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ABSTRACT 

 

This dissertation presents wide-area measurement-driven approaches for power system 

modeling and analytics. Accurate power system dynamic models are the very basis of power 

system analysis, control, and operation. Meanwhile, phasor measurement data provide first-hand 

knowledge of power system dynamic behaviors. The idea of building out innovative applications 

with synchrophasor data is promising.  

Taking advantage of the real-time wide-area measurements, one of phasor measurements’ 

novel applications is to develop a synchrophasor-based auto-regressive with exogenous inputs 

(ARX) model that can be updated online to estimate or predict system dynamic responses.  

Furthermore, since auto-regressive models are in a big family, the ARX model can be 

modified as other models for various purposes. A multi-input multi-output (MIMO) auto-

regressive moving average with exogenous inputs (ARMAX) model is introduced to identify a 

low-order transfer function model of power systems for adaptive and coordinated damping 

control. With the increasing availability of wide-area measurements and the rapid development 

of system identification techniques, it is possible to identify an online measurement-based 

transfer function model that can be used to tune the oscillation damping controller. A 

demonstration on hardware testbed may illustrate the effectiveness of the proposed adaptive and 

coordinated damping controller. 

In fact, measurement-driven approaches for power system modeling and analytics are 

also attractive to the power industry since a huge number of monitoring devices are deployed in 
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substations and power plants. However, most current systems for collecting and monitoring data 

are isolated, thereby obstructing the integration of the various data into a holistic model. To 

improve the capability of utilizing big data and leverage wide-area measurement-driven 

approaches in the power industry, this dissertation also describes a comprehensive solution 

through building out an enterprise-level data platform based on the PI system to support data-

driven applications and analytics. One of the applications is to identify transmission-line 

parameters using PMU data. The identification can obtain more accurate parameters than the 

current parameters in PSS®E and EMS after verifying the calculation results in EMS state 

estimation. In addition, based on temperature information from online asset monitoring, the 

impact of temperature change can be observed by the variance of transmission-line resistance. 
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CHAPTER 1 INTRODUCTION OF MEASUREMENT-

DRIVEN APPROACHES 

1.1 Background 

Since identification technologies and mathematic algorithms are developing rapidly and 

the number of measurement devices in power systems is increasing dramatically, measurement-

driven approaches for solving power system problems are becoming hot topics. Compared to 

existing circuit-based models for power system calculation and analysis, measurement-driven 

approaches can create an updated model to reflect operating conditions of power systems 

promptly. Moreover, the obvious disadvantage of circuit-based models is that they can never 

include details of power systems. However, measurement-driven approaches can avoid the 

drawback. Therefore, calculation results of measurement-driven approaches may be more reliable 

and accurate than current circuit-based models. 

Assuming the identification algorithms only depend on pure measurement data and prior 

knowledge, these algorithms can be viewed as black box models when details of a power system 

are unknown or not concerned. To derive a measurement-driven model, the construction of the 

model from data involves three basic entities: a data set, a set of candidate models and a rule by 

which candidate models can be assessed using the data. Based on datasets of inputs and outputs, 

the identification procedure has a natural logical flow: first collect data, then select a model set, 

and then pick the “best” model in this set. According to empirical data and knowledge, it is quite 

likely, though, that the model which is first obtained would not pass the model validation tests. If 

that happens, the training loop must go back to the starting point and revise the various steps of 

the procedure. 
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1.2 Introduction of Applications in This Dissertation  

In this dissertation, two different linear auto-regressive models are introduced and 

discussed, respectively. The first linear auto-regressive model is applied to estimate system 

dynamic responses and another is for identifying a transfer function model for designing an 

adaptive wide-area oscillation damping controller. Furthermore, to exhibit the performance of 

linear auto-regressive models, the comparison among various identification methods is provided 

in terms of the time consumption, order and accuracy. In these applications, the linear auto-

regressive models not only have low-order structures for the sake of updating speed, but also can 

obtain the acceptable results. 

After discussing applications based on linear auto-regressive models, this dissertation also 

demonstrates an enterprise-level data platform with its data-driven applications. Taking advantage 

of raw data from the data platform, the identification of transmission-line parameters can be 

implemented by a data-driven model which is a black box model. The comparison between the 

parameters from both the data-driven model and the circuit-based model emphasizes that the 

outcome of the data-driven model has high accuracy. 

Measurement-driven models in this dissertation are mainly created by synchrophasor data. 

Synchrophasor data can be fed into power system situational awareness applications to analyze 

the dynamic behavior of power systems. Thus, as an important support system for operators to 

reveal system dynamics and enhance the operator’s situational awareness, wide-area monitoring 

systems (WAMS) are built in the electric transmission network with extensive installation effort 

and overwhelming manufacture cost. In order to reduce cost and create flexible and robust 

platforms, WAMS for power grids have been extended from the transmission to distribution level 
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in the past few years [1]. As a pioneering WAMS deployed at the distribution level, the frequency 

monitoring network FNET/GridEye [2]–[6] has been providing independent observation of U.S. 

and other worldwide electrical grid dynamic performance continuously since 2004. 

Since FNET/GridEye is designed to be deployed at the distribution level, It collects 

power grid data (frequency, voltage magnitude, voltage phase angle, as well as power quality 

information) using low-cost high-accuracy frequency disturbance recorders (FDRs) [7]. An FDR 

can be roughly viewed as a single-phase PMU device. It utilizes voltage waveforms at standard 

120 V electrical outlets as input, which is different from the much higher transmission-level 

voltages that need to be transduced by potential transformers (PTs) before PMUs can use them. 

Taking advantage of the obvious ease of installation, FDRs can be deployed virtually anywhere, 

such as offices, schools, and personal residences. 

FNET/GridEye is widely welcomed by the industry and academia—as well as the U.S. 

government—and serves more than twenty main power grids in the world as of 2015. Figure 1–1 

presents the existing FDR installation spots in the North America. Figure 1–2 shows the map of 

worldwide FDR coverage. 

 



 

4 

 

 

Figure 1–1 Map of FDR locations in North America 

 

 

 

Figure 1–2 Map of worldwide FDR coverage 
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1.2.1 System Dynamic Response Estimation 

Dynamic models of power systems play an important role in power system operations 

and planning. An accurate dynamic model can reveal system dynamic behaviors to various 

disturbances and help establish a mechanism of early warning of impeding instability. 

Traditional circuit-based models for screening transient instability are very complex and 

inaccurate due to limited details of a power system. In addition, even for a high-order power 

system, a limited number of system models in the system are critical to determine its dynamic 

responses. Therefore, the method for generating a low-order reduced system dynamic model by 

means of a measurement-driven model would be very promising to tackle the system dynamic 

response estimation.  

In Chapter 2, a linear auto-regressive model, which is an auto-regressive with exogenous 

input (ARX) model, is proposed to estimate the system dynamic response using FNET/GridEye 

data. The model is calculated by least squares (LS) optimization to reflect the change of 

operating condition in a bulky power system. Case studies are conducted to test the reliability 

and accuracy of the model with ambient data and event data. 

1.2.2 Identification of Transfer Function Model 

Inter-area oscillation is a significant issue limiting the power transfer capability between 

areas of power systems and it also threatens power system stability. Therefore, damping of inter-

area oscillations is one of the main concerns for improving power system stability and power 

transmission. Conventional design of oscillation damping controllers is based on system circuit-

based models around a specific operating condition. This approach requires detailed dynamic 

models and parameters for each component, such as the generator, load, and transmission line. 
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However, existing circuit-based models cannot include enough detailed information of a power 

system. To design a wide-area adaptive oscillation damping controller to adjust the change of 

operating condition, a measurement-based transfer function model describing oscillatory 

behaviors of the power system needs to be developed. 

Base on the ARX model from Chapter 2, it can be modified to a multi-input multi-output 

(MIMO) auto-regressive moving average exogenous inputs (ARMAX) model, which also 

belongs to the family of linear auto-regressive models. In Chapter 3, The methodology to identify 

the transfer function is described and then the performance of the MIMO ARMAX model for 

identifying the transfer function of a power system is presented in case studies as well.  

Meanwhile, the performance comparison among different MIMO identification models to 

estimate inter-area oscillation modes is exhibited in Chapter 4. Study cases are conducted to test 

models in terms of the accuracy, order and time consumption. The results may indicate that linear 

auto-regressive models seem to be effective in identifying a transfer function of a power system. 

In addition, the cost of linear auto-regressive models is, by contrast, still very low. It would be a 

good method to be applied into the online environment. 

1.2.3 Implementation of the Enterprise-Level Data Platform 

The increasing data categories and quantities in power systems facilitate that electric 

utilities implement advanced data platforms to integrate data, consolidate models and enhance 

existing analytics and applications using data-driven methods. Chapter 5 describes the ongoing 

project in Dominion Virginia Power (DVP) which is an example to implement analytics with 

data at various resolutions. Taking advantage of integrated information and data, the data-driven 

visualizations for generating one-line displays are also exhibited in Chapter 5. 
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1.2.4 Identification of Transmission-Line Parameters 

The transmission-line parameters in today’s power systems still depend on the calculation 

from a circuit model through conductor dimension, tower geometry, line length and other factors. 

However, transmission-line parameters can be affected by various factors like environment 

factors, modeling inaccuracies and even human errors. Thus, measurement-driven approaches to 

estimate the transmission-line parameters are very promising to improve the accuracy of 

parameters. 

Taking advantage of synchrophasor data from the enterprise-level platform and prior 

knowledge regarding the circuit model of a transmission line, a black box model in Chapter 6 

can represent the model of a transmission line by input and output signals. LS method can be 

applied to calculate the coefficients of the measurement-based model for obtaining transmission-

line parameters. Furthermore, since the platform can store the ambient temperature of 

transmission lines, it is possible to exhibit the impact of temperature changes on the variance of 

transmission-line resistance which is seldom discussed in extensive studies before.  
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CHAPTER 2 SYSTEM DYNAMIC RESPONSE 

ESTIMATION 

2.1 Introduction 

In this chapter, a measurement-driven approach is introduced for system dynamic 

response estimation. Accurate power system dynamic models are the very basis of power system 

analysis, control and operation [8]–[10]. Traditionally, power system dynamic responses can be 

obtained by the time-domain simulation package that models a power system using theoretical 

models and parameters for a given operating condition. However, the time-domain simulation 

approach has two major limitations: 1) the simulated dynamic model can never include all the 

details of the power system; 2) the topology and the operating point of the power system change 

constantly. Neither of these two aspects can be captured completely by existing circuit-based 

models. System identification is a good method for capturing dynamic behaviors of the power 

system based on pure measurement data. An auto-regressive with exogenous inputs (ARX) 

model, a kind of measurement-based model, has already been introduced to estimate dynamic 

responses. Past work with the model uses an event simulated in PSS®E (such as a generation trip 

or a load shedding) for training and another event response is estimated to be compared with 

further PSS®E simulation [11]. Taking advantage of real measurement data collected by 

FNET/GridEye, it is good attempt to examine and validate the performance and accuracy of the 

ARX model. 

Validation using real measurement data is conducted in this chapter. Furthermore, the 

ARX model trained by ambient signals is used to estimate system responses. Few previous 

works have addressed the use of ambient data for estimating dynamic responses in power 
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systems [12], [13]. The basic assumption for this improvement is that there are constant random 

changes occurring in power systems (such as random load variations), and these changes may 

provide small excitations to train the ARX model. This discovery may allow the proposed 

algorithm to have a near real-time estimation of dynamic responses through updating the model 

continuously. Accurate real-time dynamic information can form the basis for many future 

operation and control algorithms. 

This chapter is organized as follows. The following part introduces the ARX model; and 

the validation methodology is also presented. After that, FDR measurement data [14] are applied 

to estimate and verify the ARX model. The conclusion is provided at the end of this chapter. 

2.2 Model Construction 

The abundant information of system dynamics is carried by synchrophasor measurements. 

A reasonable hypothesis is that a large power system may exhibit linear-system behaviors for 

most of time. The features of the power system are very linear for a small event, such as a 1500 

MW generation trip or load shedding happening in the East Interconnection (EI) system. 

Therefore, a linear model can be utilized to estimate system dynamic responses. In other words, 

the ARX model is used as a linear power system dynamic model to estimate dynamic responses 

with real measurements. 

2.2.1 ARX Model Structure 

The mathematical structure expression of a single-input, single-output (SISO) ARX 

model is described by the equation:  
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 𝒚̅(𝒕) + ∑ 𝒂𝒌

𝒏

𝒌=𝟏
𝒚̅(𝒕 − 𝒌) = ∑ 𝒃𝒋𝒖(𝒕 − 𝒋)

𝒏

𝒋=𝟏
+ 𝒆(𝒕) (2–1) 

 

where 𝑘 and 𝑗 are the sampled data index, 𝑒(𝑡) is a white noise process. 𝑢 and 𝑦̅ are the model 

input and output, respectively. Both 𝑎𝑘 and 𝑏𝑗 are the ARX coefficients. 

The SISO ARX model can be extended to the multi-input, single-output (MISO) ARX 

model as follows:  

 [

𝒚̅(𝒕)

𝒂𝟏𝒚̅(𝒕 − 𝟏)
⋮

𝒂𝒏𝒚̅(𝒕 − 𝒎)

] = [

𝒃𝟏 … 𝒓𝟏

𝒃𝟐

⋮

⋯
⋱

𝒓𝟐

⋮
𝒃𝒏 ⋯ 𝒓𝒏

] [

𝒖𝟏(𝒕) ⋯ 𝒖𝟏(𝒕 − 𝒏)

𝒖𝟐(𝒕)
⋮

𝒖𝒏(𝒕)

⋯
⋱

    𝒖𝟐(𝒕 − 𝒏)
⋮

⋯ 𝒖𝒏(𝒕 − 𝒏)

] + 𝒆(𝒕) (2–2) 

 

The model parameters of the ARX model can be estimated by a linear Least squares (LS) 

approach. The least squares estimation problem is solved by using QR factorization to optimize 

the ARX model parameters and minimizing the following function:  

 𝑽𝑳𝑺 = ∑ 𝜺𝑨𝑹𝑿(𝒕)𝟐
𝑵

𝒕=𝒏𝒔+𝟏
 (2–3) 

 

where the error criterion 𝜀𝐴𝑅𝑋 is described by: 

 𝜺𝑨𝑹𝑿 = 𝒚̅(𝒕) + ∑ 𝒂𝒌

𝒏

𝒌=𝟏
𝒚̅(𝒕 − 𝒌) − ∑ 𝒃𝒋𝒖(𝒕 − 𝒋)

𝒏

𝒋=𝟏
 (2–4) 
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2.2.2 ARX Model Accuracy Index 

To evaluate the identified ARX model, accuracy index can be performed as follows: 

 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝑰𝒏𝒅𝒆𝒙 = (𝟏 −
‖𝒀𝒊 − 𝒀̂𝒊‖

‖𝒀𝒊 − 𝒀̅𝒊‖
) ×𝟏𝟎𝟎 (2–5) 

 

where 𝑌𝑖, 𝑌̅𝑖, 𝑌̂𝑖 are the measured response, the estimated response, and the mean value of the 

measured response, respectively. This index is used to reflect the accuracy of the model for 

describing system dynamic characteristics. An accuracy index of 100 means a perfect fit between 

the estimated response and measured response, while an accuracy index of 0 means the estimated 

response is no better than the mean value of the measured response. 

2.2.3 Correlation Coefficient Index 

In power systems, a widely used measurement-based coherency function [15]–[17] is 

defined as: 

 𝜸𝒙𝒚(𝒇) =  
|𝑺𝒙𝒚(𝒇)|

√𝑺𝒙𝒙(𝒇)𝑺𝒚𝒚(𝒇)
         |𝜸𝒙𝒚| ≤ 𝟏 (2–6) 

 

where 𝑓  is the frequency, 𝛾𝑥𝑦  is the coherent relationship between power system measured 

signals {𝑥(𝑡)} and {𝑦(𝑡)}. 𝑆𝑥𝑦(𝑓) is the cross-spectral density (CSD) function between {𝑥(𝑡)} 

and {𝑦(𝑡)} ,  𝑆𝑥𝑥(𝑓)  and 𝑆𝑦𝑦(𝑓)  are the power-spectral density (PSD) of {𝑥(𝑡)}  and {𝑦(𝑡)} , 

respectively.  

These two signals can be assumed as the wide-sense stationary random processes. The 

coherency function literally presents the linear correlation between two output signals in the 
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power system as a function of the frequency. However, the frequency domain function is not 

convenient when dealing with many signals. The following equations may be used to obtain the 

time domain correlation function which is correlation coefficient index (CCI) for a wide 

frequency. 

The cross-correlation function 𝑅𝑥𝑦(𝜏), self-correlation functions 𝑅𝑥𝑥(𝜏) and 𝑅𝑦𝑦(𝜏) are 

given by the inverse Fourier transform of 𝑆𝑥𝑦(𝑓), 𝑆𝑥𝑥(𝑓)and𝑆𝑦𝑦(𝑓), respectively. 

 𝑹𝒙𝒚(𝝉) = ∫ 𝑺𝒙𝒚(𝒇)𝒆𝒋𝟐𝝅𝒇𝝉𝒅𝒇
+∞

−∞

 (2–7) 

 𝑹𝒙𝒙(𝝉) = ∫ 𝑺𝒙𝒙(𝒇)𝒆𝒋𝟐𝝅𝒇𝝉𝒅𝒇
+∞

−∞

 (2–8) 

 𝑹𝒚𝒚(𝝉) = ∫ 𝑺𝒚𝒚(𝒇)𝒆𝒋𝟐𝝅𝒇𝝉𝒅𝒇
+∞

−∞

 (2–9) 

 

where 𝜏 is the time delay. 

Applying the inverse Fourier transform to (2–6) and using (2–7), (2–8), and (2–9), the 

correlation function in the time domain is: 

 𝒓𝒙𝒚(𝝉) = ∫ 𝜸𝒙𝒚(𝒇)𝒆𝒋𝟐𝝅𝒇𝝉𝒅𝒇
+∞

−∞

=  
𝑹𝒙𝒚(𝝉)

√𝑹𝒙𝒙(𝝉)𝑹𝒚𝒚(𝝉)
 (2–10) 

 

The mathematical expectations of these two signals are 𝑢𝑥 = 𝐸{𝑥(𝑡)} and 𝑢𝑦 = 𝐸{𝑦(𝑡)}, 

respectively. Thus, the cross-correlation function 𝑅𝑥𝑦(𝜏) and cross-covariance function 𝐶𝑥𝑦(𝜏) 

are defined:  
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 𝑹𝒙𝒚(𝝉) = 𝑬{𝒙(𝒕)𝒚(𝒕 + 𝝉)} = 𝒍𝒊𝒎
𝑻→∞

𝟏

𝑻
∫ 𝒙(𝒕)𝒚(𝒕 + 𝝉)𝒅𝒕

𝑻

𝟎

 (2–11) 

 𝑪𝒙𝒚(𝝉) = 𝒍𝒊𝒎
𝑻→∞

𝟏

𝑻
∫ {𝒙(𝒕) − 𝝁𝒙}{𝒚(𝒕 + 𝝉) − 𝝁𝒚}𝒅𝒕 = 𝑹𝒙𝒚(𝝉) − 𝝁𝒙𝝁𝒙𝒚

𝑻

𝟎

 (2–12) 

 

For the special case where  𝑥(𝑡) = 𝑦(𝑡) , the self-covariance function of 𝐶𝑥𝑥(𝜏)  and 

𝐶𝑦𝑦(𝜏) are:  

 𝑪𝒙𝒙(𝝉) = 𝑹𝒙𝒙(𝝉) − 𝝁𝒙
𝟐                  𝑪𝒚𝒚(𝝉) = 𝑹𝒚𝒚(𝝉) − 𝝁𝒚

𝟐 (2–13) 

 

If 𝜇𝑥 = 𝜇𝑦 = 0 in (2–10), it can be obtained:   

 𝑪𝒙𝒚(𝝉) = 𝑹𝒙𝒚(𝝉)         𝑪𝒙𝒙(𝝉) = 𝑹𝒙𝒙(𝝉)         𝑪𝒚𝒚(𝝉) = 𝑹𝒚𝒚(𝝉) (2–14) 

 

Assuming the time delay 𝜏 = 0 and using (2–10) and (2–14), the correlation coefficient 

function can be obtained:  

 𝜸𝒙𝒚(𝟎) =  
𝑪𝒙𝒚(𝟎)

√𝑪𝒙𝒙(𝟎)𝑪𝒚𝒚(𝟎)
 (2–15) 

 

where 𝛾𝑥𝑦 is the correlation coefficient between signal {𝑥(𝑡)}  and {𝑦(𝑡)} in time domain, which 

ranges from -1 (complete linear inverse correlation) to 1 (complete linear correlation) with 𝛾𝑥𝑦 =

0 meaning lack of linear interdependence. The sign of 𝛾𝑥𝑦 indicates the direction of correlation: 

𝛾𝑥𝑦 < 0 implies inverse correlation, while  𝛾𝑥𝑦 > 0  implies direct correlation. 
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The CCI between the 𝑖th input signal 𝑥𝑖 and the 𝑗th output signal 𝑦𝑖 is defined as: 

 𝜸𝒊𝒋 =
𝑪(𝒙𝒊, 𝒙𝒋)

√𝑪(𝒙𝒊, 𝒙𝒊)𝑪(𝒚𝒋, 𝒚𝒋)
 (2–16) 

 

where 𝑖 and 𝑗 are the input and output signal number, respectively. 

The CCI can be a good indication to find strong correlated measurements of various 

locations as inputs of the ARX model. 

2.3 Validation Methodology of System Dynamic Response 

Event and ambient data are used as datasets for training the model. Event data are much 

easier to train the ARX model than ambient data because event data change obviously. However, 

ambient data, which are collected before an event, can also provide effective information for 

estimating event responses. Measurement data always have noise. Therefore, one critical thing in 

the procedure of data preparation is to extract and clean ambient or event signals from raw data 

before train the model. 

2.3.1 De-Trending Method 

An important preprocessing procedure to build out the measurement-based model for the 

dynamic response estimation is to remove direct component (DC) trends within measurement 

data. Normally, this operation is known as de-trending, and keeps the result from being 

overwhelmed by the nonzero mean and the trend.  

The first step of implementing the de-trending method is to get the mean value of the 

original signal and then raw data can be deducted by the mean value to remove the DC offset: 
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 𝒚(𝒌) = 𝒙(𝒌) − 𝒙̅ (2–17) 

 

where 𝑘 is the sample number of the original signal and 𝑥̅ is the average value of the signal over 

the period. 𝑦 is the data without the DC offset. 

The next step is to de-trend the angle signal 𝑦(𝑘) by removing the trend of the angle 

reference point, 𝑦𝑓(𝑘) is the reference data that its mean value is removed. 

 𝒓(𝒌) = 𝒚(𝒌) − 𝒚𝒇(𝒌) (2–18) 

 

where 𝑘 is the sample number of the original signal and 𝑟 is the data without the DC offset and 

reference value. 

For analysis using measurement data, this method may highlight any major oscillations 

and transient changes through either event data or ambient data while slow drift and steady-

steady responses are removed. 

2.3.2 Implementation of Dynamic Response Estimation 

Optimal input signals are selected by the CCI for the ARX method to estimate dynamic 

responses of events. However, the CCI may be not effective in some sense for choosing the input 

signals to estimate responses using ambient data. The methodology is described by the flowchart 

below in Figure 2–1. 

Therefore, if the CCI cannot obtain the good inputs for the ARX model, the optimal input 

signals can be selected by the measurement units’ geographic proximity to each other as an 

alternative approach. To estimate a dynamic response, two sets of data are needed. One set of 
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data is considered as the training data of the model. Another set of data will be applied to 

estimate the dynamic response and evaluate the result. 

 

Input measurement data 
From FNET

(Frequency, Angle,Voltage)

Filter raw data 

Select the inputs based on the output through 
CCI or through geographic proximity

Achieve measuremet 
data detrending

Generate the optimal order

Create the ARX model

Output the estimation 
result

Y N

 

Figure 2–1 Flowchart of the system dynamic response estimation 

 

To train and verify the ARX model, the most critical thing is to determine the order of the 

model since it is associated with the structure and dimension of the model. Some pre-defined 

models can be the candidate models. The model with the best estimation from pre-defined 

models would have the optimal order. According to empirical data, the model with accuracy 

index equal or greater than 85 may be acceptable. Otherwise, the ARX model should be re-

trained. 
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2.4 Case Study 

Case studies are based on data collected by FNET/GridEye in the EI system. The 

validation is performed with two types of data: event data and ambient data. For each case, the 

dynamic responses of frequency, voltage phase angle and voltage magnitude are estimated by 

corresponding ARX models. 

2.4.1 Event Dynamic Response Estimated by Event Data 

In this part, there are four combinations, including the response estimation of a 

generation trip using the model trained by a load shedding (Case 1), the response estimation of a 

load shedding using the model trained by a generation trip (Case 2), the response estimation of a 

load shedding using the model trained by a load shedding (Case 3) and the response estimation 

of a generation trip using the model trained by a generation trip (Case 4). In each case, four 

inputs, one output and one reference point that is the angle reference for the angle dynamic 

response estimation are selected and marked in the map where the FDRs are deployed. 

Furthermore, the comparisons between estimated voltage, angle and frequency responses and 

their actual responses from the output point are given in Figure 2–2, Figure 2–3, Figure 2–4 and 

Figure 2–5, respectively.  
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(a) 
 

(b) 

  

 
(c) 

 
(d) 

Figure 2–2 Comparison between the actual measurement and estimation in case 1 
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(a) 
 

(b) 

  

 
(c) 

 
(d) 

Figure 2–3 Comparison between the actual measurement and estimation in case 2 
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(a) 
 

(b) 

  

 
(c) 

 
(d) 

Figure 2–4 Comparison between the actual measurement and estimation in case 3 
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(d) 

Figure 2–5 Comparison between the actual measurement and estimation in case 4 
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In Table 2-1, the estimated dynamic responses of angle and frequency match the actual 

response well since these quantities are relatively correlated in the wide area. Although the 

frequency accuracy index is much higher than the angle accuracy index in the same case, the 

estimation results are all satisfactory. Therefore, regardless of the event type for training the 

ARX model, the ARX model can achieve the good estimation of the angle and frequency 

dynamic response consistently. However, the voltage response estimation is not good generally. 

The rooted reason is the voltage magnitude is very local and regional in the distribution level. 

Thus, in terms of the voltage magnitude, it is difficult to select proper inputs based on the 

specific output from the distribution network for training the ARX model. In the following tests, 

the estimation of angle/frequency dynamic responses is included only. 

 

Table 2-1 Voltage/Angle/Frequency accuracy index from case 1 to case 4 

 Voltage accuracy index Angle accuracy index Frequency accuracy index 

Case 1 30.21 93.71 95.02 

Case 2 36.86 94.11 96.55 

Case 2 65.34 91.06 92.63 

Case 4 52.73 88.49 94.31 

 

2.4.2 Event Dynamic Response Estimated by Ambient Data 

The ARX models for the cases in the previous part are trained by event data from 

FNET/GridEye. However, the number of events is limited and the information provided by the 

events is not adequate. Ambient data can be obtained continuously and sufficiently through the 

data collection. Moreover, they can provide operating information and be alternative data for 

event data. The following tests utilize ambient data to estimate event responses. 
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In this part, there are also four combinations, including the response estimation of 

generation trips (Case 5 and Case 6) and the response estimation of load sheddings (Case 7 and 

Case 8) from the ARX models trained by ambient data, respectively.  

To compare the results from the ARX models trained by event data and ambient data, 

event data are replaced with ambient data to train the ARX models in four cases from the 

previous part. Ambient data are collected before events happen. The results from Case 5 to Case 

8 are presented in Figure 2–6, Figure 2–7, Figure 2–8 and Figure 2–9, respectively. 

 

 
(a) 

 
(b) 

Figure 2–6 Comparison between the actual measurement and estimation in case 5 
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(a) 

 
(b) 

Figure 2–7 Comparison between the actual measurement and estimation in case 6 

 

 

 
(a) 

 
(b) 

Figure 2–8 Comparison between the actual measurement and estimation in case 7 
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(a) 

 
(b) 

Figure 2–9 Comparison between the actual measurement and estimation in case 8 

 

Based on the estimated results with ambient data in Table 2-2, the angle/frequency 

accuracy index is not as good as the results derived by event data, but the results are reliable to 

present correct trends. Since ambient data contain the information about the operating condition 

and the dynamic response before the event happens, the ARX model can be trained by ambient 

data when triggered events are insufficient. 

 

Table 2-2 Angle/Frequency accuracy index from case 5 to case 8 

 Angle accuracy index Frequency accuracy index 

Case 5 88.44 94.78 

Case 6 87.03 91.69 

Case 7 77.49 90.81 

Case 8 68.13 90.35 
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2.4.3 Ambient Dynamic Response Estimated by Ambient Data 

The event response estimation is acceptable while the ARX model is trained by either 

event data or ambient data. For a potential online application, the ARX model can estimate 

ambient responses as well.  

Case 9 and Case 10 demonstrate the ambient response estimation through the ARX 

model trained by ambient data. The time interval between the training dataset and the estimated 

dataset is about 10 minutes in both cases. The results of Case 9 and Case 10 are presented in 

Figure 2–10 and Figure 2–11, respectively. 

 

 
(a) 

 
(b) 

Figure 2–10 Comparison between the actual measurement and estimation in case 9 
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(a) 

 
(b) 

Figure 2–11 Comparison between the actual measurement and estimation in case 10 

 

From the results in Table 2-3, either the angle accuracy index or the frequency accuracy 

index turns to be worse, but they are still acceptable. The estimated results exhibit that the ARX 

models trained by ambient data may still reserve and carry ambient responses correctly 

 

Table 2-3 Angle/Frequency accuracy index from case 9 to case 10 

 Angle accuracy index  Frequency accuracy index  

Case 9 79.66 88.21 

Case 10 71.89 89.48 

 

 

2.5 Conclusions 

Through validation using measurement data, it is shown that the ARX model can estimate 
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the ARX model. In terms of the angle or frequency accuracy index, the ARX model trained by 

event data is better. However, the ARX model trained by either event data or ambient data can 

obtain acceptable results. In addition, the validation tests indicate that the proposed approach has 

good generalization capability. 
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CHAPTER 3 TRANSFER FUNCTION MODEL 

IDENTIFICATION USING WIDE-AREA 

MEASUREMENT  

3.1 Introduction 

In today's interconnected power grids [18]–[21], low-frequency oscillation is a significant 

issue limiting the power transfer capability and even deteriorating the power system security [22]. 

In order to suppress low-frequency oscillations, local and wide-area power system stabilizers 

(PSSs) are installed or proposed to provide supplementary damping control through generator 

excitation systems [23], flexible alternating current transmission systems (FACTS) devices [24], 

and high-voltage direct current (HVDC) links [25].  

However, since these oscillation damping controllers are usually tuned based on several 

typical operating conditions, their performances may degrade if the actual operating condition is 

significantly different from the typical operating conditions considered in the offline design 

procedure. One typical example is from the design of PSS. Conventional design tunes the time 

constants and gain of the PSS, which are lead-lag compensators using modal frequency 

approaches. Thus, many designs are mainly specific for a given operating condition. In some 

extreme cases, they even provide negative damping. Limited adaptivity is considered one of the 

main drawbacks of these controllers.  

A robust control scheme can be utilized to improve adaptivity. In general, a robust 

oscillation damping controller is designed based on a detailed system model under a selected 

dominant operating condition with bounded model uncertainty [26], [27]. The variations of 

operating condition are reflected in the additive and/or multiplicative uncertainty of the system 
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model. Nevertheless, it is not easy to determine the uncertainty boundary of the system model. 

Additionally, the controller performance may not be optimal when the actual operating condition 

deviates from the dominant one.  

An adaptive control scheme is another approach to improve adaptivity, which can update 

the controller parameters online to track the continuous variations in operating conditions. 

Recently, with the increasing application of the WAMS [28], [29] and the rapid development of 

system identification techniques [30], the adaptive control approach has drawn increasing 

attention. For instance, a self-tuning adaptive PSS based on artificial neural networks is proposed 

in [31]. In [32], the parameters of phase lead-lag compensators are updated based on the online 

modal analysis. However, most of the research focuses on the adaptivity of the individual 

damping controller, while the coordination among different controllers has not been fully 

addressed. If the system model depicting all the dominant oscillation modes is identified online, 

it is feasible to optimize the controllers' parameters at the control center, and remotely configure 

the parameters of dispersed damping controllers. In this way, the adaptivity of the individual 

controller and the coordination among different oscillation modes can be achieved 

simultaneously [33].  

Fast online identification of the system model to capture all oscillation modes (not a 

single mode) of the power system is the prerequisite of the adaptive and coordinated oscillation 

damping control. Two categories of measurement-based models can be used for system 

identification: the subspace state space model, and the auto-regressive moving average 

exogenous inputs (ARMAX) model. The subspace state space model is usually identified by 

numerical algorithms for the subspace state-space system identification (N4SID) method [34]–
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[36] or the stochastic subspace identification method [37], [38]. However, the main drawback of 

these two approaches is slow computation speed due to singular value decomposition (SVD) of a 

large-dimensional matrix, which is a factorization of a real or complex matrix. Since the slow 

calculation speed is one of the barriers to apply the subspace state space model for oscillation 

damping control in the online environment, a recursive adaptive stochastic subspace 

identification method is presented in [38] to reduce the computation time.  

The ARMAX model identification can be an alternative to overcome the drawback of 

high computational burden [39], [40]. The family of "auto-regressive" models has already been 

used to represent system dynamics for oscillation damping control [41], [42]. However, the 

identified ARMAX model is generally a single-input single-output model, which may reflect 

only one oscillation mode because the model is used to control single oscillation mode.  

This chapter proposes a methodology to identify a multi-input multi-output (MIMO) 

ARMAX-based transfer function model using measurement data to capture all the dominant 

oscillation modes. Both the ambient data and the ring-down data are used for system 

identification. The proposed approach is demonstrated by a case study in the 16-machine 68-bus 

Northeast Power Coordinating Council (NPCC) system. Results show that the identified model 

using ARMAX may accurately represent the power system dominant oscillatory behaviors. 

Compared with the subspace state space model, the ARMAX model has equivalent accuracy but 

lower order and improved computational efficiency. 

The remaining content of this chapter is organized as follows. The second part of the 

chapter describes the relationship between the full-order system model and the measurement-

based models. In addition, the methodology and the flowchart of system identification for 
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oscillation damping control are presented. The methodology is also validated by the case study in 

the NPCC system in the fourth part. Then, the oscillation damping control using the proposed 

approach is exhibited in the fifth part. The implementation on the large testbed is described in the 

sixth part. The last part concludes this chapter. 

3.2 Relationship between Full-Order System Models and Measurement-Based 

Models 

The full-order system model for the small signal analysis is usually represented by the 

state space method which is a set of first order differential equations based on the linearization 

around a certain operation point, as shown in the following equations. 

 ∆𝒙̇ = 𝑨∆𝒙 + 𝑩∆𝒖 (3–1) 

 ∆𝒚 = 𝑪∆𝒙 + 𝑫∆𝒖 (3–2) 

 

where, ∆𝑥 is the state vector, ∆𝑦 is the output vector, and ∆𝑢 is the input vector; 𝐴 is the state 

matrix, 𝐵 is the input matrix, 𝐶 is the output matrix, and 𝐷 is the feedforward matrix.  

Obviously, the subspace state space model is indeed a 𝑘th order reduced model of the 

full-order system model. The only parameter that needs to be determined before A, B, C and D 

matrix estimation is the reduced model order, which requires SVD of a large-dimensional matrix. 

On the other hand, the MIMO ARMAX model is the equivalent discrete transfer function model 

of the original system. Based on (3–1) and (3–2), the continuous transfer function between inputs 

and outputs is represented as 

 𝑮(𝒔) = 𝑪(𝒔𝑰 − 𝑨)−𝟏𝑩 + 𝑫 (3–3) 
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If the inputs and outputs of the system are determined, the system model can be 

represented as: 

 [

𝑮𝟏𝟏(𝒔) ⋯
𝑮𝟐𝟏(𝒔) ⋯

𝑮𝟏𝒏(𝒔)
𝑮𝟐𝒏(𝒔)

⋮
𝑮𝒎𝟏(𝒔)

⋯
⋯

⋮
𝑮𝒎𝒏(𝒔)

 ] [

∆𝒖𝟏(𝒔)
∆𝒖𝟐(𝒔)

⋮
∆𝒖𝒏(𝒔)

] = [

∆𝒚𝟏(𝒔)
∆𝒚𝟐(𝒔)

⋮
∆𝒚𝒎(𝒔)

] (3–4) 

 

where ∆𝑢𝑖(𝑠) and ∆𝑦𝑗(𝑠) are the 𝑖th and 𝑗th elements of the input vector and the output vector, 

respectively. 𝐺𝑖𝑗  is the element of the 𝐺  matrix at position (𝑖, 𝑗). 𝑚 and 𝑛  are the number of 

system outputs and the number of system inputs, respectively.  

Since the denominator of each element 𝐺𝑖𝑗 of 𝐺 contains the common eigenvalues of the 

system [43], (3–3) can be expressed as: 

 𝑮(𝒔) =
𝟏

∏ (𝒔 − 𝝀𝒊)
𝒓
𝒊=𝟏

𝑮̅(𝒔) (3–5) 

 

where 𝜆𝑖 is 𝑖th mode in the system. In the model, the characteristic polynomial has inter-area 

modes which are observable to most of the system and local modes which are observable to the 

certain part of the system. The common denominator can reduce the model order substantially 

since the transfer function derived here is a reduced order model of the full power system model. 
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Equation (3–4) shows that the certain output may be regarded as the aggregated result 

from the contribution of all inputs. Therefore, in the discrete-time domain, the contribution of the 

input signals to the outputs at the sampling time 𝑡 can be exhibited as [30] 

 𝜶(𝒛)𝒚(𝒕) = 𝜷(𝒛)𝒖(𝒕) + 𝜸(𝒛)𝒆(𝒕) (3–6) 

 

where 𝑦(𝑡) is the vector of 𝑚 outputs, 𝑢(𝑡) is the exogenous part which is the vector containing 

the known 𝑝  excitations, and 𝑒(𝑡)  is the moving average part which is the vector with 

𝑞 unknown noise. 𝑝 + 𝑞 = 𝑛. 𝛼(𝑧), 𝛽(𝑧) and 𝛾(𝑧) are the autoregressive polynomial matrix, the 

exogenous polynomial matrix, and the moving average polynomial matrix, respectively. 𝑧  is the 

shift operator. 

 𝜶(𝒛) =  𝑰 + 𝜶𝟏×𝒛−𝟏 + ⋯ + 𝜶𝒏𝒂×𝒛−𝒏𝜶 (3–7) 

 𝜷(𝒛) =  𝜷𝟎 + 𝜷𝟏×𝒛−𝟏 + ⋯ + 𝜷𝒏𝜷×𝒛−𝒏𝜷 (3–8) 

 𝜸(𝒛) =  𝑰 + 𝜸𝟏×𝒛−𝟏 + ⋯ + 𝜸𝒏𝜸×𝒛−𝒏𝜸 (3–9) 
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The matrices 𝜶(z), 𝜷(z) and γ(z) in (3–7)-(3–9) can be expanded as (3–10)-(3–12). 

 

𝜶(𝒛) = [
𝟏 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝟏

] + [
𝜶𝟏𝟏

(𝟏) ⋯ 𝜶𝟏𝒎
(𝟏)

⋮ ⋱ ⋮
𝜶𝒎𝟏

(𝟏) ⋯ 𝜶𝒎𝒎
(𝟏)

] ×𝒛−𝟏 + ⋯ 

+ [
𝜶𝟏𝟏

(𝒏𝜶) ⋯ 𝜶𝟏𝒎
(𝒏𝜶)

⋮ ⋱ ⋮
𝜶𝒎𝟏

(𝒏𝜶) ⋯ 𝜶𝒎𝒎
(𝒏𝜶)

] ×𝒛−𝒏𝜶 

(3–10) 

 

𝜷(𝒛) =  [

𝜷𝟏𝟏
(𝟎)

⋯ 𝜷𝟏𝒑
(𝟎)

⋮ ⋱ ⋮

𝜷𝒎𝟏
(𝟎)

⋯ 𝜷𝒎𝒑
(𝟎)

] + [

𝜷𝟏𝟏
(𝟏)

⋯ 𝜷𝟏𝒑
(𝟏)

⋮ ⋱ ⋮

𝜷𝒎𝟏
(𝟏)

⋯ 𝜷𝒎𝒑
(𝟏)

] ×𝒛−𝟏 + ⋯ 

+ [

𝜷𝟏𝟏
(𝒏𝜷) ⋯ 𝜷𝟏𝒑

(𝒏𝜷)

⋮ ⋱ ⋮

𝜷𝐦𝟏
(𝒏𝜷) ⋯ 𝜷𝒎𝒑

(𝒏𝜷)

] ×𝒛−𝒏𝜷 

(3–11) 

 

𝜸(𝒛) =  [
𝟏 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝟏

] + [

𝜸𝟏𝟏
(𝟏) ⋯ 𝜸𝟏𝒒

(𝟏)

⋮ ⋱ ⋮
𝜸𝒎𝟏

(𝟏) ⋯ 𝜸𝒎𝒒
(𝟏)

] ×𝒛−𝟏 + ⋯

+ [

𝜸𝟏𝟏
(𝒏𝜸) ⋯ 𝜸𝟏𝒒

(𝒏𝜸)

⋮ ⋱ ⋮

𝜸𝒎𝟏
(𝒏𝜸) ⋯ 𝜸𝒎𝒒

(𝒏𝜸)

] ×𝒛−𝒏𝜸 

(3–12) 

 

where 𝑛𝛼 , 𝑛𝛽  and 𝑛𝛾  are the orders of the outputs, exogenous inputs, and noise, respectively. 

𝛼(𝑧) is an 𝑚×𝑚 matrix, 𝛽(𝑧) is an 𝑚×𝑝 matrix, and 𝛾(𝑧) is an 𝑚×𝑞 matrix. 

To calculate the coefficient matrix, the two-stage least squares algorithm is detailed as 

follows. The two-stage least squares approach is provided in [30] for the SISO ARMAX 

algorithm, and is extended to the MIMO ARMAX case in (3–6). The least squares algorithm 

may be applied twice in two stages. The first stage is to estimate the unknown random inputs for 

the MIMO ARMAX model through the MIMO ARX model 

 𝜶𝑭(𝒛)𝒚(𝒕) = 𝜷𝑭(𝒛)𝒖(𝒕) + 𝒆(𝒕) (3–13) 
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where 𝐹 is the order of autoregressive and input parts of the model, and 𝐹 is higher than any of 

the orders in the MIMO ARMAX model but is not more than double of the highest order in the 

MIMO ARMAX.  

The linear regression vector in [30] can be presented as: 

 𝝋𝑭(𝒕) = [−𝒚𝑻(𝒕 − 𝟏) ⋯ − 𝒚𝑻(𝒕 − 𝑭) 𝒖𝑻(𝒕 − 𝟏) ⋯ 𝒖𝑻(𝒕 − 𝑭)]𝑻 (3–14) 

 

In addition, ΘF is the coefficient matrix.  

 𝜣𝑭 = [𝜶𝟏
𝑭 ⋯ 𝜶𝑭

𝑭   𝜷𝟏
𝑭 ⋯ 𝜷𝑭

𝑭]𝑻 (3–15) 

 

where 𝛼𝑖
𝐹  is 𝑖th autoregressive coefficient matrix, and 𝛽𝑖

𝐹  is 𝑖th known input matrix. The first 

least squares estimation from 𝑁 samples of measurement is: 

 𝜣̂𝑭 = [
𝟏

𝑵
∑ 𝝋𝑭(𝒕)[𝝋𝑭(𝒕)]𝑻

𝑵

𝒕=𝟏

]

−𝟏

[
𝟏

𝑵
∑ 𝝋𝑭(𝒕)𝒚𝑻(𝒕)

𝑵

𝒕=𝟏

] (3–16) 

 

The estimated unknown inputs are: 

 𝒆̂(𝒕) = 𝜶̂𝑭(𝒛)𝒚(𝒕) − 𝜷̂𝑭(𝒛)𝒖(𝒕) (3–17) 

 

Therefore, (3–6) can be modified as (3–18), which is the pseudo-ARMAX model since it 

contains the estimation results. 
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 𝜶(𝒛)𝒚(𝒕) = 𝜷(𝒛)𝒖(𝒕) + 𝜸(𝒛)𝒆̂(𝒕) (3–18) 

 

Similarly, the linear regression is pseudo-linear regression: 

 
𝝋̂(𝒕) = [−𝒚𝑻(𝒕 − 𝟏) ⋯ − 𝒚𝑻(𝒕 − 𝒏𝒂)  𝒖𝑻(𝒕 − 𝟏) ⋯ 𝒖𝑻(𝒕 − 𝒏𝒃)𝑻 

𝒆̂𝑻(𝒕 − 𝟏) ⋯ 𝒆̂𝑻(𝒕 − 𝒏𝒄)] 
(3–19) 

 

Thus, the coefficient matrix is: 

 𝜣 = [𝜶𝟏 ⋯ 𝜶𝒏𝒂    𝜷𝟏 ⋯ 𝜷𝒏𝒃  𝜸𝟏 ⋯ 𝜸𝒏𝒄]𝑻 (3–20) 

 

The estimated coefficients of the MIMO ARMAX model can be obtained from the 

second stage of the least squares algorithm. 

 𝚯̂ = [
𝟏

𝑵
∑ 𝝋̂(𝒕)𝝋̂𝑻(𝒕)

𝑵

𝒕=𝟏

]

−𝟏

[
𝟏

𝑵
∑ 𝝋̂(𝒕)𝒚𝑻(𝒕)

𝑵

𝒕=𝟏

] (3–21) 

 

where 𝛩̂ is the matrix coefficients which can be calculated by two-stage least squares. 

The MIMO ARMAX model is identified in the discrete-time domain. If converted into 

the continuous-time domain, the system transfer function can be represented by a polynomial 

function as 
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 𝑮(𝒔) = 𝒚(𝒔)× [
𝒖(𝒔)

𝒆(𝒔)
]

−𝟏

= [𝜶−𝟏(𝒛)𝜷(𝒛)  𝜶−𝟏(𝒛)𝜸(𝒛)]𝒛=𝒆𝒔𝑻𝒔  (3–22) 

 

where 𝑻𝒔 is the sampling period.  

 𝑮(𝒔) =
𝜶∗(𝒛)

|𝜶(𝒛)|
[𝜷(𝒛)  𝜸(𝒛)]𝒛=𝒆𝒔𝑻𝒔  (3–23) 

 

where 𝜶∗(𝒛) is the adjugate matrix of 𝜶(𝒛) and |𝜶(𝒛)| can be rewritten as (3–24).  

 ∏(𝒔 − 𝝀𝒊)

𝒓

𝒊=𝟏

= |𝜶(𝒛)|𝒛=𝒆𝒔𝑻𝒔  (3–24) 

 

Since the identification procedure may introduce the unexpected modes which are 

numerical artifacts and weaker modes, these modes need to be filtered out from the dominant 

low-frequency modes which range from 0.2 Hz to 2.5 Hz. In [44], a feasible method which can 

finish selecting the modes through pseudo-energy from the MIMO ARMAX model has been 

employed in the proposed method. The modes with the highest energy may be the true system 

modes, and ones with low energy would be fake modes.  

Based on above analysis, both the MIMO subspace state space model and the MIMO 

ARMAX model are equivalent transfer function models of the original system. The subspace 

state space model is represented by a set of differential equations in continuous-time domain, 

while the MIMO ARMAX model is represented by a set of difference equations in discrete-time 

domain. 
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3.3 Methodology for ARMAX Model Identification 

This section introduces the methodology to build out the MIMO ARMAX model using 

measurement data to capture dominant inter-area modes of the power system for oscillation 

damping control. The block diagram of the presented methodology is shown in Figure 3–1, 

which consists of five steps: input selection, output selection, identification trigger, model 

estimation, and model validation. In addition, the concept of the adaptive and coordinated control 

design based on the validated MIMO ARMAX model is discussed in this part. 

3.3.1 ARMAX Model Input Selection 

The first step is to choose the input signals [45]. If applying the MIMO ARMAX model 

for an oscillation mode meter, any measurable signal can be selected as the input of the MIMO 

ARMAX model. However, since the purpose of the MIMO ARMAX model in this research is 

oscillation damping control, actual controllable signals in the power system should be selected as 

the inputs of the MIMO ARMAX model, e.g., the controllable setpoint signals of PSS, FACTs 

devices, and HVDC links. In other words, the input signals of the MIMO ARMAX model can be 

controlled and modulated to suppress the target oscillation modes. Furthermore, to reduce the 

number of the MIMO ARMAX inputs, the conventional residue method can be used to pre-select 

the signal with high sensitivity of dominant oscillation modes. 
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Figure 3–1 Flowchart of the proposed model identification methodology 
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Taking PSS as an example, the selected input signal is illustrated in Figure 3–2. The 

voltage reference of the excitation system (𝑉𝑟𝑒𝑓) is usually a given constant value to maintain the 

generator terminal voltage around its rating value. For a local PSS, its output (𝑉𝑝𝑠𝑠) is added to 

the 𝑉𝑟𝑒𝑓 to provide damping to suppress local oscillation modes. If using probing data for the 

MIMO ARMAX model identification, the sum of 𝑉𝑟𝑒𝑓 and the probing signal can be selected as 

the input. Nevertheless, when using ambient data or ring-down data, since there is no variant 

signal added to 𝑉𝑟𝑒𝑓 , the summation of the voltage reference, terminal voltage (𝑉𝑡), and the 

output of PSS, is selected as the input signal of the MIMO ARMAX model. 

 

Vref +
+ ω

AVR & EX G

PSS

Vt

Selected input 
signal

Vpss

 

AVR: automatic voltage regulator Vpss: output of PSS 

EX: exciter Vref: voltage reference 

G: generator Vt: generator terminal voltage 

PSS: power system stabilizer ω: rotor angular speed deviation 

Figure 3–2 Illustration of the input signal of the ARMAX model 

 

3.3.2 ARMAX Model Output Selection 

The outputs of the MIMO ARMAX model should reflect the dominant modes in the 

power system. Rotor angular speed, tie-line active power, and generator bus frequency are the 
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most commonly used observation signals to reflect oscillations. These types of signals can be 

selected as the outputs of the MIMO ARMAX model. 

For a large power system, it is unnecessary to select too many signals as the outputs of 

the MIMO ARMAX model. Instead, it is feasible to select one representative signal for each 

coherent group to reduce the output number of the MIMO ARMAX model. Traditionally, 

coherency analysis is conducted by using a classical two-order generator model in the offline 

environment [46]. This research utilizes the CCI to identify the coherency groups online using 

pure measurement data in the online environment.  

The process of identifying coherent machines does not necessarily guarantee that inter-

area modes can be observed in the measurements. Therefore, the Fast Fourier Transform (FFT) 

algorithm is adopted to select the optimal output of the MIMO ARMAX model in each coherent 

group after the coherency analysis. The candidate measurement signals are ranked from high to 

low according to the normalized magnitude at the frequency point of the dominant modes, and 

then the highest one in each coherent group will be selected as the outputs of the MIMO 

ARMAX model. Summarily, the criterion for the representative outputs in each of coherency 

groups is that they have the best observability for all target inter-area oscillation modes through 

the FFT computation. Furthermore, in order to retain the characteristics for the full system, each 

coherency group may keep a measurement at least. 

3.3.3 Identification Trigger 

Three types of measurement data (probing data, ambient data, and ring-down data) can be 

utilized to build the ARMAX model [47]–[49]. For a large power grid, probing data are 

theoretically ideal to build the model because system response usually contains most of the 
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modes when a probing signal is injected into the system. However, probing data require 

consistent excitations, which is not practical during system operations. Compared with probing 

data, ambient data and ring-down data are much easier to be collected in the online environment 

because they can be measured when load variation/generation regulation is within a small range 

or with large system disturbances (e.g., line trips, generation trips, and load sheddings) during 

system operations. Hence, both ambient data and ring-down data are considered in this chapter. 

The online model identification is triggered by system events including generation trips, 

load sheddings, and topology changes due to line trips, etc. these system events can be detected 

by the existing situational awareness functions based on wide-area measurement. If there are 

events, the model will be update immediately when the data collection is ready. In addition, the 

identification procedure can be triggered by predefined timer (periodical trigger). If there are no 

system events, the model will be updated using collected ambient data in every 5 minutes. 

3.3.4 ARMAX Model Estimation 

Before using the ambient data and ring-down data, it is necessary to remove direct 

current trends within the measurement data. Normally, this operation is known as de-trending, 

and keeps the result from being overwhelmed by the nonzero mean and the trend terms.  

There are several candidate models in the model pool, which is expected to avoid 

revising models several times in one update cycle so that the identification process can keep the 

computational efficiency. In the model pool, the orders of the MIMO ARMAX models have 

been adopted depending on the priori knowledge. The highest order of the MIMO ARMAX 

model in the model pool is 50. When the identification is triggered, these MIMO ARMAX 

models with different orders in the model pool will be identified simultaneously. The model 
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coefficients in (3–10) - (3–12) can be computed by using the two-stage least squares algorithm 

which is given in the previous part of the chapter. The model with highest accuracy in both time 

domain and frequency domain specified in the next subsection is selected as the identified model. 

If the identification results from all MIMO ARMAX models cannot fulfill the accuracy 

requirements, the current identification would be abandoned. The parameters of the adaptive 

controllers would not be model updated in this cycle. 

3.3.5 ARMAX Model Validation 

In time domain, the response of the identified model is compared with actual response. 

To determine if the response of the model matches with the actual one, the fitting accuracy index 

is defined as (2–5). 

In the frequency domain, the eigenvalues calculated by the denominator polynomial of 

the MIMO ARMAX model are compared with results of Matrix Pencil (MP) analysis of the 

measurement data. MP is a modal extraction technique (similar to Prony method), which 

effectively estimates the dominant modes' information in a response [50]. Meanwhile, it can be 

also viewed as a benchmark to examine the outputs from the MIMO ARMAX model. In (3–24), 

the modes of the system can be derived from the denominator of the polynomial function. Based 

on the sampling period 𝑇𝑠, a mode with real part σ and imaginary part ω can be written as 

 𝝈 + 𝒋𝝎 =  
𝟏

𝑻𝒔
× 𝐥𝐧(𝝃) (3–25) 

 

where 𝜉 is a vector of poles in the 𝑧‒domain. 
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The criterion, which determines the model is good or not, is that the accuracy index is 

over 85%, and the deviations of real parts and imaginary parts of eigenvalues in frequency 

domain are less than 0.05, compared with the results of MP.  

Supposing the inputs and outputs are temporarily unavailable due to the topology changes, 

the selection of inputs and outputs needs to be redone manually. 

3.3.6 Concept of Control Design 

The use of the MIMO ARMAX model has many obvious and potential benefits. The 

simplest but most important one is that the model is a measurement-based model, which requires 

very little prior information about the system. Since the MIMO ARMAX model selects actual 

controllable signals in a power system as the inputs, it is a causal model which can capture all the 

dominant oscillation modes and represent the entire power system for oscillation damping 

control. More importantly, the MIMO ARMAX model has equivalent accuracy with the MIMO 

subspace state space model, but requires lower order and less computation time. Hence, it is 

more suitable to improve adaptivity and coordination of the oscillation damping control system 

in the online environment. Moreover, the case study shows the circumstance where only the 

setpoints of PSS are selected as the input of the MIMO ARMAX model. If FACTS devices and 

HVDC links are employed by a power system, the proposed methodology still applies for the 

circumstances where the setpoints of FACTS devices and HVDC links are selecting as the inputs 

signals. 
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Figure 3–3 Architecture of the adaptive and coordinated oscillation damping control system 

 

The general architecture of the adaptive and coordinated oscillation damping control 

system is shown in Figure 3–3. Taking one wide-area oscillation damping controller at a 

generation based on lead-lag compensation for instance, the MIMO ARMAX model is identified 

using ambient data or ring-down data from WAMS. In normal operating conditions, the model 

will be updated using ambient data. The model updating rate could be once per 5 minutes. If an 

event (e.g., line trip, generation trip, or load shedding) occurs, the model is updated using the 

latest ring-down data. The model could be updated within 11-12 seconds (including data window 

and computation time). The starting point of the ring-down data can be determined by event 

detection function in WAMS. It is noted that the identified model is a closed-loop system model, 

which includes the controller requiring parameter update. However, since the parameters of the 
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controller are already known, it is not difficult to derive the open-loop system model which 

excludes the controller. 

 

 

Figure 3–4 Time sequence of the adaptive approach 

 

Based on the identified model, the residue phase can be estimated under the latest 

operating condition, and is used to update the parameters of the lead-lag compensator (𝑇1, 𝑇2, 𝑇3, 

and 𝑇4). Moreover, the optimal gain (𝐾𝑎) is determined by optimization to maximize the overall 

damping improvement of all oscillation modes in consideration. The updated control parameters 

are remotely configured to dispersed controllers in different power plants and substations. 

Figure 3–4 shows the time sequence of the adaptive approach. Model A is identified 

using the ambient data, and then the oscillation damping controllers are tuned based on Mode A 

for the next disturbance. If there is no event, Model A and controller parameters are updated 

using the ambient data in the next data window. When an event (Event 1) occurs, the controllers 
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will perform with tuned parameters based on the latest Model A. After Event 1 occurred, Model 

B is identified using the ring-down data, and the controller parameters can be updated based on 

Model B. Although the controllers perform with the parameters tuned based on Model A (not 

Model B) during Event 1, the oscillation damping control system may track the continuous 

variation of operating conditions and ready to experience the next disturbance. Similarly, Model 

C can be identified by the ambient data after Event 1, while Model D will be identified using the 

ring-down data in Event 2 to tune controllers for the subsequent disturbance. 

3.4 Case Study 

3.4.1 Brief Introduction of the NPCC System 

The proposed method is validated in the 16-machine 68-bus NPCC system, which is a 

reduced order model of the New England test system (NETS)/New York power system (NYPS) 

interconnected system. As shown in Figure 3–5, NETS and NYPS are represented by two groups 

of generators (G1 to G9 and G10 to G13), respectively. Three other neighboring areas are 

approximated by equivalent generator models (G14 to G16). Generators G1 to G8 and G10 to 

G13 have direct current excitation systems, while G9 has fast static excitation. The rest of the 

generators have manual excitation. To create multiple oscillation modes with poor damping 

ratios, only G1 to G3 and G8 to G9 are equipped with local PSSs. The system parameters can be 

seen in [51].  

The study system has four dominant inter-area oscillation modes. Their oscillation 

frequencies and damping ratios are given in Table 3-1. There are three modes with poor damping 

ratio. It is noted that the 0.63 Hz mode has the smallest damping ratio, in which the generators in 

NETS oscillate against the generators in NYPS. 
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Figure 3–5 Single line diagram of the 16-machine 68-bus NPCC system 

 

Table 3-1 Modal analysis of the NPCC system 

 Type Frequency (Hz) Damping ratio (%) Participated generators 

1 Inter-area 0.38 15.90 G1~G13 vs. G14, G15 

2 Inter-area 0.41 6.38 G1~G14 vs. G15, G16 

3 Inter-area 0.63 3.57 G1~G9 vs. G10~G13 

4 Inter-area 0.83 5.28 G14, G16 vs. G15 

 

It is assumed that PMU devices are installed at all the buses to measure bus frequency 

and generator variables, like voltage reference of excitation system, PSS output, and generator 

terminal voltage. In this chapter, measurement data are generated by dynamic simulation in 

MATLAB/Simulink. According to the PMU measurement accuracy specified in the standard 

IEEE C37.118-1, a randomized time-variant measurement error within 5 mHz is added to the 
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simulation data [52]. The simulation data and the measurement error together are considered to 

be real measurement data collected by field PMUs. 

3.4.2 Input and Output Selection 

As mentioned in section 3.3.1, the controllable setpoint signals of a power system should 

be selected as the input signals. Since there are five generators equipped with local PSSs, and 

ambient data and ring-down data are utilized for the model identification, the sum of voltage 

reference, terminal voltage, and output of PSS at each of these five generators is selected as an 

input signal of the ARMAX model. 

The output selection is based on coherency analysis and FFT analysis. The results of 

CCI-based coherency analysis are given in Figure 3–6. 

 

 

Figure 3–6 Coherency analysis based on CCI 
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The red part, green part, and blue part represent high, intermediate, and low coherency 

between different generators, respectively. The results illustrate that the study system can be 

divided into five coherency groups: G1 to G9, G10 to G13, G14, G15 and G16. The coherency 

analysis results are consistent with those of the conventional method [22]. In this chapter, 

frequency signals at each generator bus are the candidate output signals. Since G14, G15, and 

G16 are the equivalent generators in coherency group 3, 4, and 5, respectively, bus frequency f14, 

f15, and f16 are selected as the representative signal of each coherency groups.  

To select one representative signal for group 1 and 2, all the generator bus frequency 

signals in group 1 and 2 are analyzed by using FFT analysis in several separate tests. The 

normalized results of FFT analysis are shown in the radar chart in Figure 3–7. Bus frequency at 

Bus 5 and Bus 13 always have the highest amplitudes for four dominant inter-area modes under 

these different operating conditions. The above result can be compared and verified by the 

results derived from the residue method based on the full-order system model.  

Figure 3–8 shows the magnitude of different generator buses in the residue analysis. Thus, 

the analysis result based on measurement match with the result from the circuit-based model. 

Finally, bus frequencies f5, f13, f14, f15, and f16 are the selected observation signals for 

coherency groups 1, 2, 3, 4, and 5, respectively. 
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Figure 3–7 Observation signal selection results using FFT analysis of three tests 

 

 

Figure 3–8 Observation signal selection results using residue method 
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3.4.3 Performance of the MIMO ARMAX Model 

Both ambient data and ring-down data are applied to build the MIMO ARMAX model. 

As mentioned in 3.3.4, the fitting accuracy index is used for time domain validation, while the 

results from the MP algorithm are selected as the benchmark in frequency domain validation. 

Additionally, the MIMO ARMAX model is compared with the MIMO N4SID model in 

estimation accuracy and computation time. Base on numerous offline experiments, the structures 

of models in the model pool can be determined. The best four different orders of the MIMO 

ARMAX models for identification using ambient data and ring-down data are (6, 4, 3), (8, 5, 3), 

(12, 8, 5) and (15, 9, 5), while the best four different orders of the MIMO N4SID models are 30, 

40, 50 and 60. 

Ambient Data: The ambient data are created by modulating generation (or load) within a 

narrow range (±2%) at each generator bus (or load bus). These 50 (16 generator buses and 34 

load buses) independent sets of ambient data are used to build the MIMO ARMAX model and 

the MIMO N4SID model. In addition, the measurement error within 5 mHz is injected into the 

output signals to emulate the noise in the measurement data. The data is downsampled to a rate 

of 5 samples per second and 5-minute window size length is chosen in the ambient data analysis.  

Taking the independent sets of ambient data by generation modulation at Bus 3 and load 

modulation at Bus 10 for instance, Figure 3–9 and Figure 3–10 show the time domain response 

comparison of the actual system, the MIMO ARMAX model and the MIMO N4SID model in 

these two cases, respectively.  
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Figure 3–9 Comparison of bus frequency response at Bus 5 

 

 

 

Figure 3–10 Comparison of bus frequency response at Bus 5 
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The optimal order of the MIMO ARMAX model for maximum fitting accuracy is 

(𝑛𝛼 , 𝑛𝛽 , 𝑛 𝛾) = (8, 5, 3), while the optimal order of the MIMO N4SID model is 40. Both the 

MIMO ARMAX model and the MIMO N4SID model have similar time domain response with 

the actual system even if measurement error is present. Due to page limitation, other four outputs 

of the measurement-based models (frequency of Bus13, Bus14, Bus15, and Bus16) are not given 

(similarly hereinafter). 

In frequency domain, the eigenvalues of all the four dominant inter-area modes are also 

estimated by using the MP algorithm, the MIMO ARMAX model, and the MIMO N4SID model 

using the 50 independent sets of ambient data. For the optimal orders in two models, the 

eigenvalues comparison and the error of modes identification comparing with MP are shown in 

Figure 3–11 and Table 3-2 which contains absolute values of maximum bias (Max.) and standard 

deviation (Std.), respectively. Both MIMO ARMAX model and the MIMO N4SID model can 

capture all the inter-area oscillation modes. Nevertheless, the estimation results of the MIMO 

ARMAX model are slightly closer to the benchmark than the MIMO N4SID model. 

Ring-down Data: Generation trip, load shedding, and line trip events are generated to 

demonstrate how the proposed methodology behaves with the ring-down data. The sampling rate 

is 30 samples per second, and the data window is 10 seconds. To eliminate the impact of system 

transient, the first swing data is removed for the model identification. Also, 5-mHz measurement 

error is included. 
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(a) Model 1(0.38Hz) 

 
(b) Mode 2(0.41Hz) 

  

 
(c) Mode 3(0.63Hz) 

 
(d) Mode 4(0.83Hz) 

Figure 3–11 Eigenvalue comparison 

 

 

Table 3-2 Accuracy of modes for ARMAX and N4SID using ambient data 

  Bias Mode1 Mode2 Mode3 Mode4 

MIMO 

ARMAX 

Real 
Max. 0.04 0.03 0.02 0.05 

Std. 0.01 0.02 0.01 0.01 

Imag. 
Max. 0.05 0.03 0.03 0.02 

Std. 0.00 0.01 0.02 0.01 

MIMO 

N4SID 

Real 
Max. 0.08 0.07 0.05 0.08 

Std. 0.02 0.02 0.03 0.04 

Imag. 
Max. 0.10 0.11 0.14 0.05 

Std. 0.02 0.01 0.05 0.02 
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Figure 3–12 and Figure 3–13 are two cases of validation using the 53 (16 generations, 34 

loads and 3 tie-lines) independent sets of ring-down data. Figure 3–12 shows the bus frequency 

response at Bus 5 in case of 20% generation trip of G3 at time 𝑡 =  1 second. Figure 3–13 shows 

the bus frequency response at Bus 5 in case of 20% load shedding at Bus 39 at time 𝑡 =  1 

second. In the two cases, the optimal order the MIMO ARMAX model is (𝑛𝛼 , 𝑛𝛽  , 𝑛 𝛾) =

(12, 8, 5), and the optimal order the MIMO N4SID model is 60. 

 

 

Figure 3–12 Comparison of bus frequency response at Bus 5 
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Figure 3–13 Comparison of bus frequency response at Bus 5 

 

 

For the optimal orders in two models from all sets of ring-down data, the comparison of 

the estimated eigenvalues using each independent set of ring-down data and the error of modes 

identification comparing with MP are given in Figure 3–14 and Table 3-3, which contains 

absolute values of maximum bias (Max.) and standard deviation (Std.), respectively.  

Similarly, both the MIMO ARMAX model and the MIMO N4SID model can capture all 

the dominant oscillation modes of the study system. The event data at the first swing are 

removed for the identification since the strong non-linearity may corrupt the model identification. 
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(a) Model 1(0.38Hz) 

 
(b) Mode 2(0.41Hz) 

  

 
(c) Mode 3(0.63Hz) 

 
(d) Mode 4(0.83Hz) 

Figure 3–14 Eigenvalue comparison 

 

 

Table 3-3 Accuracy of modes for ARMAX and N4SID using ring-down data 

  Bias Mode1 Mode2 Mode3 Mode4 

MIMO 

ARMAX 

Real 
Max. 0.11 0.05 0.05 0.10 

Std. 0.02 0.01 0.02 0.03 

Imag. 
Max. 0.03 0.07 0.05 0.04 

Std. 0.02 0.01 0.01 0.02 

MIMO 

N4SID 

Real 
Max. 0.20 0.10 0.13 0.10 

Std. 0.05 0.04 0.06 0.09 

Imag. 
Max. 0.10 0.07 0.07 0.05 

Std. 0.03 0.02 0.03 0.03 
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The estimation accuracy and computation time comparison of the two models are shown 

in Table 3-4. The cases "generation modulation at Bus 3" and "20% load shedding at Bus 39" are 

selected as examples. To have equivalent fitting accuracy and mode estimation results with the 

MIMO ARMAX model, it is necessary to increase the order of the MIMO N4SID model. For 

instance, when using ring-down data, the MIMO N4SID models with low order are not capable 

of exhibiting the dynamic behavior under the contingencies in the system unless the order is 

increased to 60. If the order of the MIMO N4SID model is 40 (or 50), the fitting accuracy index 

is 65.3% (or 74.1%). However, the order of the MIMO ARMAX model is (𝑛𝛼, 𝑛𝛽 , 𝑛 𝛾) =

(12, 8, 5), which is much less. 

 

Table 3-4 Performance comparison of the two models in model pool 

Data type  Model type Model order Accuracy Index (%) Time (sec) 

Ambient 

ARMAX (6, 4, 3) 81.2 0.85 

ARMAX (8, 5, 3) 91.4 0.93 

ARMAX (12, 8, 5) 86.1 1.14 

ARMAX (15, 9, 5) 82.5 2.17 

N4SID 30 78.2 6.40 

N4SID 40 86.5 7.71 

N4SID 50 84.3 8.23 

N4SID 60 74.7 8.44 

Ring-down 

ARMAX (6, 4, 3) 78.1 0.88 

ARMAX (8, 5, 3) 83.6 1.02 

ARMAX (12, 8, 5) 91.8 1.26 

ARMAX (15, 9, 5) 89.2 2.10 

N4SID 30 61.7 4.67 

N4SID 40 65.3 6.27 

N4SID 50 74.1 7.35 

N4SID 60 85.4 8.61 
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More importantly, if two models need to achieve similar results, the MIMO N4SID 

model identification requires about 7-8 seconds, while the MIMO ARMAX model requires about 

1 second. The computation time of the MIMO ARMAX model is much less than that of the 

MIMO N4SID model. It is noted that although the order of the MIMO ARMAX for identifying 

the ring-down data is higher than the order for identifying the ambient data, the computational 

speed does not increase significantly. 

3.5 Oscillation Damping Control Using Measurement-Based Approach 

In this part, the measurement-driven model is computed and updated online using 

synchronized measurements obtained from selected locations in the system. In addition, the 

effectiveness of the proposed measurement-driven adaptive wide-area damping controller 

(WADC) has been demonstrated in a two-area four-machine system on the hardware test-bed 

under various disturbance scenarios [53]. 

3.5.1 Controller Parameters Determination 

Based on the identified model, the residue angle can be estimated under the latest 

operating condition, and is used to update the parameters of the lead-lag compensator [54]. For 

the state matrix: 

 𝑨𝑴 = 𝑴𝜦 (3–26) 

 𝑵𝑨 = 𝑵𝜦 (3–27) 

 

where 𝛬  is a diagonal matrix, and 𝑀  and 𝑁  are right and left model matrices, respectively, 

defined in following equations: 
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 𝜦 = 𝒅𝒊𝒂𝒈(𝝀𝟏, 𝝀𝟐, ⋯ , 𝝀𝒏) (3–28) 

 𝑴 = [𝒎𝟏, 𝒎𝟐, ⋯ , 𝒎𝒏]  (3–29) 

 𝑵 = [𝒏𝟏, 𝒏𝟐, ⋯ , 𝒏𝒏] (3–30) 

 

To provide sufficient damping, the oscillation damping controller should move the 

eigenvalues of the target oscillation mode to the left side of the complex plane. The phase to be 

compensated (𝜙𝑖) is determined by the residue angle (∠𝑅𝑖) of the 𝑖th mode (𝜆𝑖). 

 

 𝝓𝒊 = 𝟏𝟖𝟎° −  ∠𝑹𝒊 (3–31) 

 

where 

 𝑹𝒊 = 𝑪𝒎𝒊𝒏𝒊
𝑻𝑩 (3–32) 

 

Hence, the transfer function of a WADC employing the lead-lag structure is  

 𝑯𝑾𝑨𝑫𝑪(𝒔) = 𝑲𝑾𝑨𝑫𝑪

𝑻𝒘𝒔

𝟏 + 𝑻𝒘𝒔
(
𝟏 + 𝒔𝑻𝟏

𝟏 + 𝒔𝑻𝟐
)𝟐 (3–33) 

 

where 𝑇1 and 𝑇2 are the lead and lag time constants, respectively. 𝑇𝑤 is the washout constant (5-

20s), and 𝐾𝑊𝐴𝐷𝐶 is the gain of the WADC, which can be determined by the root locus. 𝑇1 and 𝑇2 

can be determined by the following equations. 

 𝑻𝟏 =
𝟏

𝝎√𝜶
 , 𝑻𝟐 = 𝜶𝑻𝟏 , 𝜶 =

𝟏 − 𝒔𝒊𝒏(
𝝓𝒊

𝟐 )

𝟏 + 𝒔𝒊𝒏(
𝝓𝒊

𝟐 )
 (3–34) 
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where 𝜔 is the oscillation frequency of the 𝑖th mode, 𝜙𝑖  is the compensation angle of the 𝑖th 

mode.  

Since the identified measurement-driven model is in the form of state space, the 

oscillation frequency can be determined by identified A matrix, and the lead and lag time 

constants can be determined accordingly with (3–33) and (3–34). 

3.5.2 Controller Parameters Remote Configuration 

The updated control parameters are remotely configured to dispersed controllers in 

different power plants and substations. For the security of parameter configuration, the controller 

has separate zones to store operating parameters and backup parameters. The updated parameters 

are configured in the backup zone, and are switched as operating parameters when the output of 

the controller is steady so that no interferences would interrupt the system operation. 

3.6 Implementation on the Large Testbed 

The hardware testbed, which is located in the National Science Foundation (NSF) and 

Department of Energy (DOE) funded engineering research center—the Center for Ultra-wide-

area Resilient Electric Energy Transmission Networks (CURENT), is a platform built for power 

grid control methodology testing and demonstration [55]. The configuration of the hardware 

testbed is shown in Figure 3–15. 
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Figure 3–15 CURENT hardware testbed 

 

The two-area four-machine system as shown in Figure 3–16 is now emulated on the 

hardware testbed, which provides a perfect environment for WADC implementation, testing, and 

demonstration. All the generators are represented using sub-transient models. Governors and 

excitation systems are also included. G1 and G3 are equipped with local PSS devices, whose 

actuation signals are utilized to mitigate the local oscillation modes using their own rotor angular 

speed as the observation signals. In addition, the loads are represented by constant impedance 

models. 
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Figure 3–16 Two-area four-machine system 

 

3.6.1 Simulation Results 

To compare the performances of the fixed WADC and the adaptive WADC, different 

operating conditions are created by (1) changing length of transmission line 7-8 and 8-9 from 50% 

and 220% of original length; (2) Increasing load at Bus 9 from 1,276 MW to 2,076MW. 

Changing the length of transmission lines is used to change the line impedance and emulate 

transmission line trip or reclosing event. Figure 3–17 shows the variations of the lead-lag time 

constants and compensation angles in different operating conditions. It is noted that the 

compensation angle varies more than 140° (20° to 160°) in Figure 3–17 (b). 
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(a) Transmission line 7-8 and 8-9 impedance variation 

 
 

 
(b) Load variation at Bus 9 

Figure 3–17 Variations of lead and lag time constants and compensation angle with changes of 

operating condition 
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Specifically, two operating conditions (scenarios) are selected for further comparison. In 

Scenario 1, based on the base scenario, two consecutive events occur, (1) line trip (the length of 

transmission line 7-8 is 150% of original length), and (2) load increase (load at Bus 9 is 

increased by 300 MW). After the line trip event, the Model B in Figure 3–4) will be identified 

using the ring-down data, and the controller parameters are updated accordingly. Also, after the 

load increase event, both the model (Model D in Figure 3–4) and controller parameters are 

updated once again. After these two consecutive events, the updated controller parameters are 

given in Table 3-5. Similarly, in Scenario 2, two consecutive events occur (line trip, the length of 

transmission line 7-8 is 200% of original length, and load shedding, load at Bus 9 is shut down 

by 200 MW), and the model and controller parameters are updated twice. 

 

Table 3-5 Comparison of fixed WADC and adaptive WADC 

Scenario No. 
Fixed WADC Adaptive WADC 

𝑇1 𝑇2 𝐾𝑊𝐴𝐷𝐶 𝑇1 𝑇2 𝐾𝑊𝐴𝐷𝐶 

1 0.2855 0.2209 4.89 0.4308 0.1627 5.35 

2 0.2855 0.2209 4.89 0.4517 0.1538 5.17 

 

Assuming the time delay in the control loop varies from 100 ms to 300 ms, the adaptive 

delay compensator can measure the time delay in each control cycle, and update its parameters to 

eliminate the impact the time delay. To reduce the computational burden, a lookup table is 

designed, as shown in Table 3-6. 
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Table 3-6 Lookup table for time delay compensator 

 d (ms) TC1 (s) TC2 (s) KC 
1 100 0.2984 0.1970 0.2899 
2 125 0.3147 0.1868 0.2875 
3 150 0.3320 0.1771 0.2850 
4 175 0.3507 0.1677 0.2826 
5 200 0.3707 0.1586 0.2802 
6 225 0.3925 0.1498 0.2778 
7 250 0.4161 0.1413 0.2754 
8 275 0.4419 0.1330 0.2731 
9 300 0.4702 0.1250 0.2708 

 

Table 3-7 Comparison of damping ratios in different operating conditions 

Scenario No. No control Fixed WADC Adaptive WADC 

1 2.53% 6.31% 9.18% 

2 2.44% 3.69% 8.21% 

 

The parameters of the adaptive WADC are given in Table 3-5, and the comparison of 

fixed WADC and adaptive WADC is given in Table 3-7. Since there is only one inter-area mode 

in the study system, the optimal control gain of the adaptive WADC can be easily determined by 

increasing the gain value by one step in each step until the damping ration does not increase. The 

control effects of no additional control, fixed WADC and adaptive WADC are compared by 

time-domain simulation. After two consecutive events, the parameters of fixed WADC do not 

change, while the adaptive WADC updates its parameters based on the identified measurement-

driven model. If another line trip event (one line between Bus 8 to Bus 9) occurs, the damping 

performances during this event are given in Figure 3–18 and Figure 3–19 for two selected 

scenarios. It can be found that the adaptive WADC can provide better damping than fixed 

WADC. 
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Figure 3–18 Control effect comparison of fixed WADC and adaptive WADC in scenario 1 

 

 

 

Figure 3–19 Control effect comparison of fixed WADC and adaptive WADC in scenario 2 

 

0 2 4 6 8 10 12 14 16 18 20
3.5

3.55

3.6

3.65

3.7

3.75

3.8

3.85

3.9

3.95

t(s)

A
c
ti
v
e
 P

o
w

e
r 

B
u
s
 7

-8
 (

p
.u

.)

 

 

No control

Fixed WADC

Adaptive WADC

0 2 4 6 8 10 12 14 16 18 20
1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

t(s)

A
c
ti
v
e
 P

o
w

e
r 

B
u
s
 7

-8
 (

p
.u

.)

 

 

No control

Fixed WADC

Adaptive WADC



 

70 

 

3.7 Conclusion 

Aiming for the adaptive and coordinated oscillation damping control, the methodology to 

identify the MIMO ARMAX-based transfer function model using pure measurement is proposed 

in this chapter. The case study in the NPCC system demonstrates that the identified MIMO 

ARMAX model using ambient data or ring-down data may accurately capture all the dominant 

oscillation modes.  

The time domain response of the MIMO ARMAX model reflects that of the actual 

system, and the estimated eigenvalues are very close to the results of MP analysis. Compared 

with the MIMO subspace state model, the MIMO ARMAX model has equivalent accuracy but 

lower order and less computation time. Meanwhile, the implementation on the hardware testbed 

demonstrates the feasibility of practical implementation of a measurement derived model-based 

WADC for small and large disturbances over a wide range of operating conditions. The future 

work includes achieving coordinated and adaptive damping control among inter-area modes 

using the measurement-driven model. The further demonstration of the proposed adaptive 

WADC on the CURENT hardware testbed would be also exhibited. 
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CHAPTER 4 COMPARISON OF MIMO SYSTEM 

IDENTIFICATION METHODS FOR 

ELECTROMECHANICAL OSCILLATION DAMPING 

ESTIMATION 

 

4.1 Introduction 

In interconnected systems, damping of inter-area oscillations is one of the main concerns 

for improving power system stability and power transmission [56]. Traditionally, the 

electromechanical oscillation damping estimation is mainly based on the offline circuit-based 

model which is not feasible to update frequently and promptly. If proper online monitoring tools 

are available, this can help operators determine the security margin of the system, therefore 

allowing them to take proper actions in real time. Since PMUs are deployed throughout 

American continent, it is practical to estimate oscillation modes through the data-driven methods 

with wide-area measurement data [57]. 

As known, various identification methods can be applied to estimate the oscillation 

modes using measurement data, such as wavelet transform, spectral analysis, state space 

identification, transfer function identification and so on [58].  

Theoretically, all algorithms can serve as mode meters with the SISO structure. Some 

earlier studies have compared the performance of above approaches. However, few studies 

discuss the performances of MIMO models.  
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Compared to SISO models, MIMO models have significant advantages: 

• Linear systems may be built by MIMO models based on inputs and outputs. 

• MIMO models can estimate system modes as accurate as SISO models. Meanwhile, 

they can be applied to design the damping controller. 

• It is feasible for MIMO models to calculate mode shapes which are hard through 

SISO models. 

However, it is quite difficult or impossible for some algorithms to convert SISO models 

into MIMO models. In this chapter, two categories of algorithms, which are the subspace state-

space identification and the transfer function identification, are selected to compare in terms of 

the performance of MIMO identification approaches.  

For subspace state space methods, MIMO N4SID identification, MIMO MOESP 

identification and MIMO stochastic subspace identification are selected. In the transfer function 

group, it has MIMO ARMAX with two-stage least squares (2LS) and MIMO ARMAX with 

recursive least squares (RLS). 

The remaining content of the chapter is organized as follows. The next part describes two 

families of identification methods. Then, the performance is compared by case studies in the 

NPCC system. The final part gives the conclusion. 
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4.2 MIMO System Identification Algorithms 

The power system model for the small signal analysis is usually represented by the state 

space method, which is a set of first order differential equations based on the linearization around 

a certain operation point, as shown in the equations (3–1) and (3–2), respectively. 

4.2.1 MIMO Subspace State-Space Identification 

According to (3–1) and (3–2), the linear system can be presented by the subspace state-

space algorithm. A system with 𝑚 inputs and 𝑝 outputs has the state-space equations as follow:  

 

 𝒙(𝒕)̇ = 𝑨𝒙(𝒕) + 𝑩𝒖(𝒕) + 𝑲𝒆(𝒕) (4–1) 

 𝒚(𝒕) = 𝑪𝒙(𝒕) + 𝑫𝒖(𝒕) + 𝒆(𝒕) (4–2) 

 

where 𝑥(𝑡)  is the state variable vector with 𝑛  elements. 𝐴 , 𝐵 , 𝐶 , 𝐷  and 𝐾  are system 

identification matrices, respectively. 𝑢(𝑡), 𝑒(𝑡) and 𝑦(𝑡) are the observable input signal vector, 

unobservable measurement vector and output signal vector.  

Essentially, to get the whole system identification model, two subsystems, which are 

deterministic model and stochastic model, may need to estimate respectively, then combine them 

into a consolidated model. When the MIMO subspace state space approach is applied to estimate 

the system model, the deterministic model needs to be mainly considered.  
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Meanwhile, the stochastic model can be computed by the ambient signal analysis. The 

major steps for system identification are described below in terms of the MIMO state space 

model [34], [35], [40]: 

• Estimation of the state, which includes order estimation. 

• Estimation of the matrix 𝐴 and 𝐶. 

• Estimation of the noise model. 

• Estimation of the matrix 𝐵 and 𝐷.    

In [59], the stochastic subspace method avoids forming the covariance matrix and using 

semi-infinite block Hankel matrices. Hence, the stochastic subspace identification may compute 

more rapidly than the subspace state space identification. 

4.2.2 MIMO Transfer Function Identification 

From 3.2, the MIMO transfer function between inputs and outputs is represented as (3–3) 

and (3–4). (3–4) shows that the certain output may be regarded as the aggregated result from the 

contribution of all inputs. Therefore, in the discrete-time domain, the contribution of the input 

signals to the outputs at the sampling time 𝑡 can be exhibited as (3–6). 

4.3 Case Study 

The five methods, which are MIMO ARMAX-2LS, MIMO ARMAX-RLS, MIMO 

N4SID, MIMO MOESP and MIMO stochastic subspace, are tested in the 16-machine 68-bus 

NPCC system, which is a reduced order model of the New England test system (NETS)/New 

York power system (NYPS) interconnected system. The detailed information and topology is 

provided by Figure 3–5. 
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Both ambient data and ring-down data are applied to build the MIMO ARMAX model. 

Total 50 ambient data tests and 50 ring-down data tests are created to evaluate the performance 

of five methods. 

To demonstrate the performance of five methods, accuracy index is still used for time 

domain validation, while the estimated results are compared to modes from the model-based 

algorithm, which is selected as the benchmark in frequency domain validation. To evaluate the 

computation speed associated with model order, the maximum order for all models is 50.  

Meanwhile, the model structure is also depended on the number of inputs and outputs. 

Thus, the number of inputs is 5 and the number of outputs is 16 which means to use generator 

buses as measurement points. 

4.3.1 Results of System Identification using Ambient Data 

The ambient data are generated by tuning generation or load within a narrow range. The 

50 independent datasets of ambient data are utilized in the test. In ambient data, the measurement 

error within 5 mHz is added in the output data. The data is downsampled to a rate of 5 samples 

per second and the calculation window is 5 minutes. 

Figure 4–1 shows the result identified from Bus 5 using ambient data which is generated 

by load changing at Bus 10. Compared to the actual data, the identification results from five 

methods with the best order can obtain the high fitting accuracy index which is over 85%.  
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Fitting accuracy indices of MIMO AMARX-2LS, MIMO AMARX-RLS, MIMO N4SID, 

MIMO MOESP and MIMO Stochastic Subspace are 93%, 89%, 91%, 86% and 87%, 

respectively. Even though the top identification results belong to MIMO ARMAX-2LS and 

MIMO N4SID, the results from other methods are acceptable. However, the computation costs 

are varied in terms of the structures and orders of five models. 
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Figure 4–1 Identification results and comparison using ambient data 

 

In frequency domain, four dominant low-frequency oscillation modes can be identified 

by five methods using 50 independent datasets. According to the optimal orders in five methods, 

the oscillation mode comparison is presented in Figure 4–2. 

The errors of mode identifications are Figure 4–3 and Figure 4–4 which have absolute 

values of maximum bias (Max.) and standard deviation (Std.). 
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(a) Model 1 (0.38Hz) 
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(b) Mode 2 (0.41Hz) 
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(c) Mode 3 (0.63Hz) 
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(d) Mode 4 (0.83Hz) 

Figure 4–2 Eigenvalue comparison  
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Figure 4–3 Accuracy comparison of real part of modes for five methods 

 

 

 

Figure 4–4 Accuracy comparison of image part of modes for five methods 
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4.3.2 Results of System Identification using Ring-Down Data 

The ring-down data are generated by events happened in the system which include 

generation trip, load shedding and line trip. Similarly, the 50 independent datasets of ring-down 

data are utilized in the test. The measurement error within 5 mHz is added in the output data. The 

data is downsampled to a rate of 30 samples per second and the calculation window is 10 seconds. 

Since power systems present strong non-linear features during events happen, the identification 

methods may avoid the first swing from the ring-down data to estimate the oscillation modes. the 

number of inputs is 5 and the number of outputs is 16 which means to use generator buses as 

measurement points. Figure 4–5 demonstrates that one event from 50 independent datasets is 20% 

generation trip happened at G3. The frequency domain comparison for four dominant oscillation 

modes is shown in Figure 4–6. 
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Figure 4–5 Identification results and comparison using ring-down data 
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(a) Model 1 (0.38Hz) 
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(b) Mode 2 (0.41Hz) 
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(c) Mode 3 (0.63Hz) 
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Figure 4–6 Eigenvalue comparison  
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Similarly, compared to the actual data, the optimal identification results from five 

methods are also presented in Figure 4–5. Fitting accuracy indices of MIMO ARMAX-2LS, 

MIMO ARMAX-RLS, MIMO N4SID, MIMO MOESP and Stochastic Subspace are 92%, 90%, 

89%, 88% and 90%, respectively. All identification results in time domain are over 85%. It 

implies that the identification results are quite good when ring-down data are used to derive 

models.  

Compared to the estimated results from ambient data, the estimated results from ring-

down data are slightly worse because the particular disturbance makes the capture of oscillation 

modes more difficult. Similarly, Figure 4–7 and Figure 4–8 exhibit the error of modes 

identification. 

 

 

Figure 4–7 Accuracy comparison of real part of modes for five methods 
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Figure 4–8 Accuracy comparison of image part of modes for five methods 

 

 

4.3.3 Performance Analysis 

All testing data and five methods are implemented on a computer with Intel i5-3230M 

2.6 GHz CPU, 2GB RAM. In order to observe the computation time of five methods, the order 

of models increase while fix the number of inputs and the number of outputs, which are 16 inputs 

and 16 outputs. The computation time of the five methods is shown in Figure 4–9.  

However, the performance of the five models not only depends on the computation time 

but it also is determined by the structures of five models which mean the order of models. In 

Figure 4–9, the time consumption would be high while the order of the identification model 

increases.  

 

 



 

83 

 

 

Figure 4–9 Computation time of five methods 

 

Essentially, each method has an optimal model from the candidate models with different 

orders. In independent tests using the ambient and ring-down data, the optimal order is referred 

to as the order which derives the best identification results. 

Thus, the optimal order of the model needs to be examined. Based on the test system, 

Figure 4–10 (a) and Figure 4–10 (b) presents the optimal models of five methods which the 

accuracy index is over 80% and can obtain the quite accurate mode estimation using ambient 

data and ring-down data, respectively. 
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Figure 4–10 Orders of five methods with acceptable estimation 
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4.4 Conclusion 

According to the above analysis and comparison, the MIMO ARMAX with 2RL, MIMO 

ARMAX with RLS and MIMO stochastic subspace model may have better performance using 

the ambient data and ring-down data. The accuracy of modes estimation from five methods is 

adequate with slight differences. From computation speed aspect, the MIMO ARMAX methods 

may have low-order model structures that reduce the computation burden. In the family of 

transfer function, the recursive calculation method is fairly rapid during optimizing the 

coefficients of the MIMO ARMAX model. Thus, the MIMO ARMAX with RLS may have 

better performance. Meanwhile, since the stochastic subspace avoid effectively forming the 

covariance matrix and using semi-infinite block Hankel matrices. The computation speed is close 

to the MIMO ARMAX with RLS. 

The most significant feature of MIMO models for oscillation damping estimation is that 

the model can be further applied to the oscillation damping control or control parameter 

calibration. 
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CHAPTER 5 DESIGN AND DEVELOPMENT FOR 

DATA HISTORIAN PROJECT IN DOMINION 

VIRGINIA POWER 

5.1 Introduction  

With the expansion of the scale of power systems and widely used advanced information 

technologies, the quantities and categories of data and information at various resolutions are 

increasing dramatically. New phenomena and issues in power systems need to be recognized and 

analyzed. Therefore, data mining and analytics are critical for the power industry. However, 

several ubiquitous challenges are many information silos without cross-system integration, the 

lack of global data description and data models and even insufficient common applications and 

services. They impede efficient data mining, waste valuable information and obstruct advanced 

data analytics in electric utilities under the big data environment. Meanwhile, these challenges 

also have a negative effect on the ever-growing business and delicate management of electric 

utilities. Dominion Virginia Power (DVP), which is one of the nation’s largest producers and 

transporters of electrical energy, has also suffered these problems for a long time [60]. 

For the above challenges, academics have suggested some potential solutions [61], [62]. 

Moreover, some European enterprises have been applying analytic strategies of big data to 

enhance customer management and operational capability. Meanwhile, in terms of data 

collection and communication, International Electrotechnical Commission (IEC) has explored, 

designed and implemented various standard protocols for the power industry. However, most of 

IEC standards have not gained adequate attentions in American power systems. In addition, IT 

commercial giants have also proposed enterprise-level integration solutions based on cloud 

computing in [63]–[65]. However, many of them are conceptual and not easy to practice. In 
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[66]–[70], electric utilities in China have been developing their information platforms and have 

had preliminary achievements. But the platforms are mainly for applications and services in 

control centers rather than the entire enterprise. 

Since the existing solutions are not appropriate and adaptive for large electric utilities, the 

optimal approach is to implement an integrated architecture, an open platform, a flexible and 

standard method for data sharing, and numerous intelligent functionalities. For the special 

requirements of DVP, a new system framework based on a time series database is proposed. By 

adopting advanced information and communication technologies (ICTs), the platform is highly 

integrated and open, the adapters are standardized, and the system is driven by the data model 

which is easily shared and can maintain and store entire information and parameters of 

equipment and devices. Abundant intelligent applications are designed and developed based on 

the integrated data. 

The remaining of this chapter is organized as follows. The second part summarizes the 

status of technical supporting systems. The third part describes the features of the novel 

enterprise-level data platform in DVP. The methodology of data integration is introduced in the 

fourth part. The naming convention which is the basis of the data model is exhibited in the fifth 

part. The design of the hierarchical data model is presented in the sixth part. In the seventh part, 

applications and visualizations for the data platform are introduced. The last part concludes this 

chapter. 

5.2 Current Status of Technical Supporting Systems 

Because of this ever-growing business and the requirement of delicate management at 

DVP, advanced information technologies to be widely used internally are promoted. However, 
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since various operation systems are increasing and information barriers appear, the current 

homegrown data historian cannot fulfill the demand for processing big data and sharing the data 

on the enterprise level. To solve the problems above, the ultimate goal of the data historian 

project is to improve the capability of big data management and implement a robust data 

historian solution for DVP. 

In DVP, several challenges impede efficient data mining and obstruct advanced data 

analytics. 

 

 

Figure 5–1 Operational systems and applications in DVP 

 

Initially, information silos exist in the technical supporting systems. As Figure 5–1 shows, 

more than 20 operational systems and applications should be maintained by different 
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departments and groups in DVP. Because of North American Electric Reliability Corporation 

(NERC) restrictions of cyber security for the different network environments, the systems which 

are in different networks are incapable of interacting with each other. This is the root cause of 

information silos. For example, Energy Management System (EMS) is isolated because EMS is 

in the Process Control Network (PCN) with the highest security. Since the firewall policy does 

not allow the data stream from the low security network to the high security network, it is not in 

compliance to send the information of field tests into EMS from Distribution Management 

System (DMS) which is in the Demilitarized Zone (DMZ) with the lower security. Therefore, if 

there is not a platform for data collection, the information silos are inevitable. 

Furthermore, no semantic layer exists on top of the data. Due to a lack of a global naming 

convention, it is difficult to identify and describe the same data point among different systems. 

Therefore, in order to organize and map data in different systems, DVP is in critical need of a 

semantic layer on top of the data. 

In addition, the current Facility Management Recorder (FMRecorder) which collects 

measurement data and the SAP database which stores the static information have served in DVP 

for over ten years to provide reports and parameter query services. However, several drawbacks 

from two standalone and unassociated systems are evident. With this architecture, it is extremely 

difficult to integrate different data sources, analyze the global information and provide 

visualizations for individuals because no systems have a powerful integration tool or a 

centralized processing ability. 
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Owing to a lack of effective methods to organize data and connect the existing 

information silos, it is impossible to search and retrieve data and information with convenient 

approaches. 

5.3 Features of Enterprise-Level Data Platform 

To manage data and models flexibly and provide applications easily, the innovative 

platform may have four features:  

Scalability: Though the number and the variety of data are increasing continuously, the 

platform may handle a growing amount of work and to be enlarged to accommodate the growth. 

For a data repository, the platform can achieve the centralized archive from various sources and 

upgrade the capacity with very low cost. For third-party applications, the platform would 

message and share data and models with standards based on the loosely coupling architecture. 

Moreover, upcoming applications can be integrated into this platform easily and lower the 

possibility of interferences to the existing business. 

Real time: High-resolution real-time data are integrated in the platform. Therefore, the 

platform uses real-time processing to handle the workload whose state is changing constantly, 

and has real-time access to historical data and current snapshots. Time series databases can 

manage high-resolution real-time data much better than traditional relational databases. 

Service-oriented architecture: The implementation of encapsulating services for hiding 

trivial details is critical for users. Meanwhile, the service-oriented architecture (SOA) may 

guarantee the scalability with the loosely coupling structure. In the platform, the numerous 

adaptors and interfaces of third party applications or systems become common services in the 
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platform through standard protocols. For users, the platform offers flexible and lightweight tools 

for data queries, visualizations, and analytics and so on. 

High reliability: The platform will be a core part of IT systems within the enterprise and 

provide services for different departments through networks. Since the system consists of many 

hardware and software components, partial failures are unavoidable. Therefore, the platform 

design utilizes cluster servers with load balancers to tackle partial failures gracefully without 

service interruptions. Furthermore, to prevent network intrusion and survive in a disaster, the 

platform structure has redundant backup with a disaster recovery system in different sites. 

5.4 Methodology of Data Integration 

With the rapid growth of both structured and unstructured data from multiple sources, the 

current IT infrastructure needs to be reorganized to optimize the flow of big data for fulfilling 

intensive analytic applications. The implementation utilizes the PI system and build a highly 

reliable and flexible common data repository. The data in the PI system can be fed into 

applications and analytics based standard adapters. Users can manage and visualize the data 

through visualization tools in the PI system or data-rich one-line diagrams. 

5.4.1 Types of Big Data 

Big data sets for the enterprise-level data platform are depicted in Figure 5–2. Most real-

time data still depend on the Supervisory Control and Data Acquisition (SCADA) since the 

deployment of Remote Terminal Units (RTUs) is widely practiced and has provided the 

operators the ability of monitoring the operation status of the entire system. Meanwhile, the 

historical data from SCADA contain abundant raw information for Situational Awareness (SA) 

and system planning. On the other hand, with the increasing number of PMUs, high-resolution 



 

92 

 

PMU data can provide more adequate dynamic responses and instantaneous values with accurate 

timestamps.  

 

 

Figure 5–2 Types of big data for the enterprise-level data platform 

 

In the distribution network, with the introduction of intelligent distribution automation 

equipment and distributed generation into the grid, the need to monitor, analyze, optimize and 

control the distribution system in real time is greater than ever, and the data from the Distribution 

Management System (DMS) play an important role to fulfill the above requirements. For 

protection technicians, comprehensive information from Digital Fault Recorders (DFRs), relay 

settings and circuit calculation are critical for detecting and analyzing faults. In addition, 

traditional planning mainly focuses on the off-line limitation calculation, the design of the 

substation and network topology. If it is easier to involve more statistical information from the 
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data platform, the planning decision should be smarter than ever. Moreover, many electric 

utilities maintain and collect the auxiliary information and substation information such as asset 

information, weather information, field test data, and so on. Such information can exert a greater 

contribution for management and operation in power utilities while it is integrated with data from 

other sources. 

5.4.2Implementation of Big Data Integration 

Big data integration (BDI) is fundamental and critical to implement the vision of big data 

in terms of modeling, application and analytics. The value of data can be exhibited by data 

mining only when it is possible for disparate data to link and seamlessly interweave with other 

data to derive a unified and global representation. In [71], the author mentioned that BDI is 

different from traditional data integration in several dimensions. In Figure 5–3, the IT 

infrastructure of big data integration is presented. 

 

 

Figure 5–3 High level architecture of big data integration 
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Meanwhile, several core requirements such as scalability, real time, service-orient service 

and high reliability are needed to be fulfilled. To tackle the challenges, one practical approach is 

provided below: 

First, the data are integrated through unified interface services. Unified interface services 

support connecting the platform to disparate data sources. Some interfaces enable history 

recovery, some simply access the historical data stored in third-party historians. These data 

sources are seamlessly interwoven into the platform independent of source, protocol or vendor. 

Interface services can buffer to multiple servers, intelligent data reduction, single tag definition 

(tags configured on a PI server are synchronized to interface) as well as point by point security. 

Redundancy and auto point creation are also available on interface services. 

Secondly, the data are archived into data collectives and the data-driven model is built. 

Taking advantage of the exception and compression algorithm, data are instantly stored in 

archive servers of the platform and available to users in real-time. Meanwhile, the hierarchical 

data model can create a consistent representation of assets or processes. It can associate data in 

the proper context. The model may provide the easiest way for users to find the information they 

need. 

Thirdly, the applications are provided to end users. To eliminate barriers to use data and 

models, the platform provides the popular tools such as Internet browsers, Microsoft Office and 

mobile phones for end users. It is easy for them to work the data or implement analytics rather 

than waste time on data collection. 
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Finally, the backup strategy is required. The platform has redundant design and two 

groups of systems with same structure serve backup to each other. It can guarantee the reliability 

during the operation 

5.5 Naming Convention for Data Historian 

Before the data model is introduced in the next part, naming convention rules for data 

historian should be presented first. The naming conventions of various systems have been 

nonexistent or uncoordinated and therefore no overarching naming convention exists within 

DVP. However, the data model requires unified and consistent rules within the PI system, 

otherwise data in the data repository cannot be automatically organized as in the hierarchical 

structure in of PI Asset Framework (AF). AF allows users to search measurements and 

parameters based on the either device types or data categories rather than data tags and therefore 

it can improve the users’ experience significantly. 

The current data semantics in various systems within DVP are not clear. Users are not 

easy to obtain the device and measurement information based on names of tags.  Each system 

has its own naming conventions that have been inconsistent with time and with other systems. 

The naming convention of the data historian should follow a standard, systematic methodology 

that takes into account current and future AF structures, current company standards, and current 

industry standards. The tag name should include any information that will be necessary to map it 

to an AF structure, such as location, asset, device of origin, operational identification number, 

and possibly more. Current company standards should be consulted so that users are familiar 

with the data naming standard. However, new industry standards, such as IEC 61850, should be 

consulted as well for insight and conformity on a larger scale. 
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Since most of existing tag names provide information about which primary equipment the 

Intelligent Electronic Device (IED) that gathers the tag is installed on and where the primary 

equipment is located, a functional location oriented naming is one of the objectives of the 

standard. It is therefore proposed that tag names consist of a Context and a Measurement where 

the context contains information from the functional location and measurement defines IED 

specific acquisitions. 

Context answers whose information the PI tag is and Measurement explains what 

information the PI tag is. Figure 5–4 illustrates the standard PI naming frame with Context and 

Measurement divided into subfields. Context and Measurement are separated by a slash whereas 

the sub-fields under them are dissected by dots. 

 

 

Figure 5–4 Standard PI naming structure 

 

The semantics of the proposed Context convention are: 

First, Location provides information about the place of the specific device that the PI tag 

is attached to. Location can be a substation where the PI tag is communicated from or an 

enterprise-wide software program that generates the PI tag. 
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Secondly, Device Type provides the type of device, which may be a piece of primary 

equipment or a specific software program, being referred to by the Location. 

Thirdly, DVP has specific identifications associated with a specific internal ID. For that 

reason, Operation ID in most cases is the operating number of a piece of primary equipment. It 

can also be the name of an application within a software program, etc. 

Finally, Source provides information regarding the source of the information from other 

systems. An optional extension can also contain additional information such as the standardized 

name of the IED or a functional relay ID, etc. 

The semantics of the proposed Measurement convention are: 

Firstly, Function provides information about the standardized smallest entity the 

application of an IED can be decomposed into. The granularity of the decomposition stops at the 

smallest parts which act as atomic building blocks for the complex application of an IED. In a 

nutshell, Function is a group of PI tags that serve a specific function in a Context. 

Furthermore, Measurement Type represents specific information and fundamental 

definition of a PI tag. Measurement Type can be construed to some extent as the data point type 

of PI tags. Some Measurement Type instances have a Measurement Type attribute field to 

complete the definition of a Measurement Type. 

At last, Variable provides information regarding what property of a Measurement Type 

PI tags are assigned to. It prescribes the exact quantity a PI tag is associated with. Some Variable 

instances have a Variable attribute field to complete the definition of a Variable. 
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5.6 Hierarchical Data Modeling in Data Platform 

5.6.1 Common Information Model and Its Extension 

The hierarchical structure is used in AF to store and manage data which are mentioned in 

5.4. To represent the global data model in AF, the feasible approach is to utilize the hierarchical 

structure of the Common Information Model (CIM) in AF with customized extensions. It may 

guarantee the data integration and interoperation from different systems. CIM defines a common 

vocabulary and basic ontology for various aspects of power industries. Various CIM packages 

describe basic classes and attributes for the network, energy management, metering, and outage 

management and so on. However, since CIM would not contain all classes and attributes of a 

specified application, CIM always needs to be customized and extended based on business 

requirements. 

Here is an example in Figure 5–5 to exhibit the concept of the customized extension. 

Self-contained equipment containers, which are extensible and have flexible structures, are used 

to build the hierarchical structure to manage the data in DVP. However, the standard CIM cannot 

fulfill the demand of building the hierarchical structure to maintain the styles and preferences of 

the data model in DVP. Existing types of CIM equipment containers, such as Substation, Bay, 

and VoltageLevel (VL), which are depicted in Figure 5–5, are not self-contained and cannot 

satisfy the requirement of building a hierarchical structure. Thus, a new class called 

“FunctionLocation”, which is derived from EquipmentContainer (EC), is defined in Figure 5–5. 

An association is created between FunctionLocation and EquipmentContainer as well, by which 

a FunctionLocation may have sub-level ECs. 
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Figure 5–5 Chart for the example of CIM extension 

 

5.6.2 AF Implementation Based on Hierarchical Structure 

AF is a single repository for asset-centric models, hierarchies, objects, and equipment 

(hereafter referred to as elements). It integrates, contextualizes, refines, references, and further 

analyzes data from multiple sources including one or more PI data archives and non-PI sources 

such as external relational databases. Together, these metadata and time series data provide a 

detailed description of equipment or assets. 

AF can expose the rich data to components in the PI system such as PI Coresight, PI 

DataLink, PI Notifications, or PI ProcessBook where they can be used to build displays, run 

calculations, deliver important information, and so on. AF also can expose these elements and 
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associate data to non-PI systems via a set of data access products. AF also includes many basic 

and advanced search capabilities to help users obtain static and real-time information. 

The AF implementation consists of two steps: the global AF template is created on the 

ontology layer and the association of data for creating the hierarchical tree is generated.  

For the first step, a CIM profile, which is a subset model of CIM, needs to be created for 

the AF implementation since some of the packages or classes of CIM are needed. Then an AF 

adaptor is developed to create AF templates according to the CIM profile based on AF SDK, as 

shown in Figure 5–6. 

 

 

Figure 5–6 Flowchart of generating the AF templates based on CIM 

 

For the second step, links between data objects need to be established. There are two 

types of links between objects in AF at the data level: Parent-Child and Reference. The ways of 

creating links in AF based on the CIM model are listed below: 

• The aggregation between CIM classes is converted to a Parent-Child link between objects 

of AF: Figure 5–7 exhibits the aggregation between EC and Equipment. As subclasses of 
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EC, Substation and VL are aggregate of equipment, and Substation consists of VLs. In 

AF, equipment, such as buses, breakers, are children of VL, while VL are children of 

Substation, as shown in the right portion of Figure 5–7. 

 

Figure 5–7 Aggregation between Equipment and EquipmentContainer 

 

• The association between CIM classes is converted to a Parent-Child link or a Reference 

between elements of AF: Here is an example to exhibit how to create links. 

ConnectivityNode (CN), ConductingEquipment (CE) and a Terminal are used in CIM to 

describe the topology of the network, as shown in Figure 5–8. Considering most of CEs 

have two Terminals except for BusbarSection and TransformerWinding which have only 

one Terminal, the association between CE and the Terminal is converted to Parent-Child 

link, while the association between CN and Terminal is converted to reference.  

 

The hierarchical structure of AF is shown in Figure 5–9, where  represents an element, 

and  indicates a reference link.  
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Figure 5–8 Associations between CN, Terminal and CE 

 

 

Figure 5–9 Hierarchical structure in AF 
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For example, Acca substation consists of transformers, transmission lines and other 

devices, while transmission-line category is an aggregation of different transmission lines. The 

lines in the “LIN” branch are associated with the lines in the “SUB” branch by reference links. 

Once a hierarchical structure is created in AF, applications and visualizations can be built 

based on AF and achieved data. 

5.7 Data-Driven Analytics and Visualizations 

5.7.1 Data-Driven Analytics 

To improve asset performance, reliability and lifecycle management of assets, it is critical 

to change the maintenance strategy from calendar-based to conditional-based, in order to reduce 

the unnecessary maintenance cost. The platform described above can implement the asset 

monitoring and analytics, and with pre-defined thresholds or conditions, it can generate email 

notifications and work order automatically. 

In terms of asset management in an electric utility, power transformers constitute one of 

the largest investments, therefore it is a high priority to have an effective diagnostic tool for 

condition assessment. Dissolved gas analysis (DGA) of insulating oil is considered the single 

best indicator of a transformer’s overall health condition, with real-time monitoring data 

streaming, online DGA monitoring is built to visualize the trends of 8 critical gas concentrations 

for each transformer, as shown in Figure 5–10.  

Moreover, the Duval triangle method is utilized to evaluate the current energy level of 

gas formation, shown in Figure 5–11. This method has proven to be accurate and dependable 

over many years and is now gaining in popularity 
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Figure 5–10 DGA visualization dashboard for transformer TX3 

 

 

Figure 5–11 Dual triangle method 
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5.7.2 Data-Driven Approach to Interactive Visualizations 

Data and information visualizations appear to be promising and attractive approaches for 

improving the business practices in the power industry. However, the legacy visualization tools 

using in power systems restrict users’ experiences of visualizations since a limited number of 

pre-defined patterns and pictures are created by human designers. In order to improve user’s 

experiences, a data-driven approach to interactive visualizations for data historian is proposed 

and implemented. The powerful data operation and manipulation algorithms are applied to create 

visualizations and avoid overwhelming duty of human maintains. The case studies present that 

the data-driven approach can obtain an interactive and data-rich visualization application that 

improves the understanding and insight of system operating conditions [72]. 

Traditionally, the visualization tools for power system monitoring, control and analysis 

are provided by EMS and other specific calculation applications. Thus, product venders provide 

visualization builders that allow engineers to design and maintain graphical displays that present 

the real-time information along with estimated data and analysis results to help system operators 

monitor power system operations. However, a great number of displays are quite intensive-labor 

to build. They are also difficult to integrate into the data historian since these legacy visualization 

tools are based on designer-driven methods.  

1) Visualizations Based on CIM Model  

In today’s electric utilities, many applications and tools are designed for specific 

objectives and discrete business functions. Therefore, the outcome is the diversity of redundant 

and overlapping information across applications and tools. In order to collect and organize the 

model in an electric utility environment, a general-purpose model-exploration tool needs to 
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develop with the CIM model, which is an open industry standard, to tackle information 

integration. To solve the issues of cross-system integration, the IEC has devoted tremendous 

effort to facilitate the interoperation among various applications and systems. The significant 

achievement is to publish the CIM standard which is can enhance and implement the information 

exchange and collaborations. 

Since CIM describes all categories and components of a power system, it offers a 

standard semantic layer for developing a general-purpose model-exploration tool. Taking 

advantage of the native interoperability in the CIM standard, a visualization tool based on CIM 

model can be built out and it also can be seamlessly deployed into the current infrastructure of an 

electric utility. In the real practice, the model-exploration tool can centralize CIM data through 

consolidating the information from various data sources. Figure 5–12 presents the design of the 

visualization tool with data fed from various sources. 

 

Figure 5–12 Visualization tool based on the CIM model 
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2) Auto-Generation of One-Line Diagrams 

Auto-Generation of a one-line diagram is an attractive topic for electric utilities since this 

functionality does reduce the labor effort significantly. The objective of auto-generation in the 

model-exploration tool is to enable users to see accurate and clear one-line diagrams which 

exhibit the underlying relationship within data. 

The implementation of the visualization tool involves presenting data and information 

through mapping data to graphical components and adapting the graphical elements to present 

the features of data from various systems. The critical operation for achieving this goal is to 

discover the mapping and tuning patterns between the data and the graphical components. As 

long as the discovering operation is completed, various types of one-line diagrams can be created 

to visualize the substation layout and the system operating condition. Figure 5–13 provides an 

example of the visualization based on the CIM model which collects and reorganizes the 

information from EMS. Meanwhile, a substation neighborhood diagram display can be obtained 

from the CIM model to reflect the topology in Figure 5–14. In Figure 5–14, the highlighted red 

circle is a selected substation and the display can show the topology connection around this 

substation intuitively. Theoretically, the entire implementation can be described as: transforming 

a CIM model to a graphical representation and laying out the auto-generation display to facilitate 

the interpretation. It can be accomplished through these detailed steps as follows. 
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Figure 5–13 Substation layout from auto-generation of one-line diagram 

 

 

Figure 5–14 Neighborhood diagram  
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The first step is to convert the CIM model to the query-driven one-line visualization 

through pre-processing the CIM model. It can create model hierarchical trees and indices to 

support users to locate the information of interest. In electric utilities, the CIM model is always 

huge in size. Users expect to browse the data of interest with convenient approaches. Taking 

advantage of the CIM information which is organized into various hierarchies based on 

categories of equipment, it is possible to help users browse and explore the information easily. 

To provide the quick query response, the CIM information is stored into a binary tree based on 

the underlying relationship among the hierarchical tress. The implementation can guarantee the 

optimal user experience. 

The second part for query-driven one-line visualization is to develop a query engine for 

retrieving the model information from the database. Based on the ID number or name, the model 

information can be exhibited and expanded. Meanwhile, it allows users to retrieve the 

information of the topology connection. 

After preparing the CIM model, the challenging part for the auto-generation of one-line 

diagram is to implement the layout of the graphical elements which are interoperated from the 

CIM model. A substation one-line diagram can display hundreds of equipment and their 

connections within a substation. Therefore, it is literally impossible to develop a specific 

program to tackle all possible substation layout configurations. Through the study of the real 

substation layout configurations, the pattern identification is to use for interoperating the CIM 

model and the substation layout builder can lay out one-line diagrams with three steps. The first 

step is to discover the overall layout through data clustering calculation. It can filter out 

hierarchical “block” information which contains the backbone of the layout. Furthermore, based 
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on the block information, the display builder can select the proper block layout from the pre-

designed block designs to build the display automatically. Finally, the last step is to tune the 

layout and make it perfect. 

If the layout can be obtained automatically, the display may be converted into the 

Scalable Vector Graphics (SVG) format which is a widely-used standard display format. Since 

the SVG format allows user to define and add customized features into the display, the real-time 

data from the PI system can be integrated into the display. Finally, the SVG display can be 

visualized into the web browser seamlessly since the SVG display is compatible with all web 

browsers. 

5.7.3 Implementation of Key Performance Indicators  

A Key Performance Indicator (KPI) is a measurable value that demonstrates how 

effectively a company is achieving key business objectives. Although various data from different 

data sources have been integrated into the PI system, they may not fully fulfill the business 

requirements. Therefore, the implementation of KPIs is critical and urgent to exhibit and monitor 

the most important data in real time from any web-enable device, regardless of the user’s 

locations. Thus, Visual KPI, which a third-party software of the PI system, has been deployed in 

DVP. 

Taking advantage of Visual KPI which has tight connection with the PI system through 

adapters, it can maximize the value of the data, improve decision-making and increase 

performance. With real-time, actionable data, users can get 24/7 insight into organizational and 

asset performance. In Figure 5–15 and Figure 5–16, they show the battery monitoring in a 

substation. 
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Figure 5–15 Overall battery monitoring 

 

 

Figure 5–16 Battery monitoring of cells 
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With the popular using of mobile applications in smart phones, Visual KPI can be 

deployed through the web service of the PI system. Since most displays can be created and 

viewed on HTML5, users can see Visual KPI displays through cell phones or tablets they use. 

5.8 Conclusion 

Through the ongoing project in DVP, this chapter presents the entire solution for 

integrating, managing and analyzing big data in the power industry. The ultimate target is to 

build a highly reliable and flexible common data platform with the features of scalability, real 

time, high reliability and security within the enterprise. It is hopeful that DVP will see 

improvements in its business intelligence, asset management capabilities, and all-around 

usability of its data. It is hoped that users are presented with a system that allows them to 

conveniently build custom applications and dashboards with few barriers. Furthermore, this 

chapter may provide a good instance for peers who intend to enhance the capability of managing 

and utilizing big data to improve business intelligence. 
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CHAPTER 6 IDENTIFICATION OF TRANSMISSION-

LINE PARAMETERS CONSIDERING 

TEMPERATURE IMPACT USING REAL-TIME DATA 

6.1 Introduction  

Accurate transmission-line parameters are of vital importance for various operation, 

planning and protection applications in power systems [73], [74]. The transmission-line 

parameters in today’s power systems still depend on the calculation from the circuit model 

through conductor dimension, tower geometry, line length and other factors. However, 

transmission-line parameters can be affected by various factors like environment factors, 

modeling inaccuracies and even human errors. Moreover, once the values of the power system 

network parameters like resistance, shun admittance and reactance are determined by electrical 

utilities, these values may not be updated unless the physical devices would be updated. In power 

systems, transmission-line parameters are not constant, the actual parameters would be dynamic 

since the ambient temperature, mutual coupling and soil resistivity may have underlying 

relationship with these values [75]. According to reports for transmission-line parameters, the 

errors between calculated and actual values of transmission-line parameters may reach up to 30%. 

Unfortunately, it is impossible to detect and know the change of parameters since the inherent 

disadvantage of circuit models is that models cannot be updated promptly. In addition, the 

existing approach for measuring transmission-line parameters is to conduct the field test but it 

may cause the scheduled outage. Therefore, although electrical utilities have already realized the 

importance of re-calibrating transmission-line parameters, they do not have applicable 

approaches to implement.  
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To exhibit the variance of transmission-line parameters and derive reliable values which 

are close to the actual parameters, extensive research has proposed various measurement-driven 

approaches to estimate transmission-line parameters. In [76], [77], several approaches using 

linear and nonlinear equations with phasor measurements are proposed. Authors in [78] provide 

a method regarding online tracking of transmission-line parameters using SCADA data of the 

control center to computer values of transmission-line parameters. However, very few studies 

refer to the identification of transmission-line parameters considering temperature impact using 

actual real-time data. In fact, it is critical to demonstrate the impact of ambient temperature on 

the variance of transmission-line resistance since it correlates with the dynamic rating of 

transmission lines.  

The remaining content of this chapter is organized as follows. The second part 

demonstrates the methodology of the identification of transmission-line parameters. In the third 

part, the methodology is validated by case studies with real synchrophasor data. The last part 

concludes this chapter. 
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6.2 Identification Methodology  

6.2.1 Data-Driven Approach for Parameter Identification 

A three-phase π model for a general transmission line is shown in Figure 6–1, where 

𝑉𝑆(𝑎𝑏𝑐), 𝑉𝑅(𝑎𝑏𝑐), 𝐼𝑆(𝑎𝑏𝑐), 𝐼𝑅(𝑎𝑏𝑐) represent the three-phase voltage and current phasor vectors at 

both ends of the line while 𝑍(𝑎𝑏𝑐)  and 𝐵(𝑎𝑏𝑐)  are the series impedance matrix and shunt 

admittance matrix. Based on the nodal analysis, the following equations can be written: 

 

 

 Figure 6–1 Transmission-line π model 

 

 𝑽𝑺(𝒂𝒃𝒄) −  𝑽𝑹(𝒂𝒃𝒄) = (𝑰𝑺(𝒂𝒃𝒄) −  𝑽𝑺(𝒂𝒃𝒄) ∗
𝒋

𝟐
𝑩(𝒂𝒃𝒄)) ∗ 𝒁(𝒂𝒃𝒄)   (6–1) 

 𝑰𝑺(𝒂𝒃𝒄) + 𝑰𝑹(𝒂𝒃𝒄) = 𝑽𝑺(𝒂𝒃𝒄) ∗  
𝒋

𝟐
𝑩(𝒂𝒃𝒄) + 𝑽𝑹(𝒂𝒃𝒄) ∗

𝒋

𝟐
𝑩(𝒂𝒃𝒄)  (6–2) 

 

For a transmission line, both impedance matrix 𝑍(𝑎𝑏𝑐)  and 𝐵(𝑎𝑏𝑐)  are symmetrical. 

Equation (6–1) can be re-organized as: 
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 𝑽𝑺(𝒂𝒃𝒄) −  𝑽𝑹(𝒂𝒃𝒄) = 𝑰𝑺(𝒂𝒃𝒄) ∗ 𝒁(𝒂𝒃𝒄) −  𝑽𝑺(𝒂𝒃𝒄) ∗
𝒋

𝟐
𝑩(𝒂𝒃𝒄) ∗ 𝒁(𝒂𝒃𝒄)    (6–3) 

 

where define 𝐵(𝑎𝑏𝑐) ∗ 𝑍(𝑎𝑏𝑐) as 𝑃(𝑎𝑏𝑐) which is complex 

 𝑷(𝒂𝒃𝒄) = 𝑩(𝒂𝒃𝒄) ∗ 𝒁(𝒂𝒃𝒄) (6–4) 

 

Therefore, (6–3) can be written as:  

 𝑽𝑺(𝒂𝒃𝒄) −  𝑽𝑹(𝒂𝒃𝒄) = 𝑰𝑺(𝒂𝒃𝒄) ∗ 𝒁(𝒂𝒃𝒄) −  𝑽𝑺(𝒂𝒃𝒄) ∗
𝒋

𝟐
𝑷(𝒂𝒃𝒄)    (6–5) 

 

Thus, (6–5) and (6–2) can be written as: 

 

[

∆𝑽𝒂

∆𝑽𝒃

∆𝑽𝒄

] = [

𝒁𝒂 𝒁𝒂𝒃 𝒁𝒂𝒄

𝒁𝒂𝒃 𝒁𝒃 𝒁𝒃𝒄

𝒁𝒂𝒄 𝒁𝒃𝒄 𝒁𝒄

] [

𝑰𝑺(𝒂)

𝑰𝑺(𝒃)

𝑰𝑺(𝒄)

]  −
𝒋

𝟐
[

𝑷𝒂 𝑷𝒂𝒃 𝑷𝒂𝒄

𝑷𝒂𝒃 𝑷𝒃 𝑷𝒃𝒄

𝑷𝒂𝒄 𝑷𝒃𝒄 𝑷𝒄

] [

𝑽𝑺(𝒂)

𝑽𝑺(𝒃)

𝑽𝑺(𝒄)

] (6–6) 

 

[
𝚺𝑰𝒂

𝚺𝑰𝒃

𝚺𝑰𝒄

] =
𝒋

𝟐
[

𝑩𝒂 𝑩𝒂𝒃 𝑩𝒂𝒄

𝑩𝒂𝒃 𝑩𝒃 𝑩𝒃𝒄

𝑩𝒂𝒄 𝑩𝒃𝒄 𝑩𝒄

] [
𝚺𝑽𝒂

𝚺𝑽𝒃

𝚺𝑽𝒄

] (6–7) 

 

where ∆𝑉𝑥 = 𝑉𝑆 − 𝑉𝑅 , ∑ 𝐼𝑥 = 𝐼𝑆 + 𝐼𝑅, ∑ 𝑉𝑥 = 𝑉𝑆 + 𝑉𝑅 and 𝑥 = 𝑎, 𝑏 𝑜𝑟 𝑐. 

Meanwhile, 𝑃𝑥 = 𝑆𝑥 + 𝑗 ∗ 𝑇𝑥 . Thus, based on the definitions above, the equation can be 

derived as follows: 

 
𝒁 = 𝑯 ∙ 𝜷 (6–8) 
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where 𝐻  is a matrix formulated from equations above and contains measurements while the 

measurement vector 𝑍 contains PMU voltage and current measurements. If (6–8) is solved, the 

transmission-line parameters may be derived. 

6.2.2 Bad Data Detection 

The classical method based on statistics is used for bad data detection after solving the 

constrained least-squares. Bad data identification is achieved by checking the normalized 

residuals of each measurement, which proceeds as follows: 

Step 1: Solve the curve-fitting problem described in and obtain the residual for each 

measurement point: 

 
𝒓𝒊 = 𝒛𝒊 − 𝑯𝒊𝜷,         𝒊 = 𝟏, 𝟐, ⋯ , 𝑵 (6–9) 

 

Step 2: Compute the normalized residual as: 

 (𝒓𝒊)𝒏𝒐𝒓𝒎 =
𝒓𝒊

√𝛀𝒊𝒊

,    𝒊 = 𝟏, 𝟐, ⋯ , 𝑵 (6–10) 

 

where Ω𝑖𝑖 is the diagonal element of the matrix Ω, 

 
𝛀 = 𝑯(𝑯𝑻𝑯)−𝟏𝑯𝑻 (6–11) 

 

Step 3: Find the largest normalized residual (𝑟𝑖)𝑛𝑜𝑟𝑚 and check whether it is larger than 

a prescribed identification threshold 𝑐, 𝑐 can be 3.0: 
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(𝒓𝒊)𝒏𝒐𝒓𝒎 > 𝒄 (6–12) 

 

Step 4: If (6–12) does not hold, then no bad data will be suspected; otherwise, the data 

sample corresponding to the largest normalized residual is the bad data and should be removed 

from the data set. 

Step 5: If bad data is detected and removed from the data set, the algorithm flow must 

return to Step 1 and the process above must be repeated. Otherwise, this process ends and 

solutions are found. 

6.3 Case Study 

The proposed approach can obtain very accurate transmission-line parameters through 

measurements. Furthermore, this study demonstrates the possibility to leverage the various 

existing information stored in the PI system to develop innovative applications through data 

mining technologies. 

6.3.1 Identification Results 

The identification of transmission-line parameters has been implemented to a 500kV 

transmission line in DVP system. The result during a one-day period is shown below in Figure 

6–2, Figure 6–3 and Figure 6–4. The identification can obtain the more accuracy parameters than 

the current parameters in PSS®E and EMS after verifying the calculation results in EMS state 

estimation. 
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Figure 6–2 Identification results of the transmission-line reactance within 24hrs 
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Figure 6–3 Identification results of the transmission-line resistance within 24hrs 
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Figure 6–4 Identification results of the transmission-line susceptance within 24hrs 

 

6.3.2 Comparison with Current Parameters 

In practice, transmission-line parameters using in power system calculation tools and 

EMS are derived from the empirical parameters. Thus, it is possible that the EMS’s line 

impedance values are significantly wrong. The identified parameters can be compared with the 

current parameters to verify the accuracy of transmission-line parameters using in EMS and 

other calculation software.  

The approach for the parameter validation is to re-calculate state estimation base on 

Savecases in EMS to compare the results with current parameters and the results with 

identification parameters. From Figure 6–5 to Figure 6–16, they demonstrate that EMS state 

estimation results of 500kV LIN596 from current parameters and identified parameters in three 

separate days which are Jan 19, 2016, Mar 12, 2016 and May 26, 2016, respectively.  

 



 

121 

 

 

Figure 6–5 Comparison of real power of sending end on Jan. 19, 2016 

 

 

Figure 6–6 Comparison of real power of receiving end on Jan. 19, 2016 
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Figure 6–7 Comparison of reactive power of sending end on Jan. 19, 2016 

 

 

Figure 6–8 Comparison of reactive power of receiving end on Jan. 19, 2016 
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Figure 6–9 Comparison of real power of sending end on Mar. 12, 2016 

 

 

Figure 6–10 Comparison of real power of receiving end on Mar. 12, 2016 
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Figure 6–11 Comparison of reactive power of sending end on Mar. 12, 2016 

 

 

Figure 6–12 Comparison of reactive power of receiving end on Mar. 12, 2016 
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Figure 6–13 Comparison of real power of sending end on May. 26, 2016 

 

 

Figure 6–14 Comparison of real power of receiving end on May. 26, 2016 
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Figure 6–15 Comparison of reactive power of sending end on May. 26, 2016 

 

 

Figure 6–16 Comparison of reactive power of receiving end on May. 26, 2016 
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In figures, the blue lines with dots represent the state estimation from current parameters 

and the red lines with dots represent the state estimation from identified parameters. The 

susceptible data threshold of real power and reactive power in EMS state estimation 

configuration is 5%. That means that the data with error greater than 5% would be treated as bad 

data.  

The entire comparison may be triggered in every 5 minutes in one day so that total 96 

calculation results would be included in the comparison. The comparison results exhibit that the 

identified parameters can improve the accuracy of EMS state estimation significantly. Since the 

EMS state estimation would not exceed the susceptible threshold all the time, it is not easy for 

EMS engineers to detect and target the slight inaccuracy of transmission-line parameters before. 

Therefore, the proposed method may be very helpful for daily maintenance in control centers of 

power systems. 

6.3.3 Impact of Ambient Temperature on Parameters 

To observe the impact of ambient temperature on transmission-line resistance, the data 

from three days are used for parameters identification. Since the PI system in DVP stores the 

temperature information, the study of transmission-line parameters identification can utilize the 

temperature data in the PI system to observe and analyze the impact of the temperature on the 

transmission-line resistance in Figure 6–17, Figure 6–18 and Figure 6–19. From results of the 

identification of transmission-line parameters, the impact of temperature changes can be 

observed by the change of transmission-line resistance. Initially, the transmission-line resistance 

may be changed with the temperature variation. In addition, the significant variation of ambient 

temperature may cause the obvious change of the resistance. Likewise, the slight change of the 

resistance may be associated with the insignificant change of ambient temperature. 
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Figure 6–17 Impact of the temperature on resistance on May 26, 2016 

 

 

 
Figure 6–18 Impact of the temperature on resistance on Jan 19, 2016 
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Figure 6–19 Impact of the temperature on resistance on Mar 12, 2016 

 

6.4 Conclusion 

Synchrophasor data have the potential to improve the accuracy of transmission-line 

parameters in the EMS database. More accurate parameter means to obtain more accurate power 

system models, target more accurate fault locations in the small timeframe as well as achieve 

more economic system operations. The following challenges may be noticed and lessons may be 

learnt during this development: 1) it was identified that although PMU are generally more 

accurate devices, measurement errors may come from the instrumentation channel due to various 

causes; 2) it is critical to identify the credibility of the calculated transmission-line impedance 

parameters for system operators in order to make the calculation useful; 3) the research utilizes 

the PI system with ambient temperature data so that the impact of ambient temperature on the 

variance of transmission-line resistance can be observed obviously; 4) a novel method is 
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proposed to calculate the positive-sequence transmission-line impedance, and this approach can 

be extended to calculate the other sequence impedance as well. 
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CHAPTER 7 CONCLUSIONS AND FUTURE WORKS 

7.1 Conclusions 

This dissertation covered a wide variety of research topics about synchrophasor 

measurement and its applications, including the system dynamic response estimation, the 

measurement-driven model for adaptive wide-area damping controllers, the performance 

comparison of measurement-driven models as well as the development of DVP data historian 

and the identification of transmission-line parameters using DVP data historian. 

At the very beginning, this dissertation provided the brief comparison between 

measurement-driven models and circuit-based models in power systems. Moreover, this 

dissertation also gave an introduction regarding measurement-driven approaches. 

Secondly, taking advantage of wide-area real-time synchrophasor data collected by FDRs, 

this dissertation provided detailed information and methodology to implement the system 

dynamic response estimation by the ARX model. The approach has been verified by ring-down 

data and ambient data, respectively. Meanwhile, the ARX model can also update online promptly 

and avoid drawbacks of conventional circuit-based models. As the core functionality of early 

warning of impending instability, the accuracy index from the system dynamic response 

estimation can provide a good indicator for researchers and operators to monitor the operating 

condition of the entire system. 

Thirdly, this dissertation proposed a transfer function model for designing adaptive wide-

area damping controllers using wide-area synchrophasor data. In this work, based on a linear 

MIMO ARMAX model, a concept of developing the transfer function model for oscillation 

damping control was proposed and its overall performance was examined by various tests. Case 
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studies also demonstrated that this method is effective to capture the dominant inter-area 

oscillation modes through estimating the transfer function of the system model. The wide-area 

adaptive damping controller may be designed by the transfer function. 

After that, to compare the performance among different MIMO identification algorithms, 

this dissertation exhibited differences among algorithms in terms of the consumption time, order 

and accuracy. Based on the comparison results, the MIMO ARMAX model can derive the 

accurate low-order model with the rapid calculation speed. 

This dissertation also discussed the ongoing DVP data historian project. Since the data 

mining and data analytics are critical for electric utilities and the ubiquitous challenges on data 

integration impede the implementation of advanced applications, the PI system provides a 

promising solution to reorganize the data stream, integrate the data at various resolutions and 

provide handy tools and services to end users. The implementation of data historian project 

enhances the business intelligence and leverages data-driven applications. 

Taking advantage of abundant data in DVP data historian, the identification of 

transmission-line parameters can be implemented. Based on synchrophasor data from two ends 

of a transmission line, transmission-line parameters can be estimated by the data-driven model 

with LS algorithm. Compared to current parameters in EMS, the identified parameters through 

real measurement data are much more accurate. Meanwhile, based on the ambient temperature of 

the transmission line collected by the PI system, the impact of the temperature on transmission-

line resistance can be observed. 
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7.2 Future Works 

This dissertation explored some research topics around synchrophasor and its application. 

Though very promising results have been presented in this dissertation, a lot of interesting future 

work can be done in the future. 

For the system dynamic response estimation by the ARX model, the methodology can be 

extended to estimate the load model. The load model which is derived from the measurement-

based method would improve the accuracy of load modeling in circuit-based models. 

In addition, based on the transfer function model created by the MIMO ARMAX model, 

the adaptive wide-area damping controller can be implemented and improved in the large 

hardware testbed with larger power systems.  

For the data historian implementation, future applications using measurement data can be 

developed to benefit end users. Future work associated with measurement-driven visualization 

would be implemented in the PI system. 
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