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ABSTRACT 

Plant-parasitic cyst nematodes are one of the most destructive root parasites that cause severe 

yield losses in many crop plants. These obligate parasites induce a specialized multi-nucleate 

feeding site called syncytium. This study was conducted to explore the roles of phytohormones 

particularly auxin and ethylene, and miRNA-mediated crosstalk between development and 

defense responses in establishing the compatible interaction between Arabidopsis and 

Heterodera schachtii. Using yeast two-hybrid assay, a complete protein-protein interaction map 

between Auxin/indole-3-acetic acid (Aux/IAA) proteins and auxin response factors (ARFs) was 

generated. In addition, gene co-expression profiles of ARFs and Aux/IAAs were incorporated 

with protein-protein interaction data. Together, these analyses revealed the biological 

significance of the ARFs and Aux/IAA interactions in the differentiation and development of 

various plant tissues and organs, including H. schachtii–induced syncytium. Our analyses also 

provided evidence for the roles of ETHYLENE RESPONSE 1 and ETHYLENE INSENSITIVE 

3/ETHYLENE INSENSITIVE LIKE 1 in regulating Arabidopsis responses to H. schachtii 

infection. The role of miRNAs in mediating the coordination between developmental signaling 

and defense response is emerging. Functional characterization of miR858 and its MYB83 target 

gene pointed into novel cooperative regulatory functions of this regulatory module in syncytium 

transcriptome reprogramming during cyst nematode parasitism of Arabidopsis. We discovered 

that miR858-mediated silencing of MYB83 is tightly regulated through a feedback loop that may 

ensure proper expression levels of more than a thousand of MYB83-regulated genes in the 

syncytium. Finally, the direct targets of Growth Regulating Factor 1 (GRF1) and 3, master 

regulators of syncytium differentiation, were identified. Specific and the shared cis-binding 

elements of GRF1 and GRF3 were identified, providing unprecedented understanding of the 

mechanism of their functional redundancy. GRF1 and GRF3 directly target genes associated 

with cell cycle regulation, cytoskeleton organization, phytohormone biosynthesis and signaling, 

and defense responses, key cellular processes that determine the outcomes of plant-cyst 

nematode interactions. The analysis also provided intriguing evidence for the involvement of 

GRF1/3 in mediating the trade-off between plant growth and stress signaling. Understanding the 

molecular mechanisms underlying the coordinated interactions between plant growth and 

defense signaling will open new avenues for enhancing plant growth and stress response 

simultaneously. 

Keywords: Heterodera schachtii, auxin, ethylene, microRNA, RNA-seq, ChIP-seq 



vi 

 

TABLE OF CONTENTS 

Chapter 1 General introduction and literature review ........................................ 1 

1. Introduction ...................................................................................................... 2 

2. Role of phytohormones in plant nematode interaction ................................ 4 

2.1 Auxin ................................................................................................................................. 5 

2.2 Ethylene............................................................................................................................. 6 

3. Small RNA ......................................................................................................... 7 

4. Role of GRF1/3 in plant-nematode interaction ........................................... 10 

5. Dissertation organization ............................................................................... 12 

References ............................................................................................................ 13 

Appendix .............................................................................................................. 22 

Chapter 2 Protein-protein interaction and gene co-expression maps of 

ARFs and Aux/IAAs in Arabidopsis .................................................................... 24 

Abstract ............................................................................................................... 26 

1. Introduction .................................................................................................... 27 

2. Results .............................................................................................................. 29 

2.1 Construction of Comprehensive Interaction Map of ARFs and Aux/IAA ....................... 29 

2.2 Phylogenetically-Related ARFs Exhibited Various Interactions with Aux/IAA Proteins 30 

2.3 Co-Expression Analysis of Interacting ARF-Aux/IAA Proteins ...................................... 30 

3. Discussion ........................................................................................................ 32 

4. Materials and Methods .................................................................................. 35 

4.1 Plasmid Construction...................................................................................................... 35 

4.2 Yeast Two-Hybrid Assays ............................................................................................... 35 

4.3 Bimolecular Fluorescence Complementation (BiFC) Assays ......................................... 36 

4.4 Gene Co-Expression Network Analysis .......................................................................... 36 

4.5 Phylogenetic Analysis ..................................................................................................... 37 

References ............................................................................................................ 38 



vii 

 

Appendix .............................................................................................................. 42 

Chapter 3 Elucidating the key roles of Arabidopsis ETHYLENE 

RESPONSE 1 and ETHYLENE INSENSITIVE factors in mediating 

plant susceptibility to Heterodera schachtii ........................................................ 48 

Abstract ............................................................................................................... 49 

1. Introduction .................................................................................................... 50 

2. Results .............................................................................................................. 52 

2.1 Reduced expression of ETR1 diminishes Arabidopsis susceptibility to H. schachtii ..... 52 

2.2 ETR1 receiver domain contributes in Arabidopsis susceptibility to H. schachtii .......... 53 

2.3. Effect of ETR1 receiver domain point mutation on Arabidopsis-H. schachtii interaction

............................................................................................................................................... 53 

2.4 Reduced expression of EIN3 and EIL1 makes Arabidopsis more resistant to H. schachtii

............................................................................................................................................... 53 

2.5 Increased expression of SID2 in ein/eil1 enhance resistance to H. schachtii ................ 54 

2.6 SID2 induces PR1 expression in response to H. schachtii infection .............................. 55 

3. Discussion ........................................................................................................ 55 

4. Methods ........................................................................................................... 58 

References ............................................................................................................ 60 

Appendix .............................................................................................................. 66 

Chapter 4 Cooperative regulatory functions of miR858 and MYB83 in 

transcriptome reprogramming during cyst nematode parasitism of 

Arabidopsis ............................................................................................................. 72 

Abstract ............................................................................................................... 74 

1. Introduction .................................................................................................... 75 

2. Results .............................................................................................................. 77 

2.1 miR858 is expressed in the syncytium during the initiation and progression of nematode 

parasitism .............................................................................................................................. 77 



viii 

 

2.2 miR858 post-transcriptionally regulates MYB83 transcription factor during H. schachtii 

parasitism of Arabidopsis ..................................................................................................... 78 

2.3 Overexpression of miR858 confers enhanced resistance to H. schachtii ....................... 80 

2.4 Overexpression of a mimic sequence for miR858 augments plant susceptibility to H. 

schachtii ................................................................................................................................ 80 

2.5 Ectopic overexpression of a non-cleavable variant of MYB83 enhances plant 

susceptibility to H. schachtii ................................................................................................. 81 

2.6 RNA-seq analysis of miR858 and rMYB83 overexpression plants-regulated genes ...... 82 

2.7 Identification of putative direct targets of MYB83 ......................................................... 83 

2.8 MYB83 regulates key cellular processes in the syncytium of H. schachtii ..................... 83 

2.9 miR858 and MYB83 constitute a feedback regulatory loop that involves MYB12 ......... 84 

3. Discussion ........................................................................................................ 85 

4. Materials and Methods .................................................................................. 90 

4.1 Plant material and growth conditions ............................................................................ 90 

4.2 Nematode infection assay ............................................................................................... 90 

4.4 Plasmid construction and generation of transgenic plants ............................................ 91 

4.5 RNA isolation and quantitative real-time RT-PCR analysis ........................................... 92 

4.6 RNA-seq library preparation and data analysis ............................................................. 93 

References ............................................................................................................ 95 

Appendix ............................................................................................................106 

Chapter 5 GROWTH REGULTING FACTOR 1 and 3: Key 

transcriptional regulators mediating the balanced trade-off between 

plant growth and stress responses ......................................................................123 

Abstract .............................................................................................................124 

1. Introduction ..................................................................................................125 

2. Results ............................................................................................................127 

2.1 Identification of the binding sites of GRF1 and GRF3 ................................................. 127 

2.2 Identification of GRF1 and GRF3 binding motif .......................................................... 128 

2.3 Functional categorization of direct targets of GRF1 and GRF3 .................................. 129 



ix 

 

2.3.1 Embryogenesis ........................................................................................................... 129 

2.3.2 Flower development ................................................................................................... 129 

2.3.3 Root development ....................................................................................................... 130 

2.4 Phytohormones related genes as the direct targets of GRF1 and GRF3 ..................... 131 

2.5 GRF1 and GRF3 targets are associated with abiotic stresses ..................................... 132 

2.6 GRF1 and GRF3 target defense response genes .......................................................... 132 

2.7 Differentially expressed genes in GRF1 and GRF3 ..................................................... 133 

3. Discussion ......................................................................................................134 

4. Material and methods ..................................................................................137 

4.1 Plant materials and growth conditions ......................................................................... 137 

4.2 Plasmid construction .................................................................................................... 137 

4.3 Generation of Transgenic Plants .................................................................................. 138 

4.4 ChIP, library preparation and sequencing ................................................................... 138 

4.5 ChIP-seq data analysis ................................................................................................. 138 

4.6 RNA-seq library preparation ........................................................................................ 139 

4.7 RNA-seq data analysis .................................................................................................. 139 

References ..........................................................................................................140 

Appendix ............................................................................................................149 

Chapter 6 Conclusions .........................................................................................160 

Vita ........................................................................................................................164 



x 

 

LIST OF TABLES 

Table 3-1. Primers sequences used in this study ........................................................................... 66 

Table 5-1. Numbers of binding peaks and target genes of GRF1 and GRF3 ............................. 149 

Table 5-2. Occurrence of the identified motifs in GRF1 or GRF3 target genes ......................... 150 

Table 5-3. Number of differentially expressed genes identified in GRF1 and GRF3 

overexpression lines ................................................................................................. 151 

Table 5-4. Selected GRF1 and GRF3 direct target genes associated with cell cycle regulation and 

cytoskeleton organization. ....................................................................................... 152 

Table 5-5. Selected GRF1 and GRF3 direct target genes associated with different 

phytohormones. Genes associated with abscisic acid are not included in this table.

 ................................................................................................................................. 153 

 

 



xi 

 

LIST OF FIGURES 

Figure 1-1. Crosstalk between phytohormones during plant pathogen interactions. .................... 22 

Figure 1-2. Biogenesis of microRNA. .......................................................................................... 23 

Figure 2-1. Yeast two-hybrid interaction between ARF10 and various Aux/IAAs. .................... 42 

Figure 2-2. BiFC visualization of the ARF-Aux/IAA interactions............................................... 43 

Figure 2-3. Protein-protein interaction map of Arabidopsis ARF and Aux/IAA proteins. .......... 44 

Figure 2-4. Gene co-expression network of the interacting ARF-Aux/IAA proteins. .................. 45 

Figure 2-5. Heatmap demonstrating gene co-expression patterns of the interacting ARF-

Aux/IAA proteins in various Arabidopsis tissues and organs. .................................. 46 

Figure 3-1. ETR1 positively regulates plant susceptibility to H. schachtii. ................................. 67 

Figure 3-2. ETR1 receiver domain contributes to ETR1-mediated susceptibility to H. schachtii.

 ................................................................................................................................... 68 

Figure 3-3. Effect of ETR1 receiver domain point mutation on Arabidopsis susceptibility to H. 

schachtii. .................................................................................................................... 69 

Figure 3-4. Increased expression of SID2 is responsible for increased resistance of the ein3/eil1 

mutant. ....................................................................................................................... 70 

Figure 3-5. The ein3-1/eil1-1 mutant abolishes the repression of SID2–mediated activation of PR 

genes. ......................................................................................................................... 71 

Figure 4-1. Histochemical staining of GUS activity driven by miR858 and MYB83 promoters in 

transgenic Arabidopsis lines in response to H. schachtii infection. ........................ 106 

Figure 4-2. miR858 post-transcriptionally downregulates MYB83 during H. schachtii parasitism 

of Arabidopsis. ......................................................................................................... 108 

Figure 4-3. Gene expression levels of miR858, MIM858, rMYB83 and rMYB12 in transgenic 

lines. ......................................................................................................................... 109 

Figure 4-4. Overexpression of miR858 confers enhanced resistance to H. schachtii. ............... 110 

Figure 4-5. Constitutive downregulation of miR858 increased plant susceptibility to H. schachtii.

 ................................................................................................................................. 111 

Figure 4-6. Constitutive overexpression of miR858-resistant variant of MYB83 increased plant 

susceptibility to H. schachtii. ................................................................................... 112 

Figure 4-7. Characterization of the MYB83 T-DNA mutant line (CS1004395). ....................... 113 

file:///C:/Users/Sarbo/Google%20Drive/Sarbo_dissertation_grad_schooled1.docx%23_Toc480221207


xii 

 

Figure 4-8. Functional classification and Gene Ontology enrichment analyses of differentially 

expressed genes identified in 35S:miR858 and 35S:rMYB83 lines. ....................... 114 

Figure 4-9. Enrichment of MYB83 cis-binding element in the MYB83-regulated genes. ......... 116 

Figure 4-10. Gene Ontology classification and enrichment analyses of the putative direct targets 

of MYB83. ............................................................................................................... 117 

Figure 4-11. Differential expression patterns of a set of MYB83-regulated genes involved in key 

biological processes associated with nematode parasitism. .................................... 118 

Figure 4-12. miR858/MYB83 regulatory loop involves MYB12. ............................................. 119 

Figure 4-13. Schematic representation showing the construction of a miR858-resistant variant of 

MYB12 (rMYB12) by introducing synonymous mutations to the miR858 binding 

site in the MYB12 coding sequence. ....................................................................... 120 

Figure 4-14. Characterization of the MYB12 T-DNA mutant line (FLAG_150B05). ............... 121 

Figure 4-15. Model for miR858–MYB83 interaction ................................................................. 122 

Figure 5-1. Distribution of GRF1 and GRF3 binding sites in the Arabidopsis genome. ........... 154 

Figure 5-2. Identification of GRF1 and GRF3 binding motifs. .................................................. 155 

Figure 5-3. Schematic representation of GRF1 and GRF3 targets genes that are associated with 

various development processes. ............................................................................... 156 

Figure 5-4. Schematic representation of GRF1 and GRF3 target genes that are associated with 

abscisic acid (ABA) pathway and abiotic stress responses. .................................... 157 

Figure 5-5. Schematic representation of GRF1 and GRF3 target genes that are associated with 

defense responses. .................................................................................................... 158 

Figure 5-6. Functional classification and gene ontology analysis of the differentially expressed 

genes (DEGs) identified in GRF1 and GRF3 overexpression lines. ....................... 159 

 

file:///C:/Users/Sarbo/Google%20Drive/Sarbo_dissertation_grad_schooled1.docx%23_Toc480221235
file:///C:/Users/Sarbo/Google%20Drive/Sarbo_dissertation_grad_schooled1.docx%23_Toc480221235
file:///C:/Users/Sarbo/Google%20Drive/Sarbo_dissertation_grad_schooled1.docx%23_Toc480221236
file:///C:/Users/Sarbo/Google%20Drive/Sarbo_dissertation_grad_schooled1.docx%23_Toc480221236


1 

 

Chapter 1  

General introduction and literature review  
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1. Introduction 

Nematodes are one of the most diverse living organisms with more than 25,000 species and are 

ubiquitously distributed across various habitats that include different soils types, marine and 

fresh water (Hugot et al., 2001; Blaxter, 2003; Goverse and Smant, 2014). The large majority of 

these nematodes are beneficial or free living but there are few notorious species that parasitize 

human, animals and different crop plants causing devastating yield losses (Jasmer et al., 2003; 

Neher, 2010).  

Plant-parasitic nematodes (PPNs) are among the most serious and widely spread plant pathogens 

with more than 4100 species (Decraemer and Hunt, 2006). It is estimated that every year these 

parasites cause agricultural loss worth $157 billion (Abad et al., 2008). Based on their feeding 

habits, PPNs can be grouped into three major groups: ectoparasites, semi-endoparasites and 

endoparasites. Ectoparasitic nematodes live outside of the plant and extract nutrients from the 

plant root using the stylet. The head of the semi-endoparasitic nematode penetrates the root 

where they establish the feeding site while the remaining body lies in the outer root surface. In 

the case of endoparasitic nematodes the whole body is infiltrated in the root. The endoparasitic 

nematodes can be further classified into migratory endoparasites and sedentary endoparasites. 

Migratory endoparasitic nematodes are mobile throughout their life-cycle and feed on the plant 

cells as they move, while the sedentary nematodes become immobile once they establish their 

feeding sites. Sedentary endoparasitic nematodes are the most devastating plant-parasitic 

nematodes and include two major groups of nematodes: cyst nematodes (Heterodera and 

Globodera spp) and root-knot nematodes (Meloidogyne spp). Extraction of nutrients and water 

by the nematodes from the root system reduces availability of water and nutrients, causing 

stunted plant growth with leaf chlorosis, wilting and ultimately lower yield and hence the loss 

caused by these nematodes are mistakenly attributed to abiotic stress conditions or unfavorable 

cultural practices.  

Cyst nematodes belong to the family Heteroderidae and are characterized by the formation of 

feeding site termed syncytium from where they extract all essential nutrients during parasitism. 

The most economically important species in this family are soybean cyst nematode (Heterodera 

glycines) and potato cyst nematode (Globodera rostochiensis and G. pallida). The beet cyst 
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nematode (Heterodera schachtii) is another economically important species that infect sugar beet 

in addition to a significant number of vegetable crops. H. schachtii also infects Arabidopsis 

thaliana and the H. schachtii -Arabidopsis interaction has been established as a model system for 

studying the compatible interactions between host plants and cyst nematodes (Sijmons et al., 

1991). 

The life cycle of cyst nematode comprises of egg, four juvenile stages, and adult male or female 

stages. The first stage juvenile (J1) develops within the egg and under favorable conditions, the 

J1 undergoes molting to develop into second-stage juvenile (J2), which hatches out of the egg. 

After hatching, the migratory J2s migrate towards the root, penetrate the root mostly near the 

zone of elongation or near the lateral root initiation with the aid of the stylet and enter the 

epidermal cells. Once the J2s penetrate epidermal root cells, these juveniles migrate 

intracellularly via the cortex into the vascular cylinders. The J2 nematode selects a competent 

cell and injects its stylet into the cell to probe the cell. If the plant activates defense responses 

such as callose deposition or cytoplasm collapse, the J2 retracts its stylet and target another 

neighboring cell (Hewezi and Baum, 2017). The J2 may probe several cells before finding a 

competent cell that becomes initial feeding cell (IFC). Then, the J2 injects effector proteins via 

their stylet into the host cells to suppress defense responses and drive these cells into specific 

developmental cell fate. These effectors also target host proteins to reprogram various 

developmental pathways of the IFC and integrate few hundreds neighboring cells to form 

functional syncytium (Davis et al., 2008; Hewezi and Baum, 2013). Various cell-wall modifying 

enzymes such as expansins, cellulases and pecinases facilitate dissolution of neighboring cell 

wall and incorporation into the syncytium (Bohlmann and Sobczak, 2014). The syncytium 

undergoes considerable cellular changes that include repeated endoreduplication leading to 

polyploidy and multinucleate protoplast, vacuole fragmentation, thickened cell wall and 

increasing metabolic activity (Szakasits et al., 2009; Engler and Gheysen, 2013). After fourth 

molting, males become mobile and leave the root to mate with the female. Females spend all 

their life attached to the same syncytium sequestering the essential nutrients from the host plant. 

Females release a gelatinous matrix from the posterior end of the body where they deposit the 

eggs. When the females die, the body of the females hardens and becomes the cyst that protects 

the eggs for several years. 
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Successful establishment of a functional syncytium during cyst nematode infection is the main 

characteristic of the compatibility between host plants and cyst nematodes. Therefore, 

understanding syncytium ontogeny would help exploit the vulnerability of the feeding site to 

engineer plants resistant to cyst nematodes (Mitchum, 2016). However, the mechanisms by 

which cyst nematodes induce re-differentiation of normal root cells into syncytial cell type are 

not well-understood. This massive transformation of undifferentiated root cells into specialized 

syncytial cell-type involves a substantial change in gene expression (Szakasits et al., 2009; 

Cabrera et al., 2014). The functions of phytohormones and microRNAs (miRNAs) in regulating 

differentiation and developmental provided the foundation for their potential implication in 

syncytium initiation and development. In this context, recent experimental evidence pointed into 

key role of phytohormones and microRNAs in syncytium ontogeny (Hewezi et al., 2008; 

Gheysen and Mitchum, 2009; Hewezi et al., 2012; Cabrera et al., 2016). 

2. Role of phytohormones in plant nematode interaction 

Role of various phytohormones and their signaling during plant-pathogen interactions is well-

studied. Particularly, defense-related plant hormones (salicylic acid, jasmonic acid and ethylene) 

act independently or in conjugation with other phytohormones during plant-pathogen interactions 

(Figure 1.1). Hormonal signaling associated with both defense and growth are often activated 

during pathogen attack resulting in their cross-talk to fine-tune the balance between plant growth 

and defense response (Kazan and Lyons, 2014). This is supported by various studies that 

demonstrate interfaces of phytohormones associated with plant growth and development (auxin, 

cytokinin, gibberellins and abscisic acid) with phytohormones associated with plant defense 

(Wang et al., 2007; Argueso et al., 2012; Song et al., 2014).  

Pharmacological and nematode susceptibility assays of mutants defective in various hormone 

signaling pathways revealed the function of phytohormones such as auxin, ethylene, jasmonic acid, 

salicylic acid and cytokinin in mediating plant-nematode interactions (Wubben et al., 2001; 

Gheysen and Mitchum, 2009; Cabrera et al., 2014; Kammerhofer et al., 2015; Shanks et al., 2015). 

In addition, transcriptome analyses have revealed that genes associated with auxin and ethylene 

are predominant among the differentially expressed genes in the syncytium (Gheysen and 

Mitchum, 2009; Cabrera et al., 2014), providing further support for their involvement in syncytium 

formation and development.  
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2.1 Auxin 

Auxin is a key player of the root development and is involved in various root development 

processes that includes cell division, and establishing and maintaining root meristem (De Smet et 

al., 2010). In general, auxin has been implicated for organ primordia initiation in plant (Tanaka et 

al., 2006). Similarly, auxin levels increase in the initial nematode feeding sites as early as one day 

post infection and after 2-5 days, auxin response shifts to the neighboring cells (Hutangura et al., 

1999; Karczmarek et al., 2004) pointing to the role of auxin in nematode feeding site initiation and 

development. In addition, the auxin insensitive tomato mutant diageotropica (dgt) exhibit impaired 

feeding sites when infected with Globodera rostochiensis (Goverse et al., 2000) that provide 

evidence for the role of auxin in cyst nematode feeding site development. 

Molecular and biochemical analyses revealed that the AUXIN RESPONSE FACTOR (ARF)-

AUXIN/INDONE-3-ACETIC ACID (Aux/IAA) module regulates the auxin signaling pathway 

(Chapman and Estelle, 2009). In the presence of auxin, AUXIN F-BOX (AFB) proteins AFB1, 

AFB2 and AFB3 degrade AUX/IAAs via 26S proteasome and hence Aux/IAAs fail to repress 

ARF activity. ARFs bind to auxin response elements present in auxin responsive genes and 

regulate their expression. In contrast, in the absence of auxin, Aux/IAA proteins bind to ARFs and 

inhibit their function (Chapman and Estelle, 2009). Studies have shown that Aux/IAAs and ARFs 

play vital roles in plant-nematode interactions. GFP reporters driven by various ARF promoters 

showed expression of various ARFs at different stages of syncytium initiation and development. 

The expression patterns revealed distinct and overlapping functions of ARFs during syncytium 

initiation and formation (Hewezi et al., 2014). In addition, various auxin transcriptional repressor 

mutants axr2/iaa7, slr/iaa14 and iaa16 have shown altered susceptibility to H. schachtii (Goverse 

et al., 2000; Grunewald et al., 2008; Hewezi et al., 2015). Hewezi et al. (2015) reported that the 

10A07 effector from H. schachtii targets IAA16 to interfere with auxin signaling during nematode 

parasitism of Arabidopsis. IAA16 overexpression lines demonstrated reduced expression of 

ARF6-8 and 19 under non-infected conditions, while the expression of these ARFs were 

upregulated under H. schachtii infected conditions, suggesting that in response to H. schachtii 

infection IAA16 releases these ARFs which in turn regulate the expression of auxin responsive 

genes that are required for syncytium initiation and formation. In addition, severak auxin 

responsive genes have been identified as differentially expressed in response to cyst nematode 
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infection. For instance, auxin repressed genes such as AUXIN DOWNREGULATED 6 (ADR6), 

ADR11 and ADR12 are downregulated in the early stage of H. glycine infection (Hermsmeier et 

al., 1998). Furthermore, several cell wall degrading genes that change the expression in the 

syncytium contain auxin response elements in their promoters. For example, endo-β-1,4-glucanase 

genes such as NtCel7 from tobacco and its homolog SlCel7 from potato, and AtCel2 from 

Arabidopsis contain auxin response element in their promoters and are strongly induced in the 

syncytium (Wang et al., 2007; Karczmarek et al., 2008; Wieczorek et al., 2008). These results 

point to a role of auxin signaling in cyst nematode-induced syncytia. Considering the facts that 

Aux/IAAs bind to ARFs and repress the function of ARFs, and several members of these 

transcription factor families can modulate plant-nematode interactions, constructing a protein-

protein interaction map of the ARFs and Aux/IAAs will elucidate the possible interlinks between 

ARFs and Aux/IAAs in mediating auxin signaling for syncytium development during plant-

nematode interaction. 

2.2 Ethylene 

Ethylene is a gaseous plant hormone that regulates a wide range of plant metabolic, 

physiological, and developmental processes including defense against various pathogens 

(Broekaert et al., 2006; Schaller, 2012). The role of ethylene in syncytium development was 

implied through the finding that the mutations in Arabidopsis ethylene-overproducing genes such 

as ETHYLENE OVERPRODUCER 1 (ETO1), ETO2 and ETO3 are more susceptible to the cyst 

nematode (Goverse et al., 2000; Wubben et al., 2001). In addition, eto2 also exhibited enhanced 

cell wall breakdown during cyst nematode infection, suggesting that ethylene is a positive 

regulator of Arabidopsis susceptibility to H. schachtii (Goverse et al., 2000; Wubben et al., 

2001). However, the role of ethylene in plant-nematode interaction is complex and contradictory 

(Kyndt et al., 2013). Several ethylene insensitive mutants such as ethylene response 1-1 (etr1-1), 

ethylene insensitive 2-1 (ein2-1), ein3-1 and ethylene insensitive root 1-1 (eir1-1) were less 

susceptible to H. schachtii, implying a role of ethylene in the regulation of Arabidopsis 

susceptibility to H. schachtii (Wubben et al., 2001; Wubben et al., 2004). Wubben et al. (2001) 

also reported that increase attractiveness of H. schachtii towards the root exudates of ethylene 

over-producing mutant eto3 could be attributed to the observed susceptibility of eto3 mutant to 

H. schachtii. In contrast, the expression of ethylene responsive ethylene binding protein family 
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genes- RAP2.3 and RAP2.6 that enhance plant basal defense responses, were downregulated in 

the beet cyst nematode-induced syncytium (Hermsmeier et al., 2000; Ali et al., 2013). Likewise, 

expression of soybean ethylene responsive element–binding protein gene, EREBP1 was also 

downregulated in cyst nematode infected susceptible soybean roots and upregulated in resistant 

plants suggesting that EREBP1 is a positive regulator of ethylene-mediated defense response 

(Mazarei et al., 2002; Mazarei et al., 2007). A plausible explanation for this discrepancy of 

ethylene function in plant-cyst nematode interactions is that the role of ethylene is dependent on 

the stage of parasitism. At early stage, ethylene plays positive role in attracting nematode 

towards the roots, but during sedentary parasitism it seems to have a negative impact on 

nematode development (Kammerhofer et al., 2015). 

Studies have shown cross-talk of ethylene signaling with other stress hormones namely salicylic 

acid and jasmonic acid. Plants with reduced expression of EIN3 and EIL1 showed enhanced 

pathogen-associated molecular patterns (PAMP) response and reduced susceptibility to 

Pseudomonas syringae (Chen et al., 2009). Further analysis showed that these two ethylene 

signaling transcription factors directly regulate the expression of SALICYLIC ACID 

INDUCTION DEFICEINT 2 (SID2) that encode isochorismate synthase. The fact that 

ISOCHORISMATE SYNTHASE is required for salicylic acid biosynthesis indicates that 

EIN3/EIL1 directly target SID2 to repress PAMP response (Chen et al., 2009). In contrast to the 

antagonistic interaction between ethylene signaling and salicylic acid biosynthesis, ethylene 

signaling has synergistic function with jasmonic acid signaling pathway. Zhu et al. (2011) 

reported that plants lacking EIN3 and EIL1 have reduced resistance to Botrytis cinerea. They 

observed that the expression of JA-induced pathogenesis related genes, PLANT DEFENSIN 1.2 

(PDF1.2), ETHYLENE RESPONSE FACTOR 1 (ERF1) and OCTADECANOID-RESPONSIVE 

ARABIDOPSIS 59 (ORA59), was absent in the ein3/eil1 double mutant in presence of JA, a 

finding that explains the susceptibility of this mutant to Botrytis cinerea.  

3. Small RNA 

Small RNAs (sRNAs) are non-coding short (21 to 24) nucleotides that play important regulatory 

roles by controlling the transcriptional activity of their target genes containing complementary 

sequences. In plants, sRNAs have emerged as an important player that regulate different 

biological processes such as plant morphogenesis and development, nutrient uptake and 
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metabolism, hormone signaling, abiotic and biotic stress responses (Weiberg et al., 2014). Based 

on the origin, sRNAs can be divided into microRNAs (miRNAs), hairpin derived siRNAs (hp 

siRNAs), natural antisense siRNAs (natsiRNAs), secondary siRNAs, and heterochromatic 

siRNAs (hetsiRNAs). Despite the difference in the origin, these sRNAs share the following four 

characteristics; 1) production of double stranded RNA, 2) cleavage of the dsRNA into 21-24 

nucleotides, 3) 3’-O-methylation of sRNA, and 4) loading into the RNA-induced silencing 

complex (RISC) that facilitates association with the targeted genes having complementary 

sequence (Borges and Martienssen, 2015). 

MiRNAs play important regulatory roles by controlling the activity of their target genes 

containing complementary sequences at post-transcriptional level (Bartel, 2004; Voinnet, 2009). 

In plants, miRNAs have been identified as one of the vital regulators of plant gene expression. A 

growing body of experimental evidence demonstrated the involvement of miRNAs in plant 

developmental processes such as vascular tissue development, root initiation and development, 

flower development, and seed development as well as plant defense against various pathogens 

[reviewed in (Kidner and Martienssen, 2005; Chen, 2009; Chuck et al., 2009; Weiberg et al., 

2014)].  

The biogenesis of miRNA is presented in Figure 1.2. The primary transcripts of miRNAs are 

encoded from endogenous genes by RNA polymerase II into single stranded molecules that fold 

into hairpin-like structures. The stem-loop precursor molecules are cleaved by DICER-like 1 

(DCL1) and generate miRNA-miRNA* duplex (Voinnet, 2009; Axtell et al., 2011). Upon 

processing by DCL1, 3ˈ end of miRNA-miRNA* duplex is 2ˈ-O- methylated by 

methyltransferase HUA ENHANCER 1 (HEN1) that prevents decay of miRNAs (Yu et al., 

2005). This duplex is transported to the cytoplasm where the duplex separates and the passenger 

miRNA (miRNA*) is degraded. Guide miRNAs (mature miRNAs) are loaded into 

ARGONAUTE1 (AGO1)-containing RNA-induced silencing complex (RISC). Mature miRNAs 

in RISC serve as guide to bind the target mRNAs, while the AGO1 protein functions as effector 

that recruits factors for post-transcriptional gene silencing (PTGS) by endonucleolytic cleavage 

or translational repression (Huntzinger and Izaurralde, 2011). 
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Several Arabidopsis mutants such as dcl1-9, ago1-25 and ago1-27 with impaired miRNA 

activity showed compromised basal defense response, implicating miRNAs in plant immunity 

(Navarro et al., 2008; Li et al., 2010). The activity of miR393 in plant pattern-triggered immunity 

(PTI) against Pseudomonas syringae by regulating auxin-signaling pathway was the first report 

showing the function of miRNAs in modulating plant immunity (Navarro et al., 2006). 

Thereafter, an increasing number of studies have reported the role of various miRNAs in plant-

pathogen interactions. Recent advancement in the field of deep sequencing and bioinformatics 

has allowed genome wide identification of differentially expressed miRNAs in response to 

pathogen infection (Zhang et al., 2011; Li et al., 2014). Despite the large number of miRNAs that 

are regulated in response to pathogen infection, a limited number of these miRNAs were 

functionally characterized. Functional characterization of some miRNAs has shown that these 

miRNAs may positively or negatively regulate plant susceptibility to a large array of pathogens 

including bacteria, fungi, viruses, and nematodes. These functional characterization studies of 

various miRNAs and their target have shown that miRNAs regulate genes associated with 

various PTI responses in plants such as callose deposition, ROS production under pathogen 

attack (Sunkar et al., 2006; Li et al., 2010). In addition, several recent studies have also shown 

that miRNA guide cleavage of resistance genes in different plant species, demonstrating the 

function of miRNAs in plant immunity (Li et al., 2012; Shivaprasad et al., 2012; Boccara et al., 

2014). 

Several miRNAs that show significant change in their expression in response to infection by 

plant-parasitic nematodes infection have been identified (Hewezi et al., 2008; Li et al., 2012; 

Zhang et al., 2016), suggesting a functional role of miRNAs in plant-nematode interactions. In 

the last few years, the functions of few plant miRNAs in regulating various aspects of plant-

nematode interactions have been established (Hewezi and Baum, 2012; Hewezi et al., 2012; 

Zhao et al., 2015; Cabrera et al., 2016; Hewezi et al., 2016). Arabidopsis miR396-mediated 

regulation of GROWTH REGULATING FACTOR 1 (GRF1) and GRF3 was found to control 

the differentiation and development of the syncytia during H. schachtii infection of Arabidopsis 

(Hewezi et al., 2012). It was also reported that this module regulates the expression of a large 

number of genes that are differentially expressed in the syncytium mostly associated with 

hormone signaling, defense response and disease resistance (Hewezi and Baum, 2012; Hewezi et 

al., 2012; Liu et al., 2014). In another study, miR319/TEOSINTE 
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BRANCHED1/CYCLOIDEA/PRO-LIFERATING CELL FACTOR 4 (TCP4) regulatory 

module was found to regulate plant susceptibility to the root-knot nematode Meloidogyne 

incognita by regulating jasmonic acid level in tomato (Zhao et al., 2015). Another recent study 

suggested a regulatory function of Arabidopsis miR390a/TAS3 system in Meloidogyne 

javanica–triggered gall formation, presumably by regulating auxin response factors (Cabrera et 

al., 2016). More recently, Hewezi et al. (2016) reported a key functional role of the miR827-

NITROGEN LIMITATION ADAPTATION (NLA) regulatory system in H. schachtii–induced 

syncytium. It was demonstrated that H. schachtii–activated miR827 inhibits plant immune 

response, thereby facilitating the initiation and development of nematode feeding sites. 

Collectively, these results strongly support a vital regulatory function of miRNAs in establishing 

the interaction between host plants and plant parasitic nematodes.  

4. Role of GRF1/3 in plant-nematode interaction 

In Arabidopsis, miR396 is encoded by two loci, miR396a and miR396b, and post-

transcriptionally regulates the expression of seven of the nine GRF genes except GRF5 and 

GRF6 (Jones-Rhoades and Bartel, 2004). GRFs regulate various aspects of plant growth and 

development, including leaf, stem and root development, floral development, and reproductive 

competence as well as defense responses (van der Knaap et al., 2000; Kim et al., 2003; Hewezi 

et al., 2012; Kim et al., 2012; Bao et al., 2014; Liu et al., 2014; Omidbakhshfard et al., 2015). 

Hewezi et al. (2012) showed that miR396 and its target genes GRF1 and GRF3 play vital role in 

the differentiation of cyst nematode-induced feeding sites and ultimately affect plant 

susceptibility to the beet cyst nematode. During the early stage of nematode infection, the 

expression of miR396 was reduced with concomitant increases in GRF1 and GRF3 expression 

that facilitate the initiation and formation of the feeding sites. Once the syncytium formation 

stage is completed, the expression of miR396 was increased leading to a significant reduction in 

the expression of GRF1 and GRF3, defining the beginning of syncytium maintenance stage. It 

was also reported that transgenic lines overexpressing miR396-resistant version of GRF1or 

GRF3 were less susceptible to beet cyst nematode, a phenotype that was associated with reduced 

syncytium size. Collectively, these results point to the role of miR396-GRF1/3 module in beet 

cyst nematode parasitism. Furthermore, this study also revealed that miR396-GRF1/3 system 

regulates 44% of the 7225 genes that are differentially expressed in the syncytium (Szakasits et 
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al., 2009), suggesting pivotal roles of this regulatory system in the reprogramming of root cells 

into syncytium cell-type. mRNA expression profiling using microarray, genes associated with 

developmental pathways and defense signaling were significantly enriched among the 

differentially expressed genes, suggesting a role GRF1/3 in mediating the trade-off between 

growth and defense signaling pathways (Hewezi et al., 2012; Liu et al., 2014). However, the 

mechanisms through which GRF transcription factors control the growth/defense trade-off 

remain to be determined.  

Several recent studies have combined ChIP-seq and RNA-seq approaches to identify gene that 

are directly regulated by the transcription factors. These analyses provided novel insights into the 

regulatory mechanisms underlying plant immunity (Liu et al., 2015; Sun et al., 2015; Birkenbihl 

et al., 2016). For example, Liu et al. (2015) reported that WRKY33 directly regulates the ABA 

biosynthesis genes NCED3 and NCED5 to negatively regulate ABA biosynthesis, which in turn 

influences plant immunity. In another study, identification of genome-wide HOMOLOG OF 

BEE2 INTERACTING WITH IBH 1 (HBI1) binding sites along with transcriptome analysis 

revealed that HBI1 is the primary node that mediates the trade-off between plant growth and 

immunity in Arabidopsis (Fan et al., 2014). It was reported that HBI1 is a negative regulator of 

plant immunity and in response to plant pathogen, the expression of this gene is inhibited leading 

to increased plant immunity and reduced plant growth (Fan et al., 2014). Since GRF1 and GRF3 

regulate the expression of exceptionally large number of genes that are differentially expressed 

in the syncytium, identification of the genes that are directly regulated by these transcription 

factors would allow identification of gene expression networks and pathways that control 

Arabidopsis-cyst nematode interactions. In addition, considering the role of GRF1/3 in plant 

growth and development as well as defense signaling, identifying direct targets of GRF1and 3 

will provide a mechanistic understanding of the growth/defense trade-off; a phenomenon that is 

poorly understood. Understanding the molecular principals of growth/defense trade-off is 

expected to open avenues to increase plant growth and defense simultaneously.  
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5. Dissertation organization 

This dissertation is organized into five chapters based on the objective of the project. 

i) General introduction on cyst nematode and literature review on current understanding 

of the role of phytohormones particularly auxin and ethylene, and miRNA in plant-

nematode interactions. 

ii) Generate protein-protein interaction map of all auxin response factor (ARFs) and 

auxin/indole-3-acetic acid (Aux/IAAs) and integrate the global gene co-expression 

network with the protein interaction map to identify tissue-specificity for the various 

ARF-Aux/IAAs interacting pairs.  

iii) Understand the functional roles of various components ethylene signaling pathways 

in establishing the compatible interactions between H. schachtii and Arabidopsis. 

iv) Understand the role of miR858-MYB83 module in H. schachtii-Arabidopsis 

interactions. 

v) Identify genome-wide direct targets of GRF1 and GRF3 and explore the functional 

role of the regulatory pathway in plant development and defense. 
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Appendix 

 

Figure 1-1. Crosstalk between phytohormones during plant pathogen interactions. 

Hormonal signaling associated with both defense and growth are often activated during pathogen 

attack resulting in the hormonal crosstalk to fine-tune the balance between plant 
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Figure 1-2. Biogenesis of microRNA.  

RNA polymerase II transcribes the single stranded miRNA primary transcript from 

endogenous gene that fold into hairpin-like structure. The hairpin-loop precursor molecules are 

cleaved by Dicer-like 1 (DCL1) to produce pre-miRNA. This pre-miRNA is transported to the 

cytoplasm where it is further processed into 21-22 nucleotide mature miRNA. One of the 

strand of mature miRNA is loaded into ARGONAUTE1 (AGO1) containing RNA-induced 

silencing complex (RISC). Mature miRNA in RISC serves as guide to bind the target mRNAs 

that has complementary sequence while the AGO1 protein functions as effector that recruits 

factors for post-transcriptional gene silencing (PTGS) by endonucleolytic cleavage or 

translation repression. 
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Chapter 2  

Protein-protein interaction and gene co-expression maps of ARFs 

and Aux/IAAs in Arabidopsis 
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Abstract 

The phytohormone auxin regulates nearly all aspects of plant growth and development. Based on 

the current model in Arabidopsis thaliana, Auxin/indole-3-acetic acid (Aux/IAA) proteins 

repress auxin-inducible genes by inhibiting auxin response transcription factors (ARFs). 

Experimental evidence suggests that heterodimerization between Aux/IAA and ARF proteins are 

related to their unique biological functions. The objective of this study was to generate the 

Aux/IAA-ARF protein-protein interaction map using full length sequences and locate the 

interacting protein pairs to specific gene co-expression networks in order to define tissue-specific 

responses of the Aux/IAA-ARF interactome. Pairwise interactions between 19 ARFs and 29 

Aux/IAAs resulted in the identification of 213 specific interactions of which 79 interactions were 

previously unknown. The incorporation of co-expression profiles with protein-protein interaction 

data revealed a strong correlation of gene co-expression for 70% of the ARF-Aux/IAA 

interacting pairs in at least one tissue/organ, indicative of the biological significance of these 

interactions. Importantly, ARF4-8 and 19, which were found to interact with almost all Aux-

Aux/IAA showed broad co-expression relationships with Aux/IAA genes, thus, formed the 

central hubs of the co-expression network. Our analyses provide new insights into the biological 

significance of ARF-Aux/IAA associations in the morphogenesis and development of various 

plant tissues and organs. 

Keywords: Auxin, yeast-two hybrid, co-expression network, BiFC 
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1. Introduction 

The plant hormone auxin (indole-3-acetic acid; IAA), regulates a wide range of developmental 

and physiological processes in plants including for example, apical dominance, root 

development, vascular differentiation, shoot elongation, and embryo patterning (Benjamins and 

Scheres, 2008; Zhao, 2010). Also, auxin regulates various cellular processes that are associated 

with plant responses to biotic and abiotic stresses (Kazan and Manners, 2009). 

Characterization of plant responses to IAA treatments led to the identification of various classes 

of early auxin-responsive genes. Members of the Aux/IAA gene family were among the first 

auxin-regulated genes to be identified. In Arabidopsis, the Aux/IAA gene family comprises 29 

members and encodes short-lived nuclear proteins. The hallmark characteristic of Aux/IAA 

proteins is the presence of four highly conserved domains (domains I–IV), which underlie the 

functional properties of these proteins. Domain I mediates the transcriptional repression of the 

proteins, whereas domain II mediates protein degradation (Chapman and Estelle, 2009). 

Domains III and IV are responsible for homo- and hetero-dimerization with other Aux/IAA 

proteins as well as heterodimerization with the auxin response factors (ARFs) (Chapman and 

Estelle, 2009). In Arabidopsis, ARFs are encoded by a large gene family containing 22 members. 

These transcription factors bind specifically to auxin-responsive cis-acting elements that are 

frequently found in the promoters of early auxin-responsive genes. Aux/IAA proteins negatively 

regulate the abundance of ARFs, and subsequently the expression of auxin-responsive genes. 

Extensive molecular and biochemical analyses revealed the mechanism of this regulation 

(Chapman and Estelle, 2009). More specifically, in the presence of auxin, the degradation of the 

Aux/IAA proteins is enhanced, thus alleviating the repression of ARF activity and allowing them 

to drive the transcription of auxin-responsive genes. By contrast, in the absence of auxin, 

Aux/IAA protein levels increase and they bind to AFRs to inhibit their function. Based on this 

model, auxin signaling involves TRANSPORT INHIBITOR RESPONSE1/AUXIN-BINDING 

F-BOX PROTEIN (TIR1/AFB) auxin receptors, Aux/IAA inhibitors, and ARF cis-acting 

transcription factors regulating the expression of auxin-responsive genes. Because these proteins 

are encoded by multigene families in Arabidopsis (5 TIR/AFB, 29 Aux/s and 22 ARFs) there are 

opportunities for numerous combinatorial interactions among these proteins to mediate specific 

responses. 
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Experimental evidence suggests that heterodimerization between Aux/IAA and ARF proteins are 

important to define their unique biological functions (Weijers et al., 2005). For example, ARF7 

was found to be regulated by Aux/IAA3 in roots and by Aux/IAA19 in hypocotyls (Tatematsu et 

al., 2004), suggesting that the activities of ARFs could be regulated by different Aux/IAA 

proteins in a tissue-dependent fashion. Thus, it is possible that the formation of a wide range of 

dimer combinations among and between these two gene family proteins represents the 

mechanisms by which ARF transcription factors regulate diverse cellular processes. Several 

studies have reported on combinatorial protein-protein interactions between ARFs and Aux/IAAs 

(Fukaki et al., 2005; Weijers et al., 2005; Uehara et al., 2008; Li et al., 2011; Vernoux et al., 

2011; Arase et al., 2012). However, most of these studies used partial ARF sequences containing 

the C-terminal protein-protein interaction domain (CTD) and discrepancies in protein-protein 

interactions between Aux/IAA proteins and that of the full-length or truncated ARFs are 

frequently found. For example, Aux/IAA17 was found to interact strongly with the full-length of 

ARF1 (Ouellet et al., 2001) but no interaction was detected when a truncated version of ARF1 

containing the CTD was used (Tiwari et al., 2003; Vernoux et al., 2011). Similarly, differences 

in interaction intensity between rice Aux/IAAs and intact or truncated versions of ARFs were 

observed (Shen et al., 2010). 

The global protein-protein interaction network of a specific gene family provides information of 

all physical associations that can occur among family members. However, weighing the 

biological significance of such an interactome is a real challenge because of tissue specificities 

and the dynamic nature of protein-protein interactions. Global gene co-expression analysis has 

recently emerged as a powerful approach to identify the tissues and the conditions in which 

important interactions occur. This is based on the idea that proteins can physically interact in 

particular cell types or tissues only if their genes are co-expressed in these cell types or tissues. 

The integration of global gene expression data with a protein interaction network has been used 

to determine the cellular conditions and tissues specificity of protein interaction network of 

human proteins (Bossi and Lehner, 2009), and Arabidopsis MADS Box transcription factors (de 

Folter et al., 2005), cell cycle proteins (Boruc et al., 2010), and G-proteins (Klopffleisch et al., 

2011). 
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In this study, we generated the protein–protein interaction map of Arabidopsis ARF and 

Aux/IAA proteins using full-length sequences in yeast two-hybrid assays. We identified 213 

specific interactions between ARFs and Aux/IAAs in which 79 interactions have not been 

reported previously. In addition, we integrated the global gene co-expression profile with the 

protein interaction map and identified tissue-specificity for the majority of the ARF-Aux/IAAs 

interactions. 

2. Results  

2.1 Construction of Comprehensive Interaction Map of ARFs and Aux/IAA 

To generate a comprehensive protein-protein interaction map between ARF and Aux/IAA 

proteins, yeast co-transformation assays were performed between 19 ARFs and 29 Aux/IAAs. 

The full-length coding sequences of 19 ARFs (ARF1-13 and ARF16-20 and ARF22) were 

cloned in a bait vector and full-length coding sequences of 29 Aux/IAAs (Aux/IAA1-20 and 

Aux/IAA26-34) were cloned in a prey vector. Yeast cells were co-transformed with 551 pairs of 

bait and prey vectors and potential interactions were visualized by differential growth on the 

non-selective synthetic dropout (SD) medium (SD/-Leu/-Trp) and on the selective medium (SD/-

Leu/-Trp/-His/-Ade). An example of the interaction between ARF10 and Aux/IAAs is provided 

in Figure 2.1. Of the 551 interactions tested, 213 interactions between ARFs and Aux/IAAs were 

detected. To confirm the protein-protein interactions in planta, bimolecular fluorescence 

complementation (BiFC) assays (Citovsky et al., 2006) were performed with ARFs and 

Aux/IAAs that displayed weak-to-strong interactions in yeast. Coding sequences of ARF5, 6, 

and 19 were fused to the N-terminal half of a yellow fluorescent protein gene (nEYFP), while 

Aux/IAA5, 6, 17, 32, and 34 were fused to the C-terminal half of a yellow fluorescent protein 

gene (cEYFP). Ten different combinations between nEYFP and cEYFP fusions were co-

expressed in onion epidermal cells. All ARF-Aux/IAA interaction combinations, including those 

showing weak interaction in yeast (ARF6-Aux/IAA32 and ARF19-Aux/IAA34), reconstituted 

the fluorescent YFP in the nucleus of transformed cells (Figure 2.2), validating our yeast co-

transformation data. Onion epidermal cells co-transformed with 4 non-interacting pairs yielded 

no YFP fluorescence. 

It is interesting to note that all ARFs that function as activators (ARF5, ARF6, ARF7, ARF8, and 

ARF19) were found to interact with all Aux/IAA proteins except ARF7 with Aux/IAA7 (Figure 
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2.3). In contrast, ARFs that function as repressors showed interactions with certain Aux/IAAs. 

One exception is ARF4, which interacted strongly with all Aux/IAA proteins. One remarkable 

finding is that ARFs that functioned as repressors dimerized preferentially with Aux/IAA32 and 

Aux/IAA34 (Figure 2.3). For example, out of the 14 ARFs we included in our analysis that 

functioned as repressors 9 and 8 ARFs were found to interact with Aux/IAA32 and Aux/IAA34, 

respectively (Figure 2.3). Of these ARFs, ARF1, 10, 16, and 18 showed strong interactions with 

both Aux/IAA32 and 34. No interactions were detected for ARF3, ARF11, ARF12 and ARF13. 

ARF3 and ARF13 do not contain the C-terminal protein-protein interaction domain (CTD), 

which mediates the interaction with Aux/IAAs through binding to motif III and IV found in 

Aux/IAAs. ARF17 does not contain the CTD but was found to interact with 9 Aux/IAA proteins 

including Aux/IAA5, 8, 9, 13–16, 33, and 34 (Figure 2.3).  

2.2 Phylogenetically-Related ARFs Exhibited Various Interactions with Aux/IAA Proteins 

We tested whether phylogenetically-related ARF and Aux/IAA proteins would have similar 

protein-protein interaction patterns. In general, we found that phylogenetically-related ARF and 

Aux/IAA proteins formed similar protein-protein interactomes. For example, ARF5-8 and 

ARF19, which are phylogenetically-related, interacted with almost all Aux/IAA proteins. 

Similarly, ARF10 and 16, which clustered together, were found to interact with the same 

Aux/IAA proteins including Aux/IAA5, and Aux/IAA32-34 (Figure 2.3). In contrast, the 

closely-rated ARF3 and 4 showed distinct interaction patterns. While ARF4 interacted strongly 

with all Aux/IAA protein, none of the Aux/IAA proteins was detected as ARF3 interactor, 

perhaps owing to the absence of the CTD in ARF3. Likewise, ARF11 and 18 showed different 

interaction patterns despite the fact that they are phylogenetically-related.  

2.3 Co-Expression Analysis of Interacting ARF-Aux/IAA Proteins 

Auxin-specific response in plant tissues is defined by specific ARF-Aux/IAA pairs that co-

express in these tissues (Weijers et al., 2005). Therefore, interacting ARF-Aux/IAA pairs that co-

express in particular tissues are the potential combinations that facilitate the conversion of auxin 

signal into specific responses during morphogenesis. To test the biological significance of the 

physical ARF-Aux/IAA associations, we integrated the protein interaction map with the co-

expression map. We analyzed gene co-expression profiles of ARF and Aux/IAA genes in 

different Arabidopsis tissues/organs using 65 different RNAseq datasets from the SRA 
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(Leinonen et al., 2011). Pair-wise gene co-expression values of genes encoding ARFs and 

Aux/IAAs in various tissues and organs were used to generate the co-expression network of the 

ARF-Aux/IAA interacting proteins shown in Figure 2.4. The network included 44 nodes (15 

ARFs and 29 Aux/IAA) and 213 edges (interacting combinations). Out of the 213 interacting 

combinations, 149 combinations (70%) had co-expression patterns in at least one tissue and were 

represented by continuous edges (Figure 2.4). The remaining 64 interacting combinations did not 

show significant co-expression relationships, represented by dotted edges (Figure 2.4). ARF4-8 

and 19, which were found to interact with almost all Aux/IAAs, showed broad co-expression 

relationships with Aux/IAA genes, and thus constituted the central hubs of the map. Notably, all 

the interacting combinations of ARF1, 2, and 16 showed significant co-expression correlations. 

In contrast, ARF20, ARF22 and Aux/IAA33 did not show any co-expression association in the 

tissues included in our analysis. 

In order to map the co-expression events of the interacting ARF-Aux/IAA proteins to specific 

tissues or organs, the co-expression between pairs was determined using Z score as described in 

the Material and Methods. We set the “fragments per kilobase of transcript per million mapped 

reads” (FPKM) value of 2.0 as the threshold for expressed genes. As a result, ARF12-14, 

ARF20, ARF22 and Aux/IAA15, which have FPKM value less than 2 were considered as non-

expressed in the samples included and hence, were not included in the co-expression analysis. 

Also, IAA33 and IAA34 showed very low expression levels across all tissues except in the roots 

and seedlings, respectively. The co-expression profiles of ARFs and Aux/IAAs in embryos, 

floral buds, flowers, hypocotyls, leaves, roots, shoot apical meristems, seedlings, and whole plant 

are presented as a heatmap in Figure 2.5. It is very interesting to note that we observed general 

trends of co-expression specificity in which the majority of the ARF/Aux/IAA pairs are 

expressed in only one tissue/organ. In few cases, the co-expression associations of the pairs were 

found in two and to a much lower extent in three tissues, these occurred in tissues with related 

functions such as flowers, floral buds and embryos. For example, ARF5-Aux/IAA12, ARF5-

Aux/IAA27, and ARF17-Aux/IAA8 were co-expressed in floral buds and embryos. Similarly, 

ARF6-Aux/IAA9, ARF6-Aux/IAA11, ARF8-Aux/IAA9, and ARF8/Aux/IAA11 were co-

expressed in flowers and floral buds. It is also interesting to note that in each tissue, several co-

expression events occurred in which only a few ARFs were observed. For example, the 16 co-

expression events detected in roots were contributed by ARF7 and ARF19. In other tissues, the 
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number of co-expression events was very limited. For example, in SAM only 5 co-expression 

events between ARFs and Aux/IAAs were detected (ARF5-Aux/IAA8, ARF5-Aux/IAA32, 

ARF8-Aux/IAA8, ARF8-Aux/IAA32, and ARF10-Aux/IAA32).  

3. Discussion 

Models for auxin signal transduction pathway have positioned ARF and Aux/IAA proteins 

centrally in the network in which auxin signals are converted into specific physiological 

responses (Muday et al., 2012). ARFs contain N-terminal DNA binding domain that binds to the 

TGTCTC cis regulatory element in the promoters of auxin-response genes, a middle region that 

functions as activator or repressor, and frequently a CTD involved in protein-protein interactions 

(Guilfoyle and Hagen, 2007). Likewise, Aux/IAAs contain an N-terminal repression domain 

(domain I), a degradation domain (domain II) that facilitates degradation of Aux/IAAs through 

ubiquitin–proteasome pathway in response to auxin, and protein-protein interaction domains 

(domain III and IV), which resemble CTD of the ARFs (Guilfoyle and Hagen, 2012). The CTD 

of ARFs and domains III and IV of Aux/IAAs mediate ARF-Aux/IAA heterodimerization 

(Weijers et al., 2005). Because ARF and Aux/IAA proteins are encoded by multigene families, 

there are opportunities for many combinatorial interactions between these proteins, which 

apparently are necessary to mediate auxin-specific responses in various developmental and 

physiological contexts. Studies of protein-protein interactions between Arabidopsis ARFs and 

Aux/IAAs have been conducted using truncated ARFs with only CTDs (Tiwari et al., 2003; 

Tatematsu et al., 2004; Szemenyei et al., 2008; Vernoux et al., 2011) with the assumption that 

the ARF protein domains other than CTD have no role in facilitating ARF-Aux/IAA interactions. 

Although the interaction between these two gene families are mediated through the CTD, using 

truncated proteins might not be physiologically relevant in that the result could be instable or 

misfolded protein domains or fragments that could impact the interaction outcomes. 

In this study, we identified 213 specific interactions between 19 ARFs and 29 Aux/IAAs using 

yeast two-hybrid assays. A subset of 10 interacting combinations in yeast was also validated in 

planta using BiFC, indicating that these interactions were functional and of biological relevance 

in plants. When we compared our protein-protein interaction data with those reported by 

Vernoux et al. (2011), we found that 134 interaction combinations were common between 

studies. In contrast, we detected 79 new interactions, but failed to confirm 39 previously-reported 
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interactions. The identification of 79 new interactions in the current study suggests that protein 

structure or regions other than CTD of ARFs likely influence ARF-Aux/IAA interactions, which 

was supported by ARF17, which does not contain a CTD, interacted with 9 Aux/IAA proteins 

including Aux/IAA5, 8, 9, 13–16, 33, and 34. Thus, using truncated ARFs might constrict the 

ability of ARFs to interact with Aux/IAA proteins. Consistent with this suggestion, an interaction 

between intact ARF1 and Aux/IAA17 was observed in our study and also previously (Ouellet et 

al., 2001), whereas the truncated version of ARF1 containing only CTD failed to produce 

positive interaction (Tiwari et al., 2003; Vernoux et al., 2011). In addition, a recent study of 

protein-protein interactions between ARFs and Aux/IAAs in rice indicated that full-length and 

truncated ARFs could differ in their capacity to interact with Aux/IAA proteins (Shen et al., 

2010). 

We found that all ARFs that are known to be transcriptional activators (ARF5-8, and 19), 

interacted with almost all Aux/IAA proteins, a result that was also found in rice (Shen et al., 

2010). It is unknown whether this is the case across the plant kingdom. Consistent with previous 

studies, we found that ARFs that function as repressors have none-to-limited interactions with 

Aux/IAA proteins (Shen et al., 2010; Vernoux et al., 2011). This limited ability is not primarily 

due to the absence of the CTD from certain ARFs (ARF3 and 13), because other CTD-containing 

ARFs (ARF11 and 12) showed no interaction with Aux/IAA proteins. A recent study indicated 

that truncated ARFs lacking CTD can regulate gene expression in an auxin-dependent manner 

Wang et al. (2013), suggesting that these ARFs might function through mechanisms other than 

the ARF-Aux/IAA module. One such hypothesis is that ARF repressors compete with ARFs that 

function as activators by binding to the promoters of auxin inducible genes without forming 

heterodimer with Aux/IAAs (Vernoux et al., 2011). If this scenario is accurate, targeting these 

ARFs by Aux/IAA proteins in absence of auxin is not required. However, it seems most likely 

that the physical association between ARF repressors and Aux/IAA proteins is of biological 

significance under specific physiological or developmental circumstances, since 69 interaction 

combinations between 10 ARF repressors and Aux/IAA proteins were detected in yeast and 

some were confirmed in planta. In this perspective, the generation and functional 

characterization of double mutants of various ARF and Aux/IAA genes will deepen our 

knowledge about the roles of ARFs-Aux/IAA association in mediating auxin-specific responses 

under specific developmental and physiological settings. 
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While global protein-protein interaction networks provide an indication for all possible physical 

interaction combinations that can occur between proteins, the biological significance of such 

interaction requires the genes coding for these proteins to be co-expressed in particular cells. One 

approach to investigate the biological importance of such interactomes is to combine expression 

data with protein interaction data. This is because interacting proteins whose corresponding 

genes are co-expressed generally co-function in particular processes or pathways (Boruc et al., 

2010; Klopffleisch et al., 2011). The incorporation of gene co-expression profiles with protein-

protein interaction data revealed a strong correlation of gene expression for 70% of the ARF-

Aux/IAA interacting pairs, providing evidence for the biological significance of these 

interactions. For these interacting pairs one tissue/organ was generally deduced as the site of the 

co-function, indicative of the specificity of the co-expression patterns. Our data point to 

previously unknown tissues for the majority of ARF-Aux/IAA associations and confirmed the 

tissue specificity of previously identified and functionally validated ARF-Aux/IAA pairs. For 

example, ARF7-Aux/IAA19 were found to co-function in hypocotyls (Tatematsu et al., 2004), 

whereas ARF7-Aux/IAA14, ARF19-Aux/IAA14, ARF7-Aux/IAA28, and ARF19-Aux/IAA28 

were found to co-function in roots (Fukaki et al., 2005; De Rybel et al., 2010; Goh et al., 2012), 

consistent with our gene co-expression analysis. In addition, the co-expression analysis has 

assigned particular ARFs for specific tissue/organ. ARF6 and 8 were found to co-express with 

various Aux/IAA genes only in flowers and floral buds. This finding is in agreement with the 

redundant function of ARF6 and 8 in regulating floral structures (Nagpal et al., 2005; Tabata et 

al., 2010). 

ARF4-8 and 19, which tend to interact with all Aux/IAAs were also found to be broadly 

expressed and hence constitute the main hubs in the interaction and co-expression networks 

(Figure 2.5). Our data show that these ARFs have protein interactions with Aux/IAAs that can 

occur only in specific tissues/organs. Thus, broadly expressed ARFs can mediate tissue-specific 

functions through their association with restrictedly expressed Aux/IAAs such as IAA33 and 

IAA34. It should be noted that several significant gene co-expression associations for the 

interacting proteins were identified in various tissues. This can be explained by the possibility 

that co-expression correlations may occur in various subsets of tissues or in specific cell types. In 

this context, analyzing the temporal and spatial gene expression patterns of the interacting 

protein pairs in the target tissues will precisely define their specific transcriptional signatures. On 



 

35 

 

the other hand, we were unable to identify significant co-expression associations for about 30% 

of the interacting proteins in the tissues included in our analysis. The co-expression associations 

of these pairs may take place in specific tissues at particular developmental stages that are not 

included in our analysis. Alternatively, the co-functions of these pairs may be limited to 

particular physiological circumstances, including biotic and abiotic stresses. 

In conclusion, our analysis confirmed most of the published protein-protein interactions between 

ARFs and Aux/IAAs and provided a new set of previously unknown interactions. In addition, the 

combination of co-expression data with protein-protein interaction data provided new leads to 

the site of the co-functions of ARF and Aux/IAA proteins. Taken together, these analyses set the 

stage for detailed functional analysis to reveal the biological significance of ARF-Aux/IAA 

interactions in the morphogenesis and development of various plant tissues and organs. 

4. Materials and Methods 

4.1 Plasmid Construction 

Full-length coding sequences for 19 ARFs and 29 Aux/IAAs were obtained from Arabidopsis 

Biological Resource Center or isolated from cDNA. The coding sequences of these ARF and 

Aux/IAA genes were PCR amplified using forward and reverse primers containing specific 

restriction enzyme sites. PCR amplification was performed using PrimeSTAR GXL DNA 

polymerase (Takara Bio) following manufacturers' instructions. PCR products of ARFs were 

digested, purified and fused to the GAL4 DNA binding domain of the pGBKT7 vector 

(Clontech) to generate pGBKT7-ARFs. Similarly, PCR products of Aux/IAAs were digested, 

purified and fused to the GAL4 DNA activation domain of pGADT7 vector (Clontech) to 

generate pGADT7-Aux/IAAs. All constructs were verified by sequencing. 

4.2 Yeast Two-Hybrid Assays 

Saccharomyces cerevisiae strain AH109 was co-transformed with 551 pairs of pGBKT7-ARF 

and pGADT7-Aux/IAA vectors and yeast cells containing both vectors were selected using SD/-

Leu/-Trp medium. The interactions between ARFs and Aux/IAA were assayed by plating the 

transformed cells onto the stringent SD/-Ade-His-Leu-Trp selective medium using at least 10 

independent colonies. Serial dilutions of yeast co-transformed cells were used to measure the 

strength of the interaction. 
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4.3 Bimolecular Fluorescence Complementation (BiFC) Assays 

The coding sequence of ARF5, 6, and 19 were PCR amplified using forward and reverse primers 

containing restriction enzyme sites. After digestion, Purified PCR products were cloned into 

pSAT4-cEYFP-C1-B to generate cEYFP-ARF5, 6, and 19 fusions. Likewise, Aux/IAA5, 6, 17, 

32, and 34 were cloned into pSAT4-nEYFP-C1 to generate nEYFP-Aux/IAA5, 6, 17, 32, and 34 

fusions. All constructs were verified by sequencing. Ten combinations of cEYFP and nEYFP 

fusions, in addition to controls, were co-expressed in onion (Allium cepa) epidermal cells using 

particle bombardment as previously described by Hewezi et al. (2008). Co-transformed tissues 

were incubated at 25°C in dark for 16–24 h before being assayed for YFP activity. Bright field 

and fluorescent images were observed using EVOS® FL Auto Cell Imaging System (Life 

Technologies). 

4.4 Gene Co-Expression Network Analysis 

Raw RNA seq data for 65 samples including root, shoot apical meristem, seedlings, hypocotyls, 

leaves, floral buds, flowers, embryos, and whole plants were downloaded from NCBI Sequence 

Read Archive (SRA) (Leinonen et al., 2011). The SRA files were converted to FASTQ file using 

fastq-dump of SRA Toolkit 

(http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc&f=fastq-dump). Quality 

assessment of sequence reads was performed using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Quality filtering and trimming 

were conducted using FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). After quality 

filtering and trimming, each sequence read was aligned to the TAIR10 Arabidopsis thaliana 

reference genome (Swarbreck et al., 2008) using TopHat v2.0.11 (Trapnell et al., 2009). The 

output from TopHat (bam file) was used to quantify gene expression level as FPKM (fragments 

per kilobase of transcript per million mapped reads) using Cufflink v2.2.1 (Trapnell et al., 2010). 

Output from cufflink was filtered to extract the expression value for ARF and Aux/IAA genes 

using AWK command. FPKM value of 2 was used as a threshold for expressed genes, and 

hence, only those genes having FPKM values more than two in at least one tissue were included 

in the gene co-expression analysis. To determine the tissues in which ARF-Aux/IAA pairs are 

co-expressed, we computed the Z-score for each of the FPKM values. The Z-score values were 

averaged across different samples of a given tissue and positive values of Z-score indicate high 
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expression. ARF-Aux/IAA combinations are considered co-expressed in a tissue only if Z-score 

for both genes in this tissue is positive with a P value less than 0.05. A heatmap of all co-

expressed ARF-Aux/IAA pairs in various tissues was constructed using sample contribution 

score in Multi Experiment Viewer (http://www.tm4.org/mev.html). Sample contribution scores 

were calculated by multiplying Z-score of ARFs and Aux/IAAs for each tissue as described in 

CoexViewer available at ATTED-II database (Obayashi et al., 2014). Positive values of sample 

contribution score resulting from negative Z-scores of both ARFs and Aux/IAAs was made 

negative. Cytoscape (Shannon et al., 2003) was used to integrate gene co-expression data with 

protein-protein interaction data. 

4.5 Phylogenetic Analysis 

Protein sequences of all ARFs and Aux/IAAs were downloaded from the The Arabidopsis 

Information Resource (TAIR) website. Sequences were aligned using ClustalX (Jeanmougin et 

al., 1998) and neighbor-joining tree was constructed using MEGA6 (Tamura et al., 2013) with 

default settings. 
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Appendix 

 

 

Figure 2-1. Yeast two-hybrid interaction between ARF10 and various Aux/IAAs.  

Yeast strain AH109 was co-transformed with ARF10 bait vector in combination with 29 

Aux/IAA prey vectors. Protein-protein interactions between ARF10 and each of Aux/IAA5, 

Aux/IAA32, Aux/IAA33 and Aux/IAA34 were visualized by differential growth on the SD/-

Leu/-Trp non-selective medium (left) and on the SD/-Ade/-His/-Leu/-Trp selective medium 

(right). 
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Figure 2-2. BiFC visualization of the ARF-Aux/IAA interactions.  

Onion epidermal cells were co-transformed with ten different combinations of constructs 

expressing cEYFP-ARF5, 6, and 19 fusions and nEYFP-Aux/IAA5, 6, 17, 32, and 34 fusions. 

Bright field, YFP and composite images were taken 16–24 h after bombardment. Four 

combinations of non-interacting ARF-Aux/IAA pairs in yeast (ARF2-Aux/IAA5, ARF2-

Aux/IAA6, ARF10-Aux/IAA6 and ARF10-Aux/IAA13) were used as negative control and 

showed no YFP signal. Bar = 100 μM. 
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Figure 2-3. Protein-protein interaction map of Arabidopsis ARF and Aux/IAA proteins. 

ARFs (top) and Aux/IAAs (left) are arranged according to their sequence similarity. Empty 

boxes indicate no interaction while gray and black boxes indicate weak and strong interaction, 

respectively. 
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Figure 2-4. Gene co-expression network of the interacting ARF-Aux/IAA proteins.  

The network contained 44 nodes (15 ARFs and 29 Aux/IAAs) and 213 edges (interacting 

combinations). Continuous edges indicate protein pairs with significantly correlated expression 

profiles in at least one tissue, whereas dotted edges indicate protein pairs without significantly 

correlated expression profiles. 
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Figure 2-5. Heatmap demonstrating gene co-expression patterns of the interacting ARF-

Aux/IAA proteins in various Arabidopsis tissues and organs.  

Sample contribution scores were calculated for each ARF-Aux/IAA interacting combinations 

and used to construct the heatmap using the Multi Experiment Viewer 

(http://www.tm4.org/mev.html). Red color represents pairs with highly correlated gene co-

expression profiles and green represents highly anti-correlated pairs. 
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Figure 2-5. contd.
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Chapter 3 

Elucidating the key roles of Arabidopsis ETHYLENE RESPONSE 1 

and ETHYLENE INSENSITIVE factors in mediating plant 

susceptibility to Heterodera schachtii 
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Abstract  

Ethylene regulates various physiological and developmental processes including plant defense 

responses. Various studies have indicated role of ethylene in plant-nematode interactions. 

However, role of ethylene in plant-nematode interaction is not well understood. In the current 

study, we assessed susceptibility of various ethylene signaling mutants of Arabidopsis against 

Heterodera schachtii and identified that ETHYLENE RESPONSE 1 (ETR1), ETHYLENE 

INSENSITIVE 2 (EIN2) and EIN3/ ETHYLENE INSENSITIVE LIKE 1 (EIL1) positively 

regulate Arabidopsis susceptibility to H. schachtii. Our analysis showed that the receiver domain 

of ETR1 contributes in ETR1 mediated susceptibility to H. schachtii. We observed that a 

mutation in the ETR1 phosphorylation site and various positions thereafter in the ETR1 receiver 

domain that are not conserved in ETR1 compared to ETR2 and EIN4 have significant impacts on 

ETR1 mediated Arabidopsis susceptibility to H. schachtii. Our result also suggests that enhanced 

resistance of the ein3/eil1 double mutant is due to increased expression of the salicylic acid 

biosynthesis gene SALICYLIC ACID INDUCED DEFICIENT 2 (SID2) that induce salicylic acid 

responsive pathogenesis related (PR) protein 1, suggesting crosstalk between ethylene and 

salicylic acid during Arabidopsis-H. schachtii interaction. Taken together our results indicate 

that ETR1 and EIN3/EIL1 mediate Arabidopsis susceptibility to H. schachtii through different 

pathways where ETR1 alter Arabidopsis susceptibility to H. schachtii independent of ethylene 

signaling via unknown mechanism and EIN3/EIL1 alter Arabidopsis susceptibility to H. 

schachtii by interfering salicylic acid biosynthesis. 
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1. Introduction 

Ethylene is a gaseous plant hormone that regulates a wide range of plant metabolic, 

physiological, and developmental processes including defense against various pathogens 

(Broekaert et al., 2006; Schaller, 2012). There are five ethylene receptors in Arabidopsis, ETR1, 

ETR2, ETHYLENE RESPONSE SENSOR 1 (ERS1), ERS2 and EIN4. These receptors act as 

negative regulators of ethylene signaling (Hua and Meyerowitz, 1998). In the absence of 

ethylene, the ethylene receptors activate a Ser/Thr kinase, CTR1 (Kieber et al., 1993; Clark et al., 

1998) resulting in inhibition of the downstream ethylene signaling. In the presence of ethylene, 

the activity of receptors decreases because of ethylene binding to the receptors that, in turn, 

reduces the activity of CTR1. Reduced activity of CTR1 leads to reduced phosphorylation of 

EIN2, which in turn results in the proteolytic processing of EIN2, and thus the release of its C-

terminal domain that migrates to the nucleus (Ju et al., 2012). The C-terminal domain of EIN2 

activates the EIN3 and EIN3 Like1 (EIL1) transcription factors in the nucleus to initiate the 

transcriptional response to ethylene (Chao et al., 1997; Solano et al., 1998; Alonso et al., 2003). 

A role for ethylene signaling in plant-pathogen interactions is well established. In response to 

pathogen, plants usually show increased ethylene biosynthesis leading to induction of defense 

related genes (Broekaert et al., 2006). The role of the ethylene receptors in plant-pathogen 

interactions has not been extensively explored. Arabidopsis and tomato plants with mutations in 

the ethylene receptor ETR1 were found to be more resistant to F. oxysporum (Pantelides et al., 

2013). Using Fumonisin B1 (FB1) to induce cell death in various ethylene receptor mutants, Plett 

et al. (2009) reported that ethylene signaling via ETR1 inhibits cell death while ethylene 

signaling via EIN4 induces cell death. 

There is also strong evidence that the positive regulators of ethylene signaling EIN2, EIN3 and 

EIL1 play key roles in plant basal defense (Boutrot et al., 2010; Mersmann et al., 2010; Tintor et 

al., 2013). In addition, previous studies have shown cross-talk of ethylene with other 

phytohormones, particularly salicylic acid and jasmonic acid. Studies have shown synergistic 

interactions of ethylene with jasmonic acid and antagonistic interactions with salicylic acid 

(Chen et al., 2009; Zhu et al., 2011). Zhu et al. (2011) reported that plants with reduced 

expression of EIN3 and EIL1 showed reduced resistance to Botrytis cinerea. With reduced 

expression of EIN3 and EIL1, expression of JA and ethylene induced genes, PDF1.2, ERF1 and 
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ORA59, was also reduced when treated with JA that might explain the susceptibility of ein3/eil1 

mutant against Botrytis cinerea. Plants with reduced expression of EIN3 and EIL1 also showed 

enhanced pathogen-associated molecular patterns (PAMP) response and reduced susceptibility to 

Pseudomonas syringae (Chen et al., 2009). However, further analysis showed that these two 

ethylene signaling transcription factors directly regulate the expression of SID2, which encodes 

isochorismate synthase a key enzyme required for salicylic acid biosynthesis suggesting that 

EIN3/EIL1 directly target SID2 to repress PAMP response (Wildermuth et al., 2001; Chen et al., 

2009).  

Cyst nematodes are obligate, biotrophic, sedentary endoparasitic nematodes that belong to the 

family Heteroderidae. The members of this family induce a feeding site termed a syncytium from 

where they retrieve all essential nutrient once they become sedentary. Second stage juveniles 

(J2), which is the only mobile stage of the nematode, penetrate epidermal root cells and migrate 

intracellularly via the cortex into vascular cylinder. In the vascular cylinder, J2 select a cambial 

or procambial cell that will become initial feeding cell (IFC). Transition from the IFC to the 

syncytium involves massive changes in the transcriptome of the host cell (Szakasits et al., 2009; 

Cabrera et al., 2014). Various transcriptomic studies have shown that large number of genes 

associated with different phytohormones, particularly auxin and ethylene, are among the genes 

that are differentially expressed in the syncytium (Gheysen and Mitchum, 2009; Quentin et al., 

2012; Cabrera et al., 2014). 

The role of ethylene in syncytium development emerged from the finding that Arabidopsis 

ethylene-overproducing mutants (eto1, eto2 and eto3) are more susceptible to H. schachtii 

(Goverse et al., 2000; Wubben et al., 2001). H. schachtii are attracted more toward the ethylene 

overproducing mutants and ethylene treated plants (Wubben et al., 2001; Kammerhofer et al., 

2015; Hu et al., 2017). These findings suggest that ethylene plays positive role in attracting cyst 

nematodes towards the host root. In contrast, suppression of ethylene responsive genes in the 

syncytium suggests a negative role of ethylene in cyst nematodes development. The expression 

of ethylene family genes- RAP2.3 and RAP2.6 that enhance plant basal defense response, were 

downregulated in H. schachtii induced syncytium (Hermsmeier et al., 2000; Ali et al., 2013). 

Likewise, expression of soybean ethylene responsive element- binding protein gene (EREBP1) 

was also downregulated in soybean cyst nematode infected susceptible plants and upregulated in 
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resistant plants (Mazarei et al., 2002; Mazarei et al., 2007). Collectively, these results suggest 

that ethylene plays a dual role in plant-cyst nematode interaction that is dependent in the stage of 

parasitism. During early stage, it plays negative regulator of plant defense by attracting 

nematodes towards the host, and later it plays positive regulator of plant defense against 

nematode development (Kammerhofer et al., 2015). 

Previous studies have shown that ethylene plays important role in plant-nematode interaction. 

But the underlying mechanism that mediates plant susceptibility to cyst nematode is not well-

understood. In this chapter, we present H. schachtii susceptibility of various single and higher 

order Arabidopsis ethylene signaling mutants and explore the underlying mechanisms by which 

ethylene signaling mediate Arabidopsis susceptibility to H. schachtii.  

2. Results 

2.1 Reduced expression of ETR1 diminishes Arabidopsis susceptibility to H. schachtii 

In order to elucidate the role of ethylene receptors on plant susceptibility to H. schachtii, various 

single loss-of-function mutant lines of Arabidopsis ethylene receptors ETR1 (etr1-6, etr1-7), 

ETR2 (etr2-3), ERS1 (ers1-2, ers1-3), ERS2 (ers2-3), EIN4 (ein4-4), and double mutants (etr1-

6/etr2-3, etr1-6/ein4-4, and etr2-3/ein4-4) were evaluated for their susceptibility to H. schachtii 

(Figure 3-1A). We observed that ETR1 single mutants were less susceptible to H. schachtii 

compared to wild-type (Col-0). Arabidopsis mutants of ETR2 and EIN4, and their double mutant 

have no altered susceptibility to H. schachtii. Although, etr2-3 and ein4-4 single mutants had no 

altered susceptibility to H. schachtii compared to the wild type, their double mutants with ETR1, 

etr1-6/etr2-3 and etr1-6/ein4-4 double mutants, were less susceptible to H. schachtii. In addition, 

mutant for CTR1 that has very short root was also less susceptible to H. schachtii compared to 

wild type (Figure 3-1A). Increased resistance of ctr1-2 mutant could be attributed to the very 

short root of ctr1-2. Therefore, further analysis of this mutant was not conducted. We also 

observed inconsistent result for the mutants of ERS1. We observed that knockdown mutant ers1-

2 was less susceptible to H. schachtii compared to the wild-type Wassilewskija (WS) but the 

knockout mutant ers1-3 showed no difference in Arabidopsis susceptibility to H. schachtii 

compared to the wild type (Figure 3-1B). Likewise, H. schachtii susceptibility of ers2-3 was also 

comparable to the wild-type (WS). These results provide strong evidence that reduced expression 

of ETR1 makes Arabidopsis less susceptible to H. schachtii.  
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2.2 ETR1 receiver domain contributes in Arabidopsis susceptibility to H. schachtii 

To confirm the role of ETR1 in H. schachtii-Arabidopsis interaction, we evaluated nematode 

susceptibility of etr1-6/etr2-3/ein4-4 triple mutant transformed with genomic ETR1 (gETR1) 

transgene and full-length ETR1 cDNA (cETR1). We observed that H. schachtii susceptibility of 

gETR1 was restored at the level of wild type but in cETR1 H. schachtii susceptibility was 

partially restored compared to the wild type (Figure 3-2). This difference could be due to lower 

ETR1 expression in cETR1 compared to gETR1. We also performed nematode susceptibility of 

etr1-6/etr2-3/ein4-4 transformed with truncated ETR1 cDNA lacking receiver domain (cETR1-

∆R). Intriguingly, we observed that there was no change in the nematode susceptibility of 

cETR1-∆R compared to the etr1-6/etr2/3ein4-4 triple mutant. These results suggest that the 

ETR1 receiver domain has role in ETR1-mediated plant susceptibility to H. schachtii.  

2.3. Effect of ETR1 receiver domain point mutation on Arabidopsis-H. schachtii interaction 

Recently, Bakshi et al. (2015) has identified twelve amino acid sites in the ETR1 receiver 

domain that are not conserved in the receiver domains of ETR2 and EIN4 and created point 

mutation in the full length genomic ETR1. To test if specific site in ETR1 receiver domain has 

role in ETR1-mediated Arabidopsis susceptibility to H. schachtii, we evaluated nematode 

susceptibility of the etr1-6/etr2-3/ein4-4 triple mutant containing point mutation in the ETR1 

receiver domain that include E617A, N618A, C661A, V665A, E666A, N667A, Q681A, R682A, 

Q682A, Q684A, E730A and L734A (Figure 3-3A and B). We observed that out of these twelve 

point mutants, E617A and N618A restored nematode susceptibility at the level of wild type or 

the gETR1, while E666A and Q681A failed to restore nematode susceptibility and showed 

phenotype similar to the etr1-6/etr2-3/ein4-4 triple mutant. Nematode susceptibility of the 

remaining eight mutants (D659A, D661A, V665A, E667A, R682A, Q684A, E730A and L734A) 

were intermediate between gETR1 and etr1-6/etr2-3/ein4-4 triple mutant. This suggests that 

amino acids at position 666 and 681 of ETR1 receiver domain have significant impact on ETR1 

mediated Arabidopsis susceptibility to H. schachtii. 

2.4 Reduced expression of EIN3 and EIL1 makes Arabidopsis more resistant to H. schachtii 

To understand the effect of positive regulators of ethylene signaling on Arabidopsis 

susceptibility to H. schachtii, we assessed the nematode susceptibility of the mutants of EIN2, 
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EIN3 and EIL1. Arabidopsis mutants for the EIN2, ein2-5, was less susceptible to H. schachtii 

that showed 28 percent reduction in J4 females compared to the wild type (Figure 3-4A). Unlike 

the previous study, that showed enhanced nematode resistance to ein3 mutant (Wubben et al., 

2001), we did not observe any difference in the nematode susceptibility of ein3-1 compared to 

the wild type (Figure 3-4A). Also, the nematode susceptibility of eil1-1 mutant was comparable 

to the wild type (Figure 3-4A). However, we observed that ein3-1/eil1-1 double mutant was less 

susceptible to H. schachtii compared to the wild type (Figure 3-4A). We observed 25% reduction 

in J4 females in ein3-1/eil1-1 double mutant compared to the wild type. Increased resistance of 

EIN2 mutant, that fails to accumulate EIN3 and EIL1, and EIN3/EIL1 double mutant suggest 

redundant function of EIN3 and EIL1 in regulating Arabidopsis susceptibility to H. schachtii.  

2.5 Increased expression of SID2 in ein/eil1 enhance resistance to H. schachtii 

EIN3 and EIL1 negatively regulate the expression of SID2 that encodes salicylic acid 

biosynthesis gene ISOCHORISMATE SYNTHASE 1 (ICS1) (Chen et al., 2009). In order to test 

if the expression of SID2 is induced by EIN3/EIL1 in Arabidopsis root tissue infected by H. 

schachtii, we performed qRT-PCR quantification of SID2 in ein3-1/eil1-1 root tissue collected 3 

days after H. schachtii infection and corresponding non-infected root tissues. The result showed 

two-fold increase in SID2 expression under non-infected condition compared to the wild type 

(Figure 3-4B). Under H. schachtii infected condition, we observed that the expression of SID2 

was at least three-fold higher than the non-infected wild type root tissues (Figure 3-4B). 

Considering the fact that SID2 is involved in salicylic acid biosynthesis, this result implies 

possible cross-talk between ethylene and salicylic acid during Arabidopsis-H. schachtii 

interaction. 

To test if SID2 is responsible for increased resistance to H. schachtii in ein3-1/eil1-1 mutants, we 

evaluated nematode susceptibility of sid2-2 and ein3-1/eil1-1/sid2-2 mutants. We observed that 

both sid2-2 and ein3-1/eil1-1/sid2-2 mutants were more susceptible to H. schachtii compared to 

the wild type (Figure 3-4C). Number of J4 female nematodes in sid2-2 and ein3-1/eil1-1/sid2-2 

was 24% and 39% higher than wild type respectively. Loss of increased resistance to H. 

schachtii from ein3-1/eil1-1 with the reduced expression of SID2 suggests that increased 

resistance of ein3-1/eil1-1 to H. schachtii is mediated by SID2. This result also confirms cross-
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talk between ethylene signaling and salicylic acid biosynthesis during Arabidopsis-H. schachtii 

interaction.  

2.6 SID2 induces PR1 expression in response to H. schachtii infection 

SA production due to pathogen infection induces various pathogenesis related (PR) genes that 

include PR-1, PR-2 and PR-5, and these PR genes are used as molecular markers of SA signaling 

pathway (Durrant and Dong, 2004). We quantified the expression of PR1, PR2 and PR5 in the 

root tissues of ein3-1/eil1-1, sid2-2, ein3-1/eil1-1/sid2-2, and wild-type (Col-0) Arabidopsis 

plants infected with H. schachtii at 3 dpi, and the corresponding non-infected root tissues to test 

if these SA related PR genes are induced in response to H. schachtii infection. Under non-

infected condition, expression of all three PR genes were lower in all mutants compared to wild 

type except PR1 gene that showed more than two-fold higher expression in ein3-1/eil1-1 

compared to the wild type and expression of PR1 gene in sid2-2 single mutant was comparable 

to wild type (Figure 3-5A). 

Under H. schachtii infected condition, sid2-2 and ein3-1/eil1-1/sid2-2 showed reduction in PR1 

expression compared to the wild type while the expression of PR2 was similar to wild type 

(Figure 3-5B). Expression of PR5 in sid2-2 was similar to wild type while downregulated in 

ein3-1/eil1-1/sid2-2. On the other hand, ein3-1/eil1-1 showed enhanced expression of all three 

PR genes, particularly PR1 that showed six-fold higher expression compared to the wild type 

(Figure 3-5B). Collectively, our results suggest that reduced susceptibility of ein3-1/eil1-1 to H. 

schachtii is due to SID2 mediated increased expression of PR1 gene.  

3. Discussion 

The role of ethylene in plant immunity is complex due to its pleiotropic role in various plant 

growth and development processes including plant defense responses (Boutrot et al., 2010). In 

the current study, we evaluated the nematode susceptibility of various single and higher order 

ethylene receptor loss-of-function mutants and identified that ETR1 contributes to Arabidopsis 

susceptibility of H. schachtii. Similarly, we also assessed nematode susceptibility of the mutant 

of the downstream components that function as positive regulators of ethylene signaling and 

identified that EIN2 and EIN3/EIL1 contribute to Arabidopsis susceptibility to H. schachtii. The 

mutants of both the positive and negative regulators of ethylene signaling reduced Arabidopsis 
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susceptibility to H. schachtii suggesting that ethylene signaling regulates plant susceptibility to 

H. schachtii through more than one mechanisms. 

Ethylene receptors have overlapping and distinct functions in various plant phenotype (Shakeel 

et al., 2013). In this study, we observed that the ETR1 ethylene receptor alone can alter 

Arabidopsis susceptibility to H. schachtii. Various plant phenotype regulated by ETR1 has 

different ETR1 domain requirements (Bakshi et al., 2015). There are various ETR1 regulated 

traits that require full-length ETR1 while there are other traits that ETR1 can regulate without its 

receiver domain (Kim et al., 2011; Hall et al., 2012; Wilson et al., 2014; Bakshi et al., 2015). Our 

analysis showed that the receiver domain of ETR1 contributes to ETR1 mediated susceptibility 

to H. schachtii. Recently, Bakshi et al. (2015) showed that specific regions in the ETR1 receiver 

domain play vital role in regulating plant phenotype. Assessment of the nematode susceptibility 

of Arabidopsis triple mutant etr1-6/etr2-3/ein4-4 transformed with genomic ETR1 containing 

point mutation in receiver domain that are not conserved in either ETR2 or EIN4 showed that 

majority of the non-conserved amino acids in ETR1 has role in Arabidopsis-H. schachtii 

interaction. Mutations in gETR1E617A and gETR1E618A that lie upstream of the phosphorylation 

site (659) did not alter Arabidopsis susceptibility to H. schachtii compared to the wild type 

version (gETR1). Any mutation in and after phosphorylation site, at least partially, altered plant 

susceptibility to H. schachtii. gETR1E666A that comprises mutation in the γ loop and gETR1Q681A 

containing mutation in the C-terminal tail were among the sites that completely failed to restore 

Arabidopsis susceptibility to H. schachtii to the wild type level. While remaining mutations on 

other sites (gETR1D659A, gETR1D661A, gETR1V665A, gETR1E667A, gETR1R682A, gETR1Q684A, 

gETR1E730A and gETR1L734A) partially restored plant susceptibility to H. schachtii. Underlying 

mechanism on how these receiver domain sites affect plant phenotypes are not known. However, 

γ loop (662-667) that lie adjacent to the phosphorylation site, and the C-terminal tail are 

predicted to be involved in the interaction with other proteins (Muller-Dieckmann et al., 1999; 

Mayerhofer et al., 2015). Therefore, it is possible that mutation in these specific sites of the 

ETR1 receiver domain interfere interaction with other proteins affecting plant susceptibility to H. 

schachtii. These results suggest significant role of ETR1 phosphorylation sites and the region 

downstream of phosphorylation sites in ETR1-mediated Arabidopsis susceptibility to H. 

schachtii.  
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The synergistic interaction between ethylene and jasmonic acid to positively regulate plant 

defense against necrotrophic pathogens is well established (van Loon et al., 2006). However, 

ethylene also functions antagonistically by interacting with salicylic acid that positively regulates 

plant defense response, especially against biotrophic pathogens (van Loon et al., 2006; Chen et 

al., 2009). Roles of both ethylene and salicylic acid in plant defense response against nematode 

are well established (Wubben et al., 2001; Wubben et al., 2008; Fudali et al., 2013; 

Kammerhofer et al., 2015). However, the antagonistic interaction between these phytohormones 

in plant-nematode interaction is not known. Our results showed antagonistic interaction between 

ethylene signaling and salicylic acid to mediate plant defense response against biotrophic H. 

schachtii. Previously, Wubben et al. (2001) reported that Arabidopsis ein3 mutant are less 

susceptible to H. schachtii compared to wild type. However, we did not observe significant 

difference in nematode susceptibility between ein3-1 mutant and the wild type. Nevertheless, we 

observed that Arabidopsis double mutant ein3-1/eil1-1, and ein2-5 that failed to accumulate 

EIN3 and EIL1 were more resistant to H. schachtii. This likely indicate redundant function of 

EIN3 and EIL1 in Arabidopsis susceptibility to H. schachtii that has been previously reported for 

other traits (Chao et al., 1997; Solano et al., 1998). Expression of SID2 was upregulated in the 

ein3/eil1 double mutant. SID2 encodes ICS1 that catalyzes the biosynthesis of salicylic acid 

(Wildermuth et al., 2001) and positively regulates the plant defense response. Therefore, the 

enhanced resistance of ein3/eil1 could be attributed to increased expression of SID2. In 

agreement with this, the triple mutant ein3/eil1/sid2 was found to be more susceptible to H. 

schachtii like Arabidopsis sid2 mutant indicating that EIN3 and EIL1 mediate susceptibility to 

H. schachtii by regulating the expression of SID2. This result is consistent with the finding that 

EIN3 and EIL1 mediate plant susceptibility to Pseudomonas syringae by regulating the salicylic 

acid biosynthesis (Chen et al., 2009). Our results show that the enhanced resistance of mutant is 

mainly due to SID2-mediated enhanced expression of salicylic acid responsive PR1 gene while 

PR2 and PR5 do not have much contribution. This is consistent with the findings that 

Arabidopsis can induce PR2 and PR5 against H. schachtii infection in salicylic acid independent 

manner (Wubben et al., 2008). 

Hormonal cross-talk has been considered as one of the mechanisms that mediate trade-off 

between plant growth and defense responses (Huot et al., 2014). Considering the fact that 

EIN3/EIL1 are the master regulator of ethylene signaling and regulate various developmental 
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process and could also regulate defense response by antagonistically interacting with salicylic 

acid, EIN3/EIL1 may be considered as the node that mediate trade-off between plant growth and 

defense response (Chen et al., 2009; Chang et al., 2013). Under normal condition increased 

levels of EIN3/EIL1 inhibit defense response and regulate plant growth and development 

normally. In response to pathogen infection, expression of EIN3/EIL1 reduces that enhances 

plant defense response via salicylic acid pathway and divert resources for plant defense instead 

of growth and development. 

In short, our results suggest that the ETR1 receiver domain particularly the putative 

phosphorylation site and regions downstream of phosphorylation regulate ETR1 mediated plant 

susceptibility. Our results also indicate cross-talk between ethylene and salicylic acid during H. 

schachtii infection to Arabidopsis where ethylene signaling regulate the expression of salicylic 

acid biosynthesis gene SID2 to mediate H. schachtii infection to Arabidopsis. 

4. Methods  

Plant material and growth conditions 

All mutants are in Coloumbia-0 (Col-0) background except etr1-9, ers1-3, ers1-2 and ers2-3 

which are in Wassilewskija (WS) background. Plant materials used in this study include etr1-6, 

etr1-7, etr2-3, ers2-3, ein4-4, etr1-6;etr2-3, etr2-3;ein4-4 (Hua and Meyerowitz, 1998), ers1-2 

(Hall and Bleecker, 2003), ein2-5 (Alonso et al., 2003), ein3-1 (Chao et al., 1997), eil1-1, ein3-

1/eil1-1 (Alonso et al., 2003), sid2-2 (Dewdney et al., 2000), ein3-1/eil1-1/sid2-2 (Chen et al., 

2009), etr1-6;etr2-3;ein4-4, gETR1, cETR1, D659A, cETR1-∆R (Hall and Bleecker, 2003; 

Wang et al., 2003; Binder et al., 2006; Kim et al., 2011). Remaining eleven point mutants of 

ETR1 has been previously described in (Bakshi et al., 2015). 

Nematode Susceptibility Assay  

Arabidopsis mutant seeds along with wild-type controls (Col-0 and WS) were surface sterilized 

with 2.8% bleach followed by four washes with sterilized double distilled water. Seeds were then 

planted in 12-well falcon culture plates (BD Biosciences) containing modified Knop’s medium 

(Sijmons et al., 1994) solidified with 0.8% Daishin agar (Brunschwig Chemie) in a random block 

design. Plants were grown in growth chamber at 240C under long day conditions (16-h-light/8-h-

dark). After 10 days, seedlings were inoculated with 200 surface-sterilized J2 H. schachtii 
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nematodes as previously described by (Baum et al., 2000). Inoculated plants were kept under 

dark at 240C for two days and then transferred into growth chamber at 240C under long day 

conditions. After three weeks, number of H. schachtii J4 female nematodes were counted. Two 

independent experiments with at least 20 replications were carried out. 

RNA Isolation and Quantitative Real-Time RT-PCR 

Total RNA was extracted from 20 mg frozen ground root tissue collected after 3 days of H. 

schachtii infection and corresponding non-infected root tissues following the method described 

by Verwoerd et al. (1989). The isolated total RNA was treated with DNase I (Invitrogen). Ten 

nanograms of DNase-treated RNA was used as a template in quantitative RT-PCR reactions to 

quantify mRNA expression levels using the Verso SYBR green 1-Step qRT-PCR Rox mix 

(Thermo Scientific) following the manufacturer’s protocol. The PCR program was 50°C for 15 

min, 95°C for 15 min followed by 40 cycles of 95°C for 15 s, 60°C for 90 s and 72°C for 30 s. 

Dissociation curve was created by subjecting the PCR amplification products using the following 

program: 95°C for 15 s and 60°C for 75 s, followed by a slow gradient from 60°C to 95°C. PCR 

was performed using QuantStudio 6 Flex Real-Time PCR System (Applied Biosystems). 

Transcript data was normalized using Actin8 (AT1G49240) as internal control. Primers 

sequences used in this study in presented in Table 3-1. 
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Appendix 

Table 3-1. Primers sequences used in this study 

Gene Direction Sequence (5’-3’) 

PR1 Forward TTCACAACCAGGCACGAGGAG 

 Reverse GCCAGACAAGTCACCGCTACC 

PR2 Forward CTTGAACGTCTCGCCTCCAGTC 

 Reverse TCCAGAAACCGCGTTCTCGATG 

PR5 Forward CAATTGCCCTACCACCGTCTGG 

 Reverse CTTAGACCGCCACAGTCTCCG 

SID2 Forward ATGAAGTTGAGAAACAGATCT 

 Reverse GGTGAACTTTTCTGGTTAATC 
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Figure 3-1. ETR1 positively regulates plant susceptibility to H. schachtii. 

Single and higher order mutants of ETR1 is less susceptible to H. schachtii compared to the wild-

type Col-0 plants. (B) The ers1-2 mutant is less susceptible to H. schachtii compared with the 

wild-type WS. Bar represents average numbers of J4 females per root system ± SE (n =20) 

counted three weeks post nematode inoculation. Asterisks indicate statistically significant 

difference at P value 0.05. 
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Figure 3-2. ETR1 receiver domain contributes to ETR1-mediated susceptibility to H. 

schachtii. 

Nematode infection assays of etr2-3/ein4-4, etr1-6/etr2-3/ein4-4 and etr1-6/etr2-3/ein4-4 

transformed with genomic ETR1, ETR1 cDNA or truncated ETR1 cDNA without receiver 

domain. Bars represent average numbers of J4 females per root system ± SE (n =20) counted 

three weeks post nematode inoculation. Different alphabets in the bar indicate statistically 

significant difference at P value 0.05. 
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Figure 3-3. Effect of ETR1 receiver domain point mutation on Arabidopsis susceptibility to 

H. schachtii. 

Bars represent average numbers of J4 females per root system ± SE (n =20) determined three 

weeks after nematode inoculation. Different alphabets in the bar indicate statistically significant 

difference at P value 0.05. 
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Figure 3-4. Increased expression of SID2 is responsible for increased resistance of the 

ein3/eil1 mutant.  

Nematode infection assays showing increased resistance of ein2 and ein3/eil1 mutants compared 

to the wild-type Col-0 plants. (B) Expression of SID2 is increased in the ein3/eil1 mutant 

compared to the wild-type plants under both H. schachtii-infected and non-infected conditions. 

(C) SID2 functions downstream of EIN3 and EIL1. While the ein3-1/eil1-1 double mutant was 

more resistant to H. schachtii, sid2 and ein3/eil1/sid2 mutants showed the opposite phenotype of 

increased susceptibility compared with the wildtype Col-0 plants. Bar represents average 

numbers of J4 females per root system ± SE (n =20) determined three weeks post nematode 

inoculation. Asterisks indicate statistically significant differences at P value 0.05.
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Figure 3-5. The ein3-1/eil1-1 mutant abolishes the repression of SID2–mediated activation 

of PR genes.  

Expression levels of salicylic acid responsive pathogenesis-responsive genes PR1, PR2 and PR5 

under non-infected (A), and H. schachtii-infected conditions (B) were quantified using qPCR 

with three biological samples.
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Chapter 4 

Cooperative regulatory functions of miR858 and MYB83 in 

transcriptome reprogramming during cyst nematode parasitism of 

Arabidopsis 
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Abstract 

microRNAs (miRNAs) recently have been established as key regulators of transcriptome 

reprogramming that defines cell function and identity. Nevertheless, the molecular functions of 

the greatest number of miRNA genes remain to be determined. Here, we report cooperative 

regulatory functions of miR858 and its MYB83 transcription factor target gene in transcriptome 

reprogramming during Heterodera cyst nematode parasitism of Arabidopsis. Gene expression 

analyses and promoter–GUS fusion assays documented a role of miR858 in post-transcriptional 

regulation of MYB83 in the Heterodera schachtii–induced feeding sites, the syncytia. Constitutive 

overexpression of miR858 interfered with H. schachtii parasitism of Arabidopsis, leading to 

reduced susceptibility, while reduced miR858 abundance enhanced plant susceptibility. Similarly, 

MYB83 expression increases were conducive to nematode infection because overexpression of a 

non-cleavable coding sequence of MYB83 significantly increased plant susceptibility, whereas a 

myb83 mutation rendered the plants less susceptible. In addition, RNA-seq analysis revealed that 

genes involved in hormone signaling pathways, defense response and glucosinolate biosynthesis, 

cell wall modification, sugar transport, and transcriptional control are the key etiological factors 

by which MYB83-facilitates nematode parasitism of Arabidopsis. Furthermore, we discovered that 

miR858-mediated silencing of MYB83 is tightly regulated through a feedback loop that might 

contribute to fine-tuning the expression of more than a thousand of MYB83-regulated genes in the 

H. schachtii–induced syncytium. Together, our results suggest a role of the miR858–MYB83 

regulatory system in finely balancing gene expression patterns during H. schachtii parasitism of 

Arabidopsis to ensure optimal cellular function. 
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1. Introduction  

Mature microRNAs (miRNAs) are small 21-22 nucleotides-long non-coding RNAs that are 

processed from transcripts forming a stem-loop secondary structure. miRNAs operate through base 

pairing with their target genes (Bartel, 2004; Voinnet, 2009). Once they bind to their target 

sequences, miRNAs can trigger mRNA degradation or translational repression, causing 

downregulation of the target genes. With the fast expansion of high throughput sequencing 

platforms, genome-wide identification and differential expression analysis of miRNAs have been 

accomplished in an increasing number of plant species (Zhang et al., 2011; Li et al., 2014). Despite 

the large number of miRNA genes showing differential expression under various developmental 

and stress conditions, only few of these miRNAs have been functionally characterized. 

Initial functional studies of miRNA genes revealed their involvement in regulating a number of 

developmental processes (Kidner and Martienssen, 2005; Chen, 2009; Chuck et al., 2009; Weiberg 

et al., 2014). Nonetheless, the key regulatory roles of miRNAs in mediating plant responses to 

pathogen infection are now being increasingly recognized (Seo et al., 2013; Staiger et al., 2013; 

Weiberg et al., 2014; Fei et al., 2016). Recent studies have generated compelling proof for the 

implication of miRNAs in regulating defense signaling and immune responses during plant 

interaction with various phytopathogens, including bacteria, fungi, oomycetes, viruses, and 

nematodes (Seo et al., 2013; Gupta et al., 2014; Yang and Huang, 2014; Hewezi and Baum, 2015). 

miRNAs can function as negative regulators of plant defenses, leading to increasing plant 

susceptibility to pathogen infection. For instance, miR844 and miR400 were found to enhance 

plant susceptibility to Pseudomonas syringae and Botrytis cinerea, respectively, when 

overexpressed in Arabidopsis (Park et al., 2014; Lee et al., 2015). In barley, various miR9863 

family members have been demonstrated to target distinct alleles of the Mla immune receptors to 

inhibit immune response signaling in response to infection by the powdery mildew fungus, 

Blumeria graminis (Liu et al., 2014). A limited number of miRNA genes have also been shown to 

modulate plant innate immunity. For instance, overexpression of Arabidopsis miR160a, which 

targets ARF10, ARF16 and ARF17, activated callose deposition, resulting in enhanced plant 

resistance to Pseudomonas syringae (Li et al., 2010). More recently, miR444 has been found to 

activate plant innate immunity against rice stripe virus in rice. The expression of miR444 was 

activated upon virus infection and this activation was accompanied by downregulation of its target 

genes OsMADS23, OsMADS27a, and OsMADS57, the repressors of RNA-DEPENDENT RNA 
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POLYMERASE1 (RdRP1), leading to activation of the RdRP1–dependent antiviral silencing 

pathway (Wang et al., 2016).  

Detailed functional studies also revealed that the same miRNA gene can execute diverse functions 

against different pathogens. For example, overexpression of rice miR398b resulted in increasing 

plant susceptibility to P. syringae via inhibiting callose deposition (Li et al., 2010). In contrast, 

miR398b overexpression can also enhance plant resistance against the blast fungus Magnaporthe 

oryzae via increasing the production of hydrogen peroxide (Li et al., 2014). Similarly, it has been 

shown that miR863-3p can mutually regulate negative and positive mediators of defense signaling 

in a pathogen infection stage-specific fashion to fine-tune the timing of defense response (Niu et 

al., 2016). 

Plant-parasitic cyst nematodes are the most destructive root parasites, causing substantial yield 

losses in many crop plants. These obligate parasites form, in the root vascular tissues, a specialized 

multi-nucleate feeding site, termed syncytium. The syncytium is a metabolically hyperactive sink-

like structure from which the nematodes feed throughout the parasitic stages. Formation of 

functional syncytia is a sophisticated cellular process that involves an intricate interplay of 

numerous signaling and developmental pathways, whose regulation remains poorly understood. 

However, recent studies point at vital regulatory functions of miRNAs in syncytium formation and 

function. For example, miR396–targeting of growth regulating factor 1 (GRF1) and GRF3 was 

found to control syncytium initiation and development via regulating numerous hormonal 

signaling and developmental pathways (Hewezi et al., 2012; Hewezi and Baum, 2012; Liu et al., 

2014). More recently, it has been shown that Heterodera schachtii–induced upregulation of 

miR827 post-transcriptionally silences the Nitrogen Limitation Adaptation (NLA) gene 

specifically in the syncytium to permanently attenuate immune responses and enable successful 

parasitism (Hewezi et al., 2016). Also, miRNAs seem to have functional roles in regulating 

phytohormone signaling during plant interactions with root-knot nematodes. It has been recently 

demonstrated that tomato miR319 regulates jasmonic acid level during Meloidogyne incognita 

infection (Zhao et al., 2015). Another recent study has suggested a role of Arabidopsis miR319 in 

modulating auxin signaling during M. javanica parasitism (Cabrera et al., 2016). 

miRNA-mediated post transcriptional control of gene activity is a highly dynamic process that 

determines not only transcript stability and protein level but also allows plant cells to establish 

metabolic and physiological re-adjustment to cope with new functions or fluctuating conditions. 
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In plants, a significant number of miRNA genes target transcription factors (Bonnet et al., 2004; 

Jones-Rhoades and Bartel, 2004). In turn, miRNAs-regulated transcription factors have 

tremendous potential to achieve such re-adjustment in cellular metabolism and physiology because 

of their ability to control numerous downstream targets. In addition, miRNA genes and their 

targeted transcription factors may correspondingly adjust the expression of each other through 

feedback regulatory loops, in which the transcription factors directly regulate the expression of 

their negative regulators, resulting in tight control over gene expression patterns (Meng et al., 

2011). Furthermore, a transcription factor and its miRNA regulators may antagonistically regulate 

common targets, although such mechanisms have not yet been described in plants.  

In Arabidopsis, miR858 post-transcriptionally silences the expression of several MYB 

transcription factors including MYB6, MYB11, MYB12, MYB13, MYB20, MYB42, MYB63, MYB83 

and MYB111 (Fahlgren et al., 2007; Addo-Quaye et al., 2008; Sharma et al., 2016). These miR858-

targeted MYBs are involved in a variety of cellular processes, including plant responses to drought 

(MYB20 and 60), the phenylpropanoid pathway (MYB11, 12, and 111), and secondary wall 

biosynthesis (MYB46 and 83) (Cominelli et al., 2005; McCarthy et al., 2009; Oh et al., 2011; Gao 

et al., 2014; Sharma et al., 2016). Here, we report a novel function of the miR858-MYB83 

regulatory system in plant-cyst nematode interaction. Both miR858 and MYB83 were 

transcriptionally activated in the syncytia of H. schachtii, and modulation of their expression 

through gain- and loss-of-function approaches altered Arabidopsis response to nematode infection. 

In line with the function of MYB83 in facilitating nematode infection of Arabidopsis, our 

transcriptome analysis revealed that MYB83 regulates a substantial number of syncytial genes 

encoding components essential for syncytium formation and function. Also, our results establish 

that MYB83 through a feedback loop activates the expression of miR858 thereby stabilizing its 

own transcript abundance and its downstream regulated genes during the initiation and progression 

of nematode parasitism.  

2. Results 

2.1 miR858 is expressed in the syncytium during the initiation and progression of nematode 

parasitism 

In Arabidopsis, miR858 is encoded by one functional genomic locus (miR858a, AT1G71002) 

that produces 21-nucleotide mature molecules and targets ten MYB transcription factor genes that 
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contain the miR858 complementary sequences (Sharma et al., 2016). To elucidate the functional 

role of miR858 during the compatible interactions between Arabidopsis and the beet cyst 

nematode Heterodera schachtii, we first generated several transgenic Arabidopsis lines 

expressing the β-glucuronidase (GUS) reporter gene under the control of miR858 promoter 

(pmiR858:GUS). GUS activity of four independent transgenic lines (T2 generation) were 

assayed both under non-infected and H. schachtii–infected conditions. In non-infected 2-week-

old-plants, GUS activity was observed in the vascular tissues of both leaves and roots (Figure 4-

1, A-C). Under H. schachtii–infected conditions, GUS activity was observed in the developing 

syncytium of the second stage nematode juvenile (J2) at 3 days post infection (dpi) as well as in 

the syncytium of the early J3 stage at 7 dpi (Figure 4-1, D and E). However, at 10 and 14 dpi 

(late J3 and J4 stages), GUS activity in the syncytium was dramatically reduced (Figure 4-1, F 

and G). The expression patterns of miR858 in the syncytium point to a functional role of miR858 

of suppressing its target genes during the initiation and progression of nematode parasitism. 

Reduced miR858 promoter activity at later stages, therefore, suggests an uninhibited expression 

of these target genes at these time points. 

2.2 miR858 post-transcriptionally regulates MYB83 transcription factor during H. schachtii 

parasitism of Arabidopsis  

It has been shown recently that miR858 post-transcriptionally silences the ten MYB transcription 

factors MYB6, MYB11, MYB12, MYB13, MYB20, MYB42, MYB48, MYB63, MYB83 and MYB111 

that contain the miR858 binding site (Sharma et al., 2016). Among these transcription factors, 

MYB83 was reported to be differentially expressed in the H. schachtii-induced syncytium 

(Szakasits et al., 2009). In addition, recent functional analyses have implicated MYB83 

(AT3G08500) in the regulation of secondary wall biosynthesis and cell wall modifications in 

Arabidopsis (McCarthy et al., 2009; Zhong and Ye, 2012), both of which are functions of 

fundamental cellular processes impacting syncytium formation and development (Bohlmann and 

Sobczak, 2014; Hewezi, 2015), Therefore, we directed our focus to elucidating the potential 

regulatory role of the miR858-MYB83 system in modulating the interactions between Arabidopsis 

and H. schachtii. We generated pMYB83:GUS transgenic lines to determine if MYB83 shares the 

temporal expression patterns with miR858 in the syncytium, which would suggest that MYB83 is 

post-transcriptionally regulated by miR858 also in the syncytium. GUS activities were assayed in 
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four independent transgenic lines (T2 generation) both under non-infected and H. schachtii–

infected conditions. In non-infected 2-week-old plants, GUS activity was observed in leaf and root 

vascular tissues (Figure 4-1, H-J). Under H. schachtii infection, strong GUS activity was observed 

in the syncytium during the J2, early J3, late J3 and J4 developmental stage at 3, 7, 10, and 14 dpi, 

respectively (Figure 4-1, K-N). The coincident upregulation of miR858 and MYB83 promoters in 

the syncytium at 3 and 7 dpi suggests that MYB83 is targeted by miR858 for post-transcriptional 

regulation during the early syncytium development stage. At later stages, MYB83 expression 

appears to be uninhibited by miR858. 

In order to provide additional evidence that miR858 mediates post-transcriptional regulation of 

MYB83 during H. schachtii infection of Arabidopsis, we used quantitative real-time RT-PCR 

(qPCR) to quantify the abundance of miR858 primary transcripts (pri-miR858), mature miR858 

as well as total and uncleaved transcript levels of MYB83 in the roots of wild-type (Col-0) 

Arabidopsis plants inoculated with H. schachtii at 4, 7, 10 and 14 dpi, relative to the 

corresponding non-inoculated controls. The relative levels of uncleaved MYB83 transcripts were 

determined using a primer pair flanking the miR858 binding site, whereas the relative levels of 

total (cleaved and uncleaved) MYB83 transcripts were determined using a primer pair located 

downstream of the miR858 binding site as previously described by Hewezi et al. (2016). 

Expression data from three biologically independent replicates revealed upregulation of both 

primary and mature miR858 in H. schachtii–infected roots at 4 and 7 dpi relative to non-infected 

roots (Figure 4-2), a result which is consistent with the increased activity of the miR858 

promoter in the syncytium at the same time points. Meanwhile, the levels of uncleaved MYB83 

transcripts was lower than the level of total transcripts in infected roots relative to non-infected 

roots at both time points (Figure 4-2). At 10 dpi, the expression levels of both primary and 

mature miR858 were slightly upregulated and this upregulation was accompanied with small 

insignificant reduction in the level of uncleaved MYB83 transcripts compared with the total 

transcript level (Figure 4-2). At 14 dpi, the expression of primary and mature miR858 was 

sharply decreased in the infected roots compared to the control, and this downregulation was 

associated with comparable levels of total and uncleaved MYB83 transcripts (Figure 4-2). These 

temporal expression patterns, which show that the abundance of uncleaved MYB83 transcripts 

are inversely correlated with the expression level of miR858, indicate that MYB83 is subjected to 
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post-transcriptional regulation by miR858 following H. schachtii infection. Given our promoter 

data, this regulation likely is at work in the syncytium.  

2.3 Overexpression of miR858 confers enhanced resistance to H. schachtii 

Promoter and qPCR analyses of miR858 expression during nematode infection revealed two 

distinct patterns (i.e. upregulation during J2 and early J3 stages, and downregulation during late 

J3 and J4 stages). Thus, we investigated whether constitutive overexpression of miR858 would 

modulate Arabidopsis susceptibility to H. schachtii. To this end, we generated transgenic 

Arabidopsis lines overexpressing the primary miR858 sequence under the control of 35S 

promoter (35S:miR858). Four independent non-segregating T2 overexpression lines (1-3, 1-4, 

19-1, and 21-1) showing between 6 to 18 fold increases in miR858 expression levels relative to 

the wild-type Col-0 plants were selected (Figure 4-3, A). MYB83 transcripts accumulated at 

significantly lower levels in these lines relative to Col-0 plants (Figure 4-3A), which is consistent 

with post-transcriptional degradation of MYB83 transcripts by miR858. The root lengths of 

miR858 overexpression lines were comparable to the wild-type Col-0 plants, with the exception 

that line 21-1 showed a slight increase of about 5% (Figure 4-4B). No other developmental 

defects were observed when these lines were grown under standard growth conditions, which is 

in line with the results recently obtained by Sharma et al. (2016) (Figure 4-4, B and C). The four 

miR858 overexpression lines along with the wild-type Col-0 were assayed for H. schachtii 

susceptibility. These lines showed statistically significant decreases in susceptibility levels with 

30 to 42% reduction in J4 female nematode counts compared to Col-0 plants (Figure 4-4D). 

These results indicate that constitutive overexpression of miR858 interferes with H. schachtii 

parasitism of Arabidopsis.  

2.4 Overexpression of a mimic sequence for miR858 augments plant susceptibility to H. 

schachtii 

The involvement of miR858 in the modulation of Arabidopsis response to H. schachtii infection 

was further examined by generating transgenic Arabidopsis plants with reduced miR858 

expression. This was accomplished by expressing a mimic sequence for miR858 in its mature 

form (MIM858) (Figure 4-5A). The artificial non-cleavable binding site for the mature miR858 

contained a three-nucleotide bulge (TGA) that does not interfere with miR858 binding but would 

prevent transcript cleavage and hence sequester miR858 activity. Three independent transgenic 



 

81 

 

 

lines showing between 2.7 and 6.8 fold reduction in the mature miR858 expression levels were 

selected (Figure 4-3B). qPCR quantification revealed that miR858 downregulation in the 

MIM858 lines was correlated with significant increases in MYB83 expression levels (Figure 4-

5B), a finding that confirms the efficiency of our target mimicry construct in sequestering the 

activity of miR858. Other than minor reductions in root lengths of MIM858 plants, no noticeable 

morphological differences between MIM858 lines and Col-0 plants were detected (Figure 4-5, C 

and D). Interestingly, when the susceptibility of the MIM858 lines to H. schachtii was 

determined, these lines were significantly more susceptible than the wild-type plants, showing up 

to 56% increase in the number of J4 nematodes (Figure 4-5E). Together, these data confirm that 

increased expression of miR858 is responsible for the reduced susceptibility phenotype observed 

in miR858 overexpression plants.  

2.5 Ectopic overexpression of a non-cleavable variant of MYB83 enhances plant susceptibility 

to H. schachtii 

The gene expression analyses and nematode susceptibility assays of miR858 and MIM858 

overexpression lines mentioned above indicate that inhibition of miR858 activity facilitates H. 

schachtii infection, most likely through the upregulation of its MYB target genes. If miR858 

modulates plant susceptibility mainly through post-transcriptional regulation of MYB83, 

manipulation of MYB83 expression should also impact plant susceptibility to H. schachtii but in 

the opposite direction. To test this hypothesis, we generated transgenic Arabidopsis lines 

overexpressing a miR858-resistant variant of MYB83 under the control of 35S promoter 

(35S:rMYB83). The non-cleavable variant rMYB83 was generated by introducing six nucleotide 

mismatches in the miR858 binding sites without changing the encoding protein sequences 

(Figure 4-6A). Four non-segregating T2 lines showing between 16 and 31 fold MYB83 mRNA 

upregulation were selected and phenotypically analyzed (Figure 4-3, C). These lines were 

indistinguishable from the wild-type plants in term of root and shoot growth and development. 

Interestingly, when these lines were used in H. schachtii infection assays, all lines exhibited 

statistically significant increases in susceptibility with up to 65% increase in the number of J4 

nematodes compared with the wild-type Col-0 plants (Figure 4-6B). In contrast to the rMYB83 

overexpression lines, a MYB83 T-DNA mutant line (CS1004395) (Figure 4-7) showed reduced 

susceptibility to H. schachtii relative to the wild-type Col-4 plants (Figure 4-6C). Taken together, 
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these results link the activity of the MYB83 transcription factor to the function of miR858 in 

modulating plant responses to H. schachtii infection.  

2.6 RNA-seq analysis of miR858 and rMYB83 overexpression plants-regulated genes 

The robust effects of MYB83 overexpression and knockout mutant lines on nematode 

susceptibility suggest that this transcription factor may control downstream target genes 

encoding proteins necessary for syncytium formation/function. Therefore, we performed RNA-

seq analysis on root tissues isolated from the 35S:miR858 (Line 1-4), 35S:rMYB83 (line 8-1), 

and wild-type (Col-0) plants in order to identify the downstream targets that may be directly or 

indirectly controlled by MYB83. Three biological samples of root tissues were collected from 

each plant line (2-week-old) for mRNA isolation and library preparation. After sequencing, high 

quality reads were mapped to the Arabidopsis reference genome (TAIR10), and differentially 

expressed genes (DEGs) were determined using a false discovery rate of 0.05. We identified 

4,386 and 2,908 DEGs in P35S:miR858 and 35S:rMYB83, respectively, compared with the wild-

type Col-0 plants. Out of the 4,386 DEGs identified in the 35S:miR858 plants 2,082 genes were 

upregulated and 2,304 genes were downregulated. In the 35S:rMYB83 plants 1,249 genes were 

upregulated and 1,659 genes were downregulated. Comparison of the DEGs in these two 

transgenic lines revealed that 2,193 genes were common to both sets (Figure 4-8A). The fact that 

this overlapping gene list represents more than 50% of the DEGs identified in the 35S:miR858 

plants, indicates that MYB83 is the main target of miR858 in roots.  

Gene Ontology (GO) classification and enrichment analyses of the DEGs in the 35S:miR858 and 

35S:rMYB83 plants were performed. Thirty five GO biological process terms, which are mainly 

associated with metabolic processes and response to biotic and abiotic stimuli were identified 

(Figure 4-8B). While several GO terms were enriched among the upregulated or downregulated 

genes in both lines, enriched GO terms specific to each line were also seen. For example, GO 

terms corresponding to defense response, response to bacterium, and response to abscisic acid 

stimulus were enriched uniquely among the upregulated genes in 35S:miR858 plants (Figure 4-

8B). Similarly, GO terms corresponding to carbohydrate metabolic processes as well as 

secondary metabolic process were significantly overrepresented uniquely among the upregulated 

genes in 35S:rMYB83 plants, (Figure 4-8B). The same observation is equally evident among the 

downregulated genes. For example, enrichment of GO terms corresponding to flavonoid 
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biosynthesis and metabolic processes were identified only among the downregulated genes in 

35S:miR858 plants (Figure 4-8B). GO terms corresponding to signal transduction, auxin 

transport, lignin metabolic process, cell wall organization, and responses to wounding, osmotic 

stress, oxidative stress, salt stress, chitin, auxin stimulus, and jasmonic acid stimulus were 

significantly enriched exclusively among the downregulated genes in the 35S:rMYB83 plants 

(Figure 4-8B).  

2.7 Identification of putative direct targets of MYB83 

ACC(A/T)A(A/C)(T/C) consensus sequence has been identified as the MYB83-responsive 

element in Arabidopsis (Zhong and Ye, 2012). Therefore, we scanned the promoters of the 

DEGs identified in the 35S:rMYB83 plants (2,908 genes) for the presence of this cis element 

within 1.5 kb upstream of the transcription start site (TSS) to identify putative direct targets of 

MYB83. The number of cis elements identified in these DEGs ranged between 0 and 15 

elements, with the large majority containing between 0 and 2 elements (Figure 4-9, A). Also, we 

determined the average number of this cis element in the promoters of 2,908 randomly selected 

genes to be 1.02 elements. Thus, DEGs with at least three MYB83 cis-binding elements in the 

promoters of the MYB83-regulated genes were considered as putative direct targets of MYB83 

(P value 2.69E-65, Fisher’s exact test). As a result, 1,055 of the MYB83-regulated genes were 

identified as bona fide direct target candidates. The cis elements are equally distributed across 

the gene promoters (Figure 4-9, B). However, 77% (815/1055) of these putative direct targets 

contain at least one cis element within 500 bp of the TSS (Figure 4-9, C). GO analysis showed 

that genes involved in transport, primary metabolic processes, secondary metabolic processes, 

particularly glucosinolate, and responses to biotic and abiotic stresses were significantly enriched 

among the direct targets that were positively regulated in the 35S:rMYB83 plants. GO categories 

associated with transcription, metabolic process, defense response, and responses to stress, 

nematode, hormone and biotic stimuli were significantly enriched among the putative direct 

target genes that were negatively regulated in the 35S:rMYB83 plants (Figure 4-10). 

2.8 MYB83 regulates key cellular processes in the syncytium of H. schachtii 

Consistent with the role of MYB83 in promoting plant response to H. schachtii parasitism we 

found a significant overlap between the MYB83-regulated genes and the syncytium DEGs 

previously reported by Szakasits et al. (2009). Of the 2,908 MYB83-regulated genes 1,286 



 

84 

 

 

overlapped with the 7,725 syncytium DEGs (Figure 4-8C). This significant overlap (44.2%, χ2= 

224.729, P value = 1.909E-48) indicates that 16.6 % of the syncytium transcriptome is regulated 

by MYB83. Also, we compared the identified 1,055 direct target genes of MYB83 with the 

syncytium DEGs to determine the extent to which MYB83 directly regulates gene expression in 

the syncytium. A common set of 471 genes (44.6%, χ2= 79.765, P value = 3.452E-17) was 

identified, implying that 6% of syncytium genes are under direct control of MYB83 (Figure 4-

8D). Of these 471 genes, 216 (46%) were upregulated in of MYB83 overexpression plants and 

255 (54%) were downregulated, suggesting that MYB83 has a dual transactivation and 

transrepression function. GO term analysis of the 1,286 MYB83-regulated genes overlapping 

with the syncytium DEGs revealed an enrichment of genes involved in receptor-mediated 

signaling pathways, transport, metabolic processes, cell-wall organization, and responses to 

stress, chitin, and bacterium, as well as responses to biotic, abiotic, hormone, auxin, and ethylene 

stimuli (Figure 4-8E). When this analysis was conducted to include only the 471 genes predicted 

as putative direct targets of MYB83 in the syncytium, GO terms associated with transcription, 

transport, metabolic process, responses to stress, oxidative stress, bacterium, and biotic stimulus 

were significantly enriched (Figure 4-8E).  

In addition to GO analysis, careful examination of the known functions of MYB83-regulated 

genes overlapping with the syncytium DEGs enabled more detailed insights into the functional 

role of MYB83 during H. schachtii infection. As shown in Figure 4-11, genes involved in 

hormone signaling pathways (Figure 4-11A), defense response and glucosinolate biosynthesis 

(Figure 4-11B), cell wall modification and sugar transport (Figure 4-11C) and transcriptional 

control (Figure 4-11D) seem to be the key etiological factors of MYB83 in facilitating nematode 

parasitism of Arabidopsis.  

2.9 miR858 and MYB83 constitute a feedback regulatory loop that involves MYB12 

We next examined the promoter of miR858, 2 kb upstream of the primary transcript, for the 

presence of MYB83 cis-binding element. Interestingly, 7 cis-elements were identified, 

emphasizing the possibility that MYB83 regulates the expression of miR858. To investigate this 

possibility, we quantified the expression of primary and mature miR858 in the 35S:rMYB83 plants 

as well as the myb83 knockout mutant line (CS1004395) using qPCR. Data from three biological 

samples indicated about 2-fold upregulation of both primary and mature miR858 in the transgenic 



 

85 

 

 

plants overexpressing MYB83 (Figure 4-12A) compared to Col-0 plants. In contrast, both primary 

and mature miR858 transcripts were downregulated in the myb83 mutant compared with the wild-

type Col-4 (Figure 4-12B). Taken together, these results imply that MYB83 positively regulates 

the expression of its negative regulator through a feedback regulatory loop to maintain proper level 

of its transcripts.  

We then examined our RNA-seq data set to find out if any of the confirmed targets of miR858 

were inversely regulated in the MYB83 overexpression plants, and hence constitute part of the 

regulatory loop. Interestingly, we identified MYB12, a confirmed target of miR858, among the 

MYB83-positively regulated genes. This finding guided us to test whether MYB12 is an integral 

part of the miR858/MYB83 regulatory circuit impacting plant response to nematode infection. To 

this end, we generated transgenic plants overexpressing a miR858-resistant variant of MYB12 

(rMYB12) driven by the 35S promoter (Figure 4-13). A nematode infection assay of 3 independent 

overexpression lines displayed significant increases in plant susceptibility to nematode infection 

compared with Col-0 plants (Figure 4-12C). Contrary to rMYB12 overexpression lines the myb12 

mutant FLAG_150B05 (Figure 4-14) exhibited reduced susceptibility compared with the wild-

type Wassilewskija (WS) plants (Figure 4-12D). Together, these results suggest that MYB12 may 

constitute part of miR858/MYB83 regulatory loop regulating plant response to nematode 

infection.  

3. Discussion 

Arabidopsis miR858 has been shown to regulate various growth and plant developmental 

processes (Guan et al., 2014; Jia et al., 2015; Sharma et al., 2016). However, a regulatory function 

of miR858 in plant-pathogen interactions has not been reported. Here, we report a crucial 

regulatory role of miR858 during H. schachtii parasitism of Arabidopsis. In response to H. 

schachtii infection miR858 exhibited a biphasic expression pattern, including strong activation in 

the developing syncytia at 3 and 7 dpi and a subsequent downregulation in the mature syncytia at 

10 and 14 dpi. This pattern of miR858 expression suggests different functions during the two 

distinct stages of syncytium formation and maintenance. As a result, constitutive overexpression 

of miR858 resulted in significant decreases in nematode infection. In contrast, inactivation of 

miR858 by overexpressing an artificial target mimic sequence produced the opposite phenotype 

of enhanced susceptibility. The influence of miR858 expression changes on plant responses to H. 
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schachtii seems to be mediated through post-transcriptional regulation of its MYB transcription 

factor genes, specifically MYB83. The MYB83 promoter was predominantly active in the 

syncytium during all nematode parasitic stages. Post-transcriptional silencing of MYB83 by 

miR858 was evident at 4 and 7 dpi as shown by low levels of uncleaved MYB83 transcripts 

compared with the total transcript levels. MYB83 expression increase seems to be conducive to H. 

schachtii infection of Arabidopsis because rMYB83 overexpression enhanced plant susceptibility, 

whereas a myb83 mutation rendered the plants less susceptible.  

The regulatory relationship between miR858 and MYB83 seems to be established through a 

feedback regulatory loop. Our finding that the MYB83 binding motif occurs repeatedly in the 

miR858 promoter led us to examine a possible role of MYB83 in regulating the expression of 

miR858. The transcript abundance of pri-miR858 and mature miR858 was considerably increased 

in the rMYB83 overexpressing plants but decreased in the myb83 mutant, indicating that MYB83 

participates in a feedback loop with its negative regulator to stabilize its own transcript abundance. 

A reciprocal feedback loop controlling the expression of miR396 and its target transcription factors 

GRF1 and GRF3 has been demonstrated to coordinate transcriptional events required for proper 

syncytium formation and function (Hewezi and Baum, 2012; Hewezi et al., 2012; Liu et al., 2014). 

In addition, a number of miRNAs and their trans-acting targets were found to be intricately 

connected through feedback circuits in different growth and developmental contexts, where robust 

and adaptable transcriptional responses were established (Xie et al., 2003; Gutierrez et al., 2009; 

Wu et al., 2009; Marin et al., 2010; Yant et al., 2010; Merelo et al., 2016). Our data suggest that 

the miR858/MYB83 regulatory circuit may involve MYB12, a confirmed target of miR858, whose 

transcript abundance was positively regulated by MYB83. Thus, miR858 appears to fine-tune the 

function of MYB83 at various levels. MYB12 is also of functional importance for nematode 

parasitism since constitutive changes in its expression levels through overexpression and T-DNA 

insertional mutant lines altered plant response to nematode infection. 

The miR858/MYB83 regulatory loop may enable controlling precise expression levels of genes 

involved in critical cellular processes required for syncytium differentiation without turning gene 

expression on and off to prevent syncytium degeneration and collapse. Our finding that 1,286 

genes of the 2,193 MYB83-regulated genes were among the previously identified syncytium DEGs 

(Szakasits et al., 2009), may reflect a key regulatory function of MYB83 in reprogramming 

syncytium transcriptomes. We therefore focused our discussion on this gene list. Levels and 
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signaling of phytohormones play fundamental roles in determining syncytium cell fate 

reprograming and differentiation (Grunewald et al., 2009; Gheysen and Mitchum, 2011; Goverse 

and Bird, 2011; Cabrera et al., 2015; Kammerhofer et al., 2015). In particular, auxin signaling has 

been shown to be rapidly activated upon nematode infection leading to syncytium differentiation 

and development (Goverse et al., 2000; Karczmarek et al., 2004; Grunewald et al., 2009; 

Absmanner et al., 2013; Hewezi et al., 2014). Several genes encoding numerous functions of the 

auxin signal transduction cascade including the auxin receptor TIR1, the auxin response factors 2, 

4, 6, 9, and 10, the auxin influx carrier LAX1, and the auxin efflux transporter ABCB4 were among 

MYB83-regulated genes in the syncytium (Figure 4-11A). Additional key genes involved in the 

auxin response (SHY2, ARGOS, and PLDP2) and auxin homeostasis (GH3.17) were also regulated 

by MYB83 in the syncytium (Figure 4-11A). It has been recently reported that cytokinin signaling 

is critical for syncytium development and successful H. schachtii parasitism of Arabidopsis 

(Shanks et al., 2015; Siddique et al., 2015). MYB83-regulated genes overlapping with syncytium 

DEGs included various components of cytokinin signaling pathway, namely, the cytokinin 

synthase IPT5, the histidine kinase receptors AHK2 and AHK4, and the histidine phosphotransfer 

proteins AHP (Figure 4-11A). Together, these results indicate that MYB83 regulates auxin and 

cytokinin responses at various levels of biosynthesis, signal transduction, and downstream 

responses.  

Also, ethylene has been shown to play contrasting dual functions during various nematode 

parasitic stages (Wubben et al., 2001; Kammerhofer et al., 2015). Notably, numerous ethylene 

response factors (ERFs), which control the downstream signaling of ethylene response, were also 

identified among the MYB83-indcued genes overlapping with the syncytium DEGs (Figure 4-

11A). This included ERF6, ERF9, and ERF72, which play key regulatory functions in biotic stress 

responses (Ogawa et al., 2005; Camehl and Oelmüller, 2010; Moffat et al., 2012; Maruyama et al., 

2013; Meng et al., 2013; Chen et al., 2014; Xu et al., 2016), as well as ERF109, which regulates 

the accumulation of reactive oxygen species following biotic and abiotic stresses stimuli (Matsuo 

et al., 2015). Remarkably, a substantial number of genes associated with gibberellin, jasmonic 

acid, and abscisic acid signal transduction networks were directly or indirectly regulated by 

MYB83 in the syncytium (Figure 4-11A). While the function of jasmonic acid and abscisic acid 

signaling in directing plant response to cyst nematodes is poorly understood, it has been recently 

demonstrated that these pathways regulate defense responses and basal immunity against sedentary 
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and migratory nematodes (Nahar et al., 2011; Nahar et al., 2012; Ozalvo et al., 2014; Kammerhofer 

et al., 2015).  

Interestingly, we noted that genes encoding functions that mediate the interplay between various 

hormone signaling pathways were also regulated by MYB83 (Figure 4-11A). This included for 

example ERF109 and ANTHRANILATE SYNTHASE ALPHA SUBUNIT 1, which mediate the 

interplay between jasmonic acid and auxin biosynthesis and transport in roots (Sun et al., 2009; 

Cai et al., 2014), and the acyl acid amido synthetase GH3.5, which regulates the homeostasis and 

responses of salicylic acid and auxin following pathogen infection (Zhang et al., 2007; Westfall et 

al., 2016). Thus, miR858/MYB83-mediated precise regulation of transcript levels of various 

phytohormone signaling genes may allow infected root cells to properly differentiate and develop 

into functional syncytia in a stage-specific fashion, taking into consideration that the levels of these 

phytohormones are anticipated to vary throughout various stages of syncytium initiation, 

formation and maintenance. It is plausible also that MYB83 may integrate signals from these 

hormone pathways to fine-tune the biosynthesis of defense components. In this context, 

pathogenesis-related (PR) genes, whose expression is linked to the signaling pathways of salicylic 

acid (thaumatin-like) and jasmonic acid (PR4 and PDF2.1), were among the identified MYB83–

regulated genes in the syncytium (Figure 4-11B). PDF2.1 was recently confirmed to be strongly 

expressed in the syncytium using reporter lines (Siddique et al., 2011). Interestingly, two genes 

encoding the cytochrome P450 enzymes CYP79B2 and CYP79B3, which are involved in the 

conversion of tryptophan to indole-3-acetaldoxime (IAOx) (Hull et al., 2000; Mikkelsen et al., 

2000), were oppositely regulated by MYB83 (Figure 4-11B and E). The fact that IAOx is the 

metabolic branch node bringing about the biosynthesis of auxin and indole glucosinolate (Bak et 

al., 2001) suggests a role of MYB83 in regulating the balance between auxin homeostasis and 

glucosinolate biosynthesis. In support with this suggestion, several syncytium DEGs that are 

involved in the biosynthesis of glucosinolate were among the identified MYB83–regulated genes, 

from which four were considered as direct target gene candidates (Figure 4-11E).  

Several transcription factors of MYB, NAC and WRKY families were among the MYB83–

regulated genes in the syncytium (Figure 4-11D), suggesting a role of MYB83 in forming a 

complex and highly interconnected regulatory network in the syncytium. Of the MYB transcription 

factors, MYB108, which regulates wound-induced cell death in an abscisic acid-dependent manner 

(Cui et al., 2013), and MYB51, a key regulator of indole glucosinolate biosynthesis (Frerigmann 
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and Gigolashvili, 2014) were found. Additional MYB transcription factors included MYB12 and 

MYB59 that are involved in phenylpropanoid biosynthesis and cell cycle progression, respectively 

(Mehrtens et al., 2005; Mu et al., 2009). Thus, cross-regulation among certain MYB transcription 

factors in the syncytium may constitute a sub-regulatory network that contributes to the 

establishment of a syncytium-specific transcriptional program. Of the WRKY transcription factors 

regulated by MYB83, WRKY72 was previously reported to contribute to basal resistance against 

the root-knot nematode M. incognita and the oomycete Hyaloperonospora arabidopsidis 

(Bhattarai et al., 2010). Also, WRKY60 and WRKY11, the negative regulators of defense response 

(Journot-Catalino et al., 2006; Xu et al., 2006), were found to be regulated by MYB83 in opposite 

direction, implying a role of MYB83 in the control of defense response and inhibition of 

autoimmunity.  

Positive and negative regulators of plant immunity are frequently dysregulated upon cyst nematode 

infection (Szakasits et al., 2009; Kandoth et al., 2011). Notably, master regulators of plant 

immunity were identified among the MYB83-regulated genes in the syncytium (Figure 4-11B). 

This included the KUNITZ TRYPSIN INHIBITOR 1 (KTI1) and the alpha-dioxygenase1 (DOX1), 

which encode functions that antagonize oxidative stress and cell death during pathogen infection 

(De León et al., 2002; Li et al., 2008). Other regulators of plant immunity included, for example, 

PROPEP1, the precursor of Pep1, which stimulates the transcription of the plant defensin gene 

PDF1.2 (Huffaker et al., 2006), the SUPPRESSOR OF MKK1 MKK2 2 (SUMM2), an immune 

receptor which is involved in triggering defense responses against bacteria (Zhang et al., 2012), 

and the BON ASSOCIATION PROTEIN 1 (BAP1), a general suppressor of defense responses 

and programmed cell death (Yang et al., 2006; Yang et al., 2007). 

Further inspection of the MYB83-regulated genes in the syncytium provided additional insights 

into the function of MYB83 during nematode parasitism. Interestingly, a number of genes 

encoding transmembrane sugar transport proteins were positively or negatively regulated by 

MYB83, including SWEET2, 12, 13, and 14, the sugar transporter protein 7 and 12, and the 

MONOSACCHARIDE TRANSPORTER 6 (PMT6) (Figure 4-11C). These sugar transporters may 

function in sugar remobilization to the syncytium during nematode feeding and development 

(Hofmann et al., 2009). As shown in Figure 8C, MYB83–regulated genes in the syncytium also 

included several expansins and genes coding for enzymes that participate in cell wall biogenesis 

and modification, comprising cellulose-synthases, beta-glucosidases, pectate lyases, and 
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peroxidases; some of them were previously shown to modulate plant-nematode interactions 

(Wieczorek et al., 2006; Jin et al., 2011; Bohlmann and Sobczak, 2014; Wieczorek et al., 2014). 

Collectively, these data suggest a functional role of MYB83 in a variety of cellular processes 

associated with nematode infection.  

Finally, we propose a model for miR858-MYB83 interaction during H. schachtii parasitism of 

Arabidopsis (Figure 4-15). H. schachtii–induced activation of miR858 during the initiation and 

progression of nematode parasitism post-transcriptionally silences MYB83. MYB83 in turn 

positively regulates the expression of miR858, which contains several MYB83 cis-binding 

elements in its promoter. This feed-back regulatory circuit may function as a homeostatic control 

mechanism to ensure proper expression levels of more than a thousand of MYB83-regulated genes 

in the H. schachtii–induced syncytium. The miR858/MYB83 regulatory system may also involve 

MYB12, which was oppositely regulated by miR858 and MYB83, providing additional layer of 

tight control over unidentified MYB12-regulated genes in the syncytium.  

 

4. Materials and Methods 

4.1 Plant material and growth conditions 

All transgenic Arabidopsis lines were generated in Coloumbia-0 (Col-0) background. The myb83 

T-DNA insertional mutant (CS1004395) in the Col-4 background was obtained from the 

Arabidopsis Biological Resource Center. The myb12 T-DNA mutant (FLAG_150B05) in the 

Wassilewskija (WS) background was obtained from the Genomic Resource Center, INRA-

Versailles, France. Plants were grown under long day conditions 16 hour light/8 hour dark at 24°C. 

4.2 Nematode infection assay  

Seeds of the transgenic and mutant lines as well as the wild-type controls (Col-0 or Col-4) were 

sterilized using a 2.8 % bleach solution for five minutes followed by four washes with sterilized 

double-distilled water. The sterilized seeds were then distributed in 12-well culture plates (BD 

Biosciences) containing modified Knop’s medium solidified with 0.8% Daishin agar (Brunschwig 

Chemie) using a randomized complete block design with 20 replicates per line. The plates were 

placed in a growth chamber at 240C with 16 hour light/8 hour dark conditions. Freshly hatched J2 

H. schachtii nematodes were surface-sterilized using a fresh solution of 0.01% mercuric chloride 
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for five minutes followed by four washes with sterilized double-distilled water. The sterilized J2 

nematodes were then suspended in a 0.1% agarose solution and used to inoculate ten-day-old 

seedlings with approximately 250 nematodes per seedling. The nematode susceptibility of the lines 

was determined three weeks after inoculation by counting the number of J4 female nematodes per 

plant using a dissecting microscope. Statistically significant differences between the lines and the 

corresponding wild-type control were determined using a modified t test on SAS with a P value 

cut-off of 0.05.  

4.3 Histochemical analysis of GUS activity 

GUS activity of the pmiR858:GUS and pMYB83:GUS transgenic plants was determined by 

staining the plants at various time points post H. schachtii infection using the method previously 

described by Jefferson et al. (1987). The images of both infected and non-infected plants were 

taken using a Zeiss digital camera and then analyzed using Zeiss Axio Vision SE64 software 

(version 4.8). 

4.4 Plasmid construction and generation of transgenic plants 

The binary vector of miR858 overexpression was constructed by amplifying the miR858 precursor 

(a 200-bp) from Col-0 genomic DNA using a primer pair containing BamHI and SacI restriction 

sites. The amplified fragment was digested, gel-purified and then ligated into the binary vector 

pBI121 under the control of 35S promoter. The wild-type MYB83 coding sequence was amplified 

from first-strand cDNA and the non-cleavable MYB83 variant was generated by introducing 10 

mismatches in the miR858-binding sites without altering the amino acid sequences. The modified 

MYB83 sequence was then cloned in the pBI121 binary vector under 35S promoter using XbaI 

and SacI restriction sites. The MIM858 overexpression was generated as recently described by 

Hewezi et al. (2016). Briefly, the 22 nucleotide miR399-complementary region in the Arabidopsis 

IPS1 gene, a non-coding phosphate starvation-induced transcript, was substituted with a mimic 

sequence for the mature miR858 sequences. The miR858 mimic sequence contained a three-

nucleotide bulge (TGA) between the nucleotide number 10 and 11 of the binding region and two 

additional mismatches at the nucleotides number 1 and 10 of the binding site. The modified IPS1 

genes containing the miR858 mimic sequence was cloned in the pBI121 vector under the control 

of 35S promoter using SacI and BamHI restriction sites.  
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The miR858 promoter, 2KB upstream of the transcription start site, was amplified from Col-0 

genomic DNA using a primer pair containing BamHI and SacI restriction sites. Similarly, the 

MYB83 promoter (2 kb upstream of the translation start codon) was amplified using a primer pair 

containing BamHI and SalI restriction sites. The PCR-amplified products were digested, gel-

purified, and finally ligated to the binary vector pBI101 in the corresponding restriction sites to 

drive GUS gene expression. All constructs were verified by sequencing and then introduced into 

Agrobacterium tumefaciens strain C58 by the freeze-thaw method. The bacteria were used to 

transform Arabidopsis ecotype Col-0 plants by the floral dip method (Clough and Bent, 1998). 

Transgenic T1 lines were identified by screening the seeds on MS agar medium supplemented 

with 50 mg/L kanamycin. Transgene expression in various transgenic lines was quantified using 

qPCR. 

4.5 RNA isolation and quantitative real-time RT-PCR analysis 

To assess the expression level of miR858 (both mature and primary transcripts), total RNA was 

isolated from 20 mg root tissues using TRIzol reagent (Invitrogen) following the manufacturer’s 

instructions. Mir-X miRNA First-Strand Synthesis Kit (Clontech) was used for polyadenylation 

and reverse transcription of the total RNA. Approximately, 50 ng of the synthesized cDNA was 

used as a template for qPCR reaction. qPCR was performed using SYBR Advantage qPCR Premix 

(Clontech). The mature miR858 sequence appended with two adenine residues on the 3’ end was 

used as forward primer sequence to ensure correct binding of the primer to the poly(T) region of 

the mature miR858 cDNA and prevent potential binding to the miR858 precursor. The primary 

transcript of miR858 was quantified using forward primer specific to miRNA precursor. U6 small 

nuclear RNA, the most commonly used internal control for miRNA gene expression 

normalization, was used to normalize the expression levels of both mature and primary miR858 

transcripts. The mRQ 3’ primer (supplied with Mir-X miRNA First-Strand Synthesis Kit) was used 

as a universal reverse primer. The PCR reactions were performed in QuantStudio 6 Flex Real-

Time PCR System (Applied Biosystems) using the following program: 95°C for 3 min followed 

by 40 cycles of 95°C for 30 s and 60°C for 30 s. The amplified products were then subjected to a 

temperature ramp to create the dissociation curves and determine amplification specificity. The 

dissociation program was 95°C for 15 s and 50°C for 15 s, followed by a slow gradient from 50°C 

to 95°C. For the quantification of MYB83 expression levels, total RNA was extracted from 20 mg 
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frozen ground root tissues following the method described by (Verwoerd et al., 1989). The isolated 

total RNA was treated with DNase I (Invitrogen) and approximately 25 ng of DNase-treated RNA 

was used as a template in qPCR reactions to quantify gene expression levels using Verso SYBR 

green One-Step qRT-PCR Rox mix (Thermo Scientific) following the manufacturer’s protocol: 

50°C for 15 min, 95°C for 15 min, and 40 cycles of 95°C for 15 s, 60°C for 90 s and 72°C for 30S. 

The PCR amplification products were then subjected to a temperature ramp to create the 

dissociation curves using the following program: 95°C for 15 s and 60°C for 75 s, followed by a 

slow gradient from 60°C to 95°C. 

4.6 RNA-seq library preparation and data analysis 

P35S:miR858 (Line 1-4), P35S:rMYB83 (Line 8-1) and Col-0 were grown in MS plates using a 

randomized complete-block design with three independent replications per line. Root tissues 

were collected of two-week-old plants. mRNA was isolated from 20 mg grounded root tissue 

using magnetic mRNA isolation kit (NEB) following manufacturer’s protocol. Approximately, 

250 ng of mRNA was used for RNA-seq library preparation using NEBnext mRNA library prep 

master mix (NEB) following manufacturer’s protocol. The nine RNA-seq libraries were 

multiplexed and sequenced using HiSeq 2500 system with 100 bp single-end reads. Quality of 

the sequenced data was assessed using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Low quality reads were trimmed 

using Trimmomatic (Bolger et al., 2014). After trimming, uniquely mapped read was aligned to 

the Arabidopsis reference genome (TAIR10) using TopHat v2.0.14 (Trapnell et al., 2009). 

Number of reads assigned to each gene were counted using HTSeq (Anders et al., 2015). 

Differentially expressed genes (DEGs) were determined using the R package DESeq2 (Love et 

al., 2014) using an adjusted P value less than 0.05. GO terms enrichment analysis of the DEGs 

was performed using agriGO database (Du et al., 2010) using Fisher’s exact test and Bonferroni 

multi-test adjustment with a significance cut-off P value of 0.05. 

Accession numbers 

Sequence data of Arabidopsis genes described in this study can be found in The Arabidopsis 

Information Resource database under the following accession numbers: miR858 (AT1G71002), 

MYB83 (AT3G08500), MYB12 (AT2G47460), and Actin8 (AT1G49240). 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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The RNA-seq data described in this manuscript were submitted to the National Center for 

Biotechnology Information, Gene Expression Omnibus under accession number GSE95198.  
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Figure 4-1. Histochemical staining of GUS activity driven by miR858 and MYB83 

promoters in transgenic Arabidopsis lines in response to H. schachtii infection.  

(A) to (C) GUS activity of the pmiR858:GUS plants under non-infected condition in leaves (A), 

and root tissues (B and C) of two-week-old plants. (D) to (G) GUS activity of the pmiR858:GUS 

plants in response to H. schachtii infection. Strong GUS activity was observed in the H. 

schachtii–induced syncytia at 3 (D) and 7 (E) dpi, whereas at 10 and 14 dpi GUS activity was 

dramatically reduced in the syncytia (F and G). (H) to (I) GUS activity of the pMYB83:GUS 

under non-infected conditions. Strong GUS activity was observed in in leaves (H), and vascular 

root tissues (I and J) of two-week-old plants. (K) to (N) GUS activity of the pMYB83:GUS 

plants in response to H. schachtii infection. Strong GUS activity was observed in the H. 

schachtii–induced syncytia at 3 (K) and 7 (L), 10 (M) and 14 (N) dpi. “N” indicates nematode 

and “S” indicates syncytium. Bars = 100 μm. 
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Figure 4-1. contd. 
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Figure 4-2. miR858 post-transcriptionally downregulates MYB83 during H. schachtii 

parasitism of Arabidopsis.  

The abundance of primary and mature miR858 as well as total and uncleaved transcript levels of 

MYB83 were measured using qPCR in the roots of wild-type Col-0 plants at 4, 7, 10 and 14 d 

post H. schachtii infection, relative to non-infected control plants. The total transcript levels of 

MYB83 were inversely correlated with the expression levels of primary and mature miR858 at 

the four time points. In addition, the levels of uncleaved MYB83 transcripts were lower than the 

level of total transcripts at 4 and 7 dpi, indicative of a post-transcriptional downregulation of 

YB83 by miR858 at these two time points. Data were obtained from three biological samples and 

represented as mean ± SE.  
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Figure 4-3. Gene expression levels of miR858, MIM858, rMYB83 and rMYB12 in transgenic 

lines.  

Gene expression levels was quantified using qPCR in two-week-plants overexpressing miR858 

(A), MIM858 (B), rMYB83 (C) or rMYB12 (D), relative to wild-type Col-0 plants. Gene 

expression levels were normalized using Actin8 as internal reference control. Shown are 

averages of three biological samples ± SE. 
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Figure 4-4. Overexpression of miR858 confers enhanced resistance to H. schachtii. 

(A) Constitutive overexpression of miR858 in four independent transgenic Arabidopsis lines 

resulted in significant decreases in MYB83 expression levels. The expression levels of MYB83 

were determined in the roots of two-week-old transgenic lines relative to the wild-type Col-0 

plants using qPCR. Shown are average expression levels obtained from three biological samples 

± SE. (B) and (C), Root (C) and shoot (B) phenotypes of three-week-old transgenic Arabidopsis 

plants overexpression miR858. (D) Nematode infection assays of the miR858 overexpression 

lines showing reduced susceptibility to H. schachtii compared with the wild-type Col-0 plants. 

Shown are average numbers of J4 females per root system ± SE (n =20) at three weeks post 

inoculation. Asterisks indicate statistically significant differences from wild-type Col-0 plants at 

P value less than 0.05. 
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Figure 4-5. Constitutive downregulation of miR858 increased plant susceptibility to H. 

schachtii. 

(A) Approach for creating a mimic binding site for miR858 (MIM858). The miR399 mimic 

sequence in the IPS1 was replaced by an artificial non-cleavable binding site for the mature 

miR858. The artificial binding site contained a three-nucleotide bulge (TGA) that would prevent 

transcript cleavage and hence sequester miR858 activity. (B) and (C), Shoot (B) and root (C) 

phenotypes of three-week-old transgenic Arabidopsis plants overexpression MIM858. (D) 

Constitutive overexpression of MIM858 in three independent transgenic Arabidopsis lines 

resulted in significant upregulation of MYB83. The expression levels of MYB83 were quantified 

in the roots of two-week-old transgenic lines relative to the wild-type Col-0 plants using qPCR. 

Shown are average expression levels obtained from three biological samples ± SE. (E) Nematode 

infection assays of the MIM858 overexpression lines showing increased susceptibility to H. 

schachtii compared with the wild-type Col-0 plants. Shown are average numbers of J4 females 

per root system ± SE (n =20) at three weeks post inoculation. Asterisks indicate statistically 

significant differences from wild-type Col-0 plants at P value less than 0.05.  
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Figure 4-6. Constitutive overexpression of miR858-resistant variant of MYB83 increased 

plant susceptibility to H. schachtii. 

(A) Schematic representation showing the generation of a miR858-resistant variant of MYB83 

(rMYB83) by introducing synonymous mutations to the miR858 binding site in the MYB83 

coding sequence. (B and C) Nematode infection assays of rMYB83 overexpression lines and a 

MYB83 mutant line. Three independent transgenic lines overexpressing 35S:rMYB83 construct 

showed increased susceptibility to H. schachtii compared with the wild-type Col-0 plants (B). In 

contrast, the myb83 knockout mutant line CS1004395 showed reduced susceptibility compared 

with the wild-type Col-4 plants (C). Shown are average numbers of J4 females per root system ± 

SE (n =20) at three weeks post inoculation. Asterisks indicate statistically significant differences 

from the corresponding wild-type plants at P value less than 0.05. 
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Figure 4-7. Characterization of the MYB83 T-DNA mutant line (CS1004395).  

(A) Schematic representation of T-DNA insertion site in the myb83 mutant. (B) MYB83 

expression level in the myb83 mutant relative to the wild-type Col-4 plants. MYB83 expression 

level was quantified in two-week- old plants using qPCR and Actin8 as internal reference 

control. Shown are averages of three biological samples ± SE.  
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Figure 4-8. Functional classification and Gene Ontology enrichment analyses of 

differentially expressed genes identified in 35S:miR858 and 35S:rMYB83 lines. 

(A) Venn diagram displaying the number and overlap of the differentially expressed genes 

(DEGs) identified in miR858 and rMYB83 overexpression lines. (B) Gene Ontology 

classification and enrichment analyses of the DEGs identified in 35S:miR858 and 35S:rMYB83 

lines. Enrichment analyses of upregulated and downregulated genes were performed separately. 

(C) Venn diagram shown the overlap between MYB83-regulated genes and syncytium 

differentially expressed genes. (D) Venn diagram shown the overlap between MYB83 putative 

targets and syncytium differentially expressed genes. (E) Gene Ontology classification and 

enrichment analyses of MYB83-regulated genes and its putative direct targets overlapping with 

syncytium differentially expressed genes. Enrichment analyses of upregulated and 

downregulated genes were performed separately. Enrichment analysis was performed using 

Fisher’s exact test and Bonferroni multi-test correction with a significance cut-off P < 0.05. 
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Figure 4-8. contd. 
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Figure 4-9. Enrichment of MYB83 cis-binding element in the MYB83-regulated genes.  

(A) Frequency of the MYB83 cis-binding elements in the promoters of MYB83-regulated genes. 

MYB83-regulated genes containing 3 or more cis elements were considered as putative direct 

targets (highlighted in green). (B) Frequency of the MYB83 cis-binding elements in the 

promoters of the putative direct targets with respect to their distance from the transcription start 

site. (C) Frequency of the first MYB83 cis-binding elements in the promoters of the putative 

direct targets with respect to their distance from the transcription start site.  
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Figure 4-10. Gene Ontology classification and enrichment analyses of the putative direct 

targets of MYB83.  

Enrichment analyses of upregulated and downregulated genes were performed separately using 

Fisher’s exact test and Bonferroni multi-test correction with a significance cut-off P < 0.05.  
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Figure 4-11. Differential expression patterns of a set of MYB83-regulated genes involved in 

key biological processes associated with nematode parasitism. 

The RKPM values of the selected MYB83-regulated genes overlapping with the syncytium 

DEGs were row-wise normalized using Z score and used to construct the heat maps. Shown are 

genes involved in hormone signaling pathways (A), defense response (B), cell wall modification 

and sugar transport (C), transcriptional control (D), and glucosinolate biosynthesis (E). 
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Figure 4-12. miR858/MYB83 regulatory loop involves MYB12. 

A) and (B) MYB83 positively regulates the expression of miR858. The expression levels of 

primary and mature miR858 transcripts were quantified in the roots of two-week-old rMYB83 

overexpression plants (A) as well as the myb83 mutant line CS1004395 (B) relative to the wild-

type Col-0 or Col-4 plants, respectively using qPCR. Shown are relative expression values 

obtained from three biological samples ± SE. (C) and (D) MYB12 phenocopied the effects of 

MYB83 on plant susceptibility to H. schachtii. Three independent transgenic lines 

overexpression 35S:rMYB12 construct increased susceptibility to H. schachtii compared with the 

wild-type Col-0 plants (C), whereas the myb12 mutant line FLAG_150B05 showed reduced 

susceptibility compared with the wild-type Ws plants (D). Shown are average numbers of J4 

females per root system ± SE (n =20) at three weeks post inoculation. Asterisks indicate 

statistically significant differences from the corresponding wild-type plants at P value less than 

0.05. 
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Figure 4-13. Schematic representation showing the construction of a miR858-resistant 

variant of MYB12 (rMYB12) by introducing synonymous mutations to the miR858 binding 

site in the MYB12 coding sequence. 
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Figure 4-14. Characterization of the MYB12 T-DNA mutant line (FLAG_150B05).  

(A) Schematic representation of T-DNA insertion site in the MYB12 mutant. (B) MYB12 

expression level in the mutant relative to the wild-type WS plants. MYB12 expression level was 

quantified in two-week-old plants using qPCR and Actin8 as internal reference control. Shown 

are averages of three biological samples ± SE.  
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Figure 4-15. Model for miR858–MYB83 interaction 

Our results indicate that miR858 and MYB83 expression are connected through a feedback circuit 

in which miR858 regulates the expression of MYB83 and responds to its expression levels. This 

regulatory mechanism ensures proper expression levels of more than a thousand of MYB83-

regulated genes in the H. schachtii-induced syncytium. This fine-tuning mechanism appears to 

include MYB12, which was oppositely regulated by miR858 and MYB83, providing additional 

layer of tight control over gene expression.  
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Chapter 5 

GROWTH REGULTING FACTOR 1 and 3: Key transcriptional 

regulators mediating the balanced trade-off between plant growth 

and stress responses 
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Abstract 

Growth-regulating factors (GRFs) regulate various aspects of plant growth and development as 

well as responses to biotic and abiotic stress stimuli. However, the mechanisms through which 

these transcription factors regulate these biological processes remain largely unknown. In this 

study, we performed chromatin immunoprecipitation followed by sequencing (ChIP-seq) and 

RNA sequencing (RNA-seq) analysis of transgenic Arabidopsis lines expressing GFP-tagged 

GRF1 and GRF3 to identify genes that are directly regulated by GRF1 and GRF3. Specific and 

common cis-binding motifs of GRF1 and GRF3 were identified, revealing the mechanism 

underlying their functional redundancy. Comparison of the direct targets of GRF1 and GRF3, 

and their regulated genes revealed common as well as unique functions. Our result also showed 

that direct targets of GRF1 and GRF3 are associated with cell cycle regulation, various 

developmental processes particularly reproductive organ identity, and pollen and root 

development. In addition, we also identified that GRF1 and GRF3 directly bind to a large 

number of genes associated with abscisic acid, salt tolerance and defense response. Together, our 

results establish GRF1 and GRF3 as key transcriptional regulators mediating the balanced trade-

off between plant growth and stress responses.  
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1. Introduction 

GROWTH REGULATING FACTORs (GRFs) regulate a wide range of growth and 

developmental processes in plants. This transcription factor family contains 9 members in 

Arabidopsis, 13 in rice and 26 in soybean (Omidbakhshfard et al., 2015). GRF1 from rice was 

the first identified GRF which was determined to be one of the genes activated in response to 

gibberellins (van der Knaap et al., 2000). GRF genes have not been reported from species other 

than embryophytes suggesting that GRFs are embryophytes-specific transcription factors (Hoe 

Kim and Tsukaya, 2015; Omidbakhshfard et al., 2015). This transcription factor contains highly 

conserved QLQ and WRC domains in the N-terminus and a highly variable C-terminal domain. 

QLQ domain mediates the interaction of GRFs with GRF-interaction factors (GIFs), while WRC 

acts as DNA binding domain (Kim and Kende, 2004; Horiguchi et al., 2005; Osnato et al., 2010; 

Kim et al., 2012; Kuijt et al., 2014). The C-terminal end of GRF proteins is highly variable. 

Transactivation assay using yeast two-hybrid screens showed that the C-terminal domain is 

essential for transactivation activity (Kim and Kende, 2004). GRFs with short C-terminus 

sequences displayed no transactivation activities (Choi et al., 2004; Liu et al., 2014).  

In Arabidopsis, seven of the nine GRF genes contain the miR396 binding site and hence are 

post-transcriptionally regulated by miR396 (Jones-Rhoades and Bartel, 2004). The miR396-

GRFs regulatory module has been shown to regulate various aspects of plant growth and 

development, including leaf, stem and root development, floral development, and reproductive 

competence as well as defense responses (van der Knaap et al., 2000; Kim et al., 2003; 

Rodriguez et al., 2010; Hewezi et al., 2012; Kim et al., 2012; Baucher et al., 2013; Casadevall et 

al., 2013; Bao et al., 2014). miR396 overexpression-mediated GRF down-regulation induced 

abnormal floral organ development, demonstrating the function of miR396-GRF system in 

flower development (Liang et al., 2014). In addition, various transcription factors such as 

APETALA1 (AP1), AP2, SEPALLATA3 and SCHLAFMUTZE that regulate transition from 

shoot apical meristem (SAM) to flowering and floral meristem identity also regulate the 

expression of various GRFs (Yant et al., 2010; Pajoro et al., 2014). Hewezi et al. (2012) reported 

the requirement of a balanced expression of miR396-GRF1/3 for optimal root growth in 

Arabidopsis. They showed that overexpression of either miR396 or the miR396-resistant variants 

of GRF1 or GRF3 produced shorter roots compared to the wild type plants. Furthermore, a 
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functional role of GRFs in cell expansion and cell proliferation has been demonstrated (Kim et 

al., 2003; Kim and Kende, 2004; Rodriguez et al., 2010; Debernardi et al., 2014).  

GRFs function in a redundant fashion (Kim et al., 2003; Rodriguez et al., 2010; Hewezi et al., 

2012). For example, Arabidopsis single mutants of GRF1, GRF2 or GRF3 did not show obvious 

morphological irregularities, whereas double mutant combinations of these three GRFs showed 

small and narrow leave phenotypes. This phenotype was even more distinct in the grf1grf2grf3 

triple mutant (Kim et al., 2003). These results demonstrate overlapping function of GRFs in leaf 

development.  

Hewezi et al. (2012) reported that miR396 and its target genes GRF1 and GRF3 play vital roles 

in controlling the transition from syncytium initiation/formation phase to maintenance stages 

during H. schachtii parasitism of Arabidopsis. It has been shown H. schachtii induced miR396 

downregulation with concurrent increase in the expression of its target genes GRF1 and 3 during 

the early stage of syncytium development that would allow redifferentiation of root cells into 

syncytium cell-type. After completion of the syncytium formation stage, the expression of 

miR396 is activated resulting in upregulation of GRF1 and 3 during the syncytia maintenance 

stage. This study also revealed that miR396-GRF1/3 regulatory module regulates 44% of the the 

syncytium differentially expressed genes (7,225 genes) (Szakasits et al., 2009), suggesting 

pivotal roles of this regulatory system in the reprogramming of the root cells into new feeding 

structure. Global gene expression analysis of root tissues of transgenic plants overexpressing 

GRF1 or GRF3 showed enrichment of genes with functions associated with developmental 

pathways and defense signaling (Liu et al., 2014).  

Unlike most animals, plants are sessile and have complex defense system against various 

pathogens. Under normal condition, the energetically costly inducible defense system is 

repressed that would allow investment of metabolic input and energy in growth and 

development. In response to pathogen attack, plants defense signaling is activated. As a result, 

plant metabolic inputs are temporarily diverted to plant defense response instead of the 

predetermined growth and development programs (Huot et al., 2014; Lozano-Durán and Zipfel, 

2015). However, the underlying mechanisms that regulate the trade-off between plant growth 

and defense response remain largely unknown. However, recent studies have provided novel 
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insight into the mechanisms that may bring about the balance between plant growth and defense 

signaling (Fan et al., 2014; Lozano-Durán and Zipfel, 2015). Given that GRF1 and GRF3 are 

involved in diverse plant developmental processes and plant responses against various stresses, it 

is possible that GRF1 and GRF3 may coordinate the balance between plant growth and defense 

signaling (Hewezi et al., 2012; Kim et al., 2012; Liu et al., 2014).  

Although previous studies have strongly indicated the role of GRF1 and GRF3 in various aspects 

of plant developmental processes including plant responses to biotic and abiotic stresses, the 

downstream targets of GRF1 and GRF3 are not known. In this study, we identified genome-wide 

binding sites and genes regulated by these two transcription factors. We discovered the specific 

and the shared cis-binding elements of GRF1 and GRF3 and revealed the mechanism of their 

functional redundancy. Our result showed that GRF1 and GRF3 primarily target genes 

associated with various aspects of plant development, salt tolerance and defense responses. In 

addition, our result also showed that GRF1 and GRF3 directly target various master regulators of 

growth and defense. 

2. Results 

2.1 Identification of the binding sites of GRF1 and GRF3 

To identify the genome-wide binding sites of GRF1 and GRF3 transcription factors, we 

performed ChIP-seq analysis of transgenic plant expressing GFP-tagged GRF1 or GRF3 in the 

grf1/grf2/grf3 triple mutant background. Transgenic plant expressing 35S:GFP was used as a 

negative control. We found that more than 98% of the called peaks (binding sites) of both GRF1 

and GRF3 was in the non-coding region. For GRF1, we identified a total of 730 binding sites 

(Table 5-1). More than 50 % of these binding sites were located in gene promoters; 1000 bp 

upstream of the transcription start site (TSS). The remaining peaks were located in the intergenic 

region (32.3%), transcription termination site (TSS, 8.7%), intron (5.7%), and coding region 

(1.8%). The untranslated regions (UTRs) contained less than 1% of GRF1 binding sites (Figure 

5-1A). Likewise, a total of 1189 binding sites were identified for GRF3 (Table 5-1). Majority of 

the identified GRF3 binding peaks were in the gene promoters (37.7%) and intergenic regions 

(35.9%) (Figure 5-1B).  
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Genes were considered as the direct targets of GRF1 or 3 only if the binding sites were located in 

gene promoters in at least two out of the three biological replications. Using this criterion, we 

identified 359 direct targets of GRF1 and 417 of GRF3. Comparison of the direct targets of 

GRF1 and GRF3 showed that 47 genes were common between both data sets. The binding peaks 

of the identified direct targets of GRF1 and GRF3 were located predominantly within 500 bp 

upstream of TSS (Figure 5-1C and D).  

2.2 Identification of GRF1 and GRF3 binding motif 

We used RSAT peak-motifs (Thomas-Chollier et al., 2012) to find the over-represented motif in 

250 bp flanking the summit of each peak. For GRF1 two binding motifs (AAACCCtaa and 

tACTCGAcc) were identified (Figure 5-2A and C). The AAACCCtaa and tACTCGAcc binding 

motifs were found in 53% and 79% of the gene promoters (1000 bp upstream of translation start 

site) targeted by GRF1, respectively.  

Interestingly, the majority of these gene promoters contain the motif within 500-bp upstream of 

the translation start site (Figure 5-2B and D). Similarly, we identified two motifs associated with 

GRF3 binding sites. Intriguingly, one of these motifs (tACTCGAcc) was common for both 

GRF1 and 3 (Figure 5-2E). This motif occurred in 65% of the gene promoters targeted by GRF3. 

The other motif (aaGAAGAAg) (Figure 5-2G) occurred in 18% of the gene promoters targeted 

by GRF3. These motifs were also located mainly within 500 bp upstream of translation start site 

of the identified GRF3 target genes (Figure 5-2F and H). 

Further analysis showed that 133 of the GRF1 target genes contained only the GRF1 specific 

motif AAACCCtaa, suggesting that these genes are uniquely regulated by GRF1. Also, motif 

analysis indicated that 193 of the GRF1 target genes can be regulated by GRF1 and/or GRF3 

because they contained the common tACTCGAcc motif (Table 5-2). Similarly, 226 of the direct 

targets of GRF3 contained only the GRF3 specific motif aaGAAGAAg, suggesting that these 

genes are uniquely regulated by GRF3. However, 71 of the GRF3 target genes contained the 

common motif and, hence can be regulated by GRF1 and/or GRF3 (Table 5-2). This result 

suggests that GRF1 and GRF3 may regulate the same genes by binding to the common motif. In 

addition, it also suggests that GRF1 functions predominantly by binding with AAACCCtaa and 

GRF3 functions predominantly by binding with aaGAAGAAg.  
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2.3 Functional categorization of direct targets of GRF1 and GRF3 

We observed several genes associated with cell cycle regulation and cytoskeleton organization as 

the direct targets of GRF1 and GRF3 (Table 5-4). In addition, in agreement with the GO 

enrichment analysis of the DEGs of GRF1 and GRF3, we observed several genes associated with 

various plant development processes, hormones, abiotic stresses, and defense responses. 

2.3.1 Embryogenesis 

GRF1 and GRF3 targeted several genes associated with embryogenesis. Auxin plays vital role in 

embryo development and patterning. We identified direct targets of GRF1 and GRF3 that 

regulate auxin level in the developing embryo. For example, JAGGED LATERAL ORGAN (JLO) 

and HANABA TARANU (HAN) which are direct targets of GRF1 and GRF3, respectively, 

modulate PIN family proteins to regulate auxin transport for proper embryo development 

(Borghi et al., 2007; Nawy et al., 2010). In addition, JLO also activates SHOOTMERISTEMLESS 

(STM) and KNAT1; both play vital role in embryo development (Borghi et al., 2007; Bureau and 

Simon, 2008). In addition, DORNRÖSCHEN (DRN) and MATERNAL EFFECT EMBRYO 

ARREST 26 (MEE26), direct targets of GRF3, and CELLULOSE SYNTHASE LIKE 7 (CSLA07) 

which is targeted by both GRF1 and GRF3 are also involved in embryo patterning (Goubet et al., 

2003; Cole et al., 2009; Kinoshita et al., 2010). 

2.3.2 Flower development 

Among the direct targets of GRF1 or GRF3 we identified HUA ENHANCER 2 (HEN2) and 

SPLAYED (SYD), which play key function in floral organ identity. HEN2 and SYD are essential 

for proper expression of the floral homeotic genes B and C (Western et al., 2002; Wu et al., 

2012). In addition, other direct targets of GRF1 and GRF3 encode functions essential for flower 

development including HAN, PEROXIDASE 53 (PRX53) and JLO (Zhao et al., 2004; Jin et al., 

2011; Rast and Simon, 2012). 

The identification of the direct targets of GRF1 and GRF3 revealed their implication in anther 

and pollen development. Various genes such as bHLH091, OVERLY TOLERANT TO SALT 1 

(OTS1), CYP98A8, CYP98A9, FIMBRIN5 (FIM5), ARABIDOPSIS TRANSMEMBRANE 

PROTEIN 18 (TMEM18) and CSLA07 that are necessary for proper growth and function of the 
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anther and/or pollen were among the direct targets of GRF1 (Figure 5-3). Similarly, GRF3 also 

binds to the promoter of various genes associated with pollen development that include 

IRREGULAR POLLEN EXINE1 (IPE1), SISTER CHROMATID COHESION 1 PROTEIN 3 

(SYN3), CSLA07, ROP-INTERACTIVE CRIB MOTIF-CONTAINING PROTEIN 2 (RIC2), 

MYB33 and ANXUR2 (ANX2) (Figure 5-3). OTS1 regulates stamen growth to synchronize with 

pistil growth to ensure fertilization (Campanaro et al., 2016). bHLH091 and MYB33 are 

necessary for the normal male fertility and anther development in Arabidopsis (Millar and 

Gubler, 2005; Zhu et al., 2015). IPE1 regulates the development of anther cuticle and pollen 

exine that serve as protective barriers for pollen (Chen et al., 2016) while CYP98A8 and 

CYP98A9 regulate pollen wall patterning (Xu et al., 2014). FIM5, TMEM18, RIC2 and CSLA07 

regulate pollen germination and pollen tube growth (Goubet et al., 2003; Dou et al., 2016; Zhang 

et al., 2016). ANX2 controls rupturing of pollen tube tip appropriately to release the sperm cell 

for fertilization (Miyazaki et al., 2009). In addition to stamen growth, OTS1 is also involved in 

flowering time regulation (Sadanandom et al., 2015). In this context, GRF3 also binds to the 

promoter of LIGHT-REGULATED WD2 (LWD2), which functions in conjugation with LWD1 for 

photoperiodic flowering control (Wu et al., 2008).  

2.3.3 Root development 

Among the identified GRF1 target genes associated with root development were 

MORPHOGENESIS OF ROOT HAIR 6 (MRH6), ECTOPIC ROOT HAIR 3 (ERH3) and RGF1 

INSENSITIVE 1 (RGFR1). Also, GRF3 directly targets a number of genes involved in various 

aspects of root development including SHORT AND SWOLLEN ROOT 1 (SSR1), ZINC FINGER 

PROTEIN 5 (ZFP5) and PROLINE-RICH EXTENSIN-LIKE RECEPTOR KINASE 4 (PERK4) 

(Figure 5-3). PERK4, RGFR1 and SSR1 regulate primary root growth. RGFR1 directly interacts 

with root meristem growth factor (RGF) and maintain gradients of PLETHORA 1 (PLT1) and 

PLT2 to ensure proper growth and development of primary root (Shinohara et al., 2016). SSR1 

controls the primary root growth by regulating the activity of PIN family proteins (Zhang et al., 

2015). MRH6 and ZFP5 play important role in root hair development (An et al., 2012; Bruex et 

al., 2012). 
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2.4 Phytohormones related genes as the direct targets of GRF1 and GRF3 

Among the phytohormone associated genes, GRF1 and GRF3 directly target significant number 

of genes with functions related to ABA. The ABA biosynthesis gene NINE-CIS-

EPOXYCAROTENOID DIOXYGENASE 5 (NCED5) and the regulator of ABA production PALE 

CRESS (PAC) were identified as direct targets of GRF1 and GRF3, respectively. PERK4 that 

functions in early stage of abscisic acid signaling by disrupting Ca++ homeostasis (Bai et al., 

2009) was identified as the direct target of GRF3. Similarly, GRF3 also binds to the promoter of 

PYR1-LIKE 13 (PYL13), a receptor of ABA. Additionally, UDP-GLUCOSYL TRANSFERASE 

71B6 (UGT71B6), which maintains ABA homeostasis was found to be the direct target of GRF3. 

PLANT U-BOX 19 (PUB19) and LIPID PHOSPHATE PHOSPHATASE 2 (LPP2), the negative 

regulators of ABA signaling, were direct targets of GRF1 and GRF3, respectively. A number of 

ABA-responsive genes were also among the direct targets of GRF1 or GRF3, including RAF10, 

FIBRILLIN (FIB), INOSITOL-POLYPHOSPHATE 5-PHOSPHATASE 13 (5PTASE13) and 

RESPONSIVE TO ABSCISIC ACID 28 (ATRAB28) (Figure 5-4). 

In addition, we noted that GRF1 and GRF3 directly targeted several other genes associated with 

phytohormone biosynthesis and signaling. For example, GRF1 binds to the promoter of ALLENE 

OXIDE CYCLASE 4 (AOC4), an enzyme that catalyzes JA biosynthesis as well as ETO1-LIKE 1 

(EOL1), a negative regulator of ethylene biosynthesis gene. GRF1 also directly binds to the 

promoter of the type-B Arabidopsis RESPONSE REGULATOR 2 (ARR2), a key transcriptional 

factor regulating the expression of cytokinin primary response genes (Kim et al., 2012).  

Similarly, GRF3 binds to the promoters of NITRILASE 1 (NIT1) and 

ISOPENTENYLTRANSFERASE 4 (IPT4), both encoding key enzymes that catalyze the 

biosynthesis of auxin and cytokinin, respectively. In addition, GRF3 targets ICS2, which 

participates with ICS1 to the biosynthesis of SA (Garcion et al., 2008). Our analysis also showed 

that GRF3 directly targets PIN2 PROMOTER BINDING PROTEIN 1 (PPP1) that regulates the 

expression of auxin transport protein particularly PIN1 and PIN2 (Benjamins et al., 2016). GRF1 

and GRF3 also bind to the promoter of JLO, SSR1 and DRN, which are known to modulate the 

activity of PIN family proteins and hence auxin transport. In addition, both GRF1 and GRF3 
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directly bind to the promoter of BR-RELATED ACYLTRANSFERASE1 (BAT1), which regulate 

the endogenous level of brassinosteroids (Table 5-5).  

2.5 GRF1 and GRF3 targets are associated with abiotic stresses 

Careful exanimation of direct targets of GRF1 and GRF3 revealed that both transcription factors 

bind directly to the promoter regions of several genes associated with abscisic acid signaling. We 

discovered that GRF1 and GRF3 bind to the promoter of genes associated with salt, drought, or 

cold stresses (Figure 5-4). Salt tolerance genes were particularly enriched among the direct target 

genes of GRF1 and GRF3. For instance, GRF1 binds to the promoter of various salt tolerance 

genes, including UB-LIKE PROTEASE 1D (ULP1D), 5PTASE13, SALT OVERLY SENSITIVE 3 

(SOS3) and TGN-LOCALIZED SYP41 INTERACTING PROTEIN (TNO1). Overexpression of 

these genes enhances plant tolerance to salt (Conti et al., 2008; Kaye et al., 2011; Kim and 

Bassham, 2011; Ye et al., 2013). We also found that GRF3 directly targets various genes that 

enhances plant tolerance to salt stress that include, for example, AT1G13930, GLYCINE-RICH 

DOMAIN PROTEINS 2 (AtGRDP2), BASIC TRANSCRIPTION FACTOR 3 (BTF3), HARDY 

(HRD), and SOS3 (Du et al., 2008; Abogadallah et al., 2011; Ortega-Amaro et al., 2014; Wang et 

al., 2014). Together, these findings indicate that GRF1 and GRF3 participate in the regulation of 

plant response to salt stress.  

2.6 GRF1 and GRF3 target defense response genes 

In response to wounding, plant induces defense responses similar to those that are triggered 

against pathogen infection. Two wounding-responsive genes, PRX53 and 5PTASE13, were 

identified as direct targets of GRF1 and/or GRF3 (Jin et al., 2011; Kaye et al., 2011). One of the 

identified targets of GRF1 was AVRPPHB SUSCEPTIBLE 1 (PBS1), which acts as a cue for the 

activation of key plant defense response gene RESISTANT TO P. SYRINGAE 5 (Qi et al., 2013). 

Similarly, RIN2 was identified as the target of GRF3, which form a complex with RPM1 to 

activate plant defense response (Kawasaki et al., 2005). Several genes that enhance plant basal 

defense response were identified as direct targets of GRF1 and/or GRF3 (Figure 5-5). This 

included various plant defensins, plant defensin-like proteins, and pathogenesis related (PR) 

proteins. Another target of GRF1 associated with plant basal defense was ATPFA-DSP4, which 

negatively regulates plant defense by suppressing the production and accumulation of H2O2 



 

133 

 

 

during bacterial infection (He et al., 2012). RR2 and BCS1 were also identified as direct targets 

of GRF1, and these genes are involved in SA-mediated defense response. RR2 binds to SA 

responsive factor TGA1A-RELATED GENE 3 (TGA3) and regulates SA signaling to enhance 

plant resistance (Choi et al., 2010). Overexpression of BCS1 induced constitutive accumulation 

of SA and activation of cell death genes (Zhang et al., 2014). Several other genes such as 

DELTA-VPE and development and cell death (DCD) domain proteins that are involved in cell 

deaths (Nakaune et al., 2005; Tenhaken et al., 2005) were also among the direct targets of GRF1 

and GRF3. 

In addition, GRF1 and GRF3 were found to bind to the promoter of SPY and HBI1, respectively 

and these genes are known to regulate plant development as well as plant defenses (Wu et al., 

2012; Fan et al., 2014; Johnson et al., 2015). Systemic acquired resistance (SAR) is a resistance 

against broad spectrum pathogens upon localized infection with pathogen. One of the direct 

targets of GRF3 is EARLI1, which is required for SAR. It has been shown that earli1-1 loss-of-

function plants are compromised in SAR responses to a virulent strain of Pseudomonas 

syringae (Cecchini et al., 2015). These results indicate that GRF1 and GRF3 regulate different 

aspects of defense responses.  

2.7 Differentially expressed genes in GRF1 and GRF3 

We performed RNA-seq analysis of 35S:GRF1 and 35S:GRF3 plants as wells as and the 

grf1grf2grf3 triple mutant. We observed that 4012 genes were differentially expressed in 

35S:GRF1. Among the 4012 differentially expressed genes (DEGs), 2124 genes were up-

regulated and 1888 genes were down-regulated (Table 5-6). Similarly, we identified 4128 DEGs 

in 35S:GRF3. Among the DEGs in 35S:GRF3, 2324 genes were upregulated and 1804 genes 

were down-regulated. Comparison of the DEGs in 35S:GRF1 and 35S:GRF3 showed that 2605 

genes were common between the two data sets (Figure 5-6A). This finding further confirm the 

redundant function of these two transcription factors. Comparison of the GRF1 DEGs with 

GRF1 direct target showed that 22% (79 out of 359) direct targets were differentially expressed. 

Out of these 79 genes, 35 genes were upregulated and the remaining 44 were downregulated. 

Similarly, 20% (83 out of 417) of the GRF3 direct targets overlapped with the DEGs. Out of 

these 83 genes, 47 genes were upregulated and the remaining 36 genes were downregulated. 
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These findings indicate that GRF1 and GRF3 can function as trans-activators as well as trans-

repressors to a similar extent. 

3. Discussion  

Previous studies have revealed roles for GRFs in various developmental processes including 

response to abiotic and biotic stress (Omidbakhshfard et al., 2015). However, the downstream 

target genes that these transcription factors directly regulate remain unknown. In this study, we 

identified genome-wide binding sites and genes regulated by GRF1 and GRF3 transcription 

factor to understand the regulatory functions of GRF1 and GRF3. We observed a significant 

overlap between the identified direct targets of GRF1 and GRF3 with the DEGs in GRF1 and 

GRF3. Previous studies have shown redundant functions of GRF1 and GRF3 for various 

biological processes (Kim et al., 2003; Rodriguez et al., 2010). However, the underlying 

mechanism mediating the functional redundancy between GRFs was not clear. Our study 

provides unprecedented mechanistic understanding of the functional redundancy of GRF1 and 

GRF3. We discovered that GRF1 and GRF3 share a common cis-binding motif through which a 

common set of target genes can be simultaneously regulated. We also discovered a unique DNA 

binding motif for each of these two transcription factors that would allow GRF1 and GRF3 to 

regulate their target genes in a specific manner. 

Our RNA-seq analysis revealed that about 20% of the identified targets were differentially 

expressed in the GRF1 and GRF3 overexpression plants. This finding can be explained by the 

fact that many of these targets are expressed in specific tissues and organs that were not included 

in our tissue samples; the floral organs for instance. In addition, several target genes of GRF1 

and GRF3 are known to be regulated by biotic and abiotic stresses. Thus, developmentally- and 

stress-regulated genes cannot be identified in the 2-week-old plants used for RNA-seq analysis. 

Recent studies also showed small overlaps between the direct targets of various transcription 

factors and the DEGs (Sun et al., 2015; Birkenbihl et al., 2016) Also, our RNA-seq analysis 

revealed that GRF1 and GRF3 have dual functions acting as transcriptional activators or 

repressors. The trans-repression functions of GRF1 and GRF3 can be mediated through physical 

association with transrepressors. In this context, QLQ domain of the GRFs mediates protein-

protein interactions (Hoe Kim and Tsukaya, 2015) and may play a role in this process.  
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Plants respond to biotic and abiotic stimuli by adjusting their developmental program. Enhanced 

plant defense responses against the stress are generally associated with inhibition of plant growth 

and development. Our results provide intriguing evidence for the involvement of GRF1 and 

GRF3 in coordinating the stress responses, and developmental and reproductive traits. It is 

tempting to speculate that in the absence of pathogen attack, GRF1/3 can repress their target 

genes that are associated with salicylic acid-mediated defense response such as RR2 and BCS1 or 

other defense-related genes allowing investment of energy for growth. Likewise, in response to 

pathogen attack, GRF1/3 may inhibit their direct targets that regulate growth and development 

but activate defense-associated direct targets. In line with our finding that GRF1/3 directly 

regulate genes that are associated with abscisic acid biosynthesis, reception, and negative 

regulation, GRF1/3 can mediate the balance between plant growth and abiotic stress through the 

abscisic acid signaling pathway. This would allow GRF1/3 to act as a switch to activate or 

repress abscisic acid signaling, which is known to function in response to abiotic stress. Apart 

from this, GRF1/3 directly target genes that are known to simultaneously regulate plant growth 

and defense. For example, SYD is involved in plant development processes such as flower and 

leaf development (Wu et al., 2012; Vercruyssen et al., 2014). Johnson et al. (2015) reported that 

SYD regulates plant immunity by maintaining proper level of SNC1. snc1 (suppressor of npr1, 

constitutive 1) gain-of-function mutation displayed constitutive defense response with severe 

developmental defects (Zhang et al., 2003). Similarly, GRF3 targets HBI1, which also mediates 

the trade-off between plant growth and defense response. HBI1 has been identified as a negative 

regulator of plant immunity, and in response to plant pathogen the expression of this gene is 

inhibited resulting in increased plant immunity and reduced plant growth (Fan et al., 2014). 

Collectively, these results point to a role of GRF1/3 in mediating the balance between plant 

growth and defense responses. 

Another interesting finding of this study is that GRF1 binds to its own promoter, presumably to 

control its own transcription level, through regulatory feedback loop. This finding is in line with 

previous finding reported by Hewezi and Baum (2012). Considering its vital role in various 

biological processes, the feedback loop is necessary for stabilizing its own transcript abundance 

to maintain homeostasis. Alternatively, the feedback mechanism may allow GRF1 to either 

increase or reduce its expression to prioritize growth over defense or vice-versa. We also found 

that GRF1 binds to the promoter of the GRF7. GRF7 has been identified as a negative regulator 
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of abscisic acid signaling associated with drought and salinity stress (Kim et al., 2012). In 

addition to directly regulating abscisic acid signaling and abiotic stress, this result suggests an 

addition level of regulation for GRF1 in the regulation of abscisic acid-mediated abiotic stress. 

It has been shown that that GRF1 and GRF3 play key role in the differentiation of infected root 

cells into feeding structures for the beet cyst nematode H. schachtii. Syncytium formation 

involves the activity of several cell cycle-related genes (de Almeida Engler et al., 1999) . 

Interestingly, we observed that various genes associated with cell cycle regulation were directly 

targeted by GRF1 and/or GRF3. Of particular interest is MAD1, which forms a complex with 

MAD2 to inhibit premature exit from cell division (Ding et al., 2012). MAD1 has been shown to 

play a vital role in regulating endoreduplication (Bao et al., 2014), a hallmark characteristic of 

syncytium formation. Endoreduplication is a form of incomplete cell cycle where mitotic phase 

is inhibited, and this cellular process stimulates the metabolic activity of syncytial cells to deliver 

sufficient nutrients for nematode development (de Almeida Engler and Gheysen, 2013; Kyndt et 

al., 2013). More importantly, CCS52A was also identified as a direct target of both GRF1 and 

GRF3. CCS52A regulates the transition from mitotic to endoreduplication cycle and has also 

been demonstrated to play key role in switching mitotic to endocycle during syncytium 

development (de Almeida Engler et al., 2012). Thus, it is tempting to suggest that regulation of 

MAD1/MAD2 complex formation and CCS52A activity by GRF1/3 may contribute to 

syncytium etiology by controlling the endoreduplication cell cycle.  

GRF1 and GRF3 may impact syncytium formation and development by regulating cytoskeleton 

organization. It has recently been shown that depolymerization of actin cytoskeleton and 

microtubules occur during the susceptible plant-nematode interactions (Kyndt et al., 2013), a 

finding that points to a role of the cytoskeleton organization genes during plant-cyst nematode 

interaction. Strikingly, we found that GRF1 and GRF3 bind to the promoter of several 

cytoskeleton organization genes, including ECTOPIC ROOT HAIR 3, MICROTUBULE-

ASSOCIATED PROTEIN 18 (MAP18), MAP70-2, ACTIN DEPOLYMERIZING FACTOR 6 

(ADF6), and NIMA-RELATED KINASE 4 (NEK4) as well as various genes encoding actin-

binding proteins. The functions of these genes in cytoskeleton rearrangement have been 

established (Engler Jde et al., 2010; Kyndt et al., 2013). In addition, several genes targeted by 
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GRF1 or GRF3 and involved in defense response may also contribute to the functions of these 

transcription factors in shaping plant-nematode interactions.  

Finally, it may be important to mention that GRF1 and GRF3 directly bind to the promoter of 

genes that mediate the trade-off between plant growth and defense including SYD and HBI1 

(Zhang et al., 2003; Wu et al., 2012; Fan et al., 2014). Interestingly, our RNA-seq data revealed 

that upregulated genes in the GRF1/3 overexpression plants were enriched in abiotic stress-

related genes, whereas downregulated genes were enriched in plant developmental process-

related genes. Though this interesting finding is consistent with the well-known antagonistic 

relationship between stress responses and plant growth and development, it also provides 

additional support for the involvement of GRF1/3 in mediating the trade-off between plant 

growth and stress signaling. 

4. Material and methods 

4.1 Plant materials and growth conditions 

For the construction of transgenic lines, Arabidopsis triple mutant grf1grf2grf3 in Wassilewskija 

(WS) background was used (Kim et al., 2003). Seeds were sterilized using commercial bleach 

(2.8% sodium hypochlorite) followed by four washes with sterilized double distilled water. 

Plants were grown under long day conditions at 24°C under 16-h-light/8-h-dark conditions. 

4.2 Plasmid construction 

35S:GRF1-GFP construct was generated by amplifying the GRF1 coding sequence using gene 

specific primers with attB1.1 and attB2.1 sites overhang in the forward and reverse primers, 

respectively and cloned into pDONR221 using Gateway BP-reaction (Invitrogen). The gene was 

then cloned into the binary vector pGWB551 using Gateway LR-reaction (Invitrogen). Similarly, 

the 35S:GRF3-GFP construct was generated by amplifying the coding sequence of GRF3 using 

gene specific primers with EcoRI and HindIII restriction sites overhang in forward and reverse 

primers, respectively. The amplified products were digested, purified, and cloned into the 

corresponding restriction sites in the binary vector pEGAD. All the constructs were verified by 

sequencing. 
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4.3 Generation of Transgenic Plants 

The binary vectors containing GFP-tagged GRF1 and GRF3, and the empty vector pGWB551 

(35S:GFP) were transformed into Agrobacterium tumefaciens strain C58 by freeze-thaw method 

and used to transform the grf1grf2grf3 triple mutant by floral dip method (Clough and Bent, 

1998). Transgenic T1 lines overexpressing the GRF1:GFP fusion or GFP alone were identified 

by screening T1 seeds on hygromycin (25µg/ml) containing MS medium. Transgenic T1 lines 

overexpressing the GRF3:GFP fusion were identified by spraying 10-day-old T1 plants by 

BASTA (glufosinate ammonium, DuPont) at a concentration of 120µg/ml. 

4.4 ChIP, library preparation and sequencing 

35S:GRF1-GFP, 35S:GRF3-GFP and 35S:GFP transgenic plants were grown in MS medium 

with three independent replications per line at 24°C under 16-h-light/8-h-dark conditions. Two-

week-old whole plant tissues were harvested from these 9 samples. Proteins were covalently 

crosslinked to DNA using 1% formaldehyde solution under vacuum for 25 minutes. Nuclei were 

isolated and lysed, and the chromatin was sheared using focused ultrasonicator (Covaris M220) 

with the following setting: Duty cycle 10%, intensity peak incident power 75 watt and cycles per 

burst 200 for 10 minutes. This resulted in chromatin fragments of about 400 bp. Sonicated DNA 

was immunoprecipitated using 10 µl anti-GFP antibody (5 mg/ml, Abcam). After 

immunoprecipitation, immune complexes were bound to Protein A agarose beads (GE 

Healthcare) and washed several times and then eluted in 250 μL elution buffer containing 1% 

SDS, 0.1M NaHCO3. Then, crosslinking was reversed by adding NaCl (20 ul of 5 M) to the 

elution and incubating the samples at 65°C overnight. DNA was purified following phenol-

chloroform extraction method and finally the DNA was re-suspended in 20 μL of water. 

The purified DNA was used for library preparation. ChIP-seq library was prepared using 

NEBNext Ultra II DNA Library Prep Kit (NEB E7645, Illumina) following manufacturer’s 

instructions. The 9 libraries were barcoded, pooled together, and sequenced using HiSeq 3000 

system with 150 bp pair-end reads. 

4.5 ChIP-seq data analysis 

Quality of the sequenced data was evaluated using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and the low-quality reads were 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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trimmed using Trimmomatic (Bolger et al., 2014). Reads were then mapped to the Arabidopsis 

reference genome (TAIR10) using Bowtie2 (Langmead and Salzberg, 2012). Binding peaks were 

called using MACS1.4 (Feng et al., 2012). Peak calling was performed separately for each of the 

three biological replications. Peaks identified in at least two replications were considered for 

downstream analysis. The RSAT (Regulatory Sequence Analysis Tools) suite was used to 

identify the cis-binding motifs in the non-redundant binding sites of GRF1 and GRF3 (Thomas-

Chollier et al., 2012). 

4.6 RNA-seq library preparation 

Three independent replications of 35S:GRF1-GFP, 35S:GRF3-GFP, and grf1grf2grf3 plants 

were grown in MS plates using a randomized complete-block design. Two weeks after planting, 

whole plant tissues were collected, frozen in liquid nitrogen and grounded into fine powder. 

mRNA was isolated from 20 mg tissue using magnetic mRNA isolation kit (NEB) following 

manufacturer’s protocol. RNA-seq libraries were prepared with approximately 250 ng of mRNA 

using NEBnext mRNA library prep master mix (NEB) following manufacturer’s protocol. The 

12 RNA-seq libraries were barcoded, pooled together and sequenced using HiSeq 3000 system 

with 150 bp pair-end reads. 

4.7 RNA-seq data analysis  

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to determine the 

quality of the sequencing reads. Low quality reads were trimmed using Trimmomatic (Bolger et 

al., 2014). After trimming, high quality reads were mapped to the Arabidopsis reference genome 

(TAIR10) using TopHat v2.0.14 (Trapnell et al., 2009). Number of reads mapped uniquely to each 

annotated Arabidopsis gene were counted using HTSeq (Anders et al., 2015). The count data were 

normalized and the differentially expressed genes (DEGs) were determined using the R package 

DESeq2 (Love et al., 2014). A false discovery rate of less than 0.05 was used to identify the DEGs. 

GO term categorization and enrichment analysis of the DEGs were perfomed using AgriGO 

database (Du et al., 2010) with Fisher statistical test and Bonferroni adjustment at significance 

level of 0.05. 

 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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 Appendix 

Table 5-1. Numbers of binding peaks and target genes of GRF1 and GRF3 

 

TFs Binding sites Binding sites in the promoter Promoter associated target 

genes 

GRF1 730 369 359 

GRF3 1189 539 417 
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Table 5-2. Occurrence of the identified motifs in GRF1 or GRF3 target genes 

 

Motif GRF1 GRF3 

AAACCCtaa 133 0 

aaGAAGAAg 0 226 

tACTCGAcc 41 28 

AAACCCtaa and tACTCGAcc 152 0 

aaGAAGAAg and tACTCGAcc 0 43 
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Table 5-3. Number of differentially expressed genes identified in GRF1 and GRF3 

overexpression lines 

 Up-regulated Down-regulated Total 

GRF1 2124 1888 4012 

GRF3 2324 1804 4128 
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Table 5-4. Selected GRF1 and GRF3 direct target genes associated with cell cycle 

regulation and cytoskeleton organization. 

Gene ID Gene Name 

Cell cycle regulation  

GRF1  

AT3G59550 SYN3 

AT2G04660 APC2 

AT4G11920 CCS52A2 

AT1G80350 ERH3a 

AT2G34860 EDA3 

AT2G26760 CYCB1;4 

AT4G35620 CYCB2;2 

AT5G49880 MAD1 

GRF3  

AT2G40360 ATPEP1 

AT4G11920 CCS52A2 

AT4G33260 CDC20.2 

AT3G63280 NEK4 

AT3G46580 MBD5 

Cytoskeleton organization 

GRF1 

AT5G44610 MAP18 

AT1G24764 MAP70-2 

AT2G31200 ADF6 

AT3G32400 Actin-binding FH2 

AT5G58160 Actin-binding 

GRF3  

AT5G07650 Actin-binding FH2 

AT1G80245 Spc97/Spc98 
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Table 5-5. Selected GRF1 and GRF3 direct target genes associated with different 

phytohormones. Genes associated with abscisic acid are not included in this table. 

Gene ID Gene Name Biological function 

GRF1   

AT4G38825 SAUR13 Auxin 

AT4G31910 BAT1 BR homeostasis 

AT4G16110 RR2 Cytokinin regulator 

AT4G02680 EOL1 ET biosynthesis 

AT1G13280 AOC4 JA biosynthesis 

GRF3 
  

AT3G44310 NIT1 Auxin biosynthesis 

AT5G20810 SAUR70 Auxin response 

AT1G43950 ARF23 Auxin signaling 

AT1G21430 YUCCA11 Auxin response 

AT5G08720 PPP1 Regulate PIN1 and PIN2 

AT4G31910 BAT1 Brassinosteroids homeostasis 

AT4G24650 IPT4 Cytokinin biosynthesis 

AT1G18870 ICS2 SA biosynthesis 
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Figure 5-1. Distribution of GRF1 and GRF3 binding sites in the Arabidopsis genome. 

Distribution of binding peaks of GRF1 (A) and GRF3 (B) in different annotated genomic 

features. Frequency of binding peaks of GRF1 (C) and GRF3 (D) in the gene promoters (2kb 

upstream of transcription start site (TSS). 
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Figure 5-2. Identification of GRF1 and GRF3 binding motifs.  

A to D, Sequence logos of the identified GRF1 and GRF3 binding motifs. E to H, frequency of 

the identified motifs in the gene promoters with respect to the TSS. target genes.  
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Figure 5-3. Schematic representation of GRF1 and GRF3 targets genes that are 

associated with various development processes. 

Genes highlighed in red and green represent direct target of GRF1 and GRF3, respectively. 

Genes highlighted in black are direct targets of both GRF1 and GRF3. 
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Figure 5-4. Schematic representation of GRF1 and GRF3 target genes that are associated 

with abscisic acid (ABA) pathway and abiotic stress responses. 

GRF1 and GRF3 may regulate abiotic stress through ABA signaling pathways. They also 

target genes that positively regulate salt tolerance. Genes that are in red and green are the 

direct target of GRF1 and GRF3 respectively. Genes that are in black is targeted by both 

GRF1 and GRF3. 
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Figure 5-5. Schematic representation of GRF1 and GRF3 target genes that are associated 

with defense responses.  

GRF1 and GRF3 targets genes that are involved in basal defense, wound response, cell death and 

systemic acquired resistance (SAR). Genes that are in red and green are the direct target of GRF1 

and GRF3 respectively. Genes that are in black is targeted by both GRF1 and GRF3.  
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Figure 5-6. Functional classification and gene ontology analysis of the differentially 

expressed genes (DEGs) identified in GRF1 and GRF3 overexpression lines.  

A) Venn diagram showing overlap between the DEGs in GRF1 and GRF3, B, Gene ontology 

enrichment analysis of up-regulated and down-regulated genes identified in GRF1 and GRF3 

overexpression plants.
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Conclusions
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Conclusions 

Cyst nematodes are one of the most devastating root parasites that induce feeding site known as 

syncytium. The successful establishment of syncytium determines the compatibility of the 

interactions between host plants and the nematodes. Therefore, understanding syncytium 

ontogeny would help exploit the vulnerability of the feeding site to engineer plant resistant to 

cyst nematodes. There is an accumulating body of evidence pointing into the crucial role of 

phytohormones particularly auxin and ethylene, and microRNAs in syncytium ontogeny. The 

aim of this dissertation research was to explore the roles of phytohormones, miR858-MYB83 

regulatory module, and miR396–targeted transcription factors GRF1/3 in H. schachtii parasitism 

of Arabidopsis. Previous studies have shown that components of auxin signaling pathway play 

vital roles in syncytium formation and development. To elucidate the possible interlinks between 

ARFs and Aux/IAAs in mediating auxin signaling during plant-nematode interaction, we 

constructed a protein-protein interaction map of 19 ARFs and 29 Aux/IAAs. In addition, we also 

located the interacting protein pairs to specific gene co-expression networks to define tissue 

specificity of each interacting Aux/IAA-ARF combination. Altogether, we identified a total of 

213 interacting pairs, from which 79 interactions were previously unknown. ARF4-8 and 19 

were found to interact with almost all Aux/IAA and formed the central hubs of the co-expression 

network. These results provide the foundation to further explore the biological importance of 

ARF-Aux/IAA associations for the morphogenesis and development of various plant tissues and 

organs including cyst nematode-induced syncytium. 

Regarding the ethylene signaling components, we found that ethylene receptor ETR1, and 

EIN3/EIL1 positively regulate Arabidopsis susceptibility to H. schachtii. In spite of being the 

negative regulator (ETR1) and positive regulators (EIN3 and EIL1) of ethylene signaling, 

Arabidopsis mutants of ETR1 and EIN3/EIL1 both displayed enhanced resistance to H. schachtii 

suggesting that ETR1 and EIN3/EIL1 regulate Arabidopsis susceptibility to H. schachtii using 

distinct pathways. Our result showed that the receiver domain of ETR1 plays vital role in ETR1-

mediated susceptibility to H. schachtii, as point mutations in the phosphorylation site and various 

positions thereafter in the ETR1 receiver domain significantly affected Arabidopsis susceptibility 

to H. schachtii. The receiver domain particularly γ loop and the C-terminal tail are predicted to 

be involved in protein-protein interactions. Therefore, it can be hypothesized that ETR1 mediates 

Arabidopsis susceptibility to H. schachtii independently of ethylene signaling by interacting with 
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not yet identified proteins. On the other hand, EIN3/EIL1 was found to negatively regulate the 

expression of SID2, an enzyme that encodes ICS1 that catalyzes salicylic acid biosynthesis, 

during H. schachtii infection of Arabidopsis. In line with this, increased resistance of ein3-1/eil1 

was eliminated from ein3-1/eil1-1/sid2-2 that showed nematode susceptibility similar to sid2-2. 

This result suggested that EIN3/EIL1 mediate Arabidopsis susceptibility to H. schachtii via 

SID2, an enzyme that catalyze biosynthesis of salicylic acid. Quantification of various PR genes 

showed enhanced expression of PR1 in the mutant of EIN3/EIL1 under H. schachtii infected but 

no change in PR1 expression was observed in SID2 or triple mutant of EIN3, EIL1 and SID2. 

This result suggested that enhanced expression of salicylic acid-induced PR1 is responsible for 

enhanced resistance of ein3-1/eil1-1 to H. schachtii. This result also suggests a crosstalk between 

ethylene and salicylic acid during Arabidopsis-H. schachtii interactions. 

During syncytium formation, infected root cells undergo massive transcriptome reprograming 

that guides these cells into specific cell fate. In this context, miRNA genes have been shown to 

play key regulatory roles. In this study, the potential regulatory roles of miR858/MYB83 module 

and the miR396-targeted genes GRF1 and GRF3 transcription factors in syncytium development 

and nematode parasitism were explored. Promoter activity assays and gene expression analyses 

revealed a role of miR858 in post-transcriptional regulation of MYB83 during H. schachtii 

infection. Manipulating the expression of miR858 and MYB83 through gain- and loss-of-

function approaches significantly altered Arabidopsis response to nematode infection. RNA-seq 

analysis of miR858 and MYB83 overexpression plants revealed that genes that impact syncytium 

initiation and development such as those related to plant defense, cell wall biosynthesis, sugar 

transport, phytohormone signaling were regulated. We also found that miR858-mediated 

silencing of MYB83 is tightly regulated through a feedback loop that is likely to be important for 

fine-tuning the expression levels of MYB83-regulated genes in the H. schachtii–induced 

syncytium.  

Previously, GRF1 and GRF3 have been demonstrated to regulate unexceptionally higher number 

of genes that are differentially expressed in the syncytium. In this study, we identified genome-

wide binding sites of GRF1 and GRF3 using ChIP-seq approach. We discovered unique and 

common cis-binding motifs for GRF1 and GRF3 and revealed the underlying mechanism for 

their functional redundancy. Consistent with this finding we found significant overlaps between 

the direct targets of GRF1 and GRF3 as well as the differentially expressed genes. The direct 
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targets of GRF1 and GRF3 were associated with various developmental processes such as 

embryogenesis, floral organ identity, flower development, flowering time regulation, root 

development etc. In addition, we also observed that these two transcription factors bind to the 

promoter of various abiotic stress related genes. Remarkably, we found that GRF1 and GRF3 

directly target genes associated cellular processes and molecular functions that play key roles in 

the development of cyst nematode-induced syncytium, including cycle regulation, cytoskeleton 

organization, phytohormone biosynthesis and signaling, and defense responses. Our results also 

point to a role of GRF1/3 in mediating the balance between plant growth and development. 

In short, the findings of this dissertation provide new insights into the role of phytohormones and 

microRNA in Arabidopsis-H. schachtii interaction. While the results of this thesis contribute to 

advance our understanding of the molecular mechanisms controlling nematode parasitism of host 

plants, this study also identified several potential avenues to engineer nematode-resistant crops. 

ETR1 plays vital role in regulating plant susceptibility to various plant pathogens including cyst 

nematodes. We have identified that point mutations in the specific sites of the ETR1 receiver 

domain can enhance plant resistance to cyst nematode. Identification of these sites in the ETR1 

receiver domain of other crop plants and introducing site specific mutations in crop plants by 

using CRISPR-CAS9 system, for example, will be useful in generating nematode-resistant 

genotypes. Nowadays, plant scientists are effectively using RNA interference technology 

involving miRNA to engineer superior crop plants by manipulating desirable and undesirable 

genes. In this context, we have identified that miR858 is a positive regulator of plant resistance 

to cyst nematode. miRNAs are evolutionary conserved across monocot and eudicot plants. 

Therefore, miR858 can be targeted for engineering cyst-nematode resistant plants. Our results 

indicate that GRF1 and GRF3 may mediate the balance between plant growth and defense 

response. This finding is of great importance for developing strategies to enhance plant growth 

and defense simultaneously. For example, tissue-specific manipulation of GRF1/3 in roots to 

prioritize defense over development to generate plants resistant to cyst nematodes without 

affecting aboveground plant development. In addition, our ARF-Aux/IAA co-expression 

network reveals tissue specificity of interacting ARF-Aux/IAA proteins that will be useful to 

explore the biological significance of ARF-Aux/IAA associations in plant morphogenesis and 

development. 
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