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ABSTRACT 

Triclocarban (3,4,4'-trichlorocarbanilide; TCC) is a non-prescription antimicrobial 

compound found in bar soaps.  Once applied to the skin, TCC is absorbed and can be detected 

systemically.  Evidence of endocrine disruption has been documented both in vitro and in vivo in 

adult and immature rats. To date, little research attention has been paid to early life TCC 

exposure.  Here, we demonstrated reduced survival among neonates born to rats provided 0.2 

percent w/w or 0.5 percent w/w TCC supplemented chow during lactation.  TCC was detected in 

the breastmilk and suckling neonates developed distended abdomens with liquid mustard colored 

diarrhea indicating a disturbance of the gut microbiota.  When the concentration of TCC 

provided to dams through the chow was lowered to 0.1 percent w/w TCC, all neonates survived.  

However, sequencing of the V4 region of 16S rRNA on the MISeq platform revealed that TCC 

exposure modified the composition of the gut microbiota of suckling neonates.   In addition, 

exposure to post-weaned rats at concentrations of 0.2 percent and 0.5 percent w/w TCC through 

the diet modified the gut microbial composition of older animals.  Though, when exposure was 

removed from post-weaned rats, the compositional profile of microbial communities eventually 

rebounded and became more similar to samples collected from animals never exposed to TCC at 

subsequent collection dates.  To better understand the exposure pathway of TCC to the gut 

microbiota, a method was developed to analyze the concentration of TCC in the rat fecal matrix.  

This dissertation collectively adds to the growing body of concern related to TCC exposure and 

provides information to both the general public and regulatory agencies on the safety of non-

prescription antimicrobial use during early life.    
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INTRODUCTION 

 Humans are ubiquitously exposed to a wide range of natural and anthropogenic 

environmental compounds.1  Exposure to these compounds may occur as a result of daily 

activity, such as the use of personal care products.1,2  Non-prescription antimicrobials or 

antibacterial compounds are commonly added to a variety of personal care products such as hand 

soaps, toothpastes, bar soaps and deodorants.3 The addition of two antimicrobials, triclosan 

(TCS) and triclocarban (TCC) to personal care products have received increased scrutiny from 

the research and regulatory community alike due to concerns of human health risks without 

significant added benefit as well as ubiquitous environmental contamination. 4,5  

 In the United States (U.S.), personal care products and cosmetics are regulated by the 

U.S. Food and Drug Administration (FDA).6 Regulation of Over-the-counter (OTC) drugs occurs 

under a Monograph system for each claimed indication.6  Under this system, active ingredients 

are evaluated and with the judgment that compounds are safe and efficacious, a specified 

concentration range is set for use in products.6  In 1974, FDA issued a proposal to establish 

conditions in which OTC topical antiseptic drug products were generally recognized as safe 

(GRAS) and effective (GRAE) and not misbranded.7 The monograph was tentatively finalized in 

1978, but was later amended in a 1994 Tentative Final Monograph (TFM) where TCC was 

GRAS but additional data were needed on effectiveness in antiseptic hand wash used by 

consumers; available data were considered inadequate to classify TCS as safe and effective.8  In 

2013, the FDA reopened the administrative record of the 1994 TFM and with this review TCC 

was no longer GRAS while TCS was maintained in the same category as the 1994 TFM.8  FDA 
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issued a proposed ruling that would require manufacturers of antimicrobial products containing 

TCC or TCS to conduct randomized trials to demonstrate safety and efficacy over plain soap and 

water.9  If safety and efficacy cannot be demonstrated, the products would need to be relabeled 

or reformulated. The main concerns to human health are related to endocrine disruption, 

potential for antibiotic resistance and little evidence that these compounds are any more effective 

than regular soap.10 Given the growing concerns regarding non-prescription antimicrobials by 

academic, regulatory agencies and the public alike, it is imperative to understand the breadth of 

the risks that non-prescription antimicrobial exposures represent to human and environmental 

health.  In the interest of brevity, this review and dissertation will be limited to TCC alone.   

 This dissertation will be divided into four major sections.  First, a literature review 

(Chapter I) was conducted.  For TCC, trichlorocarbanilide OR 3,4,4'-trichlorocarbanilide OR 

"trichlorcarban" OR "Septivon-Lavril" OR "Cutisan" OR "Solubacter" OR "Septivon" OR 

triclocarban were used as search terms in the Pubmed database. Septivon-Lavril, Cutisan, 

Solubacter and Septivon are trade names for triclocarban.  The literature review will cover a 

background of TCC itself, human exposure, concerns of mammalian toxicity as well as general 

issues related to environmental exposure to humans and animals.  Additional relevant 

information on TCC toxicological testing was identified from the Scientific Committee on 

Consumer Products and supplementary background information was identified through experts 

familiar with the literature.11,12  Next, the effect of early life exposure to TCC was delineated in a 

rat model (Chapter II).  The subsequent two chapters investigate the effect of exposure to TCC 

through the breastmilk on suckling rat pup gut microbiota (Chapter III) and through the diet to 

post-weaned rats gut microbiota (Chapter IV).  Finally, a method was developed to extract TCC 
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from the fecal matrix (Chapter V).  The dissertation work may be used to guide the consumer in 

antimicrobial purchases and aid regulatory agencies in determining the safety of TCC for use in 

everyday products.                               
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CHAPTER I 

 TRICLOCARBAN AN OVERVIEW  
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Background 

What is TCC?  

Triclocarban (3,4,4'-trichlorocarbanilide; TCC) is an antimicrobial compound synthesized 

in 1957 with either bacteriostatic or bactericidal properties depending on the concentration.13,14  

The structure and general properties of TCC are shown in Table 1.15-22 All tables and figures in 

this dissertation will appear in the appendix of each chapter.  In FDA’s 1974 proposed 

monograph on OTC Topical Antimicrobial Products, the OTC Antimicrobial I Panel determined 

that the only permitted use of TCC should be confined to bar soaps at up to 1.5% w/w.7  In the 

most recent survey of antimicrobial compounds found in consumer soaps in the US, TCC was 

detected in 84% of national brands of antimicrobial bar soaps indicating potential for broad 

human exposure among consumers of these products.3   

Antibacterial Activity 

Originally, the addition of non-prescription antimicrobials to soap used commercially 

was initiated to reduce dermal microbial load responsible for body odor, namely Gram-positive 

bacteria.23 Indeed, TCC shows selective efficacy for Gram-positive bacteria over Gram-negative 

strains.24 One investigation reported that after 12 days using 0.5% w/w TCC containing soap to 

wash hands, an 88.5% reduction in bacterial populations of the hands could be achieved while a 

97.8% reduction was noted with the use of 2.0% w/w TCC containing soap.25   It has been 

suggested that a 70% reduction in skin microbiota is reasonable to reduce odor and those soaps 

that achieve greater than a 90% reduction may create a niche allowing for the overgrowth of 

Gram-negative bacterial strains.23   Concerns of the alteration of the skin ecology were apparent 

even forty years ago,26 prior to the current age of antibacterial resistance.  Using a cross-over 
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design, when subjects washed forearms for three weeks with either plain or an antimicrobial soap 

containing 1.5% w/w TCC, followed by a switch to the alternate soap type (i.e. antimicrobial 

soap switched to plain soap vs plain soap switched to antimicrobial soap) for four weeks, use of 

antimicrobial soap did not significantly reduce total bacterial colony counts compared to plain 

soap, but resulted in reduction or elimination of Diphtheroids in 71% of subjects and 

significantly increased colony counts of Acinetobacter calcoaceticus biotypes, a Gram-negative 

bacterium. However, J.G. Voss (1975) reported that when individuals used antimicrobial soap 

containing 1.0% w/w TCC and 0.5% w/w 3-trifluoromethyl-4,4’-dichlorocarbanalide in a 

mixture of equal parts tallow and coconut oil for two to seven months, total bacterial counts were 

reduced at sites across the body.27  This suppression of bacteria was not sufficient to allow for 

overgrowth of 10 species of Gram-negative bacteria tested.  Though, Voss (1975) did not make 

use of a control group and both investigations of the effect of TCC on the skin microbial 

composition are outdated and conducted through traditional culture techniques.  Investigation 

into the dysbiotic potential of TCC to Gram-positive bacterial composition with next-generation 

sequencing technologies may provide insight into the true effect of TCC exposure.   

Antimicrobial mechanism 

As a cell membrane-active antibacterial compound, reduced sensitivity by Gram-negative 

strains may result through insufficient penetration of the cell wall and accumulation in the cell by 

protection from components of the outer membrane.28  Though it is clear that interaction with the 

cell membrane is important in the activity of TCC, the antimicrobial mode of action is still 

inadequately defined.29  TCC is thought to alter the semi-permeability of the bacterial membrane 

to anions and protons.14,30  This action then results in uncoupling of oxidative phosphorylation in 
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bacteria.14 No investigations have focused on how this potential mechanism might relate to 

mammalian cells, but may be relevant given the non-specific mechanism and known human use. 

Efficacy to inhibit bacterial growth and prevent illness over regular soap 

Though TCC was originally utilized as protection against odor, today antimicrobial soaps 

have been marketed to consumers as protection against infectious organisms residing on the 

skin.23,31   Some clinical investigations of the effect of TCC containing soap on skin microbiota 

have demonstrated increased efficacy to reduce the number of potential skin pathogens over 

plain soap in the general population when subjects were provided specific instructions on use or 

soap use was ad libitum.27,32,33 However, whether the use of these TCC containing soaps by the 

general population actually translates into protection from disease is unknown.4,5,34-36 This 

efficacious dichotomy demonstrated between laboratory research and community use is thought 

to occur due to major differences between controlled laboratory studies compared to normal use 

in the community setting, such as extended exposure times in experimental investigations.4   

Absorption and metabolism 

With the normal use of TCC containing soap, a portion of the compound is left behind on 

the skin and up to 0.6% of the applied amount may be absorbed.37,38 Metabolism of TCC may 

occur at the skin, as well as internally.39,40  In vitro, Schebb et al (2012) demonstrated that 

minimal, but detectable metabolism of TCC occurred in human epidermal spontaneously 

immortalized keratinocytes (SIK) to produce 2′OH-TCC, 3′OH-TCC, 6-OH-TCC, DHC (3,4-

dichloro-4’-hydroxy-carbanilide) and 2′-Gluc-O-TCC.40 Once absorbed through the skin, TCC 

can rapidly be detected in the circulation.41  It has been reported that total TCC (TCC and 
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glucuronide conjugates) was detected in the whole blood of male volunteers at a maximum value 

two-three hours after a 15-minute whole body shower with 0.6% TCC containing soap.41   In the 

same group of volunteers, the highest concentration of total TCC was detected in the urine, 10-

24 hours after exposure to TCC through showering.38  

With parenteral, oral or dermal exposure TCC is primarily distributed to organs involved 

in metabolism with the highest distribution to the liver in both adult and young animals.42,43 

Because of similar elimination and distribution pathways of TCC, the use of oral exposure in 

toxicity studies is considered an appropriate substitution for dermal exposure.42  Time-course 

elimination has been investigated after oral exposure to TCC in humans.39  Hiles and Birch 

(1978) reported that among humans exposed orally to TCC that elimination is biphasic and N- 

and N’-glucuronides of TCC are eliminated from the plasma with ~2 hour half-life and are then 

excreted with the urine.39  In the slow phase, O-hydroxy-sulfate conjugates are then eliminated 

from the plasma with an ~20-hour half-life.  These metabolites, however were not detected in the 

urine and instead were assumed to be eliminated through the bile.39 TCC has been detected in rat 

and monkey bile mainly as the glucuronide conjugates of 2’-OH-TCC.44,45 Bile is released into 

the gastrointestinal tract and excretion through the feces occurs in both humans and rats exposed 

orally, parenterally or dermally.42,44,46-48  Scharpf et al (1975) demonstrated that among men 

exposed to radio-labeled TCC intravenously, approximately 54% of the dose was cleared 

through the feces while 21% was detected in the urine.46  The recovered dose in the feces was 

composed of both parent TCC and conjugated metabolites. Though the metabolites of TCC are 

thought to have limited activity,38 a portion of TCC is detected free in the feces,46  and exposure 

may have unintended consequences given the antimicrobial nature of TCC on the gut microbiota.  
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Release through the gastrointestinal tract may be final or reabsorption of TCC 

metabolites may occur as enterohepatic circulation has been documented in rat and monkey 

models using radio labeled TCC, potentially allowing for increased exposure time.42,43 Further, 

while TCC is not expected to accumulate, a steady-state concentration may be reached with the 

daily use of TCC containing products providing constant internal exposure.38,41  As a result of the 

collective elimination, TCC and its hydroxylated metabolites, 2’-OH-TCC, 3’-OH-TCC, or 6’-

OH-TCC are conjugated to glucuronic acid or sulphate and can be detected in the plasma.44 

While TCC is mainly detected conjugated to glucuronic acid in the urine.39,44,49  Species 

differences have been demonstrated in the metabolism of TCC where a similar profile to that 

seen in humans is displayed in monkey plasma and urine while dihydroxy-TCC has additionally 

been detected in rat matrices.44,50  

The risk of xenobiotic exposure may be enhanced in populations where certain 

biotransformation pathways are inadequate, including infants.51,52 For example, compound 

elimination may be affected, as in the neonate, enzymatic glucuronidation is limited and 

expression of hepatic uridine diphosphate glucuronyl transferase (UDPGT) enzymes is low 

during fetal and early postnatal development reaching approximately 25% of adult levels by 

three months.52  However, sulfotransferases that catalyze sulfate conjugation are highly active 

potentially providing compensation.  This pattern was noted in newborn rhesus monkeys where 

levels of O-glucuronide conjugates of TCC were low in the plasma compared to adult monkeys, 

but high levels of O-sulfate conjugates were instead detected.43  Differences in metabolism 

between the adult stage and early life in regard to the safety of TCC exposure were noted in the 

proposed monograph drafted by the FDA of OTC topical antiseptic drug products in 1974, where 
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it was suggested that adequate research be conducted in young animals with blocked formation 

or unavailable glucuronide systems to define toxicity potential for human infants bathed in soap 

containing TCC.7  It should be noted that to date, adequate investigations regarding early life 

exposure are yet to be completed.   

Human Exposure to TCC 

Adult exposure 

 

Detection of TCC in physiological matrices provide a picture of exposure that begins 

during gestation and continues into adulthood.10,53-56  Experimentally, the total TCC 

concentration in the whole blood of adult male volunteers can reach 530 nM (~167 ng/mL) after 

a 15 minute whole body shower with 0.6% w/w TCC containing soap, while in the urine peak 

levels of TCC were detected as the glucuronide conjugate at 1,013 nM (~320 ng/mL).38,41 

Typical biomonitoring investigations have not detected concentrations nearing those levels, 

though TCC is shown to concentrate in the blood cellular fraction potentially limiting our 

understanding of exposure when the serum concentration is analyzed.41,53 However, urine is 

commonly collected and because glucuronide conjugates of TCC are excreted in a relatively 

constant fashion, analysis of total TCC in this matrix can be used to estimate systemic 

exposure.39     

At limited concentrations, TCC has been detected in samples collected from the general 

adult population around the world.  In Danish male participants (n=33), when two spot, three 

first morning void and three 24-hour urine samples were collected over a three month period, 

total TCC was detected in 29% of spot urine samples, 15% of first morning urine voids and 2% 

of 24-hour urine samples at a maximum concentration 0.56 ng/mL by the spot urine collection.54  
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Detection from Greece samples (n=100) is limited, with total TCC only found in 4% of urine 

samples collected from males and females ranging in age from 2.5 to 87 years, with a mean age 

of 49 years.55  Among samples collected from the Southeastern portion of the US among adults 

without known TCC exposure, total TCC was detected in 35% urine samples (n=158) and 44% 

of archived serum samples (n=16) with a mean concentration of 15.2 ng/mL and 0.46 ng/mL in 

urine and serum respectively.53 The highest urine concentration of TCC was detected at up to 

401 ng/mL.   Human nail clippings have been used as a medium to better understand cumulative 

TCC exposure.56 In samples collected from adult participants in China (n=209), total TCC has 

been detected in 100% of both fingernail and toenail clippings analyzed.56  It is possible that 

detection of TCC was the result of outside contamination and not internal exposure.  However, 

the samples were washed three times in ethanol prior to extraction and the concentration of TCC 

in the fingernails correlated to the concentration in toenails from matched participants of which 

the authors suggested would have allowed for a lower probability of external contamination.  

The authors stated that this correlation suggested that external TCC may be removed through the 

washing procedure employed.  Further, in the same investigation, total TCC was detected in the 

urine of 99% of samples at an average of 0.36 µg/L.  The authors suggested that the high 

detection frequency indicated extensive TCC exposure among the Chinese population but noted 

that the concentration in the urine was actually 2-3 times lower than 158 urine samples collected 

from the South Eastern portion of the US and could be related to the sensitivity of the limit of 

detection (LOD) at 0.005 µg/L. Further, the high detection rate in clippings, but reduced 

concentration in the urine compared to US samples may suggest that the majority of the Chinese 

participants were exposed to TCC at limited time points, while US exposure may be more 
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continuous as long-term exposure may be analyzed through nail clippings as the nail grows out, 

but the peak concentration in the urine is shown to occur between 10-24 hours.38   

Early life TCC exposure  

 Taking life stage into account is important when assessing susceptibility to chemical 

exposures.57 It is now understood that infants and children are not just little adults and that risk of 

exposure to environmental compounds may be more profound during critical windows of 

development than adulthood.58  The developing infant/child may have increased risk of exposure 

to environmental compounds due to differences in early life physiology and behaviors specific to 

the infant/child developmental stage, such as breast feeding or increased oral exploration.  This 

increased susceptibility may influence later life disease/disfunction.59 Known as the 

“developmental origins of health and disease” (DOHaD), this paradigm focuses on the 

interaction between developmental exposure to environmental factors and genotypic variation 

altering the individual’s response to environmental insults later in life.  Taking the DOHaD 

paradigm into consideration suggests that TCC exposure during early life may have a very 

different impact than if exposure occurs during the adult stage.  

In the US, total TCC has been detected in 87.6% of maternal urine samples and 22.9% of 

cord blood samples collected from mother/infant pairs (n=181) at a maximum concentration of 

107 µg/L and 1.17 µg/L respectively indicating gestational penetration of the placental barrier 

and potential fetal exposure.10 In addition, breastfeeding may be an important infant exposure 

route.60  Biomonitoring investigation suggests that compounds in the breast milk are often 

detected in the free form indicating potentially increased exposure during a susceptible period to 

active compounds.61  In a recent analysis of breast milk samples from China (n=25), total TCC 
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was detected at concentrations up to 4.28 µg/kg.62  However in the only other two studies were  

breast milk was analyzed, TCC was not detected among Canadian or US samples.61,63  Future 

analysis is warranted to better understand the full extent of infant exposure given the limited 

amount of available data in concert with the fact that poor recovery (~20%) was noted in the only 

investigation conducted in the US potentially underestimating exposure.61-63   

 The only available biomonitoring data to suggest TCC exposure during childhood is 

limited to Europe.64-66  Through a cross-sectional analysis of the first morning void, total TCC 

has been detected in 28% of urine samples of 6-11 year old Danish children at 1.0 ng/mL and 

25% of urine samples collected from their mothers at 1.3 ng/mL in mother/child pairs (n=145).64 

Further, total TCC was identified in 24 hour urine samples collected from approximately 52% of 

healthy Danish children and adolescents (n=129) at a maximum concentration of 1.76 ng/mL.65 

When additional collection points were added throughout the day, the detection percentage 

decreased to 13.2% at the first morning void and further decreased to 5.4% at the second 

morning void. In contrast, TCC was not detected in any of the first morning voids collected from 

German mother-child pairs (n=59) or spot samples randomly collected from adult males (n=39) 

potentially indicating reduced exposure among this population.66 Though detection of TCC in the 

urine may depend on the timing of the use of TCC containing products as well as the timing of 

collection.  It is possible that TCC is used at specific time-points such as the morning or evening 

shower.  As previously stated, Schebb et al (2011) demonstrated that after a 15-minute whole 

body shower with 0.6% TCC containing soap, the highest concentration of TCC in the urine was 

reached 10-24 hours after use.38  If exposure were to occur through a nightly shower, TCC may 

be detected in the first morning void.  However, TCC may more likely be detected through a 24-
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hour urine collection if exposure occurred through the morning shower.  Though, because no 

data are available to understand use patterns of non-prescription antimicrobial soaps, making 

predictions of systemic concentrations is difficult.     

Health Effects 

Toxicity 

Based on data from early toxicological testing conducted in animals, toxicity is limited to 

high doses of TCC primarily during the adult stage.11  Acute toxicity is demonstrated at the 

mg/kg level with the LD50 through oral, dermal or intraperitoneal exposure occurring at over 

2,000 mg/kg for all mammal species tested. The lowest no observed effect level (NOEL) was 

documented in a chronic two year feeding study at 25 mg/kg/day in rats conducted by 

Monsanto.11  Here, exposure to TCC led to statistically significant differences in some organ 

weights compared to controls including increased liver weights in both sexes at 75 and 250 

mg/kg/day, increased spleen weights among males at 75 and both sexes at 250 mg/kg/day, and 

increased testes and heart weights in males at 250 mg/kg/day. Further, an increase in the 

incidence of small and flaccid testes was reported in males at 250 mg/kg/day that died 

spontaneously or were killed moribund between 12-23 months. The effect of TCC exposure on 

changes to secondary sex organ weights have been documented in additional reports potentially 

indicating an influence on the endocrine system.67-69   

Beyond noted changes in male sex organs, early clues have suggested that TCC exposure 

may affect reproduction.67  In 1979, Nolen and Dierckman reported that exposure to a 2:1 

mixture of triclocarban and an additional antimicrobial compound that is no longer marketed to 



15 

 

consumers, 3-trifluoromethyl-4-4’-dichlorocarbanalide (TFC) at 0.25% w/w in the chow diet 

during gestation and lactation significantly reduced the number of rats that conceived, pups born 

and those that survived until weaning along with a significant suppression of pup body weight at 

weaning.67  Exposure during organogenesis (days 6-15 of gestation) alone had no effect on 

reproductive performance. These endpoints were not observed when exposure was reduced to 

0.2% w/w (~ 135 mg/kg/day).  In the same investigation, pregnant New Zealand rabbits were 

exposed to the same antimicrobial mixture either topically at 250, 500 or 1000 mg/kg/day or 

orally at 50, 100 or 250 mg/kg/day from days 7-18 of gestation. Only mild skin irritation was 

noted in animals exposed topically, while oral exposure lead to weight loss, abortion and 

maternal death that the authors noted reflected the lower bioavailability through dermal 

exposure. The results of the two investigations indicated that oral exposure to TCC/TFC affected 

fecundity and fertility but was not embryotoxic or teratogenic while evidence of reproductive 

toxicity through dermal exposure was not demonstrated.  However, exposure occurred as a 

mixture of TCC and a compound that is no longer available.  Future investigation should focus 

on TCC exposure alone given its current use.   

Little is known regarding toxicity of TCC exposure in humans beyond potential local 

level effects related to the skin.70,71 In 1973, Alexander Fisher suggested in his book “Contact 

Dermatitis” that TCC was a potent photosensitizer.70 Few subsequent investigations in animals 

or humans including a large clinical investigation by the International Contact Dermatitis 

Research Group (ICDRG) published in 1978 could substantiate these claims.11,71 Though in 

vitro, Schebb et al (2012) demonstrated that metabolism of TCC occurred in human epidermal 

spontaneously immortalized keratinocytes (SIK) to produce reactive intermediates (2′OH-TCC, 
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3′OH-TCC, 6-OH-TCC, DHC and 2′-Gluc-O-TCC) that could bind carrier proteins.40 

Metabolism was augmented from approximately 5% to 15% when cells were pre-incubated with 

10 nM TCDD. The authors noted that this adduct formation is concerning due to the production 

of larger potential antigens and resulting allergic sensitization among susceptible populations 

with TCDD exposure.   

Documented human toxicity has been linked to TCC exposure resulting in occurrence of 

methemoglobinemia among infants and older child populations.72,73 Associations to 

methemoglobinemia have been noted that resulted from contact with diapers and other nursery 

clothing laundered with TCC, as well as documented exposure through the use of an enema with 

TCC containing soap chips.72-74 Investigation suggested that when heat was applied to TCC, the 

break down product aniline was responsible for the outbreak given the established etiologic link 

to methemoglobinemia.74  To date, investigations to confirm this mechanism experimentally or 

to understand at what exposure levels this association exists are limited. Fisch and colleagues 

(1963) were able to demonstrate the occurrence of methemoglobinemia in newborn kittens, but 

only when these animals were exposed to one gram of autoclaved TCC through intraperitoneal 

injection.72 Because human exposure would not reach these levels under normal use and a 

nontraditional animal model was utilized, additional research is needed to understand risk to 

younger populations.   

Endocrine disruption 

Reports of endocrine disruption with exposure to TCC began in the mid-2000s,68 the 

delay of which is intriguing given the original suggestions of altered reproduction and testicle 

hyperplasia. Endocrine-disrupting chemicals (EDCs) interfere with hormone action.75 These 
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compounds can act through nuclear receptors, nonnuclear steroid hormone receptors, nonsteroid 

receptors, orphan receptors, enzymatic pathways involved in steroid biosynthesis and/or 

metabolism, and numerous other mechanisms of interaction with the endocrine and reproductive 

systems.76   

The first formal accusation that TCC had endocrine disrupting properties came from 

Chen and colleagues (2008) with the suggestion that TCC may act as a new type of EDC 68 since 

interference did not occur with the synthesis, secretion, transport, binding or elimination of 

natural hormones as suggested by the United States Environmental Protection Agency (USEPA) 

definition,77 but instead amplified steroid receptor transcriptional activity in the presence of 

hormone. Steroid receptors are comprised of the glucocorticoid receptor (GR), estrogen receptor 

(ER), progesterone receptor (PR) and the androgen receptor (AR) that act as transcription factors 

to modulate gene expression when bound by the hormone ligand controlling a variety of 

physiological processes outside of just reproduction.78  Chen’s group (2008) reported that human 

embryonic kidney cells stably transfected with a human AR and androgen response element 

reporter gene exposed simultaneously to 1 µM TCC and 0.125 nM testosterone for 16 hours 

resulted in a 45% luciferase signal increase compared to testosterone alone.68   TCC itself had 

little activity and did not competitively bind to the AR. This effect was confirmed at the protein 

level and in vivo when exposure to 0.25% w/w TCC and 0.2mg/kg testosterone propionate for 10 

days increased secondary sex organ weights in adult male castrated rats. Augmentation of 

androgen activity was further amplified in the intact immature rats producing hyperplasia of 

secondary sex organs with exposure 0.25% w/w TCC alone for the same time period 

demonstrating that TCC enhanced both exogenous and endogenous hormonal activity.68,69   
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Following the initial publication from Chen’s group (2008), interaction with additional 

nuclear receptors has subsequently been tested and confirmed.79-82  The estrogenicity of TCC has 

been documented, primarily through an interaction with ERα.  In contrast to the interface of TCC 

with AR, activity is not necessarily dependent on hormone co-exposure.79,81  ER-α positive 

recombinant human ovarian cancer cells with a stably integrated ER-responsive reporter plasmid 

(pGudLuc7ERE) displayed weak estrogenicity in response to 1 or 10 μM TCC for 24-hours.79  

The signal was greatly intensified with exposure to 1 nM estradiol (E2).  This amplification does 

not appear to be cell specific as Huang and colleagues (2014) demonstrated that TCC induced 

estrogenic activity with exposure to 0.1 µM to 1 µM TCC in African Green Monkey Kidney 

(CV-1) cells transfected with ERα and the pERE-TATA-Luciferase reporter gene.81  These 

results were confirmed in the whole cell using the E-screen assay where estrogen responsive 

MCF-7 breast cancer cells were induced to proliferate with TCC exposure and by use of the ER 

antagonist ICI 182,780, confirmed that TCC acted through ERα.  The authors further noted that 1 

µM TCC modulated gene expression of estrogen responsive biomarkers with the upregulation of 

ps2 and suppression of ERα at the mRNA and protein level. Additionally, the expression of 

microRNAs that are shown to regulate ERα, mir-22, mir-206 and mir- 193b in MCF-7 cells were 

upregulated at the same TCC concentration that suggested to the authors a possible interaction 

with ERα expression downregulation.  It should be noted that the authors only tested a limited 

number of genes and microRNAs and further did not analyze the synergistic effect of TCC with 

E2 limiting potential inferences.  Nonetheless, these collective results suggest TCC modulation of 

ERα as well as genes under the control of this receptor.    
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Upregulation of ERα expression is linked to estrogen receptor-α (ERα)-positive breast 

cancers.83  The only investigation that focused on the relationship between TCC and breast 

cancer development demonstrated that TCC exposure could induce pre-malignancy in breast 

tissue cells, though independent of ER.84  Sood et al (2013) demonstrated that normal breast 

epithelial cells (MCF10A) that lack ER could be induced to display characteristics of cancerous 

cells (i.e. reduced dependence on growth factors and attachment to the extracellular matrix) with 

chronic exposure (10-20 cycles) to as low as 200 nM TCC. Further, chronic exposure to TCC 

activated the ERK-Nox pathway that is involved with maintenance of these carcinogenic 

characteristics.   Activation was not limited to chronic exposure, but this pathway could be 

initiated after only a single exposure to 200 nM TCC in either MCF10A cells or MCF7 cells 

containing the ER.  Co-exposure to 1 µM curcumin rescued these endpoints after both chronic 

and transient TCC exposure in MCF10A cells.  Though these results indicate potential 

susceptibility to breast cancer with exposure to TCC, constitutive endpoints in chronically 

exposed MCF10A cells did not compare to the tumorigenic cell lines tested as positive controls 

and xenograph tumor growth did not occur after inoculation of MCF10A cells chronically 

exposed to TCC into mammary fat pads of immunocompromised nu/nu mice for 90 days.  The 

authors concluded that TCC exposure was not tumorigenic but could induce pre-malignancy as a 

co-carcinogen.  Given the body burden that humans are known to contain,48,85 it would be 

interesting to test the interaction of TCC in mixtures of additional carcinogenic compounds in 

regards to cancer onset.   

Beyond a potential role in cancer progression, TCC may have a functional influence on 

nuclear receptor target genes involved in metabolism of steroids and xenobiotics.82  Yeuh’s 
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group (2012) demonstrated an ERα dependent induction of cytochrome P450 enzymes, CYP2B6 

and CYP1B1 in CV-1 cells transiently transfected with luciferase reporter genes and the 

pcDNA3.1 expression vector for ERα with exposure to 10 µM TCC.  This interaction was 

further confirmed by dose and time-dependent effects of TCC treatment on induction of 

CYP2B6 and CYP1B1 in ERα-positive MCF7 cells but not ERα-negative MDA-MB-231 cells.  

Also, siRNA knockout of ERα interrupted expression of these transcripts further validating 

dependence on ERα.  Mouse CYP1b1 expression was induced in the ovary of hUGT1*28 mice 

exposed to 16 mg/kg TCC intraperitoneally confirming in vitro augmentation at the tissue level. 

In the same investigation, 10 µM TCC was shown to activate the Constitutive Androstane 

Receptor (CAR), but binding was not demonstrated.  Upregulation of several UGT1A gene 

products regulated by CAR occurred in the liver of hUGT1*28 mice exposed to 16 mg/kg TCC 

intraperitoneally.  This phenomenon was shown to be CAR dependent with the upregulation of 

the CAR specific gene target, CYP2B10 in hUGT1*28 mice, but no induction of the UGT1A 

genes and only minimal expression of CYP2B10 in hUGT1*28/Car−/− mice. It can only be 

speculated if TCC exposure might positively or negatively alter metabolism of steroid hormones 

or drugs given that genes analyzed were selectively targeted.  However, the investigation 

provides confirmation of TCC’s role in the modulation of ERα target genes and provides 

additional information on the influence of TCC outside of the endocrine system.     

Outside of the influence on sex steroid hormones, TCC is shown to interact with the aryl 

hydrocarbon receptor (AhR).79,86 The AhR is a ligand-activated transcription factor with a known 

role in dioxin and dioxin-like induced toxicity.87 The interaction between TCC and the potent 

AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has received the most attention.86 Zhao 
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and colleagues (2006) reported that TCC could interact with AhR in the presence of TCDD but 

had little activity without the exogenous ligand.86  Here, 1 µM TCC was sufficient to bind to 

guinea pig hepatic cytosolic AhR and through detection with the stable transfection of the 

pGudLuc1.1 reporter plasmid, inhibit TCDD-induced AhR-dependent gene expression.  The 

authors concluded that the reported transformation of the AhR and DNA binding suggested that 

TCC further could potentially act as an AhR agonist. To date, this relationship is not adequately 

elucidated.    

Subsequent investigations have built on the original observation of activity with AhR.40,88 

TCC may act through cross-talk of multiple receptors including AhR.88 TCC alone stimulated 

expression of CYP1A1 in MCF-7 cells after 24 hours of exposure and the effect was further 

stimulated by co-exposure to 17β-estradiol or estrogenic environmental compounds.  Further, 

addition of TCC stimulated transcription of CYP1B1 induced by estrogens.88  siRNA 

knockdown of either AhR or ERɑ, suppressed CYP gene transcription induced by TCC or 

environmental estrogen exposure.  To the authors, these collective results suggested co-

regulation of CYP1 expression.  TCDD-induced CYP1A1 activity was suppressed with co-

exposure to TCC.  These results confirmed data from Zhao and colleagues (2006) that TCC can 

act as an antagonist of TCDD.86 The authors suggested the response to TCC was AhR-mediated 

because TCC exposure was sufficient to enhance expression of CYP1A1 that is exclusively 

regulated through AhR, while co-stimulation by estrogen(s) was necessary for increased 

transcription of CYP1B1 expression that is co-regulated by estrogens, indicating that TCC had 

little estrogenic activity. These results demonstrate the importance of broader picture 
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investigations that take into account the interaction between multiple systems of the human body 

that may be influenced by TCC.  

The fact that the majority of investigations have used luciferase based reporter assays to 

demonstrate the endocrine disrupting potential of TCC has been criticized.88  Tarnow and 

colleagues (2013) reported that the amplification of estrogen and androgen signals were 

confirmed with co-exposure to 1 µM TCC using luciferase gene reporter assays.  However, the 

estrogenic activity could not be demonstrated in subsequent tests either using the E-screen assay 

to measure cellular proliferation or analysis of expression of estrogen responsive genes in MCF-

7 cells with TCC exposure alone or co-exposure to TCC and either 17β-estradiol, bisphenol A, 

butyl paraben or genistein. Further, androgenicity could not be established with the evaluation of 

certain gene transcripts known to be regulated by AR. The authors demonstrated through thermal 

shift assays that TCC was able to stabilize luciferase readouts potentially resulting in false 

positives.  Though, the endocrine disrupting effect of TCC as demonstrated through luciferase 

based activity may be debated, the modulation of AR and ER has been demonstrated in vivo 

supporting a role in endocrine disruption.68,69,82,88    

Immune function 

 In addition to its part in endocrine disruption, TCC may have a role in immune 

modulation.89 Original investigations of chronic toxicity demonstrated spleen hyperplasia and 

more recently, TCC has been shown to inhibit soluble epoxide hydrolase (sEH) both in vitro and 

in vivo.11,89 Epoxyeicosatrienoic acid (EETs) that have anti-inflammatory and cardiovascular 

protective effects are converted to less active dihydroxyeicosatrienoic acids (DHETs) by sEH.90 

TCC has similar potency to a pharmaceutical inhibitor of recombinant human sEH and among 
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Swiss Webster mice, in a time dependent manner, exposure to 5 mg/kg TCC orally rescued the 

LPS induced inflammation as measured through systolic blood pressure and increased tail 

volume.89  Exposure significantly suppressed LPS-induced inflammatory cytokines (TNF-α and 

IL-6) and production of the chemokine (MCP-1) and shifted the oxylipin profile to anti-

inflammatory as measured through the ratio of EETs to DHETs. No effects were demonstrated 

without LPS challenge.  The authors concluded that a significant systemic effect on the immune 

system was not probable, but anti-inflammatory effects might occur at the local level of the skin.  

Because TCC exposure can interact with a wide range of endogenous and exogenous compound, 

from LPS to TCDD, 88,89  it would appear that the effect may be non-specific.    

In fact, TCC exposure can modulate zinc, sodium and calcium flow in primary rat 

thymocytes.91-93  Calcium flow is altered from 0.1µM to 3µM in a bi-phasic manner where TCC 

first releases intracellular Ca2+ stores followed by a late-phase increase of intracellular Ca2+ that 

is dependent on extracellular Ca2+.92 These results were speculated to have potential relevance to 

immune function as changes in intracellular Ca2+ are important following lymphocyte activation.  

However changes in ion flow in relation to TCC exposure are not novel, though have been 

demonstrated in bacteria in the search for the mechanism of antimicrobial action.30,94 Future 

investigation might benefit from understanding if changes in ion flow are specific to immune 

functional influence and bacterial inhibition or could be a common non-specific mode of action 

in additional mammalian biologic systems. 
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Environmental Exposure 

Environmental contamination pathway 

 Following human exposure, TCC is washed down the drain where it enters the 

wastewater treatment process.95-97 Up to 99% of TCC is removed from the aqueous phase  

through processing.95,96,98,99  However, this is not to say that the majority of TCC is degraded, but 

with a high octanol-water partition coefficient (logKow) and soil organic carbon-water 

partitioning coefficient (Koc), along with low water solubility (Table 1),15 TCC primarily sorbs 

to and concentrates in sludge/biosolids where it is commonly found at up to the ppm range 

(Table 3).17,19,21,95-120 In fact, TCC has been detected in 100% of 110 biosolids samples collected 

through the Environmental Protection Agency’s (EPA) 2001 National Sewage Sludge Survey, 

accounting for 48% of the total mass of pharmaceuticals and personal care products detected.103  

A small portion of TCC may be degraded or transformed through the wastewater treatment 

process by abiotic and biotic means.96,116,121-123 In a mass balance investigation, Heidler and 

colleagues (2006) reported that while 76% of TCC sorbed to sludge, approximately 21% of the 

TCC that entered the WWTP could not be unaccounted for.96  Organisms have been identified 

that could transform TCC or utilize TCC or its carbon backbone (NCC) as nutrients.122,124  

Further, microbial transformation products along with human metabolites and manufacturing by-

products of TCC have been documented in sewage sludge.121 Though TCC is ubiquitously 

detected in samples leaving the WWTP, a long-term study of the concentration of TCC in 

biosolids from a WWTP in the US demonstrated a significant concentration decrease (47%) that 

could not be explained by season of collection or waste water levels, of which the authors 

suggested indicated reductions in compound usage overtime.97   
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 Terrestrial environmental contamination may occur with the use of biosolids as nutrient 

rich fertilizers in agriculture, where around 50% of WWTP derived biosolids are land 

applied.96,100,125 Strong adsorption is demonstrated in soils with and without biosolid amendment 

with distribution coefficients (K(d)) in the range of 763 to 1187 L kg.20  It has been suggested 

that biosolid amendment may additionally allow for antimicrobial contamination of ground or 

surface waters.125 Though, TCC is not readily transported in runoff potentially due to the 

tendency to sorb, as reduced transport potential has been associated with log K(ow) values of 

3.18 or more (Table 1).100  Further, leaching potential is shown to be low.22 Using groundwater 

ubiquity scores (GUS): GUS = log t1/2 × (4−log Koc), where t1/2 is the half-life in the soil, Cha 

and Cupples (2010) predicted GUS scores of less than -0.5 for TCC in three soils. This model 

categorizes compounds with GUS scores of less than 1.8 as non-leachable chemicals, indicating 

TCC leaching may be insignificant. Additionally, following biosolid application, levels of TCC 

rapidly decline with increasing soil depth indicating leaching is restricted.102   

A significant source of contamination to aquatic environments occurs through the release 

of TCC from the WWTP effluent with increased levels of TCC detected downstream verses 

upstream of the WWTP.17,18  Additionally, TCC may be released environmentally through raw 

wastewater.126 This release pathway may be particularly concerning in developing countries 

where an estimated 90% of wastewater is directly discharged without treatment.127 It should be 

noted that TCC has been detected in Baltimore urban streams in the US where all sampling was 

conducted upstream of wastewater treatment plants.126  It was speculated that detection of TCC 

occurred through raw wastewater discharge from leaking sewer lines from a sewer system that 

was known to leak wastewater.  Solubility in water is low (Table 1) and TCC has been shown to 
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partition to solid particulate matter and is commonly detected in sediment.15,95,117,119,120,128-143 

Wang and colleagues (2014) demonstrated that the concentration of TCC in river water and 

aquatic sediment decreased with distance downstream from the WWTP indicating the WWTP as 

the source of TCC for both compartments and likely a result of sedimentation of solid particulate 

matter in the WWTP effluent.128    

Terrestrial and aquatic contamination of TCC has been documented around the world in 

both developed and developing countries, the extent of which is shown in Table 2 and 

3.17,18,95,96,98,99,101,113,117,119,120,126,128-136,138-167  Environmental concentrations of TCC can range 

from non-detectable up to the ppm level with the highest concentration of TCC detected in the 

aquatic environment in Baltimore urban streams reaching up to 5,600 ng/L and sediment at peak 

concentrations of 24,000 ng/g (Table 2).126,130  In soil, the concentration of TCC has been 

detected at the low ppb level (Table 3).101,120 Few investigations have reported the concentration 

of TCC in the soil without experimental application of biosolids, with or without TCC 

spike.101,120  Thus our current understanding of the TCC exposure levels in the natural terrestrial 

environment is limited.   

Environmental Persistence 

Persistence in the environment is characteristic of TCC with a predicted half-life of 60 

days in water, 540 days in sediment and estimated degradation of greater than a 1000 days in soil 

(Table 1).18,19 Though limited data are available regarding persistence in sediment to predict the 

half-life in this matrix, TCC has been detected in sediment cores dated back to the mid-20th 

century suggesting decade’s long exposure.130,138,168  Radiometric dating (137Cs/7Be) of 

sediment cores from Jamaica Bay, New York, revealed the appearance of TCC as far back as the 
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1950s when it was first produced.130 The concentration of TCC peaked in the 1960s at around 

24,000 ng/g (Table 3) and declined following assumed changes in wastewater treatment, though 

the concentration in the sediment surface layer was detected above 1 ng/g, indicating recent 

exposure.   

The ubiquitous detection and environmental persistence of TCC raises safety concerns of 

both aquatic and terrestrial organisms with continuous exposure.106,152,153,164,169,170 

Bioaccumulation has been demonstrated in terrestrial earth worms as well as a variety of aquatic 

organisms. 106,138,152,153,164,169-173 Accumulation occurs to the extent that certain aquatic species 

have been considered for use in the removal of TCC from the environment.171  The compound is 

not expected to concentrate without constant exposure and when exposure is removed, the level 

in the tissue declines.172 Though, like the human exposure scenario to personal care products, a 

steady body burden can be reached in theory still allowing for potential magnification up the 

food chain.170,171 This is concerning given that TCC is released from the WWTP effluent on a 

daily basis,144 ensuring constant exposure even with potential environmental degradation. 

Nelson’s group (2011) demonstrated through hourly samples of wastewater effluent that TCC 

was released constantly throughout the day with low variability in release patterns over a 24 hour 

period potentially indicating continued human use throughout the day.144  

Environmental toxicity 

 Chronic and acute toxicity are demonstrated with exposure to environmentally relevant 

levels of TCC.170 In the peer reviewed literature, toxicity threshold data are limited to aquatic 

organisms.174-177   Tamura et al (2013) reported that growth inhibition occurred among algae 

(Pseudokirchneriella subcapitata) where the NOEC of TCC exposure was reported at 5.7 µg/L, 
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while the EC50 occurred at 29 µg/L.175  Among fish, (Danio rerio) the reported NOEC related to 

survival of larvae and hatching after 8 days of exposure to TCC was 24 µg/L, while among 

Oryzias latipes, 96 h exposure to 85 µg/L was lethal to 50% of the organism (LC50).  From this 

same report, Daphnia (Ceriodaphnia dubia) were shown to be sensitive to the effects of TCC and 

with exposure for 8 days, the NOEC related to reproduction was reported at 1.9 µg/L, while the 

48-hour EC50 of immobilization occurred at 10 µg/L. TCC is acutely toxic to Brine shrimp 

(Artemia salina) at 17.8 µg/L (LC50).
176  The most sensitive organism to the effects of TCC 

exposure, however, appears to be the mud snail (Potamopyrgus antipodarum).177 Giudice and 

Young (2010) demonstrated that TCC exposure for four weeks lead to significant increases in the 

number of total, shelled and unshelled mud snail embryos.177  As low as 0.2 µg/L increased the 

number of total and shelled embryos while exposure to 1.6 µg/L resulted in significant increases 

in the number of unshelled embryos.  From the data, the NOEC was set at 0.05 μg/L. 

Microorganisms appear to be relatively resistant to the effects of TCC.174,178  The IC50 of 

inhibition of bacterial luminescence among Vibrio fischeri occurred at 910 µg/L.174  In protozoa 

(Tetrahymena thermophile), the 24- hour concentration that that was effective to inhibit growth 

of 10% of organisms tested (EC10) or 50% of organisms tested (EC50) occurred at 206 and 295 

µg/L respectively.178 From the values reported in Table 2, it is clear that certain aquatic 

organisms may have exposure at levels risking toxicity.   

 A number of additional investigations have reported adverse effects related to TCC 

exposure, both alone and in mixtures primarily related to reproductive/endocrine or 

developmental effects.179-185 A focus on mixture scenarios is important given that a wide variety 

of environmental compounds are detected simultaneously in water resources.167  This co-
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exposure may have a very different effect than when exposure to TCC occurs alone, potentially 

translating into health outcomes that are difficult to predict.179-181,183 For example, exposure of 

adult male fathead minnows (Pimephales promelas) to 1.6 μg/L TCC for 21 days decreased 

aggressive nest defense behavior.183  Co-exposure to 560 ng/L triclosan and a reduced 

concentration of 179 ng/L TCC or 1.6 µg/L TCS + 450 ng/L TCC for the same time period was 

also sufficient to decrease this endpoint.  In contrast, among zebra fish embryos, exposure to 

0.25µM TCC enhanced the 17β-estradiol induced aromatase (AroB) transcription 18-fold that of 

vehicle control.181  However, exposure to TCC suppressed bisphenol A (BPA) mediated 

transcription of AroB.  Many pharmaceuticals and compounds found in personal care products 

are additionally found as mixtures in biosolids.103  Interestingly, no attention has been paid to the 

effect of mixtures on terrestrial organisms collected from biosolid amended soil. Humans too 

have continuous exposure to a wide range of environmental compounds documented through 

biomonitoring studies.186  Though in general, research that utilizes mammalian cells or models to 

investigate endocrine disrupting activity of TCC have tested TCC as a single compound 

potentially limiting our understanding of the broad spectrum of toxicity.68,69,79,81,82   

Given the antimicrobial nature of TCC, research has been conducted on individual 

microorganisms alone as well as at the microbial community level to investigate if TCC 

exposure might alter microbial community composition potentially influencing the health 

microcosms where microbes have a functional role.174,178,187-190  For example, exposure of river 

water to 10 µg/L TCC or the equivalent nutrients for 8 weeks altered biofilm architecture, 

composition and function.187 In certain ecosystems, exposure to TCC might selectively target 

microbes allowing for increased risk of antibiotic resistance.189  Though this relationship has not 
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been demonstrated in the clinical or community setting with TCC specifically, cross-resistance 

has been reported among certain biocides to prescription antibiotics.191 Furthermore, the sub-

inhibitory TCC concentrations found in wastewater or environmentally may contribute to 

resistance.189,192 In fact, exposure TCC allows for the upregulation of known antibiotic resistant 

genes experimentally in simulated wastewater treatment microcosms fueling these 

concerns.189,192 To date, relatively little is known regarding the effect of TCC on microorganisms 

in the natural environmental setting.  Though the use of next generation sequencing technologies 

will no doubt aid in our understanding of the effect of TCC exposure to environmental microbial 

ecosystems.   

Phytoaccumulation and human exposure 

 
 Plants grown on biosolid amended soil and/or irrigated with wastewater may remove 

TCC from the environment and decrease potential leaching into water resources.104,193 However, 

this phytoaccumulation is concerning when the plants in question are food crops potentially used 

for human or animal consumption, where TCC has experimentally been detected in a variety of 

produce.104,114,194-199  Translocation may occur from the soil up to even the edible portion of the 

plant.114,195,196  In general, the highest bioaccumulation of TCC occurs in the roots raising 

concern regarding the increased potential exposure with consumption of tuber vegetables.104,197-

199  While TCC has been detected at lower concentrations in the edible tuber vegetable portion 

than the roots, it has been predicted that consumption of root vegetables contributes to 72-86% of 

food crop antimicrobial exposure.199  To date all investigations have been experimental and 

surveys have never been conducted to document the actual human exposure through fruits and 

vegetables commercially available for sale thus limiting conclusions regarding human exposure 



31 

 

pathways.  TCC exposure to humans through drinking water has been documented.146,151 TCC 

has been detected in tap water up to 20.2 ng/L in New York State in homes utilizing septic tanks 

for onsite wastewater treatment,151 as well as tap and bottled water at a maximum concentration 

of in 347 ng/L in Taiwan and 13 ng/L in the Valencian Community East of Spain.146,148   

Risk assessment investigations indicate that TCC exposure through food or drinking 

water is not expected to be overtly toxic.104,114,146,200  With the assumption that a 70-kg adult 

could consume two liters of water per day or a 10-kg child could consume one liter of water per 

day, a child could intake up to 212 ng per day of parent TCC while an adult could intake up to 

425 ng per day of parent TCC based on the estimates of TCC in tap water in Taiwan.146  Here, 

the analysis was conducted alongside TCS and was estimated at well below the tolerable daily 

intake of TCS of 50 µg/kg body weight thus posing minimal risk.  It should be noted that no 

tolerable intake is available for TCC.  Further it is unknown what the effect of the mixture of the 

two compounds may be.  Aryal and Reinhold (2011) predicted exposure through the diet with 

consumption of pumpkin and zucchini grown in biosolid amended soil with the assumption that 

fruit concentrations were equal to the range of those TCC concentrations observed in the stems 

and leaves reported in the literature.104  This exposure was then compared to that of drinking 

water, consumption of soybeans grown in biosolid amended fields and through product use. The 

authors found that exposure through multiple routes was less than the NOEL of 25 mg/kg body 

weight per day and thus did not present acute risks to human health.   Though, little concern is 

afforded through these oral exposure routes, it should be noted that no investigation has analyzed 

the effect on the human gut microbiota which may potentially be susceptible to the actions of an 
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antimicrobial especially considering that TCC is detected without deconjugation and thus in the 

free and active form environmentally. 101,104,195   

Conclusion 

 
 Humans have been exposed to TCC for almost 70 years and since that time, our 

knowledge of the human and environmental effects of TCC have greatly expanded.13  Little is 

known regarding the impact of TCC exposure during early life and given the effect on the 

endocrine system, modulation of reproduction may be significant.67  Further, while it is not 

expected that TCC exposure through food and water will be toxic after potential oral exposure, 

104,114,146,200  little is known about how this pathway may affect gut microbial composition.  

Currently, it is up to the individual to decide the appropriate use of antimicrobial soaps.  Each 

investigation of the potential health effects related to TCC exposure or the impending 

environmental contamination as a result of down the drain disposal provides insight to allow 

informed decision making, adds to the growing body of research and addresses regulatory 

concerns regarding the use of antimicrobials in personal care products.   
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Appendix 

 

 

Table 1. General Properties of TCC                               
 

    

Property  Data  

 CAS number  101-20-2  

Molecular formula  C13H9Cl3N2O  

Boiling point (°C)15  434.57*  

Melting point (°C)15  182.04*  

Vapour pressure (mm HG at 25 °C)15  3.61 × 10−9*  

Water solubility (mg/L)15  0.6479*  

logKow
15  4.9*  

LogKoc
15  3.73*  

pka17  12.7*  

Soil persistence (days)15,18-22  65 to >1,000*+  

Water persistence (days)18  60*  

Sediment persistence (days)18  120*  

    

    

*predicted/estimated data; + measured data; property superscript refers to 

reference number; 

 
 



49 

 

 

Table 2. Reported Aquatic TCC Concentrations  

    Matrix 

Country  Influent    Effluent   Surface Water    Sediment  

         

United States126 
 6,650 (Sept, 02)  

/ 
 

33-5,600  
 

/ 
  6,750 (Nov, 03)       

United States18   6,700 ± 100    110 ± 10     /   / 

United States96   6,100 ± 2000    170 ± 30    /   / 

United States17   /   /   ND-250   / 

United States152   /   /   ND-0.19    / 

United States154   6,100   /   0.45-2,230    / 

United States130   /   /   /   24,000 ± 540a  

United States153   /   /   191   / 

United States98   1,300-20,500   10-1,780   /   / 

United States95   3,505-25,978    281-3,045   3.3-75    11-52 

United States159   /   50-330   /   / 

United 

States144 

  
/ 

  

231 ± 24 

(May, 09)   
/ 

  
/ 

    

200±19 

(Oct, 09     

United States140   /   /   /   5-822  

United States133   /   /   ND   ND-32.7  

UnitedStates147   /   /   2.5-14    / 

United States99   4,920 ± 1,000     120 ± 2    /   / 

United States141   /   /   /   3.09-16.6  

United States135   /   /   4.5-47.3b    ND-57.3 

United States151   /   ND-270   ND-22.5   / 

United States163   /   /   94a    / 

Canada160  /  /  ND  / 

Canada113              70.9-78.4c  
 

  4.43-6.41   /   / 

/ = information not available, ND = not detected in matrix or below analytical limits, aMaximum concentration, 
bPassive polar organic chemical integrative samplers (POCIS), cRange of days collected, dWet water season, 
eMedian water season, fDry water season, gSouth Tiaoxi River, hJinxi River, average of samples collected at 0-5 

cm, average of samples collected at 5-10 cm;  Water concentrations displayed as ng/l; Sediment concentrations 

displayed as ng/g; Country superscript refers to reference number; 
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Table 2. Reported Aquatic TCC Concentrations Cont.   

    Matrix 

Country  Influent    Effluent   Surface Water    Sediment  

         

Spain167  

 362 (May, 07)  

ND 

    

 21 (Sept, 07)      

  ND (Jan, 08)     /   / 

Spain161   ND   /   /   / 

Spain162   115-169    35   ND   / 

Spain148    71   127   /   ND 

France129   97-140    /   /   / 

France139   /   174–253    /   0.17-492 

Switzerland138   /   /   13-820    2.4-152  

South Korea157   ND   ND   /   / 

Scotland117   /   /   /   ND-138.8  

Brazil165   /   /   ND   / 

China131    /   23.9-342   ND-338   ND-2,633  

China155   /   ND    /   / 

China145   1,217-2,354   129.5-272.5    4.9-155.1   / 

China119   /   /   /   1.9±0.4 (Estuarine) 

        113.1 ± 15.9 (River) 

China120   267 ± 18   32.6 ± 2.3   7.5 ± 1.9   1.2  ± 1.1 

China132   /   91.7-136    ND-338    ND-2,723  

China134  

  

/ 

  8.5±2.1d   

42.2 ± 1.8d,g                          

1.9 ± 0.3d,h    8.0 ± 1.0d 

  NDe  

4.0 ± 1.2e,g                             

4.7 ± 1.5e,h  
5.2 ± 1.1e 

    14.5±3.2f   

7.3 ± 0.9f,g                                                                

6.7 ± 1.3f,h   /f 

/ = information not available, ND = not detected in matrix or below analytical limits, aMaximum concentration, 
bPassive polar organic chemical integrative samplers (POCIS), cRange of days collected, dWet water season, 
eMedian water season, fDry water season, gSouth Tiaoxi River, hJinxi River, average of samples collected at 0-5 

cm, average of samples collected at 5-10 cm;  Water concentrations displayed as ng/l; Sediment concentrations 

displayed as ng/g; Country superscript refers to reference number; 
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Table 2. Reported Aquatic TCC Concentrations Cont. 

    Matrix 

Country  Influent    Effluent   Surface Water    Sediment  

         

China128    /   /   32-382    733i, 304j 

China149    /   /   0.05-14.1    / 

China150   /   /   0.3-14.1   / 

China142   /   1.21-14.6    ND-161    1.79-5,649  

China136    /   /   1.09-12.3   0.17–54.3  

China137   /   /   0.86-27.0    1.12–353  

China143   /   /   ND-422.12   6.68 -78.67 

Taiwan146    /   /   921a    / 

Nigeria166    /   /   35.6-232.4   / 

/ = information not available, ND = not detected in matrix or below analytical limits, aMaximum concentration, 
bPassive polar organic chemical integrative samplers (POCIS), cRange of days collected, dWet water season, 

eMedian water season, fDry water season, gSouth Tiaoxi River, hJinxi River, average of samples collected at 0-5 

cm, average of samples collected at 5-10 cm;  Water concentrations displayed as ng/l; Sediment concentrations 

displayed as ng/g; Country superscript refers to reference number; 
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Table 3. Reported Terrestrial TCC Concentrations  

  Matrix 

     

Country  Sludge/Biosolids   Soil  

     

United States96    51,000 ± 15,000   / 

United States17    7,500-25,900    / 

United States98   600-63,000    / 

United States100   8,194 ± 105    / 

United States101 
  

4,890-9,280 
  1.24-7.01 (2007) 

    1.20-65.1 (2008) 

United States102    230-80,000    / 

United States103   36,060 ± 8,049    / 

United States19   2,715   / 

United States95    0.9-1,425    / 

United States104    8,180 ± 560    / 

United States105   17,600   / 

United States106    9,200 ± 1,600    / 

United States107    21,400   / 

United States108   7,760 ± 454    / 

United States99    13,100 ± 900    / 

United States109   11,588 ± 559    / 

United States110    6,050-24,600    / 

United States97   8,850-22,900    / 

Canada111   8,000   / 

Canada112   4,940   / 

Canada113   2,510-4,160    / 

Canada114 
 5,675 (2011)  

/ 
  2,854 (2012)   

Canada115   3,300   / 

Canada116   870-5,600    / 

Scotland117   516-2,829    / 

Japan118   1,200-3,140   / 

China119 

 4,956.2 ± 759.6a (May, 2008)  

/ 

 5,088.2 ± 925.4b(May, 2008)     

 309.6 ± 30.9a (November, 2008)  

 3,647.0 ± 252.2b (November, 2008)  

 3,337.5 ± 131.6c (November, 2008)  

  309-5,088   

China120   887 ± 39   10.5 ± 2.4 

China21   34,900  / 

/ = information not available, ND = not detected in matrix or below analytical limits, aThickened sludge, 
bDewatered sludge, cUntreated solids; Concentrations displayed as ng/g; Country superscript refers to reference 

number; 
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CHAPTER II 

EARLY LIFE TRICLOCARBAN EXPOSURE DURING LACTATION 

AFFECTS NEONATE RAT SURVIVAL 
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Abstract 

Triclocarban (3,4,4’-trichlorocarbanilide; TCC), an antimicrobial used in bar soaps, 

affects endocrine function in vitro and in vivo. This study investigates whether TCC exposure 

during early life affects the trajectory of fetal and/or neonatal development. Sprague Dawley rats 

were provided control, 0.2% weight/weight (w/w), or 0.5% w/w TCC-supplemented chow 

through a series of 3 experiments that limited exposure to critical growth periods: gestation, 

gestation and lactation, or lactation only (cross-fostering) to determine the susceptible windows 

of exposure for developmental consequences. Reduced offspring survival occurred when 

offspring were exposed to TCC at concentrations of 0.2% w/w and 0.5% w/w during lactation, in 

which only 13% of offspring raised by 0.2% w/w TCC dams survived beyond weaning and no 

offspring raised by 0.5% w/w TCC dams survived to this period. In utero exposure status had no 

effect on survival, as all pups nursed by control dams survived regardless of their in utero 

exposure status. Microscopic evaluation of dam mammary tissue revealed involution to be a 

secondary outcome of TCC exposure rather than a primary effect of compound administration. 

The average concentration of TCC in the milk was almost 4 times that of the corresponding 

maternal serum levels. The results demonstrate that gestational TCC exposure does not affect the 

ability of dams to carry offspring to term but TCC exposure during lactation has adverse 

consequences on the survival of offspring although the mechanism of reduced survival is 

currently unknown. This information highlights the importance of evaluating the safety of TCC 

application in personal care products and the impacts during early life exposure. 
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Introduction 

Numerous empirical and epidemiological studies have linked exposure to various 

compounds found in consumer and personal care products with altered endogenous signaling 

and/or function of endocrine/reproductive systems.1  Emerging evidence of daily contact with 

these compounds has raised public concern regarding the potential ecological and human health 

impacts.2  Widely used as an antimicrobial in personal care products, triclocarban (3,4,4′-

trichlorocarbanilide; TCC) is a high production volume antimicrobial, at a mass of up to 1.5% in 

certain brands of bar soaps.3,4  Once applied, the compound is washed down the drain and enters 

the wastewater treatment process.5  The removal of TCC through wastewater treatment is 

insufficient however, accounting for the pervasive existence of TCC in both US and international 

waterways and contributing to its bioaccumulation in aquatic species.6-10  Following wastewater 

treatment, TCC has a robust propensity to partition to sludge due to its hydrophobic nature (log 

Kow = 4.9) allowing for potential transfer to the terrestrial environment when a significant 

proportion of this nutrient-rich sludge is applied as fertilizer in agriculture use.5,11,12  As a 

consequence, TCC has been detected at the ppm level in biosolid-amended soil and is 

environmentally persistent with a reported half-life of 87 to greater than 1000 days.13  These 

observations raise safety concerns regarding the potential transfer to the food chain.  In fact, 

TCC uptake from biosolid amended soil has been shown in a variety of plants meant for human 

consumption, including pumpkin, zucchini and soybean plants.12,14
 

TCC can be absorbed through the skin during the regular use of TCC-containing personal 

care products.15,16  TCC has been detected in 35% of human adult urine and 44% of serum samples 

in the US.17  Experimentally, a study conducted in a small group of human volunteers demonstrated 
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that peak circulating TCC levels could reach up to 530 nM, 3 hours after a single 15 minute whole 

body shower with soap containing 0.6% TCC.15  It is worth noting that a background TCC level 

of 285nM was detected in a volunteer who was a routine user of TCC-containing personal care 

products, indicating that frequent application of personal care products containing TCC may lead 

to a significant body burden. 15  The widespread existence, high environmental persistence and the 

direct human exposure to TCC, therefore warrants further investigation into its effective biological 

impact on human health.  

Several lines of evidence demonstrate that TCC is a potential endocrine disrupting 

chemical (EDC) with the capacity to modulate androgen and estrogen activity as well as other 

hormone-mediated biological processes in vitro and in vivo in the adult rat and other animal 

models. 18-24  Although the underlying mechanism(s) of TCC’s action is unclear and could be 

diverse, collectively, evidence implicates that TCC exposure may adversely impact endogenous 

hormone action resulting in the deviation from normal homeostatic, physiological control and 

therefore adversely affect pregnancy as well as reproductive outcomes. 18,19,21,25,26 

Timing of exposure is the key to human disease, specifically if the exposure occurs 

during early life. 27,28  Early life development in utero is complex, tightly under endogenous 

signal control and susceptive to subtle endogenous/exogenous environmental insult. 29,30  The 

general consensus by the research community suggests that a significant proportion of disease 

burden among children is due to modifiable environmental factors.27  The so-called “embryo-

fetal origins of adult disease” indicates exposure of environmental factors to a developing fetus 

or infant may have very different consequences from the same exposure to an adult.  The 

interaction between the maternal and external environment also plays a major role in determining 



58 

 

the propensity of an individual to develop a disease or dysfunction later in life.27  The growing 

public anxiety regarding the identification of an increasing number of synthetic compounds in 

biological samples of children further justifies the urgent need to document the adverse effects of 

early life exposure to these compounds.31  

Data with respect to the potential impacts of TCC during early life exposure however, are 

scarce.  The only published data are available from Nolen and colleagues, who reported that 

chow supplementation of 21-23 day old rats with 0.25% weight/weight (w/w) of a 2:1 mixture of 

TCC and 3-trifluoromethyl-4,4’-dichlorocarbanalide (TFC) for 8 weeks prior to breeding and 

continuously throughout gestation reduced the survival rate of neonates.32  As an antimicrobial, 

TFC is no longer used.  While these data reflect the impact of the mixture on reproductive 

outcomes, the relatively extended exposure period prior to gestation as well as the fact that TFC 

is considered slightly more toxic than TCC, leaves several fundamental questions regarding 

TCC’s toxicity largely unanswered and prevents the research community, public and regulatory 

agencies from obtaining a better understanding of the safety of the compound.  This study aims 

to address two primary questions: 1) whether early life TCC exposure alone will alter the 

trajectory of fetal and/or neonatal development and 2) if it does, what is/are the susceptible 

window(s) of exposure for the observed developmental outcomes. In addition, the reproductive 

endpoints in surviving F1 offspring were also evaluated.  In this report, three experiments 

directed to address these questions were carried out in Sprague Dawley (SD) rats.   
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Materials and Methods 

Animals 

 
Pregnant SD rats (Harlan Laboratory, Dublin, VA) were housed individually with Harlan 

Teklad laboratory grade 7087 soft cob bedding (Harlan Laboratories, Madison, WI) in clear 

plastic cages in a room with a 12:12 h photoperiod, temperature of 20–22 °C and a relative 

humidity of 40–50%.  A separate group of animals was used for each experiment.  The day after 

mating was designated as gestational day 1 (GD 1).  On GD 5, dams were weight ranked and 

randomized to control or treatment groups to produce similar average body weights per group.  

All randomizations in the report were achieved by using a computer random number generator 

(random.org).  While the treatments were not blinded, the blood/ milk chemical analysis as well 

as tissue pathological evaluation were all blinded to evaluators.  Animals were provided ad 

libitum access to water and commercial Harlan ground 2020X chow or 2020X supplemented 

with TCC (purity=99%, Sigma Aldrich, St.Louis, MO) at a concentration of 0.2% or 0.5% w/w.  

This diet is a soy protein-free rodent chow that contains an isoflavone concentration 

(daidzein+genistein agylcone equivalents) which is less than 20 mg/kg and is ideal for studying 

the impacts of xenobiotics on neonatal development and reproductive function since background 

phytoestrogen levels are minimized.  The TCC supplemented chow was prepared weekly by first 

weighing the correct amount of TCC and mixing the compound with small amounts of powdered 

chow using a mortar and pestle.  This mixture was then added and mixed into a pre-weighed 

amount of powdered chow to obtain the required concentration.  Fresh supplemented chow was 

added to feeding containers as needed.  Food intake was measured every other day starting on 

GD 15.  Doses were chosen based on previous studies in castrated adult and immature rats as 
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well as a multi-generation TCC exposure study conducted in the rat. 18,19,32  Administration of 

TCC in chow was chosen as the exposure route, which was used in our previous studies.  

Exposures by dermal and oral routes lead to similar metabolic profiles in rat and human, 

although there is no direct evidence to compare the internal concentrations achieved between rats 

and human beings.32 All protocols used in the study were approved by the Animal Use and Care 

Committee at the University of Tennessee Knoxville and the studies were conducted in an 

animal facility fully accredited by the Association for Assessment and Accreditation of 

Laboratory Animal Care. 

Experiment I —Concentration of TCC in maternal serum and amniotic fluid 

Starting on GD 5, dams were either fed with control (n=4) or TCC supplemented chow 

(0.2% w/w, n=5 or 0.5% w/w, n=5).  On GD 19, maternal blood was collected between 0800 

AM and 1200 PM prior to sacrifice.  At necropsy, amniotic fluid was collected and total number 

of fetuses as well as number of implantation sites were counted. Systemic organs (liver, kidney, 

adrenal), and sex organs (ovary) were dissected and weighed.  Tissue sections were examined 

with routine hematoxylin-eosin staining and histological changes were evaluated by a board-

certified histopathologist blinded to treatment group.  Serum and amniotic fluid samples were 

frozen at −80 °C until analysis.  
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Experiment II:  in utero/lactational TCC exposure and neonate survival 

IIa. TCC exposure on neonate survival  

To determine the consequence of early life TCC exposure, on GD 5 pregnant animals 

(n=5 per group) were weight ranked and randomly assigned to groups.  Dams were fed either rat 

chow or chow supplemented with 0.5% w/w TCC from GD 5 until weaning at postnatal day 

(PND) 21.  On the day of delivery (PND 0), total neonate number was recorded and the survival 

of pups was monitored daily during the study period.  Dams were terminated either on PND 21 

or on the day when remaining pups died and mammary tissue was removed for histological 

analysis.   

IIb. TCC exposure during lactation on mammary tissue 

The size of the milk bands indicates an estimate of amount of milk consumed. 33  This 

measure is shown to correlate with stages of deprivation in the rat.  Through this assessment it is 

possible to determine if milk has been transferred to the pups as the bands are visible through the 

skin. 33  To assess if TCC exposure could directly reduce the lactational capacity of the 

mammary glands (i.e. induce involution) thereby affecting the pup survival, all pups were 

examined daily for the presence and size of milk bands.  Milk bands were rated as described by 

Ruppert and colleagues.33  Briefly, 0-no band visible; 1-small band visible on the side of pup; 2- 

small band visible across pup’s abdomen, and 3-large band visible across pup’s abdomen.  

Pregnant (GD 5) dams were weight ranked and randomized by body weight into groups fed 

either rat chow (n=6) or chow supplemented with 0.5% w/w TCC (n=3) from GD 5 until PND 6.  

After delivery at PND 0, litter size was culled to 6 from all 3 of 0.5% w/w treated dams and only 
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2 control dams.  No culling was conducted for the rest of the control dams (n=4) which served as 

reserve controls to provide healthy pups to the treated dams as described below.     

Starting on PND 1, healthy age-matched pups (n=3) born to the 4 reserve control litters 

were added to replace half (n=3) the pups raised by TCC treated dams to maintain normal 

suckling activity (Figure 1a).  Therefore by PND 1, all 0.5% w/w treated dams carried 6 pups (3 

born to 0.5% w/w TCC treated dams and 3 born to reserve control dams).    On PND 3, the same 

procedure was conducted as PND 1, except 3 healthy control pups born to the 4 reserve control 

dams were added to treated dams to replace the pups previously transferred on PND 1 from 

reserve control dams.  Therefore, on PND 3, all 0.5% w/w TCC treated dams carried 3 of her 

own pups and 3 new pups transferred from reserve control dams.  At PND 6, the procedure was 

again conducted except that 3 healthy age-matched pups born to the reserve control dams were 

added to each treated dam to replace the remaining 3 pups originally born to 0.5% w/w treated 

dams.  After the above manipulation on PND 6, pups nursed by the treated dams were all born to 

reserve control dams.  The same substitution procedure was conducted once more on PND 9 and 

this time the 3 pups transferred from reserve control dams to treated dams on PND 3 were 

replaced.  Milk band quantification comparison was only conducted between control born/raised 

animals and 0.5% w/w born/raised animals on PND 1, PND 3, and PND 6, the last day before all 

the pups born to TCC treated dams were replaced with pups born to reserve control dams.  All 

dams were terminated on PND 14 and mammary tissue was removed for histological analysis.  

IIc. TCC concentration in biological fluids 

To measure the concentration of TCC in biological fluid during lactation, starting on GD 

5, dams were either fed with control (n=3) or TCC supplemented chow 0.2% w/w (n=4) or 0.5% 
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w/w (n=3) until PND 6.  Dams were weight ranked and randomly assigned to groups.  In 

addition, a separate population of 3 control dams were used as reserves to provide healthy pups 

to maintain suckling activity.  After delivery, the litter size was culled to six.  No culling was 

conducted for the 3 reserve control dams.  On PND 3, healthy age-matched pups (n=3) born to  

reserve control dams  were added to each litter of treated dams to replace 3 treated born/raised 

pups to maintain suckling activity.  On PND 5, all dams were individually housed without 

neonates for 22 hours to increase milk production/accumulation in mammary glands.34  The 

remaining 3 treated born pups from each TCC treated dam group were sacrificed on PND 5 and 

pup blood samples were pooled within each litter and frozen at -80 C for future TCC analysis.  

On PND 6, all dams were sacrificed and blood samples were collected.  At necropsy, mammary 

tissue/fat pads of dams were carefully separated from the underlying muscles by a cut along the 

ventral midline.  Mammary glands were then open from inside without penetrating the skin and 

pooled milk was collected.   

Experiment III-- in utero and/or  lactational TCC exposure on the survival of F1 female rats 

(cross-fostering study) 

Cross-fostering and survival assessment  

To identify the susceptive windows of gestational and postnatal TCC exposure to 

offspring survival, on GD 5 pregnant animals (n=5 per group) were weight ranked and randomly 

assigned to groups.  Dams were then fed with rat chow or chow supplemented with either 0.2% 

or 0.5% w/w TCC. Supported by our observation that none of the pups could survive when they 

were nursed by the 0.5% w/w supplemented dams regardless of their gender (experiment II) and 

the observation that all the pups nursed by control dams survived, however whether pups were 
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raised by 0.2% w/w supplemented dams could survive was unknown and was one of the primary 

objectives.  To create a manageable workload for the cross-over study, only females were used in 

this experiment. On PND 0, female pups were weighed and sexed based on anogenital distance 

(AGD).  AGD is defined as the distance between the base of the genital papilla and the rostral 

end of the anal opening.35  Litter size was culled to 6 females by random removal of pups on 

PND 0 right after sexing.  Specifically, individual pups in each litter were randomly marked with 

a number using a permanent marker.  The numbers were entered into a computer random number 

generator (random.org) and the order of the numbers was randomized.  Pups labeled with the 

first six randomized numbers were kept for the subsequent experiments.  After culling, on PND 

0, a cross-fostering design was implemented within each litter.  Briefly, each dam carried and 

nursed 2 female pups from her own original litter and fostered 2 female pups from each of the 

two other treatment groups (Figure 1b).  In this manner, each control dam raised 2 of her own 

pups, 2 pups born to 0.2% w/w treated dams and 2 pups born to 0.5% w/w treated dams.  Each 

0.2 % w/w treated dam raised 2 of her own pups, 2 pups born to 0.5% w/w treated dams and 2 

pups born to control dams.  Finally, each 0.5% w/w treated dam raised 2 of her own pups, 2 pups 

born to control dams, and 2 pups born to 0.2% w/w treated dams.  The treatment regimen 

continued from GD 5 throughout lactation until sacrifice either on weaning/PND 21 or on the 

same date when all pups died.  At PND 3, all pups were reweighed and AGD was measured.  

Pup mortality was monitored daily throughout the experiment.  At PND 4 and 5, three pups 

raised by 0.5% w/w treated dams with greater than a 20% body weight loss over two consecutive 

days were used for pathological assessment.   

 



65 

 

Vaginal opening (VO) and estrous cyclicity assessment  

On PND 21, all surviving female offspring from Experiment III were weighed, weaned, 

and AGD was measured.  All offspring raised by the same dam were thereafter housed separately 

with 3 offspring in each cage.  The onset of puberty was assessed in female offspring daily from 

PND 30 to 54 for vaginal opening (VO), which is considered as a marker of the onset of puberty 

in rats.36  All animals were weighed every other day until VO was achieved and the weight of 

animals on the day of VO was recorded.  

All females that displayed VO were assessed for estrous cyclicity by daily vaginal lavage 

(smears).  Vaginal smears were taken between 0830 AM and 1030 AM each morning and 

examined without stain under light microscopy (×20).  The relative abundance of leukocytes, 

nucleated epithelial cells, and cornified epithelial cells was assessed and cycle stage (day) for 

each animal was determined.37  The time from VO until the first date of estrous was documented 

and the cycle stage was recorded until termination on the day of the estrous just prior to or 

shortly after PND 54.  At termination, systemic and sex organs were removed and weighed.   

Hormone and TCC measurements in biological samples 

Maternal (Experiment I on GD 19: n=4, control; n=5, 0.2% w/w; n=5, 0.5% w/w and 

Experiment IIc on PND 6: n=3, control; n=4, 0.2% w/w; n=3, 0.5% w/w) and neonatal serum 

(Experiment IIc on PND 5: n=3 control; n=4, 0.2% w/w; n=3, 0.5% w/w), and amniotic fluid 

samples (Experiment I on GD 19: n=4, control; n=5, 0.2% w/w; n=5, 0.5% w/w) were analyzed 

for TCC.  First, 50 µl of serum was added into 800 µl of ethyl acetate.  Following agitation for 1 

hour, 400 µl of liquid was removed from the solution, dried under gentle nitrogen stream and the 

residue was re-dissolved in 100 µl of acetone prior to analyze by LC-MS-MS.  For analysis of 
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TCC from milk, 100 µl of pooled milk sample was mixed with 600 µl of 2-propanol.  The 

mixture was vortexed for 5 minutes at the highest speed followed by centrifugation at 4º C at 

x5000g for 50 minutes.  Three hundred microliters of supernatant was then removed and mixed 

with 600 µl of water plus 600 µl of ethyl acetate.  The mixture was vortexed for another 5 

minutes at highest speed followed by centrifugation for 20 minutes at 4º C at x5000g.  After 

centrifugation, 300 µl of supernatant was collected, dried under nitrogen and the residue was re-

dissolved in 100 µl of acetone prior to measurement by LC-MS-MS.  TCC sample extracts were 

analyzed on a Dionex UltiMate 3000 UHPLC system coupled to a triple stage quadrupole mass 

spectrometer (TSQ Quantum Access Max MS/MS, Thermo Scientific, Waltham, Massachusetts).  

A Hypersil GOLD PFP column (2.1X100 mm 1.9 µm, Thermo Scientific, Waltham, 

Massachusetts) was used for HPLC analysis and temperature was held at 38˚C for column 

compartment.  The autosampler tray temperature was set at 5˚C.  The solvent system consists of 

H2O with 0.02% acetic acid (mobile phase A) and methanol (mobile phase B).  The analyte was 

separated using a gradient program starting with T (minute)=0, A=40%, B=60% at 0.3 mL/min; 

T=3, A=2%, B=98% at 0.3 mL/min; T=5.5, A=2%, B=98% at 0.3 mL/min; T=5.6, A=2%, 

B=98% at 0.35 mL/min; T=12, A=2%, B=98% at 0.35 mL/min; T=12.1, A=40%, B=60% at 0.35 

mL/min; T=18.5, A=40%, B=60% at 0.35 mL/min and T=18.6, A=40%, B=60% at 0.3 mL/min.  

Detection and quantification of TCC was analyzed under negative ion electrospary ionization 

(ESI-) using selective reaction monitoring (SRM) and parameters for MS condition were: Spray 

Voltage (V): -3350; Tube Lens (V): 215; Vaporizer Temp: 425 ˚C; Capillary Temp: 200 ˚C; 

Sheath gas pressure: 20.0 arb units; Aux gas pressure: 2.0 arb units; Collision gas pressure 
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(mTorr): 1.5 and Cycle time (s): 0.45.  The m/z 312.718 and 160.000 were used as precursor and 

product ion, respectively.  

For hormone analysis, circulating progesterone, testosterone, total T3, and total T4 were 

measured using commercial radioimmunoassay (RIA) kits (Coat-A-Count, Siemens, Los 

Angeles, CA).  17ß-Estradiol levels were measured using ImmunChem Double Antibody RIA kit 

(MP Biomedicals, Solon, OH).  Thyroid-stimulating hormone concentrations were analyzed with 

an RIA kit specific for rat TSH (MP Biomedicals, Germany).   

Energy expenditure assessment 

The impact of TCC treatment on energy expenditure of pregnant animals and 

offspringwas monitored using Oxymax Comprehensive Lab Animal Monitoring System 

(CLAMS, Columbus Instruments, Columbus, Ohio).38  On GD 13, pregnant dams (Experiment 

III) and on PND 41 randomly selected neonates (Experiment III) from each respective group 

were housed individually in a chamber with a 12-h light/12-h dark cycle and an ambient 

temperature of 22–24°C.  Animals were acclimated to the system for 12 hours before data was 

collected.  Carbon dioxide production (Vco2) and oxygen consumption (Vo2) were collected 

every 35 minutes over a 24 h period.  The respiratory exchange ratio (RER) was calculated as 

Vco2/Vo2 ratio.  

Statistical analysis 

Data were presented as group mean±SEM.  Data were analyzed using SPSS (version 20, 

IBM, Armonk, NY) by ANOVA (i.e. organ weights, body weight, AGD, TCC and hormone 

concentration), or ANOVA with repeat measurements (i.e. changes of AGD and body weight 
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over time).  In addition, data were analyzed with a covariate of PND 21 body weight (offspring) 

or pre-treatment body weight (dams) when appropriate.  Milk band rating was analyzed with a 

non-parametric Mann-Whitney U test.  Mortality measurements were analyzed by Kaplan-Meier 

survival analysis with JMP Pro 10, followed by pairwise Student-Newman-Keuls post hoc test 

when appropriate.  Statistical significance was considered p < 0.05.  Data were transformed if 

either normality or the equal variance assumption was invalid.  If transformation did not correct 

normality or equal variance assumption, Kruskal-Wallis One-Way Analysis of Variance on 

Ranks was used.   

Results 

Experiment I: TCC exposure during pregnancy 

Maternal and fetal compartment TCC concentrations  

 TCC concentration in maternal serum and amniotic fluid was measured from samples 

collected at necropsy on GD 19.  The mean concentrations of TCC in the serum collected from 

TCC supplemented dams (0.5% w/w: 116.25±22.2; 0.2% w/w: 82.48±17.6 ng/mL) were 

significantly higher than controls (0.67±0.3 ng/mL, p<0.05, Figure 2a).  Similarly, significantly 

higher levels of TCC were detected in amniotic fluid from the TCC treated dams with a mean 

concentration of 11.10±1.9 ng/mL detected in 0.2% w/w TCC treated group and 14.64±2.0 

ng/mL in 0.5%  w/w TCC treated group compared to 0.42±0.01 ng/mL detected in control dams 

(p<0.05, Figure 2b). 
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Maternal and pregnancy data  

 The average terminal body weight of 0.5% w/w treated dams was 6.7% less than that of 

control dams on GD 19. Maternal body weight gain from GD 5-19 in 0.5% w/w treated group 

was significantly less compared to both control dams and 0.2% w/w TCC supplemented dams 

but there was no statistical difference in body weight gain between the control and 0.2% w/w 

TCC supplemented group (Table 4).  TCC treatment at any dose had no effect on implantation 

number.  Neither systemic nor sex organ weights at necropsy were significantly different 

between any group (Table 4).  At necropsy on GD 19, circulating levels of estradiol, 

progesterone, testosterone, T4 and TSH were measured with no significant difference revealed 

among any group.  T3 levels were significantly decreased among dams provided 0.5% w/w TCC 

supplemented chow relative to control and 0.2% w/w treated dams (Table 4).  Gross 

physiological examination and histological evaluation of organs collected at necropsy showed no 

significant anomaly among treated dams compared to controls (data not shown).  

Experiment IIa. TCC exposure in utero/lactational  

Neonate Survival  

 At birth, no statistical difference in number of live births or average birth weight per litter 

between groups was noted (data not shown).  While 0.5% w/w TCC treatment did not affect the 

ability of dams to carry neonates to term, survival analysis revealed that supplementation of 

0.5% w/w TCC during gestation and lactation affected neonate survival throughout the 

experiment (Figure 3).  Neonates born to and nursed by 0.5% w/w TCC treated dams could not 

survive beyond PND 8; however, all neonates born to and nursed by control dams survived until 

weaning.   
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Maternal data  

 No statistical food intake difference was noted (control, 18.52 ±1.1g; 0.5% w/w 19.06 

±1.4g) on GD 19.  All TCC exposed dams were sacrificed right after all pups were deceased 

(between PND 5 and 8).  Control dams were sacrificed on PND 21.  Milk bands were observed 

in pups raised by dams treated with 0.5%w/w TCC and histology of mammary tissue collected 

from both control and 0.5% w/w TCC supplemented dams revealed evidence of retained 

secretory material in the tissues.  However, the mammary glands collected from 0.5% w/w dams 

had evidence of involution showing increased lobule separation by interstitial mature fat, 

thinning epithelial height, and increased epithelial vacuolation with fat (Figure 4, panel a and b 

and c).   

IIb. Effect of TCC exposure on mammary tissue during lactation  

In the experiment (Figure 1a) designed to differentiate if the decreased neonate survival 

was secondary to TCC’s effect on the reduction of the lactational capacity of the mammary 

glands (i.e. TCC induces involution), milk band scores were similar between PND 1 and PND 3 

(median: 3 in 0.5% w/w born/raised pups and control pups).  However, the milk band size 

decreased over time after PND 3.  On PND 6, the median milk band score was 0 in 0.5% w/w 

born/raised pups and 2 among pups born/raised by control dams (Mann-Whitney test, p<0.05).  

Compared to results from control dams (Figure 4 panel d), histology evaluation revealed that 

mammary tissue collected from treated dams on PND 14 was not involuted when additional 

healthy pups were continuously provided on PND 3, PND 6 and PND 9 to maintain normal 

suckling activity (Figure 4, panel e).  
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IIc. TCC concentration in biological fluids  

TCC concentration on PND 6 was measured from maternal blood and milk.  TCC level in 

pooled blood samples collected from neonates on PND 5 were also analyzed (Figure 5).  

Maternal serum TCC concentration significantly increased with either concentration of TCC in 

the chow compared to controls at 0.19±0.11 ng/mL in control dams (n=3), to 134.6±15.4 ng/mL 

in 0.2% w/w TCC treated dams (n=4) and 230.3±77.3 ng/mL in 0.5% w/w TCC treated dams 

(n=4) (p<0.05, Figure 5).  Following the same pattern, a dose-dependent increase of TCC in 

maternal milk samples was observed among groups [control (n=3): 0.23±0.14 ng/mL; 0.2% w/w 

(n=4): 510.99±122.8 ng/mL and 0.5% w/w (n=4): 917.8±88.9 ng/mL] with significance shown 

between 0.5% w/w, 0.2% w/w and control collected milk (p<0.01, Figure 5).  High levels of 

TCC were also detected in pooled neonate serum samples raised by TCC treated dams in both 

groups compared to controls on PND 5 (0.5% w/w: 136.20±55.86 ng/mL; 0.2% w/w: 13.87 ± 8.5 

ng/mL vs. 0.56±0.23 ng/mL in controls, p<0.05, Figure 5); pups raised by 0.5% w/w treated 

dams showed significantly higher serum levels of TCC than 0.2% w/w raised pups (Figure 5).  

Experiment III. TCC exposure in utero/lactational (cross-fostering study) 

Maternal data 

At birth, no statistical difference in number of live births or average birth weight per litter 

between groups was noted (data not shown).  There was no significant difference in respiratory 

exchange ratio (RER) (0.5% w/w: 0.97±0.01; 0.2% w/w: 0.96±0.01 and control: 0.98±0.01).  

After birth, dams were continuously exposed to either treated chow or control chow in the 

manner provided prior to delivery.   
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F1 female generation data 

There was no initial statistical body weight difference in female pups born to control 

dams or pups born to either group of treated dams prior to the culling on PND 0 (control: 

5.84±0.17 g; 0.2% w/w: 5.81±0.13 g; 0.5% w/w: 5.45± 0.24 g ).  After the cross-fostering 

manipulation, each dam nursed 2 of its own pups and 2 pups from each of the other two 

treatment groups (Figure 1b). All dam groups (n=5 in each group) raised 30 pups (10 pups born 

to 0.5% w/w TCC treated dams, 10 pups born to 0.2% w/w TCC treated dams and 10 pups born 

to control dams).  A total of 90 pups were manipulated in Experiment III.  Average pup body 

weight in each group after the crossover manipulation at PND 0 was similar among the control, 

0.2% w/w TCC and 0.5% w/w TCC fed group (Table 5).  Starting on PND 3, body weight and 

AGD were measured every two days.  Postnatal maternal treatment status significantly affected 

pup body weight as measured between PND 3-PND 9.  Average body weight was significantly 

less in pups nursed by TCC supplemented dams at PND 3 with a 16% decrease found in pups 

raised by 0.2% w/w TCC treated dams and a 25% decrease observed among pups raised by 0.5% 

w/w TCC treated dams compared to the counterparts raised by control dams (p<0.05, Table 5).  

Within each dam group however, no statistical body weight difference was observed among the 

pups with different in utero exposure status ( i.e. born to a 0.5% w/w TCC treated, 0.2% w/w 

TCC treated or a control dam) at PND 3, PND 6, and PND 9 respectively (Table 5).   

Pup mortality was followed throughout the study.  A significant reduction in pup number 

over time was observed between pups raised by 0.5% w/w , or 0.2% w/w TCC treated dams 

compared to those raised by controls (p<0.05, Figure 6A and B).  No pups raised by 0.5% w/w 

TCC treated dams survived beyond PND 5 regardless of in utero exposure status (n=30) (Figure 
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6A).  The majority of pups (27 out of 30) raised by 0.2% w/w TCC treated dams survived to 

PND 6 but only 4 animals in this group survived beyond weaning day (all raised in the same 

litter with 2 offspring born to control dams and 2 offspring born to 0.5% w/w TCC treated dams) 

(Figure 6A).  In contrast, all pups raised by control dams survived throughout the study period 

regardless of in utero exposure status (n=30).  The abdomens of all the pups raised by dams 

exposed to either TCC concentrations were distended and all had diarrhea.  Gross pathological 

examination of randomly selected pups (n=3) raised by the 0.5% w/w dams on PD 4 and 5 

showed small acute gastric ulcers and fatty vacuolation of hepatocytes (data not shown).  The 

effect was found in all 3 animals examined, however the small sample size may not provide a 

definitive conclusion.    

Because surviving animals in the 0.2% w/w TCC supplemented group (n=4) were all 

raised by the same dam, statistical analysis based on litter could not be conducted.  Therefore, 

only group means were provided for all relevant parameters derived from these 4 surviving 

offspring.  At weaning, the average body weight of the 4 surviving offspring raised by the 0.2% 

w/w TCC treated dam was approximately half that of offspring raised by control dams (Table 5).  

The average RER measured on PND 41 from the 4 surviving offspring raised by 0.2% w/w dams 

was similar compared to the RER measured from offspring (n=12) raised by control dams (0.99 

and 0.97±0.01 respectively).  Among control raised offspring, average RER was similar when 

analyzed by their respective in utero status (data not shown).   

No statistical difference of AGD indexed by cube root of body weight (at the time AGD 

was acquired) was detected on PND 3 among offspring raised by different dam groups.  

Similarly, no statistical difference of AGD indexed by cube root of body weight was detected on 
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PND 6 between offspring raised by 0.2% w/w TCC treated dams compared to those raised by 

control dams (Table 5).  At weaning, the mean relative AGD of the 4 remaining pups was 

2.51(mm/3√g) compared to 2.46 (mm/3√g) from offspring born and raised by control dams 

(Table 5).  In utero status had no effect on AGD, VO date, or first date of estrus after VO (data 

not shown).   

The average age of VO in the 4 surviving offspring raised by the 0.2% w/w TCC treated 

dam was 38.5 days while the average age of VO from offspring raised by the control dams was 

37.17 days.  Organ weight indexed by body weight of offspring raised by control dams on the 

day of sacrifice, categorized by in utero exposure status is shown in Table 7 with no significant 

difference noted between any groups for any organ analyzed.    

Discussion 

Knowledge regarding human and environmental risks to TCC exposure is currently 

limited, with available data only measuring TCC prevalence and persistence in the environment.  

Although no long term TCC exposure studies in humans have been reported, Schebb et al. 

demonstrated that after a 15 minute whole body shower with 0.6% TCC-containing bar soap, up 

to 1030 nM of TCC metabolites was detected in the urine of 6human volunteers.39  The 

significant excretion suggests that absorbed TCC must be systemically available and thus present 

in blood.15,39  In fact, after a single 15 minute shower, peak circulating level of TCC was detected 

within 3 hours with a range between 10 to 530 nM.15  Interestingly, a  high TCC background 

level of 285±5 nM was reported in the circulation of a subject who used TCC-containing 
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personal care products regularly compared to other volunteers.15  These data indicate that routine 

users of TCC-containing products may have a high body burden.   

Human exposure through the diet has not been explored.  The pharmacokinetic profile of 

long term TCC exposure in the chow goes beyond the scope of the current study, nonetheless, 

after 14 days of oral exposure between GD 5 and GD 19, we detected an average circulating 

level of 82.48±17.6 ng/mL (261.36 nM) and 116.25±22.2 ng/mL (368.37 nM) TCC in 0.2% and 

0.5% w/w treated SD rats respectively (Experiment I), a level within the range of reported 

human exposure data.15  A similar dose dependent detection of TCC was identified in the fetal 

compartments.  We detected 11.10±1.9 ng/mL and 14.64±2.0 ng/mL TCC in the amniotic fluid 

of 0.2% and 0.5% w/w TCC groups respectively, showing the transplacental transfer of TCC 

during gestation.  The wide range of the TCC concentration in circulation of pregnant rats after 

exposure (0.2% w/w: 39.85-145.37 ng/mL; 0.5% w/w 71.33-171.85 ng/mL) (Experiment I), may 

reflect the inter-individual difference in TCC absorption, distribution and excretion, a similar 

scenario that has been reported in humans.15  

Nolen et al. reported that a 2:1 mixture of TCC and a another antimicrobial compound 3-

trifluoromethyl-4,4’-dichlorocarbanilide (TFC), compromises reproductive outcomes when rats 

were fed continuously with 0.25% TCC/TFC mixture in the chow for more than 11 weeks 

starting 8 weeks prior to pregnancy.32  A significant decrease in the average number of pups 

born/litter, average number of live pups/litter at PND 4 as well as the number weaned/litter was 

observed compared to the control group.  When exposure was extended to cover the second 

pregnancy period, only an average of one offspring per litter was able to survive beyond 

weaning.  In contrast, when the mixture was administrated only during the organogenesis period 
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(PNDs 6-15), or for an extended period of time but only with 0.2% TCC/TFC mixture, no 

significant differences were detected by any of the criteria described above when compared to 

the controls.  Therefore, Nolen et al. conclude that the maximum dietary concentration of the 

TCC/TFC mixture having no effect on reproduction should be between 0.20 and 0.25%.  The 

authors further concluded that 0.25 % concentration of mixture had no effect when fed only 

during GDs 6-15.32  Only the extended exposure with 0.25% w/w TCC/TFC mixture (8 weeks 

prior to pregnancy plus entire pregnancy period) would affect the survival of the neonates.   

While the results of Nolen’s are informative, it raises several critical issues.  A 2:1 

TCC/TFC mixture rather than an individual compound was tested.32  Subchronic studies indicate 

TFC is slightly more toxic than TCC, therefore the possibility that compromised reproductive 

outcomes observed by Nolen et al. may reflect an additive/synergistic effect of the two 

compounds cannot be ruled out.  Since the use of TFC as an antimicrobial agent in personal care 

products has been phased out,32 it is essential to investigate if the administration of TCC alone 

would interfere with reproduction.  

In our study, dose and length of TCC exposure does not appear to affect parturition; no 

statistical difference in number of implantation sites or the number of live births at delivery were 

observed in either TCC treatment group compared to controls even when 0.5% w/w TCC was 

administered (Experiment I and IIa).  Further, we found no statistical difference in reproductive 

outcomes (AGD, vaginal opening, or estrous cycling) of the F1 generation of control raised 

animals born to different treatment groups (0.5% w/w, 0.2% w/w, or control).  However, TCC 

exposure at 0.5% w/w affected neonate survival, with no survival beyond PND 8 among either 

male or female pups when the treatment regimen covered both pregnancy and lactation (Figure 
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3, Experiment IIa). Due to the mortality effects of TCC treatment on F1 offspring raised by 

treated dams, the small number of surviving offspring in the current study prevents a definitive 

conclusion regarding the examined reproductive outcomes.  

To help further examine the potential susceptive windows of TCC exposure (in utero 

only, in utero plus lactation, or lactation only) that lead to the decline in neonate survival, a 

cross-fostering design was implemented (Figure 1b, Experiment III).  Regardless of in utero 

exposure status, maternal exposure status during lactation significantly affected pup body weight 

(Tables 5 and 6).  Compared to controls on PND 3, an average of a 16% and 25% body weight 

reduction was observed in pups raised by 0.2% and 0.5% w/w TCC treated dams respectively 

(Table 5).  When control fed groups were stratified by gestational exposure status, no statistical 

body weight difference was observed among pups with different in utero exposure status ( i.e. 

pups raised by control dams but were born to either 0.5% w/w, 0.2% w/w TCC treated dams or 

control dams, Table 6).   

All pups raised by control dams survived beyond weaning, regardless of in utero 

exposure status.  In contrast, no pups raised by 0.5% w/w TCC treated dams survived beyond 

PND 5 regardless of the group they were born to (Figure 6B, Experiment III) and only 4 pups 

raised by 0.2% w/w TCC treated dams survived beyond weaning (Figure 6A, Experiment III).  

Collectively, these data implicate the critical TCC exposure window for neonate survival occurs 

during lactation, because even pups with no in utero exposure could not survive when raised by 

TCC treated dams and all pups raised by control dams survived even with gestational TCC 

exposure.   
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No statistical difference in energy expenditure was observed between any dam groups 

(Experiment III).  We observed a 6.7% body weight decrease among 0.5% w/w TCC treated 

dams although it was not statistically significant.  TCC treatment does not appear to affect milk 

production and transfer.  Pathological evaluation of mammary tissue demonstrated involution of 

the mammary glands in TCC treated dams when necropsy was conducted between PND 5 and 

PND 8 after complete litter loss (Experiment IIa).  To differentiate if the involution of the 

mammary gland was due to the TCC treatment (primary) or reduced stimulation on the 

mammary gland as an outcome of reduced neonate suckling when pups expired (secondary), 

healthy age-matched pups born to control dams were added to the TCC treated dams at various 

time points during lactation to maintain normal suckling activity and dams were sacrificed on 

PND 14 (Experiment IIb).  Pups born to/raised by 0.5% w/w TCC treated dams had similar milk 

band size when compared to control pups on PND 1 and PND 3.  The size of milk band was 

significantly smaller at PND 6 between pups born to/raised by 0.5% w/w dams compared to age-

matched controls.  Microscopic assessment revealed no sign of involution in mammary glands of 

treated dams that were provided continuously with healthy pup suckling stimulation.  Together, 

our data suggest that the reduced survival in pups raised by TCC treated dams was unlikely due 

to the primary impact of TCC on the development and function of mammary glands.   

We further compared the concentration of TCC collected from dam and neonate 

circulation and the milk from dams (Experiment IIc).  As shown in Figure 5, a similar dose 

dependent pattern of TCC concentration was observed in the circulation of dams as well as in the 

pups that were raised by the treated dams.  Interestingly, 510.9±122.8 ng/mL and 917.8±88.9 

ng/mL of TCC was detected in the milk of the 0.2% and 0.5% w/w TCC treated dams 
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respectively.  This level of TCC in the milk was almost 4 times the amount detected in blood 

circulation from either group.  These data imply that TCC concentrates in the milk.  Although 

extrapolation to human exposure still requires further investigation, our data, nevertheless, 

highlight the potential of high levels of TCC exposure to neonates via lactation.   

Several lines of evidence in the current study further support the hypothesis that TCC 

exposure during lactation influences the survival of the neonates.  In treated pups, we observed 

small, acute gastric ulcers (indicating potential stress) and fatty vacuolation of hepatocytes in 

pups exposed to TCC during lactation (Experiment III).  Post-mortem evaluation of neonates that 

expired prior to weaning had swollen abdomens, diarrhea and grossly enlarged, liquid filled ceca, 

which is consistent with observations in rodents with impaired gut microflora i.e. germ free mice 

or rodents orally treated with an excess of antimicrobials.40  In germ free mice, an enlarged 

cecum starts during suckling. The appearance of an enlarged cecum is postulated to be due to the 

accumulation of macromolecular, sulfate-containing glycoproteins from the milk that normally 

are degraded by the microflora of the lower gut.41  These negatively charged macromolecules not 

only attract water into the cecal lumen, but also limit Na+-dependent water transport out of the 

cecum.  The enlarged cecum thus could become a reservoir of pharmacologically active 

materials that may become bloodborne and affect the physiology of the animal.41   

The existence of certain intestinal microbes could promote normal mammalian 

physiology including proper digestion, metabolism, epithelial cell function, angiogenesis, enteric 

nerve function, and immune system development.42  On the other hand, altered intestinal flora 

has been reported in patients with inflammatory bowel disease, allergies, or patients with 

metabolic syndrome, indicating that microbial populations might influence disease pathogenesis 
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although the causality is still unclear.43-45 Imbalances in the composition of intestinal flora 

diversity could lead to dysfunction and chronic disease state.  Antibiotics have been shown to 

drastically disrupt indigenous microbiota in animals as well as in humans, which could result in a 

long-term decrease of its overall diversity.42,46-48  Limited information from human and animals 

has shown antibiotic treatment can eliminate native intestinal microflora populations that 

normally compete with or otherwise antagonize invading pathogens, or induce the overgrowth of 

“pathogenic” components of gut microbiota.49,50 The disturbance of microflora therefore could 

result in diminishing the natural defense mechanisms provided by the colonic microbial 

ecosystem, making the host vulnerable to infection.  Whether high levels of TCC exposure 

through lactation changes the intestinal microflora of the neonates affecting the establishment 

/colonization of different microflora in the gut or affects the survival of offspring requires further 

investigation. 

Alternatively, TCC may alter the various processes by which milk components are 

synthesized and/or secreted or interfere with the delivery of substrate for milk formation and 

resulting composition51,52  Results from experiment IIb demonstrated that milk was transferred 

from dam to pups, however the effect of TCC exposure to the nutritional composition of the milk 

or its direct toxic effect is unknown.  Artificial feeding methods could be used to control the 

nutritional composition of the milk and delivery of TCC,53 to investigate the mechanisms of 

reduced survival.   

Conclusion 

In summary, our study demonstrates that early life 0.2% w/w and 0.5% w/w TCC 

exposure affects the survival of neonates.  Although the current study by design could not reveal 
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the underlying mechanism(s) of the reduced survival of F1 offspring during lactation, several 

lines of suggestive evidence support the hypothesis that TCC exposure during lactation 

influences the development of the neonates.  The susceptive window of exposure is during 

lactation.  While TCC exposure does not affect the ability of dams to carry neonates to term, few 

pups can survive beyond weaning if the pups are raised by 0.2% w/w TCC treated dams and no 

pups could survive when raised by 0.5% w/w treated dams, regardless of their in utero exposure 

status.  Collectively, the results of our study demonstrate the need for future research to 

determine the mechanism of reduced survival during lactation and evaluate the impact of TCC-

containing products on reproductive and developmental health in humans.   

There are limitations to prevent full extrapolation of the results derived from animal 

studies to human exposure scenario.  Human exposure to TCC through the use of TCC- 

containing personal care products are likely sporadic while the animals in the current study had 

ad libitum access to the TCC supplemented chow, therefore animals had constant TCC exposure.  

If problems occur during breastfeeding and infants failed to thrive, humans can make a decision 

to use formula, an option that animals do not have.  Regardless of these limitations, the animal 

study data warn the potential risk of TCC exposure during lactation and underscore the 

importance to assess the levels of TCC exposure in lactating women who are also routine users 

of TCC-containing products and evaluate the impact of TCC-containing products to human 

health.  
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Appendix 
 

 
 

 

Figure 1a. Transfer Scheme to Understand Breast Tissue Involution                                       

Dams were exposed to either 0.5% w/w TCC supplemented or control chow from GD 5-PND 14.  

On PND 1, healthy age-matched pups (, n=3) born to the reserve control litters were added to 

replace half (, n=3) the pups raised by TCC treated dams to maintain normal suckling activity.  

On PND 3 the same procedure was conducted, 3 healthy pups () born to the 4 reserve control 

dams were added to treated dams to replace the pups () previously transferred on PND 1 from 

reserve control dams.  At PND 6, the procedure was again conducted and 3 healthy age-matched 

pups () born to the reserve control dams were added to treated cages to replace the remaining 3 

pups () originally born to 0.5% w/w treated dams.  The same substitution procedure was 

conducted once more on PND 9 with 3 pups () transferred from reserve control dams to treated 

dams replacing the reserve pups () transferred on PND 3.  All damns were sacrificed on PND 

14 
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Figure 1b.Transfer Scheme of Cross-Fostering Experiment                                              

Cross-fostering design within each dam group (control, 0.2% w/w and 0.5%w/w; n=5 dams per 

group).  Pregnant SD rats continued on respective treatment with TCC from GD 5-PND 21.  

Cross over was conducted on PND 0.  Each dam nursed two of her own pups, and two pups from 

each of the other two treatment groups (: pups born to control dams; : pups born to 0.2% w/w 

TCC treated dams; : pups born to 0.5% w/w TCC treated dams).  Dams were euthanized on 

PND 21 or on the date that all pups deceased.  Surviving offspring were continued on respective 

treatment until PND 54.   
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Figure 2. TCC Concentration of Biological Samples Collected during Gestation                    

TCC concentration (ng/mL) on GD 19 from maternal serum (A) and fetal amniotic fluid (B).  

Pregnant SD rats were treated between GD5 and GD19 with rat chow supplemented with 0.2% 

w/w TCC (n=5, hatched bar), 0.5% w/w TCC (n=5, dark solid bar) or control food (n=4, gray 

solid bar).  Data represent mean±SEM of each group.  Data were analyzed with one-way 

ANOVA followed by Student-Newman-Keuls post hoc test.  Statistical significance set at 

p<0.05. * indicate statistical significance between groups.   
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Figure 3. Survival Status of Offspring                                                                                     

Survival of neonates raised by dams (n=5 litters per treatment group) exposed to 0.5% w/w TCC 

treatment from GD 5 through lactation (: born to and raised by 0.5% w/w treated dams).  All 

offspring born to and nursed by control dams survived until weaning.  Data were analyzed with 

Kaplan-Meier survival analysis.  Statistical significance was set at p<0.05.   
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Figure 4. Mammary Tissue Histology of Lactating Rats in Response to TCC Exposure 

Representative histology of mammary tissue collected from dams at selected time points.  Panel 

a: Normal mammary tissue collected from control dam on PND 21 (H&E 5X); panel b: 

Mammary tissue collected from 0.5% w/w exposed dam on PND 8 with moderate involution.  

Glandular elements are widely separated by adipose tissue (A) (H&E 5X); Panel c: Mammary 

tissue collected from 0.5% w/w exposed dam on PND 8, showing glands with decreased 

epithelial height (attenuation) indicated by green arrows and vacuolation of epithelial cells with 

fat (black arrows) (H&E 40X); Panel d: Mammary tissue collected from control dam on PND 14 

(H&E 5X); panel e: Mammary tissue collected from 0.5% w/w TCC exposed dam on PND 14 

with continuously provided healthy control pups to maintain suckle stimulation (H&E 5X).   
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Figure 5. TCC Concentration of Biological Samples Collected during Lactation                             

TCC concentration (ng/mL) of maternal serum (open bar), maternal milk (solid bar), and neonate 

serum (hatched bar) collected from control or TCC exposed dams on PND 6 and neonates raised 

by control or TCC exposed dams on PND 5.  Dams were exposed to TCC from GD 5 to PND 6 

(n=3 control; n=4, 0.2% w/w TCC; n=3 0.5 w/w TCC).  Neonate sera were collected from 

pooled neonates raised by each dam group (3 pooled sera from control; 4 pooled sera from 0.2% 

group; and 3 pooled sera from 0.5% w/w group).  Data represent mean±SEM of each group.  

Data were analyzed with one-way ANOVA followed by Student-Newman-Keuls post hoc test.  

Statistical significance set at p<0.05. * indicate statistical significance between groups.   
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Figure 6. Survival Status of Offspring by Birth Group                                                        

Survival of neonates nursed by A: 0.2% w/w exposed dams (: born to 0.2% w/w TCC treated 

dams; : pups born to 0.5% w/w TCC dams and : pups born to control dams) after crossover at 

PND 0 up to PND 21; B: 0.5% w/w TCC supplemented dams (: born to 0.2% w/w TCC treated 

dams; : pups born to 0.5% w/w TCC dams and : pups born to control dams).  All neonates 

raised by control dams survived beyond weaning regardless of their in utero exposure status.  

Only four offspring survived beyond weaning raised by 0.2% w/w TCC supplemented dams.  

Data were analyzed with Kaplan-Meier survival analysis followed by a log-rank test for trend to 

determine individual significance.  Statistical significance was set at p<0.05. 
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Table 4. Endpoints of Dams Exposed to TCC during GDs 5-19     

          

  TCC 

Endpoint Control 0.2% w/w 0.5% w/w 

No. of dams 4 5 5 

          

Initial body weight (g) 244.9±10.7 253.3±1.6 249.5±2.8 

GD 19 body weight (g) 339.1±11.1 337.8±6.1 316.3±5.2 

Body weight gain (g) (GDs 5-19)   94.2±3.7 85.0±6.6 66.7±4.7a,b 

Implantation No. 14.5±1.0 14.8±0.4 15.2±0.4 

Liver (g) 13.3±0.8 13.7±0.6 12.1±0.4 

Kidney (g) 0.77±0.04 0.77±0.03 0.73±0.01 

Adrenal (mg) 30.8±1.0 31.5±1.8 33.4±1.5 

Ovary (mg) 64.7±2.0 63.0±3.1 64.3±4.9 

Estradiol (pg/mL) 101.8±23.0 106.8±2.9 100.5±10.7 

Progesterone (ng/mL) 102.1±11.0 111.4±8.7 111.3±14.5 

Testosterone (ng/mL) 0.29±0.02 0.212±0.02 0.218±0.07 

T3 (ng/mL) 0.63±0.05 0.52±0.01 0.44±0.03a 

T4 (ng/mL) 22.1±4.1 20.9±3.0 18.1±2.0 

TSH (ng/mL) 13.7±1.9 16.0±1.1 13.1±1.6 

ANOVA, p<0.05; a: significant from control group and b: significant from 0.2% w/w TCC 

group.  
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Table 5. Body Weight and Relative AGD* of Offspring (PNDs 0-21) Stratified by 

Postnatal Exposure Status  

                

    TCC 

Endpoint   Control  0.2% w/w  0.5% w/w 

Litter No.     5   5   5 

                

Body weight               

PND 0 (g)     5.67± 0.06 (30)   5.71± 0.06 (30)   5.66± 0.06 (30) 

PND 3 (g)     9.19± 0.28 (30)   7.72± 0.13 (27)a   6.89± 0.25 (27)a,b 

PND 6 (g)     14.23±0.59 (30)   8.67± 0.63 (27)a   ND 

PND 9 (g)     21.46±0.84 (30)   12.06± 0.12 (17)a   ND 

PND 21 (g)     55.59±0.95 (30)   29.55 (4)**   ND 

              

Relative AGD             

PND 3     0.92±0.02 (30)   1.02± 0.05 (27)   0.92±0.03 (27) 

PND 6     1.03± 0.03 (30)   1.00± 0.04 (27)   ND 

PND 21      2.46± 0.03 (30)   2.51(4)**   ND 

ANOVA, p< 0.05;  a: statistical significance compared to control; b: statistical significance 

compared to control and 0.2% w/w groups on that specific PND; ND: no offspring survived on 

that specific PND.  *Relative AGD: AGD/cube root of body weight on that specific PND.  

**All the surviving offspring were raised in  the same litter.  Number in the parentheses 

indicates the total number of offspring surviving on that specific PND.  
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Table 6. Body Weight of Offspring Raised by Control Dams Stratified By In Utero 

Exposure Status  

                  

      In utero status 

  Endpoint   Control  0.2% w/w  0.5% w/w 

  Litter No.   5   5   5 

                  

Control 

Nursed 

PND 0 (g)   5.81±0.18(10)   5.79±0.12(10)   5.44±0.17(10) 

PND 3 (g)   9.81±0.40(10)   9.11±0.44(10)   8.63±0.34(10) 

PND 6 (g)   15.71±0.56(10)   13.82±0.77(10)   13.15±0.84(10) 

PND 9 (g)   23.30±0.64(10)   20.80±1.08(10)   20.30±1.22(10) 

  PND 21 (g)   58.30±0.89(10)   54.83±0.86(10)   53.64±1.85(10) 

                  

  PND 0 (g)   5.81±0.19(10)   5.83±0.11(10)   5.48±0.30(10) 

0.2% w/w 

Nursed 

PND 3 (g)   8.26±0.32(9)   7.74±0.29(10)   7.47±0.27(8) 

PND 6 (g)   9.18±0.79(9)   8.52±0.65(10)   8.40±0.60(8) 

PND 9 (g)   13.40±0.59(6)   12.20±0.49(6)   10.10±0.90(5) 

  PND 21 (g)   27.45±7.15(2)   ND   31.65±0.35(2) 

                  

0.5% w/w 

Nursed 

PND 0 (g)   5.84±0.14(10)   5.77±0.15(10)   5.64±0.13(10) 

PND 3 (g)   7.39±0.17(10)   7.07±0.37(8)   6.14±0.66(9) 

  PND 6 (g)   ND   ND   ND 

ND: no offspring survived on that specific PND; number in the parentheses indicates the 

number of offspring surviving on that specific PND. 
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Table 7. Relative Organ Weight of Offspring Raised by Control Dams Stratified by In 

Utero Exposure Status  

                

    in utero status 

Endpoint   Control 0.2% w/w 0.5% w/w 

Litter No.     5   5   5 

                

Body weight (g)     181.33±3.91   178.25±3.21   180.49±6.24 

Relative organ weight 
            

            

Pituitary    0.05±0.00    0.05±0.00    0.08±0.01  

Adrenal    0.14±0.01    0.14±0.01    0.15±0.01  

Kidney    3.57±0.12    3.60±0.03    3.61±0.07  

Liver   37.58±1.18    38.62±0.88    39.86±0.78  

Spleen    2.82±0.03    2.80±0.24   2.95±0.11  

              

Uterine Horn             

Wet    1.96±0.20    2.28±0.54   1.97±0.29  

Dry    1.79±0.16    1.86±0.18   1.67±0.17  

Ovary    0.57±0.023    0.49±0.04    0.50±0.02  

Offspring were terminated on estrus day prior to or shortly after PND 54; Relative organ 

weight: organ weight (g) x 1000/body weight (g) 
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CHAPTER III 

TEMPORAL DEVELOPMENT OF GUT MICROBIOTA IN 

TRICLOCARBAN EXPOSED PREGNANT AND NEONATAL RATS 
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Abstract  

Alteration of gut microbial colonization process may influence susceptibility of the 

newborn/infant to infectious and chronic disease.  Infectious disease risk during pregnancy and 

lactation leads to widespread use of non-prescription antimicrobials in household products such 

as Triclocarban (TCC), an antimicrobial compound in personal care products.  TCC concentrates 

in and is transferred through the milk to suckling offspring.  TCC exposure during gestation and 

lactation significantly reduced phylogenetic diversity (PD) among exposed dams and neonates.  

Among dams using weighted UniFrac distances, TCC induced significant dysbiosis of gut 

microbiota by gestational day (GD) 18, a trend that continued after delivery.  Similarly, an 

overall restructuring of gut microbiota occurred in neonates.  By postnatal day (PND) 12, 

communities separated based on exposure status and became significantly different at PND 

16.  The ability of TCC to drive microbial dysbiosis warrants future investigation to evaluate the 

safety of non-prescription antimicrobial use, including TCC, during critical exposure windows.   
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Introduction 

 The human intestinal tract harbors trillions of microorganisms comprised of at least 

1,000–5,000 species.1  The collective gut microbiota can act as an “ancillary organ” with a 

critical function in human health including regulation of host metabolism and energy balance, 

immune function stimulation, maintenance of host nutritional physiological homeostasis, and 

defense against pathogens.2,3  Indigenous gut microorganisms occupy available intestinal niches, 

therefore any transient species derived from the environment will not colonize and will instead 

pass through the gastrointestinal system.  In contrast, alternation or imbalance of the composition 

of commensal bacterial population could induce transient or permanent damage to the host with 

profound health consequences.4  

 At birth, microbial colonization is largely a product of the host environment and is tied to 

a variety of factors including delivery (vaginal/caeseran) and infant feeding mode 

(breast/formula feeding).5,6  Around the first year of life, the evolvement of infant gut microbial 

composition is dynamic with large community shifts that occur at transitional stages, i.e. when 

solid foods are introduced or during early exposure to prescription antibiotics.7,8  Close to the 

conclusion of the first year, the infant acquires a less dynamic gut microbial community that 

gradually converges to a more adult-like profile.7   

 The composition of the gut microflora can have a broad impact on the health of the host; 

it is well established that prescription antibiotic exposure can disrupt the balance of the intestinal 

microbiota potentially leading to unintentional side-effects; alteration of the colonization process 

may influence susceptibility of newborn/infant to infectious disease in the short-term and lead to 

immune mediated and metabolic disorders later in life.3,4  More than 40% of pregnant women are 
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prophylactically prescribed antibiotics during pregnancy/birth for prevention of preterm labor, 

vertical pathogen transmission to the infant, and maternal morbidity after caesarean section.9 

While the average pregnant or lactating female does not control the use of prescription 

antibiotics, precaution and fear of infectious disease outbreak in human populations leads to 

widespread use of non-prescription antimicrobials in household products.10,11  It is estimated that 

more than 10 million women are either pregnant or lactating in the United States at any given 

time and the use of antimicrobial personal care products is increased among this population 

without confidence in the safety of antimicrobial exposure during early-life periods.10,11,12  

Specifically, the impact of early-life non-prescription antimicrobial compound exposure on both 

intestinal microbiota community integrity and the resultant health outcomes are understudied.  

 Triclocarban (3,4,4′-trichlorocarbanilide; TCC) is a high production volume 

antimicrobial, used in personal care products, at a mass of up to 1.5% in certain brands of bar 

soaps.13,10  TCC can be absorbed through the skin and has been detected in adult human urine, 

serum and in cord blood indicating exposure throughout the lifespan.14-16  Volunteers with 

frequent exposure through the application of TCC containing products tend to have a higher TCC 

body burden in the circulation.17  Recent evidence demonstrates that human exposure to TCC 

may not be limited to the purposeful use of antimicrobial products, but could occur through the 

diet.18  Following incomplete removal by wastewater treatment process, TCC is detected in 

nutrient-rich sludge that may be applied as agricultural fertilizer leading to safety concerns 

regarding the potential intake through the food chain.19   

 Previously our group reported that TCC concentrates in the breast milk after dietary 

exposure in a rodent model indicating potential neonatal TCC exposure via lactation.20  
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Furthermore, neonates with TCC exposure during lactation had distended gastrointestinal tracts 

with liquid, mustard-colored diarrhea implying the disturbance of intestinal microbiota and hence 

a dysbiotic status.  In this report, we utilized a rodent model to investigate and characterize the 

temporal dynamics of intestinal microbiota in pregnant dams and neonatal rats in response to 

TCC exposure during gestation and lactation.  

Materials and Methods 

Animals and Husbandry 

 Timed-pregnant Sprague Dawley (SD) rats were purchased from Harlan Laboratory 

(Dublin, VA).  The day after mating was designated as gestational day (GD) 1.  Upon arrival, 

animals were weight ranked and randomly assigned to control or treatment groups (n=4/group). 

Animals were housed individually under specified conditions (12:12-hour light cycle, 

temperature of 20°C to 22°C, and relative humidity of 40% to 50%) with ad libitum access to 

water and commercial Harlan ground 2020X chow or 2020X supplemented with 0.1% w/w TCC 

(purity 99%, Sigma Aldrich, St Louis, Missouri) daily from GD 4 until 16 days after delivery.  

This period was chosen as we demonstrated that TCC could cross the placental barrier and 

accumulate in the milk of lactating rats.20  The Animal Use and Care Committee at the 

University of Tennessee, Knoxville, approved all study protocols. All methods were conducted 

in accordance with the Institutional Animal Care and Use Committee (IACUC) guidelines. This 

investigation was conducted in an animal facility fully accredited by the Association for 

Assessment and Accreditation of Laboratory Animal Care. 
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Fecal/cecum Sample Collection 

 Fecal samples from dams (n = 4/group) and cecum content (n = 3/group) from neonates 

were collected at designated dates throughout gestation and lactation.  Briefly, for fecal 

collection, an individual dam was removed from the home cage and placed in a clean cage free 

of bedding. The tail of the rat was lifted to facilitate the discharge of feces.  Stainless steel 

forceps were used to collect fecal pellets immediately after the samples were produced.  All tools 

were autoclaved prior to use and changed between cages.  Fecal samples were collected at 

baseline (GD 4), 7 days post-treatment (GD 11), 14 days post-treatment (GD 18), and 16 days 

after delivery (AD) corresponding to 34 days after the initiation of exposure regimen.  No fecal 

samples were collected from dams between GD 18 and any days prior to the final day of the 

study to reduce disturbance prior to the delivery and during lactation.  

 Collection of cecum content from neonates was a terminal procedure.  Samples were 

collected between 8:00 AM and 12:00 PM on the day of sacrifice.  At postnatal day (PNDs) 3, 6, 

12 and 16, within each group, two female neonates were randomly selected from each dam.  

Cecum content from each neonate was removed and combined into three pools so that no 

individual pool contained two neonates born to the same dam.  The maternal origin of the 

composition of each pool was made consistent at each subsequent collection date.  In other 

words, if cecum content from a neonate born to a specific dam was added to a designated pool on 

PND 3, cecum content from an additional neonate born to the same dam was used to create the 

same pool on PND 6.  Fecal/cecum samples were snap frozen immediately following collection 

and stored at -80° C until analysis.  
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Neonatal Histology 

 At PND 12, neonatal gastrointestinal tracts (jejunum and cecum) were collected from 

male neonates with or without TCC exposure during lactation and fixed in 10% formalin.  Tissue 

sections were examined with hematoxylin-eosin (H&E) staining.  A board-certified pathologist, 

blinded to treatment status, evaluated histological changes. 

DNA Isolation, Amplification, and 16S rRNA Sequencing  

DNA Extraction, Amplification and Clean-up 

 DNA was extracted from frozen fecal/cecum samples with the Power fecal DNA 

isolation kit (Mo Bio Laboratories, Inc. Carlsbad, CA) following manufacturer’s instructions. 

Extracted DNA samples were quantified with Nanodrop 1000™ and stored at -80 °C until PCR 

amplification. DNA was amplified by targeting the V4 region of the bacterial 16S rRNA gene as 

described by Caporaso et al.21   

 The initial PCR product was purified with DNA gel electrophoresis to remove DNA 

impurities and primer dimers.  The concentration of purified amplicon product was measured 

with Qubit dsDNA HS Assay Kit (Life Technologies, Carlsbad, CA) and normalized to an equal 

concentration to create a single amplicon pool.  

Bacterial Barcoded Amplicon Library Preparation, Sequencing and Sequence Analysis  

Beads Clean-up 

 Pooled amplicons were purified with SPRIselect (Beckman Coulter, Inc., Indianapolis, 

IN) following the manufacturer’s protocol (Next-flex™ 16S V4 Amplicon Seq-kit manual).  The 



105 

 

products were analyzed with Agilent High Sensitivity DNA Analysis (CHIP) Kit for quality 

assurance on a 2100 Bioanalyzer (Agilent, Santa Clara, CA).  

Library Quantification and Illumina Sequencing  

 The pooled amplicon library concentration was quantified with the Illumina Library 

Quantification kit (KAPA Biosystems, Boston, MA) prior to sequencing.  Quantitative PCR was 

performed with the KAPA SYBR® FAST qPCR Master Mix (2X).  The amplicon library was 

diluted to a starting concentration of 10 nM and sequenced on the Illumina MiSeq sequencer 

(Illumina, Inc., San Diego, CA).  

Sequence Data Analysis  

 The resulting raw sequencing data was analyzed using the QIIME (v1.8.0) pipeline.22  

Unless otherwise stated all python scripts reside within QIIME.  The script, join_paired_ends.py, 

was used to generate the assembled paired-end reads.  Next, paired-end sequences were 

demultiplexed and quality filtered with Phred score no less than 20.  The UCHIME program was 

used to detect chimeras on assembled reads via identify_chimeric_seqs.py.  Operational 

taxonomic units (OTU) were generated using the script, pick_open_reference_otus.py, with 97% 

similarity via UCLUST.23  The OTU taxonomy was assigned using the Ribosomal Database 

Project (RDP) classifier with the May 2013 Greengenes release in QIIME, and then aligned via  

PyNAST.24  Any OTU present at less than 0.005% of the total read count was filtered to remove 

the potential influence of spurious OTUs.25,26  The resulting filtered output was used to make a 

phylogeny (make_phylogeny.py).  The phylogeny was then rooted to Bacteroidetes.  All samples 

were rarefied at a minimum sequencing depth of 55,000 OTUs.  The script alpha_rarefaction.py 
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was used to confirm the appropriate minimum sequencing depth across samples.  16S datasets 

were deposited in the Sequence Read Archive under accession number: SRP067613. 

Statistics 

 Statistical analysis was conducted in R (version 3.1.2)  using Phyloseq unless otherwise 

noted.27  Microbial community composition by treatment group at each fecal/cecum collection 

date was visualized using Principal Coordinate Analysis (PcoA) plots constructed with weighted 

UniFrac distances.28  Community level statistical significance was tested with the nonparametric 

ADONIS function in the Vegan package at each individual time-point.29,30  ADONIS 

permutations were stratified by collection date among neonates in the Vegan package to account 

for sampling across time.  A repeated measures permanova was conducted on dam samples 

stratified by rat ID using the BiodiversityR package, with separate whole and sub-plot analyses.   

Post-hoc analysis of repeated measures ADONIS results were analyzed with the Vegan package 

to dissect significant time-treatment interactions.  Within sample richness and evenness were 

estimated using Shannon’s index.  Faith’s phylodiversity (PD) metric was calculated via 

QIIME.31  Dam alpha diversity estimates were analyzed using two-way ANOVA with repeated 

measures and neonate alpha diversity was analyze by ANCOVA using dam GD 18 alpha 

diversity as a covariate in SigmaPlot (version 13) with Bonferroni post-hoc test.  Data were 

presented as group mean±SEM.  Relative abundance of OTUs at the phyla and family level were 

visualized with Phyloseq.27  Statistical significance was set at alpha = 0.05.  
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Results 

Influence of Gestational and Lactational TCC Exposure on Dam Fecal Microbiota  

Alpha and Beta Diversity 

 After quality filtering and removal of any OTU present at less than 0.005% of the total 

read count, 54 samples comprised of 4,931,803 sequences remained with an average of 91,330 

sequences per sample.  Neither Shannon’s index nor phylogenetic diversity differed between 

control and exposed dams prior to TCC exposure at baseline (GD 4).  TCC exposure 

significantly reduced the diversity of microbiota in feces of treated animals compared to controls 

at 7 days after treatment (GD 11: Shannon 4.93 ± 0.88 vs 3.73 ± 0.180, Figure 7A; PD 26.5 ± 

0.338 vs 21.7 ± 0.277, Figure 7B).  This trend continued throughout gestation after 14 days of 

treatment at GD 18 (Shannon 4.97 ± 0.077 vs 3.50 ± 0.123, Figure 7A; PD 25.9 ± 0.204 vs 

19.1± 0.522, Figure 7B) and into lactation 16 days after delivery (AD 16), corresponding to 34 

days of TCC exposure when both measures were significantly suppressed in the exposed dams 

compared to controls (Shannon 4.59 ± 0.109 vs 4.14 ± 0.051, Figure 7A; PD 25.9 ± 0.143 vs 

19.4 ± 0.272, Figure 7B; two-way ANOVA, p<0.05).  The phylogenetic diversity of control 

samples was relatively stable across time, but decreased among exposed dams from GD 4 until 

16 days after delivery (AD 16) at the end of the study.  

 A principal coordinate’s analysis (PCoA) plot of weighted UniFrac distances is shown in 

Figure 8 to visualize beta diversity dissimilarity over time among dams.  The PCoA 

demonstrated an initial shift from baseline in both control and TCC treatment dams at GD 11. 

Microbiota structure became statistically dissimilar by 14 days of treatment (GD 18; R2 = 0.69, 

ADONIS p<0.05) and remained different until AD 16 (34 days of TCC exposure; R2 = 0.69, 
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ADONIS p<0.05).  Repeated measures analysis revealed a significant interaction between time 

and treatment (R2 =0.27, ADONIS p<0.05).  Post-hoc analysis demonstrated that a significant 

time-treatment interaction occurred beginning at GD 11 after which microbial communities in 

control and treatment dams behaved differently.   

Fecal Microbiota Community Composition 

  Figure 9 shows the relative abundance of the gut microbial community composition of 

dams over time, during pregnancy and lactation.  At the phylum level, no consistent differences in 

pattern developed between control and exposed dams (Figure 9A).  The effect of TCC was more 

pronounced at the family level (Figure 9B).  Across the study period in control dams, S24-7 

dominated fecal microbiota with relative OTU fluctuating from 11% at GD 11 to 14% at GD 18 

and reached 26% by 34 days of exposure (AD 16).  After dams were exposed to 0.1% w/w TCC 

for 7 days (GD 11), 30% of the gut community structure was occupied by microbes belonging to 

the Bacteroideaceae family.  Across time in TCC exposed dams, this compositional trend 

continued, but oscillated from 50% at 14 days (GD 18) of exposure to 16% at 34 days exposure 

(AD 16) (Figure 9B).  

Influence of Gestational and Lactational TCC Exposure on Neonatal Microbiota  

Alpha and Beta Diversity 

  Among neonates, Shannon’s index did not differ between the two groups across the study 

period.  Phylogenetic diversity became significantly different on PND 16 (PD 19.51 ± 0.59 vs 

9.18 ± 1.35 Figure 10B; ANCOVA, p < 0.05).   

  The effect of TCC exposure on beta diversity is shown in Figure 11 using weighted 

UniFrac distances.  Regardless of treatment status, an initial stochastic pattern emerged at PND 3 
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followed by convergence at PND 6.  After PND 6, the weighted UniFrac distances behaved 

similarly between control and exposed groups. By PND 12, separation based on treatment status 

occurred which became significantly different at PND 16 (R2 = 0.87, ADONIS p<0.05).  Repeated 

measures analysis revealed an effect of collection date (R2 = 0.25).   

  To determine microbial similarity between neonates and dams, we further compared 

weighted UniFrac distances of neonatal samples during lactation in relation to dam samples at GD 

18.  Figure 12A demonstrates initial clustering between control dams at GD 18 and control 

neonates at PND 3; neonatal diversity then reorganized, moving away from dams at PND 6 and 

again clustered more closely with dams at PND 12 and PND 16.  The visualization between TCC 

exposed dams and exposed neonates is shown in Figure 12B.  Note that samples of exposed 

neonates were isolated away from dams at all time points.  

Cecum Microbiota Community Composition  

  While relative abundance of microbiota present in neonate samples revealed a dominance 

by three phyla: Proteobacteria, Firmicutes, and Bacteroidetes regardless of collection date or 

treatment status (Figure 13A), among control samples, the relative contribution of Bacteroidetes 

increased overtime to 65% and became the dominant phylum at PND 16.  In contrast, 

Proteobacteria consistently monopolized and increased to 78% in exposed neonates at the same 

collection date.  The community composition of cecum contents from neonates at the family level 

is shown in Figure 13B.  Visually, control samples became more diverse over time reflecting the 

increased phylogenetic diversity and consistency with data shown in Figure 13B.  

Enterobacteriaceae dominated TCC exposed samples as lactation progressed, reaching 77% by 

PND 16.    
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TCC Exposure on Pathology of Neonatal Gastrointestinal Tract 

 Grossly, TCC exposure during gestation and lactation led to enlarged abdomens with 

mustard colored diarrhea in neonates.  The formalin fixed gut of a control and an exposed 

neonate at PND 12 are shown in Figure 14 A and B respectively.  Compared to controls, the 

gastrointestinal tracts of TCC exposed neonates were filled with gas and liquid.  H&E staining of 

the large (cecum) and small intestine (jejunum) is shown between control (Figure 14C) and TCC 

exposed neonates at PND 12 (Figure 14D).  No apparent histological differences were noted 

between the two groups.    

Discussion 

It is common for women during pregnancy and lactation to choose non-prescription 

antimicrobial containing products for prophylactic reasons.10,11  TCC has been detected in human 

serum and cord blood suggesting a systemic distribution of this hydrophobic compound through 

maternal circulation.15,16  Hydrophobic drugs are likely to concentrate in breast milk because of 

the high lipid load.32  Detection of TCC is reported in human milk, implying that as the natural 

and optimal food for infants, breast milk may serve as the primary exposure route to TCC among 

breastfed infants.33  We recently demonstrated that TCC was transferred through the milk to 

suckling neonates.20  Pups exposed to TCC through lactation had distended gastrointestinal tracts 

with liquid, mustard-colored diarrhea.  Further, the concentration of TCC identified in the milk of 

exposed dams was four times higher than the corresponding levels found in maternal circulation.20   

The potential TCC exposure among nursing infants dictates the need to investigate the effect of 

TCC on the gut microbiota composition during early life.   
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In this study, to determine the dynamics of gut microbial community structure in neonatal 

and pregnant/lactating rats in response to TCC exposure, fecal/cecum material were collected at 

specific time-points during gestation and lactation.  Provision of TCC during gestation and 

lactation altered the community structure of dam fecal microbiota over time.  In dams, alpha 

diversity was significantly reduced in exposed animals at all collection dates after baseline (Figure 

7 A and B).  Beta diversity was significantly dissimilar on both GD 18 during gestation and on 16 

days post-delivery (AD 16) in exposed compared to control dams (Figure 8).  Weighted UniFrac 

ADONIS stratified to each sample over time revealed a significant interaction between time and 

treatment that occurred at GD 11.  Here, distances remain relatively stable among exposed dams 

across the study while microbial distance among control animals becomes more dynamic after GD 

11.  Thus, it appears that TCC as an antimicrobial confines distance of exposed dams relative to 

controls.  

In the dam, the effect of TCC exposure on beta and alpha diversity was mirrored in the 

microbial relative abundance at the family level (Figure 9B).  Provision of TCC during gestation 

and lactation induced the overgrowth of Bacteroidaceae across the study period.  Increased 

occupancy by Bacteroidaceae, is demonstrated in murine models of experimentally induced 

colitis.34,35  Because we did not observe adverse gastrointestinal reactions (i.e. diarrhea) in the 

adult animals during the study period, histological assessment was not conducted.    

  Among suckling neonates, TCC exposure led to microbial diversity loss.  Within cecum 

samples collected from exposed neonates, visually the overall alpha diversity declined overtime 
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with significant suppression of phylogenetic diversity at PND 16 (Figure 10B) compared to 

controls.   

 During infancy, one view of antibiotic-induced dysbiosis purports that the gut 

microbiome responds to prescription antibiotics with the loss of keystone taxa and metabolic 

shifts in the short-term.4  Even after antibiotic treatment ends, keystone taxa may not have 

recovered and the loss of diversity could allow for the bloom of pathogens and pathobionts.  In 

this study, unexposed neonatal communities became more diverse over time while TCC 

exposure, like prescription antibiotics,4 restricted diversity of colonizing species during the same 

period (Figure 10 A and B).   The health outcomes of this taxa loss remain to be determined.   

 A similar pattern developed when neonatal beta diversity was evaluated, whereby in 

control and TCC exposed neonates, an initial stochastic pattern emerged at PND 3.  At PND 6, 

an overall restructuring occurred where control and TCC exposed communities converged.  

Starting from PND 12, communities separated based on exposure status and became significantly 

different at PND 16 (Figure 11).  The overall restructuring that occurred among samples 

collected from control neonates at PND 6 was interesting though may provide an indication of 

the normal colonization process.  Using Friend leukemia virus B mice, Pantoja-Feliciano et al. 

(2013) demonstrated suppressed diversity at PND 3 and 9, compared to day 1, that increased 

again to levels similar to dams at PND 21.36 Additionally, Palmer et al. (2007) reported that the 

mean Pearson’s correlation between human infant and adult fecal microbiota increased from day 

0 until around day 5 post-birth, when an apparent population rearrangement occurred resulting in 

the divergence from adult samples.7  Thereafter, infant microbial profiles again correlated more 

closely to adults throughout the first 18 months of life.   
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 We demonstrated that distances of samples from control neonates at PND 3 clustered 

around microbiota of control dams at GD 18 (Figure 12A).  By PND 6, a population shift 

occurred, with movement of neonates away from that of dams.  At PNDs 12 and 16, the neonatal 

distance from dams decreased at each respective time-point.  Microbiota may initially be 

acquired and only those microbes that can occupy the niche specific of the infant gut will 

colonize.4  We postulate that among control neonates, the initial dam-neonate similarity reflects 

the microbiota transferred either from the dam or environment over the first few days of life.  At 

PND 6, only those microbes that can occupy the neonatal cecum biome propagate.  This in turn 

produces a more hospitable microbial environment, driving increased diversity and similarity to 

adult dam samples at PNDs 12 and PND 16.   

 The distance similarity noted between control dams at GD 18 and neonates at PND 3 was 

not demonstrated among TCC exposed dams and their neonates (Figure 12B).  Here, among 

exposed neonates, early life TCC exposure constrained the progression to a more diverse state. 

One limitation of this study design was that samples were not collected prior to PND 3. Thus we 

cannot comment on the potential similarity of TCC exposed neonatal microbiota to dams at the 

time of delivery.  Additional limitations such as the small sample size and the fact that the 

neonatal samples were pooled is noted.  Further, because exposure during gestation and lactation 

was not separated we could not dissect the effect of early microbial restriction at gestation or 

lactation individually.  A cross-fostering design with increased sample size including early time 

point data collection should provide further insight into the normal colonization process at early 

life stages.   
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 The infant gut is first colonized by facultative anaerobes such as Enterobacteriaceae that 

lower the redox potential allowing for growth of strictly anaerobic bacteria.37  Among neonates 

at PND 3, Enterobacteriaceae dominated in both control and treated groups (Figure 13B).  After 

PND 6, Bacteroidaceae gained a stronghold in control samples.  In contrast, Enterobacteriaceae 

maintained dominance in TCC exposed samples from PND 6 until the end of the study period.  It 

appears that the overgrowth of Enterobacteriaceae primarily contributed to the significant 

differences in diversity after PND 6 observed between the two neonatal groups.  The relative 

contribution of Enterobacteriaceae may also explain the convergence at PND 6.  TCC shows 

selective efficacy for Gram positive bacterial strains.38  If mostly Gram negative bacteria 

dominated at PND 6 in both groups, the effect of TCC may be minimal.  However, with 

consistent exposure few Gram positive bacteria, for example, may colonize overtime 

contributing to the diversity difference between the two groups.  Enterobacteriaceae bloom in 

the gut microbiota is documented among human infants in response to prescription antibiotics 

and is associated with potentially life threatening diseases such as necrotizing enterocolitis.39-41  

Furthermore, a reduction in the ratio of Bacteriodeace to Enterobacteriaceae of the human infant 

gut is indicated in later-life health outcomes, such as food sensitivities.42  Collectively, our 

results should drive future research regarding both short and long-term health consequences 

related to TCC exposure in humans, specifically during early life.  

 Because diarrhea was not documented in TCC exposed dams, histological evaluation was 

limited to neonates only (Figure 14).  It was interesting to note that exposed neonates showed 

distended abdomens with mustard-colored diarrhea, though no apparent histopathological 

differences were identified (Figure 14 C and D).  Currently, the mechanism of TCC-induced 
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diarrhea among the neonates is unknown.  However, given its antimicrobial nature, TCC may act 

similarly to prescription antibiotics.  The use of many prescription drugs, including antibiotics, 

can lead to diarrhea onset, commonly without organic lesions.43  Antibiotic-associated diarrhea 

(AAD) is unexplained diarrhea that is associated with antibiotic administration.44  The 

mechanisms of AAD are diverse and may be related to the pharmacokinetic properties of the 

drug itself or to suppression of the gut microbiota.   

  Following the stable establishment of the gut microbiota, oscillations in the community 

structure can occur with exposure to prescription antibiotics leading to dysbiosis of the gut 

ecosystem.45  These compositional changes can induce opportunistic pathogen overgrowth 

resulting in infectious disease (i.e. C. difficile infection) in the short-term and chronic disease 

(i.e. asthma and diabetes) throughout life.  Like prescription antibiotics, we demonstrated the 

ability of a non-prescription antimicrobial TCC, to induce gut microbial dysbiosis during 

sensitive exposure windows in a rat model.  Collectively, our results add to the growing public 

concern related to the potential human health impact of non-prescription antimicrobial exposure 

and should guide regulatory agencies in policy decisions regarding the use of non-prescription 

antimicrobials in personal care products during critical physiological stages.    
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Appendix 

 

 

Figure 7. Alpha Diversity of Dams during Gestation and Lactation                                           
Shannon’s diversity index (A) and phylogenetic diversity (B) is shown at GDs 4 (baseline), 11, 

18 and 16 days after delivery (AD) (control: gray bar, 0.1% w/w: black bar; n=4/group).  Data 

represent mean ± SEM of each group.  Data were analyzed with two-way ANOVA with repeated 

measures followed by Bonferroni post-hoc test.  Statistical significance was set at p=0.05; (*) 

indicates statistical significance at each time point relative to controls.  
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Figure 8. Beta Diversity of Dams during Gestation and Lactation                                                    
Principal coordinate analysis of weighted UniFrac distances is shown among dams at GDs 4 

(baseline), 11, 18 and 16 days after delivery (AD) (control: gray circle, 0.1% w/w: black circle; 

n=4/group).  Statistical significance of community level microbial distance was analyzed with 

ADONIS, in the Vegan package, at each collection date.  Repeated measures analysis was 

conducted and significant time-treatment interactions were investigated with the Vegan package.  

(*) indicates statistical significance at each time point relative to controls.  
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Figure 9. Relative Abundance of Bacteria among Dams                                                                                               

Relative abundance shown at the phylum (A) and family (B) levels by collection date at GDs 4 

(baseline), 11, 18 and 16 days after delivery (AD) (n=4/group).  At the family level, only the top 

100 OTUs are shown.  Taxon labeled within square brackets indicate GreenGenes proposed 

taxonomy. 
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Figure 10. Alpha Diversity of Neonates during Lactation                                                      
Shannon’s diversity index (A) and phylogenetic diversity (B) is shown at PNDs 3, 6, 12 and 16 

(control: gray bar, 0.1% w/w: black bar; n= 3/group).  Data represent mean ± SEM of each 

group.  ANCOVA at each individual time point was conducted using alpha diversity of dams at 

GD 18 as the covariate for phylogenetic diversity and Shannon’s index followed by Bonferroni 

post hoc test.  Statistical significance was set at p=0.05; (*) indicates statistical significance at 

each time point relative to controls.  
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Figure 11. Beta Diversity of Neonates during Lactation                                                                 

Principal coordinate analysis of weighted UniFrac distances is shown at PNDs 3, 6, 12 and 16 

(control: gray circle, 0.1% w/w: black circle; n= 3/group).  Community level statistical 

significance was analyzed using ADONIS, in the Vegan package.  Repeated measures analysis 

was conducted and significant time-treatment interactions were investigated with the Vegan 

package.  (*) indicates statistical significance at each time point relative to controls.  
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Figure 12.Comparision of Beta Diversity between Dams at the Last Collection Date Prior to 

Birth and Neonates across Lactation  
Comparison of the principal coordinate analysis of weighted UniFrac distances among samples 

collected from A: control dams (gray circles, n=4) at GD 18 and samples collected from their 

offspring (n=3) at PNDs 3 (triangle), 6 (square), 12 (cross) and 16 (star);   (B):  0.1% w/w TCC 

exposed dams (black circles, n=4) at GD 18 and samples collected from their offspring (n=3) at 

PNDs 3 (triangle), 6 (square), 12 (cross) and 16 (star).   
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Figure 13. Relative Abundance of Gut Bacteria among Neonates                                       

Relative abundance of bacteria among neonates at the phylum (A) and family (B)  levels by 

collection date at PNDs 3, 6, 12 and 16 (n= 3/group).  At the family level, only the top 50 OTUs 

are shown. Taxon labels within square brackets indicate GreenGenes proposed taxonomy. 
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Figure 14. Histology of Neonate Intestinal Tract                                                           
Representative histology of formalin fixed gross gastrointestinal morphology in control (A) and 

0.1% w/w TCC (B) exposed male neonates at PND 12.  Large intestine (cecum) and small 

intestine (jejunum) is shown from control (C) and 0.1% w/w TCC (D) exposed neonates at PND 

12 (H&E, 20X).  

 

 

 

 

 

 

 

 

 



127 

 

CHAPTER IV 

TEMPORAL DYNAMICS OF THE GUT MICROBIOTA IN 

TRICLOCARBAN EXPOSED WEANED RATS 
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Abstract 

Alternations on the gut microbiota as a result of antibiotic exposure can lead to 

pathogenesis, when the homeostatic diversity of gut microbiota is disrupted such that 

opportunistic pathogens overgrow without competitive suppression from normal resident 

bacteria.  Widely used as an antimicrobial in bar soaps, triclocarban (3,4,4′-trichlorocarbanilide; 

TCC) is effective against Gram positive bacteria, but shows little efficacy against Gram negative 

strains.  To date, the consequence of antimicrobial exposure from compounds in personal care 

products is still elusive.  Weaned (PND 22) SD rats were provided ad libitum access to TCC 

supplemented diet (0.2 % w/w or 0.5% w/w) for four-weeks (Phase I) followed by a four-week 

washout period (Phase II) to determine microflora rebound with TCC withdrawal. Fecal samples 

were collected at PND 22 and throughout the study period. DNA was extracted, followed by 

PCR amplification of the V4 region of 16S rDNA and sequencing with the MiSeq platform.  

Exposure to both 0.2% w/w and 0.5% w/w was sufficient to alter diversity of microbiota 

throughout phase I of treatment.  Repeated measures analysis demonstrated a prolonged effect of 

TCC exposure during phase II of the washout period (ADONIS, p<0.05).   Further, TCC 

exposure altered the community composition of gut microbiota translating into an increased ratio 

of Firmicutes to Bacteroidetes in both exposed groups compared to control microbiota during 

phase I. Collectively, these data highlight the present and long term impact of early life TCC 

exposure on gut microbial ecology and warrant further investigation into the clinical 

manifestations of this dysbiotic state.   
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Introduction 

 The human intestinal tract is home to a microcosm of trillions of microbes that act in 

symbiosis with the human host to protect against pathogens, regulate the immune system, and 

procure food nutrients.1  The human fetal environment was initially considered sterile and 

acquisition of infant gut microbiota was thought to occur during the birthing process, with rapid 

colonization following delivery.2  Evidence now demonstrates that microbial programming 

begins in utero when the fetus comes into contact with microbes of the maternal gut through the 

placenta and amniotic fluid.  Postnatal gut microbial colonization is dynamic with two primary 

shifts from birth to weaning and weaning to adulthood when the introduction to food diversifies 

the infant gut microbiota to a more adult-like profile with relative stability around 3 years of 

age.3  

 Environmental insults during early life, such as prescription exposure, can disrupt 

microbiome stability. 4  Children are prescribed antibiotics more than any other medication 

available.4 The sometimes inappropriate use of prescription antibiotics during early life can alter 

colonization patterns influencing susceptibility to infectious disease in the short-run and 

metabolic, immunologic and even behavioral outcomes later in life.3,5,6   Though the average 

parent does not decide whether their child is prescribed prescription antibiotics, they are in 

control of their consumer purchases.  Marketing campaigns have successfully convinced the 

public to purchase antibacterial soaps though the efficacy over regular soap in the community 

setting to reduce infectious disease has not been established.7,8 Antimicrobials added to 

consumer products tend to have a broader activity spectrum than prescription antibiotics and 

while prescription antibiotics have specific intracellular targets, antimicrobials may have 
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multiple targets or an undefined mode of action,9 suggesting an increased risk for microbial 

dysbiosis.  

 Triclocarban (3,4,4′-trichlorocarbanilide; TCC) is a high production volume antimicrobial 

added to personal care products at a weight of up to 1.5%. 10,11  As an antiseptic normally applied 

to the skin, TCC has an affinity for Gram positive bacteria with reduced efficacy for Gram 

negative strains,9 suggesting the potential structural disruption of mixed population microbial 

communities.  Following external application, TCC can be absorbed through the skin and has 

been detected in biological matrices collected from pregnancy to adulthood suggesting lifelong 

exposure beginning during sensitive windows of physiological development.12-14  Alternatively, 

human exposure to TCC could occur through the diet as an outcome of the incomplete removal 

of antimicrobials by the wastewater treatment process.15  Treated wastewater is used to irrigate 

food crops while biosolids contaminated with TCC are used as fertilizer increasing the 

persistence of antimicrobial compounds in the soil and leading to the potential uptake by the 

edible parts of the plant.15,16 Though the level of exposure expected from the food is thought to 

be lower than no observed effect levels (NOAEL) of 25 mg/kg bw/d and is therefore not 

estimated to be chronically toxic to humans,17 the effect of the assumed exposure on more 

sensitive endpoints, such as the gut microbiota is unknown.  

 Historically, TCC toxicity has been tested through oral exposure with an emphasis on 

reproductive function.18  To date, the effect of TCC exposure through oral dosing on the gut 

microbiota has not been investigated. From the standpoint of utilizing oral toxicity models alone, 

this information is important.  Growth data, including body weight is routinely evaluated in 

toxicological studies to understand compound related effects.19  A large body of research now 
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indicates an important role of gut microbial signaling in energy balance and energy stores.20 

Therefore, it is possible that exogenous compound exposure could influence the gut microbiota 

composition resulting in weight changes independent to acute or chronic toxicity.  Given the 

evidence of human exposure to antimicrobial compounds during infancy and childhood and the 

potential oral exposure through the food chain, in this report, we utilized a rodent model to 

investigate and characterize the temporal changes of the biodiversity and composition of 

intestinal microbiota of post-weaned rats in response to oral TCC exposure.  

Materials and Methods 

Animals and husbandry 

 Sprague Dawley (SD) rats were purchased from Harlan Laboratory (Dublin, VA) and 

arrived on postnatal day (PND) 21.  Animals were weight ranked and randomly assigned to 

control or treatment groups (n=4/group). Two animals from the same treatment group were 

housed per cage with a12:12-hour light cycle, temperature of 20°C to 22°C, and relative 

humidity of 40% to 50%.  Animals were provided ad libitum access to water and commercial 

Harlan ground 2020X chow or 2020X supplemented with 0.2% or 0.5% w/w TCC (purity 99%, 

Sigma Aldrich, St Louis, Missouri) from PND 22 until PND 50. At PND 50, the diet of TCC 

exposed animals was switched to control chow and animals were maintained on chow diet until 

PND 78 as a washout period to understand the potential rebound of gut microbial communities 

exposed to TCC.  Animals in the control group were provided regular chow throughout the entire 

study period.  The period when TCC exposure was initiated will be referred to as phase I.  When 

TCC exposure was removed will be referred to as phase II.  Potential poor palatability of TCC 
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supplemented chow has been noted in the literature.18  To monitor the consistency of 

consumption across the exposure groups, food intake was recorded to ensure that gut microbial 

community changes were not the results of amount of chow consumed, but were limited to TCC 

exposure.   Food intake was collected for a two week period from PND 31, just prior to the 

typical onset of sexual maturity.21  Feed conversion efficiency (g weight gain/g food intake)22 

with exposure to TCC was analyzed and body weight changes were recorded. During this period, 

animals were housed individually. Following conclusion of the two week period when food 

intake was measured, animals were again housed two per cage.  The Animal Use and Care 

Committee at the University of Tennessee, Knoxville, approved all study protocols.  All methods 

were conducted in accordance with the Institutional Animal Care and Use Committee (IACUC) 

guidelines. This investigation was conducted in an animal facility fully accredited by the 

Association for Assessment and Accreditation of Laboratory Animal Care. 

Fecal/cecum sample collection 

 Fecal samples were collected at designated dates for 28 days of exposure and 28 days of 

washout.  Briefly, for fecal collection, an individual rat was removed from the home cage and 

placed in a clean cage free of bedding. The tail/hind legs of the rat were gently lifted to facilitate 

the discharge of feces.  Stainless steel forceps were used to collect fecal pellets immediately after 

the samples were produced.  Directly following collection, fecal pellets were snap frozen and 

stored at -80° C until analysis.  All tools were autoclaved prior to use and changed between 

cages.  Fecal samples were collected at baseline (PND 22, prior to exposure to TCC 

supplemented diet), 2 days post-treatment (PND 24), 5 days post-treatment (PND 27), 12 days 

post-treatment (PND 34), and 28 days post-treatment (PND 50).  After treatment was removed, 
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fecal samples were collected at 2 days post- washout (PND 52), 8 days post-washout (PND 58), 

11 days post-washout (PND 61) and 28 days post-washout (PND 78).  Feces collection was most 

frequent closer to initiating treatment and removal of treatment to catch the early dynamics 

shortly after and following removal of TCC exposure.   

DNA Isolation, Amplification, and 16S rRNA Sequencing  

DNA Extraction, Amplification and Clean-up 

 DNA was extracted from frozen fecal/cecum samples with the QIAamp DNA Stool Mini 

Kit (QIAGEN, Inc. Valencia, CA) following manufacturer’s instructions. Extracted DNA 

samples were quantified with Nanodrop 1000™ and stored at -80 °C until PCR amplification.  

 DNA was amplified by targeting the V4 region of the bacterial 16S rRNA gene as 

described by Caporaso et al.23  PCR reactions (50 μL) were performed on AB Applied 

Biosystems Veriti 96 well Thermo Cycler (Grand Island, NY) as the following: xx ul of 100 ng 

of template DNA, 0.5 μL of forward and reverse barcode primers (10 uM) respectively, 0.5 μL 

of DMSO (Sigma, St. Louis, MO), 20 μL of Illustra hot start master mix in a final volume of 50 

μL reaction system (GE Health Care, Pittsburgh, PA).  The PCR conditions consisted of an 

initial 94°C denaturation step for 3 minutes, a cycling program of 94°C for 45 seconds, 50°C for 

1 minute, 72°C for 90 seconds, and a final elongation step of 72°C for 10 minutes.   

 The initial PCR product was purified with DNA gel electrophoresis to remove DNA 

impurities and primer dimers.  The DNA gel containing the target amplicon band was removed, 

purified, and concentrated with the Zymoclean Gel DNA Recovery Kit (Zymo Research, Irvine, 

CA).  The concentration of purified amplicon product was measured with Qubit dsDNA HS 
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Assay Kit (Life Technologies, Carlsbad, CA) and normalized to an equal concentration to create 

a single amplicon pool.  

Bacterial Barcoded Amplicon Library Preparation, Sequencing and Sequence Analysis  

Beads Clean-up 

 Pooled amplicons were purified with SPRIselect (Beckman Coulter, Inc., Indianapolis, 

IN) following the manufacturer’s protocol (Next-flex™ 16S V4 Amplicon Seq-kit manual).  The 

products were analyzed with Agilent High Sensitivity DNA Analysis (CHIP) Kit for quality 

assurance on a 2100 Bioanalyzer (Agilent, Santa Clara, CA).  

Library Quantification and Illumina Sequencing 

 The pooled amplicon library concentration was quantified with the Illumina Library 

Quantification kit (KAPA Biosystems, Boston, MA) prior to sequencing.  Quantitative PCR was 

performed with the KAPA SYBR® FAST qPCR Master Mix (2X) using 10 fold serial dilutions 

of DNA standards from 20 pM to 0.0002 pM. Sample concentration was determined based on 

amplicon adaptors.  Serial dilutions of each sample amplicon (1:1000, 1:5000, and 1: 10000) 

were made using TRIS (Invitrogen, Carlsbad, CA) + TWEEN (Fisher Scientific, Hampton, NH) 

solution (10 mM TRIS with 0.05% TWEEN).  Diluted sample amplicons, standards (4μL) and 

de-ionized water controls (4μL) were loaded with 0.2 µL of master mix in a 96-well PCR plate 

and ran in duplicate.  The amplicon library was diluted to a starting concentration of 10 nM and 

sequenced on the Illumina MiSeq sequencer (Illumina, Inc., San Diego, CA).  

Sequence Data Analysis 
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 The resulting raw sequencing data was analyzed using the QIIME (v1.9.1) pipeline.24  

Unless otherwise stated all python scripts reside within QIIME.  The script, join_paired_ends.py, 

was used to generate the assembled paired-end reads.  Next, paired-end sequences were 

demultiplexed and quality filtered with Phred score no less than 20.  The UCHIME program was 

used to detect chimeras on assembled reads via identify_chimeric_seqs.py.  Operational 

taxonomic units (OTU) were generated using the script, pick_open_reference_otus.py, with 97% 

similarity via UCLUST.25  The OTU taxonomy was assigned using the Ribosomal Database 

Project (RDP) classifier with the May 2013 Greengenes release in QIIME, and then aligned via  

PyNAST.26  Any OTU present at less than 0.005% of the total read count was filtered to remove 

the potential influence of spurious OTUs.27,28  The resulting filtered output was used to make a 

phylogeny (make_phylogeny.py).  The phylogeny was then rooted to Bacteroidetes.  All samples 

were rarefied at a minimum sequencing depth of 4200 OTUs.  The script alpha_rarefaction.py 

was used to confirm the appropriate minimum sequencing depth across samples.   

Statistics 

 Statistical analysis was conducted in R (version 3.1.2)  using Phyloseq unless otherwise 

noted.29  Microbial community composition was visualized using Principal Coordinate Analysis 

(PcoA) plots constructed with Weighted UniFrac distances.30  Community level statistical 

significance was tested with the nonparametric ADONIS function in the Vegan package across 

time.31,32  A repeated measures permanova was conducted on fecal samples stratified by rat ID 

using the BiodiversityR package, with separate whole and sub-plot analyses during both the 

treatment and washout period.   Post-hoc analysis of repeated measures ADONIS results were 

analyzed with the Vegan package to dissect significant time-treatment interactions and to dissect 
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differences between treatment groups.  Faith’s phylodiversity (PD) metric was calculated via 

QIIME.33  Alpha diversity estimates were analyzed for the treatment and washout period using 

two-way ANOVA with repeated measures in SigmaPlot (version 12) with Bonferroni post-hoc 

test.    Relative abundance of OTUs at the phyla and family level were visualized with 

Phyloseq.29  Body weight, food intake and feed conversion efficiency was analyzed in SigmaPlot 

(version 12) with one way ANOVA.  Data were presented as group mean±SEM.  Statistical 

significance was set at alpha = 0.05. 

Results  

Alpha and Beta Diversity 

 After quality filtering and removal of any OTU present at less than 0.005% of the total 

read count, 102 samples comprised of 1,067,997 sequences remained with an average of 10,471 

sequences per sample.  Two-way repeated measures ANOVA revealed a significant effect of 

time and treatment over the entire study, including during both phase I and phase II (Two-way 

RM ANOVA, p<0.05). No interaction was noted for either phase I or phase II.  Phylogenetic 

diversity did not differ between control and exposed animals prior to TCC exposure at baseline 

(PND 22).  During the phase I treatment period, TCC exposure significantly reduced the 

diversity of microbiota in feces of 0.5% w/w exposed animals compared to controls 12 days 

(PND 34: PD, 18.1 ± 1.99 vs 13.1 ±0.40;  Figure 15A) and 28 days (PND 50: PD, 17.2 ± 3.94 vs 

11.3 ± 0.26; Figure 15A) after treatment was initiated. Exposure to 0.2% w/w TCC did not 

significantly affect PD during the treatment period. However, when TCC exposure was removed 

for 2 days of phase II washout, prior exposure to either 0.2% w/w TCC or 0.5% w/w TCC was 
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sufficient to suppress the average microbial taxa number relative to control samples (PND 52: 

PD, Control: 17.8 ± 2.55, 0.2% w/w: 13.4 ± 1.00, 0.5% w/w: 12.0 ± 0.33;  Figure 15B). 

However, PD rebounded at all subsequent collection dates in both the previously exposed groups 

of phase II and no significant differences were noted between groups.   

 Weighted UniFrac distances represented by a principal coordinate’s analysis (PCoA) in 

Figure 16 are provided as a visualization of beta diversity dissimilarity over time.  During phase 

I, an initial shift occurred after 2 days of exposure where both 0.2% w/w and 0.5% w/w exposed 

samples move away from control samples and remained separated throughout the treatment 

period.  After exposure was removed for 2 days during phase II, 0.2% w/w and 0.5% w/w 

microbial communities clustered more similarly again with control microbiota until the end of 

the phase II washout.   An effect of time was demonstrated using repeated measures ADONIS in 

both phases (ADONIS, p<0.05).  Further, nested permanova analysis revealed an effect of 

exposure group during both phase I and phase II.  To determine the relationship between the 

groups, post-hoc analysis was conducted that demonstrated significant differences between the 

distance of control microbiota communities and the microbiota of both exposure groups during 

phase I (p<0.05), though a significant difference was only noted between control communities 

and 0.5% w/w communities during the washout period (p<0.05). Additionally, a time-treatment 

interaction was identified during Phase I only (ADONIS, p<0.05). Posthoc analysis was 

conducted to determine the time frame of the time-treatment interaction and revealed that the 

interaction occurred after exposure was initiated at PND 22 (p<0.05).  
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Fecal Microbiota Community Composition 

 
  Figure 17 shows the relative abundance of the gut microbial community composition of 

animals over time at the phylum level.  During the phase I, Firmicutes dominated in both 0.2% 

w/w and 0.5% w/w samples while Bacteroidetes was the prominent phylum in control samples 

(Figure 17A). Small fluctuations were noted in the average ratio of Firmicutes to Bacteroidetes 

among control samples over the treatment period fluctuating from 0.45 at baseline (PND 22) to 

0.92 after 28 days of exposure (PND 50), the last date of phase I.  In contrast, at baseline, the 

average ratio of Firmicutes to Bacteroidetes in 0.2% w/w samples began at 0.24 and increased to 

4.55, 28 days later (PND 50). A similar pattern occurred in relation to 0.5% w/w exposure when 

the baseline (PND 22) the average ratio of Firmicutes to Bacteroidetes initiated at 0.35 but 

reached 2.75 after 28 days when the treatment period ended (PND 50).  During phase II, the 

average ratio of Firmicutes to Bacteroidetes  slightly fluctuated in control samples though 

remained similar to the average ratio at the last collection date of phase I (Figure 17B).  Two 

days into phase II (PND 52), the average ratio decreased among control samples to 0.79 but 

increased again to 1.07 after 28 days of washout (PND 78) when the study was completed.  The 

ratio declined in previously exposed 0.2% w/w TCC exposed samples ranging from 2.50 at two 

days washout (PND 52) to 1.01 at the end of phase II 28 days later (PND 78).  Among the 

previously exposed 0.5% w/w samples, the ratio remained relatively stable where the average 

ratio of Firmicutes to Bacteroidetes was 1.44 after removing TCC exposure for two days (PND 

52) and increased to 1.91 at the final collection date during phase II (PND 78).   
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Body weight and food intake 

 Figure 18 demonstrates that TCC exposure did not affect feed efficiency (Figure 18A), 

body weight (Figure 18B) or food intake (Figure 18C).   No significant differences in feed 

efficiency, body weight or food intake were noted between any groups throughout the two week 

collection period.  No diarrhea was noted in any animals over phase I or phase II of the study 

period.   

Discussion 

 Prescription antibiotic use during sensitive exposure windows is frequent with the 

number of broad spectrum prescription antibiotics given to infants and children dramatically 

increasing over the previous decade.34   Beyond the threat of antimicrobial resistance, this is 

concerning given that inappropriate antibiotic usage can lead to dysbiosis of the gut resident 

community and produce a predisposition towards certain infectious and chronic diseases.35  Like 

prescription antibiotics, exposure to non-prescription antimicrobials during development is 

widespread with these compounds potentially behaving more like broad spectrum prescription 

antibiotics given their reduced specificity.9,36,37  To the best of our knowledge, this study is the 

first to determine the dynamics of gut microbial community structure in rats exposed to TCC 

after weaning.   

 Weaned rats were exposed to TCC for 28 days and fecal material was collected at 

specific time-points.  A washout period was then initiated for an additional 28 days to monitor 

the potential rebound of the gut microbial community structure.  A two-way repeated measures 

ANOVA revealed a significant effect of both time and treatment demonstrating collective 

differences between the groups that occurred during phase I and remained even during the 
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washout phase II after TCC exposure was removed suggesting that exposure to TCC may have 

prolonged effects on the gut microbiota even if the use of TCC containing products are 

discontinued.  When broken down by collection date, provision of TCC during both phase I and 

phase II altered the community structure of rat fecal microbiota over time among the 0.5% w/w 

exposed animals.  Exposure to 0.5% w/w TCC significantly reduced phylogenetic diversity 

beginning as early as 12 days post exposure until the end of the phase I treatment period (Figure 

15A).  Exposure to 0.2% w/w TCC exposure was not sufficient to significantly affect 

phylogenetic diversity during phase I.  During phase II, prior TCC exposure in both the 0.2% 

w/w and 0.5% w/w reduced phylogenetic diversity across the study period confining the average 

number of taxa within each sample, although significant differences were only noted after 2 days 

of washout (Figure 15B) indicating that TCC exposure reduced the average number of bacterial 

taxa within each sample during exposure and after TCC exposure was removed.  Though 

continuous exposure to TCC may translate into the most risk given the eventual rebound in both 

the TCC exposed groups.   

 Weighted UniFrac distances revealed a similar pattern to phylogenetic diversity across 

both the treatment and washout periods.  Figure 16 visually demonstrates that both 0.2% w/w 

and 0.5% w/w TCC exposure restricted diversity of microbial samples beginning as early as two 

days of exposure.  During phase II, previously exposed samples began to again cluster with 

control samples though the microbiota in both groups of TCC exposed samples remained 

relatively confined until the end of the study period.  Repeated measures analysis revealed a 

significant effect of time and treatment during both phase I (ADONIS p<0.05) and phase II 

(ADONIS p<0.05).  Additionally, a time-treatment interaction was observed during phase I and 
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was not demonstrated when exposure was removed during phase II.  Though the significant 

difference during phase II could be primarily attributed to the influence of 0.5% w/w TCC 

exposure given that posthoc analysis revealed a difference only between control samples and this 

group during phase II.  This information collectively indicates that TCC exposure affected the 

relationship of microbial communities between the groups during exposure to TCC in phase I, 

however even after TCC exposure was removed, the relationship was still altered among the 

highest exposed group indicating a prolonged effect of TCC exposure.   

 The effect of TCC exposure on beta and alpha diversity was mirrored in the microbial 

relative abundance at the phylum level (Figure 17 A and B).  All samples collected from treated 

animals were dominated by the Bacteroidetes and Firmicutes phylum during both the treatment 

and washout periods.  Changes in these phyla have been associated with increased weight gain 

and obesity among humans, though whether an inverse ratio of Bacteroidetes to Firmicutes or 

Firmicutes to Bacteroidetes is necessary for the phenotype is yet to be firmly established.38,39  

During the treatment period, the average ratio of Firmicutes to Bacteroidetes was relatively 

stable among control samples.  However, provision of TCC during phase I was sufficient to 

dramatically increase this ratio among both the 0.2% w/w and 0.5% w/w exposed groups across 

the treatment period (0.2% w/w: PND 22, 0.24 vs PND 50, 4.55; 0.5% w/w: PND 22, 0.35 vs 

PND 50, 2.75).  At the final collection date of the washout period, the ratio of Firmicutes to 

Bacteroidetes was similar to control samples in the 0.2% w/w group.   Though the ratio among 

samples collected from animals previously exposed to 0.5% w/w TCC was only slightly elevated 

compared to control samples (PND 78: Control, 1.07 vs 0.2% w/w, 1.01 vs 0.5% w/w, 1.91) 

indicating that continuous exposure may, like the effect on phylogenetic diversity, be important 
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to maintain this phenotype.  While variations in the average ratio of Firmicutes to Bacteroidetes 

were noted, these alterations did not translate into weight changes during phase I treatment 

(Figure 18).  

Changes in phylogenetic diversity, weighted UniFrac distances and relative abundance of 

microbial communities demonstrates that TCC exposure during immaturity was sufficient to 

alter diversity of gut microbiota both during and after exposure was removed.  This is not 

altogether surprising given that exposure to certain prescription antibiotics can result in 

compositional changes to the gut microbiota during treatment and incomplete recovery to a stasis 

that is altered from the initial community structure even when antibiotic exposure is removed.40  

These structural changes induced by TCC exposure, like prescription antibiotics, may have 

implications for susceptibility to infectious disease along with chronic disorders such as obesity, 

allergies, atopic disorders and autoimmune diseases resulting from gut microbial dysbiosis.6,41   

Future investigations should focus on the functional changes and potential health outcomes 

resulting from TCC exposure during sensitive exposure periods.   

It appears that continuous exposure may be important to TCC induced gut microbial 

dysbiosis.   Given its use in antimicrobial bar soaps, exposure may occur on a daily basis.  

Though TCC is not expected to accumulate in the tissues, a steady-state concentration may be 

reached with the daily use of TCC containing products resulting in an increased body burden.42   

Blood samples were not collected to measure the systemic TCC concentration in this 

investigation.  However, we have previously demonstrated that the serum TCC concentration of 

0.2% w/w orally exposed pregnant rats was similar to the concentration in the blood of a human 

volunteer that was a regular user of TCC containing soap.42,43  This information collectively 



143 

 

indicates that the concentration used in this investigation may be translatable to human exposure 

in certain circumstances.   

Conclusion 

 Like prescription antibiotic induced dysbiosis, given the dramatic effect of TCC exposure 

on the microbial composition during both phase I and phase II, our results suggest that TCC 

exposure in immature animals may alter the gut microbiota in both the long and short-term 

potentially leading to later life health consequences.  Additionally, our data add to the growing 

body of literature and general public and regulatory concern related to the potential human health 

impact of non-prescription antimicrobial exposure during sensitive exposure windows.  This 

information should be utilized to guide regulatory agencies in policy decisions regarding the use 

of non-prescription antimicrobials in personal care products during critical physiological stages 

and provide information to the general public to make educated decisions when purchasing non-

prescription antimicrobial products.     
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Appendix 

 

 
Figure 15. Alpha Diversity of Post-weaned Rats                                                                                                                                

Alpha diversity (phylogenetic diversity) shown during Phase I (A) at 0 (baseline; PND 22) 2, 5, 12, and 28 days of exposure and 

during Phase II (B) when TCC exposure was removed for 2, 8, 11 or 28 days (control: hatched bar, 0.2% w/w: gray bar, 0.5% w/w: 

black bar; n=4/group).  Data represent mean ± SEM of each group.  Data were analyzed with two-way ANOVA with repeated 

measures followed by Bonferroni post-hoc test.  Statistical significance was set at p=0.05; (*) indicates statistical significance at each 

time point relative to controls. 
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Figure 16. Beta Diversity of Post-weaned Rats                                                                            

Beta diversity during Phase I and Phase II of the study period.  Principal coordinate analysis of 

weighted UniFrac distances is shown during Phase I (A) at 0 (baseline; PND 22) 2, 5, 12, and 28 

days of exposure and during Phase II (B) when TCC exposure was removed for 2, 8, 11 or 28 

days (control: blue circle, 0.2% w/w: pink circle, 0.5% w/w: black circle; n=4/group).  Repeated 

measures analysis was conducted and significant time-treatment interactions were investigated 

with the Vegan package.    
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Figure 17. Relative Abundance of Bacteria among Post-weaned Rats                                                                                        

Relative abundance shown at the phylum level during Phase I (A) at 0 (baseline; PND 22) 2, 5, 12, and 28 days of exposure and 

during Phase II (B) when TCC exposure was removed for 2, 8, 11 or 28 days.  
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Figure 18. Food Intake and Body Weight of TCC Exposed Post-weaned Rats                                                                                      
Feed conversion efficiency (A), body weight (B) and Food intake (C) shown during Phase I (control: hatched bar, 0.2% w/w: gray bar, 

0.5% w/w: black bar; n=4/group).
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CHAPTER V 

EXTRACTION OF 3,3,4’-TRICHLOROCARBANILIDE FROM RAT 

FECAL SAMPLES FOR DETERMINATION BY HIGH PRESSURE 

LIQUID CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY 
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Abstract 

Triclocarban (3,4,4′-Trichlorocarbanilide; TCC) in the environment has been well 

documented. Methods have been developed to monitor TCC levels from various matrices 

including water, sediment, biosolids, plants, blood and urine; however, no method has been 

developed to document the concentration of TCC in fecal content after oral exposure in animal 

studies. In the present study, we developed and validated a method that uses liquid extraction 

coupled with HPLC-MS/MS determination to measure TCC in feces. The limit of detection and 

limit of quantitation in control rats without TCC exposure was 69.0 ng/g and 92.9 ng/g of feces, 

respectively. The base levels of TCC in feces were lower than LOD. At 12 days of treatment, the 

fecal TCC concentration increased to 2220 µg/g among 0.2% w/w exposed animals. The 

concentration in fecal samples decreased over the washout period in 0.2% w/w treated animals to 

0.399 µ/g feces after exposure was removed for 28 days. This method required a small amount of 

sample (0.1 g) with simple sample preparation. Given its sensitivity and efficiency, this method 

may be useful for monitoring TCC exposure in toxicological studies of animals. 
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Introduction 

Triclocarban (3,4,4′-trichlorocarbanilide; TCC) is a chlorinated urea commonly used as a 

broad range antimicrobial in personal care products.1  Human exposure to TCC primarily occurs 

through dermal absorption with the use of TCC-containing bar soaps,2  where approximately 0.6% 

of the applied amount is absorbed through the skin.2  Biomonitoring investigations have detected 

TCC in several environmental and biological matrices.2-5  Given its widespread use, interest in the 

health impact of TCC to the general public has increased in both academic and regulatory 

communities.  The FDA recently presented a proposed ruling holding manufacturers of 

nonprescription antimicrobials, including TCC, responsible to prove the safety and efficacy of 

these compounds over regular soap.6 This proposed ruling comes amidst concerns of possible 

antimicrobial resistance and endocrine disruption activities during routine use in humans.6-9    

After topical application, the bulk of TCC enters the wastewater treatment process where 

current treatment technologies can only transfer up to 79% of TCC to waste water sludge.1  With 

high octanol-water and organic carbon partition coefficients, TCC has a high propensity to adsorb 

to the hydrophobic components of sludge and soil (log Kow =4.9 and Koc = 50,118 L/kg, 

respectively), and is environmentally persistent undergoing little degradation for months.10  When 

biosolids (i.e, treated wastewater sludge) are applied to agriculture fields as fertilizer, TCC is then 

transferred to the terrestrial environment raising safety concerns regarding the potential uptake of 

TCC into the food chain, allowing for a potential secondary human exposure route.11,12  Previously, 

we demonstrated that TCC exposure through the diet, during lactation, lead to TCC concentration 

in the milk of exposed dams and substantially reduced rat offspring survival.13  These results 
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highlight the importance of monitoring TCC levels in various biological matrices to investigate 

and prevent potential health consequences.13 

Methods of TCC detection have been reported in both solid and liquid biological matrices 

(urine, blood, and finger nails).14  Oral TCC exposure in animals has been used to investigate its 

potential endocrine-disrupting properties and reproductive toxicity.7,9,15-19  However, to our 

knowledge, no analytical method to monitor TCC concentration in a semi-solid fecal matrix has 

been published.  In this study, a simple liquid extraction was applied followed by HPLC-MS/MS 

determination to estimate TCC concentration in fecal samples collected from an animal feeding 

study.  The application of this method may facilitate the assessment of TCC exposure in biological 

matrices.  

Materials and Methods 

Chemicals and reagents  

Acetone (99.5% purity), acetonitrile (99.9% purity), methanol (99.9% purity) and water 

(purity grade: Optima™) were purchased from Thermo Fisher Scientific (Waltham, MA).  TCC 

(99% purity), carbon-13 labeled TCC (13C6-TCC, quantitation reference) and 13C6-2,4,5-

trichlorophenoxyacetic acid (TCPAA, 99% purity, internal standard) were purchased from 

Cambridge Isotope (Tewksbury, MA) and prepared in methanol.  Stock solutions of TCC (5 

mg/mL) were prepared in acetone and TCC standards (0-500 ng/mL, or 0-500 ppb) were prepared 

from stock solution in methanol.  TCC standards, 13C6-TCC and TCPAA were stored at - 20°C 

until use.  
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Animal Fecal Samples Collection and Preparation 

Feces were collected from female Sprague Dawley rats (Harlan Laboratory, Dublin, 

Virginia).  Briefly, rats (n=4 per group) were weight ranked and randomized to control or TCC 

treatment groups and fed Harlan chow diet (2020X) or 2020X supplemented with 0.2% w/w TCC 

ad libitum for 4 weeks beginning at post-natal day (PND) 22 followed by 4 weeks washout with 

2020X only.  Feces were collected prior to treatment initiation at PND 22 and after 12 days of 

treatment.  Fecal samples were also collected throughout the washout period at 2, 8, and 28 days 

after the withdrawal of TCC exposure.  Samples were snap frozen and stored at -80°C until 

analysis.  The Animal Use and Care Committee at University of Tennessee, Knoxville, approved 

all research protocols used in this report.  The studies were conducted in a facility fully accredited 

by the Association for Assessment and Accreditation of Laboratory Animal Care.  

Fecal Sample Extraction and Preparation 

To extract TCC from fecal samples, 50 µL of 500 ng/mL 13C6-TCC was added to 0.1g 

thawed feces and vortexed with a countertop vortex at maximum speed for 1 minute.  Next, 5 mL 

of 80:20 acetonitrile/H2O was added to each sample and vortexed at maximum speed for 30 

seconds.  After vortexing, samples were sonicated for 30 minutes and centrifuged at 1,500 rpm for 

8 minutes at 21°C followed by 0.45 µm filtration prior to blow down under nitrogen flow to 1 mL.  

Samples were reconstituted to 2 mL with a 1:1 mixture of methanol/H2O.  A 300 µL aliquot of the 

mixture plus 6 µL of 2500 ng/mL 13C6 TCPAA was added to auto-sampler vials prior to analysis.  
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HPLC-MS/MS Determination  

 Instrumental protocols followed were from EPA Method 169420 and as follows: 

Quantitation of TCC in the sample extracts were performed on a Dionex™ UltiMate™ 3000 

HPLC/TSQ Quantum™ Access Max triple quadrupole mass spectrometer (Thermo Scientific).  

Chromatographic separation from interferences was performed by injection of 6 μL onto a 

Thermo Scientific™ Hypersil™ GOLD PFP, 2.1x100 mm, 1.9 µm column.  The HPLC/MS/MS 

was run in the ESI negative, MRM (Multiple Reaction Monitoring) mode and quantitation was 

performed by recording the chromatographic peak area of the coincident precursor and product 

ions, m/z: 312.72 and 160.00, respectively.2  Instrument conditions of both LC and MS are as 

follows: The HPLC column compartment was held at 38°C and the autosampler tray temperature 

was set at 5°C.  The solvent system consisted of H2O with 0.02% acetic acid (mobile phase A) 

and methanol (mobile phase B).  Solvent A is 0.02% (v/v) acetic acid in LC/MC water; solvent B 

is 100% methanol.  The analyte was separated using a gradient program starting with T 

(minute)=0, A=40%, B=60% at 0.3 mL/min; T=3, A=2%, B=98% at 0.3 mL/min; T=5.5, A=2%, 

B=98% at 0.3 mL/min; T=5.6, A=2%, B=98% at 0.35 mL/min; T=12, A=2%, B=98% at 0.35 

mL/min; T=12.05, A=40%, B=60% at 0.35 mL/min; T=18.5, A=40%, B=60% at 0.35 mL/min 

and T=18.6, A=40%, B=60% at 0.3 mL/min.  The MS conditions used in the method were set as 

follow:  negative Electrospray Ionization (ESI); 200 °C for capillary temperature; 425 °C for 

vaporizer temperature; 20 (Arb) for sheath gas pressure; 2 (Arb) for Aux gas; and 1.5 mTorr for 

collision gas pressure.  Collision energy was set 17 for TCCs, and 16 for 13C-TCPAA.  Product 

ions were monitored at m/z 200.700 for 13C-TCPAA; m/z 160.000 for TCC; and m/z 159.700 

for 13C-TCC.  The signal:noise ratio was set at ˃ 3.   
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Thermo Xcalibur© (version 2.1) software was utilized to acquire and analyze data.  

Concentration of TCC in the sample was determined as the peak area ratio of TCC/13C6-TCC as 

compared to the calibration curve derived from TCC concentrations: 2.5, 7.5, 37.5, 125, and 500 

ng/mL).  Quan Browser in Thermo Xcalibur 2.2® was used to set up the calibration cure (2.5, 

7.5, 37.5, 125, and 500 ng/ml).  Quadratic log-log calibration curve was used for quantitation.  

Calibrants were weighted by the inverse of the square of their quantity (1/X2). 

Results and Conclusion 

Method Validation and Quality Control 

Typical chromatograms showing integration area of TCPAA, and that of a 10 ng/mL 

concentration of TCC standard in fecal matrix are shown in Figure 19.  The analytical limit of 

detection (LOD) of the method was 1.46 ng/mL in solvent as defined by the average blank signal 

plus 3 standard deviations (n=20).  The analytical limit of quantitation (LOQ) was 4.87 ng/mL 

which was defined as the average blank signal of the LOD plus 10 standard deviations.  Fecal 

samples (0.1 gram) collected from control dams with no known TCC exposure were spiked with 

various TCC standards and 13C6-TCC to characterize the performance of the assay in the presence 

of matrix.  The LOD and the LOQ of the TCC in the fecal matrix was 69.0 and 92.9 ng/g feces 

respectively.  To determine intra-assay variability, concentration of 10 or 350 ng/mL TCC standard 

was spiked into control feces (n=4 per concentration).  Day-to-day inter-assay variability was 

calculated from 4 extractions over a period of 4 days with TCC spiked at both 10 and 350 ng/mL.  

Relative standard deviation (RSD%) of intra-assay variability was 22.4% at 10 ng/mL and 4.99% 

at 350 ng/mL respectively; the average recovery of TCC was 87.7% at 10 ng/mL and 120% at 350 
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ng/mL; the inter-assay variability (RSD%) was 30.6% (relative recovery of 73.5%) at 10 ng/mL 

and 14.1% (relative recovery of 130.6%) at 350 ng/mL over the period of 4 days.  The accuracy 

and precision of the assay in a single extraction day were assessed by repeat analysis of 15 control 

replicates spiked with either 25 ng/mL or 100 ng/mL TCC (Table 8).   

Quantification of TCC in Feces Samples  

The assay was applied to determine the concentration of TCC in fecal samples collected 

from female SD rats during the treatment and a post-TCC exposure washout period.  The 

concentration of TCC in the feces over the study period is shown in Table 9.  At PND 22 (pre-

exposure), the TCC concentration in fecal samples collected from both control and 0.2% w/w 

treated animals was below the LOD.  At 12 days of treatment, the fecal TCC concentration in 

control animals was still below the LOD, but increased to 2,220 µg/g among 0.2% w/w exposed 

animals. The concentration of TCC in fecal samples decreased over the washout period in 0.2% 

w/w treated animals.  At 8 days of washout, TCC in the feces of control animals (n=2) was below 

the LOD (<68.97 ng/g); in contrast, an average of 0.885 µg/g TCC was detected in fecal samples 

collected from 0.2% w/w TCC treated animals (n=2) at the same washout date.  At 28 days of 

washout, the concentration of TCC extracted from control animals (n=2) remained below the LOD, 

whereas TCC concentration decreased to 0.399 µg/g in rats (n=2) exposed to TCC 28 days prior, 

which reflected discontinuation of exposure.  

Conclusion 

 We developed a HPLC–MS/MS method for TCC detection from the fecal matrix that 

required a relative small amount of fecal sample (0.1 g) and utilized a liquid extraction method 
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(Acetonitrile/H2O: 80/20). Our method was based on EPA Method 1694 which is optimized for 

Group 3 Compounds.20  TCC elutes at 5.5 minutes, thus it is possible that a shorter column (50 

mm) could be used and/or column cleaning could start at 6 minutes, for 3 min followed by 

reequlibaration which potentially could further improve the analytical efficiency and save the 

solvent use for TCC measurement.  Our data demonstrate the ability of this method to monitor 

TCC concentrations from the fecal matrix with reasonable repeatability and inter-/intra-assay 

variability. This method may prove useful in animal-based toxicological investigations and, 

ultimately, studies of TCC exposure and human health. 
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Appendix 

 

Figure 19. Typical HPLC-MS/MS Ion Chromatograms in Fecal Matrix                                                                                                                        

(A) Integration area of representative TCPAA spike in fecal matrix; (B) 10 ng/mL TCC spiked blank fecal matri
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Table 8. Assay Performance Parameters 

       

  Intra-variability  Inter-variability 

Spiked TCC*  Average (ng/mL) RSD%**  Average (ng/mL) RSD% 

10 ng/mL n=4 8.77 22.4  7.35 30.6 

350 ng/mL n=4 420 4.99  457 14.1 

       

  Accuracy (%)  Precision (RSD%) 

25 ng/mL n=15 98.00  12.8 

100 ng/mL n=15 105   16.0 

*Fecal matrix spike of various TCC concentrations; **Relative standard deviation (RSD).   
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Table 9. Detected Fecal TCC Concentration during 

Treatment and Washout Periods 

Treatment Day  Control  0.2% w/w TCC 

0  0.016 ± 0.009  0.0453 ± 0.018 

12  0.022 ± 0.015  2220 ± 150 

     

Washout Day     

2  0.025 ± 0.019  15.5 ± 3.50 

8  0.0324 ± 0.005  0.885 ± 0.377 

28  0.0051 ± 0.005  0.399 ± 0.178 

          

n = 2 animals per group; Concentration shown as µg/g; 
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CONCLUSION AND FUTURUE DIRECTIONS 

 
 The results of this dissertation demonstrated that TCC exposure may interfere with early 

life development.  TCC concentrated in the milk and reduced survival was noted from offspring 

suckling from dams exposed to 0.2% w/w or 0.5% w/w TCC orally.  Exposure to TCC affected 

the health of suckling offspring leading to dam breast tissue involution. The use of 16S 

sequencing revealed the alteration of the gut microbial composition of suckling offspring raised 

by 0.1% exposed dams.  Overt toxicity was not demonstrated in adult or post-weaned animals 

exposed to TCC through the diet. Though gut microbial dysbiosis was induced in post-weaned 

rats exposed to 0.2% w/w or 0.5% w/w TCC and pregnant and lactating dams exposed to 0.1% 

w/w TCC orally. The compositional rebound that occurred in post-weaned rats after exposure 

was removed demonstrated that continual TCC exposure may present the most risk.   

 Given that TCC is detected in the breastmilk and our results demonstrated that TCC 

exposure through this humanly relevant pathway can induce gut microbial dysbiosis in suckling 

offspring, future investigations should consider the impact of TCC exposure on the gut 

microbiota among human infants.  Though our results provided information regarding the effect 

of TCC exposure on gut microbial composition, the mechanism of diversity alterations and 

potential resultant health outcomes related to these changes are elusive and should be explored.  

This research may be used by regulatory agencies to determine the safety of TCC use during 

early life and provides the public additional information to make informed product purchases.   
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