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Pressure-Induced Magnetic Crossover
Driven by Hydrogen Bonding in
CuF2(H2O)2(3-chloropyridine)
Kenneth R. O’Neal1, Tatiana V. Brinzari1,7, Joshua B. Wright1, Chunli Ma2,3, Santanab Giri4,
John A. Schlueter5,6, Qian Wang4,8, Puru Jena4, Zhenxian Liu2 & Janice L. Musfeldt1

1Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996 USA, 2Geophysical Laboratory, Carnegie
Institution of Washington, Washington D.C. 20015 USA, 3State Key Laboratory of Superhard Materials, Jilin University, Changchun
130012 China, 4Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284 USA, 5Materials Science
Division, Argonne National Laboratory, Lemont, Illinois 60439 USA, 6Division of Materials Research, National Science Foundation,
Arlington, Virginia 22230 USA, 7Department of Physics, University of Florida, Gainesville, FL 32611-8440, USA, 8Center for
Applied Physics and Technology of Peking University, Beijing 100871, China.

Hydrogen bonding plays a foundational role in the life, earth, and chemical sciences, with its richness and
strength depending on the situation. In molecular materials, these interactions determine assembly
mechanisms, control superconductivity, and even permit magnetic exchange. In spite of its long-standing
importance, exquisite control of hydrogen bonding in molecule-based magnets has only been realized in
limited form and remains as one of the major challenges. Here, we report the discovery that pressure can
tune the dimensionality of hydrogen bonding networks in CuF2(H2O)2(3-chloropyridine) to induce
magnetic switching. Specifically, we reveal how the development of O-H � � �Cl exchange pathways under
compression combined with an enhanced ab-plane hydrogen bonding network yields a three dimensional
superexchange web between copper centers that triggers a reversible magnetic crossover. Similar pressure-
and strain-driven crossover mechanisms involving coordinated motion of hydrogen bond networks may
play out in other quantum magnets.

T
he interplay between charge, structure, and magnetism leads to rich phase diagrams and highly tunable
properties in multifunctional materials1,2. This is because exotic properties tend to emerge when phases
compete. Molecule-based materials are particularly revealing in this regard due to their low energy scales and

sensitivity to various external stimuli like temperature, pressure, and magnetic field3–12. Another characteristic of
molecule-based materials is their tendency to develop hydrogen bonding networks13–28. Pressure and strain are
especially attractive tuning parameters in this case because they act directly on bond lengths and angles as well as
the hydrogen bonding pattern.

While magnetic exchange interactions are traditionally established through direct and superexchange mechan-
isms between metal centers or metal centers and various ligands29, exchange can also occur through intermol-
ecular hydrogen bonding14–28. Physical examples include coordination polymers and low-dimensional systems
like Cu(pyz)(NO3)2, Cu(pyz)F2(H2O)2, and CuX2(pyrazine-N,N9-dioxide) (H2O)2 (X 5 Cl, Br), all of which
display transitions that involve hydrogen bonding networks. Changes in bond lengths and angles along the
magnetic exchange pathway affect the hopping integrals between magnetic centers, thereby altering the magnetic
exchange J29,30. One might suspect that pressure-driven local lattice distortions modify the hydrogen bonds and
thus the magnetism, although direct evidence for this mechanism is rare. CuF2(H2O)2(3-chloropyridine)
attracted our attention due to its pentacoordinate copper environment, two-dimensional hydrogen bonding
network, and pressure-induced magnetic transition that allows us to test this supposition31 (Schlueter, J. A.
Unpublished work). This system differs from the prior examples in that the structure is fully molecular rather
than being covalently bound (Fig. 1(a)). Moreover, it displays a buckled network of intermolecular hydrogen
bonds between the H2O ligands and fluoride centers that act as superexchange linkages between the copper
centers within the ab plane. This network facilitates antiferromagnetic ordering below 2.1 K31. There is evidence
that the system displays ferromagnetic behavior under pressure (0.8 GPa) (Schlueter, J. A. Unpublished work).

By combining diamond anvil cell techniques, high pressure infrared and Raman spectroscopies, and compli-
mentary calculations of energy, local structure trends, and lattice dynamics, we uncover the ability of hydrogen
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bond formation to trigger the antiferromagnetic to ferromagnetic
crossover in CuF2(H2O)2(3-chloropyridine). Our analysis reveals
that compression enhances the in-plane F � � �H-O exchange and
creates new intermolecular hydrogen bonds between chlorine on
the pyridine ring and the hydrogen centers on the water ligands.
The latter pathway forms because compression reduces interatomic
distances, aligns the Cl-containing ring, and widens the H2O ligands,
leading to a three dimensional hydrogen bonding network between
copper centers. This increased superexchange network dimension-
ality drives the 0.8 GPa magnetic crossover. This process is revers-
ible, meaning that when pressure is released, the extra exchange
pathway is eliminated. We conclude that magnetic tunability in
CuF2(H2O)2(3-chloropyridine) derives from and depends upon the
presence of flexible intermolecular hydrogen bonding networks.
Further compression reveals another distortion between 4 and
5.5 GPa involving the bipyramidal copper environment although,
at this time, it is not known whether there is a magnetic component.
In addition to establishing how pressure-induced changes in bond
lengths and angles control magnetism in hydrogen bonded quantum
magnets like CuF2(H2O)2(3-chloropyridine), these findings are
important for unraveling spin crossover processes and energy trans-
fer mechanisms in other functional materials like multiferroics.

Results
Figure 2 (a,c) displays close-up views of the infrared and Raman
spectra of CuF2(H2O)2(3-chloropyridine) between ambient pressure
and 1.5 GPa. Both sets of spectra show signatures of the 0.8 GPa
transition. With increasing pressure, the 125 cm21 infrared active
lattice mode diminishes and then disappears. The displacement pat-
tern for this mode is highly collective and involves the F-Cu-F sym-
metric stretch, the O-Cu-O asymmetric bend, and libration of the
3-chloropyridine ring around the C-Cl bond. Turning to the Raman
response, a shoulder around 1575 cm21, which we assign as a com-
bination of C5C and C-N in-phase, in-plane stretches and C-Cl
rocking motion, also diminishes and then disappears. Figure 2

(b,d) shows frequency versus pressure plots for these structures.
Their disappearance through the 0.8 GPa transition indicates that
the lattice is sensitive to the magnetic crossover, a sign of magnetoe-
lastic coupling32–35. Note that we employ room temperature, high
pressure data to understand the low temperature response because
the spectra are nearly insensitive to temperature. Although the mag-
netic crossover is observed at low temperatures, our variable tem-
perature measurements show minimal spectral changes down to 4 K
(see Supplemental Material), even through the orthorhombic
(Pmma) to monoclinic (P21/c) transition takes place between 200
and 100 K. This allows the use of room temperature, high pressure
data to understand the low temperature magnetic crossover.

We carried out lattice dynamics calculations in order to assign the
vibrational modes of CuF2(H2O)2(3-chloropyridine) and relaxations
to model structural changes between the low-pressure antiferro-
magnetic and high-pressure ferromagnetic states (Fig. 3 (a–c))
(Schlueter, J. A. Unpublished work). Our calculations predict that
the ferromagnetic state becomes energetically favorable above
0.75 GPa, in excellent agreement with the 0.8 GPa crossover found
experimentally. As anticipated, most interatomic distances decrease
under compression. The drastic decrease in the O-H � � �Cl distance
with pressure is particularly striking. A small discontinuity also
appears at the critical pressure. Moreover, one O-H bond length is
predicted to increase while the other decreases (such that they
become more similar), and the H-O-H bond angle widens dramat-
ically. Taken together, our simulations suggest that changes in the
O-H � � �Cl distance and shape of the H2O ligands are the most
important local lattice distortions through the 0.8 GPa transition.

Figure 3 (d–f) displays frequency versus pressure trends for three
different vibrational modes: the C-Cl stretches, the H-O-H bend, and
the O-H stretches. As our calculations predict, these features are
sensitive to the transition. For instance, on approach to the
0.8 GPa transition, the C-Cl stretching modes blue shift with increas-
ing pressure. Above the critical pressure, these same vibrational
modes display a much smaller dv/dP, indicating the stabilization

Figure 1 | (a) Crystal structure of CuF2(H2O)2(3-chloropyridine) at 10 K showing the buckled two-dimensional hydrogen bonded layers31. Parts of

neighboring CuF2(H2O)2(3-chloropyridine) molecules have been omitted to emphasize the hydrogen bonding. (b) Schematic rendering of the structure

above 0.8 GPa illustrating the three dimensional network that is formed under compression. The connection in the third direction consists of

intermolecular O-H � � �Cl hydrogen bonds, as indicated by the purple dashed lines. Also included are drawings of the pressure-induced magnetic

crossover and diamond anvil cell as well as a photo of CuF2(H2O)2(3-chloropyridine) on the diamond culet.

www.nature.com/scientificreports
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of a less compressible phase. At the same time, the H-O-H bend
hardens significantly over the entire pressure range, consistent with
the prediction of increasing angle36. There is also a notable change in
slope through the transition regime. Finally, both O-H stretching
features soften under pressure, although at different rates. Soften-
ing is characteristic of improved hydrogen bonding interactions15,37,
and the divergent rates imply that the two O-H stretching modes in
the water ligand are becoming more inequivalent. The latter trend is
in apparent contradiction to the aforementioned prediction of one
O-H bond lengthening and the other shortening. As discussed below,
this observation has its origin in the breakdown of simple frequency-
bond length correlations34,38,39.

Taken together, we find that hydrogen bonds are established
between the H2O ligands and the Cl center through the 0.8 GPa
magnetic transition (Fig. 1 (b)). The shortened O-H � � �Cl distance
falls within the range of a ‘‘long’’ hydrogen bond with chlorine40,
which explains the hardening of the C-Cl stretching modes as the
motion is dampened by the new interaction and increased stability
beyond 1 GPa. This interaction also accounts for the disappearance
of the 125 cm21 infrared mode seen in Figure 2 (a,b) since the
O-H � � �Cl hydrogen bonds prevent the 3-chloropyridine ring from
librating. Since the chlorine center is closer to one hydrogen than the
other, the hydrogen bond forces the H-O-H angle to open, dampen-
ing the bending motion. This process hardens the H-O-H bending
mode. What is formed in the end is essentially an asymmetric pair of

O-H bonds (from the point of view of a single H2O ligand), in
excellent agreement with our calculations (Fig. 3). The establishment
of new hydrogen bonding also accounts for the prediction of one O-
H bond lengthening and the other shortening (Fig. 3(b)). As the
hydrogen closer to the chlorine is pulled away from the oxygen
center, the bond length of the second O-H linkage ought to be
reduced as the electrostatic repulsion is lessened. The intermolecular
O-H � � �Cl hydrogen bond also shifts the electron density of the
oxygen towards chlorine, effectively reducing bond order between
the oxygen and the hydrogen center that is not interacting with the
chlorine. This is evidenced in our spectra by increased splitting
between the two O-H stretching modes as pressure is applied
(227.5 6 2 vs. 231 6 1 cm21/GPa).

We propose that intermolecular hydrogen bonding between the
water ligand and chlorine acts as an additional superexchange
pathway between copper centers along the c axis, adding a third
dimension to the hydrogen bonding network in CuF2(H2O)2(3-
chloropyridine) above 0.8 GPa (Fig. 1 (b)). Once established, this
supplemental linkage, combined with improved in-plane superex-
change (due to shorter distances between F centers and H-O � � � ),
facilitates the pressure-induced antiferromagnetic to ferromagnetic
crossover. The newly formed O-H � � �Cl hydrogen bond decreases
the angle of the F � � �H-O exchange pathway, making it even further
away from the ideal 180u angle to support ferromagnetism. This
means that the new hydrogen bond pathway must be the driving
mechanism of the magnetic crossover. Since the 0.8 GPa magnetic
crossover is driven by these local lattice distortions, the transition
should be considered magnetoelastic rather than purely mag-
netic41–43. Moreover, the crossover is an excellent illustration of
how pressure-induced changes in bond lengths and angles modify
the transfer integral t which in turn modifies the exchange inter-
action J12,33. In this case, the mechanism even changes the sign of J.

While the 0.8 GPa magnetic crossover in CuF2(H2O)2(3-chloro-
pyridine) was previously identified (Schlueter, J. A. Unpublished
work), there has been no investigation of structure at higher pres-
sures. We extended our work up to 8 GPa and discovered an addi-
tional rather sluggish structural transition between 4 and 5.5 GPa.
(Fig. 4) The low frequency Raman spectra are the most revealing in
this regard. The appearance of five new modes, along with mode
splitting at 120 cm21 and the disappearance of the 85 cm21 mode,
signal the transition. The infrared-active modes show similar beha-
vior in this pressure range (Supplemental Material). While we cannot
precisely assign the new modes that appear, our dynamics calcula-
tions show that, in general, modes below 500 cm21 are related to
motion around the copper center, and those above 500 cm21 are
related to the 3-chloropyridine ring. Therefore, we conclude that this
higher pressure distortion involves mostly the bipyrimidal copper
environment, not the 3-chloropyridine ring. The increase in the
number of vibrational modes through the transition indicates an
overall reduction in symmetry around the copper center. It is clearly
a lower symmetry subgroup of Pnma at 300 K and P21/c below the
structural phase transition temperature31. X-ray diffraction will be
needed to identify the space group of the high pressure phases.

Discussion
Having established the primary role of pressure-induced local lattice
distortions in creating new hydrogen bonding pathways which in
turn drive the antiferromagnetic to ferromagnetic crossover in
CuF2(H2O)2(3-chloropyridine), we turn our attention toward pro-
spects for control. One of the most important criteria in this regard is
reversibility. As revealed by Fig. S4, the process is indeed reversible.
Hydrogen bond networks form, diminish, and repeatedly reform
under pressure. This implies that magnetism, which is determined
by the dimensionality of the hydrogen bonding network that pro-
vides for superexchange between copper centers, is equally switch-
able. Whether this process can be demonstrated in thin film form and

Figure 2 | (a) Infrared spectra of CuF2(H2O)2(3-chloropyridine) at 300 K

and various pressures demonstrating the disappearance of the 125 cm21

lattice mode through the 0.8 GPa transition. (b) Frequency versus pressure

for the infrared active modes in panel (a). (c) Room temperature Raman

spectra at the indicated pressures showing the disappearance of a shoulder

around 1565 cm21. (d) Frequency versus pressure for the Raman active

modes in panel (c). The vertical grey line marks the critical pressure for the

0.8 GPa magnetic crossover.

www.nature.com/scientificreports
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Figure 3 | (a) Relative enthalpy of the CuF2(H2O)2(3-chloropyridine) unit cell, predicting that the ferromagnetic state becomes energetically favored.

(b) Calculated H-O bond distances and H-O-H bond angle and (c) H � � � F and H � � �Cl distances all indicate sharp changes at the critical pressure.

The grey lines indicate the transition pressure which is in excellent agreement with the experimental pressure (0.75 vs. 0.8 GPa). (d) Experimental

frequency versus pressure at 300 K for three modes involving the C-Cl bond, (e) H-O-H bend, and (f) O-H stretches. All modes involving the C-Cl bond

show slight increases in dv/dP around the transition. The H-O-H bend hardens significantly with pressure. The difference in dv/dP (227.5 6 2 vs. 231

6 1 cm21/GPa) for the two O-H stretches results in increased splitting between the features. Lines are drawn to guide the eye and help visualize different

mode behaviors through the transition.

Figure 4 | (a) Raman spectra as a function of pressure. The change in line color denotes a new phase (or coexistence of phases). (b) Raman

shift versus pressure over the full pressure range investigated. The critical pressures are marked with grey vertical bands. The orthorhombic to high

pressure phase I transition is at 0.8 GPa, and the broad transition with the coexistence of high pressure phases I and II is between 4 and 5.5 GPa. Here,

Orth is Pmna orthorhombic (although at low temperature, the material is P21/c monoclinic in this regime)31, HP-I is the first high pressure phase, HP-II is

the second high pressure phase, AFM is antiferromagnetic, and FM is ferromagnetic. The magnetic phases are present at low temperature.

www.nature.com/scientificreports
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under lattice strain is an open question, but similar mechanisms
involving coordinated motion of hydrogen bond networks that func-
tion as exchange pathways between magnetic centers are likely to
play out in other quantum magnets. A secondary criteria is room
temperature operation. The O-H � � �Cl connections in CuF2(H2O)2

(3-chloropyridine) are robust at 300 K. However, these connections
only function as superexchange linkages at low temperature. We
therefore anticipate that pressure- or strain-controllable exchange
interactions44 can be realized only below the ordering temperature,
although short range interactions might increase the operating tem-
perature by a few degrees. Materials like V(TCNE)x?y(CH2Cl2) and
(Et4N)0.5Mn1.25[V(CN)5]?2H2O may offer pressure- and/or strain-
driven switchability at high temperatures45,46. Spin-crossover materi-
als may be good candidates as well. Finally, this kind of cooperative
functionality is not limited to piezomagnetism. Low power piezo-
electric devices may also be possible if magnetoelectric coupling can
be made strong enough25.

Methods
CuF2(H2O)2(3-chloropyridine) was grown by slowly diffusing a vapor of 3-chloro-
pyridine into an aqueous solution of CuF2(H2O)x as described previously31. Sample
quality was confirmed by x-ray diffraction and magnetic susceptibility. A polycrys-
talline sample was loaded into diamond anvil cells either neat or with a pressure
medium (vacuum grease for far and KBr for middle infrared) in order to apply quasi-
hydrostatic pressure. The ruby fluorescence technique was used to measure the
sample pressure inside the cell47. Raman measurements were performed with a
532 nm diode pumped solid state laser, with power below 1 mW to prevent sample
degradation. Raman spectra were taken with a resolution of 0.5 cm21, integrated
between 60 and 120 seconds, and averaged three times. Infrared measurements were
taken with a resolution of 1 cm21 for all spectra. Due to the small sample size and
300 mm diamond culets, the National Synchrotron Light Source at Brookhaven
National Laboratory was used for its high brightness infrared light48. Standard peak
fitting procedures were employed as appropriate. We also measured the variable
temperature infrared response at ambient pressure and found no signatures of the
orthorhombic to monoclinic transition between 200 and 100 K (Supplemental
Material)31. Thus, we can connect our 300 K, high pressure measurements to the low
temperature magnetic crossover. To understand the spectral results as well as the
magnetic properties of CuF2(H2O)2(3-chloropyridine), we carried out multi-scale
calculations in which both the molecular unit was modeled using molecular orbital
theory and the magnetic properties under pressure were calculated via super cell
techniques and band structure methods. Using density functional theory with the
generalized gradient approximation, we calculated lattice dynamics of a single unit of
CuF2(H2O)2(3-chloropyridine) as well as an isolated 3-chloropyridine ring and water
molecule to assign the vibrational modes. The relative enthalpy of the antiferro-
magnetic and ferromagnetic states was calculated at various pressures using spin-
polarized density functional theory. See Supplemental Materials for additional details.
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Interactions in Molecules and Highly Correlated Materials: Physical Content,
Analytical Derivation, and Rigorous Extraction of Magnetic Hamiltonians. Chem.
Rev. 114, 429–492 (2014).

29. Goodenough, J. B. Magnetism and the Chemical Bond, Interscience Publishers:
New York-London, 1963.

30. Anderson, P. W. Theory of Magnetic Exchange Interactions: Exchange in
Insulators and Semiconductors. Sol. State Phys. 14, 99–214 (1963).

31. Lapidus, S. H. et al. Antiferromagnetic ordering through a hydrogen-bonded
network in the molecular solid CuF2(H2O)2(3-chloropyridine). Chem. Comm. 49,
499–501 (2013).

32. Popova, M. N., Sushkov, A. B., Golubchik, S. A., Isobe, M. & Ueda, Y. High-
Resolution Infrared Spectroscopy of a9-NaV2O5. Phys. B 284–288, 1617–1618
(2001).

33. Musfeldt, J. L. et al. Magnetoelastic Coupling through the Antiferromagnet-to-
Ferromagnet Transition of Quasi-Two-Dimensional [Cu(HF2)(pyz)2]BF4 Using
Infrared Spectroscopy. Phys. Rev. Lett. 103, 157401 (2009).

34. Brinzari, T. V. et al. Magnetoelastic Coupling in [Ru2(O2CMe)4]3[Cr(CN)6]
Molecule-Based Magnet. Phys. Rev. B 86, 214411 (2012).

35. Krylov, A. S., Sofronova, S. N., Gudim, I. A. & Vtyurin, A. N. Magnetoelastic
Interactions in Raman Spectra of Ho12xNdxFe3(BO3)4 Crystals. Solid State
Commun. 174, 26–29 (2013).

36. Knittle, E., Phillips, W. & Williams, Q. An Infrared and Raman Spectroscopic
Study of Gypsum at High Pressures. Phys. Chem. Miner. 28, 630–640 (2001).

37. Naidu, P. R. Infrared Spectroscopic Study of Hydrogen Bonding: Hydrogen Bond
Association of Phenols with Dioxan. Aust. J. Chem. 19, 2392–2395 (1966).

38. Hardcastle, F. D. & Wachs, I. E. Determination of Molybdenum-Oxygen Bond
Distances and Bond Orders by Raman Spectroscopy. J. Raman Spec. 21, 683–691
(1990).

39. Cremer, D., Wu, A., Larsson, A. & Kraka, E. Some Thoughts about Bond Energies,
Bond Lengths, and Force Constants. J. Mol. Model. 6, 396–412 (2000).

40. Aullón, G., Bellamy, D., Brammer, L., Brutonb, E. A. & Orpen, A. G. Metal-bound
chlorine often accepts hydrogen bonds. Chem. Commun. 6, 653–654 (1988).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6054 | DOI: 10.1038/srep06054 5



41. Schrobinger-Papamantellos, P., Buschow, K. H. J. & Rodrı́guez-Carvajal, J.
Magnetoelastic Phase Transitions in the LuFe4Ge2 and YFe4Si2 Compounds: A
Neutron Diffraction Study. J. Mag. Mag. Mater. 324, 3709–3715 (2012).

42. Roy, S. B. First Order Magneto-Structural Phase Transition and Associated Multi-
Functional Properties in Magnetic Solids. J. Phys.: Condens. Matter 25, 183201
(2013).

43. Wang, J. L. et al. Driving Magnetostructural Transitions in Layered Intermetallic
Compounds. Phys. Rev. Lett. 110, 217211 (2013).

44. Bousseksou, A., Molnár, G. & Matouzenko, G. Switching of Molecular Spin States
in Inorganic Complexes by Temperature, Pressure, Magnetic Field and Light:
Towards Molecular Devices. Eur. J. Inorg. Chem. 22, 4353–4369 (2004).

45. Manriquez, J. M., Yee, G. T., McLean, R. S., Epstein, A. J. & Miller, J. S. A Room
Temperature Molecular/Organic-Based Magnet. Science 252, 1415–1417 (1991).

46. Entley, W. R. & Girolami, G. S. High-Temperature Molecular Magnets Based on
Cyanobanadate Building Blocks: Spontaneous Magnetization at 230 K. Science
268, 397–400 (1995).

47. Mao, H. K., Bell, P. M., Shaner, J. W. & Steinberg, D. J. Specific Volume
Measurements of Cu, Mo, Pd, and Ag and Calibration of the Ruby R1

Fluorescence Pressure Gauge from 0.06 to 1 Mbar. J. Appl. Phys. 49, 3276–3283
(1976).

48. Carr, G. L. et al. High-Power Terahertz Radiation from Relativistic Electrons.
Nature 420, 153–156 (2002).

Acknowledgments
Research at the University of Tennessee was supported by the Petroleum Research Fund
(52052-ND10) and the National Science Foundation (DMR-1063880). Work at Virginia
Commonwealth University, the National Energy Research Scientific Computing Center,
the National Synchrotron Light Source at Brookhaven National Laboratory, and Argonne
National Laboratory were supported by the U.S. Department of Energy under contracts

DE-FG02-96ER45579, DE-AC02-05CH11231, DE-AC02-98CH10886, and
DE-AC02-06CH11357 respectively. The use of U2A beamline was supported by
COMPRES under NSF Cooperative Agreement EAR 11-57758 and CDAC
(DE-FC03-03N00144). JAS acknowledges support from the Independent Research/
Development program while serving at the National Science Foundation.

Author contributions
J.L.M. conceived the project, developed the plan, and gathered the team. J.A.S. synthesized
the material. K.R.O., T.V.B., J.B.W., C.M., Z.L. and J.L.M. performed the spectroscopic
measurements. K.R.O. and J.B.W. analyzed the findings and discussed the data with J.L.M.,
Z.L., T.V.B., S.G., Q.W. and P.J. The theoretical calculations were performed by S.G., Q.W.
and P.J. The paper was written by K.R.O., J.L.M. and P.J. with input from all coauthors.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: O’Neal, K.R. et al. Pressure-Induced Magnetic Crossover Driven by
Hydrogen Bonding in CuF2(H2O)2(3-chloropyridine). Sci. Rep. 4, 6054; DOI:10.1038/
srep06054 (2014).

This work is licensed under a Creative Commons Attribution 4.0 International
License. The images or other third party material in this article are included in the
article’s Creative Commons license, unless indicated otherwise in the credit line; if
the material is not included under the Creative Commons license, users will need
to obtain permission from the license holder in order to reproduce the material. To
view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6054 | DOI: 10.1038/srep06054 6

http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by/4.0/

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-13-2014

	Pressure-Induced Magnetic Crossover Driven by Hydrogen Bonding in CuF2(H2O)2(3-chloropyridine)
	Kenneth R. O'Neal
	Tatiana V. Brinzari
	Joshua B. Wright
	Chunli Ma
	Santanab Giri
	See next page for additional authors
	Recommended Citation
	Authors


	Title
	Figure 1 
	Figure 2 
	Figure 3 
	Figure 4 
	References

