
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Faculty Publications and Other Works -- EECS Engineering -- Faculty Publications and Other
Works

4-7-2018

The Synmac Syntax Macroprocessor: Introduction and Manual, The Synmac Syntax Macroprocessor: Introduction and Manual,

Version 5 Version 5

Bruce J MacLennan
maclennan@utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_elecpubs

 Part of the Other Computer Sciences Commons, and the Programming Languages and Compilers

Commons

Recommended Citation Recommended Citation
MacLennan, Bruce J, "The Synmac Syntax Macroprocessor: Introduction and Manual, Version 5" (2018).
Faculty Publications and Other Works -- EECS.
https://trace.tennessee.edu/utk_elecpubs/23

This Report is brought to you for free and open access by the Engineering -- Faculty Publications and Other Works
at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Faculty Publications
and Other Works -- EECS by an authorized administrator of TRACE: Tennessee Research and Creative Exchange.
For more information, please contact trace@utk.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268797177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_elecpubs
https://trace.tennessee.edu/utk_enginfacpubs
https://trace.tennessee.edu/utk_enginfacpubs
https://trace.tennessee.edu/utk_elecpubs?utm_source=trace.tennessee.edu%2Futk_elecpubs%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=trace.tennessee.edu%2Futk_elecpubs%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=trace.tennessee.edu%2Futk_elecpubs%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=trace.tennessee.edu%2Futk_elecpubs%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

The Synmac Syntax Macroprocessor
Introduction and Manual

Version 5

Bruce J. MacLennan∗

Department of Electrical Engineering and Computer Science
University of Tennessee, Knoxville
web.eecs.utk.edu/~mclennan

April 7, 2018

Abstract

A syntax macroprocessor permits parameterized text substitutions with
greater syntactic flexibility than allowed with ordinary macroprocessors. This
report describes the synmac syntax macroprocessor, which permits arbitrarily
delimited macro invocations, and thus allows the definition of new statement
and expression forms or even complete languages. Synmac is a computation-
ally complete programming language. We define the synmac macro language,
document a prototype implementation, and give examples of its use.

1 Introduction

A syntax macroprocessor is like an ordinary macroprocessor in that it scans a source
text, copying it to a target text, in the process scanning for macro definitions and
macro calls, which may have parameters. Macro calls are expanded (replaced by their
definitions) when they are encountered, with actual parameters being substituted
for formal parameters. Whereas ordinary macroprocessors have a simple macro call
syntax (e.g., a macro name followed by a parenthesized list of actual parameters), a
syntax macroprocessor provides much greater syntactic flexibility in macro calls. This
report describes a syntax macroprocessor provisionally named “synmac,” specifies the
language, and provides examples of its use.

∗This report may be used for any non-profit purpose provided that the source is credited.

1

There are a range of application scenarios for a syntax macroprocessor. Perhaps
the most common is as a tool for defining common parameterized abbreviations.
In this case, the source text would be largely in the target language, with macro
invocations interspersed here and there. Macros might be defined for common code
templates or for introducing application-specific constructs into the language. As an
extreme case of this, synmac can be used as a parameterized pattern replacement
engine, which can recognize specific target-language patterns in the source text and
replace them with other target-language text. (It could even be used like a text editor
to globally replace incorrect text by correct text.) At the other extreme, synmac can
be used to define an entirely different language, independent of the target language.
In this case, the source text would be entirely in the defined language, but it would
be translated by the macros into the target language. For example, we have used
synmac for a prototype implementation of the morphgen language that translates
into MatLab/Octave code [1].

Idea: The synmac syntax macroprocessor is a work in progress and may
continue to evolve. Ideas being considered for future versions, and thus
possible incompatibilities, are displayed in this way. This report describes
“version 5” of synmac.

2 Philosophy

2.1 Limited Syntactic Flexibility

The intent of a syntax macroprocessor is to permit more flexibility in the syntax of
macro invocations than the relatively rigid syntax permitted by ordinary macropro-
cessors. But how much flexibility? In the limit, we might allow, for example, any
syntax describable by a context-free grammar, but then we have a translator writing
system rather than a macroprocessor. The challenge, then, is to find a balance be-
tween the syntactic rigidity of an ordinary macroprocessor and the syntactic flexibility
of a translator writing system. Our design point in this space is to permit macro invo-
cations in which parameters are separated by arbitrary delimiters and the invocation
begins with one or more delimiters (see Sec. 3.2 for details). All of the delimiters
are used in determining which macro to invoke, which permits defining families of
related macros for different situations. This covers the most common applications of
syntax macros. In particular, however, synmac does not include an expression parser,
and so the user will be using, for the most part, the expression syntax of the target
language.

2.2 Multiple Syntactic Conventions

One common use of a syntax macroprocessor such as synmac is to implement a
prototype translator from some source language into a target language. For exam-

2

ple, synmac has been used to implement the morphgen morphogenetic programming
language by translating it to MatLab/Octave code [1]. Therefore, a syntax macropro-
cessor must negotiate among three sets of lexical and syntactic conventions: (1) the
lexics and syntax of the macro language (syntax for definitions, invocations, etc.), (2)
the lexics and syntax of the source language, and (3) the lexics and syntax of the tar-
get language. In the morphgen example, we are dealing with the lexical and syntactic
conventions of synmac, morphgen, and MatLab/Octave. There may be irreconcilable
incompatibilities, and sometimes concessions must be made in the source language.
Synmac addresses this problem by having a minimal set of lexical and syntactic con-
ventions and by allowing these to be altered to avoid incompatibilities (see Sec. 8.2,
p. 24). A syntax macroprocessor cannot, in general, do much syntax checking, since
if it doesn’t recognize the structure of some text, it has to assume it may be in the
target language, about which it’s ignorant.

There are three interfaces between the source and target languages. The first is
the embedding of macro invocations in target language text, which is how macros are
commonly used. Therefore it must be possible to recognize the transition from the
lexical structure of the target language to the lexical structure of synmac (and back)
so that macro invocations are recognized, and to do this in a transparent and readable
way. The second interface is between the defined delimiters of a macro and the actual
parameters they surround, which can include both target language text and source
text. Finally, the bodies of macro definitions can mix the source and target languages.
The lexical conventions of synmac, built on whitespace and special characters, are
designed to make these transitions as smooth and transparent as possible.

3 Definition of Syntax Macros

3.1 Tokens and Other Lexical Elements

The macro processor manipulates sequences of tokens, strings, and whitespace. A
synmac source file is tokenized (parsed into tokens, strings, and whitespace) before
any other macroprocessing.

3.1.1 Tokens

Characters are classified as alphanumeric, special, or whitespace. Each single special
character is a token. Each maximal contiguous sequence of alphanumeric characters
is a token. Therefore alphanumeric tokens (which we call “words”) must be sepa-
rated from other words by whitespace or special characters. The newline character
is considered a special character. For the purpose of determining tokens, the class
of alphanumeric characters can be extended (for example to include “ ”); see Sec.
8.3.1 below. These rules can occasionally lead to surprising results. For example,
the decimal number “0.25” is considered three tokens: “0”, “.”, and “25”. If this is

3

a potential problem, then the class of alphanumeric characters can be extended to
include the decimal point, which is generally safe to do.

3.1.2 Whitespace

Whitespace is generally passed through, which preserves formatting. It is also used
to separate words (alphanumeric tokens).

3.1.3 Newlines

In general newlines are passed through like whitespace, but they are considered (more
or less invisible) tokens, and so they can be used as delimiters in macros.

3.1.4 Strings

String literals evaluate as themselves, but when they are finally written to the output
file, their quotes are removed. They are a means of passing source text into the target
text and ensuring it is not altered in any way. See Secs. 8.3.2 and 8.3.3, respectively,
for changing the default string quote (") and superquote (by default “\”).

3.2 Patterns

3.2.1 Delimiter Structure

A macro definition has the following syntax:1

〈definition〉 ::=

{
syntax 〈pattern〉 means 〈template〉 endsyntax
pattern 〈pattern〉 endpattern

}

The syntax of a 〈pattern〉 is:

〈pattern〉 ::= 〈delim〉+ [〈param〉〈delim〉+]∗ [〈short param〉] (1)

The basic principle is that a pattern has to start with delimiters (to initiate the
pattern matching process) and that parameters need to be separated by delimiters,
except for the optional final short parameter, which is self-delimiting. The 〈pattern〉
is in effect a distributed name for the macro, since the macro will not be called unless
the invocation matches the entire pattern. Whitespace is ignored in patterns.

3.2.2 Parameters

As indicated in the above syntax, parameters must be separated by one or more
delimiters. Macros can have two kinds of parameters, which we call long parameters

1The grammatical notation is defined with the complete grammar in the appendix, p. 30.

4

and short parameters, but these terms are somewhat misleading. The syntax of formal
parameters is as follows:

〈param〉 ::= 〈short param〉 | 〈long param〉
〈short param〉 ::= ˜〈word〉
〈long param〉 ::= &〈word〉

A short parameter expects to match a single well-defined source expression, which is a
single token or a macro invocation, which can, however, have other invocations in its
actual parameters (see Sec. 4.1 for syntax). Although it’s called a “short” parameter,
and that is often its use, the corresponding actual can in fact be many lines long, so
long as it’s a single macro invocation. Nevertheless, the macroprocessor knows when
it has got to the end of a short actual parameter, and that is its most important
characteristic.

A long parameter, in contrast, expects to match a sequence of zero or more source
expressions, and therefore it can match a sequence comprising a mixture of tokens
and macro invocations of any length (see Sec. 4.1 for syntax). The macroprocessor
knows it has got to the end of a long parameter by matching the delimiters that are
required to terminate it.

Any token can be used as the name of a formal parameter, but it is normal and
good style for it to be a descriptive alphanumeric token, and not a special character
(hence, 〈word〉 in the above grammar).

3.2.3 Example Patterns

Here are some example patterns from the morphgen language definition [1] (template
bodies omitted):

syntax de l ˜ var means . . . endsyntax // grad i en t
syntax de l ˆ2 ˜ var means . . . endsyntax // Laplac ian
syntax substance ˜name : &v a r i a b l e s behavior : &equat ions end

means . . . endsyntax
syntax d i sp l ay running ˜ subst as contours means . . . endsyntax
syntax r epo r t Courant number f o r ˜ vec to r means . . . endsyntax

Here “//” marks an end-of-line comment (Sec. 7.1).

3.2.4 Match Order

The macroprocessor attempts to match an expression to the most recently defined
macro, and if it does not match, it works backwards, trying previously defined macros.
To put it in other words, macro definitions are placed on a stack, and the macropro-
cessor tries them from top to bottom. Therefore, macros can be redefined, and later

5

definitions supersede earlier ones. This means that later macros with a more spe-
cific syntax that handles special cases can partially block earlier macros with a more
general syntax that handle the general case (somewhat like methods in subclasses of
a class). This also means that intrinsic macros (such as syntax) can be redefined,
which might be useful in some cases, but the original definitions will be inaccessible.

3.3 Pattern Elements

A pattern is a sequence of one or more pattern elements, which include token de-
limiters, newline delimiters, commit flags, and formal parameters (described in Sec.
3.2.2). The syntax of 〈pattern〉s is given in Eq. 1 for which 〈delim〉 is defined:

〈delim〉 ::= { 〈token〉 | $ } [!] (2)

That is, a 〈delim〉 is a token delimiter or a newline delimiter ($), optionally followed
by a commit flag (by default “!”).

3.3.1 Token Delimiters

Any token can serve as a delimiter that must be present in a macro invocation.
Whitespace around delimiters is ignored for purposes of pattern matching.

3.3.2 Newline Delimiters

The special pattern element “$” (which can be changed, Sec. 8.2.4) represents a
required newline as a delimiter. This is convenient especially for making a newline
the final, closing delimiter in a template. For example:

syntax f o r (˜x , ˜y) with in &rad iu s o f (&xcent , &ycent) :
˜ var = &expr $ means . . . endsyntax

permits an invocation such as this on a line by itself:

f o r (h , v) with in 0 .06 o f (0 . 1 , −0.225): P = 1 − F(h , v)

The usual use of a newline delimiter is as the last delimiter in a pattern, as shown
above, but it can also be used as an medial or initial delimiter. Especially in the
latter case, the user should be aware that every newline in the source text will cause
the macroprocessor to perform a pattern match, to see if it should invoke the newline-
initial macro; this could be slow and lead to unexpected macro substitutions.

Idea: As defined, the newline delimiter consumes the newline that it
matches; this is often useful (Sec. 7.1). However, there are also cases
in which it would be convenient to have several nested macro calls all
terminated by a single newline, and for this purpose it would be useful
if the newline delimiter did not consume the newline that it matches. It
would be convenient to have both sorts of newline delimiters.

6

3.3.3 Commit Flag

When the macroprocessor tries to match the source text to a macro definition, if a
sought delimiter is missing, it simply assumes that the source text is not a call of
that macro. It backtracks and tries other macro definitions. Therefore, if you make
an error in the syntax of a macro call, it may simply be passed unexpanded into
the target text. In many cases, however, as macro designers we know that the first
tokens determine the macro to be called, and if later delimiters are missing we want a
diagnostic message; we don’t want the macroprocessor to ignore it. For this purpose
we have a commit flag (“!” by default) that can be put after any delimiter. It means
that if we have got this far in the pattern matching, then the rest of the delimiters
must be present. If any are not, synmac can produce an informative error message.
Here is an example of its use:

syntax | | ! &exp | | means L2norm(exp) endsyntax

This tells the macroprocessor that whenever it sees “ || ” it should expect to find a
matching “ || ”, and that if it does not, it should generate a useful error message. Of
course, you can do this only if this is the only macro beginning with “ || ” and only if
“ || ” is not used for other purposes in the source text.

3.4 Templates

A template is the body of a macro, which is a (possibly) empty sequence of tokens
with optional interspersed whitespace. (As explained later, a 〈template〉 is syntacti-
cally an 〈expr seq〉, Eq. 3, p. 9.) Some of these tokens are formal parameter names.
Formal parameters in the template are not marked in any special way, but the macro-
processor recognizes them because they are bound to the values of the corresponding
actual parameters. When a macro is invoked, its body is processed in two steps:
First, the formal parameters are replaced by the actual parameters to which they
are bound. This includes substituting actuals for formals inside metaquotations (Sec.
3.6). Second, the resulting expression sequence is evaluated (expanded), and the re-
sulting expansion replaces the macro invocation. Any whitespace in the template is
retained, which preserves formatting.

Idea: This treatment of metaquotations combines actual-formal substitu-
tion with delayed evaluation, and provides a capability similar to a lambda
expression (so the metaquotes actually denote delayed evaluation). It is
unclear whether it is the best choice. Perhaps metaquotes should work
similar to string quotes and prevent all processing (but then we might
want another mechanism to do substitution without evaluation).

7

3.5 Constant Macros

In Section 2.2 we mentioned the issues that arise from having to deal with three sets
of lexical and syntactic conventions (synmac, source language, target language). One
of these is that synmac knows nothing about the syntax of the target language (e.g.,
that parentheses and brackets should be matched). For example, if we define a syntax
macro:

syntax succ(&arg) means arg + 1 endsyntax

and call it like this:

x = succ (A[(N−1)∗2])

then the result will be

x = A[(N−1 + 1 ∗2])

which is not what was intended. This is because the parameter &arg matched the
actual up to the first close parenthesis, that is, it matched “A[(N−1”, and substituted
it for “arg” in the body of “succ”. The problem is that synmac does not know that we
expect parentheses and brackets to be matched in macro arguments. We can inform
it of these requirements by declaring them as constant macros :

pattern (&expr) endpattern
pattern [&expr] endpattern

These are like standard syntax declarations, but they have no bodies (templates).
This means that synmac will recognize and process them like ordinary macros, but
treat them like constant functions (i.e., they expand as themselves, but don’t result in
recursive invocation). If no other macros begin with an open parenthesis and bracket,
then we will get better error diagnostics by using the commit flag:

pattern (! &expr) endpattern
pattern [! &expr] endpattern

3.6 Metaquotations

Expansion of a token sequence can be suppressed by surrounding it with metaquotes
(by default {}), which can be nested. When a metaquoted sequence is evaluated, the
outermost metaquotes are removed. Therefore, when an actual parameter contains
metaquoted sequences, the outermost metaquotes are removed in the substituted
parameter. Actual-formal parameter substitution does take place in metaquotations
in macro templates (see Sec. 3.4). The default metaquotes can be changed (see Sec.
8.2.6).

8

4 Expansion Semantics

4.1 Expansion as Expression Evaluation

The source text is really an expression sequence, which is evaluated (“expanded”) to
yield the target text. Plain text (that is, text that is not recognized as a macro invoca-
tion) is treated as constant text that is passed unchanged to the output. Embedded
macro invocations are evaluated and replaced by their results (expansions), as ex-
plained below. (Syntax definitions and pragmatic commands are treated as intrinsic
macro invocations with side-effects.)

More precisely, an expression sequence is a sequence of zero or more expressions
possibly separated and surrounded by whitespace:

〈expr seq〉 ::= [〈whitespace〉] [〈expr〉[〈whitespace〉]]∗ (3)

The elements of the expression sequence are evaluated in order. Whitespace is copied
into the result; expressions are replaced by their values.

An expression is either a macro invocation, a string literal, a metaquoted expres-
sion sequence, or a token (special character or alphanumeric word) that does not
begin a valid macro invocation (the latter are called undefined tokens). Therefore the
syntax for an expression is

〈expr〉 ::=

〈invocation〉
〈string〉
{{{〈expr seq〉}}}
〈token〉

 (4)

The result of evaluating an undefined token is that token (i.e., they are treated
as constants). The result of evaluating a string literal is that string; quotes are not
removed during evaluation, but when the string is finally written to the output file,
the quotes are removed. The results of evaluating a metaquotation is the enclosed
expression sequence with the outer metaquotes deleted but inner nested metaquotes
preserved. The evaluation of macro invocations is described below.

Idea: It is not obvious that the preceding is the best way of evaluating
strings and metaquotations. Stripping off the quotes allows the enclosed
text to be evaluated later; that is, quotation delays evaluation, and this is
sometimes useful. For example, we generally want to delay the evaluation
of the arguments to the syntax macro. On the other hand, in other cir-
cumstances we want to completely prevent the evaluation of some source
text, so that it is preserved into the target text, which argues for leav-
ing the quotes on no matter how many times the quotation is evaluated.
In this case, we might want an intrinsic operator to force evaluation by
removing the quotes.

9

4.2 Eager Evaluation

The macro processor uses an eager evaluation order, that is, actual parameters are
evaluated (expanded) before they are substituted for the formal parameters in the
body of the macro.

4.3 Evaluation Order

4.3.1 Expanding an expression sequence

The macroprocessor proceeds through an expression sequence, expression by expres-
sion, concatenating their values to produce the result of evaluating the expression
sequence (with intervening whitespace preserved). An expression is evaluated by in-
specting its first token. If it is a string literal or a open metaquote, then the quotation
is processed as described above (Sec. 4.1). Otherwise the macroprocessor attempts
to match a pattern.

4.3.2 Attempting a pattern match

The macroprocessor attempts to match each defined macro pattern to the expression
text, starting with the most recently defined macro and working backwards. (Thus
later definitions supersede earlier ones.) If at any point the expression does not match
the pattern, then the match it abandoned. If the pattern has been committed (Sec.
3.3.3) then a diagnostic is generated (showing the pattern and the unmatching text).
Whenever a match is abandoned (whether committed or not), the macroprocessor
bactracks over any matched text and proceeds to try earlier definitions. (Note, how-
ever, that if the evaluation of actual parameters has had side-effects, these side-effects
will not be undone.) Therefore you can have alternative macro definitions, or more
generic definitions followed by more specific ones. If a word does not begin any suc-
cessful pattern match, then it is considered an undefined token and is returned as the
value of the expression.

Consecutive delimiters in the pattern are matched against successive delimiters
in the expression, but intervening whitespace is ignored. Thus, for example, the
pattern text “behavior:” (two tokens) will match the expression text “behavior :”
(two tokens with intervening whitespace), and the pattern “>=” will match “> =”.
Newline delimiters attempt to match newlines in the expression text.

4.3.3 Evaluating an actual parameter

When a formal parameter is encountered in the pattern, the macroprocessor attempts
to parse and evaluate (expand) a corresponding actual parameter. If the formal pa-
rameter is a short (~) parameter, then the macroprocessor skips whitespace in the
token sequence and recursively evaluates a single expression. Therefore, the cor-
responding actual parameter text must conform to 〈expr〉 (Eq. 4). Because initial

10

whitespace is trimmed from a short actual parameter, and because parsing of a short
actual parameter stops as soon as a complete 〈expr〉 is found, effectively whitespace
is trimmed from the beginning and end of short actual parameters. The evaluated
actual parameter is bound to the formal parameter (eager evaluation).

If the formal parameter is a long (&) parameter, then the macroprocessor expects
to find an expression sequence (Eq. 3), which must be terminated by the delimiter that
follows the long formal parameter in the pattern (Eq. 1, p. 4). The macroprocessor
will recursively evaluate the expression sequence, as described in this section (Sec.
4.1), until it finds the terminating delimiter. Any whitespace in the actual parameter
will be preserved in the value bound to the formal parameter. If the required delimiter
is not found, then the pattern match fails and the macroprocessor backtracks (but
any side-effects resulting from evaluation of the actual will remain).

4.3.4 Substituting actual parameters for formal parameters

If a token sequence successfully matches a macro’s pattern, then the actual parameters
are substituted for the formal parameters in the macro’s template or body. The tokens
(including whitespace) in the template are processed in order, and whenever a word is
found to be bound, it is replaced by the token sequence to which it is bound. Formal
parameters in the template do not need to be flagged, for example:

syntax de l ˜ var
means {grad (var , d e l t a s)} endsyntax // grad i en t

syntax de l ˆ2 ˜ var
means { de l2 (var , d e l t a s , d e l t a s)} endsyntax // Laplac ian

syntax space ! : &xlwb < x < &xupb , &ylwb < y < &yupb$ means
x lwb = xlwb ;
x upb = xupb ;
y lwb = ylwb ;
y upb = yupb ;
x extent = x upb − x lwb ;
y extent = y upb − y lwb ;

endsyntax

4.3.5 Evaluating the body

After the actuals have been substituted for the formals in the template of the macro,
the resulting macro body is evaluated as an expression sequence and becomes the
value of the macro invocation. Evaluation of the body may have side-effects, for
example, if it includes syntax definitions.

11

4.4 Preventing Evaluation

Surrounding text with the metaquotes ({} by default) prevents evaluation (expansion)
of the enclosed text. Their most common use is to surround the arguments of the
syntax definition commands, which are otherwise evaluated like any other actual
parameters. If you’re doing something tricky (Sec. 7), you might want to compute
the pattern or macro template, but this is not the usual case. You can usually
get away without metaquoting the arguments of syntax definitions, but it’s better
practice to metaquote them (unless you’re doing something tricky) and thereby avoid
hard-to-find errors.

5 Examples

In this section we present several examples of synmac as an interpreter. This is not
its most common use, but it illustrates its computational power.

5.1 Peano Arithmetic

By Peano arithmetic, we mean the definition of basic arithmetic operations in terms of
integers defined as successors of zero. It illustrates a kind of equational programming.
We begin with some preliminary definitions and declarations:

syntax | | &text $ means{}endsyntax
| |
| | Peano Arithmet ic
| |

#set syntax de f as $
#set pattern d e c l a r e $

The first line defines “||” as an end-of-line comment. The last two lines declare alter-
native syntax for macro definitions, which is more appropriate to recursive arithmetic.
The next group of definitions defines several numerals in terms of the successor:

declare succ [˜ arg]
def 1 as succ [0]
def 2 as succ [1]
def 3 as succ [2]

The “declare” line ensures that synmac recognizes that square brackets should be
matched (on this issue, see Sec. 3.5). Since the templates of the numeral definitions
are not surrounded by metaquotes, they are expanded at definition time. Therefore,
for example, “3” is defined to be “succ[succ[succ [0]]] ” not “succ [2]” as you might
expect. This makes no difference here, but it could make difference with recursive
macros (leading, for example, to infinite recursion).

12

Now we can define addition recursively, both prefix and (fully parenthesized) infix
notation:

def sum [succ [˜M] , ˜N] as { succ [(M + N)] }
def sum [0 , ˜N] as {N}
def (˜M + ˜N) as {sum [M,N]}

Notice that we have surrounded the bodies of the macros with metaquotes to delay
evaluation. They are not strictly necessary if the definitions are ordered as they are
here, but it’s good synmac coding and will prevent hard-to-diagnose errors. Subtrac-
tion is defined:

def d i f [succ [˜M] , succ [˜N]] as {(M − N)}
def d i f [˜M, 0] as {M}
def (˜M − ˜N) as { d i f [M,N]}

Using addition we can define multiplication:

def prod [succ [˜M] , ˜N] as {(N + (M ∗ N))}
def prod [0 , ˜N] as {0}
def (˜M ∗ ˜N) as {prod [M,N]}

We can test our definitions by entering:

"3 + 2 + 1 =" ((3+2)+1)
"3 * 2 * 1 =" ((3∗2)∗1)
"3 + 3 - 2 =" ((3 + 3) − 2)

This source text expands as the following target text, which is correct:

3 + 2 + 1 = succ [succ [succ [succ [succ [succ [0]]]]]]
3 ∗ 2 ∗ 1 = succ [succ [succ [succ [succ [succ [0]]]]]]
3 + 3 − 2 = succ [succ [succ [succ [0]]]]

(There are redundant spaces, which could be eliminated at the expense of making the
syntax definitions less readable.) It is hard to read these long strings of successors,
so we can define (limited) decimal decoding:

def decimal ˜N as {dec [N, "0" , "1" , "2" , "3" , "4" , "5" , | |
"6" , "7" , "8" , "9" , "10"]}

def dec [0 , ˜ f i r s t , &r e s t] as { f i r s t }
def dec [succ [˜N] , ˜ f i r s t , &r e s t] as {dec [N, r e s t]}

The “decimal” macro uses an auxiliary macro “dec”, which counts off the “succ”s in
parallel with the numeral strings. With these definitions, the source text

"2 * 3 - 2 =" decimal ((2∗3)−2)
"(3 * 2) - 2 + (2 * 3) =" decimal (((3∗2)−2) + (2∗3))

13

expands as:

2 ∗ 3 − 2 = 4
(3 ∗ 2) − 2 + (2 ∗ 3) = 10

Idea: Obviously, this is a stupendously inefficient implementation of
arithmetic. If in the future it is found useful to have synmac do arithmetic,
it will be included by means of intrinsic (built-in) macros.

5.2 Infix Expressions

Although synmac does not include an expression parser, it is possible to define syn-
tax macros that provide limited infix expression parsing. We begin by changing
the metaquotes so that we can use curly braces as delimiters, and declare balanced
parentheses as a pattern:

syntax | | &text $ means{}endsyntax | | end−of−l i n e comments
#set metaquotes < >
pattern <(&E)> endpattern

We begin by handling “∗” and “/” signs:

syntax <term {&F}> means < f a c t o r {F}> endsyntax
syntax <term {&F ∗ &T}>

means <prod [f a c t o r {F} , term{T}]> endsyntax
syntax <term {&F / &T}>

means <quot [f a c t o r {F} , term{T}]> endsyntax

Since patterns are tried in reverse order, the patterns “term {&F ∗ &T}” and
“term {&F / &T}” will attempt to match an expression in curly braces up to the
first “∗” and “/”, which will be bound to F (standing for “factor”). The remainder
of the text up to the close curly brace will be bound to T (standing for “term”).
Since the text bound to T may include additional “∗” and “/” signs, it is submitted
recursively to “term” for further processing. If, however, the argument of “term” does
not contain these operators, then it is submitted to “factor” for further processing,
the rules for which are as follows:

syntax < f a c t o r {&F}> means F endsyntax
syntax < f a c t o r {(&E)}> means <expr{E}> endsyntax

The second line submits a parenthesized expression to “expr” for expansion; the first,
which handles simple unparenthesized factors (such as variable names and numbers),
returns its argument without further processing. Here are some simple tests:

term{A / B}
term{2∗A∗B}

14

which expand as:

quot [A , B]
prod [2 , prod [A , B]]

The “+” and “−” signs are handled similarly by expr:

syntax <expr {&T}> means <term{T}> endsyntax
syntax <expr {&T + &E}>

means <sum [term{T} , expr{E}]> endsyntax
syntax <expr {&T − &E}>

means <d i f [term{T} , expr{E}]> endsyntax

We can test it with these expressions

expr {2∗B + C}
expr {A−2∗C}
expr {1/(C+D)}

which expand correctly:

sum [prod [2 , B] , C]
d i f [A , prod [2 , C]]
quot [1 , sum [C , D]]

We can now use infix expressions in appropriate contexts such as assignment state-
ments:

syntax l e t ˜D := &E; means <s e tq [D, expr{E}]> endsyntax

We can test it with this text:

l e t X := (A+B)∗ (C−D) ;
l e t Y := A − B − 1 ;

which leads to the expansion (with some blanks deleted):

s e tq [X, prod [sum [A , B] , d i f [C , D]]]
s e tq [Y, d i f [A , d i f [B , 1]]]

So we can define infix expressions, but if you look closely at the above examples, you
will see that some of the translations are surprising. For example, A–B–1 is translated
dif[A, dif[B,1]], which means the same as A–(B–1), that is, the operations associate
to the right, which is not the usual convention. It is possible to write synmac syntax
macros that implement left associative operators, but they are more complicated, and
do not need to be presented here.2

2Left associative infix operators can be handled as follows. First define a set of recursive macros
that reverse the order of terms connected by + and – and also reverse the order of factors connected by

15

5.3 Simple LISP

LISP-like list processing provides another example of synmac as a computational
engine and illustrates some programming techniques. We begin, as before, with some
preliminary declarations:

syntax | | &text $ means{}endsyntax
| | LISP−s t y l e L i s t s

#set syntax de f = ;
#set pattern d e c l a r e ;

In this case, we’ve decided to terminate the declarations with semicolons. Next
we declare the essential relations that define a list (represented by the constructor
cons(H,T)):

declare cons (˜H, ˜T) ;
def car (cons (˜H, ˜T)) = H;
def cdr (cons (˜H, ˜T)) = T;

The first line tells synmac that “cons(H,T)” is a well-defined structure, and the last
two define the “car” and “cdr” functions to select the two halves of this structure.
To match these patterns, the argument to car or cdr will have to be an explicit cons
structure (since that is part of the pattern). In general, we might want to compute
the arguments, so we wrap these in the functions that users are expected to use:

def f i r s t (˜L) = { car (L) } ;
def r e s t (˜L) = { cdr (L) } ;

We can try these out by defining a list and testing a couple of identities:

def Lst = cons (A, cons (B, n i l)) ;
"first Lst =" f i r s t (Lst)
"rest Lst =" r e s t (Lst)
"Lst =" cons (f i r s t (Lst) , r e s t (Lst))

This is the expansion:

f i r s t Lst = A
r e s t Lst = cons (B, n i l)
Lst = cons (A, cons (B, n i l))

Instead of writing lists in terms of cons’s, it’s more convenient to have a list notation,
such as [C,D,E], which we can define recursively:

* and / (continuing into parentheses if necessary), replacing the normal operators by specially marked
“reversed” operators. For instance, these macros transform “A / (B − 2)” into “(2 ˆ− B) ˆ/ A”.
Next, write recursive macros similar to those in Sec. 5.2 that transform the reversed operators into
function calls. For example, “(2 ˆ− B) ˆ/ A” becomes “quot[A, dif [B, 2]] ”.

16

def [] = n i l ;
def [˜H] = { cons (H, n i l) } ;
def [˜H, &T] = { cons (H, [T]) } ;

We can test both simple and nested lists:

def Lst2 = [C, D, E] ;
def Lst3 = [[U, V] , [X, Y]] ;
"Lst2:"Lst2
"Lst3:"Lst3

which expands as:

Lst2 : cons (C, cons (D, cons (E, n i l)))
Lst3 : cons (cons (U, cons (V, n i l)) , cons (cons (X, cons (Y, n i l)) , n i l))

Reading these nested cons’s is tedious, so we can define a “pretty print” function.
Here is a first attempt, which uses an auxiliary function to deconstruct the list:

def p r e t t y p r i n t (˜L) = {"["ppaux (L)"]" } ;
def ppaux (cons (˜H, ˜T)) = {H, ppaux (T) } ;
def ppaux (cons (˜H, n i l)) = H;
def ppaux (n i l) = ;

The square brackets are quoted because we don’t want to invoke the square bracket
macro that we previously defined! Notice also the order of the ppaux definitions; the
second is more specific than the first, and so it must follow the first. Here is a test:

"Lst2 =" p r e t t y p r i n t (Lst2)
"Lst3 =" p r e t t y p r i n t (Lst3)

which produces:

Lst2 = [C, D, E]
Lst3 = [cons (U, cons (V, n i l)) , cons (X, cons (Y, n i l))]

Clearly, this doesn’t handle nested lists correctly, but we can fix that by adding:

def ppaux (cons (cons (˜H, ˜T) ,˜U)) | | handle nested l i s t s
= { p r e t t y p r i n t (cons (H,T)) , ppaux (U) } ;

def ppaux (cons (cons (˜H, ˜T) , n i l)) = { p r e t t y p r i n t (cons (H,T)) } ;

Then the test

"Lst3 =" p r e t t y p r i n t (Lst3)

expands correctly:

Lst3 = [[U, V] , [X, Y]]

17

In the preceding examples, we have used an equational style of programming, in
which patterns are used to test for arguments in various forms. For more general
programming it may be more convenient to have conventional boolean values and
conditionals. We begin with a way of testing whether a list is empty. As before, we
define a low-level pattern that matches a cons structure, and wrap it in a user-callable
“empty” function:

def n u l l (n i l) = true ;
def n u l l (cons (˜H, ˜T)) = f a l s e ;
def empty (˜L) = { n u l l (L) } ;

We can try them out:

"empty (nil) =" empty (n i l)
"empty (Lst) =" empty (Lst)

and get the following correct answers:

empty (n i l) = true
empty (Lst) = f a l s e

But what are “true” and “false”? To make them useful, observe that they are funda-
mentally choices and therefore define them (using an idea common from λ calculus
programming language semantics):

def t rue (&T,&F) = T;
def f a l s e (&T,&F) = F;
def i f ˜ bool then ˜ tbranch e l s e ˜ fbranch f i
= {bool ({ tbranch } ,{ fbranch })} ;

The “if” macro takes the boolean value and applies it to the true and false branches
so that the boolean can select one or the other. The true and false branches are
metaquoted to delay evaluation. Here’s a simple test

i f empty (n i l) then c o r r e c t e l s e i n c o r r e c t f i
i f empty (Lst) then i n c o r r e c t e l s e c o r r e c t f i

which returns:

c o r r e c t
c o r r e c t

We can now use the conditional and other list operations to define a recursive function
to append two lists:

def append (˜L, ˜M) = { | | append two l i s t s
i f empty (L) then M e l s e cons (f i r s t (L) , append (r e s t (L) ,M)) f i } ;

We can test it as follows:

18

"Lst^Lst2^Lst3=" p r e t t y p r i n t (append (Lst , append (Lst2 , Lst3)))

which produces the correct result:

Lst ˆ Lst2 ˆ Lst3= [A, B, C, D, E, [U, V] , [X, Y]]

These are, I think, sufficient examples to illustrate the programming capabilities of
synmac.

6 Dealing With Problems

Experience has shown that debugging syntax macro definitions and invocations can
be very difficult. This is in part because of the flexible syntax permitted in patterns,
which can match unexpected regions of the source text. Here we discuss a few common
symptoms of problems and how they can be fixed; in hard cases you may have to use
the debugging commands (Sec. 8.4).

In general, the user is advised to proceed incrementally. Introduce one new macro
at a time and try it out before adding others. Test simple cases first. (You know, the
usual good programming practices!) See Section 5 for examples.

6.1 Symptom: Macro is not evaluated

If a macro is not expanded (with the common symptom being that its invocation is
copied into the target text), then the most obvious cause is that you have got the
form of either the definition or the call incorrect. If one call out of many doesn’t
expand, then you likely have an error in it; compare it with the calls that did expand.
If none of them expand, then you probably have an error in the definition. Inspect it
carefully and, if necessary, use #set definitions on to see how the macroprocessor
read the definition (Sec. 8.4.1).

Sometimes an error in an earlier macro invocation can prevent a later one from
expanding. This can occur if an actual parameter of the former extends further than
intended (due, for example, to a mistyped terminating delimiter) and absorbs part of
the later invocation and prevents it from expanding.

If you have several syntax definitions that define different cases of a single con-
ceptual macro, then make sure they are ordered correctly (see Sec. 5 for examples).
Remember that macros are tried from most recently defined to earlier, so generally
more specific cases should be defined after more general (which is perhaps the opposite
of the natural order).

6.2 Symptom: Incorrect actual parameters

Sometimes the actual parameter substituted for a formal parameter is not what you
expect. Sometimes it’s more then you expected, which can happen if you mistyped

19

the delimiter that was supposed to terminate an actual, and so the actual continued
until the next occurrence of the correct delimiter. Sometimes the actual parameter
is less than you inspected, which can happen if it found the terminatig delimiter
within the intended actual, but not within a correct embedded invocation. Finally,
since actual parameters are evaluated (when not quoted), the substituted parameter
might be different from what you expected because it expanded differently than you
expected.

6.3 Symptom: Non-termination

The most obvious cause of non-termination is, of course, a recursive macro. If nec-
essary, use the #set message and #set pause commands to isolate which macro
is causing the problem (Sec. 8.4). Look carefully at the offending macro definition,
especially whether the recursive invocation is metaquoted as necessary (otherwise the
recursion may be expanding at definition time rather than call time). If some invoca-
tions of the macro work correctly, look carefully at those that don’t, since sometimes
an incorrect actual parameter can cause non-termination in a recursive macro (think
of taking the factorial of a negative number). If the offending macro begins with com-
mon words or symbols, check for accidental invocations of the macro in comments or
other text where you don’t intend to invoke it.

6.4 Symptom: Repeated side-effects

Sometimes it becomes apparent that side-effects of evaluation (including, for example,
syntax declarations) are occurring more than once. That means that the source text
that produces the side-effect is being evaluated more than once. This can occur during
the normal backtracking process that takes place as the macroprocessor attempts to
match the source text against the defined patterns, because backtracking backs over
the source and target text, but does not undo side-effects. Sometimes this occurs
because the macroprocessor is trying to invoke a macro, but the invocation is failing to
match any of the patterns. To diagnose the problem, try to find out which invocation
is being expanded repeatedly by, for example, using #set message (Sec. 8.4).

Idea: Change backtrack so that it undoes syntax definitions (the most
common and problematic side-effects). This is not too hard to do, since
the definitions are stacked.

6.5 Symptom: Syntax errors in unexpected places

This problem can arise if you use common English words as the initial delimiters in
a pattern. If you happen to use these words in comments or other source text, the
macro processor may try to expand them as macros, generating either syntax error

20

messages or strange target text. The solution is to quote or metaquote text that
might be recognized as macro calls.

7 Tricks

7.1 Comments

You can define your own comment conventions by defining a macro that expands as
an empty string. For example, the following defines “//” through and including the
next newline to be a comment:

syntax // &comment $ means{}endsyntax

Notice that the empty metaquotes are required to have a completely empty macro
body. Beware, however, that the argument of the comment macro is evaluated like
any other argument, and so if it happens to contain any macro invocations, they will
be expanded. This shouldn’t cause problems unless they contain errors (i.e., incorrect
invocations), infinite recursion, or side-effects (see Sec. 6).

7.2 Suppressing Unwanted Whitespace

White space is treated as constant text and passed through the macroprocessor like
any other unevaluated text. This tends to preserve formatting from the source text
to the target text. However it can also lead to redundant blank lines in the target
text. For example, blank lines surrounding macro definitions and newlines after
endsyntax, which are useful for readability, will be passed through. These can be
avoided by defining a comment macro, as described in the previous section, and using
it to absorb redundant whitespace. For example:

// A macro d e f i n i t i o n
//
syntax some pattern
means i t s t e m p l a t e endsyntax//
//

Whitespace is removed automatically from the patterns, so it doesn’t need to be
commented out between syntax and means.

Idea: Have a “definition mode” for the macroprocessor that processes
only definitions and pragmatic controls, but produces no output text. Es-
sentially, output text would be discarded for source text read in definition
mode. This would eliminate most of the superfluous whitespace, which
comes from long sequences of syntax definitions, for example, in #included
files.

21

7.3 Using Macros as Variables

Since the most recent definition of a macro to match an expression is used, macros
can be used as variables. For example, the following uses a macro “ disp int ” as a
variable, which holds a quantity that has a default value 0 that can be changed by
another macro:

syntax d i s p i n t means 0 endsyntax
syntax d i sp l ay i n t e r v a l = ˜N $ means
{syntax { d i s p i n t } means N endsyntax}
endsyntax

Note that the name “ disp int ” must be metaquoted in the inner syntax declaration,
since otherwise it would be replaced by its current value (some number, presumably),
and that value would be used as the pattern. On the other hand, the template for
“ disp int ” cannot be metaquoted, because we want it to be defined as the value of
N, not the word “N”. This is an example where the often optional metaquotes are
important to control evaluation time!

7.4 Accumulating Lists

Macros can be redefined in terms of their previous values in order to accumulate
lists and for similar purposes. For example, suppose we want to accumulate a list
of mentioned variables because we need to do some post processing on them. First,
initialize an empty list:

syntax v a r i a b l e s means endsyntax

Then, each time we need to remember another variable name, we add it to the
beginning of the list, which we can do with a macro such as this:

syntax {remember ˜name} means {
syntax { v a r i a b l e s } means name ; v a r i a b l e s endsyntax
}endsyntax

Notice the use of metaquotes in the inner syntax definition, for they are critical. In the
pattern, the name “ variables ” is metaquoted because we do not want it evaluated;
we want to redefine “ variables ”, not the value to which it’s bound. In the template
part of this definition, it is not metaquoted, because we want it to be replaced by its
current value (the previous list of variables) before we add the new variable name. If
in various places I do

remember X
remember Y
remember Z

22

then the final value of “ variables ” will be “Z; Y; X; ”. (There is nothing special
here about the use of “;” as a delimiter.) Notice that the variables are in reverse
order, because they are added to the beginning of the variables macro. If, instead,
you need the variables in the order they are mentioned, use these definitions:

syntax {remember ˜name} means {
syntax { v a r i a b l e s } means v a r i a b l e s name ; endsyntax
}endsyntax

Then variables will be “X; Y; Z; ”.

7.5 Processing Lists of Items

Once we have a list of things, such as the variable names in the previous example, we
may want to apply the same macro to each of them. This can be accomplished with
macro definitions such as these:

syntax {handle (˜name ; &r e s t)} means {
do something with name
handle (r e s t)} endsyntax

syntax {handle ()} means endsyntax
syntax {handle everyth ing } means handle (v a r i a b l e s) endsyntax
handle everyth ing

The use of metaquotes here is somewhat subtle, so we’ll go through it in order.
The second-to-last line defines “handle everything” to be the result of evaluating
“handle(variables)”, which will be the result of evaluating “handle(X; Y; Z;)” or
“handle(Z; Y; X;)” (using our previous examples). This will match the first definition
of “handle,” with short parameter “name” bound to the first variable (say, “X”) and
long parameter “rest” bound to, for example, “Y; Z; ”. This will expand as:

do something with X
handle (Y; Z ;)

This invokes “handle” recursively to do something with Y and Z, and in the final case
“handle()” is invoked, which expands as the empty text. The last line, the invocation
of “handle everything”, then expands as

do something with X
do something with Y
do something with Z

There are many variations on this structure, but for it to work it is important that
the list be substituted before its containing expression (“handle(...)” in this case)
is evaluated, which happens when “do everything” is called. This is because the
macroprocessor parses the invocation before it evaluates its constituent expressions.

23

7.6 Computed Invocations

The previous example illustrates another trick. Sometimes we want to compute an
entire macro invocation, computing not just the actual parameters, but also the
delimiters. In the previous example, we computed an invocation of “handle(;)”,
where the semicolon came from the evaluation of “handle(variables)”. The way to
do this is to define an auxiliary macro whose template is the computed invocation (and
hence not metaquoted). Evaluating the auxiliary macro then evaluates the computed
invocation:

syntax aux means exp r e s s i on to compute invoca t i on endsyntax
aux

8 Pragmatic Control

8.1 Including Files

It is often useful to include some or all of the source text from a separate file, for
example, the separate file may provide the macro definitions used in the main file.
The command

#include 〈filename〉

will include the source text from the source file at this point in the current file.
Included files can include other files to any depth. The argument to #include can be
any token, but string literals are most common. Lexical parameters set in a file (Sec.
8.3) are local to that file.

8.2 Setting Parameters

8.2.1 Definition Keywords

The keywords used for defining syntax macros can be redefined. The default command
for defining a macro has the form:

syntax 〈pattern〉 means 〈template〉 endsyntax

Entering, for example, the command:

#set syntax de f as ;

will change the definition syntax to:

de f 〈pattern〉 as 〈template〉 ;

Similarly, the default syntax for declaring constant macros (patterns) is:

24

pattern 〈pattern〉 endpattern

Entering, for example, the command:

#set pattern d e c l a r e $

will change the pattern declaration syntax to:

d e c l a r e 〈pattern〉 $

See the examples in Secs. 5.1 and 5.3 to see alternative definition syntax in use.

8.2.2 Long Parameter Flag

The token that represents the long parameter flag in patterns can be set by

#set long 〈token〉

The 〈token〉 can be a word or a special character. This will not affect macros already
defined.

8.2.3 Short Parameter Flag

The token that represents the short parameter flag in patterns can be set by

#set shor t 〈token〉

The 〈token〉 can be a word or a special character. This will not affect macros already
defined.

8.2.4 Newline Pattern Element

The token that represents a newline delimiter in patterns can be set by

#set newl ine 〈token〉

The 〈token〉 can be a word or a special character. For example, the following changes
the newline delimiter from the default “$” to “nl”:

#set newl ine n l

This will not affect macros already defined.

8.2.5 Commit Pattern Element

The token that represents the commit flag in patterns can be set by

#set commit 〈token〉

The 〈token〉 can be a word or a special character. This will not affect macros already
defined.

25

8.2.6 Metaquotes

The metaquotes (by default {}) can be changed by this command:

#set metaquotes 〈token〉 〈token〉

This sets the 〈token〉s (words or special characters) as the open and close metaquotes,
respectively. For example,

#set metaquotes de lay enddelay
#set metaquotes < >

sets the metaquotes as indicated.

8.2.7 Command flag

The token that represents the command flag (by default “#”) can be set by

#set command 〈token〉

The 〈token〉 can be a word or a special character.

8.3 Lexical Commands

Lexical commands are indicated by a flag character (by default, the back slash, \)
immediately after a newline. (Note that this implies that it cannot be the first
character in a file.) These changes stay in effect in a file until and unless they are
changed by another lexical command. Whitespace can come between the command
and its argument string.

8.3.1 Alpha characters

Sets the characters that, in addition to digits and upper and lower case letters, will be
considered alphanumeric for the purpose of parsing tokens. For example, the following
allows underscores in words:

\alpha "_"

The command resets the set of allowed extra characters, which can be set to none by
setting to the empty string.

8.3.2 Quotes

Sets the open and close string quotes (by default ""). If two characters are provided,
they become the open and close quotes; of one is provided, it becomes both. This
changes the quotes to asymmetric single quotes:

\quotes "‘’"

26

This sets the quotes back to the default double quotes:

\quotes ‘"’

8.3.3 Superquote

Sets the superquote character (backslash by default) for including quotes in strings.
This sets the superquote to percent:

\superquote "%"

8.3.4 Flag

Sets the flag character for lexical commands. For example, this changes it from the
default backslash to $:

\ f lag "$"

8.4 Debugging

The synmac program provides a number of debugging commands, which may be
useful in diagnosing problems with macro definitions.

8.4.1 Definition Dump

To turn on definition dumping enter the text:

#set d e f i n i t i o n s on

which will cause all subsequent macro definitions to print all the current definitions
(user defined and intrinsic). They are printed in an internal format, but should
be clear enough. By looking at these you may discover that a macro is undefined
or defined differently than you intended. Definitions are printed using the current
tokens representing the newline delimiter, commit flag, and long and short parameter
characters. Definition dumping is turned off by setting it to anything but “on”.

8.4.2 Pause

Sometimes it is difficult to understand where in the source text a problem has oc-
curred. The command

#set pause 〈string〉

will print a message (the 〈string〉) each time the macroprocessor encounters it and
wait for you to enter something before continuing.

27

8.4.3 Message

Sometimes it is difficult to tell where in the source text some problem is occurring.
This can happen, for example, in long sequences of macro definitions that generate
little if any target text.

#set message 〈string〉

The message text (a 〈string〉) is printed each time the macroprocessor encounters it.

8.4.4 Backtrack warning

Sometimes errors in macro definitions or invocations manifest themselves by the
macroprocessor scanning and backtracking across large regions of the source text.
Backtracking may be constrained by entering the command:

#set backtrack 〈number〉

where 〈number〉 is any number. Any attempt to backtrack over more than 〈number〉
tokens will trigger an informative diagnostic, which may help in identifying the prob-
lem.

8.4.5 Tracing

This command is intended primarily for use by developers.

#set t r a c e 〈word〉

This causes the macroprocessor to print out trace information while it is running,
some of which may be voluminous. The 〈word〉 may be an number, which sets the
trace level to that number. Currently defined trace levels are 1 to 4. Higher levels
produce more output and include the trace output at lower levels. The 〈word〉 can
also be certain specific words to generate trace output about that topic. Currently
defined topics (which correspond to internal procedures) are “evalexpr”, “tryrule”,
“tryapply”, and “match”. Setting the trace level to “0” turns tracing off.

Idea: Most of these tracing options will be eliminated eventually, except
those useful for users.

9 Running Synmac

The current implementation of synmac is a python program that reads the source text
from standard input and writes the target text on standard output. It can be run
interactively and the source text is terminated by the end-of-file or the word “eof”.
More commonly, synmac is used non-interactively to generate a target file from a
source file, e.g.:

28

% python synmac.py <source.smac >target

(We are using the extension “.smac” for synmac source text.) The resulting target
file contains a couple lines of interactive text at the beginning and end of the target
text, which will have to be edited out. Any diagnostic text will also be embedded in
the target text.

Idea: Eventually the synmac processor will separate target and diagnostic
output and will process standard command-line arguments.

N.B.: Currently any source file must end with a newline.

References

[1] B. J. MacLennan, “Path creation by continuous flocking as an example of a mor-
phogenetic programming language,” University of Tennessee Department of Elec-
trical Engineering and Computer Science, Technical Report, April 2018.

29

A Synmac Grammar

Because the essence of a syntax macro language is to have a variable syntax, it is
difficult to write a grammar that is both informative and formally accurate. This
grammar aims at being informative for users, with some sacrifice of accuracy. The
grammatical notation is as follows: curly braces surround alternatives and group
items; square brackets surround optional items; superscript * means zero or more
repetitions; superscript + means one or more repetitions.

〈expr seq〉 ::= [〈whitespace〉] [〈expr〉[〈whitespace〉]]∗

〈expr〉 ::=

〈invocation〉
〈string〉
{{{〈expr seq〉}}}
〈token〉

〈invocation〉 ::= 〈user macro〉 | 〈intrinsic macro〉
〈user macro〉 ::= 〈delim〉+ [〈actual〉〈delim〉+]∗ [〈expr〉]

〈actual〉 ::= 〈expr〉 | 〈expr seq〉

〈intrinsic macro〉 ::=

〈definition〉
#include 〈expr seq〉〈newline〉
#set 〈parameter setting〉〈newline〉
#endline
〈newline〉\〈lexical command〉 〈string〉

〈definition〉 ::=

{
syntax 〈pattern〉 means 〈template〉 endsyntax
pattern 〈pattern〉 endpattern

}
〈pattern〉 ::= 〈delim〉+ [〈param〉〈delim〉+]∗ [〈short param〉]
〈param〉 ::= 〈short param〉 | 〈long param〉

〈short param〉 ::= ˜〈word〉
〈long param〉 ::= &〈word〉
〈template〉 ::= 〈expr seq〉
〈delim〉 ::= { 〈token〉 | $ } [!]

〈text〉 ::= 〈token〉 | 〈string〉
〈token〉 ::= 〈word〉 | 〈special character〉
〈word〉 ::= 〈alphanumeric〉+

〈string〉 ::= " { 〈nonquote char〉 | \〈char〉 }∗ "
〈lexical command〉 ::= alpha | flag | quotes | superquote

30

〈param setting〉 ::=

alpha 〈string〉
backtrack 〈text〉
command 〈token〉
commit 〈token〉
definitions 〈text〉
long 〈token〉
message 〈text〉
metaquotes 〈token〉 〈token〉
newline 〈token〉
pattern 〈delim〉 〈delim〉
pause 〈text〉
short 〈token〉
syntax 〈delim〉 〈delim〉 〈delim〉
trace 〈text〉

31

	The Synmac Syntax Macroprocessor: Introduction and Manual, Version 5
	Recommended Citation

	tmp.1523482444.pdf.vMwkT

