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Abstract

This dissertation consists of three integral parts. Part one studies discontinuous

Galerkin approximations of a class of non-divergence form second order linear elliptic

PDEs whose coefficients are only continuous. An interior penalty discontinuous

Galerkin (IP-DG) method is developed for this class of PDEs. A complete analysis

of the proposed IP-DG method is carried out, which includes proving the stability

and error estimate in a discrete W 2,p-norm [Wˆ2,p-norm]. Part one also studies the

convergence of the vanishing moment method for this class of PDEs. The vanishing

moment method refers to a PDE technique for approximating these PDEs by a family

of fourth order PDEs. Detailed proofs of uniform H1 [Hˆ1] and H2 [Hˆ2]-stability

estimates for the approximate solutions and their convergence are presented.

Part two studies finite element approximations of a class of calculus of variations

problems which exhibit so-called Lavrentiev gap phenomenon (LGP), whose solutions

often contain singularities. The LGP incapacitates all standard numerical methods,

especially the finite element method, as they fail to produce a correct approximate

solution. To overcome the difficulty, an enhanced finite element method based

on a truncation technique is developed in this part of the dissertation. The

proposed enhanced finite element method is shown to numerically converge on several

benchmark problems with the LGP.

Part three of the dissertation develops a discontinuous Galerkin numerical frame-

work for general calculus of variations problems, which is called the discontinuous

Ritz (DR) methodology and can be regarded as the counterpart of the discontinuous

vii



Galerkin (DG) methodology for PDEs. Conceptually, it approximates the admissible

space by the DG spaces which consist of totally discontinuous piecewise polynomials

and approximates the underlying energy functional by discrete energy functionals

defined on the DG spaces. The main idea here is to construct the desired discrete

energy functional by using the newly developed DG finite element calculus theory,

which only requires replacing the gradient operator in the energy functional by the

corresponding DG finite element discrete gradient and adding the standard interior

penalty terms. It is shown that for a certain class of functionals the proposed DR

method does indeed converge to the true solution.
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Chapter 1

Introduction

1.1 Prelude

Differential Equations describe relations between a function and its derivatives.

A Partial Differential Equation (PDE) is a differential equation which involves a

multivariate function and its partial derivatives. PDEs are ubiquitous and appear

as mathematical models for many application problems from physical and biological

sciences and engineering. This dissertation focuses on second order PDEs which have

a general form

F (D2u(x),∇u(x), u(x), x) = 0, (1.1.1)

where F : Rd×d × Rd × R × Ω → R, d ≥ 1 is the dimension, Ω is an open, bounded

domain in Rd, and u : Ω→ R is the unknown solution. Here ∇u denotes the gradient

of u, i.e.,

∇u = [ux1 , ux2 , · · · , uxd ] ,

1



and D2u denotes the Hessian of u, i.e.,

D2u =


ux1x1 ux1x2 · · · ux1xd

ux2x1 ux2x2 · · · ux2xd
...

...
. . .

...

uxdx1 uxdx2 · · · uxdxd

 .

There are two primary sources which produce PDEs that are of importance and

interest to study analytically and approximate numerically. First, a PDE arises as

a mathematical description of a natural, physical or biological law or process. For

example, the well-known diffusion equation

ut − div(D∇u) = S (1.1.2)

describes the conversation law of mass:

ut + div(F (u)) = S,

combined with Fick’s law of diffusion:

F (u) = −D∇u.

Another example is the following celebrated Navier-Stokes equations for incompress-

ible inviscid fluids (c.f. [21]):

ut − ν∆u + u · ∇u +∇p = f ,

div(u) = 0,
(1.1.3)

where u is the velocity field of the fluid, p denotes the pressure, ν > 0 is the

viscosity coefficient, and f is the body force acting on the fluid. Here in the system,

the first equation, called the momentum equation, describes the conservation of

2



momentum and is the mathematical description of Newton’s second law of motion.

The second equation, called the continuity equation, is the mathematical statement

of the conservation of mass (or the incompessibility).

Second, a PDE arises as the so-called Euler-Lagrange equation of a calculus of

variations problem. To illustrate this point, we must introduce some notation. Let

V be some function space (called the admissible set) and let J be a functional on V

(called the energy), that has the following form:

J (v) =

ˆ
Ω

f(∇u(x), u(x), x) dx, (1.1.4)

where Ω is an open, bounded domain in Rd and f : Rd × R × Ω → R is called the

density function.

The calculus of variations seeks a function u ∈ V such that

J (u) ≤ J (v) ∀v ∈ V. (1.1.5)

Such a u, if it exists, is called a minimzer of J over V and is written as

u ∈ arg min
v∈V

J (v). (1.1.6)

For example, if d = 1, then the shortest path for a particle to move under the

force of gravity from the point (a, α) to the point (b, β) in the plane is given by the

minimization problem (1.1.5) with

Ω = (a, b), f(ξ, v, x) =

√
1 + ξ2

√
2gv

,

and the energy space

V = {v ∈ C1([a, b]) : v(a) = α, v(b) = β},
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where g is the gravitational constant. This is the famous Brachistochrome problem

(see [19]).

Another example is the minimal surface problem, an important problem in the

field of differential geometry, which seeks a function u : Ω → R to solve (1.1.5) with

the density function

f(ξ, v, x) =
√

1 + ξ2

and the energy space

V = {v ∈ W 1,1(Ω) : v
∣∣
∂Ω

= ϕ}.

where ϕ is some given function on the boundary. Here the graph of the minimizer u

is a minimal surface because the mean curvature is zero at every point on the graph.

Lastly, it can be shown that the solution u to the Laplace equation

∆u = 0 in Ω, (1.1.7a)

u = ϕ on ∂Ω, (1.1.7b)

also solves problem (1.1.5) with the energy functional

J (v) =

ˆ
Ω

1

2
|∇v|2 dx (1.1.8)

and energy space

V = {v ∈ H1(Ω) : v
∣∣
∂Ω

= ϕ}.

Here (1.1.8) is called the Dirichlet integral (c.f. [19]).

In general, if u is a minimizer of (1.1.5), then it must satisfy the Euler-Lagrange

equation:

d∑
i=1

∂

∂xi
(fξi(∇u, u, x)) = fu(∇u, u, x) ∀x ∈ Ω, (1.1.9)
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which is a second order PDE. For example, the Euler-Lagrange equation of the

Dirichlet integral (1.1.8) is ∆u = 0. A popular strategy for finding u is to solve (1.1.9)

rather than using the minimization formulation. However, it must be stressed that

the Euler-Lagrange equation provides only a necessary condition for all minimizers of

(1.1.5) but not a sufficient condition. The importance of this will be discussed later

in the introduction. Also, while a calculus of variations problem always gives a PDE

problem, the converse may not be true, that is, not every PDE has a minimization

counterpart. One example is the 1-D advection equation:

ut + ux = S.

1.2 Scope and Objective of Dissertation

The class of PDEs to be considered in this dissertation is the following linear, elliptic,

non-divergence form PDE:

Lu := −A(x) : D2u = f in Ω, (1.2.1a)

u = 0 on ∂Ω. (1.2.1b)

Here Ω ⊂ Rn is an open, bounded domain with boundary ∂Ω, f ∈ Lp(Ω) with

1 < p < ∞, and A ∈ [C0(Ω)]n×n is positive definite in Ω. Here the matrix inner

product A : B is defined by

A : B =
d∑

i,j=1

ai,jbi,j = tr(AB),

where the last equality holds if either A or B is symmetric. Non-divergence form

elliptic PDEs appear inside of a class of second order fully nonlinear PDEs, known
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as Hamilton-Jacobi-Bellman (HJB) equations:

F (u) := inf
α∈Λ

(
−Aα : D2u+ bα · ∇u+ cαu− fα

)
= 0, (1.2.2)

where Λ is a parameter set and {Aα}, {bα}, {cα}, {fα} are families of functions indexed

by α ∈ Λ. The HJB equations arise from many applications such as stochastic optimal

control and game theory [30]. Non-divergence form PDEs are also encountered in the

linearization of fully nonlinear PDEs such as Monge-Ampère-type equations [11]:

F (u) := det(D2u) = f, (1.2.3)

for f ≥ 0, in one of two ways. First, the linearization of (1.2.3) about a point u is

tr(cof(D2u)D2ϕ) = cof(D2u) : D2ϕ, (1.2.4)

where cof(D2u) is the cofactor of D2u (see [11]). Thus we recover a non-divergence

form operator for the linearization of the Monge-Ampère equation. Second, from [23]

we can write the Monge-Ampère equation as a special case of the HJB equations

(1.2.2):

sup
B∈S1

(
−B : D2u+ d d

√
f detB

)
= 0, (1.2.5)

where

S1 = {B ∈ Rd×d, B is symmetric positive semi-definite, tr(B) = 1}.

Non-divergence form PDEs in some sense are the best linear approximations of these

fully non-linear PDEs. The techniques used to study and solve these PDEs will be

helpful for solving their non-linear counterparts.
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We also consider a special class of variational problems which exhibit the

Lavrentiev Gap Phenomonon (LGP). This phenomenon arises when the minimizer

u has certain types of singularities, and makes it impossible to approximate u by

Lipschitz functions using only the energy J .

While the existence and uniqueness of solutions to PDEs and variational problems

are well understood, very few of these results give a constructive glimpse of the form of

the solution u. Indeed, closed form solutions do not exist for a majority of PDEs and

variational problems, even very simple and “nice” ones. The situation makes seeking

approximate numerical solutions the only practical approach to solve these PDEs

and variational problems. This in turn calls for developing accurate and efficient

numerical methods for these problems on computers.

The goal of this dissertation is to construct, implement, and analyze accurate and

efficient numerical methods for solving the non-divergence form PDEs and calculus

of variations problems, especially those exhibiting the Lavrentiev Gap Phenomenon,

using both the continuous and discontinuous Galerkin finite element framework.

1.3 Facts about PDEs to be Studied in this Dis-

sertation

In this section, we collect some basic facts about the PDEs and calculus of variation

problems which will be studied in this dissertation. These include the existence and

uniqueness as well as the regularity results under different conditions on the data.

1.3.1 Linear Elliptic Non-divergence Form PDEs

The general theory for linear, elliptic, non-divergence PDEs is rich, culminating in

three separate solution theories each depending on the specific regularity of A, f , and

∂Ω. Let A be a uniformly positive definite matrix on Ω, that is, there exist constants
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λ,Λ > 0 such that

λ‖ξ‖2 ≤ A(x)ξ · ξ ≤ Λ‖ξ‖2 ∀x ∈ Ω, ∀ξ ∈ Rd. (1.3.1)

The first theory is the classical solution (or Schauder’s) theory (see [35, Chapter

6]). For 0 < α < 1, let A ∈ [Cα(Ω)]n×n, f ∈ Cα(Ω), and ∂Ω ∈ C2,a, where Ck,α(Ω)

denotes the space of classically differentiable functions u of order k and Dku is Hölder

continuous with modulus of continuity α. Under these conditions, there exists a

unique solution u ∈ C2,α(Ω) to (1.2.1).

The second theory is the W 2,p strong solution theory (see [35, Chapter 9]) which

seeks solutions in W 2,p(Ω)∩W 1,p
0 (Ω) that satisfy the PDE almost everywhere in Ω. For

1 < p < ∞, let A ∈ [C0(Ω)]n×n, f ∈ Lp(Ω), and ∂Ω ∈ C1,1. Under these conditions

(1.2.1) has a unique strong solution u in the Sobolev space W 2,p(Ω)∩W 1,p
0 (Ω). There

are also cases where we can relax the regularity of the boundary and still maintain

well-posedness. If d, p = 2 and Ω is convex, then the regularity of ∂Ω may be dropped

(c.f. [3]). We can also relax to coefficient matrix to A ∈ [L∞(Ω)]n×n under certain

assumptions. First we still maintain a unique strong solution if we assume ∂Ω ∈ C1,1

and A ∈ [VMO(Ω)]d×d, that is A ∈ [BMO(Ω)]d×d with

lim
r→0

 
Br∩Ω

|A− Ā| dx = 0,

where Br is a ball of radius r and A =
ffl
Br∩Ω

A dx (see [15]), or if Ω is convex and A

satisfies the Cordès condition, that is, there exists ε ∈ (0, 1) such that

∑d
i,j=1(aij)

2(∑d
i=1 ai,i

)2 ≤
1

d− 1 + ε
, (1.3.2)

where ai,j denotes the components of A (see [55, 44]).

Both of these theories were established using the freezing coefficient technique

which we now describe. Since A is continuous, then, in a small enough ball, A is
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essentially constant. For a constant coefficient matrix A0, we have −A0 : D2u =

− div(A0∇u). Since the operator − div(A0∇u) is a change of basis away from the

Laplacian −∆u, we can apply estimates from the the Poisson problem

−∆u = f in Ω,

u = 0 on ∂Ω,

to the operator −A0 : D2u in the small ball. We then use a partition of unity and

covering argument to derive a global Gärding-type stability estimate for our non-

divergence form operator:

‖D2u‖ ≤ C(‖Lu‖+ ‖u‖), (1.3.4)

where ‖ · ‖ stands for the Hölder norm in the Schauder theory and for the L2 norm in

the strong solution theory. From here, each theory uses a different technique to arrive

at the existence and uniqueness of the solution. The freezing coefficient technique will

be used heavily in Chapter 3 and on the discrete level in Chapter 2.

The final theory is the viscosity solution theory which seeks solutions in C0(Ω)

that satisfy the PDE in the viscosity sense found in [36]. If we assume A ∈ L∞(Ω)

and f ∈ C0(Ω), then there exists a viscosity solution u ∈ C0(Ω), moreover, we have

the interior estimate u ∈ Cα(Ω) (c.f. [36]).

1.3.2 The Calculus of Variations

Unlike partial differential equations, whose existence and uniqueness heavily rely

on the structure of the PDE operator, the existence and uniqueness of solutions

to problems from the calculus of variations is quite general.

To set up the theory and result from [19], we consider J (v) from (1.1.4) and the

admissible set

V = W 1,p
g (Ω) := {v + g : v ∈ W 1,p

0 (Ω)},
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where g ∈ W 1,p(Ω) for some 1 < p <∞ and Ω is an open, bounded domain. We also

assume J is proper, meaning there exists v ∈ V such that J (v) <∞.

The existence of a minimizer to J over V comes from sufficient conditions placed

on the density function f(ξ, v, x) in (1.1.4). We assume the following on f :

(H1) f is a Carathédory function, that is,

x→ f(ξ, v, x) is measurable for every (ξ, v) ∈ Rn × R,

(ξ, v)→ f(ξ, v, x) is continuous for almost every x ∈ Ω;

(H2) the function ξ → f(ξ, v, x) is convex for every (v, x) ∈ R× Ω;

(H3) there exists q ∈ [1, p) and constants α1 > 0, α2, α3 ∈ R such that

f(ξ, v, x) ≥ α1|ξ|p + α2|u|q + α3.

Under these assumptions, there exists u ∈ W 1,p
g (Ω) such that

u ∈ arg min
v∈V

J (v).

To show how exactly each assumption is used we give rough sketch of the proof. Let

m = inf
v∈V
J (v),

which is finite since J is proper. We can extract a minimizing sequence {uj} ⊂ V

such that J (uj) ↘ m. By assumption (H3), J is coercive on V so that {uj} is a

bounded set in V . Since V = W 1,p
g ⊂ W 1,p(Ω) and W 1,p(Ω) is a reflexive Banach

space for 1 < p <∞, we can use its compactness to extract a convergent subsequence

{uj} (not relabeled) and û ∈ W 1,p(Ω) such that uj ⇀ û weakly in W 1,p(Ω). Since V

is affine, û ∈ V . Since f is convex in ξ by (H2) and satisfies (H1), J is weakly lower
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semi-continuous in W 1,p(Ω), that is,

J (û) ≤ lim inf
j→∞

J (uj).

Thus we have

m ≤ J (û) ≤ lim inf
j→∞

J (uj) = m.

which implies J (û) = m and û is the minimizer of J over V . The conditions on f are

refined such that weakening (H1)-(H3) will lead to a counterexample which violates

the existence of a minimizer u (see [19]).

While this framework covers existence, an additional assumption is required for

uniqueness. For example, if (ξ, v)→ f(ξ, v, x) is strictly convex for every x ∈ Ω, then

the minimizer u is unique.

1.4 A Literature Survey of Previous Numerical

Methods

We give a brief review of existing numerical methods to the problems of interest in

this dissertation, namely second order, linear, elliptic, non-divergence form PDEs and

problems from the calculus of variations - especially those exhibiting the Lavrentiev

gap phenomenon.

1.4.1 Linear Elliptic Non-divergence Form PDEs

In contrast to the wealth of results for the PDE analysis, very little progress has

been made in the field of numerical methods for second order, non-divergence form,

elliptic PDEs with a non-differentiable coefficient matrix A (1.2.1a-1.2.1b). The

difficulty is two-fold. First, the non-divergence structure of the PDE prevents the

use of integration by parts on it to define weak solutions, which is a pre-requisite for

formulating finite element methods for a given PDE problem. The second lies in the
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lack of differentiability of the coefficient matrix A. If A is differentiable, then the

non-divergence operator −A : D2u may be written as the sum of a diffusion operator

and a lower order advection operator, that is,

−A : D2u = −∇ · (A∇u) + (∇ · A) · ∇u. (1.4.1)

The diffusion operator fits well with the Galerkin framework, but without differen-

tiability of A, it is not possible to rewrite the non-divergence operator in such a

way.

However, while progress has been slow, a few numerical methods for these non-

divergence form PDEs with continuous A or weaker have been reported very recently

in the literature.

The first work, by Smears and Süli in 2013 (see [55]) provides an hp discontinuous

Galerkin method for A ∈ [L∞(Ω)]n×n satisfying the Cordès condition (1.3.2) and

f ∈ L2(Ω) that approximates the strong solution u ∈ H2(Ω) ∩H1
0 (Ω). This method

is constructed by adding an artificial discrete Laplacian to the bilinear form. The

stability of their method relies on the fact that for a weight γ ∈ L∞(Ω) dependent on

the Cordès condition, the quantity ‖γLv −∆v‖ is controllable. With this, they were

able to achieve a convergent method which is optimal in h and sub-optimal in p by a

half order.

The second method, by Nochetto and Wang in 2014 (see [47]), develops a

continuous finite element method for continuous A and f . The construction relies

on the identity

−A : D2u = −λ
2

∆u−
(
A− λ

2
I

)
: D2u, (1.4.2)

where λ is from the ellipticity condition (1.3.1). The first term of (1.4.2) is treated as

expected while the second term is converted into a non-local integral operator. The

method then uses linear finite elements and a weakly acute mesh to recover a Discrete
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Maximum Principle. The method is also proved to converge to the viscosity solution

u ∈ C(Ω).

The next method, by Wang and Wang in 2014 (see [56]), uses a weak Galerkin

approach, that is, to decompose a DG function vh into two functions (wh, zh) where

wh lives in the interior of each element and zh lives on the skeleton of the mesh. The

paper creates a discrete weak version of the Hessian using these decoupled functions

and proposes a primal-dual method to define the solution uh. The method only

requires A to be piecewise continuous and f ∈ L2(Ω) in order for the existence and

unique of uh. In addition the converges to the strong solution u ∈ H2(Ω) ∩ H1
0 (Ω)

provided such a strong solutions exists.

The final method, by Feng, Hennings, and Neilan in 2015 (see [22]), discretizes

the PDE using a nonstandard continuous finite element method with quadratic or

higher order elements. The weak form is built first by using (1.4.1) and rewriting the

non-divergence PDE as the following diffusion-advection equation:

−∇ · (A∇u) + (∇ · A) · ∇u = f. (1.4.3)

From here they use standard finite element techniques to create a weak form for

(1.4.3), then they integrate by parts, on each element, to recover back the non-

divergence operator. The stability of the method is proved by use of the freezing

coefficient technique (see Subsection 1.3.1). This method converges optimally in the

discrete W 2,p norm provided that A ∈ [C0(Ω)]n×n and f ∈ Lp(Ω) for some 1 < p <∞,

and is the natural extension of the finite element method to non-divergence form PDEs

as it recovers the standard finite element method when A is a constant matrix.

1.4.2 The Calculus of Variations

There are two common approaches to numerically approximating the minimizers

satisfying (1.1.5): indirect and direct methods. Indirect methods use the Euler-

Lagrange equation (1.1.9) to convert the minimization problem into a PDE problem,
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which then can be discretized using a variety of methods such as Finite Difference,

Finite Element, or Discontinuous Galerkin. This is often the preferred approach

because of the vast wealth of material available for numerical approximations of

PDEs, but it does have one drawback: the Euler-Lagrange equation is only a necessary

condition for a minimum and not a sufficient one. More information must be known

of J in order to determine if the solution of the Euler-Lagrange equation does indeed

globally minimize J . In addition, such a discretization may lose some important

properties of the original energy, such as conservation or dissipation.

Another, less common, approach is the direct approach, which seeks to directly

approximate J by a discrete functional Jh. We then seek uh such that

uh ∈ arg min
vh∈Xh

Jh(vh), (1.4.4)

where Xh is a discrete approximation space. Since problem (1.4.4) is now an algebraic

problem, a variety of methods may be employed to recover uh. For example, we may

minimize Jh by using a quasi-Newton minimization solver or by applying the discrete

Euler-Lagrange equation to Jh and then solve for uh. The key to this approach is

how to construct a “good” discrete energy Jh since we are not dealing directly with

a PDE. While the literature on this approach is not very extensive, we list a few

examples of numerical methods based on this direct approach.

First, we have the discrete variational derivative method by Furihata and Matsuo

(see [33]). This method uses a finite difference method to discretize J for energies

arising from the KdV equations, the nonlinear Schrödinger equations, and the Cahn-

Hilliard equations. The key to the method is to construct a discrete energy to ensure

important properties of the continuous energy such as conservation or dissipation

in time are preserved. The method is comprehensive in that it defines methods for

higher order temporal and spacial schemes as well as robust discrete solvers.

Second, we have the (see [10]) which provides an interior penalty discontinuous

Galerkin finite element discretization of J based on f satisfying conditions similar
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to (H1)-(H3) and V = W 1,p
g (Ω). The key property of their discretization is to use a

lifting operator to approximate the distributional gradient of a piecewise polynomial

function rather than just the piecewise gradient. Standard penalty parameters are

added to weakly enforce continuity and Dirichlet boundary data.

The convergence of the Variational DGFEM and many direct methods are proven

using a special convergence theory: Γ-Convergence. In order to prove convergence of

the method, it is necessary to show that uh from (1.4.4) converges to u from (1.1.6),

that is, to show that the minimizers of Jh to converge to the minimizer of J . Pointwise

convergence of Jh to J is not enough to ensure the convergence of minimizers to

minimizers and uniform convergence is too strong for practical applications. The

convergence that preserves the convergence of minimizers is Γ-Convergence. We recall

the definition of Γ-Convergence from [6]:

Definition 1.1. Let X be a topological vector space and let R = R ∪ {+∞}. Let

F : X → R and {Fn} be a sequence of functions from X to R. We say Fn Gamma-

converges to F , written Fn
Γ−→ F , provided the following two conditions hold for every

x ∈ X.

1. For every sequence {xn} such that xn → x in X as n→∞ we have

F (x) ≤ lim inf
n→∞

Fn(xn).

2. There exists a sequence {xn} such that xn → x in X as n→∞ and

F (x) ≥ lim sup
n→∞

Fn(xn).

The first criterion of Definition (1.1) satisfies a general lower semi-continuity

condition needed for the existence of minimizers. The second criterion, however,

requires the existence of a recovery sequence, that is, a sequence {xn}n∈N such that

Fn(xn)→ F (x) if xn → x. Here we see that Fn(xn) “recovers” F (x).
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An important result of Γ-Convergence is that if Jh
Γ−→ J and if uh from (1.4.4)

converges to û, then û minimizes J , which is exactly the convergence result we want.

To show this, let xn ∈ X such that

xn ∈ arg min
y∈X

Fn(y),

and suppose xn → x in X for some x ∈ X. Let x′ ∈ X minimize F over X. By

Criterion 2 of (1.1), there exists a sequence {yn}n∈N of X such that

F (x′) ≥ lim sup
n→∞

Fn(yn). (1.4.5)

Since Criterion 1 of (1.1) holds for any sequence converging to x, we have

F (x′) ≤ F (x) ≤ lim inf
n→∞

Fn(xn) ≤ lim inf
n→∞

Fn(yn) ≤ lim sup
n→∞

Fn(yn) ≤ F (x′).

Since F (x) = F (x′), then x must be a minimizer of F over X.

It is important to note that Γ-Convergence does not imply that the discrete

minimizers xn will converge, only that, if they converge, they will converge to the

minimizer of F . The initial convergence must be shown separately, usually by a

compactness argument from the coerciveness of F .

The Lavrentiev Gap Phenomenon

A specific class of functionals that exhibit the Lavrentiev Gap Phenomenon (LGP)

is analyzed in this dissertation. To define the phenomenon, let A = W 1,1
g (Ω) and let

A∞ := A ∩ W 1,∞(Ω). Since Ω is bounded, then A ⊂ A∞ and consequently there

holds

inf
v∈A1

J (v) ≤ inf
v∈A∞

J (v). (1.4.6)
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J is said to exhibit the Lavrentiev gap phenomenon whenever

inf
v∈A
J (v) < inf

v∈A∞
J (v), (1.4.7)

in other words, when the strict inequality holds in (1.4.6).

The LGP presents itself in a variety of problems from applications including

materials sciences, nonlinear elasticity, and image processing (see [32, 57, 12]).

The gap between the minimum values on both sides of (1.4.7) suggests that the

the minimizer of the left-hand side must have some singularity which causes the

gap. It has been known in the literature [32, 57, 12] that the gap phenomenon could

happen not only for non-convex energy functionals but also for strictly convex and

coercive energy functionals. As a result, it is a very complicated phenomenon to

characterize, analyze, approximate, because the gap phenomenon can be triggered by

quite different mechanisms, and the definition of the LGP is a very broad concept

which covers many different types of singularities. In addition, there are no known

general sufficient conditions which guarantee the existence of the gap phenomenon.

The simplest and best known example of the gap phenomenon is Maniá’s 1-D

problem [42], where one minimizes the functional

J (v) =

ˆ 1

0

v′(x)6
(
v(x)3 − x

)2
dx (1.4.8)

over all functions v ∈ W 1,1(0, 1) satisfying v(0) = 0 and v(1) = 1. By inspection it is

easy to see that u(x) = x
1
3 minimizes (1.4.8) with a minimum value zero. However,

it can be shown that the minimum over space W 1,∞(0, 1), that is, the space of all

Lipschitz functions, is strictly larger than zero. As a result, Maniá’s problem does

exhibit the LGP. Notice that u′(x) = 1
3
x−

2
3 which blows up rapidly as x → 0+.

Moreover, a more striking property, which was stated by Ball and Knowles (cf. [5]),

is that if uj is a sequence of functions in W 1,q(0, 1) for q ≥ 3
2

with uj(0) = 0 and

uj(1) = 1 such that uj → u a.e. as j → ∞, then J (uj) → ∞ as j → ∞. Since
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conforming finite element spaces are a subspace of W 1,∞, the above properties of

the functional J imply that the standard finite element approximations to Maniá’s

problem must fail to approximate both the minimizer and the minimum value of the

functional.

To achieve convergent numerical discretizations for energies exhibiting the LGP,

we must use non-standard discretizations of J , and several numerical techniques have

been shown to curb the phenomenon. We mention that one may resolve the LGP

by not necessarily changing J , but rather minimizing over a different space. Indeed,

Ortner used the non-conforming Crouzeix-Raviart element instead of a conforming

finite element and achieves convergence on a specific class of energies exhibiting the

LGP (see [48]). However, a focus of this dissertation is on conforming discretizations,

where we only change the discrete functional Jh and not the discrete space Sh.

Over the past thirty years, there have been several conforming discrete discretiza-

tions. Below we only briefly discuss these methods; a deeper explanation of these

methods and why they overcome the Lavrentiev gap phenomenon will be given in

Chapter 4.

In 1987, Ball and Knowles (see [5]) introduced a penalty type method. In this

method they decouple the finite element function vh and its derivative wh, and then

minimize J over both functions while weakly enforcing w′h = wh. They prove

convergence of the method for a variety of 1-D problems, and the penalty method

has been extended to higher-dimension problems [45, 12].

Another technique, the truncation/removal method, was developed by Li and Bai

(see [41, 4]). This truncation method modifies J (vh) on the elements where J (vh) is

larger than a constant times the Sobolev norm of vh to tame the LGP. This leads to

a robust scheme that converges for a wide variety of gap phenomenon problems.
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1.5 Summary of the Dissertation Contributions

This dissertation is the accumulation of several research projects which can be divided

into three parts.

In part one, we study numerical and PDE approximations to non-divergence form

second order linear elliptic PDEs. We develop several interior-penalty discontinuous

Galerkin (IP-DG) methods for second order, linear, elliptic, non-divergence form

PDEs following the technique of [22]. We show the stability of these methods using

a freezing coefficient argument on the discrete level with a non-standard duality

argument involving the discrete adjoint. Included as well is a W 1,p stability result

for IP-DG methods for the constant coefficient case - a result that has independent

interest and is used in the stability argument. We show optimal error estimates in

broken W 2,p norm and give several numerical tests for cases inside and outside of the

theory. We also develop a vanishing moment method for second order linear elliptic

non-divergence form PDEs. This PDE technique approximates the second order PDE

by a sequence of fourth order PDEs by the addition of a vanishing biharmonic term.

Uniform H1 and H2 stability estimates are obtained which to the convergence of the

method. In addition, we derive L2 and H1 error estimates for the vanishing moment

approximations. We present a C0 DG finite element method for the fourth order

method and give numerical results supporting the convergence of the method. We

also give numerical test results of a method combining the IP-DG schemes and the

vanishing moment method and apply it to the several examples of the Hamilton-

Jacobi-Bellman equations.

In part two, we introduce an enhanced finite element method for variational

problems exhibiting the Lavrentiev Gap Phenomenon. We show the advantages of

the method, include heuristics on how to tune the method to achieve convergence,

and prove the Γ-Convergence of the method on the continuous space W 1,∞(Ω). In

addition, we give a few numerical results showing the convergence of the method for
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a selection of 1-D and 2-D problems, some of which include the phenomenon while

others do not.

Finally, in part three, we focus on discontinuous Ritz methods for a class

of variational problems that are coercive and convex. We use the discontinuous

Galerkin, finite element, (DG-FE) numerical calculus developed in [25] to construct a

discontinuous Ritz framework for variational problems. Noting the similarities of this

method and Variational DGFEM method of Buffa and Ortner (see [10]), we obtain

the convergence of the method as well as a compactness result. We also develop a

MATLAB toolbox to implement the DG-FE calculus and discontinuous Ritz methods

which has several numerical examples shown and a complete documentation manual

included.

1.6 Notation

Standard function and space notation will be used in this dissertation, and to improve

its readability we write a . b and a & b for a ≤ Cb and a ≥ Cb respectively for

some constant C > 0 which does not depend on any discretization or approximation

parameters.

Let Ω be an open and bounded domain in Rd. For a subdomain D of Ω with

boundary ∂D, let Lp(D) and W s,p(D) for s ≥ 0 and 1 ≤ p ≤ ∞ denote the standard

Lebesgue and Sobolev spaces respectively with norms

‖v‖Lp(D) =


(ˆ

D

|v(x)|p dx

)1/p

if p <∞,

ess sup
x∈D

|v(x)| if p =∞,

and

‖v‖W s,p(D) =
∑
|α|≤s

‖Dαv‖Lp(D),
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where α = (α1, . . . , αn) is a multi-index and |α| = α1 + · · · + αn. With convention,

we denote Hk(Ω) = W k,2(Ω). Let W 1,p
0 (D) be the closure of C∞c (D) in W 1,p(D). Let

(f, g)D =

ˆ
D

f(x)g(x) dx

denote the L2 inner product on D and (·, ·) := (·, ·)Ω. We also define the H−1 norm

as follows:

‖v‖H−1(Ω) = sup
w∈H1

0 (Ω)

|(v, w)Ω|
‖∇w‖L2(Ω)

.

Let Th be a shape-regular, conforming, and quasi-uniform triangulation of Ω with

h ≈ diam(T ) for all T ∈ Th. Let EIh and EBh denote respectively the sets of all interior

and boundary edges/faces of Th, and set Eh := EIh ∪ EBh . We introduce the broken

Sobolev spaces

W s,p(Th) :=
∏
T∈Th

W s,p(T ), Lp(Th) := W 0,p(Th),

W s,p
h (D) := W s,p(Th)

∣∣
D
, Lph(D) := Lp(Th)

∣∣
D
.

For any interior edge/face e = ∂T+ ∩ ∂T− ∈ EIh , we define the jump and average of a

scalar or vector valued function v as

[v]
∣∣
e

:= v+ − v−, {v}
∣∣
e

:=
1

2

(
v+ + v−

)
,

where v± = v|T± . On a boundary edge/face e ∈ EBh with e = ∂T+ ∩ ∂Ω, we set

[v]
∣∣
e

= {v}
∣∣
e

= v+. For any e ∈ EIh we use νe to denote the unit outward normal

vector pointing in the direction of the element with the smaller global index. For

e ∈ EBh we set νe to be the outward normal to ∂Ω restricted to e. The standard

Continuous Galerkin (CG) and Discontinuous Galerkin (DG) finite element spaces

21



are defined as

Sh = Skh :=
{
vh ∈ W 2,p(Th) ∩W 1,p

0 (Ω); vh
∣∣
T
∈ Pk(T ) ∀T ∈ Th

}
,

Vh = V k
h :=

{
vh ∈ W 2,p(Th); vh

∣∣
T
∈ Pk(T ) ∀T ∈ Th

}
,

where Pk(T ) denotes the set of all polynomials of degree less than or equal to k on

T . We also introduce for any D ⊂ Ω

Vh(D) :=
{
v ∈ Vh; v

∣∣
Ω\D ≡ 0

}
,

Sh(D) :=
{
v ∈ Sh; v

∣∣
Ω\D ≡ 0

}
.

Note that Vh(D) and Sh(D) are nontrivial provided that there exists an inscribed ball

B with radius r ≥ 2h such that B ⊂ D. Also note that Sh(D) is not a subspace of

Sh(Ω). In addition, we define the vector valued discrete space [Vh]
d as

[Vh]
d = {ϕh = (ϕh,1, ϕh,2, . . . , ϕh,d) : ϕh,i ∈ Vh ∀i = 1, 2, . . . , d}.

For each e ∈ Eh, let γe > 0 be constant on e. We define the following mesh-

dependent norms on W 1,p
h (D) and W 2,p

h (D):

‖v‖W 2,p
h (D) := ‖D2

hv‖Lp(D) +
(∑
e∈EIh

h1−p
e

∥∥|[∇v]|
∥∥p
Lp(e∩D̄)

) 1
p

(1.6.1)

+
(∑
e∈Eh

γpeh
1−2p
e ‖[v]‖p

Lp(e∩D̄)

) 1
p
,

‖v‖W 1,p
h (D) := ‖∇hv‖Lp(D) +

(∑
e∈Eh

γpeh
1−p
e ‖[v]‖p

Lp(e∩D̄)

) 1
p

(1.6.2)

+
(∑
e∈Eh

he‖{∇v}‖pLp(e∩D̄)

) 1
p
,

(1.6.3)
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where ∇hv and D2
hv denote the piecewise gradient and Hessian of v. In addition, we

define the discrete W−2,p
h -norm and W−1,p

h -norm as follows:

‖q‖W−2,p
h (D) := sup

06=vh∈Vh(D)

(q, vh)D
‖vh‖W 2,p′

h (D)

, (1.6.4)

‖q‖W−1,p
h (D) := sup

06=v∈W 1,p′
h (D)

(q, v)D
‖v‖

W 1,p′
h (D)

, (1.6.5)

where 1
p

+ 1
p′

= 1. Finally, for any domain D ⊆ Ω and any w ∈ Lph(D), we introduce

the following mesh-dependent semi-norm

‖w‖Lph(D) := sup
06=vh∈Vh(D)

(
w, vh

)
D

‖vh‖Lp′ (D)

. (1.6.6)

It can be proved that (cf. [22])

‖wh‖Lp(Ω) . ‖wh‖Lph(Ω) ∀wh ∈ Vh. (1.6.7)

1.7 Mathematical Software and Implementation

A majority of the numerical results in this dissertation, namely those given in

Chapters 2, 4, 5, 6, and the Hamilton Jacobi Bellman results in 3, are obtained

with the programming language MATLAB (see [Mathworks]). Results for the C0

interior penalty finite element method in Chapter 3 are obtained using the FEniCS

Project software collection (see [1]).
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Chapter 2

Interior Penalty Discontinuous

Galerkin Methods for Second

Order Linear Non-Divergence

Form Elliptic Partial Differential

Equations

2.1 Introduction

In this chapter, we develop interior penalty discontinuous (IP-DG) Galerkin methods

for approximating the W 2,p strong solution to the following second order linear elliptic

PDE in non-divergence form:

Lu := −A : D2u = f in Ω, (2.1.1a)

u = 0 on ∂Ω. (2.1.1b)
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where A is merely continuous. Non-divergence form PDEs are related to the

fully nonlinear Hamilton-Jacobi-Bellman equations (1.2.2) which have applications

in stochastic optimal control and financial mathematics, and the Monge-Ampère

equation (1.2.3), which has applications to differential geometry and optimal mass

transport.

Convergent finite element methods for (2.1.1) are non-trivial in construction; the

reason for this is two-fold. First, the non-divergence structure does not allow for

integration by parts which is essential for the establishment of a weak formulation.

Merely testing (2.1.1a) by an H1 conforming finite element function does not produce

a convergent discretization. However, if A is differentiable, then it is easy to check

that equation (2.1.1a) can be rewritten as a diffusion-advection equation

−A : D2u = − div(A∇u) + div(A) · ∇u (2.1.2)

with A as the diffusion coefficient and div(A) as the advection coefficient. This

rewritten equation, now with a second order divergence form operator, is well

suited for classical finite element methods. However, if A ∈
[
C0(Ω)

]d×d
, then this

formulation is not possible since (∇ ·A) does not exist as a function, but rather only

as a measure. This is the second challenge of developing convergent finite element

methods.

Because of these challenges, the discretization of the non-divergence term −A :

D2u is not trivial, and only a few numerical schemes have been developed that are

convergent for continuous A (see [55, 47, 56, 22]). Each of these schemes discretize

the non-divergence term in a different fashion, and, because of this, each scheme

has advantages and disadvantages, such as extensions to discontinuous A and ease of

computation. Subsection 1.4.1 gives a more thorough explanation of each method.

Of these methods, we focus on the finite element method designed to approximate the

W 2,p strong solution of (2.1.1) in the case of continuous A, which was developed by

Feng, Hennings, and Neilan in [22]. To formulate their finite element method, they
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first assume A ∈ C1(Ω) allowing the equality (2.1.2) to hold. Because the second

order term on left hand side of (2.1.2) is in divergence form, it is easy to formulate

the standard bilinear form for such an equation, namely,

aFE(wh, vh) =

ˆ
Ω

∇wh · ∇vh dx+

ˆ
Ω

div(A) · ∇whvh dx ∀wh, vh ∈ Sh. (2.1.3)

Since a finite element function vh ∈ Sh may not be globally in H2(Ω), they apply the

following well-known DG integration by parts formula:

ˆ
Ω

τ · ∇hv dx = −
ˆ

Ω

(∇h · τ)v dx+
∑
e∈EIh

ˆ
e

[τ · νe]{v} dS +
∑
e∈Eh

ˆ
e

{τ · νe}[v] dS,

(2.1.4)

where v and τ are any scalar and vector valued functions, respectively, defined on

each T ∈ Th, to the second term of (2.1.3) which gives them the following bilinear

form:

aFEh (wh, vh) = −
∑
T∈Th

ˆ
T

(A : D2wh)vh dx+
∑
e∈EIh

ˆ
e

[A∇wh · νe]vh dS ∀wh, vh ∈ Sh.

(2.1.5)

Since (2.1.5) does not contain div(A), their finite element method for continuous A

is then defined as seeking uh ∈ Sh such that

aFEh (uh, vh) = (f, vh) ∀vh ∈ Sh. (2.1.6)

With the freezing coefficient technique explained in Subsection 1.3.1 and a non-

standard duality argument, they prove stability of the bilinear form, and prove

convergence of the method with an optimal discrete W 2,p-norm error estimate. We

note that this finite element method has several advantages over the other methods

listed. First, the method is quite simple in construction and is implementable on many
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H1-conforming finite element software packages - such as FEniCS [1]. Secondly, we

consider this discretization of the non-divergence term to be the most natural, since

this method is equivalent to the standard finite element method when A is a constant

coefficient matrix. One drawback of this method is that the convergence analysis

is proven using the freezing coefficient technique, which is insufficient for showing

convergence for A ∈ [L∞(Ω)]d×d. However, the method shows convergent results

when it is tested on an numerical example with discontinuous A.

The goal of this chapter is to extend the formulation of the finite element method

in [22], whose approximate solutions belong to the H1 conforming space Sh, to Vh

- the space of discontinuous polynomials. The basis for this extension is threefold.

First, since the jumps of the normal derivatives are used in (2.1.3), it is natural to

extend this bilinear form to a completely discontinuous space. Our extension will be

the IP-DG formulation of problem (2.1.1). Secondly, the IP-DG framework brings

with it several computational advantages over traditional finite element methods, for

example, simplicity and ease of computation, flexibility of mesh generation, and ease

of adaptivity. Lastly, since non-divergence form PDEs are used as the building blocks

for the Hamilton-Jacobi-Bellman equations (1.2.2) whose viscosity solutions have low

regularity, approximations from the discontinuous Galerkin space Vh should be better

at resolving these solutions.

This chapter is organized as follows. In Section 2.2, we establish some preliminary

results related to discontinuous discrete functions. In Section 2.3 we present several

IP-DG schemes related to the case of constant coefficient A, derive a W 1,p
h stability

result for the symmetric IP-DG scheme, then establish a W 2,p
h stability result for all

of the these methods. In Section 2.4 we formulate our IP-DG schemes for the case

of continuous A, prove the W 2,p
h stability of the methods using the stability of the

constant coefficient case, and derive optimal order error estimates in the W 2,p
h norm.

Finally, in Section 2.5, we present several numerical experiments showing the validity

of methods for test problems both inside and outside of the W 2,p strong solution

theory. This chapter is based on a joint research project which was reported in [28].
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2.2 Properties of the Discrete Functions of Vh

In this section we collect some technical lemmas that cover the basic properties of

functions Vh which is defined in Section 1.6. These facts will be used many times

throughout the whole chapter.

We first state the standard trace inequalities for broken Sobolev functions, a proof

of this lemma can be found in [8].

Lemma 2.1. For any T ∈ Th and 1 < p <∞, there holds

‖v‖pLp(∂T ) .
(
hp−1
T ‖∇v‖

p
Lp(T ) + h−1

T ‖v‖
p
Lp(T )

)
∀v ∈ W 1,p(T ). (2.2.1)

Therefore by scaling we have

∑
e∈EIh

he‖v‖pLp(e∩D)
.

‖v‖
p
Lp(D) ∀v ∈ Vh(D),

‖v‖pLp(D) + hp‖∇v‖pLp(D) ∀v ∈ W 2,p
h (D).

(2.2.2)

Next, we prove an inverse inequality between the W 2,p
h -norm and the W 1,p

h -norm.

Lemma 2.2. For any vh ∈ Vh, D ⊆ Ω, there holds for 1 < p <∞

‖vh‖W 2,p
h (D) . h−1‖vh‖W 1,p

h (Dh), (2.2.3)

where

Dh = {x ∈ Ω; dist(x,D) ≤ h}. (2.2.4)

Proof. To show (2.2.3), we use (1.6.1), (2.2.1), and standard inverse estimates [8] to

obtain

‖vh‖W 2,p
h (D) . ‖D

2
hvh‖Lp(D) +

(∑
e∈Eh

γpeh
1−2p
e ‖[v]‖p

Lp(e∩D̄)

) 1
p
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+
∑
T∈Th
T⊂Dh

(
h1−p
T

(
hp−1
T ‖D

2vh‖pLp(T ) + h−1
T ‖∇vh‖

p
Lp(T )

)) 1
p

. ‖D2
hvh‖Lp(D) +

(∑
e∈Eh

γpeh
−p
e h1−p

e ‖[v]‖p
Lp(e∩D̄)

) 1
p

+
∑
T∈Th
T⊂Dh

(
‖D2vh‖pLp(T ) + h−pT ‖∇vh‖

p
Lp(T )

) 1
p

. h−1‖vh‖W 1,p
h (Dh) + h−1

(∑
e∈EIh

γpeh
1−p
e ‖[v]‖p

Lp(e∩D̄)

) 1
p

. h−1‖vh‖W 1,p
h (Dh).

We also prove an inverse inequality between the Lp-norm and the W−1,p
h -norm.

Lemma 2.3. Let v ∈ Vh(D). For any 1 < p <∞ and subdomain D ⊂ Ω we have

‖vh‖Lp(D) . h−1‖vh‖W−1,p
h (D). (2.2.5)

Proof. Using the relation (1.6.7) and the definition of ‖ · ‖Lph(Ω), we find that

‖vh‖Lp(D) ≤ ‖vh‖Lp(Ω) . ‖vh‖Lph(Ω) = sup
0 6=wh∈Vh

(vh, wh)D
‖wh‖Lp′ (Ω)

∀vh ∈ Vh(D).

Therefore, by the standard inverse estimate h‖wh‖W 1,p′
h (D)

≤ h‖wh‖W 1,p′
h (Ω)

.

‖wh‖Lp′ (Ω) and noting that Vh
(
D) ⊂ W 1,p′

h (D), we obtain

‖vh‖Lp(D) . h−1 sup
06=wh∈Vh

(vh, wh)D
‖wh‖W 1,p′

h (D)

≤ h−1 sup
06=w∈W 1,p′

h (D)

(vh, w)D
‖w‖

W 1,p′
h (D)

= ‖vh‖W−1,p
h (D).

The proof is complete.

The following lemma shows that the broken Sobolev norms are controlled by their

corresponding Sobolev norms.
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Lemma 2.4. For any 1 < p <∞ there holds the following inequality:

‖ϕ‖W 2,p
h (Ω) ≤ ‖ϕ‖W 2,p(Ω) ∀ϕ ∈ W 2,p(Ω) ∩W 1,p

0 (Ω).

Proof. Since the inequality holds for all ϕ ∈ C∞(Ω)∩W 1,p
0 (Ω), it can be extended to

all ϕ ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) by a density argument.

The next lemma establishes a Poincaré-Friedrichs’ inequality for DG functions.

Lemma 2.5. Let D ⊂ Ω such that Vh(D) 6= {0} and diam(D) ≥ h. Then for any

vh ∈ Vh(D) there holds the following inequalities:

‖vh‖Lp(D) . diam(D)‖vh‖W 1,p
h (D), (2.2.6)

‖vh‖W 1,p
h (D) . diam(D)‖vh‖W 2,p

h (D). (2.2.7)

Proof. Let Ṽh denote the generalized Hsiegh–Clough–Tochner space [20], and let Eh :

Vh → Ṽh be the reconstruction operator constructed in [34]. The arguments given in

[34] show that, for vh ∈ Vh(D),

Ehvh ∈ H2
0 (Dh), (2.2.8)

‖vh − Ehvh‖Lp(Ω) . h‖vh‖W 1,p
h (D),

‖vh − Ehvh‖Wm,p
h (Ω) . hs−m‖vh‖W s,p

h (D), 1 ≤ m ≤ s ≤ 2,

where Dh is the same as in Lemma 2.2. Therefore, by the triangle inequality, the

Poincarè-Friedrichs inequality, and the assumption diam(D) ≥ h,

‖vh‖Lp(D) ≤ ‖Ehvh‖Lp(D) + ‖vh − Ehvh‖Lp(Ω)

. diam(D)‖Ehvh‖W 1,p(Dh) + h‖vh‖W 1,p
h (D) . diam(D)‖vh‖W 1,p

h (D).
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Likewise, we find

‖vh‖W 1,p
h (D) ≤ ‖Ehvh‖W 1,p(Dh) + ‖vh − Ehvh‖W 1,p

h (Ω),

. diam(D)‖Ehvh‖W 2,p(Dh) + h‖vh‖W 2,p
h (Ω) . diam(D)‖vh‖W 2,p

h (D).

The proof is complete.

Next we establish a discrete Sobolev interpolation estimate for DG functions.

Lemma 2.6. Let 1 < p <∞. For all vh ∈ Vh we have

‖vh‖2
W 1,p
h (Ω)

. ‖vh‖Lp(Ω)‖vh‖W 2,p
h (Ω). (2.2.9)

Proof. Let Eh : Vh → Ṽh be the enriching operator in the proof of Lemma 2.5. By

the triangle inequality and scaling we find

‖vh‖2
W 1,p
h (Ω)

. ‖vh − Ehvh‖2
W 1,p
h (Ω)

+ ‖Ehvh‖2
W 1,p(Ω). (2.2.10)

Since Ehvh ∈ W 2,p(Ω) we can apply the Gagliardo–Nirenberg estimate [9] to get

‖Ehvh‖2
W 1,p(Ω) . ‖Ehvh‖W 2,p(Ω)‖Evh‖Lp(Ω).

Applying estimates (2.2.8), we conclude that

‖Ehvh‖2
W 1,p(Ω) . ‖vh‖W 2,p

h (Ω)‖vh‖Lp(Ω). (2.2.11)

Likewise, by (2.2.8) and an inverse estimate,

‖vh − Ehvh‖2
W 1,p
h (Ω)

. h2‖vh‖2
W 2,p
h (Ω)

. ‖vh‖Lp(Ω)‖vh‖W 2,p
h (Ω). (2.2.12)

Combining (2.2.10)–(2.2.12) completes the proof.
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Next we prove some local super approximation estimates for the DG nodal

interpolation in various discrete norms. The derivation of the lemma is standard

(cf. [46]);

Lemma 2.7. Let Ih : C0(Th) := ΠT∈ThC
0(T ) → Vh denote the nodal interpolation

operator, and η ∈ C∞(Ω) with |η|W j,∞(Ω) . d−j for 0 ≤ j ≤ k. Then for any vh ∈ Vh
and D ⊆ Ω we have

‖ηvh − Ih(ηvh)‖Lp(D) .
h

d
‖vh‖Lp(Dh), (2.2.13)

h‖∇h(ηvh − Ih(ηvh))‖Lp(D) .
h

d
‖vh‖Lp(Dh), (2.2.14)

h2‖D2
h(ηvh − Ih(ηvh))‖Lp(D) .

h

d
‖vh‖Lp(Dh), (2.2.15)

‖ηvh − Ih(ηvh)‖W 2,p
h (D) .

1

d2

(
‖vh‖Lp(Dh) + ‖∇hvh‖Lp(Dh)

)
, (2.2.16)

where Dh is the same as in Lemma 2.2. Moreover, there holds

‖ηvh − Ih(ηvh)‖W 2,p
h (D) .

h

d3
‖vh‖W 2,p

h (Dh) (2.2.17)

if the polynomial degree k ≥ 2.

Proof. From [2, Lemma 3] we have the following estimates for Ih

hmp|ηvh − Ih(ηvh)|pWm,p(T ) . hp(k+1)|ηvh|pWk+1,p(T )
, 0 ≤ m ≤ k + 1. (2.2.18)

By the assumptions on η, the fact that |vh|Wk+1,p(T ) = 0, and a standard inverse

inequality we get

|ηvh|Wk+1,p(T ) .
∑

|α|+|β|=k+1

ˆ
T

|Dαη|p|Dβvh|p dx (2.2.19)

.
k∑
j=0

1

dp(k+1−j |vh|
p
W j,p(T )

.
k∑
j=0

h−jp

dp(k+1−j)‖vh‖
p
Lp(T ).
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It follows from (2.2.18) and (2.2.19) with h ≤ d that

hmp|ηvh − Ih(ηvh)|pWm,p(T ) .
k∑
j=0

hp(k+1−j)

dp(k+1−j) ‖vh‖
p
Lp(T ) .

hp

dp
‖vh‖Lp(T ).

Thus we have

‖ηvh − Ih(ηvh)‖Lp(D) .
∑
T∈Th
T∩D 6=∅

|ηvh − Ih(ηvh)|pLp(T )

.
∑
T∈Th
T∩D 6=∅

hp

dp
‖vh‖Lp(T ) .

hp

dp
‖vh‖Lp(Dh),

hp‖∇h(ηvh − Ih(ηvh))‖Lp(D) .
∑
T∈Th
T∩D 6=∅

hp|ηvh − Ih(ηvh)|pW 1,p(T )

.
∑
T∈Th
T∩D 6=∅

hp

dp
‖vh‖Lp(T ) .

hp

dp
‖vh‖Lp(Dh),

h2p‖∇h(ηvh − Ih(ηvh))‖Lp(D) .
∑
T∈Th
T∩D 6=∅

h2p|ηvh − Ih(ηvh)|pW 2,p(T )

.
∑
T∈Th
T∩D 6=∅

hp

dp
‖vh‖Lp(T ) .

hp

dp
‖vh‖Lp(Dh).

Hence (2.2.13), (2.2.14), and (2.2.15) hold.

To show (2.2.16), using (2.2.19) and an inverse estimate we have

hp(k−1)|ηvh|pWk+1,p(T )
.

k∑
j=0

hp(k−1)

dp(k+1−j) |vh|
p
W j,p(T )

(2.2.20)

.
1

d2p
‖vh‖pLp(T ) +

k∑
j=1

hp(k−j)

dp(k+1−j) |vh|
p
W 1,p(T )

.
1

d2p

(
‖vh‖pLp(T ) + |vh|pW 1,p(T )

)
.
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It follows from (2.2.18) and (2.2.20) that

‖D2(ηvh − Ih(ηvh))‖pLp(T ) . hp(k−1)|ηvh|pWk+1,p(T )
.

1

d2p

(
‖vh‖pLp(T ) + |vh|pW 1,p(T )

)
,

h−p‖∇(ηvh − Ih(ηvh))‖pLp(T ) . hp(k−1)|ηvh|pWk+1,p(T )
.

1

d2p

(
‖vh‖pLp(T ) + |vh|pW 1,p(T )

)
,

h−2p‖ηvh − Ih(ηvh)‖pLp(T ) . hp(k−1)|ηvh|pWk+1,p(T )
.

1

d2p

(
‖vh‖pLp(T ) + |vh|pW 1,p(T )

)
.

Using the previous three estimates and Lemma 2.1 we get

‖ηvh − Ih(ηvh)‖pW 2,p
h (D)

.
∑
T∈Th

‖D2(ηvh − Ih(ηvh))‖pLp(T )

+
∑
e∈EIh

h1−p
e ‖[∇(ηvh − Ih(ηvh))]‖pLp(e) +

∑
e∈EIh

h1−2p
e ‖[ηvh − Ih(ηvh)]‖pLp(e)

+
∑
e∈EBh

h1−2p
e ‖ηvh − Ih(ηvh)‖pLp(e)

.
∑
T∈Th
T∩D 6=∅

‖D2(ηvh − Ih(ηvh))‖pLp(T ) +
∑
T∈Th
T∩D 6=∅

h−p‖∇(ηvh − Ih(ηvh))‖pLp(T )

+
∑
T∈Th
T∩D 6=∅

h−2p‖ηvh − Ih(ηvh)‖pLp(T )

.
∑
T∈Th
T∩D 6=∅

1

d2p

(
‖vh‖pLp(T ) + |vh|pW 1,p(T )

)
.

1

d2p

(
‖vh‖pLp(T ) + ‖∇hvh‖pLp(T )

)
.

Thus, (2.2.16) holds.

Finally, the proof of (2.2.17) is similar to that of (2.2.16) except one minor detail.

Since k ≥ 2, by (2.2.19) and an inverse inequality we get

hp(k−1)|ηvh|pWk+1,p(T )
.

k∑
j=0

hp(k−1)

dp(k+1−j) |vh|
p
W j,p(T )

(2.2.21)

= hp
( k∑
j=0

hp(k−2)

dp(k+1−j) |vh|
p
W j,p(T )

)
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= hp
( 1

d3p
‖vh‖pLp(T ) +

1

d2p
|vh|pW 1,p(T ) +

k∑
j=2

hp(k−j)

dp(k+1−j) |v|
p
W 2,p(T )

)
.

hp

d3p
‖vh‖pW 2,p(T ).

Thus, we can obtain (as in the derivation on (2.2.16)) using Lemma 2.5 that

‖ηvh − Ih(ηvh)‖W 2,p
h (D) .

h

d3

∑
T∈Th
T∩D 6=∅

‖vh‖W 2,p(T )

=
h

d3

(
‖vh‖Lp(Dh) + ‖∇hvh‖Lp(Dh) + ‖D2

hvh‖Lp(Dh)

)
.

h

d3
‖vh‖W 2,p

h (Dh).

The proof is complete.

2.3 DG discrete W 1,p and Calderon-Zygmund esti-

mates for PDEs with constant coefficients

In this section we consider the constant coefficient case, that is, A(x) ≡ A0 ∈ Rn×n

on Ω. We define three interior-penalty discontinuous Galerkin discretizations Lε0,h to

the PDE operator L and extend their domains to the broken Sobolev space W 2,p(Th).

Our goal in this subsection is to prove global stability estimates for Lε0,h which will

be crucial in the next section. The final global stability estimate given in Theorem

2.2 can be regarded as a DG discrete Calderon-Zygmund estimate for Lε0,h.

Let A0 be a constant, positive-definite matrix in Rn×n and define

L0w := −A0 : D2w = − div(A0∇w). (2.3.1)
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From this we gather the standard PDE weak form:

a0(w, v) :=

ˆ
Ω

A0∇w · ∇v dx ∀w, v ∈ H1
0 (Ω). (2.3.2)

The Lax-Milgram theorem [8] yields the existence and boundedness of L−1
0 :

H−1(Ω) → H1
0 (Ω). Moreover, if ∂Ω ∈ C1,1 we have from Calderon-Zygmund theory

[35] that L−1
0 : Lp(Ω)→ W 2,p(Ω) ∩W 1,p

0 (Ω) exists and

‖L−1
0 ϕ‖W 2,p(Ω) . ‖ϕ‖Lp(Ω) ∀ϕ ∈ Lp(Ω),

and therefore

‖w‖W 2,p(Ω) . ‖L0w‖Lp(Ω) ∀w ∈ W 2,p(Ω) ∩W 1,p
0 (Ω).

Define Lε0,h : Vh → Vh by

(
Lε0,hwh, vh

)
:= aε0,h(wh, vh) ∀vh, wh ∈ Vh, (2.3.3)

where the IP-DG bilinear form is defined by

a0,h(wh, vh) :=

ˆ
Ω

A0∇hwh · ∇hvh dx−
∑
e∈Eh

ˆ
e

{A0∇wh · νe}[vh] dS (2.3.4)

− ε
∑
e∈Eh

ˆ
e

{A0∇vh · νe}[wh] dS +
∑
e∈Eh

ˆ
e

γe
he

[wh][vh] dS,

and γe > 0 is a penalization parameter. The parameter choices ε ∈ {1, 0,−1} give

respectively the SIP-DG, IIP- DG, and NIP-DG formulations. For the sake of clarity

and readability we shall assume for the rest of this chapter that ε may be either 1, 0,

or −1 unless otherwise stated. Applying the DG-integration by parts formula (2.1.4)
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to the first term on the right-hand side of (2.3.4) yields

aε0,h(wh, vh) =−
ˆ

Ω

(A0 : D2
hwh)vh dx+

∑
e∈EIh

ˆ
e

[A0∇wh · νe]{vh} dS (2.3.5)

− ε
∑
e∈Eh

ˆ
e

{A0∇vh · νe}[wh] dS +
∑
e∈Eh

ˆ
e

γe
he

[wh][vh] dS

for any wh, vh ∈ Vh. By Hölder’s inequality, it is easy to check that the above new form

of aε0,h(·, ·) is also well-defined on W 2,p(Th)×W 2,p′(Th) with 1
p

+ 1
p′

= 1. As a result,

this new form enables us to extend the domain of aε0,h(·, ·) to W 2,p(Th) ×W 2,p′(Th)

and Lε0,h : W 2,p(Th)→ (W 2,p(Th))∗.

2.3.1 DG discrete W 1,p error estimates

From the standard IP-DG theory [49], there exists γ∗ = γ∗(‖A0‖L∞(Ω), Th) > 0

depending only on the shape regularity of the mesh and on ‖A0‖L∞(Ω) such that

Lε0,h is invertible on Vh provided γe ≥ γ∗; in the non–symmetric case ε = −1, γ∗ can

be any positive number. Moreover, if w ∈ W 2,2(Th) ∩H1
0 (Ω) and wh ∈ Vh satisfy

aε0,h(w − wh, vh) = 0 ∀vh ∈ Vh, (2.3.6)

then the quasi-optimal error estimate

‖w − wh‖W 1,2
h (Ω) . inf

vh∈Vh
‖w − vh‖W 1,2

h (Ω) (2.3.7)

is satisfied. The goal of this subsection is to generalize this result to general exponent

p ∈ (1,∞) for the SIP-DG method. In particular, we have

Theorem 2.1. Suppose w ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) (1 < p < ∞) and wh ∈ Vh satisfy

(2.3.6) with ε = 1. Then there holds

‖w − wh‖W 1,p
h (Ω) . h| log h|t‖w‖W 2,p(Ω), (2.3.8)
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where t = (p+ 1)/p if k = 1 and t = 0 if k ≥ 2.

This result, while of independent interest, is quite technical and borrows the

techniques of L∞ error estimates from [14] to prove Theorem 2.1 for p > 2. Then

we perform a duality argument using the symmetry of a1
0,h(·, ·) to prove the case

1 < p < 2. We include the proof for completeness which can also be found in [28].

To prove Theorem 2.1 we introduce some notation given in [14] (also see [52]).

For given z ∈ Ω, we define the weight function σz as

σz(x) =
h

|x− z|+ h
. (2.3.9)

For 1 ≤ p <∞ and s ∈ R, we define the following weighted norms

‖v‖Lp(D),z,s =

(ˆ
D

∣∣σsz(x)v(x)
∣∣p dx

)1/p

,

‖v‖W 1,p(D),z,s = ‖v‖Lp(D),z,s + ‖∇hv‖Lp(D),z,s,

‖v‖W 1,p
h (D),z,s = ‖v‖W 1,p(D),z,s +

(∑
e∈Eh

h1−p
e

∥∥σsz[v]
∥∥p
Lp(e∩D)

)1/p

(2.3.10)

+
(∑
e∈Eh

he
∥∥σsz{∇hv}

∥∥p
Lp(e∩D)

)1/p

.

The weighted norms in the case p =∞ are defined analogously.

The derivation of W 1,p error estimates of DG approximations is based on the work

[14], where localized pointwise estimates of DG approximations are obtained. There

it was shown that if w ∈ W 2,∞(Ω) and wh ∈ Vh satisfy (2.3.6) with ε = 1, then

|∇(w − wh)(z)| . inf
vh∈Vh

‖w − vh‖W 1,∞
h (Ω),z,s 0 ≤ s < k (2.3.11)

for all z ∈ Ω. Similar to pointwise estimates of finite element approximations (e.g., [52,

8]), the ingredients to prove (2.3.11) include duality arguments and DG approximation

estimates of regularized Green functions in a weighted (discrete) W 1,1-norm. These
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results are rather technical and involve dyadic decompositions of Ω, local DG error

estimates, and Green function estimates.

Here, we follow a similar argument to derive W 1,p estimates; the main difference

being that we derive DG approximation estimates of regularized Green functions in

a weighted (discrete) W 1,p′-norm with 1/p + 1/p′ = 1 (cf. Lemma 2.3). Using these

estimates and applying similar arguments in [52, 14] then yield the estimate

|∇(w − wh)(z)|p . h−n inf
vh∈Vh

‖w − vh‖pW 1,p
h (Ω),z,s

for certain values of s. Integrating this expression with respect to z and applying

Fubini’s theorem (cf. Lemma 2.1) then yields Lp estimates of the piecewise gradient

error.

Unfortunately, the strategy just described does not immediately give us estimates

for the terms h1−p
e ‖[w−wh]‖

p
Lp(e) appearing in theW 1,p

h -norm. To bypass this difficulty,

we first use the trace inequality

∑
e∈Eh

h1−p
e ‖[w − wh]‖

p
Lp(e) . ‖∇h(w − wh)‖pLp(Ω) + h−p‖w − wh‖pLp(Ω),

and then derive estimates for h−p‖w − wh‖pLp(Ω). We note that the standard duality

argument to derive Lp estimates yields

‖w − wh‖Lp(Ω) . h‖w − wh‖W 1,p
h (Ω),

which is of little benefit. Rather, our strategy is to modify the arguments given in

[14, Theorem 5.1] and estimate |(w − wh)(z)| in terms of infvh∈Vh ‖w − vh‖W 1,p
h (Ω),z,s

(cf. Lemma 2.2) and then apply Fubini’s theorem. We note that it is due to this term

that the | log h|t factor appears in Theorem 2.1.
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Lemma 2.1. Let p ∈ [2,∞) and v ∈ Lp(Ω). Let z ∈ Ω and Tz ∈ Th such that z ∈ Tz.

Then there holds

ˆ
Ω

ˆ
Tz

|v(x)|p dx dz . hn‖v‖pLp(Ω). (2.3.12)

Moreover for any s > n/p and w ∈ W 2,p(Th), there holds

ˆ
Ω

‖v‖p
W 1,p
h (Ω),z,s

dz .
hn

ps− n
(
‖∇hv‖pLp(Ω) + h−p‖v‖pLp(Ω) + hp‖D2

hv‖
p
Lp(Ω)

)
. (2.3.13)

If s = n/p, then we have

ˆ
Ω

‖v‖p
W 1,p
h (Ω),z,n/p

dz . | log h|hn
(
‖∇hv‖pLp(Ω) + h−p‖v‖pLp(Ω) + hp‖D2

hv‖
p
Lp(Ω)

)
.

(2.3.14)

Proof. (i) Let v ∈ Lp(Ω) and extend v to Rn by zero. Denote by Bh(z) the ball of

radius h and center z. Then by a change of variables and interchanging integrals, we

find

ˆ
Ω

ˆ
Tz

|v(x)|p dx dz ≤
ˆ

Ω

ˆ
Bh(z)

|v(x)|p dx dz

= hn
ˆ

Ω

ˆ
B1(0)

|v(z + hy)|p dy dz

= hn
ˆ
B1(0)

ˆ
Ω

|v(z + hy)|p dz dy

. hn
ˆ
B1(0)

‖v‖pLp(Ω) dy . hn‖v‖pLp(Ω).

This proves (2.3.12).

(ii) To prove (2.3.13) we again extend v to Rn by zero and make a change of

variables to obtain

ˆ
Ω

‖σszv‖
p
Lp(Ω) dz =

ˆ
Ω

ˆ
Ω

( h

|x− z|+ h

)sp
|v(x)|p dx dz
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≤ hn
ˆ

Ω

ˆ
Ω̂

hsp

(|hy|+ h)sp
|v(z + hy)|p dy dz

= hn
ˆ

Ω̂

( ˆ
Ω

|v(z + hy)|p dz
) 1

(|y|+ 1)sp
dy,

where Ω̂ = {2h−1x : x ∈ Ω} is a dilation of Ω. Therefore,

ˆ
Ω

‖σszv‖
p
Lp(Ω) dz . hn‖v‖pLp(Ω)

ˆ
Ω̂

1

(|y|+ 1)sp
dy. (2.3.15)

For sp > n, there holds

ˆ
Ω̂

1

(|y|+ 1)sp
dy .

ˆ ∞
0

rn−1

(r + 1)sp
dr = (n− 1)!

n∏
j=1

(sp− j)−1 ≤ (n− 1)!

sp− n
.

Combining this identity with (2.3.15) yields the inequality

ˆ
Ω

‖σszv‖
p
Lp(Ω) dz .

hn

sp− n
‖v‖pLp(Ω). (2.3.16)

If sp = n, then we find by a direct calculation that

ˆ
Ω̂

1

(|y|+ 1)n
dy .

ˆ h−1

0

rn−1

(r + 1)n
dr = −

n−1∑
j=1

1

(h+ 1)n−j
+ log(1 + h−1) . | log h|,

and therefore by (2.3.15),

ˆ
Ω

‖σp/nz v‖pLp(Ω) dz . | log h|hn‖v‖Lp(Ω). (2.3.17)

Next, by trace inequalities given in Lemma 2.1, we have

∑
e∈Eh

h1−p
e ‖[σszv]‖pLp(e) . h−p‖σszv‖

p
Lp(Ω) + ‖∇h(σ

s
zv)‖pLp(Ω)

. h−p‖σszv‖
p
Lp(Ω) + ‖v∇(σsz)‖

p
Lp(Ω) + ‖σsz∇hv‖pLp(Ω).
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Noting that

|∇(σsz)| .
hs

(|x− z|+ h)s+1
=

σsz
|x− z|+ h

. h−1σsz,

we obtain

∑
e∈Eh

h1−p
e ‖[σszv]‖pLp(e) . h−p‖σszv‖

p
Lp(Ω) + ‖σsz∇hv‖pLp(Ω). (2.3.18)

Likewise we have

∑
e∈Eh

he‖σsz{∇v}‖
p
Lp(e) . ‖σ

s
z∇hv‖pLp(Ω) + hp‖σszD2

hv‖Lp(Ω). (2.3.19)

Combining (2.3.18)–(2.3.19) yields

‖v‖W 1,p
h (Ω),z,s . ‖σ

s
z∇hv‖pLp(Ω) + h−p‖σszv‖

p
Lp(Ω) + hp‖σszD2

hv‖
p
Lp(Ω). (2.3.20)

Finally applying the identities (2.3.16)–(2.3.17) to (2.3.20) yields the desired result

(2.3.13)–(2.3.14). The proof is complete.

Lemma 2.2. Let w ∈ W 2,p(Th) (2 ≤ p ≤ ∞) and wh ∈ Vh satisfy (2.3.6) with ε = 1.

Then for any 0 ≤ s ≤ k − 1 + n/p and z ∈ Ω,

|(w − wh)(z)| . h1−n/p| log h|s̄(p) inf
vh∈Vh

‖w − vh‖W 1,p
h (Ω),z,s,

where s̄(p) = 1 if k = s+ 1− n/p and s̄(p) = 0 for k > s+ 1− n/p.

Proof. Step 1: Set-up. By the triangle inequality, an inverse estimate, and Hölder’s

inequality we obtain

|(w − wh)(z)| ≤ |(w − vh)(z)|+ ‖vh − wh‖L∞(Tz)

≤ |(w − vh)(z)|+ h−n/2‖vh − wh‖L2(Tz)
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≤ |(w − vh)(z)|+ h−n/2
(
‖w − wh‖L2(Tz) + ‖w − vh‖L2(Tz)

)
≤ ‖w − vh‖L∞(Tz) + h−n/2‖w − wh‖L2(Tz).

Therefore by standard approximation theory, and since σz ≈ 1 on Tz, we have

|(w − wh)(z)| ≤ h1−n/p‖w‖W 1,p
h (Tz) + h−n/2‖w − wh‖L2(Tz)

≤ h1−n/p‖w‖W 1,p
h (Ω),z,s + h−n/2‖w − wh‖L2(Tz).

Replacing w and wh by w − vh and wh − vh, respectively, yields

|(w − wh)(z)| . h1−n/p‖w − vh‖W 1,p
h (Ω),z,s + h−n/2‖w − wh‖L2(Tz). (2.3.21)

Next, define ρ ∈ L2(Ω) by

ρ(x) =


h−n/2(w−wh)(x)
‖w−wh‖L2(Tz)

if x ∈ Tz

0 otherwise,

and let gz ∈ H1
0 (Ω) be the regularized Green’s function satisfying

L0gz = ρ. (2.3.22)

Setting gz,h to be the DG approximation of gz, i.e., a0,h(vh, gz − gz,h) = 0, ∀vh ∈ Vh,

and ez := gz − gz,h, we have by Galerkin orthogonality and the continuity of the

bilinear form,

h−n/2‖w − wh‖L2(Tz) = (ρ, w − wh) = a0,h(w − wh, gz)

= a0,h(w − vh, ez) . ‖w − vh‖W 1,p
h (Ω),s,z‖ez‖W 1,p′

h (Ω),−s,z.
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Consequently, by (2.3.21), we have

|(w − wh)(z)| . ‖w − vh‖W 1,p
h (Ω),z,s

(
h1−n/p + ‖ez‖W 1,p′

h (Ω),−s,z

)
∀vh ∈ Vh. (2.3.23)

Thus, the proof will be completed once it is shown that ‖ez‖W 1,p′
h (Ω),−s,z .

| log h|s̄(p)h1−n/p. This result is derived in the following steps.

Step 2: Dyadic decomposition of Ω. To estimate ‖ez‖W 1,p′
h (Ω),−s,z we require some

more notation. Without loss of generality, assume that diam(Ω) = 1. Let dj = 2−j

and set

Ωj = {x ∈ Ω : dj+1 < |z − x| < dj},

Ω′j = {x ∈ Ω : dj+2 < |z − x| < dj−1},

Ω′′j = {x ∈ Ω : dj+3 < |z − x| < dj−2}.

Let M > 1 be a real number to be determined later, and let J ≈ | log h| be an

integer such that Mh = 2−J . We then write

‖ez‖W 1,p′
h (Ω),z,−s . ‖ez‖W 1,p′

h (BMh(z)),z,−s +
J∑
j=0

‖ez‖W 1,p′
h (Ωj),z,−s

. (2.3.24)

Note that, by the definition of Ωj, the weighted norms, and Hölder’s inequality that

‖ez‖W 1,p′
h (Ωj),z,−s

. d
n/q+s
j h−s‖ez‖W 1,2

h (Ωj)
,

‖ez‖W 1,p′
h (BMh),z,−s . hn/q‖ez‖W 1,2

h (BMh(z)) ≤ hn/q‖ez‖W 1,2
h (Ω),

where

q ∈ [2,∞] satisfies 1/q + 1/p = 1/2.
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Applying these estimates to (2.3.24) yields

‖ez‖W 1,p′
h (Ω),z,−s . hn/q‖ez‖W 1,2

h (Ω) +
J∑
j=0

d
n/q+s
j h−s‖ez‖W 1,2

h (Ωj)
(2.3.25)

= hn/q‖ez‖W 1,2
h (Ω) +Qh,

where

Qh := h−s
J∑
j=0

d
n/q+s
j ‖ez‖W 1,2

h (Ωj)
. (2.3.26)

To estimate the first term in the right–hand side of (2.3.25), we apply elliptic

regularity and the identity ‖ρ‖L2(Ω) = h−n/2 to obtain

‖ez‖W 1,2
h (Ω) . h‖gz‖W 2,2(Ω) . h‖ρ‖L2(Ω) = h1−n/2.

Applying this estimate in (2.3.25) and using the identity 1 − n/2 + n/q = 1 − n/p

yields

‖ez‖W 1,p′
h (Ω),z,−s . h1−n/p +Qh. (2.3.27)

It remains to find an appropriate upper bound of Qh to complete the proof.

Step 3: Estimate of Qh –Local error estimates. Lemma 4.4 in [14] states that

‖ez‖W 1,2
h (Ωj)

. hkd
1−k−n/2
j + d−1

j ‖ez‖L2(Ω′j)
.

Applying this estimate to the definition of Qh (2.3.26) yields

Qh . hk−s
J∑
j=0

d
n/q+s+1−k−n/2
j + h−s

J∑
j=0

d
n/q+s−1
j ‖ez‖L2(Ω′j)

= hk−s
J∑
j=0

d
−(k−s+n/p−1)
j + h−s

J∑
j=0

d
n/q+s−1
j ‖ez‖L2(Ω′j)
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= h1−n/pΘ(k − s+ n/p− 1) + h−s
J∑
j=0

d
n/q+s−1
j ‖ez‖L2(Ω′j)

,

where

Θ(τ) :=
J∑
j=0

(
h

dj

)τ
.

Therefore, since (cf. [14, (5.19)])

Θ(τ) .

 | log h| if τ = 0,

1
Mτ (1−2−τ )

if τ > 0,

we find that

Qh . | log h|s̄(p)h1−n/p + h−s
J∑
j=0

d
n/q+s−1
j ‖ez‖L2(Ω′j)

. (2.3.28)

Step 4: Estimate of Qh – Duality Arguments. Applying [14, (5.24)] yields

‖ez‖L2(Ω′j)
. hkd

1−k−n/2
j ‖ez‖W 1,1

h (Ω) + h‖ez‖W 1,2
h (Ω′′j ). (2.3.29)

Using estimates (2.3.29) and (2.3.28), and noting that max0≤j≤J d
−1
j = 2J = 1/(hM),

we find

Qh . | log h|s̄(p)h1−n/p + hk−s
J∑
j=0

d
s−k−n/p
j ‖ez‖W 1,1

h (Ω) + h1−s
J∑
j=0

d
n/q+s−1
j ‖ez‖W 1,2

h (Ω′′j )

. | log h|s̄(p)h1−n/p + hk−s
J∑
j=0

d
s−k−n/p
j ‖ez‖W 1,1

h (Ω) +
h−s

M

J∑
j=0

d
n/q+s
j ‖ez‖W 1,2

h (Ω′′j )

. | log h|s̄(p)h1−n/p + h−n/pΘ(k − s+ n/p)‖ez‖W 1,1
h (Ω) +

1

M
Qh.
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Taking M sufficiently large yields

Qh . | log h|s̄(p)h1−n/p + h−n/pΘ(k − s+ n/p)‖ez‖W 1,1
h (Ω).

Applying this estimate to (2.3.27) then yields

‖ez‖W 1,p
h (Ω),z,−s . | log h|s̄(p)h1−n/p + h−n/pΘ(k − s+ n/p)‖ez‖W 1,1

h (Ω). (2.3.30)

In particular, the case s = 0, p =∞, p′ = 1 gives

‖ez‖W 1,1
h (Ω) . | log h|s̄(∞)h+ Θ(k)‖ez‖W 1,1

h (Ω).

Since

Θ(k) .
1

Mk(1− 2−k)
,

we can take M sufficiently large to conclude that

‖ez‖W 1,1
h (Ω) . | log h|s̄(∞)h.

Finally, applying this last estimate to (2.3.30) yields

‖ez‖W 1,p
h (Ω),z,−s . | log h|s̄(p)h1−n/p(1 + Θ(k − s+ n/p)

)
. | log h|s̄(p)h1−n/p.

Applying this last estimate to (2.3.23) completes the proof.

Lemma 2.3. Let z and Tz be as in Lemma 2.1. For arbitrary ϕ ∈ C∞0 (Tz), with

‖ϕ‖W 1,2(Tz) = 1, we extend ϕ to Ω by zero, and let ĝz be the solution to

L∗0ĝz = h−n/2−1∂ϕ/∂xi in Ω, ĝz = 0 on ∂Ω.
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Let ĝz,h ∈ Vh satisfy the discrete adjoint problem

a0,h(vh, ĝz,h) = h−n/2−1

ˆ
Ω

(∂ϕ/∂xi)vh dx ∀vh ∈ Vh,

where we have dropped the superscript of the bilinear form for notational simplicity.

Let p ∈ [2,∞], p′ ∈ [1, 2] such that 1/p + 1/p′ = 1. Then for any 0 ≤ s ≤ k + n/p

there holds

‖ĝz − ĝz,h‖W 1,p′
h (Ω),z,−s . | log h|¯̄s(p)h−n/p,

where ¯̄s(p) = 1 if s = k + n/p and ¯̄s(p) = 0 otherwise.

Proof. Set êz = ĝz − ĝz,h, and for M > 0, let J satisfy Mh = 2−J . Then by applying

similar arguments as the proof of Lemma 2.2, we obtain

‖êz‖W 1,p′
h (Ω),z,−s ≤ ‖êz‖W 1,p′

h (BMh(z)),z,−s +
J∑
j=0

‖êz‖W 1,p′
h (Ωj)

. hn/q‖êz‖W 1,2
h (Ω) + h−s

J∑
j=0

d
n/q+s
j ‖êz‖W 1,2

h (Ωj)

. hn/q+1‖ĝz‖W 2,2
h (Ω) + h−s

J∑
j=0

d
n/q+s
j ‖êz‖W 1,2

h (Ωj)

. h−n/p + F̂h,

with

F̂h := h−s
J∑
j=0

d
n/q+s
j ‖êz‖W 1,2

h (Ωj)
. (2.3.32)

By the local error estimate given in [14, Lemma 4.2] we have

‖êz‖W 1,2
h (Ωj)

. hk‖ĝz‖Wk+1,2(Ω′j)
+ d−1

j ‖êz‖L2(Ω′j)
,
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and Green function estimates show that ‖ĝz‖Wk+1,2(Ω′j)
. d

−n/2−k
j . Applying these

estimates into (2.3.32) yield

F̂h . hk−s
J∑
j=0

d
n(1/q−1/2)+s−k
j + h−s

J∑
j=0

d
n/q+s−1
j ‖êz‖L2(Ω′j)

= h−n/pΘ(k − s+ n/p) + h−s
J∑
j=0

d
n/q+s−1
j ‖êz‖L2(Ω′j)

. | log h|¯̄s(p)h−n/p + h−s
J∑
j=0

d
n/q+s−1
j ‖êz‖L2(Ω′j)

.

Applying [14, (5.39)], we have

‖êz‖L2(Ω′j)
. hkd

1−k−n/2
j ‖êz‖W 1,1

h (Ω) + h‖êz‖W 1,2
h (Ω′′j ),

and therefore

F̂h . | log h|¯̄s(p)h−n/p + h−n/pΘ(k − s+ n/p)‖êz‖W 1,1
h (Ω) + h1−s

J∑
j=0

d
n/q+s−1
j ‖êz‖W 1,2

h (Ω′′j )

. | log h|¯̄s(p)h−n/p + h−n/pΘ(k − s+ n/p)‖êz‖W 1,1
h (Ω) +

F̂h
M
.

By taking M sufficiently large, we obtain

F̂h . | log h|¯̄s(p)h−n/p + h−n/pΘ(k − s+ n/p)‖êz‖W 1,1
h (Ω),

and therefore

‖êz‖W 1,p′
h (Ω),z,−s . | log h|¯̄s(p)h−n/p + h−n/pΘ(k − s+ n/p)‖êz‖W 1,1

h (Ω).

The case s = 0, p′ = 1, p =∞ yields

‖êz‖W 1,1
h (Ω) . 1 + Θ(k)‖êz‖W 1,1

h (Ω),
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and therefore, we conclude by taking M > 0 sufficiently large that

‖êz‖W 1,1
h (Ω) . 1

We then conclude that

‖êz‖W 1,p′
h (Ω),z,−s . | log h|¯̄s(p)h−n/p.

The proof is complete.

Proof of Theorem 2.1 for p ≥ 2

We now prove Theorem 2.1 in the case p ∈ [2,∞). To this end, let z ∈ Ω and Tz ∈ Th
such that z ∈ Tz. Using an inverse estimate, (2.2.5), and the triangle inequality we

obtain

|∂wh(z)/∂xi| . h−n/2‖∂wh/∂xi‖L2(Tz) (2.3.33)

. h−n/2−1‖∂wh/∂xi‖W−1,2(Tz)

. h−n/2−1
(
‖∂(w − wh)/∂xi‖W−1,2(Tz) + ‖∂w/∂xi‖W−1,2(Tz)

)
.

Note that, by the Poincaré-Friedrichs and Hölder inequalities,

‖∂w/∂xi‖W−1,2(Tz) = sup
ϕ∈C∞0 (Tz)

‖ϕ‖W1,2(Tz)
=1

(∂w/∂xi, ϕ)Tz

. sup
ϕ∈C∞0 (Tz)

‖ϕ‖W1,2(Tz)
=1

|Tz|
p−2
2p ‖∂w/∂xi‖Lp(Tz)‖ϕ‖L2(Tz)

. |Tz|
p−2
2p diam(Tz)‖∂w/∂xi‖Lp(Tz) . h1+n/2−n/p‖∂w/∂xi‖Lp(Tz).
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Inserting this estimate into (2.3.33) yields

|∂wh(z)/∂xi| . h−n/p‖∂w/∂xi‖Lp(Tz) + h−n/2−1‖∂(w − wh)/∂xi‖W−1,2(Tz).

Replacing w by w − vh and wh by wh − vh for some vh ∈ Vh in the argument above,

we conclude

|∂(wh − vh)(z)/∂xi| . h−n/p‖∂(w − vh)/∂xi‖Lp(Tz) (2.3.34)

+ h−n/2−1‖∂(w − wh)/∂xi‖W−1,2(Tz).

Let ϕ, ĝz and ĝz,h be as in Lemma 2.3. Setting êz = ĝz− ĝz,h, we have for arbitrary

vh ∈ Vh

h−n/2−1

ˆ
Tz

(w − wh)∂ϕ/∂xi dx = a0,h(w − vh, êz)

. ‖w − vh‖W 1,p
h (Ω),z,s‖êz‖W 1,p′

h (Ω),z,−s

. ‖w − vh‖W 1,p
h (Ω),z,s| log h|¯̄s(p)h−n/p,

where ¯̄s(p) is defined in Lemma 2.3.

Applying this last estimate into (2.3.34) yields

|∇(wh − vh)(z)| . h−n/p‖∇(w − vh)‖Lp(Tz) (2.3.35)

+ h−n/p| log h|¯̄s(p)‖w − vh‖W 1,p
h (Ω),z,s.

Raising (2.3.35) by the power p and integrating over Ω with respect to z, we conclude

‖∇h(wh − vh)‖Lp(Ω) .

(
h−n

ˆ
Ω

‖∇h(w − vh)‖pLp(Tz) dz

)1/p

+

(
h−n| log h|¯̄s(p)p

ˆ
Ω

‖w − vh‖pW 1,p
h (Ω),z,s

dz

)1/p

.
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Next, we choose s such that n/p < s < k + n/p. Then ¯̄s(p) = 0, and by (2.3.12)–

(2.3.13)

‖∇h(wh − vh)‖pLp(Ω) . ‖∇h(w − vh)‖pLp(Ω) + h−p‖w − vh‖pLp(Ω) + hp‖D2
h(w − vh)‖

p
Lp(Ω),

and therefore by the triangle inequality, and by taking vh = Ihw, the nodal interpolant

of w,

‖∇h(w − wh)‖Lp(Ω) . h‖w‖W 2,p(Ω). (2.3.36)

Next we bound the jumps ‖[w − wh]‖Lp(e). First, by the trace inequalities stated in

Lemma 2.1 we have

∑
e∈Eh

h1−p
e ‖[w − wh]‖

p
Lp(e) . C

(
‖∇h(w − wh)‖pLp(Ω) + h−p‖w − wh‖pLp(Ω)

)
. (2.3.37)

By Lemma 2.2 we have for any z ∈ Ω and vh ∈ Vh,

|(w − wh)(z)|p . hp−n| log h|ps̄(p)‖w − vh‖pW 1,p
h (Ω),z,s

,

where s̄(p) = 1 if k = s+ 1− n/p and s̄(p) = 0 for k > s+ 1− n/p. Integrating this

expression with respect to z yields

‖w − wh‖pLp(Ω) . hp−n| log h|ps̄(p)
ˆ

Ω

‖w − vh‖pW 1,p
h (Ω),z,s

dz. (2.3.38)

If k = 1, then we set s = n/p, so that s̄(p) = 1, and by (2.3.14) with vh = Ihw,

‖w − wh‖pLp(Ω) . hp−n| log h|p
ˆ

Ω

‖w − vh‖pW 1,p
h (Ω),z,n/p

dz (2.3.39)

. h2p| log h|p+1‖w‖pW 2,p(Ω).
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On the other hand, if k ≥ 2, then we choose s such that n/p < s < k−1 +n/p. Then

s̄(p) = 0, and by (2.3.38) and (2.3.13),

‖w − wh‖pLp(Ω) . h2p‖w‖pW 2,p(Ω). (2.3.40)

Combining (2.3.37) with (2.3.36), (2.3.39) and (2.3.40) then yields,

∑
e∈Eh

h1−p
e ‖[w − wh]‖

p
Lp(e) . | log h|p+1hp‖w‖pW 2,p(Ω). (2.3.41)

Finally combining (2.3.36), (2.3.41) and applying standard scaling arguments

yields (2.3.8). This completes the proof of Theorem 2.1 in the case p ≥ 2.

Proof of Theorem 2.1 for 1 <p< 2

The proof of W 1,p error estimates in the range p ∈ (1, 2) is based on the following

result.

Lemma 2.4. There holds, for p′ ∈ [2,∞),

‖vh‖W 1,p′
h (Ω)

. | log h|t′ sup
06=zh∈Vh

a0,h(vh, zh)

‖zh‖W 1,p
h (Ω)

∀vh ∈ Vh,

where p ∈ (1, 2] satisfies 1/p + 1/p′ = 1 and t′ = (p′ + 1)/p′ if k = 1 and t′ = 0 for

k ≥ 2.

Proof. For a fixed vh ∈ Vh, let v ∈ H1
0 (Ω) satisfy L0v = L0,hvh in Ω. Then v ∈

W 2,p′(Ω) with

‖v‖W 2,p′ (Ω) . ‖L0,hvh‖Lp′ (Ω). (2.3.42)

Moreover, due to the definition of L0,h and the consistency of a0,h(·, ·), we find that

a0,h(v, zh) = a0,h(vh, zh) ∀zh ∈ Vh.
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Since p′ ≥ 2, we can apply the results of the previous section to conclude that

‖vh‖W 1,p′
h (Ω)

. | log h|t′
(
‖v‖W 1,p′ (Ω) + h‖v‖W 2,p′ (Ω)

)
. (2.3.43)

Denote by Ph : L2(Ω)→ Vh the L2 projection onto Vh. We then write

‖v‖W 1,p′ (Ω) . sup
z∈W 1,p

0 (Ω)

(A0∇v,∇z)

‖z‖W 1,p(Ω)

= sup
z∈W 1,p

0 (Ω)

(L0v, z)

‖z‖W 1,p(Ω)

= sup
z∈W 1,p

0 (Ω)

(L0,hvh,Phz)

‖z‖W 1,p(Ω)

.

Standard arguments show that ‖Phz‖W 1,p
h (Ω) . ‖z‖W 1,p(Ω) for all z ∈ W 1,p(Ω); thus,

‖v‖W 1,p′ (Ω) . sup
06=zh∈Vh

(L0,hvh, zh)

‖zh‖W 1,p
h (Ω)

= sup
06=zh∈Vh

a0,h(vh, zh)

‖zh‖W 1,p
h (Ω)

. (2.3.44)

Likewise, using (2.3.42), (1.6.7) and an inverse estimate yields

‖v‖W 2,p′ (Ω) . ‖L0,hvh‖Lp′h (Ω)
= sup

06=zh∈Vh

a0,h(vh, zh)

‖zh‖Lp(Ω)

. h−1 sup
06=zh∈Vh

a0,h(vh, zh)

‖zh‖W 1,p(Ω)

.

(2.3.45)

Applying the estimates (2.3.44)–(2.3.45) to (2.3.43) then gives the desired result.

We now prove Theorem 2.1 for 1 < p < 2. To this end, for wh ∈ Vh and w ∈

W 2,p(Ω) ∩W 1,p
0 (Ω) satisfying (2.3.6), let vh ∈ Vh be the unique solution to

a0,h(vh, zh) =

ˆ
Ω

|∇hwh|p−2∇hwh · ∇hzh dx+
∑
e∈Eh

h1−p
e

ˆ
e

|[wh]|p−2[wh][zh] dS

for all zh ∈ Vh. Setting zh = wh and using a scaling argument yields

‖wh‖pW 1,p
h (Ω)

. a0,h(vh, wh).

Moreover, Lemma 2.4 and Hölder’s inequality gets

‖vh‖W 1,p′
h (Ω)

. | log h|t′‖wh‖p−1

W 1,p
h (Ω)

.
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Consequently,

‖wh‖W 1,p
h (Ω) =

‖wh‖pW 1,p
h (Ω)

‖wh‖p−1

W 1,p
h (Ω)

. | log h|t′ a0,h(vh, wh)

‖vh‖W 1,p′
h (Ω)

= | log h|t′ a0,h(w, vh)

‖vh‖W 1,p′
h (Ω)

. | log h|t′‖w‖W 1,p
h (Ω).

Standard arguments then show that this estimate implies

‖w − wh‖W 1,p
h (Ω) . | log h|t′h‖w‖W 2,p(Ω) 1 < p < 2. (2.3.46)

This completes the proof of Theorem 2.1 upon noting that t′ = (p′ + 1)/p′ = (2p −

1)/p ≤ (p+ 1)/p = t for p ∈ (1, 2].

2.3.2 DG discrete Calderon-Zygmund estimates for PDEs

with constant coefficients

The goal of this subsection is to establish a stability result for the operator Lε0,h in

the W 2,p
h -norm, which is a discrete counterpart of (2.3.3). Such an estimate can be

regarded as a DG discrete Calderon-Zygmund estimate for Lε0,h.

Theorem 2.2. (i) For ε = 1 and 1 < p <∞ we have

‖wh‖W 2,p
h (Ω) . | log h|t‖Lε0,hwh‖Lp(Ω) ∀wh ∈ Vh, (2.3.47)

where t = (p+ 1)/p if k = 1 and t = 0 if k ≥ 2.

(ii) (2.3.47) also holds with t = 0 for ε ∈ {1, 0,−1} and p = 2.

Proof. (i) We observe that (2.3.47) is equivalent to showing

‖(Lε0,h)−1ϕh‖W 2,p
h (Ω) . | log h|t‖ϕh‖Lp(Ω) ∀ϕh ∈ Vh. (2.3.48)
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For any ϕh ∈ Vh, let w := L−1
0 ϕh ∈ W 2,p(Ω)∩W 1,p

0 (Ω) and wh := (Lε0,h)−1ϕh ∈ Vh.

Since w ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) we have

aε0,h(w, vh) = (ϕh, vh) = aε0,h(wh, vh) ∀vh ∈ Vh.

Thus wh is the IP-DG approximate solution to w. Applying Theorem 2.1 and the

elliptic regularity estimate, we obtain

‖w − wh‖W 1,p
h (Ω) . | log h|th‖w‖W 2,p(Ω) . | log h|th‖ϕh‖Lp(Ω). (2.3.49)

Moreover, by Lemma 2.4 and the Calderon-Zygmund estimate for L0 we have

‖w‖W 2,p
h (Ω) ≤ ‖w‖W 2,p(Ω) . ‖ϕh‖Lp(Ω). (2.3.50)

Denote by Ih : C0(Ω) → Vh the nodal interpolation operator onto Vh. By finite

element interpolation theory [16] we have

h−1‖w − Ihw‖W 1,p
h (Ω) + ‖w − Ihw‖W 2,p

h (Ω) . ‖w‖W 2,p(Ω). (2.3.51)

Therefore by the triangle inequality, an inverse estimate, Lemma 2.4, (2.3.49), and

(2.3.50), we obtain

‖wh‖W 2,p
h (Ω) ≤ ‖w − Ihw‖W 2,p

h (Ω) + ‖Ihw − wh‖W 2,p
h (Ω) + ‖w‖W 2,p

h (Ω)

. h−1‖Ihw − wh‖W 1,p
h (Ω) + ‖ϕh‖Lp(Ω)

≤ h−1
(
‖w − wh‖W 1,p

h (Ω) + ‖w − Ihw‖W 1,p
h (Ω)

)
+ ‖ϕh‖Lp(Ω)

. | log h|t‖ϕh‖Lp(Ω) = | log h|t‖L0,hwh‖Lp(Ω).

(ii) The proof of this part is exactly same as that of Part (i), the only difference

is that now (2.3.7), instead of (2.3.8), should be called in the proof.
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2.4 IP-DG methods and their convergence analy-

sis

Our primary goal is to develop stable and convergent IP-DG schemes to approximate

the W 2,p strong solution of (1.2.1). We assume in (1.2.1) that A ∈ [C0(Ω)]n×n satisfies

(1.3.1) and f ∈ Lp(Ω). Given sufficient smoothness of the boundary, we have the

existence and uniqueness of a strong solution u ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) (see Chapter

1, Subsection 1.3.1 for details). Moreover, we have the following Calderon-Zygmund

stability estimate for L:

‖u‖W 2,p(Ω) . ‖f‖Lp(Ω). (2.4.1)

We now turn our attention to the development and analysis of IP-DG methods for

continuous A.

2.4.1 Formulation of IP-DG methods

We follow the same recipe as in the constant coefficient case to build our IP-DG

methods. To this end, we momentarily assume A ∈ [C1(Ω)]n×n, so that we can

rewrite the PDE (2.1.1a) in divergence form as follows:

−∇ · (A∇u) + div(A) · ∇u = f, (2.4.2)

where div(A) is defined row-wise. We then define the following (standard) IP-DG

methods for problem (2.4.2) by seeking uh ∈ Vh such that

ˆ
Ω

(A∇huh) · ∇hvh dx+

ˆ
Ω

((∇ · A) · ∇huh)vh dx (2.4.3)

−
∑
e∈Eh

ˆ
e

{A∇uh · νe}[vh] dS − ε
∑
e∈Eh

ˆ
e

{A∇vh · νe}[uh] dS
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+
∑
e∈Eh

ˆ
e

γe
he

[uh][vh] dS =

ˆ
Ω

fvh dx,

where γe ≥ γ∗(‖A‖L∞(Ω), Th) > 0. We emphasize that γ∗ is independent of the

derivatives of A.

Now we come back to the case in hand with A ∈ [C0(Ω)]n×n. Clearly, the term

div(A) does not exist as a function (it is in fact a Radon measure), so the above

formulation is not defined for the case we are considering. To overcome this difficulty,

our idea is to apply the DG integration by parts formula (2.1.4) to the first term on

the left-hand side of (2.4.3), yielding

ah(wh, vh) :=−
ˆ

Ω

(A : D2
hwh)vh dx+

∑
e∈EIh

ˆ
e

[A∇wh · νe]{vh} dS (2.4.4)

− ε
∑
e∈Eh

ˆ
e

{A∇vh · νe}[wh] dS +
∑
e∈Eh

ˆ
e

γe
he

[wh][vh] dS.

No derivative of A appears in the above new form of aεh(·, ·); thus, it is well-defined

on Vh × Vh. This leads to the following definition.

Definition 2.1. Our IP-DG methods are defined by seeking uh ∈ Vh such that

aεh(uh, vh) = (f, vh) ∀vh ∈ Vh, ε ∈ {1, 0,−1}. (2.4.5)

When ε = 1 we refer to the method as “symmetrically induced” even though the

bilinear form is not symmetric. Likewise, ε = 0 and ε = −1 yield an “incompletely

induced” and “non-symmetrically induced” methods, respectively.

2.4.2 Stability analysis

As in Section 2.3 we define the IP-DG approximation Lεh of L on Vh using the bilinear

form aεh(·, ·); precisely, we define Lεh : Vh → Vh by

(
Lεhwh, vh

)
:= aεh(wh, vh) ∀wh, vh ∈ Vh. (2.4.6)
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Since we can extend the domain of aεh(·, ·) to W 2,p(Th)×W 2,p′(Th), then the domain

and co-domain of Lh can be extended to the broken Sobolev spaces W 2,p(Th) and

(W 2,p′(Th))∗ respectively.

The goal of this subsection is to establish a DG discrete Calderon-Zygmund

estimate similar to (2.3.47) for the operator Lεh. To achieve this, we appeal to the

freezing coefficient technique found in Subsection 1.3.1 along with a covering argument

to derive a Gärding-type estimate similar to (1.3.4) for (Lεh)∗, the discrete adjoint of

(Lεh)∗. While (1.3.4) can be proven for Lεh, more is needed to obtain the stability of

Lεh. Traditionally, to derive the stability of Lεh from this Gärding-type inequality, one

must either have the existence/uniqueness of uh satisfying (2.4.5) in hand, or use a

duality argument. We wish to prove existence and uniqueness using the stability of

Lεh, thus leaving us the duality argument as the only choice. However, since the formal

adjoint of L does not have a stability result mirroring (2.4.1) for non-differentiable

A, a standard duality argument cannot be used. To remedy this, we seek to prove

the stability of the discrete adjoint. Proving the stability of (Lεh)∗ immediately gives

us the invertibility of the stiffness matrix generated by (Lεh)∗, which is equivalent

to the invertibility of the stiffness matrix generated by Lεh, thus providing us the

existence and uniqueness of our IP-DG scheme (2.4.5). We are able to carry out a

duality argument to obtain the stability of (Lεh)∗ since the continuous dual problem

is exactly (1.2.1) whose Calderon-Zygmund estimate (2.4.1) gives us stability of L.

We now proceed to establish a few auxiliary lemmas which will be needed to show

the desired estimate.

Lemma 2.1. For all δ > 0, there exists Rδ > 0 and hδ > 0 such that for all x0 ∈ Ω

and A0 ≡ A(x0)

‖(Lεh − Lε0,h)w‖Lph(BRδ (x0)) . δ‖w‖W 2,p
h (BRδ (x0)) ∀w ∈ W 2,p(Th), ∀h ≤ hδ. (2.4.7)

Here, BRδ(x0) := {x ∈ Ω : |x− x0| < Rδ} denotes the ball with center x0 and radius

Rδ.
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Proof. Since A is continuous on Ω, then it is uniformly continuous. Therefore, for

every δ > 0 there exists Rδ > 0 such that if x, y ∈ Ω satisfies |x − y| < Rδ, we have

|A(x)− A(y)| < δ. Consequently, for any x0 ∈ Ω

‖A− A0‖L∞(BRδ ) ≤ δ, (2.4.8)

where we have used the shorthand notation BRδ := BRδ(x0).

Set hδ = min{h0,
Rδ
4
} and let 0 < h < hδ, w ∈ W 2,p(Th), and vh ∈ Vh(BRδ).

Since (Lε0,h − Lεh)w ∈ W 2,p(Th), it follows from (2.3.5) and (2.4.4) that for every

vh ∈ Vh(BRδ) we have

(
(Lε0,h − Lεh)w, vh

)
= −

ˆ
Ω∩BRδ

((A0 − A) : D2
hw)vh dx

+
∑
e∈EIh

ˆ
e∩BRδ

[(A0 − A)∇w · νe]{vh} dS − ε
∑
e∈Eh

ˆ
e∩BRδ

{(A− A0)∇vh · νe}[wh] dS

≤ ‖A− A0‖L∞(BRδ )

(
‖D2

hw‖Lp(Ω∩BRδ )‖vh‖Lp′ (Ω∩BRδ )

+
(∑
e∈Eh

h1−2p
e ‖[w]‖p

Lp(e∩BRδ ))

) 1
p
(∑
e∈Eh

heh
p′

e ‖{∇vh · νe}‖
p′

Lp′ (e∩BRδ ))

) 1
p′

+
(∑
e∈EIh

h1−p
e ‖[∇w]‖p

Lp(e∩BRδ )

) 1
p
(∑
e∈EIh

he‖{vh}‖p
′

Lp′ (e∩BRδ )

) 1
p′


. ‖A− A0‖L∞(BRδ )‖w‖W 2,p

h (BRδ )

(
‖vh‖Lp′ (BRδ ) + h‖∇hvh‖Lp′ (BRδ )

)
. δ‖w‖W 2,p

h (BRδ )‖vh‖Lp′ (BRδ ) = δ‖w‖W 2,p
h (BRδ )‖vh‖Lp′ (BRδ ).

Dividing both sides by ‖vh‖Lp′ (BRδ ) yields the desired estimate. The proof is complete.

The next lemma shows that Lεh is locally a bounded operator on W 2,p(Th).

Lemma 2.2. For any x0 ∈ Ω and R ≥ h, there holds

‖Lεhw‖Lph(BR(x0)) . ‖w‖W 2,p
h (BR(x0)) ∀w ∈ W 2,p(Th). (2.4.9)
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Proof. Set BR := BR(x0) and let vh ∈ Vh(BR). For e ∈ Eh, set eR := e ∩ BR. By the

trace estimate (2.2.2)), the definition of Lεh, and an inverse inequality we have

(
Lεhw, vh

)
= −

ˆ
Ω∩BR

(A : D2
hw)vh dx+

∑
e∈EIh

ˆ
eR

[A∇w · νe]{vh} dS

− ε
∑
e∈Eh

ˆ
eR

{A∇vh · νe}[w] dS +
∑
e∈Eh

ˆ
eR

γe
he

[w][vh] dS

. ‖D2w‖Lp(Ω∩BR)‖vh‖Lp′ (Ω∩BR)

+
(∑
e∈EIh

h1−p
e ‖[∇w]‖pLp(eR)

) 1
p
(∑
e∈EIh

he‖{vh}‖p
′

Lp(eR)

) 1
p′

+
(∑
e∈Eh

γpeh
1−2p
e ‖[w]‖pLp(eR)

) 1
p
(∑
e∈Eh

hp
′

e he‖{∇hvh · νe}‖p
′

Lp′ (eR)

) 1
p′

+
(∑
e∈Eh

γpeh
1−2p
e ‖[w]‖pLp(eR)

) 1
p
(∑
e∈Eh

he‖[vh]‖p
′

Lp′ (eR)

) 1
p′

. ‖w‖W 2,p
h (BR)‖vh‖Lp′ (BR).

Dividing both sides by ‖vh‖Lp′ (BR) yields the desired estimate.

Our last lemma establishes a left-side inf-sup condition for Lεh. This estimate

relies on the formal adjoint operator L∗h := (Lεh)∗ and some techniques from [53].

Lemma 2.3. There exists an h0 > 0 such that for all h ≤ h0 and k ≥ 2 we have

‖vh‖Lp′ (Ω) . sup
06=wh∈Vh

(Lεhwh, vh)
‖wh‖W 2,p

h (Ω)

∀vh ∈ Vh, (2.4.10)

where 1 < p <∞ if ε = 1 and p = 2 if ε ∈ {0,−1}.

Proof. Note that (2.4.10) is equivalent to

‖vh‖Lp′ (Ω) . sup
06=wh∈Vh

(Lεhwh, vh)
‖wh‖W 2,p

h (Ω)

= sup
06=wh∈Vh

(L∗hvh, wh)
‖wh‖W 2,p

h (Ω)

= ‖L∗hvh‖W−2,p′
h (Ω)

(2.4.11)

for all vh ∈ Vh. We divide the remaining proof into three steps.
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Step 1: Local estimates. Let x0 ∈ Ω, A0 ≡ A(x0), δ0, hδ0 , Rδ0 , R1 := (1/3)Rδ0 ,

and B1 := BR1(x0) be as in Lemma 2.1 with δ0 > 0 to be determined, and set h ≤ hδ0 .

By the elliptic regularity of L, for any vh ∈ Vh(B1), there exists ϕ ∈ W 2,p(Ω) ∩

W 1,p
0 (Ω) such that Lϕ = vh|vh|p−2 in Ω and satisfies the estimate

‖ϕ‖W 2,p(Ω) . ‖vh‖p
′−1

Lp′ (Ω)
= ‖vh‖p

′−1

Lp′ (B1)
. (2.4.12)

Since Lεh is consistent with L for any ϕh ∈ Vh we have

‖vh‖Lp′ (B1) = ‖vh‖Lp′ (Ω) = (Lϕ, vh) = (Lεhϕ, vh) (2.4.13)

= (Lεhϕh, vh) +
(
Lεh(ϕ− ϕh), vh

)
= (L∗hvh, ϕh) +

(
Lε0,h(ϕ− ϕh), vh

)
+
(
(Lεh − Lε0,h)(ϕ− ϕh), vh

)
.

From the existence-uniqueness of the IP-DG scheme (2.3.4), there exists ϕh ∈ Vh such

that

(
Lε0,h(ϕ− ϕh), wh

)
= 0 ∀wh ∈ Vh.

Combining Galerkin orthogonality, Theorem 2.2, and (2.4.12) gives us the solution

estimate

‖ϕh‖W 2,p
h (Ω) . ‖L

ε
0,hϕh‖Lph(Ω) = ‖Lε0,hϕ‖Lph(Ω) . ‖ϕ‖W 2,p(Ω) . ‖vh‖p

′−1

Lp′ (B1)
. (2.4.14)

Using Lemma 2.1 and (2.4.12)–(2.4.14) we have

‖vh‖p
′

Lp′ (B1)
= (L∗hvh, ϕh) + ((Lεh − Lε0,h)(ϕ− ϕh), vh)

≤ ‖L∗hvh‖W−2,p′
h (Ω)

‖ϕh‖W 2,p
h (Ω) + ‖(Lεh − Lε0,h)(ϕ− ϕh)‖Lph(B1)‖vh‖Lp′ (B1)

. ‖L∗hvh‖W−2,p′
h (Ω)

‖vh‖p
′−1

Lp′ (B1)
+ δ0‖ϕ− ϕh‖W 2,p

h (B1)‖vh‖Lp′ (B1)

. ‖L∗hvh‖W−2,p′
h (Ω)

‖vh‖p
′−1

Lp′ (B1)
+ δ0‖vh‖p

′

Lp′ (B1)
.
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Taking δ0 sufficiently small to move the right hand term to the left side and dividing

by ‖vh‖p
′−1

Lp′ (B1)
gives us the local estimate

‖vh‖Lp′ (B1) . ‖L∗hvh‖W−2,p
h (B1) ∀vh ∈ Vh(B1). (2.4.15)

Step 2: A Gärding type inequality by a covering argument. Given R1 from Step 1,

let R2 = 2R1 and R3 = 3R1. Let η ∈ C3(Ω) be a cutoff function satisfying

0 ≤ η ≤ 1, η
∣∣
B1

= 1, η
∣∣
Ω\B2

= 0, |η|Wm,∞(Ω) = O(R−m1 ). (2.4.16)

For any vh ∈ Vh, we have by (2.4.15),

‖vh‖Lp′ (B1) = ‖ηvh‖Lp′ (B1) ≤ ‖ηvh − Ih(ηvh)‖Lp′ (B1) + ‖Ih(ηvh)‖Lp′ (B1) (2.4.17)

. ‖ηvh − Ih(ηvh)‖Lp′ (B1) + ‖L∗h(Ih(ηvh))‖W−2,p′
h (B1)

. ‖ηvh − Ih(ηvh)‖Lp′ (B1) + ‖L∗h(Ih(ηvh)− ηvh)‖W−2,p′
h (B1)

+ ‖L∗h(ηvh)‖W−2,p′
h (B1)

.

We now bound the second term on the right hand side of (2.4.17). By the definition

of ‖ · ‖W−2,p
h

, Lemma 2.2 and (1.6.7), for any wh ∈ Vh we have

‖L∗h(Ih(ηvh)− ηvh)‖W−2,p′
h (B1)

= sup
0 6=wh∈Vh

(L∗h(Ih(ηvh)− ηvh), wh)
‖wh‖W 2,p

h (B1)

≤ sup
wh∈Vh

(Lεhwh, Ih(ηvh)− ηvh)
‖wh‖W 2,p

h (B1)

. sup
wh∈Vh

‖Lεhwh‖Lph(B1)‖Ih(ηvh)− ηvh)‖Lp′ (B1)

‖wh‖W 2,p
h (B1)

. sup
wh∈Vh

‖wh‖W 2,p
h (B1)‖Ih(ηvh)− ηvh)‖Lp′ (B1)

‖wh‖W 2,p
h (B1)

= ‖Ih(ηvh)− ηvh‖Lp′ (B1).

Thus (2.4.17) becomes

‖vh‖Lp′ (B1) . ‖ηvh − Ih(ηvh)‖Lp′ (B1) + ‖L∗h(ηvh)‖W−2,p′
h (B1)

. (2.4.18)
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Using Lemmas 2.3, 2.7, and 2.2 with (2.4.18) yields

‖vh‖Lp′ (B1) .
h

R1

‖vh‖Lp′ (B3) + ‖L∗h(ηvh)‖W−2,p′
h (B3)

(2.4.19)

.
1

R1

‖vh‖W−1,p′ (B3) + ‖L∗h(ηvh)‖W−2,p′
h (B3)

.

We now want to remove the cutoff function η from the adjoint operator appearing in

the right-hand side of (2.4.19). For wh ∈ Vh(B3), we break up L∗h(ηvh) as follows:

(L∗h(ηvh), wh) = (Lεhwh, ηvh) = (Lεhwhη, vh) +

[
(Lεhwh, ηvh)− (Lεhwhη, vh)

]
(2.4.20)

= (Lεh(Ih(whη)), vh) + (Lεh(whη − Ih(whη)), vh)

+

[
(Lεhwh, ηvh)− (Lεhwhη, vh)

]
=: I1 + I2 + I3.

We then seek to bound each I in order. To bound I1, we will use the definition of

‖ · ‖W−2,p
h

, the stability of Ih, and Lemma 2.5 to obtain

I1 = (L∗hvh, Ih(whη)) . ‖L∗hvh‖W−2,p′
h (B3)

‖Ih(ηwh)‖W 2,p
h (B3) (2.4.21)

. ‖L∗hvh‖W−2,p′
h (B3)

‖ηwh‖W 2,p
h (B3) .

1

R2
1

‖L∗hvh‖W−2,p′
h (B3)

‖wh‖W 2,p
h (B3).

For I2 we use Lemmas 2.3, 2.7, 2.2 to get

I2 = (Lεh(whη − Ih(whη)), vh) . ‖whη − Ih(whη)‖W 2,p
h (B3)‖vh‖Lp′ (B3) (2.4.22)

.
h

R3
1

‖wh‖W 2,p
h (B3)‖vh‖Lp′ (B3) .

1

R3
1

‖wh‖W 2,p
h (B3)‖vh‖W−1,p′ (B3).

To bound I3 we introduce the operator Lε0,h . For e ∈ Eh let e3 := e ∩ B3, and define

Ã := A− A0. We then write

I3 = (Lεhwh, ηvh)− (Lεhwhη, vh) (2.4.23)
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= (Lε0,hwh, ηvh)− (Lε0,hwhη, vh)+

+
[
(Lεhwh, ηvh)− (Lεhwhη, vh)− (Lε0,hwh, ηvh) + (Lε0,hwhη, vh)

]
= −

ˆ
B3

(
whA0 : D2η + (A0 + AT0 )∇η · ∇hwh

)
vh dx

− ε
∑
e∈Eh

ˆ
e3

(A0∇η · νe){vh}[wh] dS

−
ˆ
B3

(
wh(Ã : D2η +

(
Ã+ ÃT

)
∇η · ∇hwh

)
vh dx

− ε
∑
e∈Eh

ˆ
e3

(Ã∇η · νe){vh}[wh] dS =: K1 +K2 +K3 +K4.

We now must bound each Ki. To bound K1 we use the definition of ‖ · ‖W−1,p
h (B3) and

Lemma 2.3 to get

K1 .
(
‖whA0 : D2η‖W 1,p

h (B3) + ‖(A0 + AT0 )∇η · ∇hwh‖W 1,p
h (B3)

)
‖vh‖W−1,p′

h (B3)

(2.4.24)

.
1

R3
1

‖wh‖W 2,p
h (B3)‖vh‖W−1,p′

h (B3)
.

The bound of K2 uses Lemmas 2.1, 2.5 to obtain

K2 .
1

R1

(∑
e∈Eh

h1−2p
e ‖[wh]‖pLp(e3)

) 1
p
(∑
e∈Eh

heh
p′

e ‖{vh}‖
p′

Lp′ (e3)

) 1
p′

(2.4.25)

.
1

R1

‖wh‖W 2,p
h (B3)

(
h‖vh‖Lp′ (B3)

)
.

1

R1

‖wh‖W 2,p
h (B3)‖vh‖W−1,p′

h (B3)
.

We use similar techniques as (2.4.24), (2.4.25) and the fact that ‖Ã‖L∞(B3) ≤ δ0 to

get

K3 .
(
‖whÃ : D2η‖Lp(B3) + ‖(Ã+ ÃT )∇η · ∇hwh‖Lp(B3)

)
‖vh‖Lp′ (B3) (2.4.26)

. δ0

(
1

R2
1

‖wh‖Lp(B3) +
1

R1

‖wh‖W 1,p
h (B3)

)
‖vh‖Lp′ (B3)

65



. δ0‖wh‖W 2,p
h (B3)‖vh‖Lp′ (B3),

where we have used Lemma 2.5 to derive the last inequality. Likewise, we find

K4 .
1

R1

(∑
e∈Eh

h1−2p
e ‖[wh]‖pLp(e3)

) 1
p
(∑
e∈Eh

heh
p′

e ‖{vh}‖
p′

Lp
′
(e3)

) 1
p′

(2.4.27)

.
δ0

R1

‖wh‖W 2,p
h (B3)

(
h‖vh‖Lp′ (B3)

)
. δ0‖wh‖W 2,p

h (B3)‖vh‖Lp′ (B3),

where we have used the inequality h ≤ R1. Combining (2.4.23)-(2.4.27) we get

I3 .
1

R3
1

‖wh‖W 2,p
h (B3)‖vh‖W−1,p′

h (B3)
+ δ0‖wh‖W 2,p

h (B3)‖vh‖Lp′ (B3), (2.4.28)

and bringing together (2.4.20)-(2.4.22), and (2.4.28) gives us

(L∗h(ηvh), wh) .
1

R3
1

(
‖L∗hvh‖W−2,p′

h (B3)
+ ‖vh‖W−1,p′

h (B3)

)
‖wh‖W 2,p

h (B3) (2.4.29)

+ δ0‖wh‖W 2,p
h (B3)‖vh‖Lp′ (B3). (2.4.30)

By the definition of ‖ · ‖
W−2,p′
h (B3)

and (2.4.29) we get

‖L∗h(ηwh)‖W−2,p′
h (B3)

.
1

R3
1

(
‖L∗hvh‖W−2,p′

h (B3)
+ ‖vh‖W−1,p′

h (B3)

)
+ δ0‖vh‖Lp′ (B3).

(2.4.31)

Using (2.4.19) and (2.4.31) gives us

‖vh‖Lp′ (B1) .
1

R3
1

(
‖L∗hvh‖W−2,p′

h (B3)
+ ‖vh‖W−1,p′

h (B3)

)
+ δ0‖vh‖Lp′ (B3).

Since Ω is compact, employing a covering argument (cf. [22, 35]) then yields

‖vh‖Lp′ (Ω) . ‖L∗hvh‖W−2,p′
h (Ω)

+ ‖vh‖W−1,p′
h (Ω)

+ δ0‖vh‖Lp′ (Ω).
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Because δ0 is small, we can absorb the last term on the right-hand side to the left-hand

side to arrive at the global estimate

‖vh‖Lp′ (Ω) . ‖L∗hvh‖W−2,p′
h (Ω)

+ ‖vh‖W−1,p′
h (Ω)

, (2.4.32)

which is a Gärding-type inequality.

Step 3: Duality argument on the adjoint operator. To control the last term in

(2.4.32) we now use a duality argument for L∗h. This argument uses the regularity

estimate of the original problem L.

Define the set

X = {g ∈ W 1,p
h (Ω); ‖g‖W 1,p

h (Ω) = 1}.

By the discrete Poincaré inequality, with constant C = C(p,Ω), we have for all g ∈ X

‖g‖Lp(Ω) ≤ C‖g‖W 1,p
h (Ω) <∞,

since X is bounded in W 1,p
h (Ω). Thus, X is precompact in Lp(Ω) by Sobolev

embedding. Next we define the set

W = {ϕ := L−1g; g ∈ X}.

Note that L−1 : Lp(Ω) → W 2,p(Ω) ∩ W 1,p
0 (Ω) ⊂ W 2,p(Th) is well defined by well-

posedness of the PDE. Also since L−1 is linear and satisfies the estimate

‖L−1g‖W 2,p
h (Ω) = ‖ϕ‖W 2,p

h (Ω) ≤ ‖ϕ‖W 2,p(Ω) . ‖g‖Lp(Ω),

it is bounded in W 2,p(Th). Thus W is precompact in W 2,p(Th). From [53, Lemma 5],

for every τ > 0 there exists h∗ > 0 that only depends on τ and W such that for each
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ϕ ∈ W and 0 < h ≤ h∗ there is a ϕh ∈ Vh such that if k ≥ 2 we have

‖ϕ− ϕh‖W 2,p
h (Ω) ≤ τ. (2.4.33)

Note by the reverse triangle inequality and (2.4.33) we have

‖ϕh‖W 2,p
h (Ω) ≤ ‖ϕ‖W 2,p

h (Ω) . ‖g‖Lp(Ω) ≤ C

and hence

{ϕh ∈ Vh; |ϕh − ϕ| ≤ τ}

is uniformly bounded in ϕ and h. Let g ∈ X and choose ϕg = L−1g ∈ W which tells

us that Lϕg = g. Let vh ∈ Vh and ϕh ∈ Vh. By Lemma 2.2 and the definition of

‖ · ‖
W−2,p′
h (Ω)

we have

ˆ
Ω

vhg dx = (Lεhϕg, vh) = (Lεhϕh, vh) + (Lεh(ϕg − ϕh), vh)

= (L∗hvh, ϕh) + (Lεh(ϕg − ϕh), vh)

. ‖L∗hvh‖W−2,p′
h (Ω)

‖ϕh‖W 2,p
h (Ω) + ‖ϕg − ϕh‖W 2,p

h (Ω)‖vh‖Lp′ (Ω).

Selecting ϕh to satisfy (2.4.33) and taking the supremum on g gives us

‖vh‖W−1,p(Ω) . ‖L∗hvh‖W−2,p′
h (Ω)

‖ϕh‖W 2,p
h (Ω) + τ‖vh‖Lp′ (Ω). (2.4.34)

Combining (2.4.32) and (2.4.34) yields

‖vh‖Lp′ (Ω) . ‖L∗hvh‖W−2,p′
h (Ω)

+ τ‖vh‖Lp′ (Ω). (2.4.35)

By choosing τ sufficiently small to kick back the right-most term we have (2.4.11).

This completes the proof upon taking h0 = min{hδ0 , h∗}.
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We are now ready to prove the global stability of the operator Lεh.

Theorem 2.3. Suppose that h ≤ h0 and k ≥ 2. Then there holds the following

stability estimate:

‖wh‖W 2,p
h (Ω) . ‖L

ε
hwh‖Lph(Ω) ∀wh ∈ Vh, (2.4.36)

where 1 < p <∞ if ε = 1, and p = 2 if ε ∈ {0,−1}.

Proof. Let wh ∈ Vh be fixed, and consider the auxiliary problem of finding qh ∈ Vh
such that

(
vh,L∗hqh

)
=
(
Lεhvh, qh

)
=

ˆ
Ω

|D2
hwh|p−2D2

hwh : D2vh dx (2.4.37)

+
∑
e∈EIh

h1−p
e

ˆ
e

|[∇wh]|p−2[∇wh] · [∇vh] dS

+
∑
e∈Eh

h1−2p
e

ˆ
e

|[wh]|p−2[wh][vh] dS ∀vh ∈ Vh.

Since Vh is finite dimensional and the operator is linear, the existence is equivalent to

the uniqueness. To show the uniqueness, let q
(1)
h and q

(2)
h both solve (2.4.37). Then

by Lemma 2.3 we get

‖q(1)
h − q

(2)
h ‖Lp′ (Ω) . sup

0 6=vh∈Vh

(Lεhvh, q
(1)
h − q

(2)
h )

‖vh‖W 2,p
h (Ω)

= 0.

Hence (2.4.37) has a unique solution qh ∈ Vh. Also by Lemma 2.3 and Hölder’s

inequality,

‖qh‖Lp′ (Ω) . sup
06=vh∈Vh

(Lεhvh, qh)
‖vh‖W 2,p

h (Ω)

. ‖wh‖p−1

W 2,p
h (Ω)

.

Consequently, we find

‖wh‖pW 2,p
h (Ω)

. (wh,L∗hqh) = (Lhwh, qh) . ‖Lhwh‖Lph(Ω)‖qh‖Lp′ (Ω)
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. ‖Lhwh‖Lph(Ω)‖wh‖p−1

W 2,p
h (Ω)

.

Dividing by ‖wh‖p−1

W 2,p
h (Ω)

now yields the desired result.

2.4.3 Well-posedness and error estimates

The goals of this subsection are to establish the well-posedness for the IP-DG scheme

(2.4.5) and to derive the optimal order error estimates in W 2,p
h -norm for the IP-DG

solutions.

Theorem 2.4. Under the assumptions of Lemma 2.3, the IP-DG scheme (2.4.5) has

a unique solution uh ∈ Vh such that

‖uh‖W 2,p
h (Ω) . ‖f‖Lp(Ω), (2.4.38)

where the hidden constant depends on the dimension n, exponent p, the maximum

penalty parameter maxe∈Eh γe, and the modulus of continuity of A.

Proof. Since (2.4.5) is equivalent to a linear system, hence it suffices to prove the

uniqueness. To show the uniqueness, we first prove (2.4.38).

Let uh ∈ Vh be a solution of (2.4.5), then from (2.4.36) and the definition of

‖ · ‖Lph(Ω) we have

‖uh‖W 2,p
h (Ω) . ‖L

ε
huh‖Lph(Ω) = sup

vh∈Vh

(Lεhuh, vh)
‖vh‖Lp′ (Ω)

= sup
vh∈Vh

(f, vh)

‖vh‖Lp′ (Ω)

≤ ‖f‖Lp(Ω).

Hence, (2.4.38) holds.

Suppose that u1
h, u

2
h ∈ Vh solve (2.4.5). Let ũh = u1

h − u2
h. Then by (2.4.38) we

have

‖ũh‖W 2,p
h (Ω) ≤ ‖0‖Lp(Ω) = 0.
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Since ũh ∈ Vh with ‖ũh‖W 2,p
h (Ω) = 0 we conclude that ũh ∈ C1(Ω), ũh

∣∣
∂Ω

= 0, and

D2
hũh = 0 in Ω. The only way this can happen is if ũh = 0. Thus, the IP-DG solution

must be unique. The proof is complete.

Next we show a Céa-type lemma for the IP-DG scheme, which immediately

deduces the optimal order error estimates in the W 2,p
h -norm.

Theorem 2.5. Suppose that h ≤ h0 and k ≥ 2. Let u ∈ W 2,p ∩ W 1,p
0 (Ω) be the

solution of problem (1.2.1) and uh ∈ Vh solve (2.4.5). Then

‖u− uh‖W 2,p
h (Ω) . inf

wh∈Vh
‖u− wh‖W 2,p

h (Ω), (2.4.39)

where the hidden constant depends on the same parameters as those given in Theorem

2.4. Moreover, if u ∈ W s,p(Ω) for some s ≥ 2, we have

‖u− uh‖W 2,p
h (Ω) . hr−2‖u‖W r,p(Ω), r = min{s, k + 1}. (2.4.40)

Proof. By the consistency of Lεh we have the following Galerkin orthogonality:

(
Lεh(u− uh), vh

)
= 0 ∀vh ∈ Vh. (2.4.41)

Let wh ∈ Vh, by Theorem 2.3, Lemma 2.2, (2.4.41), and the definition of ‖ · ‖Lph(Ω) we

have

‖uh − wh‖W 2,p
h (Ω) . ‖L

ε
h(uh − wh)‖Lph(Ω) = sup

06=vh∈Vh

(Lεh(uh − wh), vh)
‖vh‖Lp′ (Ω)

(2.4.42)

= sup
06=vh∈Vh

(Lεh(u− wh), vh)
‖vh‖Lp′ (Ω)

= ‖Lεh(u− wh)‖Lph(Ω)

. ‖u− wh‖W 2,p
h (Ω).

Thus by (2.4.42) and the triangle inequality we get

‖u− uh‖W 2,p
h (Ω) ≤ ‖u− wh‖W 2,p

h (Ω) + ‖uh − wh‖W 2,p
h (Ω) . ‖u− wh‖W 2,p

h (Ω). (2.4.43)
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Taking the infimum on both sides over all wh ∈ Vh yields (2.4.39). Finally, (2.4.40)

follows from taking wh = Ihu and using the finite element interpolation theory [8].

The proof is complete.

2.5 Numerical Experiments

In this section we present a number of 2D numerical tests to verify our error estimate

and to gauge the performance of our IP-DG methods. In particular, we shall compare

our IP-DG methods to the related conforming finite element counterpart developed

in [22]. Moreover, we shall also perform numerical tests which are not covered by

our convergence theory; this includes the cases when the coefficient matrix is either

discontinuous or degenerate.

2.5.1 Hölder continuous coefficient

For this test we take A as the following Hölder continuous matrix-valued function:

A(x) =

 |x|1/2 + 1 −|x|1/2

−|x|1/2 5|x|1/2 + 1

 , x ∈ R2.

Let Ω = (−1/2, 1/2)2 and choose f such that the exact solution is given by

u(x1, x2) = sin(2πx1) sin(2πx2) exp(x1 cos(x2)),

which has zero trace on the boundary.

Figure 2.1 shows the errors in the L2(Ω),W 1,2
h (Ω), and W 2,2

h (Ω) norms of both the

symmetrically and incompletely induced methods. The convergence rates observed

for the symmetrically induced method are

‖u− uh‖L2(Ω) = O(hk+1) for all k,

‖∇h(u− uh)‖L2(Ω) = O(hk) for all k,
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‖D2
h(u− uh)‖L2(Ω) = O(hk−1) for k = 2, 3.

As expected, these convergence rates are optimal. However, for the incompletely

induced method we find that the rate of convergence in the L2-norm is sub-optimal

for even degree polynomials and optimal with all other norms and degrees. This

should be expected since the incomplete scheme is sub-optimal even for smooth A

[49].

2.5.2 Uniformly continuous coefficients

In this test we take Ω = (0, 1/2)2 and let

A(x) =

 −
5

log(|x|)
+ 15 1

1 − 1

log(|x|)
+ 3

 .
f is chosen such that u(x) = |x|7/4 is the exact solution. From [22] we see that the

expected convergence rates are

‖∇h(u− uh)‖L2(Ω) = O(hmin{k,7/4−δ}) for all k,

‖D2
h(u− uh)‖L2(Ω) = O(hmin{k,7/4−δ}−1) for k = 2, 3

for any δ > 0.

Figure 2.2 gives the computed results for both the symmetrically and incompletely

induced schemes which match exactly the expected rates of convergence.

2.5.3 Degenerate coefficients

In this test we take Ω = (0, 1)2 and the matrix

A(x) =
16

9

 x
2/3
1 −x1/3

1 x
1/3
2

−x1/3
1 x

1/3
2 x

2/3
2

 .
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f = 0 and the exact solution u(x) = x
4/3
1 − x

4/3
2 . For an explanation for this example

we refer to [22]. Note that det(A) = 0 for every x ∈ Ω so this PDE is degenerate

everywhere and is outside of the strong solution theory. We also observe that u ∈

Wm,p(Ω) provided (4− 3m)p > −1.

Figure 2.3 shows the L2 and piecewise H1 errors for both the symmetrically and

incompletely induced methods. The numerical results suggest the following rates of

convergence:

‖u− uh‖L2(Ω) = O(h4/3),

‖∇h(u− uh)‖L2(Ω) = O(h5/6)

for k = 1, 2, 3. These rates are consistent with the results of the related conforming

finite element method given in [22].

2.5.4 L∞ Cordès coefficients

Our next test is taken from [55, 56] where a different DG method and a weak Galerkin

method were used to solve this problem. Let Ω = [−1, 1]2 and

A(x) =
16

9

 2 x1x2/|x1x2|

x1x2/|x1x2| 2

 .
f is chosen so that the exact solution is u(x) = x1x2

(
1− e1−|x1|

)(
1− e1−|x2|

)
. Notice

that the matrix A is discontinuous across the x1-axis and x2-axis, and it satisfies the

Cordès condition. While our convergence theory does not apply to this example, we

still compute the numerical solution on a uniform triangulation that has edges on

all discontinuities of A. Due to its inconsistent behavior we list the L2 error and

convergence rates in Table 2.1. The following H1 semi-norm rates are observed:

‖∇h(u− uh)‖L2(Ω) = O(hk)
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for k = 1, 2, 3 as shown in Figure 2.4.

Table 2.1: The L2 errors and rates for the symmetrically induced method. The rates
for the incompletely induced method are similar. γe ≡ 10000 is used as the penalty
parameter.

k = 1 k = 2 k = 3
h ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate ‖u− uh‖L2(Ω) rate
1 1.3e-1 - 7.7e-2 - 2.6e-2 -

1/2 8.9e-2 0.58 1.8e-2 2.09 1.5e-3 4.12
1/4 4.6e-2 0.95 2.9e-3 2.62 7.6e-4 4.27
1/8 1.9e-2 1.22 4.8e-2 2.62 4.2e-6 4.19
1/16 7.6e-3 1.35 8.0e-5 2.57 3.3e-7 3.65
1/32 2.9e-3 1.41 1.4e-5 2.54 3.2e-8 3.36
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Figure 2.1: The L2 (top), piecewise H1 (middle), and piecewise H2 (bottom)
errors for both the symmetrically (left) and incompletely (right) induced schemes
with polynomial degree k = 1, 2, 3. γe ≡ 100 is used as the penalty parameter.

76



h

0.01560.03130.06250.1250.250.5

H
1
 e

rr
o
r

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

H 1  error: Uniformly Coeffs, Symm. Induced

k=1

k=2

k=3

h

0.01560.03130.06250.1250.250.5

H
1
 e

rr
o
r

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

H 1  error: Uniformly Coeffs, Imcomp. Induced

k=1

k=2

k=3

h

0.01560.03130.06250.1250.250.5

H
2
 e

rr
o
r

10
-3

10
-2

10
-1

10
0

H 2  error: Uniformly Coeffs, Symm. Induced

k=2

k=3

h

0.01560.03130.06250.1250.250.5

H
2
 e

rr
o
r

10
-3

10
-2

10
-1

10
0

H 2  error: Uniformly Coeffs, Imcomp. Induced

k=2

k=3

Figure 2.2: The piecewise H1 (top) and piecewise H2 (bottom) errors for both
the symmetrically (left) and incompletely (right) induced schemes with polynomial
degree k = 1, 2, 3. γe ≡ 1000 is used as the penalty parameter.
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Figure 2.3: The L2 (top) and piecewise H1 (bottom) errors for both the
symmetrically (left) and incompletely (right) induced schemes with polynomial degree
k = 1, 2, 3. γe ≡ 100 is used as the penalty parameter.
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Figure 2.4: The L2 (top) and piecewise H1 (bottom) errors for both the
symmetrically (left) and incompletely (right) induced schemes with polynomial degree
k = 1, 2, 3. γe ≡ 10000 is used as the penalty parameter.
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Chapter 3

The Vanishing Moment Method

for Second Order Linear Elliptic

Non-divergence Form PDEs

3.1 Introduction

In Chapter 2, we introduced an interior-penalty discontinuous Galerkin method for

the following non-divergence form second order linear elliptic PDE:

Lu := −A : D2u = f in Ω,

u = 0 on ∂Ω,
(P )

where A ∈
[
C(Ω)

]d×d
is uniformly positive definite and f ∈ Lp(Ω). While this IP-

DG method is accurate, gives optimal error estimates in the discrete W 2,p norm,

and may even converge when A is a coefficient matrix outside of the strong solution

theory, the treatment of the non-divergence form is quite delicate. Indeed, every

numerical method for these non-divergence problems reviewed in Subsection 1.4.1

requires special handling of the non-divergence term.
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In an attempt to bypass these delicate discretizations to the non-divergence term,

we approximate the strong solution u to (P ) on the PDE level via the solution uε to

an approximate problem where uε solves the following fourth order problem:

Lεuε := ε∆2uε − A : D2uε = f in Ω,

uε = 0 on ∂Ω,

∆uε = 0 on ∂Ω.

(Pε)

Here ε > 0 is small. We call this process the vanishing moment method (VMM). Since

the non-divergence operator is not the highest order term in (Pε), numerical methods

to approximate the solution uε to (Pε) will trivially discretize the non-divergence

operator while giving special attention to the discretization of the biharmonic

operator, which has been extensively studied in the literature for finite element,

discontinuous Galerkin, and finite difference methods. We note that the boundary

condition for simply supported plates ∆uε = 0 is purely artificial and is only needed

for the well-posedness of (Pε). Other suitable choices for the essential boundary

condition are ∇∆uε · ν = 0 or A : D2uε = 0 where ν is the unit outward normal

vector of Ω.

To give a motivation of the formulation of this method, we recall the vanishing

viscosity method - the first order analog of the vanishing moment method. Consider

the following first order fully nonlinear stationary Hamilton-Jacobi Equation:

H(∇u, u, x) = 0 in Ω,

u = 0 on ∂Ω,
(H)

where H is the Hamiltonian. Due to the nonlinearity of the highest order derivative,

well-posedness of (H) is not trivial; moreover, in which sense one defines a solution

to (H) is not obvious. In 1983, Crandall and Lions (see [18]) proved the existence of

solutions to (H) by considering solutions to the following second order approximate
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problem:

−ε∆u+Hε(∇u, u, x) = 0 in Ω,

u = zε on ∂Ω
(Hε)

where Hε → H and zε → 0 uniformly. Since (Hε) is now a quasi-linear problem,

that is, the PDE operator is linear in the highest order derivative, a notion of weak

solutions uε to (Hε) can be defined. Moreover, if uε ∈ W 2,p
loc (Ω), p > d converges to

u∗ ∈ C(Ω) uniformly, then u∗ is a viscosity solution to (H). This method is called

the vanishing viscosity method since ε is the viscosity coefficient if uε represents the

velocity of a fluid in a fluid dynamics problem.

The vanishing moment method was first proposed by Feng and Neilan [27], where

they used the technique to approximate fully nonlinear second order equations such as

the Monge-Ampère equation (1.2.3). Various numerical methods have been developed

subsequently (see [27, 38, 26]); however, convergence of the VMM is only proved in

special cases (see [24]). The goal of this chapter is to present the convergence of the

vanishing moment method for non-divergence form second order linear elliptic PDEs.

Specifically, we show the solutions uε of (Pε) converge to u ∈ H2(Ω) ∩H1
0 (Ω) where

u is the strong solution to (P ). In addition, we derive error estimates for ‖uε− u‖ in

powers of ε in various norms. To motivate the need for error estimates, if one were

to discretize (Pε) and produce an approximate solution uεh, then a straight forward

approach to show uεh → u would be to use the triangle inequality to show

‖uεh − u‖ ≤ ‖uεh − uε‖+ ‖uε − u‖. (3.1.3)

Note that the error ‖uεh − uε‖ is purely the discretization error from the numerical

method. However, the error ‖uε − u‖ is the PDE approximation error which is

independent of the numerical method used. Thus in order to obtain sharp rates

of convergence for ‖u−uεh‖, we must have sharp error estimates for ‖uε−u‖ in terms

of powers of ε.
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Since the highest order derivative in (Pε) is in divergence form, we can easily

define a concept of weak solutions for (Pε).

Definition 3.1. Let ε > 0. We say that uε ∈ H2(Ω) ∩H1
0 (Ω) is a weak solution to

(Pε) provided

ε(∆uε,∆v)− (A : D2uε, v) = (f, v) (3.1.4)

for all v ∈ H2(Ω) ∩H1
0 (Ω).

We assume that for any f ∈ L2(Ω), and ε sufficiently small, there exists a unique

weak solution uε ∈ H2(Ω)∩H1
0 (Ω) to (Pε). Moreover, we assume that we can increase

the regularity of the weak solution such that to uε ∈ H, where

H := {v ∈ H2(Ω) ∩H1
0 (Ω) : ∆v ∈ H1

0 (Ω)}.

However, we do not assume any stability estimate for Lε.

To prove the convergence of uε, we obtain an H1 and H2 uniform in ε stability

estimates which will give us weak compactness in H2(Ω)∩H1
0 (Ω). To derive estimates

we will utilize the freezing coefficient technique mentioned in Subsection 1.3.2. The

H1 and H2 uniform stability estimates for Lε when A is a constant coefficient matrix

is proven in Section 3.2. Then in Section 3.3, we extend theses estimates to Lε for

continuous A. In Section 3.4, we give the proof of convergence for uε → u where u is

the strong solution of (P ) as well as error estimates for ‖uε − u‖ in the H1 and L2

norm. To test the effectiveness of the vanishing moment method, we formulate a C0

interior penalty method for (Pε) in Section 3.5 and apply the method to several test

examples from Section 2.5. In Section 3.6, we test a hybrid method combinting the

vanishing moment method with the IP-DG method for non-divergence form PDEs

from Chapter 2 on several Hamilton-Jacobi-Bellman examples.
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3.2 Stability Estimates for Constant Coefficient

Operators

In this section, we consider the case when A = A0 is a constant matrix that is

uniformly positive definite. This leads to the following problem:

Lε0uε := ε∆2uε − A0 : D2uε = f in Ω,

u = 0 on ∂Ω,

∆u = 0 on ∂Ω.

(P 0
ε )

Since A0 : D2u = div(A0∇u), we can define a standard weak solution uε ∈

H2(Ω) ∩ H1
0 (Ω) to (P 0

ε ). Our first result of this section is the following local H1

estimate for Lε0.

Lemma 3.1. Let B ⊂ Ω be open and let v ∈ H2(B) ∩ H1
0 (B). Then we have the

following estimate:

√
ε‖∆v‖L2(B) +

√
λ‖∇v‖L2(B) . ‖Lε0v‖H−1(B). (3.2.2)

Note that while we have control on ∆v for fixed ε, we lose this control as ε→ 0.

Thus, we refer to (3.2.2) only as an H1 estimate. Also the analysis of this method is

reliant on having control of the H−1 norm of Lε0v.

Proof. Testing (P 0
ε ) by v, integrating by parts, using the ellipticity condition (1.3.1),

and using Poincaré’s inequality gives us

ε‖∆v‖2
L2(B) + λ‖∇v‖2

L2(B) ≤ ε(∆v,∆v)B + (A0∇v,∇v)B

= (Lε0v, v)B

≤ ‖Lε0v‖H−1(B)‖v‖H1(B)
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. ‖Lε0v‖H−1(B)‖∇v‖L2(B)

≤ 1

δ
‖Lε0v‖H−1(B) + δ‖∇v‖L2(B).

Choosing δ, only dependent on λ and the constant from the Poincaré inequality,

sufficiently small allows us to move ‖∇uε‖L2(B) on the right side to the left and

obtain (3.2.2). The proof is complete.

While we have a uniform H1 estimate, uniform control on the Hessian D2uε is

required in order to show convergence to the strong solution u. To this end, we next

establish a uniform H2 stability for our constant coefficient operator Lε0.

Lemma 3.2. Let B ⊂ Ω and let v ∈ H with supp(v) ⊂ B, then the following estimate

holds:

√
ε‖∇∆v‖L2(B) +

√
λ‖D2v‖L2(B) . ‖Lε0v‖L2(B). (3.2.3)

Proof. Testing Lε0v by −∆v and integrating by parts we get

(Lε0v,−∆v) = (ε∆2v − A0 : D2v,−∆v) = ε‖∇∆v‖2
L2(B) + (A0 : D2v,∆v). (3.2.4)

Since A0 is symmetric and positive definite. There exists an orthogonal matrix Q ∈

Rn×n such that QTAQ = diag(λ1, λ2, . . . , λn) =: Λ where λ ≤ λ1 ≤ λ2 ≤ · · · ≤ λn.

Let y = QTx and v̂(y) = v(Qy) = v(x). Since the Laplacian is preserved under

orthogonal change of basis we have the following:

∆xv(x) = ∆yv̂(y), ∆2
xv(x) = ∆2

yv̂(y),

A0 : D2
xv(x) = Λ : D2

y v̂(y) =
n∑
j=1

λj v̂yjyj(y).
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WLOG we may assume that A0 = Λ in (3.2.4). Hence

(A0 : D2v,∆v) = (div(A0∇v),∆v)

= −(A0∇v,∇∆v)

= −(A0∇v, div(D2v))

= (∇(A0∇v), D2v)

=
n∑
j=1

λj‖∇vxi‖2
L2(B) ≥ λ‖D2v‖2

L2(B).

(3.2.5)

Combining (3.2.4) and (3.2.5) gives us

ε‖∇∆v‖2
L2(B) + λ‖D2v‖2

L2(B) ≤ ‖Lε0v‖L2(B)‖∆v‖L2(B)

≤ δ

2
‖∆v‖2

L2(B) +
1

2δ
‖Lε0v‖2

L2(B)

≤ δ

2
‖D2v‖2

L2(B) +
1

2δ
‖Lε0v‖2

L2(B).

Choosing δ sufficiently small, dependent only on the ellipticity condition, to move

‖Lε0v‖2
L2(B) to the right hand side gives the desired result. The proof is complete.

Next, we derive similar boundary estimates. Let B+ = B ∩Rd
+ := {x = (x′, xd) ∈

Rd : xd > 0} and (∂B+)+ = ∂(B+) ∩ Rd
+ where B is a small ball with it’s center on

the xd-axis.

Lemma 3.3. Let v ∈ H2(B+) with ∆v ∈ H1(B+) and v,∇v,∆v = 0 near ∂B+ and

v = ∆v = 0 on ∂B+ \ (∂B+)+. Then we have the following estimates:

√
ε‖∇∆v‖L2(B+) + λ‖D2v‖L2(B+) . ‖Lε0v‖L2(B+), (3.2.6)

√
ε‖∆v‖L2(B+) + λ‖∇v‖L2(B+) . ‖Lε0v‖H−1(B+). (3.2.7)

Proof. We will extend v from B+ to B by an odd reflection, that is v(x′, xn) =

−v(x′,−xn) for all x ∈ B \B+. Since v and ∆v are both zero on ∂B ∩ {xn = 0}, we
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have v ∈ H2
0 (B) and ∆v ∈ H1

0 (B) by the odd extension. Again we test the PDE by

∆v and use a similar argument as to Lemma 3.2. This gives us

√
ε‖∇∆v‖L2(B) +

√
λ‖D2v‖L2(B) . ‖Lε0v‖L2(B). (3.2.8)

Since the odd reflection is a bounded linear operator on L2, independent of the

diameter of B, and B+ ⊂ B, we have

√
ε‖∇∆v‖L2(B+) +

√
λ‖D2v‖L2(B+) ≤

√
ε‖∇∆v‖L2(B) +

√
λ‖D2v‖L2(B)

. ‖Lε0v‖L2(B)

. ‖Lε0v‖L2(B+).

which is precisely (3.2.6). We can repeat a similar argument to achieve (3.2.7). The

proof is complete.

3.3 Uniform Stability Estimates for Variable Co-

efficient Operators

Let A ∈
[
C(Ω)

]d×d
be uniformly positive definite. In this section we seek uniform

H1 and H2 stability estimates for Lε. Following the freezing coefficients technique,

we first need to drive local H1 and H2 stability estimates, which in turn require the

following lemma controlling the bound of the H−1 norm of the Hessian.

Lemma 3.4. Let B be an open ball and v ∈ H2(B), then we have the following

estimate:

‖D2v‖H−1(B) ≤ d2‖∇u‖L2(B), (3.3.1)
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where d is the dimension of the domain Ω, and

‖D2v‖H−1(B) =

(
d∑

i,j=1

‖vxi,xj‖2
H−1(B)

) 1
2

. (3.3.2)

Proof. Let i, j = 1, . . . , d and w ∈ H1
0 (B) with w 6≡ 0. Integrating by parts gives us

(vxixj , w) = (vxi , wxj) ≤ ‖∇v‖L2(B)‖∇w‖L2(B).

Thus by the definition of ‖v‖H−1(B) we have

‖vxixj‖H−1(B) = sup
w∈H1

0 (B)
w 6≡0

|(vxixj , w)B|
‖∇w‖L2(B)

≤ ‖∇v‖L2(B).

Summing over i and j gives us (3.3.1). The proof is complete.

We are now ready to prove the local H1 and H2 stability of Lε.

Lemma 3.5. Let x0 ∈ Ω and BR(x0) ⊂ Ω to be the ball of radius R centered at x0.

There exists R0 > 0, independent of ε, such that for all v ∈ H with supp(v) ⊂ B :=

BR0(x0), the following estimates hold:

√
ε‖∇∆v‖L2(B) +

√
λ‖D2v‖L2(B) . ‖Lεv‖L2(B), (3.3.3)

√
ε‖∆v‖L2(B) +

√
λ‖∇v‖L2(B) . ‖Lεv‖H−1(B). (3.3.4)

Proof. Let δ > 0 and define A0 := A(x0). Since A is continuous, there exists R0 > 0

such that

‖A− A0‖L∞(BR0
(x0)) ≤ δ.
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By Lemma 3.2 we have

√
ε‖∇∆v‖L2(B) +

√
λ‖D2v‖L2(B) . ‖Lε0v‖L2(B)

. ‖Lεv‖L2(B) + ‖(Lε0 − Lε)v‖L2(B)

. ‖Lεv‖L2(B) + ‖(A− A0) : D2v‖L2(B)

. ‖Lεv‖L2(B) + ‖A− A0‖L∞(B)‖D2v‖L2(B)

≤ ‖Lεv‖L2(B) + δ‖D2v‖L2(B).

Since δ only depends on λ, we can make it sufficiently small to move ‖D2v‖L2(B) to

the left hand side and arrive at (3.3.3).

To show (3.3.4), we follow a similar technique. Using Lemma 3.1 and Lemma 3.4,

we have

√
ε‖∆v‖L2(B) +

√
λ‖∇v‖L2(B) . ‖Lε0v‖H−1(B)

. ‖Lεv‖H−1(B) + ‖(Lε0 − Lε)v‖H−1(B)

. ‖Lεv‖H−1(B) + ‖(A− A0) : D2v‖H−1(B)

. ‖Lεv‖H−1(B) + ‖A− A0‖L∞(B)‖D2v‖H−1(B)

. ‖Lεv‖H−1(B) + δ‖∇v‖L2(B).

Thus we may make δ sufficiently small to move the ‖∇v‖L2(B) from the left and side

and obtain (3.3.4). The proof is complete.

Finally, using cutoff functions and a covering argument, we obtain some interior

Gärding-type inequalities.

Lemma 3.6. For any Ω′ ⊂⊂ Ω and v ∈ H, the following estimates hold:

√
ε‖∇∆v‖L2(Ω′) +

√
λ‖D2v‖L2(Ω′) . ‖Lεv‖L2(Ω) + ‖v‖L2(Ω) (3.3.5)

+ ε
(
‖∇v‖L2(Ω) + ‖∆v‖L2(Ω) + ‖∇∆v‖L2(Ω)

)
,

√
ε‖∆v‖L2(Ω′) +

√
λ‖∇v‖L2(Ω′) . ‖Lεv‖H−1(Ω) + ‖v‖L2(Ω) (3.3.6)
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+ ε
(
‖∇v‖L2(Ω) + ‖∆v‖L2(Ω)

)
.

Proof. For a ball BR with radius R let σ = 1/2 and choose the cutoff function

η ∈ C∞0 (BR) with 0 ≤ η ≤ 1, η ≡ 1 in BσR, η ≡ 0 on BR \ Bσ′R where σ′ = 3/4.

Moreover, ‖Dkη‖L∞(BR) . (1 − σ)−kR−k for k = 0, 1, 2, 3, 4. Applying (3.3.3) to ηv

on the ball Bσ′R gives us

√
ε‖∇∆v‖L2(BσR)+

√
λ‖D2v‖L2(BσR)

=
√
ε‖∇∆(ηv)‖L2(BσR) +

√
λ‖D2(ηv)‖L2(BσR)

≤
√
ε‖∇∆(ηv)‖L2(Bσ′R) +

√
λ‖D2(ηv)‖L2(Bσ′R)

. ‖Lε(ηv)‖L2(Bσ′R) = ‖ε∆2(ηv)− A : D2(ηv)‖L2(Bσ′R).

(3.3.7)

Expanding ∆2(ηv) and A : D2(ηv) yields

∆2(ηv) = η∆2v + 4∇∆v · ∇η + 6∆v∆η + 4∇v · ∇∆η + v∆2η, (3.3.8)

A : D2(ηv) = ηA : D2v + 2A∇v · ∇η + vA : D2η. (3.3.9)

Using (3.3.8) and (3.3.9) we obtain (below the L2 norm is taken on Bσ′R),

‖ε∆2(ηv)− A : D2(ηv)‖L2 . ‖Lεv‖L2 +
1

(1− σ)R
‖∇v‖L2 +

1

(1− σ)2R2
‖v‖L2

+
ε

(1− σ)4R4
‖v‖L2 +

ε

(1− σ)3R3
‖∇v‖L2

+
ε

(1− σ)2R2
‖∆v‖L2 +

ε

(1− σ)R
‖∇∆v‖L2 .

(3.3.10)

The treatment of the first three terms on the right follows from [35, p.236]. Keeping

the rest of the terms on the right and using a covering argument we arrive at (3.3.5).

Since Ω′ is compact it only takes a finite number of balls to cover Ω′, thus the estimate

does not depend on R.
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To show (3.3.6), using the same η as prescribed above and estimate (3.3.4), we

recover a similar estimate to (3.3.7):

√
ε‖∆v‖L2(BσR)+

√
λ‖∇v‖L2(BσR)

. ‖Lε(ηv)‖H−1(Bσ′R)

= ‖ε∆2(ηv)− A : D2(ηv)‖H−1(Bσ′R)

= sup
w∈H1

0 (Bσ′R))

(ε∆2(ηv)− A : D2(ηv), w)

‖∇w‖L2(Bσ′R)

.

(3.3.11)

Let w ∈ H1
0 (Bσ′R)), by integration by parts we have

(ε∆2(ηv)− A : D2(ηv), w) = −ε(∇∆(ηv),∇w)− (A : D2(ηv), w)

:= εI1 + I2.
(3.3.12)

We first focus on I2, expanding ∇∆(ηv) similar to (3.3.8) and integrating by parts

yields

I1 = −(∇∆(ηv),∇w) (3.3.13)

= −(η∇∆v,∇w)− (3∆v∇η + 3∆η∇v + v∇∆η,∇w)

= (div(η∇∆v), w)− (3∆v∇η + 3∆η∇v + v∇∆η,∇w)

= (∆2v, ηw) + (∇∆v,∇ηw)− (3∆v∇η + 3∆η∇v + v∇∆η,∇w)

= (∆2v, ηw)− (∆v, div(∇ηw))− (3∆v∇η + 3∆η∇v + v∇∆η,∇w)

= (∆2v, ηw)− (∆v, w∆η +∇η · ∇w)− (3∆v∇η + 3∆η∇v + v∇∆η,∇w)

. (∆2v, ηw) +

(
1

(1− σ)2R2
‖∆v‖L2 +

1

(1− σ)2R2
‖∇v‖L2

+
1

(1− σ)3R3
‖v‖L2

)
‖∇w‖L2 .

Using (3.3.9) on I2 we get

I2 = −(A : D2(ηv), w) (3.3.14)
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= −(ηA : D2v + 2A∇v · ∇η + vA : D2η, w)

. −(A : D2v, ηw) +

(
1

(1− σ)R
‖∇v‖L2 +

1

(1− σ)2R2
‖v‖L2

)
‖∇w‖L2

Combining (3.3.13) and (3.3.14) with (3.3.12) gives us

√
ε‖∆v‖L2(BσR)+

√
λ‖∇v‖L2(BσR)

. ‖Lεv‖L2 +
1

(1− σ)R
‖∇v‖L2 +

1

(1− σ)2R2
‖v‖L2

+
ε

(1− σ)3R3
‖v‖L2 +

ε

(1− σ)2R2
‖∇v‖L2

+
ε

(1− σ)2R2
‖∆v‖L2 .

(3.3.15)

Following similar treatment as (3.3.10) we arrive at (3.3.6). This completes the proof.

We now extend this interior estimates to the boundary to obtain a global estimate.

Lemma 3.7. Let ∂Ω ∈ C2,1. For any v ∈ H, the following estimates hold:

√
ε‖∇∆v‖L2(Ω) +

√
λ‖D2v‖L2(Ω) . ‖Lεv‖L2(Ω) + ‖v‖L2(Ω) (3.3.16)

+ ε
(
‖∇v‖L2(Ω) + ‖∆v‖L2(Ω) + ‖∇∆v‖L2(Ω)

)
,

√
ε‖∆v‖L2(Ω) +

√
λ‖∇v‖L2(Ω) . ‖Lεv‖H−1(Ω) + ‖v‖L2(Ω) (3.3.17)

+ ε(‖∇v‖L2(Ω) + ‖∆v‖L2(Ω)).

Proof. Since ∂Ω ∈ C2,1 for any x0 ∈ ∂Ω, we may flatten ∂Ω near x0, use Lemma 3.3

and the proof of Lemma 3.5 to create a local boundary estimate mimicking (3.3.3)

and (3.3.4). We then follow the same argument as in Lemma 3.6 achieving estimates

similar (3.3.5) and (3.3.6) near the boundary. These estimates combined with (3.3.5)

and (3.3.6) give us (3.3.16) and (3.3.17). The proof is complete.
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Now we must deal with the terms involving ε on the right hand side of (3.3.16)

and (3.3.18). However, since
√
ε vanishes slower than ε as ε→ 0, we can easily hide

these terms for ε sufficiently small.

Lemma 3.8. There exists ε0 > 0 such that for any ε < ε0 the following estimates

hold for any v ∈ H:

√
ε‖∇∆v‖L2(Ω) +

√
λ‖D2v‖L2(Ω)

√
λ‖∇v‖L2(Ω) . ‖Lεv‖L2(Ω) + ‖v‖L2(Ω), (3.3.18)

√
ε‖∆v‖L2(Ω) +

√
λ‖∇v‖L2(Ω) . ‖Lεv‖H−1(Ω) + ‖v‖L2(Ω). (3.3.19)

Proof. Adding (3.3.16) and (3.3.17) and noting ‖Lεv‖H−1(Ω) ≤ ‖Lεv‖L2(Ω) we obtain

√
ε‖∇∆v‖L2(Ω) +

√
ε‖∆v‖L2(Ω) +

√
λ‖D2v‖L2(Ω) +

√
λ‖∇v‖L2(Ω)

≤ C
(
‖Lεv‖L2(Ω) + ‖v‖L2(Ω) + ε(‖∇v‖L2(Ω) + ‖∆v‖L2(Ω) + ‖∇∆v‖L2(Ω))

)
,

(3.3.20)

where C is a positive constant independent of ε. Choosing ε0 = min{4/C2,
√
λ/(2C)}

gives us Cε <
√
ε/2 and Cε <

√
λ/2 for all ε < ε0. Let ε < ε0, then we subtract the

first three terms on the right side of (3.3.20) from both sides and obtain

√
ε‖∇∆v‖L2(Ω) +

√
ε‖∆v‖L2(Ω)+

√
λ‖D2v‖L2(Ω) +

√
λ‖∇v‖L2(Ω)

≤ C
(
‖Lεv‖L2(Ω) + ‖v‖L2(Ω)

)
.

(3.3.21)

Dropping
√
ε‖∆v‖L2(Ω) gives us (3.3.18). (3.3.19) can be shown similarly. The proof

is complete.

Using the existence and uniqueness of weak solutions to (Pε), we now prove a full

stability estimate using Lemma 3.8.

Lemma 3.9. For all ε < ε0 and v ∈ H, we have the following stability estimates:

√
ε‖∇∆v‖L2(Ω) +

√
λ‖D2v‖L2(Ω) +

√
λ‖∇v‖L2(Ω) ≤ C‖Lεv‖L2(Ω), (3.3.22)
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√
ε‖∆v‖L2(Ω) +

√
λ‖∇v‖L2(Ω) ≤ C‖Lεv‖H−1(Ω). (3.3.23)

where C is a positive independent of ε and uε.

Proof. Fix ε < ε0 and for the sake of contradiction suppose for k ∈ N we have

uεk ∈ H3(Ω) with uεk = ∆uεk = 0 on ∂Ω, ‖uεk‖H3(Ω) = 1, and ‖Lεuεk‖L2(Ω) → 0 as

k →∞. Since ‖uεk‖H3(Ω) is bounded way may extract a convergent subsequence (not

relabeled) such that uεk ⇀ uε∗ weakly in H3(Ω) for some uε∗ ∈ H3(Ω). In addition,

uε∗ = ∆uε∗ = 0 on ∂Ω, and ‖uε∗‖H3(Ω) = 1. Moreover, since our problem is linear we

have

‖Lεuε∗‖L2(Ω) = lim
k→∞
‖Lεuεk‖L2(Ω) = 0.

By the existence and uniqueness of (Pε), uε∗ = 0 which is a contradiction to

‖uε∗‖H3(Ω) = 1. The proof is complete.

3.4 Convergence of uε in H2(Ω) and Error Esti-

mates

With the help of Lemma 3.9 we are ready to establish our main results on this chapter.

First we show that the sequence {uε}ε<ε0 indeed converges by compactness, and that

the limit function is the strong solution to (P ). Moreover, we derive a stability

estimate for L : H1 → H−1. To the best of our knowledge, this estimate has never

been shown in the literature.

Theorem 3.1. Let ∂Ω ∈ C2,1, ε < ε0 and uε ∈ H be the weak solution to (Pε). Then

uε converges to u ∈ H2(Ω) ∩ H1
0 (Ω) weakly in H2(Ω) where u is the strong solution

to (P ). Moreover, we have the following H1 stability result for L:

‖∇u‖L2(Ω) . ‖Lu‖H−1(Ω). (3.4.1)
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Proof. Since Lεuε = f weakly and uε = 0 on ∂Ω, we have the boundedness of

‖uε‖H2(Ω) from the Poincaré inequality and Lemma 3.9. By compactness there exists

a subsequence {uε} (not relabeled) and a function u∗ ∈ H2(Ω) ∩ H1
0 (Ω) such that

uε ⇀ u∗ weakly in H2(Ω). Moreover since Lεuε = f weakly, we have for any ϕ ∈

C∞0 (Ω)

ε(∆uε,∆ϕ)− (A : D2uε, ϕ) = (f, ϕ). (3.4.2)

By (3.3.23) we have

|ε(∆uε,∆ϕ)| ≤
(√

ε‖∆uε‖L2(Ω)

)(√
ε‖∆ϕ‖L2(Ω)

)
.
√
ε‖f‖H−1(Ω)‖∆ϕ‖L2(Ω),

which vanishes as ε→ 0. Using weak convergence, we can pass the limit as ε→ 0 in

(3.4.2) to obtain

−(A : D2u∗, ϕ) = (f, ϕ) (3.4.3)

for any ϕ ∈ C∞0 (Ω). Thus u∗ is a strong solution to (P ). By uniqueness of L we have

u∗ = u, and the whole sequence uε weakly converges to u.

We now derive (3.4.1). Since ‖Lεuε‖H−1(Ω) = ‖f‖H−1(Ω) is constant with respect

to ε and the L2 norm is weakly lower semi-continuous, we take the lim inf of (3.3.23)

and use uε ⇀ u to get

‖f‖H−1(Ω) = lim inf
ε→0

‖Lεuε‖H−1(Ω)

& lim inf
ε→0

(√
ε‖∆uε‖L2(Ω) +

√
λ‖∇uε‖L2(Ω)

)
& lim inf

ε→0

√
ε‖∆uε‖L2(Ω) + lim inf

ε→0

√
λ‖∇uε‖L2(Ω)

& ‖∇u‖L2(Ω).

The proof is complete.
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Next we derive some error estimates for u−uε in powers of ε. To this end, we use

the H1 stability estimate for L along with the stability for Lε to achieve the desired

estimates.

Theorem 3.2. For ε < ε0, let u ∈ H2(Ω) ∩ H1
0 (Ω) and uε ∈ H be the solutions to

(P ) and (Pε) respectively. Then we have the following error estimates:

‖∇(uε − u)‖L2(Ω) .
√
ε‖f‖L2(Ω), (3.4.4)

‖uε − u‖L2(Ω) .
√
ε‖f‖L2(Ω). (3.4.5)

Proof. Let eε = uε − u. By linearity of L we get Leε = ε∆2uε ∈ H−1(Ω). Using

(3.4.1) and (3.3.23) we have

‖∇eε‖L2(Ω) . ε‖∆2uε‖H−1(Ω)

= sup
v∈H1

0 (Ω)

−ε(∇∆uε,∇v)

‖∇v‖L2(Ω)

≤ sup
v∈H1

0 (Ω)

ε‖∇∆uε‖L2(Ω)‖∇v‖L2(Ω)

‖∇v‖L2(Ω)

≤ ε‖∇∆uε‖L2(Ω)

≤
√
ε
(√

ε‖∇∆uε‖L2(Ω)

)
.
√
ε‖f‖L2(Ω).

which is exactly (3.4.4). By using the Poincaré inequality on ‖∇(uε − u)‖L2(Ω) we

obtain (3.4.5). The proof is complete.

3.5 A C0 Interior Penalty Method for (Pε)

As mentioned previously, the goal of applying the vanishing moment method to (P )

is to numerically approximate the fourth order equation (Pε). To this end, we define

the following C0 interior penalty method for (Pε).
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Definition 3.2. The C0 interior penalty method for (Pε) is to seek uh ∈ Sh such that

εah(uh, vh) + bh(uh, vh) = (f, vh) ∀vh ∈ Sh, (3.5.1)

where

ah(wh, vh) :=
∑
T∈Th

ˆ
T

∆wh∆vh dx

−
∑
e∈EIh

ˆ
e

{∆wh}[∇vh · νe] dS −
∑
e∈EIh

ˆ
e

{∆vh}[∇wh · νe] dS

+
∑
e∈EIh

γe
he

ˆ
e

[∇wh · νe][∇vh · νe] dS,

(3.5.2)

and

bh(wh, vh) = −
∑
T∈Th

ˆ
T

(
A : D2wh

)
vh dx. (3.5.3)

Here ah(·, ·) reflects the discrete biharmonic operator while bh(·, ·) represents the

discrete non-divergence operator. The C0 interior penalty discretization of ah(·, ·)

is motivated by Brenner in [7]; however, note the only discretization used to create

bh(·, ·) is the piecewise discrete Hessian. If ε = 0, then the method may not converge

as h→ 0 in general.

To test our C0 interior penalty method, we use a selection of 2-D examples from

Section 2.5. However, our solution u to (P ) will always be smooth so that the

convergence rate will not deteriorate due to the lack of regularity of u. For all tests,

we will choose the source f such that the exact solution u is given by

u(x1, x2) = sin(2πx1) sin(2πx2) exp(x1 cos(x2)).

We will test the C0 interior penalty method using two metrics. First, we set

ε = hk where k is the polynomial degree of Sh, and compute the errors and rates of
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convergence of ‖uh − u‖ in the L2- and H1-norm for k = 2, 3, and 4. Second, we

fix h = 1/64 and k = 3, and then we compute the errors and rates of convergence of

‖uh−u‖ in the L2- and H1-norm with varying ε. With this test as an approximation

of ‖uε − u‖ we hope to corroborate the error estimates (3.4.4-3.4.5); however, since

uh is not exactly u, we will see divergence as ε becomes too small.

3.5.1 Identity Coefficient Matrix A

Let Ω = (−1/2, 1/2)2 and take A = Id×d. This gives the standard Poisson problem:

−A : D2u = −∆u = f in Ω,

u = 0 on ∂Ω.

The L2 errors and rates of convergence for varying h are shown in Table 3.1 while

the H1 errors and rates of convergence for varying h are shown in Table 3.2. As we

see, the method is convergent for all k listed. Also for large ε, we see the method

produces poor solutions with lower rates of convergence. This further supports the

need for ε < ε0 in the theory.

The L2 errors and rates of convergence for varying ε are shown in Table 3.3 while

the H1 errors and rates of convergence for varying ε are shown in Table 3.4. We see

that both the L2 and H1 error estimate are of order ε. This is a half order better

than our error estimates (3.4.4-3.4.5). In addition, we see that the convergence of the

method is dependent on the relationship between h and ε; choosing ε too small will

give an inaccurate numerical solution, which is expected.
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Table 3.1: The L2 error and rates of convergence in h for the C0 interior penalty
method (3.5.1) applied to (Pε) with A = Id×d. Here ε = hk.

k = 2 k = 3 k = 4
1/h error rate error rate error rate
2 5.21e-01 - 5.11e-01 - 4.50e-01 -
4 5.13e-01 0.02 3.36e-01 0.61 1.28e-01 1.81
8 4.66e-01 0.14 7.57e-02 2.15 1.03e-02 3.64
16 2.96e-01 0.65 1.04e-02 2.87 6.57e-04 3.97
32 8.19e-02 1.85 1.32e-03 2.98 4.10e-05 4.00
64 1.39e-02 2.56 1.67e-04 2.98 2.53e-06 4.02
128 2.81e-03 2.30 2.15e-05 2.96 1.52e-07 4.05

Table 3.2: The H1 error and rates of convergence in h for the C0 interior penalty
method (3.5.1) applied to (Pε) with A = Id×d. Here ε = hk.

k = 2 k = 3 k = 4
1/h error rate error rate error rate
2 5.15e+00 - 5.08e+00 - 4.10e+00 -
4 4.69e+00 0.14 3.07e+00 0.73 1.17e+00 1.81
8 4.10e+00 0.19 7.03e-01 2.13 9.65e-02 3.60
16 2.71e+00 0.60 9.84e-02 2.84 6.58e-03 3.88
32 8.01e-01 1.76 1.29e-02 2.93 4.70e-04 3.81
64 1.37e-01 2.54 1.81e-03 2.84 3.43e-05 3.78
128 2.74e-02 2.33 2.77e-04 2.71 2.73e-06 3.66
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Table 3.3: The L2 error and rates of convergence in ε for the C0 interior penalty
method (3.5.1) applied to (Pε) with A = Id×d. Here h = 1/64 and k = 3.

− log2 ε ‖u− uh‖L2(Ω) rate − log2 ε ‖u− uh‖L2(Ω) rate
1 5.20e-01 - 21 3.17e-05 0.57
2 5.07e-01 0.04 22 3.24e-05 -0.03
3 4.84e-01 0.07 23 4.97e-05 -0.62
4 4.43e-01 0.13 24 9.28e-05 -0.90
5 3.80e-01 0.22 25 1.87e-04 -1.01
6 2.95e-01 0.36 26 3.93e-04 -1.08
7 2.05e-01 0.53 27 8.76e-04 -1.15
8 1.27e-01 0.69 28 2.11e-03 -1.27
9 7.22e-02 0.81 29 5.69e-03 -1.43
10 3.88e-02 0.90 30 1.73e-02 -1.60
11 2.02e-02 0.94 31 5.86e-02 -1.76
12 1.03e-02 0.97 32 2.15e-01 -1.88
13 5.20e-03 0.98 33 8.77e-01 -2.03
14 2.62e-03 0.99 34 1.54e+01 -4.13
15 1.31e-03 1.00 35 1.52e+02 -3.30
16 6.58e-04 1.00 36 9.11e+01 0.74
17 3.30e-04 0.99 37 1.00e+02 -0.14
18 1.67e-04 0.99 38 1.79e+02 -0.84
19 8.57e-05 0.96 39 2.89e+02 -0.69
20 4.71e-05 0.86 40 9.99e+02 -1.79
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Table 3.4: The H1 error and rates of convergence in ε for the C0 interior penalty
method (3.5.1) applied to (Pε) for A = Id×d. Here h = 1/64 and k = 3.

− log2 ε ‖u− uh‖H1(Ω) rate − log2 ε ‖u− uh‖H1(Ω) rate
1 4.65e+00 - 21 3.40e-04 0.64
2 4.54e+00 0.03 22 3.12e-04 0.12
3 4.33e+00 0.07 23 4.45e-04 -0.51
4 3.97e+00 0.13 24 8.12e-04 -0.87
5 3.41e+00 0.22 25 1.63e-03 -1.00
6 2.66e+00 0.36 26 3.42e-03 -1.07
7 1.85e+00 0.52 27 7.64e-03 -1.16
8 1.15e+00 0.68 28 1.85e-02 -1.28
9 6.60e-01 0.81 29 4.99e-02 -1.43
10 3.57e-01 0.89 30 1.52e-01 -1.61
11 1.87e-01 0.93 31 7.94e-01 -2.38
12 9.59e-02 0.96 32 2.16e+00 -1.44
13 4.90e-02 0.97 33 8.79e+00 -2.02
14 2.50e-02 0.97 34 1.78e+02 -4.34
15 1.28e-02 0.97 35 8.12e+02 -2.19
16 6.58e-03 0.96 36 2.15e+03 -1.40
17 3.43e-03 0.94 37 8.14e+03 -1.92
18 1.81e-03 0.93 38 6.24e+03 0.39
19 9.62e-04 0.91 39 6.95e+03 -0.16
20 5.32e-04 0.85 40 1.78e+04 -1.36
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Table 3.5: The L2 error and rates of convergence in h for the C0 interior penalty
method (3.5.1) applied to (Pε) with Hölder continuous A. Here ε = hk.

k = 2 k = 3 k = 4
1/h error rate error rate error rate
2 5.20e-01 - 4.84e-01 - 3.52e-01 -
4 4.98e-01 0.06 2.15e-01 1.17 5.63e-02 2.65
8 4.34e-01 0.20 3.18e-02 2.76 3.90e-03 3.85
16 2.23e-01 0.96 3.94e-03 3.01 2.46e-04 3.98
32 4.26e-02 2.39 5.00e-04 2.98 1.55e-05 3.99
64 5.80e-03 2.88 6.64e-05 2.91 9.86e-07 3.97
128 1.07e-03 2.43 1.00e-05 2.73 7.01e-08 3.81

3.5.2 Hölder Continuous Coefficient Matrix A

Let Ω = (−1/2, 1/2)2 and take A as the following Hölder continuous matrix-valued

function:

A(x) =

 |x|1/2 + 1 −|x|1/2

−|x|1/2 5|x|1/2 + 1

 , x ∈ R2.

The L2 errors and rates of convergence are shown in Table 3.5 while the H1 errors

and rates of convergence are shown in Table 3.6. As we see, the method is convergent

though the orders of convergence are suboptimal when compared to the IP-DG

methods in Chapter 2.

The L2 errors and rates of convergence for varying ε are shown in Table 3.3 while

the H1 errors and rates of convergence for varying ε are shown in Table 3.4. We

see that both the L2 and H1 error estimate are of order ε. This tells us the error

estimates (3.4.4-3.4.5) are not sharp - even for non-smooth A.

3.5.3 Uniformly Continuous Coefficient A

Let Ω = (0, 1/2)2 and take A as the following uniformly continuous matrix-valued

function:

A(x) =

 −
5

log(|x|)
+ 15 1

1 − 1

log(|x|)
+ 3

 .
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Table 3.6: The H1 error and rates of convergence in h for the C0 interior penalty
method (3.5.1) applied to (Pε) with Hölder continuous A. Here ε = hk.

k = 2 k = 3 k = 4
1/h error rate error rate error rate
2 5.15e+00 - 4.84e+00 - 3.26e+00 -
4 4.45e+00 0.21 2.02e+00 1.26 5.32e-01 2.61
8 3.63e+00 0.29 3.20e-01 2.66 3.87e-02 3.78
16 1.99e+00 0.87 4.13e-02 2.95 2.81e-03 3.79
32 4.24e-01 2.23 5.56e-03 2.89 2.14e-04 3.71
64 6.14e-02 2.79 8.64e-04 2.69 1.54e-05 3.80
128 1.16e-02 2.41 1.50e-04 2.53 2.26e-06 2.76

Table 3.7: The L2 error and rates of convergence in ε for the C0 interior penalty
method (3.5.1) applied to (Pε) with Hölder continuous A. Here h = 1/64 and k = 3.

− log2 ε ‖u− uh‖L2(Ω) rate − log2 ε ‖u− uh‖L2(Ω) rate
1 4.97e-01 - 21 4.06e-05 -0.33
2 4.66e-01 0.09 22 6.80e-05 -0.74
3 4.15e-01 0.17 23 1.26e-04 -0.89
4 3.41e-01 0.28 24 2.36e-04 -0.90
5 2.52e-01 0.44 25 4.20e-04 -0.83
6 1.66e-01 0.60 26 6.45e-04 -0.62
7 9.95e-02 0.74 27 7.03e-04 -0.12
8 5.53e-02 0.85 28 3.06e-03 -2.12
9 2.93e-02 0.91 29 2.13e-02 -2.80
10 1.52e-02 0.95 30 1.36e-01 -2.67
11 7.70e-03 0.98 31 1.00e+00 -2.89
12 3.89e-03 0.99 32 9.16e+00 -3.19
13 1.95e-03 0.99 33 8.39e+00 0.13
14 9.80e-04 1.00 34 2.42e+01 -1.53
15 4.91e-04 1.00 35 1.21e+03 -5.65
16 2.47e-04 0.99 36 9.00e+00 7.07
17 1.26e-04 0.98 37 5.18e+01 -2.52
18 6.64e-05 0.92 38 2.11e+01 1.29
19 3.97e-05 0.74 39 3.46e+01 -0.71
20 3.23e-05 0.30 40 2.09e+02 -2.59
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Table 3.8: The H1 error and rates of convergence in ε for the C0 interior penalty
method (3.5.1) applied to (Pε) with Hölder continuous A. Here h = 1/64 and k = 3.

− log2 ε ‖u− uh‖H1(Ω) rate − log2 ε ‖u− uh‖H1(Ω) rate
1 4.97e-01 - 21 4.06e-05 -0.33
2 4.66e-01 0.09 22 6.80e-05 -0.74
3 4.15e-01 0.17 23 1.26e-04 -0.89
4 3.41e-01 0.28 24 2.36e-04 -0.90
5 2.52e-01 0.44 25 4.20e-04 -0.83
6 1.66e-01 0.60 26 6.45e-04 -0.62
7 9.95e-02 0.74 27 7.03e-04 -0.12
8 5.53e-02 0.85 28 3.06e-03 -2.12
9 2.93e-02 0.91 29 2.13e-02 -2.80
10 1.52e-02 0.95 30 1.36e-01 -2.67
11 7.70e-03 0.98 31 1.00e+00 -2.89
12 3.89e-03 0.99 32 9.16e+00 -3.19
13 1.95e-03 0.99 33 8.39e+00 0.13
14 9.80e-04 1.00 34 2.42e+01 -1.53
15 4.91e-04 1.00 35 1.21e+03 -5.65
16 2.47e-04 0.99 36 9.00e+00 7.07
17 1.26e-04 0.98 37 5.18e+01 -2.52
18 6.64e-05 0.92 38 2.11e+01 1.29
19 3.97e-05 0.74 39 3.46e+01 -0.71
20 3.23e-05 0.30 40 2.09e+02 -2.59
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Table 3.9: The L2 error and rates of convergence in h for the C0 interior penalty
method (3.5.1) applied to (Pε) with uniformly continuous A. Here ε = hk.

k = 2 k = 3 k = 4
1/h error rate error rate error rate
2 3.18e-01 - 1.70e-01 - 9.28e-02 -
4 2.38e-01 0.42 3.07e-02 2.47 7.90e-03 3.55
8 9.87e-02 1.27 4.02e-03 2.93 5.05e-04 3.97
16 1.70e-02 2.54 5.10e-04 2.98 3.15e-05 4.00
32 2.58e-03 2.72 6.53e-05 2.96 1.94e-06 4.02
64 5.17e-04 2.32 8.81e-06 2.89 1.18e-07 4.05
128 1.22e-04 2.09 1.40e-06 2.66 7.80e-09 3.92

Table 3.10: The H1 error and rates of convergence in h for the C0 interior penalty
method (3.5.1) applied to (Pε) with uniformly continuous A. Here ε = hk.

k = 2 k = 3 k = 4
1/h error rate error rate error rate
2 2.93e+00 - 1.57e+00 - 8.37e-01 -
4 2.20e+00 0.41 2.89e-01 2.44 7.25e-02 3.53
8 9.89e-01 1.15 3.86e-02 2.90 4.86e-03 3.90
16 1.91e-01 2.37 5.01e-03 2.95 3.33e-04 3.87
32 2.94e-02 2.70 6.86e-04 2.87 2.36e-05 3.82
64 5.43e-03 2.44 1.03e-04 2.73 2.08e-06 3.51
128 1.28e-03 2.09 1.75e-05 2.56 5.18e-07 2.00

The L2 errors and rates of convergence are shown in Table 3.9 while the H1

errors and rates of convergence are shown in Table 3.10. As we see, the method is

convergent though the orders of convergence are suboptimal when compared to the

IP-DG methods in Chapter 2.

The L2 errors and rates of convergence for varying ε are shown in Table 3.3 while

the H1 errors and rates of convergence for varying ε are shown in Table 3.4. Again, we

see order ε convergence as we descrease ε, until ε is too small for h and the numerical

solution does not well approximate the true solution u.
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Table 3.11: The L2 error and rates of convergence in ε for the C0 interior penalty
method (3.5.1) applied to (Pε) with uniformly continuous A. Here h = 1/64 and
k = 3.

− log2 ε ‖u− uh‖L2(Ω) rate − log2 ε ‖u− uh‖L2(Ω) rate
1 2.45e-01 - 21 6.81e-06 -0.44
2 1.98e-01 0.31 22 1.15e-05 -0.76
3 1.43e-01 0.47 23 2.03e-05 -0.82
4 9.22e-02 0.64 24 3.30e-05 -0.70
5 5.38e-02 0.78 25 3.70e-05 -0.17
6 2.94e-02 0.87 26 4.52e-05 -0.29
7 1.54e-02 0.93 27 5.55e-04 -3.62
8 7.89e-03 0.96 28 3.01e-03 -2.44
9 4.00e-03 0.98 29 1.40e-02 -2.21
10 2.01e-03 0.99 30 6.19e-02 -2.15
11 1.01e-03 1.00 31 2.80e-01 -2.18
12 5.05e-04 1.00 32 1.38e+00 -2.31
13 2.53e-04 1.00 33 4.69e+00 -1.76
14 1.27e-04 1.00 34 7.14e+00 -0.61
15 6.35e-05 1.00 35 9.52e+00 -0.41
16 3.20e-05 0.99 36 1.06e+02 -3.48
17 1.64e-05 0.97 37 7.01e+03 -6.05
18 8.81e-06 0.89 38 5.69e+02 3.62
19 5.57e-06 0.66 39 3.83e+02 0.57
20 5.02e-06 0.15 40 7.60e+02 -0.99
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Table 3.12: The H1 error and rates of convergence in ε for the C0 interior penalty
method (3.5.1) applied to (Pε) with uniformly continuous A. Here h = 1/64 and
k = 3.

− log2 ε ‖u− uh‖H1(Ω) rate − log2 ε ‖u− uh‖H1(Ω) rate
1 2.19e+00 - 21 6.47e-05 -0.37
2 1.77e+00 0.30 22 1.09e-04 -0.76
3 1.29e+00 0.46 23 1.93e-04 -0.83
4 8.30e-01 0.63 24 3.16e-04 -0.71
5 4.86e-01 0.77 25 3.71e-04 -0.23
6 2.66e-01 0.87 26 4.29e-04 -0.21
7 1.40e-01 0.93 27 5.08e-03 -3.57
8 7.22e-02 0.96 28 2.77e-02 -2.45
9 3.68e-02 0.97 29 3.76e-01 -3.77
10 1.87e-02 0.98 30 5.78e-01 -0.62
11 9.51e-03 0.98 31 5.01e+00 -3.12
12 4.85e-03 0.97 32 1.28e+01 -1.35
13 2.49e-03 0.96 33 4.68e+01 -1.87
14 1.29e-03 0.94 34 9.50e+01 -1.02
15 6.80e-04 0.93 35 2.09e+02 -1.14
16 3.59e-04 0.92 36 9.14e+03 -5.45
17 1.91e-04 0.92 37 4.51e+05 -5.62
18 1.03e-04 0.89 38 3.29e+04 3.78
19 6.15e-05 0.75 39 7.34e+04 -1.16
20 4.99e-05 0.30 40 1.49e+05 -1.03
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3.6 Numerical Tests for the Hamilton Jacobi Bell-

man Equations

In this section, we introduce a hybrid IP-DG method based on the vanishing moment

approach to solve the Hamilton Jacobi Bellman equation:

inf
α∈Λ

(
−Aα : D2u− fα

)
= 0 in Ω, (3.6.1a)

u = g on ∂Ω. (3.6.1b)

where Λ is a parameter set and {Aα} and {fα} are families of functions indexed by

α ∈ Λ.

To construct our numerical scheme, we define our symmetrically induced bilinear

form ah(·, ·) from (2.4.4):

aαh(wh, vh) :=−
∑
T∈Th

ˆ
T

(A : D2wh)vh dx+
∑
e∈EIh

ˆ
e

[A∇wh · νe]{vh} dS (3.6.2)

−
∑
e∈Eh

ˆ
e

{A∇vh · νe}[wh] dS +
∑
e∈Eh

ˆ
e

γe
he

[wh][vh] dS,

which induces a stiffness matrix Aαh for each α ∈ Λ. We also recall the standard

symmetric IP-DG formulation for the biharmonic equation:

−∆2u = 0 in Ω, (3.6.3a)

u = g on ∂Ω, (3.6.3b)

∆u = 0 on ∂Ω. (3.6.3c)

which has the form

bh(wh, vh) :=−
∑
T∈Th

ˆ
T

∆uh∆vh dx (3.6.4)
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+
∑
e∈Eh

ˆ
e

{∇∆wh · νe}[vh] dS +
∑
e∈Eh

ˆ
e

{∇∆vh · νe}[wh] dS

−
∑
e∈EIh

ˆ
e

{∆wh}[∇vh · νe] dS −
∑
e∈EIh

ˆ
e

{∆vh}[∇wh · νe] dS

+
∑
e∈EIh

ˆ
e

γ1,e

he
[wh][vh] dS +

∑
e∈Eh

ˆ
e

γ0,e

h3
e

[wh][vh] dS.

The bilinear form bh(·, ·) induces a stiffness matrix, which we denote as Bh. Lastly

we define the source terms with added contributions from the symmetrization terms

and the Dirichlet data:

Fα
1 (vh) :=

ˆ
Ω

fαvh dx−
∑
e∈EBh

ˆ
e

Aα∇vh · νeg dS +
∑
e∈EBh

ˆ
e

γe
he
gvh dS

F2(vh) :=
∑
e∈EBh

ˆ
e

∇∆vh · νeg dS +
∑
e∈EBh

ˆ
e

γe,0
h3
e

gvh dS

which induce vectors F α
1 and F2. Given ε = ε(h) > 0, we define our hybrid

interior penalty discontinuous Galerkin vanishing moment method (IP-DG-VMM)

to approximate the viscosity solution of (3.6.1) as finding uh ∈ Vh such that

εb(uh, vh) + inf
α∈Λ

(
aαh(uh, vh)− Fα

1 (vh)
)
− εF2(vh) = 0 ∀vh ∈ Vh, (3.6.5)

or, as the nonlinear system

εBhuh + inf
α∈Λ

(
Aαhuh − F α

1

)
− εF2 = 0, (3.6.6)

where uh is the coefficient vector in the basis expansion of uh ∈ Vh. We see that (3.6.5)

is the symmetric IP-DG discretization of the vanishing moment method applied to
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the HJB equations - namely:

ε∆2u+ inf
α∈Λ

(−Aα : D2u− fα) = 0 in Ω, (3.6.7a)

u = g on ∂Ω, (3.6.7b)

∆u = 0 on ∂Ω. (3.6.7c)

We present two numerical examples of this method applied to the Hamilton-

Jacobi-Bellman equations. With these examples we wish to answer two questions.

First, if the methods do indeed globally converge. Second, if they do converge, what

is the dependence on ε. For simpler problems, it is conjectured that setting ε =

0, that is, no moment is added, can provide a convergent method, but for more

complicated problems the moment should be required. The system (3.6.6) was solved

using Matlab’s nonlinear solver fsolve with a zero initial guess unless otherwise

specified. Since fsolve uses a quasi-Newton algorithm, we also list the number of

quasi-Newton iterations needed to terminate the solver. The penalty parameters used

are γe, γ0,e, γ1,e = 10000.

3.6.1 Test 1

The first example from [38] provides a simple example of the Hamilton-Jacobi-Bellman

equation which we list below. Let Ω = (0, π)× (−π/2, π/2).

min{−∆u,−∆u/2} = 0 in Ω, (3.6.8a)

u = g on ∂Ω. (3.6.8b)

Here f is defined by

f(x, y) =

2 cos(x) sin(x) if (x, y) ∈ S,

cos(x) sin(x) otherwise,
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Table 3.13: The error and rates of convergence of the L2 and H1-norms of Test 2
of the hybrid IP-DG-VMM applied Hamilton-Jacobi-Bellman equations (3.6.1) with
ε = 0.

h iterations ‖u− uh‖L2(Ω) rate ‖∇(u− uh)‖L2(Ω) rate
1.57e+00 05 1.71e-01 0.00 5.18e-01 0.00
7.85e-01 04 3.58e-02 2.26 1.40e-01 1.89
3.93e-01 06 8.42e-03 2.09 3.63e-02 1.95
1.96e-01 11 2.07e-03 2.02 9.16e-03 1.99
9.82e-02 21 5.16e-04 2.01 2.29e-03 2.00
4.91e-02 18 1.29e-04 2.00 5.71e-04 2.00
2.45e-02 20 3.22e-05 2.00 1.43e-04 2.00

where S = (0, π/2] × (−π/2, 0] ∪ (π/2, π] × (0, π/2) and g is chosen such that the

solution is u(x, y) = cos(x) sin(y). We approximate the solution uh using (3.6.5) for

k = 2 and ε = 0. As we can see if Table 3.13, even without the moment term,

the method is convergent with an order of convergence of two for both the L2- and

H1-norm.

3.6.2 Test 2

For the second test we let Ω = (0, 1)2 and Aα be chosen from the finite control set

Aα ∈


 1 −2

0 1

 ,
 2 −2

0 1

 ,
 1 2

0 1

 ,
 1 2

0 2

 ,
 2 −2

0 2

 ,
 2 2

0 2

 ,
 2 2

0 1

 ,
 1 2

0 2

 .

Choose fα such that the exact solution is u(x, y) = sin(2π(1.2x − y)). First we let

ε = 0 and k = 2, and then compute uh to see if the method is convergent. Table 3.14

shows the error and convergence rates in the L2- and H1-norm. The table indicates

that the method is not converging. In addition, the fsolve algorithm was taking

many more iterations to find a solution, in the order of thousands rather than the

10-20 used for Test 1. However, this could be a result of the initial guess being too
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Table 3.14: The error and rates of convergence of the L2 and H1-norm of Test 2
of the hybrid IP-DG-VMM applied Hamilton-Jacobi-Bellman equations (3.6.1) with
ε = 0 and k = 2 starting at an initial guess of u0 ≡ 0.

h iterations ‖u− uh‖L2(Ω) rate ‖∇(u− uh)‖L2(Ω) rate
2.50e-01 16 2.59e-01 0.00 2.66e+00 0.00
1.25e-01 132 2.08e-01 0.32 1.76e+00 0.59
6.25e-02 339 5.10e-01 -1.29 2.80e+00 -0.67
3.12e-02 637 8.54e-02 2.58 1.08e+00 1.37
1.56e-02 846 1.42e-01 -0.73 1.44e+00 -0.40
7.81e-03 1433 3.28e-01 -1.21 2.30e+00 -0.68

Table 3.15: The error and rates of convergence of the L2 and H1-norm of Test 2
of the hybrid IP-DG-VMM applied Hamilton-Jacobi-Bellman equations (3.6.1) with
ε = 0 and k = 2 starting at an initial guess of the L2 of u onto the space Vh.

h iterations ‖u− uh‖L2(Ω) rate ‖∇(u− uh)‖L2(Ω) rate
2.50e-01 05 2.95e-01 0.00 2.79e+00 0.00
1.25e-01 73 1.92e-02 3.95 7.54e-01 1.89
6.25e-02 27 2.27e-02 -0.24 2.82e-01 1.42
3.12e-02 19 7.02e-03 1.69 8.47e-02 1.74
1.56e-02 04 1.71e-03 2.04 2.24e-02 1.92

far away from the true solution. Thus we repeat the test with ε = 0 and k = 2, but

setting the initial guess u0 = Phu - the L2 projection into the space Vh. Again, Table

3.15 shows the error and convergence rates in the L2- and H1-norm. We see that

the method does converge with a close enough guess. Thus setting ε = 0 may give a

locally convergent method, but does not produce a globally convergent one.

Next we set k = 2 and ε = hδ where δ = 2, 3, 4, and compute uh to see if the

method is convergent. Tables 3.16, 3.17, 3.18 show the the error and convergence

rates in the L2- and H1-norm for δ = 2, 3, 4 respectively. As we can see, the method

is convergent for all three values of δ. In addition, the number of iterations needed is

under 40. We also see that ε must be sufficiently small in order to achieve convergence,

similar to the VMM for non-divergence form PDEs. To see how the error is changing

as we decrease h, we include Figure 3.1 which plots the error |u− uh| for various h.
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Table 3.16: The error and rates of convergence of the L2 and H1-norm of Test 2
of the hybrid IP-DG-VMM applied Hamilton-Jacobi-Bellman equations (3.6.1) with
ε = h2 and k = 2 starting at an initial guess of the u0 ≡ 0.

h iterations ‖u− uh‖L2(Ω) rate ‖∇(u− uh)‖L2(Ω) rate
2.50e-01 05 1.16e+00 0.00 9.25e+00 0.00
1.25e-01 05 1.21e+00 -0.07 9.00e+00 0.04
6.25e-02 06 1.43e+00 -0.24 8.65e+00 0.06
3.12e-02 07 1.29e+00 0.15 6.58e+00 0.40
1.56e-02 08 3.39e-01 1.93 1.73e+00 1.93
7.81e-03 09 4.63e-02 2.87 2.53e-01 2.77
3.91e-03 12 7.24e-03 2.68 4.73e-02 2.42

Table 3.17: The error and rates of convergence of the L2 and H1-norm of Test 2
of the hybrid IP-DG-VMM applied Hamilton-Jacobi-Bellman equations (3.6.1) with
ε = h3 and k = 2 starting at an initial guess of the u0 ≡ 0.

h iterations ‖u− uh‖L2(Ω) rate ‖∇(u− uh)‖L2(Ω) rate
2.50e-01 05 1.21e+00 0.00 9.34e+00 0.00
1.25e-01 05 1.29e+00 -0.10 8.72e+00 0.10
6.25e-02 06 1.32e+00 -0.03 6.77e+00 0.36
3.12e-02 08 2.13e-01 2.63 1.10e+00 2.62
1.56e-02 10 1.08e-02 4.30 6.68e-02 4.04
7.81e-03 13 4.24e-04 4.67 5.73e-03 3.54
3.91e-03 19 6.63e-05 2.68 1.16e-03 2.31

Table 3.18: The error and rates of convergence of the L2 and H1-norm of Test 2
of the hybrid IP-DG-VMM applied Hamilton-Jacobi-Bellman equations (3.6.1) with
ε = h4 and k = 2 starting at an initial guess of the u0 ≡ 0.

h iterations ‖u− uh‖L2(Ω) rate ‖∇(u− uh)‖L2(Ω) rate
2.50e-01 06 1.27e+00 0.00 9.39e+00 0.00
1.25e-01 06 1.48e+00 -0.22 8.34e+00 0.17
6.25e-02 07 4.22e-01 1.81 2.17e+00 1.94
3.12e-02 10 8.75e-03 5.59 8.26e-02 4.71
1.56e-02 15 1.74e-03 2.33 2.15e-02 1.94
7.81e-03 36 5.45e-04 1.67 7.08e-03 1.60
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Figure 3.1: The plot of |u − uh| for Test 2 of of the hybrid IP-DG-VMM applied
Hamilton-Jacobi-Bellman equations (3.6.1) with ε = h2 and k = 2 starting at an
initial guess of the u0 ≡ 0.
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Chapter 4

An Enhanced Finite Element

Method for a Class of Variational

Problems Exhibiting the

Lavrentiev Gap Phenomenon

4.1 Introduction

In this chapter, we focus on finite element methods for calculus of variations problems

exhibiting the Lavrentiev Gap Phenomenon (LGP). To define the LGP, recall J

from (1.1.4), and let A = {v ∈ W 1,1(Ω) : v = g on ∂Ω} for an open, bounded domain

Ω ⊂ Rd and given g. Let A = A∩W 1,∞(Ω), that is, all admissible Lipschitz functions.

We say that J exhibits the Lavrentiev Gap Phenomenon if the strict inequality

inf
v∈A1

J (v) < inf
v∈A∞

J (v) (4.1.1)

holds.
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A simple 1-D example of the LGP was introduced by Maniá in 1934 (see [42]).

Let d = 1, Ω = (0, 1), A = {v ∈ W 1,1(Ω) : v(0) = 0, v(1) = 1}. The Maniá example

seeks the minimizer u of

J (v) :=

ˆ 1

0

(v′)6(v3 − x)2 dx (4.1.2)

over A. Since then, many other variational problems have been shown to exhibit the

LGP (see [32, 57, 12]).

We emphasize that the Laverntiev gap phenomenon does not hinder the existence

of minimizers, and that indeed there are examples of energies that are both coercive

and convex that exhibit the LGP (see [32, 57, 12]). In the proof of existence in the

direct method of the calculus of varations, given in Subsection 1.4.2, the minimizing

sequence obtained from the infimum is not required to be Lipschitz continuous, but

only to be a subset of A. Thus problems with the Lavrentiev gap phenomenon can

be quite well-posed.

However, we seek to approximate the unique minimizer u of (1.1.5) by minimizing

a discrete functional Jh over the set of finite element functions Sh as seen in (1.4.4).

In doing so is where the Lavrentiev gap phenomenon causes problems. It is easy to

see since Sh ⊂ A∞ ⊂ A for all h > 0, an obvious attempt to formulate a numerical

method for the variational problem (1.1.5) is the following standard finite element

method which seeks uh ∈ Sh such that

uh = arg min
vh∈Sh

J (vh). (4.1.3)

Unfortunately, this finite element method fails to give a convergent method because

the method cannot give the true minimum value if (4.1.1) holds and will not converge

to the correct minimizer as the numerical test shows in Figure 4.1.
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Figure 4.1: The standard finite element method applied to Maniá’s problem (4.1.2).

The solid line is the true solution u(x) = x
1
3 and the dashed lines are the finite

element minimizers uh for h = 1
N

where N = 10, 20, 40, 80, 160. All minimizations
were implemented by using the MATLAB minimization routine fminunc with initial
function u0(x) = x.

To see the deeper reason, we note that for any v ∈ A the existence of a recovery

sequence, defined in Definition 1.1, of functions v̂h ∈ Sh with v̂h → v in A such that

lim
h→0
Jh(v̂h) = J (v) (4.1.4)

is a key step to show convergence of the discrete minimizers. It is clear that (4.1.1)

implies that

J (ûh) ≥ inf
v∈A∞

J (v) > J (u)

for any ûh ∈ Sh with ûh → u in A, which contradicts with (4.1.4) for the minimizer

u. In fact, it was proved by C. Ortner in [48] that for a class of convex energies the

convergence (to the exact solution) of the standard finite element method is equivalent

to (4.1.1) not holding (i.e., the gap phenomenon does not occur). Thus our primary

goal is to construct an effective and robust finite element method to approximate u.

As expected, there have been a few successful attempts to design convergent

numerical methods for variational problems with the gap phenomenon. Below we
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only focus on discussing the methods which use conforming finite element methods to

approximate variational problems with the Maniá-type gap phenomenon, by which

we mean that the minimizers of the variational problems blow up in the W 1,∞-norm,

but it is important to note that some gap phenomenon problems have been solved

with the use of nonconforming finite element methods [12, 13, 48].

The first numerical method was proposed by Ball and Knowles in [5]. To handle

the difficulty caused by the rapid blow-up in W 1,∞-norm of the minimizer u, they

proposed to approximate u and its derivative u′ simultaneously, an idea which is

often seen in mixed finite element methods. Specifically, the authors proposed to

minimize the discrete energy functional

J BK
h (vh, wh) =

ˆ
Ω

f(wh, vh, x) dx (4.1.5)

under the constraint

‖Φ(v′h − wh)‖L1(Ω) ≤ εh

for some super-linear function Φ over all functions (vh, wh) ∈ S1
h×V 0

h , where {εh} is a

sequence such that εh → 0 as h→ 0. Notice that J BK
h essentially has the same form

as the original functional J after setting wh = v′h. While this method works and is

well-posed on the discrete level, the decoupling of vh and v′h adds an additional layer

of unknowns which increases the complexity of the discrete minimization problem.

The other major numerical developments were carried out by Z. Li et al. in

[41, 39, 4]. Their work has brought two similar methods: an element removal method

and a truncation method. Here we only detail the truncation method and briefly

mention the element removal method because the latter is similar to the former and

the truncation method is more closely related to our method to be introduced in this

paper. Let s ≥ 1 and Mh > 0. Define the discrete energy functional

J Li
h (vh) =

∑
T∈Th

J Li
h (vh;T ), (4.1.6)
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where

J Li
h (vh;T ) = min

{
Jh(vh;T ), Mh

(
1 + ‖∇vh‖Ls(T )

)}
,

Jh(vh;T ) =

ˆ
T

f(∇vh, vh, x) dx.

Here the truncation substitutes the contribution of Jh(vh, T ) by another constant if

vh behaves “poorly” on T . The element removal method simply discards (i.e., sets

J Li
h (vh, T ) = 0 on) those “bad” elements. Both methods are robust and calculate the

minimum value of J over A∞ (assuming the minimizer u uniquely exists). However,

the determination of Mh and s (or “bad” elements) requires a litany of a priori

assumptions, some of which depend on the sought-after exact minimizer u.

The goal of this chapter is to introduce an effective and robust numerical method

which remedis the standard finite element method by a novel and simple cut-off

procedure. Our approach is motivated by the rationale that the standard finite

element method fails to work because the magnitude of the gradient ∇uh becomes

too large (independent of the magnitude of uh, where uh stands for the standard finite

element solution) near the singularity points. So the idea of our cut-off procedure

is simply to limit the growth of |∇uh| to O(h−α) order in the whole domain Ω, the

resulting discrete energy functional is then given by

J α
h (wh) =

ˆ
Ω

f
(
χαh(∇wh), wh, x

)
dx, (4.1.7)

where χαh(·) denotes the cut-off function (see Section 4.2 for its definition). It is

important to note that, unlike the truncation method of [4], the choice of the crucial

parameter α does not depend on any a priori knowledge about the exact minimizer

u, instead, it only depends on the structure of the energy density function f and the

space A. Moreover, we shall provide a sufficient condition, which is easy to use, for

determining an upper bound for α to ensure the convergence.
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The organization of this chapter is as follows. In Section 4.2 we state the

variational problems we aim to solve and the assumptions under which we develop

our numerical method. We then define our finite element method with a help of the

above cut-off procedure. In Section 4.3 we show a Γ-convergence result for J α
h when

minimizing the Maniá example under Lipschitz functions. In addition, we also present

the alluded sufficient condition for determining an upper bound for α and demonstrate

its utility using Maniá’s problem. In Section 4.4 we provide some extensive numerical

experiment results for two specific application problems to gauge the performance

of the proposed enhanced finite element method. In addition, we test the proposed

method on the well known minimal surface problem to show the effectiveness of the

enhanced finite element method for non-gap phenomenon problems. A portion of this

chapter is based on a joint research project which was reported in [29].

4.2 Formulation of the Enhanced Finite Element

Method

From the analysis given in the previous section, we conclude that, in order to construct

a convergent numerical method which uses Sh as an approximation space, we must

design a discrete energy functional Jh which should not coincide with J on the finite

element space Sh. In this section we shall construct a discrete energy functional Jh
which meets this criterion and provides a convergent (nonstandard) finite element

method for problem (1.1.5).

Before introducing our method, let us give a heuristic discussion about why the gap

phenomenon is appearing and how the existing methods assuage its effect. Consider

Maniá’s problem (4.1.2). For any vh ∈ Sh (or in A∞) sufficiently approximating

u(x) = x
1
3 , the quantity (v3

h − x)2 will be small but always nonzero. However, at the

same time |v′h| will be very large near the origin. If |v′h| is raised to a high enough

power - six in this case - then the error of (v3
h − x)2 will be magnified to be so large
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that the quantity ˆ h

0

(v′h)
6(v3

h − x)2 dx

will not vanish as h→ 0. For this reason, all of the existing methods were designed to

dampen the effect of the derivative in the integral. The method of Ball and Knowles

[5] weakly enforces v′h = wh which allows the method to soften the effect of v′h, where

v′h has a singularity and achieves convergence. The methods of Li et al. [4] leave the

function f unchanged, but remove or replace the functional value on the elements

where something has gone wrong.

With this in mind we now introduce a discrete energy functional which is much

simpler and has a majority of the characteristics of the methods in [41, 39, 4]. Our

approach is motivated by the belief that the standard finite element method fails to

work because the magnitude of the gradient ∇uh becomes too large (independent of

the magnitude of uh, where uh denotes the solution to (4.1.3)) near the singularity

points. So our idea is simply to use a cut-off procedure to limit the growth of |∇uh|

to O(h−α) on the whole domain Ω in our discrete energy functional Jh. To this end,

let α > 0, define the cut-off function χαh : Rd → Rd in the ith component by

[χαh(s)]i =

si if |si| ≤ h−α

sgn(si)h
−α if |si| > h−α

, i = 1, 2, . . . n. (4.2.1)

It is clear that this function merely cuts the value of si to a constant sgn(si)h
−α

if |si| is too large. Then our cutoff functional is simply defined as

J α
h (vh) =

ˆ
Ω

f
(
χαh(∇vh), vh, x

)
dx, (4.2.2)

and our enhanced finite element method is defined by seeking uh ∈ Sh such that

uh ∈ arg min
vh∈Sh

J α
h (vh). (4.2.3)
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Since our discrete energy functional J α
h curbs the gap phenomenon by capping the

derivative of its input on a scale of O(h−α), spiritually it is similar to the truncation

method of Li et al. [4], but, unlike the truncation method, it keeps the dynamics of f

with respect to v and x much like Ball and Knowles’ approach in [5]. Implementing

the cut-off procedure is very simple and can be done by adding a few lines of code.

Moreover, unlike the truncation method, our enhanced finite element method does not

require a priori knowledge about the exact minimizer u of (1.1.5). Further adding

to the simplicity is the existence of only one parameter α in the method. Here α

controls the rate at which the cut-off grows and is the key for the convergence of

the method. In general, α needs to be chosen in order to obtain equation (4.1.4) for

all v ∈ A where Ihv ∈ Sh is the finite element interpolant of v. Indeed, (4.1.4) is

the only restriction we impose upon α. A permissible range for α, which guarantees

convergence, can be determined from the density function f . In Section 4.3, we give

a process on how to choose such an α.

4.3 Analysis of the Cutoff Functional J α
h

In this section we show several results about the cutoff functional J α
h , beginning with

a general lower semi-continuity theorem, and ending with the Γ-convergence of J α
h

when minimizing over Lipschitz functions to J for the Maniá example 4.1.2 as h→ 0.

In addition, we show the process on how to choose α for the Maniá example.

We first state a few definitions and cite a general lower semi-continuity theorem

from [40].

Definition 4.1. A function f : Rd×R×Ω→ R∪{+∞} is called L⊗B-measurable, if

it is measurable with respect to the σ-algebra generated by the product of Borel subsets

of Rd × R and measurable subsets of Ω.

Definition 4.2. A function f : Rd ×R×Ω→ R ∪ {+∞} is a Carathédory function

if
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(a) x→ f(ξ, v, x) is measurable for every (ξ, v) ∈ Rd × R, and

(b) (ξ, v)→ f(ξ, v, x) is continuous for every x ∈ Ω.

Definition 4.3. A sequence of functions fM : Rd × R × Ω → R ∪ {+∞} is said to

converge to f : Rd × R× Ω→ R+∞ locally uniformly in Rd × R× Ω if there exists a

sequence of measurable sets Ωl ⊆ Ω with |Ω \ Ωl| → 0 as l→∞ such that, for each l

and any compact subset G ⊂ R× R, we have

fM(ξ, v, x)→ f(ξ, v, x)

uniformly on G× Ωl as M →∞.

Lemma 4.1. Let p, q ∈ [1,∞]. Let f : R× R× Ω→ R satisfy

(i) f(·, ·, ·) is a Carathédory function,

(ii) f(·, x, u) is convex for all (u, x) ∈ R× Ω, and

(iii) f(ξ, u, x) ≤ a(x), for all (ξ, u) ∈ R× R where a ∈ L1(Ω).

Let fM : R× R× Ω→ R be a sequence of functions satisfying

(a) fM(·, ·, ·) are L⊗B measurable,

(b) fM → f locally uniformly in R× R× Ω, and

(c) f(ξ, u, x) ≤ b(x), for all (ξ, u) ∈ R× R where b ∈ L1(Ω).

Let {uM}, u ∈ Lp(Ω) and {ξM}, ξ ∈ Lq(Ω), be such that uM → u strongly in Lp(Ω)

and ξM ⇀ ξ weakly in Lq(Ω), then

ˆ
Ω

f(ξ, u, x) dx ≤ lim inf
M→∞

ˆ
Ω

fM(ξM , uM , x) dx.

We now state our lower semi-continiuty result for J α
h . Note that the assumptions

placed on f are weaker than the assumptions used in Bai and Li’s truncation method

[4].
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Theorem 4.1. Let α > 0 and let f : Rd×R×Ω→ R satisfy the following properties.

(i) f(ξ, v, x) is a Carathédory function.

(ii) f(ξ, v, x) is convex in ξ,

(iii) f(ξ, v, x) ≥ a(x) for all (ξ, v) ∈ Rd × R with a ∈ L1(Ω).

Then for any sequence vh ∈ A with vh ⇀ v weakly in W 1,1(Ω), we have

J (v) ≤ lim inf
h→0

J α
h (vh). (4.3.1)

Proof. Since the embedding W 1,1(Ω) ↪→ L1(Ω) is compact, we have that vh → v

strongly in L1(Ω).

Define fh(ξ, u, x) := f(χαh(ξ), u, x). Since f is continuous in ξ and u, and χαh is

continuous, we know f and fh are Carathédory functions for every h > 0. Thus fh

is L ⊗ B measurable. Also f, fh ≥ a on Ω for every (ξ, v) ∈ Rd × R. Finally we

want to show fh converges locally uniformly to f in Rd × R× Ω. Choose Ωl = Ω for

all l > 0 and let G ⊂ Rd × R be compact. Since G is a compact subset of Rn+1 it

must be bounded by the Heine-Borel Theorem. Thus there exists N > 0 such that

|ξ| ≤ |ξ| + |u| ≤ N for all (ξ, u) ∈ G. Since α > 0, there exists some h0 > 0 such

that h−α > N for all h < h0. Thus χαh(ξ) = ξ for all h < h0, (ξ, u) ∈ G. Because

of our definition of fh we have fh ≡ f on G× Ω for all h < h0, and consequently fh

converges locally uniformly to f on Rd × R× Ω as h→ 0. Hence by Lemma 4.1, we

have exactly (4.3.1). The proof is complete.

Next we show an upper semi-continuous result for the Maniá example 4.1.2

showing the cutoff functional allows us to approximate J (v) with J α
h (vh) for any

α > 0 and vh Lipschitz continuous.

Lemma 4.1. Let d = 1, Ω = (0, 1), A := {v ∈ W 1,1(Ω) : v(0) = 0, v(1) = 1}, and

f(ξ, v, x) = ξ6(v3 − x)2. For any α > 0 and v ∈ A, there exists a sequence {vh}h≥0
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with vh ∈ A∞ and vh → v in W 1,1(Ω) such that

J (v) ≥ lim sup
h→0

J α
h (vh). (4.3.2)

Proof. First note if J (v) =∞, then (4.3.2) holds trivially. Thus we assume J (v) <

∞. For M > 0 define

qM(x) =

v
′(x) if |v′(x)| < M,

M if |v′(x)| ≥M.

Clearly qM ∈ L∞(Ω) for all M . Define

QM =

ˆ 1

0

qM(y) dy.

Since qM → v′ in L1(Ω), then

QM →
ˆ 1

0

v′ dx = 1

as M →∞. Finally define

wM(x) =
1

QM

ˆ x

0

qM(y) dy.

By construction wM ∈ A ∩W 1,∞(Ω). We will show wM → v in W 1,1(Ω) as M →∞.

Since d = 1, we have by Hölder’s inequality and Sobolev embedding that

‖wM − v‖Lp(Ω) ≤ ‖wM − v‖L∞(Ω) ≤ C‖w′M − v′‖L1(Ω)

for all 1 ≤ p ≤ ∞ and for some pure constant C > 0. Thus it is sufficient to show

w′m → v′ in L1(Ω). By definition of wM and qM we have

ˆ 1

0

|w′M − v′| dx =

ˆ 1

0

∣∣∣∣ 1

QM

qM − v′
∣∣∣∣ dx
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=

ˆ
{|v′|≥M}

∣∣∣∣ 1

QM

qM − v′
∣∣∣∣ dx+

ˆ
{|v′|<M}

∣∣∣∣ 1

QM

qM − v′
∣∣∣∣ dx

=

ˆ
{|v′|≥M}

∣∣∣∣ 1

QM

M − v′
∣∣∣∣ dx+

ˆ
{|v′|<M}

∣∣∣∣ 1

QM

v′ − v′
∣∣∣∣ dx

≤
ˆ
{|v′|≥M}

1

QM

M + |v′| dx+

∣∣∣∣1−QM

QM

∣∣∣∣ ˆ
{|v′|<M}

|v′| dx

≤
ˆ
{|v′|≥M}

1

QM

|v′|+ |v′| dx+

∣∣∣∣1−QM

QM

∣∣∣∣ ‖v′‖L1(Ω)

≤
(

1

|QM |
+ 1

) ˆ
{|v′|≥M}

|v′| dx+

∣∣∣∣1−QM

QM

∣∣∣∣ ‖v′‖L1(Ω)

≤
(

1

|QM |
+ 1

) ˆ 1

0

1{|v′|≥M}|v′| dx+

∣∣∣∣1−QM

QM

∣∣∣∣ ‖v′‖L1(Ω),

where 1E is the indicator function of the set E. Since 1{|v′|≥M}|v′| → 0 pointwise,

‖1{|v′|≥M}|v′|‖L1(Ω) ≤ ‖v′‖L1(Ω) <∞

for all M > 0, and QM → 1 as M →∞, we have ‖w′M − v′‖L1(Ω) → 0 as M →∞ by

the Dominated Convergence Theorem. Thus wm → v in W 1,1(Ω).

Furthermore since wM → v in L2(Ω) we can choose Mh > 0 such that if qh := qMh
,

Qh := QMh
, vh := wMh

, then ‖v − vh‖2
L2(Ω) = O(h6α+1). Let δ > 0. By Young’s

inequality with weight hδ, we get for 0 < δ < 1,

Jh(vh) =

ˆ 1

0

(χαh((vh)′))6((vh)3 − x)2

=

ˆ 1

0

(χαh((vh)′))6((vh)3 − v3 + v3 − x)2 dx

≤
ˆ 1

0

(1 + h−δ)(χαh((vh)′))6((vh)3 − v3)2 dx

+

ˆ 1

0

(1 + hδ)(χαh((vh)′))6(v3 − x)2 dx

≤
ˆ 1

0

(1 + h−δ)h−6α((vh)3 − v3)2 dx

+ (1 + hδ)

ˆ 1

0

((vh)′)6(v3 − x)2 dx
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=: Bh
1 +Bh

2 .

We now show Bh
1 vanishes. By Hölders inequality we have

Bh
1 = (1 + h−δ)h−6α

ˆ 1

0

((vh)3 − v3)2 dx

= (1 + h−δ)h−6α

ˆ 1

0

(vh − v)2((vh)2 + vhv + v2)2 dx

≤ (1 + h−δ)h−6α||vh − v||2L2(Ω)||((vh)2 + vhv + v2)2||L∞(Ω).

Since ‖v − vh‖2
L2(Ω) = O(h6α+1), and vh is uniformly bounded in h, then Bh

1 clearly

vanishes. For Bh
2 , we use the definition of vh and qh to get

Bh
2/(1 + hδ) =

ˆ 1

0

((vh)′)6(v3 − x)2 dx

=

ˆ 1

0

(qh)
6

Q6
h

(v3 − x)2 dx

=

ˆ
{|v′|≥Mh}

(qh)
6

Q6
h

(v3 − x)2 dx+

ˆ
{|v′|<Mh}

(qh)
6

Q6
h

(v3 − x)2 dx

≤ 1

Q6
h

(ˆ
{|v′|≥Mh}

(Mh)
6(v3 − x)2 dx+

ˆ
{|v′|<Mh}

(v′)6(v3 − x)2 dx

)
≤ 1

Q6
h

(ˆ
{|v′|≥Mh}

(v′)6(v3 − x)2 dx+

ˆ
{|v′|<Mh}

(v′)6(v3 − x)2 dx

)
≤ 1

Q6
h

J (v).

Since (1 + hδ)/Qh → 1 as h→ 0, we have (4.3.2). The proof is complete.

With these two results in hand, we are ready to state our main result about our

cutoff functional J α
h for the Maniá example.
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Theorem 4.2. Let d = 1, Ω = (0, 1), A := {v ∈ W 1,1(Ω) : v(0) = 0, v(1) = 1}, and

f(ξ, v, x) = ξ6(v3 − x)2. For h > 0 let J α
h,A∞(v) = J α

h (v) + ΛA∞(v) where

ΛA∞(v) =

0 if v ∈ A∞,

∞ if v /∈ A∞.

Then J α
h,A∞(v)

Γ−→ J in the weak W 1,1 topology.

Proof. Let v ∈ A. Since ΛA∞ ≥ 0 we have by properties of lim inf and Theorem 4.1,

lim inf
h→0

J α
h,A∞(v) ≥ lim inf

h→0
J α
h (v) + lim inf

h→0
ΛA∞(v) (4.3.3)

≥ lim inf
h→0

J α
h (v) (4.3.4)

≥ J (v) (4.3.5)

for every sequence {vh}h≥0 ⊂ A with vh → v weakly in W 1,1(Ω). Thus (4.3.3)

satisfies (1) of Definition 1.1. Moreover, Lemma 4.1 gives us (2) of Definition 1.1

since ΛA∞ ≡ 0 on A∞, and f is continuous and non-negative on R × R × Ω. Thus

J α
h,A∞(v)

Γ−→ J in the weak W 1,1 topology. The proof is complete.

It must be stressed that the Γ-convergence in Theorem 4.2 is only valid when

minimizing over all Lipschitz functions, not over finite element functions. While we

have not proven Lemma 4.1 with a sequence of finite element functions rather than

Lipschtiz functions, we can with an unproven assumption. We will include the proof

with this assumption in place to show how the parameter α may be tuned to achieve

(4.1.4) without a-priori knowledge of the minimizer u.

Lemma 4.1. Let d = 1, Ω = (0, 1), A := {v ∈ W 1,1(Ω) : v(0) = 0, v(1) = 1}, and

f(ξ, v, x) = ξ6(v3 − x)2. Let α < 1/6. For any v ∈ A, let vh = Ihv be the nodal

interpolant of v. We assume the following convergence holds:

ˆ 1

0

(v′h)
6(v3 − x)2 dx→ J (v) (4.3.6)
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as h→ 0. Then we have

J (v) ≥ lim sup
h→0

J α
h (vh).

Proof. Let δ > 0. Adding and subtracting v, using Young’s inequality with weight

hδ, and using the definition of χαh we get

J α
h (vh) =

ˆ 1

0

(χαh(v′h))
6(v3

h − x)2 dx

=

ˆ 1

0

(χαh(v′h))
6(v3

h − v3 + v3 − x)2 dx

≤
ˆ 1

0

(1 + h−δ)(χαh(v′h))
6(v3

h − v3)2 dx+

ˆ 1

0

(1 + hδ)(χαh(v′h))
6(v3 − x)2 dx

≤
ˆ 1

0

(1 + h−δ)h−6α(v3
h − v3)2 dx+

ˆ 1

0

(1 + hδ)(v′h)
6(v3 − x)2 dx

=: Ah1 + Ah2 .

By (4.3.6), we have Ah2 → J (v) as h → 0. We claim that Ah1 vanishes as h → 0 for

0 < α < 1
6
. The proof of the assertion goes as follows. By Hölder’s inequality we have

Ah1 = (1 + h−δ)h−6α

ˆ 1

0

(v3
h − v3)2 dx

= (1 + h−δ)h−6α

ˆ 1

0

(vh − v)2(v2
h + vhv + v2)2 dx

≤ (1 + h−δ)h−6α‖vh − v‖2
L2(Ω)‖(v2

h + vhv + v2)2‖L∞(Ω).

Since vh = Ihv we have that vh is uniformly bounded in h and ‖vh − v‖2
L2(Ω) = O(h).

Thus

0 ≤ Ah1 ≤ ‖(v2
h + vhv + v2)2‖L∞(Ω)(1 + h−δ)h1−6α.

Since α < 1
6

we may choose δ < 1 − 6α such that Ah1 → 0 as h → 0 and we have

(4.1.4). The proof is complete.
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Remark 4.1.

1. Note that v3 − x factor in Ah2 would now have zero error since v is the actual

input into J and not a Lipschtiz approximation. Thus multiplying by (v′h)
6

does not have a magnification effect which is the source of the gap phenomenon.

With this in mind, we believe that (4.3.6) is true.

2. Clearly, the range of α does not depend on the solution u but only on the form

of f and the regularity of the space A. We regard this property as one crucial

advantage of our method.

4.4 Numerical Experiments

In this section we first present some numerical experiment results for two variational

problems which are known to exhibit the gap phenomenon. The first problem is

Maniá’s 1-D problem which has been seen in the previous sections; the second

problem, which was proposed by Foss in [31], is a 2-D variational problem from

nonlinear elasticity. For each of the two test problems we solve it by using our

enhanced finite element method with linear element (i.e., k = 1), and we solve the

minimization problem (4.2.3) by using the MATLAB minimization function fminunc.

We first demonstrate the convergence of the numerical method, we then numerically

evaluate the effect and sharpness of the parameter α, and compare with the standard

finite element method (which is known to be divergent). We also numerically compute

the rate of convergence for u−uh although no theoretical rate convergence has yet been

proved for the numerical method. To show that the proposed method also works for

non-gap phenomenon problems, we present a numerical test for the minimal surface

problem [21].
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Figure 4.2: The graphs of the computed minimizers/solution uh of the enhanced
FEM applied to Maniá’s problem (4.1.2) with parameter α = 1

4
from x = 0 to

x = 0.4. The solid line is the exact solution u(x) = x
1
3 and the dashed and circled

lines are the minimizers uh for h = 1
N

where N = 10, 20, 40, 80, 160. All minimizations
were implemented by using the MATLAB minimization function fminunc with initial
function u0(x) = x.

4.4.1 Maniá’s 1-D Problem

Once again, the energy functional of Maniá’s 1-D problem is given by (4.1.2). A

uniform mesh Th with mesh size h and the linear finite element are used in the test.

As mentioned above, we solve the resulting minimization problem (4.2.3) by using

the MATLAB minimization function fminunc with initial function u0(x) = x.

Figure 4.2 displays the computed solutions (minimizers) uh with various mesh size

h along with the exact solution u(x) = x
1
3 . The parameter α = 1

4
is used for the tests.

It is clear that the solutions uh are correctly approximating u. Figure 4.3 shows the

behavior of the absolute value of the error function u− uh. As expected, we see that

the location where the biggest error occurs moves closer to the singularity point x = 0

of u as the mesh size h gets smaller.

For a more detailed look, we also record the L∞-norms of the error u − uh and

compute the rate of convergence in Table 4.1. The table clearly shows the convergence

of the computed solutions uh. As a comparison and to see that these approximations

would not be found using the standard finite element method, a comparison of the
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Figure 4.3: The graphs of the errors |uh − u| of the enhanced FEM applied to
Maniá’s problem (4.1.2) with parameter α = 1

4
from x = 0 to x = 0.2 for h = 1

N

where N = 10, 20, 40, 80, 160. All minimizations were implemented by using the
MATLAB minimization function fminunc with initial function u0(x) = x.

values of J and J α
h at uh, I

1
hu, and I2

h(u) is given in Table 4.2, where I1
h and I2

h are the

piecewise linear and quadratic interpolants respectively. We see here that J α
h correctly

captures the dynamics needed to obtain a convergent sequence of solutions uh while

the sequences {J (uh)} and {J (Ihu)} do not. In addition {J α
h (I1

hu)} and {J α
h (I2

hu)}

converge with the same rate, O(h1.5). Thus employing higher order elements on this

problem will not result in a larger convergence rate. To make this clear we plot

the convergence rate of the numerical minimizers uh of J α
h for linear and quadratic

elements in Figure 4.4. Note both elements observe the same convergence rate of 1.5.

h 1/10 1/20 1/40 1/80 1/160
‖u− uh‖L∞ 5.53e-2 4.50e-2 3.88e-2 3.59e-2 8.32e-3

rate - 0.30 0.20 0.11 2.10

Table 4.1: The L∞ errors between u and uh where uh are the solutions of the
enhanced FEM applied to Maniá’s problem (4.1.2) with parameter α = 1

4
.

Finally, we examine the role of the parameter α. In section 4.2 we show that

α < 1
2

is sufficient to ensure (4.1.1) for all v ∈ A with finite energy. Our numerical

tests show that for any α < 1/2 the enhanced finite element method converges for
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Figure 4.4: The rate of convergence of J α
h (uh) where uh is the solution to enhanced

FEM applied to Maniá’s problem (4.1.2) with parameter α = 1
4

for h = 1
N

where
N = 10, 20, 40, 80, 160. Plotted are the rates for the linear and quadratic finite element
spaces. All minimizations were implemented by using the MATLAB minimization
function fminunc with initial function u0(x) = x1/2.

Maniá’s problem, and the convergence of |J α
h (uh)−J (u)| → 0 diminishes as α→ 1

2
.

So α∗ := 1
2

seems a critical point for the choice of α for linear, quadratic, and higher

order nodal finite elements. It must be noted that taking α close to α∗ is not a good

idea. Notice that the Euler-Lagrange equation of (4.1.2) is a nonlinear equation. To

solve the nonlinear equation, a mesh restriction h < h′ is expected, and it takes up

most of the total CPU time for solving the nonlinear equation. This mesh restriction

is expected to depend on α. To see this, let

ũh = arg min
vh∈Sh

J (uh)

be the solution to the standard finite element method. Suppose that α is close to

1
2
, we observe that J α

h (ũh) ≈ J (ũh). While J α
h (Ihu) indeed converges to J (u) the

convergence is very slow. Since the upper bound h′ must be chosen such that for all

h < h′ we have

J α
h (Ihu) < J α

h (ũh),
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Table 4.2: The functional values J and J α
h for uh, I

1
hu, and I2

hu, where uh are the
solutions of the enhanced FEM applied to Maniá’s problem (4.1.2) with parameter
α = 1

4
, and I1

hu and I2
hu are the piecewise linear and quadratic nodal interpolant of

the exact solution/minimizer u.

h 1/10 1/20 1/40 1/80 1/160
J (uh) 8.23e-1 1.64 3.28 6.56 13.1
J α
h (uh) 1.68e-3 6.02e-4 2.22e-5 8.59e-6 3.31e-5
J (I1

hu) 7.19e-1 1.52 3.04 6.09 12.9
J α
h (I1

hu) 2.41e-3 8.63e-4 3.09e-4 1.10e-4 3.91e-5
J (I2

hu) 1.16 2.31 4.62 9.24 18.5
J α
h (I2

hu) 1.71e-4 6.03e-5 3.09e-4 7.54e-6 2.67e-6

so h′ must be extremely small and approaches 0 as α→ 1
2
. On noting the fact that for

all h ≥ h′ a small perturbation of ũh will be a minimizer of J α
h over Sh, we see that

α must be chosen carefully in order to guarantee that we can obtain good numerical

solutions with any mesh sizes h < h′. To show this important detail graphically,

Figure 4.5 displays the computed solutions/minimizers uh to J α
h with α = 2

7
. We

observe that for h = 1
10

and h = 1
20

, uh do not approximate u well, but for h = 1
40

,

h = 1
180

and h = 1
160

, uh gives much more accurate approximations.

4.4.2 Foss’ 2-D Problem

We now consider a 2-D variational problem which exhibits the Lavrentiev gap

phenomenon. It arises from nonlinear elasticity and was first studied by M. Foss

in [31], and its numerical approximation was investigated by Li et al. in [4].

Let Ω = (0, 1)× (3
2
, 5

2
), the energy functional of Foss’ problem is given by

J (v) = 66
(13

14

)14
ˆ

Ω

( y

y − 1

)14

|u|
14−3y
y−1
(
|u|

y
y−1 − x

)2
(ux)

14 dx dy, (4.4.1)
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Figure 4.5: The graphs of the computed solutions/minimizers uh of the enhanced
FEM applied to the Maniá’s problem (4.1.2) with parameter α = 2

7
for h = 1

N
where

N = 10, 20, 40, 80, 160. The dotted lines are for N = 10 and 20 while the solid
lines are for N = 40, 80, and 160. All minimizations were implemented by using the
MATLAB minimization function fminunc with initial function u0(x) = x.

and the admissible set is A = {u ∈ W 1,1(Ω) : u(0, ·) = 0 and u(1, ·) = 1}. It was

shown by Foss [31] that

0 = inf
v∈A
J (v) < inf

v∈A∞
J (v) = 1,

which proves that J does exhibit the gap phenomenon. Moreover, the minimizer of

J over A is given by u(x, y) = x
y−1
y , but the problem does not attain its minimum

value in A∞.

We apply our enhanced finite element method with α = 1
6

to solve Foss’

problem. In order to generate a reasonably good initial guess for using the MATLAB

minimization function fminunc, we first compute

ũh = arg min
vh∈Sh

J (vh) (4.4.2)
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using the MATLAB routine fminunc with initial guess u(x, y) = x and then use ũh

as an initial condition for solving

uh = arg min
vh∈Sh

J α
h (vh) (4.4.3)

using the same MATLAB routine fminunc.

Figure 4.6 presents the error plots of both |ûh − u| and |uh − u| over the domain

Ω. We observe that |ũh − u| does not converge to zero while |uh − u| does. In

addition, Table 4.3 shows that the cut-off procedure is sufficient in order to guarantee

convergence for (4.4.1). Using the same reasoning as to show (4.1.4) for Maniá’s

problem, a value of α < 3
14

is sufficient for the proposed enhanced finite element

method to work. However, computing the functional values J α
h (Ihu) with different

values of α shows that α = 1
2

and α = 10
17

also result in convergent methods.

Table 4.3: The functional values J and J α
h at ũh and uh, where ũh and uh satisfy

(4.4.2) and (4.4.3) respectively for problem (4.4.1). Here α = 1
6
.

h 1/6 1/12 1/24
J (ũh) 14.84 5.71 3.21
J α
h (ũh) 11.46 4.74 2.68
J (uh) 3330 3914 4047
J α
h (uh) 1.28e-1 5.45e-3 5.28e-4

4.4.3 Minimal Surface Problem

Our last example will be a 2-D minimal surface problem. Let Ω = (0, 1)2 and define

the energy function J by

J (v) =

ˆ
Ω

(
1 + |∇v|2

)1/2
dx (4.4.4)

and A := {v ∈ W 1,1(Ω) : v(x, 0) = v(x, 1) = x2, v(0, ·) = 0, v(1, ·) = 1}. This

functional arises from differential geometry, and the minimizer u of (4.4.4) should
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|ũh − u| where h = 1/12

0.2

01.5y

2

0.1

0

0.05

0.2

0.15

2.5

1

0.8

0.6

0.4

x

|uh − u| where h = 1/12

0.2

01.5y

2

0.012

0.01

0.008

0.006

0.004

0.002

0

2.5

1

0.8

0.6

0.4

x
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Figure 4.6: The graphs of the error function |u − ũh| (left column) and the error
function |u− uh| (right column) with α = 1

6
for h = 1

6
, 1

12
, and 1

24
. All minimizations

were done by using the MATLAB minimization function fminunc with an intial guess
u0(x, y) = x.
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Figure 4.7: The graphs of the minimizer to the enhanced finite element method
uh with h = 1/40. Here α = 1

12
(left column) and α = 1 (right column). All

minimizations were done by using the MATLAB minimization function fminunc with
an initial guess u0(x, y) = x.

have zero mean curvature in Ω. Note that J does not exhibit the Lavrentiev gap

phenomenon, but we can still test our enhanced finite element method to see the

results. It can be shown that α ≥ 1 is sufficient to guarantee equi-coercivity of J α
h

which is vital for the convergence of the method. Figure 4.7 shows the results of the

enhanced finite element method for α = 1/12 and α = 1. As we can see, if we make

α too small, then our enhanced finite element method will give us a minimizer that is

constant on all interior nodes of Th. This is because the cutoff does not penalize large

contributions of the gradient near the boundary, and, consequently, ‖∇uh‖L1(Ω) →∞

as h→ 0. For larger α, equi-coercivity is maintained and the enhanced minimizer uh

agrees with the standard finite element minimizer ũh (not pictured).
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Chapter 5

A Discontinuous Ritz Framework

for a Class of Convex and Coercive

Problems from the Calculus of

Variations

5.1 Introduction

In this chapter, we develop a discontinuous Ritz framework for numerically approxi-

mating solutions to problems from the Calculus of Variations:

u ∈ arg min
v∈W 1,p

g (Ω)

J (v), (5.1.1)

where

J (v) =

ˆ
Ω

f(∇v, v, x) dx (5.1.2)

is the energy and f : Rd × R × Ω → R is the density function, W 1,p
g (Ω) := {v ∈

W 1,p(Ω) : u = g on ∂Ω}, and Ω ⊂ Rd is an open bounded domain. We seek to
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approximate the minimizer u of J over W 1,p
g (Ω). To do this, we follow the direct

approach to construct the approximate solution uh, that is, we construct a discrete

energy Jh and let

uh = arg min
vh∈Xh

Jh(vh), (5.1.3)

where Xh is a discrete space which approximates W 1,p
g (Ω).

First, we let Xh = Vh - the space of discontinuous, piecewise polynomial functions

on a mesh Th of Ω. The construction of Jh is crucial to the convergence of the method.

In particular, since our discrete functions vh are discontinuous across interior edges,

the gradient ∇vh is only piecewisely defined. Thus we must construct our discrete

gradient ∇hvh judicially. A naive approach is to define the piecewise gradient as the

discrete gradient. This gives us the following discrete energy functional:

J pw
h (vh) =

∑
T∈Th

ˆ
T

f(∇vh, vh, x) dx+
∑
e∈EIh

ˆ
e

γeh
1−p
e |[vh]|p dS (5.1.4)

+
∑
e∈EBh

ˆ
e

γeh
1−p
e |vh − g|p dS,

where the last two terms are penalty terms to weakly enforce continuity and the

Dirichlet boundary conditions. However, this approach does not always give an

accurate scheme - even for nice f [10]. To show this, let p = 2, g = 0, and let

f(ξ, v, x) = 1
2
|ξ|2 − F (x)v be the energy density to the Poisson problem:

−∆u = F in Ω, (5.1.5a)

u = 0 on ∂Ω. (5.1.5b)

Requiring the variational derivative of (5.1.4) to be zero for every vh ∈ Vh, that is,

d

dt
J pw
h (uh + tvh)

∣∣∣∣
t=0

= 0 ∀vh ∈ Vh,
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we get the following problem: find uh ∈ Vh such that

apwh (uh, vh) = (F, vh) ∀vh ∈ Vh,

where

apwh (uh, vh) :=
∑
T∈Th

ˆ
T

∇uh · ∇vh dx+
∑
e∈EIh

ˆ
e

γe
he

[uh][vh] dS +
∑
e∈EBh

ˆ
e

γe
he
uhvh dS.

(5.1.6)

The bilinear form apwh is coercive and continuous on Vh for any γe > 0, which

immediately implies the existence and uniqueness of a discrete minimizer uh; however,

it is not consistent, that is, if u is the weak solution to (5.1.5), then there is a vh ∈ Vh
such that

apwh (u, vh) 6= (F, vh).

Instead we have

apwh (u, vh) = (F, vh) +
∑
e∈EIh

ˆ
e

{∇u · νe}[vh] dS

for every vh ∈ Vh. Note the penalty terms are not the cause for the inconsistency,

since the regularity and boundary data of u forces them to vanish. However, it is

the discretization of gradient that causes the inconsistency. The inconsistency in this

example, being O(1), leads to an non-convergent method.

In [10], Buffa and Ortner introduced a variational DGFEM. This method provided

a consistent discretization of the gradient that produces a convergent method for a

class of convex and coercive energies. Their discrete gradient is defined using the

piecewise gradient and a lifting operator R : W 1,p
h (Th)→ [Vh]

d,

ˆ
Ω

R(v) · ϕh = −
∑
e∈EIh

ˆ
e

[v]{ϕh · νe} dS ∀ϕh ∈ [Vh]
d. (5.1.7)
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The motivation of this lifting operator arises from the contributions of the jumps

of a discontinuous function in its distributional derivative. They then defined the

following discrete energy:

J BO
h (vh) =

∑
T∈Th

ˆ
T

f(∇vh +R(vh), vh, x) dx (5.1.8)

+
∑
e∈EIh

ˆ
e

γeh
1−p
e |[vh]|p dS +

∑
e∈EBh

ˆ
e

γeh
1−p
e |vh − g|p dS.

The bilinear form induced from this energy for the the Poisson problem is

aBOh (uh, vh) =
∑
T∈Th

ˆ
T

∇uh · ∇vh dx+

ˆ
Ω

R(uh) ·R(uh) dx

−
∑
e∈EIh

ˆ
e

[uh]{∇vh · νe} dS −
∑
e∈EIh

ˆ
e

[vh]{∇uh · νe} dS

+
∑
e∈EIh

ˆ
e

2γe
he

[uh][vh] dS +
∑
e∈EBh

ˆ
e

2γe
he
uhvh dS,

which is coercive and continuous on Vh for sufficiently large γe > 0. Moreover, aBOh (·, ·)

is consistent since

ˆ
Ω

R(u) ·R(vh) dx =
∑
e∈EIh

ˆ
e

[u]{∇R(vh) · νe} dS = 0

for all vh ∈ Vh, which contributes to the convergence of the method for the Poisson

problem.

It must be stressed that the piecewise gradient discretization has the ability to

produce a consistent scheme if we include additional terms to the discrete energy.

For example, for the Poisson problem, the standard symmetric interior penalty DG

bilinear form is

aSIPDGh (uh, vh) =
∑
T∈Th

ˆ
T

∇huh · ∇hvh dx
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−
∑
e∈EIh

ˆ
e

[uh]{∇vh · νe} dS −
∑
e∈EIh

ˆ
e

[vh]{∇uh · νe} dS

+
∑
e∈EIh

ˆ
e

γe
he

[uh][vh] dS +
∑
e∈EBh

ˆ
e

γe
he
uhvh dS.

It can be shown that aSIPDGh (uh, vh), being symmetric, is induced by the following

discrete energy:

J SIPDG
h (vh) =

∑
T∈Th

1

2

ˆ
T

|∇vh|2 dx−
∑
e∈EIh

ˆ
e

[vh]{∇vh · νe} dS

+
∑
e∈EIh

1

2

ˆ
e

γe
he
|[vh]|2 dS +

∑
e∈EBh

1

2

ˆ
e

γe
he
|vh − g|2 dS.

Moreover, it was proved in [10] that the lifting operator ensures compactness of

the discrete minimizers uh. Since the minimizer of J BO
h is sought in Vh, which is

not a subset of W 1,p(Ω), the reflexive property of W 1,p(Ω) cannot be used to obtain

a weakly convergent subsquence. However, Vh is a subset of BV(Ω), the space of

functions with bounded variation, which does have a compactness property. This

compactness alone only shows that a subsequence uhj converges to a u ∈ BV (Ω),

but Buffa and Ortner were able to prove a stronger result: if the sequence of discrete

minimizers uh is bounded in W 1,p(Th), then a subsequence converges to u ∈ W 1,p(Ω).

Moreover, there holds the weak convergence

∇uhj +R(uhj) ⇀ ∇u in Lp(Ω),

where ∇uhj is the piecewise gradient of uhj . This compactness requires the lifting

operator to be present in the discretization in order to pass the week limit and prove

convergence of the method.

The goal of this chapter is to develop a discontinuous Ritz (DR) framework for

the minimization problem (5.1.1). As we have seen, the discretization of the gradient

operator is critical to ensure the convergence of the method. Our main idea is to use
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discrete derivatives introduced in the discontinuous Galerkin finite elment (DG-FE)

numerical calculus by Feng, Lewis, and Neilan (see [25]). In Section 5.2, we give the

definition of the DG-FE derivatives, the motivation for using it, and then define our

discontinuous Ritz method. Section 5.3 is devoted to the analysis of the DR method.

We show that while both the Variational DGFEM and the DR methods are defined

from different motivations, they are actually equivalent schemes, which leads to the

convergence of the DR method for a specific class of f . In addition, we present a

compactness result using our DG-FE numerical gradient. In Section 5.4, we show a

few numerical tests using the discontinuous Ritz method on the p-Laplace problem.

5.2 The DG-FE Numerical Derivative and the

Discontinuous Ritz Formulation

5.2.1 The DG-FE Numerical Derivatives

To define the DG-FE numerical derivatives, we first introduce some notation. Let

i = 1, . . . , d. We define the following trace operators Q+
i ,Q−i ,Qi as

Q±i (v) = {v} ± 1

2
sgn(νie)[v], (5.2.1)

Qi(v) =
1

2

(
Q+
i (v) +Q−i (v)

)
,

where νie denotes the ith component of νe, the normal vector to e ∈ Eh, and

sgn(ξ) =

1 if ξ ≥ 0,

−1 if ξ < 0.

With these trace operators in hand we can define three numerical partial derivative

operators corresponding the the left, right, and central traces of v.
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Definition 5.1. Let v ∈ W 1,p(Th) and i = 1, . . . , d. Define the numerical partial

derivative operators in the xi coordinate ∂+
h,xi

, ∂−h,xi , ∂h,xi : W 1,p(Th)→ Vh by

ˆ
Ω

∂±h,xi(v)ϕh dx =
∑
e∈Eh

ˆ
e

Q±i (v)νie[ϕh] dS −
∑
T∈Th

ˆ
T

v∂xiϕh dx ∀ϕh ∈ Vh, (5.2.2)

∂h,xi(v) =
1

2

(
∂+
h,xi

(v) + ∂−h,xi(v)
)
. (5.2.3)

We call ∂h,xi(v) the central partial derivative in the xi coordinate. The motivation

for these numerical derivatives is to require the standard integration by parts formula

to hold when tested against any discrete function ϕh ∈ Vh. This allows many of

the properties of the classical derivative to hold for the numerical derivatives; among

them are the product rule, chain rule, and integration by parts. Because of this, a

discrete energy built using the DG-FE derivative should be consistent. In addition,

we can also define the discrete gradients ∇+
h ,∇

−
h ,∇h : W 1,p(Th)→ [Vh]

d by

∇±h v = [∂±h,x1(v), ∂±h,x2(v), . . . , ∂±h,xd(v)], (5.2.4)

∇hv = [∂h,x1(v), ∂h,x2(v), . . . , ∂h,xd(v)]. (5.2.5)

5.2.2 Formulation of the Discontinuous Ritz Method

With the DG-FE gradients in hand, we can define our discontinuous Ritz method.

Definition 5.2. Our discontinuous Ritz method is defined as seeking uh ∈ Vh such

that

uh ∈ arg min
vh∈Vh

Jh(vh), (5.2.6)

where

Jh(v) =

ˆ
Ω

f(∇hv, v, x) dx+
∑
e∈EIh

ˆ
e

γeh
1−p
e |[vh]|p dS (5.2.7)
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+
∑
e∈EBh

ˆ
e

γeh
1−p
e |vh − g|p dS.

To compute the numerical derivative ∂h,xiv, we note that the mass matrix induced

by the left-hand side of (5.2.2) is actually a block diagonal matrix which means the

computation of the derivative can be done locally and in parallel. Moreover, when

determining the DG-FE partial derivative of a discrete function, the linearity of ∂±h,xi

and ∂h,xi allows the DG-FE partial derivatives to be written as a matrix which can

be computed off-line.

5.3 Analysis of the Discontinuous Ritz Method

In this section we show the convergence of the discontinuous Ritz method defined

in Definition 5.2 as well as several properties of the DG-FE derivative which will be

useful in future implementations of the DR framework.

We first show that the DR method is actually equivalent to the Variational

DGFEM developed by Buffa and Ortner in [10]. Specifically, we shall prove Jh ≡ J BO
h

on Vh, thus giving equivalence of these two methods when minimizing over Vh.

Lemma 5.1. Let J BO
h and Jh be defined by (5.1.8) and (5.2.7) respectively, then for

any vh ∈ Vh we have Jh(vh) = J BO
h (vh).

Proof. Let vh ∈ Vh, if we can show that ∇hvh = ∇vh + R(vh), where ∇vh is the

piecewise gradient, then the equivalence of the two methods follows. Luckily, this

property was already proved in Proposition 4.2 of [25], but below we include the

whole proof for completeness.

By definition of ∇hvh and the DG integration by parts formula (2.1.4), we have

ˆ
Ω

∇hvh · ϕh =
∑
e∈Eh

ˆ
e

{vh}[ϕh · νe] dS −
∑
T∈Th

ˆ
T

vh divϕh dx (5.3.1)

= −
∑
e∈EIh

ˆ
e

[vh]{ϕh · νe} dS +
∑
T∈Th

ˆ
T

∇v · ϕh dx
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=
∑
T∈Th

ˆ
T

(∇vh +R(vh)) · ϕh dx

=

ˆ
Ω

(∇vh +R(vh)) · ϕh dx. ∀ϕh ∈ [Vh]
d,

Since ∇hvh,∇vh, R(vh) ∈ [Vh]
d and

ˆ
Ω

(
∇hvh − (∇vh +R(vh))

)
· ϕh dx = 0 ∀ϕh ∈ [Vh]

d,

Setting ϕh = ∇hvh − (∇vh + R(vh)) we obtain ∇hvh = ∇vh + R(vh) in Ω. Thus

Jh(vh) = J BO
h (vh). The proof is complete.

With the equivalence we can borrow and take advantage of the convergence result

from Theorem 6.1 of [10] for a specific class of density functions f . To do this, we

first need to introduce some notation. Consider the broken Sobolev space W 1,p(Th)

equipped with the following semi-norm and norm:

|v|W 1,p
h (Ω) := ‖∇v‖Lp(Ω) +

(∑
e∈EIh

h1−p
e ‖[v]‖pLp(e)

) 1
p
, (5.3.2)

‖v‖W 1,p
h (Ω) := |v|W 1,p

h (Ω) +
(∑
e∈EBh

h1−p
e ‖[v]‖pLp(e)

) 1
p
. (5.3.3)

Note that the newly defined norm ‖ · ‖W 1,p
h (Ω) and the norm defined in (1.6.2) are

equivalent on Vh. Now we are ready to state the convergence result.

Theorem 5.1. For 1 < p <∞, let p∗ be the Sobolev conjugate of p, that is,

p∗ =


dp
d−p if p < d,

∞ if p ≥ d.

(5.3.4)

Let f : Rd × R × Ω → R be a Carathédory function (see Definition 4.2) and let

ξ → f(ξ, v, x) be convex for every (v, x) ∈ R × Ω. In addition, suppose there exists

constants c0, c1 > 0, functions a0, a1 ∈ L1(Ω), and numbers r and q satisfying r < p
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and r ≤ q < p∗, such that the following growth estimate holds:

c0(|ξ|p − |v|r + a0(x)) ≤ f(ξ, v, x) ≤ c1(|ξ|p + |v|q + a1(x)).

For h > 0, let uh ∈ Vh satisfy (5.2.6). Then there exists a sequence hj ↘ 0 and a

function u ∈ W 1,p
g (Ω) such that the following hold:

uhj → u in Lq(Ω) ∀q < p∗,

∇hjuhj ⇀ ∇u in [Lp(Ω)]d,

Jhj(uhj)→ J (u),∑
e∈EBh

ˆ
e

h1−p
e |uhj − g|p dS +

∑
e∈EIh

ˆ
e

h1−p
e |[uhj ]|p dS → 0

as j →∞. Moreover, any accumulation point of the set {uh}h>0 is a minimizer of J

from (5.1.2) over W 1,p
g (Ω). If ξ → f(ξ, v, x) is strictly convex for all (v, x) ∈ R× Ω,

then we have

‖u− uhj‖W 1,p
h (Ω) → 0

as j →∞. If the minimizer u is unique, then the whole set {uh}h>0 converges.

The following results will be quite useful in later use of the DF-FE derivative and

the discontinuous Ritz method. First, we give conditions to guarantee equivalence of

the semi-norms ‖∇h · ‖ and | · |W 1,p
h (Ω) on Vh. To this end, we first quote a discrete

inf-sup condition from Buffa and Ortner [10].

Lemma 5.1 (Lemma A.2 from [10]). Let 1 ≤ p <∞ and q be its Hölder conjugate.

Then there exists a constant C > 0 independent of h such that

inf
vh∈Vh

sup
ϕh∈Vh

´
Ω
vhϕh

‖vh‖Lp(Ω)‖ϕh‖Lq(Ω)

≥ C. (5.3.6)

We first show the boundedness of ‖∇h · ‖Lp(Ω) from | · |W 1,p
h (Ω) on W 1,p(Th).
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Lemma 5.2. Let 1 < p < ∞. Then there exists a constant C > 0 independent of h

such that

‖∇hv‖Lp(Ω) . |v|W 1,p
h (Ω) ∀v ∈ W 1,p(Th), (5.3.7)

Proof. Choose q to be the Hölder conjugate of p and let v ∈ W 1,p(Th) and ϕh ∈ [Vh]
d.

From (5.3.1) and the standard trace and inverse inequalities we have

ˆ
Ω

∇hv · ϕh dx = −
∑
e∈EIh

ˆ
e

[v]{ϕh · νe} dS +
∑
T∈Th

ˆ
T

∇v · ϕh dx

≤
∑
e∈EIh

ˆ
e

h
1−p
p

e |[v]| · h
1
q
e |{ϕh · νe}| dS +

∑
T∈Th

‖∇v‖Lp(T )‖ϕh‖Lq(T )

≤
∑
e∈EIh

ˆ
e

(
h1−p
e |[v]|p

) 1
p (he|{ϕh · νe}|q)

1
q dS + ‖∇v‖Lp(Ω)‖ϕh‖Lq(Ω)

≤
(∑
e∈EIh

h1−p
e ‖[v]‖pLp(e)

) 1
p
(∑
e∈EIh

he‖{ϕh · νe}‖qLq(e)

) 1
q

+ ‖∇v‖Lp(Ω)‖ϕh‖Lq(Ω)

.

(∑
e∈EIh

h1−p
e ‖[v]‖pLp(e)

) 1
p

‖ϕh‖Lq(Ω) + ‖∇v‖Lp(Ω)‖ϕh‖Lq(Ω)

. |v|W 1,p
h (Ω)‖ϕh‖Lq(Ω).

Since ∇hv ∈ Vh, it follows from Lemma 5.1 that

‖∇hv‖Lp(Ω) . sup
ϕh∈Vh

´
Ω
∇hv · ϕh
‖ϕh‖Lq(Ω)

. |v|W 1,p
h (Ω).

which is exactly (5.3.7).

We next show the boundedness of | · |W 1,p
h (Ω) from ‖∇h · ‖Lp(Ω) on Vh with the help

of interior penalty terms. This is because {vh} = 0 on e ∈ EIh in (5.3.1) does not

imply that vh
∣∣
T+ = 0 or vh

∣∣
T−

= 0 on e.
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Lemma 5.3. Let 1 < p <∞. Then there exists a constant C, γ∗ > 0 independent of

h such that for all γe > γ∗ the following holds for every vh ∈ Vh:

|vh|W 1,p
h (Ω) ≤ C‖∇hvh‖Lp(Ω) + C

(∑
e∈EIh

γeh
1−p
e ‖[vh]‖

p
Lp(e)

)1/p

. (5.3.8)

Proof. Choose q to be the Hölder conjugate of p and vh ∈ Vh. From (5.3.1) we have

ˆ
Ω

∇hvh · ϕh dx = −
∑
e∈EIh

ˆ
e

[vh]{ϕh · νe} dS +

ˆ
Ω

∇vh · ϕh dx (5.3.9)

for every ϕh ∈ [Vh]
d. Let Ph(∇vh|∇vh|p−2) where Ph is the local L2 projection onto

Th defined by

ˆ
T

Ph(∇vh|∇vh|p−2) · ϕh dx =

ˆ
T

∇vh|∇vh|p−2 · ϕh dx

for all ϕh ∈ Vh and T ∈ Th. Choosing ϕh = Ph(∇vh|∇vh|p−2) in (5.3.9) gives us

ˆ
Ω

∇hvh · Ph(∇vh|∇vh|p−2) dx = −
∑
e∈EIh

ˆ
e

[vh]{Ph(∇vh|∇vh|p−2) · νe} dS (5.3.10)

+

ˆ
Ω

∇vh · Ph(∇vh|∇vh|p−2) dx.

By the stability of Ph we obtain

ˆ
Ω

∇hvh · Ph(∇vh|∇vh|p−2) dx ≤ ‖∇hvh‖Lp(Ω)‖Ph(∇vh|∇vh|p−2)‖Lq(Ω) (5.3.11)

≤ ‖∇hvh‖Lp(Ω)‖∇vh|∇vh|p−2‖Lq(Ω)

≤ ‖∇hvh‖Lp(Ω)‖∇vh‖p−1
Lp(Ω).
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By the standard trace and inverse inequalities for DG functions, there exists C1 > 0

independent of h such that

∑
e∈EIh

ˆ
e

[vh]{Ph(∇vh|∇vh|p−2) · νe} dS (5.3.12)

≤
(∑
e∈EIh

h1−p
e ‖[vh]‖

p
Lp(e)

) 1
p
(∑
e∈EIh

he‖{Ph(∇vh|∇vh|p−2) · νe}‖qLq(e) dS

) 1
q

≤ C1

(∑
e∈EIh

h1−p
e ‖[vh]‖

p
Lp(e)

) 1
p

‖Ph(∇vh|∇vh|p−2)‖Lq(Ω)

≤ C1

(∑
e∈EIh

h1−p
e ‖[vh]‖

p
Lp(e)

) 1
p

‖∇vh‖p−1
Lp(Ω).

By the properties of Ph we have

ˆ
Ω

∇vh · Ph(∇vh|∇vh|p−2) dx =

ˆ
Ω

∇vh · ∇vh|∇vh|p−2 dx = ‖∇vh‖pLp(Ω). (5.3.13)

Thus by (5.3.10)-(5.3.13) and dividing by ‖∇vh‖p−1
Lp(Ω) we have

‖∇hvh‖Lp(Ω) ≥ −C1

(∑
e∈EIh

h1−p
e ‖[vh]‖

p
Lp(e)

) 1
p

+ ‖∇vh‖Lp(Ω).

Choosing γ∗ = Cp
1 + 1 and C = 1/2 gives us the result. The proof is complete.

We can also prove a compactness result using the DG-FE numerical derivatives.

For this, we cite a discrete compactness result from Buffa and Ortner [10].

Lemma 5.4 (Theorem 5.2 and Lemma 8 from [10]). For 1 < p <∞ and 0 < h < 1,

let vh ∈ W 1,p(Th) such that

sup
0<h<1

(
‖vh‖L1(Ω) + |vh|W 1,p

h (Ω)

)
<∞. (5.3.14)
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Then there exists a sequence hj ↘ 0 and a function v ∈ W 1,p(Ω) such that

vhj → v in Lq(Ω) ∀ 1 ≤ q < p∗, (5.3.15a)

vhj → v in Lq(∂Ω) ∀ 1 < q < q∗, (5.3.15b)

∇vhj +R(vhj) ⇀ ∇v in [Lp(Ω)]d, (5.3.15c)

where p∗ is the Sobolev conjugate of p defined in (5.3.4) and q∗ is defined by

q∗ =


(d−1)p
d−p if p < d,

∞ if p ≥ d.

(5.3.16)

We are now ready to state our compactness result, which differs from Lemma 5.4

by controlling DG functions using the DG-FE numerical gradient as well as showing

their DG-FE numerical gradients weakly converge.

Theorem 5.2. Let 1 < p < ∞. There exists γ∗ > 0 such that for any γe > γ∗

suppose there is a family {vh}h∈(0,1) with vh ∈ Vh and

sup
0<h<1

‖vh‖L1(∂Ω) + ‖∇hvh‖Lp(Ω) +

(∑
e∈EIh

γeh
1−p
e ‖[vh]‖

p
Lp(e)

)1/p
 <∞. (5.3.17)

Then there exists a sequence hj ↘ 0 and a function v ∈ W 1,p(Ω) such that

vhj → v in Lq(Ω) ∀ 1 ≤ q < p∗, (5.3.18a)

vhj → v in Lq(∂Ω) ∀ 1 < q < q∗, (5.3.18b)

∇hjvhj ⇀ ∇v in [Lp(Ω)]d, (5.3.18c)

where p∗ is the Sobolev conjugate of p defined in (5.3.4) and q∗ is defined in (5.3.16).
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Proof. From Lemma 5.3, we have

|vh|W 1,p
h (Ω) . ‖∇hvh‖Lp(Ω) +

(∑
e∈EIh

γeh
1−p
e ‖[vh]‖

p
Lp(e)

)1/p

.

for sufficiently large γ∗ which shows vh is uniformly bounded in W 1,p(Th). By the

Poincarè-Fredrichs inequality, Theorem 10.6.12 of [8], we have

‖vh‖L1(Ω) . ‖vh‖Lp(Ω) . ‖vh‖Lp(∂Ω) + |vh|W 1,p
h (Ω).

Therefore the family {vh}h∈(0,1) satisfies the hypothesis of Lemma 5.4, which gives

us everything in the theorem except for (5.3.18c). However, by Lemma 5.1, we have

that ∇hvh = ∇vh +R(vh) and consequently (5.3.18c). The proof is complete.

5.4 Numerical Experiments

In the section we give some numerical tests to show the effectiveness of the proposed

discontinuous Ritz method. Our prototypical example is the following p−Laplace

energy:

J p(v) =

ˆ
Ω

1

p
|∇v|p − Fv dx, (5.4.1)

minimized over the space W 1,p
g (Ω). The Euler Lagrange equation 1.1.9 of J p yields

the following p−Laplace problem:

− div(|∇u|p−2∇u) = F in Ω, (5.4.2a)

u = g on ∂Ω. (5.4.2b)
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Table 5.1: The Lp and W 1,p
h errors and rates of convergence in h for the

Discontinuous Ritz method 5.2 applied to J p(·) from (5.4.1) where p = 2.5.

1/h ‖u− uh‖Lp(Ω) rate ‖∇u−∇huh‖Lp(Ω) rate
10 5.12e-03 0.00 1.10e-01 0.00
20 3.06e-03 0.74 5.51e-02 0.99
40 1.67e-03 0.88 2.76e-02 1.00
80 8.74e-04 0.93 1.38e-02 1.00
160 4.49e-04 0.96 6.92e-03 1.00
320 2.28e-04 0.98 3.46e-03 1.00

Note that p = 2 gives the standard Poisson problem; however, here p can be any

number such that 1 < p <∞. We will test two cases: one for p > 2 and another for

p < 2.

5.4.1 Test 1: p > 2

Let p = 2.5, d = 1, Ω = (0, 1) and g = x. Choose F (x) = −
√

3x2 so that the exact

solution is u(x) = x3. Table 5.1 shows the errors and rates in Lp and W 1,p-norm for

u− uh where uh is the discrete minimizer uh ∈ Vh of (5.2.6) with polynomial degree

k = 1. The numerical results clearly indicate that the method is converging to the

correct solution and we have optimal order convergence in the W 1,p semi-norm, but

we have sub-optimal convergence rate in the Lp norm.

5.4.2 Test 2: p < 2

Let p = 1.5, d = 1, Ω = (0, 1) and g = 0. Choose F (x) such that the exact solution

is u(x) = sin(πx). Note w := |∇u|p−2∇u =
√
π cos(πx)√
| cos(πx)|

is not classically differentiable

since cos(πx) is both positive and negative on (0, 1), but w ∈ W 1,q(Ω) for all 1 < q < 2

with ∇w having a discontinuity at x = 0.5. Table 5.2 shows the Lp and W 1,p errors

and rates of convergence for the method. We see that the rates of convergence are

suboptimal for both the Lp and W 1,p errors. This is most likely due to the degeneracy
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Table 5.2: The Lp and W 1,p
h errors and rates of convergence in h for the

Discontinuous Ritz method 5.2 applied to J p(·) from (5.4.1) where p = 1.5.

1/h ‖u− uh‖Lp(Ω) rate ‖∇u−∇huh‖Lp(Ω) rate
10 8.50e-02 0.00 3.19e-01 0.00
20 5.77e-02 0.56 2.06e-01 0.63
40 4.03e-02 0.52 1.38e-01 0.57
80 2.85e-02 0.50 9.56e-02 0.53
160 2.02e-02 0.50 6.69e-02 0.51
320 1.43e-02 0.50 4.72e-02 0.51

of the PDE since largest error occurs at x = 0.5 where w is 0. This claim is supported

by Figure 5.1.

155



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Test 2: p = 1.5

exact

h=1/20

h=1/40

h=1/80

h=1/160

Figure 5.1: The plots of u and uh where u is the exact minimizer for J p(·)
from (5.4.1) with p = 1.5 and uh is the discrete minimizer from (5.2.6). Here
h = 1/20, 1/40, 1/80, 1/160.
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Chapter 6

A MATLAB Toolbox for the

Discontinuous Galerkin Finite

Element Numerical Calculus

6.1 Introduction

The goal of this chapter is to showcase a MATLAB toolbox created to implement

the discontinuous Galerkin finite element (DG-FE) numerical calculus introduced by

Feng, Lewis, and Neilan (see [25]). The DG-FE derivatives were already defined

in Defintion 5.1, but we include the definition here for completeness. Let i =

1, . . . , d. we define three numerical partial derivative operators in the xi coordinate

∂+
h,xi

, ∂−h,xi , ∂h,xi : W 1,p(Th)→ Vh, by

ˆ
Ω

∂±h,xi(v)ϕh dx =
∑
e∈Eh

ˆ
e

Q±i (v)νie[ϕh] dS −
∑
T∈Th

ˆ
T

v∂xiϕh dx ∀ϕh ∈ Vh, (6.1.1)

∂h,xi(v) =
1

2

(
∂+
h,xi

(v) + ∂−h,xi(v)
)
, (6.1.2)
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where Q± and Q are from (5.2.1). Because Vh is a discontinuous piecewise polynomial

space, we can also write ∂+
h,xi

, ∂−h,xi , ∂h,xi locally on every element T ∈ Th as

ˆ
T

∂±h,xi(v)
∣∣
T
ϕh dx =

ˆ
∂T

Q±i (v)νieϕh dS −
ˆ
T

v∂xiϕh dx ∀ϕh ∈ Pr(T ), (6.1.3)

∂h,xi(v)
∣∣
T

=
1

2

(
∂+
h,xi

(v)
∣∣
T

+ ∂−h,xi(v)
∣∣
T

)
. (6.1.4)

The gradients ∇±h and ∇h are defined similarly from (5.2.4) and (5.2.5). From the

definition, we see that the DG-FE derivatives enforce that the integration by parts

formula holds for every ϕh ∈ Vh. This DG-FE derivatives allow the authors to build a

numerical calculus giving analogs of the classical calculus results such as the product

rule, chain rule, and integration by parts.

This chapter presents a MATLAB toolbox that implements the DG-FE derivative

on the variety of 1-D and 2-D domains. The code is written to accept a variety

of algebraic or coordinate defined functions and has selectable options such as

higher order quadrature approximation or degree of polynomial interpolation. The

motivation for such a toolbox is two-fold. First, such a toolbox will make methods

that use the DG-FE calculus, such as the Discontinuous Ritz method in Chapter

5 and the Dual Wind DG method [25, 37], easier to implement. Second, this

toolbox can be used as an educational tool to provide students with a different

notion of discrete derivatives. Currently, the main discrete derivative used in any

undergraduate numerical analysis course is the finite difference numerical eriative.

The DG-FE toolbox allows students to compute numerical derivatives for a variety

of functions including those whose function values are only given at grid points.

The remainder of this chapter is organized as follows. In Section 6.2 we list a

few properties of the DG-FE derivative, including the chain rule, product rule, and

integration by parts formulas and give two examples of convergent numerical methods

for the Poisson problem using the DG-FE derivative. In Section 6.3, we provide the

documentation of the Matlab toolbox, including step by step examples on how to use

the software.
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6.2 Properties and Applications of the DG-FE

Derivative

6.2.1 Properties of the DG-FE Derivative

In order to show that the DG-FE derivative indeed is a calculus - that is, it has its own

versions of basic calculus rules such as the chain rule, product rule, and integration by

parts - we cite such results as well as some characterizations of the DG-FE derivative

from [25].

First, we note that the DG-FE derivative of any finite element function is

equivalent to its weak derivative.

Theorem 6.1 (Corollary 4.1 of [25]). Let vh ∈ Sh. Then ∂+
h,xi

vh, ∂
−
h,xi

vh, ∂h,xivh =

∂xivh for every i = 1, . . . , d.

Next, we have a version of the product rule and the chain rule where the DG-FE

derivative is the L2 projection of the product rule and chain rule onto the space Vh.

Theorem 6.2 (Theorem 4.2 of [25]). Let 1 ≤ p < ∞ and Ph : Lp(Ω) → Vh be the

local L2 projection onto Vh, that is, for every T ∈ Th we have

ˆ
T

Ph(v)ϕh dx =

ˆ
T

vϕh dx ∀ϕh ∈ Vh.

Let F ∈ C1(R) with F ′ ∈ L∞(R). For u, v ∈ W 1,p(Th) ∩ C0(Ω), there holds, for

i = 1, . . . , d,

∂h,xi(uv) = Ph(u∂xiv + v∂xiu),

∂h,xiF (u) = Ph(F ′(u)∂xiu).

We also have an integration by parts formula when integrating against discrete

functions.
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Theorem 6.3 (Theorem 4.4 of [25]). Let vh, ϕh ∈ Vh, then the following integration

by parts formulas hold:

ˆ
Ω

∂±h,xivhϕh dx = −
ˆ

Ω

vh∂
∓
h,xi

ϕh dx+
∑
e∈EBh

ˆ
e

vhϕhν
i
e dS,

ˆ
Ω

∂h,xivhϕh dx = −
ˆ

Ω

vh∂h,xiϕh dx+
∑
e∈EBh

ˆ
e

vhϕhν
i
e dS,

where νie is the ith component of νe.

While in general broken Sobolev functions v ∈ W 1,p(Th) do not have weak

derivatives, the DG-FE derivative represents the L2 projection of their distributional

derivative on to Vh.

Theorem 6.4 (Proposition 4.2 of [25]). Let v ∈ W 1,p(Th). Then ∂h,xiv coincides with

the L2 projection of Dxiv onto Vh where Dxiv is the distributional derivative of v, that

is,

ˆ
Ω

∂h,xivϕh dx = 〈Dxiv, ϕh〉 ∀ϕh ∈ Vh.

6.2.2 Applications of the DG-FE Derivative

In this subsection we describe two convergent methods which were developed in

[25], with the help of the DG-FE derivative. Both methods were formulated for

the following model problem:

−∆u = f in Ω,

u = 0 on ∂Ω.
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To introduce these methods, we first define a jump operator jh : W 1,p(Th) → Vh as

follows:

∑
T∈Th

ˆ
T

jh(v)ϕh dx =
∑
e∈EIh

ˆ
e

γe
he

[v][ϕh] dS +
∑
e∈EBh

ˆ
e

γe
he
vϕh dS ∀ϕh ∈ Vh.

The first method seeks a function uh ∈ Vh such that

ˆ
Ω

∇huh · ∇hϕh dx−
∑
e∈EBh

ˆ
e

∇huh · νeϕh dS +

ˆ
Ω

jh(uh)ϕh dx =

ˆ
Ω

fϕh dx (6.2.1)

for all ϕh ∈ Vh. This method is equivalent to the well-known LDG method for the

model problem [17] and converges provided γe > 0.

The next method, the symmetric dual-wind discontinuous Galerkin (DWDG)

method [37], is constructed from the ground up using the DG-FE gradients. The

DWDG method seeks uh ∈ Vh such that

1

2

ˆ
Ω

(
∇+
h uh · ∇

+
hϕh +∇−h uh · ∇

−
hϕh

)
dx+

ˆ
Ω

jh(uh)ϕh dx =

ˆ
Ω

fϕh dx (6.2.2)

for all ϕh ∈ Vh. Note the sided gradients ∇+
h and ∇−h , instead of the central gradient,

are used in the formulation. If γe > 0, then the method is well-posed and convergent.

Moreover, if Th is quasi-uniform and if each element T ∈ Th has at most one boundary

edge, then the method is well-posed and converges provided γe > −C∗ for some

constant C∗ > 0 independent of h. Thus one could set γe ≡ 0, that is, ignoring the

penalty terms, and still achieve convergence.

6.3 Documentation of the Matlab Toolbox

In this section we give the full documentation of the DG-FE Matlab toolbox. We

first describe the algorithm used to implement the DG-FE numerical derivative on

given meshes in one and two dimensions. We include a function call list with all of the
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available options included. In addition, we provide a few examples of how to compute

the DG-FE numerical derivative. For 2-D polynomial evaluation, the Matlab function

polyval2, written by Salmon Rodgers [50], is used in the toolbox. The toolbox is

freely available and can be downloaded from [54]. Lastly, we refer to the central

DG-FE partial derivative ∂h,xi as the “full” derivative in this documentation.

6.3.1 Algorithm

Since ∂±h,xiv and ϕh from (6.1.3) both lie in a finite dimenion space Pr(K), we can

numerically compute ∂±h,xiv by converting (6.1.3) into a matrix problem. Let {ϕi}NEi=1

be a basis for Pr(K) with dim(Pr(K)) = NE. Then there exists constants {αi}NEi=1

such that ∂±h,xiv =
NE∑
i=1

αiϕi. This basis expression and linearity of the integral turns

(6.1.3) into

αi

ˆ
K

ϕiϕj dx =

ˆ
∂K

Q±i (v) · η(i)
K ϕj dS −

ˆ
K

v · ∂ϕj
∂xi

dx+

ˆ
∂K\∂Ω

γi,e[v] · ϕj dx,

(6.3.1)

for all j = 1, 2, . . . , NE. Letting AK =

[ˆ
K

ϕiϕj dx

]NE
i,j=1

and βj be equal to the right

hand side of (6.3.1), we get the matrix problem

AKαK = βK ,

where αK =
[
αi
]NE
i=1

and βK =
[
βj
]NE
j=1

. For efficiency, we map all interior integration

to the simplex domain K ′ = {x ∈ Rn : xi ≥ 0 for all i = 1, 2, . . . , n, ||x||1 < 1} via

an affine transformation.

For this computational implementation, the mass matrix A is dependent on the

local basis chosen for Vh. In the 1-D case, we have used the Legendre polynomials

since they give an orthogonal mass matrix while we have chosen the monomial basis

{1, x, y, x2, xy, y2, x3, x2y, y2x, y3, . . .} in the 2-D case for its simplicity.
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6.3.2 One Dimension Case

Syntax

The mian components of this package is broken up into two functions.

meshNumericalDerivative is the function called to compute the numerical derivative

data (plus, minus, or full) and postProcessing interpolates this data and can be used

to evaluate the derivative a specified points.

meshNumericalDerivative

The proper syntax for calling this function is:

polydata = meshNumericalDerivative(v, degree, mesh, . . .),

where polydata is the numerical derivative outputted as a matrix with each column

being the coefficient vector aK′ corresponding to the polynomial basis on K ′. The

three required arguments are

• v: The input function. Note that the function must be continuous and have a

weak derivative on each element in order to have a numerical derivative. v can

be several classes including:

A discrete function represented as an array. This input should correspond

to {v(xj)}Jj=0 where {xj}Jj=0 is the mesh. Note that meshNumericalDerivative

will only accept a vector the same size as the mesh inputted and computes a

cubic interpolation of the data before calculating the numerical derivative. If

the user has any more information about the discrete function, midpoints for

example, then the user should create a function that interpolates the data before

input. See interp1 in the MATLAB documentation for more information.

A matrix having the same size as polydata which contains the representa-

tion in polynomial basis on K ′. This is the preferred and fastest method when

computing second, third, and higher ordered derivatives.
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A function handle loaded into the workspace.

A string of the function handle that is not loaded into the workspace, e.g.,

’exp’.

Note: Any non-discrete function inputed must be a function of solely one

argument. If the inputted function has more than one input - func1(x,a), then

the user should create an anonymous function to handle the extra argument -

testfunc = @(x) func1(x,3).

Since the input v can be discontinuous across edges, the user must be careful

about how the outputs of v are displayed. Take for example the function

g(x) =

0 if x ≥ 0,

1 if x < 0.

In order for the numerical derivative to work properly, g(0) must output both

0 and 1. To clarify which value is which, the output will be a 2 × 1 column

vector where the top element is the left-hand limit and the bottom value is the

right-hand limit. For this example, g(0) = [1;0]. Because of this the code

has been adapted to take a variety of inputs. v can either always output 2× 1

column vector that is the same value on the interior of an element and (possibly)

different on the edge, or an overloaded function that returns a single value on

the interior and a 2 × 1 column vector on the edge. The tool does not make

use of inputting vectors into v, so this is okay. Also scalar-valued, piecewise

continuous functions work as expected.

• degree: A nonnegative integer that specifies the degree of polynomial space.

Increase this number to increase the accuracy of the numerical derivative or if

the user wants to take multiple derivatives of the inputed function. The degree

should be non-negative integer not exceeding 5.

164



• mesh: An array that specifies the mesh of the domain - where the elements in

the vector are increasing. In this case, the whole domain is an interval and each

element is a subinterval. Note that the mesh does not have to be uniform - only

increasing.

There are also optional arguments which must come in pairs. The first argument

is the argument identifier and the second is the argument value. For example,

poly derv = meshNumericalDerivative(’exp’, 3,

[-1:.1:1],’accuracy’,’high’).

Here ’accuracy’ is the argument identifier and ’high’ is the argument value.

• ’derivative’: (Default value: ’full’). Specifies whether the output is ∂+
h v,

∂−h v, or ∂hv. The possible argument values are ’plus’, ’minus’, and ’full’

which represent ∂+
h v, ∂−h v, or ∂hv respectively.

• ’accuracy’: (Default value: ’medium’). Specifies the accuracy of the

numerical quadrature used when computing the numerical derivative. This

program takes advantage of a Gaussian quadrature scheme.

’low’: A low order, 2 point, Gaussian quadrature scheme. While this is

the fastest of the three options, only use it with a degree of 0, 1, or 2.

’medium’: A medium order, 3 point, Gaussian quadrature scheme. Use it

with a degree of 2 or 3.

’high’: A high order, 5 point, Gaussian quadrature scheme. Use it with a

degree of 3 or 4.

’vhigh’: A very high order, 7 point, Gaussian quadrature scheme. Use it

with a degree of 5.

postProcessing

The proper syntax for calling this function is:
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pointvalues = postProcessing(polydata,mesh,format,x),

where pointvalues is a matrix of function values of the derivative for input x. The

4 required arguments are

• polydata: The derivative polynomial data outputted from

meshNumericalDerivative.

• mesh: The same mesh as used in polydata.

• format: This should be either a 0 or 1 depending on what the user wants

outputted when one of the values in x is on the boundary of an element.

0 will give only scalar outputs with values on the edge being the average of

the left and right hand value, that is,

1

2

(
lim
x→z−

∂hv(x) + lim
x→z+

∂hv(x)

)
.

Note that values on the interior of an element will only have one value regardless.

When 0 is specified, x can be any size matrix and size(pointvalues) ==

size(x).

1 will give a 3× 1 column vector/matrix output. If the inputed value is on

an edge of an element then the vector will be
lim
x→z−

∂hv(x)

lim
x→z+

∂hv(x)

1

2

(
lim
x→z−

∂hv(x) + lim
x→z+

∂hv(x)

)
 ,

giving the left, right, and average derivatives values. If the inputed value is

on the interior of an element then the vector will be the same value repeated

thrice. Note that if 1 is specified x may only be inputted as a row vector and

not a matrix with more than one row.
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• x: The specified points where the derivative will be evaluated. Look at the

format paragraph above for how x should be entered.

Examples

Below are a few examples of the code in action.

Derivative of sin(x) over [−2π, 2π]

Since the sine function is already a built-in MATLAB function, all we need to

do is create a mesh and run the code. For this example we will use a quadratic

approximation and will plot the derivative after.

>> mesh = [-2*pi:pi/8:2*pi];

>> poly_data = meshNumericalDerivative(’sin’,2,mesh);

>> poly = @(x) postProcessing(poly_data,mesh,0,x);

>> fplot(poly,[-2*pi,2*pi]);title(’Numerical Derivative of sine’);

Here is the graph outputted which does map cosine, the derivative of sine.
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Numerical Derivative of sine
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Derivative of sin(2x) over [−2π, 2π]

For this example we will use a function handle that is loaded into the workspace.

Again we will use quadratic approximation. We will also plot the computed derivative.

>> mesh = [-2*pi:pi/8:pi];

>> test_sine = @(x) sin(2*x);

>> poly_data = meshNumericalDerivative(test_sine,2,mesh);

>> poly = @(x) postProcessing(poly_data,mesh,0,x);

>> fplot(poly,[-2*pi,2*pi]);title(’Numerical Derivative’);

Here is the graph outputted which does map the derivative: 2 cos(2x).
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Derivative of ex using a discrete input

Here we will compute the numerical derivative of ex using only a discrete number

of points. This time we will use cubic approximation. We will also plot the error

between the numerical derivative and the true derivative (ex).

>> mesh = [0:.1:1];
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>> vp = exp(mesh);

>> poly_data = meshNumericalDerivative(vp,3,mesh);

>> error = @(x) abs(postProcessing(poly_data,mesh,0,x)-exp(x));

>> fplot(error,[0,1]);title(’Error of Numerical Derivative’);

Below is the graph of the error:
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Derivative of |x| with jumps

Here we will compute the numerical derivative of |x| on the interval [−1, 1]. We

will use a linear approximation and will adjust the ’accuracy’ to ’low’. Note the

derivative has a discontinuity at x = 0, with the left-hand limit being -1 and the right-

hand limit being 1. We will show how the ’format’ argument in postProcessing

allows the user to choose which value to use at x = 0.

>> mesh = [-1:.1:1];

>> poly_data = meshNumericalDerivative(’abs’,1,mesh,’accuracy’,’low’);

>> poly = @(x) postProcessing(poly_data,mesh,1,x);
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>> poly(0)

ans =

-1.0000

1.0000

-0.0000

>> poly2 = @(x) postProcessing(poly_data,mesh,0,x);

>> fplot(poly2,[-1,1]);title(’Numerical Derivative’);

Also the plot of the numerical derivative.
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Numerical Derivative of Functions with no Weak Derivative

This example demonstrates what information the numerical derivative possesses when

the inputted function does not have a weak derivative. Take for example, the
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Heaviside function

H(x) =

0 if x < 0,

1 if x ≥ 0.

This function has a distributional derivative, namely the Dirac-Delta function δ, but

the Dirac-Delta function is not L1
loc([−1, 1]) so H(x) does not have a weak derivative.

We will calculate a high order numerical derivative of the Heaviside function.

>> mesh = [-1:.1:1];

>> poly_data = meshNumericalDerivative(’heaviside’,4,mesh,...

’accuracy’,’high’);

>> poly = @(x) postProcessing(poly_data,mesh,0,x);

>> fplot(poly,[-1,1])
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Since the Dirac-Delta function is not L1
loc([−1, 1]), no information is gained by

looking at the plot. However, if we look at our numerical derivative, call it ψ, in

the sense of distributions, our output does approximate the Dirac-Delta function for
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appropriate functions ϕ ∈ C1(Ω) with compact support. Indeed

ˆ 1

−1

ψ(x)ϕ(x) dx = 〈ψ, ϕ〉 ≈ 〈δ, ϕ〉 = ϕ(0)

as shown in a few examples below. For our candidate ϕ we will use a cubic order

polynomial c1Cpt(x,x_0,x_1,y), which is supported inside [x0, x1] and satisfies

ϕ((x0+x1)/2) = y. Note that each integral should be the candidate function evaluated

at 0.

>> format long

>> test1 = @(x) c1Cpt(x,-.5,.5,2) .* poly(x);

>> integral(test1,-1,1)

ans =

1.999999254385638

>> c1Cpt(0,-.5,.5,2)

ans =

2

>> test2 = @(x) c1Cpt(x,-.43,.75,-30) .* poly(x);

>> integral(test2,-1,1)

ans =

-57.304586160017060
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>> c1Cpt(0,-.43,.75,-30)

ans =

-57.304610703052091

6.3.3 Two Dimension Case

Prerequisites

The mesh in the 1-dimensional case is trivial to create since it is a vector of points and

geometrically the edge of each element is the boundary points. The 2-D case requires

some additional prep work before we can dive into the numerical derivative. This

tollbox is designed to work with MATLAB’s Partial Differential Equation Toolbox.

Specifically, we will be using the pdetool command to create an appropriate mesh.

The Partial Differential Equation Toolbox documentation is a great place to look for

more information, but, for now, we will create a simple mesh. First we will type

pdetool into the command window and this screen below will appear.
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Next we will enable “Grid” and “Snap” from the Options menu. Finally using

any of the five geometry tools from the row below the menu bar we will create our

shape. In this case we will create a square with a side length of two and centered at

the origin.
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To create the mesh, we will click “Initialize Mesh” under the Mesh menu. The

“Parameters. . .” option is useful for further mesh properties.
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Finally we will click “Initialize Mesh” under the Mesh menu and confirm with

“OK”. We have now created a point matrix (p), an edge matrix (e), and a triangle

matrix (t) from the mesh generator. The point and triangle matrices are required for

the numerical derivative toolbox; however, since this toolbox is for the Discontinuous

Galerkin framework we need the edge data for every element instead of just the

boundary data (which is what e provides). To get this data run

ee = gatherEdgeData( p, e, t);

where p, e, t are from above. This command will output a cell with 6 × 3 matrix

for each triangle in (t). Each column in the 6× 3 matrix corresponds to the following

edge data:

% | 1 first point of edge |

% | 2 second point of edge |

% | 3 triangle # of the edges shared partner |

% | 4 x-coordinate of unit outward normal vector |

% | 5 y-coordinate of unit outward normal vector |

% | 6 element normal vector == edge normal vector |

% | is the edge on the boundary of the mesh |

Syntax

Similar to 1-D, the main components are the following two functions.

meshNumericalDerivative is the function called to compute the numerical derivative

data (plus, minus, or full) and postProcessing interpolates this data and can be used

to evaluate the derivative a specified point.

meshNumericalDerivative is the function called to compute the numerical

derivative (plus, minus, or full). The proper syntax for calling this function is:

polydata = meshNumericalDerivative( v, p, ee, t, degree,

position,. . .)
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where polydata is the numerical derivative outputted as a matrix with each column

being the coefficient vector aK′ associated with the polynomial basis on K ′. The

required arguments are

• v: The input function. Note that the function must be continuous and have a

weak derivative on each element in order to have a numerical derivative. v can

be several classes including:

A discrete function represented as a vector. This input should correspond

to {v(xj, yj)}Nj=0 where [xj; yj] is the jth column of p and N is the total number

of points in the mesh. Note a cubic interpolation of the data will be computed

before calculating the numerical derivative. See griddata in the MATLAB

documentation for more information.

A matrix having the same size as polydata which contains the representa-

tion coefficients in the polynomial basis on K ′. This is the preferred and fastest

method when computing second, third, and higher ordered derivatives.

A function handle loaded into the workspace.

A string of the function handle that is not loaded into the workspace, e.g.,

’harmonic’ (See appendix).

Note: Any non-discrete function inputed must be a function of exactly two

arguments. If the inputted function has more than two inputs - func2(x,y,a),

then the user should create an anonymous function to handle the extra argument

- testfunc = @(x) func2(x,y,3). Also, these functions must be vectorized,

accept column vectors for x and y, and output solutions as a matrix with number

of rows the same as the number of rows in x.

This algorithm does not explicitly use the function values at each vertex since

there can be five or more elements that share the same vertex. However, we

cannot avoid edges as they are exclusively used in the calculation of the edge

integrals. Since the inputted function can be discontinuous over an edge, the
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output can be a 1×2 vector where the first output corresponds with the element

which has the lower global labeling of the two. Inside each element, the inputted

function is continuous can output a scalar or 1×2 vector (having the same value

in both entries); the program can accept both options.

• t,p,ee: The triangle matrix, point matrix, and edge data respectively created

from the pdetool mesh generator and gatherEdgeData. Please see 6.3.3 for

more information.

• degree: A non-negative integer that specifies the degree of polynomial space.

Here the sum of the degrees of each component specifies the polynomial space.

For example, the polynomials x3, x2y, xy2, y3 are all degree 3. Increase this

number to increase the accuracy of the numerical derivative or if the user wants

to take multiple derivatives of the inputed function. The degree should be a

non-negative integer not exceeding 4.

• position: This flag of 1 or 2 specifies which the program will compute ∂
∂x

or

∂
∂y

respectfully.

There are also optional arguments which must come in pairs. The first argument

is the argument identifier, and the second is the argument value. For example,

poly derv = meshNumericalDerivative(’exp’, 3,

[-1:.1:1],’format’,’first’).

Here ’format’ is the argument identifier and ’first’ is the argument value.

• ’format’: (Default value ’average’) A string that determines what value of

the numerical derivative uses on the boundary of an element. The numerical

derivative may have a discontinuity on the boundary of an element (for example,

the numerical derivative of f(x) = |x| is discontinuous at 0), but must be

continuous on each element. Because of this there can be “two” values of

the numerical derivative at each boundary point. Since this does not create
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a function suitable for plotting, the ’format’ option allows us to weight the

value of each point. The possible options are ’first’, ’last’, ’average’,

and same. Below is a description of each option with an example point z and

example function ∂hv.

’left’ specifies the left-hand value of the function, that is, lim
x→z−

∂hv(x).

’right’ specifies the right-hand value of the function, that is, lim
x→z+

∂hv(x).

’average’ specifies the average value of the function, that is,

1

2

(
lim
x→z−

∂hv(x) + lim
x→z+

∂hv(x)

)
.

’same’ handles the case where the polynomial derivative has discontinuities

over the edge. The polynomial outputted is column vector-valued. If evaluated

on an edge the top element is the left-hand limit and the bottom is the right-

hand limit. If evaluated on the interior of an element both the top and bottom

values are the same.

• ’derivative’: (Default value: ’full’). Specifies whether the output is ∂+
h v,

∂−h v, or ∂hv. The possible argument values are ’plus’, ’minus’, and ’full’

which will represent ∂+
h v, ∂−h v, or ∂hv respectively.

• ’accuracy’: (Default value: ’medium’). Specifies the accuracy of the

numerical quadrature used when computing the numerical derivative. This

toolbox takes advantage of a Gaussian quadrature scheme.

’low’: A low order, 2 point, Gaussian quadrature scheme. While this is

the fastest of the three options, only use it with a degree of 0, 1, or 2.

’medium’: A medium order, 3 point, Gaussian quadrature scheme. Use it

with a degree of 3 or 4.

’high’: A high order, 5 point, Gaussian quadrature scheme. Use it with a

degree of 5 through 8.
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postProcessing

The proper syntax for calling this function is:

pointvalues = postProcessing(polydata,p,t,format,x,y),

where pointvalues is a matrix of derivative values for input x. The 4 required

arguments are

• polydata: The derivative polynomial data outputted from

meshNumericalDerivative

• p,t: The same p and t used in the creation of polydata.

• format: This should be either a 0 or 1 depending on what the user wants

outputted when one of the values in x is on the boundary of an element.

0 will give only scalar outputs with values on the edge being the average of

the left and right-hand value, that is,

1

2
(∂hv|K+(x) + ∂hv|K−(x)) .

Note that values on the interior of an element will only have one value regardless.

When 0 is specified, x can be any size matrix and size(pointvalues) ==

size(x).

1 will give a 3× 1 column vector/matrix output. If the inputed value is on

an edge of an element, then the vector will be


∂hv|K−(x)

∂hv|K+(x)
1

2
(∂hv|K+(x) + ∂hv|K−(x))

 ,

giving the left, right, and average derivatives values. If the given value is on the

interior of an element then the vector will be the same value repeated thrice.
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Note that if 1 is specified x may only be inputted as a row vector and not a

matrix with two or more rows.

• x,y: The specified x and y values where the derivative will be evaluated. Look

at the format paragraph above for how x,t should be entered.

Examples

Partial Derivative of x3 + xy + y2 in x direction

We will first convert the polynomial f(x, y) = x3+xy+y2 into an anonymous function

and then compute its numerical partial derivative ∂f
∂x

which is ∂f
∂x

= 3x2 + y using a

quadratic approximation. We will then compute the L2 error of the derivative and

its approximation. Our domain in this problem is a square centered at (.5,.5) with

side length of 1.

>> f = @(x,y) x.^3 + x.*y + y.^2;

>> polydata = meshNumericalDerivative(f,p,ee,t,2,1);

>> error = @(x,y) (postProcessing(polydata,p,t,0,x,y) ...

- derivative(x,y)).^2;

>> integral2(error,0,1,0,1)^(1/2)

ans =

1.6531e-12

Laplacian of a Harmonic Function

This example shows the accuracy of second order numerical derivatives. We will

take the numerical Laplacian of the harmonic function ln(|x|). Note the Laplacian

of ln(|x|) is identically 0. In order to speed up the computation, we will not use the

first derivatives’ global function, instead we use the local functions defined on each
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element. Our mesh is a square centered at (.75, .75) and side lengths of one. We will

output the time it takes to compute each derivative, then to test accuracy, we will

measure the error with the discrete norm defined by

||f || = 1

N

(
N∑
j=0

f(xj, yj)
2

) 1
2

,

where (xj, yj) are the points given in the point matrix p and N is the number of

points in the point matrix.

>> tic;[dx] = meshNumericalDerivative(’harmonic’,p,ee,t,3,1);toc;

Elapsed time is 0.121740 seconds.

>> tic;[dxx] = meshNumericalDerivative(dx,p,ee,t,3,1);toc;

Elapsed time is 0.246442 seconds.

>> tic;[dy] = meshNumericalDerivative(’harmonic’,p,ee,t,3,2);toc;

Elapsed time is 0.109847 seconds.

>> tic;[dyy] = meshNumericalDerivative(dy,p,ee,t,3,2);toc;

Elapsed time is 0.251037 seconds.

>> f = @(x,y) postProcessing(dxx,p,t,0,x,y) ...

+ postProcessing(dyy,p,t,0,x,y);

>> norm(f(p(1,:)’,p(2,:)’))/188

ans =

8.0858e-05
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Chapter 7

Future Directions

The research in this dissertation has extensions into other topics and directions. The

following are a few projects that I intend to pursue in the near future.

• Extension of the linear elliptic PDEs in non-divergence form to Hamilton-

Jacobi-Bellman (HJB) equations. As previously mentioned, a direct application

of linear elliptic PDEs in non-divergence form is their use in HJB equations.

As shown in Section 3.6, it is expected that this technique may work for some

simple problems but will fail to approximate more complex problems. The

addition of the vanishing moment method of Chapter 3 will most likely be

needed to ensure convergence. I aspire to study the well-posedness of the

numerical framework given in Section 3.6 and its convergence to the viscosity

solutions of HJB equations.

• Lower order norm error estimates for the IP-DG solutions to linear elliptic

PDEs in non-divergence form. As of yet both papers [22, 28] fail to give any

L2 or H1 error estimates. Since the formal PDE adjoint to non-divergence

form PDEs with continuous coefficients is not well understood, deriving these

error estimates is not easy using the standard Nitsche’s duality argument.

Some nonstandard duality argument must be developed; one such argument
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involves an approximate dual problem. I intend to follow this path to see if any

meaningful results may arise from it.

• Local discontinuous Galerkin methods for linear elliptic PDEs in non-divergence

form. The IP-DG methods developed in Chapter 2 require the degree of

polynomials in Vh to be at least two. This is to ensure the space Vh approximates

the space W 2,p(Ω) in the discrete W 2,p norm as h→ 0. The local discontinuous

Galerkin (LDG) framework; however, does not normally require quadratic

polynomials since the primal problem is converted into a mixed formulation.

I intend to construct and analyze LDG schemes for linear elliptic PDEs in non-

divergence form that hopefully converge on piecewise constant and linear DG

spaces.

• L∞ error estimates for the IP-DG solutions to linear elliptic PDEs in non-

divergence form. For some problems, such as finite element approximations the

the obstacle problem, L2 estimates have yet to be proven; however, maximum

norm error estimates have been shown for linear finite elements on highly

structured meshes. The key to this proof is that both the PDE problem and

the discrete problem preserve a maximum principle. Since the non-divergence

PDE (2.1.1) possesses a maximum principle, I want to see if the same technique

can be applied to the IP-DG or finite element discretizations of linear elliptic

PDEs in non-divergence form.

• Γ-convergence of the enhanced finite element method to the Maniá example and

other functionals exhibiting the Lavrentiev Gap Phenomenon. Chapter 4 gives

the Γ-convergence of J α
h to J for the Maniá example only if we minimize over

the infinite dimensional space A∞. In practice this is not good enough since we

want to minimize over the finite element subspace Vh. I plan to continue this

line of work and show that the sequence of finite element minimizers uh of J α
h

do indeed converge to minimizer for the Maniá example and others examples

that show the gap phenomenon.
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• Extension of the enhanced finite element method to non-conforming discretiza-

tions. Ortner (cf. [48]) showed that for some functions exhibiting the

Lavrentiev gap phenomenon the use of non-conforming discretization, such as

Crouzeix-Raviart, is enough to overcome the gap phenomenon and no change

in the functional needed. I aim to combine the powers of both non-conforming

discretizations, for example, discontinuous Galerkin finite element method, and

our enhanced finite element method to create robust schemes to tackle many, if

not all, of the problems exhibiting the gap phenomenon.

• Extension of the discontinuous Ritz methods to other problems. While we

have proven the convergence of the discontinuous Ritz method for the class

of convex and coercive problems, I would like to implement the discontinuous

Ritz framework for other problems. One such example is the total variation

problem for image denoising by Rudin, Osher, and Fatemi [51], wihch minimizes

an energy over BV(Ω), the space of functions having bounded total variation.

185



Bibliography

186



[1] Alnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A.,

Richardson, C., Ring, J., Rognes, M. E., and Wells, G. N. (2015). The fenics

project version 1.5. Archive of Numerical Software, 3(100). Available from:

https://fenicsproject.org/. 23, 27

[2] Angermann, L. and Henke, C. (2015). Interpolation, Projection and Hierarchical

Bases in Discontinuous Galerkin Methods. Numer. Math. Theory Methods Appl.,

8(3):425–450. Available from: http://dx.doi.org/10.4208/nmtma.2015.m1305.

32
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