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ABSTRACT 

The concept of multiple stochastic integration with respect to 

Brownian motion was introduced by Wiener (1938). Ito (1951) gave a 

iv 

more general construction of multiple stochastic integrals with regard 

to Brownian motion. Later the study of multiple stochastic integrals 

with respect to non-Gaussian processes were considered by some authors 

(e. g. , Lin (1981), Surgailis (1981), Engel (1982)) . Multiple stochastic 

integrals have found their applications in areas such as statistics and 

quantum mechanics. Recently, several authors (e. g. , Szulga and 

Woyczynski (1983), Krakowiak and Szulga (1985), Rosinski and Woyczynski 

(1986), and Surgailis (1985)), using different approaches, have con

structed multiple stochastic integrals with respect to symmetric 

stable random measures. This dissertation is concerned with the develop

ment of the multiple stochastic integrals with respect to semistable 

random measures. 

One of the above mentioned approaches used to construct the multiple 

stochastic integrals with respect to stable random measures is the 

Lebesgue-Dunford type construction. This approach reduces the problem 

of stochastic integration to the problem of integration with respect 

to a vector measure. Using this approach Krakowiak and Szulga (1985) 

developed multiple stochastic integrals of Banach valued functions with 

respect to symmetric and also nonsymmetric stable random measures. 

In this dissertation, using an approach similar to that of Krakowiak 

and Szulga (1985), we develop multiple stochastic integrals with 

respect to� symmetric as well as with respect to (nonsymmetric) 

strictly semistable random measures with index of stability 



a E (1, 2) . Our methods, in the nonsymmetric case, yield results on 

multiple stochastic integrals relative to strictly stable random 

measure with index a E (1, 2) considered in [10, 13] . 

V 

The most crucial role in the development of the integrals here is 

played by the inequalities (2.29). In these inequalities we establish 

a comparison theorem between the moments of the integrals of certain 

simple functions relative to the strictly semistable random measure 

and the corresponding moments of integrals of these functions relative 

to symmetric stable random measure. Once these inequalities are estab

lished, the methods of construction of the integrals here are similar 

to those used by Krakowiak and Szulga in [10, 13] to develop the integrals 

relative to symmetric stable random measure. 

In Chapter I, we collect the notation, definitions, and known 

results that are basic to this dissertation. In Chapter II, we develop 

necessary tools and prove the crucial inequalities mentioned above. 

In the first part of Chapter I I,  we prove a comparison theorem for tail 

probabilities of nonsymmetric semistable random measures. This uses 

a distributional property of a strictly semistable random variable. In 

Chapter I I I, we define the multiple stochastic integrals of certain 

Banach valued Borel measurable functions �ith respect to a strictly 

semistable random measure of index a Then, we show that the class 

of Banach valued integrable functions relative to a semistable random 

measure of index a coincides with the class of Banach valued integrable 

functions relative to a symmetric stable random measure of index a . 
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CHAPTER I 

P REL IM INAR IES 

1. 1. Introduction 

In this chapter, we state some definitions, notations, and known 

results that are basic to this dissertation. Throughout, IR ,  (]), and 

� will, respectively, represent the sets of all reals, rationals, and 

natural numbers. For any topological space X , B (X) will represent 

the a-algebra of Borel subsets of X • 

1.2. Random Measures 

In this section, we state the definitions of a random measure and 

certain infinitely divisible random measures. We a1so state a result 

from Rosinski [23] which will be needed in the sequel ; the material of 

this section is taken from [13, 19, 23] 

1. 2.1. Definitions. (i) Let (D, F, P) be a probability space, 

and let L0 (IR) be the class of all real random variables defined 

on 

R 

a 

R 

(D, F, P) Let µ be a measure defined on B ([O, 1]) , and 

= {A E B ([O, 1]) µ (A) < oo}. A map M: R -+ . L0 ( IR) is called 

random measure if, for 

, the random variables 

00 00 

M (  U An) = [ 
n=l n=l 

00 

every sequence {An};=l of disjoint sets 

M (A ) n , n = 1, 2, 3, .. . are independent 

M (A ) , 
n 

let 

in 

and 

( 1. 1) 

whenever U An E R . The series in ( 1. 1) is assumed to converge in 
n=l 

probability (hence, also, because the summands are independent, almost 

surely). 



(i) A random measure M is said to be symmetric if, for every 

A E R , the distribution of M (A) is symmetric. 

2 

(ii ) Let a E ( 0, 1) U (1, 2). A random measure M is ca 11 ed a 

strictly stable random measure of index a (in short, a strictly S (a) 

random measure), if for every A E R  , the characteristic (ch. ) function 

L(·) of M (A) is given by 
M(A) 

L (t) = exp{-µ (A) l tl a (1 - i 13 (A) tan ;a sgn (t))} , t E JR, (1. 2) 
M (A) 

where S: B ([O, 1]) 7 [-1, 1] is a signed measure. S (A) describes 

the asymmetry of the distribution of M (A) 

Throughout, M 13 will denote such a random measure. a, The random 

measure M O is symmetric, and it will be called a standard S (a) a, 
random measure. 

1. 2. 2. Definitions. Let O < r < 1 For t 10 , define 

k ( t) = a 

n n 
!ti-a I r-n{l - cos (ra t) - i sin (ra t)} 

n 

if O < a < l , 

n n n 

!ti
-a I r-n{l - cos (ra t) + i (ra t - sin (ra t))} 

n 

if l < a < 2 ,  



and 

k ( t) 
Cl 

n 
l tl-a. -n ( a. 

= r r {l - cos r t)} 
n 

co 
where r stands for r 

n n=-co 

if O < a. < 2 ,  

For r E (0, 1) and a. E (0, 2) , let Jn denote the set 
n+l n 

{t: r a. < ltl � ra.} , n = 0, ±1, ±2, . . . . 

3 

Let r E (0, 1) and a. E (0, 1) U (1, 2) . A random measure M 

is called a strictly r-semistable random measure of index a. (in short, 

a strictly r-SS (a.) random measure), if, for every A ER , the ch. 

function L(·) of the random variable M (A) is given by 
M (A) 

L (t) 
M (A) 

= exp{-µ (A) f lts l a. k (ts) r (ds)} 
J 

Cl 
0 

t E JR 

1 

where r is a finite measure on J0 , and J0 = {t: ra. < ltl � l} . 

( 1. 3) 

Hereafter, M will always represent a strictly r-SS (�) random measure. 

Note that if r is symmetric in (1. 3) and k is replaced by k , 
Cl Cl 

then the corresponding random measure is a symmetric r-SS (a.) random 

measure. Hereafter M0 will represent a symmetric r-SS (a.) random 

measure. For the existence and properties of r-SS (a.) random measures, 

see [19 J 

The following theorem on the comparison of tails of distributions 

and M 0 (A) , for A E R, is from Rosinski [23, p. 100] 
Cl, 

and will be used in Chapter I I. 



1. 2. 3 Theorem [23, p. 100] 

4 

There exist positive constants c
1 

and 

c2 , which depend only on r, a, and r , such that 

for every A E R  and t > 0 . 

1. 3. Fourier Integral Theorem 

In this section, we state a direct corollary of a theorem generally 

known as the Fourier Integral Theorem. This corollary will be used in 

Chapter 2. Details on this theorem and its proof can be found in Bochner's 

monograph [3] . 

1. 3. 1 Proposition [3, p. 51]. Let c1, c2 
E JR, and let f1, f2 

be monotonic functions on [0, 00) • Let f = c1f1 + c2f2 . Then 

1 1 
J
oo 

J
oo 

2 f (0+) = TT 
0 0 

f (t) cos at dt. da , 

if one of the following two conditions holds: 

( i ) 

( i i ) 

such that 

J
oo 

jf . (t)j dt < 00 for j = 1, 2 . 
0 J 

lim f. (t) = 0 for j = 1, 2 , and there exists 
t-+<:o J 

J
oo f. ( t) 

I J I 
N t dt < 00 for j = 1, 2 

(1.6) 

N E lN 

We note here that under condition (ii) the integrals appearing on the 

right hand side of the formula (1.6) are improper Riemann inteqrals. 



1. 4. Borel Structure on the k-Dimensional Tetrahedron 

We begin with the following notations: For k E :IN, let 
k 

L\ = { (t1, . . .  , t
k
) E [0, l] : 0 2_ t1 < t2 < < t

k 
2_ 1} ,  the 

k-dimensional tetrahedron ; for k, n E lN, let 

A� = { ( i l, i 2, . . .  , i 
k
) E :Nk : 1 2- i l < i 2 < < i 

k 
2- n} ; for 

k E �, let A
k 

= {A1 x . . .  x A
k 

c 6k : A1, A2, . . .  , A
k 

E I} , where I 

is the class of all finite disjoint unions of (al l) subintervals of 

[O, 1] Further, let C
k 

and C
k 

be, respectively, the ring and the 

5 

algebra generated by Ak . The main facts about the ring C
k 

and the 

algebra C
k 

that are important to us are included in the following 

propositions. These are standard results and are stated, for instance, 

in [7, p. 31 ; 10, p. ld without proof. We include short proofs of these 

here for completeness. To prove the first proposition we need the 

following lemma whose proof is deferred until the end of this section. 

1. 4. 1. Lemma. If A, B E  A
k 

, then 

(i) A\ B ,  and 

(ii) AU B are finite disjoint unions of elements of Ak . 

1. 4. 2 .  Proposition. Ck is the class of all finite disjoint unions 

of elements of A
k 

. 

Proof. Let C be the class of all finite disjoint unions of 

elements of Ak . Since is a ring containing Ak , we have 

To prove that C ::::i C
k 

, it is sufficient to show that C is 

a ring containing A
k 

whenever A, B E C 

Clearly, � E C , A
k 

E C  , and A U B E  C 



It remains only to be shown that A\B EC , if A, BE C Let 
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BE Ak and A= A1 U ... U A£ EC , where A1, ... , A£ E Ak . Because 

A1, ... , A£ , and B are elements of Ak, we see by l_emma 1.4.1 that 

l\\B, ... , Ai\8 EC , and since A\ B = (A1 U ... U A£)\ B = 

(A1 \ B) U U(A£\ B) , it follows that A\ BE C Now let A EC 

and B = B U 1 U Bn , where B1, ... , Bn are disjoint elements of 

Ak . Now we show that A\ B EC , by induction on n Since 

A\(B1 U B2) = (A\ B1)\B2 , A EC, and B1, B2
E Ak, we have, by 

what we have shown above, that A\b EC· In a similar manner, 

( A \ (Bl U . . . U B l ) ) \ B E C if we assume that A \ ( Bl U . . . U B l ) E C n- n n-
and B EAk. Since A\(B1U ... UB )=(A\(B1U UB 1)) \B ,  n n n- n 
we see by induction that if A, BE C and if B = B1 U U Bn for 

some B1, ... , Bn E Ak , then A\ B E C Therefore, C is a ring con-

taining Ak , and hence c � ck . II 

1.4.3. Proposition [7, p. 31; 10, p. 11 ]. If BE ck , then there 

exist n E lN, vc /\�, and subintervals r1, r 2, ... , In of [O, 1] 

such that I1 < r 2 < ... < In and 

where for any two subsets A and B of [O, 1] , we write A< B 

if X < y for all X E A and y E B 

Proof. Let B E ck Then B is a finite disjoint union of 

elements of Ak Thus, since every element of can be written 

as a finite disjoint union of sets of the form x Ak , where 



A1, . . .  , Ak are subintervals of [0, l] , we can write 

B = u B
J
.l X • . • X B

J
.k j=l 

7 

for some £ E � ,  where for j = 1, 2, . . .  , £ , the sets Bjl' Bj2, . . .  , Bjk 

are disjoint subintervals of [0, l] . Now we can find intervals 

I1, I2, . . .  , In of . [0, l] such that I1 < I2 < . . .  < In and such that 

for j = 1, 2, ... , SI, ,  each set Bjl' Bj2, .. . , Bjk can be expressed 

as a finite (disjoint) union of I1, I2, . . .  , In Hence, 

for some n 
\! Cf\ . 8 

1.4. 4. Proposition [10, p. 13] . If A E Ck , then there exists 
00 

00 

an increasing sequence of sets {A
J
.}

J
.=l c Ck such that A = U A . . 

j=l J 

Proof. Let u = {Be L'lk: B n A E ck , for all A E C
k
} . Using 

the fact that ck is a ring, we see that u is an algebra containing 

ck and hence Ck C LJ Now we show that there exists an 
00 

00 

such that sequence {Cj}j=l C Ck L'I = u k . 1 J = 

(tl' t2' . . .  ' tk) E L'lk ' there exist rational 

where �k -l = � x ... x � , and 
� 
(k-1) times 

c .  For any 
J 
numbers sl, 

increasing 

s2, . . .  ' s
k -1 



where � is a bijection of � 

s2J x • • •  x (s
k-l' 1] for every 

Let 

onto 

C .  = U B, 1 , (Q,) , 
J Q,=l 4' 

Ol
k
-1 n ti 

k-1 Thus for the 
{X) 

8 

increasing sequence of sets 

every j , the set Cj E C
k 

{X) 

{C.}. 1 we have 
J J = 6

k 
= U C .  ; al so, for 

j=l J 
since B� (Q,) E c

k 
for every Q, • 

To conclude the proof, let A ,E C\ Since c
k 

Cu ' we have 

A E u  and hence An cj E c
k 

for j = 1, 2, . . .  Setting A . = An c . 
J J 

we have an 
{X) 

increasing sequence of sets {Aj } _i =l c c
k 

with 
{X) {X) 

{X) 

A = An 6k = A n (U C .) = u (An C .) = u A. Ill 
j=l J j= l J j=l J 

Finally, we have the following proposition about the Borel a-algebra 

1. 4. 5. Proposition. B (ti
k
) = a (Ck) , where a (\

'<
) is the a-algebra 

generated by ck . 

Proof. Since C
k 

c B (ti
k
) , we have a (C

k
) c B (ti

k
) Now we show 

that B (ti
k
) c a (C

k
) We note that B (tik) = B ([O, l] k) n 6k 

= a (A) n 6k 
= a(A n 6

k
) (see Ash [15, p. 5]) , where 

A= {11 x 12 x • • .  x l
k 

: 11, 12, . . .  , l
k 

are subintervals of [O, 1]} . 

As mentioned in the proof of Proposition 1. 4. 5, we have 
{X) 

oo (Q,) (Q,) (Q,) E (Q,) 6
k 

= 
Q,ldl 

B� (Q,) = 
Q,ld

l 
E1 x • • • x E

k 
, where E1 , .. . , 

k 
are 

subintervals of 

Thus 

[O, 1] such that EiQ,) 
< . . .  < E (Q,) for Q, = 1, 2, . .. k 

X • • •  X 
( 1. 7) 
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and E?
) 

n Il 
(i) 

< • . .  < Ek n Ik , we have that 

(E (i) n I 1) X • •  • X (E (i) n Ik) E Ck for Q, = 1 , 2, ... 1 k Hence, by 

(1.9), the set ( Il X • • •  X Ik) n L\ Eo-CC\) Therefore 

and it follows that B(L\) = a (A n L\) c o (Ck) • 

Proof of Lemma 1. 4.1. (i) Let A = A1 x • • •  x Ak E Ak , and let 

B = B 1 x • • . x Bk E Ak . By induction on k we can show that 

For i 'I j , we have ( A1n B1 x • • • x A. n B . :< A . n B� x A. 1 x • • .  x Ak) 
l l l l J + 

n (A n B1
x . .  _. x AjnBj x AjnB� x Aj+l x . . .  x Ak) = 0 Also, for 

J
. 

= 1, 2, . . .  , k , the sets A. r. B . and A . n B E I , s i nee A. , B . E I . 
J '' J J j J J 

Thus, the right-hand side of (1.8) is a finite disjoint union of elements 

of Ak . 

(ii) Let A, BE Ak Since, by (i), A\B is a finite disjoint 

union of elements of Ak and since A U B = (A\ B) U B , we have that 

A U  B is a finite disjoint union of elements of Ak • 

1. 5. Caratheodory-Hahn- Kluvanek Extension Theorem 

In this section, we introduce vector measures and state a part of 

the Caratheodory-Hahn-Kluvanek extension theorem. This material is 

adopted from the book Vector Measures [5] by Diestel, and Uhl. Jr. 

Recall that an F-space is a complete topological vector space whose 

topology is induced by an invariant metric. Throughout this section 



10 

A will denote an algebra of subsets of a set S , and o (A) will de

note the a-algebra generated by A . 

1. 5 . 1 .  Definitions . Let X be an F-space. A function m: A+ X 

is called a finitely additive vector measure, or simply a vector measure, 

if m (A1 U A2) = m (A1) + m (A2) for any two disjoint sets A1, A2 EA 

A vector measure m is said to be countably additive, if in the 

topology of X , m (  U A ) = I m (A ) for every sequence 
n=l n n=l. n 

00 

of pairwise disjoint elements of A such that 
n�l 

An E A 

Let A be a finite, non-negative, countabl y additive measure on A .  

A vector measure m is said to be \-continuous if lim m (A) = 0 
\ (A)+O 

The extension of a finitely additive vector measure on A to a 

countably additive vector measure on o (A) , for Banach valued vector· 

measures, is given by a part of the Caratheodory-Hahn-Kluvanek extension 

theorem [5, p . 27] The same proof can be adopted for the extension 

of F-space valued vector measures. 

1.5. 2. Theorem [5, p. 27]. Let X be an F-space, and let 

m: A+ X be a \ -continuous vector measure. Then there exists a unique 

extension m of m to o (A) such that in is a \-continuous countably 

additive vector measure on o (A) . 

Finally, we close this section with a definition . 

1 . 5. 3  Definition. Let X be an F-space with an invariant metric 

d , and let m: A+ X be a vector measure. For each x EX , let 

\\ x \\ denote the di stance d (x, 0) . We ca 11 the extended nonnegative 

function \\ml\: A+ [O, oo] defined by 



1 1  

II m II (A) = sup 11 I s . m ( A
J
. ) 11 

A-E IT J 
J 

for every A E A  , the semivariation of m , where the supremum is taken 

over all partitions IT of A into finitely many disjoint elements of 

A and over all finite sequences ( s . ) J 
such that 

The vector measure m is said to be of bounded semivariation if 

l lm l l  (S) < 00 
• 

1. 6. Random Multilinear Forms 

j 

In this section, we present the definition of random multilinear 

forms, some notations, and the 'multilinear contraction principle' which 

is obeyed by certain Banach spaces and is related to the topic of random 

multilinear forms. We adopt this material from [12, 13] which contain 

more information on random multilinear forms. 

1. 6. 1 Notations and Definitions. (i) For a Banach space X , let 

Lp (X) denote the set of all X-valued random variables s such that 

II s llp < 00 , where 

II s llp = 

( i i ) Let 

1 
( E  llsf)P if O < p < 00 , 

E (�) if p = 0 . 

F
k, X denote the set of all maps 

F is zero for a 11 but finitely many elements of 

F ( (i1, . . .  , ik)) = 0 whenever i j = i Q, for some 

F: JI'/-+ X such that 

lN k , and 

j and Q, such that 
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1 � j, t � k . A map FE F
k,X is called tetrahedronal if 

F((i
1
, ... , i

k)) = 0 whenever i
j 

> it for some j and t such that 

1 � j < t � k ; a map FE F
k,X is called symmetric if 

F((i1, ... , \)) = F((i
TT(l)

····• i
TT(k)

)) for all permutations TT of 

{1, 2, ... , k} . Let F�,X and F�,X' respectively, denote the set of 

all tetrahedronal FE F
k,X and the set of all symmetric FE F

k,X . 

Let JR lN and L0 (JR) lN , respectively, denote the set of a 71 sequences 

of real numbers and the set of all sequences of real random variables. 
Fl lN For each FE F

k,X , let �F: �JR + 
X be the map defined by 

k times 

(i1, ... ,\)ElNk 

for all (_!_(1), ... , !(k)) E JR JN 
x • . .  x JR JN , where 
k times 

!(j) = (tp ), t�j), ... ) E JR JN for j = 1, 2, ... , k ; let 
lN lN 

¢F: �(JR) x • • • x LoJJR) + X be the map defined by 
k f-imes 

Z:: F((i1, ... ,i
k))r, ;:1) ... f,� k) 

k I 1 l k (i1, ... ,i
k)ElN 

for all (_s_(l), ... , ..s.(k)) E L0(JR�L0(JR)
lN , where 

k times 

..s_(j) =(E,�j),f,�j), ... ) for j=l,2, ... , k . For each FEFk,X ' 

the map �F (respectively, ¢F) is called a k-linear form (respectively, 
(1) (k) a random k-linear form). Let (F; .!_ , ... , .!_ ) (respectively, 

(F; _s_(l), ... , _s_(k)) ) denote �F((.!_(l), ... , .!_(k)
)) (respectively, 



(1 )  (k ) <ll F ( (_s_ , . . .  , _s_ ) ) ) , and l et 

(F ;  (s./)) denote (F ; t, . . .  , t) --=-------
k times 

13 

(F ;  (!) k) (respectively, 

(respectively, (F ; _s_, •. . , _s_) ) 
k times 

1. 6.2. Remark. It follows from the definition of F�, X that, if 
l (1 ) (k). FE F
k, X  then there exists an n E lN such that ( F ;  _s_ , ••• , _s_ ) 

= L 
1.:s_i 1< . . .  <i k2._n 

. (1 )  (k ) F((i1, . . .  , 1k)) f, . ... f,. 11 l k 
for a 11 

(_s_(l) , . . .  , .s.(k)
) E LollR)JN 

x . • .  x Lo(�) JN 

k frmes 

1.6. 3. Definition [13]. A Banach space X is said to satisfy 

the multilinear contraction principle (in short, M. C.P. ) if there exists 

a p E (0, 00) and a constant C > 0 (depending only on p) such that, 

for all n E lN ,  for all finite subsets {x . .  : i ,j = 1,2, . . .  , n} of 
l J 

X , and for all {s . . : i,j = 1,2, . . .  , n} c {-1, 1}, the inequality 
l J 

II L 
i , j = 1 

X . · S. · E� l) E� 2)
11 .2_ CII � X .. E� l) 

lJ lJ l J p i ,j=l lJ l 

holds, where (s�j), s�j) , . . .  ) for j = 1, 2 are independent 

copies of the sequence of independent identically distributed Rademacher 

random variables. We recall here that a random variable s with 

P(s = 1) = P(s = -1) = ¾ is called a Rademacher random variable. 

Pisier has shown that every Banach lattice satisfies the M. C. P . .  

Thus, in particular, JR satisfies the M. C. P . .  
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1. 7. Marcinkiewicz-Paley-Zygmund Condition 

It follows easily that if {(n};=l c L
P

(X) converges in the pth 

norm, then it converges in the qth norm for any O � q � p . A con

dition is stated in this section, under which the convergence of any 

in all the L (X) norms are equival ent for q 
0 � q � p This condition, originated from the papers of Paley-Zygmund 

and Marcinkiewicz-Zygmund, was formulated by Krakowiak and Szulga [12]. 

The following definition and the two propositions are adopted from [13]. 

1. 7. 1. Definition. A family C c Lp (X) is said to satisfy the 

Marcinkiewicz-Paley-Zugmund condition with • exponent O < p < 00 , if 

there exists o > O such that 

If Cc: Lp (X) satisfies the above condition, then it is written as 

C E MPZ ( p) . 

The following proposition is very useful. 

1. 7. 2. Proposition [10, 12] Let C c L ( X) . Then p 
( i ) The fo 11 owing three conditions are equi va 1 ent. 

(a) C E MPZ (p) 

( b) For any q E ( 0' p) ' sup � < 00 

(E C q 

( C) There exists a q E ( 0' p) such that 
II s lip sup

� (EC 
< 00 • 
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(ii) If C E MPZ (p) then CO E MPC (p) where CO is the L
O

(X)-

closure of C Moreover, for all q E [O, p] , the topologies induced 

by all the Lq (X) norms are equivalent. 

1. 7. 3. Proposition [13, p. /69]. Let _§_ = (01, 02, ... ) be a sequence 

of independent identically distributed symmetric a-stable random variables 

(i. e. the ch. function is given by 

L8 (t) = exp{-cJtJ a } , t E JR , 
1 

where c is some real number) Then the class 

{{F; (_§_)�: FE F�, X} E MPZ (p) for every O < p < a 
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CHAPTER I I 

COMPAR ISON THEOREMS 

2. 1. Introduction 

In this chapter, we develop the results needed to compare the 

multiple stochastic integrals with respect to a strictly r-SS (a) random 

measure M and the standard S (a) random measure M , when a,0 
a E (0, 1) U (1, 2) 

probabilities of M0 (A) 

Recall that Theorem 1. 2. 3 compares the tail 

and M 0 (A) , uniformly over A E R a, First 

we extend this result for an arbitrary (not necessarily symmetric) 

strictly r-SS (a) random measure M when 1 < a <  2 , and for a strictly 

r-SS (a) random measure M when O < a <  1 under the additional con

dition that the distribution of M (A) is not one-sided for at least 

one A E R Then we define multiple stochastic integrals with respect 

to M and M a,O 
simple functions. 

on the space of all ( Banach valued) Ck-measurable 

Finally, we use a result of Kwapien [14] and establish 

a theorem that compares the moments of the multiple integral relative 

to M with the corresponding moments of the multiple integral relative 

to M O • a, 

2. 2. Comparison of the tail probabilities of M (A) and Ma,O (A) 

The following theorem yields the comparison between the tail 

probabilities of M (A) and M 0 (A) . a, 

2.2. 1. Theorem. Let M be a strictly r-SS (a) random measure 

given by (1.3) and let M be a strictly stable random measure given a,B 
by ( 1. 2) 



(i) If 1 < a < 2 , or if O < a <  1 and the distribution of 

M (A) is not one-sided for some A ER , then there exist positive 

constants c1 , c
2
, and c

3 
which depend only on r, a, and r , and 

do not depend on A , such that 

for all t > 0 , and for all A ER . 

(ii) If 1 < a < 2 , then 

1- a 

½ P (2
CLI M_

a,o (A) I > t) .'S_ P (  IMa, r/A) I > t) 

1 
< (

a � 1) P (2
a I M

a,O (A)I > t) 

for a 11 t > 0 , and for a 11 A E R . 

In order to establish the above theorem, we need a preliminary 

result (Proposition 2. 2. 3) concerning a distributional property of 

M (A) . The proof of this proposition uses a formul a that is proved 

first in the following lemma. This l emma is a direct consequence of 

an inversion formula noted without proof by Pitman [ 18, p. 394] . We 

supply a proof of this formula in the case of strictl y S (a) and 

strictly r-SS (a) random variables. 

2. 2. 2. Lemma . 

ch. function 

For u > 0 , 1 et � be a random variable whose u 
is given by either 

17 

(2. 2) 

L� (t) = exp{-uit l a f Is l a k (ts) r (ds)} , t E JR, (2. 3) 
u J a 

0 
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where r, J0, and ka are as given in (1. 3), or 

Ls ( t ) = exp { -u I t I a ( 1 - i r3u tan ;a · s g n ( t ) ) } , t E JR , ( 2 . 4) 
u 

where lsul < 1 Then 

1 - 2 F (0) = .£ J
00 

1.. Im(LE (t)) dt , 
Su TI O t 'u 

where Fs is the distribution function of su , Im(Ls (t)) is the 
u u 

imaginary part of Ls (t) , and the integral in (2. 5) is a Lebesgue 
u 

integral. 

Proof. Pitman [18, p. 394] has shown that 

t Im (Lsu 
(t)) = J: Ku (x) cos tx dx , 

for every t > O , where Ku (x) = 1 - Fs (x) - Fs (-x) for x _.:::. O . 
u u 

We note that the integral in (2. 6) is an improper Riemann integral. 

Now we show that K satisfies the hypotheses of Proposition 1. 3. 1. u 

(2. 5) 

(2. 6) 

We observe that for x E [O, oo) we have Ku (x) = f1 (x) - f2 (x) , where 

f
oo

l 
f. ( X) 
1-?1 J

oo p ( I S I > X ) 
dx < u dx - 1 X 

For j = 1, 2 , we have 

dx < oo , (2. 7)  



where (2. 7) hol ds by Chebychev's inequal ity and the fact that 
Cl 
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El�ul-z < 00 (see [ 19]) Thus, since f. is monotonic on [O, 00) and 
J 

l im f. (x) = 0 for j = 1, 2 , it now fol l ows that the function K 
x- J u 

satisfies the hypotheses of Proposition 1.3. 1. Therefore, by Proposition 

1. 3. 1 , we have 

1 1 f
oo 

f
oo 

-2 K (O+) = - ( K (x) cos tx dx)dt , 
U TI 

Q Q 
U 

where the integral s in (2. 8) are improper Riemann integral s .  Since 

L� (t) is absol utel y integrabl e over �, the distribution function 
u 

F� · is absol utel y continuous. 
u 

at zero, and 

Hence the function K is continuous 
u 

2 f
oo 

f
oo 

K (0) = - ( K (x) cos tx dx) dt 
U TI 

Q Q 
U 

hence, by (2. 6) and (2.9), 

Final l y, we show that the integral in (2.5) is a Lebesgue integral . 

We know from [ 19, p. 142] 

c
1 

= sup I Im k ( t) I < 00 , 
t,!0 a 

that co 

and 
f J 

0 
given by ( 2. 3), then recal l ing the 

x > 0 , we have 

= inf Re k ( t) > 0 ' 
uo 

Cl 

l sl a r (ds) < oo . Thus, if L ( • ) � u 
inequal ity I sin x \ < X for 

(2. 8) 

(2. 9) 

is 



C '  1 
= -- < oo C '  a 0 
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(2 . 10) 

where Ca = Co ( J  Isla r (ds)) and Ci = C 1 (J Is l a r (ds)) . If  
Jo Jo 

su is given by (2.4), then using again the inequality l sin xi < x 

for x > 0 , we have that 

J
(J()

o 1 A lt i m(Ls (t))I dt 
u 

< f
00 

e-uta 
u • tan ;a · ta-l dt < 00 

- 0 

for al l u > 0 bec.ause a E (0, 1) U (1, 2) . 

2 .  2 .  3 .  Pro�osition. ( i ) If a E (0, 1) and the 

of M (A) is not one-sided for some A E R , or i f  a E 

there exist constants 
C 1 and 

C 2 ' depending only on 

and not on A ' such that 

• 

distribution 

(1 ,  2 ) , then 

r, a, and r 

( 2 . 1 1 ) 

for all A E R with µ (A) f 0 

of the random variable M (A) . 

Here FM (A) is the distribution function 



(ii ) Let a E ( 0, 1) U (1, 2) 

the ch . function L�(·) given by 
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If � is a random variable with 

L� (t) = exp{- \ t \ °" (1  - iB0 • tan TTt • sgn (t))} , 

where \ Bo \  < 1 , then 

( ) 1 1 -1 ( TTa) F O = - - - tan B tan - . � 2 TTa O 2 

If O < a <  1 , then M 1 (A) and M 1 (A) are one-sided for al l a, a,-
A E R  If O < a <  1 and if B (A) = Bo for all A E R  with 

(2 . 1?.) 

\ B0 \ < 1 then there exists a constant c E (0 , 1 ) which depends only 

on a and Bo such that 

1 1 -1 ( TTa) FM (A) (O) = 2 - TTa tan Bo tan 2 = c 
a, Bo 

(2.13) 

for all A E R with µ (A) t O . If 1 < a <  2 , and B is arbitrary 

as in (1. 2), then 

1 1 0 < 1 - a 2. FM ( A) ( 0)  2. a < 1 
a,B 

for all A E R  with µ (A) 1 0 . 

Proof of ( i ) . Let �u be given by (2. 3) . 
g: (0, oo) -+  [O , 1]  by g (u) = F� (0) for every 

u 
show that inf g (u) = g (uo) and sup g (u) = g (u1) 

u>O u>O 

(2. 14) 

We define 

u > 0 We first 

for some 
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For this, we first observe that for every u E ( 0, 00), 

there exists an integer £ (which depends on u) such that 

ur£ E [r, 1] and g (u) = g (ur£) . In fact, by the substitution 

w = ra t , we have 

since 

and 

-ur£ ta
f· I sla Re k (ts)r (ds) 

oo J a 

l_ _ l f  e 0 
2 'IT 0 

• sin (-ur£ ta 
J
J 

Isl a Im k
a

(ts) r (ds)) t dt 
0 

k ( ws) r ( ds) a 

l s i a Im k (ws) r (ds))l dw , a w 

I s l a Re k (ts) r (ds) a 

I r- (n-£) 
{ 1  - cos (ra tl sl )} r (ds) 

n 

n-£ 

= u J I r- (n-£) 
{ 1  - cos (ra w [ sl ) } r (ds) 

Jo n 

= uwa J I s I a Re k
a 

(ws) r ( ds) , 
Jo 

(2  . 15) 
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n 

if a E  (1, 2) 

n 

u J sgn (s) 
J o  

I r- (n-£) {-sin (ra
l s lt)} r (ds) 

n 
if a E  (0, 1) 

n-£ n-£ 
sgn (s) I r- (n-£) {r  a ls l w  - sin (r a l s l w)}r (ds) 

n 
if a E ( 1,2) 

n-£ 
u J sgn (s) I r- (n-£) {-sin (r a l s l w) } r (ds) 

Jo n 

Isla Im k (ws) r (ds) a 

if a E (0, 1) 

Hence, by Lemma 2. 2. 2  and (2. 14 ), we have g (u) = g ( ur,Q,) Now by (2. 5) and 
00 -rtac 1 

( 2 . 1 0 ) we see that I l - 2 g ( u ) I � f J
O 

C 1 e O ta-l 
d t < 00 fo r a 11 

u E [r, l] . Hence, by (2. 5) and the Lebesgue Dominated Convergence 

Theorem, g is continuous on [r, l] Therefore inf g (u) = g (u0) 
u>O  

ana sup g (u) = g (u1) 
u >O 

that when 1 · < a < 2 , 

for some u0, u1 E [r, l] 

F
s 

is not one-sided for all 
u 

[27, pp. 293-298]) ; when O < a < 1 , assuming that 

Finally, we note 

u > 0 ( see 

F
s 

is not one
u 

sided for some u > 0 ,  F
s 

is not one sided for all u > 0 (see 
u 

[20 ; 17, pp. 179-195]). Therefore, 



0 < g (u0) 2 g (u) 2 g (u1) < 1 for all u > O . 
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Hence O < g (u0 ) 2 FM (A) (O) 2 g (u1) < 1 for all A E R  with µ (A) f O 

Here we recall that the r appearing in (1. 3) and (2. 3) are identical. 

Proof of (ii). For u > 0 ,  let c,:u be a random variable given 

by (2 .4) . Then by (2. 5), we have 

J
oo a 2 1 -ut . a TTa 1 - 2 _F � ( 0) = TT t e s i n  ( ut Bu tan 2) dt . 

u 0 

Let ljJ: (0, 00) x [- 1, 1] -+ [-1, 1] be the function defined by 

2 r00 
1 -uta 

ljJ (u, v) = TT J o t  e sin (uta v tan ;a) cit for every 

( � 1 6 \ C.. l.  ) 

(u, v) E (0, oo) x [-1, 1] By the substitution w = uta , we see that 

00 

ljJ (u, v )  = __g_ f · e-w l sin (wv tan TTa) dw TTCI. Q W 2 

2 -1 ( TTCI.) = - tan v • tan -TTCI. 2 ' (2. 17) 

using methods of Laplace Transforms (see [4, p. A-197]) . We note here 

that (2. 1 7) holds for any a E (0, 1) U (1, 2) . From ( 2. 17) it follows 

that if B (A) = Bo for all A E R  ,, then (2. 12) holds. 

(2.1 7) it follows that if O < a <  1 and Bo = ±l , then 

Al so, from 

and FM (A) (O) = 1 if O < a < 1 and I Bol < 1 , then for all 
a,-1  

A E R  with µ (A) f O , 



1 1 -1 TTCl ) FM ( A ) (O ) = 2 - TTCl tan (Bo tan 2 
a,B0 
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which is in (0, 1 )  If  1 < a < 2 (and B i s  arbitrary as in (2. 4 ) ), 

then sup � ( u, v )  = � (u, -1 )  = _I_ tan-1 (-tan TT
2
a) = _I_ ( TT - �2

a ) TTCl TTCl 
and inf � ( u, v )  = � (u, 1 )  = 

TT
2
a 

tan-1 (tan ;a ) = ;
a 

(;a - TT ) = 1 

Thus, from ( 2. 16 ) , we have 

0 < 1 - l_ < F (0 ) < l_ < 1 
a - �u - a 

2 
= -

2 
Cl 

for a 1 1  u > 0 

µ ( A )  t O a 
In particular (2. 14 )  holds for all A E  R with 

1 

2. 2. 4. Remark . Let a E (0, 1 )  U (1, 2 )  Let � be a random 

variable with the ch. functi on L ( • ) � 
given by 

L� ( t )  = exp{ {- [ tl a ( l - iB · tan TTt • sgn ( t ) ) } }, t E IR , 

where [ B l �  1 . Zolotarev [28, p. 79] has calculated, in a way dif

ferent from that shown in the proof of Proposition 2. 2. 3, the value of 

the distribution function of � at zero using the integral represen

tation of its density function. 

Finally, to prove Theorem 2. 2. 1, we need the following l emma which 

is a slight modification of the weak symmetrization inequalities of 

Loeve [16, p. 257] 

2. 2. 5  Lemma [16]. Let � and �l be two independent identically 

distributed random variables . Then 
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[min{P ( s > 0 ) ,  P ( s  < 0)}] P ( l sl > t) 

(2. 18) 

for any t > 0 . 

and 

Proof. For any t > 0 , we have 

P ( s  - s1 > t) 2. P ( s > t, s1 < o )  = P ( s > t) P ( � � o )  (2. 19) 

P ( s - s1 < -t ) � P ( s1 > o ,  s < -t ) = P ( s  > o )  P (s < -t) (2.20) 

The equalities in (2. 19) and (2. 20) follow from the fact that s and 

s1 are independent and identicall y  distributed. Thus we have 

� P ( s  > t) P ( ;  < 0) + P (; > 0) P ( ;  < -t) 

� [min{P ( ;  > 0), P (s < 0)}] P ( l s l  > t) . 

The other inequality of Lemma 2.2. 5 follows as in [16,  p. 257 ] fl 

Now we prove Theorem 2.2. 1. 

Proof of Theorem 2.2. 1. 
'\., 

Proof of ( i ) . Let M '  be an independent copy of M and 1 et M 

be the symmetrization M - M' of M . Then for any A c  R with 



µ (A) f O , we have the ch. function L� (A ) ( · ) of � (A )  is given 

by 

LM(A) (t ) = exp {-µ (A) L ! tsl a l<
a

(ts) r (ds ) } , t E IR 

0 

where r is the symmetrization of r . By Theorem 1. 2. 3, there exist 

constants c1 and c2 which depend only on r, a, and r , and do 

not depend on A ,  such that 

(2. 21) 

for all t > 0 ,  and for all A E  R with µ (A) f O .  By Proposition 

2. 2. 3 (i) , there exist constants c1 and c2 which depend only on 

r, a, and r , such that 

0 < c
l 

� P ( M (A) < 0) � c2 < 1 (2. 22 ) 

for all A E R  with µ ( A) f O . Applying Lemma 2. 2.5 to M (A )  and 

M '  (A) and using (2 . 22 ), we obtain 

cP ( / M (A) I > t )  2 P (  IM(A) I > t )  5-- 2P (  / M (A) I > f) ( 2. 23 )  

for all t > 0 ,  where c = min (c1 , 1 - c2) . From (2 . 23) and (2. 2 1 )  
C I C I 

we get (2 .1), where c
1 

= -f , c
2 

= -f , ard c3 :::! c2 . l�e note that 

these constants depend only on r, a, and r , and they do not depend 

on A . 
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Proof of (i ·i ). By Proposition 2.2.4 (ii), we have that 

Q < 1 - l. :::_ P (M 
6 (A) < 0) < l. < 1 a a, - a ( ? . ?4 )  

'v 
for all A E R with µ (A) cf O . 

is  an i ndependent copy of M B . 

Let M B = � B - M' B , where M' B a, a, a, a, 

a ,  By (2.2 4 )  and Lemma 2.2.5 we have 

'v 
for all t > 0 , and for all A ': R with µ (A) 'I O . Since M (A) 

a, B 

is distributed as 2a M 
a,O (A) , we have 

-
p ( I M

a, B (A) I > t) = P (2
a I M

a,O (A)I > t) (2.26) 

for al l t > 0 , and for all A E R with µ (A) cf O . Now (2.2) follows 

from (2.25) and (2.26) . 

2.3. Definition of Multiple Stochastic Integral 

Let sk, X denote the space of all X-valued Ck-measurable simp le  

functions on 6k ; i.e., if f E sk, X , then there exist some el ements 

x
1
, x

2
, ... , xn of X and disjoint elements c

1
, c

2
, . .. , e

n of ck 

such that f = L x . Xe . Now we proceed to define on sk, X the 
j=l J j 

multiple int"egral for functions in sk, X with respect to an r - SS (a) 

random measure. 

2.3.1. Definitions. For any C E  Ck , we define 

n 
L 

j=l 
M (A. ) ... M (A .  ) , 

J 1 J k 
( 2 . 2 7 ) 



where, by Proposition 1. 4. 2, 
n 

C = U A .  x • • • x A . , a finite 
j=l J 1 J k 

disjoint union of elements of A
k

. Similarly, replacing M by M0 
(respectively, Ma,B ) in (2. 27 ), we define M� (respectively, M�,B ) 

2. 3. 2. Note. It is standard to show that Mk is well defined 
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(see Halmos [8 , p. 149] ) Indeed, if C E C
k 

has two representations, 
n Q, 

u A. X . . .  X A. and u B. X X B. each of which is a 
j=l J 1 
finite 

J k i=l 11 
disjoint union of elements 

n 
I M (A. ) 

j=l J 1 

n 
= I 

j=l 

n 

M (A. ) 
J k 

Mk (A. X 

J 1 
. . .  

1 
k 

of A
k 

, then 

X A. ) J k 

Q, 
Mk [ (A. = I 

J 1 
X . . . X A. ) n ( u B. 

J k 
11 j=l 

n Q, 
= I Mk [ U (A. n B. X 

J 1 11 j=l i=l 

n Q, 
= I I M (A .  

j=l i=l J 1 

Similarly we can show that 

Q, 
I 

i=l 
M (  B .  ) 1 1 

M ( B .  ) 1 k 

n B. ) . . .  11 

Q, n 
= I I 

i =l j=l 

i=l 

. . .  X A. n 
J k 

M (A. n B. 
J k 

1 
k 

X . . .  X 

B. ) J 1 
k 

) 

Thus, Mk (C ) does not depend on the representation of C . 

B. ) ]  l
k 

2. 3. 3. Definitions. For any f E s
k, X , we define the k -tuple 

stochastic integral I
k

(f ) with respect to semistable random measure 

M by 



n 

n 
= I x. Mk (C.)  

j=l J J 
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(2.28) 

where f = I X · Xe J 
for some xl' . . .  ' xn E X and disjoint elements 

j=l J 
cl, c2, . . .  , C of n c

k 
For f E Sk, X ' the k-tuple stochastic integral 

of f with respect to a strictly stable random measure M B is 
Cl, 

defined by replacing M by lvi B in ( 2. 28) . 
Cl, 

For f E S kX , we wi 11 

denote by I� (f) the k -tuple stochast � c  integral af f with respect 

to symmetric r-S S (a) random measure M .  Again by a standard procedure 

we see that for f E s k, X , I
k

(f) does not depend on the representation 

of f (see Ash [1, p. 36 ] ) 

2. 4. Comparison of Moments of J
k

(f) and I� , O (f) . 

The key to the development of the multiple stochastic integrals 

with respect to a strictly r-SS (a) random measure M (respectivel y, 

MO) for a larger class of B
k-measurable functions is the comparison 

of the moments of I
k
(f) (respectively, I� (f)) with the corresponding 

moments of Ia, O (f) 
k 

for f E S k, X . We present the comparison in the 

following theorem. 

2. 4. 1. Theorem. (i) If 1 < p < a < 2 , then there exist positi ve 

constants c1 and c2 which depend only on k, r, p, a, and r such 

that 

( 2 . 29) 

for all f E s k, X . Analogously, there exist positive constants c1 
and c2 which depend only on k, p, and a such that 
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(2. 30) 

for all f E s k, X . 

(ii) If O < p < a <  1 , then, replacing Ik by I� in (2. 29), 

an analogue of (2 . 29) holds for 

For the proof of this theorem we need the result whi ch follows. 

2 . 4 . 2 .  Proposition (Kwapien' [14, Theorem l ]). Let (111, 112, . . . , 11n) 

and (�1, �2, . . . , �
n
) be two finite sequences of independent symmetric 

random variables such that P (l11i I .:::_  t) 2. KP (L l �i I .:::_  t) for some con

stants K and L , for i = 1, . . .  , n , and for all t > 0 . Let X 

be a vector space and let Q: lRn _,. x  be a polynomial defined by 

L L C ·  · t . . . .  t .  
k 1 1 . . 7 1 · · · 7 k 7 1  7 k = 2_11< . . .  < 1k2_n 

where the coefficients c .  . are elements of X . Then for any 
7 1  . . .  7 k 

measurable convex function ¢: X _,. JR, the inequality 

( 2. 31) 

holds . 

The above result yields the following proposition. 

2.4. 3. Proposition . Let (111, 112, . . .  , 11
n
) and (�1, �2, . . .  , �

n
) 

be two sequences of independent symmetric random variables such that 

for some K and L , the inequality 
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P ( I n ; I 2_ t )  _::_ KP ( L l t,; ; I 2_ t )  

ho l ds for a l l t > 0 and for i = 1 ,  2 ,  . . .  , n . I f  p E ( 1 ,  2 )  

( re s pect i ve l y ,  i f  p E ( 0 , 1 ) )  , then 

(2 . 32 ) 

( re s pect i ve l y ,  

(2. 33) 

for a l l F E F� , X , where ..!l = ( n 1 , . . .  , nn ' 0 ,  . . . ) a nd 

.s. = ( s1 , . . .  , sn
, 0 ,  . . . ) . 

Proof . For  any F E F� , X , we con s i der  the  po l ynomi a l  Q F : lRn -+ X  

= I F ( ( i 1 , . . . , i
k

) ) t . . . .  t .  for 
1 . . 7 1  l k _::_ 1 1 < . . .  < 1 k_::_ n. 

a l l ( t 1 , . . . , t n ) E JR n , a n d the me as u r a b 1 e convex fu n c t i  o n ¢ : X -+ lR 

g i ven by ¢ ( x ) = J l x l lp for a l l x E X i f  p E ( 1 , 2 )  ( re s pect i ve l y , 

¢ ( x ) = -\ \ x J IP for a l l x E X i f  p E (0 , 1 ) )  . We have by Propos i t i o n 

2 . 4 . 2 t hat  

Thu s , u s i ng the facts  that  � l ( F ;  (_1J_) k
) I I

P 
= � \ QF ( n1 , . . . , nn

) \ JP , 

� \ ( F ;  (s_/) J \ p = El \ Q F ( s 1 , . . .  , sn 
) I \  p , and 

QF ( KL s1 , . . . , Klsn
) = ( KL ) k QF ( t,;1 , . . .  , s

n
) ,  we ha ve ( 2 . 3 2 ) a nd ( 2 . 3 3 ) . • 



2.4. 4 Proposition (Krakow i ak and Szulga [11, Cor. 2. 2]) . Let 
. T F E Fk,X , and let (s1, ... , sn) be a sequence of independent real 
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random variables such that for p > 1 , El s - I p < 00 and Es s = 0 for 
J J 

be a sequence of independent 

Rademacher random variables. Then there exists a positive constant 

C which depends only on k and p such that 

(2.34) 

for all F E  F:,x , where s. = (sj, ... , sn' 0, ... ) _ and 

Es = (E1s1, ... , En Sn' 0, ... ) • 

Combining 2. 4.3 and 2. 4.4 we get Proposition 2.4.5 which is an 

analogue of Proposition 2.4.3 for two finite sequences of independent , 

not necessarily symmetric, real random variables (s1, . .. , sn) and 

( nn, .. . ' nn) . 

2.4.5 Proposition. Let (n1, ... , nn) and ( s1, . . .  , sn )  be two 

sequences of independent, not necessarily symmetric, real random 

variables such that for some positive real numbers K and L the 

inequality P (  I n; I 2_ t) � KP (L l s; I 2_ t) holds for all t > O and for 

i = 1, 2' ... ' n . Let p E ( l, 2) ' and 1 et E I  s ; I p < 00 and 

En . = Es - = 0 for i = 1, 2, ... , n 
l l 

Then there is a positive constant 

c1 
= C (KL) , depending only on k, K, L, and p , such that 

(2.35 ) 



for all F E  F�, X , where IL = (111, . . .  , nn' 0, . . .  ) ,  and 
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..s. = (s1, . . .  , sn ' 0, . . .  ) and C is the constant appearing in (2. 34). 

Proof. Let be independent Rademacher random variables ; 

let (i i' . . . , E�) and (n i, · · · , Tl�) be copies of (El, . . .  , En) and 

( 171' . . .  ' lln ) respectively such that (El, . . .  , En) ' ( s1, . . .  , 

( n i' . . . ' Tl�) and (El, . . . , E�) are independent. Since 

of independent symmetric real random variables such that 

P ( l c: '. 11 '. I > t) = P (l n '. I > t) 
l l - l -

-2- KP (LI i::i 1 � t) = KP  (LI Ei si 1 � t) 

sn) ' 

for all t > 0 and for i = 1 2 n h b P · t · 2 , , . .. , , we ave y ropos ,  1 0n .4. 3, 

(2. 3n) 

for all F E F�, X , where �'.!l' = (E1n 1 , . . .  , E�ll�, 0, . . .  ) and 

Es = (E1s1, · · · , Ensn' 0, . . .  ) Applying Proposition 2. 4. 4  to the finite 

sequences (11 1 , . . .  , 11�) and (s1, .. . , sn) ,  we see . that there exist 

positive constants c
1 

and c
2 

depending only on k and p , such 

that 

and 

k p k p � I< F ; (_gJ > 1 1 . -2- c2 � I <  F: Cs.) > I I 

( 2. 37) 

(2. 38) 



Since �l (F ; (21) k )\I
P 

= �l (F ;  (21
1 t)l l p , we have, from (2 . 36), (2 . 37), 

and (2 . 33 ) that 

c
1
� 1( F ; (21) k)II P 

= c
1
� 1 ( F ;  (21' /> 1 1

P 

� � I ( F ; (� ' 21 '  ) 
k
) I I 

p 

2 . 4.6. Remark. Since Proposition 2. 4. 4 was available only 

the case of random variables E; 1 , . . .  , E;n such that EI E; . I 
p < 00 

J 
some p E ( 1, 2) and EE; . = 0 for j = 1,2, . . .  , n , we have 

J 
Proposition 2 . 4. 5  when 1 < p < a < 2 However, when 0 < a < 

conjecture that (2. 34) holds when 

in 

for 

1 , we 

(or, (M a (A1), . .. , M a (A ) ) ) , a finite sequence of independent 
a , µ a , µ n 

strictly r-SS (a) (or strictly a-stable) random variables whose 

distributions are not one-sided. Hereafter, when O < a <  1 , we will 

consider only symmetric r-SS (a) random measures. 

2. 4. 7. Lemma. For each f E S
k, X , there exist T F E  Fk, X and 

some subintervals A1, . .. , A
Q, 

of [O , 1] with Al < . . .  < A
Q, 

such 

that 

35 



Proof . Let f E s k, X Then 

disjoint elements c1, . . .  , e
n of 

there exist x1, . . .  , x E X 
n n 

c
k 

such that f = I x - xc j=l J j 

and 

Since C. E ck for j = 1, . . .  , n , by 
J 

(j) (j) 

Proposition 1 . 4 . 4 we can find 
£. 

subintervals 11 , . . . , \. of [O, 1] 
J 

and a . c A J such that 
J K 

C. = U I�j) 
x . . .  x I �j) we can find subintervals 

J ( i l, . . .  , i k) Clj 
1 1 1 k 

A1, . . .  , A
£ 

of [O, 1] such that A1 < . . .  < A
£ 

and such that each 

element of { I P): 1 _:_ j _:_ A ,  1 _:_ S _:_ k , and (i1, . . . , i
k
) E a/ 

can be expressed as a finite (disjoint) union of elements of 

that cj 
= 

Thus, there exist subsets 

u A X . • • X A 
(s1, . . . ,sk)�A-

sl sk 
J 

A£ such k 
for j = l,2, . . . , n Let 
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A = U A .  
j=l J 

We define F: lNk 
-+ X such that for each ( i 1, . . . , i 

k
) E JNk , 

O otherwise . 

Cl early 'T F E  Fk, X since f = I x-xc , we have 
j=l J j 

f = I F ( (i1, . . .  , i ))x A 
1 · 

. k A .  x . • . x . 
_:_ l 1 < . . .  < l k_:_ £ l 1 l k 

Finally, we prove Theorem 2. 4 . 1. 

Proof of Theorem 2. 4. 1. 

Proof of ( i ) . Let f E sk, X . Then by Lemma 2. 4. 7, there 

exist F E F r , x  and some subintervals A1, . . .  , A
£ 

of [O, 1] with 



A1 < . . .  < A£ such that f = E 
l..:.i 1 < . . .  < i k..:_£ 
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F ( ( i 1 ' · .. ' i k) ) XA. x ... xA. 

The re fore, 

k 
= ( F ;  ( M (A1),  ... , M ( A£),  0, ... ) ) . 

Similarly 

11 l k 

( 2 . 39 ) 

(2.40) 

By (2.1) there exist positive constants c 1 , c2 , and c3 , depending only 

on r, a, and r , such that 

for all t > O and for j = 1,2, ... , £ .  Since (2 . 41) holds for the 

sequences of independent random variables (M (A1) ,  ... , M (A£))  and 

(Ma,0 ( A1) ,  ... , Ma, O (A£))  , by Proposition 2.4.5 there exist constants 

c1 and c2 , depending only on r ,  a, k, p, and r such that 

k ..:. ll ( F ;  (M (A1), ... , M (A£),  0, ... ) ) lip 

(2 . 42) 
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for all F E  Fk, X . We note that these constants do not depend on the 

sets A1, ... , A£ . Hence, by (2.39) and ( 2.4C), we have ( 2. 29) 

In the case of strictly stable random measure, we have by (2. 2) 

1-a 

½ P (2a I M
a,O (Aj) I > t) .::. P (I M

a, S (Aj) I > t) 

1 
.:':. (a � 1) P (2a I Ma, S ( Aj) I > t) (2. 43) 

for j = 1, 2, ... , £ 

ment, we get (2.30) 

Replacing (2.4 1) by (2. 43) in the above argu-

Proof of (ii). If 0 < p < a < 1 , then by Theorem 1.2. 3  there 

exist positive constants c1 and c2 , depending only on r, a, and 

r , such that 

for all t > 0 and for j = 1, 2, . .. , £ . Thus, by (2.44) 

(M0 (A1), . . .  , M0 (A£))  and (Ma,O (A1), . . .  , Ma,O (A£),) are two finite 

sequences of independent real random variables that satisfy the 

hypotheses of Proposition 2.4. 3 (ii ). Hence there exist positive con

stants c1 and c2 , depending only on r, a , and r , such that 

k C1ll ( F ;  (M
a,O (Al), . .. , Ma,O ( A£), 0, ... ) )l i p 

k � ll ( F ;  ( Mo (Al),  ... , Mo (A£), 0, ... ) ) ll p 

. 
( 

k � C21 1  (F ;  ( M
a,O (A1), .. . , Ma,O A£), 0, .. . ) ) II p (2. 4 5) 



for every F E  Fk, X We note that these constants do not depend on 

A1, . . .  , A
Q, 

or F .  Thus it follows from (2. 42), (2 . 43) and (2.4 5) 

that 

for all f E sk, X whenever O < p < a <  1 . • 
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CHAPTER I I I  

MULT I PLE STOCHAST I C  INTEGRALS 

Recall that in section 2. 3 of Chapter I I, we defined the multiple 

stochastic integrals IO 
k of Banach valued C

k
-measurable 

simple functions with respect to r-SS (a) random measures. In this 

chapter, we extend the definitions of these multiple stochastic inte-

gra ls I O 
k to a larger class of Banach valued B

k
-measurable 

functions on 6
k 

For the integral I
k 

we shall restrict oursel ves 

to the case 1 < a <  2 We do this because of the unavailability of 

analogs of the crucial inequalities (2. 34) and of Proposition 5. 1 of 

[13] for the case O < a <  1 . Thus, throughout this chapter, M and 

M will represent, respectively, a strictly r�ss (a) random measure a, S 
and a strictly S (a) random measure with the restriction that 

1 < a <  2 . Our approach in extending the definitions of the integrals 

I
k 

and · I � is similar to that of Kra kowiak and Szulga [10] for the 

symmetric stable case. 

3. 1 .  Extension of Mk to B
k 

In section 2. 3, we defined the finitely additive vector measures 

measure 

The proof is 

Theorem 5.4 ]  

on 

for 

c
k 

Now we extend from c
k 

to 

1 < a <  2 and the vector measure 

B
k 

, the vector 

Mk for all 0 
similar to the one given by Krakowiak and Szul ga [13 , 

in the case of the vector measure Mk 
a, O 

Before vie 

state the extension theorem, we state two propositions which are 

a 

consequences of Theorem 2.4 . 1. The first proposition and the last part 



of the second proposition give a relationship between Mk and the 

1 control measure' µk on Ck , where µk is the restriction of the 

measure µ� µ to .6
k 

. This rel at i onshi p is crucial to the 
k times 

proof of the extension theorem. 

3. 1. 1 Proposition. (i) Let 1 < p < a <  q . Then there exist 

positive constants C '  and 1 c2 which depend only on a, r, p, q, 

µ ([0, 1]) , k, and r such that 

41 

( 3 .  2 )  

for all f E S k-, lR . Analogously, 

(3. 3) 

holds for all f E s
k, lR , where Ci and c2 depend only on a, r, p, 

q, k, and µ ( [0, 1]) 

(ii) If O < p < a <  q and a f 1 , then there exist positive 

constants Ci and c2 which depend only on a, r, p, q, µ ( [0, 1]), 

k, and r such that 

for all f E \ , JR .  

Proof. By Proposition 5. 1 and Corollary 5.2 of [ 131 (see also 

(3. 4 ) 

[10 , p. 12 ]) it follows that there exist positive constants C '  and C 1 1  
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whi ch depend onl y  on a ,  µ ( [O, 1 ]), k, p, and q such that 

( 3 .  5) 

for all f E s k, JR  . Recall from 2 . 4 . 1 that if 1 < p < a , then 

( 3 . 6) 

( 3 .  7) 

and if O < p < a and a 1 1 , then 

( 3 . 8) 

for all f E sk, JR  . Thus ( 3 . 5) together with ( 3 . 6), (3 . 7), and ( 3 . 8) 

yields ( 3 . 2), ( 3 . 3), and ( 3 . 4) . 

3 . 1 . 2  Proposition . ( i) [ Krakowiak and Szulga, 10, 13] . The class 

{ I� ' o ( f) :  f E. sk, X } E MPZ ( p) for every p E. [O, a )  

( ii ) Let C = { I k ( f ) : f E S k, X } ( C = { I k ( f) : f E S k, X } , 

respectivel y) .  Then c0 E MP.Z ( p) for every O < p < a . Reca 1 1  that 

c0 is the L0 ( X)-closure of C . ( Hence, for any O < p '  < p < a , 

the LP , and LP norms of elements of C are comparable ; see 

Proposition 1 . 7 . 2) .  

( iii) If 1 < a < 2 ,  then ( 2 . 29), ( 2 . 30) , ( 3 . 2), and ( 3 . 3) hold 

for every p E ( 0, a )  . 



Proof 

exist F E  

Al < . . .  < 

of ( i ) . Let f E S k , X 
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Then, by Proposition 2. 4. 3, there 
T 

Fk, X and subintervals A1, . .. , An of [O, l] such that 

A and n 

I F(i1, · . .  , i
k)) M o(A . ) ... M o(A . ) . 

1 . < . a, 1 1 a, l k 2.1 1 .. . < i k2.n 

Since for any A E R , 
1 

has the same distribution as 

µ (A)a e , where e is a symmetric a-stable random variable, we have 

that I�' O (f) has the same distribution (hence the same moments) as 

( G ; ( 8)� , where e = (e1, e2, ... ) is a sequence of independent 

symmetric a-stable random variables and 

by 

k G :  lN -+ X is the map given 

1 
F ( (i1, . . .  , ik)) (µ(A . ) . . .  µ (A. ))a 

1 1 l k 

if 1 2. i1 < . . .  < ik 2. n , 

0 otherwise. 

Thus, since {( G ;  (1) k ) :  G E F�, X} E MPZ (p) for O < p < a , we have 

by Proposition 1. 7. 3, that { I�' O (f) : f E sk, X} E MPZ (p) , for 

0 < p < a . 

Proof of (ii).  We first show that C E MPZ ( p) for every 

p E [O, a) and 1 < a < 2 Now, for 1 < p '  < p < a , Theorem 2.4. 1 

yields positive constants c1 and c2 which depend only on r, a, 
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k, p ' , p, and r such that 

for all f E S k , X . From (i) above, we have { Ir' O (f): f E Sk, X} E MPZ (p) 

for every p E [O, �) Hence it follows from Proposition 1. 7.2 that 

C E MPZ (p) for every p E [O, a ) Thus, by Proposition 1. 7 . 2 (i i), 

c0 
E MPZ (p) for every p E [0, a) . The other case follows similarly. 

Proof of (iii). We show that an analogue of (2.29) holds for 

0 < p _:_ 1 < a <  2 ; the proofs of the other cases are similar. Let 

1 < a ' < a . Since O < p _:_ 1 < a '  < a , we have, by part (ii) above 

and (2.29), 

similarly, 

where 



\x,p = 

and 

I Ya,p 
= 

sup 
f ES

k , X  

sup 
f E.\, x 

I I I k 
( f )1 1  Cl I 

11 I k 
( f )I I p 

I I  r� · 0 (f)1 1 a' 

I I I 
a' O ( f )1 1 k p 

are finite by part (ii) and c
1 

and c
2 

are the constants appearing 

in (2.29). • 
Now we state and prove our extension theorem. 
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3.1.3 Theorem. Let 0 < p < a <  q . If 1 < a <  2 , then Mk 

extends uniquely to a countably additive L
P

( �) valued, µ
k-continuous 

vector measure on B
k 

Also, there exist constants c
1 

and c
2 

which 

depend only on r, k, a, µ ([0, l])  , and r such that 

for all A E B
k 

, where \ I Mkll is the semivariation of Mk on B
k 

Analogously, the above holds for M� where a E (0, 1) U ( 1 .  2) and 

for Mk when a E (1, 2) a,B 

Proof. By Proposition 3. 1. 1 and 3. l.2 (iii), there exist positive 

constants c
1 

and c
2 

which depend only on a, r, µ ([0, l]), k, p, 

q, and r such that 

1 1 

c
1

(/ (A))a 2- I \ M
k (A)\l p 2- c

2
(/ (A))q (3.10) 
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for all A E C
k 

. Using the inequalities ( 3.10), we now extend Mk , 

f:rom Ck to Ck first, and then to B
k 

. Let A E C
k
· .  By Proposition 

co 
1 . 4 . 4, �here exists an increasing sequence of sets {Aj}j=l c C

k 
such 

that U A . = A By the finite additivity of Mk on C
k 

, for 
j=l J 

j > 9., , we have 

By (3. 10), we have 

1 

!! M
k (Aj) - Mk (A

9.,
)[ ! p � C2 (/ (Aj1 \ A

9.,
))q = 

Thus, since k co 
{µ (Aj)}j=l is Cauchy, we have k co 

that {M (Aj)}j=l is 

Cauchy in L
P 

( JR) and hence is convergent in L (JR) We define 

Mk ( A) as the L ( JR) limit of {M ( Aj)}j=l p Now we show that Mk 

is well defined and finitely additive on c
k 

Let A E Ck and 
co co 

let { A.}. 1 and {B.} . 1 be two increasing sequences of sets in 
J J = 

co J J = 
co 

ck 
such that U A . = A = U B. 

j=l J j=l J 
Taking 

we get that 

1 
= c2 (/ (Aj 6 Bj) ) q 

which tends to zero as j � co . Therefore, 

f = X - X A .  B . 
J J 

in (3.2), 



and hence Mk is well defined on C
k 
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For disjoint sets A, B E  C
k 

, 

let 
co 

{ A . } . 1 J J = 
co 

and {Bj}j=l be two increasing sequences of sets in C
k 

co 

such that A =  U A. and B = 
J j=l 

co 

U B . • 
j=l J 

Then Mk (A U B) = lim Mk (A. U B.) 
j-),CO J J 

= lim (Mk (A.)  + Mk (B.)) = Mk (A) 
j-),CO J J 

+ Mk (B) by the definition of Mk on 

ck 
and the finite additivity of Now we show that (3. 10) 

holds for every A 

creasing sequence 

holds for each A. 

E C
k

. In fact, if we let A E:  C
k 

and let the in-
co 

{A.}�=l c C
k 

be such that U A . = A ,  then ( 3 . 10 )  
J J j=l J 

J 
and hence, by the definition of Mk (A) , taking the 

limit as j -+ co , we obtain that ( 3 . 10 )  holds for all A E C
k
· Thus 

Mk < <  µ k on C
k 

and, by Theorem 1.5. 2, Mk can be extended to a 

countably additive µ
k-continuous vector measure on B

k 
. 

F i nally, we show that the semivariation of the vector measure Mk 

on B
k 

satisfies (3.9) . For this, first we show that if B1, ... , Bn 
are disjoint elements of C

k 
, and if s1, ... , sn E [-1, 1] , then 

1 

n k - n k c1( Z: j s. l a µ (B. ))a 2. I [  Z: s. M (B . )l [ p · l 7 7 ,· =1 7 7 1 =  

By Proposition 1. 4. 4, there exist increasing 

{Bij)}j=l' "  . .  , {B�
j)}j= l c ck 

such that Bi 

sequences 

= � B � j) for . 1 7 J = 

j = 1, 2, . . .  , n ; since for each 

disjoint, we have by (3.2) that 

· th t B1
(j), . . .  , Bn

(j) 
J , e se s 

(3.11) 

are 



48 

(3. 12) 

Thus, by the definition of Mk on C
k 

, letting j + 00 in (3. 12) we 

obtain (3. 11). Now let s1, . . .  , sn E [--1, 1] ,  and let B
1
, . . .  , Bn be 

elements of B
k 

which form a partition of B E  B
k 

. By the nature of 

the extension (in Theorem 1. 5. 2 ; see [5, p. 29]) of Mk from C
k 

to 
. ( j ) oo ( j ) oo -

Bk , we can fi nd sequences {B1 }j=l ' '  . .  , {Bn }j=l c Ck such that for 

each j , the sets Bi
j) , . . .  , B�

j) are disjoint and such that, for 

i = 1, 2, . . .  , n , the limit lim i (B�
j) 6 B.) = 0 and Mk (B.) is the 

. l l l 

L
P

(lR) limit of Mk (Bp)) a/j + 00 • From (3. 11), for each 

j = 1, 2, . . .  , we have that 

Thus, as j + 00 , we have 

1.. n 
c

1
( � \ s. \ a / (B . ))a .:. I I I s. Mk (B,.)\ \ p 1 1 . l 1 i=l , = 

Since \ s1 \ ,  . . .  , \ sn \ < 1 ,  we get 

(3. 13) 



Now, 

1 1 n 
k - n 

k 
n 

k -c
1

( I l s- l a µ (B. ))a < II I s .  M (B. )ll p 2. c2 ( I µ (B.))q 
l· -- 1 

1 1 - . l 1 1 . l 1 1= 1= 
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n 
k 

l min (l,p) 
[C 1 ( . I I s . I a µ ( B . ) ) a J 

[-1, 1 ] 1=1 
l l 

n 

< sup I I I s.Mk (B. )ll ;in (l,p) 
s1, . . .  ,s� [-1,l] i=l 1 1 

Thus, taking the supremum over all finite sequences (s
k
) with 

! s
k
i 2. l for all k , and over all finite partitions of B E B

k 
, we 

obtain, from inequalities (3 . 14), 

for some constants c
1 

and c2 which depend only on r, a, k , p ,  q, 

µ [O, l] , and r . • 

3. 1. 4  Definition. Let X be a Banach space. 

(i) For any B E  B k  and any B
k
-measurable X-val ued simple 

function f on 6
k 

, we define 

f f dMk = � x .  Mk (B . n B) 
B j=l J J 

(3.15) 
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where Bl '  . . .  ' B are disjoint elements of B
k ' xl' . . .  ' xn E X , and n n 

J
B 

f dMk 
J
B 

f dM� f = I x. XB The integrals and are 
j=l J a, S 

J 

defined similarly. 

( i i ) Let f be an X-valued B
k
-measurable function on i\ 

We say that f is Mk-integrable if there exists a sequence 
co 

{ f . } .  1 l 1= 

of X-valued B
k
-measurable simple functions on 1\ such that 

f . -+ f 
J 

k 
in measure µ , as 

and such that, for any B E B
k 

, the sequence 

J k co 
{ 

B 
f j dM } j=l converges in 

we define the integral f 
8 

f dMk as the L
0

(X)-limit of the sequence 

{ f  
8 

fj dMk}j=l . Similarly, we define the M�-integrability and 

M�, S-integrability of an X-valued B
k-measurable function on 6

k 
and, 

in the case of an integrable function, the corresponding integral. 

Before showing that the above integrals are well defined, we show 

that for each B E B
k
' and for any sequence 

X-valued simple functions, the convergence of 
{ f . }  °'.' 1 J J

= 

{ J  f .  
B J 

of B
k
-measurable 

k co 
dM }j=l in 

L0 (X) is equivalent to its convergence in L
P

(X) , O < p < a. lrJe 

recall from Proposition 3.1. 2 that c0 � MPZ (p) for O � p < a , where 

C = { Ik (f) : f E. s k, X} . Hence it is sufficient to show that the 



Gl 

integral f 
B 

f j dMk E c0 for any B E B
k
· and for any B

k
-measurable 

simple function fj This will be established in Proposition 3 . 1 . 5. 

3 . 1 . 5 Proposition . Let X be a Banach space and let 

C = { I
k

(f): f E s k, X} . Then xMk (B) E c0· for any x EX and 

BE B
k 

, where c0 is the L
0

(x) closure of C 

Proof . Let x E X and let G = { B E Bk: xMk (B) E CO } 

that G = B 
k 

by showing that G is a monotone cl ass (see Ash 

p. 19]) and that G � C
k 

Cl earl y, 

We prove 

[ 1 , 

and hence, { A.}"'.° l C G  
J J = be an increasing sequence of 

Since Mk sets such that A = U A. is a countably additive Lp ( lR) -
J· = 1 J 

k 00 

valued vector measure on B
k 

, we have that the sequence { M  (Aj)}j=l 

converges to Mk (A) in LP ( JR) , 0 < p < a Hence the sequence 
k 00 k {xM (Aj)}j=l converges to xM (A) in probability ; consequently 

X r·l ( A) E·c0 - and A EG ·. Since C
k 

c G , using Proposition 1.4. 4 to 

find, for any 
00 

00 

A E Ck , an increasing sequence { A} j=l c C
k 

such that 

A = U A. , we now have that A E G ·. Finally, we show that G is 
j=l J 

closed under compl ementation . 

Let AEG . Since AEG and 6.
k
EC

k
c G , there ex i st 

sequences { I
k

(fj)}j=l and { I
k
(gj)}j=l c C , which converge in 

probability to xMk (ll
k
) and to xMk (A) , respectively. Now the 

sequence { I
k

(fj - gj) }j=l c C and 



( p k k Ik fj - gj) = I
k

(fj) - I
k

(gj) --r xM (L\) - xM (A) 

k 
= xM C\ \ A) 
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as j --r co Thus 1\ \ A E G if A E G • Thus, we have shown that G 

is a monotone class containi ng ck and hence, by the Monotone Class 

Theorem (see Ash [l, p. 1 9 ]), we concl ude that G = B
k 

. • 

3. 1.6. Proposition. For each Mk -integrable function f , and 

each B E B
k
· , the i ntegra 1 f 

8 
f dMk is we 11 defined. 

We first prove this proposition when f is a real valued B
k


measurable function on 6
k 

, and then we prove this when f is a 

Banach valued Bk-measurable function on 6
k 

. The proof of this 

proposition when f is real valued is taken from Dunford and Schwartz 

[6, p. 324] 

Proof of Proposition 3. 1. 6. If f is real valued, let { f . }"'.' 1 J J = 

and {gj}j=l be two sequences of real valued B
k
-measurable simple 

functions such that {fj}j=l and {gj}j=l converge to f in measure 

µ
k and such that for each B E  B

k 
, the sequences f k co { 

B 
f . dM } . l J J = 

and f k co { 
B 

g j dM } j = J converge in LO ( JR) (and equivalently, by Pro po-

sit ions 3 , 1 .2 and 3. 1.5 in L ( JR) p for 0 < p < a )  For each j , we 

define \)j ( 8) = f 
B 

h j dMk for every B E B  , where h. = f. - g. 
k J J J 

{vj (B)}j=l converges to zero in W(; show that for each B E B
k
· , 

L p ( JR) , 0 < p < a . Si nee Mk is a /-continuous Lp ( JR) -valued vector 

measure on B
k 

and hj is a simple function, vj is an Lp (JR) -

valued µk-continuous vector measure on B
k 

. Also, we know that the 
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L
p

( X ) - l imit l i m \J . ( B )  exists for every B E B
k 

. Hence , by the Vi ta l i -
j--+m J 

Hah n - Sa k s Theorem ( see Dunford  and  Schwartz [ 6 ,  p .  1 58 ] ) ,  we have 

l i m \J • ( B )  = 0 , u niforml y for j = 1 , 2 ,  . . .  
k J 

µ ( B )-+O 
E > 0 , there exists a o > 0 such  that , if  

/ ( A ) < o ,  then ! I f h .  dMk
l l  

m i n ( l , p ) < E 
A J p 

Thu s , fo r any 

( 3 . 1 6 )  

fo r a l l j 
k 

S i nce h . 1!__> 0 as 
J 

j -+  oo ,  there exists N E lN such  

that µ { s : l hj ( s ) I  > d < o for  a l l 

1 1  J h . dMk\ I min ( 1 ,  p )  
B J p 

j � N Now 

( 3 . 1 7 ) 

Since hj i s a rea l va l ued  simp l e fu nct i on  and  \ hj ( s ) I  < E for a l l 

s f  B \ { s : l h . ( s ) \ > d ,  we k now that 
J 

11 J
r 

h . dMk
j I 

min ( 1 ,  p )  
B'-{ s :  I h . ( s) I > d  J p 

J 

.2. Emi n ( l , p )
I I M

k
l l  ( B\ { s : l h . ( s ) I > d )  ( 3 . 18 )  

J 

Therefo re , from ( 3 . 1 6 ) , ( 3 . 1 7 ) ,  and  ( 3 . 18 ) , we have 
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l l j 
B 

hj dM� / ;
i n (l,p) 

2. E:mi n (l ,p)/ ! Mk
l l  (B\ {s : / hj (s) ! > d )  + E 

,, min (1 . p ) 
2. c2 (s qµ � (B)) q + E: . 

Hence, for each BE B
k 

, lim v. (B) = O 
j---l-00 J 

in L ( JR ) 
p 

When f is Banach valued it suffices to show that if {f.}� 1 J J = 

is a sequence of X -valued B
k
-measurable simple functions such that 

k r k fj + O i n  measure µ and, for a f i xed BE B k J 8 
fj dM + Z8 

i n  as j 
-+ 00 , then z8 = O a.s. Since each f .  is a simple 

funct i on, we have 

k 00 
for any x* E X*  , the dual of X . S i nce {J

B 
f. dM } . l J J = converges 

to ZB in L0 (X) , there exists a subsequence J 
k 00 

{ f. dM }
£=l 

B J Q, 

verg i ng to z8 a.s. , and hence for each x* EX* , we have that 

con-

x* ( J f . dMk) (1.0) + (x* • z8) (i!) for almost all w as _Q, + 00 • There
B J Q, 

f 
) k 1 oo 

fore the sequence { 
8 

(x* • fj
Q, 

dM 1
Z= l converges to x* · z8 

µ k  i n L0 ( lR) . S i nce f. -> 0 as Q, -+  00 , we note that the real valued 
J Q, 

{ }
00 

t . k sequence x* • fj Q,=l converges o zero 1 n measure µ for each 

x* EX* Thus by what we showed i n the real-valued case , we have 

x* . ZB = 0 off N * with P (N *) = 0 Now we show that Z = 0 
X X B 

S i nce the sequence t J
B 

f .  k 00 a.s. dM } Q,=l converges to ZB a. s. , 
J£ 

there exists a measurable set NO wi th P (N0) = 0 such that 



Since f .  is a simpl e function for each Q, , we have 
J Q, 

{ (J f .  dMk ) ( w ) : w E D ,  N0 } is finite di mensional and hence 
B J Q, 

oo r k 
U { ( j f .  dM ) ( w ) : w E D "'- N

0
} is separabl e . Therefore, 

Q,=l B J Q, 

{ Z ( w ) : w E D \  N0 } is separabl e. 

Let D = {y
1
, y

2
, ... } be a countabl e  dense subset of 

{ Z (w ) : wED \. N
0

} . By the Hahn-Banach Theorem, for each ( nonzero ) 

y .  E D  , there exists 
J 

If w f/ N0 U (l) Ny� ) , 
J J 

Suppose that ZB ( w )  f 0 

I I ZB ( w ) I I  
J / ZB (w ) - YjJ I < 3 

Th us, 

This impl ies that 

YJ E X* with I I YJ I I = 1 and YJ (Yj ) = I I Yj I I  

then YJ ( ZB ( tu ) ) = 0 for j = l ,  2 ,  . . . . 

Then there ex i sts a nonzero y .  c D w i t h  
J -

Therefore 

5 5  



whi ch i s  absurd . Hence, 
co 

P ( NO U [ � Ny�] ) = 0 • 
J = l J 

co 

Z = 0 ff N U [ U N · l B o O j= l yr 

k 
Si mi l arl y, the i ntegral s with respect to M0 

and 

wel l defined for their respecti ve integrabl e functions .  

with 

k 
M a Cl , µ 
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• 

are 

3 . 1 . 7  Remark . In Definition 3 . 1 . 4 (ii), we ca n repl ace the sequence 

{f
J
.}

co

J-= l 
of B

k
-measurabl e simpl e functi ons by a sequence {g.}� 1 of 

k J J = 

C
k
-measurabl e simpl e functions such that gj _µ _> f as j � co , and 

such that { f  
8 

gj dMk}j= l 
converges in L0(X) . 

Proof . Let { f . }  be as in Defi niti on 3 . l. 4(ii) . Suppose that 
J 

£ 
J (J") ( ") ( ") for each j , f. = I x. x ( . ) , where B J , . . .  , B J are disjo i nt J i = l B.J l tj 

( j ) l ( j ) el ements of Bk a nd x1 , . . . , x i. E X . Let q > max( l, a) and 

0 < p < a . Now for each j , we wil l find gj E S 
k, X  such that 

mi n ( l, p )  1 I I  f. - g - I I < -:- and 
J J q J 

! I f f. dMk - f . dMki\
mi n( l,p) 

B J . 
B 

g 
J I p 

< 

C2 

for every B E  B k , where c2 is the constant a p pearing in (3. 9 ). 

Caratheodory Theorem and Proposition 1 . 4. 4  there exists A�j ) E C
k 

such that 

(
.) l min( l,p) 1 6 A. J ) q < ------�....------

, 2J· 
£ . max (\ ! x�

j
)\ \ P , \I x. \ ! )  J l l 

l<i<Q,. 
- - J 



9, . 
J ( j ) for i = 1, . . .  , !lJ . .  For each j , we define g .  = L x .  x ( ") J i=l 7 A . J 

7 

C l earl y g
j 

E s
k,X and, by the triangl e  inequal ity, the property of 

the semivariation, and (3 . 9), it fol l ows that for each BE B
k 

, we 

have 

1 1  J f . dMk - J g . dMk
l I 

min (1, p) 
B J B J p 

S7 

Q, • Q, • 

= I I i x �j) Mk(B n B �j) ) - i x �j) Mk(B n A �j))l l
min(l,p) 

i= l 7 7 i=l 7 7 p 

Q, 
J 

= I I  L 
i=l 

Q, • J 
= I I L 

i=l 

Q, • 

< i [ l x �j)
l l

min(l,p) [ I Mk(B n (B �j)"- A �j)))[
l
mi n(l,p) 

i=l 7 7 7 p 
Q, • 

+ i l [ x �j)
l l

min(l,p )  
l [ Mk(B n (A �j) , B �j)) )[ [ min(l,p) 

i=l l 7 l p 



Also, 

Q,, . 

C:. C2 i{l 
l l x ) j)

l l
min ( l,p) / ( B n ( B ; j ) \ Aj j )

))
¼ min ( l,p) 

Q,, .  J 
.S. 2C2 

Z:: i=l 
l
l x � j )

l l
min ( l,p) k ( B ( j) ( j) irni n ( l,p) 

1 \J i 6 A; ) 

l l
f - - 9 - l lmin ( l ,p) 
J J q 

I 
Q,,
J. Q,, .  1 

( j ) J . ( = ( I I _ z::  xi X
g (_ j ) - z:: x ( j) 

l i q d k
)q

m r n l ,p) 

t,,k 1 =1 i= l i \� j ) \J 

Q,, .  J 
.s_ [2 ( Z:: 

i=l 

l l 

+ ( f l \ x � j )
l l q x ( J. ) ( " ) d/)q}] min ( l,p) 

6k A i  \ B/ 

l l x ) j )
l l

q /( sj j)
;, Aj j)

))¼] min ( l,p) 
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Q,j 
( ' ) . (1 ) k ( ") ( ") l min (l,p ) 

< 2 
i
�
l 

llx/ 1 1 m m  , p  (µ (B/ 6 A/ ))q 

k 
Now g .  l!.._> f as 

J 
j -+ 00 since 

for any o > 0 , we have 

f. 1!.._> f as 
J 

j -+ 00 

1 1 9- - f .ll q k 0 < J J g + i.i { s : I I f 
J
. ( s ) - f ( s ) I I > -2 } 

- (f )q 

q 

min (l,p) 

In fact, 

1 
< -;- • 

J 

< (J;_J -}q + / {s: ll f . (s) - f (s) il > f} , J (2) J 

and, s i nee 
k 

f . �> f as 
J 

j -+ oo ,  we have that g .  _µ -> f as j -+ 00 

J 
Finally, we show that for any B E B

k 
, the convergence of 

{ f  
8 

fj dMk }j= l in L0 (X) (equivalent l y  in Lp (X)) , implies the 

J 
k 00 

convergence of { 
B 

gj dM }j= l in L0 (X) (equivalentl y ,  in Lp (X)) 

Let E > 0 be given . Since 

.::. 1 1  J g . dMk - J f .  dMk
l I 

min ( 1 , P) 
B J . B J p 
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+ 11 J
r 

f dMk - f g dMk
l I 

min ( 1 ,  P) 
B 9., B 9., p 

< ! c2 + 1 1 f f . dMk - f f n dMkl I min ( 1 , p) + i c2 - J  B J B X, p X, 

60 

and 
r k co 

{ J ,f. dM } . l converges in L ( X) , there exists N E lN such 
B 

that for 

J J = 

any j, 9., 2. N we have 

p 

l l f B 
gj dMk 

- f B 9 9., 
dMkll ;

i n ( l,p) < E . 

Thus the sequence 
r k co 

{ j 
B 

g j dM } j = 1 converges in Lp (X) and hence in 

3. 2 .  Mk- Integrability 

In this section we prove two results . First, in Theorem 3.2. 1 

we show that the class of all Mk-integrable functions (or M� 

integrable functions) is the same as the class of Mk 

0-integrable a ,  

functions. Second, using Theorem 3.2.1, we prove Theorem 3. 2. 2 which 

is an analogue of Theorem 5. 5 of [13] i n  the case of Mk (and M�) . 

This theorem states an equivalent but simpler condition for the Mk

integrability of a Banach valued B
k
-measurable function when the 

Banach space satisfies the Multil i near Contraction Principle. 

3.2.1 Theorem. For any Banach space X , a B
k
-measurable function 

f: 6
k 

7 X is Mk-integrable (or M0
k-integrable) iff it is Mk 

a , O 
integrable. 

Proof. Let 

exists a sequence 

f be Mk 
0-integrable. a, By Remark 3. 1. 7, there 

co 
{fj}j= l c: s

k , X such that f _ _  µ _> f '  
J 



6 1  

I f . dMk 
O 7 J f dMk 

O i n  L
0

( x )  a n d  equ i va l e nt ly  i n  L
p

( X )  , 
B J a , B a , 

0 < p < a , for every B E B
k 

Suppose that f i s  not Mk - i ntegrab l e .  

Then there ex i s t s  a B E B
k 

and  an  c:: > 0 s uch  that  for a ny N E }j 

there ex i s t  J
. £ > n s uch  that n ' n 

1 1  J ( f · - f n ) dM� I p .?_ € • 
B J n !<.,n 

( 3 . 1 9 )  

By the Caratheodory Theorem and Propo s i t i o n  1 . 4 . 4  there ex i st s  a 

sequence { Am};= l  e e
k 

such  that / ( B  6 Am ) < ¼ for m = 1 , 2 ,  . . .  

For  each  f i xed n , l et 

and 

and 

q n 
= 1 i m  I I  I 

m-...ro i = 1 

r = 1 ; m I I J m-...ro A m 

k ( f . - f £ ) dM 1 1  p 
J n n 

X(_ n ) h 
l XA � n )  w ere 

Therefore , 

S i nce f .  - f£ E S k X and  Am E C k , we have , by the r i g ht  hand s i de J n n ' 

of  ( 2 . 2 9 ) ,  



J 

k r k 
C2I I ( f .  - f n ) dM ol I p 2_ 1 1  j ( f

J
. - f £ ) dM 1 1 

A J n X,n a ' A n n p 
m m 

Taking the limit as m + 00 , we have 

Thus, there exists an E > 0 such that for any n , there exist 

J
. £ > n with n' n 

r k oo which contradicts the fact that the sequence { j
8 

fj dMa,O}j=l con-

verges in Lp (X) . Therefore f is Mk-integrable. Conversely, if 

f is Mk-integrable, using a similar argument as above and the l eft 

hand side of (2.�9) we get that f is Mk 

0-integrable. 
Cl, 
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Similarly, we note that for a E (0, 1) U ( 1,  2) then the class 

of M�-integrable functions and the class of all M�,0-integrable 

functions coincide. We recall that M0 is a symmetric r-SS (a) random 

measure . • 

3. 2 . 2  Theorem. Let X be a Banach space satisfying the M. C. P. 

A B
k
-measurable function f: t

k 
+ X is Mk-integrable (respectively, 

M�-integrable) iff there exists a sequence {fn};=l c sk, X  such that 

(i) fn + f in measure �k as n + oo , 

and 

(respectively, is Cauchy in 



Proof. By Remark 3. 1. 7, it is enough to show the "only if" part 

of this theorem. So, let {fn}�=l c sk, X be such that fn _µ_> f 

as n � 00 and such that the sequence { I
k

(fn)}�=l is Cauchy in 

L0 (X) . Equivalently, by Proposition 3. l. 2 (ii), { I
k

(fn )}�=l is 

Cauchy in Lp (X) , 0 < p < a . By Theorem 2. 4. 1 and Proposition 

3. l .2 (ii ),  it follows that { I
k

(fn)}�=l is Cauchy in L0 (X) iff 

{ I� ' O (fn)}�=l is Cauchy in L0 (X) . Thus, by Theorem 5.5 of [13], 

63  

f is M�, 0
-integrabl e. Hence by Theorem 3.2. 1 ,  f is Mk-integrabl e . • 

Finally, we state from Krakowiak and Szulga [13 ]  some facts about 

Mk 
0-integrable functions. a, Let L 

k 
(X) denote the class of all 

M a, O 

Mk 

0-integrable functions. Then a, 

L k ( X )  c L ( X )  - a M a, O 

when O < a <  2 and 

U Lq (X) � L  k (X) 
q>a M a, 0  

when X is of stable type a . We recall that a Banach space is X 

is of stable type a if for some constant c > O and some 

p E (0 , a ) , 

1 

I I I X - 8 - I I p .s_ c ( I II x - I f  t . J J . J J J 

for every finite sequence (xj) c X , where (81 , 02 , . . .  ) is a 

sequence of independent a-stable random variables. 
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