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ABSTRACT 

Ocular infection of Herpes Simplex Virus-I (HSV-1) causes Herpetic Stromal Keratitis 

(HSK), which is a leading cause of infectious blindness. Although complex interactions 

of molecular and cellular events involve in the development of HSK, it has been known 

that angiogenesis is a key step for the HSK pathogenesis. Treatment of neutralizing 

antibody against vascular endothelial
°

growth factor (VEGF) to inhibit VEGF activity 

reduced angiogenesis and HSK severity caused by infection of HSV-1 in mouse eyes. In 

addition, inactivation of cytokine which induces VEGF production and angiogenesis also 

reduced angiogenesis and HSK severity. Therefore, it has been proposed that VEGF or 

molecules which induce VEGF production or angiogenesis can be good target molecules 

for treating HSK. In this study, we investigated whether targeting VEGF or IL-1 receptor 

type I (IL-lRI) using RNAi technology could reduce angiogenesis in mouse eyes. 

A general introduction and overview of RNAi were provided in Part I. Results in Part 

II demonstrated that intrastromal injection of VEGF short hairpin RNA (shRNA) could 

reduce VEGF production and angiogenesis caused by CpG motif in mouse eyes. 

Implantation of pellets containing bio-active CpG motifs following intrastromal injection 

with a plasmid expressing shRNA against VEGF reduced angiogenesis and VEGF 

production. Results in Part III showed that intrastromal injection of IL-lRI shRNA could 

reduce angiogenesis caused by IL-1 a through reduction of VEGF production. The results 

in this dissertation indicate that targeting VEGF or IL-lRI using RNAi technology can 

reduce angiogenesis in mouse eyes. Additionally, these results imply that an eye is a 
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suitable organ to apply RNAi technology. Thus, this· technology may help to understand 

corneal biology as well as to treat corneal diseases in the near future. 
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Part I 

Background and overview 
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Discovery of RNA interference (RNAi) 

In 1990 Richard Jorgensen attempted to make transgenic petunias with a deep purple 

color by introducing a pigment-producing gene under powerful promoter. Many of the 

flowers, however, showed variegated or even white pigmentation (1). This bizarre 

phenomenon, which was named co-suppression because the expression of both the 

transgene and the homologous endogenous gene were suppressed, was mysterious until 

1998 when Andrew Fire and Crag Mello discovered RNAi, the sequence-specific gene 

silencing mediated by double stranded RNA (dsRNA) (2). They showed that the presence 

of dsRNA inhibited the expression of the gene which was homologous to the dsRNA in C. 

elegans. Multicopy transgenes in plant can produce low levels of dsRNA. From this 

discovery, now we know that dsRNA is the molecule responsible of the previously 

unsolved phenomenon, co-suppression, which is also named post transcriptional gene 

silencing (PTGS) in plants. From further work it was established that co-suppression in 

plant and RNAi in C. elegans share a common mechanism and that the RNAi 

phenomenon occurs in many other organism including Drosophila and mammals. 

Mechanisms of RNAi 

The results from several in vivo and in vitro experiments have elucidated the 

mechanism of RNAi. Baulcomb and Hamilton discovered the first key step. In plants 

undergoing co-suppression, they identified RNAs of about 25nt nucleotides in length that 

matched the sequence of the gene being silenced and which were absent in non-silenced 

plants (3). Further work done by Zamore et al.(4) using Drosophila embryo lysates and 
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an in vitro system from S2 cells showed that dsRNA added to Drosophila embryo lysates 

was processed to length of 21-23nt and homologous endogenous mRNA was cleaved. 

These results revealed that in the first step, referred to as the initiation step, long dsRNA 

was digested into 21-23nt small interfering RNAs (siRNAs) (5,6,7) Biochemical 

experiments showed that siRNA have a 2-3nt 3' overhang, 5' phosphate and a 3' 

hydroxyl group (8). This structure is the characteristic cleavage pattern for the RNase III 

family of ribonucleases. Evidence has shown that cloned enzyme, Dicer, a member of the 

RNase III family, cleaves dsRNA in an ATP-dependent manner to 19-21bp siRNA. 

These results suggested that the enzyme responsible for cleavage of long dsRNA to make 

siRNA in the initiation step was Dicer. 

In the effector step, siRNAs bind to an RNA-induced silencing complex (RISC). The 

siRNA is unwound, the sense strand is removed and the antisense strand remains to lead 

RISC to its target homologous mRNA. Finally, the RISC promotes cleavage of the 

mRNA (5, 6, 7, 9). 

In plants and C. elegans, an amplification step has been proposed (5-7). 

Amplification could occur through using the antisense strand of siRNA as a primer by 

RNA-dependent RNA polymerase (RdRp). Therefore, more dsRNAs could be made 

through this amplification step, which provieds plant cells and C. elegans with a more 

effective RNAi. Mammalian cells, however, do not have an amplification step because 

they lack of RdRp. Fig. 1 shows a model for the mechanism of RNAi. 

Another mechanism of RNAi is transcriptional gene silencing (TGS). This TGS 

accomplished via DNA methylation or heterochromatin formation by histone methylation. 

This mechanism has been studied mainly in plants (10, 11). When dsRNA degradation 
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mediated PTGS occurs in plants, the genomic DNA regions homologous to dsRNA are 

often found methylated at almost all the sensitive cytosine residues. This process is 

generally referred to as RNA-dependent DNA methylation, which renders the 

corresponding part of the genome, especially the promoter region transcriptionally silent. 

The initiator of RNA-dependent DNA methylation could be either the transgene-derived 

dsRNA or siRNA (10, 11). Depending on the sequence information of the dsRNA, RNA­

dependent DNA methylation was found to occur in the open reading frame or at the 

promoter region of the genome (12, 13). If methylation occurs only in the open reading 

frame, TGS is not affected. However, RNA-dependent DNA methylation at the promoter 

sequences induces TGS and is stable and heritable (14). 

RNA dependent DNA methylation has been reported mainly in plants and yeast. 

However, very recently, Morris et al., (15) showed that human cells also have siRNA­

induced transcriptional gene silencing. Using siRNA which targets the promoter region, 

they showed transcriptional silencing is associated with DNA methylation. Therefore, it 

seems that TGS is an active pathway in many organisms. However, more investigation is 

necessary in order to understand RNA dependant DNA methylation in human cells. 

Some evidence implies that heterochromatin formation could be the other cause of 

TGS by siRNA (16-18). In C.elegans, which does not have DNA methylation, some 

mutations of genes involved in RNAi machinery, mut7 and rde2, derepress transgenes 

which are repressed by polycomb proteins, which maintain the chromatin 

heterochromatin status. In addition, it has been found that polycomb proteins MES3, 

MES4, and MES6 are required for RNAi under some experimental condition (16, 17). 
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Hall et al., (18) has shown that DNA repeats, which are responsible for dsRNA, are 

important for heterochromatin formation using a yeast system. They inserted a 3.6kb 

centromere H repeat in a euchromatin position. The insertion of the repeats induced 

silencing of a linked reporter gene and methylation of histone H3-K9. From these results, 

it was suggested that dsRNA could induce heterochromatin formation. Fig. 2 shows the 

basic mechanisms of TGS induced by dsRNA. 

Biological function of RNAi 

Many plant viruses encode suppressors of PTGS that are essential for pathogenesis. 

Therefore, it seems that RNAi has an important role in pathogen resistance (19, 20). 

RNAi also control endogenous transposons. In C.elegans, some RNAi-deficient strains 

showed increased mobility of endogenous transposons (21, 22), which was inactivated by 

heterochromatin formation. Therefore RNAi may stabilize the genome by preventing 

transposition. 

Natural RNAi not only prevents the transposable elements from disrupting the 

integrity of genomes but also is responsible for organism development. Mutations of 

ego] and dicer, involved in RNAi pathway in C. elegans cause developmental defects 

(23, 24). Thus, genetic e_vidence implies that a natural role of the RN Ai machinery is the 

control of development of the organism. In many organisms, micro-RNAs have been 

identified (25). Unlike siRNA micro-RNA is not perfect dsRNA. Micro-RNAs have hair­

pin structure and do not trigger mRNA degradation. Instead, micro-RNAs hybridize to 

mRNAs and prevent translation. It seems that the micro-RNA regulates endogenous gene 

expression negatively. In C.elegans, let-7 and lin-4 mi-RNAs have been cloned. Lin-4 
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micro-RNA inhibits endogenous lin14 and lin28 gene expression. The mutation of many 

micro-RNAs result in a developmental defect and the expression of micro-RNA is 

temporal. Therefore, it appears that micro-RNAs regulate development-related genes 

transient! y. 

Gene silencing by siRNA in mammalian cells 

Since RNAi was discovered in C. elegance the RNAi technology mediated by the 

introduction of long dsRNA has been used to investigate gene function in many 

organisms including Arabidopsis and Drosophila. However this long dsRNA can not be 

used in mammals because the introduction of dsRNA longer than 30nt induces an 

interferon response (26). Interferon induces 2' -5' oligoadenylate synthase which activate 

RNaseL leading to non-specific RNA degradation (27). In addition, long dsRNA activate 

the protein kinase PKR, which phosporylates and inactivate the translation initiation 

factor eIF2a leading to inhibition of translation. Because dsRNA smaller than 30nt do not 

activate interferon responses and long dsRNA are cleaved to form 21-23nt siRNA, 

Tuschl and colleagues introduced chemically synthesized siRNA into mammalian cells to 

test whether siRNA could induce gene silencing without an interferon response (26). 

Introduction of synthetic siRNAs induced gene silencing effectively in a sequence­

specific manner. This finding has led to the widespread use of the RN Ai technology to 

determine unknown gene function and to degrade mRNA which causes disease in 

mammalian cells 
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Types of dsRNA inducing RNAi 

Long dsRNA: Long dsRNA in cells can give rise to siRNAs through digestion of the 

dsRNA by Dicer. The siRNAs bind RISC and target homologous mRNA to induce 

effective gene silencing. Because various siRNAs which target the same mRNA are made 

from long dsRNA, defining an optimal sequence for siRNA is not necessary. Therefore, 

long dsRNA is widely used in plants, C.elegans, and Drosophila. However, long dsRNA 

can not be used in mammalian cells because of the interferon response. 

Synthetic siRNA: Because of its convenience, chemically synthesized siRNA is 

widely used to silence genes. However, the synthetic siRNAs have some limitations. First, 

the silencing effect is transient. Although the duration of the silencing effect depends on 

the cell types, generally the silencing effect lasts only 4-5days in mammalian cells 

because of the lack of an amplification step. Therefore, if long term inhibition of gene 

expression in mammalian cells is necessary, synthetic siRNAs can not be used. Second, 

synthetic siRNA is not renewable. Third, some cell lines are not transfected efficiently, so 

synthetic siRNA can be used only with cell lines having a high transfection efficiency. 

Short hairpin RNA (shRNA): To overcome the limitations of synthetic siRNA, 

plasmid or viral vectors expressing shRNA have been developed (28, 29, 30). These 

systems use the pollll promoter that produces short RNA species such as transfer RNA 

and 5s RNA which are not translated into protein. Two polill promoters have been used 

predominantly, the U6 promoter and Hl promoter. Many researchers have shown that 

expression of 19-22nt shRNAs from U6 or Hl promoter is effective. It has been shown 

that the size of the loop is not the main parameter for efficient gene silencing since some 

several different sized loops have been efficient (31 ). 
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Brummolkamp et al., (32) designed a plasmid vector expressing shRNA against E­

cadherin and p53 driven by the Hl promoter and coupled to a selective marker. Cell lines 

transfected stably with the plasmid showed that specific silencing for more than 2 month. 

Therefore, vectors expressing shRNA can be used for long-term gene silencing. In 

addition, these vector systems can be used in cell lines having low transfection efficiency 

because transfected cells can be selected by use of a reporter gene or selection marker. 

Micro-RNA: The first micro-RNA was identified by Ambros and colleagues. They 

isolated a lin4 mutant of C. elegans which was arrested at the first larval stage (33). Later 

on, the let7 mutation was isolated in the same system, which was responsible for 

development through the fourth larval stage (34 ). Both lin4 and let7 encode 22nt RN As 

and were called short temporal RNA because they control the development of C.elegans 

temporally. The mature lin4 RNA inhibited the mRNA expression of lin14 and lin28 

genes and controls the fate of cells during the first three larval stages. Recent studies have 

revealed that the short temporal RN As are members· of micro-RN A. 

In D. melanogaster, C. elegans, plants and humans, more than 600 micro-RNAs have 

been identified (25, 35, 36). An analysis of micro-RNA expression in cell lines and 

tissues suggests cell or tissue specific expression. For example, micro-RN Al is 

specifically expressed in human heart and stage specifically in mouse embryogenesis (36). 

The regulated expression patterns of these micro-RNAs are suggestive of their functions 

in developmental control. 

Since micro-RN As are derived from their precursor dsRNAs and are similar in size to 

siRNAs, the generation of siRNA and micro-RNAs is similar. In fact, both siRNA and 

micro-RNAs are processed by Dicer activities in animals as well as in plants (37- 39). 
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Human recombinant Dicer can process pre-let7 RNA to mature let7 efficiently in vitro

(40). 

Delivery of siRNA 

Transfection reagent: The most widely used method to deliver synthetic siRNA or 

plasmid expressing shRNA into cells is transfection using a lipid-based transfection 

reagent. This transfection reagent gives high transfection efficiency in some cell lines 

including HeLa cell ( 41) 

Electroporation: Some researchers have used electroporation to deliver synthetic 

siRNA or plasmid producing shRNA to cells. However, many cells die after 

electroporation ( 42) 

Viral vector: Although plasmid vector mediated shRNAs mediate effective silencing, 

it has the critical disadvantage of low transfection efficiency in many cells. Stable 

transfection of the plasmid vector could be one solution. However, this process requires a 

long time. To overcome this problem, several researchers developed new viral vector 

systems (43-47). 

1) Retrovirus vector

Retrovirus vectors integrate transgenes into host genome very efficiently, which

makes it possible for shRNAs to be constitutively expressed and silence the target mRNA 

for long times. Because of this property, several retroviral vectors expressing shRNA 

have been produced. For example, Paddison and Hannon (43) inserted U6 expression 

cassette containing template for shRNA against p53 into a MMLV-based vector and 

showed that infection of the vector silenced p53 stably. 
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2) Lentivirus vector

Lentivirus vectors have two advantages over retrovirus vectors. First, lentivirus can

infect both dividing and non-dividing cells while retrovirus infect only dividing cells (44). 

Second, retrovirus undergoes proviral silencing during development (45). However, 

lentivirus vectors are resistant to this silencing. Several groups have used the lentivirus 

vector to deliver shRNA to primary cells, which are not easily transfected. Stewart et al. 

(31) transduced dendritic cells with a lentivirus vector to target endogenously expressed

GFP, and showed significant reduction of the target gene expression. Mouse and human 

primary T cells also have been transduced with a lentivirus targeting CD25, or CCRS, 

HIV-1 co-receptor expression. Mouse primary T cells transduced with a lentivirus 

targeting CD25 showed significantly reduced proliferation in the presence of Il...-2 (46). 

Targeting CCR5 in human peripheral T cells with lentivirus-derived shRNA showed a 

10-fold reduced CCR5 expression and reduced infection when the cells were infected

with CCR5-tropic HIV -1 ( 4 7). 

3) Adenovirus

Adenovirus has also been used to deliver shRNA in vivo (48). The advantages of

adenovirus vector are 1) high titers, 2) infection of dividing and non-dividing cells, and 3) 

infection of various species and cell types. However, adenovirus vectors induce immune 

responses and do not allow long-lasting expression of shRNA. Therefore, this delivery 

system is not suitable for therapeutic purposes but can be used for short-term inhibition 

for research purposes. 

4) Adeno associated virus (AA V)
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Some researchers have used AA V vector to express shRNA in cells because it has 

advantages (49) of infecting various cell types and both dividing and non-dividing cells. 

In addition, it maintains long-term expression and has low immunogenicity. AAV 

integrates at a preferred site, in human chromosome 19, but generally genomic insertion 

is rare. Therefore, insertional mutation is not a big problem. However, the disadvantages 

of AA V vector are that insert sizes are small and some patients may have pre-existing 

antibodies against AA V. 

Applications of RNAi 

RNAi and functional genomics 

RN Ai has evolved into a powerful tool for identification of unknown gene function. 

Specifically, the power of C.elegans and Drosophila genetics provides the opportunity to 

use siRNA or shRNA libraries to identify genes rapidly which are responsible for the 

specific phenotype. For example, Lee et al. (50) systemically inactivated 5690 genes in C. 

elegans using siRNA to identify those involved in its life span. They found that mutation 

of the leucyl-tRNA synthetase gene increased the life span. Recently several groups have 

reported the method to construct siRNA or shRNA libraries (51, 52, 53, 54). Large-scale 

screening using siRNA or shRNA libraries will make it easy to determine specific genes 

which are responsible for distinct phenotypes. 

Disease therapy 

After the demonstration that siRNAs can silence genes in mammalian cells without an 

interferon response, many studies have focused on disease treatment using RNAi 

technology. The most widely studied disease models are viral diseases, cancers, and 
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genetic diseases. Because of the potency and specificity of siRNA, it is very attractive for 

therapeutic purpose. However, there are important issues to be addressed before siRNA 

becomes useful for therapy. First, there is no effective method for delivery of the siRNA 

to the specific sites in vivo. Although some studies show efficient delivery in vivo (Table 

2), delivering the RNAi to specific cells still limits its use in therapeutic applications in 

humans. Second, potential toxicity of siRNA are uncertain in humans. Despite these 

problems, many in vitro and some in vivo studies show potential for treatment of diseases 

Targeting viral RNA with siRNA 

siRNA has been shown to inhibit the production of a retrovirus, a negative-stranded 

RNA virus, and a positive-stranded RNA virus. Cells transfected with siRNA 

corresponding to the viral genome induced an obvious reduction in virus production, 

indicating that viral RNA may be targeted by RNA silencing machinery. 

HIV-1 

Treating HIV-infected patients with combinations of antiviral drugs is reasonably 

effective, but there are some problems concerning drug toxicity and the emergence of 

drug-resistant HIV-1 strains. Since RNAi was demonstrated to be active in mammalian 

cells and HIV-1 use RNA intermediates in their replication cycles, many researchers have 

tried to use RNAi technology to inhibit HIV-1 replication as an alternative strategy (Fig. 

3). Recently, several studies have shown that siRNAs can inhibit HIV-1 replication and 

virus production in vitro (47, 55-63). These studies demonstrate that the targeting of early 

or late viral transcripts, such as gag, pol, env, nef, rev, vif, or tat, may inhibit protein 
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expression and viral replication. Although HIV-1 production and replication may be 

inhibited by RNAi, the question remains whether RNAi targets the incoming genomic 

RNA, the newly synthesized transcripts, or both. If the incoming genomic viral RNA can 

be targeted by RNAi, it will be helpful in preventing the cells from forming a provirus. 

Evidence has suggested that RNAi does indeed target the incoming genomic RNA for 

destruction (56, 58, 60). In these studies, the amount of the integrated provirus was found 

to be reduced when cells were pre-treated with siRNAs. However, other studies showed 

little or no reduction in integrated proviral DNA (55, 59, 62). It remains to be proved 

whether incoming genomic DNA can be targeted effectively. However, it is clear that de 

novo synthesized viral transcripts are degraded efficiently by siRNA. Tat is necessary for 

efficient viral transcription after the establishment of a provirus. Therefore, targeting tat 

mRNA reduces not only tat expression, but also the expression of other viral proteins. 

Targeting the viral RNA directly presents a potential problem for clinical application 

because of the high viral mutation rate. Mutational variants may escape being targeted. 

Therefore, some researchers have used siRNA against cellular transcripts to inhibit the 

infection of lflV-1. siRNA against CD4, which is the receptor for lilV-1, decreased HIV-

1 infection. The treatment of siRNA against CCR5 and CXCR4 also showed a 48% and 

68% reduction in CCR5 and CXCR4 expression, and inhibited the CCR5 tropic and 

CXCR4 tropic HIV-1 infections respectively (48,58, 64). Another host factor that is 

important for lflV -1 replication is the transcription factor NF-KB. Binding NF-KB to 

motifs in the LTR promoter of the integrated pro virus is required for viral transcription. 

A five-fold reduction in lilV-1 production was measured by silencing the p65 subunit of 

NF-KB with siRNA (62). Although targeting the host co-factor has shown an effective 
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inhibition of HIV-1 production, the cellular co-factors have important roles in cellular 

functions such as transcription (NF-KB) and immuno-regulation (CD4). Therefore, 

targeting a co-factor with RNAi has negative effects. However, CCR5 is an exception. 

Individuals who are defective for CCR5 show a resistance to infection from HIV-1 and 

are healthy. Therefore, CCR5 siRNA may be a good candidate for the therapeutic 

intervention of HIV-1 infections. 

Other RNA Viruses 

HCV is a major cause of chronic hepatitis and hepatocellular carcinoma. HCV 

belongs to Flaviviridae with a positive single stranded RNA genome. Because there is no 

cell culture system for HCV replication, RNAi studies have used replicon in Huh-7 cells 

as a model for HCV replication. These replicons support HCV RNA transcription and 

protein synthesis, but do not produce infectious viruses. Synthetic siRNAs against NS3 

and NS5B, non-structural proteins, resulted in inhibition of HCV replication in vitro (65-

68). The internal ribosomal entry site (IRES) that is required for translation, has also been 

targeted by synthetic siRNA or shRNA and shown strong inhibition of the replication. 

(67-69). 

The influenza A virus is a member of Orthomyxoviridae and a major cause of 

infection of the human respiratory tract. The genome of influenza A virus is encoded by 

eight segmented negative single stranded RNAs. It has been shown that siRNAs against 

conserved regions of the influenza genome could inhibit virus production in cell culture 

and embryonated chicken eggs (70). Among 20 siRNAs tested, those against 

nucleocapsid (NP) and RNA polymerase (PA) reduced the accumulation of all eight viral 
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RNAs. The NP and PA proteins play an important role in viral transcription and 

replication, so these siRNAs may be more effective than others. 

For other RNA viruses, polio virus and respiratory syncytial virus (RSV), inhibition 

of the viral replications ·and viral protein production was also demonstrated. The siRNA 

against poliovirus capsid and RNA polymerase reduced viral titer in human cells (71 ), 

and the P and F proteins of RSV were reduced by targeting their mRNA using siRNA 

(72). 

DNA Viruses 

In contrast to RNA viruses, DNA viruses are less likely to escape from siRNA 

because of their lower mutation frequency, but siRNAs against DNA viruses can only 

target the viral mRNAs, and not the viral genomes. Nonetheless, efficient inhibition of 

DNA viruses with siRNAs has been shown (73-76). For example, HBV is a member of 

the Hepadnaviridae and its genome is a 3.2kb ds circular DNA. During infection, four 

RNAs are transcribed that encode the coat protein (CP), polymerase (P), surface antigen 

(S) and the transcription activator (X). HBV production in Huh-7 cells could be reduced

up to 20-fold by shRNA against the X mRNA (73). HBV is the first virus to be inhibited 

by RNAi in vivo in mammals. When HBV and shRNA against HBV are co-delivered by 

hydrodynamic injection, significant repression of HBV antigen expression in liver was 

shown (74). 

Recently, Bhuyan et al. have demonstrated that siRNA against Herpes Simplex Virus 

-1 (HSV-1) can target viral mRNA (76). They target glycoprotein E, which mediates cell-
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to cell spread and immune evasion, and the transfection of the siRNA results in the 

phenotype of a gE-deletion mutant virus in vitro.

Another DNA virus Human papillomavirus (HPV) is an important therapeutic target 

because the constitutive expression of viral proteins E6 and E7 is required for 

carcinogenic growth. Jiang and Milner have shown that targeting HPV E6 and E7 with 

siRNA induces selective degradation of E6 and E7 mRNA in cells (77). Reduction of E6 

with siRNA induces cell growth suppression and inhibition of E7 production causes 

apoptosis (77). 

RNAi as an Antiviral Therapy 

These initial studies of the effect of RN Ai on viral replication in mammalian cells 

generated much hope for the use of RNAi as a novel antiviral therapy. However, there are 

some obstacles to hurdle in order to use RNAi technology as a useful therapeutic strategy. 

First, inhibition of viral replication using siRNA is largely based on transient transfection 

of synthetic siRNAs. These synthetic siRNAs induce only temporal inhibition. An 

approach for the long-term inhibition of viral replication has to be developed. shRNA 

transcribed from plasmid or viral vector might be one solution, although shRNAs have 

not yet been extensively employed. 

A second problem is delivery of siRNA. So far no efficient delivery system has been 

developed, although some in vivo experiments show positive signs. At this point the viral 

vector seems to be the most reasonable approach. However, until an improved delivery 

system is developed, RNAi technology might be used as a genetic tool for the viral study. 
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Finally, as mentioned previously, viruses, especially, RNA viruses, are likely to evade 

siRNA by mutations of the target sequences. Treatment of multiple siRNAs or targeting a 

conserved sequence might be answers, but they have not yet been evaluated. An 

alternative approach is targeting host mRNA instead of viral RNA. As mentioned, CCR5 

is a good candidate for inhibition of HIV-1 infection. There is another example showing 

prevention of virus-induced disease by silencing of host mRNA. HBV and HCV infection 

trigger Fas -mediated apoptosis of hepatocytes. Song et al. showed that hydrodynamic 

injection of siRNA against fas could block fulminant hepatitis induced by a fas-specific 

antibody in mice (78). Hydrodynamically-injected siRNA against fas delivered to the 

liver and showed that 82% of the treated mice survived for 10 days while control mice 

died within 3 days (78). Hydrodynamic tail vein injection delivered siRNA or shRNA 

mainly to the liver. Thus, this delivery method might be ideal to silence gene expression 

in hepatocytes in mice. However, it has not been shown that this injection is effective in 

humans. 

Although many reports showing inhibition of viral replication with siRNA have been 

published, therapeutical approach of siRNA is still limited by many problems concerning 

the delivery, toxicity and viral escape. However, RNAi technology will elucidate the viral 

gene function, and help to understand the interactions between viruses and their hosts. 

Cancer 

Tumor cells can result from uncontrolled cell growth mediated by oncogenic genes or 

by resistance to cell death (apoptosis) by dysfunction of pro-apoptotic and/or anti­

apoptotic molecules. Therefore, RNAi technology could be applied to inhibit oncogene or 
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anti-apoptotic gene expression for cancer therapy. Cioca et al., (79) demonstrated 

targeting oncogene c-raf and anti-apoptotic gene, bcl-2 in a myeloid leukemia cell line 

decreased the protein expression level and induced apoptosis in the cell line. Other targets 

for cancer therapy include pro angiogenic molecules because tumor cells require blood 

supplies. Co-treatment of experimental tumors with chemotherapy and siRNA against 

vascular endothelial growth factor (VEGF) showed promise for control of tumors (80). 

Dominant genetic diseases 

Another field in which siRNAs are being tested for therapeutic purposes is dominant 

genetic diseases. Genetically dominant diseases result from mutation of one copy of the 

gene even though the other copy of the gene is normal. Some in vitro studies have shown 

that dominant genetic diseases might be treated by degradation of only the mutant 

transcript targeted with siRNA (81, 82). For example, Only mutant transcripts of the sod

gene in amyotropic lateral sclerosis, tau gene in frontotemporal dementia, and app gene 

in familial Alzheimer's disease were degraded in vitro (81-83). Therefore, dominant 

genetic diseases caused by one or a few common mutations are good candidates for 

clinical application of RNAi technology 

WhysiRNA? 

siRNA and antisense oligonucleotides share some features. They are nucleotides, 

require delivery systems and induce post-transcriptional gene silencing. However, there 

are also important differences between them. siRNAs are more potent and efficient for 

the inhibition of target gene expression than antisense oligonucleotide (84,85). Although 

there is a report claiming that siRNA and antisense oligonucletide have similar potency 
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(86), many researchers believe siRNA is more potent and effective because siRNA is 

naturally occurring as a form of microRNA and uses cellular machinery, while antisense 

oligonucleotide does not exist naturally. Other advantage of siRNAs over antisense 

oligonucleotide is that siRNA is highly effective without any chemical modifications, 

while antisense oligonucleotide is not stable without chemical modification (87). This 

lack of requirement of chemical modification of siRNA reduces toxicity of siRNA 

compared to antisense oligonucleotides (88). In addition, the duration of gene silencing of 

endogenous targets with siRNA is longer than that with chemically modified antisense 

oligonucleotides (88). Therefore, longer inhibition, low toxicity and strong potency make 

siRNAs better molecules to effect gene silencing. Another RNA molecule, ribozyme, has 

been tried to inhibit gene expression, but its potency remains in question and there is no 

sign of success as a potential therapeutics. Therefore, it appears that siRNA is a better 

molecule to inhibit gene expression in vivo as well as in vitro.

RNAi in vivo 

Although there are many articles claiming successful gene silencing with siRNA in 

mammalian cell cultures, only limited reports in which siRNA is used in vivo have been 

published because of lack of suitable delivery systems. The first paper where siRNA was 

used in vivo was published in 2002. In the paper, Kay and colleagues co-injected NS5B­

luciferase fusion gene with NS5B siRNA and then showed reduced luciferase expression 

using bioluminescence imaging (89). Although they targeted exogenous gene by co­

injection with corresponding siRNA, this was the first result demonstrating that siRNA 

can induce RNAi in vivo. Several months later, Xia et al. demonstrated inhibition of 
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endogenous gene expression with siRNA (90). They inhibited �-glucuronidase 

production in the liver using adenovirus expressing shRNA. Many in vivo experiments 

targeted liver cells because a delivery system is available. Tail vain injection with high 

pressure, which is called hydrodynamic injection, delivers nucleic acid mainly to liver 

cell. Fas, Caspase8, HCV, and HBV are targeted at the liver (Table 2). The brain is also 

targeted by a few researchers. They delivered siRNA or shRNA into the brain by direct 

local injection. AGRP, tyrosine hydrocyclase, and ataxin-1 are targeted in the brain (91-

93). Solid tumor cells are also easily accessible, so mutated p53, vascular endothelial 

growth factor (VEGF), and endothelial growth factor receptor (EGFR) are targeted in 

order to reduce tumor mass in vivo (80, 94, 95). Transforming Growth Factor-� (TGF-�), 

CRX, and NRN, and VEGF are reduced in eyes by local injection (96-98). We 

summarized in vivo experiments using siRNA or shRNA in Table 2. As shown in the 

table, many in vivo experiments using systemic injection targeted the liver or other 

particular tissues, such as the brain, eyes, and tumors are targeted because local injection 

of siRNA or shRNA was possible. Because of the limited delivery system, application of 

RNAi technology into mice has not reached its potential yet. However, RNAi does have 

great potential if the development and improvement of delivery systems for RN Ai

technology is achieved. 

Specific Aims and Rationale 

Pathogenesis of herpetic stromal keratitis (HSK) involves many molecules and a 

complex mechanism (99). However, it has been shown that angiogenesis is a critical step 

in the in development of HSK after herpes simplex virus-1 (HSV-1) infection (100). 
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Treatment of neutralizing Ab against VEGF reduced angiogenesis and HSK severity 

caused by HSV-1 infection (100). In addition, it has been demonstrated that inhibition of 

IL-1 signaling, which is induced by HSV-1 infection, reduced VEGF production, 

angiogenesis, and HSK severity (101). Therefore, it has been proposed that inhibition of 

angiogenesis is a valuable approach to control HSK. 

Recently, it has been shown that introduction of siRNA or shRNA into mammalian 

cells inhibits target gene expression, which is called RNAi. Although the RNAi 

technology has been successful in vitro, only limited in vivo experiments were published 

because of delivery problems. Although most in vivo experiments target the liver, RNAi 

technology was also successfully used in mouse eyes (96-98). 

Therefore, in this study, we investigated the potential value of RNAi technology for 

inhibition of angiogenesis-related gene expression in mouse eyes using intrastromal 

injection. Treatment of plasmid expressing shRNA in vitro was performed to determine 

whether shRNA can inhibit exogenous and endogenous target genes. More importantly, it 

was also demonstrated that intrastromal injection of plasmid DNA expressing shRNA 

against VEGF or IL-1 receptor type I can reduce angiogenesis induced by CpG motif and 

IL-la treatment respectively. These studies demonstrating application of RNAi in mouse 

eyes is a valuable approach in the study of corneal biology and in the treatment of corneal 

diseases. 
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Fig. 1 A model for the mechanism of RNAi. 

Dicer enzyme processes the introduced long dsRNA into short interfering RNA 

(siRNA). The siRNAs bind RISC and the complexes become activated by unwinding of 

the siRNA. Such complexes degrade target mRNA. 

This figure is adapted from Nature 418, 244-251(2002) 
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Fig. 2 A role of the RNAi process in heterochromatinization in nuclear DNA. 

dsRNA could inhibit gene expression by methylation of target DNA or histone protein. 

This mechanism is studied mainly in plant and C.elegans. 

This figure is adapted from Nature 430, 161-164 (2004) 
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Fig. 3 RNA interference susceptible targets in the HIV-1 replication cycle. 
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Tablel Inhibition of viral replication by RNAi. 

Virus Target gene Type of dsRNA Cell type Ref 

HIV tat, rev plasmid based siRNA 293/EcR 57 

HIV LTR, vif, nef siRNA Macrophage, PBLs 60 

HIV gag, CD4 siRNA Macrophage, HeLa 58 

HIV gag, pol siRNA T cell line 59 

HIV gag, LTR siRNA U87 56 

HIV tat, rev siRNA J urkat, HPBLs 55 

HIV env siRNA PBMC 61 

HIV CXCR4,CCR5 siRNA U87 64 

HIV tat, RT, NF-KB siRNA Macrophage 62 

HIV nef long dsRNA U937, MT-4 63 

HIV CCR5 lentiviral shRNA Macrophage 47 

HCV NS3, NS5B siRNA Huh-7 65 

HCV capsid, NS4B siRNA Huh-7.5 66 

HCV 5'UTR siRNA Huh-7 67 

HCV 5'UTR, NS3, NS5B siRNA Huh-7 68 

Plasmid based siRNA 

HCV 5'UTR siRNA Huh-7 69 
Plasmid based siRNA 

1'0110 VITUS caps1ct,po1ymerase SIKNA tteLa �j, fl 

Mouse embryonic fibroblast 

Influenza PBl, PB2, PA, siRNA MOCK, 70 

A virus NP,M,NS chicken empryos 

RSV P and F proteins siRNA A549 72 

HBV X, core retroviral shRNA Huh-7 73 

HBV core, S, pol.,X Plasmid based shRNA Huh-7, mice 74 

HBV core siRNA Huh-7 75 

HPV E6,E7 siRNA CASKi, siHa 77 

HSV-1 gE siRNA keratinocytes 76 
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Table 2 Summary of in vivo RN Ai experiments 

Target gene Target tissue Type of dsRNA Delivery Ref 

EGF P, Luciferase liver, spleen, kidney siRNA systemic injection. 106 
Placental alkaline lung, pancreas 
phosphatase 

AGRP hypothalamus plasmid based shRNA local injection 91 
siRNA 

NS5B mainly liver plasmid base shRNA systemic injection. 89 
siRNA 

(3-glucuronidase liver adenoviral shRNA systemic injection 90 

trp53 hematopoietic retroviral shRNA in vitro transfection 95 
stem cells and reconstitution 

fas liver siRNA systemic injection 78 

TNF-a peritoneal cells siRNA with DOTAP ip injection 107 

VEGF retina adenoviral shRNA local injection 98 

Caspase-8 liver siRNA systemic injection 102 

VEGF tumor siRNA local injection 80 

S gene ofHBV liver siRNA systemic injection 108 
with pHBV 

S gene ofHBV liver plasmid based shRNA systemic injection 109 

Luciferase implanted plasmid based shRNA systemic injection 110 
brain tumor with pegylated immuno-

liposome 

P2X3 spinal cord siRNA local injection 103 

Musk,rapsyn muscle siRNA local injection 104 

TGF-(3 subconjuntival siRNA local injection 96 

EGFR brain tumor plasmid based shRNA systemic injection 94 
with pegylated immuno-

liposome 

Cxr, nrl retina plasmid based shRNA in vivo electro- 97 
poration 

NP,PAof lung siRNA systemic inj. with 105 
Influenza A virus with oligofectamine local injection (i.n.) 

ataxin-1 brain midline AAV mediated shRNA local injection 92 
lobules IVN 

tyrosine midbrain neurons AA V mediated shRNA local injection 93 
hydroxy lase 
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Part II 

Reduction of murine VEGF gene expression and 

angiogenesis caused by CpG motif in mouse eyes using 

shRNA against VEGF 
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Abstract 

Neovascularization in the cornea can lead to impaired vision. Although many 

molecules are involved in the neovascularization, vascular endothelial growth factor 

(VEGF) is the one of the most strongly implicated factors in pathological 

neovascularization of the eye. Therefore, VEGF is an attractive target for anti-angiogenic 

therapy to treat neovascular eye disease. Recent developments in RNA interference 

(RNAi) technology have made it possible to inhibit gene expression because the 

technology allows for specific and potent gene silencing. In this study, we investigated 

whether the plasmid DNA expressing shRNA against mVEGF (murine VEGF) can 

reduce m VEGF expression and angiogenesis in a mouse corneal neovascularization 

caused by CpG motif. Cells transfected with pshVEGF-EGFP, which expresses VEGF 

shRNA and EGFP bicistronically, showed reduced mVEGF, mRNA, and protein levels. 

In addition, the introduction of psh VEGF into the stromal cells of the mouse eyes by 

intrastromal injection reduced the angiogenic area as well as m VEGF production caused 

by CpG motif. Our results indicate that RN Ai technology might be a useful approach to 

studying corneal stromal cell biology and can be used to treat a variety of corneal 

diseases induced by unwanted gene expression, such as neovascularization. 
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Introduction 

Neovascularization in the cornea is a critical step in herpetic stromal keratitis (HSK), 

which is caused by ocular infection with the herpes simplex virus-l(HSV-1) (1, 2). The 

mechanisms by which ocular infection of HSV-1 induces neovascularization are not clear. 

However, it was demonstrated that bioactive CpG motif in HSV-1 DNA could contribute 

to angiogenesis in the eyes, and the angiogenesis was mediated by m VEGF production 

(3). In addition, the administration of the anti-mVEGF antibody prevents CpG-induced 

angiogenesis in mouse eyes (3). These results imply that m VEGF is an important 

molecule for neovascularization in mouse eyes and that inhibition of m VEGF production 

can reduce angiogenesis in mouse eyes. 

RNAi is a powerful technique used to induce gene silencing sequence specifically (4). 

To investigate whether RNAi technology can inhibit mVEGF expression in vitro and in 

vivo, we designed a plasmid DNA expressing m VEGF shRNA. 

RNA interference (RNAi) is a phenomenon in which the introduction of double­

stranded RNA (dsRNA) into certain organisms and cell types induces degradation of 

homologous target mR.NA (4). RNAi was first discovered in C.elegans and it has 

become clear that RNAi occurs in other organisms as well including fungi, Drosophila, 

plants, and mammals (5, 6, 7, 8). There are a few different small RNA inducing RNAi, 

including chemically synthesized siRNA and short hairpin RNA (shRNA) from the 

plasmid or viral vector, and micro RNA (8, 9, 10, 11, 12). Among the small RNA, 

synthetic siRNA is the most commonly used. However, synthetic siRNA requires cell 

lines to have high transfection efficiency, but unfortunately, many cell lines and primary 
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cells do not show high transfection efficiency. To overcome this limitation, we generated 

plasmid DNA expressing m VEGF shRNA and EGFP bicistronically (psh VEGF- EGFP), 

and sorted the EGFP positive cells after transfection to determine the inhibition of mRNA 

of mVEGF. In the present study, we demonstrated that mVEGF mRNA is highly reduced 

in pshVEGF-EGFP transfected cells, but not in pshGAPDH-EGFP (control plasmid) 

transfected cells. This result indicates that shRNA expressing a plasmid containing 

reporter gene is useful particularly when a cell line has a low transfection efficiency. We 

also demonstrated that the intrastromal injection of psh VEGF into mouse stromal cells 

reduced angiogenesis and m VEGF production induced by CpG motifs. These results 

imply that the eye is a suitable organ for the application of RN Ai technology and can help 

to understand ocular biology and control ocular disease caused by unwanted gene 

expression in corneal stromal cells. 
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Materials and Methods 

Mice 

Five to six week old female BALB/c mice were used. All experiments were conducted in 

compliance _with the guide for the care and use of Laboratory Animal Resource Council. 

The animal facilities of the University of Tennessee (Knoxville, TN), used are accredited 

by the American Association of Laboratory Animal Care. All ocular experimental 

procedures were conducted according to the Association for Research in Vision and 

Ophthalmology Resolution on the use and care of laboratory animals. 

Plasmid construction 

We designed shRNA to interfere with m VEGF expression, referring to technical 

information (Ambion, Austin, TX). The target sequence was confirmed to determine 

there is no homology to any other mouse genes by using a BLAST search. The 19-mer 

sense shRNA sequence and antisense shRNA sequence were linked with a nine 

nucleotide spacer (TICAAGAGA) as a loop. Six Ts and 6As were added as a 

termination signal to the 3' end of the forward oligomer and 5 'end of the reverse 

oligomers, respectively. Then 4 nucleoti�es corresponding to the EcoRI (AATI) and 

Apal (GGCC) sites were added to the 5' and 3' end of the reverse oligomer, respectively. 

The oligomer sequences for psh VEGF are (forward) 5 '-OCT ACTGCCGTCCAA TIO 

ATTCAAGAGATCAATIGGACGGCAGTAGCTTmT-3' (reverse) 5'-AATIAAAA 

AAGCTACTGCCGTCCAATTGATCTCTIGAATCAATIGGACGGCAGTAGCGGC 

C-3'.
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The forward and reverse oligomers were incubated in annealing buffer ( 1 00mM K­

acetate, 30mM HEPES-KOH (pH7.4) and 2mM Mg-acetate) for3 min at 90oC, followed 

by incubation for 1hr at 37oC. The annealed oligomer was legated with linearized 

pSilencerl.0-U6 vector (Ambion) at Apal and EcoRI sites. After transformation, the 

sequence was confirmed by DNA sequencing. pshGAPDH was purchased from ambion 

(Austin, TX). For pshVEGF-EGFP and pshGAPDH-EGFP, DNA fragment containing 

CMV promoter, EGFP gene, and polyA sequence was inserted at Sacl site using blunt 

end ligation. 

Cell culture and transfection 

Cos-7 and MBE cells were cultured in DMEM (Mediatech, VA) supplemented with 10% 

heat-inactivated FBS and penicillin/streptomycin in 5% CO2. Cells were reseeded at a 

confluency of 70-80% in the absence of antibiotics 1 day before transfection. 

Transfection with plasmids was carried out with Lipofectamine 2000 (lnvitrogen) 

according to the manufacturer's specifications. 

Reagents 

Phosphorothioate ODNs were kindly provided by Dennis M. Klinman (Biologics 

Evaluation and Research, Food and Drug Administration, Washington, DC). The 

sequences of stimulatory ODNs used in this study were: 1466, TCAACGTIGA, and 

1555, GCTAGACGTIAGCGT. Subsequent studies were performed using an equimolar 

mixture of ODNs 1466 and 1555. The control ODN 1471 has sequence TCAAGCTIGA. 
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Total RNA isolation and RT-PCR 

Total RNA from cells was extracted by using RNeasy RNA extraction kit (Qiagen, 

Valencia, CA). Briefly, cells were lysed in lysis buffer, and RNA was purified following 

manufacturer's protocol. DNase treatment (Qiagen) was done to remove genomic DNA. 

For the RT-PCR, one-step RT-PCR was performed according to the manufacturer's 

protocol (Qiagen) with 80ng of total RNA. The following RT-PCR conditions were used: 

1 cycle of 50°C for 30 min followed by lcycle of 94°C for 2 min: 30 cycles of 94°C for 1 

min, 56°C for 1 min and 72°C for 1 min and a final cycle of 72°C for 5 min. The primer 

sequences for VEGF were 5' -GCGGGCTGCCTCGCAGTC-3' (forward) and 5 ' -

TCACCGCCTIGGCTIGTCAC-3' (reverse). The primer sequences for GAPDH were 

5' -CA TCCTGCACCACCAACTGCTI AG (forward) and 5 ' -

GCCTGCTICACCACCTICTIGATG-3' (reverse). 

Quantitative Real-Time PCR 

Total RNA was isolated from GFP positive cells after transfection using RNeasy RNA 

extraction kit (Qiagen) according to manufacturer's protocol. DNase(Qiagen) was treated 

to remove genomic DNA. To generate cDNA lug of total RNA was reverse 

transcriptased using reverse transcriptase ( Invitrogen). All cDNA samples were 

aliquoted and stored at -20oC until use. Real time PCR was performed using a smart 

cycler system (Chepheid). PCR was performed using SYBR Green I reagent (Qiagen), 

according to the manufacturer's protocol. The semi-quantitative comparison between 

samples was calculated as follows: the data were normalized by subtracting the difference 

of the threshold cycles (Ct) between the gene of interest's Ct and the GAPDH's Ct (gene 
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of interest Ct - GAPDH Ct = ACt) for each sample. Then, MCt was calculated by 

subtraction (AACt = ACt, psh VEGF- ACt, pshGAPDH). To determine relative expression 

of VEGF mRNA following formula was used 2-Mct_

The primers used were GAPDH 5'-CATCCTGCACCACCAACTGCTIAG-3' (forward), 

5'-GCCTGCTICACCACCTTCTIGATG-3' (reverse), VEGF 5'-GGAGATCCTI­

CGAGGAGCACTT-3' (forward), 5'-GGCGATTTAGCAGCAGATATAAGAA-3' 

(reverse). 

Flow cytometry 

Trypsinized cells were fixed and permeabilized using cytofix/cytoperm buff er (BD 

Biosciences, Mountain View, CA) for 30 minutes on ice. Labeling of intracellular VEGF 

was carried out with biotinylated VEGF antibody (R&D systems, Inc., Minneapolis, MN) 

followed by staining with streptavidin-PE. Finally, the cells were washed three times and 

samples were acquired on a FACScan (BD Bioscience). The data were analyzed using the 

CellQuest 3.1 software (BD Biosciences). 

Corneal lysate VEGF Enzyme-Linked Immunosorbent Assay (ELISA) 

Corneas were isolated and put into DMEM without serum and stored at -80°C. The 

corneas were homogenized using ultra sonicater (Heat systems-Ultrasonics, NY). The 

lysate was then clarified by centrifugation at 12000rpm for 5 minutes at 4°C. The 

supernatant was collected and stored at -80°C until further use. Lysate was assayed using 

a standard sandwich ELISA protocol. Anti-mouse VEGF capture and biotinylated 

detection antibody (R&D systems, Inc., Minneapolis, MN) was used. mVEGF164 protein 
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was used as a standard (R&D systems, Inc.). The color reaction was developed using 

ABTS (Sigma-Aldrich, St. Louis, MO) and measured with an ELISA reader (Spectramax 

340; Molecular Devices, Sunnyvale, CA) at 405nm. Quantification was petformed with 

Spectramax ELISA reader software version 1.2. 

lntrastromal injection 

Corneal intrastromal injection was petformed as described before (13). Under 

stereomicroscopic observation, a small tunnel from the corneal epithelium to the anterior 

stroma was made with a one-half-inch 30-gauge needle. Another needle was passed 

through the tunnel into the corneal stroma. Two microliters of solution containing the 1 ug 

plasmid was forcibly injected into the stroma. 

Corneal Micropocket Assay 

The corneal micropocket assay used in this study observed the general protocol of 

Kenyon and colleagues (14) 

Pellets 0.4x 0.4x 0.2mm3 composed of sucralfate and hydron polymer were prepared.

Known amount of bioactive CpG or non-bioactive control CpG were added to these 

pellets. Each pellet contains lug of CpG ODNs. The micropockets were placed -1 mm 

from the limbus under stereomicroscope (Leica Micro Systems, Wetzlar, Germany) and 

the pellet was inserted into the micropocket. 

Measurement of angiogenic area 

Angiogenesis area was measured at day4 after pellet implantation by using caliper 
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(Biomedical Research instrument, Rockville, MD) with a streomicroscope. 

The length of the neovessels generated from the limbal vessel ring toward the center of 

the cornea and the width of the neovessels presented in clock hours ( each clock hour is 

equal to 30° at the circumference) was measured (15). The angiogenic area was 

calculated according to he formula for an ellipse. A= [(clock hours) x 0.4 x (vessel length 

in mm) x 1t]/2. 

Statistical analysis 

Significant differences between groups were evaluated using student's t-test. A p value of 

g).05 was regarded as indicating a significant difference between two groups. 
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Results 

Selection of candidate sequences and construction plasmid 

To select candidate target sequences, we used siRNA target finder on the website of 

ambion. The program scans the mVEGF sequence for the 21 nucleotide sequence starting 

AA. From among them, we chose three sequences having less than 50% G/C content 

because siRNAs with low G/C content are more active than those with higher G/C 

contents, according to the technical information from ambion. After the selection 

candidate sequence, we inserted an oligonucleotide having sense, loop, and anti-sense 

sequence into a shRNA expressing vector (pshVEGF) (Fig. lA). To make plasmid 

expressing shRNA and EGFP bicistronically, we inserted an EGFP gene containing CMV 

promoter and a poly A sequence (pshVEGF-EGFP) (Fig. lB). With this pshVEGF-EGFP, 

we validated effective sequence. 

Co-transfection of psh VEGF and pEGFP-VEGF reduced EGFP signal. 

Validation of an effective shRNA requires determination of the mRNA and protein 

levels using RT-PCR, a northern blot, a western blot, or flow cytometry. To make this 

validation step simple, we designed pEGFP-VEGF (Fig. lC) and co-transfected it with 

pshVEGF into Cos-7 cells. If mVEGF shRNA degrades its target mRNA, EGFP mRNA 

can not be translated either. Co-transfection of psh VEGF and pEGFP-VEGF showed a 

reduced EGFP signal in compared to the co-transfection of pshGAPDH, expressing 

GAPDH shRNA and pEGFP-VEGF (Fig. 2). From this experiment, we chose the most 

effective shRNA for the rest of the experiment. 
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To determine the Mean Fluorescence Intensity (MFI) after co-transfection of pEGFP­

VEGF with psh VEGF or pshGAPDH, flow cytometcy was performed. The MFI of the 

cells which were co-transfected with pEGFP-VEGF and pshGAPDH was 330.29 ± 29.69, 

while the MFI of the cells which were co-transfected with pEGFP-VEGF and psh VEGF 

was 110.56 ± 16.39 (Fig. 3). These results indicate that psh VEGF targets VEGF mRNA 

effectively. In addition, it was shown that the co-transfection of shRNA with the plasmid 

expressing reporter gene-target gene mRNA is a useful tool to validate a shRNA 

candidate. This strategy might be useful, especially in case when antibodies against target 

proteins are not available. 

psh VEGF-EGFP reduced endogenous VEGF gene expression in transfected cells. 

The MBE cell line revealed a very low transfection efficiency (5-10%). Therefore, we 

could not detect a significant reduction of gene expression after the transfection. To solve 

this problem, we designed psh VEGF-EGFP and pshGAPDH-EGFP expressing shRNA 

and EGFP bicistronically (Fig. lB). After the transfection of the plasmid, we sorted the 

EGFP positive cells prior to performing RT-PCR and real time PCR. The pshVEGF­

EGFP positive cells suppressed 70% of m VEGF mRNA compared to the control cells, 

which were pshGAPDH-EGFP positive cells (Fig.4, 5). We also determined whether 

psh VEGF reduces the VEGF protein in MBE cells. In cells transfected with psh VEGF­

EGFP, the EGFP positive cells showed a reduced mVEGF protein level. The MFI of 

mVEGF from the pshVEGF-EGFP transfected cells.(EGFP positive cells) was 42.6 ± 

15.6, while the MFI of mVEGF from the pshGAPDH-EGFP transfected cells was 104.1± 

16.6. The MFI of m VEGF from the untrasfected cells was similar to that of the 
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pshGAPDH-EGFP transfected cells (98.6± 15.7 and 99.6± 10.2 respectively) (Fig.6). 

Intrastromal co-injection of psh VEGF and pEGFP-VEGF reduced EGFP signal in 

cornea 

To determine that how much plasmid DNA is required to obtain optimal transfection, 

we injected 0.5, 1.0, 2.0, 4.0 or 8.0ug/2ul per eye with pEGFP. Intrastromal injection 

with 1.0 -4.0ug/2ul showed similar highest GFP signal. Therefore, we used 2ug/2ul dose 

for our experiments. In addition, we also investigated how long plasmid is expressed into 

stromal cells. We observed GFP signal from day 1 to day 10 after intrastromal injection. 

GFP signal was strong until day3. At day 4 the signal started decreasing. However, the 

signal was detected until day 8 or 9. Therefore, it seems that plasmid based shRNA is 

expressed long enough to see the effect in vivo.

To determine whether the shRNA against mVEGF degrades its target molecule in the 

cornea, we co-transfected pshVEGF and pEGFP-VEGF intrastromally. A's a control, 

pshGAPDH and pEGFP-VEGF were co-injected. The co-injection of psh VEGF and 

pEGFP-VEGF showed a reduced EGFP signal compared to the co-injection of 

pshGAPDH and pEGFP-VEGF (Fig. 7). This result indicates that psh VEGF degrades its 

target mRN A in the stromal cells of the mouse cornea. 

Intrastromal injection of psh VEGF reduced angiogenesis caused by CpG motif 

To investigate whether psh VEGF can reduce angiogenesis in mouse eyes, psh VEGF 

or pshGFP was injected intrastromally. One day after injection, a pellet containing 

bioactive CpG or bioinactive CpG oligonucleotide was implanted to cause angiogenesis. 

Four days after implantation, an angiogenic area was measured. The psh VEGF-injected 
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eyes showed reduced angiogenesis compared to pshGFP-injected eyes (Fig. 8). The 

angiogenic area from the psh VEGF-injected eyes was 0.34 ± 0.11, while the area from 

the pshGFP-injected eyes was 0.49 ± 0.14 mm2
• The angiogenic area from co�trol CpG­

implanted eyes was 0.15 ± 0.11 mm2 (Fig. 9).

The level of the m VEGFl 64 protein was measured by ELISA. An intrastromal 

injection of pshVEGF reduced the mVEGF164 protein level (126.67 ± 16.07pg / eye) in 

bioactive CpG-treated cornea in compared to the injection of pshGFP (183.33 ± 48.05pg / 

eye) (Table 1). Therefore, it is assumed that the reduction of the mVEGF protein results 

in the inhibition of angiogenesis in the mouse cornea. 
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Discussion 

RNAi phenomenon was discovered very recently, but the RNAi technology has been 

used in many research areas because it is very powerful to reduce endogenous gene 

expression with specificity. The most popular purpose of the experiment using RNAi 

technology is to identify unknown biological gene function. The conventional way to 

identify the function of particular genes is the examination of mutant or knockout 

phenotype. However, all mutant and knockout animals are not available and making them 

is a time consuming process. On the �ther hand, it is relatively easy and quick to reduce 

particular gene expression using RNAi technology to determine function of the interested 

genes. Additionally, in C.elegans, high throughput screening format, in which many 

genes can be screened at a time to find genes having particular function, using siRNA has 

been developed and identified the genes involved in cell division and embryonic 

development (16, 17). This RNAi pathway is conserved from plants to mammals, so this 

technology can be used in many organisms. 

To determine reduced protein level after transfection of siRNA or shRNA, antibodies 

against target proteins are required. However, some antibodies are not available. To 

overcome this problem, we designed co-transfection strategy in which plasmid 

expressing fusion protein (reporter protein-target protein) and shRNA are co-transfected. 

The result showed that co-transfection of pEGFP-VEGF and psh VEGF reduced EGFP 

signal (Fig.2). Therefore, this strategy might be useful to detect suppression of protein 

production indirectly when a antibody against target protein is not available. 

Although the RNAi technology is very useful, it depends on high transfection 
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efficiency. Therefore, most experiments have been done with only cell lines having high 

transfection efficiency such as HeLa and HEK 293 cells. To overcome this limitation, we 

have designed plasmid expressing a shRNA and a reporter gene, EGFP, bicistronically 

(pshVEGF-EGFP) to identify which cells are transfected. After transfection of the 

plasmid into MBE cell line having low transfection efficiency, we sorted EGFP positive 

cells (psh VEGF-EGFP transfected cells) and showed down regulation of m VEGF mRNA 

in the sorted cell in comparison with the pshGAPDH-EGFP transfected cells (Fig.4, Fig. 

5). In addition, flow cytometry experiment showed that pshVEGF-EGFP positive cells 

produced less mVEGF in comparison with pshVEGF-EGFP negative cells or 

pshGAPDH-EGFP positive cells. Therefore, these results imply that the plasmid 

expressing shRNA and EGFP is useful in cell lines having low transfection efficiency. 

SiRNA degrades mRNA sequence specifically so, RNAi technology can be used for 

therapeutic purposes. Although down regulation of unwanted gene or mutated gene 

expression is an attractive method to treat disease and siRNA has the potential, the 

delivery of siRNA to proper cells or tissues is a problem for the therapeutic application of 

siRNA. Recently, the therapeutic potential of the siRNA was demonstrated in the mouse. 

Song et. al. (18) demonstrated that targeting of fas mRNA by fas siRNA decrease 

hepatocyte necrosis and protected mice from liver fibrosis and fulminant hepatitis. One of 

the critical reasons their in vivo experiment was successful is that the hydrodynamic 

injection delivers most siRNAs to the liver cells. However, this technique may not be 

used for large animals because the pressure may not reach to the liver in such animals. 

Direct injection into tissues is also used to deliver siRNA or viral vector mediated shRNA 

(19, 20). This method could achieve tissue or organ specific delivery of siRNA or shRNA. 
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However, it is used only in limited tissues or organs because direct injection is not 

available in many tissues. Viral vectors are being used by many researchers (21-25). 

Some viral vectors give good transduction efficiency but lack of tissue specific 

transduction could be a problem. Development of tissue specific promoter-derived 

shRNA might be the answer of the problem. 

In this study, we showed that intrastromal co-injection of psh VEGF and pEGFP­

VEGF reduced EGFP signal in comparison with co-injection of pshGAPDH and pEGFP­

VEGF (Fig. 7). In addition, intrastromal injection of psh VEGF reduced angiogenesis and 

mVEGF protein production caused by CpG motif in eyes (Fig. 8, Fig.9, and Table 1). At 

this time, we do not know how many cells are transfected by pshIL-lRI. However we 

assumed that intrastromal injection transfected enough cells to reduce angiogenesis 

caused by the IL-la. treatment. Otherwise, shRNA might be spread to neighbor cells after 

expressed in transfected cells and inhibit target protein expression in untransfected cells 

as well as transfected cells. Although improvement of delivery system is necessary for 

more successful gene silencing, it seems that the eye might be a good target organ to use 

RNAi technology for such research and therapeutic purposes. Our results imply that 

RNAi technology may be helpful to understand corneal biology and hold promise for the 

development of gene specific therapeutics in eyes. 
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Fig. 1 plasmid constructs 1. 

A. psh VEGF expresses shRNA against m VEGF

B. psh VEGF-EGFP expresses shRNA against m VEGF and EGFP bicistronically

C. pEGFP-VEGF expresses EGFP-VEGF fusion protein

Sense: sense sequence, Antisense: antisense sequence, 

Term: RNA polymerase III transcription termination sequence 

CMV: CMV promoter, Poly A: Poly A sequence 

Arrows represent transcription start site and direction 
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A.pshVEGF

I U6 promoter sense 

B. psh VEGF-EGFP

loop antisense I term. I 

U6 promoter sense loop antisense term CMV EGFP poly A 

C. pEGFP-VEGF

CMV I EGFP VEGF poly A 

Fig.1 

71 



Fig. 2 Fluorescence microscopy after co-transfection of p VEGF-EGFP with psh VEGF or 

pshGAPDH. 

0.5ug of pEGFP-VEGF with 2ug of pshGAPDH (A) or 2ug of psh VEGF (B) are co­

transfected. 24hrs after transfection fluorescence microscopy was performed. 
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A. pEGFP-VEGP + pshGAPDH B. pEGFP-VEGF + pshVEGF

Fig.2 
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Fig.3 Inhibition of exogenous m VEGF protein. 

24-36 hrs after co-transfection of pEGFP-VEGF with pshGAPDH (A) or psh VEGF

(B) into cos-7 cells, flow cytometry was performed.
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Fig. 3 

A. 

�-1'""--..i....:...---'---'-'"-----. 

� 

VEGF 

MFI 330.29± 29.69 

75 

B. 

� pEV0.5'4g-+psiV1,43 21.lg(V).003 

� 

i:, 

10 103 10" 
FL2-H 

110.56± 16.39 



Fig. 4 Inhibition of endogenous mRNA of m VEGF. 

pshGAPDH-EGFP positive and pshVEGF-EGFP positive cells were sorted . 

Total RNA from the sorted cells was isolated and RT-PCR was performed. 

Beta actin primers were used as a control. 
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Fig. 5 Relative quantitation of reduced mRNA of m VEGF. 

After EGFP positive cell sorting, total RNA was isolated, and then cDNAs were 

made from the total RNA. MCt method was used to compare the relative 

expression of mRNA between the cells 
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Fig. 6 Inhibition of endogenous m VEGP protein. 

24hr after transfection of pshGAPDH-EGFP (B) or psh VEGF-EGFP (C), cells 

were harvested for intracellular staining to detect m VEGF protein. (A): isotype 

control antibody was treated. 

80 



MFI 96.8± 15.7 99.6± 10.2 

A. B. C. 
.... .001 T 

5! � 

� 
,., ... ('> 

5! ;! 

�o � � 
� 2� 

NO 

it- RZ it -

� � � 

1a3 10 .. 102 103 

FLI� 

EGFP 

MFI 104.1± 16.6 42.6± 15.6 

Fig. 6 

81 



Fig. 7 Reduction of VEGF-EGFP signal by intrastromal injection of psh VEGF in 

mouse cornea. 

Co-injection of pEGFP-VEGF with pshGAPDH (A) or psh VEGF (B) was 

performed. 
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A. pEGFP-VEGF +pshGAPDH B. pEGFP-VEGF + pshVEGF

Fig. 7 
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Fig. 8 Reduction of angiogenesis caused by CpG motifs by psh VEGF in cornea. 

Intrastromal injection of psh VEGF (B) reduced angiogenesis induced by CpG 

motifs. pshGFP (A) was used as a control plasmid. Bioinactive CpG was 

used as a control pellet (C) 
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A. pshGFP + CpG B. psh VEGF + CpG C. pshGFP + control CpG

Fig.8 
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Fig. 9 Angiogenesis area at day 4 after CpG treatment following pshGFP or psh VEGF 

Injection. 
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Table 1. Measurement of the amount of m VEGF in corneas using ELISA 

Plasmid pshGFP pshVEGF pshGFP 

CpG bioactive bioactive bioinacti ve ( control) 

VEGF 183.33± 48.05 *126.67± 16.07 * 101.67 ± 23.09 

pg/ eye 

* p< 0.05

Four days after CpG treatment following pshGFP or psh VEGF 
injection ELISA was performed. 
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PART III 

Inhibition of angiogenesis caused by IL-la in mouse 

cornea using shRNA against IL-1 receptor type I 
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Abstract 

Ocular infection with herpes simplex virus-1 (HSV-1) induces IL-1, which is a pro­

inflammatory cytokine. Subsequently, the IL-1 protein induces the production of many 

other molecules, such as IL-6 and vascular endothelial growth factor (VEGF), a potent 

angiogenic factor, which results in neovascularization in the cornea. Therefore, the 

inhibition of IL-1 signaling is a useful strategy to reduce angiogenesis caused by IL-1 in 

the cornea. 

In this study, we demonstrated that the intrastromal injection of plasmid-based 

shRNA against IL-1 receptor type I (IL-lRI) reduced angiogenesis caused by IL-la in 

the cornea when it was compared to control shRNA-treated cornea. We also showed that 

the intrastromal injection of IL-lRI shRNA reduced.VEGF production which is induced 

by IL-la. This result implies that reduced angiogenesis by IL-lRI shRNA might be 

mediated by reduced VEGF expression. Although the IL-1 receptor antagonist (IL-lRa) 

is widely used to interrupt IL-1 and IL-lRI interaction, our results indicated that the 

inhibition of IL-lRI expression using IL-lRI shRNA might be another valuable approach 

to treat the diseases caused by IL-1. 
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Introduction 

Herpes simplex virus-I (HSV-1) infection of the mouse eyes causes herpetic stromal 

keratitis (HSK), which results in blindness. After an HSV-1 infection, many cellular 

events are involved in the pathogenesis of HSK (1). Among them, neovascularization is a 

critical step in HSK pathogenesis, and the VEGF protein is a major angiogenic factor. It 

was shown that the inhibition of VEGF using a neutralizing antibody reduced HSK 

severity as well as angiogenesis caused by the HSV-1 infection (2, 3). In other 

experiments, it was shown that the HSV-1 infection induced IL-1 and IL-6, and the 

increased expression of the cytokines stimulated angiogenesis through up-regulation of 

VEGF (4). In addition, the transgenic mouse that over-expresses the IL-1 receptor 

antagonist (IL-lRa) showed reduced HSK severity and angiogenesis in comparison to the 

wild type mice (4). IL-lRa binds to the IL-1 receptor type I without transmitting an 

activation signal (5). Thus it represents a physiological inhibitor of IL-1 activity. These 

results imply that IL-1 production is a critical event in the development of HSK and 

inhibition of the IL-1 and IL-1 receptor interaction can be a useful approach to control 

angiogenesis and HSK. 

There are two forms of IL-1 proteins, IL-1 a. and IL-1 �' which are the products of 

distinct genes (6, 7). In most studies, their biological activities are indistinguishable, and 

they bind to the same receptors: IL-1 receptor type I (IL-lRI) and IL-1 receptor type Il. 

(IL-IR Il) (5). Type I receptor is an 80kDa transmembrane protein with an IL-1 signaling 

function. On the other hand, IL-IR type II is a 68kDa membrane protein with a short 

cytoplasmic tail and has no signaling function (5). 
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In this study, we demonstrated that the inhibition of IL-lR type 1 (IL-lRI) expression 

. using RNAi (RNA interference) technology can reduce angiogenesis caused by the IL-la 

protein in mouse eyes. 

RNAi is a sequence-specific gene silencing mechanism initiated by the introduction 

of double-stranded RNA (dsRNA) into target cells (8). RNAi is mediated by small 

interfering RNAs (siRNAs) produced from long dsRNAs of exogenous or endogenous 

origin by an endonuclease called Dicer. The resulting siRNAs are about 21 to 23 

nucleotides long and are incorporated into a RNA-induced silencing complex, which then 

targets and cleaves the mRNAs that are complementary to the siRNAs (9,10). In 

mammalian cells, the introduction of 19-21 nucleotide siRNA duplex is required to 

initiate RNAi without non-specific gene silencing (11). DNA plasmids expressing 

shRNAs have been shown to induce RNAi successfully (12-14). 

We demonstrated that transfected cells with the plasmid expressing shRNA against 

IL-lRI reduced IL-lRI expression in vitro. In addition, intrastromal injection of the 

pshIL-lRI into mouse eyes showed red�ced angiogenesis and VEGF production in 

comparison to control plasmid-injected eyes. Our results imply that targeting IL-lRI 

using shRNA can be a valuable approach to treat the disease caused by unwanted IL-1 

production, such as HSK. 
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Materials and Methods 

Mice 

Five to six week old female BALB/c mice were used. All experiments were 

conducted in compliance with the guide for the care and use of Laboratory Animal 

Resource Council. The animal facilities of the University of Tennessee (Knoxville, TN), 

used are accredited by the American Association of Laboratory Animal Care. All ocular 

experimental procedures were conducted according to the Association for Research in 

Vision and Ophthalmology Resolution on the use and care of laboratory animals 

Plasmid construction 

We designed shRNA to interfere with IL-lRI expression, referring to technical 

information (Ambion, Austin, TX). The target sequence was confirmed to determine 

there is no homology to any other mouse genes by using a BLAST search. The 19-mer 

sense shRNA sequence and antisense shRNA sequence were linked with a nine 

nucleotide spacer (TICAAGAGA) as a loop. Six Ts and six As were added as a 

termination signal to the 3' end of the forward oligomer and 5'end of the reverse 

oligomers, respectively. Then 4 nucleotides corresponding to the EcoRI (AATI) and 

Apal (GGCC) sites were added to the 5' and 3' end of the reverse oligomer, respectively. 

The oligomer sequences for pshIL-lRI are (forward) 5'-GAAAGACCACAGTCTGC 

AATI CAAGAGATIGCAGACTGTGGTCTITCI 1111 l'-3', (reverse)5'-AATIAAA 

AAAG AAGACCACAGTCTGCAATCTCTIGAATIGCAGACTGTGGTCTITCGGC 

C-3'.
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The forward and reverse oligomers were incubated in annealing buffer (l00mM K­

acetate, 30mM HEPES-KOH (pH7.4) and 2mM Mg-acetate) for3 min at 90oC, followed 

by incubation for 1hr at 37oC. The annealed oligomer was legated with linearized 

pSilencerl .0-U6 vector (Ambion) at Apal and EcoRI sites. After transformation, the 

sequence was confirmed by DNA sequencing. pshGAPDH was purchased from ambion 

(Austin, TX). For pshVEGF-EGFP and pshGAPDH-EGFP, DNA fragment containing 

CMV promoter, EGFP gene, and polyA sequence was inserted at Sacl site using blunt 

end ligation. 

Cell culture and transf ection 

Cos-7 and LEU cells were cultured in DMEM (Mediatech, VA), supplemented with 

10% heat-inactivated FBS and penicillin/streptomycin in 5% CO2. Cells were reseeded at 

a confluency of 70-80% in the absence of antibiotics lday before transfection. 

Transfection with plasmids was carried out with Lipofectamine 2000 (Invitrogen) 

according to the manufacturer's specifications. 

Total RNA isolation and RT-PCR 

Total RNA from the cells was extracted by using an RNeasy RNA extraction kit 

(Qiagen, Valencia, CA). Briefly, cells were lysed in a lysis buffer, and the RNA was 

purified following the manufacturer's protocol. DNase treatment (Qiagen) was performed 

to remove genomic DNA. 

For the RT-PCR, one-step RT-PCR was performed according to the manufacturer's 

protocol (Qiagen) with 80ng of total RNA. The following RT-PCR conditions were used: 
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1 cycle of 50°C for 30 min followed by lcycle of 94°C for 2 min: 30 cycles of 94°C for 1 

min, 56°C for 1 min and 72°C for 1 min and a final cycle of 72°C for 5 min. The primer 

sequences for IL-lRI were 5'-ACCCCCATATCAGCGGACCG-3' (forward) and 5'­

TTGCTTCCCCCGGAACGTAT-3' (reverse). The primer sequences for GAPDH were 

5'-CATCCTGCACCACCAACTGCTTAG (forward) and 5'­

GCCTGCTTCACCACCTTCTTGATG-3' (reverse). 

Flow cytometry 

Trypsinized cells were fixed and permeabilized using cytofix/cytoperm buffer (BD 

Biosciences, Mountain View, CA) for 30 minutes on ice. Labeling intracellular m VEGF 

was carried out with the biotinylated mVEGF antibody (R&D systems, Inc., Minneapolis, 

MN)and followed by staining with streptavidin-PE. Finally, the cells were washed three 

times and samples were acquired on a FACScan (BD Bioscience). The data were 

analyzed using CellQuest 3.1 software (BD Biosciences). 

Corneal lysate VEGF Enzyme-Linked Immunosorbent Assay (ELISA) 

Corneas were isolated and put into DMEM without serum and stored at -80°C. The 

corneas were homogenized using an ultra sonicater (Heat systems-Ultrasonics, NY). The 

lysate was then clarified by centrifugation at 12000rpm for 5 minutes at 4°C. The 

supernatant was collected and stored at -80°C until further use. Lysate was assayed using 

a standard sandwich ELISA protocol. Anti-mouse VEGF capture and biotinylated 

detection antibody (R&D systems, Inc., Minneapolis, MN) were used. The m VEGF164 

protein was used as a standard (R&D systems, Inc.). The color reaction was developed 
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using ABTS (Sigma-Aldrich, St. Louis, MO) and measured with an ELISA reader 

(Spectramax 340; Molecular Devices, Sunnyvale, CA) at 405nm. Quantification was 

performed with Spectramax ELISA reader software version 1.2. 

Intrastromal injection 

Corneal intrastromal injection was performed as described before (15). Under 

stereomicroscopic observation, a small tunnel from the corneal epithelium to the anterior 

stroma was made with a one-half-inch 30-gauge needle. Another needle was passed 

through the tunnel into the corneal stroma. Two microliters of solution containing 1 ug 

plasmid was forcibly injected into the stroma. 

Corneal Micropocket Assay 

The corneal micropocket assay used in this study observed the general protocol of 

Kenyon and colleagues (16). 

Pellets 0.4x 0.4x 0.2mm3 composed of sucralfate and hydron polymer were prepared. A 

known amount of bioactive CpG or non-bioactive control CpG was added to the pellets. 

Each pellet contained lug of CpG ODNs. The micropockets were placed -1 mm from the 

limbus under a stereomicroscope (Leica Micro Systems, Wetzlar, Germany) and the 

pellet was inserted into the micropocket. 

Measurement of the angiogenic area 

The angiogenesis area was measured at day4 after pellet implantation by using caliper 

(Biomedical Research instrument, Rockville, MD) under a streomicroscope. 
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The length of the neovessels generated from the limbal vessel ring toward the center of 

the cornea, and the width of the neovessels presented in clock hours ( each clock hour is 

equal to 30° at the circumference) was measured (17). The angiogenic area was 

calculated according to the formula for an ellipse. A= [(clock hours) x 0.4 x (vessel 

length in mm) x 1t]/2. 

Statistical analysis 

Significant differences between groups were evaluated using student's t-test. A p 

value of �.05 was regarded as indicating a significant difference between two groups. 
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Results 

Selection of candidate sequences and construction plasmid 

To select candidate target sequences, we used siRNA target finder on the website of 

ambion. The program scans the IL-lRI sequences for the 21 nucleotide sequences 

starting AA. From among them, we chose three sequences having less than 50% G/C 

content because siRNAs with low G/C content are more active than those with higher 

G/C contents, according to the technical information from ambion. After the selection 

candidate sequence, we inserted an oligonucleotide having sense, loop, and anti-sense 

sequence into a shRNA expressing vector (psh VEGF) (Fig. lA). To make plasmid 

expressing shRNA and EGFP bicistronically, we inserted an EGFP gene containing CMV 

promoter and a poly A sequence (pshVEGF-EGFP) (Fig. lB). With this pshIL-lRI-EGFP, 

we validated effective sequence. 

Reduction of the IL-lRI protein in transfected cells with pshIL-lRI-EGFP 

pshIL-lRI-EGFP or pshGAPDH-EGFP was transfected into °LEII cells. 24-36 hrs 

after transfection, the cells were labeled with a biotinylated anti-IL-lRI antibody and then 

stained with streptoavidin-PE. Transfected cells with pshIL-lRI-EGFP (EGFP positive 

cells) showed a reduced level of IL-lRI (MFI: 53.32 ± 7.38), while the cells that were 

transfected with pshGAPDH-EGFP showed a higher level of IL-lRI (MFI: 162.84 ± 

17 .20). This value is similar to that of the untransfected cells (MFI: 171.68 ± 7 .54 and 

126.84 ± 6.40) (Fig. 2). This result demonstrated that pshIL-lRI reduced endogenous IL­

lRI in transfected cells. From this experiment we chose one pshIL-lR for the rest of the 
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experiment. 

Reduction of IL-lRI mRNA in the transfected cells with pshIL-lRI-EGFP 

To sort the transfected cells with a plasmid, we transfected LEII cells with pshIL-lRI­

EGFP. 24-36 hours after transfection of the plasmid, we sorted the EGFP positive cells, 

and then performed RT-PCR. The pshIL-lRI-EGFP positive cells showed reduced IL­

lRI mRNA compared to· the control pshGAPDH-EGFP positive cells (Fig. 3) 

Inhibition of angiogenesis induced by IL-la using pshIL-lRI in eyes 

Before we start in vivo experiment, we determined how much plasmid DNA should 

be injected. For this purpose, we injected pEGFP 0.5, 1, 2, 4, or 8µg per 2µ1 

intrastromally, and found that injection with 1-4µg/2µ1 induced higher transfection. In 

addition, we investigated how long transfected pEGFP is expressed. Single injection of 

2µg/2µ1 of EGFP into stromal cells induced high expression up to day 3. At day 4, 

signals were decreased, but they were detected up to day 8 and 9. In this study, we 

injected 2µg/2µ1 of psiIL-lRI or psiGFP. 

One day after the intrastromal injection of pshIL-lRI or pshGFP, a pellet containing 

IL-la was implanted. Four days after implantation, angiogenesis was observed. The 

pshIL-lRI injected eyes showed reduced angiogenesis compared to the pshGFP-injected 

eyes (Fig. 4 ). The angiogenic area of the eyes injected with pshIL-lRI was 1.34 ± 0.39 

mm
2

, and the eyes injected with pshGFP had an angiogenic area of 0.54 ± 0.22 mm2 (Fig. 

5). These results indicated that pshIL-lRI can reduce angiogenesis caused by IL-la in 

mouse eyes. 
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Intrastromal injection of pshIL-lRI reduced mVEGF production induced by IL-la 

treatment in eyes 

To investigate whether the reduction of angiogenesis in the eyes injected with pshll..­

lRI was mediated by inhibition of m VEGF production, we measured the VEGF protein 

level from the plasmid-injected eyes. Eyes injected with pshll..-lRI showed a highly 

reduced VEGF production compared to the pshGFP injected control eyes (142.50± ± 

51.19 pg/eye vs 661.00 ± 199.57 pg/eye) (Table 1). This result indicated that reduced 

angiogenesis resulted from reduced VEGF production, and confirmed that the 

interruption of IL-1 and IL-lRI can reduce VEGF production and angiogenesis. 
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Discussion 

Previously it was proposed that IL-1 production after ocular infection of HSV-1 

induces IL-6 and VEGF, which causes angiogenesis and HSK (4). The IL-lRa Tg mice, 

in which IL-1 and IL-lRJ interaction is interrupted, showed reduced IL-6, VEGF, and its 

receptor VEGFR-2 after HSV-1 infection. It was also reported that IL-1 is required for 

both angiogenesis and tumor invasiveness using IL-lP or IL-la knockout mice (18). A 

different study showed that IL-la induces angiogenesis in vivo through the VEGF 

receptor pathway, possibly by inducing VEGF synthesis (19). These results suggest that 

the inhibition of IL-1 and IL-lR interaction might be useful as a therapeutic strategy to 

reduce angiogenesis. 

There are several possible strategies to reduce the interaction between IL-1 and IL-1 

receptor. Treatment of recombinant IL-lRa is the most popular because it binds to the IL-

1 receptor with a high affinity and prevents the binding of IL-1 to its receptor via classic 

competitive receptor antagonism (20). In addition, the IL-lRI antibody, antibodies to the 

IL-1 receptor accessory protein, and anti-IL-1 neutralizing antibodies can also be used to 

reduce IL-1 activity. 

In this study, we investigated whether IL-1 activity could be reduced using RNAi 

technology. Our results demonstrated that pshIL-lRI transfected cells produced a lower 

level of IL-lRI at the mRNA and protein levels (Fig. 2, and Fig.3). Moreover, 

intrastromal injection of pshIL-lRI reduced the angiogenesis and VEGF production 

caused by IL-la protein in mouse eyes (Fig. 4, Fig. 5, and Table 1). Originally, we tried 

to induce IL-la production and angiogenesis by HSV-1 infection in eyes. However, 
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intrastromally-injected eyes with plasmid DNA are not well infected, so we implanted 

pellets containing IL-la protein to trigger IL-la and its receptor interaction, and 

angiogenesis. Although the angiogenesis is not induced by HSV-1 infection, our results 

showed that the potential of shRNA against IL-lRI to be used for therapeutic purposes. 

Recently, another mechanism by which IL-1� induces angiogenesis was proposed. 

Cox-2 overexpression increased the expression of angiogenic factors, such as VEGF, and 

bFGF and the cox-2 inhibitor significantly reduced VEGF and bFGF production as well 

as angiogenesis (21, 22). Another experiment showed that IL-1� enhanced PEG2 and 

TXA2 production and induced angiogenesis (23). Induced production of prostanoids by 

IL-1J3 was blocked by the cox-2 selective inhibitors DFU and JTE522 and administration 

of the cox-2 inhibitors resulted in the suppression of IL-1� induced angiogenesis in vivo.

Furthermore, TXA2 antagonist and EP4 antagonist inhibited IL-1 � induced angiogenesis 

in mouse eyes (23). Therefore, treatment of siRNA targeting cox-2, which produces 

PGE2 and TXA2 from arachidonic acid, is also an attractive strategy to inhibit 

angiogenesis induced by IL-1. 

RN Ai technology is becoming popular because of the specificity and potency of gene 

silencing. In particular, it is widely used to determine unknown gene functions. On the 

other hand, some researchers are trying to use this technology for therapeutic purposes. 

However, enough cells must be transfected by siRNA or shRNA in order to achieve 

enough suppression of unwanted gene expression in vivo. At this time, we do not know 

how many cells are transfected by pshIL-lRI, although it was already shown that 

intrastromal injection with a plasmid can transfect stromal cells (15, 24). One possible 

experiment with which transfection efficiency after intrastromal injection with a plasmid 
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could be determined is the confocal image analysis of wholemount cornea (24). After 

excision and fixation of pEGFP-injected corneas, they are flatmounted on a slide with 

medium containing DAPI and placed for 48hours to allow DAPI to penetrate. Using a 

spectral laser scanning confocal microscope with the corresponding laser for DAPI and 

EGFP, corneas could be analyzed from z-stacks to see how many cells are transfected in 

stromal cells. 

Our results showed that intrastromal injection with psiIL-lRI reduced angiogenesis 

and VEGF production induced by IL-1 a. Therefore, we assumed that intrastromal 

injection transfected enough cells to reduce angiogenesis caused by the IL-1 a. treatment. 

Otherwise, shRNA might be spread to neighbor cells after expressed in transfected cells 

and inhibit gene expression in untransfected cells as well as transfected cells. In fact, 

plant and C._elegans have systemic distribution of siRNA when siRNA is injected locally 

(25, 26). In addition, global decrease in HCV protein expression was observed in S 11791 

cells, suggesting that either all of the cells were transfected with the siRNA or that RNAi 

may have spread from cell to cell (27). For the transfection of a plasmid into stromal cells, 

we injected plasmid DNA with pressure to increase transfection, so transient disruption 

of cell membrane might be important for the plasmid transfection. However, shRNAs are 

much smaller than plasmid DNA. Therefore, it may be possible to be spread (possibly 

through gap junction) to next cells after shRNAs are expressed in transfected cells. 

Even though we do not know which one is true, it seems that the eye is a suitable 

organ to use RN Ai technology for in vivo experiments because we and other researchers 

have shown that the injection of siRNAs into eyes may inhibit their target gene 

expression as well as reduce symptoms (28-30). Previous in vivo experiments targeting 
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eyes used slightly different delivery method and different types of dsRNA. Nakamura et 

al. injected synthetic siRNA using subconjunctival injection. In other experiments, 

subretinal injection or in vivo eletroporation were used to transfect retina with adenoviral 

shRNA or plasmid-based shRNA. In our study, we used intrastromal injection with 

plasmid-based shRN A. 

Each type of dsRNA has its advantages and disadvantages. Synthetic siRNAs are 

more convenient and have a higher transfection efficiency, but they are more expensive 

and less stable. Virus-mediated shRNAs have a high transfection efficiency and are stable, 

but viral infection causes inflammation. On the other hand, plasmid-based shRNAs are 

stable, which makes shRNAs active for longer than siRNAs, inexpensive and.non-toxic, 

but their transfection efficiency is lower than other dsRNAs. Therefore, the choice of 

delivery system and dsRNA depends on the purpose of the experiment. In this study, we 

transfected plasmid-based shRNA using intrastromal injection to inhibit the target gene in 

stromal cells for longer without causing any inflammation. 

Although RNAi technology has limited use in vivo because of delivery problems, our 

study shows that RNAi technology may be an attractive strategy when used in mouse 

corneas to study corneal biology as well as corneal disease. 
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Fig. 1 Plasmid constructs 2. 

A. psha-lRI expresses shRNA against a-1 receptor type l(a-lRI)

B. psha-lRI-EGFP expresses shRNA against a-RI and EGFP bicistronically

Sense: sense sequence, Antisense: antisense sequence, 

Term.: RNA polymerase III transcription termination sequence, 

CMV: CMV promoter, Poly A: poly A sequence 
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. A.pshIL-lRI 
I U6 promoter sense 

B. pshIL-lRI-EGFP

U6 promoter sense 

Fig. 1 

loop I antisense I term. I 

loop antisense term CMV EGFP poly A 
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Fig. 2 Inhibition of endogenous IL-lR I protein. 

24-36hr after transfection of pshGAPDH (B) or pshIL-lRI (C), cells are harvested

and IL-lRI was stained 
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Fig. 3 Inhibiton of endogenous mRNA of IL-lR I. 

After sorting of EGFP positive cells (lane 1: pshVEGF-EGFP+

, lane 2: 

pshIL-lRI-EGFP+), tatal RNA was isolated and RT-PCR was performed. 
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Lane 1 2 

IL-IRI 

GAPDH 
1. psh VEGF-EGFP

2. pshIL-lRI-EGFP

Fig. 3 
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Fig. 4 Reduction of angiogenesis induced by IL-la protein by pshIL-lRI. 

Intrastromal injection of pshIL-lRI reduced angiogenesis induced by 

IL-1 a protein. pshGFP was used as a control plasmid. 
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A. pshGFP B. pshIL-lR

Fig. 4 
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Fig. 5 Angiogenic area at day 4 after implantation of pellet containing IL-1 a 

following pshGFP or pshIL-lRI injection. 
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Table 1. Measurement of the amount oflL-lRI in cornea 
using ELISA 

VEGF 

pg/ eye 

pshGFP 

142.5± 50.19 *

pshIL-lRI 

661.0±199.57 

* p <0.03

4 day after implantation of pellet containing IL-1 a protein 
following pshGFP or psh VEGF injection, ELISA was performed. 
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Concluding remarks 
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The aim of our investigations was to exploit the novel approach of shRNA to control 

ocular angiogenesis in vivo. Previous experiments demonstrated that angiogenesis in the 

cornea is a critical step in HSK, which is caused by ocular infection with HSV-1. 

Although the mechanisms of angiogenesis induced by ocular infection of HSV-1 are 

unclear, it was shown that bio-active CpG motifs in HSV-1 DNA could contribute to 

angiogenesis in the eyes, and the angiogenesis was mediated by VEGF production. From 

additional experiments, it was demonstrated that treatment of the anti-mVEGF antibody 

prevents CpG induced angiogenesis in mouse eyes. Thus, these results indicate that 

m VEGF is a critical factor for angiogenesis caused by CpG motif in mouse eyes, and 

m VEGF might be a good target molecule to reduce angiogenesis and HSK severity. 

From different experiments, another mechanism of angiogenesis induced by ocular 

infection of HSV-1 has been proposed. The experiments showed that ocular infection of 

HSV-1 induced IL-1 and IL-6, and the increased expression of the cytokines stimulated 

angiogenesis through up-regulation of m VEGF. These results indicated that cytokine 

production caused by ocular infection of HSV-1 is a main reason of production of 

m VEGF and induction of angiogenesis. This result was confirmed by the experiments 

using IL-1 receptor antagonist (IL-lRa) transgenic mice. IL-lRa binds to the IL-1 

receptor type I without transmitting activation signal, so it inhibits IL-1 activity. The 

ILlRa transgenic mice showed reduced HSK severity and angiogenesis compared to wild 

type mice when their eyes are infected with HSV-1. This result indicates that inhibition 

of the interaction between the IL-1 and IL-1 receptor can reduce HSK severity and 

angiogenesis, and IL-1 or IL-1 receptor may be good candidate molecules to be targeted. 
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From these previous experiments, we hypothesized that IL-1 and m VEGF are key 

molecules for angiogenesis caused by ocular infection of HSV-1 in mouse eyes, and 

investigated whether inhibitions of m VEGF and IL-1 receptor gene expressions using 

RNAi technology could reduce angiogenesis in mouse eyes. RNAi is a sequence specific 

gene silencing phenomenon by introduction of dsRNA. There are a few different dsRNA 

inducing RNAi. In this study we used plasmid based- shRNA to inhibit target gene 

expression because it is effective for longer than siRNA (this feature is required for our 

experiments because we observed eyes at day 5 after injection.), inexpensive, and non­

toxic in eyes. 

In vitro experiments showed that the transfected cells with a plasmid DNA expressing 

mVEGF shRNA or IL-lRI shRNA reduced exogenous and endogenous target gene 

expressions. For these experiments, we constructed plasmid expressing EGFP and 

shRNA bicistronically to identify transfected cells. The transfected cells, which are EGFP 

positive, were obtained by FACS sorting and were used to detect mRNA levels by RT­

PCR or real time PCR. To detect protein level flow cytometry was performed and the 

results showed that EGFP positive cells reduced production of target proteins. 

After confirmation of the effectiveness of the plasmid based-shRNA, we investigated 

whether intrastromal injection with the plasmid could inhibit angiogenesis caused by 

CpG motifs or IL-la. The results showed that either plasmid expressing mVEGF shRNA 

or IL-lRI shRNA reduced angiogenic area and m VEGF production. These results imply 

that RNAi technology can be used in mouse eyes and help to understand corneal biology 

and to treat corneal disease induced by unwanted gene expression. 
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Recently, another mechanism by which IL-1� induces angiogenesis was proposed in 

eyes. The experiments showed that treatment of IL-1� increased cox-2 production, and 

the cox-2 production induced angiogenic factors, such as VEGF and bFGF. In addition, 

treatment of cox-2 inhibitor reduced VEGF and bFGF production as well as angiogenesis. 

Therefore, it will be interesting to determine whether angiogenesis can be decreased after 

targeting of cox-2 mRNA using RNAi technology and to compare the results with those 

from the experiments with shRNA against IL-1 receptor. 

RNAi technology requires sufficient transfection. At this point we do not know how 

many cells are transfected after intrastromal injection with plasmid. In the future, this 

question should be solved. One possible experiment to solve the question might be 

confocal image analysis of wholemount cornea which is injected with a plasmid 

expressing EGFP. 

We and other researchers showed that RNAi is induced in mouse eyes, although we 

do not know how many cells are transfected. Therefore, it seems that the injection 

delivered plasmid into enough number of cells to induce RNAi. Otherwise, expressed 

shRNA in transfected cells might be spread to neighbor cells and induce RNAi in un­

transfected cells, as well as to transfected cells. It is very important to know how many 

cells could be transfected with siRNA or shRNA in vivo, and how many cells should be 

transfected in order to see physiological effects in vivo. Another important issue in RNAi 

technology is off-target effect. Some researchers reported that siRNAs degraded, not only 

target mRNAs, but also other mRNAs. Now, we do not know why off-target effects 

occur. We need to know about RNAi machinery more in detail to solve the problems. 
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RNAi phenomenon was discovered in 1998, and RNAi was started to use in 

mammalian- cells in 2002. Although this technology has very short history, application of 

this technique spread very fast especially for the in vitro experiments to determine 

unknown gene function. Recently, siRNA libraries were developed to screen many genes 

at a same time. Therefore, this technology will help us to understand many unknown gene 

functions. RN Ai also has potential as a therapeutic strategy because of its specificity and 

potency. However, there are many questions including delivery systems to be solved 

before this technology can be used for clinical purposes. Although there are some 

limitations in RNAi-based therapies, significant work is ongoing to solve the problems. 

Even though analyzing gene functions using RNAi already impacted many biological 

sciences, better understanding of the nature of siRNAs and RNAi mechanisms will make 

this technology more useful. 
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