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Highly dynamic animal contact network
and implications on disease transmission
Shi Chen1, Brad J. White2, Michael W. Sanderson3, David E. Amrine3, Amiyaal Ilany4 & Cristina Lanzas1,4

1Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN 37996, 2Departments of Clinical
Sciences, Kansas State University, Manhattan, KS 66506, 3Departments of Diagnostic Medicine and Pathobiology, Kansas State
University, Manhattan, KS 66506, 4National Institute for Mathematical and Biological Synthesis, Knoxville, TN 37996.

Contact patterns among hosts are considered as one of the most critical factors contributing to unequal
pathogen transmission. Consequently, networks have been widely applied in infectious disease modeling.
However most studies assume static network structure due to lack of accurate observation and appropriate
analytic tools. In this study we used high temporal and spatial resolution animal position data to construct a
high-resolution contact network relevant to infectious disease transmission. The animal contact network
aggregated at hourly level was highly variable and dynamic within and between days, for both network
structure (network degree distribution) and individual rank of degree distribution in the network (degree
order). We integrated network degree distribution and degree order heterogeneities with a commonly used
contact-based, directly transmitted disease model to quantify the effect of these two sources of heterogeneity
on the infectious disease dynamics. Four conditions were simulated based on the combination of these two
heterogeneities. Simulation results indicated that disease dynamics and individual contribution to new
infections varied substantially among these four conditions under both parameter settings. Changes in the
contact network had a greater effect on disease dynamics for pathogens with smaller basic reproduction
number (i.e. R0 , 2).

I
nfectious individuals can contribute differently to new infections, and variation in contacts among hosts is one
of the most important factors contributing to unequal pathogen transmission1,2. Contact rates vary because of
differences in individual traits, including individual behavior, as well as changes in the overall contact patterns

along time and across space. Network theory has been extensively applied to understand and model contact
patterns, and epidemiology is one of the most active areas in which network theory is applied3. Networks have
been used extensively to describe the underlying contact patterns for sexually transmitted diseases and other
directly transmitted diseases across large spatial scales. Recently, characterization of contact networks within
community settings such as hospitals, schools, or households has been recognized as necessary to accurately
predict transmission dynamics and identify interventions for diseases that require close contacts. Confined
environments may have spatial ‘‘hotspots’’ for disease transmission, and defining the contact network is integral
for effective control programs. Transmission in hospitals contributed approximately 50% of all secondary infec-
tions of severe acute respiratory syndrome in Hong Kong in 20034, and transmission within schools fueled the fall
2009 wave of pandemic influenza H1N1 in the United States5. Technology advances, such as proximity loggers
and radio-frequency identification devices, have facilitated the construction of high-resolution contact networks
relevant to infectious diseases that require close contacts among hosts6–8. Analysis of generated contact networks
have confirmed high contact rates in community settings, and provided insights into the network structure in
these types of settings and their implication for disease transmission6–9.

In farm animal agricultural settings, contact networks have been used to describe farm-to-farm disease
transmission at large spatial scales across country or between countries10–17. Links between farms are constructed
using animal movement databases. However, the contact structure within premises and at lower scales such as
pen level are less understood despite their influence on disease transmission, especially for highly transmissible
diseases18,19. The characterization of animal-to-animal contact networks at higher temporal and spatial resolution
within farm animal groups has been rarely investigated, and therefore it is unknown how these networks change
over time, including their structure (e.g. degree distribution), the role of individuals (e.g. degree order, individual
rank of degree distribution in the network), and the implications in the modeling approaches used to describe
transmission. Homogeneous-mixing mean-field compartmental models with constant contact numbers through
time and among individuals are commonly assumed and applied at these levels.

OPEN

SUBJECT AREAS:
ECOLOGICAL

EPIDEMIOLOGY

INFECTIOUS DISEASES

Received
15 January 2014

Accepted
10 March 2014

Published
26 March 2014

Correspondence and
requests for materials

should be addressed to
S.C. (schen25@utk.

edu)

SCIENTIFIC REPORTS | 4 : 4472 | DOI: 10.1038/srep04472 1



In this study, we constructed animal contact networks using real-
time animal position data at high temporal and spatial resolutions for
three groups of calves. Our objectives were to quantify individual and
temporal (within-day and between-day) heterogeneity in animal
contact networks at the pen level and assess the implications of these
sources of heterogeneity in disease transmission. Toward that pur-
pose, we incorporated sources of identified heterogeneity (e.g. tem-
poral heterogeneity in contact networks and changes in network
order) into a contact-based disease transmission model within an
agent-based modeling framework. The validity of some commonly
used assumptions in disease transmission models (e.g. constant
number of contacts among individual and over time) is investigated
and discussed.

Results
Dynamic Contact Network. Degree distributions for the aggregated
number of contacts at the pen level for the complete period of obser-
vation (192-h) were better characterized by a gamma distribution
than a normal distribution, indicating that the degree distributions
were skewed (Supplementary Fig. 1). A detailed description of the
parameters and goodness of fit is provided in Table S1a. The degree
distributions of hourly contact networks (during 2–3 am interval,
shortened as 2 am thereafter; 8 am, 2 pm, and 8 pm hourly interval
for pen #1) were better characterized by a normal distribution than a
gamma distribution when the animals were more active (at 8 am, 2
pm, and 8 pm intervals), while the degree distribution fit better with a
gamma distribution during 2 am, when the animals were inactive and
the number of contacts was substantially lower than at other times of
day and therefore the network was more sparse (Supplementary
Table 1, Supplementary Fig. 2).

The time series of hourly number of contacts is shown in Fig. 1 for
all three pens. The analysis of variance (ANOVA) was carried to
investigate temporal and individual variability. ANOVA results
revealed highly significant hourly variability nested in day (P 5

0.003), individual variability nested in pen (P 5 0.001), and at pen
level (P 5 0.003) but marginal insignificance between day variability
(P 5 0.06). Further spectrum analysis confirmed a peak frequency
correlated to an approximate 6.25-h period in number of contacts.
Thus there was a clear pattern of diurnal cycle in network degree
distribution.

The quadratic assignment procedure (QAP) was applied to quant-
ify pairwise contact network structure similarity for different contact
rate intervals (see below). QAP could reveal changes in both network
topology and roles in individual node. QAP results showed that the
structure of the contact network was 90.33% similar between any two
low-contact rate intervals (from 2 am to 5 am) on average, was
79.62% similar between any two high-contact rate intervals (at 8
am, 2 pm, and 8 pm intervals), and was only 46.67% similar between
a low- and a high-contact rate interval. These results further showed
that changes in the network structure (actual correlation between
different nodes/calves) were not uniform during different hours in
a day, besides the network degree distribution variability described
above. An example of actual network structures is shown in Fig. 2.

The degree order was also highly variable throughout the obser-
vation period. The distribution of observed mean degree order of
animals in each pen was very different from the hypothetical con-
dition that the order of the network was consistent throughout the
period (Fig. 3). This was further supported by the two-sided
Kolmogorov-Smirnov (K–S) test results showing that none of the
observed distributions of mean rank in the three pens was similar to
the hypothetical population with constant degree order (P 5 0.001
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Figure 1 | Observed time series of total degree in the animal contact network. Total degree is the sum of the degree of all node/individual cattle, which, in

this study, is equivalent to the total number of contacts within each hour. Grey area is bracketed by the 1st and 3rd quantiles. A clear diurnal cycle of

number of contacts exists for all three pens. Such cycle vanishes if aggregated at the daily level.
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for all three pens, K–S test). Thus in the observed contact network, a
calf active during a previous hour may became less active in success-
ive periods, with no clear predictable pattern.

Modeling Disease Transmission in a Dynamic Network. The time
series of mean disease prevalence for all four conditions are presented
in Fig. 4. Characteristics of disease transmission such as maximum
prevalence, its associated occurrence date, outbreak size (n), duration
of outbreak (Tf), and basic reproduction number (R0) are summarized
in Table 1. The maximum prevalence occurrence date, outbreak size,
and the duration of outbreak did not differ substantially among the
four conditions for parameter set 2 (higher R0), whilst in parameter
set 1 (lower R0) these characteristics were more distinct. There were
substantial differences in the maximum prevalence and the numerical

R0. Of the four conditions in both parameter sets, R0 was highest in C3
(with degree distribution change but no degree order change) and
lowest in C2 (with degree order change but no distribution change),
and it was consistent with other characteristics such as maximum
prevalence, outbreak size, and duration of outbreak. In general,
conditions with no degree order change (i.e. constant network
degree order throughout time) had substantially higher maximum
prevalence than those with degree order changes, for both
parameter sets (set 1: C1 2 C2 5 4.89; C3 2 C4 5 4.82; set 2: C1
2 C2 5 10.47; C3 2 C4 5 3.12). This was expected because the
individuals with consistently higher degree order would have more
contacts through time, which caused a higher probability of infection.
The conditions with temporal variability yielded higher maximum
prevalence than no temporal variability counterparts for both
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Figure 2 | Observed animal contact networks during 2 AM, 8 AM, 2 PM, and 8 PM. Showing 21 cattle in Pen #1 on August 11, 2011. Line width is

proportional to the number of contacts in that time period, i.e. the thickest line corresponds to the largest number of contacts between two cattle.

Thickness of the lines is not directly comparable between different hours.
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parameter sets (set 1: C3 2 C1 5 3.69; C4 2 C2 5 3.76; set 2: C3 2

C1 5 1.89; C4 2 C2 5 9.24), indicating the influence of temporal
variability in disease dynamics as well.

The difference (D) of time series of prevalence between each pair
of the four conditions within each parameter set (D12, D13, D14,
D23, D24, and D34) was computed and fitted to an ARIMA (Auto-
Regressive Integrated Moving Average) model. None of the three
fitted coefficients, (p, d, q) of these six conditions under either para-
meter set resembled white noise, for which the ARIMA parameters
should be 0, 0, 0. The results demonstrated the statistically distinct
disease dynamics of these four conditions. In general, the disease
dynamics of C1 and C4 were more similar (Fig. 4 and Table 1) than
other pairs of conditions. We believe including temporal variability
tended to increase disease prevalence, and incorporating degree order
change tended to decrease transmission probability. These two factors
acted in opposite directions and offset the effect of each other. Thus
the final disease dynamics with both temporal and degree order
change (C4) were similar to the condition with neither change (C1).

The Gini coefficients of these four conditions are presented in
Table 1. In the first two conditions (C1 and C2, without temporal
variability), the Gini coefficients were both very close to zero, indi-
cating all individuals had almost equal contribution to the new infec-
tion, despite C1 having no degree order change and higher
prevalence. In the latter two conditions (C3 and C4, with temporal
variability), C3 had a larger Gini coefficient, indicating the indivi-
duals with constantly high degree order contributed to more new
infections than the lower order ones.

Discussion
In this study, we have presented a high-resolution direct contact
network of calves in a pen. We have found that resolution (or tem-
poral/spatial scaling) substantially alters the observed pattern of con-
tact structure. The degree distribution is less skewed at higher
temporal resolution (in our study, 1 h) than at lower ones (1 d or
longer period). Increasing to even higher temporal resolution, for
example, at quarter-hour or even minute level, may further change
network structure. However, as the resolution increases, the effect of

system noise and stochasticity also increases, hence reducing the
signal/noise ratio. Such scaling issues have been studied in landscape
and conservation ecology28,29 but have rarely been addressed in epi-
demiology, especially for temporal scales. Homogeneous compart-
mental models assume that contact patterns within a population
form a regular random network (3). However, we show that contact
network degree distribution varies with both time and individual,
suggesting that non-regular dynamic networks characterize the ani-
mal-to-animal contact network at the pen level better than a regular
static network. Previous studies have either considered the import-
ance of individual heterogeneity30–32 or temporal change in the con-
tact network33, but lacked a unified framework to consider both
factors simultaneously.

We have shown that the dynamic changes in the contact network
are able to change the disease dynamics at the pen level. Furthermore,
the network change has a larger effect for diseases with smaller R0

(e.g. R0 , 2, parameter set 1 in the simulation, as opposed to para-
meter set 2). For larger R0 conditions, although the disease dynamics
are still statistically different across the four conditions, in practice
they may not show substantial differences because of fast dynamics
and large outbreak size. However, for smaller R0 conditions, the
temporal variability in degree distribution and network order change
(in C2) are further mingled with system stochasticity due to smaller
transmission probability, resulting in a much smaller mean of R0 but
with substantially larger variance, and larger variance in outbreak
size than in other conditions as well34. Other studies have demon-
strated disease dynamics are further influenced by population size
(especially smaller networks)35,36.

In our simulation of disease dynamics, we assume that the disease
does not substantially change the individual’s behavior. This implicit
assumption is appropriate for non-clinical conditions and for dem-
onstrating the importance of dynamic networks on disease
dynamics. Nevertheless, in realistic systems modeling clinical dis-
eases, animals may change their behavior during the infected stage,
resulting in a different contact pattern37–40. Furthermore we have
assumed frequency-dependent transmission through contact to sim-
plify the model. To model more realistic directly transmitted disease
systems and design effective controlling strategies, it is important to
make the correct assumptions about transmission mode (frequency-
dependent or density-dependent, or a combination of both), observe
the actual contact network for all the individuals over time, and
understand both temporal and individual heterogeneity in the con-
tact network41–43.

In summary, our study uses high temporal and spatial resolution
observation data to reveal that the animal contact network is highly
variable and dynamic, for both contact network structure and degree
order. These differences in contact network structure are able to alter
simulated disease dynamics and individual contribution to the new
infections, especially for diseases with smaller R0. These findings can
lead to better experimental design and more effective controlling
strategies for diseases transmitted directly through contacts.

Methods
Investigating Animal Contact Network Structure. Animal contact networks were
constructed from position data recorded by a wireless remote location system in three
pens of calves over 8 d (21, 21, and 27 animals in pen #1, #2, and #3, respectively), as
described in our previous study20 (also a brief summary in SI methods), and were
undirected in this study (i.e. animal i contacting animal j implied animal j contacting
animal i simultaneously). All the experiments were approved by and complied with
animal regulation policy of the Kansas State University. A contact was defined as
whenever two animals were within a distance of 1 foot (,0.3 m, about the length of a
calf head) in a fixed time interval (10 s), and if two animals were in contact for several
consecutive intervals, each 10-s interval would be regarded as an individual contact.
Therefore, the contact networks not only described whether two animals were in
contact, but also explicitly measured how many contacts (and the total duration of
contacts, since each contact lasted for a fixed 10 s) were made in each given period. In
this study the total number of contacts of each individual were aggregated at an hourly
level, as well as at a daily level, for comparison. Among various quantitative
measurements of network structure, centrality measurements were used to
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Figure 3 | Mean degree order of animals in observed and hypothetical
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differentiate relative importance of the individuals in the group21–24. We computed
degree centrality, which specifically measures the number of edges on a node (in this
study, equivalent to one individual calf’s total number of contacts with other animals
in a 1-h period; one calf could have more than one contact with another calf in that
period). The degree distributions of the contact networks at pen level (pen #1 through
pen #3) and for all pens combined for the entire observation period were fitted with
different probability distribution, including gamma and normal distributions with
maximum likelihood methods, and the goodness of fit was determined by a two-sided
Kolmogorov-Smirnov (K–S) test. Contacts were further divided on hourly bases, and
the degree distribution of hourly networks was computed and compared against that
of the entire observation period.

The degree order, which measures the order of individual degrees in the network
(lowest number corresponding to 1, highest number corresponding to the number of
cattle in the pen, in ascending order), was computed for each hour and averaged over
the entire period (192 h) to investigate whether certain calves were consistently more
active (consistently higher degree order) in the contact network throughout the time.
A hypothetical population of animals with constant hourly degree order was simu-
lated, and the distribution of summed contact of each pen and the hypothetical

population was compared by the K–S test to investigate whether the observed net-
work order was consistent through time.

An analysis of variance (ANOVA) was performed to further test whether the
degree distribution of the networks varied among different individuals in different
pens and/or in different hours on different days. The hour factor was nested in the day
and the individuals were nested in the pen. Furthermore, spectrum analysis was
performed with timeSeries package in R to explore the periodic (within-day) change
of the time series of aggregated degrees (number of total contacts of all calves in each
pen) in the networks.

The ANOVA and spectrum analysis focused on the number of contacts (network
degree distribution) and did not reveal the internal structural change of the networks
(e.g. correlation of two individual calves across two different hours). Thus a quadratic
assignment procedure (QAP) was applied to further investigate the similarities
between the networks in different hours in a day25. The QAP was designed to measure
the structure similarity (e.g. nominal, ordinal, and interval associations, for both
network topology and roles in individual node) between two networks with the same
nodes (in our study, the same individual animals). The QAP was comprehensively
applied between each pair of the networks in two different hours within the same day

Figure 4 | Time series of mean daily prevalence under four simulated conditions. C1: no temporal variability nor degree order change; C2: no temporal

variability with order change; C3: temporal variability with no order change; and C4: temporal variability with order change. The dynamics of these four

conditions vary substantially for both parameter sets. (A) b’
0~2:5|10{6; c~10{3. (B) b’

0~10{5; c~2|10{3. The time series data are in hourly

resolution, and the figure is shown/labeled at a daily resolution.

www.nature.com/scientificreports
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(total of 24 3 23/2 5 276 pairs per day). The entire day was divided into three
different intervals based on number of contacts: low-contact intervals from 12 am to 5
am (at hourly interval, e.g. 12 am indicated 12 am to 1 am, and the same held
thereafter); high-contact intervals during 8 am, 2 pm, and 8 pm; and the remaining
hourly intervals were considered as having medium contact. The average percentage
of similarity between low-contact intervals and other low-contact intervals (whenever
P . 0.05 of QAPs) for all days across all three pens was calculated. The percentages of
similarity between two high-contact intervals and between high- and low-contact
intervals were also calculated. These results further measured and revealed the
potential network structure change. To illustrate, the actual networks were plotted at
four different hourly intervals in a given day (e.g., 2 am, 8 am, 2 pm, and 8 pm,
corresponding to animal sleeping, feeding, and other social behaviors, on August 11,
2011, for each pen) for visualization of both temporal and individual heterogeneities.

Modeling Direct Transmitted Pathogen Dynamics. As shown in the results section,
the actual contact network was highly dynamic, featuring substantial individual and
temporal heterogeneity. Compartmental models such as directly transmitted SIR type
(susceptible-infected-recovered) usually assume a constant number of contacts over
time and for any individual. Therefore, with the typical compartmental model, the
underlying network corresponds to a regular random network3. However, because the
assumption of same degree distribution over time and among individuals was not
consistent with our analysis of the observed contact network, it was necessary to
investigate how changes in the contact network could further impact disease
dynamics quantitatively26,27. To do so, the sources of heterogeneity (temporal change
in degree distribution and individual rank) were incorporated in a simple discrete
time, agent-based SIR-type model. The probability of infection of the ith susceptible
individual in a time period t (bi,t) was a function of the number of pairwise contacts

and was proportional to number of infected animals (j) at t: bi,t~b0

X

j

Cji,t
Ij,t

N
,

where b0 was the transmission coefficient (a constant), Cji,t represented the number of
pairwise contacts of animal i in time t, Ij,t and Nt represented jth infected animal and
total animals in time t, respectively. Because of the closed population, Nt ; N for any
given t. Thus we could re-organize the expression to bi,t~b

0

0

X

j

Cji,t Ij,t . To simplify

the model, recovery was considered independent of contact; an infected individual
had a constant recovery probability (c) in any time, and once it recovered from the
infected state, it would stay in the recovered state, assuming no leaking or waning
immunity. Two sets of parameters, b’

0~2:5|10{6; c~10{3 and
b’

0~10{5; c~2|10{3, were fed into the model, representing diseases with smaller
and larger basic reproduction numbers (R0). A total of 100 individuals were simulated
with one infected at the beginning of simulation; the other 99 animals were initially
susceptible. The simulation lasted for 100 days, with a 1-h time step. The hourly
number of contacts for each individual was simulated from the fitted distribution (see
SI figure 2) using the mean and variance of contacts in each hour, and the number of
contacts was assumed frequency-dependent and independent of population size,
according to the observed data (e.g. pen #3 had 27 animals but the number of contacts
was not higher than pen #1 and pen #2, which both had 21 animals). We used this
assumption to simplify the model, but as discussed later, the model could be altered to
be density-dependent or for more complicated conditions for the specific disease
system at hand. The degree order was simulated through a random permutation
(from 1 to population size N 5 100) in each hour. The time series of mean disease
prevalence, and contribution of new infection from each individual were investigated.

A total of four conditions were simulated for comparison and 100 simulations were
run for each condition. The first condition (C1) did not use temporal (mean contact

number in each hour) nor degree order change, as a baseline scenario representing
general model assumptions regarding the contact networks for infectious disease
studies, such as constant number of contacts over time and among individuals. That
is, if a certain individual had the highest contact number (degree order) at the first
time interval (h) in the network, it would remain the most active during the entire
period of the simulation. In this condition, individual variability still existed (how-
ever, the mean hourly contact number remained the same through simulation) and
individual variability was simulated by the variance of the aggregated total observa-
tions across all three pens (69 animals) at that time interval; such variability deter-
mined the individual ranks. In contrast, condition C4 was simulated with both
temporal network degree distribution and degree order changes to investigate the
effects of these two sources of variability.

Two more conditions were also simulated for further comparison. Condition (C2)
assumed the mean contact number was the same at any time interval (hourly, h), but
the degree order changed during the simulation (no temporal with order change). The
simulation of the next condition (C3) incorporated temporal variability (change of
number of contacts at an hourly basis using the observed contact network), but
assumed the contact network degree order was static over time (temporal with no
order change).

The maximum prevalence and its associated occurrence day in each condition for
each set of parameters were recorded, along with outbreak size (n), duration of
outbreak (Tf), and basic reproduction number (R0). The R0 was numerically com-
puted from the secondary infections in the simulations. To compare the complete
dynamics among these four conditions (C1–C4), we computed the time series of the
difference (D) of any two conditions a and b. Thus a total of six new time series, D12,
D13, D14, D23, D24, and D34 were calculated. Each of the new time series was fit to an
autoregressive integrated moving average (ARIMA) model, with three parameters (p,
d, q). If the fitted three parameters were 0, 0, 0, it indicated the difference between the
two time series a and b resembled white noise; hence, those two time series were
assumed to be similar. Otherwise, the two time series were statistically different.
Besides the dynamics of prevalence, we also investigated individual contribution to
new infections by computing the Gini coefficient, a parameter that quantified the
heterogeneity in the group of individuals for the new infection. A homogeneous
population would have a zero Gini coefficient, while a more heterogeneous system
would give a higher Gini coefficient.
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