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Abstract 

Our research interest is to uncover mechanisms underlying meiotic 

chromosome pairing and segregation. pairing failure 2 (pf-2) is a gene involved in 

this process during meiosis I of male Drosophila. The three pf-2 alleles recovered 

in a screen for chemically induced (EMS) mutations on chromosome III that 

cause paternal loss of chromosome N display strong meiotic phenotypes. 

Cytological analysis of testes of pf-2 mutant flies revealed unpaired chromosomes 

at prophase and metaphase I and "laggard chromosomes" at anaphase I in primary 

spermatocytes. Meiosis II appears relatively normal. Genetic data confirm that 

non-disjunction occurs at the first meiotic division and affects the segregation of 

sex chromosomes as well as autosomes. By deficiency complementation pf-2 was 

mapped to region 93D6; 93El on chromosome arm 3R and shown to be allelic to 

modifier of mdg4 [mod(mdg4)], a complex locus that encodes a large family of 

chromosomal proteins by alternative and trans-splicing. The encoded proteins 

together occupy more than 500 sites on the polytene chromosomes. We show that 

the pf-2 mutations disrupt the function of a single isoform, Mod(mdg4)56.3, that 

is expressed in primary spermatocytes at all stages. Both a GFP-tagged 

Mod(mdg4)56.3 transgene and the native Mod(mdg4)56.3 protein localize as 

discrete foci to the major autosomes, and as an intensely fluorescent cluster of 

foci to the nucleolus throughout prophase. The nucleolar cluster resolves into a 

sharply defined structure associated with the X-Y bivalent. We conclude that 

Mod(mdg4)56.3 plays a critical role in homologous chromosome pairing in 
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Drosophila male meiosis. Transgenic flies with a pf-2 null genetic background and carrying [hsp70-pf2 cDNA] fragment on their chromosome II display a complete rescue of the pairing failure phenotype. The expression pattern of the GFP-labeled Mod(mdg4)56.3 in transgenic flies' meiotic cells implies a role for this novel gene in chromosomal cohesion during meiosis. 
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Chapter One 

Background and Significance 

I- Meiosis and chromosome pairing 

1.1- Overview of meiosis 

The continuity of life of species that reproduce sexually depends on the 

formation of genetically balanced gametes. Most sexual species are diploids, or 

multiples thereof, and must reduce the genome by half to produce gametes that 

can fuse to regenerate the full complement. Meiosis is the special type of cell 

division that results in the generation of haploid cells with half of the parental 

genomic complement. It consists of two cellular divisions preceded by a single 

round of DNA synthesis. The first division is reductional, meaning that the 

chromosome number is reduced in half, and the second division is an equational, 

mitosis-like division (Figure 1 ). Pairing and accurate segregation of homologous 

chromosomes during the first division of meiosis are essential for the generation 

of euploid gametes with a single copy of each pair of chromosomes. Mutations in 

any of the components of the pairing pathways involved in chromosome cohesion 

lead to abnormalities such as chromosome non-disjunction (NDJ) and aneuploidy 

(incorrect number of chromosomes), which are major causes of spontaneous 

abortions and mental retardation in human populations, or sterility that jeopardize 

the survival of the species (McKee, 1998; Hawley, 1988). Considering the clinical 
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Figure 1: Nuclear divisions. Germ cells undergo meiosis ( a), with the separation ofhomologs at the first, reductional division (MI) and of sister chromatids at the second, equational division (MIi) resulting in generation of four haploid cells (gametes) from one original diploid parental cell. MIi proceeds similar to mitosis (b ), which leads to the production of two daughter cells with the same genetic complement as the parental cell. 
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significance of aneuploidy and the burden of genetic diseases it causes ( e.g. 

Down, Turner or Klinefelter Syndromes) on society, it is important to uncover the 

mechanisms underlying chromosome pairing and disjunction during meiosis. 

1.2- Sister chromatid cohesion and homologous chromosome pairing 

At the first reductional 4ivision of meiosis, homologous chromosomes pair 

and then segregate to opposite poles. Sister chromatids segregate at meiosis II, the 

"equational" division, which is similar to mitosis. The formation and breakdown 

of the bonds between homologs and sister chromatids are tightly coordinated in 

order to lead to an accurate separation of chromosomes. 

During replication in both mitosis and meiosis, sister chromatids pair along 

their entire length. A multi-subunit complex named 'cohesin' that is composed of 

two members of the Structural Maintenance of Chromosomes (SMC) family, 

SMCl and SMC3, and Sist�r Chromatid Cohesion proteins, SCCl and SCC3, 

holds sister chromatids together (Strunnikov, 1999; Hirano, 1999; Hirano, 1998). 

SMC proteins have DNA binding sites and an ATPase domain at one end. SMC 1 

and SMC3 each contain two long coiled-coil domains separated by a flexible 

linker region. In cohesin, SMC 1 and SMC3 each folds back on itself to form a 

long intramolecular antiparallel coiled-coil. The SMC 1 / SMC3 heterodimer is a 

V-shaped structure stabilized by interactions between the linkers. The DNA 

binding / ATPase domains of each of the SM C l  and SMC3 subunits is composed 

of N-terminal and C-terminal sequences at the ends opposite the linker. These 

juxtaposed ends are linked to SCC 1 .  The closed ring that is formed holds the 
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DNA strands in its center (Petronczki et al., 2003). Cohesin is thought to be 

loaded on single chromatids prior to or during S phase, and passage of the 

replication fork through the ring during replication establishes cohesion. The 

release of cohesion between the arms of sister chromatids at anaphase is mediated 

by a caspase-like protein called separase, which cleaves the SCCl subunit (Stoop

Meyer and Amon, 1999; Buonomo et al., 2000). During prophase of mitosis in 

metazoans, cohesin complexes are removed from the arms of the chromosomes by 

an �own mechanism that depends upon phosphorylation, but the chromatids 

remain attached at the centromeres so that their bipolar attachment to the spindle 

occurs. At anaphase, the proteolysis of SCCl results in the opening of the ring 

and the movement of chromosomes toward opposite poles ( Cohen-Fix, 2001 ). 

In meiosis, cohesin is retained on the chromosome arms until anaphase I 

where it helps to stabilize the linkages between homologs (Michaelis et al., 1997; 

Klein et al., 1999). Its removal at anaphase I releases the homologs to segregate to 

the poles. Cohesins then remain only at the centromeres where they persist until 

anaphase II, at which time a second phase of separase cleavage removes the 

centromeric cohesin and releases the sister chromatids (Figure 2; for review see 

van Heemst and Heyting, 2000; Katis et al., 2004). 

At early meiotic prophase, chromosomes condense and an "axial element" 

(AB) forms between the two sister chromatids of each homolog. AEs are unique 

to meiotic chromosomes and consist of both a cohesin "core" and additional 

meiosis-specific proteins (reviewed by Scherthan, 2003). Early in meiotic 

prophase, a homology search results in the alignment of homo logs side by side 
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Figure 2: Alternative roles of cohesins during the two meiotic divisions. (a) The proteolytic activity of separase removes sister chromatids' arm cohesion leading to the segregation of homo logs to opposite poles at anaphase I. (b) At anaphase II, the centromeric cohesion is released resulting in separation of sister chromatids. 
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(Roeder, 1997; Weiner and Kleckner, 1994; Loidl, 1990). The weak association 

of chromosomes is then replaced by a more stable bonding mediated by a 

proteinaceous structure called synaptonemal complex (SC). The two AEs become 

connected via a "central element" and will now be called "lateral elements". The 

central element is composed of "transverse filaments" that are formed at right 

angles to the AEs (Roeder, 1997; von Wettstein et al., 1984). Many proteins have 

been identified in yeast, mammals and C. elegans as being components of the SC 

(reviewed by Heyting, 1996; Zickler and Kleckner, 1999). Identified central 

elements components, such as yeast Zip 1 and mammalian SCP3 are long coil

coiled proteins that form the transverse filaments (Sym et al., 1993; Dobson et al. , 

1994). In Drosophila, c(3)G encodes a probable component of the central element 

with a similar structure and is required for synapsis and meiotic exchange (Page 

and Hawley, 2001). mei-P22 is a known SC component in Drosophila, most 

likely an axial element protein, it too is required for synapsis and recombination 

(Liu et al., 2002). 

Concomitantly to the formation of SC, meiotic recombination occurs and the 

sites of crossovers, called chiasmata, are responsible for holding homologous 

chromosomes together after the removal of SC at late prophase (Walker and 

Hawley, 2000; Padmore et al., 1991; Alani et al., 1990). The maintenance and 

stability of chiasmata depends on sister chromatid cohesion distal to the sites of 

crossovers (for review see Moore and Orr-Weaver, 1998; Buonomo et al., 2000; 

Bickel et al., 2002). 
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Cohesins are also required for the meiotic division but some of the mitotic 

subunits are replaced by meiosis-specific ones. A meiosis-specific variant of 

Sec I ,  Rec 8, is expressed at the onset of the premeiotic replication and is part of 

the cohesin complex that maintains sister chromatids together throughout meiosis 

(Nasmyth, 2001 ; Klein et al., 1 999; Molnar et al., 1995). 

At least in spermatocytes, two other meiosis-specific variants of cohesin 

subunits have been identified in mice and humans: STAG3 replaces STAG 1 and 

STAG2, which are homologs of Scc3 (Prieto et al. ,  200 1 ;  Pezzi et al., 2000) and 

SMC 1 � is a meiotic version of Smc 1 (Revenkova et al., 200 1 ). 

Other proteins that are not part of the cohesin complex but play a role in sister 

chromatid cohesion have also been identified such as MEI-S332 (K.errebrock et 

al., 1 992) and orientation disruptor (ORD) (Mason, 1976) in Drosophila 

melanogaster. Mut�tions in both genes cause pre1:11ature sister chromatid 

segregation (PSCS) in both male and female meiosis. MEI-S332 localizes to 

centromeres from metaphase I until anaphase II and is removed when chromatid 

cohesion is lost (Kerrebrock et al., 1 995). It is thought to function in some way as 

a protector of centromeric cohesin to prevent its premature removal at anaphase I. 

Recently, homologs ofMEI-S332 have been reported in several eukaryotes 

including shugoshin 1 (Sgol)  in fission yeast, Schizosaccharomyces pombe, and 

Sgol -like proteins in Saccharomyces cerevisiae and Neurospora crassa. 

Mutations in Sgol in these species cause PSCS in meiosis (Kitajima et al., 2004; 

Rabitsch et al., 2004). 
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Arm and centromeric cohesion during Drosophila meiosis as well as 

recombination are affected by null mutations in ord. ORD is localized on oocyte 

chromosomes and promotes crossovers between homologs by preventing 

exchange between sister chromatids (Webber et al., 2004). In males, ord 

mutations cause PSCS and NDJ at both meiosis I and meiosis II (Balicky et al., 

2002). 

1.3- Recombination and synapsis 

In S. cerevisiae, meiotic recombination is initiated by induction ofDSBs by a 

putative topoisomerase Spol 1 (Keeney et al., 1997; Bergerat et al., 1997). Mei

W68, the fly homolog of Spol l ,  is also required for meiotic recombination in 

Drosophila, which implies that formation of DSBs is the initiating event in 

Drosophila meiotic recombination as well (McKim and Hayashi-Hagihara, 1998; 

Keeney et al., 1997). Similar observations have been made in several other 

organisms; leading to the view that meiotic recombination may be universally 

initiated by Spol 1-induced DSBs (Gadelle et al., 2003). 

Supporting evidence for a central role ofDSBs in meiotic recombination 

comes from the finding that meiotic nuclei in several eukaryotes stain strongly 

during early prophase with antibodies against the phosphorylated form of histone 

2AX, a chromatin modification induced by and diagnostic of DSBs ( for review 

see Pilch et al., 2003). Moreover, genes involved in the repair of double-strand 

DNA damage, especially those involved in the "Rad52" DSB repair pathway, 
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during mitosis are also required for meiotic recombination in all eukaryotes that 

have been studied (reviewed by Dudas and Chovanec, 2003). 

Of particularly central importance for both homologous repair of DNA 

damage and meiotic recombination are eukaryotic homologs of the bacterial 

recombinase RecA enzyme, which is required for homologous DNA pairing and 

strand exchange. In eucaryotes, Rad51, and other Rad51-like proteins are 

essential for the homologous repair of DNA DSB damage, and along with the 

meiosis-specific paralog Dmcl ,  for repair of meiotic DSB as well. Mutations in 

several of these genes, as well as in other Rad52 pathway genes lead to 

accumulation of meiosis-specific double strand breaks, often accompanied by 

meiotic prophase arrest, thought to be due to a checkpoint sensitive to unrepaired 

DNA breaks (Zierhut et al . ,  2004; Wan et al. ,  2004; Lee et al. ,  2003; Abdu et al., 

2003; Vaze et al., 2002; Klein, 2001; Lydall et al. , 1996; Bishop et al., 1992). 

In most organisms, such as yeast and mouse, the initiation ofDSBs resulting 

in meiotic recombination precedes synapsis (Roeder, 1995; Kleckner, 1996). In 

Drosophila females, however, chromosome synapsis occurs in the absence of 

meiotic exchange (McKim et al., 1 998). In yeast, the SC is not necessary for 

meiotic recombination but in mutants for DSB processing and repair pathway 

synapsis is defective or delayed (Roeder, 1997). However, in Drosophila females 

SC is necessary for the completion of recombination as in mutants lacking C(3)G 

(Qrossover suppressor on J of Gowen, a structural component of the SC) meiotic 

exchange is eliminated (Page and Hawley, 2001). The phenotype associated with 

the absence of Spo 11 in C. elegans is different than in S. cerevisiae: non-9 



recombined homologs still synapse and SC is formed (Demburg et al., 1998). 

Females of Bombyx mori are achiasmatic, and SC is always formed in the absence 

of recombination (Rasmussen, 1977). 

1.4- Proteins required for homologous chromosome pairing 

As discussed above, pairing and segregation of chromosomes during cell 

cycle divisions are of special importance for the inheritance of a complete copy of 

the genome by daughter cells. Beside all of the subunits of cohesin, condensin and 

SC complexes, as well as the protein components of the DSB and repair 

pathways, many other factors function to ensure the accuracy of meiotic events. 

The movement of chromosomes toward the metaphase plate and their alignment 

on the plate, the stable bipolar attachment of kinetochores to the spindle fiber 

made of microtubules, the checkpoint mechanisms ensuring the proper 

positioning and orientation of the chromosomes, the cohesion and separation of 

sister chromatids / homologs in the arms or at the centromere, all involve complex 

protein-protein interactions and enzymatic activities. A defective component 

could result in inaccurate or failed chromosome recombination or segregation. 

Different organisms have developed a variety of pathways to identify 

homologous partners and to separate them from each other. Numerous proteins 

are involved and their functions are tightly regulated to ensure the accuracy of 

these meiotic processes (for reviews see Roeder, 1997; Nasmyth, 2002; Page and 

Hawley, 2003; McKee, 2004). 
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Telomeric regions that act as pairing sites may represent target sequences for 

specific protein aggregates. In many organisms, during early prophase stages, 

telomeres cluster and form a ''bouquet" by attachment to the nuclear envelope and 

disperse during pachytene (reviewed by Scherthan, 2001). This configuration may 

facilitate pairing by bringing the chromosome ends within a limited region 

(Zickler and Kleckner, 1998). In budding yeast, Taml/Ndj 1 was identified as a 

telomeric protein that might function in the pairing process as mutants displayed a 

delayed synapsis and a decreased recombination frequency (Chua and Roeder, 

1997; Conrad et al., 1997). 

In meiotic cells of S. pombe, SC is not formed and homologs pair through 

discontinuous structures called "linear elements" that also promote the exchange 

events (Yamamoto and Hiraoka, 2001 ). In S. pombe, a pronounced clustering of 

telomeres near the microtubule organizing center (MTOC) has been observed that 

oscillates between the two poles during the entire meiotic prophase (Chikashige, 

1994; reviewed by Schertan, 2001). Recently, the lacO-lacl-GFP tagged 

chromosome loci have been studied to demonstrate the movement of 

chromosomes in meiotic nuclei (Ding ef al., 2004). By analyzing the pairing of 

homologous loci located either at the centromeres or at the telomeres, in wild type 

and different mutant _genetic backgrounds, where telomere clustering is disrupted 

or a microtubule motor protein is defective, Ding and coworkers show that 

telomere clustering and oscillation of the chromosomes play an important role in 

homolog pairing during meiosis. However, mechanisms underlying pairing at the 

centromeres or in the arms seem to be different. 
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In Caenorhabditis elegans (C.elegans), chromosomes enter meiosis unpaired but rapidly align at the onset of leptotene. At the end of each chromosome a single site called the "homolog recognition region" (HRR) promotes and stabilizes homolog pairing in its proximity, even in mutants with no SC (MacQueen et al., 2002). HRRs may act as loading sites for a protein complex involved in chromosome pairing. Several proteins required for pairing in C. elegans have been identified. Mutations in high incidence of males (him)-3 lead to high frequencies of inviable embryos and surviving adult progeny are mostly males. HIM-3, a meiosis-specific non-cohesin component of chromosome axes and required for synapsis, has recently been shown to be involved in initial homolog alignment, SC assembly and progression of meiotic recombination (Couteau et al., 2004). Chk2, another C.elegans protein, belongs to the family of check-point protein kinases that link upstream signaling pathways to specific cell-cycle targets. It was identified in mutants displaying pairing failure of homologous chromosomes 3?d was shown to be involved in spatial nuclear reorganization during early meiotic prophase resulting in the establishment of initial alignment of homologous chromosomes (MacQueen and Villeneuve, 2001). A unique phenotype associated with the absence of a yeast meiotic gene, 
HOP2, was the formation of SC between non-homologous chromosomes and decreased pairing of homologous ones, as well as synapsis of one chromosome with different partners (Leu et al., 1998). Therefore, the wild type function of Hop2 is to be localized on chromosomes, prevent their rearrangements by excluding ectopic recombination between dispersed repeated sequences and 12 



ensure their proper segregation. In a screen for genes capable of suppressing the 

hop2 defect, Rabitsch et al. (2001) identified MNDJ, whose disruption led to the 

absence of SC formation. Mndl and Hop2 form a complex that is involved in 

homolog pairing and DSB repair during meiosis (Tsubouchi and Roeder, 2002). 

Both proteins have homologs in other organisms and based on the severe meiotic 

defects displayed by Hop2 knockout mice (Petukhova et al. ,  2003) it seems likely 

that the function of these genes is conserved across species. 

In Drosophila males, pairing is not mediated by DSB, exchange or SC. Arrays 

of 240-bp repeats in IGS are pairing sites for X and Y chromosomes (Mckee, 

1996) and may be bound by nucleolar proteins in order to hold these two 

chromosomes together. The lack of identified male-specific meiotic genes with a 

function in the pairing and segregation of homologous chromosomes during 

meiosis I has greatly hindered progress in understanding the mechanisms 

underlying these specific processes. In the following chapters, I describe a novel 

gene required for male meiotic pairing. Through analysis of this gene, it is likely 

that our questions regarding the progression of meiotic events will be answered in 

the near future. 

II- Drosophila meiosis 

11.1- Overview of meiosis in Drosophila 

Drosophila melanogaster uses a variety of pairing pathways to ensure the 

accurate pairing and segregation of meiotic chromosomes. Two major systems, 
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the recombination-based one involving SC and chiasmata, and an entirely non

recombinational pathway exist in germ cells of female and male respectively. 

Females also have an achiasmate backup system, called distributive segregation, 

which ensures the disjunction of non-exchange chromosomes. The tiny fourth 

chromosomes are always achiasmate and do not undergo exchanges, yet they 

segregate faithfully. Moreover, regular disjunction of chromosomes 1, 2 and 3 

occurs even when exchange is suppressed by multiple inversions on balancer 

chromosomes or by other means. This system is influenced by the availability, 

size and shape of the chromosomes but also depends upon homology, particularly 

in heterochromatic regions (for review see Hawley and Theurkauf, 1993). Pairing 

also occurs during interphase in all somatic cells of Drosophila and other 

Dipterans (McKee, 2004). 

An advantage of Drosophila for meiotic studies is to facilitate the comparison 

of various strategies used by males, females or both to ensure the alignment of 

homo logs and their accurate segregation. It is of interest to determine the shared 

features among these pathways as well as the distinguishing features that 

discriminate between the male / female, recombinational / non-recombinational 

and meiotic / somatic specific processes. 
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11.2- Drosophila meiotic genes 

11.2.a- Female meiotic genes 
Most of the identified meiotic genes in Drosophila affect either sister 

chromatid cohesion and are common to males and females or are specific for 

pathways such as recombination, synapsis or distributive disjunction that are 

unique to female meiosis (Orr-Weaver, 1995; Sekelsky, 1999, Mckee, 2004). 

In Drosophila, mutations in the Rad51 gene spindle-A (spnA, Staeva-Vieira, 

2003), and two of the Rad51-like genes, spindle-B (spnB), spindle-D (spnD, Abdu 

et al., 2003) as well as in a Rad54 homolog, okra (okr) reduce recombination, 

increase NDJ and result in defective patterning of the eggshell, called the spindle 

phenotype (Ghabrial et al. ,  1998; Morris and Lehmann, 1999). sp7:A females are 

sterile so the evidence for reduction of recombination and increase of NDJ is from 

RNA interference (RNAi, Yoo and McKee, 2004). The failure ofDSB repair in 

these mutants activates a meiotic checkpoint that leads to decreased levels of a 

morphogen called Gurken resulting in an altered dorso-ventral patterning of the 

egg (Ghabrial et al. ,  1998). Drosophila homo logs of Spo 1 1  (mei- W68; McKim 

and Hayashi-Hagihara, 1998; reviewed by Carpenter, 2003), a yeast 

topoisomerase II type endonuclease that creates DSBs required for initiating 

meiotic recombination, and the cell cycle checkpoint Chk2 kinase ( mei-41 ) 

suppressed the spindle phenotype when mutated (Ghabrial and Schupback, 1999; 

Abdu et al. , 2002), thus supporting the idea that the spindle phenotype is triggered 

by unrepaired DSBs. 
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In addition to the primary, exchange-mediated system that requires the formation of chiasmata for proper disjunction of homologous chromosomes (Hawley, 1988), another system functions in Drosophila females that is specifically involved in segregation of achiasmate chromosomes (Grell, 1962). The first requirement of this secondary means of homologous disjunction, called distributive segregation, is the identification of non-exchange chromosomes. The 
altered disjunction (aid; O'Tousa, 1982) mutation disrupts this step as in mutant females, chiasmate X chromosomes undergo non-homologous disjunction at high frequencies. The second step of the distributive system consists of the choice of partners and has been defined by three mutations, mei-S51 (Robbins, 1971), aid (O'Tousa, 1982) and "Aberrant X segregation" (Axs; Zitron and Hawley, 1989; for review see Kramer and Hawley, 2003), all of which alter the correct segregation events, e. g. the disjunction of the X chromosome from the small fourth chromosome. The orientation and separation of the chromosomes is the third stage of the distributive process and was defined by mutations in "no 

distributive disjunction" (nod; Carpenter, 1973), with effects on the disjunction of the always achiasmate fourth chromosome (for reviews see Hawley and Theurkauf, 1993 ; Orr-Weaver, 1995). nod encodes a kinesin-like chromosomal protein (Afshar et al., 1995) with a microtubule-stimulated ATPase activity that might be involved in the attachment of chromosomes to microtubules (Matthies et al., 2001). None of these mutations that affect distributive disjunction in females by causing high frequencies of meiotic and mitotic chromosome loss and NDJ; 16 



incorrect partner choice; and effects on exchange-mediated disjunction and size 

recognition, respectively, disrupt male meiotic events. 

· 11.2.b- Male meiotic genes 

Drosophila male meiosis appears to be a relatively simple system in which 

crossing over is absent and SC and chiasmata are not formed. In Drosophila 

males, mutations in the Spol 1 homolog mei-W68 or in the Rad52 pathway genes, 

spnA, spnB, spnD and okr did not result in meiotic phenotype, e.g. altered 

homologous chromosome segregation. Mutations in the SC genes such as c(3)G 

or mei-P22, are similarly without male meiotic phenotypes (for reviews see 

Walker and Hawley, 2000; McKim et al., 2002; McKee, 2004). These findings 

are consistent with the well-documented absence of crossing over and SC in male 

meiosis. More surprising is the failure of mutations that disrupt the distributive 

segregation system in females, which acts on non-exchange chromosomes to 

ensure their segregation at anaphase I, to affect male meiotic segregation. 

Despite several screens for mutations affecting meiosis in Drosophila, few 

genes have been recovered as being specifically responsible for male meiosis. 

Many previously identified male meiotic mutations have been lost either by 

reversion or by careless stewardship (reviewed by Orr-Weaver, 1995; Lindlsey 

and Zimm, 1992). 

Some male-specific mutations that cause meiosis I NDJ affect only certain 

chromosomes, some affect autosomes only (teflon, Tomkiel et al., 2001 ), or just 

the 4th chromosome (mei-S8, Sandler et al., 1968). Several X chromosomal EMS-
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induced mutations thought to be specific for X-Y segregation were recovered but 

mysteriously reverted before they could be fully characterized (Baker and 

Carpenter, 1972). However, the mei-081 and mei-11 genes were found to cause 

high NDJ rates of all the chromosomes (Sandler et al., 1968; Ivy, 1 98 1). 

Among the male-specific genes, only teflon (tel) has been cloned and it 

encodes a zinc finger protein of unknown function. Mutations in tef were shown 

genetically and cytologically to disrupt the segregation of all of the autosomes, 

but the disjunction of sex chromosomes remains unperturbed. No effect on female 

meiosis was detected and mitosis as well as meiosis II divisions proceed 

normally. Cytological analysis of primary spermatocytes from tef mutants showed 

unpaired chromosomes at late prophase. Based on this observation, the authors 

speculated that tef might play a role in the maintenance rather than the initiation 

of pairing. However, early stages of meiosis as well as the premeiotic 

chromosome configuration have to be studied with more sensitive techniques such 

as GFP-tagging of chromosomal sites in order to determine the exact timing of the 

pairing defect in tefmutants (Tomkiel and Briscoe, 2001). 

11.3- Cytological aspects of Drosophila male meiosis 

Fluorescent dyes such as DAPI or Hoechst 33258 allow the staining of 

chromosomes and their visualization at different stages of meiosis (Fuller, 1993; 

Cenci, 1 994). 

Pre-meiotic S phase occurs immediately after the last gonial mitosis and is 

followed by a 4-day growth period in which spennatocytes increase 25 fold in 
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volume. A detailed analysis of early stages of meiosis in young primary 

spermatocytes ( stages S0-S2) by Cenci and his coworkers showed that all the 

chromosomes are initially clustered in the middle of the nucleus but gradually 

segregate into discrete chromosomal territories associated with the inside of the 

nuclear membrane. These separate territories are evident by stage S3 and persist 

until the onset of chromosome condensation just before prometaphase. The 

beginning of prometaphase is marked by the breakdown of the nuclear envelope 

(stage Ml) and chromosomes begin moving toward the center of the nucleus 

while continuing to condense. Condensation allows the visualization of 

chromosomes with non-fluorescent dyes such as acetic-orcein. Condensed 

prometaphase chromosomes exhibit an extremely compact, typically spherical 

morphology. 

Prior to this condensation of chromosomes at late prophase, the chromatin is 

too decondensed to allow an assessment of whether homo logs are paired. The 

demonstration of their pairing at these early stages has been possible by the use of 

GFP-labeling of individual loci and the use of deconvolution microscopy 

(Vazquez et al., 2001). 

11.4- Meiotic pairing in Drosophila males 

11.4.a- Cytological evidence 

In the early 1900s, it was reported that the pairing of homologous 

chromosomes occurs in premeiotic cells, as early as anaphase of the last mitotic 
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gonial division (Metz, 1926; Stevens, 1908). However, significant insights into 

mechanisms underlying the pairing of chromosomes during interphase and early 

meiotic prophase were obtained recently by the use of Lacl-GFP system that 

allowed tracking the movement of chromosomes bearing LacO sequences, as 

targets of the tagged Laci, in several euchromatic regions (Vazquez et al., 2001). 

The study of live primary spermatocytes by Vazquez and coworkers (2002) 

showed that euchromatic regions are tightly paired quite early in male meiosis as 

shown by the unresolved GFP spots at single loci in more than 95% of young 

primary spermatocytes, compared to about 50% of premeiotic spermatogonia. 

Their junction persists through the first half of G2 until at mid G2 four distinct 

spots representing the four sister chromatids forming a bivalent appear. This 

indicates that both sister chromatids and homologs have fallen apart and they 

remain separated throughout meiosis I. However, homologous and sister loci 

remain within a common chromosomal territory throughout the latter half of 

meiotic G2 phase. Further investigation is required to answer the question of how 

these meiotic DNA strands remain associated from mid G2 until anaphase I and 

whether their attachment occurs at specific pairing sites. 

By labeling the centromeric regions with a GFP-CID fusion protein, Vazquez 

et al. (2002) concluded that sister centromeres are tightly paired throughout G2, 

but homologous centromeres are unpaired except for a brief period in mid-G2, at 

early S3 stage when chromosomal territories are newly formed, by an unknown 

mechanism that seems likely to involve components of the nuclear matrix. 
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In summary, the euchromatic regions are intimately paired in early G2 but 
separate by mid G2 (stage S3). Chromosomes remain in proximity of each other 
by virtue of associations as yet uncharacterized (for reviews see McKee, 2004; 
Hawley, 2002). 

11.4.b- Chromosomal pairing sites 

It was first demonstrated cytologically that Drosophila X and Y chromosomes 
are linked and their association occurs at one or a few sites on each chromosome, 
called collochores (Cooper, 1964). Genetically, X chromosomes with a 
heterochromatin deficiency (Xh) caused X-Y NDJ indicating that pairing sites 
would be located within these sequences (McKee and Lindsley, 1987). These 
pairing sites did not include sequences such as satellites and seemed to be 
composed of more specific regions. The two sex chromosomes have many 
different types of repeated sequences within their heterochromatin. Of particular 
importance are . the nucleolus organizers (NOs) that are present only on the X and 
Y chromosomes in Drosophila. Each NO consists of ---250 copies of rRNA genes 
and these arrays are not present in Xh deficiencies that display an X-Y pairing 
defect (for review see McKee, 1996). Xh deficient flies carrying transgenic 
insertions of ribosomal DNA sequences were tested and it was found that a single 
complete rRNA gene including the promoter for RNA polymerase I and the 
intergenic spacer (IGS) regions of ribosomal rRNA genes, could partially restore 
the pairing and disjunction of the X and Y chromosomes (McKee and Karpen, 
1990). Further studies showed that the 240-bp repeated sequences within the IGS 
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were sufficient for X-Y pairing. Six to twelve 240-bp units are present within each IGS and the X-Y pairing ability of the Xh deficient flies can be recovered with only 6 copies of the 240-bp units and the presence of additional copies correlated with improved pairing and disjunction of X and Y chromosomes. These IGSs reside within the heterochromatic regions at the base of the X chromosome and the short arm of the entirely heterochromatic Y chromosome (McKee et al., 1992; Merill et al., 1992;  Ren et al., 1997), corresponding to the cytological location of the collochores. Pairing sites of autosomes are distributed much differently than for the X-Y pair. In flies carrying transpositions of euchromatic fragments of chromosome 2 to the Y chromosome, the Y segregates from a normal chromosome 2. Quadrivalents consisting of the X, Y2
, 2 Y and 2 are observed at late prophase / prometaphase and at anaphase. Both of these effects occur at frequencies that are proportional to the size of the transposed region, suggesting that pairing sites are distributed along the entire length of the euchromatic chromosome arms. However, 2-Y transpositions involving only heterochromatin have no effect on segregation or on quadrivalent frequencies (McKee et al., 1993; reviewed by McKee, 1996). This, along with several other observations, argues that in male meiosis, heterochromatic regions do not play a role in pairing of autosomes. This is another difference between male and female meiosis in Drosophila as distributive segregation of the homologs in female meiosis has been shown to depend upon pairing within heterochromatic regions of both the X and 4th 

chromosomes (Hawley et al., 1993 ; Karpen et al., 1996; Dernburg et al., 1996). 22 



We have a good map of chromosomal pairing sites but no knowledge about 

the trans-acting factors that are required to mediate pairing. We also have a 

description of the dynamics of pairing in male meiosis: intimate pairing 

throughout the euchromatin in early G2, loss of pairing at the mid-G2 transition 

after the establishment of territories. Key unanswered questions are: what factors 

mediate the intimate pairing of homologous sequences in early prophase? And 

how do the homologs remain connected during late G2 despite the loss of pairing, 

or more precisely, what substitutes for chiasmata in achiasmatic meiosis? 

III- Modifier of mdg4 (mod(mdg4)) 

The primary goal of this research was to identify and characterize novel male 

meiotic mutations in order to uncover mechanisms underlying the transmission of 

parental genome to future offspring. The screen for Drosophila male-specific 

mutations led to the identification of a novel meiotic gene, modifier of mdg4 

(mod(mdg4)), that encodes a chromosomal protein with a very complex genomic 

structure. This introduction is intended to provide necessary background 

regarding the function of this gene for a better interpretation of the collected data 

(for review see Dom and Krauss, 2003). 

111.1- Structure 

mod(mdg4) is a very complex gene, encoding over 33 isoforms generated by 

alternative and trans-splicing, most or all of which are chromosomal proteins 

(Dom et al., 1993; Gerasimova et al., 1995; Buchner et al., 2000; Labrador and 
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Corces, 2003 ; Krauss and Dom, 2004). The first four exons (402 amino acids) are common to all isoforms and encode an evolutionarily conserved domain called BTB (Broad complex, Tramtrack, Bric a brae) (Zollman et al., 1994; Ahmad et al ., 1998). This 115- residue motif plays a role in protein - protein interactions and mediates the dimerization / multimerization of many transcriptional regulators involved in a wide variety of developmental processes (Bardwell and Treisman, 1994; Buchner et al., 2000; Read et al., 2000). The second motif identified in the C-tenninal sequence of most of the Mod(mdg4) isoforms, consists of2 Cysteine and 2 Histidine residues along with 4 other hydrophobic amino acids that are also evolutionarily conserved. This motif is called Cys2His2 or FL YWCH and forms one zinc finger domain with an unknown function (Buchner et al., 2000; for review see Dom and Krauss, 2003). The discovery that interactions between two of the isoforms, Mod(mdg4)67.2 and Mod(mdg4)56.3, and their respective partners, Su(Hw) and inhibitor of apoptosis proteins (IAPs ), are mediated by the FL YWCH motif, suggests that this domain might play a role in protein-protein interactions (Gause et al., 2001; Ghosh et al., 2001; Harvey et al. , 1997). Also, a Drosophila transcriptional activator called GAGA factor has a high structural homology to Mod(mdg4) as they both contain the N-terminal BTB domain and the one C-terminal Cys2-His2 zinc finger motif (Farkas et al . , 1994; for review see Granok et al . ,  1995). The binding of GAGA to DNA via a single zinc finger domain has been well documented (Pedone et al, 1996; Wilkins and Lis, 1998; Wilkins and Lis, 1999) and the requirement for the N-terminal BTB / POZ domain of the protein has also been reported (Katsani et 24 



al., 1999; Espinas et al., 1999). Based on this finding, a role in DNA-binding 

cannot be excluded for the Cys2-His2 motif. 

Seven out of 33 specific exons are encoded by the antiparallel strand of the 

DNA duplex (Dom et al., 2001; Labrador et al., 2001). The generation of mature 

mRNAs could be explained by the trans-splicing of two independent pre-mRNAs. 

Dom and colleagues (2001) demonstrated experimentally the occurrence of the 

trans-splicing by mserting sequences encoding the two transcription units on 

different chromosomes. The generation of mature transcripts led to the conclusion 

that trans-splicing occurs not only for exons located on the complementary strand, 

but also between exons in cis, residing on the same coding strand. This hypothesis 

was supported by the detection of independent endogeneous promoter regions 

driving the transcription of some of the specific C-terminal exons (Dom et al., 

2001). Further studies by Mongelard et al. (2002) indicated that trans-splicing 

accounts for the recovery of the wild type function in flies heterozygous for two 

independent mutations, one within the 5' common region and one in the specific 

C-terminal exon of Mod(mdg4)67.2 isoform. 

111.2- Function 

Most of the alleles of mod(mdg4) that have been studied bear an alteration 

within the common region. Most of the alleles that disrupt the coding sequence of 

the common region are recessive lethals, and several have been shown to cause 

embryonic lethality. Thus, the locus as a whole is essential for embryonic 

development. One of the lethal alleles of mod(mdg4) proved to have 2 amino acid 
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changes in the conserved BTB domain, suggesting that this domain is essential for 

viability (Read et al., 2000). Some of these alleles have also been shown to have 

dominant effects on position effect variegation and on expression ofhomeotic 

genes (Gerasimova et al., 1995; Buchner et al., 2000; Krauss and Dom, 2004). 

Thus mod(mdg4) is classified as a modifier (enhancer) of PEV and as a member 

of the Trithorax group (Trx-G) (Gerasimova et al., 1998; for review see Dom and 

Krauss, 2003). Hypomorphic alleles that affect axon growth during embryonic 

development have also been described (Gorczyca et al., 1999). 

It is not surprising that mutations in the common region would exhibit 

pleiotropic mutant phenotype as all of the isoforms would be affected. Mutations 

within a specific exon disrupting only one isoform could provide information 

regarding the specific function of each of these isoforms. 

Currently, only two alleles specific for one isoform of mod(mdg4) have been 

identified. mod(mdg4)T6 and mod(mdg4}"1 disrupt the specific exon of 

Mod(mdg4)67.2 protein (Gause et al., 2001). This specific isoform is not essential 

as homozygote flies are viable. Its role in chromatin insulator function has been 

widely investigated. 

Insulators are sequences that prevent the enhancer - promoter interaction 

when placed between these two elements (Dorsett, 1999). The tissue-specific 

expression of the yellow gene of Drosophila is under the control of five different 

enhancer sequences located upstream of this gene. When gypsy, a 7.3-kilobase 

retrotransposon carrying 350 base-pair insulator sequences, is inserted between 

the enhancer and promoter of the yellow gene, it disrupts their communication and 
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inactivates the transcription and expression of yellow in specific tissues (Geyer et 

al., 1986; Gdula et al., 1996; for review see Gerasimova and Corces, 1996). 

gypsy insulator function depends upon the products of two genes: su(Hw) and 

mod(mdg4). Su(Hw) binds to the 350-bp insulator sequences of gypsy (Spana et 

al., 1988) through its twelve zinc finger motifs (Spana and Corces, 1990). 

mod(mdg4) encodes a large family of chromosomal proteins; one of which, 

Mod(mdg4)67 .2, is involved in the insulator function of gypsy retrotransposon 

(for reviews see Gdula et al., 1996; Bell et al., 2001; Gerasimova and Corces, 

2001). 

Immunofluorescence experiments using antibodies against Mod(mdg4) and 

Su(Hw) proteins revealed the presence of Mod(mdg4) at hundreds of sites on 

polytene chromosomes from salivary glands overlapping all of the Su(Hw) 

binding sites. The direct interaction between these two proteins has been 

demonstrated under in vivo conditions by yeast two-hybrid assay ( Ghosh et al., 

2001 ). Surprisingly, in interphase nuclei of diploid cells of imaginal discs, 

immunofluorescence reveals only 20-25 foci (Gerasimova and Corces, 2001 ). The 

model proposed by these authors involved the juxtaposition of distant insulator 

sites through interactions between chromosomal proteins and the nuclear matrix, 

forming large rosette-like structures. This nuclear organization of the chromatin 

fiber, imposed by gypsy insulator sequences, is postulated to be important for the 

regulation of gene expression. 

Another isoform, Mod(mdg4)56.3, also known as Doom, was isolated in a 

yeast-two-hybrid screen for proteins interacting with IAPs of Baculovirus 
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(Harvey et al., 1997). The overexpression of Doom induced apoptosis in 

Drosophila S2 cells. The binding of Doom to IAPs, mediated by the FL YWCH 

domain on the specific C-terminal exon, strongly suggests that each isoform may 

play a specific role in different cellular pathways. 

In this dissertation, I document a novel phenotype of mod(mdg4) mutations, 

namely pairing failure of meiotic homologous chromosomes, and show that these 

mutations specifically disrupt the Mod(mdg4)56.3 (Doom) isoform. 
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Chapter Two 

A screen for male meiotic mutations reveals a novel gene required for 

homolog pairing in Drosophila males 

I- Introduction 

Meiosis is an important process in sexually reproducing organisms and results 

in the production of gametes with reduced chromosome number to yield zygotes 

with the proper ploidy. Although meiotic events have been extensively studied, 

many of the mechanisms by which they occur remain obscure. Mistakes that 

occur during meiosis can have various consequences including sterility and 

lethality. These problems occur in diverse organisms from yeasts to Drosophila to 

humans. 

Drosophila melanogaster males offer an excellent system for the study of 

chromosome pairing and segregation. As mentioned earlier, the major difference 

between male and female meiotic pathways is the absence of synaptonemal 

complexes (Meyer, 1 960) and recombination (Cooper, 1 964) in males, which 

must have adopted other primary mechanisms responsible for proper pairing and 

separation of homologous chromosomes. In order to dissect these pathways, it is 

necessary to study mutants that are affected at various· steps in the meiotic 

process. 

Sandler and coworkers undertook large-scale screens for mutations affecting 

Drosophila meiosis in 1968 followed by Baker & Carpenter in 1972. They have 
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provided much of the material used in the last 3 5 years to study Drosophila 

meiosis. Other screens done by Castrillon (1993), Sandler (1971), Gethmann 

(1974) and Ivy (1981) led to the identification of additional meiotic mutations. 

Despite these efforts, li�le progress has been made in the understanding of male 

meiosis. One problem is that the great majority of identified mutations are 

specific for female meiosis. Another problem is that although several previous 

male meiotic mutations were identified, most have been lost (reviewed by Orr

W eaver, 1995; Lindlsey and Zimm, 1992) either by reversion or by careless 

stewardship. The field is currently lacking Drosophila male mutants defective in 

pairing and segregation and this has greatly hindered progress in understanding 

the mechanisms underlying homologous chromosome pairing and segregation. 

The primary focus of our project was to identify and characterize genes involved 

in this process. 

A few meiotic mutations that have been identified in different screens from 

natural populations (Sandler et al., 1968), EMS-induced mutagenesis (Baker and 

Carpenter, 1972), P-element insertion (Castrillon et al., 1993 ; Sekelsky et al., 

1999) are reported in Table 1. The only mutation that causes NDJ of all 

chromosomes at MI in both sexes is Dub. Defect in mei-13 leads to a phenotype 

similar to D ub but in addition, the sex chromosome disjunction is also disrupted at 

MII (Ivy, 1981 ). This suggests that some mechanisms of the first meiotic division 

are shared between the two sexes. 
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Table 1: Examples of mutations affecting the meiotic chromosome segregation in 

Drosophila. Only a few mutations are reported in this table in order to compare 

the two sexes, the meiotic stage at which the defect occurs and the chromosome( s) 

that is (are) affected. Dots indicate the sex, the division (MI or MII: meiosis I or 

II) and chromosome( s) that were shown to be affected. 
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Mutated genes 
orientation disruptor 

mei-13 
Horka 

mei-S332 
Double or nothing 

mei-G17 
mei-G87 

no distributive disjunction 
mei-Il 

altered disjunction 
Aberrant X segregation 

equational producer 
mei-081 
mei-S8 
teflon 

Suppressor of Ste/late 
homeless 

Mutated genes 
orientation disruptor 

mei-13 
Horka 

mei-S332 
Double or nothing 

mei-GJ7 
mei-G87 

no distributive disjunction 
mei-/1 

altered disjunction 
Aberrant X segregation 

equational producer 
mei-081 
mei-S8 
teflon 

Suppressor of Ste/late 
homeless 

Affected chroIJDsome 
Symbol X 2 3 

ord • • • 
• • • 
• • • 
• • • 

Dub • • • 
• • 

• 
nod • • • 

• • • 
aid • 

AxsD • 
eq • 

• • • 

teJ • • 
Su(Ste) • • , . 

his • • 
Division Sex s�ecifici!Y 

MI Mil Male Female 
• • • • 
• • • • 

• • • 
• • • 

• • • 
• • 

• • • • 
• • 
• • 
• • 
• • 

• • 
• 
• 

• • 
• 
• 
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The distributive system in females underlies the segregation of non-crossover 

bivalents (Grell 1962). Karpen and colleagues showed that a mostly 

heterochromatic mini-X chromosome (Dpl 1 87) ·segregates regularly from a full

length X or from another similar mini-X, suggesting that the necessary 

information for proper disjunction in females is confined to the pericentromeric 

heterochromatin. Disjunction was reduced in females bearing further deletions 

within this heterochromatin region. However, Dp 1 1 87 segregated randomly in 

males, both from an attached-XY or from another mini-X, suggesting that the 

distributive system in females and achiasmate segregation in males are not the 

same (Karpen et al. 1996). Consistent with this are findings that mutations 

disrupting components of the distributive system (e.g. aid, Axs, and nod) do not 

have any phenotype in males. 

Both chiasmate and achiasmate segregation in females and males respectively 

require proper homolog pairing during meiosis I. However, pairing sites differ 

between the two sexes. The 240 hp IGS repeats within rDNA sequences, common 

to the heterochromatin regions of the X and Y chromosomes, have been found to 

be important in X-Y pairing in males (McKee and Karpen 1990; Merrill et al. 

1992). These sequences are not sites of female sex chromosome pairing (Hawley 

1988), which involves the region surrounding the X centromere (Karpen et al. 

1 996). Pairing sites for chiasmate chromosomes are located within euchromatic 

regions, whereas distributive pairing sites for the 4th and X chromosomes are 

mainly heterochromatic (Hawley et al. 1 993 ; Demburg et al. 1 996). Autosomal 

pairing in males appears to involve euchromatic regions exclusively (Yamamoto 
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et al., 1979; McKee et al., 1993; for reviews see McKee, 1998; McKee 2004). The 

situation in females is more complex. Recombination is confined to the 

euchromatic arms, but compound autosomes that share homology limited to the 

heterochromatin disjoin at high frequencies in females (but randomly in males) 

due to the distributive system. Other than this, little is known about the 

mechanism of chromosome pairing and segregation in Drosophila males. 

Our goal is to characterize genes involved in meiotic chromosome pairing and 

segregation in Drosophila melanogaster by identifying meiotic mutations with 

defects in homolog or sister chromatid segregation during male meiosis. 

As a result of an ethyl methanesulfonate (EMS) mutagenesis to recover non

essential genes in Drosophila, a large collection of stocks (12,000 lines) was 

generated in which flies homozygous for a highly mutagenized autosome were 

viable (Koundakjian et al., 2004). EMS-treated stocks are currently maintained in 

the laboratory of Charles Zuker at The University of California, San Diego. 

Screening these lines for male sterile mutations and for mutations that disrupt 

transmission of chromosome 4 led to the identification of>2000 strains, of which 

62 bearing mutations on their second or third chromosome displayed a phenotype 

associated with loss of the paternal fourth chromosome (Wakimoto et al., 2004). 

Further analysis of the selected lines revealed the presence of spermatids with 

unequal nuclear sizes, suggestive ofNDJ during meiosis, in forty-eight of the 

mutants. Cytological and genetic analyses by Bruce McKee led to the 

identification of 29 strong meiotic mutants on chromosomes 2 and 3 that define 9 

complementation groups, seven on chromosome 3 and two on chromosome 2, 
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named pairingfailure 1-9 (pf 1 -9; McKee, personal communication). Mutations 

in all nine loci were found to disrupt segregation of all four chromosome pairs in 

male meiosis. 

II- Deletion mapping 

In order to identify the genes responsible for the observed meiotic phenotypes, 

the chromosomal locations of the EMS-induced point mutations on the third 

chromosome had to be determined. To map the pf genes on chromosome 3, we 

used a chromosome three "deficiency kit" available from The Drosophila Stock 

Center at Bloomington, consisting of a collection of stocks, each having a deletion 

covering a small segment of chromosome three. Collectively, these deficiencies 

encompass most of the euchromatic regions of chromosome 3. Male flies carrying 

one representative allele from complementation groups: pf-l,pf-2,pf-4,pf-5 and 

pf-6, along with a marked Y chromosome (dY y 1 were mated to females from 

each of these kit stocks. Fl progeny males heterozygous for the mutation and each 

of the various deletions were collected and mated to y w females. F2 progeny of 

these crosses were scored for X-Y NDJ, which results in recovering ofXXY (d) 

females and XO (B+) males (Figure 1 ). 

Display of the NDJ phenotype by hemizygous flies indicates that the mutation lies 

within the region missing from the deletion chromosome. These experiments 

succeeded in mapping complementation groups pf-I, pf- 2 and pf-6 to 

chromosome regions 61  F8; 62 A8, 93 D6- El ,- and 68 A2-3; 69 Al -3 

respectively. 
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Figure 1: Crossing scheme for NDJ scoring. Female flies from Zucker stock carrying a mutation on their third chromosome (Z3) were crossed to male flies with a marked UYy+ and a balancer chromosome. To generate hemizygote flies, progeny males were mated to females with a deficiency in a fragment of their third chromosome. F2 males, hemizygous for one EMS-induced mutation on their third chromosome, were tested for NDJ by crossing them to yellow, white (y w) females and scoring their progeny for the NDJ phenotype. st: scarlet; Ubx: 

Ultrabithorax; Sb: Stubble; U: Bar stone; TM3 and TM6 are balancer chromosomes. 

36 



The priority of this research was to study mechanisms underlying homologous 

chromosome pairing rather than other aspects of meiosis such as sister chromatid 

cohesion. Based on cytological and genetic data reported later on in this chapter, 

mutations in pf-2 disrupt homolog pairing and cause high frequencies of NDJ of 

all chromosome pairs. Therefore, pf-2 was chosen for further analysis. Only data 

for mappingpf-2 are reported in Table 2; they show that the region of overlap of 

deficiencies that do not complement pf-2 mutations is within the 93D8-9 region 

on the right arm of the third chromosome. Results of deletion mapping are 

graphically represented in Figure 2a. Figure 2b shows candidate genes identified 

by searching FlyBase for genes within the region of interest. 

Alleles of three candidate genes (e.g. tinman, hsr-omega and mod(mdg4)) 

were tested. The results of complementation of pf-2 alleles using the X-Y NDJ 

assay show that alleles of both tinman and hsr-omega, tin346 and l(3)0524J0JUJ , 

fully complementedpf-2 allele, Z3-5578. These data lead to the conclusion that 

pf-2 is not allelic to tinman and hsr-omega and further complementation tests 

(data reported in chapter 3) revealed that pf-2 is allelic to mod(mdg4). 

III- Cytological analysis of putative meiotic mutants 

To determine the phenotype(s) associated withpf-2 mutations, meiotic cells in 

mutants were compared to wild type ones at the same stage of division. Testes of 

mutant flies were dissected, stained with aceto-orcein and squashed to study 

meiotic chromosomes. Examination of primary spermatocytes of the three pf- 2 

alleles revealed the existence of unpaired chromosomes at prophase and 

37 



a 

b 

Region 93 on chromosome 3 

e-R1 ---
GC14 
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e-H4 -----
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pf-2 Candidate Genes 

Chromosome region 93 

93D6 93D8 93D9 93El 
i i i i 

hsr-omega 
• � tin -+ CG7859 

+- • mod(mdg4) 
CG10823 CG16791 

Figure 2: Deletion mapping of pf-2. (a) Flies with a chromosome deficient in the 

illustrated region were crossed to pf-2 mutants and Fl  hemizygote progeny were 

tested for NDJ. Purple lines represent the deficiencies that are complemented by 

pf-2 mutations, whereas blue lines indicate regions that if deleted, cause a NDJ 

phenotype. (b) Candidate genes located within the critical region. Arrows 

represent the direction of the transcription. 
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Table 2: Complementation analysis to identify pf-2. Mutant males carrying a 

marked Y chromosome were crossed to females deficient for a segment of the 

third chromosome. Fl  progeny, hemizygous for pf-2 mutation and the 

specified deficiency were mated to y w females and the F2 progeny were 

scored for NDJ. 

o/o NDJ 

.a.: Z3-5578 Z3-3298 Z3-3401 

a � Deficienci breakpoints 

Homozygotes 40. 1 3  55.56 29.92 

Hemizygotes Df(3R)B81 99C8; 100F5, 99D; l00F 0 0.06 0.07 

Df(3R)5Cl 93E-F; 94C-D 0 . 1  0. 1 0. 1 1  

Df(3L)M21 62F;63D,62A;64C(Dp on In) 0.2 0 0 

Df(3R)e-Rl 93B6-7; 93D2 0.09 0.2 0 

Df(3R)hh 93Fl 1-14; 94D10-13  0.07 0.33 0. 1 9  

Df(3R)29A6 66F5; 67Bl 0.06 0.26 ND 

Df(3R)93F 93F5; 94A8 0. 12 0 0 

Df(3R)e-Nl 9 93B; 94 62.35 63 .77 sterile 

Df(3R)e-H4 93Dl ;  93F6-8 45 .99 50.08 49.21 

Df(3R)GC14 93D6-7; 93El 47.66 49.9 47.9 

Df(3R)eGC3 93C6; 94Al-4 40.52 47.28 46.9 1 

D[(3R}.e-BS2 93C3-6; 93F14-94Al 46.38  56.85 54.42 
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prometaphase (Figure 3), as well as univalents at metaphase I and "laggard 

chromosomes" at anaphase of meiosis I (Figure 4). Up to eight univalents are seen 

at metaphase I and these unpaired chromosomes segregate randomly at anaphase I 

resulting in unequal distribution of the genetic material at opposite poles. The 

visualization of the chromatin stained with DAPI fluorescent dye revealed the 

presence of ungrouped mature spermatids with variable length, indicative of 

aneuploidy (Figure 5). NDJ is restricted to the first meiotic division and no 

abnormalities were seen during meiosis II. 

IV- Genetic analysis of putative meiotic mutants 

IV.1- Sex chromosome NDJ 

To further characterize the phenotypes of the meiotic mutants, the rate ofnon

disjunction (NDJ) of sex chromosomes and autosomes were measured genetically. 

Males homozygous or hemizygous for the pf-2 mutation and a deletion within the 

93D region on the third chromosome (Df(3R)GCJ 4), carrying a marked SSYy + 

chromosome, were tested for sex chromosome NDJ by mating them with yellow 

white (y w) females. These females are chromosomally normal and produce 

euploid gametes (for the crossing scheme for the generation of pf-2 mutant flies 

carrying a marked Y chromosome, see Figure 1 ). Progeny scores showed elevated 

numbers ofX-Y and nullo gametes relative to wild type controls. Data for X-Y 

NDJ show 44% - 48% NDJ for mutant flies hemizygous for each of the three pf-2 

alleles (Table 3). Z3-5578 homozygotes and Z3-5578 I Z3-3298 heterozygote flies 
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Wild type pf-2 mutant 

C d 

Figure 3: Phase optic visualization of meiotic chromosomes from hand-dissected, 

squashed and orcein-stained testes. Univalents are seen inpf-2 mutants' primary 

spermatocytes (b and d) at prometaphase ( a and b) and metaphase I ( c and d) 

compared to condensed bivalents in wild type cells (a and c). 

41 



Metaphase I 

a b 

C d 

Figure 4: Phase optic visualization of meiotic chromosomes at metaphase and 

anaphase of the first division of meiosis. Flies' testes were hand-dissected, 

squashed and stained with orcein. Univalent chromosomes are seen in primary 

spermatocytes of pf-2 mutants at metaphase I (a). Unequal distribution of 

chromosomes and laggard chromosomes are detected at anaphase I ( c, d). Arrows 

point to "laggard chromosomes" that have not reached a pole. 
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a 

b Figure 5: DAPI-stained sperm from hand-dissected, squashed testes. DAPI fluorescent dye stains condensed regions of the chromatin. Dispersed sperm with variable chromosome sizes are seen inpf2 mutants (a) compared to similar and organized chromosomes in wild type sperm. Unequal spermatid sizes are indicative of aneuploidy. 
43 



Table 3: Mutations in pf-2 cause sex chromosome NDJ. Males of the indicated 

genotype were crossed to y w females. 23-3298 homozygote males were sterile. 

% NDJ = NDJ flies / total flies. 

S1!erm-e22 2enottl!e: 
& genotype 

D/(3RJGCJ 4 I Z3-3298 

D/(3R)GCJ 4 I Z3-3401 

D/(3R)GCJ 4 I Z3-5578 

Z3-5578 I Z3-3298 

Z3-3401 I Z3-3401 

Z3-5578 I Z3-5578 

a genotype 
D/(3R)GC14 I Z3-3298 

D/(3R)GCJ 4 I Z3-3401 

D/(3R)GCJ 4 I Z3-5578 

Z3-5578 I Z3-3298 

Z3-3401 I Z3-3401 

Z3-5578 I Z3-5578 

Parental 

X-X 

106 

436 

337 

203 

245 

149 

Total 

Flies 

376 

1404 

1 198 

59 1 

645 

633 

NDJ 

Y-X XY-X 0-X Y-XX 

I & NDJ 1 �NDJ 
100 63 104 3 

352 179 437 

285 228 343 4 

149 102 136 1 

207 82 1 1 1  

227 97 157 3 

NDJ % Tested 

Flies NDJ males 

167 44.41 22 

616 43.87 1 8  

571 47.66 27 

238 40.27 20 

193 29.92 10 

254 40.13 23 
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displayed similarly high NDJ rates, suggesting that these may be null mutations. 

Flies homozygous for Z3-3401 on the other hand, display a weaker phenotype 

than the hemizygotes, suggesting that this mutation is hypomorphic. 

IV .2- Chromosomal NDJ occurs at early stages of prophase I and is 

specific to the first division of meiosis 

Although the presence of high levels ofX-Y NDJ inpf-2 males is indicative 

of the occurrence of MI NDJ, it does not address the question of whether 

missegregation is occurring at both divisions. In order to determine the stage at 

which the male NDJ occurs, hemizygote pf-2 I Df(3R)GCJ 4 males carrying a 

marked Y chromosome (SSYy+) were crossed to the females from C(l)RM/O 

stock with attached X chromosomes. Progeny derived from XX and XY sperm 

were scored to determine the MI / MIi NDJ rates (Figure 6). The presence of B+ y, 

su(wa) w" females, which result from fertilization of diplo X eggs by nullo-XY 

sperm, can be explained by the occurrence of either MI or MIi NDJ events or by 

chromosome loss. Since the progeny class that is specifically derived from 

abnormal segregation at MIi (X"X-0, B + females) was completely absent, the 

total NDJ is equal to the amount of 1st division NDJ. Data from these studies 

show that the sex chromosome segregation defects in pf-2 males are occurring 

exclusively at the first meiotic division (Table 4). 
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MII NDJ 

® x x  

CD� o  0 

MI disjunctio/ 

CD � ® V Y  

� 

0 XXYY (i) 
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MI NDJ � ® x v 

0 _____. 0 0 

-.o 0 
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XAX 0 

xw+-y+ ® X/0 Parental: B+ o 

B'Y + XAX / B'Yy+ 
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Xw+-y+ B'Y + ® X-HY +;o MI NDJ: B o  

0 XAX / 0  ® 

xx ® XX/0 MII NDJ: B
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+ 

Figµre 6: Non-disjunction of sex chromosomes occurring during meiotic 

divisions. 

(a) Non-disjunction at MI generates XY and O sperm, whereas NDJ at MII 

generates XX, YY and O sperm. 

(b) NDJ scoring in progeny from crosses of pf males carrying BsYy + to 

C(l)RM y1 w0 su (w0

) I O  females (XAX). 

MI: meiosis I, MII: meiosis II. ® : Lethal . 

46 



Table 4: Non-disjunction caused by pf-2 mutations is meiosis I-specific. Males of 

the indicated genotype were crossed to C(l )RM/O females with attached X 

chromosomes. X-X and X-Y progeny were scored to determine the MI vs. MII 

NDJ rates. 

% NDJ = NDJ flies / total flies. No progeny with male MII NDJ phenotype were 

detected. 

NDJ % Tested 

Sperm-egg genotype Y-XX X-O O-XX XY-O XX-O Total NDJ NDJ males 

a genotype 

Df(3R)GCJ 4 I Z3-3298 

D/(3R)GCJ 4 I ZJ-3401 

53 

73 

73 

84 

MI/MIi MI MIi 

69 

126 

47 

3 1  

41 

0 

0 

226 100 44.25 

324 167 51.54 

20 
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IV.3-pf-2 mutations affect the disjunction of the 2nd chromosomes 

In order to determine whether the phenotype caused by pf-2 mutations is 

chromosome specific or genome wide, stock males were tested for autosomal 

NDJ. Males hemizygous for each of the pf-2 alleles and carrying a marked B SVy + 

chromosome were crossed with females carrying a compound chromosome 2, 

C(2)EN b, pr. Since all of the eggs from these C(2)EN females carry either .Q or 2. 
copies of chromosome 2, only non-disjunctional sperm that are disomic or 

nullisomic for chromosome 2 will lead to viable progeny. 

Wild type control males produce less than one offspring per tested male in this 

cross. To estimate the number of sperm that are monosomic for chromosome 2, 

sibling males were crossed to chromosomally normal (2-2) females. Both 

experimental and control crosses were carried out under conditions to fully 

sample sperm from tested males. The calculation of the NDJ ratio takes into 

account the non-viable progeny and the method used is explained in Figure 7. 

Table 5 shows the mis-segregation of the 2nd chromosomes based on the number 

of progeny produced by pf-2 mutant males. The two pf-2 alleles, Z3-5578 and Z3-

3298 previously classified as null alleles, exhibited elevated (....,30%) chromosome 

2 NDJ frequencies, while the third allele, Z3-3401 displayed a weaker phenotype 

(...., 10% NDJ). Since hemizygotes for this allele exhibit random assortment of the 

sex chromosomes, these results suggest that pf-2 may play a more crucial role in 

sex chromosome than autosomal segregation. 

The second chromosome of C(2)EN flies is marked with the recessive alleles 

black and purple (b, pr). pf-2 flies were heterozygous for the recessive brown 

48 



Eggs: 2"2b, pr 0 Eye phenotype 

Sperm 

Parental 2bw or 2+ 

I 
8 

MI NDJ 2bw / 2+ 2bw / 2+ wild type 

MII NDJ 2bw / 2bw 

I 
2bw / 2bw brown 

MII NDJ 2+ / 2+ 2b+ / 2+ wild type 

MI or MII NDJ 0 2"2b, pr ® black, purple 

s + 

Figure 7: Expected progeny for the cross: +; B Yy ; bw I +; pf-2 I DJ (3R)GCJ 4 x 

C(2)EN, b pr I 0. Lethality is indicated by ® . Progeny of the cross to 

C(2)EN indicate the occurrence of a paternal NDJ. 
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Table 5 :  pf-2 mutations affect the disjunction of the 2nd chromosomes. Males of 

the indicated genotype were crossed to females with attached 2nd chromosomes. 

Progeny of these crosses are products of gametes with non-disjoined 

chromosomes. To estimate the number of progeny that were not viable, crosses to 

y w females were set up under similar experimental conditions. 

% NDJ = 2 (progeny per male of the cross to C(2)EN females) / Total progeny per 

male 

Total progeny = NJ?1 + Disjunction 

Non-disjunction (NDJ) = [progeny of the cross to C(2) EN, producing only 

aneuploid gametes] X 2 
Disjunction (DJ) = [Progeny of the cross to y w females producing only euploid 

gametes] 
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NDJ �rogenr of C(22EN � 
Snerm-egg genotvne: 2+/2bw-0 0-22b,pr 2bw/2bw-0 

cS genotype MI Ml/MIi Mil 

Df(3R)GCJ 4 I Z3-3298 434 59 1 4 

Df(3R)GCJ 4 I Z3-5578 572 587 1 

Df(3R)GC14/ Z3-3401 237 416  1 

C(2JEN � 
Total Tested Progeny 

Erogeny males 2er cS 
Df(3R)GCJ 4 I Z3-3298 1029 48 21.44 
Df(3R)GCJ 4 I Z3-5578 1 1 60 46 25.22 
Df(3R)GC14 / Z3-3401 664 44 15.09 

J! W � 
Total Tested Progeny 

:erogeni males :eer a 
Df(3R)GCJ 4 I Z3-3298 2990 27 1 10.74 
Df(3R)GC14 I Z3-5578 2322 23 100.96 
Df(3R)GC14/ Z3-3401 7768 29 267.86 

NDJ NDJ + DJ % NDJ 
Df(3R)GCJ 4 I Z3-3298 42.88 1 53 .62 27.91 
Df(3R)GC14 I Z3-5578 50.43 1 5 1 .39 33.31 
Dtf3R)GC14/ Z3-3401 30. 1 8  298 .04 10.13 

5 1  



(bw) allele on their second chromosomes. The eye phenotype displayed by the 
progeny of crosses of pf-2 to C(2)EN flies allows us to distinguish between MI vs. 
MIi NDJ, as bw-eyed progeny result only when a fly inherits two bw sister 
chromatids from the pf-2 father. Table 5 shows that there were 434 progeny with 
�ild type eye color in the Df(3R)GCJ 4 I Z3-3298 cross, but only four with bw 

eyes. The wild type progeny must have inherited both chromosomes 2 from their 
father and could be either bw I bw +, reflecting an MI NDJ or bw + I bw +, reflecting 
an MIi NDJ. However, the bw-eyed flies can result only from MIi NDJ of the 
other homolog, and since there were only 4 bw progeny, it is reasonable to assume 
that bw + I bw + progeny were equally low and that virtually all of the wild type 
progeny are bw I bw +, products of MI NDJ. Based on this ratio of MI / MIi 
progeny, we can assume that the b, pr flies derived from nullo-2 sperm that could 
be generated by a defect at either division are actually produced almost 
exclusively by an MI NDJ. 

Some previously identified NDJ-inducing mutations, such as deletions of the 
Y chromosomal Suppressor of Stellate (Su(Ste ), Livak, 1 990) locus, also cause 
other meiotic phenotypes, such as non-homologous disjunction (NHD) in which 
non-homologs preferentially disjoin to opposite poles. 

To assess whether pf-2 mutations cause non-homologous disjunction, the 
segregation of X and Y chromosomes was scored in crosses to C(2) EN females, 
taking advantage of the marked Y chromosome in the pf-2 hemizygote males. 
Table 6 represents the recovery of gametes with various sex chromosome 
genotypes relative to nullisomy or disomy for chromosome 2. If pf-2 mutations 
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Table 6:  Ratio of gametes with more than one non-disjoined chromosomes. 

The genetic complement of progeny produced by the fertilization of disomic or 

nu�lisomic eggs, produced by C(2)EN females with attached chromosome 2, by 

sperm from hemizygote males carrying one pf-2 allele over the deficiency 

Df(3R)GCJ 4 is determined by their eye color (wild type (wt), brown (bw) or 

black, purple (b, pr)), indicative of chromosome 2 NDJ; and by the shape of their 

eye (Bar (B or B+) marker on the Y chromosome), indicative of sex chromosome 

NDJ. The parameters Rx and Rv used in the calculation of meiotic drive are 

indicator of the viability of X-bearing or Y-bearing sperm relative to other sperm 

classes (McKee et al. 1 998). Rx
= (X. XY / 0. Y)112 and Ry = (Y. XY I 0. X) 112 , 

where X, Y, XY and O are the number of progeny associate with each class of 

sperm. These values represent the occurrence of meiotic drive and are equal to 1 

in a wild type background. Non-homologous disjunction (NHD) = (XY; 22 + O; 

0) I (XY; 0 + O; 22) 

pf-2 allele: Z3-5578 Z3-3298 Z3-3401 

C(2)EN yw C(2)EN yw C(2)EN yw 

!Phenotype wt + bw b, pr wt + bw b, pr wt + bw b, pr 

Genotype 2-2 0 2 2-2 0 2 2-2 0 2 

B+ X 176 223 337 135 212 203 64 179 436 

B y 1 1 7 136 285 75 135 149 42 89 352 

B X-Y 46 19 228 29 33 102 9 17  179 

B+ 0 234 209 343 20 1 21 1 136 123 1 3 1  437 

Rx 0.54 0.39 0 .8 0.5 0.5 1 .0 1  0.33 0.5 1 0.7 1 

Ry 0.47 0.23 0.75 0.27 0.3 1 0.74 0.22 0.24 0.57 

NHD 1 1 .02 1 
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cause NHD, the sum of XY; 22 and O; 0 classes should be less than the sum of 

XY; 0 and O; 22 sperm classes. However, as shown in Table 6, the NHD ratio 

[(XY; 22 + O; 0) I (XY; 0 + O; 22)] is approximately equal to 1 for all three 

alleles of pf-2. Therefore, based on these data, pf-2 mutations do not cause non

homologous disjunction. 

A phenomenon associated with some cases of chromosome NDJ is distorted 

recovery of sperm classes in a genotype-specific manner. This phenomenon is 

referred to as "meiotic drive" and is observed in Drosophila males deficient for 

XY pairing sites. These males produce a great excess of X-0 male progeny 

compared to X-XY female progeny and a significant excess of X over Y progeny 

(Sandler et al., 1957; Sandler and Hiraizumi, 1961; Gethmann 1974; McKee and 

Lindsley 1987). Sperm viability has been shown to be inversely proportional to 

chromatin content of the spermatids. The cause of meiotic drive is unknown but 

there is a correlation between the amount of chromosome NDJ and the severity of 

drive. Moreover, partial rescue of XY pairing by transgenic 240 IGS repeats 

results in a significant amelioration of meiotic drive. 

The data in Table 6 show evidence for very weak meiotic drive, as measured 

by the drive parameters Rx and Ry, in the crosses ofpf-2 males to chromosomally 

normal y w females, but moderate levels in the crosses to C(2)EN females. 

However, the drive exhibited by pf-2 males is different in two respects from that 

observed in X pairing site-deficient males. First, it is much weaker, typical values 

of Rx and Ry for Xh- males are in the range of0.05 - 0.3, and the males are semi

sterile due to extensive spermatid mortality. Second, there is no evidence in the 
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pf-2 data for enhanced mortality of 22 relative to nullo sperm, nor for viability 

interactions between the sex and second chromosomes; Rx and Ry are virtually 

identical in the 22 and O sperm classes. It is not clear why the pf-2 hemizygotes 

exhibit higher X-Y drive in the C(2) vis a vis the 2/2 crosses. In general, drive 

levels seem to be quite variable in pf-2 crosses, perhaps reflecting effects of 

genetic background or environment. 

IV.4- Mutations in pf-2 alter the disjunction of the 4th chromosomes 

To determine whether these mutations affect all of the autosomes, pf-2 mutant 

males were crossed to females with attached 4th chromosomes. C( 4)EN ci ey 

stocks were used to assess by phenotype the amount of 4th chromosome NDJ. 

Since these C(4) flies generate only gametes containing Q or .2: copies of 

chromosome 4, normal 4th chromosome disjunction leads to haplo 4 Mim{te 

progeny and phenotypically wild-type triplo 4 progeny. The Minute phenotype is 

caused by hemizygosity for M( 4), one of about 40 hap lo-insufficient Minute loci 

in the genome. Minute flies have numerous morphological abnormalities, and 

their recovery is sporadic; therefore, they are omitted from data collections . 

Diplo-4 sperm result in progeny indistinguishable from progeny from mono-4 

sperm. On the other hand, fertilization of nullo-4 nondisjunctional sperm of 

C(4)RM ci ey gametes leads to ci ey progeny which are phenotypically 

distinguished by reduced eye size and gaps in the wing veins. Note that in this 

cross, only the nullo sperm will produce progeny phenotypically different from 

wild-type sperm and, therefore, the actual amount ofNDJ could be double the 
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reported amount due to uncounted diplo-4 sperm (Figure 8). Table 7 shows the 

high level of 4th chromosome NDJ (44%) in Z3-3298 males. The normal level of 

4th chromosome NDJ is 0.1 % (Hawley 1989). The Z3-3401 mutation causes only 

10% of 4th chromosome NDJ and seems to be a weaker allele, consistent with the 

data for X-Y and 2-2 NDJ. 

V- The female meiotic phenotype associated with pf-2 mutations 

V.1- Chromosomal disjunction phenotype associated with pf-2 mutations 

in females 

Male meiotic chromosomes do not recombine and therefore the study of 

meiosis can be undertaken without the interference of many overlapping factors. 

Many meiotic genes that have previously been described are either female 

specific or affect the process in both genders. It is therefore important to find 

mutations that alter specifically male meiotic events, as this will increase our 

understanding of the basis of the chromosomal pairing and disjunction pathways. 

The analysis ofpf-2 mutations led to the conclusion that pairing failure 2 is 

indeed a meiotic gene, affecting specifically the first division and altering the 

homologous chromosome segregation. It was then important to analyze the 

phenotype in pf-2 mutant females in order to determine whether the disruption of 

meiosis occurs in both sexes or is male-specific. Based on the deletion mapping 

results, males hemizygous for any of pf-2 alleles and seven Df(3R) deficiencies 

displayed elevated rates of NDJ. Females heterozygous for these 7 deficient 
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Eggs: 4A4 ey, Ci 0 

Sperm 

4 4/4A4 4-0, Minute 
4-4 44 / 44 44-0 
0 0-44, ey, ci ® 

Figure 8 :  Expected progeny for the cross: +;B
s
Yy +; pf-2 - /Df (3R) GC14 x 

C(4)RMIO. Lethality is indicated by ®· Progeny of the cross to C(4)RMIO indicate the occurrence of a paternal NDJ. NDJ = [ey, ci progeny of the cross to C(4)RM/O] x 2 Disjunction = ey + - ey Total progeny = NDJ + Disjunction = (2 ey) + ( ey + - ey) = ey + + ey % NDJ = NDJ I Total 
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Table 7 :  Mutations inpf-2 alter the 4th chromosome disjunction. Males of the 
indicated genotype were crossed to C(4)RMIO females with attached 4th 
chromosomes carrying ci and ey. The presence of eyeless flies indicates the 
production of paternal nullo gametes. To include the progeny with two paternal 
4th chromosomes in the estimate ofNDJ, the number of ey, Ci flies was doubled. 
%NDJ = 2 (number of ey, ci flies) / total flies, i.e. the sum of ey and ey+ flies. 

pf-2 allele: Z3-5578 Z3-3298 Z3-3401 

C(2)EN yw C(2)EN yw C(2)EN yw 
Phenotype wt + bw b, pr wt + bw b, pr wt+bw b, pr 

Genotype 2-2 0 2 2-2 0 2 2-2 0 2 
B+ X 1 76 223 337 1 35 2 12  203 64 1 79 436 

� B y 1 17 1 36 285 75 1 35 149 42 89 352 

B X-Y 46 1 9  228 29 33 102 9 17  1 79 

cS B+ 0 234 209 343 201 2 1 1 136 123 1 3 1  437 

Rx 0.54 0 .39 0.8 0.5 0.5 1 0.33 0.5 1 0.7 

Ry 0.47 0.23 0.8 0.27 0.3 1 0.7 0.22 0.24 0.6 

NHD 1 1 .02 1 
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chromosomes and for the nullpf-2 allele, Z3-5578, were generated and tested for 

X chromosome NDJ by mating them to males carrying attached X-Y y, B 

chromosomes. The occurrence of NDJ is detected by the presence of B+ females 

and B males among the progeny. Results reported in Table 8 show no sex 

chromosomal disjunction defect due to the lack of pf-2. 

V.2- Effect of pf-2 mutations on recombination events 

Recombination is of central importance in female meiosis and it seemed 

necessary to study the effect of pf-2 on this meiotic female-specific event. The 

frequency of recombination along the X chromosome was measured in male 

progeny of females heterozygous for an X chromosome that is multiply marked 

withye/low, prune, crossveinless, miniature andforked (y, pn, cv, m, f) (Figure 

9). Hemizygous Z3-3298 or Z3-3401 females were compared to Z3-3298 I +  or 

Z3-3401 I +  siblings as controls. The females were crossed with attached-XY, y, 

B I O males, allowing the simultaneous determination of the frequency of crossing 

over and ofNDJ. 

The data and analyses are shown in Tables 9 and 10 (for crossing schemes see 

experimental procedures). It is evident from the data that pf-2 females have 

frequencies ofX recombination and X-X NDJ similar to those of pf-2 I +  

controls. Statistical analysis of the data, using Chi-square test, supported the 

hypothesis that the difference in map distances seen in control flies (Z3-3298 I +) 

vs. pf-2 mutant ones is non-significant, thus no elevation in NDJ or change in 

recombination processes can be associated withpf-2 mutations in females. 
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Table 8: Test of sex chromosome non-disjunction in female flies hemizygous for 

pf-2. Z3-5578 mutant females were crossed to males carrying the attached XY , 

chromosome C(l ;  Y) ys X. Y\ In (1) EN, y B and their progeny were scored for 

sex chromosome NDJ. 

Parents � Pr02eni 
a I Total NDJ % Females 

a 2 B
+

w
+ 

X1''Yy,B/O Z3-5578/5805 1 ·  

Z3-5578/GCJ 4 
Z3-5578/5598 3 

Z3-5578/l 605 
Z3-5578/3013 

Z3-5578/2252 1 

Z3-5578/5798 
NDJ 

Total 
a 2 flies 

X1''Yy,BIO Z3-5578/5805 1 122 

Z3-5578/GCJ 4 16 19  

Z3-5578/5598 1 398 
Z3-5578/J 605 1253 

Z3-5578/3013 2 1 84 

Z3-5578/2252 12 14 

Z3-5578/5798 947 

B + B+ + +B+ w w l w flies flies NDJTested.Sterile 
460 66 1 1 122 1 0.09 14 5 

794 825 1619 0 1 5  2 

569 826 1398 3 0.2 1 14 6 

549 704 1253 0 16  2 

942 1242 2 184 0 25 1 

43 1 782 1214 1 0.08 13 2 

391 402 154 947 0 12 

NDJ % Females 
flies NDJ Tested Sterile 

1 0.09 14 5 

0 1 5  2 

3 0.2 1 14 6 
0 16  2 

0 25 1 
1 0.08 13 2 

0 12 
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1A5 2El 

y pn 
5A13 

CV 

l OEl 

m 

15F4 

f centromere 

Figure 9: Graphical presentation of the multiply marked X chromosome (mX) 

carrying yellow (y), prune (pn), crossveinless (cv), miniature (m) andforked (f) 

phenotypic markers allowing the visualization of crossover events. y+ locus on 

the short arm allows determining the occurrence of recombination close to the 

centromere. The cytological location of these loci on the X chromosome is 

indicated above them. 
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Table 9: Effect of pf-2 mutations on recombination rates in females. Trans

heterozygote or hemizygote females bearing one of the 2 pf-2 alleles, Z3-3298 or 

Z3-3401, and a multiply marked X chromosome were crossed to ys X-YL In(l )  

EM, y B I O to males which produce attached X-Y and nullo-XY gametes, where 

the attached X-Y chromosome is marked with yellow and mild Bar alleles. No 

females with B+ eyes were scored among the progeny, indicating that NDJ did not 

occur during gamete production in these flies. 

2 vellow cS 
Genotype of tested 2 _v B  .V rm cv mf 

ZJ-3298, st I+ 567 141 104 

Z3-3298,st I Df(3R)GC14,st 498 1 55 71  

Z3-3401, st/+ 567 157 101 

Z3-3401,st I D_f(3R)GCJ 4,st 63 24 24 

All Normal NCO 
no NDJ 

vellow cS 
Genotype of tested 2 pn cvf pn m f m pn f cv m CV pn m 

Z3-3298, st I+ 4 1 5 4 3 3 1 

Z3-3298,st I D_f(3R)GCJ 4,st 2 3 1 2 2 

Z3-3401, st I+ 3 2 3 1 2 

Z3-3401,st I Df(3R)GCJ 4,st 1 1 2 1 

DCO TCO 

vellow cS 
Genotype of tested 2 cv mf mf f pn pn CV pn cv m 

Z3-3298, st I+ 1 1  5 1  30 28 56 2 1  

Z3-3298,st I Df(3R)GCJ 4,st 1 1  34 3 1  24 48 3 1  

Z3-3401, st/+ 21 34 34 22 50 34 

Z3-3401,st I Df(3R)GCJ 4,st 2 6 1 1  2 6 1 

sco 
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Table 10: Statistical analysis to determine the significance of the difference in 

map distances, measured experimentally, seen between tested and control flies. 

High values of P indicate that the difference in map unit (m. u.) is not significant. 

�s were crossed to X-Yy B o's; :ECO = SCO + 2 DCO + 3 TCO; Map distance = 

:ECO I NCO + SCO + DCO + TCO. The difference in map distances is 

statistically not significant. Female flies mutant for pf-2 do not display any NDJ 

phenotype or recombination defect. 

NCO: non-crossover, SCO: single crossover, DCO: double crossover, TCO: triple 

crossover, m.u.: map unit (in centimorgan) and Chi2: Chi square statistical test. 

No B+ females or B males, indicative of NDJ were scored. 

Genotype of tested � NCO sco DCO TCO :ECO Chi2 m. u. P value 

Z3-3298, st I+ 245 197 20 1 240 0.6424 5 1 .83 - 0.5 

Z3-3298,st I Df(3R)GCJ 4,st 226 179 10 1 99 47.95 

Z3-3401, st/+ 258 195 1 1  217  0.0658 46.76 - 0.8 

Z3-3401,st/ Df(3R)GCJ4,st 48 28 5 38 46.91 
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In order to detect the recombination events occurring between the centromere and 

the y+ locus, and to see the effect of pf-2 mutations on this process, flies were 

generated that carried the same marked X chromosome with an additional y + 

locus located close to the centromere on the short arm of X. The control and test 

flies had the same genotype that was described above. Results of this test are 

shown in Tables 11 and 12 and lead to the same conclusion as above, that pf-2 

mutations do not disrupt meiosis in females (no NDJ or recombination defect). 

Processes by which exchanges interact to control their own distribution are 

called genetic interference. In general, the occurrence of a meiotic crossover in 

one interval interferes with the occurrence of a second crossover in an adjacent 

interval, which results in a deficit of double crossovers in neighboring intervals. 

To determine whether pf-2 mutations affect the influence of crossing over 

between one pair of genes and the adjacent region, the occurrence of 

recombination between different loci along the arm of the multiply marked X 

chromosome was analyzed. The formula for calculating interference is: 

Interference = 1 - coefficient of coincidence (c.o.c.); where c. o. c. is the observed 

number of double recombinants (DCO) divided by the expected number of double 

recombinants. Our data, reported in Table 13, show that pf-2 mutations do not 

affect the occurrence ofDCO in short intervals. For the entire chromosome, a 

slight decrease in interference is observed, which means that double crossover 

events seem to occur more often than expected. Females hemizygous for ZJ-3401 

were noticeably less fertile than hemizygotes for ZJ-3298 (less than 4 progeny per 
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Table 1 1 :  Effect of pf-2 mutations on recombination rates in females. Trans

heterozygote or hemizygote females bearing one of the 2 pf-2 alleles, Z3-3298 or 

Z3-3401 , and a multiply marked X chromosome with an additional y+ locus close 

to the centromere on the short ann of X were crossed to males producing attached 

X-Y and nullo-XY gametes, where the attached X-Y chromosome is marked with 

yellow and mild Bar alleles. No females with B+ eyes were scored among the 

progeny, indicating that NDJ did not occur during gamete production in these 

flies. 
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Q vellow o 
Genotype of QParent y B  _V pn pn CV pn cv m pn cv mf 

Z3-3298, st  I+ 154 87 16  25 17  3 

Z3-3298,st/ Df(3R)GC14,st 124 76 7 1 9  7 5 

Z3-3401, st I+ 35 1 1 87 3 1  43 35 17 

Z3-3401, st/ Df(3R)GC14,st 1 5  25 1 8 5 

no NDJ NCO sco sco sco sco 

vellow o 
Genotype of QParent cv mf m f  m f cv m CV 

Z3-3298, st/+ 1 

Z3-3298,st I Df(3R)GC14,st 1 2 1 1 

Z3-3401, st/+ 2 4 5 2 

Z3-3401, st/ Df(3R)GC14,st 2 1 

NCO sco sco sco sco 

yellow+o 

y+ B pn cv mf cv mf mf f y + 
Z3-3298, st I+ 1 83 35 3 1 9  20 6 

Z3-3298,st I Df(3R)GCJ 4,st 1 1 8 37 3 17  9 9 

Z3-3401, st I+ 359 123 1 3  70 49 16  

Z3-3401, st I Df(3R)GCJ 4,st 17  1 1  3 2 2 2 

no NDJ NCO sco sco sco sco 

vellow+o 

pn cv pn cv f pn m f  pnf pn cv m pn 
Z3-3298, st I+ 1 2 1 1 3 

Z3-3298,st I Df(3R)GCJ 4,st 1 1 1 

Z3-3401, st/+ 3 4 3 4 1 

Z3-3401, st / Df(3R)GC14,st 
DCO DCO DCO DCO DCO DCO 
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Table 12: Statistical analysis to determine the significance of the difference in 

map distances, measured experimentally, seen between tested and control flies. 

High values of P indicate that the difference in m. u. is not significant. Females 

were crossed to X-Y y, B males. Due to low fertility of Z3-3401 I Df females, 

counts for y and y + males, for both the experimental and the control crosses, were 

pooled together for the statistical analysis. As different markers were employed in 

the two data sets, the phenotype associated with single, double and no crossover 

was determined for each test and based on their phenotype, progeny were 

classified as SCO, DCO or NCO and pooled together. DCO: y 

(cv,m,cvm,pnmf,pnf,pncvj) + y + (pncvf,cvm,pnmf,pnf,cv,m). :ECO: sum of 

crossovers, :ECO = SCO + 2 DCO, and Chi2: Chi square statistical test. Map 

distance = :ECO / NCO + SCO + DCO in map unit (m.u. = centimorgan). The 

difference in map distances is statistically not significant. Female flies mutant for 

pf-2 do not display any NDJ phenotype or recombination defect. NCO: non

crossover, SCO: single crossover, DCO: double-crossover, TCO: triple-crossover. 

No B+ females or B males, indicative of NDJ were scored. 

� NCO sco DCO l:CO m. u. Chi2 

Z3-3298, st I+ 122 109 9 127 52.9 
1 .691 -0.2 

Z3-3298,st I Df(3R)GC14,st 1 1 3 76 8 92 46.7 

Z3-3401, st/+ 601 446 29 504 46.8 
0.587 -0.5 

Z3-3401, st/ Df(3R)GC14,st 86 5 1  6 63 44. 1 
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Table 13: pf-2 mutations cause a mild interference in the distribution of 

exchange events. Map distance = number of recombinant progeny I total number 

of progeny. The coefficient of coincidence (c. o. c.) = ratio between the frequency 

of observed double crossovers (DCO) and the expected frequency of DCOs. The 

expected frequency = number ofDCO I total number of progeny. 

� Genotype 
pn-cv 

Z3-3298 /+ 10.7 
Z3-3298 I Df(3R)GCJ 4 8.82 

Z3-3401 I+ 9.57 
Z3-3401 I Df(3R)GC14 9.1 

DCO 

Z3-3298/+ 6 

Z3-3298 I Df(3R)GCJ 4 4 

Z3-3401 /+ 5 
Z3-3401 I Df(3R)GC14 1 

DCO 

Z3-3298/+ 9 

Z3-3298 I Df(3R)GCJ 4 8 

Z3-3401 I+ 28 

Z3-3401 I Df(3R)GC14 3 

Map distance (m.u.) 

cv-m pn-m 
24.04 34.74 

20.91 29.73 

20.72 30 .29 

16.08 25. 1 8  

pn-m 
Exp c.o.c. 

1 8 .08 0.33 

1 1 .29 0.35 

2 1 .34 0.23 

2.09 0.48 

+ pn-y 

Exp c.o.c. 

1 8 .78 0.48 

1 1 .32 0.7 1 

43 .03 0.65 

3 .02 0.99 
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m-f h± 
1 7. 1  5 .42 

1 0.7 8 .63 

1 6. 1 8  7 .03 

1 2 .9 6 .45 

Total 

703 

612 

1076 

143 

Total 

240 

1 97 

6 1 2  

62 

m-y+ en-y+ 
22 .52 57.26 

1 9 .33 49.06 

23.2 1 53.5 

1 9 .35 44.53 



female compared to more than 25-30 for heterozygote Z3-3401 or Z3-3298 flies, 
Table 14). In order to generate recombination results that would be statistically 
meaningful, a large number of flies had to be tested. 

To further investigate the semi-sterility phenotype of these females, we 
analyzed eggs laid by these females by microscopy. While some eggs laid by 
these females seemed normal, others displayed abnormalities in dorsal-ventral 
axis formation, visualized by the detection of missing, fused or unequal dorsal 
appendages (DAs), indicative of a defect occurring during oogenesis but not 
related to meiosis (Figure 10). The paired chorionic appendages located 
asymmetrically along the dorsal / ventral and anterior / posterior axes of the 
eggshell supply the developing embryo with oxygen. A conserved signaling 
cascade, involving many activating and inhibiting factors, operates between the 
oocyte nucleus and its adjacent follicles cells. Briefly, the binding of Gurken, a 
Transforming Growth Factor (TGF) - alpha like protein concentrated close to the 
oocyte nucleus, to its receptor, the Epidermal Growth Factor (EGF) receptor, 
activates the Mitogen-Activated Protein Kinase (MAPK) cascade and other 
signaling pathways resulting in the specification of the two dorso-laterally 

positioned respiratory DAs (Peri et al. , 1999; for review see Barkai and Shilo, 
2002). The Z3-3401 mutation is located within the common region of mod(mdg4) 

affecting all of the isoforms (see chapter 3). It is therefore likely that at least one 
of the isoforms plays a role in patterning during the development of the 
Drosophila egg chamber ( see chapter 1 for mod(mdg4) structure and chapter 3 for 
further information about pf-2 alleles). 
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Table 14: Decreased fertility associated with the Z3-3401 mutation. The number of progeny per female is calculated and shows semi-sterility for hemizygote Z3-

3401 females. 
Genotype Tested � Progeny Progeny / �  

Z3-3298 / +  1 8  463 25.72 

Z3-3298 I Df(3R)GCJ 4 1 5  4 1 5  27.67 

Z3-3401 / +  1 5  464 30.93 

Z3-3401 I Df(3R)GC14 23 81  3.52 

70 



a) Wild type 

b) Fused dorsal appendages 

c) Unequal sizes of dorsal appendages 

d) Missing dorsal appendages 

Figure 10: Females hemizygous for one of the pf-2 alleles, Z3-3401, and the 

deficiency Df(3R)GCJ 4 displayed semi-sterility. Eggs laid by these females 

showed abnormalities in dorsoventral axis formation that is indicative of a defect 

during oogenesis or early embryonic development. 
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VI- Summary and discussion 

Cytological and genetic analyses of a collection of lines that show elevated 

chromosome 4 loss (Wakimoto et al. ,  2004) have led to the identification of 29 

strong meiotic mutants on chromosomes II and ill. These mutations comprise 

nine complementation groups and are called pairingfailure 1-9 {pf 1-9). They all 

cause high frequencies of NDJ of all chromosomes in cytological and genetic 

tests. Three pairingfailure-2 (pf-2) alleles were recovered and tested in parallel. 

Cytological analysis of orcein-stained chromosome preparations from testes of 

pf-2 mutants revealed high frequencies of unpaired chromosomes at prophase I 

and prometaphase I and laggard chromosomes at anaphase I, at which stage the 

random assortment of chromosomes results in their unequal distribution to each 

pole and formation of gametes with an inaccurate genomic complement. The 

phenotype displayed by the progeny produced by fertilization of these gametes is 

called aneuploidy as it represents the presence of reduced or excessive genomic 

material. No defect associated with meiosis II was detected by cytological test. 

This conclusion was confirmed by genetic analyses. pf-2 mutant males, 

carrying a marked Y chromosome, were tested genetically by crossing to tester 

females of various genotypes and scoring their progeny for NDJ. Results of these 

tests showed high frequencies (30 - 45%) of NDJ. For the second chromosome 

data, we were also able to establish that NDJ occurs almost exclusively at MI, by 

virtue of the virtual absence of progeny derived from 2-2 sperm that were 

hemizygous for the bw marker carried on the paternal homologs. 
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Autosomal NDJ was also tested genetically by crossingpf-2 mutant males to 

females bearing attached second (C(2)EN b, pr) or fourth (C(4) EN ci, ey) 

chromosomes. Flies homo- and hemi- zygous for two of the pf-2 alleles, Z3-5578 

and Z3-3298, display similarly high X-Y and autosomal NDJ frequencies (---40%) 

and are therefore genetically null for pf-2. The third allele, Z3-3401, is a 

hypomorph and exhibits weaker NDJ rates (---30% sex chromosome and ---10% 

autosomal NDJ). 

The gamete data supported the cytological evidence that NDJ occurs almost 

exclusively at MI. Among the progeny produced by matingpf-2 mutant males to 

females with attached X chromosomes (C( l )RM I O  stock), numerous progeny 

derived from XY sperm were recovered but no progeny derived from XX sperm 

( diagnostic of sister chromatid pairing failure) were recovered. 

Thus, mutations in pf-2 affect the pairing and segregation of all of the 

chromosomes. The elevated NDJ rates are associated with the absence of 

bivalents at prometaphase and metaphase I and random assortment of 

chromosomes and presence of lag�ard ones at anaphase I. Abnormalities seen in 

pf-2 mutants occur exclusively at meiosis I. The pf-2 phenotype is male-specific 

and no disjunction or recombination defect was detected in females. 

Su(Ste) (Livak 1990) is a locus on the Y chromosome that is necessary for the 

repression of the X-linked Stellate locus. Both loci are made up oftandemly 

repeated sequences containing an ORF that is homologous to the �-subunit of 

CK.II (Livak 1984 ). The absence of Su(Ste) results in high expression of Stellate 

protein which accumulates in testis as crystals within primary spermatocytes 
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(Bozzetti et al. 1995). Deletion of the Su(Ste) locus or mutations in the homeless 

(his) gene results in nondisjunction of the X-Y and large autosomal pairs, along 

with chromosome breakage and loss (Hardy et al., 1984; Stapleton et al., 2001). 

An additional phenotype is the excess recovery of certain sperm classes in a 

genotype-dependent manner, a phenomenon that is referred to as meiotic drive. A 

similar phenomenon is also seen in males deficient for the X chromosome pairing 

site. The progeny of these males show a greater recovery of normal XX females 

vs. normal XY males and of XO males vs. XXY females has been observed. Our 

data show that pf-2 mutations cause high X-Y NDJ frequencies similar to males 

lacking rDNA (the X-Y pairing sites). Mutations in Su(Ste) loci cause high 2-2, 3-

3 NDJ but do not affect 4-4 disjunction. Both aberrations result in high meiotic 

drive. Unlike Su(SteF and rDNA - flies, pf-2 mutant males display only a mild 

meiotic drive, and non-homologous disjunction is absent. 

Although numerous screens have been undertaken to identify meiotic mutants 

in Drosophila, very few mutants have been recovered with defects in the pairing 

and segregation of chromosomes in males. The characterization of the majority of 

male meiotic mutations that have been identified in screens was not possible as a 

time lapse resulted in loss of the phenotype. 

Obviously, meiotic events are significantly different in the two sexes as 

indicated by the very low rate of recovery of male-specific mutations in several 

large-scale screens. Both male and female meiosis are affected if processes 

common to these two sexes, such as sister chromatid cohesion, are disrupted 

(mutations in ord, mei-S332, and mei-G87). 
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A careful analysis of meiotic mutations that have been identified leads to the 
conclusion that two types of mechanisms account for chromosome separation: 

- One type of mechanism is chromosome-specific: mutations in eq, mei-G87, 

mei-S8, mei-Gl 7 and (aid or Axs), tested genetically, affect only the disjunction of 
one or two chromosomes (X, 2, 4, X and 2, X and 4 respectively) chromosomes. 

- Another has a global impact on all the chromosomes: Dub, mei-13, mei-081, 

mei-Il and nod alter the disjunction of all chromosomes. 
The two male-specific meiotic mutations discovered in the Sandler et al. 

(1968) screen showed very different phenotypes: mei-S8 mutants showed high 
levels of 4th chromosome NDJ and no effect on disjunction of the sex 
chromosomes while mei-081 mutation resulted in a genome wide increase in NDJ. 
These phenotypes are in agreement with the idea that at least two separate types 
of mechanisms exist for chromosome segregation, a general and a chromosome 
specific one. 

The only male-specific gene that is currently available for further studies and 
has been cloned was also identified from the Zuker collection of EMS
mutagenized stocks and is called tejlon (tef, Tomkiel et al, 200 1). Mutations in tef 

are also meiosis I-specific and affect the segregation of autosomes only without 
disrupting the X-Y pairing. This finding confirms the existence of pairing 
pathways that are shared and some that show XY / autosome split. 

Our research resulted in identifying a novel factor that :functions in the pairing 
and segregation of meiotic homologous chromosomes. Results of refined 
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mapping, molecular and genetic analyses, described in the next chapter, 

demonstrate thatpf-2 is allelic to modifier ofmdg4 [mod(mdg4)]. 

The identification of this novel gene that is involved exclusively in male 

pathways of pairing and segregation of homologous chromosomes is a great step 

toward determining how in the absence of SC and chiasmata Drosophila male 

meiosis proceeds normally and what are the specific components of this system. 

A special feature of pf-2 is to play a role in pairing and segregation pathways that 

are shared by all of the chromosomes. Many aspects of meiotic processes can be 

studied by characterizingpf-2, determining its expression pattern and its specific 

role during meiosis and identifying its cellular counterparts. The further study of 

such proteins will allow the determination of aspects of female and male meiosis 

that are conserved and those that differ. 
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Chapter Three 

modifier of (mdg4) encodes a protein required for homo log pairing in 

Drosophila melanogaster male meiosis 

* This part will be submitted for publication as Soltani-Bejnood M., Thomas 

S., Dom R., Villeneuve L., and McKee B.D. (2004). 

My work on this part consists of writing the manuscript and performing all the 

experiments except the mapping of the breakpoints of the deficiencies. 

Abstract 

Our research interest is to uncover mechanisms underlying meiotic 

chromosome pairing and segregation. pairing failure 2 (pf-2) is a gene involved in 

this process during meiosis I of male Drosophila. The three pf-2 alleles recovered 

in a screen for chemically induced (EMS) mutations on chromosome ill that 

cause paternal loss of chromosome IV display strong meiotic phenotypes. 

Cytological analysis of testes of pf-2 mutant flies revealed unpaired chromosomes 

at prophase and metaphase I and "laggard chromosomes" at anaphase I in primary 

spermatocytes. Meiosis II appears relatively normal. Genetic data confirm that 

non-disjunction (NDJ) occurs at the first meiotic division and affects the 

segregation of sex chromosomes as well as autosomes. Deficiency 

complementation showed thatpf-2 was mapped to region 93D6; 93El on 

chromosome arm 3R and shown to be allelic to modifier of mdg4 [mod(mdg4)], a 
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complex locus that encodes a large family of chromosomal proteins by alternative 

and trans-splicing. The encoded proteins together occupy more than 500 sites on 

the polytene chromosomes. One isoform, Mod(mdg4)67.2 has previously been 

implicated in control of chromatin structure. We show that the pf-2 mutations 

disrupt the function of a single isoform, Mod(mdg4)56.3, that is expressed in 

primary spennatocytes at all stages. Both a GFP-tagged Mod(mdg4)56.3 

transgene and the native Mod(mdg4)56.3 protein localize as discrete foci to the 

major autosomes, and as an intensely fluorescent cluster of foci to the nucleolus 

throughout prophase. The nucleolar cluster resolves into a sharply defined 

structure associated with the X-Y bivalent. We conclude that Mod(mdg4)56.3 

plays a critical role in homologous pairing in Drosophila male meiosis. 

Transgenic flies with a pf-2 null genetic background and carrying [ hsp 70-pfl 

cDNA] fragment on their chromosome II display a complete rescue of the pairing 

failure phenotype. The expression pattern of the GFP-labeled Mod(mdg4)56.3 in 

transgenic flies' meiotic cells implies a role for this novel gene in chromosomal 

cohesion during meiosis. 

I- Introduction 

Meiotic events consist of two cellular divisions that result in the production of 

haploid gametes with half of the parental genomic complement. Pairing and 

accurate segregation of homologous chromosomes during the first division of 

meiosis are essential for the generation of euploid gametes. 
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Meiosis I is a reductional division in which homologs pair and segregate to 

opposite poles; sister chromatids then segregate at meiosis II. In most organisms, 

pairing of homo logs is accompanied by formation and processing of double strand 

breaks (DSBs) resulting in recombination and chiasmata ( discrete sites of 

crossovers) and synapsis. 

Meiosis in Drosophila males utilizes an "achiasmatic" pathway in which 

recombination does not occur and neither SC nor chiasmata are detectable, yet 

homo logs pair and segregate with high efficiency. Intimate pairing of homologous 

loci in early prophase has been demonstrated in Drosophila males by single locus 

fluorescent tagging (Vazquez et al., 2002). Although intimate pairing is lost at 

mid-prophase, homologs remain connected until anaphase I and this becomes 

evident in late·prophase when the chromatin condenses into four compact 

bivalents. However, the factors responsible either for the early prophase intimate 

pairing or the late prophase homolog linkages have remained completely 

unknown. 

The exact mechanism( s) by which chromosomes pair and segregate can be 

elucidated only by identifying the genes involved in this process and by isolating 

and characterizing their products. A large number of mutations that disrupt 

synaptonemal complex formation, recombination or segregation in Drosophila 

have been recovered and have led to the identification of several genes that are 

central to meiosis I. However, except for two genes involved in meiotic sister 

chromatid cohesion, mei-S332 and ord, none of those identified thus far has any 

phenotype in male meiosis. Mutations that disrupt homolog segregation in male 
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meiosis have been recovered, some cause non-disjunction (NDJ) of only a subset 

of the chromosome complement, e. g. of autosomes only (teflon, Tomkiel et al., 

2001) or the 4th chromosome only (mei-S8) or the sex chromosomes only (Baker 

and Carpenter, 1972). Others cause NDJ of both sex chromosomes and autosomes 

(male-specific mutations in mei-IJ and mei-081). Beside teflon, the other mutants 

have been lost or reverted and currently the field is lacking mutations that disrupt 

specifically the homolog pairing and segregation in male meiosis. 

A collaborative project with C. Zuker, B. Wakimoto and D. Lindsley started 

with a screen of 12000 highly mutagenized but non-lethal autosomes for 

mutations that disrupt transmission of chromosome four from homozygous males 

(Koundakjian et al., 2004; Wakimoto et al., 2004). As a result of the screening, 

we recovered and identified a novel gene, pairing failure-2 (pf-2), required for 

homolog pairing and segregation in male meiosis. Cytological examination of 

primary spermatocytes from flies homozygous or hemizygous for the three pf-2 

alleles revealed the existence of unpaired chromosomes prior to prometaphase of 

meiosis I and thereafter at metaphase I and anaphase I. Mutant males carrying a 

marked Y chromosome were tested genetically and found to show 30-50% X-Y 

(homolog) NDJ, but negligible frequencies ofX-X (sister chromatid) NDJ. Other 

crosses documented high levels of autosome NDJ ( 44 % ) for null alleles of pf-2, 

again specific for homologs. Thus, absence of pf-2 induces pairing failure and 

random assortment ofhomologs that occurs exclusively at the first meiotic 

division. 
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Females carrying pf2 mutations were also tested genetically and did not 

display any NDJ phenotype or recombination defect. This indicates that pf-2 is a 

gene required specifically for male meiosis. 

Here we show by deletion mapping, a database search for candidate genes and 

complementation analysis that pf 2 is allelic to modifier of mdg4 (mod(mdg4)), a 

complex gene that encodes a large family of chromosomal proteins (Buchner et 

al., 2000). At least 33 different isoforms of mod(mdg4), each containing a 402 

amino acid N-terminal common domain and a variable C-tenninus, are generated 

by alternative and trans-splicing (Labrador and Corces, 2003; Krauss and Dom., 

2004). Most of the C-terminal exons contain a Cys2-His2 zinc finger motif 

(Krauss and Dom, 2004). The first mutations of mod(mdg4) were identified by 

their modifying effect on several gypsy-induced mutations (Georgiev and 

Gerasimova, 1989). The gypsy retrotransposon, which prevents enhancer

promoter interactions when inserted between them, contains a 350-bp insulator 

element. Two mutations specifically disrupt a single isoform of mod(mdg4), 

Mod(mdg4)67.2 that has been shown to be essential, along with the Su(Hw) 

protein, for gypsy insulator function (Gerasimova et al. ,  1 995). 

We show that the Mod(mdg4)56.3 isoform is specifically disrupted by pf-2 

mutations and that lack of this isoform fully accounts for the meiotic phenotypes 

of pf 2 mutants. The C-terminal domain of this isoform is encoded by sequences 

in the same DNA strand as the common N-terminal sequences; however, we show 

81 



genetically that the mod(mdg4)56. 3 transcript , like that of mod(mdg4)67.2 

isofonn, is generated by trans-splicing. 

The expression ofMod(mdg4)56.3 was analyzed by fluorescence microscopy 

using both a GFP-tagged mod(mdg4)56.3 transcript and an antibody specific for 

the native Mod(mdg4)56.3 isofonn. We show that Mod(mdg4)56.3 is present in 

primary spennatocytes nuclei from early prophase through metaphase I, on foci 

clustered in the nucleolus and on linear arrays along the axes of the major 

autosomes. Intriguingly, both the autosomal and nucleolar foci condense into very 

compact structures at prometaphase and are associated with the autosomal and sex 

chromosomal bivalents. Our data thus represent the first evidence for a structural 

basis for the achiasmatic homo log linkages in Drosophila male meiosis. 

II- Results 

Cytological analysis of primary spermatocytes of pf-2 mutants revealed 

the presence of non-disjoined chromosomes 

As reported elsewhere (Wakimoto et al., 2004), a screen of 12000 EMS

mutagenized autosomes led to the isolation of 48 mutations with a meiotic NDJ 

phenotype, as shown by irregular segregation of chromosome 4 in a genetic test, 

and unequal spennatid nuclei. Further testing using a genetically marked Y 

chromosome revealed that most of these mutations also caused elevated X-Y 

NDJ. Three of these mutations (Z3-5578, Z3-3298 and Z3-3401 ) mapped to the 
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same region of chromosome 3 and were subsequently shown to be allelic ( see 

below). These three mutations define the pf-2 complementation group. 

In order to characterize the defects occurring in pf-2 males, testis dissections 

and staining were performed. Acetic orcein staining was used to characterize 

chromosome behavior during the meiotic divisions. Orcein-stained chromosomes 

are invisible during the early stages of prophase, but become visible as the 

chromatin fibers condense at late prophase, which allows the detection of paired 

chromosomes. In spermatocytes from wild type control males, three distinct 

masses corresponding to the major bivalents were seen at early stages of the 

condensation process. They occupy delimited regions on the inside of the nuclear 

membrane. Tightly paired and condensed homologs were visible at prometaphase. 

Cytological examination of primary spermatocytes from flies homozygous for 

each of the three pf-2 alleles or hemizygous for each of these alleles and the 

deficiency Df(3R)GCJ 4, which covers the entire mod(mdg4) locus, revealed the 

existence of unpaired chromosomes at prometaphase and metaphase and "laggard 

chromosomes" at anaphase of meiosis I (Chapter 2, Figures 2 and 3). Typical 

prometaphase spreads in pf-2 mutant spermatocytes showed four univalents and 

one bivalent or six univalents, considering only the three major chromosome 

pairs. Notably, both chromosome condensation and sister chromatid cohesion 

appeared normal at this stage. Elevated frequencies of unpaired orcein-stained 

chromosomes (30-50%) were observed as soon as the chromosomes could be 

resolved at late prophase of the first division. 

83 



Testes of hemizygote flies carrying both a pf-2 mutation (Z3-3298 or Z3-

3401) and the deficiency Df(3R)GCJ 4 were also stained with the fluorescent 

DNA dye DAPI to allow the examination of earlier stages of prophase I. 

Chromosomes were more extended and less compact in mutants relative to wild 

type flies' tissues treated in similar conditions, in which they are closer to the 

membrane in a delimited region. However, it was impossible to estimate the stage 

at which unpairing occurs, as chromosomes are not fully condensed at early 

stages of meiosis (chapter 2, Figure 4). 

No obvious abnormalities were observed in germ-line mitotic divisions or in 

the second division of meiosis. Although the somatic mitoses were not directly 

examined, pf-2 hemizygous and trans-heterozygous flies are viable and exhibit 

normal developmental rates and morphology, indicating that pf-2 mutations are 

largely specific for the first meiotic division. 

pf-2 and mod(mdg4) are allelic 

We mapped thepf-2 gene to the region 93D6-El on the third chromosome by 

deletion complementation. FlyBase search led to the identification of candidate 

genes within the region of interest. We tested alleles of three candidate genes (e.g. 

tin man, hsr-omega and mod(mdg4)). The results of complementation of pf-2 

alleles using the X-Y NDJ assay ( see Experimental Procedures) show that alleles 

of both tin man and hsr-omega fully complemented pf-2 allele Z3-5578. However, 

non-complementation was observed between mod(mdg4) and pf-2 alleles, 

although the results were complex. 
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A complex complementation pattern would not be unexpected ifpf-2 and 

mod(mdg4) are allelic. mod(mdg4) encodes thirty three different isoforms by 

alternative splicing (Buchner et al., 2000; Dom et al., 2001, Labrador and Corces, 

2003, Krauss and Dom, 2004). All the proteins contain a common N-terminus of 

402 amino acids that includes a BTB / POZ [(Broad complex, Tramtrack, Bric a 

brae) / (Poxyvirus Zinc Finger)] domain (Zollman et al., 1994; Bardwell and 

Treisman, 1994), whereas the C-termini are variable. The C-terminal exons are 

present in several clusters proximal to the common region (Dom et al., 2001). The 

structure of mod(mdg4) locus and the locations of the mapped mutations and 

deletions are shown in Figure 1 and the relevant information about allele location 

is included in Table le. 

Results of complementation tests of pf-2 I mod(mdg4) heterozygotes are 

summarized in Table 1 (for details, see Appendix). These data showed that all 

three pf-2 alleles fail to complement complete deletions of mod(mdg4) (Table la), 

but give specific patterns of complementation against partial deletions {Table 1 b ). 

Two deletions, mod(mdg4)82 and mod(mdg4)eG/H, fail to complement both Z3-

5578 and Z3-3298, but complement Z3-3401 as well as all lethal alleles of 

mod(mdg4) (Table lb). Conversely, several small deletions -L115, -L129, -L132, -

L149 and -R32 complemented both Z3-5578 and Z3-3298 but failed to complement 

Z3-3401 (Table lb). These deletions also fail to complement lethal alleles of 

mod(mdg4) with lesions in the common region. To further evaluate these results, 

we mapped the breakpoints of mod(mdg4) deficiency stocks -B2, -T 16, -fl.10, -

tJ.33, Df{3R)e-Gp4 and Df{3R)GCJ4. Single nucleotide polymorphisms (SNPs), 
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Genomic rescue fragment: 7.5 kb upstream sequences + common exons 1 -4+ 3 specific exons 
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Figure 1: Graphical representation of the structure of mod(mdg4) locus. The 

location of mapped mutations and the extent of deletions are indicated. Also 

shown is the extent of the genomic fragment inserted on chromosome II of 

transgenic flies by P-element-mediated transformation. This figure is not drawn to 

scale. 
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Table 1 :  Complementation analysis to identify pf-2 

( la) Complementation analysis of males hemizygous for a pf-2 mutation and a 
deficiency covering the entire mod(mdg4) locus. We have found mod(mdg4/16 is 
deleted for all of the mod(mdg4/16 locus. Females with the indicated genotype 
were crossed to males bearing a marked Y chromosome and one of the three pf-2 

alleles. F2 hemizygote males displayed high NDJ frequencies. 

% NDJ , 
a Z3-5578 Z3-3298 Z3-3401 

� 
Df(3R)e-H4 45.99 50.08 49.21 
Df(3R)GC14 47.66 49.9 47.9 
Df(3R)e-GC3 40.52 47.28 46.9 1 
Df(3R)e-BS2 46.38 56.85 54.42 
mod(mdg4/1 10 46.43 43. 1 9  49.32 
mod(mdg4/1 33 37.25 43.53 49. 1 1  
mod(mdg_4l716 44.3 44.57 39.55 
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Table 1 continued 

(lb) Differential complementation pattern of males hemizygous for apf-2 

mutation and partial deletions of mod(mdg4). Based on the extent of the deletion, 

one, Z3-3401, or the two other, Z3-5578 and Z3-3298, allele(s) of pf-2 were 

complemented. 

% NDJ 
ill Z3-5578 Z3-3298 Z3-3401 

2 

mod(mdg4}'1 15 0.56 2.34 42.07 
mod(mdg4/1 29 1 .6 1 .83 49.36 
mod(mdg4/1 32 0.95 1 .46 28.34 

mod(mdg4)'1 49 0 0.88 54.93 
mod(mdg4/32 2.55 1 .93 44.27 
mod(mdg4fGP4 50.3 1 49 5 .79 
mod(mdf(4/2 37.3 1 40.22 0 
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Table 1 continued 

( l e) Complex complementation pattern of males heterozygous for apf-2 mutation 

and alterations within the common N-terminal region of mod(mdg4). These 

alterations don't complement the Z3-3401 allele of pf-2 but partially to fully 

complement the two other alleles Z3-5578 and Z3-3298. 

& 

mod(mdg)l(JJOJas2 

mod(mdg)117 

mod(mdg)269 

mod(mdg)324 

mod(mdg)340 

mod(mdg)E(var)3-93D 

mod(mdg) 02 

mod(mdg) 03 

mod(mdg) 04 

mod(mdg) 20 

Alteration 

P-element 
EMS 
EMS 
EMS 
EMS 

P-element 
P-element 
P-element 

Spontaneous 
EMS 

89 

( 

% NDJ 

Z3-5578 Z3-3298 Z3-3401 

6.36 9.24 45.74 
0.75 1.55 47.15 
1.44 2.59 49.47 
2.84 5.06 44.38 
1.89 3.18 54.09 
4.46 7.64 41.19 
1.72 2.56 32.11 
0.07 0.12 34.92 
2.96 6.22 43.09 
0.52 0.28 45.81 



Table 1 continued 

(ld) Complementation analysis betweenpf-2 alleles. Males trans

heterozygous for 2 pf-2 alleles were crossed to y w females and their progeny 

were scored for NDJ. Two of the alleles, Z3-3298 and Z3-5578, complement the 

third one, Z3-3401, but not each other. 

Genotype 

Z3-3298 I Z3-5578 
Z3-3401 I Z3-3298 
Z3-3401 I Z3-5578 

90 

% NDJ 

45.69 

1 .7 

1 .07 



Table 1 continued 

(1 e) pf-2 and mod(mdg4f6 are not allelic. mod(mdg4)T6 is a point mutation within 

a specific C-tenninal exon that affects only one isoform, Mod(mdg4)67.2. pf-2 

mutation Z3-3401, as well as the deficiency Df(3R)GCJ 4, both complemented 

mod(mdg4/6 mutation, excluding Mod(mdg4)67 .2 as a meiotic isofonn. 

Genotyl!e of l!arents 

a 

mod(mdg4/6 I Z3-3401 

mod(mdg_4)r6 I Df(3R)GCJ 4 

y w  

l W  

Progenr 

� B+w+ i B w  

560 517 

777 636 
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Total Tested 

Flies Males 

1077 15 

1413 18 



represented at about one in every 200 nucleotides (Moriyama and Powell, 1996), 

can be used as markers to compare different Drosophila lines (Teeter et al., 2000). 

The breakpoints of deletions were determined molecularly 

by comparing the genomic sequences of two lines heterozygous for the same 

mod(mdg4) deficiency and one wild type ( either Canton S or 0,;egon R), nearly 

isogenic for chromosome 3 (Hoskins et al., 2001 ), and detecting SNPs within a 

specific locus ( see Experimental Procedures). The map locations of the deficiency 

breakpoints are displayed in Figure 1 .  They show that all of the deletions that fail 

to complement Z3-3401 remove part or the entire common region; whereas the 

two deletions that complement Z3-3401 but fail to complement Z3-5578 and Z3-

3298 remove part of the variable region but do not disturb the common region. 

Taken together, the deficiency complementation results suggest that Z3-3401 

may be located in the common region and Z3-5578 and Z3-3298 may be located 

in the variable region. This conclusion is supported by further complementation 

analyses. Most of the tested mod(mdg4) mutations and deficiencies that affect the 

N-terminal common region are lethal as homozygotes. All such alleles fail to 

complement the pf-2 allele Z3-3401 but partially or completely complement the 

other two alleles (Table l e). Moreover, Z3-5578 and Z3-3298 complement the 

third allele, Z3-3401 (Table ld), suggesting that pf-2 mutants fall into two groups 

that partially complement each other. These results led to the conclusion that pf-2 

and mod(mdg4) are allelic, but the complementation pattern is complex and that 

the two groups of pf-2 alleles result from mutations in different regions of the 

complex mod(mdg4) locus. The complex interallelic complementation can be 
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explained by the occurrence of trans-splicing between two pre-mRNAs carrying 

coding sequences of two separate exons of the same gene, mod(mdg4). 

The phenotype seen in pf-2 mutant flies is not mediated by the insulator 

proteins Su(Hw) and Mod(mdg4) 67.2 

Suppressor of Hairy-wing (Su(Hw)) has been extensively studied as a protein 

that interacts with Mod(mdg4) and mediates its function in gene expression and 

chromatin remodeling (Gdula and Corces, 1997; Georgiev and Kozycina, 1996; 

Geyer and Corces, 1992; Gerasimova and Corces, 2001 ). We addressed the 

question whether the role of Mod(mdg4) in homolog pairing during meiosis was 

mediated by its interaction with Su(Hw). Strong alleles of su(Hw) were tested and 

no NDJ was detected in males lacking a functional Su(Hw) protein. Furthermore, 

the mod(mdg4/6 allele results from a point mutation in the mod(mdg4)6�.2 

specific coding region, producing a truncated protein that lacks the last 32 

residues at the C-terminal acidic domain (Gerasimova et al., 1998). Hemizygote 

mod(mdg4/6 I Df(3R)GCJ 4 and trans-heterozygote mod(mdg4)T6 I pf-2 males did 

not exhibit any NDJ phenotype (Table 1 e ). These data suggest that the phenotype 

seen in pf-2 mutant flies is not mediated by the insulator proteins Su(Hw) and 

Mod(mdg4)67 .2. 
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Identification of mod(mdg4)56.3 as the mod(mdg4) isoform causing the 

NDJ phenotype when mutated 

The pf-2 phenotype is likely to be meiosis-specific, since pf-2 trans

heterozygotes and hemizygotes are viable and fertile, unlike most mod(mdg4) 

mutations, which are embryonic lethals. Some mod(mdg4) mutations have been 

mapped to the common region and are expected to result in loss or strongly 

reduced amounts of all the isoforms. Presumably, some of the Mod(mdg4) 

proteins play a role in early development and their alteration causes lethality. It is 

therefore expected that the variable C-terminal exons confer specific biological 

roles to each isoform (Buchner et al., 2000; Dom et al., 200 1 ). Thus, it seemed 

likely that the meiosis-specific phenotype of pf-2 alleles would be caused by 

mutations in a specific C-terminal exon disrupting only one isoform. 

In support of this interpretation, most of the complementation data are 

consistent with the hypothesis that Z3-3401 is located in the common region 

whereas Z3-5578 and Z3-3298 are located in the C-terminal exon. Since Z3-3298 

and Z3-5578 fail to complement each other, we expected that they would disrupt 

the same C-terminal exon. 

To locate the pf-2 mutations within the mod(mdg4) locus, we sequenced all of 

the exo�s and some of the introns from the genomic DNA of three pf-2 mutant 

alleles and the parental bw; st strain used to generate these stocks. Only one 

mutation was found in each of the three alleles. The mutations in two of the 

alleles (Z3-5578 and Z3-3298) are located in the C-terminal exon of the 

mod(m dg4)56.3 isoform. The third mutation was found to change a residue in the 
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common region. The encoded protein, designated "Doom", was previously 

identified in a yeast-two-hybrid screen for Drosophila proteins that interact with 

the baculovirus inhibitor of apoptosis protein (IAP, p35). The Doom protein 

induces apoptosis when overexpressed in insect cells (Harvey et al., 1997). 

However, it is not known whether this interaction and apoptosis phenotype are 

relevant to the normal physiological function of the Mod(mdg4)56.3 isofonn. The 

C-terminus of mod(mdg4)56. 3, which distinguishes it from other Mod(mdg4) 

isofonns, is responsible for engagement of IAPs and induction of programmed 

cell death (Harvey et al., 1997). Like most C-tenninal exons of Mod(mdg4), the 

C-terminal exon of Mod(mdg4)56.3 encodes a single non- canonical Cys2His2 

zinc-finger which is part of a larger homology domain known as the FLYWCH 

domain. Interestingly, both of the mod(mdg4)5 6. 3 exonic mutations disrupt the 

zinc finger. Mutant DNA from the Z3-5578 allele contains a G 7 A transition at 

the nucleotide position 1498 resulting in a W 449 -> stop codon change. The 

mutation in Z3-3298 consists of a C 7 T base change at the 1683 position leading 

to HS 11 7 Y amino acid substitution. The residue 511 is a highly conserved 

component of the Cys2 His2 motif found in the C-terminal exon of>30 out of 33 

mod(mdg4) isofonns (Labrador and Corces, 2003 ; Krauss and Dom, 2004). The 

truncated protein expressed in Z3-5578 flies lacks the Cys2His2 finger along with 

all of the conserved residues in the C-tenninal domain. Z3-5578 is a null allele of 

pf-2 based on complementation data. Interestingly, the mutation in the Z3-34_Gl 

allele is not in the mod(mdg4)5 6. 3 specific domain, but rather in the common 

region, a C 7 T transition at position 822, which is located within the 4th exon of 
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mod(mdg4), and results in R224 7 Cys residue change (Figures 2 and 3). No information has been reported about the conservation / putative function of this residue. Z3-3401 is a hypomorph as hemizygote flies that carry both this pf-2 mutation and a deletion within the mod(mdg4) region display a more pronounced phenotype compared to homozygote flies ( chapter 2, Table 1 ). 
Mod(mdg4) 56.3: sequence, features and pf-2 mutations Based on the genomic complexity of mod(mdg4), and as the protein expressed in this tissue could have been a splicing variant of mod(mdg4)56.3, it was important to identify the transcripts present in testis that contained the specific 

mod(mdg4)56.3 C-terminal sequence. The full-length cDNA of mod(mdg4)56.3 was amplified from RT-PCR products prepared from testes of y w flies and carried a 3 'UTR that was shorter (only 60 nucleotides) than the published sequence (300 nt., Dom et al., 2001) from embryonic preparations but their predicted protein sequences were identical (Figures 2 and 3). Computational analyses of the Mod(mdg4)56.3 sequence and specific features include 8 alpha helices and 13 beta strands connected by loops that cover 57% of the structure; many sites for phosphorylation, glycosylation, myristylation and amidation are present. No specific structure could be predicted for Mod(mdg4)56.3 based on its sequence, as all Mod(mdg4) isoforms and many other proteins involved in protein-protein interactions share the well-characterized BTB domain. 
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Figure 2: Nucleotide sequence of mod(mdg4)56.3. All the features of this sequence are indicated. Exons 1 -4 are represented as E 1 ,  E2, E3 and E4 and are common to all mod(mdg4) isoforms. The Doom specific domain (DSD) consists of the C-terminal variable exon of mod(mdg4)56.3. The fragment indicated as Antigen is the short 15-residue sequence used for the generation of polyclonal antibodies against the specific C-terminus of Mod(mdg4)56.3. The three pf-2 mutations are highlighted single nucleotides (yellow) within the sequence. The reverse primer has been designed close to the 'stop' signal as the 3'UTR of testis mod(mdg4) is only 52 nt. long (outlined). The beginning ofpolyadenylation is marked by the 'Poly(A)' box and indicates where the 3 'UTR of the testis 
mod(mdg4)56.3 transcript ends. This figure shows the published sequence of this isoform extracted from embryonic preparations (Buchner et al., 2000), which includes a -300nt. long 3 'UTR . The forward and reverse primers were used to amplify by PCR a 1 7 1 8  nt. long mod(mdg4)56.3 cDNA. 
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gttt C tagtttagta gttatacaca agtgataaga 
ttctaattac ctgcttaatc cttttagaac tggctgtctt 
ggaccgtgct gctcttccca ggacgggaag ttcgttaaga 
acttattgga tatgctcgaa aaaggatgtg acggtctgca 
gtggacaaaa actcacagga gcgaatcatc aaatgcacct 
aaattcccta gcaataacgt aaacctgcct gtgctcataa 
ctggatgcgt cataggctta catttaagtg cacattgtca 
atccactttt aaataaatga ctgcttttaa ttttaaacga 

gtgtcggccg cgctagcaaa 
aatcaagagc caacaaacgc 

cgacgagcaa ttcagcttgt 
cgagtcgcta tgccgcggcg 
gaaggcccac cgattggtgt 
gatgccgtcg aacacccacg 

acaattcttc 
cactcccaag tttatggtta 
cggcactgga cagcggggaa 
accgatgttc cgcctctcgt 
gcgctcgtgt cgtgaccgcg 
acgagcatga tcacagccgg 
aaagggagaa ggccctatct 
aaaccataag acatctaaca 
aaaaaaaaaa aaaaaaaaaa 

2221  aaaaa 

3'U'fR (testis) 52 nt. I Canonical poly A signal j 
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Figure 3 :  The predicted amino acid sequence ofMod(mdg4)56.3 deduced from 

the nucleotide sequence of a 3-12 h D. melanogaster embryo cDNA library is 

shown. Different domains predicted by Scan Prosite are· indicated. mod(mdg4) 

isoforms are named according to the putative molecular weights of the full length 

proteins. Residues mutated in Z3-5578 and Z3-3298 are highly conserved among 

several isoforms and are located within the C-terminal specific domain of 

mod(mdg4)56.3. The mutation in Z3-3401 affects a residue encoded by the 4th 

exon of mod(mdg4) that is common to all isoforms. 
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1 MADDEQFSLC WNNFNTNLSA GFHESLCRGD VDVSLAAEG QIVKAHRLVL SVCSPFFR� 
61 FTQMPSNTHA IVFLNNVSHS ALKDLIQFMY CGEVNVKQDA LPAFI STAES LQIKGLTDND 

121 PAPQPPQES S  

1 8 1  TNK 

2 4 1  AQLV PQQITVQTSV VSAAEAKLHQ 

301 AEYIDLPMEL PTKSEPDYSE DHGDAAGDAE GTYVEDDTYG DMRYDDSYFT 

361  ANTSGGGVTA TTSKAVVKQQ SQNYSESSFV DTSGDQGNTE AQDLGELNPS NLADFGNESF 
421 LPKTKGKRPQ NVRCGLAPDQ KCVRTLDD�D RIRYDRTRSG DVLVYDGYRY DRRANYNDI I 

4 8 1  YWGCAKKRLS CNVYMITHKN KPTYVAI SGV HNHL 

Z3-5578: W4497Stop 

BTB domain 

Underlined: FL YWCH zinc finger domain 

ZJ-3298: H51 l 7Y 

Bipartite nuclear targeting sequence, identified by the presence of two successive 

Arginines 
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Complete rescue of NDJ by heat shock-driven expression of GFP tagged

Mod(mdg4)S6.3 

The ultimate proof that a gene, when mutated, causes a specific altered 

phenotype is the rescue of the mutant phenotype in transgenic flies bearing the 

wild type copy of that gene. We generated flies with apf-2 null genetic 

background carrying the P{ry+, hsp70 - mod(mdg4)56.3 - GFP} transgene (Figure 

4). Both second and third chromosome transgenic lines and many different heat 

shock conditions were tested for the rescue experiments. Control flies were 

siblings generated in the same crossing scheme not carrying the transgene and 

treated under the same experimental conditions (for crossing schemes, see 

Experimental procedures). Data reported in Table 2 indicate that heat shock 

driven expression of both tested insertions of the mod(mdg4)56.3 cDNA fully 

rescues the chromosomal non-disjunction phenotype of pf-2 males (<1% NDJ in 

transgenic flies vs. 36-43% in controls). Moreover, significant improvement in 

disjunction values was observed in the absence of heat shock. This indicates that 

hsp70 promoter drives leaky expression ofMod(mdg4)56.3 in primary 

spennatocytes, even though it was previously reported as being active only in 

gonial stem cells. 

We conclude that the meiotic non-disjunction phenotype of pf-2 mutations is 

fully rescued by expression of the Mod(mdg4)56.3 isofonn. 
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5'F 

Complete cDNA sequence 

l 3'P 

mod(mdg4)56.3 

hsv 70 promoter 

Figure 4: The rescue construct used to transform flies. The hsp 70 promoter 

sequences drive the expression of the C-terminally GFP-tagged cDNA of 

mod(mdg4)56.3  (Schotta and Reuter, 2000). This transgene is carried on 

chromosomes II or ill of flies with a rescued phenotype and is absent in control 

flies. 
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Table 2: Complete rescue of the NDJ phenotype by in vivo expression of 

mod(mdg4)-gfp cDNA. Males with the indicated genotype were heat shocked (1 

hr. at 39°) at different stages of their life before eclosion. After eclosion, these 

males were collected every 3 days and crossed to y w females. Progeny were 

scored for NDJ. The transgene, P {ry+; [hsp70-mod(mdg4)56.3-gfp], is carried on 

chromosomes II or III and is absent in non-transgenic, control flies. 

Insertion on chromosome II 
Z3-3401 I Z3-3401 
Z3-3298 I Z3-5578 

Insertion on chromosome III 

mod(mdg4/16 I Z3-5578 
mod(mdg4)T16 I Z3-3298 
mod(mdg4f16 I Z3-3401 

% NDJ (scored rogeny) 
Non-trans enic Trans enic 

no hs hs 

41 .77 (79) 0.13 (783) 0.17  (576) 
43.46 (237) 15.79 (95) 0.76 (263) 

40.83 (1 69) 9.62 (499) 0.92 (109) 
37.12 (1 32) 9.01 (577) 0 (357) 
36.42 (335) 6.88 (523) 0.72 (139) 
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Expression pattern of Mod(mdg4)56.3-GFP 

Live primary spermatocytes from endogenous pf-2 null transgenic lines 

expressing the GFP-tagged Mod(mdg4)56.3 were analyzed by fluorescent 

microscopy and revealed nuclear signals representing the hsp70-driven expression 

of the transgene (Figure 5 d-f). In control flies, hemizygous for pf-2 mutation and 

mod(mdg4)T16 deletion, no fluorescent spots were detected (Figure 5 a-c). To 

show that fluorescent foci were indeed related to GFP expression in these meiotic 

cells, testis preparations were incubated with anti-GFP as primary and FITC

conjugated IgGs as secondary antibodies and the analysis of primary 

spermatocytes showed the presence of similar nuclear signals (Figure 6, a and b ), 

represented as foci clustered apparently in the nucleolar regions. The nucleolar 

localization would not be surprising as the X-Y pairing sites are within the rDNA 

sequences in proximity of the nucleolus, known as the site of ribosome 

biosynthesis. The presence ofMod(mdg4)56.3 close to the nucleolus is consistent 

with its role in pairing of the sex chromosomes. 

In order to show that anti-GFP was actually detecting the tagged 

Mod(mdg4)56.3 protein, testis preparations were also incubated with anti

Mod(mdg4)56.3 antibodies that were raised against the C-terminal specific 

domain of this isoform ( see Experimental Procedure) and that recognize 

exclusively this protein. The immunofluorescent signals seen in Figure 7 confirm 

that the expression of the same protein was indeed revealed by the use of either 

antibody. To exclude any possibility that the localization of the fusion protein 

Mod(mdg4)56.3-GFP is driven by its GFP moiety, may differ from the one for the 
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Figure 5 :  Expression ofMod(mdg4)56.3-GFP in  live primary spermatocytes of 

23-3298 I mod(mdg4/16 males in the absence (Top) or presence (Bottom) of a P

element carrying the mod(mdg4)56.3-gfp cDNA downstream of hsp 70 promoter 

sequences. Hand-dissected testes of pf-2 null males were analyzed with a 

fluorescent microscope. Meiotic cells are seen with transmitted light (a and d), 

DNA was visualized by staining live preparations with Hoechst 33342 ( c ). No 

GFP fluorescence was detected in control males null for pf-2 and lacking the 

transgene (b). The expression of the GFP-tagged Mod(mdg4)56.3 was revealed by 

the fluorescence associated with the native GFP ( e ). Meiotic cells ( d, shown in 

red) and GFP fluorescence seen in e were merged in the picture (f) that shows 

GFP foci, present as single spots or as clusters, within the nucleus of transgenic 

males' meiotic cells. 
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Figure 6: Expression of Mod(mdg4)56.3-GFP detected by anti-GFP antibody 

staining. (6a): Phase contrast view (a and e) of meiotic cells from males null for 

endogenous pf-2 and transgenic for the P-element carrying the GFP-tagged 

mod(mdg4)56.3 cDNA reveal the localization of GFP foci stained with rabbit 

anti-GFP and FITC-conjugated goat anti-rabbit IgGs ( c and g) on DAPI-stained 

chromosomes (b and f). The merged pictures ( d and h) show the DNA (b and f 

respectively, blue) and the GFP foci (c and g respectively, green) localized in or 

close to the nucleolus. ( 6b ): Primary spermatocytes from these males were stained 

with anti-GFP antibodies, Cy5-labeled secondary antibodies (red) and DAPI 

(blue) to visualize Mod(mdg4)56.3-GFP and DNA respectively. Fluorescent foci 

are seen at prometaphase. FITC-conjugated anti-alpha tubulin antibodies (green) 

show the dividing meiotic cells. 
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Figure 6 continued 
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Figure 6 continued 
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Figure 7: Both antibody staining, with anti- Mod(mdg4)56.3 (a) or with antiGFP (b), show similar localization ofMod(mdg4)56.3-GFP in spread of meiotic cells from males null for endogenous pf-2 and transgenic for the P-element carrying the GFP-tagged mod(mdg4)56.3 cDNA. Hand-dissected testis preparations were incubated with FITC-conjugated secondary antibodies to reveal the expression of Mod(mdg4)56.3-bound primary antibodies (green). DNA is stained with DAPI(blue).). 
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endogenous protein and that the C-tenninally added GFP may interfere with the 

cellular behavior of this particular isofonn ofMod(mdg4), other GFP-labeled 

proteins were tested as controls. The nuclear expression of histone H2A-GFP in 

primary spennatocytes of wild type flies showed the expected localization of GFP 

on the chromosomes (Figure 8 a-d). The analysis of primary spermatocytes from 

transgenic flies expressing the GFP-labeled Lac I, a protein that binds exclusively 

to the Lac-operon promoter sequences to inhibit the expression of the beta

galactosidase enzyme in bacteria, showed a general and diffuse nuclear 

fluorescence (Figure 8e ). Thus, the discrete localization pattern detected in 

Mod(mdg4)56.3-GFP transgenic flies is not an artifact and corresponds to the 

expression of the only isofonn capable of rescuing the chromosomal NDJ 

phenotype displayed by pf-2 null males. It was also important to demonstrate that 

the expression of the fusion GFP-Mod(mdg4)56.3 protein in transgenic lines 

displayed the same pattern as the endogenous protein in wild type flies. Therefore, 

anti-Mod(mdg4)56.3 polyclonal antibodies, recognizing only a portion of the 

specific C-tenninal exon of this isofonn were used to stain the endogenous 

protein in meiotic cells prepared from wild type, y w, males. Figure 9 shows that 

Mod(mdg4)56.3 localization in primary spennatocytes of y w flies is identical to 

the one in transgenic flies. 

To demonstrate the localization of Mod(mdg4)56.3 in nucleolar regions, fixed 

meiotic cells were stained for both Fibrillarin, as a marker for the nucleolus, and 

for Mod(mdg4)56.3. Their colocalization is shown in Figure 10. 
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Figure 8 :  The expression of the tagged fusion protein histone H2A-GFP in live preparations of meiotic cells (a) revealed the localization of the native GFP fluorescence ( c, green) on the chromosomes ( d, merge). Chromatin was visualized by staining with Hoechst 33342 (b, blue). The expression of the fusion protein Lac 1-GFP (e) in live primary spermatocytes revealed a diffuse nuclear distribution of the native GFP fluorescence (green). DNA was visualized by staining with Hoechst 33342 dye (blue). 
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Figure 9: The endogenously expressed Mod(mdg4)56.3 in wild type (y w) flies is detected with antibodies raised against the C-terminal specific exon of this isofonn. The analysis of spermatocytes with a fluorescent microscope revealed its presence (green foci) concentrated around the nucleolar region. DNA was visualized by staining with DAPI. 
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Figure 10: Colocalization of Mod(mdg4)56.3-GFP expressed in heat-shocked 

transgenic line and Fibrillarin, as a marker for nucleolus. Both proteins were 

stained with antibodies anti-Mod(mdg4)56.3 [(c, g, k), green in merge (d, h, 1)] 

and anti-Fibrillarin [(b, f, j), red in merge] . DNA was visualized by staining with 

DAPI [(a, e, i), blue in merge] . Meiotic cells were prepared from endogenously 

null for pf-2, transgenic for mod(mdg4)56.3-gfp, heat-shocked males. 
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These data led to the conclusion that mod(mdg4)56.3 is indeed the gene 

involved in chromosome pairing and segregation during meiosis I and no other 

isoform has a similar function. 

In order to uncover the function of Mod(mdg4)56.3 protein during meiosis I, 

its cellular localization had to be determined. A detailed cytological description of 

different stages of spermatocyte growth and meiotic divisions has been reported 

by Cenci and coworkers in 1994. Morphological criteria were used to accurately 

distinguish each specific stage during spermatogenesis. To determine the 

expression pattern ofMod(mdg4)56.3, we analyzed the development of primary 

spermatocytes from the time that they have just completed DNA duplication 

(stage S 1) until the beginning of chromosome condensation (stage S6). The 

distinction of stages is based on the nuclear size (increasing with cell growth) and 

position (moving to the center of the cell), as well as the level of compaction of 

homologous chromosomes and their position within the cell ( dispersed 

chromosomes within the nucleus gradually become organized bivalents seen as 

clumps in the proximity of the nuclear envelope) and moving toward the center of 

the cell as meiosis proceeds toward metaphase ( Cenci et al., 1994 ). 

The studies using antibodies specifically recognizing Mod(mdg4)56.3 or those 

binding to the GFP component of the fusion protein expressed in transgenic flies 

on fixed preparations, as well as the detection of the fluorescence emitted by the 

native GFP in spreads of live meiotic cells, resulted in determining the stages at 

which this protein is present in primary spermatocytes and its nuclear / subnuclear 

localization. Figure 11 shows that this novel meiotic protein is expressed as early 
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a 

b 

S2 S2a 

Figure 11: (1 l a) Expression pattern of the tagged Mod(mdg4)56.3-GFP 

during early meiotic prophase stages. Hand-dissected testes squashes were 

incubated with primary antibodies, either anti-Mod(mdg4)56.3 or anti-GFP, and 

FITC-conjugated secondary antibodies. Primary spennatocytes were analyzed by 

fluorescent microscopy. Mod(mdg4)56.3-GFP foci (green) are seen as early as 

stage S1 (clearly seen in b, but some may not be in S1 (seen in a). DAPI-stained 

DNA is represented in blue. 
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Figure 1 1  continued 

( l  lb) Localization ofMod(mdg4)56.3-GFP on autosomes during S2 stage 

(GFP foci: a, and merge: b) and S3 stage (c). 

Arrows point to the arrays of autosomal GFP foci. 
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as stage S 1 of prophase, as clustered foci in nucleolar areas. Nucleolar 

localization is consistent with a role in X-Y pairing, as it has previously been 

shown that the X-Y pairing sites are within the heterochromatic rDNA sequences 

close to the nucleolus. Further analysis at longer exposure times revealed the 

presence of discrete foci on autosomes as well (Figures 12 c and d, 13-16). It has 

also been demonstrated that the autosomes' pairing sites are located all along 

chromosomes' length within euchromatic regions. It would be more difficult to 

visualize these dispersed sites as our target protein is not concentrated enough to 

be easily detected. However, arrays of fluorescent spots were detected on the 

entire arms of the meiotic chromosomes, shown in Figure 16, suggesting that 

Mod(mdg4) 56.3 might play a role as a cohesion protein. 

Partial rescue of phenotype with a transgene bearing sequences of the 

upstream promoter and the common N-terminal exons 

We also attempted to rescue the mutant phenotype by generating flies that were 

transgenic for a 7 .5 kb fragment covering upstream promoter sequences, exons 1-

4 coding sequences, and extending to the intronic region separating the 3 

proximal specific exons from the remaining of the C-terminal sequences. The 

transgene was carried on the second chromosome. Results of the rescue 

experiments are reported in Table 3 show a partial (- 13%) rescue of the NDJ 

phenotype caused by 23-3401 mutation, the allele in the common region, which is 

statistically significant, in the presence of the transgene compared to control 

mutant flies. The lack of full rescue could be explained by the assumption that 

118 



a b 

C d 

Figure 12 :  Expression pattern of the tagged Mod(mdg4)56.3-GFP during stage 

late SS of meiotic prophase I. Live preparations of primary spermatocytes from 

transgenic males were analyzed by fluorescent microscopy. Meiotic cells are seen 

by transmitted light (a). Naturally fluorescent Mod(mdg4)56.3-GFP is seen as foci 

( c) on Dapi-stained DNA (b ), clustered in nucleolar regions (bright signals in b 

and d) and as single or arrays of spots on autosomes ( c and d). Co localization is 

visualized by merging all of the fluorescent signals ( d). Arrows point to 

Mod(mdg4)56.3-GFP foci on autosomes. 
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Figure 13 :  Localization of Mod(mdg4)56.3-GFP in nucleolus and on autosomes at 

late S5 stage during meiotic prophase I. This merged picture shows native 

fluorescence of GFP (green) localized on Hoechst 33342-stained DNA (blue) in 

live primary spermatocytes (red). 
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Figure 14: Localization ofMod(mdg4)56.3-GFP in nucleolus and on autosomes 

during late stage S6 in older primary spermatocytes. The merged picture (a) 

shows native fluorescence of GFP (green) localized as single or clustered foci on 

chromosomes stained with Hoechst 33342 (blue) and in the nucleolus. 
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Figure 15 : Localization of Mod(mdg4)56.3-GFP in nucleolus and on 

autosomes at stage S6 during meiotic prophase I. These merged pictures show 

native fluorescence of GFP (green) localized on all Hoechst 33342-stained 

chromosomes (represented in red or blue for a better visualization) and clustered 

in nucleolar region in live preparations of primary spermatocytes (red). 
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Figure 16: Localization ofMod(mdg4)56.3 on autosomes. Staining of the 

fusion protein with anti-GFP revealed its presence as an array of single spots (b) 

along the entire arm of the Dapi-stained chromosomes (a). 
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Table 3: Partial rescue of the NDJ phenotype of pf-2 allele Z3-3401 by transgenic 

insetion of the common region of mod(mdg4). Males with the indicated genotype 

were tested for NDJ by mating them with y w females. Progeny were scored for 

NDJ. The transgene, P {w+, 7.5Kb BamHI genomic sequences} was carried on 

chromosomes II and was absent in non-transgenic, control flies. 

% NDJ ( scored 

P w+, 7.5Kb BamHI Non-transgenic Transgenic 
Insertion on chromosome II 

Z3-3401 / Z3-3401 45.52 (591) 31 .81 (1028) 
Z3-3401 I mod(mdg4)116 45.80 (738) 32.46 (499) 

Z3-3401 I mod(mdg_4leo129 42.42 {943} 33.42 (1212) 
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trans-splicing occurs between spatially adjacent chromosomes and the pre-mRNA 

of the common region, transcribed from the second chromosome might be 

physically too distant from the independent mRNA of the C-terminal specific 

exon ofMod(mdg4)56.3, transcribed from the third chromosome. 

III- Discussion 

Three alleles of pairing failure-2 (pf-2), a novel gene required for meiotic 

chromosome pairing and segregation in Drosophila, were recovered in a screen 

for EMS-induced mutations on chromosome 3 causing paternal loss of 

chromosome 4. Chromosomes are normally clustered into three major clumps of 

DNA that are spatially separated during prophase and prometaphase of male 

meiosis I (Cenci et al., 1994). Cytological analysis of testes of mutant flies 

revealed unpaired chromosomes at prophase and metaphase and "laggard 

chromosomes" at anaphase in primary spermatocytes. Moreover, inpf-2 mutants, 

the number and shape of the DNA aggregates detected by staining with 

fluorescent DNA dyes are different from wild type flies, indicating a lack of 

spatial nuclear organization of the chromosomes. Genetic data confirm that non

disjunction affects all chromosomes and is male- and meiosis I- specific. 

Complementation tests showed thatpf-2 maps to chr�mosome region 93(D6-El) 

and is allelic to modifier of mdg4 gene and might represent a particular isoform of 

the large family of chromosomal proteins generated by alternative splicing of this 

complex locus. Two pf-2 alleles bear a mutation in an exon specific for the 

mod(mdg4)56.3 isoform. Transgenic rescue using a heat shock-driven cDNA 
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expressing only Mod(mdg4)56.3 protein confirmed the identification of pf-2 as 

(mdg4)56.3. Furthermore, the meiotic phenotypes associated with a thirdpf-2 

allele, bearing a point mutation in the N-terminal region common to all of the 

isoforms, were also fully rescued by the expression of only one isoform, the 

Mod(mdg4)56.3. These experiments led to the conclusion that Mod(mdg4)56.3 

isoform is the only one responsible for the male meiotic phenotype of Z3-3401 

but we cannot rule out the possibility that other mutations could disrupt other 

meiotic isoforms. 

Cytological and immunocytological analyses of primary spermatocytes 

revealed that the GFP-labeled Mod(mdg4)56.3 is localized on meiotic 

chromosomes and is concentrated in the nucleolus, a dynamic structure that 

assembles and disassembles repeatedly during each cell cycle. Nucleolar 

Organizing Regions (NORs) are active ribosomal RNA genes and formation of 

nucleoli is dependent on the production of ribosomal RNAs. Nucleoli disappear 

with the cessation of transcription and proteins associated with this subnuclear 

structure display a rapid turn over (Lamond and Sleeman, 2003). The association 

of Mod(mdg4)56.3 with these nucleolar bodies that are formed around the 

tandemly repeated rRNA genes may be suggestive of a function of this protein as 

a pairing protein. We have a good map of chromosomal pairing sites but no 

knowledge about the trans-acting factors that are required to mediate pairing. 

Pairing sites for X and Y chromosomes consist of arrays of 240-bp repeats in 

intergenic spacer (IGS) regions (Mckee, 1996) and may be bound by nucleolar 

proteins in order to hold these two chromosomes together. The autosomal pairing 

126 



sites in Drosophila males have been reported to be along the entire arm of autosomes, within euchromatic sequences. The presence ofMod(mdg4)56.3 as an array of foci along the chromosomes ann is suggestive of its role as a protein mediating their pairing or involved by direct interaction with the DNA. Signals are often detected in pairs, especially in later stages, representing probably the presence of foci on each homo log. At later stages of prophase, S5 - S6, arrays of single foci are visible on the autosomes as well as the strong nucleolar signal assumed to be associated with the X-Y pairing sites. Mod(mdg4)56.3 is detected on the chromosomes at early stages of meiotic prophase (S 1 ), and by enhancing the fluorescent signal it is possible to see its association with the autosomes as well at this stage (Figure 1 1  a). Single, faint foci on autosomes are also detected at the S2 stage. Orcein-staining allowed visualizing unpaired chromosomes at prophase / prometaphase stages and was not accurate enough for determining the exact timing of the occurrence of the unpairing in pf-2 mutants. As chromosomes condense, these foci appear as a pair of bright signals on all the chromosomes and persist on the chromosomes all through prometaphase and metaphase stages. With the progression of the division toward anaphase, no signal can be detected and this pattern of expression is typical for proteins involved in pairing of chromosomes. Their removal from the chromosomes coincides with the segregation ofhomologs to opposite poles of the cell. Here we report the identification of a novel gene that causes chromosomal NDJ when absent. This unique and complex meiotic gene, that we called pairing 1 27 



failure-2, pf-2, is allelic to modifier of mdg4 gene of Drosophila, with over 33 

isoforms identified thus far. It is very likely that Mod(mdg4)56.3 encodes a 

protein involved in pairing and segregation of homologous chromosomes. 
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Chapter Four 

Discussion 

Summary 

The survival of the species depends on the transmission of the proper amount 

of genetic material to the offspring. The production of euploid gametes, which 

carry the correct number of chromosomes, is a critical step in this process. 

Meiosis is a nuclear division that occurs in sexually reproducing organisms anci 

results in the generation of haploid gametes with half of the parental genomic 

complement. The fertilization of the oocyte (female gamete) by the sperm (male 

gamete) generates again a diploid progeny. Aneuploidy is a predominant cause of 

spontaneous abortions and genetic diseases in human populations. Therefore, it is 

important to determine the mechanisms underlying meiotic events such as 

homologous chromosome pairing and separation during the reductional division. 

The primary goal of our research is to identify and characterize genes functioning 

in pairing and disjunction pathways during meiosis. 

Studies of meiotic homo log pairing, recombination and segregation processes 

in Drosophila females have been quite successful and numerous proteins have 

been identified that affect female meiosis but very few have been shown to play a 

role during male meiosis. The differential requirement of proteins presumably 

reflects different mechanisms used by the two sexes. Without the SC holding 

homologs in close proximity (Meyer, 1960) or a chiasma providing stability until 
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anaphase I (Cooper, 1964), some unique mechanism must exist in males to ensure 

the proper distribution of chromosomes into haploid gametes. Specific sets of 

proteins might be involved in this process. As emphasized, progress in the field of 

Drosophila male meiosis has greatly been delayed due to the lack of knowledge 

of genes involved in this process. 

Prior to a collaborative project that began in 2000, C. Zuker undertook a 

large-scale mutagenesis in order to provide to Drosophila geneticists a wealth of 

mutated genes affecting a majority of pathways in the life cycle of this model 

organism, but viable as homozygote (Koundakjian et al., 2004). 12000 lines 

bearing a mutation on their second or third chromosome were screened by B. 

W akimoto and resulted in identification of 72 stocks that displayed fourth 

chromosome loss (Wakimoto et al., 2004). D. Lindsley tested mutant males for 

aneuploidy, represented by unequal nuclear sizes of the spermatids, and recovered 

48 lines with an apparent meiotic defect. Cytological analysis of these mutants by 

B. McKee was carried out by observation of fixed, orcein-stained testis squash 

preparations using phase optics. Genetic analysis consisted of crossing mutant 

males carrying a marked Y chromosome both to chromosomally normal females 

to estimate the X-Y non-disjunction frequency and to C(l)RM/O females with 

attached-X chromosomes, to estimate the relative frequency ofrecovery ofXY 

sperm (indicative of only MI ND]) versus the rate ofrecovery of XX sperm 

(produced by NDJ occurring exclusively at MII). 

pairing failure-2 (pf-2) mutations affect all four chromosome-pairs, and thus 

differ from tejlon, which came from the same screen but affects only autosomes 
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(Tomkiel et al., 2001). However, like teflon mutations, pf-2 mutations disrupt 

specifically homo log pairing, leading to high frequencies of univalents in late 

prophase and prometaphase and random assortment in meiosis I, but normal sister 

chromatid cohesion and segregation at meiosis II, and good fertility. 

Also like teflon, pf-2 seems to have no role in female meiosis; females trans

heterozygous for the two strong alleles show normal levels of recombination and 

disjunction suggesting that pf-2 is specific for male meiotic pairing. 

Cytological analysis of meiotic cells from males bearingpf-2 mutations 

revealed a defect in chromosome organization in late prophase of the first division 

prior to chromosome condensation. In wild type cells the three large chromosome 

pairs appear to occupy delimited and clearly separate regions within the nucleus, 

in the vicinity of the nuclear envelope. DAPI-staining of primary spermatocytes 

showed that the integrity of these chromosomal ' territories' is disrupted by pf-2 

mutations. Territories frequently appear to overlap, and DAPI-staining of the 

nuclear interior is more intense than in wild type. Univalents can be visualized as 

early as prophase in pf-2 mutants by orcein-staining. It is difficult to determine by 

standard methodology the exact time when pairing is lost, as territory formation 

may still hold chromosomes within a certain distance from each other even 

though homologs are disjoined. The observation of unorganized and loose 

chromosomes during prophase supports the idea that pairing might be lost at very 

early stages of meiosis. 

Mapping by deficiency complementation resulted in localizing pf-2 to the 

93D6-El region on chromosome 3, an interval defined by the overlap of the non-
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complementing deficiencies, Df(3R)GCJ 4 and Df(3R)eGp4. The breakpoints of 

these deficiencies have been mapped molecularly in our laboratory (Figure 1, 

chapter 3). Pre-existing alleles of three genes located in the critical region, tinman, 

mod(mdg4) and hsr-omega were tested for complementation against pf-2 mutants 

and results excluded tin and hsr-omega as candidates for pf-2, but many alleles of 

mod(mdg4) partially or completely failed to complement pf-2 ·mutations, 

suggesting that these mutations are allelic. 

mod(mdg4) is a very complex gene with a broad range of functions including 

chromatin boundary formation (Gerasimovaet al., 1995; Bell et al., 2001; 

reviewed by Gerasimova and Corces, 2001 ), establishment of higher-order 

organization of chromatin domains (Chen and Corces, 2001), position effect 

variegation (Dom et al., 1993; Gerasimova et al., 1995; Gerasimova et al., 1998), 

programmed cell death (Harvey et al., 1997), regulation ofhomeotic genes and 

early development (Buchner et al., 2000), and regulation of synapse development 

in the nervous system (Gorczyca et al., 1999) and here we report the involvement 

of one isoform in meiotic chromosome pairing. 

This gene is essential as the most severe alleles cause lethality in early 

embryogenesis (Azpiazu and Frasch, 1993; Zollman et al., 1994). More than 33 

isoforms have been identified thus far, most or all of which are chromosomal 

proteins present at more than 500 sites on polytene chromosomes detected by 

antibodies against the common N-terminal BTB domain (Buchner et al., 2000). 

However, antibodies against the specific C-terminal exon of two of the isoforms, 

Mod(mdg4) 67.2 and Mod(mdg4) 58.0, revealed their localization at differential 
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sites, with fewer (,...,50) sites staining for Mod(mdg4) 58.0, and most of the sites 

but not all for Mod{mdg4) 67.2. Both proteins exclude each other at many of 

these sites. Most of the Mod(mdg4) binding sites detected by the anti

Mod(mdg4)8TB antibody, but not bound by Mod(mdg4) 67 .2, are located at the 

t�lomeres of the autosomes and the X chromosome (Buchner et al., 2000). The 

differential distribution of these isoforms is suggestive of their involvement in 

specific cellular pathways, without excluding the sites of overlap indicating the 

possibility of cooperation between some of these isoforms . . 

Each isoform is generated by differential splicing of four common N-terminal 

exons encoding amino acids 1-402 to a different C-tenninal exon (Krauss and 

Dom, 2004; Labrador and Corces, 2003; Dom et al., 2001 ). A unique and 

surprising feature of mod(mdg4) is that the C-terminal coding sequences for at 

least seven of the isoforms are on the antisense strand, not co linearly located 

within the locus, suggesting the generation of mature mRNAs by trans-splicing 

(Labrador and Corces, 2001 and 2003; Krauss and Dom, 2004; Dom et al., 2001 ), 

between independent precursor RNA molecules (Agabian, 1990; Sutton and 

Boothroyd, 1 986; Caudevilla et al., 1 998; Mongelard et al., 2002). cDNAs from 

most of the isoforms have been cloned, providing evidence for the occurrence of 

the predicted splices. RNA encoding the Mod(mdg4)56.3 protein, one mod(mdg4) 

encoded isoform first identified in a yeast-two-hybrid screen of embryonic 

cDNAs that interact with the baculovirus inhibitor of apoptosis protein (IAP), is a 

candidate for one of these precursors (Harvey et al., 1997). 

133 



Since it was first described in Trypanosonies (Agabian, 1990), many instances 

of trans-splicing have been reported for many organisms from worms to flies to 

humans (for review see Fedorova and Fedorov, 2003), but mechanisms 

underlying this process are still unknown. It has been shown by Dom et al. (2001) 

that alternative exons of mod(mdg4) gene are transcribed independently and 

trans-spliced to the common 5' N-terminal coding sequences, as they identified 

many promoter sequences within this locus. It seems reasonable that the 

expression of each isoform is regulated independently and trans-splicing provides 

a good way of controlling the time and tissue specificity of expression of each 

particular isoform. It also allows complementation between mutations affecting 

different functional domains of a protein. 

The variable C-termini are implicated to specify the function of individual 

isoforms in different processes. In most of the isoforms a conserved C-terminal 

Cys2His2 protein motif is found, known also as FL YWCH domain and named 

after its conserved residues (Buchner et al., 2000; for review see Dom and Krauss, 

2003). Mutations in only one C-terminal exon have been identified thus far. Two 

mutations in the exon specific for the 67 .2 isoform (mod(mdg4/6 and 

mod(mdg4f1) are viable but modify the phenotype of the mutations caused by 

insertion of the gypsy retrotransposon. Extensive analysis has revealed that these 

mutations modify the activity of the chromatin insulator element located within 

gypsy (Gerasimova and Corces, 1998; Gerasimova et al., 1995) and that the 

protein encoded by Mod( mdg4 )67 .2 interacts directly with Su(Hw) protein which 

binds to the insulator sequence (Ghosh et al., 2001). To assess whether the 67.2 
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isoform might be involved in meiotic pairing, we tested the mod(mdg4/6 allele, 

which results from a point mutation in the mod(mdg4)67. 2 specific coding region, 

producing a truncated protein that lacks the last 32 residues at the C-terminal 

acidic domain. Trans-heterozygotes for pf-2 alleles and mod(mdg4/6
; and for 

mod(mdg4/6 and a deletion encompassing the mod(mdg4) locus do not exhibit 

any NDJ phenotype ( chapter 3). We addressed the question whether the role of 

Mod(mdg4) in homolog pairing during meiosis was mediated by its interaction 

with Su(Hw). Males homozygous or trans-heterozygous for strong alleles of 

su(Hw) and carrying a marked SSY y + chromosome were tested and found to have 

normal X-Y disjunction. Moreover, heterozygous males for bothpf-2 and su(Hw) 

did not display any NDJ phenotype when crossed to y w females (Appendix). 

These data suggested that the phenotype seen in pf-2 mutant flies was not 

mediated by the insulator proteins Su(Hw) and Mod(mdg4) 67 .2. 

Our genetic data showed that two pf-2 mutations in one of the C-terminal 

specific exons complement a third pf-2 mutation in the common region, 

presumably because trans-splicing can occur between a transcript expressing the 

common region from one homolog and a transcript expressing the C-terminal 

exon from the other homolog (Mongelard et al., 2002). These data led us to 

carefully examine the pf-2 I mod(mdg4) complementation pattern, taking into 

account what is known about the locations of mod(mdg4) mutations and 

deficiencies. 

The very specific phenotype of pf-2 alleles suggested to us that pf-2 mutations 

would likely be in a C-terminal exon and therefore disrupt only one isoform. By 
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comparing the sequencing data from PCR-amplified fragments of mod(mdg4) 

locus in pf 2 homo zygote flies to Z3 parent stock before being mutagenized, we 

identified one base pair change within exon 4 in the common N-terminal domain 

(Z3-3401), and two point mutations located in the C-terminus specific exon (Z3-

5578 and Z3-3298) of one isoform, mod(mdg4)56.3. 

The specific exon of mod(mdg4)56.3 is located on the same strand and about 

20 kb downstream of the common N-terminal exons. Males trans-heterozygous 

for two pf2 alleles, one mutation located within the common N-terminal region 

and the other affecting the C-terminal variable exon, almost completely recover 

the wild type phenotype by displaying less than 2% NDJ frequencies. These 

intragenic complementation results suggest that at least some of the mature 

mod(mdg4)56.3 RNAs are generated by trans-splicing, as cis-splicing should 

generate only mutant RNAs. Although these data could also be explained by 

"conventional" intragenic complementation in which two mutant proteins can 

form a functional dimer, this explanation is unlikely because complementation 

also occurs betweenpf-2 mutants in the mod(mdg4)56.3 exon and deletions that 

are confined to the N-terminal region of the locus, and between the common 

regionpf2 allele and deletions confined to the C-terminal half of the locus. 

However, the presence of transcripts with a wild type sequence or bearing both 

mutations, in addition to those carrying either one of the pf-2 mutations, in 

heterozygote flies still remains to be demonstrated molecularly. If it can be 

confirmed, this would be the first demonstration that trans-splicing occurs 
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between two RNA precursors transcribed from two co-linear exons at the 

mod(mdg4) locus. 

Based on our genetic data showing complentation of pf 2 mutations affecting 

separate domains of this protein and the previously reported trans-splicing events 

(Labrador et al., 2001; Dom et al., 2001; Mongelard et al., 2002), we expected to 

recover the wild type phenotype in flies hemi- or homozygous for the mutation 

that affected the 4th exon common to all mod(mdg4) isofonns, Z3-3401, by 

insertion of a 7 .5 kb genomic construct, extending from upstream promoter 

sequences of mod(mdg4) to the intronic sequences between the third and fourth 

variable C-termini, including the four N-tenninal common exons. We did observe 

partial rescue of pf2 mutant flies but only 13% rescue when they carried the 

genomic construct inserted in their second chromosome. 

This transgene has also been previously reported to partially rescue the 

viability of mod(mdg4fe0129 homozygote flies, an embryonic recessive lethal 

mutation (Buchner et al., 2000).The fact that the genomic construct did not fully 

rescue the viability of homozygous lethal mod(mdg4feo129 flies (Buchner et al., 

2000) or the NDJ phenotype associated with the Z3-3401 homo- or hemizygote 

flies reported in this dissertation, could be explained by the location of the 

transgene on the second chromosome and the mutations are on the third one. 

Trans-splicing events may occur within spatially restricted intranuclear domains. 

Precursor RNAs transcribed from the two major autosomes may be too distant to 

interact at high frequencies; however we can partially but significantly (....,13%) 
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restore the defect, implying that the chance for the two transcripts to recombine is 

low but not negligeable. Alternatively, the 7.5 kb genomic sequences may lack 

elements essential for an appropriate level of expression. Beside physical 

proximity and efficient expression, one might consider the requirement of other 

factors or features for trans-splicing processes as yet unidentified. 

On the meiotic role of Mod(mdg4)56.3 

Analysis of the expression of a Mod(mdg4)56.3-GFP protein in primary 

spermatocytes enabled us to show that Mod(mdg4)56.3 localizes to foci within 

the autosomes and to prominent clusters of foci within the nucleolus throughout 

meiotic prophase. After chromosome condensation a prominent signal remains 

associated with one of the three bivalents at prometaphase and metaphase. One 

alternative is that the loss of the GFP signal from the condensed chromosomes 

represents the removal of the Mod(mdg4)56.3-GFP protein at this stage. On the 

other hand, we cannot exclude the possibility that the intense signal might be 

associated with an increased concentration of the tagged protein, forming larger 

clusters on condensed chromosomes. Other fluorescent foci might be hidden 

within the condensed DNA. Although this transgenic Mod(mdg4)56.3 protein was 

driven by a heat shock promoter, we believe that its expression pattern and 

localization in primary spermatocytes is a valid indicator of the expression / 

localization of the native protein for the following reasons: 
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1- Similar clustered foci (the nucleolar cluster) were detected with an 

antibody against a peptide from the specific domain of Mod(mdg4)56.3 at two 

stages of meiotic prophase. 

2- Localization to a discrete structure on one of the bivalents at 

prometaphase and metaphase was confirmed by immuno-staining with an 

antibody against the common region of Mod(mdg4), which gives an identical 

pattern at this stage (Thomas and McKee, personal communication). 

3- The same staining pattern at prometaphase and metaphase is seen with 

an antibody against Stromalin-2 (SA-2), product of pairing failure 1 (pf-1) gene. 

pf-I mutants have the same phenotype as pf-2 mutants and the two proteins co 

localize (Thomas and McKee, personal communication). 

4- The protein reaches maximum abundance by stages S2b-S3, which 

coincides with establishment of chromosomal territories. The disorder seen at 

mid-prophase in pf-2 mutants indicates that this protein is required for the 

integrity of these territories, thus, it is on the scene at the right time. 

5- Mod(mdg4)56.3-GFP signal persists at least until prometaphase I 

( chapter 3 ,  figure 6b) but is absent at anaphase I ( data not shown) and later stages, 

consistent with its putative role in pairing. 

However at this point the conclusion that Mod(mdg4)56.3 is present on 

autosomal chromatin is based solely on the GFP signal from transgenic 

Mod(mdg4)56.3-GFP and it remains to be confirmed that the native protein also 

localizes to autosomes. 
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Based on our knowledge of the structure ofMod(mdg4)56.3 and its cellular localization in meiotic cells, several putative roles for this protein may be postulated. It is important to determine whether Mod(mdg4)56.3 is directly bound to the DNA or ribosomal RNAs present in the nucleolus, or its interactions are mediated by other proteins. Yeast two hybrid assays may be very useful to identify cellular partners of Mod(mdg4)56.3. Also, immunoprecipitation experiments using antibodies against the fusion protein or specifically binding to Mod(mdg4)56.3 can result in identifying other, probably unknown meiosisspecific, interacting proteins. 
Proposed models for participation of Mod(mdg4)56.3 in meiotic pairing 

Mod(mdg4)56.3 as a transcription factor Mod(mdg4) and the GAGA factor, encoded by the Trithorax-like (Tri) locus and required for proper expression of many different genes (Farkas et al., 1994; reviewed in Granok et al., 1995; Wilkins and Lis, 1997) have many characteristics in common including their gene structure (presence of the N-terminal BTB domain and the C-terminal C2H2 motif), mutant phenotypes ( e. g. homeotic transformation, enhancer of PEV, reduced viability, defective female meiotic segregation) and the generation of several transcripts by alternative splicing (Benyajati et al., 1997; Read et al., 2000; Dom et al., 1993, Gerasimova et al., 1995; for review see Granok et al., 1995). Both GAGA and Mod(mdg4) contain only one C-terminal Cys2 His2 finger-like domain and it has been reported that the 
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DNA binding feature of GAGA is mediated by this motif (Pedone et al., 1996). 

By similarity, the only zinc finger present in Mod(mdg4) structure may bind to 

DNA by dimerization with the same or other isoforms ofMod(mdg4) or other 

partners with a BTB domain or appropriate structural features. A model has been 

proposed by Dom and Krauss (2003) suggesting multiple DNA / protein 

interactions through FL YWCH and BTB domains respectively. 

Stromalin-2 (SA-2, Thomas and McKee, personal communication) is the 

product of pf-1 gene, mutations in which have been shown to cause meiotic 

phenotypes identical to the ones displayed by pf-2 mutants. One possibility is that 

Mod(mdg4)56.3 may be needed for transcription of other genes required for 

homolog pairing, such as SA-2, tejlon (Tomkiel et al., 2001), or those yet 

unidentified. Although SA-2 andpf-2 meiotic phenotypes are identical, SA-2 is 

expressed in pf-2 mutant flies, demonstrated by the presence of its PCR-amplified 

transcript in RT-PCR products prepared from testis of pf-2 null mutants (data not 

shown). Further studies are needed for testing this hypothesis, but our cytological 

and molecular data are not in favor of this putative role for Mod(mdg4)56.3. 

Although a role of transcription in meiotic pairing has already been proposed 

(McKee, 1998) and also, based on its structure and homology to other 

transcriptional modulators, it is possible that Mod(mdg4)56.3 plays a role in gene 

expression. But the specificity of the meiotic phenotype associated with mutations 

in mod(mdg4)56.3 gene and our cytological analyses do not support an indirect 

involvement of this protein in homolog pairing as a transcription factor. 
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Transcriptional events are less abundant as meiosis progresses and almost do 

not occur at late stages ofprophase when Mod(mdg4)56.3 is still highly expressed. 

Also, based on the presence of this protein on autosomes, detected as arrays of 

fluorescent foci associated with the GFP tag of the fusion protein in transgenic 

lines, it seems unlikely that so many genes would be regulated by 

Mod(mdg4)56.3, at a time when transcriptional activities are at their lowest levels. 

Moreover, there is no reason to think that Mod(mdg4)56.3 has a role in 

transcribing rRNA genes, yet the nucleolus is the most abundant site of 

localization for Mod(mdg4)56.3. Therefore, even though a role in transcription 

cannot be completely excluded, it seems very unlikely that the primary role of 

Mod(mdg4)56.3 in chromosome pairing is that of a transcription factor. 

Mod(mdg4)56.3 as a modifier of chromosome organization 

However, the fact that Mod(mdg4)56.3 has the necessary structural features to 

bind to DNA ( or, perhaps, chromosomal RNA) may imply a role for this protein 

in the modification of chromosome structure in a way that it would facilitate 

meiotic pairing of homo logs. 

At least one isoform of mod(mdg4) has been shown to have a chromatin

related function, affecting the higher order organization of chromosomes within 

the nucleus (Chen and Corces, 2001; Dom et al., 1993; Gerasimova et al., 1995; 

Cai and Levine, 1997; Gerasimova et al., 1998; Buchner et al., 2000; Gause et al., 

2001), suggesting the possibility that Mod(mdg4)56.3 is required to determine a 

spatial m_eiotic chromatin structure needed perhaps for proper loading ofhomolog 
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pairing proteins. This hypothesis is supported by the fact that both Mod(mdg4)67.2 and Mod(mdg4)56.3 localize to discrete foci, and in both cases multiple binding sites cluster or coalesce to form larger foci. Figure 15 ( chapter 3) clearly shows the paired, adjacent foci on partially condensed late prophase autosomes. 
Mod(mdg4)56.3 as a cohesion protein 

mod(mdg4) contains a BTB domain, a 115 residue-long dimerization / multimerization domain found in many transcriptional regulators (Read et al. , 2000; Zollman et al., 1994). The BTB domain forms an extensive dimer interface that is a possible binding site for other proteins (Ghosh et al., 2001). There might be other as yet unidentified partners ofMod(mdg4) that interact with the BTB domain. A direct role of Mod(mdg4)56.3 as a pairing protein is quite plausible. The BTB domains of both Mod(mdg4)56.3 and of the structurally similar proteins such as GAGA factor have been shown to multimerize and to bring distant DNA sites into close proximity (Ghosh et al., 200 1 ;  Katsani et al., 1 999). It is not hard to imagine that such properties could be exploited to mediate pairing of homologous chromosomes. Considering the fact that proteins such as Sec 1 are involved in chromosomal cohesion by closing the ring that holds the DNA strands in the middle, and without being physically bound to DNA, we may think about a function of Mod(mdg4)56.3 as part of a multiprotein complex recruiting other nuclear factors 143 



as well, a meiotic form of cohesin being one plausible candidate for such a 

complex. In support of this suggestion is the finding that pf-I, mutations in which 

give phenotypes virtually identical to mutations inpf-2, encodes the SA-2 protein, 

member of the SCC3 / SA / STAG family of cohesion proteins. 

An essential step in meiotic chromosome segregation is the cleavage of the 

complex in order to release the strands. In meiosis, a stepwise separation of 

chromosomes occurs: first, cohesion is lost between the two homologs that will 

migrate to opposite poles and second, homologs that were held together at their 

centromeric region until anaphase II will segregate into two sister chromatids. 

This sequential disjunction process is tightly regulated and in yeast, proteins such 

as Spo13 (Klapholz and Esposito, 1980) and Sgol (Rabitsch et al., 2004) have 

been identified that control the removal of centromeric cohesion proteins (Klein et 

al., 1999), such as Rec8p (DeVeaux and Smith, 1994). We cannot exclude a 

possible intervention of Mod(mdg4)56.3 by its specific yet unidentified enzymatic 

activity. BTB-containing proteins also have roles in ubiquitin conjugation 

(Furukawa et al., 2003) and this particular isoform of Mod(mdg4) may play a role 

in targeting proteins for degradation, specifically at the metaphase I - anaphase I 

transition. 

Matrix / Scaffold Attachment Regions (MARs I SARs) are AT-rich short 

sequences (Grasser and Laernmli, 1986) and have been speculated to be sites of 

attachment of chromosomes, facilitating the homology searching and promoting 

the pairing of homologous sequences (McKee, 2004). It is still obscure how MAR 

I SARs function, and how they might be involved in the pairing of meiotic 
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chromosomes. The loss of protein complexes that function by connecting 

chromosomal regions to the nuclear matrix may result in the generation of 

unpaired homo logs, a phenotype detected cytologically in meiotic cells of pf-2 

mutants, where dispersed univalents are seen as early as prophase I. We speculate 

that Mod(mdg4)56.3 might mediate the binding of chromosomes to the matrix. 

Significance of the subnuclear localization of Mod(mdg4)56.3 

Many nuclear proteins and / or RNA molecules are organized within the 

interchromatin spaces of the nucleus in a number of discrete bodies. The 

nucleolus is a dynamic structure formed around ribosomal DNA repeats and is the 

site of biosynthesis, processing and assembly of ribosome subunits (Lamond and 

Earnshaw, 1998). Nucleolus formation is cell cycle- and transcription- dependent 

and o�curs if new ribosome synthesis is required (reviewed by Hernandez and 

Roussel, 2003). 

The finding that Mod(mdg4)56.3 is associated with the nucleolus was not 

surprising, as it is known that the X and Y chromosome� containing the nucleolus 

organizer regions are associated with the nucleolar components in meiotic cells in 

males (Fuller, 1993) and the X-Y pairing sites have been mapped to rDNA 

sequences within the heterochromatic regions, in the vicinity of the nucleolus 

(McKee et al., 1992; for review see McKee, 2004). Intriguing was how 

Mod(mdg4)56.3 played a role in meiotic chromosome pairing as a nucleolar 

component. Chromatin immunoprecipitation procedure would allow determining 

whether Mod(mdg4)56.3 binds, directly or indirectly, to the X-Y pairing sites. 
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Recently, published data report the nucleolar localization of novel proteins 

and investigators are puzzled about the importance of their subnuclear distribution 

for their function (for review see Garcia and Pillus, 1999). Nucleolar proteins with 

meiotic functions have also been identified and their characterization may bring 

insights into possible roles of Mod(mdg4)56.3 during meiosis (Buonomo et al., 

2003; Rabitsch et al., 2001). 

In conclusion, it seems highly likely that Mod(mdg4)56.3 acts as a pairing 

protein. Its localization along the arms of the autosomes supports the. idea that it 

may be involved in cohesion, either by direct DNA-binding or by interactions 

mediated by yet unidentified partners. 

The identification of mutations in a gene disrupting homologous 

chromosomes pairing and segregation specifically during Drosophila male 

meiosis will set the road to identify components that are essentiaf for proper 

operation of the meiotic machinery and is a great step toward gaining insights into 

the mechanism of meiotic pairing in an apparently simple system where structures 

such as the synaptonemal complex or chiasmata are not functionning. Further 

molecular analysis could bring insights on the occurrence of trans-splicing, by 

demonstrating molecularly that mature transcripts produced by flies heterozygous 

for two pf-2 mutations, one affecting the common region and one located within 

the specific C-terminal exon, carry wild type or mutant alleles for both regions. 
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Chapter Five 

Experimental procedures 

Fly stocks 

The pf 2 alleles were generated by a large scale EMS-mu ta genesis and are 

maintained by C. Zuker (Koundakjian et al., 2004). pf 2 alleles were identified in 

a screen for mutations on chromosome three that cause paternal loss of 

chromosome four (W akimoto et al., 2004). mod(mdg4) alleles were kindly 

provided by V. Corces (John Hopkins University, MD) and M. Frasch (Mount 

Sinai School of Medicine, New York). Transgenic lines with insertion of 

mod(mdg4)56.3 on chromosome II or III were generated in the laboratory ofR. 

Dom. All other stocks used were obtained from the Bloomington Stock Center at 

the University of Indiana. Stocks were maintained on commeal-molasses-yeast

agar medium at 24° C. 

Genetic crosses 

Unless otherwise specified, the male or female being tested was crossed singly 

to three flies of the specified genotype for the experimental cross. Parents were 

removed from the food vial ten days (dlO) after the cross was initiated (dO). 

Progeny were counted between d14 and d21 to avoid the presence of the F2 

generation. The marked Y chromosome (Dp(l ; Y) B8Y y "1 carries two transposed 

segments of X chromosome carrying the markers U and y + that are appended to 
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the ends of the left and right arms, respectively, and that allow us to follow its 

segregation from the X chromosome in X-Y NDJ tests (Figure 1 ). In the C( l)  

RM, y2 su(wa) wa; C(2) EN b, pr and C(4) EN ci, ey stocks, flies carry attached 

chromosomes consisting of two genetically complete copies of the chromosome 

(X, 2 and 4 respectively) attached to a single centromere and produce only diplo 

and nullo gametes. This feature was exploited in our genetic tests to determine the 

occurrence of chromosomal NDJ in mutant flies. 

TM3, TM6 and TM2 are balancer chromosomes; multiply inverted 

chromosomes that prevent crossover events. Phenotypic markers were used for 

the generation and selection of flies with the genotype of interest and are 

described in Lindsley and Zimm (1 982). These markers included: 

- Eye phenotype (color or shape): scarlet (st), white (w), prune (pn), brown 

(bw), and eyeless, Bar and Bar stone or (ey, B and d, reduced eye size or 

restricted to narrow vertical bar) 

- Bristles: Stubble (Sb),forked (f, bristles are short and thick or kinked), 

bobbed (bb, thinning and shortening of bristles and etching of the abdomen. The 

bb locus encodes the major (l  8S and 28S) ribosomal RNAs and is the nucleolus 

organizer. The rRNA encoding genes form large tandem arrays at both loci, and 

mutant phenotypes result from complete or partial loss of these. Wings: Serrate 

(Ser, dominant wing-nicking phenotype), cubitus interruptus (ci, the cubital vein 

L4 is interrupted), crossveinless ( cv, absent crossveins) 

Body color and size: yellow (y) and miniature (m).  
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s + 

Figure 1: Illustration of the marked Y chromosome (B Y y ) used in crosses 

that allow genetic determination of the occurrence of non-disjunction. The filled 

oval illustrates the centromere flanked by gray-filled rectangles representing 

heterochromatic regions. The phenotypic markers, U and y + are located at each 

end of the chromosome. 
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Crossing schemes for genetically testing whether pf-2 mutations affect NDJ 

and / or recombination events in females are reported in Figure 2. Figure 3 

represents crosses set up for rescue experiments using flies bearing the P { ry +; 

[hsp70-mod(mdg4)56.3-gfp] construct on their second chromosome. Rescue 

experiments using P {ry+; [hsp70-mod(mdg4)56.3-gfp] construct inserted within 

chromosome 3 of transgenic flies are shown in Figure 4. 

To produce flies with a pf-2 null genetic background carrying the transgene on 

their third chromosome, females heterozygous for both the transgene and the 

mod(mdg4/16 deletion (marked phenotypically with ebony) were generated and 

crossed to males bearing apf-2 mutation over a balancer chromosome. Fl male 

progeny of this cross were crossed to y w females for the X-Y NDJ assay. 10 days 

after crosses were set up, genomic DNA of these males was extracted and used as 

template for amplifying by PCR the entire mod(mdg4)56.3 sequence (by using 

primers designed against exon 1 and the 3 'UTR sequences) and the entire gfp 

sequence (by using primers designed against both ends of its coding region) to 

identify those carrying the transgene. 

To determine the best heat shock conditions, the water bath temperature was 

fixed at 37°C, 38°C, or 39°C. Flies were incubated for 15, 30 or 60 minutes. Heat 

shocks were given at different stages of the embryonic.development on d3; d6, d9 

or dl 1 after the cross was set up (d0). For some transgenic lines, multiple heat 

shocks resulted in a more efficient rescue of the mutant phenotype, while for 

others, even without heat shocking, a leaky expression ofMod(mdg4)56.3 fully 

rescued the NDJ phenotype. The data showed a better rate of rescue if the 
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Crossing scheme for testing chromosomal disjunction and recombination 
rate in females mutant for pf-2 

Stocks used: 
Tp( l , 1) y+ y[l ]  pn[l] cv[l]  m[l ]j[ l ]/ C( l)DX, y,wl,bb- where � and cJ 

genotypes are XXbb- / y  y,w/ and Tp(l , l) y+ y[l ] pn[l] cv[ l]  m[l ]j[l]  / Y 

respectively. This multiply marked X chromosome will be referred to as mX. 

The bobbed (bb) mutation is complemented with the Y fragment. 

y I y; Z3-3298, st I TM6, Tb, e 
+ I HYy+ ; bw I bw; Z3-3401, st I TM3, Sb, e 

- y I HYy+; Z3-3401, st I TM6, Tb, e 

C(l)RM / 0 where � bear attached X chromosomes and cJ are C(l ;Y) ys X.YL 

In(l)EN, y B (X"Yy, B I  0) 

I- Generation ofy; Z3-3401, st I TM6, Tb, e stock 

� y I y; Z3-3298, st I TM6, Tb, e x cJ + I HYy +; bw I bw; Z3-3401, st I TM3, Sb, e 

i 
a y I HYy+,· Z3-3401 , st I TM6, Tb, e x � y I +; Z3-3401, st I TM6, Tb, e 

� �  
� y I y; Z3-3401, st I TM6, Tb, e x a y I HYy+ ; Z3-3401, st I TM6, Tb, e 

II- Generation of males with attached XY chromosomes (X "Yy, B I Y) 

� XXbb- I Y y,w/ x a X"Yy, B I  0 .. 
Dead � (XXbb- I 0) and cJ X"Yy, B I  Y 

ill- Generation of females hemizygous for pf-2 mutation bearing a multiply

marked X chromosome 

a mx. 1 v x � y, w I Y, w 

i 
� mX I y, w x a + I Y; Df(3R)GCJ4, st I TM6, Tb 

... 
a mX y ory+ I Y; Df(3R)GCJ4, st I +  

These males were checked for the presence of all the phenotypic markers and crossed to: 

� y I y; Z3-3401, st I TM6, Tb, e or � y I y; Z3-3298, st I TM6, Tb, e 

Figure 2: Crossing schemes for the generation of females with the indicated 

genotype used in NDJ / recombination tests 
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1- cS mX y ory+ I Y; Df(3R)GC14, st I +  x � y I y; Z3-3401, st I TM6, Tb, e 

i 
� mX y ory+ /y; Z3-3401, st / Df(3R)GC14, st x a xAYy, B I Y  

� mX y ory+ I y; Z3-3401, st I +  x a XAYy, B I  Y 

Score progeny with all 

phenotypic combinations to 

determine the rate of NDJ and 

recombination in heterozygote 

(pf-2 I Bal) females and those 

hemizygous for pf-2 mutations. 

2- cS mX y ory+ I Y; Df(3R)GC14, st I +  x � y I y; Z3-3298, st I TM6, Tb, e 

� mX y o,y
+ I y; Z3-3298, st I Dfl:3R)GCJ4, st � a XAYy, B I  y Score progeny with all 

phenotypic combinations to 

� mX y ory+ I y; Z3-3298, st I +  x a XAYy, B I  Y 

Figure 2 continued. 
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<3 + I B9Yy \ bw I bw; pf-2, st I TM3, Sb x � + / +; P{ry +} I CyO; ry 506 I ry 506 

<3 + I B9Yy\ P{ry+} I bw; pf-2, st I ry 506 x � + / +; bw I bw; pf-2 I TM3, Sb 48 hours after setting up the cross: · / 
\ heat shock the eggs: 1hr, 37° / 

<3 + I SSYy \ P{ry +} I bw; pf-2, st I pf-2, st 

<3 + I B9Yy\ bw I bw; pf-2, st I pf-2, st 

Figure 3: Crossing scheme for the generation of male flies homozygous for 
ZJ-3401 mutation, and heterozygous for ZJ-5578 I ZJ-3298, bearing a P { ry +; 
[hsp70-mod(mdg4)56.3-gfp] transgene on their second chromosome that drives the expression of mod(mdg4)5 6. 3. Males were crossed toy w females and their progeny were scored for NDJ in order to determine whether the expression of the transgene rescues the mutant phenotype. 
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Figure 4: Crossing schemes for the generation of male flies hemizygous for a 

pf-2 allele, Z3-3401 or Z3-5578, and the mod(mdg4/16 deletion, bearing a P {ry+; 

[hsp70-mod(mdg4)56. 3-gfp] transgene on their third chromosome. Hemizygote 

males, carrying the recombinant P{g:{Q}, mod(mdg4/16 chromosome or non

recombinant, were crossed to y w females and their progeny were scored for NDJ 

in order to determine whether the expression of the trans gene rescues the mutant 

phenotype. These males were crossed to y w females and their progeny were 

scored for NDJ. After mating, the male parents were individually tested for the 

presence of the trans gene by PCR amplification of their genomic DNA. 

Z indicates the occurrence of recombination in females. 
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'i1 + I +; + I +; P {gfp} I P  {gfp} ! ,3 w I Y; + I +; mod(mdg4/16
, e I TM6, Tb, e 

� w I +; + I +; P {gjji} z mod(mdg4f 16
, e x a w I Y; + I +; mod(mdg4f 16

, e I TM6, Tb, e 
(Occurrence of recombination, collection of progeny carrying the transgene and the 

mod(mdg4/16
, e on the same chromosome�-----------

,-,- � 

� w or + I w; + I +; mod(mdg4f16
, e I TM6, Tb, e 

� 'i1 w or + I w; + I +;  P {gfp}, mod(
/

e I TM6, Tb, e 

Crossed to: a +  I ffYy\ bw I bw; pf-2, st I TM3, Sb 
48 hours after setting up the cross: 
heat shock the eg�s :  1hr, 39° 

l To find the best experimental conditions, 
various temperature 
and number of heat shocks wefe tested. 

__________ _,A._ _________ _ 
r � 

a w  or + I ffYy+ ; bw I +; pf-2, st I mod(mdg4f16
, e 

a w  or + I SSYy+; bw I +; pf-2, st I P{ g{Jl}, mod(mdg4f16
, e 

Collection of B, Tb+, Sb+, e+ male progeny 

Crossed to: � y w 

Score for NDJ 

1 55 



expression of Mod(mdg4)56.3 was induced during early development stages (at 

d3). The expression of Mod(mdg4)-GFP was induced in eggs laid by y w females 

that were crossed to a single, yet unidentified, transgenic males. To determine 

their genetic background, these males were collected at d7 and tested singly for 

the presence of the trans gene. Each male was grinded in 20 ul of PCR reaction 

mix. Two sets of PCR reactions were set up by adding either primers within exon 

1 and DSD, to amplify the entire 1.7 kb fragment of mod(mdg4)56.3 DNA or 

primers within the gfp coding sequence, to amplify the entire gfp DNA, to 10 ul of 

the mix containing the genomic DNA of these flies. The presence of a PCR 

fragment in both reactions indicated that the specific fly carried the gfp-labeled 

mod(mdg4)56.3 transgene within its genome. After eclosion, the F2 ebony+ male 

progeny of the molecularly identified transgenic males, which were null for the 

endogenous pf-2 but expressed the GFP-tagged gene, were collected and tested 

for NDJ by mating them withy w females. Their progeny were scored for NDJ 

and rescue was determined by comparison to progeny of non-transgenic males. 

Cytological analysis 

Orcein-stained meiotic chromosomes from adult testes were prepared 

according to Lifschytz and Hareven (1977). Briefly, testes were dissected in testis 

buffer (7% NaCl, Ashbumer, 1989) and fixed in 45% acetic acid for thirty 

seconds. Squashing in a 1 :  1 mixture of 60% acetic acid and 2% lactic-acetic

orcein followed staining of the testis in 3% orcein-60% acetic acid for five 
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minutes. Analysis and photographs were carried out using phase-contrast 

microscopy on a Zeiss Universal Axioplan photomicroscope with a CCD camera. 

Live testes were prepared by dissection in testis buffer followed by covering 

of the tissue with a cover slip and gentle tapping to release cells. 

DAPI staining 

Hand-dissected testes, 3-4 pairs per slide, were transferred to 8 ul of testis 

buffer on a poly-L-Lysine coated slide and covered with a siliconized cover slip. 

Testes were then gently squashed for a better distribution and visualization of 

meiotic cells. Slides were held in liquid nitrogen until bubbling stops and the 

cover slip was then rapidly removed with a razor blade. Slides were incubated for 

at 5 minutes in 95% ethanol, 1 minute in acetone, air dried and transferred to 1 % 

Triton X- 100, 0.5% acetic acid in lX PBS (NaCl, KCl, Na2HP04,, KH2P04) for 

15  minutes. After 3 washes of 5 minutes each in lX PBS, slides were incubated 

for 5 minutes with 1 ug / ml of 4'-6-DiAmidino-2-Phenyl Indole dihydrochloride 

(DAPI), washed 2 times in lX PBS, mounted in Vectashield (Vector 

Laboratories, Inc.) and covered with a coverslip. Fixed cells were then analyzed 

with a Zeiss Axio Plan with a CCD camera. 

X-Y NDJ test 

Male flies to be tested carried a marked Y chromosome (dY y "1 and are 

crossed to yellow white (y w) females, which produce only euploid gametes and 

their progeny were scored for NDJ. The presence of XO males (B+ w) and X-XY 
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females (B, w+) indicates the occurrence of the paternal NDJ. The ratio of 
progeny with a NDJ phenotype among total progeny is calculated as the 
percentage ofNDJ. 

Molecular analysis 

Genomic DNA extractions were performed by grinding 50 flies with a 
�crohomogenizer and using the WizardR genomic DNA purification kit 
(Promega). The polymerase chain reaction (PCR) parameters were 1 minute at 
94°C, 35 cycles of 94°C for 1 minute, 55°C for 1 .5 minutes, and 72°C for 2 
minutes in a Perkin-Elmer thermocycler. Reaction mixtures contained 1 nmol of 
each primer, 10  ng Drosophila genomic DNA (Zuker or y w), 1 .5 mM MgCh, 0.2 
mM dNTP mix and 2.5 U Taq DNA polymerase (Promega) in a total volume of 
50 micro liters overlaid with an equal volume of mineral oil. Product size and 
purity was confirmed by electrophoresis in a 1 % agarose gel. The QIA Quick Gel 
Extraction Kit (Qiagen) was used to purify the PCR products for future use. 

RT-PCR products were generated by reverse transcrition of total RNAs 
isolated from 50 whole flies or pairs of testis using the Superscript™ First-Strand 
Synthesis System for RT-PCR (Invitrogen). 

To amplify mod(mdg4)56.3 cDNA, PCR was carried out using primers within 
exon 1 (R15393 1 ;  5 'AGAACTCGGACGCGTTCTGC3 ') and 3 'UTR (F1 3 1 753 ; 
5 'AATACAGCAATGTGTACACG3 '). To determine the 3 '  end of the testis 
mod(mdg4)56.3 cDNA, total RNA was extracted by grinding hand-dissected fly 
testes in Tri-reagent (Sigma-Aldrich). After 5 minutes at room temperature, the 
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mixture was spun at maximum speed for 5 minutes at 4°C. The RNA pellet was 

washed with 75% ethanol and air dried for 1 minute before being resuspended in 

DEPC-treated water. SMART RACE (Clontech) reactions were carried out using 

the kit's labeled oligo-dT primers along with various primers within the published 

nucleotide sequence were used and the amplified product was sequenced using 

the same primers that generated the amplicon. 

Sequencing 

Gel-purified PCR product or plasmid DNAs were used as template (50ng -

300ng) along with 5 pM of a primer designed for sequencing the region of �nterest 

and the reaction Mix (DNA Sequencing Kit, Big Dye™ Terminator Cycle 

Sequencing v3 . l Ready Reactions with AmpliTaq DNA Polymerase, Applied 

Biosystems) in a total volume of 1 0  microliter. The sequencing reaction was 

carried out at 96° for 4 min. followed by 25 cycles of 10 sec. at 96°, 5 sec. at 50° 

and 4 min. at 60°. 

Immunofluorescence assay 

Hand-dissected testes were transferred to poly-L-Lysine-coated slides, 

squashed under a siliconized cover slip and frozen in liquid nitrogen. The cover 

slip was then removed with a razor blade and slides were immediately immersed 

in cold ethanol for at least 10  minutes. After fixing the tissues in 4% para

formaldehyde in IX PBS, washing 2 x 1 5  minutes in PBS lX  containing 0. 1% 

Triton-Xl O0 and 0.3% deoxycholate at room temperature, blocking for 1 hr in 
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Tris-HCl (0.1 M, pH 7.5) NaCl (0.15 M) and BSA (5%) (TNB), the preparation 

was then incubated overnight at 4°C with the primary antibodies diluted in TNB. 

Primary antibodies used in this report were anti-Mod(mdg4)56.3, a rabbit affinity

purified polyclonal antibody raised against a 15 residue fragment within the 

specific C-terminal exon of this isoform and an added residue for conjugation 

purpose[(C)DVL VYDGYRYDRRAN] (Alpha Diagnostic International), anti

Fibrillarin (kindly provided by M. Fuller), a rabbit anti-green fluorescent protein 

(GFP) (Al 11-22, Molecular Probes) and a rabbit FITC-conjugated anti-alpha 

Tubulin Q. The following day, slides were washed 3 x 5 minutes with TNT (0.1 

M Tris-HCl pH 7.5, 0.15 M NaCl, 0.05% Tween), incubated with the secondary 

antibodies (FITC- or Cy5- labeled goat anti rabbit immunoglobulins) diluted in 

TNB for 1 hr at room temperature and washed again before incubating for 5 

minutes at room temperature with a fluorescent dye, DAPI (1 ug / ml) or Hoechst 

33342 dye (5 ug / ml; Molecular probes), to stain the DNA. 2 x 5 minutes washes 

were followed by mounting in Vectastain and analyzing meiotic cells with a Zeiss 

Axioplan microscope linked to a CCD camera. 

Determination of the deletions breakpoints 

ORiso3 and OSiso3 strains, Oregon R and Canton S wild type lines 

isogenized by crossing siblings with the third chromosome over a balancer for 10-

50 generations (Hoskins et al., 2001), were used to generate flies heterozygous for 

each inbred line and one mod(mdg4) deficiency (B2, Tl 6, fl.I 0, fl.33, Df(3R)e-Gp4 

and Df(3R)GCJ 4). Fragments of ....,500-800 nt. within and beyond the mod(mdg4) 
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locus were amplified by PCR using the genomic DNA of heterozygote flies as 

template and primers designed against the coding sequences of the common 

region and the C-terminal variable exons of this locus. Agarose gel-purified PCR 

fragments were sequenced directly by using one of the amplification primers. 

ABI-Big Dye Terminator v3 . 1  Cycle (Sequencing kit, Applied Biosystems) was 

used to determine the nucleotide sequence of the fragments. Sequence comparison 

was performed by using the 'Sequencher software. For each sequenced PCR 

fragment containing one or more SNPs between 0Riso3 and CSiso3, the deletion

bearing chromosome was used as deficient for the tested SNP if the 0Riso3 / Df 

and Csiso3 / Df DNA samples exhibited only a single allele, but was scored as 

not-deficient for the SNP locus if one or the other sample exhibited both alleles. 

Statistical analysis 

The parameters Rx and Ry are used in the calculation of meiotic drive where 

Rx is an indicator of the viability of X-bearing sperm and Ry of the viability ofY

bearing sperm relative to otherwise identical sperm classes lacking the X or Y 

(McKee et al. 1 998). Formulas for these parameters are: Rx
= (X. XY / 0. Y) 112 

and R
y

= (Y. XY / 0. X)112· where X, Y, XY and O are the numbers of progeny of 

the indicated genotype. Rx, and Ry values are equal to 1 in wild-type 

backgrounds. 

Non-homologous disjunction (NHD) = (XY; 22 + O; 0) I (XY; 0 + O; 22), 

where (XY; 22), (O; 0), (XY; 0) and (O; 22) are the number of progeny scored 
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for each class of sperm. The value ofNHD is 1.0 ifno non-homologous 

disjunctions occur but less than 1. 0 if non-homologous disjunction occurs. 

Map distances (MD) and coefficients of coincidence (c.o.c) were calculated 

by standard formulas. Distance (in map unit or m. u.) = recombinant progeny I 

total number of progeny. The coefficient of coincidence (c.o.c.) is the observed 

number of double recombinants divided by the expected number of double 

recombinants. Interference is equal to 1- c.o.c. and is high when c. o. c. = 0, that 

means no DCO can occur. 

c.o.c. = obs DCO (I, II) / exp DCO (I, II) 

c.o.c. = obs DCO (I, II) / [MD (I) / 100] x [MD (II) / 100] x 100 

Observed = number of progeny with a phenotype associated with double 

crossover (DCO) I total number of progeny. 

Expected = the product of map distances in 2 adjacent intervals x N. 

162 



List of references 

163 



Abdu, U., Brodsky, M., and Schupbach, T. (2002). Activation of a meiotic checkpoint during Drosophila oogenesis regulates the translation of Gurken through Chk2/Mnk. Curr Biol 12, 1645-1651. Abdu, U., Gonzalez-Reyes, A., Ghabrial, A., and Schupbach, T. (2003). The Drosophila spn-D gene encodes a RAD51C-like protein that is required exclusively during meiosis. Genetics 165, 197-204. Afshar, K., Scholey, J., and Hawley, R. S. (1995). Identification of the chromosome localization domain of the Drosophila nod kinesin-like protein. J Cell Biol 131 ,  833-843 . Agabian, N. (1990). Trans splicing of nuclear pre-mRNAs. Cell 61, 1157-1160. Ahmad, K. F., Engel, C. K., and Prive, G. G. (1998). Crystal structure of the BTB domain from PLZF. Proc Natl Acad Sci U S  A 95, 12123-12128.  Alani, E. ,  Padmore, R., and Kleckner, N.  (1990). Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61 , 419-436. Ashburner, M., and Gubb, D. (1989). Chaotic names. Nature 339, 264. Azpiazu, N., and Frasch, . M. (1993). tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev 7, 1325-1340. Baker, B .  S. , and Carpenter, A. T. (1972). Genetic analysis of sex chromosomal meiotic mutants in Drosophilia melanogaster. Genetics 71 , 255-286. Balicky, E. M., Endres, M. W., Lai, C., and Bickel, S .  E. (2002). Meiotic cohesion requires accumulation of ORD on chromosomes before condensation. Mol Biol Cell 13, 3890-3900. Bardwell, V. J. , and Treisman, R. ( 1994). The POZ domain: a conserved proteinprotein interaction motif. Genes Dev 8, 1664-1677. Barkai, N., and Shilo, B. Z. (2002). Modeling pattern formation :  counting to two in the Drosophila egg. Curr Biol 12, R493-495. Baudat, F., Manova, K., Yuen, J. P., Jasin, M., and Keeney, S. (2000). Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spol l .  Mol Cell 6, 989-998 .  Bell, A. C. , West, A .  G., and Felsenfeld, G .  (2001 ). Insulators and boundaries: versatile regulatory elements in the eukaryotic. Science 291, 44 7-450. Benyajati, C., Mueller, L. , Xu, N., Pappano, M., Gao, J., Mosammaparast, M., Conklin, D., Granok, H., Craig, C., and Elgin, S .  (1997). Multiple isoforms of GAGA factor, a critical component of chromatin structure. Nucleic Acids Res 25, 3345-3353 . 
164 



Bergerat, A., de Massy, B., Gadelle, D., V aroutas, P. C., Nicolas, A., and Forterre, 
P. (1997). An atypical topoisomerase II from Archaea with implications for 
meiotic recombination. Nature 386, 414-417. 

Bickel, S. E., Orr-Weaver, T. L., and Balicky, E. M. (2002). The sister-chromatid 
cohesion protein ORD is required for chiasma maintenance in Drosophila 
oocytes. Curr Biol 12, 925-929. 

Bishop, D. K., Park, D., Xu, L., and Kleckner, N. (1992). DMCl : a meiosis
specific yeast homolog ofE. coli recA required for recombination, synaptonemal 
complex formation, and cell cycle progression. Cell 69, 439-456. 

Bozzetti, M. P., Massari, S., Finelli, P., Meggio, F., Pinna, L. A., Boldyreff, B., 
Issinger, 0. G., Palumbo, G., Ciriaco, C., Bonaccorsi, S., and et al. (1995). The 
Ste locus, a component of the parasitic cry-Ste system of Drosophila 
melanogaster, encodes a protein that forms crystals in primary spermatocytes and 
mimics properties of the beta subunit of casein kinase 2. Proc Natl Acad Sci U S  
A 92, 6067-6071. 

Buchner, K., Roth, P ., Schotta, G., Krauss, V ., Saumweber, H., Reuter, G., and 
Dom, R. (2000). Genetic and molecular complexity of the position effect 
variegation modifier mod(mdg4) in Drosophila. Genetics 155, 141-157. 

Buonomo, S. B., Clyne, R. K., Fuchs, J., Loidl, J., Uhlmann, F., and Nasmyth, K. 
(2000). Disjunction of homologous chromosomes in meiosis I depends on 
proteolytic cleavage of the meiotic cohesin Rec8 by separin. Cell 103, 387-398. 

Buonomo, S. B., Rabitsch, K. P., Fuchs, J., Gruber, S., Sullivan, M., Ohlmann, F., 
Petronczki, M., Toth, A., and Nasmyth, K. (2003). Division of the nucleolus and 
its release ofCDC14 during anaphase of meiosis I depends on separase, SP012, 
and SLK19. Dev Cell 4, 727-739. 

Cai, H. N., and Levine, M. (1997). The gypsy insulator can function as a 
promoter-specific silencer in the Drosophila embryo. Embo J 16, 1732-1741. 

Carpenter, A. T. (1973). A meiotic mutant defective in distributive disjunction in 
Drosophila melanogaster. Genetics 73, 393-428. 

Carpenter, A. T. (2003). Normal synaptonemal complex and abnormal 
recombination nodules in two alleles of the Drosophila meiotic mutant mei-W68. 
Genetics 163, 1337-1356. 

Castrillon, D. H., Gonczy, P ., Alexander, S., Rawson, R., Eberhart, C. G., 
Viswanathan, S., DiNardo, S., and Wasserman, S. A. (1993). Toward a molecular 
genetic analysis of spermatogenesis in Drosophila melanogaster: characterization 
of male-sterile mutants generated by single P element mutagenesis. Genetics 135, 
489-505 . 

Caudevilla, C., Serra, D., Miliar, A., Codony, C., Asins, G., Bach, M., and 
Hegardt, F. G. (1998). Natural trans-splicing in carnitine octanoyltransferase pre
mRNAs in rat liver. Proc Natl Acad Sci U S  A 95, 12185-12190. 

165 



Cenci, G., Bonaccorsi, S., Pisano, C., Verni, F., and Gatti, M. (1994). Chromatin 
and microtubule organization during premeiotic, meiotic and early postmeiotic 
stages ofDrosophila melanogaster spermatogenesis. J Cell Sci 107 ( Pt 12), 3521-
3534. 

Chen, S., and Corces, V. G. (2001). The gypsy insulator of Drosophila affects 
chromatin structure in a directional manner. Genetics 159, 1649-1658. 

Chikashige, Y., Ding, D. Q., Funabiki, H., Haraguchi, T., Mashiko, S., Yanagida, 
M., and Hiraoka, Y. (1994). Telomere-led premeiotic chromosome movement in 
fission yeast. Science 264, 270-273. 

Chua, P. R., and Roeder, G. S. (1997). Taml,  a telomere-associated meiotic 
protein, functions in chromosome synapsis and crossover interference. Genes Dev 
11, 1786-1800. 

Cohen-Fix, 0. (2001). The making and breaking of sister chromatid cohesion. 
Cell 106, 137-140. 

Conrad, M. N., Dominguez, A. M., and Dresser, M. E. (1997). Ndjlp, a meiotic 
telomere protein required for normal chromosome synapsis and segregation in 
yeast. Science 276, 1252-1255. 

Cooper, K. W. (1964). Meiotic Conjunctive Elements Not Involving Chiasmata. 
Proc Natl Acad Sci U S  A 52, 1248-1255. 

Couteau, F., Nabeshima, K., Villeneuve, A., and Zetka, M. (2004). A component 
of C. elegans meiotic chromosome axes at the interface of homo log alignment, 
synapsis, nuclear reorganization, and recombination. Curr Biol 14, 585-592. 

Demburg, A. F., McDonald, K., Moulder, G., Barstead, R., Dresser, M., and 
Villeneuve, A. M. (1998) . Meiotic recombination in C. elegans initiates by a 
conserved mechanism and is dispensable for homologous chromosome synapsis. 
Cell 94, 387-398 .  

Demburg, A. F., Sedat, J .  W., and Hawley, R. S.  (1996). Direct evidence of a role 
for heterochromatin in meiotic chromosome segregation. Cell 86, 135-146. 

DeVeaux, L. C., and Smith, G. R. (1994). Region-specific activators of meiotic 
recombination in Schizosaccharomyces pombe. Genes Dev 8, 203-210. 

Ding, D. Q., Yamamoto, A., Haraguchi, T., and Hiraoka, Y. (2004). Dynamics of 
homologous chromosome pairing during meiotic prophase in fission yeast. Dev 
Cell 6, 329-341. 

Dobson, M. J., Pearlman, R. E., Karaiskakis, A., Spyropoulos, B., and Moens, P. 
B. (1994). Synaptonemal complex proteins: occurrence, epitope mapping and 
chromosome disjunction. J Cell Sci 107 ( Pt JO), 2749-2760. 

Dom, R., and Krauss, V. (2003). The modifier ofmdg4 locus in Drosophila: 
functional complexity is resolved by trans splicing. Genetica 1 17, 1 65- 1 77 .  

166 



Dom, R., Krauss, V., Reuter, G., and Saumweber, H. (1993). The enhancer of 
position-effect variegation of Drosophila, E(var)3-93D, codes for a chromatin 
protein containing a conserved domain common to several transcriptional 
regulators. Proc Natl Acad Sci U S  A 90, 11376-11380. 

Dom, R., Reuter, G., and Loewendorf, A. (2001). Transgene analysis proves 
mRNA trans-splicing at the complex mod{mdg4) locus in Drosophila. Proc Natl 
Acad Sci U S A 98, 9724-9729. 

Dorsett, D. (1999). Distant liaisons: long-range enhancer-promoter interactions in 
Drosophila. Curr Opin Genet Dev 9, 505-514. 

Dudas, A., and Chovanec, M. (2004). DNA double-strand break repair by 
homologous recombination. Mutat Res 566, 131-167. 

Espinas, M. L., Jimenez-Garcia, E., Vaquero, A., Canudas, S., Bemues, J., and 
Azorin, F. (1999). The N-terminal POZ domain of GAGA mediates the formation 
of oligomers that bind DNA with high affinity and specificity. J Biol Chem 274, 
16461-16469. 

Farkas, G., Gausz, J., Galloni, M., Reuter, G., Gyurkovics, H., and Karch, F. 
(1994). The Trithorax-like gene encodes the Drosophila GAGA factor. Nature 
371, 806-808. 

Fedorova, L., and Fedorov, A. (2003). Introns in gene evolution. Genetica 118, 
123-131. 

Fuller, M. (1993). Spermatogenesis. In The Development of Drosophila, M. Bate, 
and A. Martinez-Arias, eds. (Cold Spring Harbor, New York, Cold Spring Harbor 
Press), pp. 71-147. 

Furukawa, M., He, Y. J., Borchers, C., and Xiong, Y. (2003). Targeting of protein 
ubiquitination by BTB-Cullin 3-Rocl ubiquitin ligases. Nat Cell Biol 5, 1001-
1007. 

Gadelle, D., Filee, J., Buhler, C., and Forterre, P. (2003). Phylogenomics of type 
II DNA topoisomerases. Bioessays 25, 232-242. 
Garcia, S. N., and Pillus, L. (1999). Net results ofnucleolar dynamics. Cell 97, 
825-828. 

Gasser, S. M., and Laemmli, U. K. (1986). Cohabitation of scaffold binding 
regions with upstream/enhancer elements of three developmentally regulated 
genes ofD. melanogaster. Cell 46, 521-530. 

Gasser, S. M., and Laemmli, U. K. (1986). The organization of chromatin loops: 
characterization of a scaffold attachment site. EMBO J 5, 511-518. 

Gause, M., Morcillo, P., and Dorsett, D. (2001) . Insulation of enhancer-promoter 
communication by a gypsy transposon insert in the Drosophila cut gene: 
cooperation between suppressor of hairy-wing and modifier of mdg4 proteins. 
Mol Cell Biol 21, 4807-4817. 

167 



Gdula, D. A., and Corces, V. G. (1997). Characterization of functional domains of 
the su(Hw) protein that mediate the silencing effect ofmod(mdg4) mutations. 
Genetics 145, 153-161. 

Gdula, D. A., Gerasimova, T. I., and Corces, V. G. (1996). Genetic and molecular 
analysis of the gypsy chromatin insulator of Drosophila. Proc Natl Acad Sci U S  
A 93, 9378-9383. 

Georgiev, P., and Kozycina, M. (1996). Interaction between mutations in the 
suppressor of Hairy wing and modifier of mdg4 genes of Drosophila 
melanogaster affecting the phenotype of gypsy-induced mutations. Genetics 142, 
425-436. 

Georgiev, P. G., and Gerasimova, T. I. (1989). Novel genes influencing the 
expression of the yellow locus and mdg4 (gypsy) in Drosophila melanogaster. 
Mol Gen Genet 220, 121-126. 

Gerasimova, T. I., and Corces, V. G. (1996). Boundary and insulator elements in 
chromosomes. Curr Opin Genet Dev 6, 185-192. 

Gerasimova, T. I., and Corces, V. G. (1998). Polycomb and trithorax group 
proteins mediate the function of a chromatin insulator. Cell 92, 511-521. 

Gerasimova, T. I., and Corces, V. G. (2001). Chromatin insulators and 
boundaries: effects on transcription and nuclear organization. Annu Rev Genet 35, 
193-208. 

Gerasimova, T. I., Gdula, D. A., Gerasimov, D. V., Simonova, 0., and Corces, V. 
G. (1995). A Drosophila protein that imparts directionality on a chromatin 
insulator is an enhancer of position-effect variegation. Cell 82, 587-597. 

Gethmann, R. C. (1974). Meiosis in male Drosophila melanogaster I. Isolation 
and characterization of meiotic mutants affecting second chromosome disjuction. 
Genetics 78, 1127-1142. 

Gethmann, R. C. (1984). The genetic analysis of a chromosome-specific meiotic 
mutant that permits a premature separation of sister chromatids in Drosophila 
melanogaster. Genetics 107, 65-77. 

Geyer, P. K., and Corces, V. G. (1992). DNA position-specific repression of 
transcription by a Drosophila zinc finger protein. Genes Dev 6, 1865-1873. 

Geyer, P. K., Spana, C., and Corces, V. G. (1986). On the molecular mechanism 
of gypsy-induced mutations at the yellow locus of Drosophila melanogaster. 
Embo J 5, 2657-2662. 

Ghabrial, A., Ray, R. P., and Schupbach, T. (1998). okra and spindle-B encode 
components of the RAD52 DNA repair pathway and affect meiosis and patterning 
in Drosophila oogenesis. Genes Dev 12, 2711-2723. 

168 



Ghabrial, A., and Schupbach, T. (1999). Activation of a meiotic checkpoint 
regulates translation of Gurken during Drosophila oogenesis. Nat Cell Biol 1, 
354-357. 

Ghosh, D., Gerasimova, T. I., and Corces, V. G. (2001). Interactions between the 
Su(Hw) and Mod(mdg4) proteins required for gypsy insulator function. Embo J 
20, 2518-2527. 

Gillespie, D. E., and Berg, C. A. (1995). Homeless is required for RNA 
localization in Drosophila oogenesis and encodes a new member of the DE-H 
family of RNA-dependent ATPases. Genes Dev 9, 2495-2508. 

Gorczyca, M., Popova, E., Jia, X. X., and Budnik, V. (1999). The gene 
mod(mdg4) affects synapse specificity and structure in Drosophila. J Neurobiol 
39, 447-460. 

Granok, H., Leibovitch, B. A., Shaffer, C. D., and Elgin, S. C. (1995). Chromatin. 
Ga-ga over GAGA factor. Curr Biol 5, 238-241. 

Grell, R. F. (1962). A new model for secondary nondisjunction: the role of 
distributive pairing. Genetics 47, 1737-1754. 

Harvey, A. J., Bidwai, A. P., and Miller, L. K. (1997). Doom, a product of the 
Drosophila mod(mdg4) gene, induces apoptosis and binds to baculovirus 
inhibitor-of-apoptosis proteins. Mol Cell Biol 1 7, 2835-2843. 

Hawley, R. J. (1988). Exchange and chromosomal segregation in eucaryotes. In 
Genetic recombination, R. Kucherlapati, and G. R. Smith, eds. (Washington, 
American Society for Microbiology), pp. 497-527. 

Hawley, R. J., and Waring, G. L. (1988). Cloning and analysis of the dec-1 
female-sterile locus, a gene required for proper assembly of the Drosophila 
eggshell. Genes Dev 2, 341-349. 

Hawley, R. S. (1988). Exchange and chromosomal segregation 'in eucaryotes. In 
Genetic Recombination (Washington, D.C., American Society for microbiology), 
pp. 497-527. 

Hawley, R. S. ( 1 989). Genetic and molecular analysis of a simple disjunctional 
system in Drosophila melanogaster. Prog Clin Biol Res 31 1, 277-302. 

Hawley, R. S. (2002). Meiosis: how male flies do meiosis. Curr Biol 1 2, R660-
662. 

Hawley, R. S., McKim, K. S., and Arbel, T. ( 1993). Meiotic segregation in 
Drosophila melanogaster females: molecules, mechanisms, and myths. Annu Rev 
Genet 27, 281-317. 

Hawley, R. S., and Theurkauf, W. E. (1993). Requiem for distributive 
segregation: achiasmate segregation in Drosophila females. Trends Genet 9, 310-
317. 

169 



Hernandez-Verdun, D., and Roussel, P. (2003). Regulators of nucleolar functions. 
Prog Cell Cycle Res 5, 301-308. 

Heyting, C. (1996). Synaptonemal complexes: structure and function. Curr Opin 
Cell Biol 8, 389-396. 

Hirano, T. (1998). SMC protein complexes and higher-order chromosome 
dynamics. Curr Opin Cell Biol JO, 317-322. 

Hirano, T. (1999). SMC-mediated chromosome mechanics: a conserved scheme 
from bacteria to vertebrates? Genes Dev 13, 11-19. 

Hoskins, R. A., Phan, A. C., Naeemuddin, M., Mapa, F. A., Ruddy, D. A., Ryan, 
J. J., Young, L. M., Wells, T., Kopczynski, C., and Ellis, M. C. (2001). Single 
nucleotide polymorphism markers for genetic mapping in Drosophila 
melanogaster. Genome Res 11, 1100-1113. 

Ishii, K., Arib, G., Lin, C., Van Houwe, G., and Laemmli, U. K. (2002). 
Chromatin boundaries in budding yeast: the nuclear pore connection. Cell J 09, 
551-562. 

Ivy, J. M. (1981) Mutations that disrupt meiosis in males of Drosophila 
melanogaster, Ph.D., University of California, San Diego. 

Karpen, G. H., Le, M. H., and Le, H. (1996). Centric heterochromatin and the 
efficiency of achiasmate disjunction in Drosophila female meiosis. Science 273, 
118-122. 

Katis, V. L., Galova, M., Rabitsch, K. P ., Gregan, J., and Nasmyth, K. (2004). 
Maintenance of cohesin at centromeres after meiosis I in budding yeast requires a 
kinetochore-associated protein related to MEI-S332. Curr Biol 14, 560-572. 

Katsani, K. R., Hajibagheri, M. A., and Verrijzer, C. P. (1999). Co-operative 
DNA binding by GAGA transcription factor requires the conserved BTB/POZ 
domain and reorganizes promoter topology. Embo J 18, 698-708. 

Keeney, S., Giroux, C. N., and Kleckner, N. (1997). Meiosis-specific DNA 
double-strand breaks are catalyzed by Spo 11, a member of a widely conserved 
protein family. Cell 88, 375-384. 

Kerrebrock, A. W., Miyazaki, W. Y., Bimby, D., and Orr-Weaver, T. L. (1992). 
The Drosophila mei-S332 gene promotes sister-chromatid cohesion in meiosis 
following kinetochore differentiation. Genetics 13 0, 827-841. 

Kerrebrock, A. W., Moore, D. P., Wu, J. S., and Orr-Weaver, T. L. (1995). Mei
S332, a Drosophila protein required for sister-chromatid cohesion, can localize to 
meiotic centromere regions. Cell 83, 247-256. 

Kitajima, T. S., Kawashima, S. A., and Watanabe, Y. (2004). The conserved 
kinetochore protein shugoshin protects centromeric cohesion during meiosis. 
Nature 427, 510-517. 

170 



Klapholz, S., and Esposito, R. E. (1980) . Recombination and chromosome 
segregation during the single division meiosis in SPO12-1 and SPO13-l diploids. 
Genetics 96, 589-611. 

Kleckner, N. (1996). Meiosis: how could it work? Proc Natl Acad Sci U S  A 93, 
8167-8174. 

Klein, F., Mahr, P ., Galova, M., Buonomo, S. B., Michaelis, C., Nairz, K., and 
Nasmyth, K. (1999). A central role for cohesins in sister chromatid cohesion, 
formation of axial elements, and recombination during yeast meiosis. Cell 98, 91-
103. 

Klein, H. L. (2001 ). Mutations in recombinational repair and in checkpoint 
control genes suppress the lethal combination of srs2Delta with other DNA repair 
genes in Saccharomyces cerevisiae. Genetics 1 57, 557-565. 

Koundakjian, E. J., Cowan, D. M., Hardy, R. W., and Becker, A. H. (2004). The 
Zuker Collection: A Resource for the Analysis of Autosomal Gene Function in 
Drosophila melanogaster. Genetics 1 67, 203-206. 

Kramer, J., and Hawley, R. S. (2003). The spindle-associated transmembrane 
protein Axs identifies a new family of transmembrane proteins in eukaryotes. Cell 
Cycle 2, 174-176. 

Krauss, V., and Dom, R. (2004). Evolution of the trans-splicing Drosophila locus 
mod(mdg4) in several species ofDiptera and Lepidoptera. Gene 331 , 165-176. 

Labrador, M., and Corces, V. G. (2003). Extensive exon reshuffling over 
evolutionary time coupled to trans-splicing in Drosophila. Genome Res 1 3, 2220-
2228. 

Labrador, M., Mongelard, F., Plata-Rengifo, P., Baxter, E. M., Corces, V. G., and 
Gerasimova, T. I. (2001 ). Protein encoding by both DNA strands. Nature 409, 
1000. 

Lamond, A. I., and Earnshaw, W. C. (1998). Structure and function in the 
nucleus. Science 280, 547-553. 
Lamond, A. I., and Sleeman, J. E. (2003). Nuclear substructure and dynamics. 
Curr Biol 1 3, R825-828. 

Lee, S. E., Pellicioli, A., V aze, M. B., Sugawara, N., Malkova, A., Foiani, M., and 
Haber, J. E. (2003). Yeast Rad52 and Rad51 recombination proteins define a 
second pathway of DNA damage assessment in response to a single double-strand 
break. Mol Cell Biol 23, 8913-8923. 

Leu, J. Y., Chua, P. R., and Roeder, G. S. (1998). The meiosis-specific Hop2 
protein of S. cerevisiae ensures synapsis between homologous chromosomes. Cell 
94, 375-386. 

Lifschytz, E., and Hareven, D. (1977). Gene expression and the control of 
spermatid morphogenesis in Drosophila melanogaster. Dev Biol 58, 276-294. 

17 1  



Lifschytz, E., and Meyer, G. F. (1977). Characterisation of male meiotic-sterile 
mutations in drosophila melanogaster. The genetic control of meiotic divisions 
and gametogenesis. Chromosoma 64, 371-392. 

Lindsley, D. L., and Zimm, G. G., eds. (1992). The Genome of Drosophila 
melanogaster (San Diego). 

Liu, H., Jang, J. K., Kato, N., and McKim, K. S. (2002). mei-P22 encodes a 
chromosome-associated protein required for the initiation of meiotic 
recombination in Drosophila melanogaster. Genetics 162, 245-258. 

Livak, K. J. (1984). Organization and mapping of a sequence on the Drosophila 
melanogaster X and Y chromosomes that is transcribed during spermatogenesis. 
Genetics 107, 611-634. 

Livak, K. J. (1990). Detailed structure of the Drosophila melanogaster stellate 
genes and their transcripts. Genetics 124, 303-316. 

Loidl, J. (1990). The initiation of meiotic chromosome pairing: the cytological 
view. Genome 33, 759-778. 

MacQueen, A. J., Colaiacovo, M. P., McDonald, K., and Villeneuve, A. M. 
(2002). Synapsis-dependent and -independent mechanisms stabilize homolog 
pairing during meiotic prophase in C. elegans. Genes Dev 16, 2428-2442. 

MacQueen, A. J., and Villeneuve, A. M. (2001). Nuclear reorganization and 
homologous chromosome pairing during meiotic prophase require C. elegans chk-
2. Genes Dev 15, 1674-1687. 

Mason, J. M. (1976). Orientation disruptor (ord) : a recombination-defective and 
disjunction-defective meiotic mutant in Drosophila melanogaster. Genetics 84, 
545-572. 

Matthies, H. J., Baskin, R. J., and Hawley, R. S. (2001). Orphan kinesin NOD 
lacks motile properties but does possess a microtubule-stimulated ATPase 
activity. Mol Biol Cell 12, 4000-4012. 

McKee, B. D. (1996). The license to pair: identification of meiotic pairing sites in 
Drosophila. Chromosoma 105, 135-141. 

McKee, B. D. (1998). Pairing sites and the role of chromosome pairing in meiosis 
and spermatogenesis in male Drosophila. Curr Top Dev Biol 37, 77-115. 

McKee, B. D. (2004). Homologous pairing and chromosome dynamics in meiosis 
and mitosis. Biochim Biophys Acta 1677, 165-180. 

McKee, B. D., Habera, L., and Vrana, J. A. (1992). Evidence that intergenic 
spacer repeats of Drosophila melanogaster rRNA genes function as X-Y pairing 
sites in male meiosis, and a general model for achiasmatic pairing. Genetics 132, 
529-544. 

McKee, B. D., and Karpen, G. H. (1990). Drosophila ribosomal RNA genes 
function as an X-Y pairing site during male meiosis. Cell 61, 61-72. 

172 



McKee, B. D., and Lindsley, D. L. (1987) . Inseparability of X-heterochromatic 
functions responsible for X:Y pairing, meiotic drive, and male fertility in 
Drosophila melanogaster males. Genetics 116, 399-407. 
McKee, B. D., Lumsden, S. E., and Das, S. ( 1993). The distribution of male 
meiotic pairing sites on chromosome 2 of Drosophila melanogaster: meiotic 
pairing and segregation of 2-Y transpositions. Chromosoma 102, 180- 194. 
McKee, B. D., Ren, X., and Hong, C. {1996). A recA-like gene in Drosophila 
melanogaster that is expressed at high levels in female but not male meiotic 
tissues. Chromosoma 104, 479-488. 
McKee, B. D., Wilhelm, K., Merrill, C., and Ren, X. (1998). Male sterility and 
meiotic drive associated with sex chromosome rearrangements in Drosophila. 
Role ofX-Y pairing. Genetics 149, 143- 1 55 .  
McKim, K. S., Green-Marroquin, B. L., Sekelsky, J .  J . ,  Chin, G. ,  Steinberg, C., 
Khodosh, R., and Hawley, R. S. ( 1 998). Meiotic synapsis in the absence of 
recombination. Science 279, 876-878. 
McKim, K. S., and Hayashi-Hagihara, A. (1998). mei-W68 in Drosophila 
melanogaster encodes a Spo 1 1  homo log: evidence that the mechanism for 
initiating meiotic recombination is conserved. Genes Dev 12, 2932-2942. 
McKim, K. S., Jang, J. K., and Manheim, E. A. (2002). Meiotic recombination 
and chromosome segregation in Drosophila females. Annu Rev Genet 3 6, 205-
232. 
Merrill, C. J., Chakravarti, D., Habera, L., Das, S., Eisenhour, L., and McKee, B. 
D. (1 992). Promoter-containing ribosomal DNA fragments function as X-Y 
meiotic pairing sites in D. melanogaster males. Dev Genet 13, 468-484. 
Metz, C. W. (1 926). Observations on spermatogenesis in Drosophila. Z Zellforsch 
Mikrosk Anat 4, 1-28. 
Meyer, G. F. (1960). The fine structure of spermatocyte nuclei of Drosophila 
melanogaster. Paper presented at: Proceedings of the European Regional 
Conference on Electron Microscopy (Delfft, The Netherlands, Die Nederlandse 
Vereniging voor Electronmicroscopic Delfft). 
Michaelis, C., Ciosk, R., and Nasmyth, K. (1 997). Cohesins : chromosomal 
proteins that prevent premature separation of sister chromatids. Cell 91, 35-45 . 
Molnar, M., Bahler, J. , Sipiczki, M., and Kohli, J. (1 995). The rec8 gene of 
Schizosaccharomyces pombe is involved in linear element formation, 
chromosome pairing and sister-chromatid cohesion during meiosis. Genetics 141, 
61 -73 . 
Mongelard, F., Labrador, M., Baxter, E. M., Gerasimova, T. I., and Corces, V. G. 
(2002). Trans-splicing as a novel mechanism to explain interallelic 
complementation in Drosophila. Genetics 160, 148 1 - 1487. 

173 



Moore, D. P., Miyazaki, W. Y., Tomkiel, J. E., and Orr-Weaver, T. L. (1994). Double or nothing: a Drosophila mutation affecting meiotic chromosome segregation in both females and males. Genetics 136, 953-964. Moore, D. P., and Orr-Weaver, T. L. (1998). Chromosome segregation during meiosis: building an unambivalent bivalent. Curr Top Dev Biol 37, 263-299. Moriyama, E. N., and Powell, J. R. (1996). Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol 13, 261-277. Morris, J., and Lehmann, R. (1999). Drosophila oogenesis: versatile spn doctors. Curr Biol 9, R55-58. Nasmyth, K. (2001). Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet 35, 673-745. Nasmyth, K. (2002). Segregating sister genomes: the molecular biology of chromosome separation. Science 297, 559-565. Orr-Weaver, T. L. (1995). Meiosis in Drosophila: seeing is believing. Proc Natl Acad Sci U S  A 92, 10443-10449. O'Tousa, J. (1982). Meiotic chromosome behavior influenced by mutation-altered disjunction in Drosophila melanogaster females. Genetics 102, 503-524. Padmore, R., Cao, L., and Kleckner, N. (1991). Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell 66, 1239-1256. Page, S. L., and Hawley, R. S. (2001). c(3)G encodes a Drosophila synaptonemal complex protein. Genes Dev 15, 3130-3143 . Page, S. L., and Hawley, R. S. (2003). Chromosome choreography: the meiotic ballet. Science 301, 785-789. Pedone, P. V., Ghirlando, R., Clore, G. M., Gronenbom, A. M., Felsenfeld, G., and Omichinski, J. G. (1996). The single Cys2-His2 zinc finger domain of the GAGA protein flanked by basic residues is sufficient for high-affinity specific DNA binding. Proc Natl Acad Sci U S  A 93, 2822-2826. Peri, F., Bokel, C., and Roth, S. (1999). Local Gurken signaling and dynamic MAPK activation during Drosophila oogenesis. Mech Dev 81, 75-88. Petronczki, M., Siomos, M. F. , and Nasmyth, K. (2003). Un menage a quatre: the molecular biology of chromosome segregation in meiosis. Cell 112, 423-440. Petukhova, G. V., Romanienko, P. J., and Camerini-Otero, R. D. (2003). The Hop2 protein has a direct role in promoting interhomolog interactions during mouse meiosis. Dev Cell 5, 927-936. Pezzi, N., Prieto, I., Kremer, L., Perez Jurado, L. A., Valero, C. ,  Del Mazo, J., Martinez, A. C., and Barbero, J. L. - (2000). STAG3, a novel gene encoding a 
174 



protein involved in meiotic chromosome pairing and location of STAG3-related 
genes flanking the Williams-Beuren syndrome deletion. Faseb J 14, 581 -592. 
Pilch, D. R., Sedelnikova, 0. A., Redon, C., Celeste, A., Nussenzweig, A., and 
Bonner, W. M. (2003). Characteristics of gamma-H2AX foci at DNA double
strand breaks sites. Biochem Cell Biol 81, 123-129. 
Prieto, I., Suja, J. A., Pezzi, N., Kremer, L., Martinez, A. C., Rufas, J. S., and 
Barbero, J. L. (200 1) .  Mammalian STAG3 is a cohesin specific to sister 
chromatid arms in meiosis I. Nat Cell Biol 3, 76 1 -766. 
Rabitsch, K. P., Gregan, J., Schleiffer, A., Javerzat, J. P., Eisenhaber, F., and 
Nasmyth, K. (2004). Two fission yeast homo logs of Drosophila Mei-S332 are 
required for chromosome segregation during meiosis I and II. Curr Biol 14, 287-
301 . 
Rabitsch, K. P., Petronczki, M., Javerzat, J. P., Genier, S., Chwalla, B., Schleiffer, 
A., Tanaka, T. U., and Nasmyth, K. (2003). Kinetochore recruitment of two 
nucleolar proteins is required for homolog segregation in meiosis I. Dev Cell 4, 
535-548. 
Rabitsch, K. P., Toth, A., Galova, M., Schleiffer, A., Schaffner, G., Aigner, E., 
Rupp, C., Penkner, A. M., Moreno-Borchart, A. C., Primig, M., et al. (2001). A 
screen for genes required for meiosis and spore formation based on whole
genome expression. Curr Biol 11, 1001- 1009. 
Rasmussen, S. W. (1 977). Meiosis in Bombyx mori females. Philos Trans R Soc 
Lond B Biol Sci 277, 343-350. 
Read, D., Butte, M. J., Demburg, A. F., Frasch, M., and Kornberg, T. B. (2000). 
Functional studies of the BTB domain in the Drosophila GAGA and Mod(mdg4) 
proteins. Nucleic Acids Res 28, 3864-3870. 
Ren, X., Eisenhour, L., Hong, C., Lee, Y., and McKee, B. D. (1997). Roles of 
rDNA spacer and transcription unit-sequences in X-Y meiotic chromosome 
pairing in Drosophila melanogaster males. Chromosoma 106, 29-36. 
Revenkova, E., Eijpe, M., Heyting, C., Gross, B., and Jessberger, R. (2001) .  
Novel meiosis-specific isoform of mammalian SMC 1 .  Mol Cell Biol 21, 6984-
6998. 
Robbins, L. G. (197 1). Nonexchange alignment: a meiotic process revealed by a 
synthetic meiotic mutant of Drosophila melanogaster. Mol Gen Genet 110, 144-
1 66. 
Roeder, G. S. (1995). Sex and the single cell: meiosis in yeast. Proc Natl Acad Sci 
U S  A 92, 1 0450-10456. 
Roeder, G. S.  {1997). Meiotic chromosomes: it takes two to tango. Genes Dev 11, 
2600-2621 .  

175 



Sandler, L. (1958). Genetic studies of exchange in the compound X chromosomes 
of Drosophila melanogaster. Cold Spring Harb Symp Quant Biol 23, 211-223. 

Sandler, L. (1971 ). Induction of autosomal meiotic mutants by EMS in D. 
melanogaster. Drosophila Inform Ser 4 7, 68. 

Sandler, L., and Hiraizumi, Y. (1961). Meiotic drive in natural populations of 
Drosophila melanogaster. VIL Conditional segregation distortion: a possible 
nonallelic conversion. Genetics 46, 585-60_4. 

Sandler, L., Lindsley, D. L., Nicoletti, B., and Trippa, G. (1968). Mutants 
affecting meiosis in natural populations of Drosophila melanogaster. Genetics 60, 
525-558. 

Scherthan, H. (2001). A bouquet makes ends meet. Nat Rev Mol Cell Biol 2, 621-
627. 

Scherthan, H. (2003). Knockout mice provide novel insights into meiotic 
chromosome and telomere dynamics. Cytogenet Genome Res 103, 235-244. 

Schotta, G., and Reuter, G. (2000). Controlled expression of tagged proteins in 
Drosophila using a new modular P-element vector system. Mol Gen Genet 262, 
916-920. 

Schultz, J. (1934). Report on equational. In Yearbook, C. Inst., ed. (Washington), 
pp. 280. 

Sekelsky, J. J., McKim, K. S., Messina, L., French, R. L., Hurley, W. D., Arbel, 
T., Chin, G. M., Deneen, B., Force, S. J., Hari, K. L., et al. (1999). Identification 
of novel Drosophila meiotic genes recovered in a P-element screen. Genetics 152, 
529-542. 

Spana, C., and Corces, V. G. (1990). DNA bending is a determinant of binding 
specificity for a Drosophila zinc finger protein. Genes Dev 4, 1505-1515. 

Spana, C., Harrison, D. A., and Corces, V. G. (1988). The Drosophila 
melanogaster suppressor of Hairy-wing protein binds to specific sequences of the 
gypsy retrotransposon. Genes Dev 2, 1414-1423. 

Staeva-Vieira, E., Yoo, S., and Lehmann, R. (2003). An essential role of 
DmRad51/SpnA in DNA repair and meiotic checkpoint control. Embo J 22, 5863-
5874. 

Stapleton, W. , Das, S., and McKee, B. D. (2001). A role of the Drosophila 
homeless gene in repression of Stellate in male meiosis. Chromosoma 110, 228-
240. 

Stevens, N. M. (1908). A study of the germ cells of certain Diptera, with 
reference to the heterochromosomes and the phenomena of synapsis. J Exp Zool 
5, 359-374. 

Stoop-Myer, C., and Amon, A. (1999). Meiosis: Rec8 is the reason for cohesion. 
Nat Cell Biol 1, E125-127. 

176 



Strunnikov, A. V., and Jessberger, R. (1999). Structural maintenance of chromosomes (SMC) proteins: conserved molecular properties for multiple biological functions. Eur J Biochem 263, 6-13. Sutton, R. E., and Boothroyd, J. C. (1986). Evidence for trans splicing in trypanosomes. Cell 47, 527-535. Sym, M., Engebrecht, J. A., and Roeder, G. S. (1993). ZIP l is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72, 365-378. Szabad, J., Mathe, E., and Puro, J. (1995). Horka, a dominant mutation of Drosophila, induces nondisjunction and, through paternal effect, chromosome loss and genetic mosaics. Genetics 139, 1585-1599. Teeter, K., Naeemuddin, M., Gasperini, R., Zimmerman, E., White, K. P., Hoskins, R., and Gibson, G. (2000). Haplotype dimorphism in a SNP collection from Drosophila melanogaster. J Exp Zool 288, 63-75. Tomkiel, J. E., Wakimoto, B. T., and Briscoe, A., Jr. (2001). The teflon gene is required for maintenance of autosomal homo log pairing at meiosis I in male Drosophila melanogaster. Genetics 157, 273-281. Toth, A., Rabitsch, K. P ., Galova, M., Schleiff er, A., Buonomo, S. B., and Nasmyth, K. (2000). Functional genomics identifies monopolin: a kinetochore protein required for segregation ofhomologs during meiosis i. Cell 103, 1155-1168. Tsubouchi, H., and Roeder, G. S. (2002). The Mndl protein forms a complex with hop2 to promote homologous chromosome pairing and meiotic double-strand break repair. Mol Cell Biol 22, 3078-3088. van Heemst, D., and Heyting, C. (2000). Sister chromatid cohesion and recombination in meiosis. Chromosoma 109, l 0-26. Vaze, M. ·B., Pellicioli, A., Lee, S. E., Ira, G., Liberi, G., Arbel-Eden, A., Foiani, M., and Haber, J. E. (2002). Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol Cell ] 0, 373-385. Vazquez, J., Belmont, A. S., and Sedat, J. W. (2001). Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr Biol 11 ,  1227-1239. Vazquez, J., Belmont, A. S., and Sedat, J. W. (2002). The dynamics of homologous chromosome pairing during male Drosophila meiosis. Curr Biol 12, 1473-1483. von Wettstein, D. (1984). The synaptonemal complex and genetic segregation. Symp Soc Exp Biol 38, 195-231. Wakimoto, B. T., Lindsley, D. L., and Herrera, C. (2004). Toward a Comprehensive Genetic Analysis of Male Fertility in Drosophila melanogaster. Genetics 167, 207-216. 177 



Walker, M. Y., and Hawley, R. - S. (2000). Hanging on to your homolog: the roles of pairing, synapsis and recombination in the maintenance ofhomolog adhesion. Chromosoma 109, 3-9. Wan, L., de los Santos, T., Zhang, C., Shokat, K., and Hollingsworth, N. M. (2004). Mekl kinase activity functions downstream ofREDl in the regulation of meiotic double strand break repair in budding yeast. Mol Biol Cell 15, 11-23 . Webber, H. A., Howard, L., and Bickel, S. E. (2004). The cohesion protein ORD is required for homologue bias during meiotic recombination. J Cell Biol 164, 819-829. Weiler, K. S., and Wakimoto, B. T. (2002). Suppression of heterochromatic gene variegation can be used to distinguish and characterize E(var) genes potentially important for chromosome structure in Drosophila melanogaster. Mol Genet Genomics 266, 922-932. Weiner, B. M., and Kleckner, N. (1994). Chromosome pairing via multiple interstitial interactions before and during meiosis in yeast. Cell 77, 977-991. Whyte, W. L., Irick, H., Arbel, T., Yasuda, G., French, R. L., Falk, D. R., and Hawley, R. S. (1993). The genetic analysis of achiasmate segregation in Drosophila melanogaster. III. The wild-type product of the Axs gene is required for the meiotic segregation of achiasmate homologs. Genetics 134, 825-835. Wilkins, R. C., and Lis, J. T. (1997). Dynamics of potentiation and activation: GAGA factor and its role in heat shock gene regulation. Nucleic Acids Res 25, 3963-3968. Wilkins, R. C., and Lis, J. T. (1998). GAGA factor binding to DNA via a single trinucleotide sequence element. Nucleic Acids Res 26, 2672-2678. Wilkins, R. C., and Lis, J. T. (1999). DNA distortion and multimerization: novel functions of the glutamine-rich domain of GAGA factor. J Mol Biol 285, 5 1 5-525. Yamamoto, A., and Hiraoka, Y. (2001). How do meiotic chromosomes meet their homologous partners?: lessons from fission yeast. Bioessays 23, 526-533. Y amamot9, M. (1979). Cytological studies of heterochromatin function in the Drosophila melanogaster male: autosomal meiotic paring. Chromosoma 72, 293-328. Yoo, S., and McKee, B. D. (2004). Overexpression ofDrosophila Rad51 protein (DmRad5 l) disrupts cell cycle progression and leads to apoptosis. Chromosoma. Zickler, D., and Kleckner, N. (1998). The leptotene-zygotene transition of meiosis. Annu Rev Genet 32, 619-697. Zickler, D., and Kleckner, N. (1999). Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33, 603-754. 
178 



Zierhut, C., Berlinger, M., Rupp, C., Shinohara, A., and Klein, F. (2004). Mndl is 
required for meiotic interhomolog repair. Curr Biol 14, 752-762. 

Zitron, A. E., and Hawley, R. S. (1989). The genetic analysis of distributive 
segregation in Drosophila melanogaster. I. Isolation and characterization of 
Aberrant X segregation (Axs ), a mutation defective in chromosome partner 
choice. Genetics 122, 801-821. 

Zollman, S., Godt, D., Prive, G. G., Couderc, J. L., and Laski, F. A. (1994). The 
BTB domain, found primarily in zinc finger proteins, defines an evolutionarily 
conserved family that includes several developmentally regulated genes in 
Drosophila. Proc Natl Acad Sci U S A 91 , 10717-10721. 

179 



Vita 

Morvarid Soltani Bejnood is born in Tehran, Iran. She graduated from a French -

Iranian high school in Tehran and went to France to further her education. She 

attended The University of Pierre et Marie Curie (Paris VI) and earned a Bachelor 

of Science degree in Biochemistry and a Masters degree in Physiology of 

Reproduction and became a Ph. D. candidate in 1989. Morvarid met her husband 

in 1991. and moved to The United States of America in August 1991, leaving her 

Ph. D. research project in France unfinished. Although she enjoyed raising her 

sons, born in 1992 and 1996, her interest in Science made her decide to enroll in a 

Ph. D. program at The University of Tennessee in Knoxville. She was accepted by 

The Graduate School of Genome Science and Technology in 1999 and joined the 

laboratory of Dr. Bruce McKee to study Genetics. Morvarid earned a Ph. D. 

degree in Life Sciences in 2004. She has a great interest in teaching and hopes to 

have a carrier in both Teaching and Research. 

180 
1643 4866 .�1 7 rJ 
1 1/13/14 \!..; ' 


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-2004

	modifier of mdg4 encodes a protein involved in homologous chromosome pairing in Drosophila melanogaster males
	Morvarid Soltani Bejnood
	Recommended Citation


	tmp.1504205242.pdf.EsRyE

