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ABSTRACT 

 The main focus of this study is to create a standardized approach to evaluating the impact 

of the patient care pathways across all major disease categories and key outcome measures in a 

hospital setting when randomized clinical trials are not feasible. Toward this goal I identify 

statistical methods, control factors, and adjustments that can correct for potential confounding in 

observational studies. I investigate the efficiency of existing bias correction methods under 

varying conditions of imbalanced samples through a Monte Carlo simulation. The simulation 

results are then utilized in a case study for one of the largest primary diagnosis areas, chronic 

obstructive pulmonary disease (COPD) at the University of Tennessee Medical Center.  

 The analysis of the COPD pathway effects on the readmission rates showed a significant 

positive impact, with reduction in the probability of readmissions between 12% and 16%. The 

reduction in the length of stay was reported across all the models with historical controls, but the 

effect was not statistically significant. 
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INTRODUCTION  

 The Affordable Care Act (ACA) of 2010 attempts to drive the health care system away 

from its current fee-for-service model towards a system that attempts to reimburse providers 

based on the quality of the outcomes that they achieve.  In response to these changing demands, 

healthcare providers such as the University of Tennessee Medical Center (UTMC) are 

experimenting with new approaches to delivery of healthcare.   

 One such approach, standardized patient care pathways, more concisely “pathways”, 

attempts to improve care delivery by standardizing treatment protocols for a wide range of 

hospital treated ailments.  In addition to the development of pathways, organizations such as the 

Agency for Healthcare Research and Quality are promoting the careful measurement and 

evaluation of new programs. 

 The main goal of the current work is to create a standardized approach to assessing the 

impact of the UTMC pathways across all major disease categories and key outcome measures.  

Toward this goal I identify models, control factors, and adjustments that can correct for potential 

confounding in observational studies.  I also address the issues of handling missing data.  In 

addition, I implement the methodology and provide an actual analysis for one of the largest 

primary diagnoses areas, chronic obstructive pulmonary disease (COPD).   

 Since pathway assignment is not random and may be influenced by the patient’s 

acuteness level and a physician’s choice, commonly used statistical methods may result in biased 

estimates of pathways effects due to the presence of selection bias, or confounding between 

pathway assignment and clinical outcomes. To correct for potential selection bias, it is necessary 

to apply a different set of models that employ procedures to achieve data balancing before 

assessing treatment effects. These models originate from both biostatistics and econometric 
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studies of observational data and include the OLS regression with a treatment dummy variable, 

propensity score matching (PSM), the Abadie and Imbens non-parametric matching estimator 

(AI), the doubly robust matching estimator (DBR), and the Heckman treatment effect model 

(HE). 

 This study attempts to investigate the accuracy of the estimates for the average treatment 

effect (ATE) obtained through different corrective methods while taking into account the 

problem of imbalanced samples where the number of control units is much larger that the 

number of treated cases. The impact of sample imbalance is evaluated using a Monte Carlo 

simulation under three different data generation scenarios that emphasize the underlying model 

assumptions. The simulation results are then utilized in the analysis of the patient level data from 

the UTMC to estimate the ATE of pathways on the length of stay (LOS) and readmission rates.   

The simulation study shows that the regression model and the PSM are expected to 

produce accurate estimates of the ATE, if all the confounders are included in the model. The 

choice of potential confounding variables was largely determined by the nature of the problem, 

review of existing medical and statistical studies, and data availability. The confounding factors 

that have been measured and included in the analysis are comorbidities, patient acuteness level 

on admission, severity of illness, and hospital congestion. It is also important to control for 

patient’s age and gender, vital signs on admission, conditions and complications not present on 

admission, and payer information when estimating pathways effects on clinical outcomes. 

While earnest efforts have been made to carefully measure and construct potential 

confounding variables, there still exists a possibility of the model misspecification.  The best 

candidate to correct for an omitted variable bias, according to the simulation results, is the DBR 

estimator.  Implementing the doubly robust method for estimating the ATE requires paying close 
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attention to the sample imbalance. Keeping the proportion of controls below 75% will ensure its 

accuracy and provide the necessary robustness against model misspecification. 

 This investigation is based on a rigorous analysis of the data and attempts to provide 

accurate and reliable estimates of pathway effects by carefully constructing treatment and control 

groups, taking into account confounding factors, and controlling for other variables that affect 

clinical outcomes. It can be extended to more general applications of hospital performance 

improvement, and provide benchmarks for future program evaluation. 

 The rest of this dissertation is organized as follows. In Chapter 1 I introduce the 

definition criteria for pathways and review the procedures for evaluating pathway effectiveness 

employed in randomized controlled trials and controlled before and after studies. I discuss the 

hierarchy of research designs in the medical field and present arguments in favor of the use of 

observational studies for evaluating treatment effects in the absence of randomization. I provide 

examples of observational studies in business and medical literature, and identify methods and 

techniques commonly used for modeling treatment effects and outcome variables in business and 

in clinical settings. 

 Chapter 2 focuses on statistical methodology for estimating average treatment effects in 

observational studies. I address the issues of overt and hidden bias, compare statistical methods 

for bias correction with econometric models, identify model assumptions, and describe the 

common pitfalls of currently existing methods. 

 Chapter 3 explores the effectiveness of several estimators of treatment effects through a 

Monte Carlo simulation under different settings for sample size and proportions of treated and 

controls. I employ three data generation scenarios that mirror the type of the selection bias and 

allow evaluating the performance of the estimators in the presence of overt and hidden bias. 
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 Chapter 4 describes the estimation of the COPD pathway effects on the length of stay and 

30-day readmission using regression adjustment, propensity score modeling, and the doubly 

robust estimator. It starts with a detailed description of the study design and the data, addresses 

the choices of confounders and control variables, and details the steps of the estimation process 

and balance assessment. Chapter 4 concludes with a discussion of the estimation results and their 

implications. 

 The concluding section of the dissertation contains a review of the key contributions and 

limitations of the study, identifies potential areas for improving the study design and outlines 

methodological issues for future research. 
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CHAPTER 1 

LITERATURE REVIEW 

The concept of clinical pathways (CPWs) first appeared in 1985 in the New England 

Medical Center (Boston, MA) following the introduction of the diagnosis related groups (DRG) 

system in 1983. In 2003, more than 80% of hospitals in the US used clinical pathways for at least 

some of their interventions (Saint et al., 2003), and their numbers are growing rapidly. The 

driving forces behind the new approach to patient care delivery are the shift in decision making 

in hospitals from opinion-based to evidence-based and the current policy changes that aim at 

improving the quality of care and reducing the costs.  

CPWs provide more than just general clinical guidelines for the treatment of specific 

health conditions. They translate the general recommendations of clinical guidelines into the 

local systems and detail the steps and time frames to address these recommendations.  

Pathways development and implementation requires a significant amount of resources, 

yet the effectiveness of clinical pathways remains highly debatable. Individual studies have 

shown the results that are varied and contradictory due to the lack of a uniformly accepted 

definition of a clinical pathway, clinical variability, and methodological quality. The purpose of 

this literature review is to summarize the methods used to analyze the effect of CPWs on clinical 

and financial outcomes in existing studies, and to identify the common issues for the 

observational study design. 

 

 1.1 Clinical Pathways: An overview of Existing Studies 

In 2010, the Cochrane Collaboration published an extensive review of studies evaluating 

the effects of clinical pathways on professional practice, clinical and financial outcomes in 
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healthcare institutions (Rotter et al., 2010). Out of 260 studies assessed, only 27 were included in 

the review, meeting both the definition and methodological criteria as defined by Practice and 

Organization of Care (EPOC).   

 The Cochrane report uses the five criteria suggested by Kinsman et al. (2010) to 

determine whether an intervention constitutes a clinical pathway. These criteria are the 

following:  

1. The intervention is a structured multidisciplinary plan of care. 

2. The intervention is used to channel the translation of guidelines or evidence into local 

structures. 

3. The intervention detailed the steps in a course of treatment or care in a plan, pathway, 

algorithm, guideline, protocol or other ‘inventory of actions’. 

4. The intervention had timeframes or criteria-based progression (that is, steps were taken if 

designated criteria were met). 

5. The intervention aimed to standardize care for a specific clinical problem, procedure or 

episode of healthcare in a specific population.  

 The majority of the studies included in the review (19 out of 27) were randomized 

controlled trials (RCTs), two studies were controlled clinical trials (CCTs) with quasi-random 

allocation, another two used interrupted time series analysis (ITSs), and four were controlled 

before and after studies (CBAs). Most of the studies that met the definition criteria but were 

excluded from the review were simple before and after studies characterized by a high risk of 

bias due to the lack of control.  

 RCTs are controlled experiments in which participants are randomly allocated between 

the treatment and control groups.  CCTs are studies where the allocation process is quasi-random 
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(e.g. based on alternation, date of birth, patient ID). CBAs involve nonrandom treatment 

assignment and include a baseline period for outcome assessment. To meet the minimum 

requirements for inclusion of CBAs in EPOC reviews, the studies must be based on the same pre 

and post intervention periods for treatment and control groups and have a minimum of two 

comparable intervention and two control sites. ITSs estimate the change in trend for a dependent 

variable by breaking its time series into pre and post intervention periods and comparing the 

means of a dependent variable in two periods. At least three data points before and three after the 

intervention are necessary to meet the EPOC methodological requirements
1
.  

 The outcome measures reported in the studies of CPWs can be divided into the following 

groups:  

1) patient outcomes (e.g. length of stay (LOS), mortality rate, readmissions, hospital 

acquired complications, adverse events, ICU admissions, and discharge destination),  

2) professional practice outcomes (e.g. staff satisfaction, adherence to evidence based 

practice, quantity and quality of documentation, and pathway specific quality 

measures such as  time to mobilization post surgery),  

3) financial outcomes (e.g. hospital costs, hospital charges, and resource utilization 

measures). 

The most commonly reported outcome is the LOS measured in hours or days, with the 

majority of studies showing a significant positive effect
2
. 12 out of 15 studies in the Cochrane 

                                                      
1
 The ITSs are still vulnerable to several important validity threats, one of them being history, or the possibility of 

confounding between the intervention and other events around the time of the intervention. To correct for plausible 

bias in the estimates of the observed effect, it is recommended to use control series that were not subject to the 

intervention.  

 
2
 Length of stay reflects hospital practices with respect to hospitalization, and as such may not always reflect a 

positive outcome. In some instances, an increased LOS may indicate better care (e.g. when mortality decreases). 
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report that examined the effect of CPWs on LOS showed significant reductions in LOS 

(Delaney, 2003; Dowsey, 1999; Gomez, 1996; Smith, 2004, and others). A reverse effect, or an 

increased LOS, was associated with a CPW for stroke rehabilitation but did not reach statistical 

significance as reported by Falconer (1993) and Sulch (2000). Studies carried out in the US, 

where hospital LOS is historically lower, reported smaller decreases in LOS (weighted mean 

difference ,WMD of -0.8 days) compared to Australian (WMD of -1.6 days) and Japanese 

studies (WMD of -3.1 days). The report also points out that invasive conditions showed slightly 

stronger effect of CPWs on LOS (WMD of -1.4 days versus -1.1 for noninvasive conditions), 

which is consistent with health economic theories according to which  invasive treatments have 

lower treatment variance and are more easily standardized than noninvasive procedures 

(Shluechtermann, 2005). 

 Several other key findings of the Cochrane review are worth noting. One of them is a 

significant reduction in hospital acquired complications associated with CPWs. For patients 

recovering from surgery and managed on a CPW, the pooled result of an absolute risk reduction 

for the studies included in the review was 5.6%, which corresponds to a prevention of one 

complication for every 17 patients. Another important conclusion of the Cochrane review is 

CPWs contribution to improved documentation, which was achieved without negatively 

impacting LOS and hospital costs. However, the effects of CPWs on readmission and mortality, 

according to the Cochrane review, were not statistically significant. 

 Rotter et al. (2010) point out that more evidence is needed to provide insights about the 

key elements of CPWs and the mechanisms through which CPWs affect economic and patient 

                                                                                                                                                                           
LOS can be considered as a quality indicator only when other patient outcomes are taken into account to avoid 

misleading conclusions. 
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outcomes. They recommend that future systematic reviews group studies by pathway condition 

in order to reduce clinical and statistical heterogeneity and to provide reliable conclusions. 

 

 1.2. Relative Importance of RCTs and Observational Studies 

 While randomized trials are considered to be the gold standard for identifying the effects 

of an intervention, only four of the RCTs included in the Cochrane review were assessed to have 

a low risk of bias (Bauer 2006; Cole 2002; Kollef 1997; Marelich 2000). Other studies had a 

moderate risk of bias with exception of one low risk CBA (Smith, 2004). Sources of bias that 

may exist in RCTs include concealment of allocation, blinded assessment of outcomes, 

incomplete outcome data, selective reporting, and contamination of the control professionals. 

 Allocation concealment is a procedure used to ensure random treatment assignment in an 

RCT setting. Standard methods of allocation concealment include sequentially numbered, 

opaque, sealed envelopes (SNOSE), sequentially numbered containers, pharmacy controlled 

randomization, and central randomization (Piaggio et al., 2006). In practice, allocation 

concealment mechanisms may not always be effective. Clinical investigators in RCTs often find 

it hard to maintain impartiality in taking care of individual patients and interfere into the random 

treatment assignment process. Treatment allocation may become evident to investigators or 

patients due to treatment related side-effects thereby introducing bias or influencing any 

subjective parameters collected by investigators or requested from subjects. Even though it is 

recommended that allocation concealment methods be described in detail and included in an 

RCT protocol, most RCTs have unclear allocation concealment in their protocols and in their 

publications (Pildal et al., 2005).  
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 Blinding is a set of “procedures that prevent study participants, caregivers, or outcome 

assessors from knowing which intervention was received” (Wood et al., 2008). Unlike allocation 

concealment, blinding can be inappropriate or impossible to perform in an RCT. If an RCT 

requires patient’s active participation in a treatment such as physical therapy, participants cannot 

be blinded to the intervention. Another example is an RCT that involves the use of CPWs, where 

caregivers are the active participants and cannot be blinded. RCTs without blinding tend to be 

biased toward beneficial effects if the RCTs' outcomes were subjective as opposed to objective 

(Wood et al., 2008). Noseworthy et al. (1994) showed that in an RCT of treatments for multiple 

sclerosis, unblinded neurologists felt that the treatments were beneficial, while blinded 

neurologists did not. 

  RCTs require significant amount of time and resources. The conduct of an RCT takes 

several years until being published, which restricts the medical community from new knowledge 

and may be of less relevance at the time of publication. In 2006, Johnston et al. investigated the 

public return on investment in medical research by evaluating the effects of 28 RCTs totaling 

$335 million in cost on medical care and health. Their analysis showed that only four (14%) of 

the RCTs resulted in cost savings to society, and only six trials (21%) resulted in measurable 

improvements in health.  

 In 2011, Kessler et al. proposed to speed translation of healthcare research into practice 

by going as far as suggesting a moratorium on RCTs for the next decade to allow for a the shift 

in current research paradigms. They advocate the need for “pragmatic, transparent, contextual, 

and multilevel designs that include replication, rapid learning systems and networks, mixed 

methods, and simulation and economic analyses to produce actionable, generalizable findings 

that can be implemented in real-world settings”. Peek et al. (2014) emphasize that medical 



11 

 

 

research often fails to find its way into practice or policy in a timely manner, and propose “the 5 

R’s” as a new emerging standard for research in the medical field. The 5 R’s stand for the 

research that is relevant to stakeholders, rapid and recursive in application, redefines rigor, 

reports on resources required and is replicable. The approach proposed by Peek et al., largely 

motivated by the recent policy changes, is an attempt to address the needs of the Triple Aim by 

improving care and health outcomes and reducing cost. 

 Concato et al. (2000) cast doubt on the idea that RCTs' results are “evidence of the 

highest grade" and point out that in 99 reports evaluated “the average results of the observational 

studies were remarkably similar to those of the randomized, controlled trials.” They find 

substantial variation in the results of RTCs, and argue that observational studies are less prone to 

heterogeneity in results due to broader representation of the population and fewer opportunities 

for differences in management of subjects.  Specific inclusion and exclusion criteria for 

coexisting illnesses and severity of disease in RCTs may result in creating a distinct group of 

patients, whose treatment protocol may not be representative of clinical practice. Benson et al. 

(2000) reach similar conclusions based on their analysis of 136 reports about 19 diverse 

treatments. Kessler et al. (2011) also point out that intensive interventions delivered by world-

class experts in leading medical centers administered to a very specific patient population cannot 

be expected to work equally well in other public health settings. 

 Vandenbroucke (2008) suggests another line of reasoning that questions RCTs' 

contribution to scientific knowledge beyond other types of studies.  He argues that if study 

designs are ranked by their potential for new discoveries, then anecdotal evidence would be at 

the top of the list, followed by observational studies, followed by RCTs. Glasziou et al. (2007) 

investigate treatments with dramatic and rapid effects and come to the conclusion that RCTs may 
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be unnecessary for these types of treatments. Einhorn (2002) draws an example of such treatment 

from a 1974 nonrandomized study where combination chemotherapy including cisplatin for 

metastatic testicular cancer increased the cure rate from 5% to 60%. 

 Observational studies can be designed with enough rigor to approximate randomization 

conditions by adopting the principles of experimental design (Concato et al., 2000). The 

“restricted cohort” design (Horwitz et al., 1990) identifies a “zero time” for determining patient’s 

eligibility and base-line features, uses inclusion and exclusion criteria similar to those in clinical 

trials, adjusts for differences in base-line susceptibility to the outcome, and uses statistical 

methods such as intention-to-treat analysis similar to those in RCTSs. Use of appropriate 

statistical methodology for causal inference and careful study design are the key aspects in 

strengthening an observational study and reducing potential bias in the absence of 

randomization. 

 

 1.3. Treatment Effect Studies in Nonmedical Fields.  

 Data from other scientific disciplines doesn’t support the hierarchy of research designs 

that currently exists in the medical field. In a comprehensive review of 302 meta-analyses Lipsey 

et al. (1993) compared the results of RCTs and observational studies of various psychological, 

educational, and behavioral treatments. Using a unit-free measure of the intervention effect to 

allow for comparisons across different topics and outcome variables, the authors were able to 

find evidence against the contention that observational designs consistently overestimate 

treatment effects as compared with RCTs. The numerous studies of treatment effects across 

various disciplines suggest that existing bias correction methods can provide reliable results in 
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the absence of randomization, but also raise a lot of questions about the choice of methodology 

and study design. 

 The models for bias correction come from two strands of literature that differ 

conceptually in the underlying assumptions about the selection mechanism. The statistical 

tradition assumes that the treatment assignment is exogenous and random conditional on 

specified covariates. This assumption is referred to, interchangeably, as unconfoundedness 

(Rosenbaum and Rubin, 1983), selection on observables (Barnow, Cain, and Goldberger, 1980), 

and conditional independence (Lechner, 1999), and implies that that treatment assignment is 

independent of the potential outcome if all covariates are observed and held constant. In contrast, 

econometricians often model treatment selection as a nonrandom choice and then use the 

conditional probability of receiving treatment to control for selection bias in the outcome 

analysis and therefore do not require the selection on observables assumption. 

 Tucker (2010), in her meta-analysis of selection bias studies in accounting and finance, 

discusses the use of the propensity score matching (PSM) and the Heckman treatment effect 

model (HE). The PSM addresses selection bias on observables, while the HE is only appropriate 

in situations when the selection bias is due to unobservables. In business, examples of observable 

differences are firm size and growth. Unobservable differences arise when researchers do not 

have access to information that is available to managers and market participants (e.g. information 

revealed by a financial audit but not accessible by some market participants). Tucker points out 

the importance of understanding the generating process of the non-experimental data in deciding 

between the two settings and choosing the correct methodology. When unobservables are not the 

primary concern, it is still necessary to check the covariates’ balance and the sensitivity of 

findings to the effects of unobservables. Only one study out of 17 included in the meta-analysis 
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reports on common support, and none of them include the sensitivity analysis. The author also 

draws attention to several studies where the HE method is misused due to its lacking robustness 

to model specifications. It requires strong assumptions for the outcome regression (must be 

linear), the selection equation (must be modeled as probit) and the error terms (must follow 

bivariate normal distribution), and she finds that many of these assumptions are violated by the 

researchers. 

  Clatworthy, Makepeace, and Peel (2009) examine the limitations of the HE model using 

a sample of 36,636 UK private companies to estimate the large auditor (Big Four) premium, and 

arrive to the conclusion that the HE estimates are highly sensitive to changes in sample and 

model specification, particularly to the omission of a key identifying variable. The authors also 

refer to three different studies of UK private companies that have produced three different sets of 

results analyzing the impact of unobservable variables on premiums using the HE method, but 

reported similar findings using standard models. The results obtained from the PSM and 

portfolio matching by Clatworthy, Makepeace, and Peel were consistent with the majority of 

previous studies. 

 Dehejia and Wahba (2002) show that the PSM method can yield accurate estimates of the 

treatment effect when the treated group differs substantially from the potential pool of controls. 

They use Lalonde’s (1986) dataset and compare the obtained estimates of the treatment effect to 

the benchmark results from the experiment. The authors address the three important issues in 

implementing matching based on propensity scores: whether or not to match with replacement, 

how many matches to use for each treated unit, and which matching method to use. They 

demonstrate that when there is a sufficient overlap in the distribution of the propensity scores 

between treated and controls, most of the matching methods will produce similar results. 
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 Matching with replacement minimizes the distance between the matched pairs, and is 

beneficial in terms of bias reduction. Matching with replacement is a also better alternative when 

there are very few relevant comparison units. Matching without replacement increases bias and 

can produce results that are sensitive to the order in which the matches are done, but can improve 

the precision of the estimates. 1-to-1 matching also produces the smallest distance between the 

matched pairs, while matching one-to-many improves the precision of the estimates, but at the 

cost of increased bias.  

 Shadish , Clark and Steiner (2008) conducted a randomized experiment comparing 

random and nonrandom treatment assignments. To avoid confounding assignment method with 

other study features, they randomly assigned participants to be in a randomized experiment or 

nonrandomized experiment. Participants of the randomized experiment we randomly assigned to 

mathematics or vocabulary training, and the participants of a nonrandomized experiment chose 

which training they wanted. All participants were treated identically and attended the same 

training sessions. After training, all participants were assessed on both mathematics and 

vocabulary outcomes. The study showed that regression adjustment in the nonrandomized 

experiment reduced the estimated bias by 84-94%, and PSM method reduced bias by 58-96% 

depending on the outcome measure and adjustment method. The authors mention that the 

methods may have worked well in part because of a very rich set of covariates, well measured 

and related to both selection process and the outcome measures. PSM adjustments performed 

poorly when the scores were constructed from predictors of convenience (sex, age, marital status, 

and ethnicity) rather than from a broader set of covariates. They emphasize that a lack of 

covariate richness may reduce the accuracy of adjustments. 
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 Another important finding by Shadish et al. is the sensitivity of the PSM adjustments to 

variations in how the propensity scores are constructed, particularly to which balance criteria are 

used. They point out that significance testing (Rosenbaum and Rubin, 1984) may confuse 

successful balance with low power, and recommend using the size of the imbalance proposed by 

Rubin in 2001 as a more desirable criterion. They also report that estimation results were 

sensitive to how missing data in the predictors were managed.  

 In some situations, when only few covariates are available, simple matching methods 

might be useful in detecting treatment effects. Barber and Lyon (1996) provide an example of a 

matching study that is focused on detecting firms with abnormal operating performance 

following major corporate events or decisions. They create a model of expected operating 

performance by matching firms on industry (using two- or four-digit SIC code), size within 

industry, and pre-event performance. Shafer and Moeller (2012) investigate the impact of 

adopting Six Sigma on corporate performance by comparing Six Sigma firms to overall industry 

performance benchmarks and to the performance of a portfolio of control firms. The matching is 

done based on industry and past performance. Zhao (2004) compares PSM with covariate 

matching estimators and indicates that PSM methods usually have a small bias but a large 

standard error compared to covariate matching methods. His simulation results indicate that 

matching without replacement produces a larger bias and a smaller standard error than matching 

with replacement, and show that PSM methods work best with large sample sizes and when the 

correlations between covariates and the treatment indicator variable are high. 
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 1.4  Studies Evaluating Treatment Effects in Medical Literature 

 Austin and Mamdani (2006) provide a detailed description of several PSM methods for 

estimating the effectiveness of a medical treatment, in particular the use of statins post-AMI. 

Their study is largely motivated by the growing interest in using observational data to evaluate 

the impact of medical treatments or interventions on clinical outcomes with no consensus as to 

which propensity score method is preferable. They carry out a detailed propensity score analysis 

and discuss the most commonly used PSM methods including propensity score matching, 

stratification, covariate adjustment, and weighting using the propensity score. To assess the 

differences in characteristics between the treated and control patients, they follow Normand et al. 

(2001) and use the standardized differences in the means of covariates as a tool for balance 

assessment. They emphasize the importance of checking the balance before and after matching, 

as well as the need for a structured approach to the construction of the propensity score model 

described by Rosenbaum and Rubin. In their example, matching on propensity scores achieves 

greater balance than stratifying on the quintiles of the propensity scores, but at the cost of a 

reduced sample size, since many treated patients did not have an appropriate match among the 

controls. They use a greedy-matching algorithm with a caliper width of 0.2 standard deviations 

of the logit of the estimated propensity score, but do not provide the reasoning behind this choice 

of the matching algorithm and other specifics.  

 Residual imbalance in the propensity scores between groups within stratum or within a 

matched sample could indicate residual imbalance in measured covariates. Austin and Mamdani 

suggest using QQ plots to assess this imbalance and argue that QQ plots might be more sensitive 

to detecting residual imbalance between treated and controls than box plots traditionally used for 

this purpose.  
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 These authors also refer to the classic tradeoff between variance and bias when choosing 

between matching and stratifying analysis. Stratification uses the entire sample but may results in 

greater bias dues to residual confounding within stratum. Matching uses a smaller subset of 

patients, thus diminishing the precision of the estimated ATE. Austin and Mamdani’ empirical 

findings are consistent with this idea. They show that the estimated effects were attenuated in the 

matched analysis relative to the stratified analysis due to the differences between the matched 

sample and the overall sample. 

 Once a matched sample is obtained, there are several approaches to estimating the ATE. 

The two considered in Austin and Mamdani’s study are matching on the propensity score and 

covariate adjustment using the propensity score. In case of matching on propensity score, the 

authors fit a logistic regression model with an intercept and a treatment dummy variable to 

estimate the effect of statin therapy on mortality. Covariate adjustment translates into fitting 

multivariate logistic regression models that include a combination of the estimated propensity 

scores, the treatment variable, and other relevant patient characteristics as covariates.  A 

limitation of the covariate adjustment is the requirement for the regression model to be specified 

correctly and, according to Austin and Mamdani, researchers rarely examine the fit of their 

model compared to more complex models in practice. 

 The authors draw attention to the differences between the absolute and relative treatment 

effects and the adjusted model-based estimates, and advocate the use of the former. The logic 

behind the absolute and relative treatment effect estimates is nested in the theory of 

counterfactuals and the ability of the propensity score methods to replicate the design of an RCT 

given that the propensity score model is specified correctly.  RCTs allow for direct calculation of 
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the ATE. The direct calculation of both the absolute and relative ATE can be described 

mathematically as 
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                                                      (1.4.2) 

where     is the observed outcome for the  th control case,     is the observed outcome for the  th 

treated case in the matched sample, and    and   are the number of treated and control cases in 

the matched sample, respectively. 

 Austin and Mamdani arrive at the conclusion that in their data set matching on propensity 

scores was optimal as it was based on a matched sample with no imbalance in measured 

covariates and resulted in an estimate closest to the one obtained from a meta-analysis of statin 

RCTs. However, they caution against using the results of meta-analysis as a gold standard for 

measuring the performance of the competing propensity score methods and advise paying close 

attention to potential inherent differences in observational study designs.  

 In another recent study, Khwaja et al. (2011) estimate the effects of catheterization on 

patients with AMI on their 1-year mortality outcome and adopt a novel approach in the absence 

of the true treatment effect. They develop a dynamic structural model of hospital and treatment 

choice and the consequent mortality outcomes, and then use the estimated model to simulate data 

with known treatment effects.   

 The data for the dynamic structural model come from the Cooperative Cardiovascular 

Project (CCP). It consists of randomly selected Medicare patient records for patients admitted to 

non-federal acute-care hospitals in the USA with a principal diagnosis of AMI over an 8-month 

period and combines them with detailed clinical chart records for each patient. The authors add 
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hospital variables pertaining to availability of facilities for cardiac catheterization, angioplasty, 

and open-heart surgery to the data set and calculate annual hospital heart surgery volume. 

Excluding certain categories of patients that have not met the requirements of the study design 

leaves a sample of 114,818 patients. The covariates available for the analysis of the effect of 

catheterization on 1-year mortality are demographic characteristics, hospital characteristics and 

detailed patient characteristics that include Charlson comorbidity index, Killip class (a 

classification method for assessing the likelihood of congestive heart failure), and blockage 

status. The authors argue that including detailed patient characteristics captures the severity of 

illness, which is the primary factor for determining treatment for AMI patients. Failure to 

condition on severity of illness leads to biased estimates of the treatment effect on mortality 

outcome. The benefits of including clinical data in the analysis is one of the key findings 

demonstrated in Khwaja et al., and has important implications for observational studies. The 

study shows that the bias correction estimators perform well when measures of heterogeneity 

such as clinical variables are included in the regression analysis, but when the data are poor in 

such measurements, the bias becomes evident. The flexible logit estimator is closest to the true 

ATE, when clinical data are included in the model, followed by the fully interacted OLS, 

nearest-neighbor propensity score matching and OLS matching estimator. The HE estimators are 

not stable showing a lot of variation, with the fully interacted HE’s performance ranked the 

lowest among all the matching estimators.  

 Another study by Austin et al. (2005) also focuses on the use of detailed clinical data for 

estimating treatment effects in observational studies. They examine several PSM models 

constructed using only administrative data and compared their performance with the models built 

using only clinical data. According to Rosenbaum and Rubin’s theory, the propensity score is 
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only designed to balance measured covariates, and the authors’ empirical findings are consistent 

with that theory. They show that propensity scores developed using administrative data do not 

necessarily balance unmeasured clinical confounders.  

 In addition to investigating the impact of different data sources, Austin et al. raise an 

important question about the use of previously validated risk-adjusted outcome models for 

evaluating the treatment-outcome relationship. In their study, the effectiveness of treatment was 

magnified when only variables from a previously validated model were used with clinical data 

compared to when all the variables of the PSM model were included in the analysis. However, 

fitting these two models to the administrative data produced similar estimates of the ATE, which 

can be explained by a relative scarcity of information contained in administrative data. While 

they point out the differences in the obtained estimates of the ATE, the discussion about the 

accuracy of the estimates remains open.  

 Identifying and measuring confounding factors is a necessary condition for obtaining 

unbiased estimates of the ATE, and while researchers are making every attempt to account for 

confounding factors, they are often limited by the data availability. Stephen and Berger (2003) 

evaluated the effects of an accelerated clinical pathway after elective colon resection on the LOS, 

readmissions, and costs per patient. Even though clinical charts were available for all the patients 

included in the study, only the data on age, gender, indication for operation, type of operation, 

and postoperative complications were collected. The authors used regression analysis with 

adjustments for age, sex, diagnosis and type of operation to estimate CPW effect of the LOS. 

The estimation methods for readmissions and costs were not clearly specified. The authors note 

that one surgeon operated on all the patients included in the study over the period of two and a 
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half years, and that an increase in surgical experience may be confounded with the number of 

postoperative complications.  

 Statistical methods for modeling LOS and other outcome variables are often ill-specified, 

which creates difficulties in assessing the validity of the results and compromises a study’s 

replicability. Lin et al. (2011) investigate the effectiveness of CPW in coronary artery bypass 

surgery by estimating the differences in the LOS, postoperative complications, and costs. They 

collect data on patient demographic characteristics, patient surgical risk indicator (EuroSCORE), 

and surgery specific characteristics such as operation procedure and the number of surgical graft 

bypass. The authors note that mean comparisons, multiple regression analyses, and logistic 

regressions were performed for evaluation purposes, but do not report the estimation details. The 

validity and applicability of the study results remain unclear. 

 Kelly et al. (2013) provide a better example of modeling LOS in their study of patients 

who had radical prostatectomy.  They use logistic regression to identify factors that predict 

prolonged LOS (LOS>9), and specify three variable groups to consider for inclusion in the 

model. The population-based, cancer registration data used in the study contain a variety of 

clinical characteristics for the patients as well as hospital volume and surgeon volume. Clinicians 

frequently work in both private and public sectors, and the availability of national cancer registry 

allowed for an accurate measure of the entire volume of cases for each surgeon, which is one of 

the major strengths of the study by Kelly et al. The authors report marital status, number of 

comorbidities, disease stage, hospital volume and surgeon volume to be significant predictors of 

a prolonged LOS in prostate cancer patients undergoing radical prostatectomy in public 

hospitals.  



23 

 

 

  Smith et al. (2004) investigated the effects of a COPD CPW on readmission and 

mortality rates in a CBA study that was included in the Cochrane review (Rotter et al., 2010). 

Four public teaching hospitals in South Australia were included in the study, two of which were 

assigned as control hospitals and two as intervention hospitals. Eligible subjects had a principal 

diagnosis of COPD based on daily hospital admission records. 92% of these patients had COPD 

reported as their principal or secondary diagnosis at discharge. The researchers identified a 

preintervention phase (May to November 1998) with 721 COPD admissions, and a 

postintervention phase (late November 1998 to June 1999) with 509 admissions. The study 

design allowed for a comparison of subjects in control and treated groups, adjusted for pre-

intervention differences between the two groups of hospitals. The authors use regression 

adjustment method to identify the effects of PW on the outcome variables with age, gender, type 

of admission (emergency/elective) and the number of comorbidities (defined as the number of 

ICD-10 secondary discharge diagnoses) as potential confounders. Smith et al. report a significant 

increase in elective readmission rates for the intervention group, and in emergency readmissions 

for the control group, which may be indicative of a transformative effect of the CPW on health 

care delivery, changing it from reactive to a more proactive management of the COPD.  The 

decrease in mortality rates for the intervention group was not significant at       . The study 

indicates no changes in mortality rates for the control group, as well as no changes in the LOS 

for both groups. The authors also mention that female gender and number of comorbidities were 

associated with an increase in the LOS, without providing estimation details.  

 The authors point out several factors that could have potentially contributed to diluting 

CPW effects. One of them is the difficulty in diagnosing the COPD correctly on admission, 

which results in mismatched placement of COPD CPW to suitable COPD patients. Another 
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factor is the limited knowledge of the precise CPW implementation process. Only 76% of CPWs 

had some evidence of use, according to entry and tick boxes on the guideline sheets. Yet staff 

practice may have been influenced by COPD CPWs through care of other COPD patients, which 

could have demonstrated in the lack of difference between intention-to-treat and per-protocol 

analysis.  

 Doherty and Jones (2006) offer some insights into CPW implementation process, and 

demonstrate significant improvements in compliance with evidence-based care in a CBA study 

of asthma patients in small rural district hospitals in Australia. Using a cluster design, they 

matched 8 hospitals pair wise based on RRMA rating and hospital size, and allocated one 

hospital in each pair to the experimental group. 98 patients were allocated to intervention 

hospitals, and 89 to control hospitals. There were no baseline differences in asthma severity 

between the groups.  

 Assessment of severity is crucial in management of asthma patients because asthma 

guidelines have different treatment strategies for different degrees of severity. The study shows 

that documentation of severity improved by 54% with CPW usage, and the effect was 

statistically significant. Spirometry use (the preferred method for diagnosing and monitoring the 

progress of asthma) increased from 25% to 62% in the CPW hospitals with no change in the 

control group. The authors report statistically significant improvement in other targeted 

outcomes of CPW usage such as use of systemic steroids, inappropriate use of antibiotics and use 

of STAMP. However the applicability of these results in other settings may be limited due to the 

specifics of the study. 

 Marrie et al. (2000) performed an efficacy analysis of pneumonia CPW in a multicenter 

CCT that involved 20 hospitals, and demonstrated that there were no differences in patients’ 



25 

 

 

quality of life and adverse clinical outcomes between groups as well as a significant reduction in 

resource utilization for patients who were admitted at CPW institutions. The median LOS in their 

study was reported to be lower at CPW institutions (5.0 days vs 6.7 days at control sites, 

      ). CPW patients also received 1.7 fewer days of intravenous antibiotic therapy (  

   ) and were more likely to be treated with a single class of antibiotic (67% vs 27%,   

      . The exclusion restrictions in this experiment were quite severe. Patients with an immune 

deficiency, patients who experienced shock, and who required intubation or direct admission to 

ICU, patients with alcohol addiction and chronic renal failure, among others, were ineligible for 

the study. Another criticism and potential source of bias is the unit analysis error as the 

randomization unit (hospital) was different from the unit of analysis (patient). 

 Two RTCs included in the Cochrane review (Gomez et al., 1996 and Roberts et al., 1997) 

investigated AMI pathway effects on LOS and hospital costs. The focus of both studies was the 

accelerated diagnosis of patients with chest pain in the ED. Patients with low risk for AMI were 

identified as the most relevant group for cost/benefit analysis since their admission to a coronary 

care unit is not likely to be cost effective, while discharge may be unsafe, and only low risk 

patients were included in the trials. The control and treated groups were selected based on well 

defined inclusion and exclusion criteria, and no significant differences were present in the 

baseline characteristics of the groups in either study. Roberts et al. had slightly larger sample 

sizes: 82 CPW patients and 83 controls, while in the study by Gomez et al. both groups were of 

size 50. The results of the two RCTs are consistent, showing significant reduction in the LOS 

and costs for patients on accelerated diagnostic ED CPW, but neither one is completely free of 

bias. Participants and investigators were not blinded, and since the intent was to increase 
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efficiency, attending physicians for patients in the control group may have been biased toward 

ordering briefer, more economic evaluations, thus reducing true differences between groups. 

 

 1.5. Summary of Empirical Findings    

 While the existing bias correction methods in observational studies show promising 

results when contrasted to randomized experiments (Dehejia and Wahba, 2002; Shadish et 

al.,2007), some of their shortcomings, such as sensitivity to sample size and model 

specifications, become evident and require special consideration. The sensitivity of the Heckman 

treatment effect model in this regard appears to be more pronounced than that of OLS regression. 

The propensity score models are expected to replicate the design of a randomized experiment, 

but their estimation results may be influenced by how the propensity scores are constructed as 

well as by the method chosen for balance assessment. In addition, the classic tradeoff between 

bias and precision is unavoidable when matching either with or without propensity scores. 

 The appropriate study design is a key aspect in successful estimation of treatment effects 

when randomization is not feasible, and includes choosing the control and treated groups, using 

relevant inclusion and exclusion criteria, and identifying potential confounders and control 

variables. Several studies demonstrate that the use of clinical data for estimating treatment 

effects provides a richer set of covariates and may increase the accuracy of the estimates. A rich 

set of covariates in clinical settings often includes patients’ demographic characteristics, vital 

signs and laboratory values, comorbidities, severity of illness indicators, and relevant hospital 

characteristics. Including all important covariates in the model is crucial when using the methods 

based on the selection on observables assumption.     
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CHAPTER 2 

METHODOLOGY 

An observational study attempts to draw inferences about the effects caused by a 

treatment or intervention when subjects are not randomly assigned to treatment as they would be 

in a randomized trial but instead are assigned treatment by other means. In these studies, subjects 

decide which, if any, of the treatment levels to receive, and as a result of this self-selection, the 

potential for an unmeasured confounding variable to impact the outcome cannot be ruled out. If 

such a confounding variable exists, there is a considerable possibility of badly biased estimates 

of treatment effects and invalid conclusions.  

Two types of bias should be considered when estimating a model based on an 

observational study. The first type is overt bias. Rosenbaum (2002) defines overt bias as “one 

that can be seen in the data at hand”, which means that it is related to observable or measured 

variables in a study. Overt bias can result from either omission of observable variables in the 

model or from the specification of an improper functional form for the relationship between 

observable variables and the outcome variable. In contrast, hidden bias is associated with the 

omission of unobservable variables (i.e. correlated omitted variables). 

There are two long-standing traditions in econometrics and statistics that offer solutions 

for bias correction methods depending on the bias type, but no consensus exists as to which 

method is preferable and how different settings in observational studies affect the modeling 

choices for treatment effects. This study, in part, is an attempt to delineate the translation of the 

differences between the two existing schools of thought into applied research, and to address 

potential issues that require further clarification. 
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 2.1 The Advantages of Proper Randomization  

 Randomized experiments, whereby the assignment to treatment and control groups is 

random, represent an objective and robust approach to estimating treatment effects. This random 

external treatment assignment mechanism ensures that treated and control groups are 

comparable, with respect to both measured and latent characteristics. As a result, randomization 

ensures that differences between treated and control groups (before and after treatment) are due 

to chance, tend to be small, and are, therefore, not confounded with the treatment assignment 

indicating that estimates will not be biased.   

 An ideal randomization procedure would maximize statistical power and minimize 

confounding and selection bias. However, no single randomization procedure meets those goals 

in every circumstance as many reviews of RCTs demonstrate (e.g., Rotter et al., 2010). 

Unfortunately, randomized experiments often raise complex, sometimes insurmountable, 

challenges when applied to both business and clinical scenarios, as such settings do not conform 

to the embedded assumptions of randomized assignment, and in many instances are not a 

feasible option due to huge costs both in terms of time and money as well as potential impacts on 

ongoing processes. 

 

 2.2 The Counterfactual Model Framework  

 The existing bias correction methods for observational studies where treatment 

assignment is not random are best described by employing the counterfactual model framework 

and Pearl’s directed acyclic graphs (DAGs) (Pearl, 2000). The key assumption of the 

counterfactual model is that each individual in the population has a potential outcome under each 

treatment state, which can be observed by an individual’s exposure to each state. However, at 
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any point in time only one treatment state and potential outcome can be observed. For example, 

in a study of the effect of seat belts on fatalities in automobile accidents, drivers who were 

wearing a seat belt at the time of an accident have a theoretical what-if probability of a fatal 

accident under the state “no seat belt”, and drivers who did not have their seat belt on have a 

theoretical probability of a fatal accident under “seat belt” state. These theoretical potential 

outcomes are not actually observed and, hence, referred to as counterfactuals. 

 Let Yi
1
 and Yi

0
 denote potential outcomes for observation i under treatment and control, 

respectively. By necessity, a researcher must analyze an observed outcome variable Yi. We can 

then define the observable outcome variable Yi  as   

                  ,                                                (2.2.1) 

where          is a treatment assignment dummy variable. Rearranging terms and expressing 

potential outcomes as deviations from their means, the equation for Yi takes the following form:  

                                         

                                                                  ,                                                            (2.2.2) 

where                   ,               and                For a consistent 

estimate of the true average treatment effect     , Wi and ui must be uncorrelated. 

 Heckman and Robb (1985) propose a supplemental equation, known as the assignment or 

selection equation, that determines Wi. The treatment selection is modeled by specifying a latent 

continuous variable Wi*: 

   
     

    ,                                                      (2.2.3) 

where Zi represents all observed variables that affect treatment assignment, αi is a vector of 

coefficients, and νi is an error term that captures both systematic unobserved factors that affect 

the assignment process and completely random determinants of treatment selection. The 
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treatment dummy variable Wi is determined by the following rule:      if   
    and      

if   
    (c is an arbitrary cutoff value). 

 When all the systematic determinants of treatment selection have been observed as Z, 

treatment assignment is ignorable or, in other words, selection is on observables. In this case Zi 

and ui are correlated, but νi and ui are not. Under this condition OLS regression estimates of 

(2.2.2) will be unbiased if all the variables in Z are sufficiently included in the model. In panel 

(a) Figure 2.1 there is a back-door path W←Z→u→Y, which means that the effect of W on Y is 

confounded by Z, (u being random noise).  

 When the observed variables in Z are only a subset of the factors that affect treatment 

selection, the unobserved components enter into the treatment selection latent variable   
  

through the error term, νi. Now Zi and ui are not correlated, but νi and ui are, and the condition is 

known as selection on unobservables, or a nonignorable treatment assignment. Under this 

setting, the OLS estimates from (2.2.2) will be biased and inconsistent. The bidirected edge 

between u and ν in panel (b) Figure 2.1 indicates that u and ν are mutually dependent on one or 

more unobserved common causes, and since u has a direct effect on Y, and ν on W, but neither u, 

nor ν can be measured, mutual dependence on a common unmeasured cause exists between W 

and Y. 

 

 
(a) Selection on Observables                      ( b) Selection on Unobservables 

Figure 2.1 Selection mechanisms in statistics and econometrics 

 

 X1 

X2 

X3 

Z 

 Y 

W 

 u 

 ν 
 

 X1 

 X2 

 X3 

  Z 

  Y 

W 

 u 

 ν 



31 

 

 

 Selection on observables with an omitted variable shown in Figure 2.2 may look similar 

to selection on unobservables when mapped on a DAG, but the two mechanisms differ in 

underlying assumption about the error terms. Selection on observables assumes that the error 

terms will be uncorrelated once the omitted variable is included in the model, or, in other words, 

conditioning on Z would close the back-door path between W and Y. In selection on 

unobservables, the mutual cause of u and ν cannot be measured, and including Z in the model 

does not change its error structure.  

 
Figure 2.2 Selection on Observables with an Omitted Variable 

   

 

 2.3 Conditioning to balance versus conditioning to adjust  

 Treatment assignment models in statistics fall under two categories: matching techniques 

and regression implementations of conditioning. Matching techniques attempt to balance the 

determinants of the outcome variables, while regression models adjust for other causes of the 

outcome. Morgan and Winship (2007) demonstrate that both techniques can be considered 

variants of each other and explain the different ways in which they are used in applied research.  

 In a randomized experiment, treatment status is expected to be independent of all 

observed and unobserved variables that determine the outcome. In this case, the data are 

balanced with respect to X as shown in (2.3.1),  
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                                                                                                                    (2.3.1) 

which requires that the probability distribution of W be the same within the treatment and control 

groups.  

 In Figure 2.3, a back-door path Z↔X→Y is present from W to Y, where Z represents a 

complete set of all observable variables that are direct causes of treatment assignment, and X 

represents a complete set of all observable variables other than W that are direct causes of Y. The 

bidirected edge between Z and X means that they are mutually caused by some set of common 

unobserved factors.  

 

 
Figure 2.3. Conditioning on Z versus X  

  

 All back-door paths signified by the bidirected edge in Figure 2.3 can be blocked by 

conditioning on either Z or X because none of them is a collider
3
, meaning that causal effects of 

other factors do not collide with each other at Z or X.  Conditioning on Z is considered a 

balancing technique whereas conditioning on X is considered an adjustment-for-other-causes 

conditioning strategy. Conditioning on Z ensures that the variables in Z and W are no longer 

associated within subgroups defined by the conditioning. The treatment and control groups will 

                                                      
3
 Morgan and Winship note that the same conclusions will hold if Z and X include several variables within them 

such that some members of X cause W directly and some members of Z cause Y directly. However, there must be at 

least one variable in one set that causes W but not Y and at least on variable in the other that causes Y but not W. 
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 Y  W 

 X 
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be balanced with respect to Z. Alternatively, conditioning on X makes the resulting subgroup 

differences in Y across W within X attributable to W alone.  

 Though the distinction between balancing and adjustment for other causes may seem 

somewhat artificial, the distinction is important. There is an unobserved set of systematic causes 

that generates the relationship between Z and X, and conditioning on either Z or X is necessary to 

identify the treatment effect.  In many applied research situations these two sets of variables may 

be quite different.  

 

 2.4 Regression Adjustment for Estimating Causal Effects 

 The OLS regression is considered an adjustment-for-other-causes conditioning strategy. 

We can identify the regression model as           as it depends on observed data. We now 

rewrite the regression model as  

                                                                    
 ,                                           (2.4.1) 

where, again, W is a binary variable indicating treatment condition (    if treated, and     

otherwise). In general,             is the regression among treated, and             

among controls.  

 Averaging over all possible values of X (both treatments) is equivalent to  

                                                                                      (2.4.2) 

and, in the same way, 

                                                                        .                                               (2.4.3) 

Then the average treatment effect (ATE) can be estimated as  

                                           

                                                                                                                   (2.4.4) 



34 

 

 

 For a continuous outcome, the ATE can be estimated directly from fitting the OLS 

regression model. Suppose the true regression is  

                                                                     
 .                                          (2.4.5)                                    

Then 

                                                         .  (2.4.6) 

 Thus, if there are no unmeasured confounders, i.e. if the model is correctly specified,     

is the unbiased estimate of the ATE. 

 For a binary outcome, if the true regression is  

                                                           
                 

                   
 ,                                      (2.4.6) 

                                         
               

                 
 

             

               
          (2.4.7) 

Logistic regression yields            . The ATE is then estimated by averaging the differences in 

the predicted values of Y obtained using the estimated model under each state across all observed 

Xi:  

                                         
 

 
 

                  

                    
 

               

                 

 
   .                           (2.4.8) 

 

 2.5 Abadie and Imbens Bias-Corrected Matching Estimator (AI) 

 Matching is a data balancing technique that aims to achieve independence between the 

outcome and the treatment conditional on a set of covariates that are considered to be 

determinants of the treatment assignment. To overcome the dimensionality problem, matching 

estimators use a vector norm to calculate distances on the observed covariates between a treated 

case and each of its potential matches among the control units. The vector norm is used to select 

the outcome of a control case with the shortest distance on covariates as a counterfactual for the 
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treated case. Similarly, the matching estimators can choose the outcome of a treated case to serve 

as a counterfactual for the control case. 

 The vector norm is calculated based on either the inverse of the sample variance matrix 

or the inverse of the sample variance-covariance matrix. The latter approach is known as 

computing Mahalanobis distances, and the method gets the name of Mahalanobis metric 

matching (Rubin, 1973).  

 Mahalanobis metric matching randomly orders study participants and then calculates the 

Mahalanobis distances between the first treated unit and all controls (Guo, 2010): 

                                                                       ,                                           (2.5.1) 

where U and V are values of the matching variables for treated unit   and control unit j, and C is 

the sample covariance matrix of the matching variables from the full set of controls. The 

algorithm selects the control unit j that has the minimum distance d(i, j) as a match for the treated 

unit  . This process is repeated until matches are found for all treated cases.  

 When many covariates are included in the model, it may be difficult to find close matches 

because Mahalanobis metric matching is not based on a one-dimensional score. Another 

limitation of this method that arises from the curse of dimensionality problem is that the average 

Mahalanobis distance between observations always increases when the number of covariates 

becomes larger.  

 A simple matching estimator of the ATE uses the matched data set obtained though 

Mahalanobis metric matching to impute the missing potential outcomes by computing the 

average outcome for units with similar values on observed covariates. Matching is done with 

replacement, and the final inference of matching estimators may depend on the number of 

matches chosen for each unit. Abadie et al. (2004) recommend using 4 control matches for each 
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treated case as a rule of thumb to avoid incorporating bad quality matches and not to rely on too 

little information as would be the case with 1-to-1 matching. 

 Abadie and Imbens (2002) demonstrate that when the matching is not exact, the simple 

estimator is biased in finite samples. With k continuous covariates, the simple matching 

estimator will have a bias term that corresponds to the differences in covariates between 

treatment and control groups. They propose to use regression adjustment to correct for the bias 

that remains after matching and develop a bias-corrected matching estimator.  

 This estimator consists of two steps. First all units in both treated and control groups are 

matched with replacement, so that the results are not order dependent. After matching all units 

some of the remaining bias is removed through regression on a subset of the covariates, with the 

subvector denoted by Zi. 

 In step 1, they create matches for all units. For each i, the set of indices for the closest 

match, J(i) can be defined as  

                                             
                        

                      (2.5.2) 

where m is the number of matched per unit with replacement, the distance be based on the 

Mahalanobis metric                 
  

     , and      
 

 
      

              , with 

   
 

 
   

 
   . 

 Given the sets J(i), Abadie and Imbens define                                  as follows: 
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                                     (2.5.5)          

                                                     

 

     
                           

                                         
                                    (2.5.6) 

 

This leads to a matched sample, with N pairs, where each pair is characterized by a quintuple: 

                                 . 

 The simple matching estimator,      
 

 
     

 
              , has a bias of      

 

  , 

where K is the dimension of the covariates. To improve its properties the authors suggest using 

linear regression to adjust for biases associated with differences in covariate values.  

 In step 2, they run two OLS regressions on N units to obtain the least squares estimates 

for     and    : 

                                                                        
                                                   (2.5.7) 

and  

                                                                         
                                                   (2.5.8) 

Next they adjust the imputed potential outcomes as 

                             
        

                                                                                 
 

     
      

                                        

                (2.5.9) 

                             
        

 

     
      

                                        

                                                                                  
              (2.5.10) 

The bias-adjusted estimator becomes 

                                                      
 

 
     

    
          

   
                              (2.5.11) 
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 Abadie and Imbens point out that the proposed matching estimator does not eliminate all 

biases associated with differences in the covariates in large samples sufficiently fast to achieve 

root-N convergence. However, they claim that in practice, the linear regression adjustment 

eliminates a large part of the bias that remains after the simple matching. 

 

 2.6 The Propensity Score Model (PSM) 

 The main advantage of the propensity score methods over conventional matching is 

dimensionality reduction. The vector X may include many covariates, which makes finding a 

good match from a control group for a given treated unit challenging when using conventional 

matching methods. The propensity score solves the problem of dimensionality by reducing the 

dimension of X to a single one-dimensional score.     

 Rosenbaum and Rubin (1983) define a propensity score as a conditional probability of 

treatment assignment given a set of observed covariates:  

                                                                   .                           (2.6.1) 

  

 It is customary to estimate the probability of treatment, e(X), by fitting a logistic 

regression model: 

                                                                     

               
.                                      (2.6.2) 

The predicted values from this logistic regression are known as propensity scores.  

 Under the ignorable treatment assignment assumption, 

                    .                                                       (2.6.3) 

Given that the strong ignorable treatment assignment assumption holds and e(X) is a true 

balancing score, the expected difference in observed outcomes of the two treatment conditions at 
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e(X) is the ATE at e(X). In terms of counterfactual framework, the following expression is an 

unbiased estimate of the ATE, conditional on the propensity score, e(X): 

                                                                                         (2.6.4) 

 Guo and Fraser (2010) describe propensity score modeling as a three-step sequenced 

analysis. Step 1 involves specification of a logistic regression model, step 2 is resampling to 

create a matched data set based on estimated propensity scores, and step 3 is postmatching 

analysis.  

 One of the key points in propensity score methods is finding the best model for 

estimating propensity scores when the true propensity scores are not known. When the 

propensity score model is misspecified, the ignorable treatment assignment assumption does not 

hold and the estimate of the ATE that is no longer unbiased. The best logistic regression should 

take into consideration covariate balance and meet the general requirements for the goodness of 

fit. 

 There is a strong emphasis in the literature on PSM methods regarding the importance of 

including carefully chosen and appropriate conditioning variables in their correct functional form 

in the model for estimating propensity scores. Smith and Todd (2005) argue that including more 

conditioning variables may exacerbate the common support region problem. Rosenbaum and 

Rubin (1984, 1985) recommend expanding the propensity score model to include high-order 

polynomial terms and interactions and use stepwise regression to select variables based on a 

Wald statistic and its associated p-value. Rosenbaum (2002) suggests that the logistic regression 

model should include all covariates for which group differences meet a low threshold for 

significance (       ). Eichler and Lechner (2002) propose to use a variant of Rosenbaum and 

Rubin’s measure, which is based on standardized differences in means between treated and 
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controls for each variable in X, squares of each variable in X, and first-order interaction terms for 

each pair of variables in X. The standardized difference is defined as 

     
            

    
    

    
 for continuous variables                                        (2.6.5) 

and by  

        
          

                       
 for categorical variables.                               (2.6.6) 

According to Normand et al. (2001), covariates with a standardized difference of greater than 

10% are indicative of a meaningful imbalance between treatment groups.  

  Checking for covariate imbalance is necessary in a full data set when selecting the 

variables for the propensity score model, and in a matched data set, created using the estimated 

propensity scores. McCaffrey et al. (2004) propose an algorithm that minimizes the sample 

average standardized difference (ASAM) in the covariates by modifying the generalized 

boosting modeling criterion (GBM). Rosenbaum and Rubin (1984) define the search for the best 

propensity score model as a reiterative process of fitting a logistic regression model, matching, 

checking for data imbalance in a matched data set, and refitting a logistic regression model if the 

imbalance still exists. 

 Once the best logistic regression model is determined, the estimated propensity scores 

can be used to match treated units to controls, or, alternatively, as sampling weights in further 

analysis without matching. Matching treated and controls on propensity scores balances the data, 

but typically reduces the sample size because the common support region is now defined by the 

propensity scores and might not cover the whole range of observations in the original data set. 

 Available matching algorithms include nearest neighbor, kernel, and interval matching 

procedures. Nearest neighbor matching randomly orders treated units and then selects a matched 
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control unit j for a treated unit   based on the smallest absolute difference of propensity scores 

among all possible pairs: 

                                    ,                                      (2.6.7) 

where C(Pi) is the neighborhood of matched control units,    and    are the propensity scores for 

treated and control units, and    is the set of control units. Nearest neighbor matching may results 

in poor matches for some treatment case. Another variant of this algorithm, nearest neighbor 

matching with a caliper, is designed to remedy the possibility of bad matches by restricting 

matches to some maximum distance, or a specified caliper width. Rosenbaum and Rubin (1985) 

recommend setting the caliper width at 0.25σp, where σp is the standard deviation of the 

estimated propensity scores. The algorithm can be run with or without replacement. With 

replacement, each control case can be matched to more than one treated unit. Without 

replacement, a control unit is taken out of the pool of possible matches once it is matched. One 

of the weaknesses of matching without replacement is that the estimate of the ATE will vary 

depending on the initial ordering of the treatment cases. 

 Kernel matching, developed by Heckman et al. (1998), constructs the counterfactuals of 

each treatment unit using all control units weighted based on the their distance from the treated 

case. The weights, wij are calculated with a kernel function, G(.) that transforms the distance 

between the target treatment case and all control cases in the data set. Using propensity scores to 

measure the distance, kernel matching estimators define the weight as  

         
  

             

  
 

   
             

  
  

 ,                                                   (2.6.8) 
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where an is a bandwidth parameter that scales the difference in the estimated propensity scores 

based on the sample size and       is the estimated propensity score as a function of its argument. 

The denominator is a scaling factor equal to the sum of all transformed distances across control 

cases, and is needed so that the sum of wij is equal to 1 when all control units are matched to each 

target treatment unit. The main criticism of kernel matching is its high probability of producing 

bad quality matches since all control cases are used in creating matches for each treated case.  

 Interval matching divides the treated and control cases into segments based on the 

estimated propensity scores, and then calculates the treatment effect within these intervals 

(Rosenbaum and Rubin, 1984). This method strongly resembles nearest neighbor caliper 

matching when each interval includes exactly one treated case. When there are several treated 

units in each interval, it does not allow for covariate adjustment in postmatching analysis and 

limits the researcher to mean comparisons of outcomes between groups. 

 The choice of a particular matching algorithm is not clear, and is likely to be application 

dependent. Morgan and Winship (2007) demonstrate that different matching algorithms and 

software routines yield different estimates of the ATE, and recommend further investigation of 

these issues in future research. 

 Assuming that propensity score matching yields balanced data and the ignorable 

treatment assignment assumption holds, researchers can undertake covariate adjustments for the 

matched sample to estimate the ATE. Any regression-type model may be used at this stage to 

estimate the ATE by using a dichotomous explanatory variable indicating treatment conditions. 

Morgan (2001) conducts a regression analysis to estimate the effect of Catholic schools on 

learning following caliper matching. Smith (1997) uses a hierarchical regression model to 
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estimate the effects on mortality of an organizational innovation within hospital after nearest 

neighbor matching. 

 Propensity scores can be also used without matching. This technique is known as 

adjustment by inverse weighting. Rather than using the difference of simple averages,       , 

the ATE is estimated by the difference of inverse propensity score weighted averages 

(Rosenbaum, 1987): 

                 
 

 
 

    

         
 

 

 
 

        

           

 
   

 
   .                                 (2.6.9) 

 Inverse probability weights are calculated as the inverse of the conditional probability of 

receiving the actual treatment: 1/PS for the treated and 1/(1-PS) for the controls. As such, inverse 

probability weighting creates a pseudopopulation in which the distributions of confounders 

among the treated and controls are the same. It eliminates an association between the 

confounders and treatment, so that the weighted averages reflect the averages in the true 

population (Funk et al., 2010). 

 By the law of large numbers, 
 

 
 

    

         

 
     should estimate the mean of a term in the 

sum with    replaced by the quantity it estimates: 

                      
  

    
    

   

    
      

   

    
                                       (2.6.10) 

since                                 and               due 

to W being a binary variable. By ignorable treatment assignment assumption,               , 

                              
   

    
           

  

    
              

  

    
        .                  (2.6.11) 

Then   

                                  
  

    
    

  

    
           

  

    
           .                        (2.6.12) 
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Similarly,   
      

      
         

 The estimate of ATE obtained by inverse weighting is not robust to the model 

misspecifications, and will only estimate the true ATE correctly if the postulated propensity 

score model is identical to the true propensity score. 

  

 2.7 The Doubly Robust Estimator (DBR) 

 The doubly robust estimator (DBR), first proposed by Robins et al. (1994) and reviewed 

by Davidian et al. (2010), is a relatively new method of estimating the ATE that combines the 

outcome regression model with propensity scores to estimate the ATE, and is designed to correct 

the bias that occurs when regression and/or propensity score models are misspecified. It can be 

viewed as augmenting the inverse weighted estimator.  Following the notation in Funk et al. 

(2011), the formula for a doubly robust estimator can be expressed as: 

                               
 

 
 

    

         
           

 

 
 

        

           
          

 
   

 
   ,               (2.7.1) 

where       and       are the predicted values from regression models on the baseline 

covariates for the treatment and control groups, respectively. The augmentation component is 

formed by taking the product of two bias terms—one from the propensity score model and one 

from the outcome regression model. If either bias term equals zero (as is the case when one of 

the models is correct), then it ‘‘zeros out’’ the other, nonzero bias term from the incorrect model. 

In other words, the DBR estimator will be unbiased if at least one of the models (regression or 

PSM) is specified correctly. 

 Emsley et al. (2008) outline the following steps for implementing the DBR estimator: 
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1. Fit a logistic (or probit) regression model for treatment conditional on the baseline 

variables (time-dependent variables can be included if required for longitudinal analysis). 

The predicted values from this regression give the estimated propensity scores, PS. 

2. Fit a regression model for the outcome on the baseline variables for the treatment group 

only (Wi = 1), and obtain predicted values for the whole sample. This gives the value for 

      . 

3. Fit the same regression model for the outcome on the baseline variables for the control 

group only (Wi = 0), and obtain the predicted values for the whole sample. This gives the 

value for       . 

4. Substitute the predicted values of propensity scores,      , and        into the 

expression for the double-robust estimator as defined by (2.7.1).  

 While the DBR estimator has been described in the statistical literature, it is not yet well 

known among the broader research community. Prior simulations have confirmed that the doubly 

robust estimator is unbiased when a confounder is omitted from one but not both of the 

component models (Bang and Robins, 2005; Lunceford and Davidian, 2004). As with any new 

method, caution is warranted. According to Lunceford and Davidian (2004), the DBR estimator 

is generally less efficient than the maximum likelihood estimator with a correctly specified 

model. Thus, when choosing the DBR estimator over regression or PSM methods, it is important 

to consider a trade-off between potentially reducing bias at the expense of precision. 

 

 2.8 Heckman Treatment Effect Model (HE) 

 Bias correction methods that address selection on unobservables were first developed by 

Lee (1978) and Heckman (1979). Heckman proposes a two-stage approach for evaluating the 
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effects of programs with binary treatment choices where the outcomes depend on a linear 

combination of observable and unobservable covariates. The Heckman treatment effect model 

addresses the bias due to selection on unobservables by estimating a bias correction term in the 

first stage through the choice model and adding it in the second-stage outcome regression.  

 The estimate of the ATE can be calculated by comparing the average difference in 

outcomes of treated and controls as defined in (2.8.1) and (2.8.2):  

                           
    

           
       

    
           

             (2.8.1) 

and  

                           
    

           
       

    
           

       .   (2.8.2) 

 Assuming that        and        are binormally distributed with zero means and 

variances      and      (   is normalized at 1) and following the properties of truncated 

binormal distributions as described in Green (2003), the following holds true: 

                                              
            

       

         
     

      

      
,                          (2.8.3)                           

                                              
            

        

       
     

       

        
                        (2.8.4) 

Plugging these expressions into equations for              and              and 

differencing them results in (2.8.5): 

                                         
    

   (     
      

      
     

       

        
 ,        (2.8.5) 

where   
    

  is the true ATE, and      
      

      
     

       

        
 is the selection bias due to 

unobservables. 

 The estimation is performed in two stages: 

Stage 1: Obtain    by estimating the selection equation   
     

    . 



47 

 

 

Stage 2: Estimate       
    

   
       

       
     and       

    
   

        

         
    . The 

difference between    
  and    

  will be the estimate of the ATE in this model. 

 What makes it possible to estimate the hidden (unobserved) bias is the fact that only the 

knowledge of the mean effect of the unobservable factors in the treatment selection on the 

outcome given the observed data is necessary. This effect can be calculated from truncated 

bivariate distributions of the unobservables as long as the distributions are specified. It is 

estimated in the first stage and added to the second stage for error correction. 

 The Heckman treatment effect model is highly parameterized and requires strong 

distributional assumptions for both the outcome regression and the treatment selection model. 

The error correction variable had the correct functional form only when the outcome regression 

is linear, the treatment selection is modeled as probit, and the error terms follow a bivariate 

normal distribution. If any of these requirements are not met, the error correction variable will 

not correct the selection bias. 

 

 2.9 Summary of the current methodological issues in observational studies 

 Selection bias presents a great challenge in observational studies. While several bias 

correction methods are well described in the literature, no unified approach exists in identifying 

the preferred method under specific settings of applied research. Statistical methods address bias 

correction when selection is on observables, and econometric models are designed to correct the 

hidden bias when selection is on unobservables. The main difficulty arises from the fact the key 

assumptions about the selection process that warrant the unbiased estimates of the ATE cannot 

be empirically tested. Researchers can only attempt to build a convincing case that all important 

covariates have been assessed or employ actual randomization of treatment assignment, which 
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ensures that all observed and unobserved covariates are on average balanced prior to treatment 

administration.  

 A thorough understanding of the sources of selection bias is critical for estimating 

treatment effects in observational studies. In simulation settings, when all observable covariates 

are accounted for, the Heckman treatment effect model yields a highly biased estimator of the 

ATE, while regression adjustment, PSM, and AI estimator meet the expectations of correcting 

the overt bias quite adequately (Guo, 2010). Guo also demonstrates that all four methods yield 

biased estimates under selection on observables with an omitted variable, with the Heckman 

treatment effect model bias being the largest of the four.  

 The treatment effect model requires the assumption about a nonzero correlation of error 

terms in selection and outcome equations and strongly depends on correct model specification. 

This requirement is more pronounced that that of OLS regression. With no definite procedure to 

test conditions under which the assumptions of the Heckman model are violated, the estimation 

results  should be interpreted with caution. 

 Balancing methods and regression adjustment require the ignorable treatment assignment 

assumption to produce unbiased estimates of the ATE, and are designed to remedy the overt bias, 

but fail to provide accurate estimates when hidden bias is present. The PSM methods and 

regression adjustment rely heavily on correct model specification. Matching methods without 

propensity scores do not involve estimation of unknown functional forms and are easy to 

implement, but due to dimensionality problem, their applicability is limited to situations when 

the number covariates is small. 

 Matching with and without propensity scores has several weaknesses. The decision to use 

matching with or without replacement as well as choosing the number of matches for each 
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treated unit is a tradeoff between precision and bias. Matching with replacement is a better 

alternative when very few relevant control units are available for comparison. It minimizes the 

distance between the matched pairs, and is beneficial in terms of bias reduction. Matching 

without replacement increases bias and can produce results that are sensitive to the order in 

which the matches are done, but improves the precision of the estimates. 1-to-1 matching 

produces the smallest distance between the matched pairs and reduces bias. At the same time, the 

precision of estimates with 1-to-1 matching suffers because large amount of information 

available from the data is discarded in the process. 

 Matching algorithms commonly used in propensity score matching are nearest neighbor 

with caliper, kernel and interval matching. Morgan and Winship (2007) demonstrate that the 

choice of the matching algorithm affects the estimation results when everything else is held 

constant.  The performance of these matching algorithms remains debatable, with little evidence 

as to which algorithm is more efficient in particular settings.  

 The existing models for bias correction may be sensitive to the sample size and to the 

ratio of treated and controls in the sample. Kennedy (2003), for example, casts doubts about the 

accuracy of the estimation results from the Heckman treatment effect model when the sample 

size is small. To gain more insights into this issue, I investigate the performance of several bias-

correction methods under different settings for sample size and sample imbalance in Chapter 3.   
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CHAPTER 3 

SIMULATION STUDIES: RESULTS AND IMPLICATIONS 

 The nature of the data available for observational studies involving causal inference and 

sample selection bias may often lead to a problem of imbalanced samples where the number of 

control units is much larger than the number of treated cases. To investigate the impact of sample 

imbalance on the accuracy of estimates of ATE obtained through different corrective methods, I 

conducted a Monte Carlo simulation study under a variety of settings for the sample size and 

proportions of treated and control cases in a sample. 

  I compared five models: the OLS regression, propensity score matching with a 

postmatching regression analysis, the doubly robust matching estimator, the Abadie and Imbens 

matching estimator, and the Heckman treatment effect model using maximum likelihood 

estimation. The models selected for the Monte Carlo study are designed to estimate the ATE, as 

opposed to, for example, kernel based matching that estimates only the average treatment effect 

for the treated.  

 As discussed in Chapter 2, the first four models require the assumption that the treatment 

assignment is exogenous and random conditional on specified covariates, or, in other words, that 

that selection is on observables. It implies that that treatment assignment is independent of the 

potential outcome if all covariates are observed and held constant. In contrast, in the Heckman 

treatment effect model treatment selection is viewed as a nonrandom choice. It employs the 

conditional probability of receiving treatment to control for selection bias in the outcome 

analysis, and therefore the Heckman treatment effect model does not require the selection on 

observables assumption.  
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 To emphasize the importance of underlying model assumptions, I adopted the data 

generation scenarios that mirror both types of selection bias as suggested by Guo and Fraser 

(2010). The data generation process adopted allows comparing the performance of the estimators 

under different types of selection bias as well as under different settings for the sample size and 

proportion of control cases in a sample. 

 

 3.1 Research Questions for the Simulation Study 

 I use two data generation settings to mimic the two types of selection bias: selection on 

observables and selection on unobservables. The two types of selection bias and their 

implications for the ATE estimation are discussed in detail in Chapter 2 of this dissertation. The 

sample sizes are set at        ,       , and       . One setting for proportion of 

controls is       , which represent a balanced sample. The other two settings,         and 

      , reflect the varying degrees of imbalance. The number of repetitions for the Monte 

Carlo simulation is set at 10,000. 

 The goal of this Monte Carlo simulation is to compare the performance of the estimators 

of the ATE across the five models under different settings for the bias selection, sample sizes, 

and degrees of sample imbalance in terms of the ratio of treated and controls. It aims to address 

the following 4 research questions: 

1) Within each setting for the selection bias, given a balanced sample, which model 

performs the best, and how are the five models ranked on bias and mean square error 

criteria? 

2) What is the effect of sample size on the accuracy of the estimates within each setting for 

the selection bias? 
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3) Within each setting for the selection bias, how sensitive are the models to sample 

imbalance in terms of bias and mean square error criteria? 

4) Do the increased sample size and perfect sample balance help improve the accuracy of 

the estimates when the model assumptions are violated? 

It is worth noting that this Monte Carlo study simulates very limited settings of data 

generation, and its conclusions cannot be generalized to other settings. The main purpose of the 

study is to demonstrate that the performance of the models under a common setting of data 

generation will vary, and the variation in performance will be magnified in smaller samples with 

higher degrees of imbalance between treated and control groups.      

 

 3.2 Data Generation  

 The data generation process adopted here is based on the counterfactual model 

framework presented in Section 2.2 of this dissertation, and is designed to account for selection 

on observables, selection on unobservables, and selection on observables with an omitted 

variable. 

 Setting I: Selection on observables 

 To approximate selection on observables,   , the covariate that affects the treatment 

assignment, should be correlated with   , the error term of the outcome equation, while    and 

  , the error term of the selection equation, are uncorrelated. Following Guo (2010), I use three 

covariates (         ) that affect the outcome y, allow z to determine the treatment assignment w 

only, and    to affect both the outcome and the treatment assignment. The outcome Y is 

generated as  

                                                                    .                                (3.2.1) 
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The true selection equation is 

                                                                                                                           (3.2.2) 

The covariates x1, x2, x3, and Z and the error term u are random variables that are normally 

distributed with a mean vector (3 2 10 5 0), standard deviation vector (.5 .6 9.5 2 1) and the 

symmetric correlation matrix as defined in (3.2.3): 

                                  

 
 
 
 
 
  
   
     

  
 
 

 
 

     
     

 
 
 
 

.                                         (3.2.3) 

The error term of the selection equation, ν, is a random variable from a standard normal 

distribution, and    , if              , and     otherwise. 

This specification creates a correlation of .4 between Z and u, and a zero correlation 

between u and ν. This correlation structure meets the requirements for simulating selection on 

observables, as shown in Figure 2.2.1a in Section 2.2 of this dissertation. Under this 

specification, the true ATE in the population is known and equal to .5, as shown in (3.2.1). 

Setting II: Selection on unobservables 

 Selection on unobservable requires    and    to be uncorrelated while nonzero correlation 

exists between    and   . Selection on unobservables is shown in Figure 2.2.1b in Section 2.2 

For the second setting to mimic selection on unobservables, the outcome and treatment 

assignment are generated by the same processes as described by (3.2.1) and (3.2.2), with a few 

modifications in the error structure of the selection equation and in the correlation matrix.  

 The error term ν of the selection equation now follows  

                                                                             ,                                                     (3.2.4) 
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where   is a standard normal random variable, and ε is a zero mean normally distributed random 

variable, which is correlated with u. The correlation matrix                   is now defined as  

                                                            

 
 
 
 
 
 
 
    
     
       
       
       

 
  
     

 
 
 
 
 

                              (3.2.5) 

 Setting III: Selection on observables with an omitted variable 

 For the third setting, selection on observables with an omitted variable, I omit Z , the 

covariate affecting selection equation, from all models, which creates overt selection bias while 

the data generation process remains the same as in setting 1. 

 

 3.3 Model Specifications  

 For selection on observables and selection on unobservables settings all five models have 

the same specification. OLS regression includes all four covariates and is modeled as shown by 

(3.3.1): 

                                                                               ,                           (3.3.1) 

where    is the estimate of the ATE in each repetition.  

 The propensity scores are estimated using the logistic regression model in (3.3.2): 

                                                             
 

                                
 .                                (3.3.2) 

The estimated propensity scores are then used to match each treated case to a control case using 

nearest neighbor with caliper. The caliper width is set at a quarter of the standard deviation of the 

estimated propensity scores, and matching is performed without replacement. For postmatching 

analysis, I fit the OLS regression model described in (3.3.1) using the matched sample. 
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The DBR estimator uses the estimated propensity scores as defined by (3.3.2) and the 

predicted values from the two OLS regressions as specified in (3.3.1). The first regression model 

is fitted for the treatment group only (Wi = 1), and then the predicted values are obtained for the 

whole sample. This gives the values for       , the regression augmentation term. The second 

OLS regression model is fitted for the control cases in a similar way, and its predicted values 

form       . The ATE for the DBR estimator is calculated using (2.7.1) in each iteration of the 

Monte Carlo simulation. 

 The outcome regression equation for the Heckman treatment effect model is  

                                                                                  .                              (3.3.3) 

The selection equation is  

          

                                                                                                     (3.3.4) 

The conditional probabilities are defined as                    and        

             , and the model is estimated by the maximum likelihood estimation. The 

selection equation in the HE model includes only Z, which is different from the PSM model 

where the logistic regression employs x1, x2, x3, and Z. When all the covariates are included in 

the HE model, it does not converge. However, the current specification captures the main 

features of selection on observables and is the best possible model in these settings. 

 The covariates for the Abadie and Imbens matching estimator include x1, x2, x3, and Z. 

The vector norm is calculated based on the inverse of the sample variance matrix using R-

package “Match”. 
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 3.4 Criteria for Performance Assessment 

 Following Guo (2010), I use two criteria to assess the performance of the bias correction 

methods. One criterion is the estimated bias. I average the estimated values of the ATE obtained 

for each of the 10,000 samples, and because the true ATE is known, the difference between the 

average estimated ATE and the true ATE provides an estimation bias for a given model. 

 The second criterion is the estimated mean square error (MSE), which is estimated as 

follows:  

                                                           
    

 
             

    .                                (3.4.1) 

 MSE provides a measure of the variation of the sampling distribution for the estimated 

treatment effects. A small MSE value as defined in (3.4.1) indicates low variation. 

 3.5 Simulation Results I: Selection on Observables 

 The simulation results obtained under selection on observables are summarized in Table 

3.1. Overall, The OLS regression produced the best results, followed closely by the propensity 

score model and the AI estimator. On average, the bias for the ATE remained well below ±1% 

even in smaller samples with only 10% of treated cases when the OLS and PSM models were 

used for estimation. The PSM model performed slightly better than the OLS regression in highly 

imbalanced samples based on the estimated bias, but showed higher variability.  

 The superior performance of the OLS and the PSM models is due to the fact that the 

model assumptions were satisfied by the data generation process, and x3 and Z, the main 

variables that determine treatment assignment, were controlled for in the analysis. In practice, x3 

and Z might not be the only factors affecting treatment assignment, may not be available or 

collected, and the error term of the outcome equation u may be correlated with another variable  
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Table 3.1. Simulation Results under Selection on Observables 

  Mean ATE  MSE  Bias  

  n=200 n=500 n=1000 n=200 n=500 n=1000 n=200 n=500 n=1000 

OLS 

         
Pc= .5 0.4991 0.5002 0.4988 0.0297 0.0116 0.0056 -0.18% 0.05% -0.25% 

Pc= .75 0.4988 0.5027 0.4995 0.0351 0.0142 0.0070 -0.25% 0.53% -0.09% 

Pc = .9 0.4973 0.5010 0.5001 0.0604 0.0241 0.0118 -0.54% 0.20% 0.02% 

PSM                   

Pc= .5 0.4982 0.5005 0.4985 0.0335 0.0128 0.0061 -0.36% 0.10% -0.29% 

Pc= .75 0.4989 0.5023 0.5000 0.0466 0.0172 0.0083 -0.22% 0.45% -0.01% 

Pc = .9 0.5005 0.5007 0.4997 0.1327 0.0373 0.0166 0.09% 0.14% -0.06% 

DBR                   

Pc= .5 0.5229 0.5190 0.5144 0.0647 0.0278 0.0144 4.58% 3.80% 2.89% 

Pc= .75 0.5605 0.5506 0.5391 0.1274 0.0601 0.0319 12.10% 10.11% 7.82% 

Pc = .9 0.6288 0.6244 0.6036 0.4674 0.2267 0.1355 25.75% 24.88% 20.71% 

AI                   

Pc= .5 0.4982 0.5001 0.4984 0.0523 0.0214 0.0108 -0.36% 0.02% -0.33% 

Pc= .75 0.4958 0.5024 0.5014 0.1253 0.0555 0.0288 -0.84% 0.48% 0.28% 

Pc = .9 0.4849 0.5007 0.5031 0.6025 0.2520 0.1400 -3.01% 0.15% 0.63% 

HE                   

Pc= .5 1.9120 1.8793 1.8748 2.8637 2.2331 2.0523 282.40% 275.86% 274.96% 

Pc= .75 1.9643 1.8866 1.8752 3.5012 2.3646 2.1073 292.86% 277.33% 275.03% 

Pc = .9 2.2189 1.9594 1.9272 6.9040 3.2034 2.5303 343.77% 291.88% 285.44% 
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instead of Z. These conditions are restrictive, and should be carefully considered in observational 

studies. 

 The Heckman treatment effect model failed in all settings with true selection on 

observables overestimating the true effect by 275%-344%, on average, with very high MSE’s 

ranging between 2.05 and 6.90. These results were consistent with other empirical findings that 

emphasize the HE model sensitivity to model assumptions, and with the underlying theory. The 

error terms of the outcome and selection equations in the HE model are required to have a 

nonzero correlation. This requirement was violated by the data generation process under 

selection on observables, which resulted in highly biased and completely unreliable estimates of 

the ATE. The findings of the simulation study emphasize the fact that the assumption of nonzero 

correlation of the two error terms in the HE model is crucial for obtaining unbiased estimates of 

the ATE using this method. 

 Balanced samples with equal proportions of treated and control cases produced the most 

stable estimates of the ATE across all five models. Overall, smaller sample size and increasing 

imbalance between the numbers of treated and control cases resulted in larger MSE for all the 

estimates of the ATE. The AI estimator worked well with a balanced ratio of treated and controls 

and was ranked third among the five models. It became increasingly unstable with a high 

proportion of controls (pc = 0.9) even in larger samples compared to the OLS regression and the 

PSM model. However, the results of the AI estimation were still reliable when proportion of 

controls was at 0.75, with an estimated bias of less than ±1% . 

 The results of the DBR estimator were somewhat unexpected. The DBR estimator is 

designed to be unbiased if at least one of the models (regression or PSM) is specified correctly. 

The augmentation component of the DBR estimator of the ATE is constructed in such a way that 
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if either regression or PSM bias term is equal to zero, then it removes the other, nonzero bias 

term from the incorrect model. When selection on observables was simulated, both the 

regression and the PSM model had a correct specification and performed well, while, 

surprisingly, the DBR estimator produced noticeably higher bias. In particular, with proportions 

of controls above 0.5, the method overestimated the true effect by 8% to 26%. It also appeared to 

be much more sensitive to the sample imbalance compared to the top three models and 

deteriorated at a significantly faster rate than the AI estimator. Kang and Schaffer (2007) discuss 

this phenomenon and point out that when the regression model is specified correctly, adding 

additional augmented terms results in overfitting the model and does not improve the OLS 

estimates. 

 3.6 Simulation Results II: Selection on Unobservables 

 In selection on unobservables, the HE model worked relatively well in terms of the 

estimation  bias, on average, but the MSE’s for the HE estimates were the highest among the five 

models (Table 3.2). Given that in this particular setting all the model assumptions for the HE 

model were satisfied, the results are not encouraging. In balanced samples, the bias for the HE 

estimates was between -2% and .5%, but the MSE with small samples was 0.98, as opposed to 

the MSE of 0.06 for the OLS regression model. The HE model was not robust to sample 

imbalances and exhibited a significant decline in performance when proportion of controls 

increased to 0.75. At pc = 0.9, the HE overestimated the true ATE by 8% to 14%, but the model 

became unstable yielding MSE’s as high as 4.32 for n = 200. Overall, the performance of the HE 

model was the worst with small sample sizes for both balanced and unbalanced samples, which 

is consistent with other empirical findings suggesting that the HE model is not recommended for 

small samples (Kennedy, 2003). 
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Table 3.2. Simulation Results under Selection on Unobservables 

  Mean ATE  MSE  Bias  

  n=200 n=500 n=1000 n=200 n=500 n=1000 n=200 n=500 n=1000 

OLS 

Pc= .5 0.66 0.67 0.67 0.0607 0.0412 0.0350 32.74% 33.17% 33.62% 

Pc= .75 0.66 0.66 0.66 0.0669 0.0410 0.0331 31.79% 31.51% 31.65% 

Pc = .9 0.65 0.65 0.65 0.0954 0.0515 0.0379 30.88% 30.59% 30.53% 

PSM 

Pc= .5 0.68 0.68 0.68 0.0795 0.0498 0.0406 35.04% 35.19% 35.44% 

Pc= .75 0.68 0.68 0.68 0.1091 0.0576 0.0451 35.74% 35.34% 35.71% 

Pc = .9   0.69 0.68   0.0983 0.0631   37.41% 36.94% 

DBR 

Pc= .5 0.73 0.72 0.72 0.1245 0.0812 0.0658 45.28% 44.50% 44.25% 

Pc= .75 0.80 0.78 0.77 0.2343 0.1403 0.1081 59.20% 55.74% 54.30% 

Pc = .9 0.96 0.94 0.90 0.7491 0.4438 0.2971 92.78% 88.23% 79.28% 

AI 

Pc= .5 0.69 0.69 0.70 0.0968 0.0627 0.0519 38.19% 38.76% 39.43% 

Pc= .75 0.71 0.72 0.72 0.1933 0.1080 0.0814 42.64% 43.28% 44.01% 

Pc = .9 0.78 0.78 0.77 0.7805 0.3699 0.2358 56.10% 55.97% 54.67% 

HE 

Pc= .5 0.50 0.49 0.50 0.9757 0.3808 0.1872 0.37% -1.94% 0.49% 

Pc= .75 0.52 0.53 0.52 1.4367 0.5344 0.2589 4.51% 6.15% 4.54% 

Pc = .9 0.54 0.57 0.56 4.3242 1.2846 0.6060 7.67% 13.72% 11.43% 
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 The performance of the OLS regression worsened under selection on unobservable. On 

average, the ATE estimates were highly biased (overestimation of 30.5% to 33.6%), with MSE’s  

much higher than under selection on observables, though still lower than the MSE’s produced by 

other models in this setting. The results from the PSM model were similar to the ones from the 

OLS regression, but the bias and MSE were slightly higher for the PSM model. As with selection 

on observables, both the OLS regression and the PSM model were robust against sample 

imbalance and their performance did not decline significantly in smaller samples.  

 The AI and DBR estimators broke down as the data became more unbalanced in terms of 

the number of treated and control cases. The estimated bias increased from 38% to 56%, 

accompanied by a higher variability (the MSE went up from 0.1 to 0.8) for the AI estimator as 

the samples become more imbalanced. The deterioration in the quality of the DBR estimates was 

even more pronounced with a twofold increase in the estimated bias. The DBR model 

overestimated the true ATE by 79% to 93% when pc was set at 0.9. The results of the simulation 

suggest that using fewer controls may help achieve superior performance for these two 

estimators. 

 

 3.7 Simulation Results III: Selection on Observables with an Omitted Variable 

 Setting 3, selection on observables with an omitted variable, is likely to be a more 

realistic scenario for many applications. It describes the case of overt bias that occurs when 

researchers are not able to include all the relevant confounders in the model. This violates model 

assumptions for the OLS regression, the PSM model, as well as for the AI estimator, and creates 

biased estimates of the ATE. The results of the simulation obtained in setting 3 were consistent 
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with the theory, and brought the bias-correction properties of the DBR estimator to the spotlight 

(Table 3.3). 

 The DBR estimator outperformed the rest of the models considerably in terms of both the 

estimated bias and the MSE. On average, it overestimated the true effect only by 4% or 5% for 

well balanced samples, and by 8% to 13% for larger samples with 25% of treated cases, but was 

not robust against highly unbalanced data even for large samples.  

 The OLS regression, PSM model, and AI estimator failed to produce reliable results in 

this setting. All three models consistently overestimated the true effect by 93%-96%, and by over 

100% when samples were highly unbalanced. The MSE’s produced by these three models were 

also much higher than the ones from the DBR estimator.  

Because the OLS and PSM models produced very similar bias estimates, I reran the 

simulation using several settings of coefficients for the outcome equation to generate the data.  In 

each case the same pattern of common bias estimates occurred with the same direction of bias.  

Furthermore, the results of the DBR estimator were not significantly affected by those changes. 

 The HE model showed a lot of variability in the estimation of the ATE did not converge 

under misspecified selection on observables using R package “sampleSelection”. 

 3.8 Implications of the Simulation Results for the Estimation of Treatment Effects 

 According to the results of this simulation study, no single model works well in all 

scenarios. The quality of the results strongly depends on the fit between the assumptions 

embedded in a model and the process of data generation. While the results obtained in the first 

two settings were consistent with what one would expect given the data generation process, 

particularly with the OLS and the PSM models, there are no guarantees that the data at hand fits 

perfectly under either selection on observables or selection on unobservables scenario.  
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Table 3.3. Simulation Results under Selection on Observables with an Omitted Variable 

  Mean ATE  MSE  Bias  

  n=200 n=500 n=1000 n=200 n=500 n=1000 n=200 n=500 n=1000 

OLS 

         
Pc= .5 0.97 0.97 0.97 0.2418 0.2278 0.2230 93.30% 93.41% 93.45% 

Pc= .75 0.97 0.98 0.98 0.2559 0.2393 0.2334 94.78% 95.26% 95.34% 

Pc = .9 1.00 1.01 1.01 0.3131 0.2856 0.2748 100.65% 102.31% 102.54% 

PSM 

         
Pc= .5 0.97 0.97 0.97 0.2509 0.2312 0.2239 93.27% 93.49% 93.36% 

Pc= .75 0.98 0.98 0.98 0.2807 0.2484 0.2383 95.90% 95.94% 95.83% 

Pc = .9 1.03 1.03 1.03 0.4092 0.3266 0.2982 105.73% 106.23% 105.24% 

DBR 

         
Pc= .5 0.53 0.52 0.52 0.0644 0.0274 0.0148 5.10% 3.82% 3.57% 

Pc= .75 0.56 0.55 0.54 0.1294 0.0581 0.0324 12.77% 9.16% 7.90% 

Pc = .9 0.64 0.62 0.61 0.4773 0.2306 0.1356 27.37% 24.58% 21.62% 

AI 

         
Pc= .5 0.97 0.98 0.98 0.2526 0.2372 0.2324 94.74% 95.06% 95.24% 

Pc= .75 1.01 1.01 1.01 0.3130 0.2841 0.2745 102.14% 102.83% 102.88% 

Pc = .9 1.10 1.11 1.12 0.5558 0.4442 0.4160 120.24% 122.40% 123.51% 

HE 

         
Pc= .5 0.09 0.78 0.74 0.7937 0.9930 0.5351 -81.93% 56.79% 47.20% 

Pc= .75 

         
Pc = .9                   
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 In majority of applications the information regarding the tenability of model assumptions 

is not available as it is often not known if a study omits important covariates. Therefore, 

empirical findings must be conditioned on a discussion of model assumptions. The assumptions 

that ensure the unbiasedness of the estimates of the treatment effects should be disclosed and the 

conditions that may compromise the estimation should be discussed. 

 The HE model failed to produce accurate estimates of the ATE even under selection to 

unobservables due to high variability, and was extremely unreliable under selection on 

observables. Overall, the HE model appears to be more sensitive to the embedded model 

assumption, the sample size and the degree of sample imbalance in terms of the ratio between the 

treated and control cases than the rest of the models included in the study. Its poor performance 

under the ideal data generation settings with small samples raises serious concerns about the 

validity of estimation results. 

 The OLS regression and the PSM model appear to work well, but only in very restrictive 

settings that require previous knowledge about the main sources of selection bias as well as the 

availability of all relevant covariates and their correct specification in the model. It is worth 

noting, that the OLS regression and the PSM model outperformed the matching estimator under 

all three settings, with the OLS regression model always coming first among the three. 

 In the light of the tenability of model assumptions, the DBR estimator deserves special 

attention. It performed relatively well in the presence of overt bias, when all the other models 

failed to provide reasonably unbiased estimates of the ATE. Given that the presence of an 

omitted variable is a strong possibility in estimating pathway effects, the results of the DBR 

estimation should be considered together with those obtained through regression adjustment and 
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PSM. The DBR estimator may offer protection against the overt bias if the proportion of controls 

does not exceed 0.75 and the sample size is sufficiently large. 

 The degree of sample imbalance and the sample size appear to increase the variability of 

the estimates across all models, which has been particularly evident with the AI and the DBR 

estimators, while the OLS and the PSM models have shown more robust results. All models 

showed an increase in the estimated bias due to sample imbalance, and for some the loss of 

accuracy was very pronounced. One of the key findings of this simulation study is the improved 

performance of the models in the samples with similar proportions of treated and control cases. 

This finding should be taken into consideration at the stage of a study design when identifying 

control and treated groups, and has several implications for the model selection when samples 

are imbalanced.   

 While larger sample size did not always translate into increased accuracy of the estimates 

in terms of the estimated bias, the effect of the sample size on their variability was evident across 

all models in all settings. Reduced MSE’s were reported for all the estimates of the ATE when 

sample size increased. Even though researchers often do not have control over the sample size, it 

should be given serious consideration at the model selection stage and included into the 

discussion of the estimation results. 
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CHAPTER 4 

A CASE STUDY: BIAS CORRECTION MODELS FOR ESTIMATING 

PATHWAY EFFECTS 

 This chapter focuses on the analysis of pathway effects on the LOS and 30-day 

readmission rate based on a sample of COPD patients admitted to the University of Tennessee 

Medical Center (UTMC) between January 1, 2012 and June 30, 2014. It opens with a discussion 

of the motivation behind the analysis and then provides a detailed description of the study 

design, including the choice of the two control groups, data description and limitations, and 

identification of potential confounding factors and important covariates for adjustment.  

 The estimation of the effects of the COPD pathway is performed using three methods of 

bias correction: regression adjustment, propensity score matching with postmatching regression 

adjustment, and the doubly robust estimator. The choice of the estimation methods is governed 

by the tenability of model assumptions and by the results of the simulation study presented in 

Chapter 3. The estimation results obtained using the original sample and the data with imputed 

missing values are compared across the three models, followed by a discussion about the 

implications of the study.  

 4.1 Motivation for the Study 

 The Affordable Care Act, signed into law on March 23, 2010, aims to ensure wider 

access to healthcare, and contains many provisions to improve healthcare outcomes and reduce 

costs through increased competition, regulation, and incentives to expand the use of information 

technologies and streamline the delivery of healthcare. One such provision is implementation of 

electronic medical records (EMR) and the corresponding computerized physician order entry 



67 

 

 

(CPOE) system, which standardize much of the billing and health records, allowing for secure 

transferability and access at a lower cost.  

 The use of informational technologies also facilitates the creation of new tools for 

clinicians that seek to improve quality of care and deliver better outcomes. The standardized 

patient care pathway is one example of such tools. It is a multidisciplinary evidence-based care 

plan that defines and optimizes the essential steps in the care of a specific group of patients with 

a predictable clinical course. The goals of clinical pathways are defined by applying process 

management thinking to patient care and include limiting undesirable variation in patient care, 

maximizing clinical efficiency, and creating a standardized approach built around best practices 

and optimal resource allocation. 

 In September of 2013 the UT Medical Center launched a new model of patient care 

delivery based on the concept of standardized patient care pathways. The pathways are built 

electronically to be used together with the CPOE system, and are being implemented as a 

hospital-wide policy. The key research goal of this study is to develop a rigorous evaluation 

methodology and use it analyze the effects of a COPD pathway on the length of stay (LOS) and 

30-day readmission rates, in order to determine if the use of a pathway improves healthcare 

outcomes for COPD patients. 

 The absence of randomization in pathway assignment in this study opens up basic 

analyses methods to potential biases as discussed in Chapter 2 and 3.  To address this I apply 

bias correction methods for the estimation of pathway effects that are rooted in the theory of the 

counterfactuals. The key idea in the theory of counterfactuals is that each subject has a potential 

outcome under each treatment state, which in this study translates into two sets of clinical 

outcomes for each patient: one under care received with a pathway approach and the other 
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resulting from a traditional care delivery. Because it is impossible to observe both sets of 

outcomes for any one patient, causal effects cannot be calculated at the individual level. Instead, 

the counterfactual model estimates the average treatment effects at the population level using the 

outcomes from the treated and control groups as estimates for the counterfactual, or unobserved, 

outcomes. Patients who did not have pathways assigned to them will form a control group, and 

patients who received care under a pathway model will be considered the treated group. 

  4.2 Data Description 

 As mentioned above, the data set for the analysis includes COPD patients admitted to the 

UTMC during the period from January 1, 2012 through June 25, 2014 (with the latest patient 

discharge date being June 30, 2014). Patients admitted during the period of September 1, 2013 - 

December 31, 2013, when pathways were used without a compliance tracker, were excluded 

from the analysis.  

 Since misclassification of the COPD diagnosis is likely on admission (Smith et al., 2004), 

only patients with principal diagnosis of COPD at discharge were included in this study.  Among 

the total of 970 COPD patients, there were 737 patients from the pre pathway period (January 

2012 – August 2013), 172 patients that were assigned a COPD pathway (January 2014 – June 

2014), and 61 patients that did not have a COPD pathway assigned when pathways were already 

in use (January 2014 – June 2014). 

 The data collected for this study comes from both the clinical and the administrative 

databases of the hospital, and includes patient demographic characteristics (age, gender, race, 

insurance type), clinical characteristics (vital signs on admission, classical COPD risk factors, 

procedures and secondary diagnoses) as well as hospital characteristics (number of beds 

available and patient days). Table 4.1 contains the summary statistics for all of the continuous 
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Table 4.1.  Summary statistics for the COPD patients, January 1, 2012 – June 30, 2014 

  

LOS, 

days 

LOS, 

hours Age Temp HR BPs BPd Oxygen BMI eGFR Braden HCa HCd CCI 

n 970 970 970 970 970 970 970 970 970 970 970 970 970 970 

n, missing 0 0 0 1 1 0 0 1 37 54 2 12 0 0 

min 1 9 31 95 48 13 38 46 12 4 7 0.58 0.57 0 

max 50 1184 98 104 166 238 180 100 75 437 23 0.94 0.94 9 

range 49 1175 67 9 118 225 142 54 63 433 16 0.36 0.37 9 

median 4 101 67 98 93 140 74 95 26 66 20 0.76 0.75 1 

mean 5.02 129.75 66.59 98.08 94.83 143.15 76.97 93.33 27.64 69.17 19.68 0.75 0.75 1.34 

std.dev 4.40 104.30 11.28 0.95 19.38 28.39 15.83 6.12 8.62 32.74 2.74 0.0538 0.0541 1.39 
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variables available for the analysis based on the entire sample of the COPD patients initially 

considered for the study.  

 The LOS, reported in days, was recalculated to be measured in hours based on the exact 

admission and discharge time in the clinical risk reports for each patient. The LOS measured in 

hours was used as the outcome variable in the analysis. The average LOS for the entire sample of 

the COPD patients during the study period was 5.02 days, or 129.75 hours, 1 day was reported as 

the shortest LOS, and the LOS of 50 days was the longest in the sample. Since a LOS of more 

than 9 days is considered unusual for most DRGs, the outlier diagnostics are necessary when 

assessing the estimation results.  

 The measures of hospital congestion on admission (HCa) and at discharge (HCd) were 

calculated as a daily ratio of patient days and observation days to beds available, and as such, 

higher values for HCa and HCd denote higher daily hospital congestion. On average, the hospital 

was operating at a 75% capacity level over the study period, with some days reaching as high as 

94% of total capacity. 

 The distributions of age, temperature, heart rate, and blood pressure appear to be normal, 

while Oxygen, BMI, glomerular filtration rate, eGFR (a measure of renal function,) and Braden 

score exhibit sample distributions that are highly skewed, and might result in leverage points 

which have a detrimental impact on the estimation. Charlson comorbidity index, CCI, is 

expected to have a right skewed distribution with a low mean (Hall, 2005), and the observed 

distribution of the CCI for the COPD patients in the sample is consistent with the theory.  

 Table 4.2 summarizes the categorical variables available for the analysis for the entire 

sample and for the control and treated groups. It shows that more than a third of patients in the  
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Table 4.2 Summary Statistics for categorical data 

  

All COPD 

patients 

Historic 

Controls 

Contemp. 

controls 

Pathway 

patients 

Historic 

Controls 

Contemp. 

controls 

  Count Freq. Count Freq. Count Freq. Count Freq. Std Diff, % Std Diff, % 

Gender 

          Female 481 0.52 374 0.53 27 0.47 80 0.50 -3.89 4.88 

Male 446 0.48 335 0.47 31 0.53 80 0.50 3.89 -4.88 

           Race 

          Black 55 0.06 42 0.06 3 0.05 10 0.06 0.96 3.28 

Other 5 0.01 2 0.00 0 0.00 3 0.02 10.94 13.82 

White 867 0.94 665 0.94 55 0.95 147 0.92 -5.27 -8.40 

           Insurance 

          Self pay 18 0.02 16 0.02 2 0.03 0 0.00 -15.19 -18.90 

Private 296 0.32 227 0.32 16 0.28 53 0.33 1.67 8.53 

Medicare 407 0.44 318 0.45 30 0.52 59 0.37 -11.51 -21.38 

Medicaid 123 0.13 87 0.12 6 0.10 30 0.19 12.71 16.98 

           Readmission 

          No  585 0.63 421 0.59 46 0.79 118 0.74 21.79 -9.30 

Yes 342 0.37 288 0.41 12 0.21 42 0.26 -21.79 9.30 

           Tobacco 

          never a smoker 129 0.14 104 0.15 6 0.10 19 0.12 -5.83 3.44 

former smoker 333 0.36 261 0.37 25 0.43 47 0.29 -11.21 -20.40 

current smoker 385 0.42 304 0.43 14 0.24 67 0.42 -1.43 27.16 

           Total 927 1.00 709 1.00 58 1.00 160 1.00     
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sample were readmitted to the hospital within 30 days. The 30-day readmission rate is one of the 

measures used for the inpatient quality reporting program. The Hospital Readmissions Reduction 

Program, mandated by the Affordable Care Act, requires the Centers for Medicare and Medicaid 

(CMS) to reduce payments to hospitals with excess readmissions. The first penalty affecting 

payment was for discharges beginning October 1, 2012, and these penalties increase yearly up to 

a maximum of 3% reached in the fiscal year of 2015.  

 In the light of the recent policy changes, and taking into account the fact that almost 60% 

of the COPD patients admitted to the UTMC during the study period had Medicare or Medicaid 

insurance, understanding the effects of the COPD pathway on readmission rates becomes 

increasingly important. 

 Tobacco use is a behavioral risk factor for COPD, and must be controlled for in modeling 

the LOS and readmission rate. The Tobacco variable is constructed from the clinical data reports 

and has three categories that denote patient use of tobacco: never a smoker, a former smoker, and 

a current smoker. 78% of the COPD patients in the data set were either former or current 

smokers, while 80 patients (about 9%) have missing values for tobacco use. 

 There are two control groups identified in the study. The first control group, historical 

controls, consists of 709 patients from the pre pathway period, who were admitted to the hospital 

between January 1, 2012 and August 31, 2013. The second group, 58 patients who were not 

assigned a pathway during the period of January 1, 2014 – June 30, 2014, are referred to as the 

contemporaneous control group. Patients that had a COPD pathway assigned during the first half 

of the year 2014 become the treated group.  

 Potential weaknesses exist in the use of either control group to estimate the untreated 

potential outcome. Contemporaneous controls might overestimate the untreated outcome due to 
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from a spillover effect from existing pathways, and thus lead to underestimation of the pathway 

effects. In addition, if pathways increase the efficiency of hospital operations, the 

contemporaneous controls might have better outcomes due to the overall improvement in the 

system. If the same clinicians and nurses treating patients with and without pathways may 

implement certain pathway guidelines they consider efficient even when a pathway has not been 

initiated.  

 Historical controls, clearly free of existing pathways influences on outcome measures, 

may reflect the effects of other factors (e.g. changes in hospital discharge policy, implementation 

of new quality improvement tools in different areas of the hospital, effects of new legislative 

regulations in healthcare). These factors may either contribute to driving the magnitude of the 

estimated pathway effect up, or, on the contrary, diminish it.  

 The study considers both designs (with contemporaneous and historical controls) since 

measuring pathways spillover effects in a hospital setting and quantifying the effects of all 

possible changes over time is rather challenging, if not impossible.   

 Reduction in the LOS for expired patients is not indicative of a positive effect of the 

pathway, and as such should be singled out from the pathway effect on the LOS. The analysis of 

the LOS should be accompanied by examining the effects of pathway on the in-hospital 

mortality, as the LOS tends to decrease, on average, when mortality rates are higher. Currently, it 

is not feasible to investigate the effects of the COPD pathway on in-hospital mortality due to the 

insufficient sample sizes. In total, there were 43 expired patients total, 28 expired in the historical 

control group, 12 in the treated group, and only 3 among the contemporaneous controls. 

 After excluding expired patients from the dataset, the sample sizes for all three groups are 

slightly smaller: 709 historical controls, 160 treated cases, and 58 contemporaneous controls. 
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Table 4.3 describes summary statistics for the categorical variables in the control and treated 

groups after exclusion of expired patients.  

 The covariate imbalance prior to matching is evident in both designs. The categorical 

variables with high standardized differences for both the historical and contemporaneous 

controls are Insurance and Tobacco. The continuous variables with significant mean differences 

between groups in the design with the historical controls include Age, Braden score, HCa and 

HCd, and CCI. Their standardized mean differences, shown in the last two columns of Table 4.3, 

are greater than 10% , which also suggests that the imbalance is considerable (Normand et al., 

2001).  

 The imbalance in the design with the contemporaneous controls is mainly due to the 

Braden score and CCI. The mean differences are highly significant for the Braden score and the 

CCI. The corresponding standardized mean differences for these covariates are around 40%, and 

need to be addressed by regression adjustment and propensity score matching. 

 The existing covariate imbalance between the groups provides strong evidence that 

pathway assignment may be confounded with factors that are prognostic of the LOS and 

readmission rate for the COPD patients. The propensity score matching aims at balancing the 

data by matching the treated and control cases based on the predicted values for conditional 

probabilities of a patient being assigned a pathway, and the importance of assessing the covariate 

imbalance in a matched sample should be emphasized. According to the theory, the propensity 

score model that is specified correctly should balance the distribution of all the covariates 

between the treated and control groups in the matched sample, regardless of their inclusion in the 

logistic regression model used for estimating the propensity score. The model fit and data 

balancing are the two guiding principles in the model selection for propensity score matching. 
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Table 4.3 Summary statistics for the COPD patients by control and treated groups. 

 

  

LOS, 

days 

LOS, 

hours Age Temp HR BPs BPd Oxygen BMI eGFR Braden HCa HCd CCI 

nCH 709 709 709 709 709 709 709 709 683 677 708 700 709 709 

nCH, 

missing  0 0 0 0 0 0 0 0 26 32 1 9 0 0 

min 1 9 31 96 48 13 38 61 13 4 8 0.58 0.57 0 

max 41 985 93 103 154 238 145 100 64 437 23 0.86 0.86 9 

median 4 98 67 98 93 140 75 95 26 66 20 0.75 0.74 1 

mean 4.75 123.46 66.62 98.08 94.65 143.98 77.11 93.43 27.58 69.55 19.54 0.74 0.74 1.35 

std.dev 3.85 92.03 11.36 0.91 19.47 28.90 15.39 5.92 8.50 34.15 2.74 0.0520 0.0507 1.37 

std diff, % -7.52 -4.73 -18.1 8.9 2.0 -8.8 3.9 -11.5 3.0 -1.5 43.9 61.2 95.0 -20.3 

nT 160 160 160 159 159 160 160 159 152 144 160 160 160 160 

nT, missing  0 0 0 1 1 0 0 1 8 16 0 0 0 0 

min 1 20 43 96 51 80 48 46 13 24 13 0.68 0.68 0 

max 27 666 92 104 145 207 137 100 59 220 23 0.94 0.94 9 

median 4 101 64 98 93 139 76 94 27 68 22 0.77 0.79 1 

mean 4.48 119.35 64.61 98.17 95.03 141.56 77.72 92.70 27.84 69.10 20.67 0.77 0.78 1.08 

std.dev 3.41 81.73 10.88 1.10 17.71 26.41 16.07 6.70 8.69 26.81 2.38 0.0501 0.0489 1.31 

 

nCH 58 58 58 58 58 58 58 58 58 55 57 58 58 58 

nCH, 

missing  0 0 0 0 0 0 0 0 0 3 1 0 0 0 

min 1 32 40 96 59 89 47 73 12 17 14 0.69 0.69 0 

max 16 363 89 101 140 208 115 100 75 155 23 0.87 0.93 5 

median 4 97 69 98 90 139 73 94 28 72 20 0.79 0.79 2 

mean 5.29 132.19 67.26 98.04 92.72 140.31 73.60 93.29 29.79 69.28 19.74 0.78 0.78 1.66 

std.dev 3.93 87.33 10.22 1.06 19.41 28.28 15.38 5.28 10.76 29.97 2.47 0.0522 0.0483 1.54 

std diff, % -22.1 -15.2 -25.1 12.3 12.4 4.6 26.2 -9.8 -20.0 -0.6 38.4 -10.6 3.7 -40.2 
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 When pathway assignment is not random, simple comparison of the means across treated 

and control groups will provide biased results due to confounding of the pathway effects with 

other factors. The unadjusted mean differences for the LOS are shown in Table 4.4. The purpose 

of this study is to address the problem of selection bias through identifying the important 

confounders of the pathway effects and employing several statistical methods for bias correction, 

while ensuring that the identified confounding factors are sufficiently included in the models. 

 

Table 4.4 The Unadjusted Average Differences in the LOS and Readmission Rates. 

  ATE SE(ATE) 

LOS, Historical controls -4.11 0.0547 

LOS, Contemporaneous controls 12.84 0.0912 

Readmission, HistoricalControls -0.20 0.2554 

Readmission, Contemporaneous Controls 0.03 0.4828 

 

 

 4.3 Identifying Potential Confounders and Controls  

 Factors such as patient demographic and clinical characteristics, severity of illness, 

comorbidities, insurance, and hospital congestion can be viewed as potentially affecting both the 

clinical outcomes and a physician’s decision to initiate a pathway, and require serious 

consideration. 

 A vast majority of medical studies emphasize the importance of adjusting for 

comorbidities when evaluating treatment effects and modeling clinical outcomes. Comorbidities 

are diseases or disorders that coexist with a disease. Comorbid conditions may delay diagnosis, 

influence treatment choices, affect treatment progress, and confound the analysis. When 

selection bias exists, patients need to be stratified by risk for statistical analysis, and when bias is 



77 

 

 

related to comorbidities, a valid measurement of comorbid illnesses is essential for estimating the 

treatment effects (Hall, 2005). 

 A comorbidity index reduces all the coexisting conditions and the severity of those 

conditions to a single numeric score, thus facilitating comparisons across patients. While several 

general comorbidity indices are available for measuring the impact of comorbidities, the 

Charlson Comorbidity Index (CCI) is the only index designed using statistical methodology. 

Another advantage of the CCI is that it creates a continuous variable for scoring. The CCI in this 

study was computed based on the ICD-9 codes as described in Table 4.5 excluding the codes for 

the chronic pulmonary disease, the principal diagnosis for the patients in the data set. 

 

Table 4.5 Charlson Comorbidity Index 

Reported ICD-9 CM Codes Condition   CCI 

410 – 410.9 Myocardial Infarction 1 

428 – 428.9 Congestive Heart Failure 1 

433.9, 441 – 441.9, 785.4, V43.4 Peripheral Vascular Disease 1 

430 – 438 Cerebrovascular Disease 1 

290 – 290.9 Dementia 1 

490 – 496, 500 – 505, 506.4 Chronic Pulmonary Disease 1 

710.0, 710.1, 710.4, 714.0 – 714.2, 714.81,  

725 

Rheumatologic Disease 1 

531 – 534.9 Peptic Ulcer Disease 1 

571.2, 571.5, 571.6, 571.4 – 571.49 Mild Liver Disease 1 

250 – 250.3, 250.7 Diabetes 1 

250.4 – 250.6  Diabetes with Chronic 

 Complications 

2 

344.1, 342 – 342.9 Hemiplegia or Paraplegia 2 

582 – 582.9, 583 – 583.7, 585, 586, 588 –  

588.9 

Renal Disease 2 

572.2 – 572.8 Moderate or Severe Liver    

Disease 

3 

042 – 044.9 AIDS 6 
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  The type of insurance should be considered as a potential confounder, as it is likely to 

affect both the outcome variables (Fisher et al., 2001) and the pathway assignment. 

Reimbursement for Medicare and Medicaid patients that make up nearly 60% of the COPD 

patients in the data set requires hospitals to provide detailed reporting on procedures, providers, 

and billing schedules. If pathways are viewed as instrumental to improving documentation 

quality, physicians might be more inclined to initiate a pathway for Medicare and Medicaid 

patients than for privately insured or uninsured patients. The social and behavioral characteristics 

of Medicaid patients make them likely candidates for readmissions and for a prolonged hospital 

stay. Medicare patients are either at least 65 years old, or under 65 and disabled, and their LOS 

and readmission rates might differ significantly from the rest of the patient population. The 

proportions of readmissions, for example, differ significantly among the COPD patients in the 

data set based on their insurance type (p-value of 0.0014 for the chi square test).  

 Many studies suggest using a severity of illness indicator as an important covariate for 

the estimation of treatment effects (e.g., Khwaja et al., 2011, Kelly et al., 2013, and Marrie et al., 

2000) Mechanical ventilation is a commonly used indicator for the severity of illness in COPD 

patients (Brattebo et al., 2002), but poor reporting on procedures in 2014 UTMC data prevented 

the use of this variable in the analysis. 109 patients out of 233 in the period from January 1, 2014 

to June 30, 2014 did not have any procedures reported, while for 47 of them the recorded LOS 

was between 5 and 18 days. 63 of these patients were assigned a COPD pathway, and 46 were 

not. The severity of illness indicator would be missing for more than 75% of the patients in the 

contemporaneous control group given its size of 61 patients, and for more than a third of the 

pathway patients. Since this variable is not missing at random, applying traditional data 
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imputation algorithms is not recommended, and therefore the variable indicating the use of 

mechanical ventilation is not included in the model. 

 The Braden score is a tool that aims to help health care professionals assess a patient's 

risk of developing a pressure ulcer (Kozier, 2008). Braden score is calculated based on 

examining the ability of a patient to cognitively react to pressure-related discomfort, the degree 

of moisture the skin is exposed to as well as the degree of friction and sheer, the levels of 

physical activity and mobility, and a patient’s nutritional status.  The end-stage COPD patients 

are characterized by significantly lower levels of physical activity and mobility, as well as by a 

poorer nutritional status, and are more likely to have low scores on the Braden scale 

corresponding to higher risk. Therefore, Braden scores can be used as a proxy for the severity of 

illness indicator in COPD patients. 

 The standardized differences for the group means for the Braden score were around 40% 

for both historical and contemporaneous controls, and the t tests were highly significant as well 

(p<0.0001). The differences in the distribution of Braden scores for the pathway patients and the 

two control groups shown in Figure 4.1 suggest that Braden score may affect both the outcome 

variables and the pathway assignment, or, in other words, be a potential confounder.  Pathway 

patients, on average, have higher Braden scores than patients in both the historical and 

contemporaneous control groups, which may be indicative of a higher severity of the disease 

among the control patients. Therefore, failure to adjust for the Braden score in the model could 

create a bias in the estimates of the pathway effects. 

 While it is reasonable to assume that the pathway assignment could be driven by an 

individual physician’s preference, an individual physician’s effect is not accounted for in this 

study. Including it in the model would be challenging from a modeling perspective due to a large 
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Figure 4.1 Box Plots of Braden Score for Treated and Control Groups. 

  

number of categories, and potentially misleading given the current process of the data collection. 

 The attending physician that is reported for each patient is their attending physician at 

discharge, and it is likely that the pathway was assigned by a different attending physician 

present on admission. The reporting on attending physicians is not always accurate, as many 

records assign the role of an attending physician to an ER doctor in place of a specialist. Another 

challenge in capturing an individual physician’s effect is a high turnover rate of medical 

professionals at the UTMC, which results in a small area of overlap when comparing the treated 

group to the historical controls.  

 

 4.4 Model Specifications 

 Based on the extensive review of the current methodology for observational studies and 

taking into consideration the results of the simulation study discussed in Chapter 3 of this 

dissertation, I identified three bias correction methods for estimating the effects of the CPOD 
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pathway on the LOS and readmission rates. The three methods employed in the current analysis 

of pathway effects are regression adjustment, propensity score matching with postmatching 

regression adjustment, and the doubly robust estimator. 

 Regression adjustment and propensity score matching performed very well under 

selection on observables, including small and imbalanced samples. Given the small sample size 

(n=218) in the study design that uses contemporaneous controls, and assuming that all the 

important covariates are included in the model, regression and PSM are the best candidates for 

estimating pathway effects on the LOS and readmission rate.  

 While every effort has been made to account for potential confounders of the pathway 

effect and the outcome variables, the possibility of omitted variable bias cannot be ruled out. If 

such a variable exists, the results of regression and propensity score estimation will be biased due 

to violation of the model assumptions. Using the doubly robust estimator may remedy the bias in 

the estimates of the pathway effect given that at least one model is specified correctly. According 

to the results of the simulation study, the DBR estimator works relatively well when proportion 

of controls does not exceed 75% even in small samples. The proportion of historical controls is 

around 80%, and given a large sample size of 889, the DBR estimator might provide 

considerable protection against the overt bias. In the second study design, the contemporaneous 

controls make up about 40% of the sample, and the results of the DBR estimator should be 

contrasted to those from the regression adjustment and the PSM. 

 To estimate the effects of the COPD pathway on the LOS through regression adjustment, 

a regression model for count data is required. While both Poisson and negative binomial 

regression models are designed to analyze count data, the two regression models differ in regards 

to their assumptions of the conditional mean and variance of the dependent variable. Poisson 
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models assume that the conditional mean and variance of the distribution are equal. Negative 

binomial regression models do not assume an equal mean and variance and particularly correct 

for overdispersion in the data, which is when the variance is greater than the conditional mean 

(Simonoff, 2003; Faraway, 2006). The negative binomial regression produces a better fit for the 

LOS, and therefore, is a better modeling choice.  

 The probability distribution for a negative binomial variable that allows for different 

means    for each is    can be expressed as follows: 

                                                            
       

       
 

 

    
 

 

 
  

    
 

  

 .                                 (4.4.1) 

The means are based on the logarithmic link,           . The negative binomial parameters 

β and α, where   
 

 
 can be estimated using maximum likelihood. The asymptotic variance of    

can be estimated using 

                                                                        
   

       
   

  

.                                      (4.4.2) 

 The covariates for the negative binomial regression model for the LOS include age, 

temperature, blood pressure, oxygen, BMI, eGFR, Braden, CCI, tobacco use, insurance type, and 

hospital congestion on admission and at discharge. The probability of a readmission within 30-

days is estimated using a logistic regression with a similar starting set of covariates as the one 

identified for modeling the LOS. 

 The propensity score models are used to predict the probability that a patient would be 

assigned a COPD pathway on admission to the hospital. The list of factors that could potentially 

affect pathway assignment includes patient characteristics such as age, vital signs on admission, 

COPD risk factors such as tobacco use, eGFR, Braden score, and CCI, and external factors, 

mainly hospital congestion on admission and insurance type.  
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 To develop a propensity score model that balances the measured covariates, I used a 

structured, iterative approach, described Rosenbaum and Rubin (1984). In the first stage, for 

each group of controls, I estimate one-variable logistic regression models for main effects, 

interaction terms, and quadratic terms for continuous variables. Once significant predictors from 

one-variable models are identified, I fit a logistic regression model that includes only those 

significant predictors using stepwise variable selection to identify the variables for the propensity 

score model. In the next step, the control cases are matched to the treated cases, and the matched 

data set is assessed for the covariate imbalance. If the covariate imbalance is not achieved, 

insignificant higher order terms are dropped from the model until the new matched data set is 

balanced.   

  The DBR estimator uses the results of the regression adjustment model and propensity 

predicted values from the propensity score model in the augmentation term as described in 

(2.7.1). The standard error for the DBR estimator of the ATE is calculated using the following 

expression: 

                                   
 

  
 

 
    

         
 

            

         
           

 
        

           
 

            

           
                 

 
               (4.4.3) 

  

 4.5 Estimation Results 

 The estimation results for the study design with historical controls are shown in Table 

4.6. Using both the unmatched sample and the sample matched on the estimated propensity 

scores, neither negative binomial (NB) regression for the LOS found that the pathway coefficient 

was significant. The estimated ATE for both samples showed reduction in the LOS (by 2.3 hours  
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Table 4.6. Estimation Results for the LOS with Historical Controls 

  NB model NB with PS matching 

  Estimate  SE PS SE(PS) Estimate  SE 

(Intercept)  4.2630 . 2.5320 -35.63** 12.0258 0.2172 3.6489 

Age 0.0003 0.0029 -0.0044 0.0118 -0.0008 0.0045 

GenderMale 0.0047 0.0534 

  

-0.0264 0.0784 

Insurance1  0.3814 * 0.1565 

  

0.4459* 0.2151 

Insurance2  0.3190 * 0.1557 

  

0.3929. 0.2145 

Insurance3  0.2722 . 0.1624 

  

0.2223 0.2279 

HCa 0.0722 0.4553 12.13*** 2.5422 -0.4439 0.7710 

HCd  1.2670 ** 0.4656 

  

2.0810** 0.6940 

Temp -0.0078 0.0247 0.23* 0.1166 0.0232 0.0346 

HR  0.0025 . 0.0013 

  

0.0031 0.0019 

BPS -0.0003 0.0011 -0.01* 0.0054 -0.0005 0.0018 

BPD 0.0004 0.0021 0.02* 0.0094 0.0009 0.0030 

Oxygen 0.0053 0.0037 -0.03 0.0172 0.0096. 0.0050 

BMI 0.0007 0.0030 

  

0.0083. 0.0047 

eGFR 0.0000 0.0010 -0.01** 0.0051 0.0014 0.0019 

Braden  -0.0419 *** 0.0089 0.28*** 0.0558 -0.0302* 0.0149 

Tobacco1 0.0755 0.0684 

  

-0.0364 0.1012 

Tobacco2 -0.0055 0.0715 

  

-0.2374* 0.1061 

charlson 0.0226 0.0180 -0.12 0.0932 0.0429 0.0266 

PW1 -0.0187 0.0682 

  

-0.0735 0.0766 

       ATE -2.3 

 

    -9.1 
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in unmatched sample, and by 9.1 hours in the matched sample), but, again, these results were not 

statistically significant. The percent change in the LOS based on the confidence interval for the 

PW coefficient under regression adjustment was between -12% and 14% for the PW group 

compared to historical controls. 

 Insurance type was significant in the NB model in both samples, with private insurance, 

Medicare and Medicaid insurance contributing to a longer LOS in comparison to the uninsured 

category. The sign of the coefficient for the hospital congestion at discharge was positive 

suggesting that it increases the LOS (p value < 0.001). The current tobacco use category was 

significant in the model predicting the LOS in the matched sample. The negative sign for the 

current tobacco use should not be interpreted as a positive prognostic effect of smoking for the 

COPD patients and can be explained by the smoke-free campus policy at the UTMC.  

 Braden score is a variable that requires special consideration. While usually not included 

in the studies of COPD patients, it was a significant predictor for the LOS in the NB models with 

historical controls in both samples as well as in the logistic regression model. Omitting the 

Braden score from the model negative impacted the fit of the model in both samples based on the 

AICc values. In the unmatched sample, the AICcBraden value of 7,481 and the AICcNo Braden value 

of 7,501 were observed indicating that the variable is a significant predictor. Omitting Braden 

score from the model had a high impact on the magnitude of the ATE, which suggests that it is 

an important confounder for the LOS and the COPD pathway treatment. Moreover, the Braden 

score was a better predictor for the LOS of COPD patients than the CCI, based on the AICc 

values and stepwise variable selection.  

 Figure 4.2 shows Pearson residuals from the NB model for the unmatched sample with 

historical controls. The outlier diagnostics identified several observations in the unmatched 
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sample that had unusually high values for the LOS in both the treated and control groups. 

Removing the outliers helped improve the model fit, but did not change the significance 

of the pathway coefficient. Since pathways aim to standardize care for patients with a specific 

clinical problem, the effects of pathways are expected to be more pronounced among patients 

that fall under the general guidelines of a treatment protocol as opposed to patients with 

particularly complex and unique cases. Excluding patients whose hospital stay was over 9 days 

from the analysis of the COPD pathway effect on the LOS is equivalent to some exclusion 

restriction used in randomized controlled trials and is instrumental to improving the accuracy of 

the estimates of the ATE. 

 After removing the outliers in the LOS, Insurance type was no longer significant, but 

Braden score and hospital congestion at discharge were still indentified as important predictors 

by the NB model. The ATE became lower in magnitude (-1.62 hours), and had a much smaller 

standard error (SE) of 0.0063. The pathway coefficient also remained insignificant after 

removing the outliers. 

 

 
Figure 4.2 Pearson Residuals vs Fitted Values Before and After Removing the Outliers  
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 The impact of the influential points shown in Figure 4.3 was assessed for each model in 

the study in terms of the model’s fit and the estimates of the ATE. The identified points were 

likely to describe the end-stage COPD patients, and therefore, could potentially contribute to the 

“washing out” of the pathway effect, given that pathways are designed to treat specific 

conditions as opposed to managing the end-stage phase of a disease.  The magnitude of the 

estimated pathway effects appeared to be affected by these points, but their significance level 

was not. 

 

 
Figure 4.3 Leverage Points from the NB model in the unmatched sample 

 

 The propensity score model in Table 4.6 was identified as the one providing the highest 

degree of the covariate balance improvement. Using the predicted values of propensity scores 

from the logistic regression described in Table 4.6 and 1-to-4 matching with replacement 

improved the overall covariate balance by 65% to 97%. The standardized differences below 10% 

were observed for all the variables in the matched sample with exception of the Braden score and 

the hospital congestion on admission and at discharge. Adjusting for those variables in the NB 



88 

 

 

regression model in the postmatching analysis was necessary to single out the effect of the 

COPD pathway. 

 Employing other matching mechanisms, such as matching without replacement and 1-to-

1 matching, did not help improve data balancing in the matched samples. The pathway 

coefficient in the NB models for the matched samples obtained through those matching 

mechanisms did not reach statistical significance. The estimate of the ATE, while still not 

statistically significant, exhibited a lot of variation depending on the matching mechanism 

applied. In 1-to-1 matching with replacement, the ATE of the COPD pathway was -13.4 hours, 

with the standard error (SE) of 0.2891. When 1-to-1matching without replacement was used, the 

data balance worsened considerably for Oxygen, and the postmatching analysis produced the 

ATE estimate of -4.2 hours, with the SE of 0.0841. Matching 1 treated case to 4 control cases 

without replacement resulted in a matched sample with different group distributions for Oxygen 

as well, while yielding the ATE of -8.3 hours, with the SE of 0.0978.  

 The variation in the magnitude of the ATE estimates can be attributed to the lack of 

statistical significance. The inability of the models to detect the effect of the COPD pathway on 

the LOS does not necessarily imply that the pathway was not efficient in reducing the LOS. 

Given that all the models predicted the same direction of the effect (reduction in the LOS), using 

a larger sample size for both the control and the treated groups might be beneficial in identifying 

the effect of the pathway in the future. 

 Matching without replacement improved the precision of the estimates as the observed 

standard errors were smaller in both models when matching without replacement was used. The 

bias-correction properties of the matching mechanisms cannot be verified empirically based on 

the estimation results when the true ATE is unknown, and require further investigation. 
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 The propensity score model with contemporaneous controls was estimated using the 

same iterative approach as discussed in Section 4.3. The estimated coefficients for the propensity 

scores are shown in Table 4.7. Given the small number of control units available for matching, 

only matching with replacement was considered. Using 1-to-4 matching with replacement 

resulted in a matched sample with 25 control cases matched to 60 treated cases. Even though the 

propensity score model increased covariate balance by 88% to 93%, the standardized differences 

larger than 10% in absolute value still remained for variables Insurance, BPD, Braden score, 

HCd, and CCI. The distribution of propensity scores in the treated and control groups were 

slightly different, as more treated cases had high propensity scores greater than 0.8 (Figure 4.4). 

 

  

Figure 4.4. Distribution of Propensity Scores for the Contemporaneous Control and Treated 

Cases in the Matched Sample 

 

 The effect of the COPD pathway was negative showing the reduction in the LOS, but was 

not statistically significant in either sample. The CCI was a stronger predictor for the LOS than 

the Braden score in the unmatched sample with contemporaneous controls, but lost its 

significance in the matched sample. Insurance type, Medicare category in particular, and hospital 

congestion at discharge were significant in the matched sample. The sign of the HCd coefficient 
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Table 4.7. Estimation Results for the LOS with Contemporaneous Controls 

  NB model   NB with PS matching     

  Estimate  SE PS SE(PS) Estimate  SE 

(Intercept) -0.9178 4.5336 -3.150013 2.50947 -3.1687 4.8598 

Age 0.0061 0.0071 -0.003996 0.020683 0.0029 0.0077 

GenderMale 0.0172 0.1108 

  

0.0500 0.1258 

Insurance1 -0.2589 0.5855 

   

0.1178 

Insurance2 -0.5448 0.5758 

  

-0.2270. 0.1939 

Insurance3 -0.4945 0.5810 

  

-0.1919 1.3291 

HCa 0.9318 1.1455 

  

-0.5087 1.2618 

HCd 1.2254 1.0878 

  

3.1308* 0.0459 

Temp 0.0453 0.0427 

  

0.0799 . 0.0039 

HR 0.0040 0.0031 

  

0.0032 0.0030 

BPS -0.0038 0.0026 

  

-0.0038 0.0057 

BPD  0.0110 * 0.0046 

  

0.0159** 0.0072 

Oxygen -0.0062 0.0073 

  

-0.0128 . 0.0082 

BMI  0.0103 . 0.0062 

  

0.0089 0.0029 

eGFR -0.0017 0.0026 

  

-0.0066* 0.0394 

Braden -0.0362 0.0227 0.2374** 0.086331 -0.0758. 0.1687 

Tobacco1 0.1749 0.1464 

  

0.0665 0.1734 

Tobacco2 -0.0608 0.1602 

  

-0.1781 0.0464 

CCI  0.0683 * 0.0343 -0.2899* 0.130286 0.0319 0.1203 

PW1 -0.0819 0.1187 

  

-0.0810 0.3487 

       ATE -10.51 

 

    -9.75 
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remained the same as in the models with the historical controls, suggesting that the LOS, on 

average, was likely to be longer when the hospital was operating at high capacity levels. Other 

factors found to be prognostic for the LOS in the sample of the COPD patients were vital signs 

on admission and the eGFR index. Higher eGFR values correspond to a better renal function, 

and the negative sign for the eGFR coefficient in the model for the LOS was consistent with 

clinical expectations. 

  The estimates of the ATE did not reach statistical significance in the samples with the 

contemporaneous controls. The magnitude of the effect was higher compared to the samples with 

the historical controls. The observed unadjusted mean difference in the LOS for these 

comparison groups was reported at 12.8 hours, while the ATE obtained using regression 

adjustment, though not statistically significant, showed the reduction in the LOS of about 10 

hours in both the unmatched and matched samples for the pathway group. The confidence 

interval for the PW coefficient under regression adjustment showed that the percent change in 

the LOS in the PW group compared to the contemporaneous controls was between -24% and 

22%. 

 The DBR estimator did not perform as well as expected in the analysis of the COPD 

pathway effects on the LOS exhibiting extreme volatility of the ATE estimates, and, thus, 

yielding results that were not reliable. The estimates of the ATE obtained with the doubly robust 

method are presented in Table 4.8. The simulation study presented in Chapter 3 suggests that the 

accuracy and precision of the DBR estimator is highly sensitive to the small sample sizes and 

high degrees of imbalance between proportions of treated and control cases. Row-wise deletion 

of the missing observations in the NB and the PSM models resulted in reduced sample sizes. The 

sample with the contemporaneous controls had a total of 140 patients, with a low proportion of 
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control cases (pC = .27). While the sample size in the design with the historical controls was 

larger (nHC = 668), the imbalance between the treated and control case was even higher (pC = 

.85).  

 

Table 4.8 The Doubly Robust Estimator of the ATE of the COPD Pathway on the LOS 

  ATE SE(ATE) 

DR HC missing data -3.71 20.21 

DR CC missing data -8.21 19.12 

DR HC imputed data  -4.00 10.88 

DR CC imputed data   -3.07  13.04 

 

 While the existing sample imbalances and the small sample size could explain the poor 

performance of the DBR estimator, the possibility of misspecifying both the regression and the 

PSM model cannot be entirely ruled out. The bias correction property of the DBR estimator 

requires that at least one model, either the regression model, or the propensity score model, is 

specified correctly. In the presence of hidden or overt bias, when an important confounder is 

either unobservable or not accounted for in the model, both the regression and the PSM models 

would be misspecified, and the bias correction properties of the DBR estimator would not hold in 

this scenario.  

 The logistic regression model for the 30-day readmission rate was estimated only for the 

sample with historical controls. The contemporaneous controls group did not have sufficient data 

on readmissions. Table 4.9 shows the number of readmissions for the pathway and the 

contemporaneous control groups.  

 The historical control group had a much higher readmission rate compared to the PW 

group (41% vs 22%), while readmission rates in the PW and contemporaneous control groups 
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Table 4.9 Number of Readmissions by Treated and Control Groups  

  HC CC PW  

Readmitted = 0 333 31 80 

Readmitted = 1 233 7 22 

Percent readmitted 41.17% 18.42% 21.57% 

 

were very close (22% vs 18%). Similar readmission rates between the contemporaneous control 

group and the PW group can be attributed to the PW spillover effect. The COPD PW at the 

UTMC contains a prompt for an inhaler that many of the COPD patients receive at discharge, 

and since the same clinicians treated both pathway and non pathway patients, patients in both 

groups were likely to be discharged with an inhaler. 

 The pathway coefficient was highly significant in the model for the hospital readmission 

(p-value < 0.001). The estimates of the ATE from the logistic regression model in both the 

unmatched and matched samples showed a 14% to 16% reduction in the probability of 

readmission (34% to 38% improvement in the PW group over historical control group), and had 

low standard errors (Table 4.10). The DBR estimator for the ATE of the COPD pathway on 

readmission using the historical controls showed a 20% reduction, with the SE of 0.0618.  

 The propensity score model identified earlier for the sample with historical controls and 

described in Table 4.6, was used to create a matched sample for estimating the pathway effect on 

readmission. The matched sample contained 209 control cases and 95pathway patients.  

 The estimation results between in the two samples were similar. The estimated 

coefficient for temperature, heart rate, blood pressure, and eGFR had the same signs and were 

close in magnitude and significance level in both models. Age and insurance type were strong 

predictors of the probability of a readmission in the unmatched sample, but did not reach 

statistical significance in the matched sample. 
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Table 4.10 Logistic Regression Models for 30-day Readmissions with Historical Controls 

  Logistic Regression Logistic regression with PSM 

  Estimate Std. Error Estimate Std. Error 

(Intercept) 13.4117 9.9002 13.7476 876.0895 

Age  0.0262 * 0.0109 0.0242 0.0192 

GenderMale -0.0504 0.2015 -0.0024 0.3440 

Insurance1  2.8557 * 1.3742 16.0924 875.9258 

Insurance2  3.3300 * 1.3762 16.9036 875.9258 

Insurance3  3.4460 * 1.3832 16.4677 875.9259 

HCa 1.0998 1.6815 5.7200. 3.1968 

HCd -0.6634 1.7270 0.4634 2.8592 

Temp  -0.2047 * 0.0960 -0.3563 * 0.1619 

HR  0.0161 *** 0.0048 0.0255 ** 0.0080 

BPS 0.0017 0.0041 0.0016 0.0076 

BPD  -0.0176 * 0.0079 -0.0287 * 0.0137 

Oxygen -0.0005 0.0136 -0.0264 0.0222 

BMI 0.0177 0.0113 0.0119 0.0209 

eGFR  0.0109 ** 0.0039 0.0157 * 0.0077 

Braden -0.0309 0.0329 -0.0581 0.0647 

Tobacco1 0.2977 0.2497 0.2681 0.4111 

Tobacco2 -0.2455 0.2652 -0.6613 0.4312 

charlson 0.0691 0.0668 -0.0143 0.1131 

PW1  -0.7925 ** 0.2788 -0.8392 * 0.3390 

     ATE -0.1583 

 

-0.1503 
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 4.6 Estimation Results with Imputed Missing Values 

 In most models, including NB and logistic regression, R automatically excludes all cases 

in which any of the inputs are missing. This can limit the amount of information available in the 

analysis, especially if the model includes many inputs with significant numbers of missing 

values. 

 The presence of the missing values in the data collected for the COPD patients had a 

significant impact on the sample size. A total of 221 observations were lost due to the missing 

values in the estimation process, including 146 patients from the historical control group, 58 

pathway patients, and 20 patients from the contemporaneous control group. The variables with 

the highest number of missing values were Insurance (88 missing values), Tobacco (86), eGFR 

(54), and BMI (37). Temperature, HR, and Oxygen had 1 missing value each, and two values 

were missing for the Braden score.  

 The pattern of the missing values shown in Figure 4.6 and the missing data analysis 

suggest that the missingness in the data is random, or, in other words, that the probability that a 

variable is missing depends only on available information. The assumption that missingness is 

random allows imputing missing values through multiple imputation methods available for 

analysis of incomplete multivariate data.   

 Rubin (1987) suggests a Monte Carlo technique for multiple imputations in which the 

missing values are replaced by m>1 simulated versions, where m is typically small (e.g. 3-10). In 

Rubin's method for repeated imputation inference, each of the simulated complete datasets is 

analyzed by standard methods, and the results are combined to produce estimates and confidence 

intervals that incorporate missing-data uncertainty. 
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 The R package “Amelia” implements a new expectation-maximization (EM) with 

bootstrapping algorithm (Honaker et al., 2011). The algorithm first bootstraps a sample dataset 

with the same dimensions as the original data, estimates the sufficient statistics by EM, and then 

imputes the missing values for the sample. It repeats this process m times to produce the m 

complete datasets where the observed values are the same and the unobserved values are drawn 

from their posterior distributions. Honaker et al. assert that their package works faster and with 

larger numbers of variables than various Markov chain Monte Carlo approaches, and gives 

essentially the same answers.  

  

 

Figure 4.5 Missingness Map 
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  I used “Amelia” package in R to impute the missing values for the variables Insurance, 

Tobacco, eGFR, BMI, Temp, Oxygen, HR, and Braden, and compared listwise deleted 

regression results to results pooled from the same regression run on 25 imputed data sets. 

The estimation results for the LOS with historical controls obtained using imputed missing 

values are presented in Table 4.11. 

 The model results with imputed missing values using historical controls were essentially 

similar to the results obtained when the missing values were deleted. The ATE estimate was still 

not statistically significant as well as the estimate of the pathway coefficient in both samples. 

With imputed missing values the regression adjustment in the unmatched and matched samples 

produced estimates of the ATE that were closer in magnitude (-3.4 and -3.1 hours, respectively), 

as opposed to the results with the deleted missing values (-2.3 hours and -9.1 hours), but the 

standard errors of the ATE were much higher. Hospital congestion at discharge, Insurance, 

Braden score and CCI were identified as significant predictors for the LOS, in a similar manner, 

but the Tobacco variable was no longer significant. 

 When contemporaneous controls were used for estimating pathway effects with imputed 

missing values, the direction of the effect changed. The ATE was 1.6 and 4.8 hours in the 

unmatched and in the matched sample, respectively, but the SE were unreasonable high (12.0008 

for the matched sample).  

 The performance of the DBR estimator (Table 4.8) improved significantly in larger 

samples with imputed missing values. The standard errors reduced by almost one half in the 

sample with historical controls, and by about one third with contemporaneous controls.  
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Table 4.11 Estimation Results for the LOS with Historical Controls with imputed missing 

values 

  NB Regression NB regresson with PSM 

  Estimate Std. Error Estimate Std. Error 

(Intercept) 4.7118 * 2.2609 5.1896 3.1634 

Age -0.0003 0.0025 -0.0012 0.0038 

GenderMale -0.0160 0.0451 -0.0286 0.0663 

Insurance1 0.2891 . 0.1581 0.4211 . 0.2421 

Insurance2 0.2352 0.1536 0.3519 0.2348 

Insurance3 0.2668 . 0.1603 0.3091 0.2511 

HCa 0.1658 0.4349 -0.4022 0.7213 

HCd 0.8972 * 0.4012 0.9863 . 0.5800 

Temp -0.0086 0.0217 -0.0117 0.0291 

HR 0.0026 * 0.0011 0.0027 0.0017 

BPS -0.0011 0.0010 -0.0012 0.0014 

BPD 0.0013 0.0018 0.0014 0.0027 

Oxygen 0.0055 0.0034 0.0076 0.0050 

BMI 0.0000 0.0027 -0.0011 0.0042 

eGFR 0.0000 0.0008 -0.0006 0.0015 

Braden -0.0434 *** 0.0077 -0.0398 ** 0.0143 

Tobacco1 0.0739 0.0617 0.0547 0.0885 

Tobacco2 -0.0611 0.0642 -0.0888 0.0917 

CCI 0.0372 * 0.0158 0.0303 0.0237 

PW1 -0.0281 0.0574 -0.0261 0.0672 

     ATE -3.4124 

 

-3.1487 
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 The model for readmission with imputed data (Table 4.12) yielded very similar results. 

The pathway coefficient was negative and highly significant, and the estimate of the ATE was 

only slightly lower in magnitude (-.12) with a low standard error. 

  

 4.7 Discussion of the Results and Limitations of the Study of Pathway Effects 

 While all the models employed in the current analysis agreed on the direction of the 

COPD pathway effect showing a reduction in the LOS with exception of the regression 

adjustment with the imputed data, the ATE for the LOS did not achieve statistical significance in 

any model. The estimated reduction in the LOS with historical controls was between 2.3 and 8.2 

hours, and, while not statistically significant, was consistently reported across the three methods 

in both the unmatched and matched samples. The estimates of the ATE obtained with 

contemporaneous controls showed higher variability both in terms of the magnitude and the 

direction of the effect (fluctuations from -15.6 hours to 1.8 hours), and had higher standard errors 

compared to the estimates obtained using historical controls.    

 The effects of the COPD pathway were statistically significant in all the models for 30-

day readmission, suggesting a positive effect of the pathway on the probability of a readmission 

within 30 days. The estimated reduction in the probability of readmission was between 12% and 

16%. These estimation results are not unexpected, given that the COPD pathway at the UTMC 

contains a detailed section on discharge instructions, including a prompt for an inhaler that many 

COPD patients should receive at discharge, and designates a patient follow-up specialist whose 

role is to advise patients on follow up care, remind them to refill their prescription, and provide 

additional assistance. 

 The bias correction methods used for the analysis of the pathway effects in this study 
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Table 4.12. Logistic Regression Models for 30-day Readmissions with Historical Controls 

with Imputed Missing Values 

  Logistic Regression     

  Estimate Std. Error z value Pr(>|z|) 

(Intercept) 6.5814 8.5143 0.7730 0.4395 

Age * 0.0213 0.0095 2.2514 0.0244 

GenderMale -0.1129 0.1709 -0.6609 0.5087 

Insurance1 1.4521 1.2395 1.1716 0.2414 

Insurance2 1.9472 1.2398 1.5706 0.1163 

Insurance3 2.0260 1.2585 1.6099 0.1074 

HCa 1.2415 1.4622 0.8491 0.3958 

HCd 0.0728 1.4825 0.0491 0.9608 

Temp -0.1190 0.0814 -1.4606 0.1441 

HR *** 0.0143 0.0042 3.3955 0.0007 

BPS 0.0011 0.0036 0.3067 0.7591 

BPD -0.0095 0.0068 -1.4003 0.1614 

Oxygen -0.0056 0.0123 -0.4527 0.6508 

BMI 0.0123 0.0101 1.2252 0.2205 

eGFR ** 0.0099 0.0034 2.9304 0.0034 

Braden -0.0482 0.0283 -1.6992 0.0893 

Tobacco1 0.3636 0.2408 1.5096 0.1311 

Tobacco2 -0.2374 0.2473 -0.9603 0.3369 

CCI ** 0.1556 0.0577 2.6979 0.0070 

PW1 ** -0.5789 0.2225 -2.6011 0.0093 

     ATE -0.12 
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assume that the selection bias is due only to some observable factors, and including these factors 

in the model should provide unbiased estimates of the ATE. However, proving empirically the 

tenability of this assumption is not possible, and given the data limitations discussed in Section 

4.2, the possibility of overt bias that is not accounted for in the model still remains.  

 The analysis presented in this dissertation was the first attempt to evaluate a new program 

in the beginning phase of its implementation, and a lot of adjustments were necessary throughout 

the study period. One of them was adding the missing compliance tracker as a discrete element 

to the pathway structure, which was discovered and addressed four months after the pathways 

had been launched. As a result, the first four months of pathway usage could not be included in 

the analysis, and the final data set was significantly smaller than expected. Increasing the sample 

size should improve the precision of the estimates, and would be particularly beneficial for the 

DBR estimator, that showed significant improvement with imputed data in larger samples.  

 Other areas of improvement include constructing a new metric for the hospital congestion 

that incorporate resource utilization in terms of nurse hours as well as hospital capacity levels, 

refining the existing measures for patient clinical characteristics, such as oxygen levels and 

comorbidities, and addressing the poor quality reporting that was identified in the analysis. 
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CONCLUSION 

 The goal of this dissertation was to create a standardized approach to assessing the impact 

of the UTMC pathways across all major disease categories and key outcome measures.  To 

accomplish this, I identified models, control factors, and adjustments to correct for potential 

confounding in pathway assignment and the outcome measures, and provided a case study for 

one of the largest primary diagnoses areas, chronic obstructive pulmonary disease (COPD). I 

also addressed the issues of handling missing data and investigated the effects of sample size and 

sample imbalance on the performance of the bias correction methods. I review these 

contributions below in brief detail before discussing limitations of the study and a variety of 

goals for future work in this area.  

 The widely accepted study designs for evaluating the effects of a treatment or an 

intervention in medical literature, such as RCT, CBA, and ITS (Rotter et al., 2010), require a set 

of conditions that are not always available for researchers. The current study of the pathway 

effects on clinical outcomes was characterized by the absence of randomization for pathway 

assignment, unavailability of multiple intervention and control sites, and a relatively short study 

period, and as such, called for a different approach that was identified through an intensive 

methodological review of the bias correction techniques for observational studies. 

 I used the following three methods to evaluate the effects of the COPD pathway on the 

clinical outcomes under the settings described above: regression adjustment, propensity score 

matching with postmatching regression adjustment, and the doubly robust estimator. The choice 

of these methods was based on the tenability of model assumptions, the robustness of the models 

to small sample sizes and sample imbalance, as well as their sensitivity to the model 

specifications.    
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 In the simulation study presented in Chapter 3, the OLS regression and the PSM model 

appeared to work well when the selection on observables assumption was satisfied, conditional 

on the availability of all relevant covariates and their correct specification in the model, and 

exhibited less sensitivity to model specifications and sample size and imbalance than other 

methods that were included in the study. The doubly robust estimator was expected to perform 

well in the presence of overt bias given a sufficiently large sample size (n>500) and a low degree 

of sample imbalance (the proportion of controls ≤ 0.75). 

  The effect of the COPD on the LOS was not statistically significant in all three models 

with both historical and contemporaneous controls. The direction of the effect, though no 

statistically significant, was consistently reported to be negative by the models employed in the 

study using historical controls. The estimated ATEs with historical controls showed a reduction 

in the LOS of 2.3 to 8.2 hours. Higher variability of the estimates observed with the 

contemporaneous control group can be explained by a smaller sample size available for 

contemporaneous study design. 

 The pathway coefficient was statistically significant in the models for the 30-day 

readmission, and the estimated ATEs showed a reduction in the probability of readmissions 

between 12% and 16%. The results obtained with imputed missing values were consistent with 

these findings, showing a reduction of 12% in the probability of a readmission due to pathway 

usage. 

 In an attempt to account for all the important observable covariates in the models, the 

data collected for the study included a rich set of patient clinical and demographic 

characteristics, vital signs and laboratory values, comorbidities, severity of illness indicators, and 
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relevant hospital characteristics. The following results pertaining to the choice of confounders 

and control factors require special consideration: 

1) The significance of the Braden score both in the regression model for the LOS and in 

the propensity score model suggests that it likely to be an important confounder and 

should be considered as an important covariate in predictive modeling of clinical 

outcomes and in evaluating treatment effects for COPD patients and other DRGs.  

2) Hospital congestion on admission was shown to have a significant effect on pathway 

assignment, and hospital congestion at discharge was an important predictor for the 

LOS. These results were consistent with other empirical findings suggesting the 

importance of including hospital characteristics in the model for estimating the effects 

of a treatment or an intervention in observational studies (Kelly et al., 2013).  

3) As suggested by previous empirical research (Fisher et al., 2001), insurance type was 

a significant predictor for both the LOS and readmissions, and as such, should be 

included in future studies of pathway effects. 

 The models employed in the study are expected to produce unbiased estimates of the 

ATE provided that the assumption of selection on observables is satisfied. The tenability of this 

assumption cannot be empirically tested, and thus, the possibility of hidden or overt bias cannot 

be entirely ruled out. The poor performance of the DBR estimator in the models for the LOS 

could be attributed to the tenability of model assumptions, and suggests that the results of the 

regression adjustment and propensity score matching should be interpreted with caution.  

 Another factor that contributed to the high volatility of the DBR estimator of the pathway 

effect on the LOS was a small sample size of the contemporaneous study design, and a highly 

imbalanced sample with historical controls, where the proportion of control cases after row-wise 
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deletion of the missing values reached 85%. These factors are a likely cause for the loss of 

accuracy and efficiency in the DBR estimator, according to the results of the simulation study 

presented in this dissertation. 

 Several issues that raise questions about the accuracy of the PSM estimates still remain, 

even if the propensity score model were specified correctly. The PSM model results appeared to 

be sensitive to the choice of the matching algorithm, caliper width, number of matches specified 

for each treated case, and to whether matching was done with or without replacement. The 

details of the matching process require further investigation and are identified as potential areas 

for future research. 

  The study design presented in the current work included two control groups, a historical 

control group and a contemporaneous control group, as an attempt to single out the effects of 

pathways from other factors that could not be measured. And while potential weaknesses exist in 

the use of either control group for estimating the untreated potential outcome, both comparison 

groups should be considered in future analyses as an added protection against pathways spillover 

effects and the effects of certain changes occurring over time.  

  Other areas of improvement include increasing the sample size, including nurse hours in 

a hospital congestion metric, refining the existing measures of patient clinical characteristics, 

such as oxygen levels and comorbidities, and addressing the issue of missing values in the 

reports on procedures performed. 

 Future research for this work will be focused on several key steps in the methodological 

development. Several issues related to matching, such as the choice of a matching algorithm, 

should be investigated further. The simulation study presented in this dissertation can be 

extended to address the degree of the overlap between treated and control cases and its impact of 
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the performance of the bias correction methods. Another goal is model extension for multilevel 

treatments to accommodate the analysis of pathway effects when more than one pathway is used, 

as it is expected to be the case for patients with several comorbidities in the future.   
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Summary of Analysis Elements 

1. Choosing the Bias Correction Methods 

When researchers have strong reasons to believe that all confounders and controls are 

accounted for and included in the model, regression adjustment and propensity score matching 

are the best candidates for estimating the average treatment effect. Both methods are robust to 

small sample sizes and sample imbalance in terms of the number of treated and control cases, 

and outperform other estimators of the ATE when the ignorable treatment assignment 

assumption is satisfied.  

The Heckman treatment effect model is designed to correct for hidden bias, but requires 

the assumption about a nonzero correlation of error terms in selection and outcome equations and 

strongly depends on correct model specification. Its sensitivity to model assumptions is more 

pronounced than that of OLS regression, and therefore, with no definite procedure to test 

conditions under which the assumptions of the Heckman model are violated, its estimation 

results should be interpreted with caution. 

 While the PSM methods and regression adjustment rely heavily on correct model 

specification, matching methods without propensity scores do not involve estimation of unknown 

functional forms and are easy to implement, but due to dimensionality problem, their 

applicability is limited to situations when the number covariates is small. They also appear to be 

more sensitive to sample imbalances and small sample sizes. 

 The doubly robust estimator should be used when an important confounder is likely to be 

omitted from the model to correct for overt bias. Given that the presence of an omitted variable is 

a strong possibility in many applications, the results of the DBR estimation should be considered 

together with those obtained through regression adjustment and PSM. The DBR estimator may 
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offer protection against the overt bias when the proportion of controls does not exceed 0.75 and 

the sample size is sufficiently large. 

2. Common Issues with Matching 

 Matching with and without propensity scores has several weaknesses. The decision to use 

matching with or without replacement as well as choosing the number of matches for each 

treated unit is a tradeoff between precision and bias. Matching with replacement is a better 

alternative when very few relevant control units are available for comparison. It minimizes the 

distance between the matched pairs, and is beneficial in terms of bias reduction. Matching 

without replacement increases bias and can produce results that are sensitive to the order in 

which the matches are done, but improves the precision of the estimates. 1-to-1 matching 

produces the smallest distance between the matched pairs and reduces bias. At the same time, the 

precision of estimates with 1-to-1 matching suffers because large amount of information 

available from the data is discarded in the process. 

 Matching algorithms commonly used in propensity score matching are nearest neighbor 

with caliper, kernel and interval matching. Morgan and Winship (2007) demonstrate that the 

choice of the matching algorithm affects the estimation results when everything else is held 

constant.  The performance of these matching algorithms remains debatable, with little evidence 

as to which algorithm is more efficient in particular settings.  

3. Study Design 

To approximate randomization conditions, observational studies should be designed with 

enough rigor by adopting the principles of experimental design. Identifying the control and 

treated groups, zero time for determining patient’s eligibility and base-line features, using 

inclusion and exclusion criteria similar to those in clinical trials, adjusting for differences in 
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base-line susceptibility to the outcome are important elements of a successful study design in 

clinical settings.   
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