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Abstract

Cell division in Escherichia coli starts with assembly of FtsZ protofilaments into a ring-like structure, the Z-ring. Positioning of
the Z-ring at midcell is thought to be coordinated by two regulatory systems, nucleoid occlusion and the Min system. In E.
coli, nucleoid occlusion is mediated by the SlmA proteins. Here, we address the question of whether there are additional
positioning systems that are capable of localizing the E. coli divisome with respect to the cell center. Using quantitative
fluorescence imaging we show that slow growing cells lacking functional Min and SlmA nucleoid occlusion systems
continue to divide preferentially at midcell. We find that the initial Z-ring assembly occurs over the center of the nucleoid
instead of nucleoid-free regions under these conditions. We determine that Z-ring formation begins shortly after the arrival
of the Ter macrodomain at the nucleoid center. Removal of either the MatP, ZapB, or ZapA proteins significantly affects the
accuracy and precision of Z-ring positioning relative to the nucleoid center in these cells in accordance with the idea that
these proteins link the Ter macrodomain and the Z-ring. Interestingly, even in the absence of Min, SlmA, and the putative
Ter macrodomain – Z-ring link, there remains a weak midcell positioning bias for the Z-ring. Our work demonstrates that
additional Z-ring localization systems are present in E. coli than are known currently. In particular, we identify that the Ter
macrodomain acts as a landmark for the Z-ring in the presence of MatP, ZapB and ZapA proteins.
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Introduction

Cell division is an essential cellular process that requires

accurate spatial and temporal positioning of cytokinetic proteins.

Assembly of the cell division apparatus, the divisome, must be

coordinated closely with replication and segregation of chromo-

somes to ensure that each daughter cell receives an integral

genome from the mother. The assembly of the divisome in

Escherichia coli starts with the formation of a macromolecular

structure, called the Z-ring, which encircles the rod-shaped cell in

its geometric middle [1–4]. The Z-ring consists of filaments of FtsZ

proteins, which are anchored to the cell membrane through the

FtsA and ZipA linker proteins. The Z-ring serves as a scaffold for

more than a dozen other divisome proteins, which build the cell

envelope between the two daughters and mediate partitioning of

the chromosomes into newly forming compartments [5].

In E. coli, the divisome is positioned at the cell center with

remarkable accuracy [6–9]. How do nanometer-scale FtsZ

proteins recognize the center of the cell with such high accuracy

and at the same time provide faithful coordination between the

divisome and the chromosome? The current view holds that Z-

ring localization is governed by two independent mechanisms in

E. coli, the Min system and nucleoid occlusion [2–4,10] that both

negatively regulate Z-ring polymerization. The Min system is

composed of the MinC, MinD, and MinE proteins that together

exhibit dynamic pole-to-pole oscillation [11]. While the MinD and

MinE proteins are essential for such oscillation, MinC acts as the

sole inhibitor of Z-ring formation by binding to FtsZ [12].

Considering that the minimum of the time-averaged concentration

of MinC occurs at midcell, the Min system protects cell poles from

developing septa and guides localization of the Z-ring to the center

of the cell [13].

The nucleoid occlusion mechanism was first proposed on a

phenomenological level to account for a lack of division septa from

forming over the nucleoid [14,15]. It has been established that the

SlmA protein mediates nucleoid occlusion in E. coli [16], while a

similar factor, the Noc protein, was found in Bacillus subtilis [17].

The two proteins do not share sequence similarity but they

apparently function in a similar manner. Both SlmA [18–20] and

Noc [21] are DNA-binding proteins that are capable of inhibiting

Z-ring formation in their DNA-bound form. SlmA and Noc lack

binding sites in the vicinity of the replication terminus (Ter). Such

positioning assures that their Z-ring inhibiting activity is relieved at

midcell when two daughter chromosomes segregate.

E. coli cells that lack both the Min system and SlmA are not

capable of dividing in rich LB medium, instead forming long
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filamentous cells [16]. Although this finding could imply that the

Min system and SlmA are the only localization systems for the

divisome in E. coli, it was found that the same cells can grow and

divide in nutrient poor M9 medium, and even in LB when FtsZ

levels were artificially upregulated [16]. It was also found that

deletion of SlmA alone did not cause any loss in cell division

accuracy, and the correlations between the divisome and

chromosome localizations remained the same in these cells

compared to wild type [6]. These findings imply that there exists

a SlmA-independent mechanism that localizes cell division

proteins relative to chromosomes in E. coli. Similar to E. coli,
evidence of Noc-independent nucleoid occlusion exists in B.
subtilis [22,23]. Moreover, it was found that B. subtilis cells were

capable of positioning the Z-rings precisely at midcell in the

complete absence of any nucleoid occlusion and the Min system

[24]. These findings warrant revisiting the canonical model that

the Min system and SlmA/Noc mediated nucleoid occlusion

together are the sole factors coordinating the localization of cell

division proteins in bacteria, and raise the question of what

additional mechanisms bacterial cells use to position their

divisome.

Here, we study cell division in E. coli strains lacking both the

Min system and nucleoid occlusion factor SlmA to identify new

mechanisms involved in Z-ring localization. We use high-

resolution quantitative fluorescence imaging to resolve nanome-

ter-scale changes in positions of the Z-rings and cell division

planes. We show that Min and SlmA double deletion cells are

capable of accurately localizing their division planes in slow

growth conditions. In this process, E. coli frequently positions its

Z-ring initially over the nucleoid center instead of at nucleoid-free

regions. We determine that during the formation of the Z-ring, the

nucleoid center is occupied by the Ter macrodomain region of the

chromosome. MatP, ZapB, and ZapA proteins, which have been

implicated in linking the Ter macrodomain and the Z-ring [25],

affect the accuracy and the precision of the Z-ring positioning

relative to the nucleoid center. However, E. coli DslmA Dmin cells

without MatP, ZapB, and ZapA are still capable of positioning

their Z-rings close to the cell centers, albeit with lower precision.

Results

DslmA Dmin cells divide at well-defined locations relative
to cell poles

Details about how cell division occurs in E. coli DslmA Dmin
strain has not yet been described in slow growth conditions where

cells are capable of dividing and propagating. One would expect

that if SlmA-mediated nucleoid occlusion and the Min system are

the only two positioning systems in E. coli, then the division planes

in these double mutant cells should be localized completely

randomly. Surprisingly, we found this not to be the case. The

majority of DslmA DminC cells appeared to divide about the cell

center, and all the cells retained normal morphology in minimal

M9 medium. To quantify the accuracy of division plane placement

in these cells, we determined the relative volume fractions of two

daughter cells that still adhere together by their poles after the

division and compiled these ratios into a histogram (Figure 1). To

calculate the volume fractions, we used fluorescent images of cells,

which carried a cytosolic GFP label, and applied a quantitative

image analysis procedure as described earlier [6]. As a reference,

we determined the volume fraction distributions for the parental

strain/wild type BW25113 (Figure 1A) and strain JW1165 having

only a minC deletion (Figure 1B). For all the strains used in this

work, see Table S1. As expected, the distribution of volume

fractions for the parental strain consisted of a pronounced single

peak at a value of 1/2, showing that upon division, the volume of

each daughter cell is approximately equal. Note that all histograms

are symmetric relative to 1/2 because both daughter cells are

counted in these histograms. Also as expected, the distribution of

volume fractions for the DminC strain showed distinct peaks at 1/

4, 1/3, 2/3 and 3/4 values, in addition to the main peak at 1/2.

All these peaks arise because of underlying nucleoid structure.

Peaks at 1/4 and 3/4 values correspond to divisions where a

mother cell distributes one of its nucleoids to one daughter cell and

three to the other. Smaller peaks at 1/3 and 2/3 values correspond

to division of cells with three nucleoids. The DminC strain also

showed minicelling divisions which appeared as broad peaks on

the tails of the volume fraction histogram.

The volume fraction distribution for the DslmA DminC strain

(PB194) showed, qualitatively similar to the DminC strain, distinct

peaks at 1/2, 1/4 and 3/4 positions with discernible peaks also at

1/3 and 2/3 values (Figure 1C). Gaussian fits to the peaks in the

histogram showed that the majority of DslmA DminC cells divide

at about midcell (75%) while 6.5% divided approximately at the

quarter position, and 14% between the quarter and half-cell length

from one of the poles. Interestingly, the frequency of central

divisions for the DslmA DminC strain was higher than for the strain

having only a minC deletion (50%) while the frequency of DminC
cells dividing at a quarter (20%) and a third of the cell length from

the poles (16%) was higher compared to the DslmA DminC strain.

Additionally, the double mutant strain produced essentially no

minicells (0.2% of total divisions), although they were noticeably

present in the minC deletion strain (7% of total divisions). The

presence of peaks at the 1/2, 1/4, and 3/4 positions indicates that,

despite a lack of nucleoid occlusion factor SlmA in the double

mutant strain, there remains a high level of coordination between

nucleoids and the Z-rings in E. coli cells. Comparison between

DminC DslmA double mutants and DminC single mutant strains

further shows that removal of SlmA suppresses minicell production

and biases cell division towards the cell center.

Author Summary

Cell division in Escherichia coli begins with the assembly of
FtsZ proteins into a ring-like structure, the Z-ring.
Remarkably, the Z-ring localizes with very high precision
at midcell. Currently, two molecular systems, nucleoid
occlusion and the Min system, are known to localize the Z-
ring. Here, we explore whether there are additional
divisome localization systems in E. coli. Using quantitative
fluorescence imaging, we show that slow growing cells
lacking both known positioning systems continue to
divide accurately at midcell. We find that the terminus
region of the chromosome moves first to mid-cell where it
functions as a positional landmark for the subsequent
localization of the Z-ring. Furthermore, we provide
evidence that this divisome positioning system involves
MatP, ZapB, and ZapA proteins. Our work shows that E. coli
can divide without the canonical mechanisms for localizing
its cytokinetic ring. In particular, we identify that the Ter
macrodomain acts as a landmark for the Z-ring in the
presence of MatP, ZapB and ZapA proteins.

Divisome Localization in Escherichia coli
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The cell division plane shifts from midcell to quarter-cell
with increasing cell length

The length of the double mutant cells immediately following

division, 2.8361.54 mm, was 18% longer than that of the

BW25113 parental strain, 2.4160.36 mm (Figure S1). The main

factor contributing to the length difference was long cells making

up about 10% of the DslmA DminC population, whose lengths

were about twice that of the majority of the population. It was

noticeable that these longer double mutant cells divided with

higher prevalence at 1/4 and 3/4 positions compared to shorter

cells. To quantify this tendency, we plotted the frequency of

central divisions and the frequency of divisions at the quarter cell

length from the poles as a function of mother cell length (Figure 2).

In this analysis, the central divisions were considered to be all

divisions in which volume fractions were within 0.5060.10. The

divisions at quarter cell positions were considered when the

corresponding volume fraction ratios were within 0.2560.05. For

the DslmA DminC cells, the frequency of cell divisions at the

quarter cell length from the poles increased considerably as the

cells reached a length of about 6 mm (Figure 2A). About 50% of

cells longer than 6 mm preferentially divided at the quarter-cell

length from the poles, while a smaller fraction, about 25% of cells,

divided at the cell center. The data for the DminC cells showed a

very similar sharp transition of the cell division plane from the

center to the quarter locations as the cell length reached about

5.2 mm (Figure 2B). A marked increase in the frequency of 1/4

divisions indicates that some positional signal guides the cell

division plane from midcell to its quarter positions as the cells

reach a relatively well-defined length.

Z-rings localize to the centers of nucleoids
To investigate this positional signal, we determined the

placement of the Z-ring relative to the nucleoid and cell centers

using the previously described E. coli DslmA Dmin double mutant

strains with ZipA-GFP (TB86 lCH151) and FtsZ-GFP (TB86

lDR120) labels [16]. In these measurements, the nucleoid was

Figure 1. Relative volume fractions of daughter cells after division. (A) Wild type (BW25113), (B) DminC (JW1165), (C) DslmA DminC (PB194)
strains. Volume fractions are calculated as the ratio of one daughter cell’s volume to the sum of both daughters’ volumes. Red dashed lines in the
histogram show fittings of different peaks with a Gaussian function. The centers of fitting lines are fixed to 1/4, 1/3, 1/2, 2/3 and 3/4 values. The insets
in the histograms show fluorescent images of cells from the respective strains. The arrow in the inset of panel (B) points to a minicelling division. All
scale bars correspond to 2 mm.
doi:10.1371/journal.pgen.1004504.g001

Divisome Localization in Escherichia coli
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stained with DAPI. As a reference, the parental strain with the

same labeling was also imaged. Representative cell images are

shown in Figure S2. We noticed that in a few DslmA Dmin cells,

the nucleoids were displaced noticeably from the cell center. In

these cases, the positions of the Z-rings followed the centers of the

nucleoids rather than the centers of the cytosolic volumes

(Figure 3A). To quantify the tendency of the Z-ring to localize

over the nucleoid center, we measured the distance between the Z-

ring and cell center, DXz, as a function of the distance between the

nucleoid center and the cell center, DXn, for all cells in a

population having a single nucleoid (Figure 3B, C). The numerical

procedure to determine the centers of the cell, nucleoid, and Z-

ring is described in the Text S1. As can be seen from Figure 3B,

displacements of nucleoids away from cell centers were associated

with correlated displacements of Z-rings. To further analyze the

extent of co-localization between the nucleoid center and the Z-

ring, we determined the standard deviations of distances between

the Z-rings and nucleoid centers, sXz{Xn
, and between the Z-rings

and cell centers sDXz
. We separated the data into two distinct

groups – polar Z-rings and centrally located ones. The precision of

central Z-ring placement relative to nucleoid centers,

sXz{Xn
~66 nm (Figure 3E), was more than two times higher

than the positioning of Z-rings relative to cell centers,

sDXz
~177 nm, in DslmA Dmin cells with ZipA-GFP label (Figure

S3A). We found very similar co-localization characteristics for

central Z-rings (sXz{Xn
~76 nm, sDXz

~196 nm) in FtsZ-GFP

labeled DslmA Dmin cells (Figure S3B, S4), confirming that the co-

localization effect is not related to a specific Z-ring label. The

collection of distribution statistics for all measured strains can be

found in Table S2. Interestingly, for wild type cells (Figure 3D, F)

co-localization between Z-rings and nucleoid centers

(sXz{Xn
~81 nm) was somewhat lower than in DslmA Dmin cells

(Ansari-Bradley test p~0:35; F-test p~0:017), while the precision

of Z-ring placement in the vicinity of the cell centers

(sDXz
~118 nm) was significantly higher when compared to DslmA

Dmin cells (Ansari-Bradley test p~6:10{5; F-test p~10{7).

Similar values of sXz{Xn
and sXz

as in wild type cells were found

also for Dmin and DslmA single deletion strains (Figure S5; Table

S2).

Co-localization of the Z-ring to nucleoid centers was present

already in the early stages of chromosomal replication before a

distinct bi-lobed morphology appeared in nucleoid images

(Figure 3G, H). To distinguish bi-lobed nucleoids from compact

nucleoids, we inspected intensity line profiles taken over DAPI

stained nucleoids. We considered a nucleoid to be compact if its

DAPI intensity line profile near the nucleoid center lacked any

discernable dips (e.g. DAPI profile in Figure 3B). In DslmA Dmin
cells with a compact nucleoid, the level of co-localization between

the nucleoid and the Z-ring, sXz{Xn
~74 nm, was comparable

to the value characterizing the whole cell population,

sXz{Xn
~76 nm (F-test, p~0:42; Ansari Bradley test p~0:83). A

Similar conclusion can be drawn also for the wild type cells where

sXz{Xn
~88 nm (F-test p~0:36; Ansari Bradley test p~0:91) and

for Dmin and DslmA single deletion strains (Figure S5; Table S2).

These comparisons indicate that nucleoid centers and Z-rings can co-

localize in early stages of replication when the nucleoid morphology is

compact both in wild type cells and in cells where one or both of the

known Z-ring positioning systems have been removed.

The bias in localization of the Z-rings to the centers of nucleoids

was even more visually striking in longer DslmA Dmin cells that had

two or more well-separated nucleoids (Figure 4A). We found a

strong preference for the Z-ring to position over the centers of

nucleoids as compared to regions between fully segregated nucleoids

(Figure 4B). We refer to the former as the new division sites (N) and

the latter as the old division sites (O). The probability of finding a Z-

ring over the center of nucleoids (N sites) was 9861%, while the

probability of finding a Z-ring in the inter-nucleoid space between

fully segregated nucleoids (O sites) decreased to 5968% (Fig-

ure 4C). Note that Z-rings can be present in both division sites at the

same time. The tendency of the Z-rings to preferentially localize at

J positions from the cell pole in longer cells, i.e. in new sites, is

consistent with our earlier observation that in longer DslmA Dmin
cells, divisions occur preferentially at J positions from the cell pole

(Figure 2). Taken together, the analysis of the placement of the Z-

rings and nucleoid centers in multi-nucleoid DslmA Dmin cells

further supports the hypothesis that a positional signal guides the Z-

rings to the nucleoid centers.

To determine if wild type cells would display the same behavior

as multi-nucleoid DslmA Dmin cells we induced an elongated,

multi-nucleoid cell morphology by treating cells with cephalexin.

Cephalexin does not inhibit Z-ring assembly but prevents Z-ring

constriction by inhibiting the downstream protein FtsI (PBP3).

Interestingly, in elongated wild type cells the Z-rings appeared

essentially only at midcell even when new sites were present

(Figure 4 D–F). Z-rings in cephalexin treated DslmA DminC cells still

showed a preference to the new division sites as did their untreated

Figure 2. Division frequency at the 1/4 and 1/2 cell positions with respect to mother cell length. (A) Data for the DslmA DminC double
mutant strain (PB194); (B) DminC strain (JW1165). Cell lengths are binned at 0.25 mm intervals. Arrows point to transition regions from centrally
occurring divisions to divisions at cell quarters. The lengths of the mother cells are measured just before cell division. Note that only a few cells from
both strains are longer than 8 mm, limiting analysis for longer cells.
doi:10.1371/journal.pgen.1004504.g002

Divisome Localization in Escherichia coli
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counterparts (Figure S6 A–C). We also analyzed DslmA and DminC
single deletion cells after cephalexin treatment. DslmA cells behaved as

wild type cells (Figure S6 D–F) while Z-rings in theDminC cells showed

a preference to the new division sites as in DslmA Dmin cells (Figure S6

G–I). These comparisons show that the putative positioning signal only

manifests itself when it is not conflicting the regulation due to the Min

system. It is important to note that such conflict does not occur in wild

type cells in normal growth conditions because in this case the nucleoid

center and the concentration minimum for MinC coincide. As

Figures 3 D–H show, the localization signal emanating from the

nucleoid center is important in Z-ring localization in wild type cells

under normal growth conditions.

Co-localization between the Ter macrodomain and the Z-
ring

Approximately at the time of Z-ring formation, the center of the

nucleoid is known to be occupied by the Ter region of the

chromosome [26,27], which forms a well-defined unit – the Ter

macrodomain [28,29]. In E. coli, MatP is a dispensable protein

that defines the Ter macrodomain by connecting 23 specific sites

in a chromosomal region that spans about 800 kb [28]. Based on

previous works [26,27], it appeared plausible that the Z-rings

might position over the Ter macrodomain. To investigate if this

hypothesis is correct, we labeled the Ter region of the

chromosome with a MatP-mCherry construct that was expressed

from its endogenous matP locus and we labeled the Z-ring with

ZipA-GFP (Figure 5A, B). The measurements revealed a very

strong correlation in the placement of the MatP-labeled Ter

macrodomain and the Z-ring in DslmA Dmin cells (Figure 5C).

Notably, the Z-ring co-localized with the MatP focus in all cases,

even including cases when the MatP focus was at the nucleoid

periphery close to the cell pole. In wild type cells, correlations were

also strongly present although in a few cases (4 out of 166) the Z-

ring could be observed to localize at the center of the cell when the

Figure 3. Localization of ZipA-GFP labeled Z-rings relative to cell center and the center of nucleoids. (A) A composite of ZipA-GFP
(green), DAPI stained nucleoid (red) and phase contrast images (grey) of a DslmA Dmin cell with a distinctly off-center placed nucleoid. The scale bar
is 2 mm. (B) The intensity line profiles of each image plane along the long axis of the cell for the cell shown in panel A. The displacement of the
nucleoid relative to the cell center is DXn, and the displacement of the ZipA-GFP labeled Z-ring is DXz. (C) DXz vs. DXn for DslmA Dmin cells (strain
TB86) scaled by cell length L. Solid rectangles mark central and open rectangles mark polar Z-rings. The solid line corresponds to DXZ=L~DXn=L.
Data are shown only for cells with a single nucleoid. (D) DXz vs. DXn for the parental strain (strain JMBW5). (E), (F) Distribution of distances between
the Z-ring center and nucleoid center for DslmA Dmin strain and parental strain, respectively. Data for central Z-rings are shown. (G), (H) DXz vs. DXn

for cells that show a Z-ring over a compact nucleoid in DslmA Dmin and in parental strain, respectively.
doi:10.1371/journal.pgen.1004504.g003

Divisome Localization in Escherichia coli
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MatP locus was close to the cell pole (Figure 5D). These events

were also present in the DslmA single deletion strain but were

absent from the DminC strain (Figure S7) indicating that the Min

system reduces correlations between the Z-ring and the Ter

macrodomain. The measured co-localization precision between

the MatP-labeled Ter foci and Z-ring centers was sXz-XMatP =

56 nm for DslmA Dmin (Figure 5E) and sXz-XMatP = 66 nm for

wild type cells (Figure 5F). Similar values for sXz-XMatP also were

found for DslmA and Dmin single deletion strains (Figure S7). All

the measurements of co-localization precision sXz-XMatP were close

to our resolution limit and thus consistent with the hypothesis that

the Ter macrodomain and Z-ring co-localize in E. coli unless the

Min system prevents such co-localization from happening.

The Ter region arrives at the cell center before Z-ring
formation

Previously, it was argued that the divisome anchors the Ter

macrodomain to the cell center through a MatP-mediated link in

which the divisome related proteins ZapA and ZapB participate

[25]. The co-localization data (Figure 5) clearly supports the

presence of this link, which we refer to as the Ter linkage. The

data also raise the possibility that the Ter macrodomain may be

important in positioning and stabilizing the location of the

divisome. If the latter hypothesis is correct then there should be

some time delay between the arrival of the Ter macrodomain at

the cell center and the subsequent formation of the Z-ring. To test

this hypothesis we followed the movement of the Ter macro-

domain and the Z-ring in DslmA Dmin and wild type cells using

MatP-mCherry and ZipA-GFP labels. Similar to an earlier report

on wild type cells [25,28], in DslmA Dmin cells under slow growth

conditions the Ter macrodomain moved from the cell pole to the

center of the cell at the beginning of the cell cycle (Figure 6 A–B,

Figure S8, Movie M1, M2). During this movement, the Ter

macrodomain either split into two distinct foci or displaced

through the cell as a somewhat diffuse unit. The Ter region of the

chromosome remained in the center of the nucleoid for the

majority of the cell cycle before splitting into two foci during the

late stage of cytokinesis. The Z-ring co-localized with the Ter

macrodomain early in the cell cycle when the Ter region was

positioned at the cell poles and during the majority of the cell cycle

when the Ter region was localized as a single unit at midcell

(Figure 6 A–B). However, our measurements showed that during

the period in which the Ter macrodomain dislocated from the new

pole to the cell center, the ZipA-GFP focus lagged behind the

MatP-labeled Ter macrodomain. We measured the lag period to

be (0.1260.07)?Td for DslmA Dmin cells (Figure 6C). The

doubling time, Td, was about 120 min in these growth conditions.

In addition to the lag period, the accumulation of the Z-ring

proteins and the Ter macrodomain in the center of the cell showed

different time-dependent behaviors (Figure 6D). Following the

beginning of the cell cycle, the MatP-mCherry labeled Ter

macrodomain arrived at the cell center not only with a shorter

Figure 4. Positioning of Z-rings relative to nucleoids in multi-nucleoid cells. (A) A composite image of longer DslmA Dmin cell. ZipA-GFP
(green), DAPI stained nucleoid (red), and phase contrast images (grey) have been overlaid. Scale bar is 2 mm. (B) Nucleoid and ZipA-GFP density
distributions along the long axis of the cell for the cell shown in panel (A). The positions marked by ‘‘N’’ correspond to the new division sites at the
centers of the nucleoids and the position marked by ‘‘O’’ to old division site between fully segregated nucleoids. (C) Frequency of Z-rings in the
double mutant cells at the new and old replication sites. Only cells that have two or more distinct nucleoids have been analyzed. Error bars represent
standard deviations over three independent measurements each involving about 50 cells. (D)–(F) the same for wild type cells that have been treated
for 2 hours with 20 mg/ml cephalexin.
doi:10.1371/journal.pgen.1004504.g004
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delay but also accumulated in the center of the cell on average
more rapidly than the ZipA-GFP marker for the Z-ring

(Figure 6D). We observed a similar behavior for wild type cells

(Figure S9) although the delay appeared somewhat smaller,

(0.0260.10) ?Td (Figure S10).

Time lapse measurements of the Ter macrodomain and the Z-

ring in longer (L.6 mm) DslmA Dmin cells indicate why these cells

prefer divisions at the J positions from the cell poles (cf.

Figure 2A) and preferentially show Z-rings at the new division sites

(cf. Figure 4). The measurements showed that a shift from the cell

center to J positions occurred when the Ter region moved from

the center of the cell to J positions from the cell poles (Figure 6

E–F, Movie M3). This was shortly accompanied by an appearance

of the Z-rings in the same locations. In some cases we observed

that the Z-ring completely disappeared from the central location,

while in other cases, as shown in Figure 6 E–F, the Z-ring also

persisted in the cell center and was able to complete division.

Observations that the Z-ring follows the movement of the Ter

macrodomain in a highly correlated manner for both single and

multi-nucleoid DslmA Dmin cells are consistent with the hypothesis

that the Ter macrodomain acts as a positional landmark for cell

division proteins in these cells.

Localization of the Z-ring in the absence of the putative
Ter linkage

If the MatP-ZapB-ZapA linkage is involved in the co-

localization of the Ter macrodomain and the Z-ring in DslmA

Dmin cells, then rendering the linkage dysfunctional by removal of

any proteins of the linkage should make the placement of the Z-

ring relative to the nucleoid center more random. To verify this

prediction we constructed DslmA Dmin DmatP, DslmA Dmin
DzapB, and DslmA Dmin DzapA triple deletion strains. The triple

mutants were imaged using ZipA-GFP as a Z-ring label and DAPI

as a stain for nucleoids (Figure 7 A–C). Indeed, the distributions of

distances between the central Z-ring and nucleoid centers

(Figure 7 D–F) were more than a factor of two wider after

deletion of matP (sXz{Xn
~150 nm; p~1:10-9), zapB (sXz{Xn

~

220 nm; p~5:10-18) and zapA (sXz{Xn
~200 nm; p~3:10-11) from

DslmA Dmin cells (sXz{X n~66 nm). All p-values were calculated

using single tailed Ansari-Bradley test. Note that the horizontal

axes in Figure 7 D–F spans a distance that is three times larger

than in the corresponding graphs for DslmA Dmin and the

parental cells (Figure 3 E–F). Wider Xz2Xn distributions for the

DslmA Dmin DzapA and DslmA Dmin DzapB strains compared to

DslmA Dmin DmatP strain are likely caused by irregular Z-ring

patterns in the former two strains. ZapA and ZapB have been

identified as bundling agents for the FtsZ protofilaments [30,31].

In the absence of these proteins aberrantly shaped Z-rings can be

present at the division site which leads to higher uncertainty in Z-

ring positions.

We also observed a significantly higher percentage of polar Z-

rings (Figure S11) and polar constrictions after deletion of matP,

zapB, and zapA from DslmA Dmin background (Table S3). Note

that only a fraction of polar Z-rings leads to polar constrictions.

Figure 5. Positioning of the Z-ring relative to the MatP-labeled Ter macrodomain. (A) A composite of ZipA-GFP (green), MatP-mCherry
(red), and phase contrast image (grey) of DslmA Dmin cells (strain WD1). Scale bar is 2 mm. (B) The same for the wild type strain (strain WD2). (C)
Location of ZipA-GFP labeled Z-ring (DXz) vs location of MatP-mCherry focus (DXMatP) in DslmA Dmin cells scaled by the cell length L. Both locations
are referenced relative to the cell center. Solid symbols correspond to locations near the center of the nucleoid and open squares to locations near
the poles. The straight line corresponds to DXZ=L~DXMatP=L. Only cells with a single MatP focus are analyzed. (D) DXz vs DXMatP for wild type cells.
(E), (F) Distribution of distances between the Z-ring and the MatP focus along the long axes of the cell for DslmA Dmin and wild type cells,
respectively.
doi:10.1371/journal.pgen.1004504.g005
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For example, in DslmA Dmin DmatP cells the frequency of polar

Z-rings was 69% while the frequency of polar constrictions leading

to minicelling divisions was 28%. Although the division planes

were positioned much more randomly in triple deletion strains

than in the DslmA Dmin strain, the cell length distributions (Figure

S12) were not significantly affected except for DslmA Dmin DmatP
strain which was longer. Constancy of cell length may indicate that

the timing and duration of cell division are not affected by zapA
and zapB deletions but may be affected by matP deletion.

Considering MatP is also involved in organizing the Ter region of

chromosome [28], it is conceivable that its deletion could affect

cell length more so than a deletion of ZapA or ZapB. Altogether,

these findings show that the Ter linkage strongly affects the

accuracy and precision of division plane placement but it appears

not to affect significantly the timing of cell division.

Consistent with the role of ZapB and MatP in the Ter linkage,

we observed a drastic loss of co-localization between the Z-rings

and MatP foci in DslmA Dmin DzapB cells and in DslmA Dmin
cells when the last 20 amino acids in the C-terminus of MatP

were replaced by an mCherry fusion (matPDC-mCherry) (Figure

S13). The MatP C-terminal domain has been shown to be

important for its interaction with ZapB [25]. While our data

indicates that the Ter linkage determines the position of the Z-

ring, it has been shown that the linkage is required to stabilize the

position of the Ter macrodomain [25]. Our data do not

contradict this finding. The MatP focus appeared more delocal-

ized relative to the nucleoid center in the absence of the Ter link

in the DslmA Dmin DzapB and DslmA Dmin DmatPDC-mCherry
strains compared to the DslmA Dmin and wild type strains (Figure

S14). The Ter linkage thus appears to determine the position of

the Z-ring and at the same time stabilize the position of the Ter

macrodomain relative to the cell center once the Z-ring has

formed.

In cells with compact nucleoids, representative of an early state

of chromosome segregation, analysis of Z-ring positions relative to

nucleoid-centers revealed essentially no co-localization (Fig-

ure 7G–I). The corresponding sXz{Xn
values for DslmA Dmin

DmatP, DslmA Dmin DzapB, and DslmA Dmin DzapA strains were

about a factor of 1.5 larger (230 nm, 344 nm, 280 nm,

respectively) than these values for the whole cell population.

These differences were statistically significant in both the F-test

and in the Ansari-Bradley test. This evidence suggests that the Ter

linkage is critical to the specific localization of the Z-ring with the

chromosomal terminus at early states of chromosome segregation

when the nucleoid morphology is compact. Once the bi-lobed

nucleoid morphology emerges in the triple deletion strains, co-

localization between the Z-ring and nucleoid center appears,

though much more weakly than in the DslmA Dmin and parental

strains.

Interestingly, the spatial distributions of those Z-rings that were

not located at the poles still displayed a bias towards the cell center

(Figure 7 D–F, Figure S11). The locations of constrictions in the

triple deletion strains, which we measured from phase contrast

images, showed an overall positioning bias towards cell centers as

well (Figure S15). However, the corresponding distributions were

significantly broader in triple deletion strains than in DslmA Dmin
cells. The latter findings indicate that while triple deletion strains

lack a mechanism to recognize centers of compact nucleoids, they

still have a mechanism that can position Z-rings relative to cell

center albeit with significantly lower precision and accuracy than

the DslmA Dmin and parental strains.

Discussion

The Min system and SlmA-mediated nucleoid occlusion are the

only two molecular systems responsible for positioning the

Figure 6. Arrival of the MatP foci and the Z-ring at midcell. (A) Distribution of ZipA-GFP along the cell length as a function of time for a short
DslmA Dmin cell (strain WD1). (B) Distribution of MatP-mCherry labeled Ter region for the same cell. In the heat maps blue corresponds to low and
red to high intensity. The dashed black line approximately marks midcell. (C) Histogram of time differences between the arrival of MatP (tMatP) and
ZipA (tz) at midcell. The times are expressed in doubling times. (D) Accumulation of ZipA-GFP (blue triangles) and MatP-mCherry (red rectangles) at
midcell as a function of time. Each curve represents the average from measurements of 15 cells. Error bars represent standard errors. (E) Distribution
of ZipA-GFP and (F) MatP-mCherry in a long DslmA Dmin cell.
doi:10.1371/journal.pgen.1004504.g006
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cytokinetic ring in E. coli that have been identified thus far [2–5].

Here, we show that E. coli without these two known positioning

systems is capable of coordinating cell division and chromosome

segregation with high fidelity. The majority of DslmA Dmin cells

position their division planes accurately relative to nucleoids in

slow growth conditions and produce essentially no minicells. In

searching for the mechanism responsible for the localization of the

Z-ring in these double mutant cells, we found that the Z-rings have

a strong tendency to co-localize with the nucleoid centers. Further

investigation showed that the nucleoid centers were occupied by

the Ter region of the chromosome at the time of Z-ring formation.

The Ter region of the E. coli chromosome is organized by MatP

proteins [28]. MatP links the Ter macrodomain to the Z-ring

through ZapB and ZapA proteins [25]. It was proposed earlier

that the Z-ring acts as an anchor for the Ter macrodomain

through this linkage [25]. Our time lapse measurements show a

broader role of the Ter linkage. These measurements demonstrate

that the MatP-decorated macrodomain arrives at the cell center a

small fraction of the cell cycle before appreciable assembly of the

Z-ring occurs in DslmA Dmin cells. This temporal relationship

indicates that the Ter region of the chromosome through the Ter

linkage localizes the cell division proteins in the early stage of

cytokinesis. It is thus the Ter macrodomain that acts as an ‘anchor’

for cell division proteins during the formation of the divisome.

However, the interactions between the Z-ring and the Ter

macrodomain appear to stabilize the position of Ter macrodomain

Figure 7. Positioning of the Z-rings relative to the cell and nucleoid centers in triple deletion strains. Composite of DAPI labelled
nucleoid (red), ZipA-GFP (green) and phase contrast image in (A) DslmA Dmin DmatP, (B) DslmA Dmin DzapB, and (C) DslmA Dmin DzapA cells. Scale
bar is 2 mm. (D)–(F) Distribution of distances between the Z-ring center and nucleoid center for DslmA Dmin DmatP, DslmA Dmin DzapB, and DslmA
Dmin DzapA cells, respectively. (G)–(I) DXz vs. DXn in DslmA Dmin DmatP, DslmA Dmin DzapB, and DslmA Dmin DzapA cells, respectively. Data are
from cells with a single compact nucleoid and a central Z-ring. Straight lines correspond to DXZ=L~DXn=L.
doi:10.1371/journal.pgen.1004504.g007
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later in the cell cycle. During maturation of the divisome,

especially when it becomes fixed to the cell wall, the divisome

acts as a stabilizing element for the Ter macrodomain, holding it

fixed in the cell center [25].

A positive regulation mechanism for cell division
The Ter linkage facilitates correct placement of the division

plane relative to the chromosomes. Severing the linkage in DslmA
Dmin cells leads to increased number of unviable minicells and less

symmetric division of mother cells. Both outcomes limit the fitness

of cells. Unlike the Min system and SlmA-mediated nucleoid

occlusion, which are inhibitors of Z-ring formation, the Ter

linkage represents a positive regulatory mechanism. The link

guides cell division proteins to the location of the future division

site and not away from the undesired locations in the cell as do the

Min system and SlmA-mediated nucleoid occlusion.

The positive regulation by the Ter linkage is dynamic and it is

likely not very strong. Time-lapse measurements show that the Ter

linkage temporarily disassembles when the Ter region of the

chromosome moves from the cell pole to its center. Also, the Ter

region becomes disconnected from the divisome near the end of

cytokinesis. The Ter linkage appears thus to provide a dynamic

and reconfigurable connection, which biases assembly of cell

division proteins towards the Ter region, but does not commit cells

to division.

The Ter linkage and the Min system define two independent

positioning systems for the divisome. The Min system is capable of

positioning the Z-ring without any nucleoid in E. coli minicells

albeit with somewhat lower precision than in wild type cells [32].

The position defined by the Min system may, however, not always

match the position defined by the Ter macrodomain. In these

conflicting cases, the Min system has the dominant effect over the

Ter linkage. Consistent with this idea, we observed in long

cephalexin treated wild-type cells that Z-rings localized only at the

cell center rather than at the locations of MatP foci. Also, in the

Min+ cells we observed no appreciable accumulations of the ZipA-

GFP reporter near the cell poles although this location is favored

by the Ter linkage at the early stages of the cell cycle.

Unlike the Min system, the effect of SlmA on the Ter linkage

was less pronounced. The only observed consequence of deleting

slmA in our measurements was the decrease in polar Z-rings and

minicelling divisions in the DslmA Dmin strain compared to the

DminC strain. We hypothesize that SlmA removal, i.e. removal of

the negative regulator, effectively strengthens the positive regula-

tion due to the Ter linkage. The stronger regulation due to the Ter

linkage then leads to more abundant Z-rings in the vicinity of the

Ter region(s) of the chromosome, which sequester more efficiently

the Z-ring related proteins from other regions of the cell including

cell poles. As a result, less polar Z-rings and minicelling divisions

are present in the DslmA DminC than in the DminC cells. More

work is needed to further test this hypothesis as well as to

understand the exact mechanism of how SlmA regulates Z-ring

assembly.

Positive regulation mechanisms in other bacteria
Evidence of positive control in localizing cell division proteins

has been reported recently for several bacterial species including

Streptomyces [33], Myxococcus xanthus [34] and Bacillus subtilis
[22,24]. In Streptomyces the positive control appears to be

achieved by a combination of SsgA and SsgB proteins [33]. In

M. xanthus, PomZ is shown to have a similar role [34]. Although

these proteins arrive before FtsZ in both organisms, it remains

unclear which molecular mechanisms are responsible for their own

localization. PomZ appears to localize over the nucleoid although

it has not been determined if it is linked to any specific

chromosomal region [34]. Positioning of SsgA and SsgB relative

to chromosome also is not clear yet.

A positive localization signal, or potentiaton as the authors refer

to it, appears to be present also in B. subtilis [22]. However, the

mechanism seems to be very different in B. subtlis in which the

positive signal was reported to appear during the assembly of the

replichore, i.e. much earlier than in E. coli. Moreover, it was

observed that ‘‘some factor’’ attracted Z-ring assembly to the

oldest division site in B. subtilis outgrowing spores that lacked Min

and Noc proteins [24]. This is contrary to our observation in E.
coli, where the Z-ring is biased towards sites between newly

segregating nucleoids. Taking that B. subtilis is evolutionarily

divergent from E. coli, differences are expected. It remains to be

determined how widespread the Ter linkage is among other

bacteria. MatP is conserved in enterobacteria [28], but taking its

important functional role, structurally similar assemblies can be

present more broadly.

Additional mechanisms for localization of cell division
proteins

Deletion of any of the three proteins involved in the Ter linkage

affects the midcell positioning of the Z-ring but does not lead to

complete positioning randomness. Accordingly, a mechanism

responsible for the localization of cell division proteins must exist

in addition to the MatP-ZapB-ZapA mediated Ter linkage in

DslmA Dmin cells. The mechanism does not appear to link Z-rings

to nucleoid centers at early stages of chromosome segregation

when there is no discernable bi-lobed nucleoid structure (compact

nucleoids). Interestingly, later in chromosome segregation when a

distinct bi-lobed morphology appears, stronger correlations

between the Z-rings and nucleoid centers emerge. Two positioning

mechanisms that link the nucleoid and divisome have been

discussed in the past [35,36] that can possibly explain such

behavior. Both mechanisms rely on the transertional linkages that

connect bacterial DNA through transcribed RNA and simulta-

neously translated membrane proteins to the plasma membrane of

the cell [37]. In one hypothesis transertional linkages create local

membrane crowding [35] that prevents Z-ring formation in the

vicinity of the nucleoid. In another hypothesis, mechanical tension

produced by the transertional linkages due to chromosomal

segregation acts as a (positive) signal to guide localization of cell

division proteins [36]. Further work can prove or disprove these

ideas.

In conclusion, we have shown that E. coli lacking both the Min

system and the nucleoid occlusion factor SlmA are able to localize

their division planes at the centers of nucleoids as opposed to the

nucleoid free regions in slow growth conditions. In this localization

process, the Ter region of the chromosome acts as a landmark for

the Z-ring. Removal of the Ter linkage, which involves MatP,

ZapB, and ZapA proteins, significantly affects the accuracy and

precision with which the Z-ring localizes over the nucleoid. Our

data, however, is indicative that yet an unidentified, lower fidelity

positioning system remains in E. coli DslmA Dmin cells even

without the Ter linkage. Despite the lower fidelity, this uniden-

tified positioning system still coordinates Z-ring localization

relative to the cell center. Further studies are warranted to identify

the molecular origins of this positioning mechanism.

Materials and Methods

Strains and growth conditions
All strains used in this study were derivatives of E. coli K-12.

Descriptions of all strains and plasmids are given in Table S1. All
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bacteria were grown in M9 minimal medium (Sigma-Aldrich)

supplemented with magnesium sulfate and either with 0.5%

glucose or 0.3% glycerol. 20 mg/ml kanamycin, 35 mg/ml

chloramphenicol, 20 mg/ml ampicillin was used to grow the

strains with respective resistance markers. 50 mg/ml ampicillin was

used to grow strains carrying pKen1-GFPm2 plasmids. To grow

long, multi-nucleoid cells, all strains were incubated with 20 mg/

mL of cephalexin for approximately 2 hours. All bacteria were

grown and imaged at 28uC.

Fluorescent microscopy
A Nikon Ti-E inverted fluorescence microscope with a 100X

NA 1.40 oil immersion phase contrast objective was used for

imaging the bacteria. Fluorescence was excited by a 200W Hg

lamp through an ND4 or ND8 neutral density filter. Chroma

41004, 41001 and 31000v2 filtercubes were used to record

mCherry, GFP and DAPI images, respectively. Images were

captured by an Andor iXon DU897 camera and recorded using

NIS-Elements software.

Cells were imaged on M9 agar pads for still imaging. For time

lapse imaging home-made glass bottom dishes were used. Cells

were pipetted to #1.5 glass coverslips on the bottom of the dish

and covered with about 1 cm thick slab of M9 agar. No antibiotics

were used in M9 agar during imaging. Agar was supplemented

with IPTG (10–40 mM) for strains with ZipA-GFP constructs. For

DAPI labeling cells were incubated in 0.2 mg/ml DAPI for 1/

2 hour before spreading cells on the pads.

Image analysis
Matlab with the Image Analysis Toolbox and DipImage

Toolbox (http://www.diplib.org/) were used for image analysis.

In addition to Matlab, simpler image processing such as contrast

and brightness adjustments were performed using ImageJ software

(v1.41o). The procedures for finding volume fraction ratios is

described in [6]. The procedure for finding nucleoid centers,

centers of MatP foci, and Z-ring positions relative to cell center is

given in Text S1.

Supporting Information

Figure S1 Length distribution of daughter cells soon after

division when two daughter cells still adhere to each other by their

poles. (A) Wild type strain (BW25113), (B) DminC strain (JW1165),

(C) DslmA DminC double mutant strain (PB194).

(TIF)

Figure S2 Images of DAPI stained nucleoid and ZipA-GFP

labelled Z-ring for DslmA DminC double mutant strain TB86 (left

column) and parental strain JMBW5 (right column). In the bottom

row, the two fluorescent images are overlaid with phase contrast

image. The scale bars are 2 mm.

(TIF)

Figure S3 Displacements of Z-rings relative to the cell center,

DXz, for (A) DslmA Dmin (strain TB86 with ZipA-GFP labeled Z-

ring), (B) DslmA Dmin (strain TB86Dr120 with FtsZ-GFP labeled

Z-ring), and (C) parental strain (strain JMBW5 ZipA-GFP labeled

Z-ring). Data are shown only for cells with a single nucleoid.

(TIF)

Figure S4 Displacements of Z-rings relative to the cell center,

DXz, as a function of nucleoid displacement, DXn for DslmA Dmin
cells with FtsZ-GFP label (strain TB86 lDR120). Both displace-

ments are normalized by cell length L. All analysis is pertinent to

cells with a single nucleoid. (A) Solid rectangles correspond to

central Z-rings and open rectangles for polar rings. (B) The same

as (A) but for cells with central Z-rings over compact nucleoids that

do not show an apparent dip in their chromosomal distribution.

(C) Distribution of distances between the Z-ring center and

nucleoid center. Data are collected from cells that have a central

Z-ring.

(TIF)

Figure S5 Localization of ZipA-GFP labeled Z-rings relative to

cell center and the center of nucleoids for DminC (top row) and

DslmA (bottom row) single deletion strains. (A, B) DXz vs. DXn

scaled by cell length L. Solid rectangles mark central and open

rectangles mark polar Z-rings. The solid line corresponds to

DXZ=L~DXn=L Data are shown only for cells with a single

nucleoid. (C, D) Distribution of distances between the Z-ring

center and nucleoid center. Only data for central Z-rings are

shown. (E, F) DXz vs. DXn for cells that show a Z-ring over a

compact nucleoid.

(TIF)

Figure S6 Positioning of Z-rings relative to nucleoids in DslmA
Dmin and DslmA and DminC single deletion strains after 20 mg/ml

cephalexin treatment. (A, D, G) Composite images of cells after

cephalexin treatment. ZipA-GFP (green), DAPI stained nucleoid

(red), and phase contrast images (grey) have been overlaid. Scale

bar is 2 mm. (B, E, H) Nucleoid and ZipA-GFP density

distributions along the long axis of the cell for the cell shown in

the adjacent left panel. The positions marked by ‘‘N’’ correspond

to the new division sites at the centers of the nucleoids and the

position marked by ‘‘O’’ to old division site between fully

segregated nucleoids. (C, F, I) Frequency of Z-rings in the double

mutant cells at the new and old replication sites. Only cells that

have two or more distinct nucleoids have been analyzed.

(TIF)

Figure S7 Positioning of the Z-ring relative to the MatP-labeled

Ter macrodomain DslmA and DminC in single deletion cells. (A,

D) A composite of ZipA-GFP (green), MatP-mCherry (red), and

phase contrast image (grey). Scale bar is 2 mm. (B, E) Location of

ZipA-GFP labeled Z-ring (DXz) vs location of MatP-mCherry

focus (DXMatP). Both locations are referenced relative to the cell

center. The straight line represents DXZ=L~DXMatP=L. (C, F)

Distribution of distances between the Z-ring and the MatP focus

along the cell length. In DminC strain the outliers beyond

60.3 mm have been left out.

(TIF)

Figure S8 Displacement of the Z-ring and MatP-labeled Ter

macrodomain for two DslmA Dmin cells (strain WD1). The Z-ring

is labeled using a ZipA-GFP construct and Ter macrodomain by a

MatP-mCherry construct. (A, B) ZipA-GFP fluorescence intensity

along the long axes of the cell (x) as a function of time (t). (C, D)

The same for MatP-mCherry intensity. In the heat maps, blue

corresponds to low and red to high intensity. The time interval

covers one full cell cycle. (E, F) Intensity of ZipA-GFP (blue trace

with filled circles) and MatP-mCherry (red trace with open

triangles) in the cell center (x = 0 mm) as function of time.

(TIF)

Figure S9 Displacement of the Z-ring and MatP-labeled Ter

macrodomain for two wild type cells (strain WD2). The Z-ring is

labeled using a ZipA-GFP construct and Ter macrodomain by a

MatP-mCherry construct. (A, B) ZipA-GFP fluorescence intensity

along the long axes of the cell (x) as a function of time (t). (C, D)

The same for MatP-mCherry intensity. In the heat maps, blue

corresponds to low and red to high intensity. The time interval

covers one full cell cycle. (E, F) Intensity of ZipA-GFP (blue trace
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with filled circles) and MatP-mCherry (red trace with open

triangles) in the cell center (x = 0 mm) as function of time.

(TIF)

Figure S10 Arrival times of MatP and ZipA to the cell center in

wild type strain WD2 with MatP-mCherry and ZipA-GFP labels.

(A) Histogram of time differences between arrival times of MatP

and ZipA. The times are expressed in doubling times. The average

and standard deviation of the distribution are (0.0260.10)Td. (B)

Accumulation of ZipA-GFP (red rectangles) and MatP-mCherry

(blue triangles) in the center of the cell as a function of time. Each

curve is average of measurements in 11 cells. Error bars represent

standard errors.

(TIF)

Figure S11 Displacements of Z-rings relative to the cell center,

DXz, as a function of nucleoid displacement, DXn for DslmA Dmin
DmatP (A), DslmA Dmin DzapB (B), and DslmA Dmin DzapA cells

(C). All displacements are normalized by cell length L. Solid

rectangles mark central and open rectangles polar Z-rings. The

solid line corresponds to DXZ=L~DXn=L. Data are shown only

for cells with a single nucleoid.

(TIF)

Figure S12 Distance distribution of visible constrictions in

mother cells based on phase contrast images. Distances shown

are measured from each of the two cell poles. Note that xconstriction

is somewhat smaller than the length of newborn daughter cells

(Ldaughter) which are shown in Figure S1.

(TIF)

Figure S13 Positioning of the Z-ring relative to the MatP-

labeled Ter macrodomain in DslmA Dmin DzapB (top row) and

DslmA Dmin matPDC (bottom row) strains. (A, B) A composite of

ZipA-GFP (green), MatP-mCherry (red), and phase contrast image

(grey). Scale bar is 2 mm. (C, D) Location of ZipA-GFP labeled Z-

ring (DXz) vs location of MatP-mCherry focus (DXMatP). Both

locations are referenced relative to the cell center. The straight line

represents DXZ=L~DXMatP=L. (E, F) Distribution of distances

between the Z-ring and the MatP focus along the cell length.

(TIF)

Figure S14 Left column: Displacements of MatP-focus

relative to cell center, DXMatP, as a function of nucleoid

displacement from cell center, DXn. All displacements are

normalized by cell length L. The solid line corresponds to

DXZ=L~DXMatP=L. Data are shown only for cells with a single

nucleoid. The large scatter in DXMatP/L values in all strains is

related to the movement of the Ter macrodomain from the

nucleoid periphery to the center of the nucleoid early in the cell

cycle. In the DslmA Dmin matPDC strain, the movement of Ter

macrodomain occurs before cell division. Consequently, in single

nucleoid cells no MatP foci appear at the nucleoid periphery.

Right column: Distance between nucleoid center and center of

MatP focus. Each histogram is compiled from the data on the left

column but retaining only these data where DXMatP is less than

0.25 mm from the nucleoid center. This selection eliminates spread

caused by the cell cycle dependent movement of MatP focus from

nucleoid periphery to nucleoid center.

(TIF)

Figure S15 Placement of constrictions in (A) DslmA DminC
(strain PB194), (B) DslmA DminC DzapA (strain PB300), (C) DslmA
DminC DzapB cells (strain PB299), and (D) DslmA DminC DmatP
cells (strain PB301). Each constriction is measured relative to two

different poles and contributes two values to a given histogram that

are located symmetrically to 0.5. Note that the placement of

constrictions, which are determined from phase contrast images,

differ slightly from the final volume fractions (as shown in Figure 1

in the main text). Constrictions appear closer to mid-cell than the

division ratios. For example, constrictions that lead to partitioning

of 1 nucleoid to one and 3 nucleoids to another daughter cell are

centered at 0.29 in this plot instead of 0.25.

(TIF)

Table S1 List of the strains and plasmids used in experiments.

(DOC)

Table S2 Statistics describing co-localization of the Z-ring and

the nucleoid center in different strains. R2 is a dimensionless

goodness of fit parameter for a model DXn~DXZ. Note that for

perfect co-localization of nucleoid and the Z-ring centers, R2

approaches a value of one. R2 can also be negative; for R2
v0

there is no meaningful evidence of co-localization in the data. For

cells with compact nucleoid morphology the percentage in

parenthesis shows the frequency of those cells in the total

population. Here, the total population accounts for all cells that

have a single nucleoid and a single Z-ring.

(DOC)

Table S3 Frequency of polar Z-rings and minicelling divisions.

(DOC)

Movie S1 Displacement of the Z-ring and the Ter macrodomain

in DslmA Dmin double mutant E. coli (strain WD1) during one cell

cycle. Z-ring fluorescence is followed using a ZipA-GFP construct

(green), while the chromosomal terminus is labeled with MatP-

mCherry (red). A phase contrast image (gray) is overlaid to

visualize the cell contour. The scale bar is 2 mm.

(AVI)

Movie S2 Displacement of the Z-ring and the Ter macrodomain

in DslmA Dmin double mutant E. coli during one cell cycle. Z-ring

fluorescence is followed using a ZipA-GFP construct (green), while

the chromosomal terminus is labeled with MatP-mCherry (red). A

phase contrast image (gray) is overlaid to visualize the cell contour.

The scale bar is 2 mm.

(AVI)

Movie S3 Displacement of the Z-ring and the Ter macrodomain

in a long DslmA Dmin double mutant E. coli cell. Z-ring

fluorescence is followed using a ZipA-GFP construct (green),

while the chromosomal terminus is labeled with MatP-mCherry

(red). A phase contrast image (gray) is overlaid to visualize the cell

contour. The scale bar is 2 mm.

(AVI)

Text S1 Description of image analysis algorithms to find

positions of Z-rings, MatP, and the nucleoid centers relative to

the cell center.

(DOC)
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