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The A/B domains of nuclear receptors such as thyroid receptor a (TRa)
are considered to be conformationally flexible and can potentially adopt

multiple structural conformations. We used intrinsic tryptophan fluores-

cence quenching and circular dichroism spectroscopy to characterize the

unfolding of this A/B domain upon DNA binding to the contiguous DNA-

binding domain (DBD). We propose that this allosteric change in A/B

domain conformation can allow it to make the multiple interactions with

distinct molecular factors of the transcriptional preinitiation complex. We

further suggest that by influencing the affinity of the DBD for DNA, A/B

domain can fine-tune the recognition of promotor DNA by TRa.

The effects of the thyroid hormone (triiodothyronine,

T3) are widespread in development, homeostasis and

metabolism. The T3 receptors (thyroid hormone recep-

tor, TR) are encoded by two closely related genes (a and

b) [1]. The T3Ra genes in humans express the T3-bind-

ing isoform TRa1 [2]. The TRb gene expresses TRb1
and TRb2, which differ only in their N-terminal A/B

regions, and are also distinct from the A/B region of

TRa1 [3]. TRa is mostly expressed in the brain [4] and is

associated with the development of the nervous system

[5]. TRa is constitutively localized within the nucleus

where it interacts with nucleosomal DNA [6,7]. In the

absence of T3 ligand, TRa is observed to actively repress

transcription through interactions with transcriptional

corepressors such as SMRT and NCoR [8–10].
Thyroid hormone receptors are members of the

nuclear receptor (NR) superfamily of ligand-mediated

transcription factors [2]. NRs have common modular

structural features that include an N-terminal domain

(A/B domain, Fig. 1A). This A/B domain is of vari-

able length and amino acid sequence and encompasses

a ligand-independent transactivation function (AF1)

domain that is critical for regulating transactivation

[11,12]. Following the A/B domain is a highly con-

served DNA-binding domain (DBD; C domain,

Fig. 1A) that binds palindromic DNA sequences called

hormone response elements (HRE). A short ‘hinge’

sequence (D domain) connects the DBD (C domain)

to a C-terminal ligand-binding domain (LBD; E/F

domain, Fig. 1A). Upon binding agonist-ligands, the

LBD (E/F domain) undergoes conformational changes

which results in the recruitment of coactivator mole-

cules [13–17]. Antagonists and inverse agonists disrupt

the ‘active-state’ LBD and the resulting LBD confor-

mation functions as a docking site for corepressors

[18–20]. Also, except for the A/B domains, the amino

acid sequences of TRa and TRb are over 90% identi-

cal. Since TRs differ most significantly in the N-
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terminal A/B domain, it is suggested that this region

plays a significant role in mediating the distinct roles

of these receptors [21]. It has also been proposed that

TRa-mediated transcriptional regulation can also

occur through specific interactions of the A/B domain

with the PIC, specifically with transcription factor IIB

(TFIIB) [21–24] and the TATA-binding protein (TBP)

[25]. Transcriptional repression and similar interactions

have also been observed between TRb and TFIIB

[21,23,26].

By and large, the N-terminal domain of NRs is the

least understood. This A/B region is diverse in size,

sequence and is conformationally malleable [12,27,28],

implying that this domain plays disparate roles in con-

ferring cell type and/or promoter specificity [21].

Moreover, there are no data on the atomic resolution

structure of any NR A/B domain conformation to

date.

Nuclear receptor structure is strongly affected by the

presence and even sequence of the DNA response ele-

ment [29]. The source of these may result from confor-

mational changes within the DBD as observed in

structures of glucocorticoid (GR) bound to multiple

GREs [30,31]. This may explain, in part, the DNA-

dependent interactions between the TRa DBD and

LBD (E/F domain) reported earlier [32]. DNA binding

is also central to allosteric communication between the

A/B and C (DBD) domains [27,33–36]. Multiple

DNA-binding site sequences have been identified for

TRa. TR isoforms and oligomers exhibit preferential

binding to specific DNA sequences called thyroid

response elements (TRE) [37]. These TRE sequences

consist of consensus AGGTCA (half-sites) arranged as

direct repeats (DR), palindromic sequences (Pal) or

inverted palindromic sequences (IP), each with differ-

ing spacing between the half-sites.

Allostery is a recognized regulatory feature within

NRs such that ligand binding and even minor pertur-

bations (such as nonbinding-site mutations) are

detected at distal regions of NRs [15–17,27,38–41].
With distinct structural changes, allostery has been

observed to link ligand, coactivator and the DNA-

binding sites [17,32,42]. Furthermore, DNA binding is

also central to allosteric communications between the

A/B and C (DBD) domains [27,33–36,43]. Increas-

ingly, cooperative interactions between multiple NR

Fig. 1. (A) NR domain topology displaying single-letter domain assignments. The region circled in green (above) is the focus of this study

and the structural topology shows the relative orientation of the domains with DR4 TRE DNA (below). (B) The amino acid sequence of the

TRa A/B + C domain molecular construct is colour coded (A/B domain in red and C domain in green). The single tryptophan is shown in

blue. (C and D) Results from the Escherichia coli overexpression and purification of the TRa (A/B + DBD) and TRa (DBD) molecular

constructs, respectively. The molecular weight standards are on lane 6 (the positions of the 75 kDa and 25 kDa standards are labelled) and

the purified proteins are in lane 7.
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domains have also been reported to modulate transac-

tivation suggesting additional layers of regulation

[32,44].

Here, we report a notable conformational change in

the TRa A/B domain that is initiated through allostery

through the TRa DBD by DNA. The shorter, 50-

amino acid A/B domain of TRa encompasses several

of the structural motifs that have been identified in

NRs with significantly larger A/B domains to be

important for ligand-independent activity [24]. Of

these, distinct variations of the KRKRK amino acid

sequence motif are common to several NRs including

TR, progesterone (PR) and the liver X receptor (LXR)

[28]. We are able to observe that the TRa A/B domain

can allosterically enhance the binding affinity of the

receptor for direct repeat 4 (DR4) TRE DNA. Fur-

thermore, using a combination of circular dichroism

(CD) and intrinsic tryptophan fluorescence spec-

troscopy, we can report that the binding of DNA to

the TRa DBD (C domain) induces unfolding within

the flanking TRa A/B domain. Overall, these observa-

tions suggest a structural basis for intramolecular

cooperativity within TRa that fine-tunes binding to

specific DNA sites.

Experimental procedures

Protein expression and purification

The chicken thyroid hormone receptor a1 gene (cTRa1,
NCBI accession #: NP_990644.1) is over 90% identical to

human TRa1 (NCBI accession #: NP_955366.1) at the

amino acid level and is used for all experiments here. TRa
(A/B + DBD, amino acid 1–154), TRa (DBD, amino acids

37–154) [32] and TRa (A/B domain, amino acids 1–50)
were cloned into the plasmid pET15b (Life Technologies

Inc., Carlsbad, CA, USA) to produce pET15b-TRa (A/

B + DBD), pET15b-TRa(DBD) and pET15b-TRa (A/B

domain), respectively. Proteins were produced in

Escherichia coli BL21 (DE3) RIPL cells. Protein synthesis

was induced with 0.5 mM isopropyl b-D-thiogalactoside

(IPTG) at 20ᵒC. Cells were lysed by sonication in 50 mM

Tris, pH 8.0, 500 mM NaCl, 20 mM Imidazole, 10% glyc-

erol, 1 protease inhibitor tablet, 5.7 mM b-mercaptoethanol,

0.5 lM PMSF, 10 lM ZnCl2, 10 mM MgCl2, recombinant

DNase 1 (10 U). 6XHis-tagged TR (A/B + DBD) and TR

(DBD) were purified using Ni-NTA agarose (Qiagen�,

Germantown, MD, USA) with 0.3 M Imidazole, 50 mM

Tris, pH 8.0, 500 mM NaCl and 10% glycerol. Proteins

were further purified by size-exclusion chromatography

(SEC) using S200 Superdex 16/60 column (GE Healthcare

Life Sciences, Pittsburgh, PA, USA) in buffer consisting

50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

(HEPES), pH = 7.5 (at 25 ᵒC), 125 mM NaCl, 5 mM

MgCl2, 1 mM tris (2-carboxyethyl)phosphine hydrochloride;

TCEP). Protein was analysed using SDS/PAGE. Protein

concentration was determined using the Bradford Assay

(BioRad�, Hercules, CA, USA).

Preparation of DR4 TRE DNA adduct

19-mer DNA oligos containing the thyroid hormone

response element (TRE) consensus site (DR4: 50-
CCAGGTCATTTCAGGTCAG-30, where the underlined

sequence is the NR binding site) were commercially

obtained (Life Technologies Inc.) as single-stranded oligo-

mers [45]. Double-stranded DR4 TRE was prepared by

mixing the complementary strands in equimolar ratios to a

final concentration of 2 mM, followed by heat denaturation

at 95 ᵒC for 5 min and annealing by gradual cooling to

room temperature.

Isothermal titration calorimetry (ITC)

Thyroid receptor a (A/B + DBD) and TRa (DBD), puri-

fied by SEC, were used for isothermal titration calorimetry

(ITC) measurements using VP-ITC MicroCalTM (MicroCal

Inc., Northampton, MA, USA). Protein and ligand were

prepared in 50 mM HEPES, pH 7.5, 125 mM NaCl, 5 mM

MgCl2 and 1 mM TCEP. For titration experiments, protein

concentration ranged from 30 to 45 lM and ligand DR4

TRE: 50-CCAGGTCATTTCAGGTCAG-30 concentration

ranged from 300 to 400 lM. Both protein and ligand were

degassed for 5–10 min. The experiments were initiated by

injecting 28 9 10 lL aliquots of DR4 TRE from the syr-

inge into the calorimetric cell containing 1.5 mL of protein

solution. All the titrations were performed at 25 °C and the

buffer (pH adjusted to 7.5 at 25 °C). The change in thermal

power as a function of each injection was automatically

recorded using MICROCAL ORIGIN software and the raw data

were further processed to yield binding isotherms of heat

released per injection as a function of molar ratio of DR4

TRE to TRa (A/B + DBD) or TRa (C domain). The

data were acquired and processed using the MICROCAL

ORIGIN (MicroCal Inc.) software. Data were collected in

triplicate.

Fluorescence spectroscopy

Fluorescence emission spectra of purified TRa (A/B +
DBD) in 50 mM HEPES, pH 7.5, 125 mM NaCl, 5 mM

MgCl2, 1 mM TCEP were recorded at various concentra-

tions of DR4 TRE. A total of 2 mL protein (2 lM) was used
to which 2 lL of DR4 TRE (0–9.4 lM) was added for each

scan. To monitor the effect of sample dilution due to DR4

TRE titrations into protein, equal volumes of buffer were

titrated into 2 mL protein (2 lM). The spectra were moni-

tored using a PerkinElmer-LS 55 Fluorescence Spectrometer

at excitation wavelength of 295 nm at 300 nm�min�1.
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Emission wavelength range was set at 310 nm to 450 nm,

with slit width of 5.0 nm; 1 cm path length rectangular cuv-

ettes were used to take all measurements at room tempera-

ture. The final fluorescence intensity change curve was a

result of three averaged curves from individual experiments.

The contribution of DR4-TRE to the TRa (A/

B + DBD) + DR4 TRE spectrum was corrected by sub-

tracting the spectrum of TRa (A/B + DBD) + buffer. Since

multiple studies have shown that two molecules of TR bind

a single TRE DNA [32,46], titration data curves were fitted

to a two-site binding, nonlinear regression fitting model by

PRISM7 (GraphPad software, La Jolla, CA, USA, www.gra

phpad.com), where change in fluorescence intensity was

plotted against increasing concentrations of DR4 TRE rang-

ing from 0.0 lM to 9.4 lM (Fig. 1B.)

Circular dichroism (CD)

Circular dichroism spectra of TRa (A/B + DBD) and TRa
(DBD; in 50 mM sodium phosphate buffer, pH = 7.5–8.0,
80 mM NaCl, and 5 mM MgCl2, 1 mM TCEP) in the pres-

ence and absence of DR4 TRE DNA were recorded using

a JASCO J-815 CD spectrometer. Protein to DNA ratio

was 1: 1.1 for all experiments. All spectra were collected at

100 nm�min�1 scan rate in 2 mm cuvettes maintained at

4 °C. The band width was 4 nm with data pitch 1 nm. CD

spectra of buffer and DR4 TRE (4–5 lM) were also

recorded separately as controls. Each spectrum shown is

the result of 30 spectra accumulations, averaged and

smoothed. All the spectra were corrected for the contribu-

tions of the buffer and TRE DR4 [47]. Mean residue ellip-

ticity ([h], (deg cm2 dmol�1) was calculated using the CAPITO

software [48].

Results

Here, we present data from studies on a 154-amino

acid, two-domain molecular construct that encom-

passes the contiguous A/B (N terminus) and the C

domains (DBD) of TRa (Fig. 1A). The TRa A/B

domain comprises approximately 50 amino acids with

an evolutionary conserved KRKRK motif (Fig. 1B)

consisting of multiple charged residues [21,24]. Addi-

tionally, this construct contains a single tryptophan

residue that is conveniently located within the A/B

domain (19Trp) and adjacent to the KRKRK motif

which has enabled us to monitor the local changes in

conformation with steady-state intrinsic tryptophan

fluorescence spectroscopy. In summary, we present

data on the structural conformation of the TRa A/B

domain, the conformational changes in this domain

that are transmitted by allostery when the DBD (C

domain) binds DNA, and the effect of the A/B

domain on DNA recognition and binding.

The structural topology of TRa is shown in Fig. 1A.

The two TRa constructs – TRa (A/B + DBD) and

TRa (DBD), were purified to homogeneity as mono-

mers of TR (A/B + DBD; 20.1 kDa) and TR (DBD;

15.9 kDa; Fig. 1C,D).

The TRa A/B ↔ DBD allostery influences the

binding affinity for DNA

The selectivity for DNA is central to the transcriptional

activity of NRs. Here, we provide evidence that allostery

between the TRa A/B domain and the DBD also occurs

in reverse, i.e. TRa A/B domain can influence the beha-

viour of the TRa (C domain only) vis-�a-vis its DNA-

binding affinity. Using ITC, we compare the binding

affinity (Kd) of TRa (A/B + DBD) domains and TRa
(DBD) for DR4 TRE DNA. We observe a three-fold

increase in affinity of the intact TRa (A/B + DBD)

domain for DR4 TRE DNA (Kd = 2.31 � 0.21 lM)
over the truncated TRa DBD (Kd = 6.65 � 0.50 lM;
Fig. 2). Also, the stoichiometry (N) of binding by both

TRa (A/B + DBD) and TRa (DBD) is approximately

N = 0.5 for TRE DR4, indicating that a single DR4

TRE binds two protein molecules. This is consistent

with previous data showing two TR-interacting half-

sites within the DR4 TRE [32,45]. Analyses of the ther-

modynamic parameters suggest that the TRa (A/

B + DBD) ↔ DR4 TRE interaction is entropically less

favourable (TDS = �2.05 kcal/mol) than the corre-

sponding entropic contributions to the TRa (DBD) ↔
DR4 TRE interactions (TDS = 1.08 kcal�mol�1). There-

fore, it is likely that the higher affinity between TRa (A/

B + DBD) and DR4 TRE is directed by the approxi-

mately 1.6-fold higher enthalpic contribution

(ΔH = �9.63 � 1.20 kcal�mol�1) over the correspond-

ing TRa (DBD) ↔ DR4 TRE interactions

(ΔH = �5.98 � 0.43 kcal�mol�1; Table 1).

TRE binding to the DBD can influence specific

local conformation of the A/B domain

Our studies above indicate that there is an allosteric

pathway that links the DNA-binding site within the

TRa DBD to the N-terminal TRa A/B domain

(Fig. 2). Here, we sought to determine if the DNA-

dependent allosteric communication between TRa A/

B ↔ DBD is manifested in measurable conforma-

tional changes, specifically within the TRa A/B

domain. Fortuitously, there exists only a single Trp

residue within the entire TRa (A/B + DBD) molecu-

lar construct. Furthermore, at position 19 this 19Trp

is also both midway within the TRa A/B domain

(residues 1–50) and distal from the DNA-binding
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TRa DBD (residues 51–154; Fig. 1B). Thus, this sin-

gle Trp enables us to directly identify conformational

changes within the central region of TRa (A/

B + DBD). Trp fluorescence quenching has been a

common indicator of local and global conformational

changes within the NR A/B domains [35,49,50] and

Fig. 2. ITC measurements were performed to measure heat changes upon titrating DR4 TRE DNA into (A). TRa (A/B + DBD) and (B). TRa

(DBD). For all titrations, the c values (c = nKaMtot, where n is the stoichiometry parameter, Ka is the association constant = 1/Kd and Mtot is

the concentration of the macromolecule, TRa) range from 6.5 to 9, which is within the ideal range for determining binding constants by ITC

[73]. Data obtained are summarized in Table 1.

Table 1. Thermodynamic parameters of TRE DR4 interaction with TRa (A/B + DBD) and TRa DBD. Parameters are determined at 25 °C and

pH = 7.5, as described in Experimental Procedures. The reported values are the average of three experiments and the errors are the

standard deviation.

Protein complexes Kd (lM) ΔH (kcal�Mol�1) N a ΔG (kcal�Mol�1) TΔS (kcal�Mol�1)

TRa (A/B + DBD) + DR4 2.31 � 0.21 �9.63 � 1.20 0.54 � 0.03 �7.68 �2.05

TRa (DBD) + DR4 6.65 � 0.50 �5.98 � 0.43 0.53 � 0.02 �7.06 1.08

a The apparent stoichiometry from the curve fitting data.
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due to allostery [16]. We monitored the dose-depen-

dent changes in intrinsic steady-state tryptophan

fluorescence, accompanied by an approximately 5 nm

red-shift in fluorescence maxima, within TRa (A/

B + DBD) in the presence of DR4 TRE (Fig. 3A).

The measurable decrease in fluorescence suggests a

specific change in the 19Trp conformation, and fur-

thermore, the conformational changes within the
19Trp sidechain are more likely from a progressive

decrease in its local hydrophobic environment, pre-

sumably from an increased exposure to the surround-

ing buffer [16]. These titrations were also analysed to

provide a quantitative measure of binding affinity:

since the two DR4 half-sites are indistinguishable for

binding TRa [32], the average binding affinity of TRa
(A/B + DBD) for DR4 TRE is Kd = 2.69 � 0.22 lM.
This binding constant confirms data obtained by

calorimetry.

TRE binding to the DBD results in unfolding of

the TRa A/B domain

The spectroscopic analyses above suggest an allosteric

conformational change within the TRa A/B domain

upon binding DNA at the TRa(DBD). To determine

the specific DNA-dependent changes in structure

within the TRa A/B domain, we utilized CD spec-

troscopy. Given that minor changes in the secondary

structure of proteins can be detected in the raw CD

spectra (h in rad cm�1 vs. wavelength in nm) in the

far-UV (k = 190–260 nm) range, we compared the CD

spectra of the TRa (A/B + DBD) domains with TRa
(DBD) in the absence and when complexed with DR4

TRE (Fig. 3B). For the TRa (DBD), there is a promi-

nent change in the minima at 208 nm and 222 nm of

the CD spectrum in the presence of DNA, which sug-

gests a significant increase in a-helical structure of the

Fig. 3. Conformational changes determined by Fluorescence and CD spectroscopy. (A) Change in intrinsic tryptophan fluorescence of TRa

(A/B + DBD) is monitored in response to increasing levels of DR4 TRE DNA. The data above are obtained after subtracting buffer and DR4

TRE DNA contributions. In addition, no static quenching of molecular Trp was observed by DR4 TRE DNA. (B and C) Raw CD spectra of

TRa (A/B + DBD) and TRa (DBD), respectively, � DR4 TRE DNA. (D) The CD ([h], (deg cm2 dmol�1) vs. wavelength, nm) spectra of the TRa

(A/B domain) was calculated by individually subtracting the [h] values for TRa (DBD) from TRa (A/B + DBD), for each corresponding

wavelength, � DR4 TRE DNA, respectively. The assumption made is that the conformations of the TRa (C domain), � DR4 TRE DNA, are

the same in both TRa (A/B + DBD) and TRa (DBD). Inset, CD spectra of TRa (A/B domain) measured directly � DR4 TRE.
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TR(DBD) upon binding DNA (Fig. 3C). Such confor-

mational changes in NR DBDs have been previously

observed using NMR spectroscopy confirming a

dosage-dependent stabilization of the NR DBD upon

binding DNA [51–55]. In this study, the CD spectra of

TRa (A/B + DBD) indicates that while the TRa seg-

ment is predominantly a-helical, the complexation of

TRa (A/B + DBD) with DNA results in a markedly

smaller change in secondary structure from the DNA-

free protein when compared with the corresponding

structural changes within the TRa DBD-only

(Fig. 3C). To determine the source of this discrepancy

between the TRa (A/B + DBD) and TRa DBD, we

subtracted the spectroscopically measured molar ellip-

ticity of CD of the TRa(DBD) from the TRa (A/

B + DBD) domain. The resulting spectrum estimates

the ‘calculated’ molar ellipticity ([h], (deg cm2 dmol�1),

and therefore the conformational change, of the TRa
(A/B domain) within the TRa (A/B + DBD):DNA

complex (Fig. 3D). Additionally, we do not detect sig-

nificant secondary structure changes to the isolated

TRa (A/B domain) in the presence of DR4 TRE

(Fig. 3D inset). Taken together, these results suggest

that the TRa (A/B domain) has partial a-helical sec-
ondary structure within the ‘DNA-free’ TRa (A/

B + DBD). Upon binding DNA, the contiguous A/B

domain and the DBD undergo contrasting conforma-

tional changes – while the A/B domain appears to con-

vert from a more structured to a conformationally

less-rigid state, the DBD becomes conformationally

more stable. Overall, this a-helical-to-random coil

unfolding of the TRa A/B domain appears to counter-

act the propensity for greater a-helicity within the

TRa(DBD) upon binding DR4 TRE. This may

explain, in part, the smaller overall change in TRa (A/

B + DBD) in comparison with the TRa(DBD), upon

binding DR4 TRE.

Discussion

Multiple lines of evidence suggest that the NR A/B

domains are flexible and can adopt distinct conforma-

tions through allostery initiated by DNA:DBD interac-

tions [12,34,43,49,50,56–59]. A common observation is

that the A/B domains in all NRs studied to date, the

DNA-initiated allostery elicits an increase in secondary

structure (mostly a-helicity) of this domain.

Multiple attempts to determine the structures of

full-length NRs have failed to identify the conforma-

tion of their N-terminal domains [60]. Yet, all these

structures have indicated that there is no apparent

direct interaction between the A/B domain and the

DBD. Our observations suggest that DNA-dependent

conformational changes within the TRa A/B domain

are distinct from the corresponding changes within

the other NR A/B domains listed above. The implica-

tions for the unique mode of TRa A/B domain ↔
DBD allostery are broad. For instance, the TRa A/B

domain is reported to interact with several cellular

cofactors including TFIIB [21–24] and TBP [25]. Sim-

ilar interactions have been observed between NRs

and the PIC, such as the androgen (AR) [61,62],

COUP-TF [63], oestrogen (ER) [63,64], GR [65], min-

eralocorticoid (MR) [66] and PR [34,63] receptors,

among others. In each of these NRs, and distinct

from TRa as reported here, the A/B domain is con-

strained to a more folded conformation by DNA-

allostery. This more-structurally constrained A/B

domain is observed to enhance the NR↔cofactor

interaction.

In TRa, the sequence of basic residues 23KRKR27K

has been identified to make specific interactions with

TFIIB (Fig. 1B) [24]). Adjacent to this basic motif is
19Trp, which we show here by DR4 TRE DNA dose-

dependent fluorescence quenching to undergo confor-

mational changes to a more exposed environment and

this would be expected with the unfolding of this

region of the TRa A/B domain. From truncation and

associated binding studies, the corresponding TRa-
interacting domain of TFIIB is identified to be con-

tained within residues 178–201 of an amphipathic a-
helix [24]. Curiously, this TRa-interacting TFIIB a-
helix has also separately been identified as integral to

the binding interface between TFIIB and DNA [67].

Together, these studies suggest that the formation of

the TRa:TFIIB and the TFIIB:DNA complexes are

mutually exclusive and that binding to TRa can dis-

rupt the TFIIB-DNA complex. In the absence of

direct structural data, it is tempting to speculate that

the DNA-induced unfolding of the TRa A/B domain

plays a role in inserting itself into the TFIIB-DNA

complex and the newly created TRa:TFIIB is stabi-

lized by both interactions made by the charged
23KRKR27K and through the exposed apolar back-

bone of the TRa A/B domain. Indeed, such DNA-

induced unfolding events are less commonly reported

in the literature and the Ets-1 transcription factor is a

singular prior example of an analogous DNA-induced

unfolding within a flanking domain through allostery

[68,69]. In Ets-1, this induced unfolding is proposed to

ameliorate inhibitory intramolecular interactions and

encourage intermolecular interactions that promote

gene transcription.

Additionally, this study reinforces the observation

that DNA recognition is finely tuned by the domains

flanking the NR DBD. In both DNA-bound TRa:
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RXR heterodimeric [45] and the TRb monomeric [46]

structures, the conformation of the TR DBD is virtu-

ally identical, suggesting a generic mechanism for

DNA recognition and binding. Yet, using DBD and

DBD-LBD constructs of TRa, we have earlier estab-

lished that the affinity of the DBD for DNA can be

modulated through intramolecular allostery [32].

Moreover, even subtle changes within these flanking

domains (A/B or E/F domains) such as mutations [70]

and interactions with cellular factors [32] or small-

molecule ligands [71] can affect DNA binding. Given

the distinct unfolding process of the TRa A/B domain,

the mechanism by which this domain can allosterically

influence DBD↔DNA interactions is likely to be dif-

ferent from those of AR [35] and PR [72].

In summary, our data here suggest a distinct conse-

quence of allostery within TRa. The data from CD

spectroscopy show that conformational changes

induced within the TR(DBD) are transmitted ‘up-

stream’ to the flanking A/B domain. The resultant

conformation of the TRa A/B domain is less ordered

within the intact, DNA-bound TRa (A/B + DBD)

than in the absence of DNA. This unfolding results in

the repositioning of 19Trp observed from the quench-

ing of tryptophan fluorescence. The unusual feature of

DNA-induced, allosterically driven conformational

changes within the TRa A/B domain is the overall loss

in secondary structure, quantified as a decrease in its

a-helicity. Finally, this study showcases the diversity in

the structural response to allostery within the NR

superfamily. We are drawn to hypothesize that such

structural responses have been evolutionarily selected

to optimize the specific behaviour of individual mem-

bers of these NR transcription factors.
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