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ABSTRACT

The concept of multiple stochastic integration with respect to
Brownian motion was introduced by Wiener (1938). Ito (1951) gave a
more general construction of multiple stochastic integrals with regard
to Brownian motion. Later the study of multiple stochastic integrals
with respect to non-Gaussian processes were considered by some authors
(e.g., Lin (1981), Surgailis (1981), Engel (1982)) . Multiple stochastic
integrals have found their applications in areas such as statistics and
quantum mechanics. Recently, several authors (e.g., Szulga and
Woyczynski (1983), Krakowiak and Szulga (1985), Rosinski and Woyczynski
(1986), and Surgailis (1985)), using different approaches, have con-
structed multiple stochastic integrals with respect to symmetric
stable random measures. This dissertation is concerned with the develop-
ment of the multiple stochastic integrals with respect to semistable
random measures.

One of the above mentioned approaches used to construct the multiple
stochastic integrals with respect to stable random measures is the
Lebesgue-Dunford type construction. This approach reduces the problem
of stochastic integration to the problem of integration with respect
to a vector measure. Using this approach Krakowiak and Szulga (1985)
developed multiple stochastic integrals of Banach valued functions with
respect to symmetric and also nonsymmetric stable random measures.

In this dissertation, using an approach similar to that of Krakowiak
and Szulga (1985), we develop multiple stochastic integrals with
respect to all symmetric as well as with respect to (nonsymmetric)

strictly semistable random measures with index of stability



a € (1, 2) . Our methods, in the nonsymmetric case, yield results on
multiple stochastic integrals relative to strictly stable random
measure with index o € (1, 2) considered in [10, 13] .

The most crucial role in the development of the integrals here is
played by the inequalities (2.29). In these inequalities we establish
a comparison theorem between the moments of the integrals of certain
simple functions relative to the strictly semistable random measure
and the corresponding moments of integrals of these functions relative
to symmetric stable random measure. Once these inequalities are estab-
lished, the methods of construction of the integrals here are similar
to those used by Krakowiak and Szulga in [10, 13] to develop the integrals
relative to symmetric stable random measure.

In Chapter I, we collect the notation, definitions, and known
results that are basic to this dissertation. In Chapter II, we develop
necessary tools and prove the crucial inequalities mentioned above.

In the first part of Chapter II, we prove a comparison theorem for tail
probabilities of nonsymmetric semistable random measures. This uses

a distributional property of a strictly semistable random variable. In
Chapter III, we define the multiple stochastic integrals of certain

Banach valued Borel measurable functions with respect to a strictly
semistable random measure of index o . Then, we show that the class

of Banach valued integrable functions relative to a semistable random
measure of index o coincides with the class of Banach valued integrable

functions relative to a symmetric stable random measure of index o .
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CHAPTER 1

PRELIMINARIES

1.1. Introduction

In this chapter, we state some definitions, notations, and known
results that are basic to this dissertation. Throughout, R, Q, and
N will, respectively, represent the sets of all reals, rationals, and
natural numbers. For any topological space X , B(X) will represent

the o-algebra of Borel subsets of X .

1.2. Random Measures

In this section, we state the definitions of a random measure and
certain infinitely divisible random measures. We also state a result
from Rosinski [23] which will be needed in the sequel; the material of

this section is taken from [13, 19, 23] .

1.2.1. Definitijons. (i) Let (Q, F, P) be a probability space,

and let LO(HQ) be the class of all real random variables defined

on (@, F, P) . Let u be a measure defined on B([0, 1]) , and let

R ={A €B([0, 1]) : u(A) <o}, Amap M: R - 'LO(HQ) is called

a random measure if, for every sequence {An}m_1 of disjoint sets in

R , the random variables M(An) ,n=1,2, 3,... are independent and
M(U A) = 5 MA), (1.1)
n=1 n=1
whenever | An € R . The series in (1.1) is assumed to converae in
n=1

probability (hence, also, because the summands are independent, almost

surely).



(i) A random measure M is said to be symmetric if, for every

A €R , the distribution of M(A) is symmetric.

(ii) Let a« € (0, 1) U (1, 2). A random measure M 1is called a

strictly stable random measure of index a (in short, a strictly S(a)

random measure), if for every A € R , the characteristic (ch.) function

L(+) of M(A) ‘is given by
M(A)

=r>
—

(B = exp{-u(A) [t[® (1 -1 g(A) tan = sgn(t))} , t € R, (1.2)

where g: B([0, 1]) - [-1, 1] 1is a signed measure. R(A) describes
the asymmetry of the distribution of M(A) .

Throughout, will denote such a random measure. The random

MOL,B

measure Mu g s symmetric, and it will be called a standard S(a)

random measure.

1.2.2. Definitions. Let 0O <r <1 . For t #0 , define

Lt
(53

1t]™® £ r "1 - cos(r®

( n

QIS

t)}

t) - i sin(r

if 0<ax<l,

o[>
|
e

1t £ r ™M1 - cos(r® t) + i(r® t - sin(r

t))}

if l<a<2,



and

n
E&(t) = 1t]™® £ r ™1 - cos(r®t)} if 0<ac<2,
n
where ¢ stands for I
n n=-co
For r € (0, 1) and o € (0, 2) , let Jn denote the set
n+l n

{t:r @ < Jt] <r*, n=0, £, £2,... .

Let r€ (0, 1) and o € (0, 1) U (1, 2) . A random measure M

is called a strictly r-semistable random measure of index « (in short,

a strictly r-SS(a) random measure), if, for every A <R , the ch.

function f(-) of the random variable M(A) 1is given by

M(A)
Z(t) = exp{-u(A) J |ts|a k (ts) r(ds)} , t € R (1.3)
M(A) Jg e
1

where T is a finite measure on J, , and J, = {t: r* < t] <1} .
Hereafter, M will always represent a strictly r-SS(a) random measure.
Note that if I is symmetric in (1.3) and ku is replaced by E& ,

then the corresponding random measure is a symmetric r-SS(a) random

measure. Hereafter MO will represent a symmetric r-SS(a) random

measure. For the existence and properties of r-SS(a) random measures,
see [19] .
The following theorem on the comparison of tails of distributions

of M,(A) and Ma A) , for A€ R, is from Rosinski [23, p. 100]

O( ,0(
and will be used in Chapter II.
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1.2.3 Theorem [23, p. 100] . There exist positive constants C] and

C2 , which depend only on r, a, and T , such that

CP(CLIM, o(A)] > &) < PUMGAN > t) < CP(CyIM, o(A)] > t)  (1.5)

for every A€ R and t >0 .

1.3. Fourier Integral Theorem

In this section, we state a direct corollary of a theorem generally
known as the Fourier Integral Theorem. This corollary will be used in
Chapter 2. Details on this theorem and its proof can be found in Bochner's

monograph [3] .

1.3.1 Proposition [3, p. 51]. Let 1> € R, and let fl, f2
be monotonic functions on [0, =) . Let f = clf1 + c2f2 . Then
1 —10000 ]
§-f(0+) = = f(t) cos at dt da , (1.6)
TJo Jo

if one of the following two conditions holds:

(1) J: lfj(t)| dt <» for j=1, 2.

(i1) 1im fj(t) =0 for j=1, 2, and there exists N € N

tooo
w© f.(t)

such that J |_JE__| dt <o for j =1, 2.
N

We note here that under condition (ii) the intearals appearing on the

right hand side of the formula (1.6) are improper Riemann intearals.



1.4. Borel Structure on the k-Dimensional Tetrahedron

We begin with the following notations: For k € N, let

_ k.
A = {(tl,..., tk) € [0, 1] : 0 <ty < ty < .uu < tkil} , the
k-dimensional tetrahedron; for k, n e N, let
My = L dpsees i) € NS 1<) <y <Ll <) < n)g for

k € N, let Ak = {Al X ... X Ak<: Ak - Al’

is the class of all finite disjoint unions of (all) subintervals of

A2,..., Ak €1}, where 1

[0, 1] . Further, let ¢, and Ek be, respectively, the ring and the

k
algebra generated by Ak . The main facts about the ring Ck and the
algebra ?k that are important to us are included in the following
propositions. These are standard results and are stated, for instance,
in [7, p. 31; 10, p. 10 without proof. We include short proofs of these

here for completeness. To prove the first proposition we need the

following Temma whose proof is deferred until the end of this section.

1.4.1. Lemma. If A, B €A then

k 9

(i) A\B , and

(ii) A U B are finite disjoint unions of elements of A

1.4.2. Proposition. Ck is the class of all finite disjoint unions

of elements of Ak .

Proof. Let C be the class of all finite disjoint unions of
elements of Ak . Since Ck is a ring containing Ak , we have
€ < Ck . To prove that C o Ck , 1t is sufficient to show that C 1is
a ring containing Ak . Clearly, ¢ €C , Ak €C,and AUBEC

whenever A, B € C .



It remains only to be shown that A\Be C , if A, Be C . Let

B e Ak and A = /-\1 u... U AQ € C , where Al""’ AQ € A'< .  Because
Al""’ AQ ,, and B are elements of Ak , we see by lLemma 1.4.1 that
A\Bs..., A\B € C , and since A\ B = (A1 Uu...u AQ)\ B =

(Al\ B) U ... U(AQ\ B) , it follows that A\B € C . Now let A€

and B=B, U... UB_, where B.,...,
1 n 1

K Now we show that A\B € C , by induction on n . Since

Bn are disjoint elements of
A

A\(B1 U 82) = (A\ Bl)\ 8, ,A€C,and B, B € A, » we have, by

1° 72
what we have shown above, that A\B € C . In a similar manner,

(A\(B1 u...u Bn-l))\Bn € C if we assume that A\(B1 U...UB ,)€C

n-1

and B € A . Since A\(B; U...UB )= (A\(B; U...UB ;))\B ,
we see by induction that if A, Be€ C and if B = B1 Uu... U Bn for
some Bl"“’ Bn € Ak , then A\B€ C . Therefore, C 1is a ring con-

taining Ak , and hence C o Ck . B

1.4.3. Proposition [7, p. 315 10, p.11]. If B e€cC then there

k’
exist n e N, ve AE , and subintervals Il, 12,..., In of [0, 1]
such that I, < I, < ... < I and
1 2 n
B = U L, % eou % 1,
(sl,...,skk\) 51 Sk

where for any two subsets A and B of [0, 1] , we write A < B

if x <y forall xe¢ A and ye€ B .

Proof. Let B € Cp - Then B is a finite disjoint union of
elements of Ak . Thus, since every element of Ak can be written

as a finite disjoint union of sets of the form A1 X paw X Ak , where



. il She 1%

for some ¢ € N, where for j =1, 2,..., 2 , the sets le, sz,..., Bjk
are disjoint subintervals of [0, 1] . Now we can find intervals

Il’ IZ""’ In of [0, 1] such that Il < I2 < ... < In and such that
for j =1, 2,..., & , each set le, gpk - By

as a finite (disjoint) union of I,, I,,..., I . Hence,

B B can be expressed

B = U IS X IS % aew X T
(51,52,...,skk\) 1 2

n

for some v c Ak . 2

1.4.4. Proposition [10, p.13]. If A« Ek , then there exists

[oe]

an increasing sequence of sets {Aj}?=1 c Ck such that A = Aj .

J=k

Proof. Let U = {Bcz A : BNAE€ Ck , for all A € Ck} . Using

k!
the fact that Ck is a ring, we see that ( 1is an algebra containing

Ck and hence Ek c u . Now we show that there exists an increasing

[oe]

sequence {Cj}j 1< Cy such that B, = ;31 Cj . For any

(tl, IZERREE tk) €4, > there exist rational numbers S15 Sps-ets Sy

such that 0 < t, < s, < t, <s < <'S <t €1 . S0,

4~ "7t = Tk-1 k

A, = U B %
< e o gk ln 12 Skl
8 nanady g k-1



B(Sl,sz,...,sk_l) = [Oa Sl:lx (Sls SZJX 000 &S (Slf'l’ 1] fOY‘ every

k-1 _
(512 Spaeees s Je Q708 ;. let Cy= 21 B

k-1

where ¢ is a bijection of N onto Q Na_q - Thus for the

increasing sequence of sets {C.}f_ , we have A, = U C. ; also, for
373=1 k55

every Jj , the set Cj € Ck since B € Ck for every ¢ .

w(2)

To conclude the proof, let A ¢ Ek . Since Ek c U , we have

A €U and hence AN Cj €C, for j =1, 2,... . Setting Aj = AN Cj ,

we have an increasing sequence of sets {Aj}?zl c Ck with

A=AN A, = AN (U C)=U (AnC;) = A, . ®
=1 9 = R
Finally, we have the following proposition about the Borel c-algebra

on Ak.

1.4.5. Proposition. B(Ak) = O(Ek) , Where O(Ck) is the g-algebra

generated by Ck .
Proof. Since ¢, < E(Ak) , we have O(Ek) c B(Ak) . Now we show

that B(a,) < o(C, We note that B(a ) = B([O, 1]k) na, = olA) nay

k) 5
= g(A n Ak) (see Ash [15, p. 5]) , where
A = {I1 x 12 X .. X Ik : Il’ 12,..., Ik are subintervals of [0, 1]} .

As mentioned i#n the proof of Proposition 1.4.5, we have

” () (2) (2) (2)

a, = 1y B = uh B x ... x E , where E y..-5 E are

koo wle) oy Tl k 1 k

subintervals of [0, 1] such that E%Q) <...< Eéi) for ¢ =1, 2,
Thus

. ) (2)
(Il x X Ik) n Ak = 51’:]_ (El n Il) X x (Ek n Ik) (1.7)

Since E(Q) ni E(l) n I E(Q) N I, are subintervals of [0, 1]

1 1 s 2 2,..., k k



N Ik , we have that

(E£2)n Il)

(1.9), the set (I1 X o.o.x 1

) €C, for 2 =1, 2,... . Hence, by
k k

Therefore AN A, < o(C

N A € ofC ‘

k) k
and it follows that B(Ak) =g(AN A

- )

c g(C L]

) cal) .

Proof of Lemma 1.4.1. (i) Let A = A1 X ... X Ak € A and let
By induction on k , we can show that

B=28 X...XBKEAk.

K

k
_ ¢
= jgl(Alnle"‘XAj—lnBj-lejnBjXAjHX"'XAk) Y (1.8)

. . ~z C
For i #J , we have (AN By x ... x Aiﬂ Bi"Ai F1B1.><AJ.+ x A

1 1 l><...

C _
n (An le"ﬂ'xAjnBijjnBijjﬂx“‘XAk) =0 . Also, for

)

i=1,2,..., k , the sets A.nBS and A.NB. €I, since A., B. i
J e sets J(} j an j ; € 1 i j €1

Thus, the right-hand side of (1.8) is a finite disjoint union of elements
of Ak .

(ii) Let A, B e A Since, by (i), A\B is a finite disjoint

K

union of elements of Ay and since A UB = (A\B) UB , we have that

A UB is a finite disjoint union of elements of Ak . o

1.5. Caratheodory-Hahn- Kluvanek Extension Theorem

In this section, we introduce vector measures and state a part of
the Caratheodory-Hahn-Kluvanek extension theorem. This material is

adopted from the book Vector Measures [5] by Diestel, and Uhl. Jr.

Recall that an F-space is a complete topological vector space whose

topology is induced by an invariant metric. Throughout this section
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A will denote an algebra of subsets of a set S, and o(A) will de-

note the c-algebra generated by A .

1.5.1. Definitions. Let X be an F-space. A function m: A > X

is called a finitely additive vector measure, or simply a vector measure,

if m(A1 U A2) = m(Al) + m(Az) for any two disjoint sets Al’ A2 € A .

A vector measure m is said to be countably additive, if in the

oo oo

topology of X, m(U A) =L m(A ) for every sequence {A }m_l
n=1 " =1 " o non=
of pairwise disjoint elements of A such that U An € A .

n=1
Let A be a finite, non-negative, countably additive measure on A .

A vector measure m is said to be i-continuous if 1im m(A) =0 .
A(A)-0

The extension of a finitely additive vector measure on A to a
countably additive vector measure on o(A) , for Banach valued vector"
measures, is given by a part of the Caratheodory-Hahn-Kluvanek extension
theorem [5, p.27] . The same proof can be adopted for the extension

of F-space valued vector measures.

1.5.2. Theorem [5, p. 27]. Let X be an F-space, and let

m: A - X be a A-continuous vector measure. Then there exists a unique
extension m of m to c(A) such that m is a A-continuous countably
additive vector measure on o(A) .

Finally, we close this section with a definition.

1.5.3 Definition. Let X be an F-space with an invariant metric

d, and let m: A - X be a vector measure. For each x ¢ X , let
||x]| denote the distance d(x, 0) . We call the extended noﬁnegative

function |[m]l: A > [0, =] defined by
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Imf] (A) = sup || = s.m(A)l

for every A € A, the semivariation of m , where the supremum is taken

over all partitions 1 of A into finitely many disjoint elements of
A and over all finite sequences (Sj) such that |Sj| <1 for all j

The vector measure m 1is said to be of bounded semivariation if

[Im[] (S) < = .

1.6. Random Multilinear Forms

In this section, we present the definition of random multilinear

forms, some notations, and the 'multilinear contraction principle' which

is obeyed by certain Banach spaces and is related to the topic of random
multilinear forms. We adopt this material from [12, 13] which contain

more information on random multilinear forms.

1.6.1 Notations and Definitions. (i) For a Banach space X , let

Lp(X) denote the set of all X-valued random variables & such that

®, wh
H€|E < where

1
(EllelP)P if 0<p<w,
£ : i}

5 ) if p=0.

denote the set of all maps F: Nk-+ X such that
k

(i1) Let Fk,X

F is zero for all but finitely many elements of N, and

F((Gisees 1k)) = 0 whenever 1j =i, for some Jj and & such that
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1<j, 2<k. Amap FE€ Fk X is called tetrahedronal if

F((il,..., 1k)) = 0 whenever 1j > for some J and 2 such that

L
l<j<a<ks;amap FE€ Fk,X is called symmetric if

F((il,..., 1k)) = F((iﬂ(l),..., 1ﬂ(k))) for all permutations = of

T S
{1, 2,..., k} . Let Fk,X and Fk,X’

all tetrahedronal F e F and the set of all symmetric F € Fk X
N

respectively, denote the set of

k, X

Let R and LO(IR)]N , respectively, denote the set of all sequences

of real numbers and the set of all sequences of real random variables.

For each F ¢ F , let vy ]R]rJ X ... X H?N + X be the map defined by
k,X Fro—— " 7
k times
. k 1 Tk
(11,...,.k)e]N

for all (E(l),..., E‘k)) e RN x ... x rRM , where
~—

. ‘ . k times
£ - (t§”, té‘]),...) e RN for j=1,2,..., k; let
. N N .
Ot EQ(R) X ... X LQjR) + X be the map defined by
k tTmes
(1
opttett,L gy = s TR RIS LY
(igseeesideN® S
1’ >k
for all (gﬂl),..., g‘k)) € LO(IR)IN X ... X LO(]R)]N , Where
T———
k times
e 2 @80y ke 5=12,, k. Foreach Fer
the map Yo (respectively, @F) is called a k-linear form (respectively,

k)

a random k-linear form). Let (F; Eﬂl),..., EK Y (respectively,

((t(l),..., Eﬂk))) (respectively,

(F; §K1),..., g‘k))) denote ¥ ((t
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k

@F((Q(l),...,_g(k)))) , and let (F; (t)") (respectively,

k
(Fs (E)7Y) denote (F; t,..., tY (respectively, (F; &,..., &) ) .
k times k times

1.6.2. Remark. It follows from the definition of F' that, if

k,X
Fe FE y then there exists an n€ N such that (F; §‘1),...,_§(k5
= z FOGses 1)) g gor an
l<iq<. . o<ipen L] Tk
CALIUL NG NG Vi
k tfmes

1.6.3. Definition [13]. A Banach space X is said to satisfy

the multilinear contraction principle (in short, M.C.P.) if there exists
a pe (0, ) and a constant C > 0 (depending only on p) such that,

for all n € N, for all finite subsets {x i,j = 1,2,..., n} of

i
X , and for all {Sij: i,j =1,2,..., n} = {-1, 1} , the inequality

n
1) (2)
| ¢ X.: S. . eg ex . < Cj
jop T E 5 T =

(€§J), géj),...) for j =1, 2 are independent

copies of the sequence of independent identically distributed Rademacher

holds, where

random variables. We recall here that a random variable & with
P(e = 1) = P(e = -1) = %— is called a Rademacher random variable.
Pisier has shown that every Banach Tattice satisfies the M.C.P..

Thus, in particular, R satisfies the M.C.P..
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1.7. Marcinkiewicz-Paley-Zygmund Condition

It follows easily that if {gn}:;l c Lp(X) converges in the pth
norm, then it converges in the qth norm for any 0 <qgq<p . A con-
dition is stated in this section, under which the convergence of any
sequence {gn}:zl(: Lp(x) in all the Lq(X) norms are equivalent for
0 <g<p . This condition, originated from the papers of Paley-Zygmund
and Marcinkiewicz-Zygmund, was formulated by Krakowiak and Szulga [12].

The following definition and the two propositions are adopted from [13].

1.7.1. Definition. A family Cc Lp(X) is said to satisfy the

Marcinkiewicz-Paley-Zugmund condition with . exponent 0 < p < « , if

there exists & > 0 such that

PLIEN > 8 Hg[%} > & forall gecC

If Cc Lp(X) satisfies the above condition, then it is written as
Ce MPZ(p) .

The following proposﬁtion is very useful.

1.7.2. Proposition [10, 12] . et Cc Lp(x) . Then
(i) The following three conditions are equivalent.

(a) ce mMPz(p) .

]l
(b) For any q€ (0, p) , sup < w
ge 15
. el
(c) There exists a q¢ (0, p) such that sup < o,

cec &
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(ii) If C eMPZ(p) then e MPC(p) where ¢ s the LO(X)—
closure of C . Moreover, for all ge [0, p] , the topologies induced

by all the Lq(X) norms are equivalent.

1.7.3. Proposition [13, p. 769]. Let 6 = (el, 82,...) be a sequence
of independent identically distributed symmetric a-stable random variables

(i.e. the ch. function fe (+) of ®
1

1 is given by

~

i (t) = exp{—c\t}a} , t€ R ,
1

where ¢ is some real number) . Then the class

{F; (@)k): Fe FE X} € MPZ(p) for every 0 < p < a
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CHAPTER II

COMPARISON THEOREMS

2.1. Introduction

In this chapter, we develop the results needed to compare the
multiple stochastic integrals with respect to a strictly r-SS(a) random
measure M and the standard S(a) random measure Ma;O , when
a€ (0, 1) U (1, 2) . Recall that Theorem 1.2.3 compares the tail
probabilities of MO(A) and Ma,O(A) , uniformly over A€ R . First
we extend this result for an arbitrary (not necessarily symmetric)
strictly r-SS(a) random measure M when 1 < a < 2 , and for a strictly
r-SS(a.) random measure M when 0 < o < 1 under the additional con-
dition that the distribution of M(A) 1is not one-sided for at least
one A€ R . Then we define multiple stochastic integrals with respect

to M and Ma on the space of all (Banach valued) C,_-measurable

,0 k

simple functions. Finally, we use a result of KWapieﬁ [14] and establish
a theorem that compares the moments of the multiple integral relative

to M with the corresponding moments of the multiple intearal relative

to Ma,O .

2.2. Comparison of the tail probabilities of M(A) and M, O(A)

£

The following theorem yields the comparison between the tail

probabilities of M(A) and Ma A) .

0l

2.2.1. Theorem. Let M be a strictly r-SS(a) random measure

given by (1.3) and Tet Ma be a strictly stable random measure given

.8
by (1.2) .



17
(i) If 1 <a<?2,o0rif 0<a<1 and the distribution of
M(A) is not one-sided for some A € R , then there exist positive
constants C

C2, and C, which depend only on r, a, and T , and

e 3
do not depend on A , such that

CLPC M, (A > £) < PUIM(A)] > t) < C,P(C4IM (M) > t)  (2.1)

for all t >0, and for all A€ R .
(i) If 1 <a <2, then

P(2 % |M A)| > t)

Lo > 8) < PO

u,B(

£

2. =) P(2 (A)] > t) (2.2)

for all t >0, and for all A€ R .

In order to establish the above theorem, we need a preliminary
result (Proposition 2.2.3) concerning a distributional property of
M(A) . The proof of this proposition uses a formula that is proved
first in the following lemma. This lemma is a direct consequence of
an inversion formula noted without proof by Pitman [18, p. 394]. We
supply a proof of this formula in the case of strictly S(a) and

strictly r-SS(a) random variables.

2.2.2. Lemma. For wu >0, let gu be a random variable whose

~

ch. function Lg («) s given by either
u

L. (t) = expl-u|t|® j s|% Kk (ts) T(ds)) , te R
& Jg &
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where T, JO, and ka are as given in (1.3), or

L. (t) = exp{-ult]® (1 - i B, tan o + sgn(t))} , t € R, (2.4)

where |Bu| < 1. Then
2 (71 ~
1 -2 F (0) -—J Lom@ (1) dt (2.5)
il 0 t _

where Fg is the distribution function of £, Im(fg (t)) is the
u u

imaginary part of L. (t) , and the integral in (2.5) is a Lebesque

u

2

integral.

Proof. Pitman [18, p. 394] has shown that
Im(L_ (t)) = J Ku(x) cos tx dx , (2.6)
0

for every t > 0 , where Ku(x) =1 - Fg (x) - F€ (-x) for x>0 .

u u
We note that the integral in (2.6) is an improper Riemann integral.

Now we show that Ku satisfies the hypotheses of Proposition 1.3.1.

We observe that for x € [0, ») we have Ku(x) = fl(x) - fz(x) , where

fl(x) =1 - Fu(x) and fz(x) = Fu(-x) . For j=1, 2, we have
0 f(X) ooP(lg ‘ >X)
J |-4L___| dx < J s U o dx
X - X
1
o
a "?-1

|A
P—
m
'
f
N
~—
—
— 8
<
o
x
A
8
—
~nN
~
S
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where (2.7) holds by Chebychev's inequality and the fact that
Q

E|£u|2-< o (see [19]) . Thus, since fj is monotonic on [0, «) and

1im f.(x) =0 for j =1, 2 , it now follows that the function K
X0  J u

satisfies the hypotheses of Proposition 1.3.1. Therefore, by Proposition

1.3.1, we have
L1y (0+) = L ) ( ) K (x) cos tx dx)dt (2.8)
2 " mlg Jg M ’ '

where the integrals in (2.8) are improper Riemann integrals. Since

Eg (t) s absolutely integrable over R, the distribution function
u

Fg " is absolutely continuous. Hence the function Ku is continuous
u
at zero, and

K (0) =

2
u ™

Jw (Jw Ku(x) cos tx dx) dt ; (2.9)
0 ‘0

hence, by (2.6) and (2.9),

Finally, we show that the integral in (2.5) is a Lebesgue integral.

We know from [19, p. 142] that CO = inf Re k (t) > 0 ,
t#0 &

C, = sup |1m k_(t)| <= , and |s|* r(ds) < » . Thus, if L, (+) s
1 o &
t#0 JO

u
given by (2.3), then recalling the inequality |sin x| < x for

~

x> 0 , we have
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ut® L gt (2.10)

where C. = C.( \s|a I'(ds)) and C! = C,( |s|a r(ds)) . If
0 0 J 1 1
0 Jo
&, is given by (2.4), then using again the inequality [sin x| < x

for x >0 , we have that

(o] 1 N
J Y{ Im(Lg (t))] dt
u
B m.l e el o o,
= Jolt e sm(uBu t* tan 77)\ dt
ol a
E_J eUt u . tan %% %l gt < e
0
for all u >0 because ae (0, 1)U (1, 2) . .

2.2.3. Proposition. (i) If a e (0, 1) and the distribution

of M(A) 1is not one-sided for some A€ R , or if a€ (1, 2) , then

there exist constants c and c depending only on r, a, and T

1 2’
and not on A , such that

0 ¢, % FM(A)(O) € Bs % 1 (2.11)

for all A e R with u(A) # 0 . Here FM(A) is the distribution function

of the random variable M(A) .
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(ii) Let a €(0, 1) U (1, 2) . If & 1is a random variable with

A

the ch. function L_(+) given by

€
o _ _ (0] s . _‘[Tg .
Lg(t) = exp{-|t|7(1 - 1By - tan 3= - sgn(t))} ,
where |60| <1, then
1 1 -1 e’ o
FE(O) =5 - tan (BO tan 3 ) . (2.12)
If 0<o <1, then Ma 1(A) and Ma —l(A) are one-sided for all

AeR . If 0<o<1 and if RB(A) = By for all A € R with
|BO| < 1, then there exists a constant c € (0, 1) which depends only

on o and BO such that

M (A)(O) =-% - #a-tan_l(e tan ) = ¢ (2.13)

0,6, 0 2

for all A €R with u(A) #0 . If 1 <a<2,and B 1is arbitrary

as in (1.2), then
(A)(O)ié< 1 (2.14)

for all A € R with u(A) #0 .

Proof of (i). Let £, be given by (2.3) . We define

g: (0, =) ~ [0, 1] by g(u) = Fe (0) for every u >0 . MWe first
u

show that inf g(u) = g(uO) and sup g(u) = g(ul) for some
u>0 u>0
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Ugs Up € [r, 1] . For this, we first observe that for every u € (0, «),

there exists an integer ¢ (which depends on u) such that

2)'

ur? € [r, 1] and g(u) = g(ur In fact, by the substitution

Q |

w=r t , we have
urt ta( |s|% Re ka(ts)F(ds)
1 1J°° “Jy
2 7 €
0

. sin(—ur2 t* J |s|® Im ka(ts) T(ds))
J
0]

dt

|

) -uo® JJ ‘s|a Re ka(ws) T'(ds)

_1 1 0
: sin(-uwaJ [s1% Im k_(ws) T(ds))E du (2.15)

since

:
ur® % J |s|* Re ka(ts) r'(ds)
J

0

Q=

uJ 5 po(n-2) {1 - cos (r~ t|s|)} T'(ds)
J n
0

n-2
=y J T r—(n—R) {1 - cos(r ¢ w[s|)} T'(ds)
J n
0

w® j I5|® Re k (ws) T'(ds) ,
Jg @

and
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ur? £ JJ |s]% In k_(ts) T(ds)

u JJ sgn(

* { u JJ sgn(

u JJ sgn (

i

u JJ sgn(

Hence, by Lemm
(2.10) we see

u€ [r, 1] .

Theorem, g i

ana sup g(u)
u>0
that when 1<

[27, pp. 293-2

sided for some

(205 17, pp. 1

0
n n
s) £ o (M) (g1t L sin(r®s|t)} T(ds) if ae (1, 2)
n
n
s) =z r—(n—i) {-sin(r¥|s|t)} I'(ds) if ae€ (0, 1)
n
n-% =
s) L p-(n-2) {r % Jslw - sin(r % |s|w)}T(ds) if o€ (1,2)
n
n-2
s) z r(M2) (gin(e @ Islw)ir(ds) if ae (0, 1)
n

= uw® J |s|% Im k_(ws) T(ds) .
Jg ¢

a2.2.2 and (2.14), we have g(u) = g(urQ) . Now by (2.5) and

-rtc!

0 i

that |1 - 2 g(u)| 5_% J Ci e t%71 dt < w  for all
0

1
Hence, by (2.5) and the Lebesgue Dominated Convergence

s continuous on [r, 1] . Therefore inf g(u) = g(uO)

u>0
e g(ul) for some Ugs Up € [r, 1] . Finally, we note

a < 2 , Fg is not one-sided for all u > 0 (see
u

98]) ; when 0 < a < 1 , assuming that F is not one-

o

u>0, F is not one sided for all u > 0 (see

&,

79-195]). Therefore,
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0 < gluy) < gu) <g(uy) <1 for all u >0 .

Hence 0 < g(uo) f-FM(A)(O) f_g(ul) <1 for all A e R with u(A) #0 .

Here we recall that the T appearing in (1.3) and (2.3) are identical.

Proof of (ii). For u >0 , let gu be a random variable given

by (2.4) . Then by (2.5), we have

o
-ut oL

1-2F (0)=2 et sin(ut® g, tan ) dt . (2.1

u JO

Let y: (0, <) x [-1, 1] = [-1, 1] be the function defined by

N

[

(@)}
~—

£

sin(ut® v tan I¥) dt  for every

© 1 ut®
t € ?

0
(u, v) ¢ (0, ») x [-1, 1] . By the substitution = ut® , we see that

Y(u, v) = % Jr

o]

_ 2 -w 1l . g}
wlu, v) = p— JO e’ = sin(wv tan 5 ) dw
_ 2 -1 jite}
o= tan " (v . tan 7?0 , (2.17)

using methods of Laplace Transforms (see [4, p. A-197]) - We note here
that (2.17) holds for any o € (0, 1) U (1, 2) . From (2.17) it follows
that if g(A) = By for all A €RrR , then (2.12) holds. Also, from
(2.17) it follows that if 0 <a <1 and BO=:t1, then FM 1(A)(O) =0

Qly

and F (A)(O) =1;if 0<qo<1 and |BO| <1, then for all

Ma,-l

A €erR with u(A) #0,
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Ol

S S o
M (A)(O) =5 = tan~ (B tan = )
o, 8,

which is in (0, 1) . If 1 <a <2 (and B 1is arbitrary as in (2.4)),

- 2
then sup y(u, v) = y(u, -1) = %%—tan 1(—tan %%) = %%-(n - %%J =5° ls
- 2
and inf y(u, v) = y(u, 1) = %%—tan 1(tan %%) =-#%—(%% -7) =1 -
Thus, from (2.16), we have
1 1
0 < ‘ai%<”ia<1

u

for all u >0 . In particular (2.14) holds for all A€ R with
u(A) #0 . ®

2.2.4. Remark. Let a € (0, 1)U (1, 2) . Let & be a random

variable with the «ch. function Eg(') given by

Eg(t) = exp{{—ltla(l - ig - tan %%-- sgn(t))}}, te R ,

where |B] <1 . Zolotarev [28, p. 79] has calculated, in a way dif-
ferent from that shown in the proof of Proposition 2.2.3, the value of
the distribution function of ¢ at zero using the integral represen-
tation of its density function.

Finally, to prove Theorem 2.2.1, we need the following lemma which
is a slight modification of the weak symmetrization inequalities of

Loeve [16, p. 257] .

2.2.5 Lemma [16]. Let £ and gl be two independent identically

distributed random varijables. Then
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[min{P(g£ > 0), P(g < 0)}] P(|g] > t)

<P(le -] >t) <2 p(fg] > 3) (2.18)
for any t > 0 .
Proof. For any t > 0 , we have
Pig - &) >t) > P(g>t, g <0)=PE>t) P <0) (2.19)

and

P(g - g]. < 't) i P(El > 09 g < 'tJ = P(g > O) P(g < "t) (220)

The equalities in (2.19) and (2.20) follow from the fact that & and

gl are independent and identically distributed. Thus we have

P(lg - g1 > t) = P(g -g >t) +P(g-¢g <-t)

| v

P(€ > t) P(§ <0) + P(g >0) P(g < -t)

| v

[min{P(g > 0), P(£ <0)}] P(lg] > t) .

The other inequality of Lemma 2.2.5 follows as in [16, p. 257] . ™
Now we prove Theorem 2.2.1.

Proof of Theorem 2.2.1.

Proof of (i). Let M' be an independent copy of M and let ﬁ

be the symmetrization M - M' of M . Then for any Ac R with
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~I

n

u(A) # 0 , we have the ch. function E%(A)(') of M(A) 1is given

by

~

— a
Li(a) () = expl-u(n) JJ [ts|® Kk (ts) I(ds)} , te R
0
av
where T is the symmetrization of T . By Theorem 1.2.3, there exist
constants Ci and Cé which depend only on r, a, and T , and do
not depend on A , such that

CiP(C M, o (M| > t) < PUN(A)] > £) < CaP(CaIM ((A)] > £)  (2.21)

CalMy 0
for all t >0 , and for all A€ R with u(A) # 0 . By Proposition

2.2.3(7) , there exist constants c, and Cy which depend only on

1
r, a, and T , such that

0 <cy <P(M(A) <0) <c, <1 (2.22)

for all A € R with u(A) # 0 . Applying Lemma 2.2.5 to M(A) and

M'(A) and using (2.22), we obtain

cP(IM(A)| > t) < P(iﬁ(A)l > t) < 2P(|M(A)] > %J (2.23)

for a1l t > 0 , where ¢ = min(c

C {
we get (2.1), where Cl e él, C, =

these constants depend only on r, a, and T , and they do not depend

and C, = Cé . We note that

on A .



Proof of (ii). By Proposition 2.2.4(ii), we have that

N<1-

Q|+

< P(M_ (A) <0) f_é <1 (7 .24)

a,B

(V)
for all A€ R with u(A) #0 . Let M

0,8 = Ma,B - Ma,B , Where Ma

s B
is an independent copy of Ma g By (2.24} and Lemma 2.2.5 we have
(1-3) pOIM. (A > t) < P(IM. _(A)] > t) < 2P(|M _(A)] > &) (2.25)
T« a, B! - @, B — o, B 2 :
Ly
for all t >0, and for all Az R with u(A) # 0 . Since M 6(A)
1
is distributed as 2% Ma 0(A) , we have
. 1
POIM. (A)] > t) = P(2% [M_ (A)] > t) (2.26)
a,B a,0 )

for all t >0, and for all A € R with u(A) #0 . Now (2.2) follows

from (2.25) and (2.26) . o5

2.3. Definition of Multiple Stochastic Integral

Let Sk X denote the space of all X-valued Ck—measurable simple

functions on Ak ; i.e., if fe S then there exist some elements

k,X ?
XPs Xgsewns X gf X and disjoint elements Cl’ CZ""’ Cn of Ck
such that f = Xj Xc. - Now we proceed to define on Sk X the
=1 ’

multiple integral for functions in S with respect to an r-SS(a)

k,X
random measure.

2.3.1. Definitions. For any C € Ck , we define

C) = 2 M(A, ) ... M(A. ) , (2.27)



29

n
where, by Proposition 1.4.2, C= U A. x ... x A, , a finite
j=1 Y1 Ik

disjoint union of elements of Ak . Similarly, replacing M by MO

in (2.27), we define M (respectively, Mk

(respectively, M 0 a,B) .

a,B)

2.3.2. Note. It is standard to show that Mk is well defined

(see Halmos [8, p. 149]) . Indeed, if C € C, has two representations,
k
’ 2
n
U A, x ... xA, and U B, X ... x B, each of which is a
=1 1 Ik i=1 1 k
finite disjoint union of elements of Ak , then

j=1 1 Ik
Nk
= ¢ M(A, x ...xA.)
j=1 I Ik
n K 2
= § M [(AJ X J.o. X Aj ) N (L_) B1. x X B]' )]
g=1 1 k iz1 1 k
n K 2
=z M[u (A. n B1 x x A. N 81 )]
j=1 =1 1 1 Ik k
n 2
= ¢ £ MA, B, ) ... MA. 0 B, )
j=14=1 J1 "1 Ik Tk
Similarly we can show that
2 2 n
I M(By ) ...M(B, )=z 3z M(A, NB.) ... MA, 0B, )
i=1 1 kK  9=1j=1 J1 "1 I T

Thus, Mk(C) does not depend on the representation of C .

2.3.3. Definitions. For any f ¢S , we define the k-tuple

k,X
stochastic integral Ik(f) with respect to semistable random measure

M by
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£ = . Mk(c.) (2.28)

n
where f = g XjXC for some X swmes X, € X and disjoint elements
j=1 J

Gap G . Cn of Ck . For fe¢ Sk X the k-tuple stochastic integral

1> Coseee

of f with respect to a strictly stable random measure Ma 8 is

defined by replacing M by Ma 8 in (2.28) . For f € SkX , we will
denote by IE(f) the k-tuple stochastic integral of f with respect

to symmetric r-SS(a) random measure M . Again by a standard procedure
we see that for f € Sk X Ik(f) does not depend on the representation
of f (see Ash [1, p. 36]) .

2.4. Comparison of Moments of Ik(f) and Iﬁ‘o(f) .

The key to the development of the multiple stochastic intearals
with respect to a strictly r-SS(a) random measure M (respectively,
MO) for a Targer class of Bk—measurable functions is the comparison
of the moments of Ik(f) (respectively, IE(f)) with the corresponding
moments of Iﬁ’o(f) for f¢g Sk,X . We present the comparison in the

following theorem.

2.4.1. Theorem. (i) If 1 <p<a <2, then there exist positive

constants C1 and C2 which depend only on k, r, p, a, and T such

that

ST < N (Flp = 1 0ce N, (2.29)

for all f¢ Sk.x - Analogously, there exist positive constants C1

and C2 which depend only on k, p, and o such that



Cll 0, < 12BN, < ST 0RN, (2.30)

for all f¢ Sk,X .

(i1) If 0<p<a<1, then, replacing I, by I
0
G

For the proof of this theorem we need the result which follows.

0 .
L (2.29),

an analogue of (2.29) holds for I

2.4.2. Proposition (Kwapien [14, Theorem 1]). Let (nl, Noseees nn)

and (gl, gz,..., gn) be two finite sequences of independent symmetric
random variables such that P(|n,| > t) < KP(L|g,| > t) for some con-
stants K and L, for i =1,..., n, and for all t >0 . Let X

be a vector space and let Q: R" +X be a polynomial defined by

n
Q(t,;s.0., t. ) = £ g C: A A P
1 NT =1 1< <o ocien 1o 11T Y
aay | k=
where the coefficients Ci ; are elements of X . Then for any
1Ty

measurable convex function &: X = R, the inequality

E(0(Q(ny» np»---» n))) < E(8(QUKLE s KLEy,. .oy KLED))  (2.31)

holds.

The above result yields the following proposition.

2.4.3. Proposition. Let (nl, Npsesss nn) and (gl, Epsrenna gn)

be two sequences of independent symmetric random variables such that

for some K and L , the inequality



PUIngl 2 ) < KP(LIE;| > t)

holds for all t >0 and for i =1, 2,..., n. If pe (1, 2)

(respectively, if p € (0, 1)) , then

ECFs (N, < (k0N B (2N, (2.32)
(respectively,
AICF (911, 2 (KO EKEs (2)911p) (2.33)

for all F ¢ FE y » Where n = (nl,..., ny» 0,...) and

£= (Esees £ 00nl)

Proof. For any F ¢ FE y > e consider the polynomial QF: R" -
given by Q.(t,;,..., t_ ) = ) F((iq9eens 1.))ts .. .t,  for
Pl n 1<i. <...<i, <n, 1 k Ll Ty
all (tl""’ tn) [= ]Rn, and the measurable convex function &: X - R

given by o¢(x) = Hxlf for all x € X if pe€ (1, 2) (respectively,
o(x) = -Hx]f for all x ¢ X if pe (0, 1)) . We have by Proposition

2.4.2 that

E(@(Q (1> 1)) < E(O(QE(KLE ..oy KLE))) -

Thus, using the facts that E[¢F; ()*II° = B1Q-(ns..-s 0 )IPS
a1 ¢Fs (@M1° = dllop(e. .. g P, and

QF(KLil,..., KL&n) = (KL)k QF(al,..., &n) , we have (2.32) and (2.33)
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2.4.4 Proposition (Krakowiak and Szulga [11, Cor. 2.2]) . Let

F e FE,X , and Tet (gl,..., En) be a sequence of independent real
random variables such that for p > 1, E|gj|P < » and Egj =0 for
j=1,2,..., n . Let (el, Epsevrs sn) be a sequence of independent
Rademacher random variables. Then there exists a positive constant

C which depends only on k and p such that

¢t elrs @917 < akr: e@)fP

¢ 8icFs (29 (2.34)

| A

for all FE F , where € = (&£.,..., gn’ 0,...) and

T
k,X = J
€f = (elgl,..., €n&ne 0y...)

Combining 2.4.3 and 2.4.4 we get Proposition 2.4.5 which is an

analogue of Proposition 2.4.3 for two finite sequences of independent,

) and

not necessarily symmetric, real random variables (gl,..., gn

2.4.5 Proposition. Let (nl,..., nn) and (gl,..., gn) be two
sequences of independent, not necessarily symmetric, real random
variables such that for some positive real numbers K and L the
inequality P(|n1\ > t) §>KP(L|g1| > t) holds for all t >0 and for
i=1,2,...,n. Let pe (1, 2) , and let E\giyp < » and
En.

i

C1 = C(KL)k , depending only on k, K, L, and p , such that

= Egi =0 for i=1, 2,..., n. Then there is a positive constant

{<Fs (9117 < cEKF: (297 (2.35)



for all F ¢ FE X.’ where n = (nl,..., Ny 0,...) , and

o (51,..., £,> 0s...) and C is the constant appearing in (2.34).

Proof. Let Eseees € be independent Rademacher random variables;

Tet (éi,..., Eﬁ) and (ni,..., nﬁ) be copies of (el,..., en) and

(nl,..., nn) respectively such that (el,..., en), (gl,..., gn) ,
I i ] 1 . .

(nl,..., nn) and (el,..., en) are independent. Since

(elnl,..., gnnn) and (elgl,..., engn) are two finite sequences

of independent symmetric real random variables such that

P(leini] > t) = P(Inj| > t)

| A

KP(LIEs| > t) = KP(L|esE | > t)
for all t >0 and for i = 1,2,..., n, we have by Proposition 2.4.3,

e ki P k ke P
E[[<Fs (e'n" )" < (KL)™ HICFs (e2)D| (2.35)
for all F € FE,X , where ¢'n' = (eini,..., eﬁnﬁ, 0, ...) and
ef = (elgl,..., €nén? 0,...) . Applying Proposition 2.4.4 to the finite
sequences (ni,..., nﬁ) and (gl,..., gn) , we see that there exist

positive constants C, and C, depending only on k and p , such

1 2
that

cEKF: (MNP < gl e’ (2.37)
and

qKFs ()7 < ¢, BKF: (@17 (2.38)
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since B]<F; (Y7 = 1< ()7, we have, from (2.36), (2.37),

and (2.33) that

1l

CLEKFs (9117 = cqKEs ()9

gl¢Fs (en)y)P

| A

(kL)* mF; ()P

| A

< (kO* GEIIKFs (@917 . 2

2.4.6. Remark. Since Proposition 2.4.4 was available only in

the case of random variables gl,..., £

P
, such that E|gj| < o for

some pe (1, 2) and Egj =0 for j=1,2,..., n, we have
Proposition 2.4.5 when 1 < p <o <2 . However, when 0 <o < 1 , we

conjecture that (2.34) holds when
(815> £,) = (M(A)..., M(A))

(or, ( (Al),..., M (A ))) , a finite sequence of independent

MQ,B CﬂsB n
strictly r-SS(a) (or strictly a-stable) random variables whose
distributions are not one-sided. Hereafter, when 0 < o <1 , we will

consider only symmetric r-SS(a) random measures.

2.4.7. Lemma. For each fe¢ S there exist F € FE X and

k,X 2
some subintervals Al""’ AQ of [0, 1] with Al < ... < A2 such
that
f = )} F((1,, i) X
. . 1 >k A A.
I<ij<...<ip <2 P



Proof. Let f¢ Sy - Then there exist Xpseees X, € X and
? n
disjoint elements Cl""’ Cn of Ck such that f = jzl XjXCj
Since Cj € Ck for j=1,..., n, by Proposition 1.4.4 we can find
) . - Q2.
subintervals I§J),..., IéJ) of [0, 1] and ajcz AKJ such that
J .

Cy = U 1§J) X ... X 11@) ; we can find subintervals

(11, ,1k) o 1
Al""’ A2 of [0, 1] such that A1 < ... <A and such that each
element of {IgJ): l1<j<mn,l<s<k, and (11,..., 1k) € aj}

3

can be expressed as a finite (disjoint) union of elements of
2

{A,,..., A} . Thus, there exist subsets X,,..., A of A such
1 2 1 . k
that Cj = U As X L..0X AS for j =1,2,..., n . Let
(S;5...5S. )ex. 1 k
1 kJEA;
n
X= U Aj . We define F: Nk«+x such that for each (11,..., 1k)
j=1
Xj if (11, w 1k) = kj , 1 <j<n,
F((il,. , 1k)) =
0 otherwise.

n
Clearly F € FE X 3 since f = ¢ , we have

J

XX
137G

f = ' z F((il,..., 1k))XA. . XA,
1<i.<...<i i

] K< 2 1 k
Finally, we prove Theorem 2.4.1.

Proof of Theorem 2.4.1.

Proof of (i) . Let f ¢S

T .
KX and some subintervals Al""

Then by Lemma 2.4.7, there

k,X °

exist FeF , A of [0, 1] with

4

36



A, < ... <A such that f = g F((il,..., 1k)) Xp

1 2 . . . x.e..XA.
15j1<...<1ki2 11 Ty
Therefore,
I (f) = z F((iqs...s 1,)) M(A. ) M(A, )
. I<ip<o<ip< 0 K ! T
= (F5 (M(A]),oes M(ALD, 0,..)9) (2.39)
Similarly
1006y = (F5 (M (A) Mo (A ),0,..0% (2.40)
k 5 WMy gWd aeens B glR 100000 )™F :

By (2.1) there exist positive constants Cy, C5, and C3 , depending only

on r, a, and T , such that
CIP(CyIM, g(AG)] > £) < PUIM(AD| > t) < CoP(C3IM, o(A)] > £)  (2.41)

for all t >0 and for j =1,2,..., 2 . Since (2.41) holds for the

sequences of independent random variables (M(Al)"“’ M(AQ)) and

(Ma,O(Al)""’ Ma,O(AQ)) , by Proposition 2.4.5 there exist constants

C, and C2 , depending only on r, a, k, p, and T such that

1

k
Cl H(F: (MOL,O(Al)” MO{,,O(AQ,)’O’.) )HP

k
SRCRERL

| A
P
-
= -
—
=
—
P
—
—
=
—
=
—

AN
(]
Ny
-~
-

e
—
=

k
,O(Al),..., Ma’O(AQ), 0,...)lp (2.42)
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for all F € Fo x - We note that these constants do not depend on the

sets A ,..., A Hence, by (2.39) and (2.4C), we have (2.29) .

1’ [
In the case of strictly stable random measure, we have by (2.2)

Fp@e M, o(A] > t) < P(IM, (A > t)

I A
-
’Q
NLA
O
—
N

M (AL)] > t) (2.43)

a,B ]

for j =1,2,..., 2 . Replacing (2.41) by (2.43) in the above argu-
ment, we get (2.30) .

Proof of (ii). If 0 <p <o <1, then by Theorem 1.2.3 there

exist positive constants Cf and C{', depending only on r, a, and

I , such that

CiP(CyIM, o(A)] > t)

| A

P(IMg (A > t) < C'P(Cé]Ma,O(Aj)] >t) (2.44)

2

1, 2,..., 2 . Thus, by (2.44)

for all t > 0 and for
(MO(AI)""’ MO(AQ)) and (Ma,O(Al)""’ Ma,O(AQ)) are two finite
sequences of independent real random variables that satisfy the
hypotheses of Proposition 2.4.3(ii). Hence there exist positive con-

stants C1 and C2 , depending only on r,a , and T , such that

(A,). 0.0,

CoICFs (M o lAL )5 M (A

: k
2 [IKFs (M (AD) ooy My(A)), 0,02,

> ClICFs (M oAy )seees M o(A), 0,... )%, (2.45)

Qs
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for every F € Fk = We note that these constants do not depend on
Al""’ A2 or F . Thus it follows from (2.42), (2.43) and (2.45)
that

,0 0 ,0
TR (Flp 2 T ()l > CLTR " (Fl

for all fes, y whenever 0 <p<a<l. s
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CHAPTER III

MULTIPLE STOCHASTIC INTEGRALS

Recall that in section 2.3 of Chapter II, we defined the multiple
stochastic integrals Ik and IE of Banach valued Ck-measurab1e
simple functions with respect to r-SS(a) random measures. In this
chapter, we extend the definitions of these multiple stochastic inte-

grals Ik and IE to a larger class of Banach valued B, -measurable

k
functions on By - For the integral Ik we shall restrict ourselves
to the case 1 < a <2 . We do this because of the unavailability of
analogs of the crucial inequalities (2.34) and of Proposition 5.1 of
(13] for the case 0 < a <1 . Thus, throughout this chapter, M and
Ma,B will represent, respectively, a strictly r-SS(a) random measure
and a strictly S(a) random measure with the restriction that

1l <a <2 . Our approach in extending the definitions of the integrals
Ik and 'IE is similar to that of Krakowiak and Szulga [10] for the

symmetric stable case.

3.1. Extension of Mk to B

In section 2.3, we defined the finitely additive vector measures
Mk and Mg on Ck . Now we extend from Cy to Bk , the vector
measure Mk for 1 < a <2 and the vector measure Mg for all o .
The proof is similar to the one given by Krakowiak and Szulga [13,
Theorem 5.4] in the case of the vector measure Mk Before wve

a,0
state the extension theorem, we state two propositions which are

consequences of Theorem 2.4.1. The first proposition and the last part
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of the second proposition give a relationship between Mk and the

"control measure' uk on Ck , where uk is the restriction of the

measure u X ... xpu to A, . This relationship is crucial to the
- k
k times
proof of the extension theorem.

3.1.1 Proposition. (i) Let 1 <p <a<q . Then there exist

positive constants Ci and Cé which depend only on o, r, p, q,

u([0, 1]) , k, and T such that

Ci”f“Loc(Ak;]R) = I]Ik(f)Hp < CéIIFIILq(Ak;R) (3.2)

for all f € Sk}]%' Analogously,

1 QB 1
il (u,5m) <ITPON < CHITIL 4 m) (3.3)

holds for all f ¢ Sk R where Ci and Cé depend only on o, r, p,

q, k, and wu([0, 1]) .

(i) If 0<p<a<q and o # 1, then there exist positive
constants Ci and Cé which depend only on o, r, p, q, u([0, 1]),

k, and T such that

: < |19 £ €.
ClllfHLOL(Ak;]R) = HIk(f)Hp = CZHfHLq(Ak;]R)

for all f ¢ Sk,R'

Proof. By Proposition 5.1 and Corollary 5.2 of [13] (see also

[10, p. 12]) it follows that there exist positive constants C' and C"



42

which depend only on o , u([0, 1]), k, p, and g such that

C'[| £l gy LT < cifl . (3.5)
Lq(Ak’R) P = L Ak,R)
for all f € Sk R Recall from 2.4.1 that if 1 < p <o , then
0N, < T (Pl < TS0, (3.6)
bl 9 ,O
(c1[|10‘ fllp < ~_I|I°‘ (Fllp < ST (Flp) (3.7)
and if 0O <p<a and a #1 , then
C{,O O )
CHT (Rl < T (Fllp < ZHIQ (Fllp (3.8)
for all f €S . Thus (3.5) together with (3.6), (3.7), and (3.8)

k, R
yields (3.2), (3.3), and (3.4) .

3.1.2 Proposition. (i) [Krakowiak and Szulga, 10, 13]. The class

{Ick"o(f): f e Sk,‘/(} € MPZ(p) for every p€ [0, a) .

(1) Let €= (L(F): FES, ) (C= (I(F: Fes, ),
respectively).  Then C0 € MPZ(p) for every 0 < p < a . Recall that
C0 is tne LO(X)-c1osure of C . (Hence, forany 0 <p' <p<a,
the Lp. and Lp norms of elements of C are comparable; see
Proposition 1.7.2).

(iii) If 1<a <2, then (2.29), (2.30), (3.2), and (3.3) hold

for every p ¢ (0, a) .
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Proof of (i). Let feg¢ Sk X - Then, by Proposition 2.4.3, there
T

exist Fe¢ Fr x and subintervals Al""’ An of [0, 1] such that
A1 < ... <A and
n
0
IV (f) = L F(iyseees 1)) M (A ) Mo A(AL )
k I<ig<...<i <n 1 k a,0 5 a,0 Tk

Since for any A€ R , Ma O(A) has the same distribution as

1 b
u(A)* 8 , where 6 is a symmetric a-stable random variable, we have
that IE’O(f) has the same distribution (hence the same moments) as
(G; (e)k) , where 6 = (61, 82,...) is a sequence of independent

symmetric a-stable random variables and G: Nk-+ X is the map given

by
1
P YA ) w1
if 1 5_11 < < 1k <n,
6((1y5---» 1)) =
0 otherwise.

Thus, since {(G; (@)k Y: Gg FE X} € MPZ(p) for 0 <p < a , we have
by Proposition 1.7.3, that {Iﬁ’o(f): fes yJe MPZ(p) , for

0O<p<a.

Proof of (ii). We first show that C ¢ MPZ(p) for every

pe [0, a) and 1 <a <2 . Now, for 1 <p' <p<a, Theorem 2.4.1

yields positive constants C, and C2 which depend only on r, a,

1
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k, p's p, and T such that

<P < STl

CqlI T (F )l po Iy

for all fe S From (i) above, we have {IE’O(f): fes X} € MPZ(p)

k,X ° k,
for every p € [0, n) . Hence it follows from Proposition 1.7.2 that

C ¢ MPZ(p) for every p € [0, a) . Thus, by Proposition 1.7.2(ii),

C0 € MPZ(p) for every p € [0, a) . The other case follows similarly.

Proof of (iii). We show that an analogue of (2.29) holds for

0 <p<l1lc<ac<?2; the proofs of the other cases are similar. Let
l<a' <a. Since 0<p<l<a' <a, we have, by part (ii) above

and (2.29),

G SR NG TRES TR

>

v e 110

asp 1 p
similarly,
Hlk(f)Hp < T g|1“’ I,
a,0
< & v TN,

where
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11, (P
= SUp  rEvT——
o, I (f

-
|

and

a,0

Y. = sup
“Pofe 110

k,X o)

are finite by part (ii) and C, and C, are the constants appearing

1 2
in (2.29). u

Now we state and prove our extension theorem.

3.1.3 Theorem. let 0 <p<a<q. If 1<a<2, then M

extends uniquely to a countably additive Lp(R) valued, uk-continuous

vector measure on Bk . Also, there exist constants C, and C2 which

it
depend only on r, k, a, u([0, 1]) , and T such that

l-min(l,p)

1.
= min(1l,p)
A))® <IN (A) < 6,0 (A))

(A)) (3.9)

for all A€ B, , where ||Mk|| is the semivariation of M* on By -
Analogously, the above holds for Mg where o € (0, 1) U (1. 2) and
k

for Ma,B

when o € (1, 2) .

Proof. By Proposition 3.1.1 and 3.1.2(iii), there exist positive
constants C1 and C2 which depend only on a, r, u([0, 1]), k, p,
q, and T such that

1

1 1
e (AN < M (AN, < cy (K (A))I (3.10)
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for all A € Ck . Using the inequalities (3.10), we now extend Mk s
from C,  to Ek first, and then to B, . Let A€ Ek'. By Proposition
1.4.4, there exists an increasing sequence of sets {Aj}§=1 c Ck such
that ) A;=A . By the finite additivity of M on ¢, , for
J=1
J > 2 , we have
k k k
M) = M = I K\ A -
By (3.10), we have
1 4
k k k q_ k K/ \1q
[IM(AS) = MECA N < €yl (AN AT = GG (Ay) - w(A )T
. k 0 . k 0 .
Thus, since {u (Aj)}j=1 is Cauchy, we have that {M (Aj)}j=1 is

Cauchy in Lp(R) and hence is convergent in Lp(R) . We define

k

M(A) as the L (R) Timit of (M(A;)}{.; . Now we show that Mk

is well defined and finitely additive on Ek . Let Ae Ek and

let {/—\j}j=1 ang {BJ.}J._1 bi two increasing sequences of sets in
C, such that U A.=A= (J B, . Taking f =y, - ¥ in (3.2),
k . . . .
S j=1 AJ BJ
we get that

k k
HM (Aj) - M (Bjnlp

|A

Cllxy = xg ‘R
2 Aj Bj Lq(Ak, )

1
P q

which tends to zero as j - o . Therefore, 1lim Mk(A-) = lim M

Jr= 3=

(8,)
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and hence Mk is well defined on C, For disjoint sets A, B €C, ,

K
Tet {Aj}?=1 and {Bj}?=1 be two increasing sequences of sets in C,

such that A = k(

A; and B = U B; . Then MK(A U B) = 1im M
i1 51 o

k( k

8

A. U B.
d V J)

= lim (Mk(Aj) + Mk(B-)) = M (A) + M (B) by the definition of MK on

J7 .

Ek and the finite additivity of uk on C

holds for every A €C,

K Now we show that (3.10)

- In fact, if we et A€ fk and let the in-

creasing sequence {Aj}?zl cC, be such that U A. = A, then (3.10)

k - J
J=1
holds for each Aj and hence, by the definition of M

i

k(A) , taking the

limit as j - « , we obtain that (3.10) holds for all A€ Ek . Thus
Mk << uk on Ek and, by Theorem 1.5.2, Mk can be extended to a
countably additive uk—continuous vector measure on Bk .

Finally, we show that the semivariation of the vector measure Mk
ERRRE Bn

s S € [-1, 1] , then

on Bk satisfies (3.9) . For this, first we show that if B

are disjoint elements of Ek , and if s

.
n a k é' L k
Oz Isg®w B <l 2 s MBI,
=1 i=1
n 1
< c, 0z Is;|% ke (3.11)
i=1

(J)y (J)ye -
{Bl }jzl,'--a {Bn }le (= Ck SUCh that B_I =

j=1,2,..., n; since for each j , the sets B
disjoint, we have by (3.2) that

1

. n .
k(8§3)>>a |z s;M (B§J)N!p

a
|” u

| A
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5.9 W ele (3.12)

Thus, by the definition of Mk on Ek , letting j -« 1in (3.12) we

obtain (3.11). Now let Spseees S € (-1, 1] , and let B B be

1°°0+» By
elements of Bk which form a partition of B € Bk . By the nature of

the extension (in Theorem 1.5.2; see [5, p. 29]) of Mk from C, to

k
PR EXEE {BEJ)}jzl(: fk such that for

each j , the sets B§J),..., Béj) are disjoint and such that, for
k

[oe] [oe]

Bk , we can find sequences {B£J)}

i=1,2,...,n, the Timit Timu* (8Y9) A B.) =0 and M
. e i 7
Lp(HQ) 1imit of Mk(BgJ)) as j » o . From (3.11), for each

j=1,2,..., we have that

(Bi) is the

Kegliya (3.13)

Since  [sy|s..-, sl <1, we get
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1 1
n = n n =
k o k k q
C(z s, [N <l 2 s, MBI, < C( 5 uk(B))T .
1 jep i j=1 P 2 i=1 i
Now ,
noo é-min(l,p) n - %— min(1,p)
e (z wi(B)) < sup [0z Isy 7w (B5))7]
i=1 Sps-++2S8 [-1,1] i=1
n k min(1,p)
< sup | = S1M (B1)||P ’
S1> ,sﬁ [-1,1] =1
N a—min(l,p)
<6, 2 w4(8.))%] . (3.14)

i

Thus, taking the supremum over all finite sequences (sk) with
lskl <1 for all k , and over all finite partitions of B € Bk , we
obtain, from inequalities (3.14),

L min(1,p) L nin(1,p)
¢, (1(8))° <M (B) < ¢, (uf () :

for some constants C1 and C2 which depend only on r, o, k, p, q,

pl0, 1] , and T . n

3.1.4 Definition. Let X be a Banach space.

(1) For any BE€ Bk and any Bk—measurab1e X-valued simple

function f on Ak , we define

J £ amk = K
B

o >

. M°(B. N8B 3.15
X ;08) (3.15)

Jj=1
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h Cees isjoi
where Bl’ Bn are disjoint elements of Bk > Xpsenes X € X , and

™M S

. k k
f = ) .
xJ Xg . The integrals JB f dMa,B and JB f dM0 are

J=i J
defined similarly.

(ii) Let f be an X-valued Bk—measurab1e function on Ak d

We say that f s Mk—integrab1e if there exists a sequence {fi}?=1

of X-valued B, -measurable simple functions on Ak such that

k

fj - f in measure uk , @S J > @,
and such that, for any B ¢ Bk , the sequence

X) i

ko .
{JB fj dMm }j=1 converges in LO(

k

we define the integral J f dM~  as the LO(X)—11m1t of the sequence
B

{J fj de}c;=1 . Similarly, we define the MS—integrabi]ity and
B

Mz B-integrabi]ity of an X-valued Bk-measurab1e function on Ak and,

in the case of an integrable function, the corresponding integral.
Before showing that the above integrals are well defined, we show

that for each B € ka and for any sequence {f, of B, -measurable

j:

Ji 1 k
X-valued simple functions, the convergence of {J fj de}?=1 in
B
LO(X) is equivalent to its convergence in Lp(X) , D <p<a. U

recall from Proposition 3.1.2 that CO € MPZ(p) for 0 < p <o , where

c =11 (f): fe Sk X} . Hence it is sufficient to show that the

K



b1

k

integral J fj dM ECO for any B € Bk and for any Bk—measurable
B

simple function fj . This will be established in Proposition 3.1.5.

3.1.5 Proposition. Let X be a Banach space and Tet

C = {Ik(f): fes, Then XMk(B) € CO' for any x € X and

Kxd

B ¢ Bk , where CO is the LO(X) closure of C .

Proof. Let x € X and let G = {B € B : ka(B) € CO} . We prove

that G = Bk by showing that G is a monotone class (see Ash [1,

p. 19]) and that G oC Clearly,

K

Ok (A): A € e} = (T (xqy): A€} = =cd

and hence, Ck <G . Let {Aj}?zl C G Dbe an increasing sequence of

(oo}

sets such that A= U Aj . Since Mk is a countably additive LP(R) -
j=1 -

valued vector measure on Bk , we have that the sequence {Mk(Aj)}j=1

converges to Mk(A) in LP(R) , 0 <p<a. Hence the sequence

{ka(Aj)}? converges to ka(A) in probability; consequently

=i

X MK(A) E'CO- and A €G . Since Ck<2 G , using Proposition 1.4.4 to

find, for any A€ Ek , an increasing sequence {A_}?_l c:Ck such that
. J J°

A= 1 A
J=1

jo we now have that A€ G . Finally, we show that G is

closed under complementation.

let A€ G . Since A€ G and by € Ek <= G , there exist

< C , which converge in

sequences {Ik(fj)}j_1 and {Ik(gj)}j=1
probability to ka(Ak) and to ka(A) , respectively. Now the

sequence {Ik(fj - gj)}?=1
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n
>
=

—
>

-
7
b=

as j = o . Thus Ak\\A €6 if A€ G . Thus, we have shown that G

is a monotone class containina C, and hence, by the Monotone Class

k

Theorem (see Ash [1, p. 19]), we conclude that G = B, - »
3.1.6. Proposition. For each Mk-integrab1e function f , and

k

each B € B,-, the integral J f dM™ is well defined.
B

We first prove this proposition when f s a real valued Ek-
measurable function on Ak , and then we prove this when f s a
Banach valued Bk—measurab1e function on B -
proposition when f s real valued is taken from Dunford and Schwartz

The proof of this

(6, p. 324] .

Proof of Proposition 3.1.6. If f s real valued, let {fj}?zl

and {gj}?=1 be two sequences of real valued Bk—measurab1e simple
functions such that {fj}?zl and {gj}?=1 converge to f in measure

uk and such that for each B ¢ B the sequences {J f. de

B ]
(R) (and equivalently, by Propo-

= Yi=1

ke .
and {JB 9; dM }j=] converge in L,
sitions 3.1.2 and 3.1.5 in Lp(HQ) for 0<p<o). Foreach j , we

define vj(B) = JB hj de for every B ¢ Bk , wWhere hj = fj - g\j .

We show that for each B €8B, , {\)J-(B)}?:1 converges to zero in

Lp(R), 0 <p<a. Since MK s a uk—continuous LP(R) -valued vector

measure on Bk and hj is a simple function, Vj is an L.(R) -

P(

valued uk-continuous vector measure on Bk . Also, we know that the
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LP(X)—11m1t 19m vj(B) exists for every B € Bk . Hence, by the Vitali-
j—)oo

Hahn-Saks Theorem (see Dunford and Schwartz [6, p. 158]), we have

Tim vj(B) =0, uniformly for j =1, 2,... . Thus, for any
uk (B)-0
g >0 , there exists a & > 0 such that, if

uK(A) < &, then HIA h, de||g1”(l’p) < ¢ (3.16)

k
for all j . Since hj 2 50 as J + o , there exists N &€ N such

that u(s: [hs(s)] > e} <6 forall J>N. Now

HJ h. deHmin(l,p)
g 4P

<l ny anl§min{t-P)
BM(s:|h(s)[>e} TP

+ ] h, awlmin(l.p) (3.17)
Bn{s:|h;(s)|>e} J P

Since hj is a real valued simple function and lhj(s)] < g for all

s€ B\ {s: \hj(s)\ > e} , we know that
k,ymin(1,p)
h. dM
IIJB\{s:|hj(s)]>z»:} J Hp

< MNPl k) (BN (s [hs(s)] > e}) (3.18)

Therefore, from (3.16), (3.17), and (3.18), we have



54

f min(1, .
HJB hJ de1|p1n( p) i Em1n(l,p)|l|Mk|| (B\ {S: ‘th(S)l N E}) r e

Hence, for each B ¢ By > Tim v.(B) = 0 1in L _(R)
oo p

When f is Banach valued it suffices to show that if {f}7)

is a sequence of X-valued Bk—measurab1e simple functions such that

£.oavk & 7
i

. r
fj - 0 1in measure uk and, for a fixed B ¢ Bk - J B

B
in LO(X) as j - = , then ZB =0 a.s. Since each fj is a simple

function, we have

. Ky _ . K.
% (jB £, ) JB G+ 7)) € L(R)

for any x* € X* , the dual of X . Since {J fj de}?zl converages
B

X) , there exists a subsequence {| f. de}oo con-

to Z, in L,( _
0 B g 2=1

B

verging to ZB a.s., and hence for each x* ¢ X* , we have that

x*(J fj de)(m) + (x* ZB)(“) for almost all w as & =+ = . There-
B 9

k

fore the sequence {J (x* fj ) dM }f_l converges to x* - 7
B ) o

9]
O(]R) . Since fj Kk 0 as & + o , we note that the real valued

2
* ®
sequence {x fjg}2=1

Xx* € X* . Thus by what we showed in the real-valued case, we have

in L

converges to zero in measure uk for each

x* + 25 =0 off N, with P(Nx*) =0 . Now we show that 7, =0

a.s. Since the sequence {J f. de}m_ converges to 7, a.s.,
B ¢ =1 B
there exists a measurable set NO with P(NO) = 0 such that
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{Z(w): we= Q\NO}CZ U {(J 2 de)(w): w e Q\ NO} >
=1 I Iy

Since fj is a simple function for each 2 , we have
2
{(f fj de)(w): we€ 2\ NO} is finite dimensional and hence
B Y2

o f
U {(J f. de)(w): w € Q\‘NO} is separable. Therefore,
=1

{Z(w): w€ Q\\NO} is separable.

Let D = {yl, y2,...} be a countable dense subset of
{Z(w): u)€§f\NO} . By the Hahn-Banach Theorem, for each (nonzero)
Y € D , there exists y§ € X* with Hy§]|= 1 and y Hy || %

If w@ NgU(UN,) , then y3f(ZB(m)) =0 for §j =1, 2,...

*
J yJ

Suppose that 7Zp(w) # 0 . Then there exists a nonzero yy€ D with
IZ () <||ZB(W H
|Z2glw) - yj“ 3 - Therefore y}(yj - Z(w)) = 1¥]/ and hence

ly; = Zg(w)|l = sup |y*(y. - Zp(w)

i~ ‘B y wh )| 2y -
[1y4]=1 i 0 J

Thus,

“ZB(W)H

3 - “yj - ZB(N)IIE.”yj’l'
This implies that

HZB(w)H
3 >y - Zgldll 2 | ilyg Il - Zglw) ) |

- 112 () | - 114l
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HZB((U)H
> | Zgl)ll - —F—
2

A LAGIE
which 1is ibsurd. Hence, ZB = (0 off N0 U [}il Ny§] with
P(Ng ULU_ N 4]) =0 . "

O R Y] |
k
Similarly, the integrals with respect to MS and Ma,e are

well defined for their respective integrable functions.

3.1.7 Remark. In Definition 3.1.4(ii), we can replace the sequence
£.) f B, - i i =

{ J}le of B, -measurable simple functions by a sequence {gj}j=1
Ck-measurab1e simple functions such that gj E > f as j+«, and

of

such that {| g. de}?_ converges in L.(X) .
B J J=1 0

Proof. Let {f.} be as in Definition 3.1.4(ii). Suppose that

J
Q‘j )
for each j , f. = L x(J) X (:ys Where B(J),..., B(J) are disjoint
U B 150 . o
. i .
elements of Bk and ng),..., ng) € X . Let q > max(1l, o) and
0<p<a. Nowfor each j , we will find gj €S such that

k,X
min(1,p)
- g

1 K min(1l,p)
= d - - . d 1
5 - o4l 3 “[B f5 M JB 05 ¢l < ¢, (3)

for every B¢ Bk, where C, is the constant appearing in (3.9), By the

Caratheodory Theorem and Proposition 1.4.4 there exists Agj) € Ck

such that
| -
(gld) 4 aliyam P

i i .
23 2.
J 73

1
max (ISP 1)
1§j§ﬁj

u



=)

. i
for i =1,..., 2. . For each j , we define 95 = z x(J’

J iop 1 ald)

i
Clearly gj € Sk X and, by the triangle inequality, the property of

the semivariation, and (3.9), it follows that for each B € Bk , we

have

k J kymin(1,p)
f. dM" - . dM i
HJB ; 5 95 M

L o

J . . j . ) :
- (3) yk (3)y _ (3) K (3)ymin(1,p)
Higl x;7! Mh (B0 YY) Zox (80 AT
Y
= ”1’51 (D wkgn ) M8 a ald)yymin(1,p)
25 _
= = XfJ)(Mk(B 0 B( I\ \ B, N A3
i=1 1
- Mk(B n A(j)\ B N B(j))) min(1,p)
1 i ”p
Y
< (3)min(1, g : 2
< 2 AT ke elIIN a{8)) ymin(,p)
%
+ 1;,:1 HX )l m1n(1 D HMk(Bﬂ (A](‘J)\ B](J')))”gﬁn(l,p)
%‘
v J)min(1,p) ( ) (G
wl 1=1 “X f ”M” \AjJ)))
.
# g }]x ’Im1n(1 sp) IfM (B af A( )\ B( )))
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EJ 1% {3 min(L) kg (d) » al9)a

]
—
v
x
[}
N—r
>
1
it
—
>
=
—
.
~—
-
o
—~~
Cy,
oy
X2
Q.
=



L nin(1,p)

k k
Now g E > f as j -+ since f E 5 f as j =+« . In fact,

for any & > 0 , we have

Kes. )
H {s: Hg\](s) - fJ(S)H > 2}

59

% uk{s:]|gj(s) - fj(s)H >-%} + Uk{szllfj(s) - f(s)]| » %} .

Hgi - f'Hq k 8
< ==L+ M5t || Fo(s) - F(s)I[> 5}
()1 )
2
9
min(1,p)
<
< (3 (é)q e Wess IF5(5) - F(s)i] > 51
2

k k

and, since fj 2 > f as j >, we have that g E 5 f as j»ow.,

Finally, we show that for any B € Bk , the convergence of

f ko . . . . .
{JB fj dMm }j=1 in LO(X) (equivalently in LP(X)) , implies the

convergence of {J g. de}?_ in L (X) (equivalently, in L,(X)) .
B J J‘l O p

Llet € >0 be given. Since

k min(1l,p)
\!J g, dM" - J g, dm|
B Y g P
k k,min(1,p)
CdMS - | f. aM
<l oy ok - | g ati]

k min(1l,p)
+;|J £.oamk - J £ aml|
g ! B * p
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r .
7 am* - J 9, den'g‘”(l’p)
B B

<t +||J f.de-J f, dMH”””lp) e,
f o .
and {J f. de}._ converges in L _(X) , there exists N€ N such
B J J=1 p
f f
that for any Jj, £ > N we have HJ 9; de - J dMI‘m1n (1,p) < e.
B B

[ © _
Thus the sequence {J gj de}j=1 converges in LD(X) and hence in
B 1

O(X) .

812, Mk—Integrab11ity

In this section we prove two results. First, in Theorem 3.2.1

we show that the class of all Mk-integrable functions (or Mk—

0

integrable functions) is the same as the class of Mk -integrable

a,0
functions. Second, using Theorem 3.2.1, we prove Theorem 3.2.2 which
k
O) )
This theorem states an equivalent but simpler condition for the Mk-

is an analogue of Theorem 5.5 of [13] in the case of Mk (and M

integrability of a Banach valued Bk—measurab1e function when the

Banach space satisfies the Multilinear Contraction Principle.

3.2.1 Theorem. For any Banach space X , a Bk-measurab1e function

f: Ak - X s Mk—integrable (or MS—integrab]e) iff it is Mg 0"

integrable.

Proof. Let f be Mg O—integrab1e. By Remark 3.1.7, there
2 k

exists a sequence {f.}: , <3S such that f E >+,

j =1 k,X



bl
f de - f de in L,(X) and equivalently in L (X)
B J a,0 B a,0 0 P i
0<p<a, for every B eBk . Suppose that f s not Mk—integrab1e.
Then there exists a B esk and an ¢ > 0 such that for any N ¢ N

there exist jn’ Qn > n such that

llfB (fjn - on) deHP >€ . (3.19)

By the Caratheodory Theorem and Proposition 1.4.4 there exists a

o k 1
sequence {A } _, <C, such that "(Ba A ) <— for m=1,2,..

q
n
For each fixed n , let f. - fQ = 3z x(n) X (n) where
In n i=1 ! Ain
A£n), .u g A(n) €Ck and x§n), , x(n)é X Therefore,
n 9
q
[ tF5 -ty il =1z ) wis 0l
B In %y S L
’n (n) Kk (n)
R n n
%12 Hizl X M (Am N A2 N[P
Vim ||| (F, - f, ) du¥|
= 1im -
m->oo JAm In 2n P

and

k

IIJB (fjn . fzn) s dllp = m HJA (f;

k
g an) dMa,le .
m

n

Since fjn - an € Sk,X and Am € Ck , we have, by the right hand side

of (2.29),
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k f k
- f’ln) dMOL,OHP Z“JA (fj f, ) au Hp :

c j (.
2“ A ‘]n n n

m m

Taking the Timit as m + « , we have

k k
C J (f. - f, ) dv. | 3||J (f, - f, ) dMl|, > ¢ .
Al o a7 Te) Masole 20N T p

Thus, there exists an e > 0 such that for any n , there exist

Jn, zn >n with

k S

}j=1 con-

¢
which contradicts the fact that the sequence {J fj dMa 0
B 3

verges in LP(X) . Therefore f s Mk—integrab1e. Conversely, if

f s Mk—integrab1e, using a similar argument as above and the left

hand side of (2.29) we get that f s MZ o-integrable.

Similarly, we note that for ae (0, 1) U (1, 2) then the class

of Mé—integrab]e functions and the class of all Mz O-integrab]e

functions coincide. We recall that MO is a symmetric r-SS(a) random

measure. ®

3.2.2 Theorem. Let X be a Banach space satisfying the M.C.P.

A Bk—measurab1e function f: Ak - X is Mk—integrab1e (respectively,

Mg—integrab1e) iff there exists a sequence {fn}o0 = S such that

n=1-
(1) fn -~ f 1in measure uk as n -+ o«

k,X

L)

(respectively, {Ig(f ¥

f n=1) is Cauchy 1in
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Proof. By Remark 3.1.7, it is enough to show the "only if" part
k
) o H
of this theorem. So, let {fn}n=1 c Sk,X be such that fn > f

as n + « and such that the sequence {Ik(fn)}oo

n=1 1S Cauchy in

Lg(X) . Equivalently, by Proposition 3.1.2(11), (I (f )} _; is

Cauchy in LP(X) , 0<p<a. By Theorem 2.4.1 and Proposition

3.1.2(ii), it follows that {Ik(fn)}n=1 is Cauchy in LO(X) 714

{It,o(f is Cauchy in Ly(X) . Thus, by Theorem 5.5 of [13],

n=1

n)}
MK -integrable. Hence by Theorem 3.2.1, f is MK_integrable. @

s U

f s
Finally, we state from Krakowiak and Szulga [13] some facts about

Mz 0—1ntegrab1e functions. Let L K (X) denote the class of all
a,0
Mz 0—1ntegrab1e functions. Then

b

U L(X) L, (X)
q>a g Mk

when X is of stable type o . We recall that a Banach space is X

is of stable type o if for some constant ¢ > 0 and some

pe (0, a),
1
- VO
HL XJ.GJ-HD = C(Z “XJIR) s
J J
for every finite sequence (Xj)‘: X , where (61, 62,...) is a

sequence of independent g-stable random variables.
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