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RESEARCH ARTICLE
10.1002/2016MS000863

Improvement of the prediction of surface ozone concentration
over conterminous U.S. by a computationally efficient
second-order Rosenbrock solver in CAM4-Chem
Jian Sun1, Joshua S. Fu1,2 , John Drake1 , Jean-Francois Lamarque3 , Simone Tilmes3 , and
Francis Vitt3

1Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA, 2Climate
Change Science Institute and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge,
Tennessee, USA, 3National Center for Atmospheric Research, Boulder, Colorado, USA

Abstract The global chemistry-climate model (CAM4-Chem) overestimates the surface ozone
concentration over the conterminous U.S. (CONUS). Reasons for this positive bias include emission,
meteorology, chemical mechanism, and solver. In this study, we explore the last possibility by examining
the sensitivity to the numerical methods for solving the chemistry equations. A second-order Rosenbrock
(ROS-2) solver is implemented in CAM4-Chem to examine its influence on the surface ozone concentration
and the computational performance of the chemistry program. Results show that under the same time step
size (1800 s), statistically significant reduction of positive bias is achieved by the ROS-2 solver. The
improvement is as large as 5.2 ppb in Eastern U.S. during summer season. The ROS-2 solver is shown to
reduce the positive bias in Europe and Asia as well, indicating the lower surface ozone concentration over
the CONUS predicted by the ROS-2 solver is not a trade-off consequence with increasing the ozone
concentration at other global regions. In addition, by refining the time step size to 180 s, the first-order
implicit solver does not provide statistically significant improvement of surface ozone concentration. It
reveals that the better prediction from the ROS-2 solver is not only due to its accuracy but also due to its
suitability for stiff chemistry equations. As an added benefit, the computation cost of the ROS-2 solver is
almost half of first-order implicit solver. The improved computational efficiency of the ROS-2 solver is due to
the reuse of the Jacobian matrix and lower upper (LU) factorization during its multistage calculation.

1. Introduction

Atmospheric chemistry is important for global climate simulation because of the close coupling of transport,
physical, chemical, and biological processes. The feedbacks among chemical reactions, climate equilibria,
anthropogenic emissions, and land use changes provide a new dynamical perspective on global and region-
al climate and air quality predictions. Among the atmospheric chemical constituents, tropospheric ozone is
a critical pollutant that can significantly affect ecosystems, agriculture productions, public health, and cli-
mate forcing [Stevenson et al., 1998; Fiscus et al., 2005; Karnosky et al., 2007; Cooper et al., 2010; Sun et al.,
2015]. However, ozone is not directly emitted and its complex photochemical reaction mechanism makes
its simulation a challenge. Significant bias in the prediction of ozone concentration exists zonally and sea-
sonally for both single model output [Zeng et al., 2008; Lamarque et al., 2012; Val Martin et al., 2015] and
multimodel ensemble mean results [Stevenson et al., 2006, 2013; Young et al., 2013]. There are also inconsis-
tencies between the estimated ozone concentration from global climate models and the observed seasonal
cycle [Fiore et al., 2014]. In the CAM4-Chem model we are using, optimizing the dry deposition scheme
based on land use changes has significantly improved the simulation of summertime (June, July, and
August, JJA) surface ozone concentration over the U.S. [Val Martin et al., 2014, 2015]. However, further
efforts are required to reduce the remaining bias.

Few studies have investigated the numerical chemical solver itself in the performance of global chemistry-
climate models. Shampine [1982] studied initial value problems for stiff systems of ordinary differential
equations (ODEs) and proposed an approach to automatically select either an explicit Runge-Kutta formula
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or Rosenbrock formula at every time step. The Rosenbrock method was competitive with the backward dif-
ferentiation formulas (BDF) in some circumstances. The sparse matrix vectorized gear code (SMVGEAR)
developed by Jacobson and Turco [1994] was also implemented in global chemistry models such as GMI
[Rotman et al., 2001], IMPACT [Rotman et al., 2004], GATOR-GCMOM [Jacobson and Ginnebaugh, 2010; Jacob-
son et al., 2015], and GEOS-Chem [Zhang et al., 2011]. However, this solver used an iterative method to solve
the ODEs and included the reevaluation of the Jacobian matrix during the iteration, which was intrinsically
slower than other solvers using a noniterative method. Sandu et al. [1997] tested a set of box-model atmo-
spheric chemistry problems (TMK model, CBM-IV model, AL model, a NASA HSRP/AESA stratospheric model,
and an aqueous model) with different solvers, including LSODE (Livermore Solver for Ordinary Differential
Equations) and Variable-coefficient Ordinary Differential Equation solver (VODE) that were expected to per-
form similarly to SMVGEAR. The benchmark problems covered a wide range of photolytic, homogeneous
(gas phase, liquid phase) and heterogeneous (gas-liquid) reactions. The results showed that the Rosenbrock
solvers were the most cost effective and performed well for real problems with large variety of conditions
that could occur at different grid cells. Verwer et al. [1999] applied a second-order, L-stable Rosenbrock
(ROS-2) method to the three-dimension atmospheric reaction and transport problem including photochem-
istry, advection, and diffusion. Three chemistry models (RIVM, CBM-IV, and WET) using the ROS-2 method
were examined and the ROS-2 method was proven to be an excellent candidate for global air quality
modeling with large time steps on the order of minutes. Blom and Verwer [2000] examined different
operator-splitting methods for the atmospheric transport-chemistry problems and the test results revealed
that the Rosenbrock W-method, split at the linear algebra level, was a better option than Strang operator-
splitting or source splitting. The W-method avoided the artificial stiff transients during the chemistry com-
putation and boundary condition issues for integration in time, though its implementation was complex.
Long et al. [2013] developed a coupled chemistry and climate system model by linking the NCAR Communi-
ty Atmosphere Model (modal-CAM v3.6.33, the atmospheric component of Community Climate System
Model (CCSM3)) and the Max Planck Institute for Chemistry’s Module Efficiently Calculating the Chemistry
of the Atmosphere (MECCA; v2.5) to investigate the multiphase process in the atmosphere. The Kinetics Pre-
Processor (KPP) [Sandu and Sander, 2006] package was used to provide user-defined solvers and the bench-
mark intercomparison among three solvers from the Rosenbrock family, namely ROS-2, ROS-3, and RODAS-
3, showed good agreement for ozone and OH radical prediction. Note that only the atmospheric compo-
nent was considered in the work of Long et al. [2013] and the effect of different solvers in a long-term simu-
lation was not explored.

In this paper, we do not achieve improvement by a better design of the sparse matrix. Breaking the data
structure in order to introduce some external packages would disable existing optimizations. Instead, we
seek to obtain improved performance of chemistry and computation from the algorithm itself. Therefore,
based on the literature above, the numerical solvers from the Rosenbrock family are good alternatives for
full atmospheric chemistry and climate simulation. These methods have already been incorporated into
some regional models such as the Weather Research and Forecasting model coupled with Chemistry (WRF-
Chem) and the Community Multi-scale Air Quality Model (CMAQ) [Linford et al., 2009; Sarwar et al., 2013].
But their use in global models is very limited. In this study, the global climate model we use is the Commu-
nity Earth System Model (CESM) with online chemistry activated (CAM4-Chem) [Lamarque et al., 2012]. Cur-
rently the chemical solver uses a fully implicit Euler method that gives unconditional stability but only first-
order accuracy in time [Kinnison et al., 2007]. This could be part of the reason for poor performance of ozone
in previous work with CAM4-Chem. To bridge the gap between the need for better estimate of ozone from
a scientific perspective and the limitation of a low order accuracy solver in the current CAM4-Chem, the
ROS-2 solver is implemented to replace the original chemical solver and tested to see whether there is any
benefit for the global climate and chemistry simulation. Unlike the implicit Euler method, the ROS-2 method
avoids the reevaluation and redecomposition of the Jacobian matrix. These are the most time-consuming
parts in a chemical solver [Daescu et al., 2000]. Hence, we are also interested in the improvement of compu-
tational performance of chemistry with the ROS-2 solver. The mathematical formula of the ROS-2 method
and its implementation in CAM4-Chem are described in the methodology section. The predictions of sur-
face ozone concentration over the conterminous U.S. (CONUS) between the ROS-2 solver and the original
first-order implicit solver are compared, as well as their computational efficiencies with varying numbers of
processors on a massively parallel supercomputer. Finally, we discuss the major differences we have
observed, and make further recommendations.

Journal of Advances in Modeling Earth Systems 10.1002/2016MS000863

SUN ET AL. ROSENBROCK IMPROVES OZONE CONCENTRATION 483



2. Methodology

2.1. Chemistry Configuration in CAM4-Chem
The Community Earth System Model (CESM version 1.2.2) is a state-of-the-art global climate model. It con-
sists of four components: atmosphere, land and land-ice, ocean, and sea ice. CAM4-Chem is an implementa-
tion of atmospheric chemistry in CESM and its chemistry is fully coupled with the radiative absorption
processes of the Community Atmosphere Model, the atmospheric component of CESM (CAM4) [Neale et al.,
2013]. The chemistry mechanism in the current CAM4-Chem version is adapted from the standard Tropo-
spheric Model for Ozone and Related chemical Tracers (MOZART-4) [Emmons et al., 2010]. However, more
chemistry-specific parameterization such as dry/wet deposition schemes and species types are expanded in
the current CAM4-Chem version. The details about their differences, together with CAM4-Chem’s represen-
tation of atmospheric chemistry in the global model, are well evaluated in previous work [Lamarque et al.,
2012]. In total, the chemical mechanism includes 212 reactions, with 40 photochemical reactions and 172
gas phase reactions. There are 103 chemical species: 8 species (CH4, N2O, CO, Rn, Pb, H2, HCN, and CH3CN)
are solved explicitly by the first-order (forward) Euler method and the remaining 95 species are solved
implicitly by a backward Euler method with a Newton-Raphson iteration for quick convergence. These 95
species include all the chemically active species such as ozone and OH radicals, which contribute most to
the stiffness of the system. In this study the ROS-2 solver will be developed to replace the implicit solver
mentioned above. The finite-volume (FV) dynamical core [Neale et al., 2010] is used with a global horizontal
resolution of 0.98 (latitude) by 1.258 (longitude) and 26 vertical layers top to approximately 3 hPa.

2.2. ROS-2 Solver Description
In the state-of-the-art CAM4-Chem version, an operator-splitting approach is used and the atmospheric
chemical reactions are integrated by the stiff ODE solver separately from other processes like dynamics and
physics. Thus, for the chemistry update, each control volume behaves like a box model. The equations for
chemical species conservation and reaction in the atmosphere take the form of an autonomous system:

Dy
Dt

5F yð Þ5P yð Þ2L yð Þ1I yð Þ (1)

where y5 y1; y2; . . . ; yNð ÞT is the vector of volume mixing ratios for N species (N here represents the 95
implicit species) at given latitude, longitude, and vertical coordinate; the source term F(y) represents the
atmospheric chemical reactions. It can be further decomposed into three components: production P(y), loss
L(y), and independent forcing I(y) terms. P(y) and L(y) are mainly calculated by the species mixing ratios and
reaction rates, while I(y) is evaluated based on the external forcing (i.e., aircraft and lightning emissions).
The two-stage, linear-implicit Rosenbrock scheme for the ODE above can be written as Verwer et al. [1999]:

I2hcAð Þk15F ynð Þ (2)

I2hcAð Þk25F yn1hk1ð Þ22k1 (3)

yn115yn1
3
2

hk11
1
2

hk2 (4)

where I is an N 3 N identity matrix; h is the time step size; A5
@F yð Þ
@y jy5yn

is the Jacobian matrix at time t 5tn;
yn and yn11 are the solution vectors of species mixing ratios at time t5tn and tn11, respectively. Vectors k1

and k2 are the intermediate solutions at each stage. Parameter c is a constant and appears in the stability
function with z5ha for problem y’5ay as

R zð Þ5
11 122cð Þz1 1

2 22c1c2
� �

z2

12czð Þ2
(5)

A solver is defined as A-stable if jR zð Þj � 1 as z!1 and it is further called L-stable if R zð Þ ! 0 as z!1.
The ROS-2 solver proposed above is A-stable for equation (5) if and only if c � 1

4. Furthermore, by choosing
c516 1ffiffi

2
p this scheme becomes L-stable (R 1ð Þ50), which is good for simulating some chemical species

with a short life span in the atmosphere. In practice, c511 1ffiffi
2
p is usually chosen due to its better nonlinear

stability behavior under large time steps [Verwer et al., 1999] and this value is thus used in this study. An
obvious advantage to the implementation of the ROS-2 solver is that it does not require the reevaluation of
the Jacobian matrix at each stage, while the Newton method requires the reevaluation of the Jacobian
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matrix during each iteration. Therefore, it can utilize the same ‘‘lower upper’’ (LU) factorization result at each
stage of the solution update. Since updating the Jacobian matrix and conducting the LU factorization are
the most time-consuming operation, this benefit should speed up the chemistry update and save much
computation time [Daescu et al., 2000].

2.3. Time Step Size Setting
In this work, h 5 180 and 1800 s are chosen as two different time step sizes to examine whether the first-
order implicit solver and the ROS-2 solver can benefit from the time refinement. It is noted that the previous
literature claimed that the ROS-2 solver was able to work under time step size of 600 and 900 s [Verwer
et al., 1999; Blom and Verwer, 2000]. However, those studies were either working on a simple chemical
mechanism or a benchmark simulation without considering the complexity of an earth system model. Fur-
thermore, they agreed that the necessity to form a better conditioned system, resolve the initial transients
accurately and handle the nonlinear chemistry in the real atmosphere might require a more restricted time
step size [Shampine, 1982; Sandu et al., 1997; Verwer et al., 1999; Blom and Verwer, 2000]. In addition, the
concepts of A-stability and L-stability are defined for an idealized linear system. The real atmospheric chem-
istry system is nonlinear and can be very stiff with the existence of fast and slow reacting species. Thus, a
small time step is usually recommended to make the chemical reaction system valid for ‘‘linearization’’
(keep the property of linear system) and avoid impacting the quality of numerical integration. Based on
those concerns, we implement an adaptive time step method for the ROS-2 solver when the time step size
equals 1800 s. If the program detects a location where a negative solution is generated by the ROS-2 solver,
it refines the time step by a factor of 2 for that location and recomputes the chemistry. This procedure is
repeated until the refined time step size is less than 180 s, in which case we simply set the time step size to
180 s to save computation time. We have found that the ROS-2 solver can run continuously with a fixed
180 s time step for the standard full tropospheric chemistry mechanism TROP_MOZART [Emmons et al.,
2010].

2.4. Algorithm and Implementation
The steps of the algorithm are as follows:

a. Calculate the independent forcing term, which is treated as invariant as in the original first-order implicit
solver design.

b. Calculate the linear and nonlinear components of Jacobian matrix to form the left-hand side system in
equations (2) and (3). CAM4-Chem uses the same chemical preprocessor as MOZART-4 [Lamarque et al.,
2012], which reads the specific chemical mechanism file and converts it into Fortran code to provide the
input for the calculation of linear and nonlinear parts. For the TROP_MOZART mechanism, there are 737
nonzero matrix entries of the system matrix and they are computed explicitly and exactly. The sparsity
pattern reveals a classic ‘‘arrow matrix’’ ordering with the arrow pointing up as shown in Figure 1a. If the
LU factorization is performed directly on this matrix, almost all the entries in the upper right matrix will
be changed from an initial zero to a nonzero value during the execution. This is known as a fill-in issue
[Lee, 2010] and it will significantly increase the cost of computation, which is determined by the total
number of nonzero entries rather than by the size of the sparse matrix. Therefore, a permutation opera-
tor is applied before doing the LU factorization and the system matrix is flipped over to point down (see
Figure 1b). The LU factorization starts with the nearly diagonal part of the matrix and all fill-ins occur
down the right-hand side column where there are already a lot of nonzero entries. Note that although
the system is different between the first-order implicit solver and the ROS-2 solver, the formation of the
Jacobian matrix is exactly the same. Hence, the routines from the original first-order implicit solver can
be used directly with only minor modification. It is also worth noting that in other solvers like SMVGEAR,
the JSPARSE algorithm developed by Jacobson and Turco [1994] is used to reorder the Jacobian matrix
based on the combined production and loss terms. In addition, the partial pivoting process is removed
from the decomposition process to further reduce the number of matrix calculation. Instead, the chemi-
cal preprocessor of CAM4-Chem uses a diagonal Markowitz scheme [Lee, 2010] to reorder the Jacobian
matrix, which searches on diagonal elements and chooses the pivot with the smallest Markowitz weight.

c. Form the LU factorization for the system matrix. As shown in Figure 1, the system matrix is very sparse
with about 90% zeroes. In the current version of CAM4-Chem, the LU factorization is hardwired with a
fixed pivoting order by knowing exactly the nonzeroes of system matrix. There are a total of 824 nonzero
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matrix entries after performing the LU factorization. Since the hardwired LU factorization does not need
to test for pivots, the routine is highly optimized and efficient. It should be mentioned that extensive
testing is done to ensure that the pivot strategy is robust even with the modification of the system in
the ROS-2 formulas. We compared the accuracy of LU solution by capturing selected system matrices
(examples used in section 3.1) and analyzing them in MATLAB. The results showed that either full pivot-
ing (including both row and column pivoting) or partial pivoting (only including row pivoting) had no
appreciable impact on the accuracy of solution as compared with the fixed pivoting strategy.

d. Calculate the source term F on the right-hand side.
e. Solve for the first-stage solution vector k1 with explicitly programmed steps of reduction.
f. Update source term F for the second stage with intermediate approximation yn1hk1.
g. Solve for the second-stage solution vector k2 using the same LU factorization result from the first stage.
h. Update species mixing ratio vector from yn to yn11 for the next time step.

3. Results and Discussion

3.1. Numerical Analysis of the First-Order Implicit Solver and the ROS-2 Solver
Before comparing the model simulation results, it is necessary to verify that both solvers converge to the
same solution if the time step is small enough and they provide the numerical convergence rate as we
expect. In order to verify this, a test problem is chosen for a linear system du

dt 5u. Given the initial condition
u051 at t050, it is trivial to derive the analytical solution, u tð Þ5et . By arbitrarily setting tend52, separate
numerical simulations with different time step sizes are performed to integrate from t0 to tend and the
numerical results for both solvers are summarized in Table 1. Note that for the ROS-2 solver, we only use
the given fixed time step size for verification tests and no refinement of time step is involved. In Table 1, Dt
is the time step size for a numerical simulation; Abs (Error1) is the absolute error between the exact solution
and the numerical solution generated by the first-order implicit solver at time5tend; Rate1 is the ratio of cur-
rent absolute error over the previous absolute error with twice time step size for the first-order implicit solv-
er; Abs (Error2) and Rate2 are the same but for the numerical solution generated by the ROS-2 solver. The
decimal precision of numerical results is shown as six digits so that the absolute error less than 1.E-06 is not
included in the table. For the time step sizes finer than 1.25E-02, the error between exact solution and the

Figure 1. The sparsity pattern of left-hand side system matrix from the second-order Rosenbrock method (ROS-2) for the TROP_MOZART mechanism (a) before and (b) after
permutation.
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numerical solution generated by the first-order implicit solver is cut by half when the time step size is
reduced by a factor of two, indicating a linear convergence of the first-order implicit solver and thus first-
order numerical accuracy. On the other hand, a quadratic convergence (second-order accuracy) is observed
for the ROS-2 solver as the error between exact solution and the numerical solution generated by the ROS-2
solver is cut by four when the time step size is reduced by a factor of two. Therefore, for a linear system, it
proves that the convergence rate and accuracy of both solvers behave as we expect. Due to the quicker
convergence of the ROS-2 solver, its absolute error with time step size equal to 3.91E-04 is already around
3.10E-06, while the absolute error for the first-order implicit solver with the same time step size is about
2.89E-03. However, Table 1 reveals that both solvers will eventually converge to the same solution as long
as the time step size is small enough.

For the nonlinear system, the CAM4-Chem chemistry modules are first isolated such that other processes
like dynamics and physics are excluded and the update of chemistry behaves exactly like a box model.
Then input from some arbitrarily selected grid cells are used to provide the species concentrations, chemi-
cal reaction rates, and independent forcings as initial condition. Lastly, a series of box-model simulations
are performed for one climate time step (1800 s by default) with different numerical time step sizes. We
have tested input from different grid cells and they generally provide consistent results of numerical analy-
sis. Hence, one grid at Eastern U.S. (latitude 5 34.48, longitude 5 290.08, level 5 26 (bottom layer)) is used
as an example for illustration (see Table 2a). Compared to Table 1, one additional column named ‘‘Ozone’’ is
added to show the ozone concentration (units: mol/mol) from the box-model simulation after one climate
time step. Note that the chemistry used in CAM4-Chem is a nonlinear system and therefore no analytical
solution exists. A common approach to obtain the ‘‘exact’’ solution in this case is to solve the system with a
very tiny numerical time step size. We find out that for the ROS-2 solver, when the time step size is about
1.76 s, the ratio of absolute difference between ozone solution calculated by 1.76 s and ozone solution cal-
culated by 3.52 s over the ozone solution calculated by 3.52 s is smaller than 1.E-12, which is beyond the
decimal precision in CAM4-Chem. Hence, 6.034342167442E-13 mol/mol is chosen as the ‘‘exact’’ solution
here for numerical analysis. It turns out that the first-order implicit solver still converges linearly for this non-
linear system while a quadratic convergence is again observed for the ROS-2 solver. Table 2a also shows
that if the time step size is small enough, the first-order implicit solver will still converge to the ‘‘exact’’ solu-
tion with relative error (‘‘Abs(Error2)’’ column divided by ‘‘Ozone’’ column) smaller than 1.E-12. However, the
ROS-2 solver behaves better here since the ROS-2 solver using a numerical time step size equal to 1800 s
produces a solution with relative error smaller than 1.E-7.

It is worth noting that the initial condition for the convergence test above is from the initial data of CAM4-
Chem. The species concentration (e.g., ozone) is a little away from the realistic chemistry state of the

Table 1. Numerical Analysis of the First-Order Implicit Solver and Second-Order Rosenbrock (ROS-2) Solver for a Linear System

Dt Abs(Error1) Rate1 Abs(Error2) Rate2

2.00E-01 1.924170E100 1.580427E100
1.00E-01 8.362072E-01 0.434581 2.806979E-01 0.177609
5.00E-02 3.923089E-01 0.469153 5.946621E-02 0.211851
2.50E-02 1.902726E-01 0.485007 1.372136E-02 0.230742
1.25E-02 9.372968E-02 0.492607 3.297921E-03 0.240349
6.25E-03 4.652076E-02 0.496329 8.085571E-04 0.245172
3.13E-03 2.317529E-02 0.498171 2.001870E-04 0.247585
1.56E-03 1.156648E-02 0.499087 4.980504E-05 0.248793
7.81E-04 5.777966E-03 0.499544 1.242119E-05 0.249396
3.91E-04 2.887666E-03 0.499772 3.101549E-06 0.249698
1.95E-04 1.443504E-03 0.499886
9.77E-05 7.216697E-04 0.499943
4.88E-05 3.608143E-04 0.499972
2.44E-05 1.804020E-04 0.499986
1.22E-05 9.019972E-05 0.499993
6.10E-06 4.509954E-05 0.499996
3.05E-06 2.254969E-05 0.499998
1.53E-06 1.127483E-05 0.499999
7.63E-07 5.637408E-06 0.500000
3.81E-07 2.818702E-06 0.500000
1.91E-07 1.409351E-06 0.500000
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Table 2. Numerical Analysis of the First-Order Implicit Solver and Second-Order Rosenbrock (ROS-2) Solver for a Nonlinear System With
Box-Model Simulations (Units: mol/mol)

Dt Ozone Abs(Error) Rate

(a) Input From Initial Data for CAM4-Chem
First-Order Implicit Solver
1.80E103 6.033875081040E-13 4.670864013899E-17
9.00E102 6.034108571651E-13 2.335957908294E-17 0.500113
4.50E102 6.034225356959E-13 1.168104830493E-17 0.500054
2.25E102 6.034283759124E-13 5.840831817003E-18 0.500026
1.13E102 6.034312962523E-13 2.920491926016E-18 0.500013
5.63E101 6.034327564793E-13 1.460264834934E-18 0.500006
2.81E101 6.034334866071E-13 7.301370989840E-19 0.500003
1.41E101 6.034338516745E-13 3.650696949433E-19 0.500002
7.03E100 6.034340342091E-13 1.825351129328E-19 0.500001
3.52E100 6.034341254766E-13 9.126759599780E-20 0.500000
1.76E100 6.034341711104E-13 4.563378492274E-20 0.500000
8.79E-01 6.034341939273E-13 2.281686398665E-20 0.499999
4.39E-01 6.034342053358E-13 1.140840099425E-20 0.499999
2.20E-01 6.034342110400E-13 5.704177929390E-21 0.499998
1.10E-01 6.034342138921E-13 2.852068971804E-21 0.499996
5.49E-02 6.034342153182E-13 1.425979000582E-21 0.499981
2.75E-02 6.034342160312E-13 7.129810184583E-22 0.499994
1.37E-02 6.034342163877E-13 3.564590052800E-22 0.499956
6.87E-03 6.034342165661E-13 1.780309368838E-22 0.499443
3.43E-03 6.034342166553E-13 8.885597969955E-23 0.499104
1.72E-03 6.034342166987E-13 4.546201610256E-23 0.511637
8.58E-04 6.034342167198E-13 2.442293167725E-23 0.537216
4.29E-04 6.034342167270E-13 1.716399771048E-23 0.702782
2.15E-04 6.034342167344E-13 9.780966456978E-24 0.569854
1.07E-04 6.034342167385E-13 5.651929639532E-24 0.577850
5.36E-05 6.034342167414E-13 2.744983514679E-24 0.485672
2.68E-05 6.034342167436E-13 5.820152649848E-25 0.212029
ROS-2 Solver
1.80E103 6.034341703907E-13 4.635350394929E-20
9.00E102 6.034342027413E-13 1.400284692707E-20 0.302088
4.50E102 6.034342129412E-13 3.802968924664E-21 0.271585
2.25E102 6.034342157557E-13 9.885179905049E-22 0.259933
1.13E102 6.034342164924E-13 2.518129837532E-22 0.254738
5.63E101 6.034342166807E-13 6.349792599436E-23 0.252163
2.81E101 6.034342167283E-13 1.590192123632E-23 0.250432
1.41E101 6.034342167402E-13 3.937993638863E-24 0.247643
7.03E100 6.034342167432E-13 9.399687893379E-25 0.238692
3.52E100 6.034342167440E-13 1.899324624283E-25 0.202063
1.76E100 6.034342167442E-13
(b) Input From CAM4-Chem Output After 3 Month Simulation
First-Order Implicit Solver
1.80E103 5.978245102732E-08 4.756396646170E-11
9.00E102 5.976140850864E-08 2.652144778010E-11 0.557595
4.50E102 5.975076715046E-08 1.588008960000E-11 0.598764
2.25E102 5.974356744260E-08 8.680381741498E-12 0.546620
1.13E102 5.973906259478E-08 4.175533919096E-12 0.481031
5.63E101 5.973668923211E-08 1.802171253901E-12 0.431603
2.81E101 5.973561178778E-08 7.247269202004E-13 0.402141
1.41E101 5.973517535312E-08 2.882922579047E-13 0.397794
7.03E100 5.973500657783E-08 1.195169678004E-13 0.414569
3.52E100 5.973493966948E-08 5.260862329855E-14 0.440177
1.76E100 5.973491143495E-08 2.437409320730E-14 0.463310
8.79E-01 5.973489874541E-08 1.168454599514E-14 0.479384
4.39E-01 5.973489277449E-08 5.713632806852E-15 0.488991
2.20E-01 5.973488988499E-08 2.824131301198E-15 0.494279
1.10E-01 5.973488846466E-08 1.403796901733E-15 0.497072
5.49E-02 5.973488776067E-08 6.998111962483E-16 0.498513
2.75E-02 5.973488741024E-08 3.493800075629E-16 0.499249
1.37E-02 5.973488723541E-08 1.745559012606E-16 0.499616
6.87E-03 5.973488714810E-08 8.723879520881E-17 0.499776
3.43E-03 5.973488710448E-08 4.361949686608E-17 0.500001
1.72E-03 5.973488708267E-08 2.180870287674E-17 0.499976
8.58E-04 5.973488707195E-08 1.109250524923E-17 0.508627
4.29E-04 5.973488706696E-08 6.096307879626E-18 0.549588
2.15E-04 5.973488706502E-08 4.160096441321E-18 0.682396
1.07E-04 5.973488706356E-08 2.696807320270E-18 0.648256
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atmosphere due to the spin-up effect. Therefore, we further examine another case with the initial condition
from the output of CAM4-Chem after 3 month simulation. It turns out that when the time step size is refined
to 3.43E-3 s, the relative error of the ROS-2 solver is smaller than 1.E-12 and thus 5.973488706086E-08 mol/
mol can be used as the ‘‘exact’’ solution for ozone (see Table 2b). For the ROS-2 solver, quadratic conver-
gence is observed after the time step size is refined to 7.03 s and smaller, while the first-order implicit solver
converges linearly at the similar scale. The first-order implicit solver at time step size equal to 1800 s surpris-
ingly shows smaller relative error (7.95E-4) than that for the ROS-2 solver at the time step size equal to
1800 s (2.52E-3). However, both relative errors can be thought small enough when doing the analysis of
ozone concentration in the realistic atmosphere. Overall, based on the box-model analysis here, it seems
appropriate to use the ROS-2 solver with 1800 s time step for the real simulation of atmospheric chemistry.

3.2. First-Order Implicit Solver and ROS-2 Solver at 1800 s Time Step
We focus our analysis on annual and summertime mean surface ozone concentrations generated from a
decadal simulation from 2001 to 2010. Using the 1800 s time step, the output from the ROS-2 solver (ROS-
2_1800s) and the first-order implicit solver (ORI_1800s) are compared. Figure 2a shows a nationwide
decrease of 10 year averaged annual mean surface ozone concentration between the ROS-2_1800s and the
ORI_1800s (ROS-2_1800s minus ORI_1800s). The largest and smallest differences are 23.12 and 20.58 ppb
at the grid-cell level. By averaging the whole corresponding grids inside each state, the state-level differ-
ences are summarized in Table 3 and the Student’s t test suggests that the state-level differences of annual
mean surface ozone concentration between the ROS-2_1800s and the ORI_1800s are statistically significant
at a50:05 for 47 states except Washington. Considering the 10 year averaged surface ozone concentration
during the summer season when the photolytic reaction is the most active during the year, Figure 2b clearly
presents an even larger difference than the annual difference, especially over the Northeastern U.S. The
largest and smallest differences at the grid-cell level are 25.62 and 20.18 ppb, respectively. For the state
level, the ROS-2_1800s again shows a lower prediction of summertime mean ozone concentration over the
CONUS than the ORI_1800s, similar to that for the annual mean ozone concentration. According to Table 3,
the Student’s t test suggests that the differences are statistically significant over 42 out of 48 conterminous
states at a50:05, ranging from 25.17 to 20.75 ppb. We further evaluate both model results with the
ground-level observation data obtained from the Air Quality System (AQS) archived by U.S. EPA (https://
www.epa.gov/aqs, �1200 observation sites over the CONUS). For the difference of 10 year averaged annual
mean surface ozone concentration between model and monitor data, Figures 3a and 3b show that both
ORI_1800s and ROS-2_1800s are likely to produce more than 20 ppb overestimate at the Eastern and West-
ern U.S. coastal areas. The ROS-2_1800s reduces the bias mainly over the Eastern U.S., consistent with the

Table 2. (continued)

Dt Ozone Abs(Error) Rate

ROS-2 Solver
1.80E103 5.958452613181E-08 1.503609290504E-10
9.00E102 5.968294173170E-08 5.194532915820E-11 0.345471
4.50E102 5.971188939336E-08 2.299766750360E-11 0.442728
2.25E102 5.972455856641E-08 1.032849445230E-11 0.449111
1.13E102 5.973019079380E-08 4.696267055103E-12 0.454690
5.63E101 5.973286765394E-08 2.019406917293E-12 0.430003
2.81E101 5.973413490840E-08 7.521524604925E-13 0.372462
1.41E101 5.973465434590E-08 2.327149588001E-13 0.309399
7.03E100 5.973482583434E-08 6.122652349968E-14 0.263097
3.52E100 5.973487236949E-08 1.469137010049E-14 0.239951
1.76E100 5.973488354320E-08 3.517655699798E-15 0.239437
8.79E-01 5.973488616374E-08 8.971160996013E-16 0.255032
4.39E-01 5.973488682017E-08 2.406849016532E-16 0.268287
2.20E-01 5.973488699653E-08 6.432889656107E-17 0.267274
1.10E-01 5.973488704421E-08 1.664560031187E-17 0.258758
5.49E-02 5.973488705667E-08 4.190801385659E-18 0.251766
2.75E-02 5.973488705982E-08 1.043994577271E-18 0.249116
1.37E-02 5.973488706060E-08 2.619978784976E-19 0.250957
6.87E-03 5.973488706078E-08 7.629913970189E-20 0.291220
3.43E-03 5.973488706086E-08
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plot in Figure 2a. The differences of 10 year averaged summertime mean surface ozone concentration
between both solvers and AQS observation data are depicted in Figures 3c and 3d. The bias is even higher
and could be larger than 30 ppb, especially over the Central (e.g., West Virginia) and Northeast (e.g., Pennsyl-
vania). The overestimate of ozone concentration in the Eastern U.S. is a well-known issue from the previous lit-
erature about global chemistry-climate models [Murazaki and Hess, 2006; Reidmiller et al., 2009; Lapina et al.,
2014], and potential reasons include coarse global resolution that fails to represent the steep topographic gra-
dients in mixing depths [Fiore et al., 2009] and disproportionate sensitivity of models at the high ozone con-
centration level [Hollaway et al., 2012]. The spatial distribution of surface ozone concentration for the ROS-
2_1800s presents an evident reduction of ozone bias at Southeast (e.g., Georgia), Central (e.g., Illinois), and
Northeast (e.g., Pennsylvania). In addition, recalling the results of Student’s t test, most of these reductions are
statistically significant at a50:05. This reveals that the ROS-2_1800s is likely to significantly reduce the overes-
timate of surface ozone concentration to some extent, especially during the summer season.

3.3. First-Order Implicit Solver With 180 and 1800 s Time Step
Since a bias of surface ozone concentration is observed between the ORI-1800s and AQS monitor data, it is
worth investigating whether refining the time step size is able to reduce the bias for the first-order implicit
solver. The time step size in this study is refined to 180 s and the output from first-order implicit solver
(ORI_180s) is compared with that from the ORI_1800s. Figure 4a shows a nationwide decrease of 10 year
averaged annual mean surface ozone concentration between the ORI_180s and the ORI_1800s (ORI_180s
minus ORI_1800s). The largest and smallest differences at the grid-cell level are 20.53 and 20.05 ppb,
respectively. The state-level differences are listed in Table 4 and the mean normalized gross error EMNGE is
also calculated based on equation (6):

Mean normalized gross error EMNGE5
1
N

XN

i51

jMi2Oij
Oi

� �
3100% (6)

where N is the number of observations from AQS by time and space in each state; Oi and Mi are the ith val-
ues of observation and model in each state, respectively. Albeit the ORI_180s gives a widely lower estimate
of surface ozone concentration and EMNGE, the Student’s t test shown in Table 4 suggests that the state-
level differences of annual mean surface ozone concentration over the CONUS between the ORI_180s and
the ORI_1800s are not statistically significant at a50:05. Considering the 10 year averaged summertime
mean surface ozone concentration, Figure 4b presents that both positive and negative differences between

Figure 2. Difference of 10 year averaged (a) annual and (b) summertime (June, July, and August, JJA) mean surface ozone concentration (units: ppb) over the conterminous U.S. (CONUS)
between the ROS-2 solver (ROS-2_1800s) and the first-order implicit solver (ORI_1800s) at 1800 s time step (ROS-2_1800s minus ORI_1800s).
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the ORI_180s and the ORI_1800s
appear, with the highest positive val-
ue 0.26 ppb and negative value
20.54 ppb. However, the Student’s t
test shown in Table 4 indicates that
the difference of summertime mean
surface ozone concentration between
the ORI_180s and the ORI_1800s is
again not statistically significant at
a50:05. As stated before, the sum-
mertime mean surface ozone concen-
tration is strongly overestimated by
the current version of CAM4-Chem.
By keeping the same first-order
implicit solver but using the 180 s
rather than 1800 s time step, the pre-
diction bias seems to be reduced
nationwide except at five states (Ala-
bama: 0.16 ppb, Mississippi: 0.12 ppb,
Georgia: 0.13 ppb, South Carolina:
0.04 ppb, and Louisiana: 0.16 ppb).
Nevertheless, the benefit is less visi-
ble due to the small difference (differ-
ence of EMNGE< 1% for most states)
and neither the positive nor negative
difference is statistically significant.
Therefore, we cannot conclude that a
better prediction is obtained by sim-
ply refining the time step size. On the
other hand, the ROS-2_1800s does
provide statistically significant reduc-
tion of both annual and summertime
mean surface ozone concentration
bias over most conterminous states,
as described in the previous section.
Furthermore, the magnitude of sur-
face ozone concentration decrease is
also much higher than that here. This
reflects the fact that the improve-
ment from the ROS-2_1800s may not
follow its second-order accuracy as
we supposed, but instead from its
suitability for stiff problems [Sham-
pine, 1982; Verwer et al., 1999]. Based

on the results of numerical analysis in section 3.1, the first-order solver may converge to the ‘‘exact’’ solution
at tiny time step size but the computation will be unaffordable in the real simulation of an earth system
model. However, the ROS-2 solver is likely to converge to the ‘‘exact’’ solution with relatively large time step
size and the ROS-2 solver with 1800 s time step has already provided a solution with small relative error. So
we think the ROS-2_1800s solver could handle stiff system better than the original first-order implicit solver
and thus provide a better estimate of surface ozone concentration, especially for the summer season.

3.4. ROS-2 Solver With 180 and 1800 s Time Step
As stated above, the ROS-2_1800s reduces the surface ozone concentration bias between simulation and
observation data. A further question is raised: Can the ROS-2 solver benefit from refining the time step size?

Table 3. Student’s t Test for Difference (ROS-2_1800s Minus ORI_1800s, Units:
ppb) Between the Second-Order Rosenbrock Solver (ROS-2-1800s) and the First-
Order Implicit Solver (ORI-1800s) at 1800 s Time Step in Each State

State

Annual
Mean
Bias

p
Value

Summertime
Mean Bias

p
Value

AL 21.74 <0.001 21.73 0.007
AZ 21.10 <0.001 21.32 <0.001
AR 21.78 <0.001 22.02 <0.001
CA 21.20 <0.001 21.28 0.044
CO 20.99 <0.001 21.09 <0.001
CT 22.66 0.001 24.84 <0.001
DE 22.67 0.003 24.63 <0.001
FL 21.01 0.021 20.62 0.400
GA 21.67 <0.001 21.79 0.035
ID 20.76 0.008 20.90 0.005
IL 22.32 <0.001 23.63 <0.001
IN 22.60 <0.001 24.20 <0.001
IA 21.61 <0.001 22.52 <0.001
KS 21.27 <0.001 21.66 <0.001
KY 22.78 <0.001 24.21 <0.001
LA 21.24 0.002 20.72 0.348
ME 21.49 <0.001 22.40 0.001
MD 22.67 0.030 24.68 <0.001
MA 22.46 0.001 24.54 <0.001
MI 21.79 <0.001 22.86 <0.001
MN 21.06 <0.001 21.41 <0.001
MS 21.49 <0.001 21.32 0.118
MO 22.00 <0.001 22.85 <0.001
MT 20.71 0.003 20.80 <0.001
NE 21.10 <0.001 21.57 <0.001
NV 20.85 <0.001 20.90 0.001
NH 22.38 <0.001 24.18 <0.001
NJ 22.51 0.002 24.89 <0.001
NM 20.85 <0.001 20.75 0.022
NY 22.25 <0.001 24.03 <0.001
NC 22.21 <0.001 23.13 <0.001
ND 20.72 0.008 20.83 <0.001
OH 22.72 <0.001 24.63 <0.001
OK 21.47 <0.001 21.44 <0.001
OR 20.68 0.045 20.67 0.405
PA 22.85 <0.001 25.17 <0.001
RI 22.39 0.019 24.68 0.018
SC 21.83 <0.001 22.30 0.002
SD 20.90 <0.001 21.22 <0.001
TN 22.40 <0.001 23.21 <0.001
TX 21.14 <0.001 20.67 0.058
UT 21.00 <0.001 21.07 <0.001
VT 22.04 <0.001 23.51 <0.001
VA 22.78 <0.001 24.56 <0.001
WA 20.67 0.075 20.48 0.531
WV 23.01 <0.001 25.12 <0.001
WI 21.50 <0.001 22.23 <0.001
WY 20.87 <0.001 20.95 <0.001
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To answer this question, another time-slice simulation is conducted by using the ROS-2 solver with 180 s
time step (ROS-2_180s). The difference of 10 year averaged annual mean surface ozone concentration
between the ROS-2_180s and the ROS-2_1800s (ROS-2_180s minus ROS-2_1800s) is plotted in Figure 5a.
Surprisingly, the ROS-2_180s provides a nationwide higher estimate of surface ozone concentration, rang-
ing from 0.16 to 2.15 ppb. The primary difference is located in the Eastern U.S. with the largest and smallest
state-level differences in West Virginia and New Mexico, respectively (see Table 5). The Student’s t test sug-
gests that the difference between the ROS-2_180s and the ROS-2_1800s is statistically significant over 32
states at a50:05, varying from 0.42 to 2.07 ppb. The difference of 10 year averaged summertime mean sur-
face ozone concentration between the ROS-2_180s and the ROS-2_1800s is shown in Figure 5b. Instead of a
consistently higher estimate of surface ozone concentration over the CONUS in Figure 5a, some slight
decreases are observed at parts of Texas and New Mexico. It presents a wider range of difference at grid-
cell level from 20.19 to 4 ppb. The state-level differences shown in Table 5 indicate that the ROS-2_180s still
generates a higher estimate of summertime ozone concentration over most parts of the CONUS, similar to

Figure 3. Ten year averaged (a) annual and (c) summertime mean surface ozone concentration bias (units: ppb) over the CONUS between the ORI_1800s and the AQS observation data
(ORI_1800s minus AQS). (b, d) The same but for the ROS-2_1800s.
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the results in Figure 5a. However, the Student’s t test suggests that these differences are statistically signifi-
cant over 28 states at a50:05, varying from 0.41 to 3.71 ppb. As demonstrated in Figure 3, the ROS-2_1800s
is still likely to overestimate the surface ozone concentration over the CONUS. Therefore, the ROS-2_180s
seems to increase the surface ozone concentration bias and no benefit is obtained for the ROS-2 solver
from refining the chemistry time step size in this case. However, compared to the ORI_180s and ORI_1800s
(see Figures (2 and 4), and 5), the ROS-2_180s still reduces the surface ozone concentration bias to some
extent (up to 2 ppb for summer season). Therefore, the ROS-2_180s at least does not negatively impact the
chemistry calculation compared with the original first-order implicit solver. From section 3.1, both ROS-
2_180s and ROS-2_1800s provide small relative errors and do not differ too much from each other (see
Tables 1 and 2). Thus, we think some other factors may play a role here. We output the system matrices
from the selected grid cells used in section 3.1 and calculate the condition numbers of the matrices using
the function cond() in MATLAB. All of them are larger than 1012, which means the system matrices are
strongly ill-conditioned and a minor change of left-hand side system matrix or right-hand side vector could
lead to a major difference in the final solution. For the box model, the solution of the current time step will
be used as the input for the next time step integration. Nevertheless, in the real simulation of CAM4-Chem,
other processes like advection and diffusion will bring some additional mass from the neighboring grid cells
or transfer some mass from the current grid cell, leading to a ‘‘discontinuity’’ of the solution between the
end of the current time step and the beginning of the next time step. The effect of ‘‘discontinuity’’ may be
amplified by the ill-conditioned system and partially contributes to the difference between the ROS-2_180s
and the ROS-2_1800s. It reminds us that the earth system model is very complex and the improvement
from the ROS-2 solver may not be limited to its numerical properties, but also related to its interaction with
other processes (e.g., dynamics) and components (e.g., land and ocean). The exact reason can only be
explored by additional case studies but that is beyond the scope of this study.

3.5. Evaluation of Surface Ozone Concentration at Global Scale
Though this work mainly focuses on the bias of surface ozone concentration over the CONUS, model com-
parisons for variables at the global scale are necessary since CAM4-Chem is a global chemistry-climate mod-
el. The difference of 10 year averaged global surface ozone concentration between the ROS-2_1800s and
the ORI_1800s is shown in Figure 6. The clear decrease of surface ozone concentration predicted by the
ROS-2_1800s is observed for both annual mean (Figure 6a) and JJA mean (Figure 6b) results. In particular,
greater than 3 ppb reduction occurs in Western Europe and Northeast China during the summer season.

Figure 4. Difference of 10 year averaged (a) annual and (b) summertime mean surface ozone concentration (units: ppb) over the CONUS between the first-order implicit solver at 180 s
time step (ORI_180s) and the ORI_1800s (ORI_180s minus ORI_1800s).
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We further compare the model results to the observation data in Europe from the European Monitoring
and Evaluation Program (EMEP, http://www.emep.int/) and Asia from the Acid Deposition Monitoring Net-
work in East Asia (EANET, http://www.eanet.asia/). For Europe, the observed 10 year averaged annual mean
ozone concentration is (mean 6 standard deviation over space) 32.83 6 8.12 ppb while those for the
ORI_1800s and the ROS-2_1800s are 48.69 6 7.83 and 47.32 6 7.76 ppb, respectively. Considering the 10
year averaged JJA mean ozone concentration, the observation value is 37.21 6 10.08 ppb while those for
the ORI_1800s and the ROS-2_1800s are 57.74 6 12.27 and 55.65 6 11.76 ppb, respectively. For Asia, the
observed 10 year averaged annual mean ozone concentration is 34.06 6 11.51 ppb while the values from
the ORI_1800s and the ROS-2_1800s are 44.91 6 5.39 and 43.99 6 5.17 ppb, respectively. For the 10 year
averaged JJA mean ozone concentration, the observed value is 27.91 6 12.43 ppb while the values from the

Table 4. Statistics for the First-Order Implicit Solver at 180 s Time Step (ORI_180s) and 1800 s Time Step (ORI_1800s) in Each State,
Respectively

State
Annual

Mean Bias p Value
Summer

Mean Bias p Value

Mean Normalized Gross Error (%)

ORI_1800s ORI_180s

Annual Summer Annual Summer

AL 20.07 0.770 0.16 0.810 81.31 104.00 81.05 104.55
AZ 20.24 0.246 20.31 0.341 44.06 43.22 43.44 42.50
AR 20.15 0.624 20.03 0.942 64.43 81.66 63.95 81.63
CA 20.18 0.549 20.07 0.910 65.09 46.81 64.51 46.74
CO 20.22 0.298 20.30 0.053 57.51 49.84 56.89 49.13
CT 20.33 0.673 20.28 0.822 55.35 97.68 54.23 96.88
DE 20.32 0.686 20.29 0.769 88.26 104.58 87.03 103.77
FL 20.14 0.758 0.00 0.999 67.31 86.78 66.81 86.76
GA 20.09 0.770 0.13 0.881 78.54 102.13 78.22 102.61
ID 20.15 0.591 20.16 0.619 45.54 44.83 45.10 44.43
IL 20.28 0.398 20.33 0.259 70.47 96.98 69.44 95.99
IN 20.33 0.397 20.39 0.317 49.21 100.04 48.17 98.93
IA 20.20 0.485 20.24 0.477 67.42 98.33 66.70 97.55
KS 20.21 0.402 20.25 0.280 65.71 60.78 64.98 60.13
KY 20.26 0.567 20.23 0.615 76.22 120.02 75.34 119.31
LA 20.09 0.826 0.16 0.843 76.44 84.65 76.10 85.23
ME 20.18 0.637 20.16 0.828 67.74 117.68 67.10 117.17
MD 20.27 0.819 20.24 0.838 88.58 116.22 87.62 115.56
MA 20.27 0.698 20.21 0.867 77.15 108.69 76.19 108.07
MI 20.23 0.457 20.26 0.667 51.34 86.75 50.58 85.92
MN 20.14 0.564 20.10 0.777 61.55 85.35 61.02 84.99
MS 20.08 0.827 0.12 0.892 65.70 83.33 65.41 83.74
MO 20.22 0.536 20.25 0.488 59.57 84.60 58.85 83.98
MT 20.15 0.533 20.14 0.427 91.86 85.99 91.30 85.55
NE 20.20 0.399 20.25 0.154 38.78 42.86 38.27 42.32
NV 20.18 0.406 20.22 0.445 58.92 45.87 58.44 45.48
NH 20.26 0.679 20.20 0.851 74.45 126.73 73.48 126.05
NJ 20.52 0.509 20.52 0.660 46.58 84.76 44.66 83.25
NM 20.21 0.372 20.26 0.437 62.04 45.99 61.40 45.36
NY 20.23 0.607 20.21 0.713 65.25 109.30 64.47 108.64
NC 20.18 0.529 20.11 0.834 74.54 101.68 73.95 101.33
ND 20.13 0.641 20.09 0.684 52.50 57.42 52.07 57.10
OH 20.31 0.281 20.36 0.247 56.65 98.21 55.62 97.18
OK 20.19 0.542 20.11 0.778 50.69 48.86 50.11 48.63
OR 20.13 0.703 20.07 0.932 88.31 66.15 87.80 66.06
PA 20.31 0.407 20.30 0.462 66.68 108.20 65.58 107.30
RI 20.23 0.811 20.16 0.935 116.77 118.70 115.82 118.24
SC 20.13 0.735 0.04 0.961 85.54 116.14 85.09 116.27
SD 20.16 0.530 20.17 0.437 43.84 41.09 43.34 40.59
TN 20.18 0.552 20.09 0.819 66.94 97.24 66.38 97.01
TX 20.18 0.315 20.05 0.889 52.15 51.04 51.51 51.16
UT 20.22 0.358 20.29 0.182 38.64 37.14 38.05 36.50
VT 20.21 0.656 20.15 0.855 43.96 78.53 43.32 78.10
VA 20.24 0.490 20.23 0.543 93.04 135.11 92.19 134.38
WA 20.14 0.713 20.04 0.954 96.26 63.51 95.53 63.29
WV 20.27 0.565 20.28 0.541 91.46 135.65 90.44 134.77
WI 20.18 0.494 20.16 0.675 50.81 82.15 50.25 81.67
WY 20.18 0.444 20.23 0.282 47.29 46.10 46.78 45.56
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ORI_1800s and the ROS-2_1800s are 37.43 6 11.01 and 36.55 6 10.57 ppb, respectively. Similar to the U.S.,
both solvers overestimate the surface ozone concentration over the European and Asian continents, espe-
cially for the JJA season. However, the comparison between model simulation results and observation data
suggests that the ROS-2_1800s is able to reduce the bias more at the European sites. One main reason is
that most of the Asian observation stations are in Japan, Korea, and Thailand, where less difference is seen
from Figure 6. It is also worth noting that the observed JJA mean ozone concentration is lower than the
annual mean value. This can be explained by the fact that more than half of the available ozone observation
data come from sites in Japan and the concentrations there are highest in spring but lowest in summer at
all stations [Chatani and Sudo, 2011; Li et al., 2016]. This comparison reveals that the ozone concentration is
globally decreased by the ROS-2_1800s instead of a random fluctuation. Therefore, the lower surface ozone
concentration over the CONUS predicted by the ROS-2_1800s is not a trade-off against increasing the sur-
face ozone concentration in other global regions.

3.6. Computational Efficiency
Since the ROS-2 solver utilizes the same Jacobian matrix and LU factorization structure between the two
stages, it is expected to speed up the computation compared to the original first-order implicit solver. Using
the default simulation period setting (5 days), Table 6 summarizes the global statistics of average computa-
tional time per processor as a function of different numbers of threads. The percent of saved computational
time and the factor of speedup are calculated by the following equations:

Time per processor5
Total time

NTASKS ATM � NTHRDS ATM
(7)

Percent of saved time5
TORI2TROS22

TORI
(8)

Factor of speedup5
TORI

TROS22
(9)

where ‘‘Total time’’ means the total summed wall-clock time consumed over all the processors. ‘‘NTASKS_ATM’’
and ‘‘NTHRDS_ATM’’ are variables that set the number of MPI tasks and the number of OpenMP threads per
task, respectively. The product of these two variables specifies the total computational processors for the
atmospheric component of CESM. TORI and TROS-2 refer to the computational time of the first-order implicit

Figure 5. Difference of 10 year averaged (a) annual and (b) summertime mean surface ozone concentration (units: ppb) over the CONUS between the ROS-2 solver at 180 s time step
(ROS-2_180s) and the ROS-2_1800s (ROS-2_180s minus ROS-2_1800s).
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solver and the ROS-2 solver with given number of processors, respectively. The Titan supercomputer at Oak
Ridge National Laboratory (ORNL) is used for performance testing. Titan is a hybrid-architecture Cray XK7
system with 18,688 compute nodes (16 processors per node) and a theoretical peak performance exceeding
27 petaflops. The chemistry update takes the longest time per processor when only 48 processors are
requested, but it drops rapidly as the number of processors increases (see Table 6). The average speedup of
computational time for the ROS-2_1800s over that for ORI_1800s is around 1.95 when the total requested
processors are less than or equal to 768 but reduces slightly to 1.83 when more processors are used. Similar-
ly, the average speedup of computational time for the ROS-2_180s over that for the ORI_180s is about 1.88
when the total requested processors are less than or equal to 768 but reduces slightly to 1.77 with more
processors. For the first-order implicit solver, using one tenth of the time step size does not simply result to

Table 5. Statistics for the Second-Order Rosenbrock Solver at 180 s Time Step (ROS-2_180s) and 1800 s Time Step (ROS-2_1800s) in
Each State, Respectively

State
Annual

Mean Bias p Value
Summer

Mean Bias p Value

Mean Normalized Gross Error (%)

ROS-2_1800s ROS-2_180s

Annual Summer Annual Summer

AL 1.11 <0.001 1.02 0.102 74.69 97.49 79.02 101.39
AZ 0.42 0.039 0.34 0.272 41.12 39.86 42.30 40.91
AR 1.06 <0.001 1.02 0.001 58.72 75.94 62.16 78.99
CA 0.69 0.019 0.82 0.189 61.11 43.47 63.44 45.80
CO 0.39 0.064 0.14 0.377 54.71 47.23 55.83 47.59
CT 1.77 0.026 3.50 0.004 46.39 83.66 52.34 93.79
DE 1.74 0.035 3.24 0.003 78.10 91.86 84.72 100.76
FL 0.44 0.312 0.14 0.850 63.72 84.24 65.26 84.80
GA 1.06 <0.001 1.12 0.182 72.31 95.82 76.32 99.83
ID 0.38 0.173 0.42 0.177 43.39 42.63 44.48 43.65
IL 1.36 <0.001 1.94 <0.001 62.14 86.09 67.02 91.96
IN 1.57 <0.001 2.42 <0.001 40.81 87.68 45.93 94.86
IA 0.90 0.001 1.23 <0.001 61.69 90.25 64.88 94.19
KS 0.61 0.016 0.59 0.007 60.76 55.57 63.28 57.69
KY 1.84 <0.001 2.71 <0.001 66.61 107.21 72.98 115.42
LA 0.74 0.062 0.47 0.538 71.82 82.01 74.50 83.62
ME 1.00 0.007 1.68 0.018 61.72 107.22 65.89 114.97
MD 1.81 0.134 3.34 0.006 79.03 103.12 85.52 112.49
MA 1.69 0.016 3.39 0.005 68.28 95.03 74.37 105.24
MI 1.11 <0.001 1.72 0.002 45.19 77.31 49.03 83.09
MN 0.57 0.018 0.67 0.044 57.37 79.85 59.70 82.64
MS 0.89 0.012 0.63 0.439 60.63 79.00 63.63 81.06
MO 1.15 0.001 1.36 <0.001 53.11 76.74 56.82 80.61
MT 0.34 0.152 0.32 0.064 89.13 83.27 90.51 84.60
NE 0.50 0.032 0.52 0.002 36.21 40.13 37.29 40.74
NV 0.39 0.060 0.26 0.354 56.16 43.42 57.54 44.41
NH 1.66 0.011 3.14 0.002 65.65 112.08 71.78 123.12
NJ 1.32 0.085 3.02 0.012 37.26 70.68 42.18 79.40
NM 0.28 0.237 20.05 0.881 59.49 44.28 60.28 44.02
NY 1.58 0.001 3.00 <0.001 57.52 96.48 62.96 106.03
NC 1.46 <0.001 2.01 <0.001 67.22 92.39 72.10 98.39
ND 0.33 0.213 0.29 0.182 50.20 55.01 51.22 55.76
OH 1.77 <0.001 3.02 <0.001 47.72 85.08 53.52 93.62
OK 0.80 0.008 0.65 0.084 45.85 44.93 48.57 46.82
OR 0.37 0.279 0.39 0.622 85.48 63.72 87.04 65.35
PA 1.93 <0.001 3.71 <0.001 56.79 93.03 63.48 103.91
RI 1.65 0.089 3.53 0.062 106.95 105.15 113.74 115.37
SC 1.18 0.001 1.46 0.042 79.02 108.52 83.21 113.33
SD 0.41 0.099 0.41 0.046 41.42 38.59 42.39 39.09
TN 1.59 <0.001 1.95 <0.001 59.23 87.88 64.38 93.73
TX 0.57 0.002 0.24 0.484 47.54 48.86 50.07 50.08
UT 0.40 0.098 0.14 0.522 35.92 34.69 37.01 35.04
VT 1.44 0.002 2.65 0.001 37.76 68.61 42.13 76.09
VA 1.93 <0.001 3.19 <0.001 83.14 120.85 90.00 130.78
WA 0.35 0.352 0.28 0.712 92.88 61.39 94.63 62.61
WV 2.07 <0.001 3.58 <0.001 80.47 119.75 88.00 130.81
WI 0.91 <0.001 1.28 <0.001 46.08 75.47 48.94 79.29
WY 0.38 0.114 0.19 0.373 44.83 43.83 45.89 44.27
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a slower performance by a factor of 10. This is probably due to the fact that with a finer time step, fewer iter-
ation steps are required for the chemistry solver to converge. For the ROS-2 solver, it is similarly found that
the ROS-2_180s is not 10 times slower than then ROS-2_1800s. This is mainly caused by the adaptive time
step method implemented in the ROS-2_1800s, which introduces additional computation at refined time
step level and impedes the performance. Generally, the computational time per processor for the ROS-
2_1800s is about 48% less than that for ORI_1800s and the computational time per processor for the ROS-
2_180s is about 46% less than that for the ORI_180s. The ORI_1800s and ROS-2_1800s are further used to
conduct 1 month and 1 year simulations separately to examine whether more improvements are possible
(see Table 6). By requesting 1536 processors, the ROS-2_1800s takes about 47% less computational time
than ORI_1800s for both 1 month and 1 year simulations, indicating that the performance improvement of
the ROS-2_1800s over the ORI_1800s is stable at around 47%, regardless of the simulation period. It is worth
noting that we use the same routines to form the Jacobian matrix and conduct the LU factorization for both
solvers, which makes the comparison of performance fair. Therefore, the faster computational speed of the
ROS-2 solver should be attributed to the advantage of numerical algorithm itself that avoids the reevalua-
tion of Jacobian matrix and LU factorization between two stages.

Figure 6. Difference of 10 year averaged (a) annual and (b) JJA mean surface ozone concentration (units: ppb) between the ROS-2_1800s and the ORI_1800s (ROS-2_1800s minus
ORI_1800s) over the global continents.

Table 6. Summary of Computational Time (Units: s) per Processor for Each Solver (ORI_180s, ORI_1800s, ROS-2_180s, and ROS-2_1800s)
With Various Simulation Periods

Simulation Period Number of Processors Computational Time per Processor for Each Solver

ORI_1800s ROS-2_1800s Percent of Saved Time Speedup
5 days 48 714 370 48.18 1.93

96 359 185 48.47 1.94
192 180 93 48.33 1.94
384 91 47 48.35 1.94
768 46 23 50.00 2.00

1536 22 12 45.45 1.83
3072 11 6 45.45 1.83

5 days ORI_180s ROS-2_180s Percent of Saved Time Speedup
48 5133 2,724 46.93 1.88
96 2568 1,363 46.92 1.88

192 1287 681 47.09 1.89
384 645 340 47.29 1.90
768 310 167 46.13 1.86

1536 145 82 43.45 1.77
3072 72 41 43.06 1.76

ORI_1800s ROS-2_1800s Percent of Saved Time Speedup
1 month 1536 139 73 47.48 1.90

ORI_1800s ROS-2_1800s Percent of Saved Time Speedup
1 year 1536 1607 844 47.48 1.90
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4. Conclusion

To the authors’ knowledge, this is the first study of implementing the ROS-2 solver in CAM4-Chem and
evaluating its impact on the prediction of surface ozone concentration over the CONUS. Compared to the
ORI_1800s, the ROS-2_1800s is likely to provide consistently nationwide lower 10 year averaged annual
mean surface ozone concentration (see Figure 2a) and the Student’s t test suggests that the difference is
statistically significant over 47 states at a50:05. For the summertime, the ROS-2_1800s similarly presents
a significantly lower estimate of 10 year averaged surface ozone concentration over the CONUS. The
absolute difference is much larger (up to 5.2 ppb for one state) and 42 out of 48 states are statistically sig-
nificant at a50:05. This implies that the ROS-2_1800s can help improve the performance of surface ozone
concentration over the CONUS, especially during the summer season when the photochemical reactions
are the most active. The lower global surface ozone concentration generated by the ROS-2_1800s also
suggests that its prediction of lower surface ozone concentration over the CONUS is not a random fluctu-
ation and the model evaluation shows that the ROS-2_1800s can reduce the bias in Europe and Asia to
some extent as well.

In addition, the time step size for the original first-order implicit solver is refined to 180 s (one tenth of the
default time step) to examine whether it could help improve the estimate of surface ozone concentration
over the CONUS. Figure 4 shows that compared to ORI_1800s, ORI-180s does slightly reduce the surface
ozone concentration but the improvement is less visible (only around 0.5 ppb as maximum) and not statisti-
cally significant, either. This reveals that just refining the time step size by a factor of 10 for the original first-
order implicit solver is not able to provide statistically significant improvement of surface ozone concentra-
tion prediction. Thus, it is necessary to use other chemical solvers like the ROS-2 solver in this study. Howev-
er, the outperformance for the ROS-2 solver may not come from its second-order accuracy with respect to
time scale, but from its suitability for solving stiff problems. We have also applied the 180 s time step to the
ROS-2 solver but the ROS-2_180s surprisingly performs worse than the ROS-2_1800s for estimating the sur-
face ozone concentration. By studying some selected grid cells, the system matrix is found to be strongly ill-
conditioned and other processes (e.g., diffusion) will cause ‘‘discontinuity’’ for the solution between the end
of the current time step and the beginning of the next time step. The ROS-2 solvers with different time step
sizes could converge to different solutions after a long-term simulation. In the real application, the CAM4-
Chem may accumulate errors from other processes like dynamics and physics. Thus, the time step size for
the ROS-2 solver in chemistry should be chosen carefully in order to provide a compensation of error.

The computational efficiencies of the ORI_1800s, ORI_180s, ROS-2_1800s and ROS-2_180s are also analyzed.
Even if the first-order implicit solver has been optimized to solve the chemical reaction system efficiently,
the ROS-2 solver takes about 47% less computational time than the original first-order implicit solver when
using the same time step size. Our analysis indicates this speedup is explained by the fact that the ROS-2
solver utilizes the same Jacobian matrix and LU factorization structure during the two-stage calculations,
which could consume 90% of the total computational time for the chemistry update. It is also observed that
the ROS-2_180s is not 10 times slower than the ROS-2_1800s because of the adaptive time step method
implemented in the ROS-2_1800s.

In future work, case studies with different configurations may be explored to examine whether the benefit
of the ROS-2 solver observed in this study still persists. Other solvers from the Rosenbrock family (e.g., ROS-
3) can also be implemented to see whether further bias reduction is possible for the surface ozone concen-
tration prediction over the CONUS. Since all the constituents except water vapor are treated as radiatively
inactive by default, the reduction of ozone concentration from the ROS-2_1800s is not expected to influ-
ence the longwave and shortwave cloud forcings in the current simulation but it is worth investigating the
differences in a fully interactive simulation in future work. The chemistry update behaves like a box model
in CAM4-Chem, which is an ideal target for parallel implementations. Either NVIDIA CUDA or OpenACC
could be used as a programming model on advanced high performance computing platforms to harness
the power of the GPU and further improve the computational performance.
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