1g symmetry, as Ψ, Φ, and ε66 have,

will simultaneously develop a nonzero expectation value in the ground state if this state

breaks spontaneously the B1g symmetry as in the case of the (π, 0) antiferromagnetic state.

However, the magnitude of these expectation values can be used as an indicator of which one

dominates. For instance, although the lattice (ε66) does develop a distortion in experiments,

its value is widely considered to be too “small” [21] to assume that the lattice is the driver.

Consider now the spin and orbital: for results corresponding to our model see Fig. 2.5. That

figure contains the expectation values of Ψ (spin) and Φ (orbital) vs. temperature. The

important point is that in the temperature range of that figure the expectation value of Ψ is

already a large fraction of the small temperature result, but in the same temperature range

Φ had to be multiplied by 10 to magnify its value to become more visible. Thus, based

on these relative values considerations we arrive to the conclusion that in the spin fermion

model the spin dominates more than the orbital.
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Figure 2.5: Spin magnetic susceptibility (open circles), lattice distortion susceptibility
(filled circles), spin-nematic order parameter (filled squares), orbital order (open squares),
and lattice distortion (triangles) vs T at couplings g̃66 = 0.16 and λ̃66 = 0.12 . TN and TS
are indicated by the dashed lines. This is a reproduction from Ref. [79].

2.4.2 Analysis of χo results

The orbital-based nematic susceptibility, χo = ∂Φ
∂ε66
|ε0 , was also numerically calculated varying

the temperature. For small λ̃66, such as λ̃66 = 0.12, the result is approximately temperature

independent and well fit by Eq. (B.27) in Appendix B, with e0 = 0.016 and f = 0.33. In

other words, the analog of Fig. 2.2(b) but for the orbital-nematic order parameter presents

blue/green/red curves all with very similar slopes. Then, in χo there is no Curie-Weiss

behavior for T ≥ TS. However, Raman scattering studies of charge nematic fluctuations

in BaFe2As2 and Sr(Fe1−xCox)2As2 have reported Curie-Weiss behavior in the orbital-

nematic susceptibility that was well-fitted by the expression a+ b
T−T0 where a represents the

temperature independent flat continuum and the Curie-Weiss term describes the diverging

behavior of the quasi-elastic peak observed in the Raman spectrum [92] (See Fig. 2.6).

To reproduce the results found in Fig. 2.6 with the spin-fermion model, we considered a

small direct coupling α̃ between the magnetic and orbital degrees of freedom, and introduce

a new term in the model

HSO = −α̃
∑

i

ΨiΦi. (2.3)
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In Fig. 2.7(a) the spin-nematic susceptibility is displayed after repeating the simulation in

the presence of this new coupling, and it can be seen that its qualitative form is not affected

by the inclusion of a small α̃ = 0.0011. However, the orbital susceptibility shown in panel (b)

of the same figure now displays Curie-Weiss behavior induced by the new coupling between

the orbital and magnetic degrees of freedom. The numerical data are well fitted by the

expression

χo =
λ̃66

e0

+
α̃(g̃66e0 + λ̃66α̃)

a0e2
0[T − (T ∗ + α̃2

a0e0
)]
, (2.4)

that has the form a+ b
T−T0 used in Ref. [92] to fit the experimental data. Notice that Eq. (2.4)

has been obtained with the GL approach described in Appendix B.

Figure 2.6: This figure shows the temperature dependence of the orbital nematic
susceptibility for two iron pnictide compounds. The lines are for the Curie-Weiss fit in the
tetragonal phase. These susceptibilities were calculated using Raman scattering experiments
to measure the orbital anisotropy for a wide range of temperatures. This figure is reproduced
from Ref. [92].

The difference between T ∗ and T0 is only about 10 K for the parameters used here.

In other words, if a direct coupling between the magnetic and orbital degrees of freedom

is present, the Curie-Weiss divergence still occurs at the Néel temperature for the purely

electronic system now given by T0. These results demonstrate how experimental data
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Figure 2.7: (a) The spin and (b) orbital nematic susceptibility obtained from Monte Carlo
simulations for α̃ = 0.0011, g̃66 = 0.16, and λ̃66 = 0.12. The continuous curves in light blue
are the fittings obtained from the numerically guided Ginzburg-Landau approach.
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obtained with different techniques can all be well reproduced by the spin-fermion model

studied here.

2.5 TS vs. λ̃66

The study in Figs. 2.2(a,b) was repeated for other values of the coupling λ̃66. It was observed

that ĉ varies with λ̃66, compatible with the GL analysis where c(λ̃66) = c0(1− λ̃266
e0c0

), Eq. (B.24).

At small λ̃66, the total (unrestricted MC) and partial (restricted MC) derivatives of Ψ with

respect to ε66 are still approximately equal at T ≈ TS as shown in Appendix C. Then,

χs ≈ c(λ̃66)/g̃66 = g̃66
a0(TS−T ∗)

, leading to the novel result

TS = T ∗ +
g̃2

66

a0c0(1− λ̃266
c0e0

)
. (2.5)

Numerically, it was found that a0∼0.093, c0∼60 e0=0.016, and T ∗=105 K, for g̃66=0.16 (note

that the values of the various GL parameters are the same in all the fits reported here, as

expected). In practice, it was observed that Eq.(2.5) fits remarkably well the numerical

values for TS in the range of λ̃66 studied showing that the GL approach provides an excellent

rationalization of the numerical results. This is shown explicitly in Fig. 2.8(a).

2.6 Spin structure factors and pseudogaps

In Fig. 2.8(b), the spin structure factors S(k) calculated with MC at both (π, 0) and (0, π)

are shown. The results illustrate the development of short-range magnetic order upon cooling

with two coexisting wavevectors. Within the error bars, given roughly by the oscillations

in the plot, these results indicate that the two wavevectors develop with equal weight upon

cooling approximately starting at TPG where the pseudogap develops (see below) [93].

In the spin-fermion model, dynamical observables can be easily calculated. In particular,

the density of states N(ω) is shown in Fig. 2.8(c). This figure indicates the presence of a

Fermi-level pseudogap (PG) in a wide temperature range, in agreement with photoemission

and infrared experiments [94]. A zero temperature pseudogap is to be expected: Hartree-Fock
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Figure 2.8: (a) The MC structural transition temperature TS vs. the orbital-lattice coupling
λ̃66, at fixed g̃66 = 0.16. The continuous line is the fit in Eq.(2.5), from the GL equations. (b)
Spin structure factor S(k) vs. temperature T for the two magnetic wavevectors of relevance.
Results were obtained via MC simulations on PBC 8×8 clusters. TPG is the pseudogap
temperature [Fig. 2.8(c)]. (c) Density of states N(ω) (symmetrized) from unrestricted MC
simulations on 8×8 clusters (g̃66=0.16; λ̃66=0.12), at various temperatures. Results at
TS=158 K are in red. TPG∼174 K (blue) is the crossover temperature where the pseudogap
opens at the Fermi level (i.e. at ω-µ=0.0) upon cooling.
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studies of the multiorbital Hubbard model [95] already detected such a feature. However,

our finite temperature studies reveal that upon cooling this pseudogap develops at a TPG

clearly above TS. From the analysis of our results, the pseudogap is present when short-range

spin correlations are present [Fig. 2.8(b)]: the “nematic fluctuations” regime is basically the

range of temperatures where (π, 0)/(0, π) magnetic fluctuations exist. The coupling to the

lattice creates concomitant local orthorhombic distortions: it is important to remark that

the region between TS and TPG is tetragonal only on average [96]. All these results are in

good agreement with recent scanning tunneling spectroscopy studies of NaFeAs [97].

2.7 Conclusions

Our combined numerical and analytical study of the spin fermion model leads to results

in agreement with the experimentally measured nematic susceptibility of Ba(Fe1−xCox)2As2

[67]. For spins coupled to the lattice our spin-nematic susceptibility has a Curie-Weiss

behavior for T > TS governed by a T ∗ which we here identify as the critical TN of the

purely electronic sector, which is preexisting to the introduction of the lattice. For realistic

nonzero electron-lattice couplings, the lattice induces a nematic/structural transition at a

higher temperature TS. The addition of an orbital-lattice coupling λ̃66 further increases TS,

with a Curie-Weiss behavior that continues being regulated by T ∗.

Our main prediction is that whenever fluctuating nematic order is observed, inelastic

neutron scattering for the same sample should also reveal the existence of short-range

magnetic order: nematic fluctuations, pseudogap, and short-range antiferromagnetic order

should all develop simultaneously in these materials. Although the experiments in Ref. [67]

were conducted over a range of dopings, these numerical results were limited to the parent

compounds. Also, as stated in Sec. 2.1, this nematic susceptibility is dependent on an applied

strain which is different from the 1111 compounds and doped 122 materials. For this reason,

a model that can numerically study the doped 122 compounds will be the focus of Ch. 3.
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Chapter 3

Disorder Induced Nemacity

This chapter is a modified version of PHYSICAL REVIEW B 92, 104512 (2015) [98, 99].

3.1 Introduction

As previously mentioned in Sec. 1.4, the interaction among the many different DOF in

pnictides generates rich phase diagrams when varying temperature and doping [49]. In

addition to the superconducting phase, magnetic and nematic phases, accompanied by

structural distortions, have been identified [49, 67, 71, 100]. To properly address this

difficult problem it is necessary that the spin, orbital, lattice, and charge should all be

incorporated in a treatable model where their respective roles in the properties of these

materials can be monitored. Due to the complexity of the problem, most of the previous

theoretical studies have been performed either in the weak or strong coupling limits. In

weak coupling, the interactions among the electrons are considered small and the physical

properties are studied in momentum space in terms of itinerant electrons, with emphasis on

particular properties of their Fermi Surfaces (FS) such as nesting [33, 34, 36, 73, 75]. On

the other hand, the strong coupling approach is based on the experimental observation of

localized magnetic moments and on the fact that several properties of the pnictides can be

reproduced via Heisenberg models [31, 46, 74]. Both approaches were successful in the study

of the magnetic properties of the parent compounds, indicating that in these materials both

localized and itinerant magnetic moments are important. However, upon doping there are
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challenges explaining experimental data in both approximations. In particular, when doping

is achieved by chemical substitution of iron atoms the effects of disorder and dilution must

also be incorporated into the theoretical considerations.

The parent compound of the 122 family, BaFe2As2, can be doped with electrons by

replacing Fe by a transition metal (TM) resulting in Ba(Fe1−xTMx)2As2 or with holes by

replacing Ba by an alkali metal (A) leading to Ba1−xAxFe2As2 [101]. It is also possible to dope

in an isovalent manner replacing, for example, Fe with Ru to obtain Ba(Fe1−xRux)2As2 [102].

Nominally, replacing Fe with Ru, Co, Ni, and Cu would introduce 0, 1, 2, and 3 electrons

per dopant atom. However, experiments indicate a difference between nominal doping x

and the measured doping concentration xm usually determined using wavelength dispersive

x-ray spectroscopy (WDS) [49]. This means that in some cases, electrons may get trapped

by the doped impurities but this is still an area of controversy [103, 104, 105]. Chemical

substitution introduces an amount of disorder that is difficult to control experimentally. In

addition to electrons being trapped, other effects such as magnetic dilution and impurity

scattering may also occur [106].

In undoped 122 compounds the structural and the Néel transition temperatures, TS

and TN , are equal to each other. Upon electron doping both are rapidly reduced, with TS

decreasing at an equal or slower rate than TN [49, 102]. The reduction of these temperatures

is explained in weak coupling by a loss of FS nesting induced by the electronic doping and

in strong coupling by magnetic dilution as in t-J models. However, these views seem to

be in contradiction with several experimental results. For example, in Ba(Fe1−xRux)2As2,

which nominally does not introduce electronic doping and associated changes in FS should

not be expected, both TS and TN decrease with doping and the material eventually becomes

superconducting [102]. In addition, doping with Co, Ni, and Cu is expected to introduce 1, 2,

and 3 extra electrons per doped atom. However, the experimentally observed reduction on TN

and TS was found to be primarily a function of the doping concentration x rather than of the

density of electrons [49, 107]. Experiments, thus, indicate that when dopants are introduced

directly on the Fe-As planes, as it is the case for electron-doped 122 materials, disorder

and dilution must play an important role [33, 34, 49, 108, 109, 110, 111, 112, 113]. Due to

the experimental uncertainty on the doping concentration and the nature of the disorder,

34



a theoretical understanding of the phase diagrams under these challenging circumstances

is elusive. Density functional theory (DFT) studies indicated that the rigid band model is

insufficient to describe the carrier density [103], while first-principles methods found that

the interplay between on-site and off-site impurity potentials could induce FS distortions in

nominally isovalent doping [106]. Moreover, a calculation considering two-orbiton processes

predicts a non-symmetric impurity potential which could be responsible for the observed

transport anisotropies [33, 34].

In this Chapter, the effects of electron doping in the 122 pnictides will be studied

numerically using a spin-fermion model (SFM) for the pnictides [52, 57, 61] including the

lattice DOF [79]. The SFM considers phenomenologically the experimentally motivated

evidence that requires a combination of itinerant and localized DOF to properly address the

iron-based superconductors [12, 51, 114, 115]. The itinerant sector mainly involves electrons

in the xz, yz, and xy d-orbitals [56], while the localized spins represent the spin of the other

d-orbitals [52, 57], or in a Landau-Ginzburg context it can be considered as the magnetic

order parameter.

The focus of this effort will be on the structural and the Néel transitions, and the

properties of the resulting nematic phase that will be monitored as a function of the electronic

and impurity densities. Earlier studies performed in the undoped parent compounds

indicated that the coupling between the lattice orthorhombic distortion ε66(i), associated to

the elastic constant C66, and the spin-nematic order parameter Ψi stabilizes the orthorhombic

(π, 0) antiferromagnetic (AFM) ground state [79] with TS = TN as in the 122 materials [49].

The small separation between TS and TN observed in the parent compounds of the 1111

family [30] was found to be regulated by the coupling of the lattice orthorhombic distortion

to the orbital order parameter Φi [79].

The effect of disorder in iron superconductors has been studied before using mainly

analytical or semi-analytical techniques and primarily in the context of Fermi Surface

nesting (for a partial list of references see Refs. [116, 117]). However, ours is the first

time that electronic doping supplemented by quenched disorder and dilution effects is

computationally studied in a system that includes magnetic, charge, orbital, and lattice

DOF. Our numerical approach involves Monte Carlo (MC) calculations on the localized spin
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and lattice components, combined with a fermionic diagonalization of the charge/orbital

sector. Technically, we also employ twisted boundary conditions (TBC) (See Ref. [89] and

Ref. [61]) and the Traveling Cluster Approximation (TCA) is implemented (See Ref. [86] and

Ref. [87]) in order to study large clusters of size 64×64, a record for the spin-fermion model.

This numerical approach allows us to incorporate the effects of in-plane chemical doping

and to gather results for temperatures above TS, where all DOF develop strong short-range

fluctuations [73, 96], a difficult regime for other many-body procedures. Our main conclusion

is that disorder and dilution are needed to stabilize the broad nematic phase in 122 materials

observed experimentally. That a critical temperature such as TN decreases faster with doping

by including disorder than in the clean limit is natural [118, 119], but our most novel result

is the concomitant stabilization of a nematic regime. In other words, TN and TS are affected

differently by disorder/dilution. Isotropic dopant profiles are sufficient to obtain these results.

Our analysis illustrates the interdependence of the many degrees of freedom present in real

materials and the need to study models with robust many-body techniques to unveil the

physics that emerges in these complex systems.

The organization of this Chapter is as follows: the model is described in Sec. 3.2 and

the computational methods are presented in Sec. 3.3. Sec. 3.4 is devoted to the main results

addressing the phase diagram upon doping. Sec. 3.5 describes the properties of the nematic

phase stabilized in our study, including a comparison with neutron scattering and scanning

tunneling microscopy experiments. The discussion and summary are the scope of Sec. 3.6.

3.2 Model

3.2.1 Hamiltonian

The spin-fermion model studied in this chapter is based on the Hamiltonian outlined in

Sec. 2.2 and further details can be found in Appendix A. This Hamiltonian consists of the

original purely electronic model [52, 57, 61] supplemented by the addition of spin couplings

to the lattice degrees of freedom [61, 68]:

HSF = HHopp +HHund +HHeis +HSL +HStiff . (3.1)
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HHopp is the three-orbitals (dxz, dyz, dxy) tight-binding Fe-Fe hopping of electrons, with the

hopping amplitudes selected to reproduce ARPES experiments [56]. These amplitudes can

be found in Eqs.(A.3-A.5) and Table A.1 of Appendix A. The average density of electrons

per iron and per orbital is n=4/3 in the undoped limit [56] and its value in the doped case is

controlled via a chemical potential included in HHopp [68]. The Hund interaction is standard:

HHund=−JH

∑
i,α Si · si,α, with Si the localized spin at site i (with magnitude 1) and si,α the

itinerant spin corresponding to orbital α at the same site [120]. HHeis contains the Heisenberg

interaction among the localized spins involving both nearest-neighbors (NN) and next-NN

(NNN) interactions with respective couplings JNN and JNNN, and a ratio JNNN/JNN = 2/3

(any ratio larger than 1/2 would have been equally effective to favor “striped” spin order).

For specific details see Sec. 3.3 below. Having NN and NNN Heisenberg interactions of

comparable magnitude arise from having comparable NN and NNN hoppings, caused by the

geometry of the material since this is mediated via the As atoms, and NN and NNN hopings

cover roughly the same distance.

The coupling between the spin and lattice degrees of freedom is given by HSL=

−g66

∑
i Ψiε66(i) [36, 75], where g66 is the spin-lattice coupling [84]. The spin nematic

order parameter is defined as

Ψi = Si · Si+y − Si · Si+x, (3.2)

where x and y are unit vectors along the x and y axes, respectively. This order parameter

becomes 2 in the perfect (π,0) state. The lattice ε66(i) degree of freedom related to the

tetragonal to orthorhombic distortion has a more complex definition in terms of the positions

of the As or Se atoms, and its precise definition can be found in Ref. [79]. HStiff is the

lattice stiffness given by a Lennard-Jones potential that speeds up convergence, as previously

discussed [68].

Note that the lattice-orbital coupling term, HOL=−λ∑i Φiε66(i) [68], with the orbital

nematic order parameter defined as

Φi = ni,xz − ni,yz, (3.3)
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where nxz and nyz are the number operators for the orbitals indicated, is omitted because

previous work indicated that λ induces a (small) nematic phase with TS > TN directly in the

parent compounds [68, 79]. Since the goal of the present effort is to study the 122 family,

characterized by TS = TN in the undoped case, then this term is not included to reduce the

number of parameters.

Figure 3.1: Internal structure of dopant sites. Sketch shows the location of a dopant
where the magnitude of the localized spin, SI, is reduced from the original value S. In
addition, the neighboring localized spins are also assumed to be affected by the presence
of the dopant. The four immediate nearest-neighbors have a new localized spin magnitude
SNN, while the four next nearest-neighbors have a new localized spin magnitude SNNN, such
that SI ≤ SNN ≤ SNNN ≤ S (S is the undoped localized spin magnitude, assumed to be 1 in
this publication unless otherwise stated).

We also wish to clarify that when varying the global chemical potential, thus modifying

the electronic density, we assume that all couplings are unaffected. In particular, since the

orbitals that induce the localized spins are assumed to be weakly affected by modifications

in the position of the Fermi level, then there is no obvious reason to modify JNN and JNNN

with increasing electron doping. This is similar as in studies of manganites via the double-

exchange model where with doping the couplings of the t2g sector are assumed to be fixed [82].
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3.2.2 Quenched Disorder and Dilution

On-site diagonal disorder is introduced through an impurity potential II(id) by adding this

same value of potential to NI randomly selected sites id where transition metal atoms replace

Fe. The density of impurity atoms x is defined as x = NI/N , where N is the total number of

lattice sites. In addition, the value of the localized spin at the impurity site, SI , is reduced

since, for example, Co dopants in BaFe2As2 are non-magnetic [121]. This effectively reduces

the local Hund coupling JH,I and the spin-lattice coupling g66(i) at the impurity sites. We

also will study the effect of extending the spatial range of the impurity by reducing the

values of the localized spins to SNN (SNNN) at the NN (NNN) of the impurity sites with

the corresponding effective decrease in JH and g66 at those sites (see Fig. 3.1). Thus, off-

diagonal isotropic disorder results from the effective reduction of the Heisenberg couplings

at the bonds connecting the impurity sites and their neighbors [120]. Note that off-diagonal

disorder could also be introduced in the eight hopping amplitudes present in HHopp [68] but

for simplicity we decided not to consider hopping disorder at this time.

3.3 Methods

The Hamiltonian in Eq.(3.1) was studied via Monte Carlo methods explained in Ref. [82]

and Ch. 7 of Ref. [85] and are applied to (i) the localized (assumed classical) spin degrees

of freedom Si and (ii) the atomic displacements that determine the local orthorhombic

lattice distortion ε66(i) [68, 79]. For each Monte Carlo configuration of spins and atomic

positions the remaining quantum fermionic Hamiltonian is diagonalized. The simulations

are performed at various temperatures, dopings, and disorder configurations and local and

long-range observables are measured. Note that with the exact diagonalization technique

results can be obtained comfortably only on up to 8 × 8 lattices, which may be too small

to provide meaningful data at the low rates of doping relevant in the pnictides. For this

reason we have also used the Traveling Cluster Approximation (See Ref. [86] and Ref. [87])

where a larger lattice (64× 64 sites in most of this effort) can be studied by performing the

MC updates via a traveling cluster centered at consecutive sites i, with a size substantially

smaller than the full lattice size of the entire system. Twisted boundary conditions were
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also used (See Ref. [89] and Ref. [61]) to obtain (almost) a continuum range of momenta.

For simplicity, most couplings are fixed to values used successfully before [61]: JH=0.1 eV,

JNN=0.012 eV, and JNNN=0.008 eV. The dimensionless version of the spin-lattice coupling

g̃66 is fixed to 0.16 as in Ref. [79]. The focus of the publication is on the values for the

parameters associated with disorder and the corresponding physical results, as discussed in

the sections below.

An important technical detail is that to improve numerical convergence, and to better

mimic real materials that often display an easy-axis direction for spin orientation, we have

introduced a small anisotropy in the x component of the super-exchange interaction so that

the actual Heisenberg interaction is:

HHeis = JNN

∑

〈ij〉
(Si · Sj + δSxi S

x
j )

+JNNN

∑

〈〈im〉〉
(Si · Sm + δSxi S

x
m),

(3.4)

with δ = 0.1. This anisotropy slightly raises TN , but the magnetic susceptibility χS becomes

much sharper at the transition temperatures, facilitating an accurate determination of TN .

It is important to clarify that the easy-axis anisotropy affects the direction in which the spins

order, but by no means breaks explicitly the C4 lattice rotational invariance that is related

to nematicity via its spontaneous breaking. In other words, we have checked explicitly that

perfect (π,0) and (0,π) localized spins configurations have identical energy if their spins are

oriented along the same axis, either the easy-axis which minimizes the global energy or any

other. Of course if, say, (π,0) is oriented along the x axis and (0,π) along the z axis then

there is an energy difference, but as long as the spin orientations are the same then the

expected degeneracies are present. In fact, previously theoretical studies of nematicity have

been performed even in the extreme Ising limit [122].

The Monte Carlo simulations with the TCA procedure were mainly performed using

64 × 64 square lattices [123]. Typically 5,000 MC steps were devoted to thermalization

and 10,000 to 25,000 steps for measurements at each temperature, doping, and disorder

configuration. The results presented below arise from averages over five different disorder
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configurations. The expectation values of observables remain stable upon the addition of

extra configurations due to self-averaging. The magnetic transition was determined by the

behavior of the magnetic susceptibility defined as

χS(π,0) = Nβ〈S(π, 0)− 〈S(π, 0)〉〉2, (3.5)

where β = 1/kBT , N is the number of lattice sites, and S(π, 0) is the magnetic structure

factor at wavevector (π, 0) obtained via the Fourier transform of the real-space spin-spin

correlations measured in the MC simulations. The structural transition is determined by the

behavior of the lattice susceptibility defined by

χδ = Nβ〈δ − 〈δ〉〉2, (3.6)

where δ = (ax−ay)

(ax+ay)
, and ai is the lattice constant along the i = x or y directions. These lattice

constants are determined from the orthorhombic displacements ε66(i) [68].

3.4 Results

Our first task is to understand the effect of doping and disorder on the magnetic and

structural transitions. For this purpose, we studied the evolution of TN and TS vs. doping

concentration under different disorder setups.

3.4.1 Clean limit

Consider first the “clean limit”. The red squares in Fig. 3.2 show the evolution of TN and

TS when the electronic doping does not introduce disorder. In this case TN is hardly affected

and it continues to be equal to TS for all dopings investigated here. This result indicates

that the reduction of TN and TS, and the stabilization of a nematic phase in between the two

transitions observed experimentally upon electron doping [49], does not emerge just from the

reduction of Fermi Surface nesting induced by the electronic doping. This conclusion is not

surprising if we recall that the undoped N -site lattice has 4N electrons which means that
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for x = 10% the number of added electrons is Ne = 0.1N and, thus, the percentual change

in the electronic density is just 100× (0.1N/4N) = 2.5%. Such a small percentual variation

in the electronic density should not produce substantial modifications in the Fermi Surface,

explaining why the changes in nesting are small and, thus, why the critical temperatures

are not significantly affected. In fact, we have calculated explicitly the Fermi Surface and

confirmed that it hardly changes in the range of doping studied and in the clean limit. Then,

disorder and dilution are needed to understand the experiments within the context of the

spin fermion model.

Figure 3.2: Clean limit and effect of Co doping. The clean limit results (open and solid red
points) indicate that TS = TN and both are approximately constant in the range studied. For
Co doping, the Néel temperature TN (open circles and black dashed line) and the structural
transition temperature TS (filled circles and black solid line) vs. the percentage of impurities
x are shown. The on-site disorder is II = −0.1 and the off-diagonal disorder is determined
by SI = 0, SNN = S/4, and SNNN = S/2. For both sets of curves, i.e. with and without
quenched disorder, the density of doped electrons equals x to simulate Co doping. The
cluster used has a size 64× 64.

3.4.2 Co doping

To study the effect of quenched disorder, let us first focus on Co doping, which nominally

introduces one extra electron per dopant. In Fig. 3.2, the Néel and structural transition

temperatures are presented for the case where one extra electron is contributed by each
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replaced iron atom, which means that x = n, where n is the density of added electrons and

x is the density of replaced iron atoms. We considered several possible values for the on-site

impurity potential and spin values near the impurity (see details discussed below) and we

found that the experimental data of Ref. [49] were best reproduced by setting the on-site

impurity potential as II = −0.1 (in eV units) [124] and by using SI = 0 at the impurities

since there is evidence that Co doped in BaFe2As2 is non-magnetic [121]. This effectively sets

to zero the Hund coupling JH,I and the spin-lattice coupling g66(I) at the impurity sites. In

addition, we also reduced the localized spins to S/4 (S/2) at the NN (NNN) of the impurity

sites with the corresponding effective decreased in JH and g66 at those sites. The overall

chemical potential µ was adjusted so that the density of added impurities equals the density

of added electrons, which corresponds to an ideal Co doping [49].

Figure 3.3: The magnetic susceptibility (open black symbols) and the lattice susceptibility
(filled red symbols) vs. temperature. The sharp peaks indicate the Néel temperature TN and
the structural transition temperature TS for the case of 5% Co-doping. The on-site disorder
is II = −0.1 and the off-diagonal disorder is defined by SI = 0, SNN = S/4, and SNNN = S/2.
The cluster used is 64× 64.

The black filled (open) circles in Fig. 3.2 show the evolution with impurity doping of

the structural (Néel) transition temperatures in the presence of the disorder caused by

replacing Fe by Co at random sites. The magnetic dilution induced by doping causes a rapid

reduction in TS and TN , similarly as observed in experiments [49], and remarkably also opens

a robust nematic phase for TN < T < TS since disorder affects differently both transition
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temperatures. In fact, the separation between TN and TS is very clear in the magnetic and

lattice susceptibilities that are displayed for 5% doping, as example, in Fig. 3.3. The magnetic

properties of the different phases are also clear by monitoring the behavior of the real-space

spin-spin correlation functions presented in Fig. 3.4. In panel (a) for T = 120 K (T > TS) the

spin correlations effectively vanish at distances larger than two lattice constants and there is

no difference between the results along the x and y axes directions, indicating a paramagnetic

ground state. However, at T = 95 K (TN < T < TS), panel (b), the correlations now display

short-range AFM (FM) order along the x (y) directions demonstrating the breakdown of

the rotational invariance that characterizes the nematic phase, but without developing long-

range order as expected. Lowering the temperature to T = 80 K (T < TN), panel (c), now

the correlations have developed long range (π, 0) order, as expected in the antiferromagnetic

ground state. To our knowledge, the results in figures such as Fig. 3.2 provide the largest

separation between TS and TN ever reported in numerical simulations of realistic models for

iron-based superconductors.
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Figure 3.4: Real-space spin-spin correlation functions vs. distance on a 64 × 64 lattice;
(a) corresponds to T = 120 K (T > TS) in the paramagnetic regime, (b) to T = 95 K
(TN < T < TS) in the nematic state, and (c) to T = 80 K (T < TN) in the long-range
ordered magnetic state. The AFM correlations along x are indicated with solid circles while
the FM correlations along y are denoted with open circles. The results are for 5% Co-doping
with off-diagonal disorder set by SI = 0, SNN = S/4, and SNNN = S/2.

3.4.3 Cu doping

Let us consider now the effect of doping with Cu which, nominally, introduces three electrons

per doped impurity [49]. For this purpose we increased the chemical potential at a faster

rate so that the added density of electrons is n = 3x, instead of n = x as for Co doping. The

results are shown in Fig. 3.5. When the critical temperatures for both Cu and Co doping

are plotted as a function of the density of impurities x, in Fig. 3.5(a) it can be seen that

the results are approximately independent of the kind of dopant. This indicates that the

critical temperatures are primarily controlled by the amount of quenched disorder (namely,

by the number of impurity sites) rather than by the actual overall electronic density, at

least in the range studied. This conclusion is in excellent agreement with the experimental

phase diagrams [49] shown, for example, in Fig. 3.6(a), for the case of several transition metal

dopants. Thus, working at a fixed electronic density n, the values of TN and TS are smaller for
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the case of Co doping than for the case of Cu-doping, as shown in Fig. 3.5(b), because more

Co than Cu impurities have to be added to achieve the same electronic density, underlying

the fact that Co doping introduces more disorder than Cu doping at fixed n. These results

are also in good agreement with the experimental phase diagram in Fig. 3.6(b).

Figure 3.5: Contrast of effects of Cu and Co doping. The Néel temperatures TN (dashed
lines) and the structural transition temperatures TS (solid lines) for Co doping (black open
and solid circles) and for Cu doping (blue open and solid triangles) are shown. Results are
presented first (a) vs. the impurity density x and second (b) vs. the added electronic density
n. The off-diagonal disorder is set at SI = 0, SNN = S/4, and SNNN = S/2. The cluster size
is 64× 64.
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Figure 3.6: (a) Temperature (K) vs number of dopants (x) phase diagrams for
Ba(Fe1−xTMx)2As2 where TM=Co, Ni, Cu, Co/Cu. (b) The same as figure (a) however
instead of the x-axis being the added dopants (x), the x-axis is the number of added electrons
per Fe/TM. This figure is reproduced from Ref. [49].

3.4.4 Dependence on impurity characteristics

Let us consider the dependence of the Néel and the structural transitions temperatures on

the local details of the magnetic dilution caused by the disorder. In Fig. 3.7 results for

TN and TS are shown as a function of impurity doping with the chemical potential set to

introduce one electron per dopant. The clean limit data (red squares, case I) is displayed

again for the sake of comparison. The blue triangles (case II) are results for II = −0.1eV

and SI = S/2, leaving SNN and SNNN untouched (i.e. equal to S). This ultra local magnetic

dilution induces effective NN and NNN reductions in the Heisenberg couplings accelerating
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the rate of decrease of the critical temperatures. However, the nematic phase is still not

stabilized and, thus, it does not reproduce the experimental behavior for the Co-doped

parent compound. Reducing SI to zero, as indicated by the green diamonds in the figure

(case III) and keeping SNN and SNNN untouched, slightly increases the rate of reduction of

the critical temperatures with doping and stabilizes the nematic phase only after a finite

amount of doping x ∼ 10% has been added but in a very narrow range of temperature. The

conclusion of cases I, II, and III is that a very local description of the dopant is insufficient

to reproduce experiments.

Figure 3.7: Dependence of results with impurity characteristics. The Néel transition
temperature TN (dashed lines) and the structural transition temperature TS (solid lines)
vs. the percentage of impurities x for different settings of the off-diagonal disorder. Case
I corresponds to the clean limit with no impurity sites (red squares). Case II has SI=S/2
and SNN=SNNN=S untouched (blue triangles). This case may be sufficient for Ru doping,
which is magnetic. Case III has SI=0 and SNN=SNNN=S untouched (green diamonds). Case
IV has SI=S/2, SNN=0.7S, and SNNN=0.9S (purple upside-down triangles). Finally, Case
V has SI=0, SNN=S/4, and SNNN=S/2 (black circles). Case V appears to be the best to
describe experiments for non-magnetic doping. The density of doped electrons equals x as in
Co doping. In all cases the on-site disorder potential is kept fixed at II = −0.1. The lattice
size is 64× 64.

We have found that in order to generate a robust nematic phase upon doping, extended

effects of magnetic dilution must be considered. The upside-down purple triangles (case IV)

in Fig. 3.7 show results for SI = S/2, SNN = 0.7S, and SNNN = 0.9S. The nematic regime is
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still too narrow. But the results for SI = 0 with SNN = S/4 and SNNN = S/2 (black circles,

case V), already shown in Fig. 3.2, indicate that increasing the strength of the extended off-

diagonal disorder does induce a faster reduction of the critical temperatures and stabilizes

a larger nematic region. Our computer simulations suggest that the range and strength of

disorder, specifically the extended magnetic dilution, is crucial for the stabilization of the

nematic phase when TN = TS in the parent compound.

We have observed that the effect of the on-site impurity potential II is weak. In principle,

we could have kept the overall chemical potential µ fixed and control the added electronic

density n by merely adjusting the values of the impurity potential. However, this does not

induce noticeable changes in the critical temperatures, due to the small overall modifications

in the electronic density discussed before. This is not the manner in which doping seems to

act in the real electron-doped pnictides. Thus, we believe that working with a fixed value of

the impurity potential and adjusting the electronic density with the overall chemical potential

allows to study the effects of isotropic quenched disorder and varying electronic density in a

more controlled and independent way.

Figure 3.8: Phase diagram of Ba(Fe1xRux)2As2 showing the structural-magnetic transition
TS−M (blue) and critical temperatures Tc (red) versus Ru content xRu. Values of Tc are
taken at the midpoint of superconducting transitions. This figure is a reproduction from
Ref [102].

Considering the negligible effect on the critical temperatures caused by pure electronic

doping (clean limit) and, by extension, the on-site impurity potential, the results in
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Fig. 3.7 shed light on the case of isovalent doping in which Fe is replaced by Ru. This

procedure introduces disorder but, at least nominally, no electronic doping. Experimental

efforts have observed that in this case TN and TS still decrease with doping, despite no

apparent changes in the Fermi surface, but at a slower rate than with non-isovalent doping.

Moreover, the critical temperatures do not separate from each other, i.e., no nematic phase is

stabilized [102]. Our results lend support to the view that the decrease of TN and TS observed

with Ru-doping is mainly due to the magnetic dilution introduced by doping rather than

by more subtle effects on the electronic density which in turn would affect the nesting of

the FS [103, 104, 105, 106]. Experiments have determined that doped Ru is magnetic [125],

which would translate to larger values of SI, SNN, and SNNN in our model. In fact, the blue

triangles (case II) in Fig. 3.7 qualitatively capture the slower decrease rate and negligible

separation with impurity doping for TN and TS experimentally observed for Ru doping [102]

shown in Fig. 3.8.

3.5 Properties of the Nematic Phase

Having stabilized a robust nematic regime, let us study its properties.

3.5.1 Neutron scattering

Considering the importance of neutron scattering experiments in iron superconductors, we

studied the electronic doping dependence of the magnetic structure factor S(k) obtained

from the Fourier transform of the real-space spin-spin correlation functions displayed in

Fig. 3.4. Experiments indicate that the low-temperature magnetic phase below TS = TN in

the parent compound develops long range AFM (FM) order along the long (short) lattice

constant direction in the orthorhombic lattice. This results in a sharp peak at k = (π, 0) (or

at (0, π) depending on the direction of the AFM order) that forms above the small spin-gap

energy [101]. More importantly for our discussion and results, upon electron-doping the

(π, 0) neutron peak becomes broader along the direction transverse to the AFM order in the

whole energy range [101], creating an intriguing transversely elongated ellipse.
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Figure 3.9: Magnetic and nematic order in the paramagnetic regime. The results are for
5% Co-doping at T = 120 K (T > TS) and using a 64×64 lattice. (a) The magnetic structure
factor S(k), showing that the wavevectors (π, 0) and (0, π) have similar intensity. (b) Monte
Carlo snapshot of the spin-nematic order parameter with approximately the same amount
of positive (green) and negative (orange) clusters. The impurity sites are indicated by black
dots.

The results obtained numerically for 5% Co-doping are shown in Fig. 3.9 for T = 120 K

(T > TS), i.e. in the paramagnetic phase. In panel (a) peaks in the spin structure factor S(k)

(that represents the integral over the whole energy range of the neutron scattering results)

with similar intensity at wavevectors (π, 0) and (0, π) can be observed. Both of these peaks

are elongated along the direction transversal to the corresponding spin staggered direction, in

agreement with neutron scattering [101]. Our explanation for these results within our spin-

fermion model is not associated with Fermi Surface modifications due to electron doping,

since the percentual doping is small as already discussed, but instead to the development
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of spin-nematic clusters, anchored by the magnetically depleted regions that form at the

impurity sites. A Monte Carlo snapshot of the spin-nematic order parameter Ψi on a 64×64

lattice is shown in panel (b) of Fig. 3.9. Since T > TS, patches with (π, 0) and (0, π)

nematic order, indicated with green and orange in the figure, coexist in equal proportion.

By eye inspection, we believe that the (π, 0) patches tend to be slightly elongated along the

x direction, while the (0, π) patches are elongated along the y direction. This asymmetry

could be the reason for the shape of the peaks in the structure factor displayed in panel

(a), since elliptical peaks can be associated to different correlation lengths along the x and y

axes. In Fig. 3.9(a) the elliptical (π, 0) peak has a correlation length larger along the x axis

than the y axis.
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Figure 3.10: Magnetic and nematic order in the nematic regime. The results are for 5%
Co-doping at T = 95 K (TN < T < TS) and using a 64 × 64 lattice. (a) The magnetic
structure factor S(k) is shown, with clear dominance of the (π, 0) state. (b) Monte Carlo
snapshot of the spin-nematic order parameter. Impurity sites are indicated by black dots. A
positive nematic order (green) dominates, but there are still small pockets of negative order
(orange). (c) Monte Carlo snapshot displaying the on-site component along the easy axis,
Se, of the localized spin multiplied by the factor (−1)ix , with ix the x-axis component of
the location of site i. Both the dominant blue and red clusters indicate regions with local
(π, 0) order, but shifted by one lattice spacing. This shift suppresses long-range order when
averaged over the whole lattice, but short-range order remains. Impurity sites are denoted
as black dots.

The results corresponding to lowering the temperature into the nematic phase (T = 95 K)

are presented in Fig. 3.10. In this case the subtle effects already observed in the paramagnetic

phase are magnified. In panel (a), it is now clear that the peak at (π, 0) has developed a

much larger weight than the peak at (0, π), as expected. Moreover, the elongation along the

transversal direction already perceived in the paramagnetic state is now better developed.

The Monte Carlo snapshot of the spin-nematic order parameter in panel (b) shows that the
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(π, 0) (green) regions prevail over the (0, π) (orange) regions, indicating that the symmetry

under lattice rotations in the nematic phase is spontaneously broken. In addition, now the

elongated shape of the (π, 0) green clusters along the AFM direction is more clear to the eye.

But despite the prevalence of (π, 0) clusters the system does not develop long-range magnetic

order (compatible with panel (b) of Fig. 3.4). This is because the many (π, 0) clusters are

actually “out of phase” with each other. This is understood via the visual investigation of

Monte Carlo snapshots, as in panel (c) of Fig. 3.10, where it is shown the component of

the localized spins along the easy axis, Se, multiplied by a factor (−1)ix (see definition in

caption; the location of the impurities is indicated with black dots). The abundant red and

blue patches all indicate clusters with local (π, 0) nematic order, but shifted one with respect

to the other by one lattice spacing. The very small regions with (0, π) order, as in the orange

regions of panel (b), can be barely distinguished in panel (c) with a checkerboard red/blue

structure.

3.5.2 Scanning Tunneling Microscopy

The real space structure of the (π, 0) nematic clusters obtained numerically, with an

elongation along the x axis, can be contrasted with Scanning Tunneling Microscopy (STM)

measurements. In fact, STM studies of Co-doped CaFe2As2 at 6% doping [109, 110] have

already revealed the existence of unidirectional electronic nanoestructures. These STM

structures appear to have an average length of about eight lattice spacings along the AFM

direction and it was argued that they may be possibly pinned by the Co atoms. The picture

of elongated structures along the x axis is consistent with our results, as shown in panel

(b) of Fig. 3.10. However, in our simulation the nematic structures are mainly located in

between, rather than on top, the Co dopants. In our case this arises from the fact that the

effect of disorder considered here reduces the magnetic interactions at the Co or Cu dopant

sites because they are not magnetic.

A recently discussed new perspective is that the nematic state could be a consequence of

anisotropic dopant-induced scattering rather than an intrinsic nematic electronic state [108,

126], by studying the anisotropy in the optical spectrum [108] and in the in-plane

resistivity [126] varying Co doping in BaFe2As2. The main argument to attribute the
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observed anisotropies to extrinsic effects of Co doping is that the anisotropy increases

with doping despite the fact that the spin order weakens and the lattice orthorhombicity

diminishes. Our results, by construction, were obtained with impurity profiles that are

symmetric under rotations of the lattice, so nematicity is not induced by asymmetric

Co doping characteristics. However, we agree with the above described experimental

observations that quenched disorder introduced by the dopants is crucial for the stabilization

of the nematic phase, otherwise in the “clean limit” there is no difference between TS and

TN as already explained.

In our simulation, the nematic phase develops because the in-plane dopants allowed the

formation of cigar-shaped nematic domains. These domains have shifts in their respective

AFM orders, as it can be seen in panel (c) of Fig. 3.10. For the 122 compounds, the dopants

enhance the (weak) electronic tendency to nematicity, while according to our previous

calculations [79] in the parent compound of materials in the 1111 family, such as ReFeAsO

(Re= La, Nd, Sm), a small temperature range of nematicity can be provided by the coupling

between the lattice and the orbital degrees of freedom. This view may be supported by

studies of the phonon modes in the 1111 materials [127]. Note also that atomic-resolution

variable-temperature Scanning Tunneling Spectroscopy experiments performed in NaFeAs,

which has TS > TN , and in LiFeAs, which does not develop neither magnetic order nor a

structural transition, indicate that cigar-like nematic domains develop in the nematic phase

of NaFeAs regardless of the symmetry of the impurities observed in the samples [97].

3.6 Discussion and Conclusions

In the results discussed in this Chapter, the effects of electron doping in materials of the

122 family, such as BaFe2As2, have been investigated via numerical studies of the spin-

fermion model, including charge, orbital, magnetic, and lattice degrees of freedom. These

materials are electron doped via the in-plane replacement of iron atoms by transition

metals, introducing disorder and dilution effects in the iron layers. The results of our

study suggest that the experimentally observed reduction of the magnetic and structural

transition temperatures upon doping, in such a manner that TN < TS, is primarily triggered
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by the influence of disorder/dilution associated with the chemical substitution of magnetic

Fe atoms by non-magnetic dopants such as Co [121] and Cu [128] as can be seen in Fig. 3.6.

More specifically, reducing the magnitude of the localized spins at and near the dopants

rapidly reduces the values of both transition critical temperatures. A “patchy” nematic

phase is stabilized, which is characterized by a majority of clusters with (π, 0) order. These

patches have out-of-phase magnetic order separated by non-magnetic regions anchored by

the impurities. While the tendency to nematicity is already a property of the purely

electronic spin-fermion model, as already discussed in previous studies [79], the present

spin-fermion model investigations suggest that for the 122 materials this fragile tendency

would not materialize into a robust nematic phase without the influence of disorder/dilution.

Compatible with this conclusion, BaFe2(As1−xPx)2 (considered among the “cleanest” of

doped pnictides since, for example, quantum oscillations were observed [129]) has a splitting

between TS and TN which is very small (if any).

Note that a mere change in chemical potential to increase the electronic doping, without

adding quenched disorder/dilution effects, does not stabilize a nematic regime in our model

and induces a very small decrease in the transition temperatures. This suggests that

nesting effects may not play a major role in the opening of a robust nematic window with

doping in 122 materials. Our results can also rationalize the slower decrease of the critical

temperatures, and lack of separation between TN and TS, observed upon Ru doping. In this

case experiments have shown that Ru dopants in 122 materials are magnetic [125], contrary

to the non-magnetic nature of Co and Cu dopants. Thus, in our study the values of the

Hund and Heisenberg couplings would have to be only slightly reduced at the impurity sites.

As shown in Fig. 3.7, this will reduce the rate of decrease, as well as the separation, of TN

and TS. The same effect may explain why TN = TS and the decrease rate is slower in hole

doped systems where the holes are introduced by replacing Ba atoms reducing the effects of

disorder/dilution directly in the iron layers.

In addition, the observed clusters are elongated along the AFM direction, results

compatible with observations in STM experiments. Within the spin-fermion model, the

cigar-like shape of the clusters arises because the nearest-neighbor couplings are AFM and,

thus, fluctuations are expected to be larger along the FM (frustrated) direction which reduces
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the associated correlation length. Another consequence of this behavior is the oval shape

observed for the weight distribution of the magnetic structure factor around the momenta

(π, 0) and (0, π) for T > TN , in agreement with the distribution observed in the electron-

doped case in neutron scattering experiments.

In summary, this chapter reports the first computational study of a realistic model for

pnictides that reproduces the rapid drop of TN and TS with the chemical replacement of Fe

by transition metal elements such as Co or Cu. Since disorder and dilution affect differently

TN and TS, a robust nematic regime is stabilized. The key ingredient is the introduction

of impurity profiles that affect several neighbors around the location of the dopant. Fermi

Surface nesting effects were found to be too small to be the main source responsible for the

fast drop of critical temperatures, at least in our model. In real systems it is conceivable

that a combination of Fermi Surface nesting effects and disorder/dilution effects could be

simultaneously at play. Our results are also compatible with neutron scattering and also with

Scanning Tunneling Microscopy. Considering the present results for doped systems, together

with the previously reported results for the parent compounds in Ch. 2 and Ref. [79], it can

be concluded that the spin-fermion model captures the essence of the magnetic properties of

the pnictide iron superconductors. This, however, is not true of the iron chalcogenide, FeTe,

whose magnetic order and structural distortion are different. In the next Chapter, a spin

fermion model will be proposed that can reproduce these properties through a symmetry

argument similar to the one used to capture the properties of the pnictides.
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Chapter 4

Bicollinear Magnetic order and

Monoclinic Lattice Distortion in Iron

Telluride

This chapter is a modified version of PHYSICAL REVIEW LETTERS 117, 117201 (2016)

[43, 130].

4.1 Introduction

The chalcogenide FeTe is an unusual member of the iron-based superconductors family [12,

70, 131, 132]. Angle-resolved photoemission (ARPES) [133] for FeTe revealed substantial

mass renormalizations indicative of electrons that are more strongly interacting than in

pnictides (see also Ref. [134]). The absence of Fermi surface (FS) nesting instabilities was

also established [135, 136]. Moreover, using single-crystal neutron diffraction, “bicollinear”

magnetism was reported in FeTe [41, 137]. This exotic antiferromagnetic (AFM) state is

known as the E-phase in manganites [82]. Phenomenological approaches rationalize the

bicollinear state based on Heisenberg J1-J2-J3 models [138] if the furthest distance coupling

J3 is assumed to be robust. Effective spin models [138, 139] are certainly valid descriptions

after the lattice distortion occurs, but they do not illuminate the fundamental reasons for

the bicollinear state stability [140, 141, 142].
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Upon cooling, experimentally the bicollinear state is reached via a robust first-order

phase transition [41, 137, 143, 144], with a concomitant tetragonal (Tetra) to monoclinic

(Mono) lattice distortion. The reported distortions in Fe1.076Te and Fe1.068Te are δM =

|aM−bM |/(aM+bM) ∼ 0.007 [41, 137] (aM and bM are the low temperature lattice parameters

in the Mono notation). This distortion is comparable to the orthorhombic (Orth) lattice

distortion in BaFe2As2 [145] δO = |aO − bO|/(aO + bO) ∼ 0.004 (now with aO and bO the

low temperature lattice parameters in the Orth notation). Since the lattice is considered

a “passenger” in the pnictides, it may be suspected that it also plays a secondary role for

chalcogenides [146].

Contrary to this reasoning, here we argue that the lattice may play a more fundamental

role in FeTe than previously anticipated. Specifically, we construct a spin-fermion (SF) model

where lattice and spins are coupled in a manner that includes the Mono distortion of FeTe.

Using Monte Carlo techniques, we found a strong first-order Tetra toMono lattice transition,

as in experiments [41, 137]. Moreover, the bicollinear magnetic order spontaneously arises

at the same critical temperature. All this is achieved with a (dimensionless) spin-lattice

coupling g̃12 & 0.10 − 0.25 (defined in Appendix E) that is not strong. Surprisingly, we

also find the same puzzling reversed anisotropy in the low temperature resistivity recently

reported [147, 148], with the AFM direction more resistive than the ferromagnetic (FM),

contrary to results in pnictides (See Fig. 4.1).
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Figure 4.1: (Left) Plot Showing the resistance measured along the AFM(ρa in green) and
FM(ρb in red) directions for BaFe2As2. This figure is reproduced from Ref. [71]. (Right) Plot
showing the Resistance(T)/Resistance(300K) vs Temperature along the AFM(red) and FM
(blue) directions as well as for the twinned sample (black). This demonstrates the resistance
anisotropy for FeTe. The inset shows the magnetization measurement used to find TN . This
figure is reproduced from Ref. [148].

We also include the spin-lattice coupling g̃66 that favors orthorhombicity, although in this

case the crystal’s geometry – with nearest-neighbors (NN) and next-NN (NNN) hoppings of

similar strength and associated FS nesting – already favors the concomitant (π, 0) collinear

magnetism even without the lattice. Our analysis interpolates between (collinear) pnictides

and (bicollinear) chalcogenides using the same hopping amplitudes because band structure

calculations give similar results for both. In fact, the high temperature regime displays a FS

with the canonical hole-electron pockets, naively suggesting that only Orth and (π, 0) spin

order could be stabilized. However, our calculations show that strong first-order transitions

can induce a low-temperature state with no precursors at high temperatures.

The presence of both itinerant and localized characteristics in neutron experiments for

Fe1.1Te [149] suggests that the SF model provides a proper framework. While we cannot

fully incorporate the electronic interactions, the Hund coupling of the SF model mimics a

Hubbard U by reducing double occupancy at each orbital [136]. In these respects, our study

has the same accuracy as in the successful description of manganites [82, 150].
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Figure 4.2: (a) The collinear (π, 0) AFM ordered state; (b) the bicollinear (π/2,−π/2)
AFM ordered state; (c) schematic drawing of the Fe lattice equilibrium position in the Tetra

(black symbols) and Orth (red symbols) phases (four Fe’s are indicated with filled circles and
labeled by their site index i); (d) Same as (c) but for the Mono case.

4.2 Model

The SF Hamiltonian used here is based on the original purely electronic model [52, 61],

supplemented by couplings to the lattice degrees of freedom [68, 79] similar to Sec. 3.2,

however, a new term as been added to address the B2g spin-lattice coupling:

HSF = HHopp +HHund +HHeis +HStiff +HSLO +HSLM. (4.1)

HHopp is the three-orbital (dxz, dyz, dxy) tight-binding Fe-Fe hopping of electrons, with

hopping amplitudes selected to reproduce ARPES data [see Eqs. A.3-A.5 and Table A.1

of Appendix A]. The undoped-limit average electronic density per iron and per orbital is

n=4/3 [56] and a chemical potential in HHopp [68] controls its value. The Hund interaction

is HHund=−JH

∑
i,α Si · si,α, where Si are localized spins at site i and si,α are itinerant spins

corresponding to orbital α at the same site [151]. Electrons in the non-itinerant orbitals

dx2−y2 and d3z2−r2 are assumed to have hopping amplitudes smaller than for the itinerants,

thus effectively increasing their Hubbard U to bandwidth W ratio. For this reason, a strong

coupling expansion generates HHeis that contains the NN and NNN Heisenberg interactions

among those localized spins, with respective couplings JNN and JNNN, and ratio JNNN/JNN

= 2/3 [152]. The NN and NNN Heisenberg couplings are comparable because Fe-Fe hopping
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occurs via Te atoms at the center of Fe plaquettes [153]. However, we will show that JNN

and JNNN are not crucial for our main conclusions. Finally, HStiff is the lattice stiffness

(Lennard-Jones potential) to speed up convergence [68, 79].

Previous SF model investigations addressed the Tetra−Orth transition as in SrFe2As2 [79].

The coupling of the spins with the Orth lattice distortion [79] is given by HSLO=

−g66

∑
i ΨNN

i ε66(i) [35, 75], where g66 is the canonical Orth spin-lattice coupling [84] and the

spin NN nematic order parameter is

ΨNN
i =

1

2
Si · (Si+y + Si−y − Si+x − Si−x), (4.2)

where x and y are unit vectors along the x and y axes, respectively.

ΨNN
i is 2 in the perfect (π,0) state shown in Fig. 4.2(a). ε66(i) is the lattice Orth strain

defined in terms of the positions of the As, Se or Te atoms with respect to their neighboring

Fe. Its precise definition is [79]

ε66(i) =
1

4
√

2

4∑

ν=1

(|δyi,ν | − |δxi,ν |), (4.3)

where δi,ν = (δxi,ν , δ
y
i,ν) (ν=1,...,4) is the distance between Fe at i and one of its four neighbors

As or Te (Fig. E.1). The As/Te atoms move locally from their equilibrium position only

along the x̂ and ŷ directions since the displacements along the ẑ direction do not couple to the

orthorhombic lattice distortion. Both ΨNN
i and ε66(i) transform as the B1g representation

of the D4h group.

The crucial novel term HSLM=−g12

∑
i ΨNNN

i ε12(i) introduced here provides the coupling

between the spin and the Mono lattice distortion [154], with strength g12. The spin NNN

nematic order parameter is

ΨNNN
i =

1

2
Si · (Si+x+y + Si−x−y − Si+x−y − Si−x+y). (4.4)
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Figure 4.3: (a) Example of the B2g representation of the D4h group. (b) Example of the
B1g representation of the D4h group.

ΨNNN
i becomes 2 in the perfect (π

2
,−π

2
) state of Fig. 4.2(b) [155]. ε12(i) is the lattice Mono

strain defined in terms of the Fe-Te/As distances δi,ν as

ε12(i) =
1

8
(|δi,2|+ |δi,4| − |δi,1| − |δi,3|). (4.5)

ε12(i) transforms as the B2g representation. For this reason we must use ΨNNN
i , that also

transforms as B2g, in HSLM so that it is invariant under the D4h group (See Fig. 4.3(a)).

This simple symmetry argument is the reason for why the bicollinear state is stabilized by

the monoclinic distortion. As mentioned previously in Sec. 2.2, B1g transformations can be

described by π
2

rotations that lead to a change of sign in the order parameter (See Fig. 4.3(b)).

B2g transformations also lead to a change in sign upon π
2

rotations about the ẑ axis, but

they differ from B1g because they are even under reflections on a plane along the diagonal

directions of the Fe plaquette as shown in Fig. 4.3(a).

HSF was studied with the same Monte Carlo (MC) procedure employed in [79] (see also

Appendix E and Ref. [156]). Here only a detailed description of the new lattice coupling g̃12

will be provided. During the simulation the As/Te atoms can move locally away from their

equilibrium positions on the x-y plane, while the Fe atoms can move globally in two ways:

(i) via an Orth distortion characterized by a global displacement (rx, ry) from the equilibrium

position (x
(0)
i , y

(0)
i ) of each iron with rα=1 + ∆α (∆α � 1; α=x or y) [Fig. 4.2 (c)], and (ii)
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via a Mono distortion where the angle between two orthogonal Fe-Fe bonds is allowed to

change globally to 90o + θ with the four angles in the Mono plaquette adding to 360o so

that the next angle in the plaquette becomes 90o − θ, with θ a small angle [Fig. 4.2 (d)].

In addition, the localized (assumed classical) spins Si and atomic displacements (δxi,ν , δ
y
i,ν)

that determine the Orth or Mono lattice distortion ε66(i) [68, 79] and ε12(i) are also MC

evaluated. In Appendix E the spin and lattice susceptibilities χS(kx,ky), χδO , and χδM , and

the dimensionless couplings g̃66 and g̃12 are defined.
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Figure 4.4: Phase diagram along the straight line from (g̃12, g̃66) = (0, 0.24) to (0.24, 0),
at JH=0.1 eV and JNN=JNNN=0. Inset: same phase diagram but along the straight line
from (g̃12, g̃66) = (0, 0.16) to (0.40, 0), at JH=0.1 eV, JNN=0.012 eV, and JNNN=0.008 eV.
Blue circles (red triangles) denote TO (TM), the transition temperatures to the Orth/collinear
(Mono/bicollinear) phase.

4.3 Results

In real chalcogenides, both B1g and B2g magnetic fluctuations should be present and the

magnitude of their respective couplings to Orth and Mono distortions depends on doping,

replacing Te by Se, or iron excess as in Fe1+yTe. In addition, weak B2g fluctuations may also

exist in pnictides.

For this reason, our study will address the MC phase diagrams varying temperatures

and couplings in a wide range. Consider first the case JNN = JNNN = 0. One of our most

important results is in Fig. 4.4. At the left, a realistic TmaxO ≈ 170 K is obtained for the

transition to the collinear/Orth state, with an Orth distortion δO ≈ 0.004−0.008, compatible
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with experiments [41, 137] and previous studies [79]. As g̃12 increases and g̃66 linearly

decreases, then TmaxO naturally decreases. When g̃12 ≈ 0.16 and g̃66 ≈ 0.08, remarkably

now the FeTe bicollinear/Mono phase appears at TM (red triangles). At the right in Fig. 4.4

the critical temperature is ∼ 70 K similar to FeTe experiments [157]. Moreover, in the range

shown, the monoclinic lattice distortions are small (for explicit values see Fig. G.3) [158].

Bicollinear order is stabilized because with increasing g̃12 the nematic order parameter

ΨNNN
i in HSLM becomes nonzero to lower the energy. In each odd-even site sublattice,

ΨNNN
i favors a state with parallel spins along one diagonal direction and antiparallel in the

other (equivalent to the collinear order but rotated by 45o). The parallel locking of the two

independent spin sublattices leads to the state in Fig. 4.2(b) (or rotated ones).

As already explained, the purely fermionic SF model develops a collinear (π, 0) tendency

because of FS nesting in the tight-binding sector [61]. Since spin and lattice are linearly

coupled, an Orth distortion is induced even for an infinitesimal g̃66. On the other hand,

regardless of g̃66, the coupling g̃12 needed to stabilize the bicollinear/Mono state is finite

because it must first “fight” against the (π, 0) order. However, in practice this critical

coupling is small ∼ 0.1-0.25 and within experimental range.

To analyze the universality of the Fig. 4.4 phase diagram we also investigated the effect

of adding NN and NNN Heisenberg couplings along the line from (g̃12, g̃66) = (0, 0.16) to

(0.40, 0) (inset of Fig. 4.4). Qualitatively the results are similar.

At (0.40, 0) in the inset, the largest value of g̃12 considered here, the Mono distortion

is δM ≈ 0.004 still compatible with experiments [41, 137]. One interesting difference,

though, between the two cases is the appearance of an intermediate region at g̃12 ≈ 0.28

in Fig. 4.4(inset) where upon heating a transition Mono to Orth is reached before the

system eventually becomes paramagnetic. Experimentally in Fe1+yTe an intermediate Orth

phase with incommensurate magnetic order indeed exists between the Tetra and Mono

phases [154, 157] with TO ≈ 60 K and TM ≈ 50 K, at y ≈ 0.13. Our finite lattices do not

have enough resolution to study the subtle incommensurate magnetism but we conjecture

that adding Fe to FeTe may effectively increase the spin-lattice coupling to reach the inset

intermediate regime.
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Figure 4.5: Filled (open) circles indicate the bicollinear AFM order parameter ΨNNN (the
Mono lattice distortion δM) at g̃12 = 0.24, g̃66 = 0, JH = 0.1 eV, and JNN = JNNN = 0.
Magnetic and lattice susceptibilities, χ(π/2,−π/2) and χδM , are also shown (filled and open
triangles, respectively). TN denotes the first-order Néel temperature.

Another interesting result found here is that the bicollinear/Mono phase transition is

strongly first order, as in experiments [41, 137], as indicated by the order parameters

discontinuities in Fig. 4.5 and by the MC-time evolution histogram Fig. 4.6(a). At high

temperature (π, 0) fluctuations first develop (as implied by the inset of Fig. 4.4), leading

to a free energy local minimum. However, upon further cooling the bicollinear minimum

with a different symmetry also develops and eventually a crossing occurs with first-order

characteristics because one local state cannot evolve smoothly into the other.

Remarkably, the correct behavior for the resistivity anisotropy of FeTe [147, 148] is

also observed here (details in Appendix F and I ). In the (π, 0) phase, FS nesting opens

a pseudogap for the yz orbital [61, 79, 159]. Because this orbital relates to electronic

hopping along the ferromagnetic y-axis, then the FM resistivity is the largest in pnictides

(See Fig. 4.1(Left)). However, the reversed anisotropy with lower resistance along the

FM direction (open circles) was found in the bicollinear phase Fig. 4.6(b) (the technique

used is explained in Appendix F). This can be compared to the experimental results in

Fig. 4.1(Right) which shows the same reversed anisotropy for FeTe [148]. Moreover, this

reversed effect is amplified as JH increases. The key clues to explain the effect are now clear:

(i) an electron hopping along the plaquette diagonal in the AFM direction pays an energy JH,

but the hopping along the plaquette diagonal FM direction does not; (ii) because FS nesting

does not involve wavevectors such as (π/2,−π/2), then pseudogaps are not created due to
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nesting as in pnictides. Then, in essence, the reversed resistance found here is characteristic

of large Hund coupling materials [160], such as manganites [82], where it is also known that

the AFM direction is more resistive than the FM direction.
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Figure 4.6: (a) Histogram of the MC time evolution of ΨNNN and δM , at the critical
temperature of Fig. 4.5 (T = 72 K), illustrating its bimodal character compatible with first-
order characteristics. (b) Resistance (h/2e2 units) vs. temperature in the bicollinear state
(g̃12 = 0.24, g̃66 = 0, JH = 0.2 eV, no Heisenberg terms). Filled (open) symbols denote
resistivities along the AFM (FM) direction. (c,d) Symmetrized Fermi surface (g̃12 = 0.24,
g̃66 = 0, JH = 0.2 eV, no Heisenberg terms). (c) is in the high temperature paramagnetic
phase (T = 360 K); (d) is in the bicollinear phase (T = 10 K). The FS orbital composition
notation is blue (xz), green (yz), and red (xy). In the non-symmetrized FS (not shown) a
gap opens along the AFM diagonal direction in the xz and yz orbitals, compatible with the
resistivity results.

A paradox of FeTe is that first principles studies predict FS nesting and, thus, (π, 0)

order as in pnictides. For this reason, we calculated the FS at couplings where the ground

state is Mono. Figure 4.6 (c) shows the FS in the high temperature Tetra state. It is similar

to that of the iron pnictides, suggesting (π, 0) order upon cooling (the Γ centered features

are blurry because of how a shallow pocket is affected by temperature). However, because of

the sharp first-order transition theMono state reached at low temperature has a peculiar FS

[Fig. 4.6 (d)]: while the electron pockets are similar, the squarish Γ hole pocket is different

from that of pnictides. In addition “shadow bands” at (±π
2
,±π

2
) develop, as in ARPES [135],

indicative of couplings stronger than for pnictides [161].
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4.4 Discussion

Using computational techniques applied to the SF model including a spin-lattice Mono

distortion in the B2g channel, we showed that the puzzling phenomenology of FeTe

is well reproduced. This includes the presence of bicollinear magnetic order, Mono

lattice distortions, a strong first-order Tetra-Mono transition, nested Fermi surfaces at high

temperature naively favoring collinear order, and last but not least also the low-temperature

reversed anisotropic resistances between the AFM and FM directions. Moreover, all this

is achieved with spin-lattice dimensionless couplings less than 1, and with associated small

lattice distortions δM ∼ 10−3. While in pnictides the resistance anisotropy is related to

FS nesting and a yz orbital pseudogap [159], in chalcogenides the strength of the Hund

coupling is crucial. To our knowledge, the spin-lattice interaction discussed here provides

the first comprehensive explanation of the challenging experimental properties of FeTe. In

these results, the structural and magnetic transitions are simultaneous. This is not surprising

considering that in Ref. [79] an orbital-lattice coupling was necessary to separate the two.

In the following chapter it will be shown that a B2g orbital-lattice coupling can be added to

the spin fermion model to stabilize a B2g nematic phase.
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Chapter 5

Possible Bicollinear Nematic State

with

Monoclinic Lattice Distortions in Iron

Telluride Compounds

This chapter is a modified version of PHYSICAL REVIEW B 96, 035144 (2017) [162, 163].

5.1 Introduction

The theoretical understanding of high critical temperature superconductivity in iron

compounds has evolved from its early qualitative developments based on Fermi surface

nesting to more quantitative efforts incorporating the role of electronic correlations [12,

23, 36, 70, 114, 131]. In particular, experts have focused on several complex regimes

including electronic nematicity [35, 71, 75], an interesting state observed in several high

critical temperature pnictide superconductors [10, 30, 164, 165]. Upon cooling, this nematic

phase is reached at a temperature TS, concomitantly with a structural phase transition from

a tetragonal to an orthorhombic lattice. Upon further cooling a magnetically ordered phase

is stabilized at a lower temperature TN . The orthorhombic nematic phase between TS and

TN exhibits a reduced symmetry under rotations from C4 to C2. This is also observed in the

69



magnetic and orbital degrees of freedom leading to nonzero magnetic and orbital “nematic”

order parameters. Experimental investigations have shown that this nematic phase occurs in

the parent compounds of the 1111 pnictides [30]. Since the orthorhombic lattice distortion

δO = |aO − bO|/(aO + bO) ∼ 0.004 [145] is small (aO and bO are the lattice parameters in the

orthorhombic notation), it is often argued that the lattice plays the role of a “passenger”

in the nematic transition, which is believed to be driven by either the magnetic or orbital

degrees of freedom. In addition, it is interesting to notice that the structural transition

occurs simultaneously with the Néel temperature in several other iron-based materials. For

example, members of the 122 family need to be electron doped, with the chemical replacement

occurring directly on the FeAs planes, to develop the nematic phase [10, 164, 165]. Hole

doping, or electron doping via chemical substitution away from the FeAs planes, fails to

establish nematicity [101, 166].

In the chalcogenides, the parent compound FeTe exhibits an unexpected “bicollinear”

magnetic state [41, 82, 137], shown in panels (a,b) of Fig. 5.1, whose TN coincides with the TS

of a structural transition to a phase with a monoclinic lattice distortion, as shown in panel (d)

of the same figure. This joint transition is strongly first order [137, 143, 144]. The reported

lattice distortions in Fe1.076Te and Fe1.068Te are δM = |aM − bM |/(aM + bM) ∼ 0.007 [137]

(aM and bM are the low-temperature lattice parameters in the monoclinic notation) where

in Eq. E.7 of Appendix E, it is shown that δM ≈ θ
2
. Replacing Te with Se the bicollinear

magnetic order is eventually lost, the material becomes superconducting, and it develops

an orthorhombic nematic phase above its superconducting critical temperature. In recent

theoretical work, using a spin-fermion model we explained the bicollinear magnetic order

using symmetry considerations as a consequence of the monoclinic distortion [43, 132, 167].

Based on this reasoning, the role of the lattice in the case of FeTe appears more important

than previously anticipated.

The aim of the present work is to argue that the pnictides and chalcogenides could

potentially behave more symmetrically with regards to the presence of a nematic state. As

expressed above, the pnictides either already have nematicity without doping, as in the 1111

compounds, or develop nematicity after doping as in the Co-doped 122 compounds. Based

on symmetry arguments, the presence of a nematic regime is theoretically understood as

70



follows. In these materials the magnetic ground state has wavevector (π, 0), with staggered

spins along the x-axis and parallel spins along the y-axis. However, the (0, π) state should

have the same energy by symmetry. In cases of two-fold degeneracy in the ground state,

it was predicted that an Ising transition could occur upon cooling [168], with an order

parameter that breaks lattice rotational invariance and involves only short-range magnetic

correlations. Upon further cooling, the O(3) full symmetry breaking process is possible.

Our main observation here is that the bicollinear state shown in Fig. 5.1 (a) with

wavevector k1 = (π/2,−π/2) has a partner, displayed in Fig. 5.1 (b), with identical energy

but k2 = (π/2, π/2) [169]. Then, the same Ising-O(3) rationale expressed above for the

(π, 0)−(0, π) degeneracy can be repeated for bicollinear states: starting at high temperature

both spin structure factors S(k) will start growing with equal strength upon cooling at

the wavevectors k1 and k2. By analogy with the pnictides, it is possible that at a critical

nematic temperature TS an asymmetry develops such that S(k1) > S(k2), and then at a

lower temperature TN , S(k2) drops to zero while S(k1) grows like the volume.

While no nematic phase with these characteristics has been reported yet in materials of

the FeTe family with the bicollinear spin order, the present study provides computational

evidence that there are Hamiltonians with spin- and orbital-lattice coupling that display

this new nematic behavior, if the couplings strengths are properly tuned. While our many-

body tools do not allow us to predict what specific material may display this phenomenon,

our symmetry arguments and concrete simulation results are offered as motivation for the

experimental search for this exotic bicollinear-nematic state.

Previous numerical studies of spin-fermion models for pnictides with spin, orbital, and

lattice degrees of freedom provided indications that the structural transition is due to the

coupling between the lattice and spins [79]. Thus, in these regards the lattice follows the

spins. But the spin-lattice coupling leads to TS = TN and, then, the establishment of a

nematic phase with TS > TN requires a more subtle mechanism. Investigations by our group

have shown that the nematic regime can be achieved by the addition of an orbital-lattice

coupling [79] (or by the introduction of in-plane magnetic disorder, namely by replacing iron

by non-magnetic atoms [98, 170]). Based on this previous research, here a coupling between

the monoclinic lattice distortion and an orbital nematic parameter with B2g symmetry will
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Figure 5.1: (a) The bicollinear antiferromagnetic spin order with wavevector (π/2,−π/2).
(b) same as (a) but for the state lattice-rotated by 90 degrees with wavevector (π/2, π/2). (c)
Schematic drawing of an iron atom at site i (filled symbol) and its four Te neighbors (open
symbols), projected in the x-y plane in their equilibrium position. The distances δi,ν between
the irons at site i and its four neighboring Te atoms are indicated as well. The localized
spin Si is also sketched. (d) Schematic drawing of the Fe lattice equilibrium position in the
tetragonal phase (black symbols and lines) and in the monoclinic phase (red symbols and
lines). Four Fe atoms are indicated with filled symbols and labeled by their lattice site index.
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be added to the spin-fermion model that already has the spin-lattice coupling previously

developed to study FeTe (See Ch. 4) .

This chapter is organized as follows. In Section 5.2 the model is described including

the new term that must be incorporated in order to stabilize a bicollinear-nematic state.

In Section 5.3 we provide an explanation of the numerical approach that allows for the

parallelization of the Monte Carlo procedure and the concomitant use of clusters of reasonable

size for our purposes. The main results showing the stabilization of the new nematic state

are presented in Section 5.4. The discussion, including possible physical realizations, is in

Section 5.5, with brief conclusions in Section 5.6.

5.2 Model

The spin-fermion (SF) Hamiltonian used here is an extension of Sect. 4.2, supplemented

by a new B2g orbital-lattice coupling. The B1g spin-lattice coupling which stabilizes the

orthorhombic/collinear state, was not included since as can be seen in Ch. 4, it competes

with the bicollinear state. The Hamiltonian used is thus given by:

HSF = HHopp +HHund +HHeis +HStiff +HSLM +HOLM. (5.1)

More detail on the Hamiltonian can be found in Appendix A and E. HHopp represents the

three-orbitals (dxz, dyz, dxy) tight-binding Fe-Fe hopping of electrons, with the hopping

amplitudes selected to reproduce photoemission data [see Eqs. A.3-A.5 and Table A.1 of

Appendix A]. In the undoped-limit the average electronic density per iron and per orbital is

set to n=4/3 [56] and a chemical potential in HHopp [68] controls its value. The on-site Hund

interaction is HHund=−JH

∑
i,α Si · si,α, where Si are the localized spins at site i and si,α are

spins corresponding to orbital α of the itinerant fermions at the same site. For computational

simplicity, the localized spins are assumed classical and of norm one [151]. HHeis contains

the nearest neighbor (NN) and next-NN (NNN) Heisenberg interactions among the localized

spins, with respective couplings JNN and JNNN. As explained before [61, 79], both NN and

NNN are in principle needed because of the geometry of the problem, where in each layer the
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Te atoms (or As, Se, P) are at the centers of iron plaquettes as seen from above. However,

in our previous study of FeTe [43] we observed that the experimental value of TN for FeTe

could be obtained by simply setting JNN = JNNN = 0. This is due to the fact that the

intersite spin-spin couplings favor either checkerboard (JNN) or collinear (JNNN) magnetic

configurations and in order to obtain a bicollinear ground state it is necessary to use a larger

value of the spin-lattice coupling g̃12 which, in turn, increases TN [171]. HStiff is the lattice

stiffness given by a Lennard-Jones potential to speed up convergence [68] (full expression

can be found in Appendix A).

In the previous chapter, a crucial term was introduced [43] to describe FeTe properly.

This term has the form HSLM=−g12

∑
i ΨNNN(i)ε12(i) and it provides a coupling between

the localized spins and the monoclinicMono lattice distortions [112]. The coupling constant

strength is g12 and the spin NNN nematic order parameter is defined as

ΨNNN(i) =
1

2
Si · (Si+x+y + Si−x−y − Si+x−y − Si−x+y), (5.2)

where i ± µ ± ν indicates the four NNN sites to i, with µ = ±x and ν = ±y representing

unit vectors along the x and y axes, respectively. Note that ΨNNN(i) has the value 2 (-2)

in the perfect bicollinear states shown in Figs. 5.1 (a) and (b), respectively characterized by

a peak at wavevectors (π/2,−π/2) and (π/2, π/2) in the magnetic structure factor. ε12(i) is

the lattice Mono strain defined in terms of the Fe-Te distances δi,ν as

ε12(i) =
1

8
(|δi,2|+ |δi,4| − |δi,1| − |δi,3|), (5.3)

where δi,ν = (δxi,ν , δ
y
i,ν) (ν=1,...,4) is the distance between Fe at site i and each of its four

Te neighbors (see panel (c) of Fig. 5.1 and also Fig. E.1). As in previous simulations,

the Te atoms are allowed to move locally from their equilibrium position only along the x

and y directions since the z direction does not couple to the monoclinic lattice distortion.

It is important to notice that both ΨNNN(i) and ε12(i) transform according to the B2g

representation of the D4h symmetry group, which means that the spin-lattice term of the

Hamiltonian transforms as A1g as expected. As the spin-lattice coupling g12 grows and
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induces a monoclinic Mono distortion, ΨNNN develops a nonzero expectation value leading

to the bicollinear spin state order as explained in Sec. 4.3.

The Hamiltonian as described thus far is the same as employed in Sec. 4.2 and leads

to a first-order phase transition where both the monoclinic lattice and the bicollinear spin

orders develop simultaneously. Thus, no bicollinear-nematic state was found in the studies

presented in the previous chapter. Based on previous investigations of pnictides using the

spin-fermion model [79], it is natural to introduce a coupling between the lattice and the

orbital degree of freedom in order to induce nematicity. As mentioned in Sec. 4.2, this

requires care with regards to the symmetry of the operators needed for this new term. The

monoclinic orbital-nematic order parameter is defined as

ΦB2g(i) = ni,XZ − ni,Y Z =
∑

σ

(c†i,xz,σci,yz,σ − c†i,yz,σci,xz,σ), (5.4)

where ni,β=
∑

σ c
†
i,β,σci,β,σ (β = XZ, Y Z), and the B2g orbital basis is related to the B1g

orbital basis by

ci,XZ,σ =
1√
2

(ci,xz,σ + ci,yz,σ) (5.5)

and

ci,Y Z,σ =
1√
2

(ci,xz,σ − ci,yz,σ). (5.6)

Notice that the x and y axes point along nearest-neighbor irons, i.e. along the sides of the

plaquette formed by four irons, while the X, Y axes point along next nearest-neighbor iron,

i.e. along the diagonals of the iron plaquette. The Z and z axis coincide and they are

perpendicular to the plane formed by the iron layer.

The new term in the Hamiltonian HOLM that couples the B2g orbital and lattice order

parameters is given by

HOLM = −λ12

∑

i

ΦB2g(i)ε12(i). (5.7)

Because the monoclinic lattice distortion ε12(i) transforms as the B2g representation of D4h,

it must be coupled to an orbital order parameter that also transforms as B2g, which is why
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ΦB2g(i) was constructed. This ensures that HOLM is invariant under the D4h symmetry

group.

The full HSF was studied here with the same Monte Carlo (MC) procedure employed

in [79], supplemented with the recently developed “Parallel Traveling Cluster Approximation

(PTCA)” [87], described in the next section. The values for the couplings JH = 0.1 eV,

JNN = JNNN = 0, and g̃12 = 2g12√
kW

= 0.24 were chosen because they provide TN = TS = 70 K

for λ12 = 0 [43], which is the transition temperature experimentally observed in FeTe. The

coupling strength g̃12 is the dimensionless version of the spin-lattice coupling, employing

W = 3 eV as the bandwidth of the tight-binding term and k as the constant that appears in

HStiff [79]. Since these couplings were discussed extensively before, in the present effort we

will instead focus on a careful description of the new dimensionless monoclinic orbital-lattice

coupling λ̃12 = 2λ12√
kW

and its effects.

During the simulation the Te atoms are allowed to move locally away from their

equilibrium positions within the x-y plane. The Fe atoms can move globally via a monoclinic

distortion Mono where the angle between two orthogonal Fe-Fe bonds is allowed to change

globally to 90o + θ with the four angles in the iron plaquette adding to 360o, so that the

next angle in the plaquette becomes 90o − θ, with θ as a small angle (see Fig. 5.1 (d)). In

addition, the localized spins Si and atomic displacements (δxi,ν , δ
y
i,ν) that determine the value

of the local Mono lattice distortion ε12(i) [43] (see Fig. 5.1 (c)) are evaluated via a standard

Monte Carlo procedure.

5.3 Methods: the Parallel Traveling Cluster Approxi-

mation

To access the lattice sizes needed to study the existence of a monoclinic nematic phase

we implemented the Parallel Traveling Cluster Approximation (PTCA) [87] which is a

parallelization improvement over the traveling cluster approximation (TCA) previously

introduced [86]. PTCA allows parallelization in order to use multiple CPU cores and by

this procedure we can reach lattices as large as 32× 32. To perform a Monte Carlo update
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of one of the local variables – either the localized spin Si at the iron site i or the local

distortion of the Fe-Te bonds joining the Fe atom at site i with its four Te neighbors – an

8× 8 traveling cluster is constructed around site i and the Hamiltonian is diagonalized only

inside that cluster to decide whether the update is accepted. The algorithm is parallelized

by dividing the lattice into four quadrants with 16 × 16 sites, one per different CPU core.

Then, each CPU generates traveling 8×8 clusters around the sites belonging to its quadrant,

see Fig. 5.2 for an illustration, and these clusters are then simultaneously diagonalized.

CORE 1

CORE 2

CORE 3

CORE 4

Figure 5.2: Diagram of the PTCA set-up used to sample the local spin and lattice variables.
The lattice is divided into four quadrants and each of four processors generates traveling
clusters (indicated with 8×8 squares) and proposes updates for the sites (indicated by small
open circles) inside one quadrant.

To update the global monoclinic lattice distortion given by the angles in the rhombus

formed by the four irons shown in Fig. 5.1 (d) an extra new modification in the PTCA

was introduced. The 32 × 32 sites lattice was divided into 16 clusters with 8 × 8 sites

each as shown in Fig. 5.3. Each of four CPU cores was devoted to diagonalize four of the

clusters as indicated in the figure. The same update is proposed in all the clusters which are

simultaneously diagonalized. Then, all the eigenvalues are collected in one of the cores in

order to calculate the probability of the Monte Carlo update and decide whether the update

is accepted or rejected.

For thermalization typically 5,000 Monte Carlo steps were used, while 10,000 to 25,000

steps were performed in between measurements for each set of parameters and temperatures.

The spin-spin correlation functions in real space were measured and the magnetic structure
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CORE 1

CORE 2

CORE 3

CORE 4

Figure 5.3: Diagram of the PTCA set-up used to sample the global lattice distortion
variables. The lattice is divided into sixteen clusters. Each of the four processors diagonalizes
four of the clusters.

factor S(kx, ky) was calculated via their Fourier transform. Notice that in the bicollinear

state the magnetic structure factor diverges for (kx, ky) = (π/2, π/2) or (π/2,−π/2). The

Néel temperature TN is obtained from the magnetic susceptibility for a given wavevector

which is given by

χS(kx,ky) = Nβ〈S(kx, ky)− 〈S(kx, ky)〉〉2, (5.8)

where β = 1/kBT and N is the number of lattice sites. We also calculated the numerical

derivative of S(π/2, π/2) with respect to temperature to double-check the value of TN . The

monoclinic structural transition temperature, TS, was obtained by calculating the structural

susceptibility given by

χδM = Nβ〈δM − 〈δM〉〉2, (5.9)

where δM ≈ θ/2 and θ is the deviation from 90o of the angle of the lattice plaquette as shown

in Fig. 5.1 (d) [43]. TS was also obtained from the numerical derivative of δM as a function

of temperature and from monitoring the behavior of the spin-nematic and orbital-nematic

order parameters, ΨNNN(i) and ΦB2g(i) respectively, introduced in the previous section and

their associated susceptibilities.
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5.4 Results

In previous work [43] we found that the magneto-structural transition experimentally

observed in FeTe with TS = TN = 70 K, was reproduced by setting JH = 0.1 eV,

JNN = JNNN = 0, and g̃12 = 0.24. In the present study we keep fixed the values of these

parameters while we vary the orbital-lattice coupling λ̃12 to investigate whether a nematic

phase can be stabilized and obtain the phase diagram varying the orbital-lattice coupling

and temperature.

5.4.1 Special case λ̃12 = 1

In agreement with the behavior reported before for the spin-fermion model in the case of the

pnictides with (π, 0) spin order [79], in the bicollinear case studied here it was indeed also

observed that the novel bicollinear nematic region becomes stable by increasing the value

of the orbital-lattice coupling. Another similarity with the case of the collinear state [79] is

that the addition of the orbital-lattice coupling λ̃12 turns the first order magnetic transition

into a second order one. The temperature width of nematicity remains narrow, as in many

previous investigations, and robust values of λ̃12 are required. Nevertheless, this is sufficient

to demonstrate the matter-of-principle existence of the bicollinear-nematic state discussed

in this publication. For clarity, first let us address in detail the largest value of the coupling

that we studied which was λ̃12 = 1.

In Fig. 5.4 the magnetic susceptibility χS(π/2,π/2) versus temperature is shown. A clear

maximum at TN = 165 K indicates the magnetic transition to the bicollinear state with long-

range order. The monoclinic lattice susceptibility is also shown. Interestingly, this quantity

has a sharp peak at a clearly larger temperature TS = 193 K, where the structural transition

from tetragonal to monoclinic takes place, indicating that a bicollinear-nematic state does

indeed occur.

In Fig. 5.5 the magnetic structure factor at wavevector (π/2, π/2) is displayed. The TN

from the susceptibility, shown with a dashed line, should occur when the rate of increase

of the order parameter is maximized. This has been verified by performing a spline fit of

the S(π/2, π/2) points obtained from the Monte Carlo simulation and taking the numerical
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×104
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Figure 5.4: Magnetic susceptibility χS (squares) and monoclinic lattice susceptibility χδM
(circles) evaluated using the PTCA algorithm at λ̃12 = 1 employing a 32×32 sites cluster. In
this plot, and other plots of susceptibilities shown below, the fluctuations between subsequent
temperatures are more indicative of the error bars than the intrinsic errors bars of individual
points, which for this reason are not shown.

derivative. The monoclinic lattice order parameter δM is also presented in Fig. 5.5. The

structural transition temperature is displayed with a dashed line as well. We also verified

that the maximum in the lattice susceptibility from Fig. 5.4 coincides with the maximum

rate of change in the lattice order parameter via a spline fit of the Monte Carlo data.

0.0

0.1

0.2

0.3

0.4

120 140 160 180 200 220

TN TS

O

T [K]

δM ×102

S(π/2, π/2)

Figure 5.5: Magnetic spin structure factor S(π/2, π/2) (squares) and monoclinic lattice
order parameter δM (circles) evaluated using the PTCA algorithm for λ̃12 = 1 on a 32× 32
sites cluster.

In between the two transition temperatures TN and TS, a nematic phase is stabilized.

In this phase both short-range orbital and spin nematic order develop as it can be seen in
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Fig. 5.6, where in panel (a) the susceptibilities associated with various order parameters

are presented. It can be observed that the orbital-nematic and spin-nematic susceptibilities

have maxima at TS as does the structural susceptibility. This confirms the presence of a

monoclinic nematic phase characterized by orbital-nematic and spin-nematic orders. These

properties are also reflected in the behavior of the respective order parameters shown in

panel (b) of the figure.
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0.4

0.6

0.8 TN TS

(a)

0.0

0.2

0.4

0.6

0.8

100 120 140 160 180 200 220

TN TS

(b)

χ

χδM
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χS(π/2,π/2) ×10

χΦB2g
×4 · 10−2

χΨNNN
×4 · 10−1

O

T [K]

δM ×102

S(π/2, π/2)
ΦB2g

ΨNNN

Figure 5.6: (a) Magnetic susceptibility χS(π/2,π/2) (red squares) with a maximum at TN =
165 K (dashed line), and the monoclinic lattice susceptibility χδM (blue circles), spin-nematic
susceptibility χΨ (orange diamonds), and orbital-nematic susceptibility χΦ (green triangles)
all with a maximum at TS = 193 K. The susceptibilities were calculated at λ̃12 = 1 using
32 × 32 lattices. (b) Monte Carlo measured order parameters associated to (a). Shown are
the magnetic structure factor S(π/2, π/2) (red squares), monoclinic lattice distortion δM
(blue circles), spin-nematic order parameter ΨNNN (orange diamonds), and orbital-nematic
order parameter ΦB2g (green triangles). The transition temperatures were obtained from the
susceptibilities in (a) and via numerical derivatives in (b). Both procedures give the same
result.

Performing spline fits of the order parameters and taking numerical derivatives, the

critical temperatures obtained from the susceptibilities were reproduced. It is important

to notice that the lattice distortions δM ∼ 10−3 are quantitatively similar to those reported
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in FeTe experiments while, as shown in Fig. 5.6 (b), the orbital and spin nematic order

parameters develop values an order of magnitude larger. Thus, the strength of the orbital-

lattice coupling used still leads to small lattice distortions but appears to generate robust

magnetic and orbital short-range order inducing substantial anisotropic effects in these

observables.

5.4.2 Special case λ̃12 = 0.85

As the value of the orbital-lattice coupling is reduced the separation between the magnetic

and the structural transitions decreases. In panel (a) of Fig. 5.7 the magnetic and structural

susceptibilities at λ̃12 = 0.85 obtained from Monte Carlo simulations are presented. In

this case TN = 145 K while TS = 147 K. The orbital- and spin-nematic order parameters

also have a maximum susceptibility at TS (not shown for simplicity). The magnetic and

structural order parameters are shown in panel (b) of Fig. 5.7 and their qualitative behavior

is in agreement with panel (a). The indicated transition temperatures have been obtained

from numerical fits of the order parameters and their derivatives as described in the previous

subsection. This case λ̃12 = 0.85 is close to the limit of our numerical accuracy. In principle,

it is possible that simulations using larger systems and with far more statistics may unveil

a very narrow bicollinear nematic state even for small values of λ̃12. However, for our

qualitative purposes simply showing the stability of the new proposed phase in any range of

λ̃12 is sufficient.

5.4.3 Phase Diagram

The phase diagram obtained as a function of the orbital-lattice coupling λ̃12 and temperature

is presented in Fig. 5.8. It can be seen that the region with B2g nematicity can be stabilized

at robust values of the orbital-lattice coupling. While a very narrow nematic phase may exist

at smaller values of this coupling, numerically we have been able to resolve the separation

between the two critical temperatures only for λ̃12 ≥ 0.75. As described in the previous

sections, the separation between TN and TS monotonically increases with λ̃12.
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Figure 5.7: (a) Susceptibilities associated with the magnetic spin structure factor
S(π/2, π/2) (squares) and with the monoclinic lattice distortion (circles) using λ̃12 = 0.85
and a 32×32 cluster. Solid lines are guides to the eye. (b) Spin structure factor S(π/2, π/2)
(squares) and monoclinic lattice order parameter δM (circles) for the same λ̃12 and cluster
size as in (a).
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Figure 5.8: Phase diagram varying temperature and λ̃12, for g̃12 = 0.24, JH = 0.1 eV, and
JNN=JNNN=0.0. Note the narrow temperature width of stability of the bicollinear-nematic
state, similarly as it occurs for the more standard (π, 0)−(0, π) nematic state [79]. For values
of λ̃12 smaller than 0.75, our numerical accuracy does not allow us to distinguish between
TN and TS.
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5.5 Discussion and Possible Physical Realizations

Our results have illustrated the possible existence of a nematic phase involving bicollinear

short-range order, using as explicit example a computational study of the spin-fermion model

incorporating the lattice distortions corresponding to the iron telluride family. Previously

the results in Ch. 4 showed that the addition to the electronic spin-fermion model for

pnictides of a coupling between a spin-nematic order parameter with B2g symmetry and

the monoclinic distortions of the iron lattice does induce the monoclinic and spin bicollinear

state experimentally observed in FeTe. That result was remarkable because the spin-fermion

model contains a tight-binding term that favors the (π, 0) and (0, π) collinear states that

arise from the nesting of the Fermi surface in weak coupling. However, the g̃12 spin-

lattice interaction, when sufficiently strong, can overcome these tendencies and stabilize

the monoclinic bicollinear state.

Here, we have included an additional orbital-lattice term with coupling strength λ̃12,

involving the monoclinic lattice strain coupled to an orbital order parameter with B2g

symmetry. By this procedure we have shown that a novel nematic phase characterized by the

breakdown of the lattice rotational symmetry between the two possible diagonal directions

of the spin bicollinear state can be induced. In this new nematic phase, short-range spin-

and orbital-nematic order develop accompanied by a lattice monoclinic distortion.

The model Hamiltonian studied here only allows us to show explicitly, as a matter

of principle, that indeed the bicollinear-nematic state described above does occur in

computational studies once all of the many degrees of freedom and couplings are properly

incorporated. But it is difficult to predict on what specific material this subtle state will

be realized in practice, thus we can only discuss some scenarios qualitatively. The possible

splitting of TN and TS by electron doping was raised in Ref. [75]. However, spin-fermion

model studies including doping but not quenched disorder (i.e. in the “clean” limit from

Sec. 3.4) did not detect such a split, at least in the doping range studied (See Fig. 3.2).

Another generic qualitative observation is that in the pnictides nematicity is observed for

the 1111 compounds even in the undoped limit [30]. Thus, to find the B2g nematic phase

discussed here it may be necessary to synthesize materials with intercalated FeTe planes.
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However, in our opinion the most likely scenario to stabilize the proposed bicollinear-

nematic regime in variations of the FeTe compound is by the chemical replacement of iron

by other transition metal elements, thus simultaneously modifying the electronic density as

well as the amount of quenched disorder. In pnictides, replacing Fe by Co, Ni, or Cu indeed

leads to a wide nematic region. The previously mentioned computational investigations using

the spin-fermion model with doping and disorder(See Ch. 3) clearly showed that indeed by

this procedure a (π, 0) nematic temperature range can be induced even in cases where TN

and TS coincide in a first-order transition for the undoped parent compound, as in the 122

family. Disorder plays a more important role than doping in this split [98], as observed

experimentally as well [49]. To our knowledge the experimental investigations of (Fe,X)Te,

with X another transition metal element, are very limited. We are aware of three main lines

of investigations and conclusions:

(i) Copper doping of FeTe was studied in [172, 173] for two Cu concentrations using

single crystals. For the case Fe1.06Cu0.04Te the presence of strain was detected at 41 K

upon cooling [172]. At lower temperatures approximately 36 K nearly-commensurate long-

range bicollinear magnetic order occurs. The presence of two transitions seems in agreement

with our prediction of bicollinear nematicity. However, in [172] it was argued that between

36 K and 41 K the lattice distortion could be orthorhombic as in pnictides. The possible

competition with orthorhombic tendencies was theoretically addressed and reported in Ch. 4

with further details added in Appendix G. This competition adds an extra complication to

the detection of the here predicted bicollinear-nematic state. For the case FeCu0.1Te only

cluster glass behavior was found below 22 K, presumably due to disorder [172]. Note that

this glassy state could be nematic.

(ii) The case of Ni doping was reported for the compounds Fe1.1−xNixTe with x =

0, 0.02, 0.04, 0.08, and 0.12 [174]. Magnetization studies show that TN decreases with

increasing x up to 0.04, while for x = 0.08, 0.12 a possible spin glass transition was reported.

In fact, neutron diffraction at x = 0.12 found neither structural nor magnetic transitions at

low temperatures. Since this study focused on long-range magnetic order, the presence of

bicollinear nematicity is still possible.
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(iii) Cobalt doping has also been recently studied via single crystals of Fe1+y−xCoxTe with

x = 0, 0.01, 0.04, 0.07, 0.09, and 0.11 [175]. In the range up to x = 0.07 the antiferromagnetic

transition systematically decreases. For x = 0.09 and larger the long-range order transition

disappears.

As a partial summary, the available experimental literature on (Fe,X)Te does not

conclusively show neither the presence nor absence of bicollinear-nematicity, and more

work is needed to clarify this matter now in the light of our present study. For example,

in the context of pnictides the pioneering studies of Ba(Fe1−xCox)2As2 [71] reported the

resistivities vs. temperature along the a and b axes, highlighting their different behavior and

substantial differences particularly below x = 0.07. Similar careful studies in the Te context

must be performed but focusing on the temperature evolution of the resistivities along and

perpendicular to the main spin diagonals in the bicollinear state, as already performed

for FeTe [147, 148]. In addition, recent inelastic neutron scattering studies of nematicity

in BaFe1.935Ni0.065As2 [176] focused on the temperature dependence of the intensity of the

peaks at (π, 0) and (0, π), reporting their split at TS with cooling, followed by a collapse to

zero of the (0, π) intensity at TN . Similar studies for X-doped FeTe (X=Cu,Ni,Co) should

be carried for the temperature dependence of the neutron intensities corresponding to the

(π/2, π/2) and (π/2,−π/2) wavevectors.

We also would like to point out that our work confirms that magnetoelastic effects tend

to stabilize the bicollinear state while in the absence of this kind of coupling Q plaquette

or orthogonal double stripe order could be stabilized, which may be the case in FeTe with

excess iron [142, 177]. In addition, in a recent publication [178] a double-stage nematic

bond-ordering above the bicollinear state was proposed, but this effect would be difficult to

study numerically due to the narrow range of the nematic phase.

5.6 Conclusions

In this Chapter, based on simple symmetry observations and a concrete model Hamiltonian

numerical simulation, we have argued that the exotic bicollinear state known to be stable in

FeTe admits a possible nematic state above the antiferromagnetic critical temperature. In
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other words, as discussed in the previous section, via chemical substitution it is conceivable

that a split of the first-order transition of FeTe could be generated. Upon cooling, this would

induce first a TS, where the B2g monoclinic distortion is stabilized and short-range spin and

orbital order develops breaking the lattice rotational invariance, and second a TN at a lower

temperature, where long-range bicollinear order is fully stabilized. Experimentally finding

this new exotic state not only would confirm the theoretical prediction outlined here, but

it would allow us to investigate to what extend nematic fluctuations are needed to induce

superconductivity.
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Chapter 6

Summary

This manuscript presented numerical results that reproduce several important properties

on the iron based superconductors. This was accomplished by applying Monte Carlo

techniques to spin fermion models that were developed to include the relevant degrees

of freedom. In Ch. 2, an experimentally observed diverging nematic susceptibility was

reproduced numerically and explained analytically via a Ginzburg-Landau formalism. For

the 122 compounds, electron doping and disorder where decoupled and studied separately

in Ch. 3. There, it was found that disorder is the driving force that suppresses the magnetic

order more quickly than the orthorhombic distortion leading to the nematic phase. In Ch. 4

the bicollinear magnetic order together with the monoclinic structural distortion observed in

FeTe was stabilized through the addition of a B2g spin-lattice coupling. As an extension of

these results, a B2g nematic phase was predicted and established numerically via the addition

of a B2g orbital-lattice coupling as demonstrated in Ch. 5.
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Appendix A

Full Spin-Fermion Hamiltonian with

B1g Lattice Couplings

The full Hamiltonian of the spin-fermion model with lattice interactions incorporated is here

provided.

The same Hamiltonian was also used in Ref. [79]. The model is given by:

HSF = HHopp +HHund +HHeis +HSLO +HOLO +HStiff . (A.1)

The hopping component is made of three contributions,

HHopp = Hxz,yz +Hxy +Hxz,yz;xy. (A.2)

The first term involves the xz and yz orbitals:
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Hxz,yz = {−t1
∑

i,σ

(d†i,xz,σdi+ŷ,xz,σ + d†i,yz,σdi+x̂,yz,σ)

− t2
∑

i,σ

(d†i,xz,σdi+x̂,xz,σ + d†i,yz,σdi+ŷ,yz,σ)

− t3
∑

i,µ̂ 6=ν̂,σ
(d†i,xz,σdi+µ̂+ν̂,xz,σ + d†i,yz,σdi+µ̂+ν̂,yz,σ)

+ t4
∑

i,σ

(d†i,xz,σdi+x̂+ŷ,yz,σ + d†i,yz,σdi+x̂+ŷ,xz,σ)

− t4
∑

i,σ

(d†i,xz,σdi+x̂−ŷ,yz,σ + d†i,yz,σdi+x̂−ŷ,xz,σ)

+ h.c.} − µ
∑

i

(ni,xz + ni,yz).

(A.3)

The second term contains the hoppings related with the xy orbital:

Hxy = t5
∑

i,µ̂,σ

(d†i,xy,σdi+µ̂,xy,σ + h.c.)

− t6
∑

i,µ̂6=ν̂,σ
(d†i,xy,σdi+µ̂+ν̂,xy,σ + h.c.)

+ ∆xy

∑

i

ni,xy − µ
∑

i

ni,xy,

(A.4)
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The last hopping term is:

Hxz,yz;xy =− t7
∑

i,σ

[(−1)|i|d†i,xz,σdi+x̂,xy,σ + h.c.]

− t7
∑

i,σ

[(−1)|i|d†i,xy,σdi+x̂,xz,σ + h.c.]

− t7
∑

i,σ

[(−1)|i|d†i,yz,σdi+ŷ,xy,σ + h.c.]

− t7
∑

i,σ

[(−1)|i|d†i,xy,σdi+ŷ,yz,σ + h.c.]

− t8
∑

i,σ

[(−1)|i|d†i,xz,σdi+x̂+ŷ,xy,σ + h.c.]

+ t8
∑

i,σ

[(−1)|i|d†i,xy,σdi+x̂+ŷ,xz,σ + h.c.]

− t8
∑

i,σ

[(−1)|i|d†i,xz,σdi+x̂−ŷ,xy,σ + h.c.]

+ t8
∑

i,σ

[(−1)|i|d†i,xy,σdi+x̂−ŷ,xz,yσ + h.c.]

− t8
∑

i,σ

[(−1)|i|d†i,yz,σdi+x̂+ŷ,xy,σ + h.c.]

+ t8
∑

i,σ

[(−1)|i|d†i,xy,σdi+x̂+ŷ,yz,σ + h.c.]

+ t8
∑

i,σ

[(−1)|i|d†i,yz,σdi+x̂−ŷ,xy,σ + h.c.]

− t8
∑

i,σ

[(−1)|i|d†i,xy,σdi+x̂−ŷ,yz,σ + h.c.].

(A.5)

In the equations above, the operator d†i,α,σ creates an electron at site i of the two-dimensional

lattice of irons. The orbital index is α = xz, yz, or xy, and the z-axis spin projection is

σ. The chemical potential used to regulate the electronic density is µ. The symbols x̂ and

ŷ denote vectors along the axes that join NN atoms. The values of the hoppings ti are

from Ref. [56] and they are reproduced in Table A.1, including also the value of the energy

splitting ∆xy.
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Table A.1: Values of the parameters that appear in the tight-binding portion of the three-
orbital model Eqs.(A.3) to (A.5). The overall energy unit is electron volts.

t1 t2 t3 t4 t5 t6 t7 t8 ∆xy

0.02 0.06 0.03 −0.01 0.2 0.3 −0.2 0.1 0.4

The remaining terms of the Hamiltonian have been briefly discussed in Ch. 2. The

symbols 〈〉 denote NN while 〈〈〉〉 denote NNN sums. The rest of the notation is standard.

HHund = −JH

∑

i,α

Si · si,α, (A.6)

HHeis = JNN

∑

〈ij〉
Si · Sj + JNNN

∑

〈〈im〉〉
Si · Sm, (A.7)

Φi = ni,xz − ni,yz (A.8)

Ψi =
∑

±
(Si · Si±y − Si · Si±x)/2 (A.9)

HSLO = −g66

∑

i

Ψiε66(i), (A.10)

HOLO = −λ66

∑

i

Φiε66(i), (A.11)

HStiff =
1

2
k
∑

i

4∑

ν=1

(|Riν
Fe−As| −R0)2+

+k′
∑

<ij>

[(
a0

Rij
Fe−Fe

)12 − 2(
a0

Rij
Fe−Fe

)6].

(A.12)

The Orth strain ε66(i) is defined as:

ε66(i) =
1

4
√

2

4∑

ν=1

(|δyi,ν | − |δxi,ν |), (A.13)

where δxi,ν(δ
y
i,ν) is the component along x (y) of the distance between the Fe atom at site

i of the lattice and one of its four neighboring As atoms that are labeled by the index
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ν = 1, 2, 3, 4. For more details of the notation used see Ref. [79], where the technical aspects

on how to simulate an orthorhombic distortion can also be found.
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Appendix B

Ginzburg-Landau Phenomenological

Approach

In this section, the Monte Carlo data gathered for the spin-fermion model will be described

via a phenomenological Ginzburg-Landau (GL) approach [179] to provide a more qualitative

description of those numerical results. More specifically, the free energy F of the spin-fermion

model will be (approximately) written in terms of the spin-nematic order parameter Ψ, the

orbital-nematic order parameter Φ, and the orthorhombic strain ε66, as in GL descriptions.

In previous literature a single nematic order parameter was considered without separating

its magnetic and orbital character [10, 35, 67]. In addition, it was necessary to formulate

assumptions about the order of the nematic and structural transitions. In our case, the

MC results in this and previous publications are used as guidance to address this matter at

the free energy level. More specifically, a second order magnetic transition was previously

reported for the purely electronic system [61]. Thus, the spin-nematic portion of F should

display a free energy with a second order phase transition.

With regards to the terms involving ε66, the MC results of Ref. [79] showed that the

coupling of the spin-nematic order parameter to the lattice leads to a weak first order (or

very sharp second order) nematic and structural transition. Naively, this implies that the

order ε466 term should have a negative coefficient. However, since in our numerical simulations

a Lennard-Jones potential is used for the elastic term, then the sign of the quartic term is

fixed and positive. Considering that the ε66 displacements are very small and the transition
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is weakly first order at best, then just the harmonic (second order) approximation should be

sufficient for ε66.

After all these considerations, the free energy is given by:

F =
a

2
Ψ2 +

b

4
Ψ4 +

c

2
ε266 +

e

2
Φ2 +

f

4
Φ4 (B.1)

− g̃66Ψε66 − λ̃66Φε66 − hε66, (B.2)

where a, b, c, e, and f are the coefficients of the many terms of the three order parameters,

while g̃66 and λ̃66 are the coupling constants of the lattice with the spin and orbital degrees

of freedom, as described in Ch. 2. Since this and previous MC studies [61, 79] showed that

there is no long-range orbital order in the ground state of the spin-fermion model, at least

in the range of couplings investigated, then a positive quartic term is used for this order

parameter. The parameter h denotes an external stress, as explained in Ref. [67]. Note that

in principle another term, and associated coupling constant, α̃ΨΦ should be included in F .

This term will affect the orbital susceptibility and its effects will be described at the end of

this Appendix.

As explained in Ch. 2, our MC results indicate that the leading order parameter guiding

the results is the spin-nematic Ψ. Thus, it is reasonable to assume that only the coefficient

a depends on temperature as a = a0(T − T ∗), while other parameters, such as c = c0 (the

uncoupled shear elastic modulus) and e = e0, are approximately temperature independent.

For the special case g̃66 = λ̃66 = 0 the critical temperature T ∗ for the magnetic transition

can be obtained by setting to zero the derivative of F with respect to Ψ:

∂F

∂Ψ
= aΨ + bΨ3 = 0. (B.3)

Then, for T ≤ T ∗ the order parameter is given by

Ψ =

√
a0

b
(T ∗ − T ). (B.4)
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The equation above is valid only when Ψ is small, i.e. close to the transition temperature

from below. Additional terms in the free energy would be needed as T → 0 since in that

limit |Ψ| = 2.

Now consider the case when g̃66 is nonzero, still keeping λ̃66 = 0. Setting to zero the

derivative of F with respect to Ψ and ε66 leads to (for h = 0):

∂F

∂ε66

= c0ε66 − g̃66Ψ = 0, (B.5)

∂F

∂Ψ
= aΨ + bΨ3 − g̃66ε66 = 0. (B.6)

From Eq.(B.5),

Ψ =
c0

g̃66

ε66, (B.7)

which reproduces the linear relation obtained numerically before, see Fig. 2.2(b), with a

slope now explicitly given in terms of g̃66 and a constant that now can be identified with the

bare shear elastic modulus c0.

Solving for ε66 in Eq.(B.6) and introducing the result in Eq.(B.5) leads to:

(a− g̃2
66

c0

)Ψ + bΨ3 = 0, (B.8)

where it is clear that a becomes renormalized due to the coupling to the lattice. The

transition now occurs at a renormalized temperature TS that satisfies:

a0(T − TS) = a− g̃2
66

c0

= a0(T − T ∗)− g̃2
66

c0

. (B.9)

From the expression above, it can be shown that the new nematic transition occurs at

TS = T ∗ +
g̃2

66

a0c0

, (B.10)

and clearly TS > T ∗. Note that Eq.(B.10) has been obtained in previous GL analysis, but

in those studies a generic nematic coupling appeared in the numerator of the second term

while here, more specifically, we identify g̃66 with the spin-nematic coupling to the lattice.
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Reciprocally, solving for Ψ in Eq.(B.5) and introducing the result in Eq.(B.6) leads to:

a

g̃66

[(c0 −
g̃2

66

a
)ε66 +

bc3
0

g̃2
66a

ε366] = 0, (B.11)

where, due to the coupling to the lattice, now the shear constant is renormalized and an

effective quartic term is generated for the lattice free energy. The effective shear elastic

modulus c66 becomes temperature dependent and it is given by:

c66 = c0 −
g̃2

66

a0(T − T ∗) , (B.12)

that vanishes at T = TS. Thus, the structural transition occurs at the same critical

temperature TS of the nematic transition.

To obtain the spin-nematic susceptibility, the second derivative of F with respect to Ψ

and h is set to zero:
∂2F

∂h∂Ψ
= a

∂Ψ

∂h
+ 3bΨ2∂Ψ

∂h
− g̃66

∂ε66

∂h
= 0, (B.13)

and then

χs =
∂Ψ

∂ε66

=
∂Ψ
∂h
∂ε66
∂h

=
g̃66

a+ 3bΨ2
=

g̃66

a0(T − T ∗) + 3bΨ2
. (B.14)

This is an important equation that was used in Ch. 2 to rationalize the MC numerical

results. In the range T ≥ TS, i.e. when Ψ = 0, the spin-nematic susceptibility clearly

follows a Curie-Weiss behavior. In practice, it has been observed that b = a0TS to a good

approximation.

Consider now the case when the orbital-lattice coupling λ̃ is nonzero as well. Now

∂F

∂ε66

= c0ε66 − g̃66Ψ− λ̃66Φ = 0, (B.15)

∂F

∂Ψ
= aΨ + bΨ3 − g̃66ε66 = 0, (B.16)

and a new equation is available:

∂F

∂Φ
= e0Φ + fΦ3 − λ̃66ε66 = 0. (B.17)
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Solving for Ψ in Eq.(B.15) leads to:

Ψ =
c0ε66 − λ̃66Φ

g̃66

, (B.18)

while solving for ε66 in Eq.(B.16) leads to:

ε66 =
aΨ + bΨ3

g̃66

. (B.19)

Introducing Eq.(B.19) into Eq.(B.18), Φ is obtained in terms of Ψ as follows:

Φ = (
c0

λ̃66g̃66

)[(a− g̃2
66

c0

)Ψ + bΨ3]. (B.20)

Introducing Eqs.(B.19) and (B.20) into Eq.(B.17) a renormalized equation for Ψ is obtained:

[
e0c0

λ̃66g̃66

(a− g̃2
66

c0

)− λ̃66a

g̃66

]Ψ + [
e0c0

λ̃66g̃66

b− λ̃66b

g̃66

+
fc3

0

λ̃3
66g̃

3
66

(a− g̃2
66

c0

)3 ]Ψ3 = 0. (B.21)

Then, at T = TS the effective coefficient of the linear term in Ψ provides the new transition

temperature:

a0(T − TS) = a− e0g̃
2
66

e0c0 − λ̃2
66

. (B.22)

Using that a = a0(T −T ∗), the dependence of the critical temperature with the two coupling

constants g̃ and λ̃ can be obtained:

TS = T ∗ +
g̃2

66

a0c0(1− λ̃266
c0e0

)
. (B.23)

This is another interesting formula that nicely describes the MC results, as shown in Ch. 2.

Equation(B.23) is a novel result that shows that TS depends in a different way on the spin-

lattice (g̃66) and the orbital-lattice (λ̃66) couplings. Moreover, an effective λ̃66-dependent

elastic modulus c(λ̃66) can be defined as

c(λ̃66) = c0 −
λ̃2

66

e0

. (B.24)
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In addition, the effective shear elastic modulus is now given by

c66 = c0 −
λ̃2

66

e0

− g̃2
66

a0(T − T ∗) , (B.25)

which vanishes at the TS given by Eq.(B.23).

The spin-nematic susceptibility is still given by Eq.(B.14) with the dependence on λ̃66

embedded in the actual values of Ψ. The orbital-nematic susceptibility is obtained from

Eq.(B.17) as
∂2F

∂h∂Φ
= (e0 + 3fΦ2)

∂Φ

∂h
− λ̃66

∂ε66

∂h
= 0. (B.26)

In the absence of an explicit coupling α̃ between the spin-nematic and orbital order

parameters, then the orbital-nematic susceptibility becomes:

χo =
∂Φ

∂ε66

=
∂Φ
∂h
∂ε66
∂h

=
λ̃66

e0 + 3fΦ2
. (B.27)

If a term of the form α̃ΨΦ is added to the free energy, as discussed in Ch. 2, the expressions

for the susceptibilities can be obtained for T ≥ TS. The orbital susceptibility now displays

Curie-Weiss behavior:

χo =
λ̃66

e0

+
α̃(g̃66e0 + λ̃66α̃)

a0e2
0[T − (T ∗ + α̃2

a0e0
)]
, (B.28)

while the spin-nematic susceptibility becomes:

χs =
g̃66e0 + λ̃66α̃

a0e0[T − (T ∗ + α̃2

a0e0
)]
, (B.29)

and the structural transition temperature is given by

TS = T ∗ +
α̃2

a0e0

+
(λ̃66α̃ + e0g̃66)2

a0e0c2
0(1− λ̃266

e0c0
)
. (B.30)
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Appendix C

Partial and Total Derivatives at TS

The partial derivative in the definition of χs is at constant temperature varying ε66 and it

is evaluated at equilibrium ε66 = ε0. The slopes of the green and blue curves of Fig. 2.2(b)

provide this derivative. On the other hand, the results of Fig. 2.2(b) in equilibrium (slope

of the red points curve) provide the full derivative dΨ
dε66

. Since ε66=ε66(T ), their relation is

dΨ

dε66

=
∂Ψ

∂ε66

|ε0 +
∂Ψ

∂T
|ε0
∂T

∂ε66

|ε0 = χs +
∂Ψ
∂T
|ε0

∂ε66
∂T
|ε0
, (C.1)

where ∂Ψ
∂T

is performed at constant ε66 and ∂ε66
∂T
|ε0 is performed at constant Ψ. In general, the

partial and total derivatives of Ψ with respect to ε can differ from one another. However, at

small λ̃66 the structural transition is weakly first order [79] (or a very sharp second order)

and then when T ≈ TS the lattice distortion ε66 rapidly jumps from 0 to a finite value.

This means that ∂ε66
∂T
|ε0 is very large while ∂Ψ

∂T
|ε0 remains finite since it is performed at fix

ε. Thus, at T ≈ TS, the partial and total derivatives are almost the same. This can be

seen in Fig. 2.2(b) of Ch. 2 where the slopes of the green curves at ε66 = 0, when they cross

the equilibrium line, are smaller than the equilibrium slope K but increase with decreasing

temperature until it becomes equal to K at T = TS (red line). The slopes of the blue

curves at the finite value of ε66 where they cross the equilibrium line are smaller than K and

decrease with decreasing temperature.
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Figure C.1: Spin-nematic susceptibility χs vs. temperature T (red circles) obtained from
Fig. D.1(b) (at g̃66=0.16 and λ̃66=0.84). The standard MC technique on an 8×8 cluster
with PBC was employed (involving ED of the fermions at every MC step). Also shown are
two GL fits, as also employed in Fig. 2.4. The blue (thick) line indicates a divergence at a
temperature T ∗ (lower than TS) characteristic of the electronic sector alone. In the range
T ≤ TS, the lattice follows the electronic behavior. The black (thin) line and black tilted
square points are a fit including the 3TSΨ2 correction (see text in the previous section of
this Suppl. Material). The fitting parameters are T ∗ = 105 K and TS = 304 K. The actual
Néel temperature for g̃66=0.16 and λ̃66=0.84 is not shown.
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Appendix D

Spin-nematic Susceptibility at Large

λ̃66

To investigate in more detail the potential role of orbital order in the spin-nematic

susceptibility, simulations were repeated for a robust λ̃66 = 0.84, keeping the other electron-

lattice coupling fixed as g̃66 = 0.16. Results are shown in Fig. C.1. The increase of λ̃66

substantially increases TS, which is to be expected since now the electron-lattice coupling

is larger [79]. However, above TS still the results can be well fit by a Curie-Weiss law,

with a divergence at T ∗ which is the critical temperature of the purely electronic system,

as described in Ch. 2. Even the coefficient a0 in the fit is almost identical to that of the

case λ̃66 = 0.12, in Fig. 2.4. The second fit, with the 3TSΨ2 correction, is still reasonable.

In summary, as long as λ̃66 is not increased to such large values that the low-temperature

ground state is drastically altered, the computational results can still be analyzed via the

GL formalism outlined here and in Ch. 2, with a T ∗ that originates in the (π, 0) magnetic

transition of the purely electronic sector.

For completeness, the plots analog to those of Fig. 4.2 but in the present case of λ̃66 = 0.84

are provided in Fig. D.1.
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Figure D.1: Spin-nematic order parameter from the MC simulations, at g̃66=0.16 and
λ̃66=0.84. (a) Ψ vs. T and ε66, measured at a fixed lattice distortion ε66 for each temperature
(restricted MC). Shown are the T ∗ temperature (see text) and TS. Results shown are for
an 8×8 cluster with TCA+TBC, but PBC 8×8 clusters with ED give similar results. Red
points are the equilibrium values using unrestricted MC with ED and PBC 8×8 clusters.
(b) MC results illustrating the relation between Ψ and ε66 in unrestricted MC (red) and
the restricted MC curves (green/blue), parametric with temperature. Results are obtained
with ED/PBC 8×8 clusters. Note that Ψ vs. ε66 (red squares) is no longer linear which is
expected because Eq.(B.7) is valid only for λ̃66 = 0 (and approximately valid for small λ̃66).
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Appendix E

Definition and Calculations of Lattice

Displacement and Magnetic and

Structural Order Parameters

The lattice variables δi,ν = (δxi,ν , δ
y
i,ν), with ν ranging from 1 to 4, that enter in the definition

of ε66 and ε12, the orthorhombic and monoclinic lattice distortions respectively, denote the

distances between an Fe atom at site i (filled circles in Fig. E.1) and one of its four neighboring

As or Te atoms (open circles in the figure and labeled by the index ν). The As/Te atoms are

allowed to move locally from their equilibrium position, but only along the directions x and

y (the z coordinate does not participate in the planar lattice distortions addressed here).

The Hamiltonian HSF defined in Sect. 4.2 was studied using a Monte Carlo method [61,

82] applied to (i) the localized spin degrees of freedom Si assumed classical, (ii) the

atomic displacements (δxi,ν , δ
y
i,ν) that determine the local orthorhombic or monoclinic lattice

distortions ε66(i) [79] and ε12(i) defined in Eq. 4.5, (iii) the global orthorhombic distortion

(rx, ry), and (iv) the global monoclinic distortion θ. As already explained, the As/Te atoms

are allowed to move from their equilibrium positions on the x − y plane but the Fe atoms

can only move globally in two ways: (i) via a global orthorhombic distortion characterized

by a global displacement (rx, ry) from the equilibrium position (x
(0)
i , y

(0)
i ) of each Fe atom,

with rα = 1 + ∆α (∆α � 1) and α = x or y [see panel (c) of Fig. 4.2]; (ii) via the angle

between two orthogonal Fe-Fe bonds which is allowed to change globally to 90o + θ with the
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R’0 =δ i+y,1

As/Te
0

0 Fe i

Figure E.1: (a) Schematic representation of the equilibrium position of the Fe-Te/As lattice
(projected on the x-y plane). Four Fe atoms are indicated with filled circles and labeled by
their site index i. The open circles indicate the projection of the equilibrium position of
the As/Te atoms on the x-y plane. The distances between an Fe atom at site i and its
four neighboring As/Te atoms are indicated by δi,ν with ν running from 1 to 4 (turquoise
arrows). In equilibrium δi,ν =

√
2a0/2. The dashed lines indicate ax = ay = a0, the

equilibrium distance between neighboring irons. (b) Sketch representing the variables δxi,ν
and δyi,ν (brown arrows) for labels (i, 2) and (i + y, 1) in the equilibrium configuration. For
an illustration of the non-equilibrium δi,ν see [79].

four angles in the monoclinic plaquette adding to 360o so that the following angle in the

plaquette becomes 90o − θ, with θ a small angle [see panel (d) of Fig. 4.2]. After the global

distortion the new position of the Fe atom is given by

{
xi = x

(0)
i rx cos θ − y(0)

i ry sin θ

yi = −x(0)
i rx sin θ + y

(0)
i ry cos θ.

(E.1)

When an orthorhombic distortion is stabilized, the variables δsi,ν satisfy the constrain

2Nas =
N∑

i=1

4∑

ν=1

|δsi,ν |, (E.2)

where N is the number of Fe sites, s = x, y, and as = a0rs is the constant Fe-Fe distance

along the s direction which is equal to a0 in the undistorted tetragonal phase as shown in

panel (c) of Fig. 4.2). The orthorhombic distortion order parameter δO is then given by

δO =
|ax − ay|
ax + ay

=
a0|rx − ry|
a0(rx + ry)

. (E.3)
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Since rs = 1 + ∆s and s = x, y, then

δO =
|1 + ∆x − (1 + ∆y)|

1 + ∆x + 1 + ∆y

≈ 1

2
|∆x −∆y|. (E.4)

On the other hand, when a monoclinic distortion is stabilized the constraint satisfied by

δsi,ν is given by

2Ndx+y =
N∑

i=1

(|δi,4|+ |δi,2|), (E.5)

and

2Ndx−y =
N∑

i=1

(|δi,3|+ |δi,1|), (E.6)

where dµ is the length of the plaquette’s diagonal along the µ direction of the plaquette

formed by four Fe atoms. In the tetragonal phase dµ =
√

2a0 while in the monoclinic phase

dµ =
√

2a0

√
1− cos(90o ± θ) with the plus (minus) sign for µ = x− y (x+ y) [see panel (d)

of Fig. 4.2]. The monoclinic distortion order parameter δM is then given by

δM =
|dx+y − dx−y|
dx+y + dx−y

=

√
2a0|(1− sin θ)1/2 − (1 + sin θ)1/2|√
2a0((1− sin θ)1/2 + (1 + sin θ)1/2)

≈ θ

2
. (E.7)

In summary, Monte Carlo simulations are performed on the values for the lattice variables

rx, ry, θ, and δsi,ν , and also on the localized spin variables Si.

For each fixed Monte Carlo configuration of spins, atomic positions and global distortions,

the remaining quantum fermionic Hamiltonian is diagonalized. The simulations were

performed varying the temperature T and the spin-lattice dimensionless couplings g̃66 and

g̃12. The latter are defined by g̃66 = 2g66√
kW

and g̃12 = 2g12√
kW

where W = 3 eV is the bandwidth

of the tight-binding portion of the Hamiltonian and k is a constant that appears in HStiff

(for details see [79]). The range of values explored for these dimensionless coupling constants

was chosen so that the orthorhombic and monoclinic distortions (also dimensionless defined)

agree with the experimental values that range from 0.003 to 0.007 [41, 137, 145].
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The fermionic exact diagonalization technique results can be obtained comfortably only

on up to 8×8 lattices which is the cluster size used in this work. However, twisted boundary

conditions were also used [89] in the evaluation of the resistivities and Fermi surfaces (FS),

effectively increasing the lattice size as explained in early efforts [79]. Most couplings were

fixed to values used successfully in previous investigations [61] for simplicity: JH=0.1 eV,

JNN=0.012 eV, and JNNN=0.008 eV. However, results for JH=0.2 eV and JNN=JNNN=0 were

also discussed in Sec. 4.3. As explained there, qualitatively our conclusions do not change

whether the Heisenberg interactions between the localized spins are or not included in the

study.

In the Monte Carlo simulations typically 5,000 MC lattice sweeps were used for

thermalization and 10,000 to 25,000 for measurements, at each temperature and parameter

values investigated. In addition to the B2g order parameter, the magnetic transition was

also determined from the magnetic susceptibility defined as

χS(kx,ky) = Nβ〈S(kx, ky)− 〈S(kx, ky)〉〉2, (E.8)

where β = 1/kBT , N is the number of lattice sites, and S(kx, ky) is the magnetic structure

factor at wavevector (kx, ky) obtained via the Fourier transform of the real-space spin-spin

correlations measured in the MC simulations. To study the collinear [bicollinear] AFM state

(kx, ky) was set to (π, 0) [(π/2,−π/2)].

Besides the lattice order parameter δO given in Eq. E.3, the orthorhombic structural

transition was determined from the behavior of the lattice susceptibility defined as

χδO = Nβ〈δO − 〈δO〉〉2. (E.9)

Reciprocally, the monoclinic structural transition was studied via its order parameter,

i.e. the monoclinic distortion δM given in Eq. E.7, and also through the lattice susceptibility

defined as

χδM = Nβ〈δM − 〈δM〉〉2. (E.10)
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Appendix F

Resistivity Calculation

The method used in Sec. 4.3 to calculate the resistivity is based on the computational

implementation of the Kubo formula for DC conductance described in Ref. [180]. According

to Eq. 8 in Ref. [180] the conductance G is given by:

G~ν = lim
ω→0

< Î~ν >

V
=

− e2~π lim
ω→0

∑

αβ

| < ψα|v̂~ν |ψβ > |2
fα − fβ
εα − εβ

δ(εα − εβ − ~ω), (F.1)

where fα = (1 + eβ(εα−µ))−1 is the Fermi distribution for each occupied eigenstate |ψα > and

v̂~ν is the velocity operator whose definition in terms of the fermionic operators is provided

below. The product of the last two factors in the conductance G can be simplified using a

Taylor expansion (∆(ε) = εα − εβ):

lim
ω→0

fα − fβ
εα − εβ

δ(εα − εβ − ~ω)

≈ lim
∆(ε)→0

(1 + eβ(ε−µ+∆(ε)))−1 − (1 + eβ(ε−µ))−1

∆(ε)

=
−βeβ(ε−µ)

(1 + eβ(ε−µ))2
(F.2)
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The operators for the velocity (v̂~ν) in different lattice directions (~ν) are given by:

i~v̂~x = −
∑

σ,α,β,i

tαβx̂ d†i,α,σdi+x̂,β,σ+

tαβx̂+ŷ√
2
d†i,α,σdi+x̂+ŷ,β,σ +

tαβx̂−ŷ√
2
d†i,α,σdi+x̂−ŷ,β,σ − h.c (F.3)

i~v̂~y = −
∑

σ,α,β,i

tαβŷ d†i,α,σdi+ŷ,β,σ+

tαβ−x̂+ŷ√
2
d†i,α,σdi−x̂+ŷ,β,σ +

tαβx̂+ŷ√
2
d†i,α,σdi+x̂+ŷ,β,σ − h.c (F.4)

i~v̂~x+~y = −
∑

σ,α,β,i

tαβŷ√
2
d†i,α,σdi+ŷ,β,σ+

tαβx̂+ŷd
†
i,α,σdi+x̂+ŷ,β,σ +

tαβx̂√
2
d†i,α,σdi+x̂,β,σ − h.c (F.5)

i~v̂−~x+~y = −
∑

σ,α,β,i

tαβŷ√
2
d†i,α,σdi+ŷ,β,σ+

tαβ−x̂+ŷd
†
i,α,σdi−x̂+ŷ,β,σ +

tαβ−x̂√
2
d†i,α,σdi−x̂,β,σ − h.c (F.6)

with the hoppings given by

tαβx̂ =




t2 0 t∗7

0 t1 0

t∗7 0 t5



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tαβŷ =




t1 0 0

0 t2 t∗7

0 t∗7 t5




tαβx̂+ŷ =




t3 −t4 t∗8

−t4 t3 t∗8

−t∗8 −t∗8 t6




tαβx̂−ŷ =




t3 t4 t∗8

t4 t3 −t∗8
−t∗8 t∗8 t6




tαβ−x̂+ŷ =




t3 t4 −t∗8
t4 t3 t∗8

t∗8 −t∗8 t6




The parameters ti provided in Table A.1 are the tight-binding hoppings in the three-

orbital model for pnictides from Ref. [56]. Notice that t∗7 = (−1)i+jt7 and t∗8 = (−1)i+jt8 due

to the periodicity of the As atom’s positions (where i and j are the x and y coordinates of

lattice site i, respectively). The resistivity anisotropy for the iron-pnictides occurs along the

x̂ and ŷ directions while in the iron chalcogenides the x̂+ ŷ and −x̂+ ŷ directions need to be

considered due to the 45o relative rotation of the lattice axis. These are also the directions

along which the magnetic order forms in the respective compounds (see Sec. 4.3).

In order to increase the accuracy of the calculation, Twisted Boundary Conditions (TBC)

were implemented [61]. This multiplies the number of momenta in both the x̂ and ŷ directions

from L → L x M through applying a phase Φ = 2 π m
M

with m = 0, 1, ..., M − 1, at the

boundaries so that the hoppings at the boundaries are now given by tαβTBC = tαβ eiΦ.

The velocity matrix elements for each relevant directions ~ν are evaluated using the Monte

Carlo method described in the previous subsection. The directional resistance R~ν is obtained

by inverting the conductance G~ν .
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Appendix G

Additional Phase Diagrams for the

Hamiltonian Studied in Ch. 4

The phase diagram as a function of the couplings g̃66 and g̃12 at T = 10 K is presented in

Fig. G.1 including Heisenberg couplings. It is important to remember that in the absence

of spin-lattice couplings the SF model already develops a collinear AFM ground state due

to the comparable NN and NNN hoppings in the tight-binding term of the Hamiltonian

(and the concomitant NN and NNN Heisenberg interactions between the localized spins if

included [61]). The coupling g̃66 that couples the short-range B1g magnetic nematic operator

to the orthorhombic distortion stabilizes a small orthorhombic distortion that increases

monotonically with the value of this spin-lattice coupling, as indicated by the size of the

inverted triangles in the figure. The blue circles indicate the concomitant presence of collinear

(π, 0) AFM order. The figure shows that, regardless of g̃66, the coupling g̃12, between the

monoclinic lattice distortion and the B2g magnetic nematic operator, has to reach a finite

value close to 0.25 to stabilize the bicollinear AFM state indicated by the red circles in the

figure. The bicollinear magnetic order is accompanied by a monoclinic lattice distortion

indicated by the triangles whose size increases monotonically with g̃12.

It is interesting to observe that there is a region in the phase diagram Fig. G.1 where the

monoclinic distortion is stabilized, but the magnetic order is neither collinear nor bicollinear.

This is caused by the competition between g̃12, that after inducing the monoclinic distortion

induces the bicollinear magnetic order, and the NN and NNN Heisenberg couplings that
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Figure G.1: Phase diagram at T = 10 K of the spin fermion model, including Heisenberg
couplings with the values indicated in the Methods Section, varying the dimensionless
couplings to the orthorhombic and monoclinic distortions. The size of the blue (red) circles is
proportional to the strength of the collinear (bicollinear) AFM order. The size of the bottom
side up (down) triangles is proportional to the magnitude of the orthorhombic (monoclinic)
distortion. The actual scales used are shown at the top of the figure.
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favor a collinear (π, 0) magnetic state. Thus, g̃12 is able to induce the lattice distortion

before it clearly stabilizes the bicollinear magnetic order. The fact that the value of g̃12

that stabilizes the bicollinear state is larger than the value of g̃66 needed to obtain the

experimentally observed magnitude of the orthorhombic distortion is also a result of the

effect of the Heisenberg terms in the Hamiltonian that favor the collinear AFM state.
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Figure G.2: Phase diagram at T = 10 K corresponding to the spin-fermion model for
the case JNNN=JNN=0, varying the spin-lattice couplings that lead to the orthorhombic and
monoclinic distortions. The size of the blue (red) circles is proportional to the strength of
the collinear (bicollinear) AFM order, while the size of the bottom side up (down) triangles
is proportional to the magnitude of the orthorhombic (monoclinic) distortion.

In Fig. G.2 we display the low-temperature phase diagram in the plane g̃12 − g̃66 for

the case JNN=JNNN=0. Again the collinear and bicollinear phases are stabilized but, as
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Figure G.3: Orthorhombic, δO (blue), and monoclinic, δM (red), lattice distortions varying
g̃66 and g̃12 at T = 10 K using the spin-fermion model with JNNN=JNN=0. The scale on
the right shows that the lattice distortions obtained numerically are within the correct order
of magnitude when compared with experimental data [41, 137, 145]. The values for the
orthorhombic distortion are plotted with a negative sign for simplicity to display.

expected, smaller values of the monoclinic coupling are needed to induce the monoclinic

phase. Note, however, that a finite value g̃12 ≈ 0.1 is still required to stabilize the bicollinear

phase because the tight-binding term in the Hamiltonian still favors a collinear magnetic

state via FS nesting.

The strength of the lattice distortion of Fig. G.2 is shown in Fig. G.3. A reasonable

coupling g̃66 ≈ 0.2 is needed to reproduce the experimental value of the orthorhombic

distortion corresponding to the 122 parent compounds. The scale shows that the range

in the values of the stabilized monoclinic distortion is also in qualitative agreement with

experiments [41, 137, 145].
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Figure G.4: Orthorhombic, δO (blue open squares), and monoclinic, δM (red open circles),
lattice distortions and the spin nematic order parameters ΨNN (blue filled squares) and
ΨNNN (red filled circles) as a function of temperature corresponding to the case g̃12 = 0.29,
g̃66 = 0.05, and with the inclusion of Heisenberg couplings.
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Appendix H

Unexpected Intermediate

Temperature Range of Finite

JNNN/JNN for the Hamiltonian

Studied in Ch. 4

When Heisenberg couplings are included, the inset of Fig. 4.4) shows an exotic region

where the bicollinear/monoclinic transition is preceded by an orthorhombic transition upon

cooling. In Fig. G.4 we show the magnetic and structural order parameters for both types of

transitions in this unexpected regime. The transition to the collinear/orthorhombic region

occurs at about T = 80 K and it appears to be continuous, while the bicollinear/monoclinic

transition occurs at T = 60 K and is strongly first order. Note that in our simulations

the orthorhombic phase appears to be accompanied by a collinear magnetic state while

experimentally the orthorhombic phase that precedes the monoclinic state in FeTe with

excess Fe is magnetically incommensurate [154, 157]. We may need either larger lattices or

the explicit addition of extra irons in order to capture the magnetic incommensurability of

this phase.
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Figure H.1: Resistance (h/2e2 units) vs. temperature along the AFM (orange points)
and FM (green points) directions in: (a) the collinear/orthorhombic state at g̃66 = 0.16,
g̃12 = 0.00, JH = 0.10 eV, and nonzero Heisenberg couplings; (b) same as (a) but for
the bicollinear/monoclinic state with g̃66 = 0 and g̃12 = 0.40; (c) same as (a) but for
JH = 0.20 eV; (d) same as (b) but for JH = 0.20 eV.
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Appendix I

Reversed Resistivity in FeTe with

Details on the Results Presented in

Ch. 4

An interesting result reproduced by our study is the anisotropy observed in the planar

resistivity of FeTe.

In general, one of the most puzzling behaviors observed in the Fe-based materials is the

anisotropic behavior of the in-plane resistivity as the temperature decreases. In the pnictides

the cause of the anisotropy is usually attributed to nematicity of electronic origin. In isovalent

or electron doped pnictides the resistivity anisotropy develops in the orthorhombic phase and

the resistivity is lower along the direction with the largest lattice constant which becomes

the antiferromagnetic direction below the magnetic critical temperature. This behavior

is in principle counterintuitive because in the colossal magnetoresistive manganites it is

well-known that electrons move better in ferromagnetic states. In principle this is not the

case in the pnictides due to the geometry of the orbitals that appear at the Fermi surface.

Interestingly, a “reversed” or “negative” anisotropy in the resistivity has been observed in

the chalcogenides, both in the parent compound FeTe [147, 148] and also in FeSe [181].

The resistance R along the AFM and FM directions was calculated as a function of

the temperature following the procedure described in [61] implementing twisted boundary

conditions so that the number of accessible momenta along the x and y directions was as large
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Figure I.1: Resistance vs. temperature along the AFM (orange points) and FM (green
points) directions in: (a) the collinear/orthorhombic state for g̃66 = 0.24, g̃12 = 0.00, JH =
0.20 eV, and JNNN=JNN=0; (b) same as (a) but for the bicollinear/monoclinic state with
g̃66 = 0.00, g̃12 = 0.24, JH = 0.10 eV, and JNNN=JNN=0.

as L = 256. The error bars include in these resistivity figures are the standard deviation of

the resistivities calculated from 20 different configurations of the classical MC variables. In

Fig. H.1 (a) we show the planar resistance in the collinear/orthorhombic phase corresponding

to g̃66 = 0.16, g̃12 = 0.00, JH = 0.10 eV, and nonzero Heisenberg couplings. In this case,

the resistance is the smallest along the AFM direction (x-direction in the square lattice) in

agreement with previous theoretical investigations [79] and with the experimental data for

pnictides [71]. In the bicollinear phase, obtained for example at g̃66 = 0 and g̃12 = 0.40 we

actually observe the reversed behavior as shown in Fig. H.1 (b) although here the anisotropy

is very small [182]. However, it is experimentally known that the magnetic moment measured

in the chalcogenides is larger than the one in the pnictides [41, 137] and, for this reason,

we have repeated the simulation increasing the Hund coupling from 0.10 eV to 0.20 eV. As

it can be observed in Fig. H.1 (d) the reversed anisotropy effect is now enhanced. On the

other hand, a similar increase in Hund coupling decreases the resistance anisotropy in the

orthorhombic phase as shown in panel (c) of the same figure. These results indicate that the

reversed anisotropy is favored (hindered) by the increase (decrease) in the magnitude of the

magnetic moments. A similar response to the Hund coupling is observed for the case where

the Heisenberg couplings are zero, as presented in Ch. 4: in Fig. I.1 we display the results

illustrating how the anisotropy is reduced with increasing Hund coupling in the collinear

phase (panel a) while the reversed anisotropy decreases when the Hund coupling is reduced

in the bicollinear phase (panel b).
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As already explained in Ch. 4, we believe that this “reversed” anisotropy occurs for

reasons similar to those unveiled in manganite investigations [82], namely when electrons

move along the AFM direction they must pay an energy as large as JH, while along the FM

direction there is no such penalization. This is compatible with the observation that the

magnitude of the reversed effect increases with JH.

146



Vita

Christopher Bishop was born in St. Louis, Missouri to parents Leonard and Carol Bishop.

As an undergraduate, he attended the University of Missouri-St. Louis from 2006 to 2011

where he earned a Bachelors of Science in Physics. After graduation Christopher was

accepted to the Doctoral program at the University of Tennessee in Knoxville, Tennessee.

While a graduate student, Christopher worked as a Graduate Research Assistant for Dr.

Adriana Moreo. During this time, he focused on the numerical study of Iron based

superconductors using Spin-Fermion models. Christopher also became interested in high

performance computing and parallel programing which has been a useful tool to his previous

and current research. The result of his graduate research has been three presentations at

the APS march meeting and seven publications in peer reviewed journals. He is scheduled

to defend his Ph.D. in August 2017.

147


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2017

	Numerical Studies of Iron Based Superconductors using Spin-Fermion Models
	Christopher Brian Bishop
	Recommended Citation


	Front Matter
	Title
	Acknowledgments
	Abstract

	Table of Contents
	1 Introduction
	1.1 High Temperature Superconductors
	1.2 Properties of the Iron Pnictides
	1.3 Properties of Iron Chalcogenides
	1.4 Relevant Degrees of Freedom in the Fe-Based Superconductors
	1.5 Spin Fermion Model

	2 Study and Explanation of the Features of the Magnetic Susceptibility Under Uniaxial Pressure in BaFe2As2 
	2.1 Introduction
	2.2 Models
	2.3 Many-body techniques and main results
	2.4 Nematic Susceptibility
	2.4.1 Analysis of s results
	2.4.2 Analysis of o results

	2.5 TS vs. 66
	2.6 Spin structure factors and pseudogaps
	2.7 Conclusions

	3 Disorder Induced Nemacity
	3.1 Introduction
	3.2 Model
	3.2.1 Hamiltonian
	3.2.2 Quenched Disorder and Dilution

	3.3 Methods
	3.4 Results
	3.4.1 Clean limit
	3.4.2 Co doping
	3.4.3 Cu doping
	3.4.4 Dependence on impurity characteristics

	3.5 Properties of the Nematic Phase
	3.5.1 Neutron scattering
	3.5.2 Scanning Tunneling Microscopy

	3.6 Discussion and Conclusions

	4 Bicollinear Magnetic order and Monoclinic Lattice Distortion in Iron Telluride
	4.1 Introduction
	4.2 Model
	4.3 Results
	4.4  Discussion 

	5 Possible Bicollinear Nematic State with  Monoclinic Lattice Distortions in Iron Telluride Compounds
	5.1 Introduction
	5.2 Model
	5.3 Methods: the Parallel Traveling Cluster Approximation 
	5.4 Results
	5.4.1 Special case 12=1
	5.4.2 Special case 12=0.85
	5.4.3 Phase Diagram

	5.5 Discussion and Possible Physical Realizations
	5.6 Conclusions

	6 Summary
	Bibliography
	Appendices
	A Full Spin-Fermion Hamiltonian with B1g Lattice Couplings
	B Ginzburg-Landau Phenomenological Approach
	C Partial and Total Derivatives at TS
	D Spin-nematic Susceptibility at Large 66
	E Definition and Calculations of Lattice Displacement and Magnetic and Structural Order Parameters
	F Resistivity Calculation
	G Additional Phase Diagrams for the Hamiltonian Studied in Ch. 4
	H Unexpected Intermediate Temperature Range of Finite JNNN/JNN for the Hamiltonian Studied in Ch. 4
	I Reversed Resistivity in FeTe with Details on the Results Presented in Ch. 4
	Vita

