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Abstract

The main purpose of this dissertation is to design an appropriate tariff program for resi-

dential customers that encourages customers to participate in the system while satisfying

market operators and utilities goals. This research investigates three aspects critical for

successful programs: tariff designs for DR, impact of renewable on such tariffs, and load

elasticity estimates. First, both categories of DR are modeled based on the demand-price

elasticity concept and used to design an optimum scheme for achieving the maximum

benefit of DR. The objective is to not only reduce costs and improve reliability but also

to increase customer acceptance of a DR program by limiting price volatility. A time

of use (TOU) program is considered for a PB scheme designed using a monthly peak

and off peak tariff. For the IBDR, a novel optimization is proposed that in addition to

calculation of an adequate and a reasonable amount of load change for the incentive also

finds the best times to request DR.

Second, the effect of both DR programs under a high penetration of renewable resources

is investigated. LMP variation after renewable expansion is more highly correlated with

renewable’s intermittent output than the load profile. As a result, a TOU program is

difficult to successfully implement; however, analysis shows IBDR can diminish most of

the volatile price changes in WECC. To model risk associated with renewable uncertainty,

a robust optimization is designed considering market price and elasticity uncertainty.

Third, a comprehensive study to estimate residential load elasticity in an IBDR pro-

gram. A key component in all demand response programs design is elasticity, which

implies customer reaction to LSEs offers. Due to limited information, PB elasticity is

iii



used in IBDR as well. Customer elasticity is calculated using data from two nationwide

surveys and integrated with a detailed residential load model. In addition, IB elasticity is

reported at the individual appliance level, which is more effective than one for the aggre-

gate load of the feeder. Considering the importance of HVAC in the aggregate load signal,

its elasticity is studied in greater detail and estimated for different customer groupings.

iv



Table of Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Power Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Demand Response . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Demand Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.4 Renewable Energy Resources . . . . . . . . . . . . . . . . . . . . 10

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Literature Review 17

2.1 Overview of Demand Response . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Price Based DR Programs . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Incentive Based DR Programs . . . . . . . . . . . . . . . . . . . . 21

2.1.3 Combinations of Price Based and Incentive Based DR Programs . 22

2.1.4 Residential Load Programs . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Overview of Elasticity Estimation . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Customer Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 DR with High Levels of RERs . . . . . . . . . . . . . . . . . . . . . . . . 28

v



3 Reduced Model of WECC as a Demand Response Prototype 30

3.1 WECC System Information . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Load Serving Entities within WECC . . . . . . . . . . . . . . . . . . . . 32

3.3 Unit Commitment in WECC . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Economic Dispatch in WECC . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Renewable Resources in WECC . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 Current potential of Renewable Power Plants . . . . . . . . . . . 36

3.5.2 Expansion of Renewable Power Plant . . . . . . . . . . . . . . . . 37

3.6 LMP Characteristics in the WECC Model . . . . . . . . . . . . . . . . . 38

3.6.1 Renewable Bidding Strategy . . . . . . . . . . . . . . . . . . . . . 41

3.6.2 Effect of Congestion on LMP . . . . . . . . . . . . . . . . . . . . 41

4 Optimal Incentive Based Demand Response 47

4.1 LSE Objective for DR Design . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Optimum IBDR Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Load Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Retail Load Tariff Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 IBDR Evaluation with Fix Trigger Threshold Value . . . . . . . . . . . . 52

4.5.1 Optimum vs. Constant Trigger Threshold . . . . . . . . . . . . . 56

4.5.2 Effect of IBDR on Market Price . . . . . . . . . . . . . . . . . . . 56

5 Optimal Use of Incentive Based and Price Based DR 61

5.1 Time Of Use Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 TOU Program Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Impact of DR Programs on LSE Benefit . . . . . . . . . . . . . . . . . . 67

5.4 Effect of DR Programs on Customer Savings . . . . . . . . . . . . . . . . 68

5.5 Effect of DR Programs on LMP . . . . . . . . . . . . . . . . . . . . . . . 70

vi



6 Generator Outage and Using IBDR to Diminish Economic Impact 73

6.1 Effect of Generator Outage on Market Price . . . . . . . . . . . . . . . . 73

6.2 Using IBDR to Decrease Economic Consequence . . . . . . . . . . . . . . 74

6.3 Economic Rank of Generator Outage . . . . . . . . . . . . . . . . . . . . 77

7 Impact of Wind Forecast Error on Real Time Market Price 82

7.1 Wind Forecast Error Distribution . . . . . . . . . . . . . . . . . . . . . . 83

7.2 Scenario Based Economic Dispatch . . . . . . . . . . . . . . . . . . . . . 85

7.3 Price variation: DOE approach . . . . . . . . . . . . . . . . . . . . . . . 86

7.3.1 Fractional Factorial . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.4 Market Price Range Results . . . . . . . . . . . . . . . . . . . . . . . . . 90

8 IBDR with High Penetration of RER 95

8.1 Impact of RER Expansion on LSE benefit . . . . . . . . . . . . . . . . . 95

8.2 Robust IBDR Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.2.1 Ellipsoid Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.2.2 Robust format of IBDR . . . . . . . . . . . . . . . . . . . . . . . 99

8.3 Robust IBDR Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.3.1 Comparison of Deterministic and Robust Program . . . . . . . . . 102

8.3.2 Effect of IBDR on LSE profit . . . . . . . . . . . . . . . . . . . . 103

8.3.3 Customer savings under IBDR . . . . . . . . . . . . . . . . . . . . 105

8.3.4 Effect of IBDR on LMP . . . . . . . . . . . . . . . . . . . . . . . 105

8.4 Discussion on TOU Effectiveness . . . . . . . . . . . . . . . . . . . . . . 109

9 Estimation of IB Elasticity for Residential Customers 113

9.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9.1.1 Residential customer . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.1.2 IBDR programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

vii



9.1.3 Household appliance usage . . . . . . . . . . . . . . . . . . . . . . 115

9.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.2.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.2.2 Data Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9.3 Elasticity per appliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.4 Elasticity for HVAC Device . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.4.1 Elasticity for Different Consumption Level . . . . . . . . . . . . . 125

9.4.2 Elasticity for different incentive level . . . . . . . . . . . . . . . . 126

10 Effect of Customer Classification on IBDR program 131

10.1 IBDR Design using IB Elasticity . . . . . . . . . . . . . . . . . . . . . . . 131

10.2 Residential Incentive Based Elasticity . . . . . . . . . . . . . . . . . . . . 133

10.3 Results of IBDR for Base Case data of WECC . . . . . . . . . . . . . . . 134

10.4 Sensitivity of LSE Benefit to Elasticity Values . . . . . . . . . . . . . . . 136

10.5 Results of IBDR under High Level of RER . . . . . . . . . . . . . . . . . 137

11 Conclusions 145

Bibliography 149

vii

Vita 173



List of Tables

3.1 Information of Renewable power plants in WECC . . . . . . . . . . . . . 37

3.2 LMP change in some regions before and after renewable expansion . . . . 44

4.1 Classification of common residential electric devises . . . . . . . . . . . . 51

4.2 Seasonal and yearly customer tariff in WECC regions . . . . . . . . . . . 52

4.3 LSEs benefit of IBDR program . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Participating customer saving after DR . . . . . . . . . . . . . . . . . . . 55

4.5 Optimum threshold value in some regions of WECC . . . . . . . . . . . . 56

4.6 Number of hours of load change in some regions of WECC . . . . . . . . 58

5.1 LSEs benefit and customers saving after TOU program . . . . . . . . . . 66

5.2 LSEs net revenue change by each DR program . . . . . . . . . . . . . . . 68

5.3 Customers saving in each region . . . . . . . . . . . . . . . . . . . . . . . 69

6.1 Demand Response Report at 17 p.m. in PG&E region . . . . . . . . . . . 78

6.2 Distribution factor of generators with congested lines . . . . . . . . . . . 81

6.3 Distribution factor of generators with marginal units . . . . . . . . . . . 81

6.4 Distribution factor of generators to expensive units . . . . . . . . . . . . 81

7.1 Summary of wind forecast error statistics . . . . . . . . . . . . . . . . . . 83

7.2 Design Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.3 Treatment Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.1 Comparison of LSE profit by DR (different between robust and deterministic)104

ix



8.2 Peak and off peak periods from March 8th to 14th in San Diego . . . . . 112

9.1 Demographic distribution in low and high contribution groups . . . . . . 121

9.2 Survey1- elasticity report . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.3 Share of each device in aggregate signal . . . . . . . . . . . . . . . . . . . 123

9.4 Survey2- HVAC elasticity report . . . . . . . . . . . . . . . . . . . . . . . 125

9.5 Survey2- HVAC elasticity report for combined groups . . . . . . . . . . . 126

9.6 Elasticity per customer cooperative segmentation . . . . . . . . . . . . . 127

10.1 Elasticity values for scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . 133

10.2 Elasticity values for scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . 133

10.3 Elasticity values for scenario 3 . . . . . . . . . . . . . . . . . . . . . . . . 133

10.4 Elasticity values for scenario 4 . . . . . . . . . . . . . . . . . . . . . . . . 134

10.5 LSE net revenue per unit load under different DR scenarios . . . . . . . 139

10.6 Total load change and incentive payments in each season . . . . . . . . . 142

10.7 Monthly variation of LMP in San Diego area under different DR scenarios 142

x



List of Figures

1.1 Schematic of smart grid system . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Design capacity of power grid in compared with yearly load . . . . . . . . 2

1.3 Different categories of demand response programs . . . . . . . . . . . . . 7

1.4 Barriers to RTP program, source :www.demandresponseresources.com . 8

1.5 Price-demand curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Relation between price and demand for elastic and inelastic demand . . . 9

1.7 Comparison of planned renewable output to its actual, day-ahead . . . . 12

1.8 Retail customers flat rate price vs. market variable price . . . . . . . . . 13

2.1 Comparison of DR programs across time frames . . . . . . . . . . . . . . 19

2.2 Time varying price schemes (a) TOU , (b) CPP and (c) RTP . . . . . . . 20

2.3 Summary of DR benefit according to available literature . . . . . . . . . 23

2.4 Schematic of smart home [76] . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Frequency of values for short term and long term elasticity [42] . . . . . . 26

3.1 Geographical map of WECC regions . . . . . . . . . . . . . . . . . . . . 33

3.2 Capacity of RERs before and after expansion . . . . . . . . . . . . . . . 38

3.3 Renewable expanded capacity in compare with Coal in Feb. . . . . . . . 39

3.4 Renewable expanded capacity in compare with Coal in July . . . . . . . 40

3.5 LMP variation in LADWP during August . . . . . . . . . . . . . . . . . 41

3.6 LMP variation in Nevada during Feb. . . . . . . . . . . . . . . . . . . . . 42

3.7 LMP variation in San Diego during March . . . . . . . . . . . . . . . . . 43

xi



3.8 LMP variation in San Diego . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.9 LMP on two edge of congested lines - October 15th . . . . . . . . . . . . 46

4.1 LSEs net revenue per total load after DR in high benefit region . . . . . 54

4.2 Saving per total load change in high benefit region . . . . . . . . . . . . 55

4.3 LSEs benefit of IBDR in high benefit region . . . . . . . . . . . . . . . . 57

4.4 Participating customers saving in low benefit region . . . . . . . . . . . 58

4.5 LMP monthly standard variation in Southwest . . . . . . . . . . . . . . 59

4.6 LMP monthly average in Bay area . . . . . . . . . . . . . . . . . . . . . 59

4.7 Worst day in summer in Nevada region . . . . . . . . . . . . . . . . . . . 60

4.8 Worst day in winter in Rocky MT region . . . . . . . . . . . . . . . . . . 60

5.1 Peak and off peak tariff in San Francisco . . . . . . . . . . . . . . . . . . 65

5.2 Peak and off peak tariff in PG&E region . . . . . . . . . . . . . . . . . . 66

5.3 Customers saving and LSEs net revenue by TOU program . . . . . . . . 67

5.4 LSEs net revenue per total load by different DR program . . . . . . . . . 69

5.5 Total LSEs net revenue in compare with average LMP . . . . . . . . . . 70

5.6 Customers saving and LSEs net revenue per total load . . . . . . . . . . 71

5.7 Average monthly LMP in San Diego . . . . . . . . . . . . . . . . . . . . . 71

5.8 Monthly standard deviation of LMP in LADWP . . . . . . . . . . . . . . 72

6.1 LMP on bus# 215-July 6th -100% of DR potential . . . . . . . . . . . . 75

6.2 LMP on bus# 215-July 6th -70% of DR potential . . . . . . . . . . . . . 76

6.3 July 6th- LSEs benefit lost . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4 LMP on bus# 11- October 14th . . . . . . . . . . . . . . . . . . . . . . 78

6.5 October 14th - LSEs benefit lost . . . . . . . . . . . . . . . . . . . . . . . 79

7.1 Tolerance intervals for normal distribution . . . . . . . . . . . . . . . . . 84

7.2 Day ahead wind forecast error by season . . . . . . . . . . . . . . . . . . 85

7.3 Parameter estimates at hour 234 for bus 14 . . . . . . . . . . . . . . . . . 89

xii



7.4 Prediction profile at hour 234 for bus 14 . . . . . . . . . . . . . . . . . . 90

7.5 Prediction profiler for bus 8 . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.6 Interaction profile for bus 8 . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.7 Surface profile for bus 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.8 Range of prices at daily peak hour in July in San Francisco . . . . . . . . 93

7.9 Range of prices at daily peak hour in March for SMUD . . . . . . . . . . 93

7.10 Range of prices at daily peak hour in November for Idaho . . . . . . . . . 94

7.11 Range of prices at daily peak hour in May for Rocky Mt. . . . . . . . . . 94

8.1 LSE benefit change in PG&E . . . . . . . . . . . . . . . . . . . . . . . . 96

8.2 LSE benefit change in Southwest . . . . . . . . . . . . . . . . . . . . . . 97

8.3 Hourly incentive payment vs. expected LMP in San Diego during July . 102

8.4 Hourly incentive payment vs. expected LMP in Southwest during October 103

8.5 Effect of robust and deterministic program on LMP in Bay area during June105

8.6 LSE benefit change under RER expansion and DR . . . . . . . . . . . . . 106

8.7 LSE net revenue change under RER expansion and DR . . . . . . . . . . 107

8.8 Customer saving under each IBDR program . . . . . . . . . . . . . . . . 108

8.9 LMP variation in one day of August in Fresno . . . . . . . . . . . . . . . 109

8.10 LMP variation in one day of Feb. in PG&E . . . . . . . . . . . . . . . . 110

8.11 LMP variation in one day of October in Nevada . . . . . . . . . . . . . . 111

8.12 LMP variation during 4 days of October in Idaho . . . . . . . . . . . . . 111

8.13 LMP variation in one week of January in Rocky Mt. . . . . . . . . . . . . 112

9.1 Methodology Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.2 Participant response to different incentive value questions . . . . . . . . . 120

9.3 Education and rent/own distribution within different groups . . . . . . . 121

9.4 Load signal of survey2 participants- July 2013 . . . . . . . . . . . . . . . 124

9.5 Comparison of elasticity and average power for survey2 participants- July

2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xiii



9.6 Load change in each customer group . . . . . . . . . . . . . . . . . . . . 130

9.7 Required incentive for each customer group . . . . . . . . . . . . . . . . . 130

10.1 Load change for different scenarios in WECC . . . . . . . . . . . . . . . 134

10.2 Incentive payment for different scenarios in WECC . . . . . . . . . . . . 135

10.3 Percentage of LSE benefit by different IBDR scenario . . . . . . . . . . . 136

10.4 Percentage of Customer saving by different IBDR scenario . . . . . . . . 137

10.5 LMP profile in one week of August after each DR scenario . . . . . . . . 138

10.6 LMP profile in one day of July under each DR scenario . . . . . . . . . . 139

10.7 LSE benefit as a function of demand elasticity during summer . . . . . . 140

10.8 LSE benefit as a a function of demand elasticity during winter . . . . . . 140

10.9 LSE benefit change under different DR scenarios in spring . . . . . . . . 141

10.10LSE benefit change by different DR scenarios in fall . . . . . . . . . . . . 143

10.11LMP variation after different DR scenarios in Southwest region, July . . 143

10.12LMP variation after different DR scenarios in Idaho during November . . 144

xiv



Nomenclature

α Load variation economic weight in PBDR objective function.

β maximum percentage of allowable load reduction by PBDR program.

∆Dbtj Load change of customer type j in time period t and bus b due to IBDR program.

∆dbt Load change of customer in time period t and bus b due to PBDR program.

∆D̄bt Load change of customer in time period t and bus b due to IBDR program.

∆D̄C
bt Load change of commercial customer in time period t and bus b due to IBDR

program.

∆D̄I
bt Load change of industrial customer in time period t and bus b due to IBDR pro-

gram.

∆D̄R
bt Load change of residential customer in time period t and bus b due to IBDR

program.

µ Average of observations.

ρ Level of conservativness.

ρs PRobabiloty of scenario s.

σ Standard deviation of observations.

θ Safety parameter.

xv



4p Change of price in elasticity estimation.

4q Change of demand in elasticity estimation.

εC Elasticity of commercial customers.

εI Elasticity of industrial customers.

εj Elasticity of customer type j.

εRkg Elasticity of residential customer for appliance k and contribution group g.

εRk Elasticity of residential customer for appliance k.

ai Random vector of matrix A.

bi Random vector of matrix b.

BL Conductance matrix of transmission line.

Ci Capacity cost offer of unit i

CBb Customer benefit at bus b by PBDR program.

Dbt Orignial demand at time period t and bus b before IBDR program.

d0
bt Orignial demand at time period t and bus b before PBDR program.

Djt Power consumption of demand j during time period t.

DT Customer type of T.

ei(x) Expectation for constraints of linear programming optimization.

Fk Transmission limit of line k.

Git Generation output schedule from unit i during period t

gj Customer response function to incentive payments

xvi



GSFki Generator shift factor to line k from unit i.

GWits Generation of wind turbine i at time t and for scenario s

LMPbt LMP of market at time period t and bus b.

LSEb LSE benefit at bus b by PBDR program.

n Number of observations in DOE analysis.

NB Number of buses in each region.

ND Number of runs for each factor.

ND Number of demand buses.

NG Number of generator buses.

NT Number of time periods of study.

NWG Number of wind turbine generator.

OPT Off peak of time period.

p Number of factors.

p0 Initial value of price in elasticity estimation.

P inc
bt Incentive payments at bus b and time period t.

P 0
b LSE fix selling tariff for customers at bus b.

pOPTb LSE selling tariff for customers at bus b in off peak period time.

pPTb LSE selling tariff for customers at bus b in peak period time.

PT Peak of time period.

q0 Initial value of demand in elasticity estimation.

xvii



qit Capacity cost of spinning reserve of generator i during period t.

Rit Scheduled spinning reserve for unit i during time period t.

RL Resistance matrix of transmission line.

RDi Down-ramping rate of unit i.

RUi Up-ramping rate of unit i.

Si Start-up cost function of generator i

Td Daily time period.

Tm Monthly time period.

Ty Yearly time period.

u set of uncertainty of parameters.

uit 1 if unit i is scheduled on during time priod t and 0 otherwise

ut 1 if DR is implemented and 0 otherwise.

Vi Covariance matrix.

vi(x) Standard deviation for constraints of linear programming optimization.

X Design matrix in DOE analysis.

X ′X Information matrix in DOE analysis.

Xi Set of observations.

xi Factors for coded value in DOE analysis.

XL Reactance matrix of transmission line.

CPP Critical Peak Pricing program.

xviii



DA Day ahead market

DCOPF DC optimal power flow.

DOE Design of expriement.

DR Demand Response.

EDPR Emergency demand response program.

HVAC Heating ventilation and air conditioner.

IBDR Incentive based demand response.

ISO Independent system operator.

LMP Locational marginal price.

LP Linear programming optimization.

LSE Load serving entitie.

PBDR Price based demand response.

RER Renewable energy resource.

RTP Real time pricing.

TOU Time of use pricing program.

WECC Western electricity coordinating council.

xix



1 Introduction

Ongoing developments in the so-called Smart Grid promise a future power system that

is more economically efficient, environmentally friendly, fault resilient and operationally

flexible. This future system will depend on new digital communications, computing,

monitoring and controls down to the customer level. Among the many innovations related

to these developments, a key component is effective demand side management.

In a conventional electric power system, the main objective is to control the supply

to meet the demand. However, the demand side could change its passive role in a new

modern grid via Demand Response (DR). Note that DR is not energy efficiency. Energy

efficiency refers to actions taken to permanently reduce the energy consumption of goods

and services, for example insulating a home, switching to more efficient appliances, and

Figure 1.1: Schematic of smart grid system
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Figure 1.2: Design capacity of power grid in compared with yearly load

tuning a commercial heating, air conditioning, and ventilation (HVAC) system [3].

The electric power gird is typically designed with large margins to support the peak

period of energy consumption, which only happens for a few hours each year [1, 2].

Generator owners or utility companies have been required to increase their generation

capacity at all times only to meet these infrequent peak demands. Generally, around

20% of the power generation capacity is only for supplying the peak demand, for say„

approximately 5% of the time [4]. Fig. 1.2 shows this concept graphically. The red line

in this figure is the design capacity of generation in grid vs. the load variation in whole

year using data of PJM in 2012.

To overcome these issues, there are three main options available: building new power

plants, developing new storage technologies, or developing DR programs [5, 6].

Building new conventional power plants is not always appropriate due to the added

costs and increasing environmental pollution by using fossil fuel based peaker units [1, 2].

In addition, adding new generators only solves the problem over a short period of time

considering the growth rate of the demand [7]. Energy storage could be one of the

most important aspects of the future smart grid that could supply peak load as well as

by providing new functions, such as, ancillary services [8]. The most popular forms of

energy storage are pumped storage, flywheel, compressed air, electrical vehicle batteries,

and large thermal storage tanks. However, the technology for most of these energy storage
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types remains at the research level with high costs or other restrictions limiting large scale

deployment [9, 10].

Both of the above solutions are based on the traditional idea of controlling supply to

match the demand. DR on the other hand is trying to reach to the same goal by managing

the demand. DR helps utilities and market operators to reduce peak demand instead of

increasing generation. It will allow customers to play an active role in the market that

was impossible historically [11, 12].

Design and implementation of DR connect to two other important concepts: power

markets and demand elasticity. These are explained in more detail in the following

subsections. In addition, as one of the main application of DR is under high penetration

of renewable energy resource (RER), characteristics of RERs are reviewed.

1.1 Background

1.1.1 Power Market

In a regulated market, utilities own or control the entire flow of electricity from generation

to end-user. States with this type of market in the U.S. include Idaho, Kentucky, Florida,

Colorado, and Tennessee [24]. Deregulation began in the 1970s after the passage of the

public utilities regulatory act. The real market was opened in 1992 after the energy policy

act, which canceled the limitation on the price that would be charged by the wholesale

market. Deregulation has continued to expand since then but has slowed down in recent

years [24]. In a deregulated market, utilities are generally only responsible for:

• distribution, operations, and maintenance from the interconnection at the grid to

the meter,

• billing customers; and

• acting as the provider of last resort.
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In deregulated markets, Independent System Operators (ISOs) administer the wholesale

market to guarantee the reliability and economic operation of systems. In the U.S. several

states have joined the deregulated market over the last 20 years, mainly in the Northeast,

Mid-Atlantic, Texas, and California [25]. From economic point, electricity is a commodity

that could be bough, sold, and traded. The electricity market is a structure which enables

this trade in short term and long term through the bids and offers from sellers and buyers.

Bids and offers use supply and demand convention to set the price [13]. The transactions

in the wholesale market are typically cleared by ISOs which try to keep the balance of

supply and load while maintaining the economic efficient of market operation as well.

The market for energy products trading is normally cleared by ISOs in 5, 15 and 60

minutes intervals [14, 15]. Power related products are also traded in wholesale market

in order to ensure the reliability of the system. These commodities are normally traded

in the ancillary service pool and could include various products, such as, spinning and

non spinning reserve, operating reserve, and regulation up / down reserve [16, 17, 18].

While energy and power products are the major components of the electricity market,

there are also some other products, including those for transmission congestion, electricity

futures and options. Recently, California ISO is running a market to trade imbalance of

renewable energy and power.

To estimate the price of the market at each delivering point, the method that most

ISOs use is called Locational Marginal Price (LMP). In this method, an optimization is

designed to find the price for supplying one additional kWh demand at a bus using a

hypothetical incremental cost of the re-dispatch of available generators, considering the

network constraints [19, 20]. In the market based on above pricing structure, generators

and customers should submit their bids and offers one day in advance and ISO would

run a security constraint optimization to find the least cost dispatch arrangement which

ensures n-1 security as well. The ISOs must always ensure reliability of the system as the

first priority and then consider economic aspects. It means that if there is transmission

4



line congestion, ISOs cannot allow more power flow on the line, although there could be

cheaper generation on the lower cost side. This restriction will result in different prices

at two ends of a congested line. Unusual patterns can emerge, including where energy is

flowing from the expensive node to the low cost node. If there was no transmission limit,

then nodal price of all neighbors would be the same. [21, 22].

1.1.2 Demand Response

The U.S Department of Energy defines demand response as “a tariff or program estab-

lished to motivate changes in electric use by end-use customers in response to changes in

the price of electricity over time, or to give incentive payments designed to induce lower

electricity use at times of high market prices or when grid reliability is jeopardized” [26].

In a competitive wholesale market where there is a unique pricing structure for everyone,

even a small reduction in demand can result in significant change in the total production

cost of the system [39]. The main example of this condition is during peak load. Al-

though peak periods are short in duration, they force the ISOs to use the most expensive

generators of the system to maintain the load and supply balance and therefore, they

cause significant price change. DR can reduce the load at peak time and not only reduce

the market clearing price, but also limit the exercise of market power by generator owners

[40, 41].

DR entails either shifting electricity use, for example, off peak, resulting in no net

energy savings, or shedding (i.e., curtailing) electricity use temporarily, for example,

during peak hours, resulting in net energy savings but only for a small portion of the

hours in a year. DR programs can take a number of forms . Some examples are listed

below [33, 35, 60]:

• DR can reduce wholesale energy prices and their volatility. In systems without DR,

demand is inelastic. Additionally, when a power system nears its generation capacity,

supply becomes increasingly inelastic. The result is extreme wholesale electricity price
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volatility on days when system demand is high.

• DR can reduce the need for power system infrastructure expansion. Power systems

are sized to provide electricity during the peak hours. Through DR, the peak is reduced

and new investments in power plants and transmission can be delayed.

• DR can limit the use of peaking power plants, i.e., peakers. The peakers are only

used a small number of hours per year, and have high marginal costs, are generally less

efficient than other power plants and have higher emissions.

• DR can improve grid reliability. For example, DR can provide emergency response

to grid contingencies via ancillary services such as spinning reserve.

• DR can provide power system flexibility. Similar to generators and energy storage

devices, it can be viewed as a resource that can provide energy (via demand reductions)

or provide services (via demand reductions and increases) to the grid.

• DRmay be able to provide fast energy balance service, which is specifically important

in a system with high levels of renewable resources.

The literature broadly shows two types of DR: price based (PB) and incentive based

(IB) [26]. PBDR programs pass on the variation of wholesale market electricity price

directly to customers so that they pay for the value of electricity at different times of

the day[27]. PBDR schemes typically considered, include: Time-Of-Use pricing (TOU),

Critical Peak Pricing (CPP), Peak Load Pricing (PLP) and Real-Time Pricing (RTP)

[28, 29], although there are many other possible PB schemes. The main idea behind all

PBDR is that a significant difference between prices in different hours leads customers

to adjust timing of their flexible loads in order to take advantage of lower price periods.

From the load aggregator or utility point of view, peak shaving results in a powerful

approach to peak shave and avoid capacity upgrades.

IB programs include Direct Load Control (DLC), Interruptible/curtail-able service

(I/C), Demand Bidding/Buy Back (DB), Emergency Demand Response Program (EDRP),

Capacity Market Program (CAP) and various Ancillary Service Markets (A/S). These
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Figure 1.3: Different categories of demand response programs

programs offer customers incentives in addition to their retail electricity rate, which may

be fixed or time-varying. Demand reductions are needed either when required for system

reliability or when prices become too high. In percentage terms, IBDR programs provide

about 93% of the peak load reduction from existing DR resources in the U.S. today [30].

Among all IBDR programs, the interruptible load contract (ILC) is the most common ap-

proach for controlled demand reduction. Utilities and regulators have encouraged ILC for

larger loads since 1980s [31]. Peak Time Rebate (PTR) is another type of IBDR program

[32]; however, the rebate paid to consumers is typically very high and does not reflect the

actual supply-demand market conditions. Recently, IBDR becomes more attractive to

researchers and market operators due to the man barriers that face full implementation

of PB programs (see Fig. 1.4).
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Figure 1.4: Barriers to RTP program, source :www.demandresponseresources.com

1.1.3 Demand Elasticity

Deregulation of electricity market in most developed countries, unstable oil prices and

continuing global warming concern have rekindled interest in energy conservation and

demand management to reduce electricity consumption [42]. Demand side management

interest has increased in most electricity markets in recent years due to the considerable

promise for demand modification through DR different programs [43]. A key factor in

proper design of DR programs is the elasticity. Elasticity is a measure of the customer

response to a tariff or incentive signal. Due to the complexity of human behavior, demand

elasticity remains poorly understood but the socio-economic importance of electric con-

sumption supports deeper investigation [45]. Fig. 1.5 shows the price vs. demand curve.

Slope of this curve represents elasticity of demand.

According to economic theory, demand for energy is less responsive to price changes in

compare to the other products. Price elasticity for most of the commodities, including

electricity is negative. Thus, if the price for electricity increases, the demand for it would

be decreased. There are two ranges for price elasticity of the products: elastic and

inelastic. In general, if the absolute value of the elasticity is between 0 to 1, the demand

is called inelastic and if it is more than 1, it considered to be elastic toward price changes
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Figure 1.5: Price-demand curve

[46]. In an inelastic range, a commodity demand change ratio to a given change in the

price is less than 1. The elasticity for electricity is generally inelastic. For example, if

the price of electricity increases by 10 percent with a price elasticity of –0.10, then one

expects demand to decrease by only 1 percent. As an example of elastic demand, home

decoration accessories elasticity is around –2.5, so demand for them would drop by 25 for

price increase by 10 percent. This relationship is pictured in Fig. 1.6.

Figure 1.6: Relation between price and demand for elastic and inelastic demand
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There are generally two types of elasticity coefficients that are used: own and cross

elasticity of a commodity. Own price elasticity of a good is an index of how much

customers would change their demand in response to price changes of that commodity.

The own price elasticity is specifically useful for investigation of long term adjustment of

the product demand toward price changes. Own elasticities are normally negative which

shows the reciprocal relation between the price and demand. Cross elasticity shows how

the customers would substitute one commodity for another, or change consumption due

to that price change. For electricity, cross elasticity is useful to calculate the amount of

load change from an expensive to a cheaper time. Cross elasticities are typically positive

values [47, 48].

The incentive based elasticity of electricity contains important information on the de-

mand response of consumers to financial incentives. Despite the importance, empirical

estimates of the incentive based elasticity are difficult to find. Elasticity is mainly re-

ported for different customer types, such as, residential, commercial and industrial sectors.

However, aggregating all customer responses may lose valuable information and lead to

inaccurate estimation of response to incentives. This may be one explanation for the wide

range of elasticity values found for electricity. Generally speaking, elasticity can be mod-

eled in two ways: through statistical evaluation using historical data or by direct query

of customers with surveys [44]. There have been some attempts to find a more detailed

value for elasticity. For example Guardia et al. [44] clusters residential customer load

profile based on their similarity and report elasticity for each group. There are also some

studies on segmenting elasticity based on demographic information, including: income of

customers, urban or rural area and so on [45, 49].

1.1.4 Renewable Energy Resources

There are variety forms of generation resource classified as “alternative” energy. Gener-

ally, alternative energy divides into two main forms: Renewable Energy Resource (RER),

10



such as, wind and solar; and single use resource like biomass and uranium. The use of

RERs has a long history dating back many centuries as people used wind and solar for

much of their energy demand. After the industrial revolution, the extensive use of fossil

fuels widely replaced RERs. Nowadays, due to the environmental damage caused by

fossil fuels, interest has returned to RERs [50]. Utilities and grid operators around the

world are adopting RERs [53, 54]. There are significant advantages to using RERs. The

main one is decreasing the environmental pollution. The nuclear power plants are not

considered fully renewable due to their toxic and radioactive waste product. Still, nuclear

power has its proponents and some consider it much cleaner than coal power plants [51].

Another advantage of RERs is their availability in isolated and remote areas where de-

livering fossil fuels is expensive. Wind, solar and biomass are available in almost all rural

areas and producing energy from them is more convenient than building infrastructure

for transport of gas and oil. For populated city areas, using conventional power sources is

still more economic than RERs. Still, considering the harmful effects of fossil fuels, even

urban areas will move toward more clean energy. Recently, roof top photo-voltaic panels

has been growing rapidly with excess energy sold at parity back to the grid [52, 55].

Unfortunately, despite continuing advances in technology, there are still significant

financial barriers against the extensive deployment of RERs. One of the important draw-

backs is large investment cost of wind and solar in comparison with expansion or main-

taining the current conventional power plants. In addition, installing large solar panels

or wind farms to produce a huge amount of energy needs a great area of land which is

a challenge in large cities [56]. Another major barrier for RERs is intermittent output.

Wind power can be predicted with fairly limited accuracy. Typically, the standard de-

viation of forecast error for a wind farm power is close 10% in the hour-ahead forecast,

15% for 12 hour-ahead and 20% and more in the day-ahead forecasting as in shown in

Fig. 1.7 [57, 58, 59, 60]. Therefore, the integration of wind power introduces additional

uncertainty and a great challenge to system operators.
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Figure 1.7: Comparison of planned renewable output to its actual, day-ahead

1.2 Motivation

The work in this dissertation is inspired by two facts in today’s power system. Firstly, the

large scale integration of RERs especially wind is advancing rapidly. Secondly, demand

response plays an increasingly important role in reliable and economic operation of power

systems and electricity markets. Demand response in this dissertation is mainly focused

on retail customers who can not participate directly in the market. Small customers are

buying electricity from the utility at a constant price. Therefore, they are not aware of

the price variation in wholesale market. Customers flat price vs. market price is shown

in Fig. 1.8. RTP program was proposed based on idea of transferring variation of market

price to retail customers. However, this DR programs faces many practical barriers and

cannot achieve the full potential of DR.

The objective of this research is to design an appropriate DR scheme for small cus-

tomers that can capture maximum potential of load modification, brings benefits for all

participants, reduces market price variation but remains sufficiently simple and practical

for typical customers.Specifically, this research focuses on the IBDR program because due

to disadvantages with PBDR for retail load costumers, including:

• Most customers will need new metering and communication equipment to participate

fully in RTP.
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Figure 1.8: Retail customers flat rate price vs. market variable price

• Many customers and regulators fear that real time pricing will result in increases in

monthly electricity bills.

• Volatility of real-time prices can make it difficult for customers to plan personal or

small business budgets.

• Evidence that when costumers face sudden and significant changes in their monthly

bill, they reduce their consumption temporarily; however over time, periodic fluctuations

in prices are likely to cause consumers to ignore the savings and return to traditional

consumption patterns.

Although the effect of PB programs is also investigated in this research, the main

concentration is on IBDR. For example, as will be shown in chapter 6 and 7, IBDR can be

particularly effective under situations of generator outage and high penetration of RERs.

The key element in well-designed of demand response programs is elasticity. The term

elasticity is representing customers behavior toward price signals (for PBDR) or incentive

payment (for IBDR). According to many psychological studies, customer reaction toward

price increases is different than from incentive offers. PB approaches tend to be viewed

as punishment, while IB approaches tend to be viewed as reward based. Due to lack
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of information, PB elasticity is normally used in investigation of IBDR program design;

however, optimum design of IBDR requires a good customer behavior model. The main

motivation for elasticity estimation in this research is incorporating the correct model of

customers response to the DR design.

1.3 Contribution

Contributions of this dissertation are as follows:

1. A novel optimization is proposed for IBDR design that calculates load change and

incentive along with an optimum threshold for the DR program. This framework

maximizes LSE benefit while satisfying customer comfort constraints. The main

advantage of the optimum threshold estimation is that it eliminates the need for

communication between customers and LSEs and simplifies the planning process.

2. Customer response in IBDR program is carefully modeled, including different load

types (industrial, commercial and small industrial ) and allows the possibility to

model diverse customer behavior.

3. TOU optimization is proposed not only based on economic objectives but with load

variation considered as a separate goal. This gives the ability to control priority of

economic or load variation concerns in DR program design.

4. Application of IBDR for small customers during emergency situations is proposed

considering time scale criteria. It is shown that appropriate design of IBDR can

effectively diminish economic impact of generator outages. To overcome variation

in speed of response for small customers, a new approach generator ranking based

on their economic effect is proposed. Generator outage ordering allows more time

for operators to implement DR.
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5. IBDR is designed for a high penetration of RERs considering uncertainty of market

price and elasticity of demand.

6. Incentive based elasticity of residential customers is estimated using data of two

nation wide surveys and residential modeling toolbox. This elasticity is specifically

designed for IBDR programs to reflect customers behavior toward reward based

programs.

7. Residential elasticity is calculated for the main appliances in a household, consider-

ing the role and share of each appliance in the aggregated load signal. The concept

of distributed elasticity is introduced to the load scheduling problems to allow more

precise IBDR.

8. Residential customers classification is proposed for IBDR program. Customers

segmentation is done using both load level and incentive expectation criteria. This

classification could help utilities to design an appropriate DR program for each

group to increase participation and achieve greater response for lower cost.

1.4 Dissertation Outline

The chapters of dissertation are as follows:

Chapter 2 reviews the literature on demand response and elasticity estimation as well

as a discussion of customers segmentation toward different DR programs.

Chapter 3 gives information on the test bed system. WECC 240-bus reduced model

is used as test system in this research to investigate effect of DR programs. Hourly LMP

for one year is calculated and reported in this chapter for two condition, low and high

penetration of RERs.

Chapter 4 concerns IBDR design under various customer flat rate tariffs. Two trigger

points methods are used for implementation of the DR program, constant threshold and

optimum threshold above customers flat rate tariff.
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Chapter 5 introduces a combination of PB and IB program to fully use the advan-

tages of both. These two programs could perfectly fulfill each other limitation and make

optimum scheme of DR program.

Chapter 6 investigates the effect of IBDR during emergency situations. Although

small customers are normally not participant during emergency conditions like generator

outage, this work shows that they could be an effective resource.

Chapter 7 estimates LMP uncertainty due to wind forecast error. Scenario based

economic dispatch is used to find various value of market price corresponding to forecast

error. For scenario reduction, a Design Of Experiment (DOE) approach is used to find

the range of price uncertainty.

Chapter 8 proposes a robust DR model to manage market price and customer response

uncertainty. As shown in this chapter, the TOU program is not appropriate due to high

variation of LMP, but the IBDR could effectively reduce much of the volatility. Strategy

for renewable biding is also discussed in this chapter.

Chapter 9 builds a model for estimation of IB elasticity. Elasticity in this chapter is

reported based on different customer segmentation, first based on consumption level, and

second based on incentive expectation. It is calculated for main appliance usage among

residential sectors.

Chapter 10 discusses the effect of appliance and incentive based elasticity of residential

sector on DR in both low and high renewable production. Using customer grouping

would improve the design of IBDR and brings more benefit for all participants. In high

penetration of RERs, using potential of load shift would diminish the variation of price.

Chapter 11 provides conclusion and future research.
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2 Literature Review

In this chapter available literature on analysis and modeling of different demand manage-

ment programs is reviewed and summarized. First section is an overview of incorporating

DR programs in power market. Different type of DR programs for both large and small

customers would be discussed in this section, following various purpose that each DR is

pursuing. In second part, studies that have been done to estimate elasticity of electricity

are summarized. Last part would be summery of research for customer clustering based

on different objectives of DR programs.

2.1 Overview of Demand Response

DR can play a significant role in maintaining the supply and demand balance using the

flexible part of the load instead of increasing the power plant generation. There are

many players in the market who can benefit from DR, including the transmission system

owners (TSO), distribution system owners (DSOs), retailers and end-customers. DR is

not a new concept, but has been discussed since the deployment of the first electricity grids

in the 1890s, especially with respect to time differentiated electricity rates [138]. Other

DR concepts such as interruptible load management, mainly for industrial customers,

and direct load control, mainly for residential customers, became popular in the 1970s

[139, 140, 141]. Around the same time, international energy crises lead to increased

interest in demand side management and integrated resource planning, in which DR can

play an active part [139, 140].
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In the 1990s, many electricity systems in the U.S. started the process of deregula-

tion/ restructuring, moving from vertical integration to utility divestment in generation

resources and competitive wholesale electricity markets. As the 2000-2001 California

Energy Crisis showed, a competitive wholesale electricity market with an unresponsive

demand side can lead to problems of generation market power [61]. This spurred further

interest in DR, for example,Lawrence Berkeley National Laboratory (LBNL) Demand

Response Research Center (DRRC) began several research and pilot projects in 2004

[61].

At a high level, there are three different scenarios for customers to participate in DR

program each with its own benefits and costs. First, customers can reduce their load

consumption at peak time when the price is higher. For example, they could adjust their

thermostat setting during peak times and leave it unchanged during off-peak periods.

This option would save money for the customer but results in some comfort loss [148,

149, 150]. Second, customers can shift part of their demand from peak to off-peak when

the price is cheaper. For example, they could schedule their washing devices for off

peak period. In residential sector, this scenario tends to have less impact on customer

comfort [133, 134, 135]. In the industrial sector, this second scenario is more challenging,

since it requires changes in work schedule and perhaps higher labor costs in order to

work outside normal business hours [137, 142, 143, 144]. Third, customers can use their

own distributed generation, such as, roof top photo-voltaic panels or microturbines. In

this situation, customers have to make the least amount of change in their consumption

pattern but utilities see a significant change in net demand [145, 146, 147]. The first

and second approaches are expanding as costs to implement PB and IB programs have

decreased. Fig. 2.1 shows the comparison between PB and IB programs according to the

appropriate time frame for implementation.
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Figure 2.1: Comparison of DR programs across time frames

2.1.1 Price Based DR Programs

There is extensive literature on PBDR. Jia et al. [62] propose an application of on-line

learning theory tailored to the problem of pricing for retail load customers who participate

in a DR program. Their work considers thermal dynamic loads for which electricity is

consumed to maintain temperature near preferred comfort settings. In [63], an optimum

TOU pricing scheme for use in monopoly utility markets is developed. The optimal

pricing strategy maximizes the societal benefit. C. Vivekananthan et al. [64] propose an

improved RTP scheme for residential customers using smart meters and in-home display

units to broadcast the price and appropriate load adjustment signals. Application of this

program manages overloading problems and voltage issues and ensures both customers

and utilities benefit. In [65], a novel DR program for optimizing power systems electric

vehicle charging load is introduced. In this work, a DR program is proposed based on

three tariff scenarios for different customer groups: standard, single and multi-tariffs. The

results show that using a multi-tariff scheme could save up to 1.5% on utility cost and

7% on customer monthly bills. Gyamfi et al. [66] highlighted customer responsiveness

to TOU, RTP, and CPP programs by considering behavioral issues. They applied these

PB programs in three different countries and show how results vary across regions. In
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Figure 2.2: Time varying price schemes (a) TOU , (b) CPP and (c) RTP

[74], price uncertainty is modeled through robust optimization techniques. They use

a linear optimization to find the hourly load change of the customer in response to

hourly variable electricity price. The objective function is to maximize customer benefit

considering constraints of minimum energy needed, ramping limits at each load level and

so on. Work in [75] argues that price prediction is essential part of any RTP program

for residential load management. Therefore, they propose a simple weighted average

price prediction filter to find the optimal decision coefficient for each hour of a day

for the customers. They test their price prediction algorithm on data from an Illinois

power company from January 2007 to December 2009. Fig. 2.2 shows graphical difference

between three important categories of PB program, TOU, CPP and RTP.
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2.1.2 Incentive Based DR Programs

The literature on IB program is also extensive. Research by R. Yu et al. focused on

the price elasticity of electricity demand where the loads are managed using energy man-

agement controller units. The purpose of the study is to maximize benefit of users by

considering both load and the corresponding real time electricity prices in the wholesale

market [67]. The main goal of research conducted by Pagliuca et al. is to present a new

approach to modeling flexible loads to understand the potential of residential demand

response. The selected demand response option is based on interruptions of appliances

for short periods [68]. Mallette and Venkataramanan investigate financial incentives nec-

essary to encourage plug in hybrid electric vehicle owners to participate in DR programs

[69]. Zhang et al. demonstrate the potential benefits of coupon based DR programs using

numerical experiments. When there is a potential price spike in the wholesale market

based on the ISO information, LSEs would set the initial coupon price. After the LSE

distributes coupon information to the consumers, these consumers can reduce their de-

mand. The LSEs then bid to the ISO with this response and ISO determines the LMP

based on the demand reductions [70]. X. Fang et al [136] used coupon based DR in

conjunction with wind power plants in the system. They present an optimum bidding

strategy model for LSEs considering coupon based DR. In [71], demand curve flattening

and nodal voltage profile impacts are investigated for an IBDR program based on a load

curve from the Punjab State Transmission Corporation Limited in India. Farahani et

al. [72] discuss the effect of DR potential and incentive level to model customer response

in DLC program. They propose six scenarios based on different incentive level at peak

time and DR potential for flat DLC rates. The results show that increasing the incentive

payments increase the percentage of peak reduction and load modification; however, in-

creasing the demand potential has the antithetical effect because of load shifting. Babar

et al. [73] focus on maximizing customer comfort using a demand reduction-bidding

IBDR programs. They use a dynamic programming approach to balance the benefit of
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customers and utilities while managing peak energy consumption. The objective is to find

the least aggregated reduction bids of the customers, which retains reduction of peak load

while bringing benefits to all participants.

2.1.3 Combinations of Price Based and Incentive Based DR

Programs

It is possible to combine PR and IB DR programs in various ways. In [83], it was found

that PB programs would only be effective if an electricity supplier had more customers

than its electric supply capability and could acquire electricity from other power com-

panies/markets. The research shows that the way to gain the most benefits is through

combinations of DR programs to various arrangements in targeted markets. The main fo-

cus of the work by Yang et al. is to quantify the benefits of DR. To conduct this analysis,

a hybrid market structure with different pricing schemes is assumed [84]. Shu et al. [85]

proposed a dynamic incentive strategy in a dual tariff system based on user elasticity and

energy procurement cost analysis. The objective of dynamic incentive strategy is to give

the opportunity to the people who want to participate while guaranteeing profit. The

research by Wang et al. [86] explores the effect of incentive payments over different smart

grid technologies in several utility companies in North America. It is shown how various

incentives affect the success and scalability of smart grid demand response programs. In

Fig. 2.3 summary of DR programs in the literature is shown. This figure illustrates the

impact of DR on market participants, system reliability, market performance and market

operations.

2.1.4 Residential Load Programs

There are several studies that show the residential sector does not respond well to PB

programs. The main reason is that residential customers care more about their comfort

than a small saving on their monthly bill. These also may not fully understand the pricing
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Figure 2.3: Summary of DR benefit according to available literature

scheme in order to react properly. These considerations has lead to specific design of DR

for residential areas.

Hamidi et al. [87] studied DR programs in residential sector to investigate the effec-

tiveness of each PB program. They propose a generic approach based on the appliance

load profile to measure the responsiveness level of customers to various electricity tariffs.

There are only certain types of household appliance whose consumption pattern can be

modified in DR programs. In [76] and [77], this fact is used to design a specific DR for

residential sector. The authors in [77] propose a load management algorithm based on

controllable appliances to adjust the customer’s hourly consumption. The effect on the

network is neglected. If each house tries to maximize its own benefit, the market opera-

tor could face new peak load since every one schedules consumption independently. This

issue is addressed in [78] where authors trie to avoid gaming by household and control

appliances by considering the network. They use a Nash equilibrium approach to obtain

the price and energy usage for each time period in order to minimize the overall energy

cost. Customer satisfaction and comfort level is not included in the formulation. In [79]

and [80], a decentralized optimization based on dual decomposition and sub-gradient mul-

tipliers is used to maximize social welfare. Although customer satisfaction is considered,

these efforts fail to model different types of loads in the customer utility function. In [81],
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Figure 2.4: Schematic of smart home [76]

a message-passing approach is used to develop a decentralized optimization for residential

energy management. The decentralized optimization is based on the alternating direction

method of multipliers.

The authors in [82] present a coordinated home energy management system (HEMS)

scheme where individual houses coordinate with each other for a real-time DR program.

In this study, the economic motivation for both utilities and customers to participate in

HEMS program is evaluated in detail. The proposed HEMS is a dynamic programming

problem solved using a convex optimization based on dual decomposition. The main

focus of this study is on shiftable appliances, such as, washing device and plug-in electric

vehicles. Much of this literature in this area works on the design and control of the Smart

Home. An example schematic of HEMS is shown in Fig. 2.4. In contrast, there is little

effort to understand the impact on the wholesale market. From the market point of view,

there is surprising limited study of retail customers who cannot participate directly in

market. It means the available data and technology for an LSE to design and implement

DR is limited. Therefore real time pricing, customer bidding and dynamic incentives are

difficult to successfully implement for residential customers.
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2.2 Overview of Elasticity Estimation

Numerous studies on price elasticity of electricity have been conducted over the years,

especially during the 1980s and early 1990s when energy prices were rising rapidly and

concerns about energy conservation increased. Electricity demand modeling has been one

of the most heavily studied in energy and has been the subject of a number of surveys

over the last four decades; elasticity estimation is almost always a part of these studies.

Fig. 2.5 shows the frequency of various elasticity values that have reported in different

literature. This figure shows both price elasticity (P ) and income elasticity (Y ) for long

term (Plr, Ylr) and short term (Psr, Ysr). It also shows the values of elasticity from papers

that used a statistical method to estimate elasticities of customers (Pstat, Ystat). Note the

wide variation in estimates.

One of the oldest studies was done by Houthakker [88] estimating demand in the

residential sector for 42 towns in U.K. in 1951. He finds price elasticity not far from unity.

On the other hand, Fisher and Kaysen [89] estimate price elasticity for residential demand

as almost inelastic and close to zero in 1962. The range of estimation for elasticities

various significantly depending on the data set, modeling technique, location, time and

so on. Short run price elasticity range from -2.01 to -0.004 with a mean of -0.35 and

median of -0.28. Long run elasticities estimates vary between -2.25 to -0.04 with a mean

of -0.85 and median of -0.81 [42]. According to empirical estimates, there are three types

of electricity elasticity: long term, short term (less than one year) and real-time (from

TOU studies). In the short term, residential price elasticity is small but it is still greater

than larger customer who have zero price elasticity in short term [45].

Alfaris [90] and C.T. Jones [91] both report short term elasticity around -0.04 in 1990s

using an error correction model and log-linear method, respectively. Jones found higher

elasticity using translog technique on its time series data from 1960-1992. Long term

elasticity reported by Alferis is about -0.82 and it’s -0.207 using both methods in Jones

work. Beenstock et al. [92] estimates long term elasticity in households -0.6 using time
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Figure 2.5: Frequency of values for short term and long term elasticity [42]

series data from 1973 to 1994. Walters et al. [93] found two different long term elasticities

using log-linear or translog method, one -0.26 and -0.1. Houthakker and Taylor [94]

estimate long run elasticity of United States in the 1970s around -1.89. Holtedahl and

Louts [95] report household long term elasticity in Taiwan around -0.16 using time series

data from 1955 to 1996. The common point between these studies is their estimation for

short run elasticity of about -0.15. M. Filippini [96] and Narayan et al. [97] do not report

separate elasticity for short term and long term but both estimate average elasticity

around -0.3 for Switzerland and Australia, respectively. Bose et al. from India data [98]

and Baker et al. from the U.K. [99] also just estimate on total elasticity for residential

sector that is around -0.7. Flippini and Pachauri studied [103] in 2004 in India estimates

elasticity for urban area in different season, they found less elasticity (-0.29) in summer
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and highest one in monsoon months (-0.51). Lebandeira et al. [45] also found that there is

relation between outdoor temperature and short term elasticity, it shows their short term

elasticity of residential sector which is about -0.25 would change at least by 5% from hot

to cold days. There are also several studies that show price elasticity of electricity close

unity, e.g., Houthakker et al. [100] in 1974 and Kamerschen et al. [101] in 2004 both for

United States residential electricity demand. Halversen [102] found elasticity more than

-1 in Unites States in 1975. Note there are very few papers investigating elasticity for

IBDR. Cabera et al. [104] is one of the few such studies considering different incentive

payments and levels of customer willingness to participate. They do not report any

specific elasticity value.

2.3 Customer Segmentation

Customer classification for addressing appropriate DR signal has been discussed in some

papers. Dam et al. [107] propose a heuristic based approach to select an optimal DR

program from the customer viewpoint. In this study, customers collect information of

different DR program signals and price rates as well as energy supply constraints and

decide whether to accept the DR signal or not. The main barrier against this approach

is the amount of the information that needs to be collected and analyzed by customers.

Aalami et al. [108] develop another approach to select the best DR program based on

multi-attribute decision-making. The model simulates the customers behavior toward

different electricity prices, incentives and penalties. They used this model to prioritize

DR signals using similarity to the ideal solution. The priority list helps the utility and

customers to select the best DR program. Three DR programs were tested in this study,

IBDR programs, PBDR programs, and a combination of both programs.

Gomes et al. [105] proposed a multi-objective evaluation approach to optimize electric

load groups. They grouped the load based on physical and geographical parameters to

control the peak demand at three levels: residence, aggregated feeder and substation.
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The results show that demand could be reduced up to 4.39%, 3.91%, and 7.49% at each

level, respectively, while increasing the average unit profit per kWh by 3.07%. Beal et

al. [106] attempted to improve the load grouping based on a power color algorithm for

stochastic-constraint satisfaction. In this approach, customers can define the flexibility

of different appliances in the house by choosing a color code. Despite various research

on customer segmentation, there is very little work that classifies customers based on

behavior toward incentive signals; however, this kind of classification could greatly help

utilities to design DR for targeted groups.

2.4 DR with High Levels of RERs

A major economic barrier against the large-scale deployment of RERs is the high invest-

ment cost that is needed for backup reserve to ensure the reliable operation of the system.

Stochastic optimizations are one approach to quantifying reserve requirements and eval-

uating effect of RER integration on operation costs. Numerous renewable integration

studies based on unit commitment have been performed recently by Ruiz et al. [109] ,

Sioshansi and Short [110], Wang et al. [112], Contantinescu et al. [114], Tuohy et al. [115],

Morales et al. [116], Bouffard et al., Papavasiliou et al. [117] and Papavasiliou and Oren

[118]. The study of Ansari et al. [119] presents a new stochastic security-constrained

unit commitment for hydro-thermal units considering the uncertainty of load forecast,

prediction of inflows to hydro reservoirs and unavailability of units. The proposed unit

commitment is based on AC model of network. A novel hybrid decomposition strategy

composed of generalized Benders decomposition and outer approximation/equality relax-

ation is also proposed in this study to deal with mix integer and non linearity nature of

the model. Still, these studies mainly focus on the impact of renewable output uncer-

tainty on the power system operation and integration of DR and its valuable potential is

not discussed.

Sioshansi and Short [110] modify the unit commitment model based on the effect of
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DR on uncertainty. Borenstein and Holland [120] and Joskow and Tirole [121]-[122] use

the same approach to see the impact of real time pricing and renewable uncertainty on

unit commitment results. The main portion of flexible demand belongs to deferrable

loads, such as, plug-in electric vehicles, washing devices, and so on. The shiftable load

acts as a storage from the system operator viewpoint. Some research focuses on the unit

commitment formulation to include this flexible part of load. Sioshansi [123] proposes a

unit commitment formula based on co-optimization of electric vehicles and generators.

The proposed model does not reflect the uncertainty of RERs output.

There are fundamental barriers against using DR schemes discussed previously. As

shown in [124] and [125], the demand side bidding needs a real time pricing scheme at

retail level. There is strong opposition against exposing retail customers to the volatility

of market prices. In addition, due to non-convexity of system operating cost, real time

pricing often fails to reflect the true economic value of demand response. Researchers in

[110] show that non-convexity along with dispatch of deferrable resources lead to excessive

start up and minimum load costs. An alternative demand response program is discussed

by Hirst and Kirby [126, 127], where flexible loads are used to deliver services to the

ancillary services market. In this DR scheme, load aggregators submit bids on behalf

of the loads in an ancillary service market. The load aggregator runs the DR program

under both IB and PB strategies. The possibility of using demand side management

as spinning reserve under high penetration of RERs has also been analyzed [128]. The

current market regulations are not amenable for this kind of DR and regulatory changes

are needed to allow flexible load to provide high reliability products.
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3 Reduced Model of WECC as a Demand

Response Prototype

In this chapter, a reduced model of WECC is described in detail. The WECC 240-bus

model is used as test system throughout this thesis to evaluate different demand response

schemes.

3.1 WECC System Information

Resource characteristics for WECC 240-bus model have been derived from a published

California ISO (CAISO) transmission study data and WECC’s Transmission Expansion

Planning Policy Committee (TEPPC) as follows:

• Hourly time variable loads for 11 areas within the CAISO are derived from [151,

152].

• Hourly time variable output for wind and solar resources, which is aggregate in the

240-bus model, are derived from TEPPC studies. There are three wind farm areas

and one solar power plant in CAISO, as well as 13 wind power plants and four solar

resource outside of CAISO.

• Hourly time variable output for geothermal resources in the CAISO have also been

derived from [151, 152] and are aggregated by utility controlled vs. non utility

controlled geothermal resources. They are placed in the North Bay/Geysers area,

which is the largest concentration of geothermal resources in the CAISO. The output
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of the four geothermal areas outside CAISO are assumed to be constant at 80% of

the maximum capacity based on their average performance.

• Hourly time variable output of biomass generations come from [151, 152]. The

biomass generators are aggregated at three buses in CAISO and it is assumed they

are all under utility control. There are very few biomass generators outside the

CAISO and they are modeled as generic RERs.

• Gas fired power plants have a large share of generation capacity in WECC. They

are modeled as dispatchable resources using their heat rate data derived from the

published CAISO transmission study and TEPPC online data. The required in-

formation to run a full unit commitment is not available but basic assumptions in

CAISO are made. For example, the minimum output of gas generator is assummed

to be 5% of maximum capacity.

• Coal power plants in CAISO area assumed to be at 85% of their maximum output

constantly based on overall performance data.

• There are two nuclear power plants in CAISO area and two outside. All are assumed

to run at 100% of capacity since they are based-loaded; however, their output can

be reduced to 90% if needed for congestion management.

• Generation capability of hydro power plants mainly depend on available water stor-

age, which changes month by month. Scheduling and dispatching of hydro units

also depends on environmental requirements limiting ramping and release due to

criteria , such as, fishing management, recreation, irrigation rand so on. These con-

siderations make the process of hydro optimization complex. In this study based

on actual data in [152], hydro power plants are modeled as dispatchable units with

maximum capacity of 87% after accounting for reserves and a minimum output of

20%. The maximum hourly ramping is considered to be 10% of capacity.
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3.2 Load Serving Entities within WECC

In this thesis, target customers are primarily residential. Therefore, the regulatory struc-

ture for LSEs and their retail customers is critical. There are different types of LSE

structures and different terminology used including, load aggregator, electricity utility,

distribution company and so on. In any case, an LSE main functional is to supply elec-

tricity t

o customers. In general, an LSE participates in the market to serve either an entire

distribution area or groups of customers through an arrangement with the actual distri-

bution company. Distribution companies operate the physical infrastructure incluiding

the lines, metering and so on. For purposes of this thesis, the main characteristics of an

LSE is:

• An LSE operates within a territory, although they may operate in in more than

one area.

• An LSE has tariffs (rate plans), which are central and unified for most of their

customers.

• An LSE purchases power in the power markets for the individual customers.

The 129 load buses in the WECC model are divided into 14 regions. It is assumed

that each region belongs to one LSE that serves all buses in the region with the same

tariff and each load bus is an aggregator for the retail load customers served by the bus.

Geographical positions of these regions are shown in Fig. 3.1.

3.3 Unit Commitment in WECC

Unit commitment process at wholesale power market determines the status of each gen-

erator and their scheduled output for the next market window. Unit commitment is

essentially an optimization problem to minimize production cost considering operational
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Figure 3.1: Geographical map of WECC regions

constraints of the power grid. The general formulation of unit commitment problem is

[153]:

min
Git,uit,Rit

{
NT∑
t=1

NG∑
i=1

[Ci(Git, uit) + Si(uit) + qitRit]
}

(3.1)
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NG∑
i=1

Git =
ND∑
j=1

Djt (3.2a)

Gmin
i uit ≤ Git ≤ Gmax

i uit (3.2b)

Git +Rit ≤ Gmax
i (3.2c)

0 ≤ Rit ≤ uit(RUiΓ ) (3.2d)
NG∑
i=1

Rit ≥ Rmin
t (3.2e)

Git −Gi,t−1 ≤ RUiui,t−1 +Rstart
i (uit − ui,t−1) (3.2f)

Git −Gi,t−1 ≥ −RDiui,t−1 −Rshut
i (uit − ui,t−1) (3.2g)

Rstart
i = maxRUi, Gmin

i (3.2h)

Rshut
i = maxRDi, G

min
i (3.2i)

NG∑
i=1

GSFkiGit −
ND∑
j=1

GSFkjDjt ≤ Fmax
k (3.2j)

The objective of unit commitment problem is to minimize the system operation cost,

which consists of fuel cost, start up cost and reserve cost. The constraint (7.2) ensures

the balance between supply and demand. The generation capacity constraints (4.3a) and

(10.2f) limit the amount of power and reserves that can be supplied by a generator. The

constraint (10.2g) reflects the maximum spinning reserve from a generator. The constraint

(3.2e) requires at least certain amount of spinning reserve to be provided for the system.

Constraint (3.2f) and (8.5) are the ramp rates of generators. The transmission flow limits

are approximated by the DC power flow (3.2j).

There are limitations in performing a complete unit commitment on the WECC data

in this thesis. Primarily, limitations arise as the ramp rate and start up and shut down

costs for all generators is not known. Thus, the unit commitment in this study depends

more on the generator cost functions. Still since the units are aggregates in any case,

this is probably a reasonable approximation. The main impact would be on coal and
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nuclear power plants since they have lower ramp rates and hydro since here is assumed

hydro is highly constrained by other factors. The reserve requirement is assumed to be

a constant 5% of load at each hour to be provided by gas turbines with their high ramp

rate. As a result, coal, nuclear and hydro power plants are essentially base loaded. Gas

turbines can be shut down or started up to adjust load-power balance and provide reserve

requirements. These assumptions are consistent with the original data that has a unit

commitment solution for each hour from the actual data.

3.4 Economic Dispatch in WECC

Economic dispatch is performed by the market operator in various time windows, e.g.,

next 5 or 15 minute interval. In this process, the status of generator defined by unit

commitment does not change, but instead scheduled MW is updated using more accurate

load forecast data. The general formulation of economic dispatch without considering

reserve is as follows [154]:

min
Git

{
NT∑
t=1

NG∑
i=1

Ci(Git)
}

(3.3)

NG∑
i=1

Git =
ND∑
j=1

Djt (3.4a)

Gmin
i ≤ Git ≤ Gmax

i (3.4b)
NG∑
i=1

GSFkiGit −
ND∑
j=1

GSFkjDjt ≤ Fmax
k (3.4c)

Economic dispatch determines the optimal dispatch of a set of committed generating

units to supply the forecasted load. The objective function is to minimize the operating

cost of generators. The constraint (7.5a) ensures the balance between supply and demand.
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The generation capacity constraint (8.14) limits the amount of power that can be supplied

by a given generator. The transmission flow limits are approximated using DC power

flow in (8.15). Economic dispatch as formulated here is a continuous convex problem and

can be solved efficiently by various nonlinear programming techniques.

In this thesis, the problem is solved using the MATPOWER toolbox. MATPOWER

is a package of MATLAB M-files for solving power flow and optimal power flow prob-

lems. MATPOWER is initially designed for researchers and educators in academic level

considering its simplicity and capability of modification by end user. MATPOWER was

developed by Ray D. Zimmerman, Carlos E. Murillo-Sánchez and Deqiang Gan of PSERC

at Cornell University under the direction of Robert Thomas [155].

3.5 Renewable Resources in WECC

There are several factors that impact the future wholesale power market, including: the

price of natural gas, any costs for carbon dioxide (CO2) emissions and RERs development.

Such factors effectively change the variable cost of the generator operations and thus, the

market price. Consequently, market price analysis under renewable expansion is one of

the main concerns of this thesis.

3.5.1 Current potential of Renewable Power Plants

In 2004 (the year for which the base data was known), there were 8000 MW of installed

RERs including wind, solar, geothermal and biomass in the WECC model. This repre-

sents less than 10% of the total energy required to serve load in the WECC controlled

Grid. Wind resource has the biggest share in the total renewable generation and led

to the greatest operational challenges. The output of the wind generators is extremely

variable. In California, the highest wind output was during the off peak period. Tab. 3.1

shows information of RERs potential in 2004, including their geographical location and

maximum capacity.
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Table 3.1: Information of Renewable power plants in WECC

Bus number Generator Category Max Capacity (MW) Region
126 BRIDGER Wind 248 Rocky Mt.
130 COLOEAST Wind 597 Colorado
133 CORONADO Wind 240 Southwest
136 COULEE Wind 240 Northwest
138 DALLES21 Wind 375 Northwest
144 FULTON Geothermal 965 Geysers
157 HUMBOLDT Biomass 53 Humboldt
158 HANFORD Wind 174 Northwest
161 IMPERIAL Solar 117 Imperial
166 JOHN DAY Wind 976 Northwest
169 MALIN Wind 240 Northwest
174 MESA CAL Wind / solar 1660 PG&E
178 MIDPOINT Wind 236 Idaho
191 MONTA G1 Wind 190 Bay area
201 PITSBURG Wind 690 Northwest
206 ROUND MT Biomass 314 PG&E
216 TESLA Biomass / wind 472 PG&E
220 VALMY wind 50 Nevada
223 WCASCADE Wind 215 Northwest
227 CMAIN GM 20 Wind 420 BC

3.5.2 Expansion of Renewable Power Plant

Under California’s existing renewable portfolio standard, utilities must supply at least

30 percent of all electricity for retail customers from approved renewable resources by

2030. The majority of required renewable generation to meet the portfolio standards

will come from wind farms and solar. The intermittent output of these resource will

make the operation of electric power system more challenging. Coal power plants are the

main source of CO2 emission, and therefore, they are the first target of retirement from

renewable expansion. In the WECC 240-bus reduced model, there are 7 buses that have

both coal and renewable power plants. In this study, RERs at these buses is expanded

to reduce coal power plant capacities. Current and expanded capacity of RER on these

buses is shown in Fig. 3.2.

Expansion of renewable power plants is proportional to their current capacity with
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Figure 3.2: Capacity of RERs before and after expansion

the same hourly variation within one year. This means higher production in off peak

and less production at peak. In Fig. 3.3 and Fig. 3.4, new renewable capacity compares

with previous coal production is shown for Feb. and July, respectively. During Feb.

and similar winter months, expanded output of RER generally exceeds earlier coal power

production. This means, in these hours, LMP will decrease because of higher availability

of cheap power. In the July and similar summer months, on the other hand, expanded

renewable output is less than the existing coal production. Therefore, it is expected that

LMP will increase at these hours due to reduced power capacity.

3.6 LMP Characteristics in the WECC Model

LMP in the various regions of WECC are investigated under two different scenarios:

2004 reference and high penetration of RERs. The reference case is the original load

and production data of 2004 while high penetration of renewable case is as detailed in

sec. 3.5.2. In the reference case, most regions have a summer peak. Thus, summer months

LMPs are higher on average with a greater standard deviation. A few regions have winter
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Figure 3.3: Renewable expanded capacity in compare with Coal in Feb.

peak load, such as, Rocky mountain and Northwest. However, the variation of LMP in

these regions, especially in the Northwest, is relatively small. The main reasons are the

relatively high industrial loads and reliance on coal power production. After renewable

expansion, LMP changes depend on time of the year, region, location of congested lines

and higher residential load. Generally, we observe three various particular periods:

• High load and low RER production: this occurs for most of the regions in summer

especially during peak hours that lead to higher LMP relative to pre-retirement of

coal units.

• Low load and high RER production: this relates to moderate weather conditions

in spring and fall where residential load is considerably reduced but wind power is

significantly higher. Since the RERs are modeling as “must take,” this condition

leads to considerably lower LMP and at times negative during off-peak hours.

• Moderate load and moderate RER production: while this condition may arise in any

season, it occurs most frequently on winter days. Effect on market price depends
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Figure 3.4: Renewable expanded capacity in compare with Coal in July

on the similarity of RERs output to the old coal capacity. For some regions in

winter months, the average LMP increases after RERs expansion and for others it

decreases.

LMP variation in all regions and during the whole year increase after renewable expansion

due intermittent output of RERs. LMP changes in east regions of WECC, that are closer

to renewable power plants, are greater relative to western regions. In general, LMP

variation becomes correlated with renewable generation profile rather than load profile.

In Tab. 3.2 monthly average and standard deviation of LMP are shown for several regions.

Case 1 refers to renewable expansion and case 2 is the reference case.

In Fig. 3.5, Fig. 3.6 and Fig. 3.7, LMP of one bus of LADWP, Nevada and San Diego

is plotted to show more detail. In August for most of the hours, LMP increases after

renewable expansion and is more salient at peak hours. As another example, Idaho in

February is selected since it is close to RERs and has light load in winter. Mainly LMP

decreases in this situation. Still, the LMP has a significant number of hours with negative

LMP due to over-generation. In chapter 7, it will be shown how to overcome this problem

if renewable bid into the market instead of deployed as “must take” resources.
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Figure 3.5: LMP variation in LADWP during August

3.6.1 Renewable Bidding Strategy

As of today, most power systems operate under a “use all available wind generation” policy

- the so-called “ must take” strategy. This approach can result in increased volatility in

market prices, as shown in previous sections. Another challenge is over generation leading

to negative LMP. Some researchers have proposed bidding strategies for wind generation.

This should help with both negative LMP and high volatility of prices while it may lead

to wasting some amount of RERs production. Fig. 3.8 shows market price variation for

the two cases of “must take” and bidding. The bids are assumed for simplicity to be 0

for all MW output of wind. Thus, the main effect of bidding is to avoid negative prices

due to over generation Results are plotted for April which has highest amount of excess

wind power and consequently highest number of hours with negative LMP.

3.6.2 Effect of Congestion on LMP

Most research considers renewable expansion in conjunction with transmission expansion

due the necessity of having sufficient capacity to transfer renewable power to other areas.

Two examples are shown in Fig. 3.9 for October. During this month, price differences are
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Figure 3.6: LMP variation in Nevada during Feb.

significant. There are regions which have negative LMP most of the time, while other

regions have very high LMP. As shown in Fig. 3.9, the buses with significant price differ-

ence are located across two sides of a congested line. Effect of transmission congestion

on market price is not specific to renewable expansion; however, if renewable output in-

creases in the system, transmission limits will likely be more of a concern. This thesis

does not explore impact of transmission impact in detail except to illustrate how DR may

help alleviate such problems.
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Figure 3.7: LMP variation in San Diego during March
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Table 3.2: LMP change in some regions before and after renewable expansion

Southwest Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec.
average 1 20.5 20.8 20.1 18.3 31.6 34.2 44.0 44.0 36.2 21.9 23.2 25.1
average 2 25.2 23.7 22.3 22.4 28.0 33.9 43.3 41.1 35.6 23.4 26.2 29.3
std 1 9.8 8.3 10.9 9.1 11.8 11.9 21.5 21.5 15.2 8.3 11.3 13.7
std 2 4.6 3.8 5.0 5.9 9.1 11.9 15.7 15.8 11.2 7.1 4.9 5.0

Bay Area
average 1 31.9 30.2 30.5 28.2 34.8 36.1 41.7 41.7 36.6 29.1 34.1 36.6
average 2 30.6 27.4 28.3 28.7 30.4 32.0 36.0 35.3 32.9 28.4 28.4 29.4
std 1 7.1 6.6 7.6 7.5 7.2 8.1 13.7 13.7 11.1 5.5 8.9 11.0
std 2 6.6 3.4 4.9 4.8 6.4 6.7 8.9 10.1 8.3 4.9 4.2 4.9

PG&E
average 1 34.9 33.8 34.2 28.0 51.1 53.1 70.4 70.4 50.6 29.3 36.5 44.5
average 2 29.3 26.7 26.2 26.3 30.9 36.7 51.4 49.2 38.6 27.9 27.1 29.1
std 1 13.1 13.8 13.4 10.3 25.7 28.8 40.1 40.1 31.3 6.4 12.8 18.7
std 2 5.2 4.2 3.0 3.6 7.9 14.9 25.4 38.0 20.9 5.4 4.3 5.8

Northwest
average 1 29.7 26.5 25.7 25.5 25.3 25.4 25.3 25.3 25.5 26.2 51.9 44.2
average 2 28.5 25.1 25.2 25.3 25.0 25.0 24.9 25.0 24.9 25.1 25.1 25.2
std 1 13.9 2.4 1.8 3.6 0.7 1.1 1.6 1.6 1.1 1.1 45.3 34.1
std 2 12.3 0.3 0.8 1.2 0.2 0.3 0.3 0.2 0.2 0.3 0.2 1.3

Rocky Mt.
average 1 16.6 16.2 22.7 15.8 32.7 36.6 46.2 46.2 33.8 19.5 20.0 25.5
average 2 25.4 23.7 21.2 21.1 26.1 29.3 36.7 34.1 32.3 22.2 22.8 25.1
std 1 14.4 12.5 14.8 12.0 14.1 16.0 21.2 21.2 23.6 11.6 15.2 17.1
std 2 5.5 5.9 7.6 7.9 8.5 7.9 17.6 10.7 13.2 8.9 7.3 5.9

Idaho
average 1 8.0 9.1 17.8 9.3 29.0 32.4 41.1 41.1 28.2 15.0 14.4 19.5
average 2 24.9 23.0 19.9 19.7 24.5 26.1 31.6 29.0 29.7 20.6 21.7 24.1
std 1 18.7 15.8 17.0 17.2 14.5 13.2 16.1 16.1 17.8 15.4 19.7 22.4
std 2 6.3 7.3 9.6 9.8 9.1 6.7 12.3 6.2 11.2 10.4 9.0 6.6

Nevada
average 1 21.4 21.2 26.3 18.5 41.6 45.1 59.6 59.6 42.0 22.2 24.6 32.2
average 2 26.3 24.9 22.6 22.6 28.5 33.4 45.0 41.9 36.6 24.3 24.4 27.1
std 1 13.2 12.6 14.2 10.9 20.4 22.0 30.5 30.5 25.3 10.2 14.0 17.0
std 2 5.4 5.8 6.5 7.0 9.3 11.6 25.2 20.2 18.4 8.7 7.1 6.7
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a) “Must take”

b) Bidding

Figure 3.8: LMP variation in San Diego
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a) Line 8-63 (limit 1500 MW)

b) Line 215-107 (limit 840 MW)

Figure 3.9: LMP on two edge of congested lines - October 15th
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4 Optimal Incentive Based Demand

Response

In this chapter, the design and formulation of an optimal IBDR is developed relative

to real time prices so that the full benefits of DR can be achieved. Specifically, we

propose a method to design the optimal IB program considering historical generation

and load patterns. The objective is ensuring reliability of the grid and reducing the

generation cost, as well as, increasing the customer acceptance for DR programs. While

there has been increasing interest in PB programs with the installation of smart meters,

residential customers have generally not welcomed these programs. On the other hand, IB

programs struggle to realize a specific objective, e.g., reduced generation costs or improved

reliability. Instead, the incentives are an indirect method that hopefully improves system

performance under a variety of metrics. The main concept of IBDR is straightforward,

a customer would simply be offered a specific incentive payment at a high price time

for a small change in their consumption. Still, there are some fundamental questions in

order to design an appropriate IBDR scheme. The load change required at each time

and appropriate incentive need to be determined. We formulate this as an optimization

problem in this chapter.

4.1 LSE Objective for DR Design

LSEs main responsibility is to provide electricity for retail customers, such as, residential,

small commercial or industrial loads. They can participate in the various wholesale
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market trading pool on behalf of their customers and purchase electricity with time

varying price, although they mainly sell it to their customer through a set of relatively

fixed tariffs or flat rate prices. LSEs benefit is defined according to the difference wholesale

market price and their flat rate price. Therefore, the LSE objective function is:

max
NB∑
b=1

Ty∑
t=1

Dbt(P 0
b − LMPbt) (4.1)

LSEs profit depends on the flat rate price that it can charge (carefully regulated) so as

to cover LSEs fixed and variable expenses. In sec. 4.4 we will explain more about various

possible tariff scheme for customers. It is easy to see directly from (9.1) that LSE earns

profit whenever the charged price is higher than market price and loses money at other

times, but this does not account for the demand response. Technically, DR programs

achieve benefits by changing the loads. Thus, the LSE objective function to design an

incentive payment and the needed load reduction becomes:

max
NB∑
b=1

M∑
t=1

[(Dbt −∆D̄bt)(P 0
b − LMPbt)−∆D̄btP

inc
bt ] (4.2)

∆D̄bt =
DT∑
j=1

∆Dbtj (4.3a)

4Dmin
btj
≤ ∆Dbtj ≤ 4Dmax

btj
(4.3b)

∆Dbtj = gjP
inc
bt (4.3c)

As it shown in (4.3a), total load change at each time is the summation of different

customer types: residential, commercial and industrial. This segmentation helps to reflect

different characteristics of these groups. The parameter gj reflects the response of the

customer when offered an incentive payment. Under the assumption of linear demand
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curves, equation (10.2g) can be explicitly expressed as:

∆Dbtj = εjP
inc
bt (4.4)

4.2 Optimum IBDR Design

The important design parameter to address is the appropriate time to implement DR.

LSEs lose money whenever market price is higher than the flat rate price, but in our

approach we also seek not to ask for frequent load changes. We select a specific value

above market price to serve as a trigger point for requesting DR. This threshold could be

either fixed for the year or seasonal or optimally calculated for each period of study. A

constant threshold has some merit, not least of which is transparency and simplicity, but

this approach may put too much burden on customers in more expensive periods. Con-

sequently, it’s better to find a variable threshold that provides benefit for all participants

and also maintains customer’s comfort convenience [156]. We formulate this as:

max
NB∑
b=1

Ty∑
t=1

ut[(Dbt −∆D̄bt)(P 0
b − LMPbt)−∆D̄btP

inc
bt ] (4.5)
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∆D̄bt =
DT∑
j=1

∆Dbtj (4.6a)

4Dmin
btj
≤ ∆Dbtj ≤ 4Dmax

btj
(4.6b)

∆Dbtj = εjP
inc
bt (4.6c)

Tmin
d ≤

Td∑
i=1

ui ≤ Tmax
d (4.6d)

Tmin
m ≤

Tm∑
i=1

ui ≤ Tmax
m (4.6e)

ut ∈ {0, 1} (4.6f)

In (4.5), the binary variable ut indicates whether DR is needed. The main advantage

of this method is that we could consider customer comfort as a constraint at in any level

that is desired. In our formulation, the number of hours that IBDR occurs is limited

both daily and monthly.

4.3 Load Characteristics

The affordable load reduction at each hour is limited due to the types of loads. Devices in

the residential and commercial sectors can be divided into three groups: (1) interruptible

devices, whose consumption can be interrupted at a specific time and will not need to be

supplied in the future; (2) controllable devices, whose consumption can be transferred to

another time of day; and (3) critical devices that are so important that no manipulation

of the consumption is generally acceptable.

Based on Tab. 4.1, the main reducible load consists of air conditioning and electric

heating, water heating and lighting. Assuming that 10% of the demand for each device

is reducible and using the load profiles for each device from [157, 158], the maximum

affordable limit of load reduction at each hour can be calculated. The National Energy
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Table 4.1: Classification of common residential electric devises

Interruptible device Controllable device Critical device
Air conditioner Rechargeable tools Oven/ microwave
Space heater Clothes washer TV/DVD player/Games
Water heater Clothes Dryer PC/ laptop/Wifi/ modem

Lighting Dishwasher Coffee maker
pool/ hot tub/ spa heater EHV batter Refrigerator/freezer

Pool filter / pump Printer/fax machine

Modeling system provides a database which is representative of more than 1,486 loaf

profiles for residential, commercial, and industrial sectors (called the RELOAD database).

The database reports based on three types of day for each month, average weekday,

average weekend and a peak day. Using this data an entire year of 8,760 hourly values

can be generated since each day of month typically falls in to one of these three types.

The key component in DR programs, either PB or IB, ones is of demand against price

change or incentive payments. Accuracy of anticipated load reduction and adequacy of

incentive design are highly dependent on elasticity of demand. Full understanding of

electricity demand elasticity remains an open problem. In chapter (8) and (9) explore

estimated elasticity in greater detail. In this chapter, the average elasticity value of 0.1

for residential and commercial sector and 0.05 for residential one is used [159, 160].

4.4 Retail Load Tariff Plans

LSE profit depends on the flat rate price that it can charge so as to cover fixed and

variable expenses. The important question is what’s the best retail load tariff strategy

for implementing DR programs that supports the overall market. There are several

schemes considering various design factors. A constant price for the whole year is the

simplest and similar to a traditional residential rate. Given the large variation between

average LMP in each season though, another simple approach would be to offer a seasonal

tariff. Similarly, a tariff that takes into account the wide differences in prices between

day and night or between weekends and weekdays could be beneficial. Incentive schemes
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Table 4.2: Seasonal and yearly customer tariff in WECC regions

Tariff ($/MWh) Spring Summer Fall Winter Yearly fixed
Southwest 31 51 28 26 35
San Diego 36 54 32 31 40
LADWP 33 54 29 28 35

San Francisco 36 46 34 32 35
Bay area 34 43 33 31 34
Fresno 31 47 28 28 35

Cnt. Coast 33 53 29 28 35
PG&E 38 71 34 31 40

Northwest 25 25 25 26 26
Rocky Mt. 28 38 27 26 28

Idaho 27 34 27 26 26
Nevada 35 63 32 28 40
SMUD 29 44 28 27 35
SCE 33 55 30 28 35

with hourly price variations may also encourage customers to reduce consumption in

ways not possible with seasonal pricing. Some of these tariffs would require greater

communication infrastructure and need more initial investment; however, other schemes,

such as, seasonal or day/nigh tariff could lead to useful consumption modification with

existing infrastructure.

In this chapter, IBDR effect on LSE benefit and customer saving, under various retail

electricity tariff is illustrated. Tab. 4.2 shows seasonal vs. yearly fixed tariff in different

regions of WECC. Since most of the regions have a summer peak, the biggest tariff

difference is between summer and other seasons. For some regions that have higher

residential load, the summer tariff is much higher relative to other seasons, like PG&E.

In other regions with light residential load and more coal power or little seasonal variation

in load, there is not a significant difference between the tariffs, e.g., the Northwest.

4.5 IBDR Evaluation with Fix Trigger Threshold Value

In this section, the effect of IBDR on both customers and LSEs in the WECC 240-bus

model is discussed. The trigger point to implement IBDR in this section is set to be
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Table 4.3: LSEs benefit of IBDR program

Region Seasonally fixed Seasonal d/n Yearly fixed Yearly d/n
Low benefit Region (% of benefit change after DR)
SMUD 13.15 26.70 234.85 614.30

Cnt. coast 21.11 62.70 66.06 153.88
Southwest 22.37 74.79 30.91 123.41

SCE 21.12 147.82 119.86 632.31
LADWP 25.72 73.98 157.35 192.49
San Diego 32.62 145.18 24.81 64.11
High benefit Region

Idaho 38.22 186.45 378.18 693.96
Bay area 40.88 236.32 459.44 306.72
Rocky Mt. 41.56 390.38 344.18 539.87
Northwest 52.10 200.52 11.47 115.89
Nevada 63.35 227.13 121.73 360.48
Fresno 85.41 273.59 96.64 371.67
PG&E 86.92 229.00 503.30 612.61

$10/MWh above the fixed price. This means whenever market price is 10$/MWh more

than customer flat rate tariff, LSEs would run a DR program to reduce load. While

numerous approaches for pricing could be designed, we look at for four schemes: fixed

tariff for whole year (yearly fixed), day and night tariff (yearly d/n), seasonal tariff

(seasonally fixed), day and night tariff for each season (seasonal d/n).

Equation (10.1) can be solved to find the desired load change and incentive at each

hour. By reducing the demand, the market price will decrease, so LSEs will benefit from

both a lower price in market and lower demand within their region at expensive hours.

In Tab. 4.3, the benefit for LSEs after DR under various tariffs is shown. The regions

are divided into high and low benefit groups. In this table, the schemes are ordered from

lowest to highest benefit, a fixed tariff for each season brings the lowest benefit for LSEs

while a day/night tariff for the whole year leads to the greatest benefits.

In Fig. 4.1, LSEs net revenue per total load in the high benefit group is shown. Relative

to Tab. 4.3, although there is high difference in terms of benefit percentage between

various tariffs, revenue per total load is relatively comparable. This could justify that

either a yearly fixed or yearly day/night tariff will not bring significant revenue increase
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Figure 4.1: LSEs net revenue per total load after DR in high benefit region

for LSEs, therefore, the DR is not showing much impact under these schemes.

Customer saving after IBDR for the two groups of high and low saving regions are shown

in Tab. 4.4 and the saving per total load change is shown in Fig. 4.2. Customer saving

is only calculated for those who participate in the DR program and receive incentive

payment. As shown in Fig. 4.2, a seasonal fix tariff ranks second order for customer

saving as it was for LSE net revenue per total load. In this case study of WECC, it can

be concluded that a seasonal tariff is appropriate structure of IBDR for both customers

and LSE. The result could be different for different test systems and relates to the LMP

variation at various time scales. In the next section, seasonal tariff is chosen to measure

the effect of threshold and to unify a tariff strategy under both DR plans.
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Table 4.4: Participating customer saving after DR

Region Seasonal fix Seasonal d/n Yearly fix Yearly d/n
Low Saving Region (% of saving on total bill)
PG&E 35.31 14.08 35.50 0.47
SMUD 45.18 37.13% 46.03 5.67
Nevada 47.83 26.85 50.83 0.73
Fresno 49.44 34.56 54.87 1.44

Cnt. coast 55.46 35.79 61.48 0.21
High Saving Region

SCE 57.40 33.52 63.25 0.23
LADWP 57.74 30.08 63.49 0.11
Southwest 58.44 38.78 65.47 0.08
San Diego 59.37 38.67 67.61 1.76
Rocky Mt. 60.52 48.19 56.76 1.14

Idaho 67.27 69.15 56.78 17.46
Bay Area 71.34 70.83 69.61 3.55
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Figure 4.2: Saving per total load change in high benefit region
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Table 4.5: Optimum threshold value in some regions of WECC

Month Southwest Idaho Bay area Fresno PG&E Rocky Mt.
Jan. 3 3.5 7.5 5.5 5 4
Feb. 2.5 2.5 2 1 4 4
March 2.5 1 3.5 1.5 2 2
April 3 1.5 2.5 1 1.5 1.5
May 5 4 2 5 13 5.5
June 17 3.5 3.5 10 15 6.5
July 14 7 5 22 25 13
Aug. 3 6 5 19 20 8
Sept. 3 7 3.5 12 17 5
Oct. 7 3.5 3 4.5 14 5.5
Nov. 1.5 2.5 2.5 3.5 13 3.5
Dec. 5 3.5 1 5.5 10 5.5

4.5.1 Optimum vs. Constant Trigger Threshold

An optimum threshold for requesting IBDR is investigated in this section using (4.5). The

threshold varies by region from month to month. In Tab. 4.5, results for some regions

are shown. According to these results it can be seen that a constant threshold results

in many DR requests in summer and very few in winter. This unbalance of DR, while

bringing benefits for LSEs, puts a greater burden of inconvenience on customers.

In Fig. 4.3 and Fig. 4.4, the LSEs benefit and customers saving are shown for constant

vs. optimum threshold based on overall utility. The constant threshold brings higher

benefit for LSEs but less saving for customers.

To show that the optimum threshold is in fact the better option in this case, the total

number of hours that DR is requested is shown in Tab. 4.6. As desired, the optimum

threshold limits the number of requests of DR both daily and monthly.

4.5.2 Effect of IBDR on Market Price

In this section, it is shown how each method could help reduce price variations and

peak LMP in the wholesale power market. Fig. 4.5 and Fig. 4.6 shows the LMP monthly

standard deviation and average, respectively.
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Figure 4.3: LSEs benefit of IBDR in high benefit region

As shown in Fig. 4.5 and Fig. 4.6, using the optimum threshold has a greater effect on

the monthly average and standard deviation of LMP in the non-peak summer months.

Fig. 4.7 and Fig. 4.8 show the worst day for summer in Nevada as one of the hot regions

and for winter in Rocky Mountain as a colder region.
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Figure 4.4: Participating customers saving in low benefit region

Table 4.6: Number of hours of load change in some regions of WECC

Total hour of DR Constant threshold Optimum threshold
Region Summer Year Summer Year

San Diego 308 547 290 900
LADWP 311 573 303 947
Fresno 454 784 270 911

Cnt. coast 389 675 292 917
PG&E 1128 2616 836 2540

Rocky Mt. 346 532 328 852
Idaho 175 194 240 783
Nevada 632 1708 510 1539
SCE 310 570 307 809
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Figure 4.5: LMP monthly standard variation in Southwest
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Figure 4.6: LMP monthly average in Bay area
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Figure 4.7: Worst day in summer in Nevada region
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Figure 4.8: Worst day in winter in Rocky MT region
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5 Optimal Use of Incentive Based and Price

Based DR

Each category of DR, incentive based and price based, has its own benefits and takes

advantage of different aspects of the potential for flexible demand. In this chapter, a

combination of both DR categories is proposed as an optimal scheme to achieve the

maximum benefit for DR programs. The goal is to reduce the production cost and improve

the reliability of the network by reducing price volatility. In addition, we suggest high

price volatility negatively impacts residential customer satisfaction and may be indicative

of overall system stress. Thus, DR can be used both to mitigate price volatility and reduce

overall costs.

It has been shown that customers’ attitudes toward PB and IB programs are not similar.

From the perspective of human behavior, “there are two main reinforcement conditions:

reward and punishment, which lead to some significant changes in the subject’s behavior”

[161, 162]. Psychologists mainly believe, in most societies, reward may result in more

considerable improvement for habit development relative to punishment [164, 165]. In

this chapter, a different elasticity value is considered for each DR program to emphasize

this variable response from customers. IBDR as a reward-based system should have

higher elasticity.

The following proposes a combined DR program consisting of both PB and IB pro-

grams. A voluntary IBDR program would supplement the mandatory TOU program to

increase response as needed for reducing peaks that remain after some load shift from
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pricing. Both of these DR programs are regional based, so each region would implement

its DR program individually considering market conditions. Note while load change in

each region may be small, the cumulative effect on prices could be considerable.

5.1 Time Of Use Design

LSEs, or similarly load aggregators, supply electricity for retail load customers, such as,

residential or small commercial and industrial from the wholesale market. LSE’s benefit

is related to the difference of market price and customer price. The LSE selling price must

be regulated since the customer is captive and increasing price always increases profit.

The important question here is what the best retail load tariff strategy is specifically for

implementing a DR program that supports the overall market. This not only affects the

LSE and customer benefits but also directly relates to overall electricity consumption.

Different TOU retail tariffs include peak, off-peak, valley, and so on, each of which could

vary daily, weekly, monthly or seasonally based on the desired simplicity. In this chapter,

a tariff with a peak and off-peak price is considered that changes every month, which

provides reasonable transparency and simplicity for customers.

The optimal monthly peak and off-peak tariff is proposed based on the competing

objectives of the customer and the LSE. Specifically, the objective considers the change in

customer payment, the LSE overall profit and load variation. A coefficient α is introduced

to represent dollar value of load change in (7.2) and more importantly to weight priority

of each objective. The output of this optimization is the deviation from fixed price in the

peak and off-peak period as well as new hourly load. Load change at each hour depends

on two variables: self-elasticity of demand, which represents change of demand at each

time because of price change at that same time, and cross-elasticity, which shows the
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effect of price change at other times on the load change. This is detailed below:

min
α(

NB∑
b=1

(
∑

t2∈PT
dbt2 −

∑
t1∈OPT

dbt1))− (
NB∑
b=1

CBb +
NB∑
b=1

LSEBb)
 (5.1)

with the following constraints:

−β
Td∑
t=1

dbt ≤
Td∑
t=1

∆dbt ≤ 0 (5.2a)

∆dbt = d0
bt(

∑
t1∈OPT

εtt1
pOPTb − p0

b

p0
b

+
∑

t2∈PT
εtt2

pPTb − p0
b

p0
b

) (5.2b)

∆dmin
bt ≤ ∆dbt ≤ ∆dmax

bt (5.2c)

In (7.2), customer benefit is represented as:

CBb = p0
b

NT∑
t=1

d0
bt − pOPTb

∑
t1∈OPT

dbt1 − pPTb
∑

t2∈PT
dbt2 (5.3)

LSE benefit at each bus is calculated as:

LSEBb =
∑

t1∈OPT

(dbt1pOPTb − dbt1LMPbt1)+

∑
t2∈PT

(dbt2pPTb − dbt2LMPbt2)−
NT∑
t=1

(d0
btp

0
b − d0

btLMPbt) (5.4)

In the above formulation, the superscript 0 indicates the flat rate condition where a

price is fixed for the whole month, whereas OPT and PT represent off-peak time and

peak time, respectively. Note we can write the deviations from nominal as:
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dbt = d0
bt + ∆dbt (5.5)

pOPTb = p0
b + ∆pOPTb (5.6)

pPTb = p0
b + ∆pPTb (5.7)

The critical points for the TOU tariff design are both the load and LMP variation.

The main objective of the TOU DR program is to reduce load during peak times and

consequently the LMP variation should decrease. Note though that at some times during

the year the load variation between peak and off-peak may not be significant. In this case,

implementing an aggressive TOU could inadvertently result in a new peak and possibly

introduce greater price volatility. These times vary with region but mainly occur during

mild weather months, such as the spring months of March and April in the Western US.

5.2 TOU Program Results

As explained , a monthly peak and off-peak retail load tariff is considered for the TOU

scheme. Peak time is assumed from 10 a.m. to 10 p.m. and off-peak from 10 p.m. to

10 a.m. A constant retail load tariff for the TOU program design corresponds to the

average monthly LMP in each region. Maximum load change at each hour considered is

5% with 1% that is reducible and the remaining 4% shiftable. Self-elasticity is set to be

-0.1 and cross-elasticity is 0.07. According to the output of the TOU optimization from

(7.2), the peak and off-peak tariff difference can be calculated. For current case study, α

is considered to be $1 per MWh to reflect relatively less emphasis. Results for the San

Francisco and PG&E region are shown in Fig. 5.1 and Fig. 5.2, respectively. A constant

price is indicated by (*) whereas upper and lower lines provide the peak and off peak

tariffs in each month. The difference between peak and off peak is greater in summer

months reaching as much as $20 per MW.
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Figure 5.1: Peak and off peak tariff in San Francisco

In PG&E, there is no difference between the peak and off peak tariff in January, March

and April and little difference in February. As mentioned in sec. 5.1, TOU DR programs

are more suitable if there exists considerable difference between peak and off peak time

prices and loads. In most regions in the WECC model during these months, the LMP

curve has a low standard deviation and a small difference between day and night. As a

result, there is little benefit to implementing TOU in these months. The Northwest has

a different LMP curve pattern relative to other regions. The LMP has a small standard

deviation (less than 0.5) and the day and night average are close in most of the months.

For the Northwest, only in January does the cold weather make some sense for a TOU

rates. For other months, IBDR is more acceptable as a method to reduce peak prices.

Tab. 5.1 shows the LSEs benefit and customers saving after TOU DR program. LSEs

benefit after DR is approximately the same in all regions; however relative to the IBDR

program, this benefit is much less. Customers saving varies by each region but it is

comparable with LSE benefit reflecting a fairness to the tariff design. Also despite the

IBDR program, a TOU mandatory is for all customers so it brings saving for everyone as
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Figure 5.2: Peak and off peak tariff in PG&E region

long as they modify their consumption, accordingly. Fig. 5.3 shows the customers saving

and LSEs net revenue change exclusively through the TOU DR program. Again, relative

benefits are similar.

Table 5.1: LSEs benefit and customers saving after TOU program

Region LSEs benefit Customers saving
San Diego 16.07% 5.54%
Bay area 13.18% 7.79%
Rocky Mt. 11.87% 6.31%
LADWP 11.61% 6.54%
Nevada 11.38% 7.74%
SCE 11.05% 8.45%

Southwest 11.01% 5.34%
Fresno 10.63% 5.23%

Cnt. Coast 10.73% 7.11%
Idaho 10.21% 5.93%
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Figure 5.3: Customers saving and LSEs net revenue by TOU program

5.3 Impact of DR Programs on LSE Benefit

IBDR and TOU ] as individual programs was discussed previously. Each has its own

advantages. In this section, we want to combine these program to see whether further

benefits can be realized. The IBDR program maximum threshold of load reduction is set

to 10% of total load. Retail prices are found for TOU program. To find the optimum

threshold for IBDR, the maximum hours that DR can be activated in each day is three.

Since the TOU program decreases the number of price spikes, the need for the incentive

program is also reduced. Results show the maximum percentage of time that DR activates

yearly is at most case 18% (1621 hours) in the SCE region, but on average just 8% of

the year (699 hours) requires IBDR. Thus by shifting less than 5% of the load and

reducing 10% of the total load for 8% time of year, a large costs savings and significant

impact on LMP is realized. The main reason is the region based design for DR programs.

The accumulation of small load modification across all regions results in significant price

changes.
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Table 5.2: LSEs net revenue change by each DR program

High benefit Net revenue Net revenue Total net revenue
region by TOU by IBDR by both DR

San Diego 16.07% 36.36% 58.27%
Cnt. Coast 10.73% 38.46% 53.32%

San Francisco 13.12% 34.83% 52.52%
PG&E 10.89% 35.40% 50.15%
Low benefit region
Idaho 10.21% 14.33% 26.00%

Rocky Mt. 11.87% 12.50% 25.85%
Northwest 1.08% 13.86% 15.09%

Both TOU and IBDR need to bring benefits for both the customers and LSEs to be

acceptable. Tab. 5.2 shows LSEs net revenue change for each program based on the opti-

mization procedure and then for the combined program in both low and high beneficial

regions. Base case in this table is the LSE total net revenue without any DR programs.

Notice TOU benefit tends to be uniform for most regions while IBDR varies more. This

is due to the nature of the original LMP spikes variation in each region. If the TOU

program can eliminate most of the higher values of LMP, then there may be little benefit

to the IBDR program.

LSEs net revenue per total load ($/MW) for base case, after TOU and after IBDR is

shown in Fig. 5.4. Base case in this figure means with no demand response program.Fig. 5.5

shows the LSEs total net revenue relation with average LMP during high price periods.

Regions with higher average LMP have higher revenue by DR programs. Thus, the North-

west that has the smallest price spikes and price variation has the least benefit of DR.

PG&E has highest residential load in WECC, so it has the highest LMP peak, especially

in summer, and consequently obtains the most benefit from DR programs.

5.4 Effect of DR Programs on Customer Savings

Customer savings after DR are shown in Tab. 5.3. The base case is the customer’s monthly

electricity payment without any DR, which is assumed to be the flat rate price based on
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Figure 5.4: LSEs net revenue per total load by different DR program

Table 5.3: Customers saving in each region

High benefit region Total reduction (%) Low benefit region Total reduction (%)
PG&E 9.56% San Diego 5.58%
SCE 8.47% Southwest 5.36%

Bay area 7.83% Fresno 5.26%
Nevada 7.83% SMUD 4.70%

the seasonal average of LMP in each region. This saving mainly arises from the TOU pro-

gram since incentive payments are only for customers who participate in DR programs.

Therefore, the customer saving for IBDR is less than 1% considering all customers. Cus-

tomer savings and LSEs net revenue per total load, after both DR programs are shown

in Fig. 5.6, sorted from high to low benefit. The revenue for LSEs and customer savings

remains comparable in all regions. Thus, the results here for the proposed DR program

appears to adequately benefit both the customers and LSEs.
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Figure 5.5: Total LSEs net revenue in compare with average LMP

5.5 Effect of DR Programs on LMP

In Fig. 5.7 and Fig. 5.8, the monthly average LMP and standard deviation are shown

before and after the DR programs in San Diego and LADWP regions. LMP average and

volatility is relatively small in the winter and higher during the summer peak period as

expected. The optimum DR scheme reduce both average and variation of LMP.
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Figure 5.6: Customers saving and LSEs net revenue per total load
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Figure 5.7: Average monthly LMP in San Diego
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6 Generator Outage and Using IBDR to

Diminish Economic Impact

Transmission and distribution systems mainly face two broad types of reliability issues:

insufficient capacity (generation or transmission) and resilience to faults. Insufficient

capacity is a major threat for the system viability especially at the transmission level. In

this case, ISOs call on capacity of available resources and emergency units first and then

ask for DR for large customers [166]. Market operators using various types of emergency

load relief programs during shortages. New York ISO (NYISO) offers emergency DR and

distributed load relief programs for customers who can shed at least 100 kW and 50 kW,

respectively. PJM ISO (Pennsylvania, Jersey, Maryland) has two levels of load response

program during emergency, voluntary and mandatory program, which are implemented

based on the severity of situation. CAISO has mandatory interruptible DR program which

requires that customer shed at least 100 kW [167]. Most of these programs target large

customers. The potential of small customers in these circumstances is underestimated.

In this chapter, the effect of small customers on load reduction is investigated for outage

conditions.

6.1 Effect of Generator Outage on Market Price

During a shortage of capacity, such as, a generator outage, the market operator must ask

for more expensive generators to meet the demand. This can cause sharp and sudden

changes in market price. Since unscheduled generator outage is a real time problem,

73



the unit commitment result would not be changed and economic dispatch should be done

using available reserve generators. After a generator outage, the LMP can be found using

the following DC Optimal Power Flow (DCOPF) formulation:

min
NT∑
t=1

NG+NR∑
i=1

(Ci × (Git +Rit)) (6.1)

Subject to:

NG+NR∑
i=1

Git +Rit =
ND∑
j=1

Dj (6.2a)

NT∑
i=1

GSFki × Pit ≤ limitk (6.2b)

Gmin
i ≤ Git ≤ Gmax

i (6.2c)

Rmin
it × Rampdown

i ≤ Rit ≤ Rmax
it × Rampupi (6.2d)

Pit = Git −Djt (6.2e)

According to above formulation, after generator outage, market price found according

to available generators and selected reserves to dispatch. For reserve generators, ramp

rate of their output power and their start up cost should also be considered.

6.2 Using IBDR to Decrease Economic Consequence

Emergency DR in most of current literature is seen as that large enough to meet require-

ments of reserve market; however, aggregate of small customers could also be significant

enough to meet shortage capacity, but they are rarely mentioned in literature. In this

chapter, it will be shown that small customers, especially residential sector, could be

effective enough to mitigate economic effect of outage in market. DR is viewed in this
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Figure 6.1: LMP on bus# 215-July 6th -100% of DR potential

chapter as an economic based program, which tries to decrease economic consequence of

an element outage in the power system. This DR does not deal directly with reliability

but the related economic effects [193].

In Fig. 6.1 and Fig. 6.2, a coal unit is considered to be out for two hours on July 6th.

The generator outage is considered on peak time to simulate worst case situation in the

system. During peak hours, most of the available generators are producing maximum

output, and therefore, outage of one significantly effects market price. If the proposed

IBDR in this chapter could be useful during peak hours, it should be effective in other

hours with less price change as well.

As shown generator outage has considerable effect on LMP, but IBDR will significantly

diminish sharp change in LMP. In Fig. 6.1, 100% of the estimated potential of DR is

captured and in Fig. 6.2, only 70% of the estimated load change is achieved. Even with

70% of the forecast load reduction, DR has considerable impact on LMP. In other words,

Fig. 6.2 shows that even if there is 30% error in estimation of load change potential (that is

considerable), still IBDR effectively mitigates the economic impact of a generator outage.

The main point of the proposed DR program is that, although generator outages affect
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Figure 6.2: LMP on bus# 215-July 6th -70% of DR potential

the whole system and many regions would incur costs from a higher LMP; the DR only

needs to be implemented in the region with the outage. This point is significantly helpful

for practical implementation of DR program. When generator is out for unscheduled

reasons in one region, there is no need to communicate with other regions for load mod-

ification. Fig. 6.3 show the results of LSE benefit loss after the outage and after DR.

The generator outage results in significant costs increase, especially for the PG&E region

where the generator is located. The, IBDR effectively reduces costs for all LSEs.

In Tab. 6.1, the load reduction and incentive payment at 5 p.m. of July 6th are shown

for some of the load buses in the PG&E region. The load reduction is either small or

the incentive amount is significant in response to the load change. Customers get more

than $4 incentive in response to each MW change. This load change occurs rarely, i.e.,

only following an outage, so it is not a large impact on customer’s comfort. In Fig. 6.4,

another example of DR impact on prices is shown. In this case, a gas turbine is out for

two hours on October 14th. Summary of savings for LSEs after DR is shown in Fig. 6.5.

In this example, LADWP has highest benefit lost, since the gas turbine is located in this

region. As in the previous example, IBDR effectively reduces the economic consequences
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Figure 6.3: July 6th- LSEs benefit lost

of the generator outage.

6.3 Economic Rank of Generator Outage

A challenge for designing DR in outage condition is time constraints. Fast response is

important in shortage condition since it could endanger reliability of system. On the

one hand, small customers are one of the slowest responders for DR. To overcome this

contrast, the novel idea of outage economic ranking is proposed. Economic ranking is

ordering outage of each element based on their expected effect on market price. This

helps operators to estimate economic consequence of generator outage faster than the

market real time price window and allows time to implement appropriate DR.

The electrical distance approach is used to rank economic consequence of generator

outage. When there is an outage, power is shifted among generators to different trans-

mission paths. Distribution factors such as the power transfer distribution factor (PTDF)

and line outage distribution factor (LODF) are used to estimate changes in line power
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Table 6.1: Demand Response Report at 17 p.m. in PG&E region

Bus# Load change (MWh) Incentive ($/MWh)
14 25 100
19 13.68 74.24
20 11.68 63.4
35 20.9 89.91
36 3.14 12.57
45 2.22 8.88
50 1.11 6.68
75 12.61 68.42
83 11.76 63.97
215 17.32 93.98
217 6.15 24.6

flow and generator injection due to these faults. These factors, which are based on the

DC power flow method, provide approximate but a quick solution for the change in power

flows. Higher PTDF and LODF, means a larger change in system caused by the change

in an injection, which means higher sensitivity and generally shorter electrical distance.
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Figure 6.4: LMP on bus# 11- October 14th
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Figure 6.5: October 14th - LSEs benefit lost

The power flow on a transmission line is approximately calculated as following [168]:

Pij = δi − δj
xij

(6.3)

This requires the angle value of the “from” and “to” buses, which is obtained from (10.3b)

.

δ = B−1P (6.4)

where B is from the impedance matrix of system as follows:

B = Im(Y ) = ( −XL

R2
L +X2

L

) (6.5)

The inverse of B at the nth bus without loss of generality is taken as the slack bus, a
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zero entry is inserted for the nth row and column, so this new matrix is labeled as X.

Therefor the PTDF matrix is as follows:

PTDF = Bbr × A×XL (6.6)

where Bbr is a NT ×NT dimensional matrix and A is NT ×NL , the branch incidence matrix

where 1 and −1 stand for the “for bus” and “to bus” respectively.

There are three important sets of elements in power market, marginal units which

define market price at each time, expensive generators and congested lines which lead

to different prices in various locations. Electrical distance from each of these sets give

an appropriate measure for ordering economic consequence of each generator outage.

Economic ranking is helpful for any corrective actions since the operator can immediately

initiate appropriate DR without waiting for the next real time price market window to

see its true effect.

In the following example, we investigate how generators can be ranked based on their

economic impact. Three generators are chosen, which have similar power output but

with different effects on LMP. Their economic impact is ordered as generators 208, 199

and 227. It means, an outage of gas turbine number 208 has the highest impact on price

change and outage of generator 227 has the least effect. In the following tables, the

distribution factor for these generators on congested lines, marginal units and expensive

units is shown. These distribution factors act as a sensitivity where the higher values

reflect a tighter relation and closer electrical distance. In Tab. 6.2 and Tab. 6.3, there

is no clear pattern between the distribution factors that match with economic order of

the generators. Still in Tab. 6.4, generator 208 has highest factor to the all expensive

generators and unit 227 has the lowest factor. This trend matches with their economic

ordering.
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Table 6.2: Distribution factor of generators with congested lines

Congested line Gen. 208 Gen. 199 Gen. 227
123-138 0.2249 0.1955 0.0705
57-172 0.2403 0.2108 0.1806
58-146 0.2164 0.187 0.2027
63-179 0.262 0.2336 0.1613
64-54 0.1441 0.1147 0.1513
77-196 0.0538 0.0414 0.2523
107-215 0.2027 0.1733 0.1072

Table 6.3: Distribution factor of generators with marginal units

Marginal unit Gen. 208 Gen. 199 Gen. 227
209 0.2408 0.2113 0.277
139 0.1655 0.1361 0.1726
210 0.1319 0.0829 0.2473
126 0.2326 0.264 0.1917
140 0.1572 0.2075 0.2828
155 0.0826 0.06 0.2636
166 0.2216 0.1921 0.0793
178 0.2553 0.2413 0.169
197 0.2298 0.2004 0.0892
161 0.1053 0.0445 0.2502

Table 6.4: Distribution factor of generators to expensive units

Expensive Gen. Gen. 208 Gen. 199 Gen. 227
190 0.2762 0.1507 0.0898
180 0.1692 0.162 0.1326
174 0.2457 0.1364 0.0829
201 0.2281 0.1986 0.1644
157 0.3442 0.3147 0.2472
216 0.2102 0.1608 0.1355
202 0.2995 0.2701 0.2399
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7 Impact of Wind Forecast Error on Real

Time Market Price

The real time market price is associated with uncertainty due to load or RER forecast

error, unscheduled outage and so on. Various approaches to these forecasts are possible

but weather is one of the key components and requires multiple source of data. For

example, California ISO (CAISO) used neural network based forecasting software for its

Day-Ahead (DA) forecast. To ensure the average load forecast error is minimized, CAISO

continuously updates its DR forecast data based on updated weather information. CAISO

also uses the scheduled energy data that each LSE would submit in the DA market. Each

LSE has its own method of load forecasting for its offers in the market [170]. With the

current state-of-the-art in forecasting tools, load forecast error for DA is typically less

than 2%, which normally would not cause any major issues [169]. The main source of

uncertainty in DA scheduling for RERs is due to two main reasons. First, RER are

not required to submit bids in the DA market and moreover the forecast error for wind

generators in DA is around 30%. Currently, the uncertainty associated with forecasting

the output levels of intermittent resources in the DA time frame do not pose any reliability

concerns as the levels are not great; however with expansion of RERs, this could lead

to reliability issues as well as increased financial risk. In this chapter, a scenario based

economic dispatch is introduced, using the DOE approach for scenario reduction, to

simulate variation of real time market prices considering wind forecast error.
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Table 7.1: Summary of wind forecast error statistics

Average Minimum Maximum Standard Deviation Autocorrelation
Winter 0.00 -0.36 0.31 0.07 0.61
Spring 0.00 -0.43 0.31 0.09 0.71
Summer 0.00 -0.32 0.31 0.08 0.65
Fall 0.00 -0.32 0.4 0.08 0.59

7.1 Wind Forecast Error Distribution

The wind forecast error used in this study is based on information from the AWS

TrueWind corporation. It is calculated by taking the difference between the actual and

forecast production from June 2006 through May 2011 [170]. The forecast error for vari-

ous time frames are shown in Tab. 7.1. The autocorrelation (R) is calculated to determine

the time-dependence of forecast errors. If the R value is close to 1 it shows that there is

strong positive relation between current and previous values. When the R value is close

to -1, it expresses the negative dependency between the observations. An autocorrelation

close to 0 indicates that the current value provides no information about the next value.

In our study, the correlation between forecast errors of seven power plants is assumed to

be negligible due to their significant geographic distance.

R = 1
(n− 1)σ2

n−1∑
i=1

(Xi − µ)(Xi+1 − µ) (7.1)

The statistical distribution of the forecast error was analyzed in [170]. The forecast er-

ror distribution mainly follows a truncated normal distribution. A truncated distribution

simply bounds the extreme points. This characteristic is more practical for physically

constrained data. For example, we can not expect the wind forecast error to exceed

plant capacity. The truncated normal distribution is represented in piece-wise function

to ensure no value falls outside the boundary. It is re-scaled by the normal distribution
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Figure 7.1: Tolerance intervals for normal distribution

as in Fig. 7.2.

PDFTND(ε) =



0, −∞ ≤ ε ≤ εmin

PDFN (ε)´ εmax
εmin

PDFN (ε)dε εmin ≤ ε ≤ εmax

0, εmax ≤ ε ≤ +∞

(7.2)

where n (7.2), the normal distribution is:

PDFN(ε) = 1√
2πσ2

e
−1
2 ( t−t0

σ
)2
, −∞ ≤ ε ≤ +∞ (7.3)

Maximum and minimum of forecast error shown in Tab. 7.1 are equivalent to more than

3 standard deviations, which means, if we use these ranges, we cover about 99.7% of the

data as shown in Fig. 7.1. A tolerance interval shows a statistical interval that a specific

proportion of sampled data would fall within with some confidence level. Distribution of

the wind forecast error in each season is shown in Fig. 7.2.
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Figure 7.2: Day ahead wind forecast error by season

7.2 Scenario Based Economic Dispatch

There are many methods to address the uncertainty of variables in optimization problems.

In this dissertation, a scenario based robust approach is chosen to estimate the effect

of wind forecast error on market price. The scenario method or scenario optimization

approach is a technique for finding the solutions to robust optimization and also chance-

constrained optimization problems that have some random constraints. The technique

has existed for decades as a heuristic approach and more recently a more systematic

foundation has been developed. The goal of this section is to simply find a range of

market prices due to wind forecast error. This range will be useful in our other analysis

for robust DR design. Here, the scenarios are simply input to an economic dispatch since

unit commitment results generally do not change if renewable output deviates from their

85



scheduled value and available reserve generation can compensate for the imbalance.

min
Git

{
NT∑
t=1

NG∑
i=1

ρsCi(Gits)
}

(7.4)

NG∑
i=1

Gits +
NWG∑
i=1

GWits =
ND∑
j=1

Djts , ∀s ∈ S (7.5a)

Gmin
i ≤ Gits ≤ Gmax

i , ∀s ∈ S (7.5b)
NG∑
i=1

GSFki(Gits +GWits)−
ND∑
j=1

GSFkjDjts ≤ Fmax
k , ∀s ∈ S (7.5c)

In (10.2f), the cost of wind power is not considered since wind units are “must take” in

the market. Index s in the above formulation refers to the different scenarios. Since the

purpose is to find a range of prices, equal probability is considered for all scenarios. Each

scenario in (10.2f) refers to a particular output of wind generation, considering various

level of forecast error. After running all scenarios, the minimum and maximum market

prices can be found. The main obstacle for this method is the size of scenario sets. Since

the main objective is to find a range of prices, one appropriate method to deal with

number of scenarios is the DOE approach as discussed in next section.

7.3 Price variation: DOE approach

The objective of this section is to find range of market prices using the minimum possible

number of scenarios.

7.3.1 Fractional Factorial

With 7 wind farms, the full factorial model has 27 = 128 combinations which is too large

for the analysis over a full year. An alternative is to use a fractional factorial design
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[171, 111]. In a full factorial design, we would build models with 7 variable interactions

as follows:

y = a0 +
∑

aixi +
∑

aijxixj + ...+ αx1x2...x7 (7.6)

Using a fractional factorial instead of full factorial can be justified if the reduced model

is efficient and the missing information is limited. Specifically:

• Efficiency of design: This criteria quantifies the goodness or efficiency of an exper-

imental design. Common measures of the efficiency of an (ND × p) design matrix

X are based on the information matrix X ′X . There are three major efficiency

measures [172]:

– A-efficiency is a function of the arithmetic mean of the eigenvalues (and the

arithmetic average of the variances) is given by the trace ((X0X)−1)/p

A− efficiency = 100 1
NDtrace((X0X)−1)/p (7.7)

– D-efficiency is a function of the geometric average of the eigenvalues and it

is given by |(X0X)−1|1/p. Both D-efficiency and A-efficiency are based on the

concept of average variance but using a different mean.

D − efficiency = 100 1
ND|(X0X)−1|1/p

(7.8)

– G-efficiency is based on σM which is the maximum standard error of prediction

over the candidate set.

G− efficiency = 100

√
p/ND

σM
(7.9)
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Table 7.2: Design Efficiency

full factorial fractional factorial
A-efficiency 100% 100%
D-efficiency 100% 100%
G-efficiency 100% 100%

There are no absolute values of the above inefficiencies that are given in the

literature and could be used to measure the effectively of study approach and

the observations. Instead, the efficiency values of different designs should be

compared to each other to make an appropriate decision.

The proposed model is a fractional factorial model with 27−3 treatment combinations.

As give in Tab. 7.3, instead of 128 treatment combinations we now have 27−3 = 16 com-

binations. The first criteria for validity of fractional factorial model is efficiency. As seen

in Tab. 7.2, switching from full factorial to fractional factorial is valid. The second crite-

ria requires finding confounding pattern. The following formula shows the confounding

pattern of fractional factorial model. As it can be seen, there is no ambiguity about

definition of any main effect.

I = x2x3x4x5 = x1x3x4x6 = x1x2x5x6 = x1x2x4x7 = x1x3x5x7 = x2x3x6x7 = x4x5x6x7

(7.10)

7.3.2 Results

Since the model has all factors at both low level and high levels as well as all two and

three factor interactions, it is highly likely that we will capture the range of variation in

LMP. Another possibility is anomaly in the data with the maximum/minimum somewhere

between +1s and -1s. A point (0000000) is added to model to capture that situation. If

surface analysis shows any significant, then a follow up design and analysis is necessary
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Table 7.3: Treatment Combinations

x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7
T1 -1 -1 -1 -1 -1 -1 -1 T9 +1 -1 -1 -1 -1 +1 +1
T2 -1 -1 -1 +1 +1 +1 +1 T10 +1 -1 -1 +1 +1 -1 -1
T3 -1 -1 +1 -1 +1 +1 -1 T11 +1 -1 +1 -1 +1 -1 +1
T4 -1 -1 +1 +1 -1 -1 +1 T12 +1 -1 +1 +1 -1 +1 -1
T5 -1 +1 -1 -1 +1 -1 +1 T13 +1 +1 -1 -1 +1 +1 -1
T6 -1 +1 -1 +1 -1 +1 -1 T14 +1 +1 -1 +1 -1 -1 +1
T7 -1 +1 +1 -1 -1 +1 +1 T15 +1 +1 +1 -1 -1 -1 -1
T8 -1 +1 +1 +1 1 -1 -1 T16 +1 +1 +1 +1 +1 +1 +1

Figure 7.3: Parameter estimates at hour 234 for bus 14

with points halfway inside the original design. Here the analysis shows that the given

design is valid. For one example, analysis at hour 234 for bus 14 is shown in Fig. 7.3 and

Fig. 7.4. Variable selection shows that LMP is dependent on the output of generator x3.

The prediction profile shows how the output of different generators will change the LMP

on bus 14. The parameter x3 has the highest slope and is the most effective predictor.

As another example, consider bus 8. The original LMP is categorized into $5 intervals

and the change in LMP is analyzed for each interval. In addition to surface analysis, the

surface profile can confirm the small curvature assumption. For different price segments,

the prediction profile is depicted in Fig. 7.5. Prediction profile shows how changes of

each factor changes the model output. For example with the price of $35, the slope of

x3 is greatest and is the most predictive. The interaction profile is depicted in Fig. 7.6.

The variable interactions do not show any curvature and generally change linearly. The

surface profile for different LMP prices is given in Fig. 7.7.
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Figure 7.4: Prediction profile at hour 234 for bus 14

7.4 Market Price Range Results

Using the scenario based economic dispatch and DOE approach, the uncertainty range

of price is now calculated. Selected examples during peak hours of different seasons

are presented in the following graphs. Generally, a lower LMP has a smaller range of

uncertainty since price is less sensitive to load or generation changes. If load is low

and RER output is sufficient, then forecast error should not cause much variation in

market price. While if demand is high and RER output is low, the forecast error could

have significant effect on price. In other words, the range of price uncertainty depends

primarily on load consumption and available RER production.
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Figure 7.5: Prediction profiler for bus 8
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Figure 7.6: Interaction profile for bus 8

Figure 7.7: Surface profile for bus 8
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Figure 7.8: Range of prices at daily peak hour in July in San Francisco

Figure 7.9: Range of prices at daily peak hour in March for SMUD
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Figure 7.10: Range of prices at daily peak hour in November for Idaho

Figure 7.11: Range of prices at daily peak hour in May for Rocky Mt.
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8 IBDR with High Penetration of RER

Global concerns of climate change and energy price have led to focused attention RERs.

Among the RERs, wind power generation remains the dominant source. The uncertain

nature of wind power and the relatively high investment costs create barriers to large scale

grid adoption. Nevertheless, it is expected that 20% of the total consumption in U. S. will

from wind power generation by 2030. The main research question is how best ISOs can

overcome the negative impacts of wind power intermittency and facilitate grid integration.

As of today, most power systems are operated under a “must take wind power” policy.

The approach so far has been to manage the wind volatility and uncertainty through

supply-side reserves. In this chapter, we show how the flexibility of the demand in terms

of consumption modification could effectively mitigate the intermittency. An robust

IBDR program considering real time market price forecast uncertainty is designed. In

addition, customer behavior uncertainty is simulated in terms of an elasticity range [113].

8.1 Impact of RER Expansion on LSE benefit

The customer tariff prices are chosen as close to the monthly average of LMP based on the

LSEs revenue objective function as in (4.1). Still, the LSE profit depends on the variation

in market price. As LMP variation is related to time of year and RER output, the LSE

benefit will also vary across regions and season. The impact of renewable expansion on

profit is assessed based on both the average and standard deviation of the LMP. Two

sets of examples are chosen: (1) PG&E and SMUD where LSE profit decreases after
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Figure 8.1: LSE benefit change in PG&E

expansion in all seasons, except summer; (2) Southwest, San Diego and LADWP where

LSE profit is reduced in winter and fall but increases in summer and spring. Within

the first set (Fig. 8.1), the monthly average of LMP and standard deviation increases

for all months. Since the load in off peak is much lower than at peak, the LSEs lose

profit relative to less price volatility. In summer, since standard deviation was high even

before renewable expansion of renewable, the revenue change is minimal. Among the

second group (Fig. 8.2), the change in average LMP is small and customer tariff remains

relatively unchanged. As a result, LSEs lose profit in the summer and spring and increase

profit in fall and winter.

In addition to above examples, there are three other regions where the impact of RERs

on LSE profit is interesting to discuss. The Northwest loses throughout the year. The

standard deviation of LMP in this region before expansion was small and so the price

volatility increases greatly. This is an interesting example of how variation in market

price can affect utility profit event if average costs remains approximately the same. In

the Rocky Mt. and Idaho regions, the LSE profit increases throughout the year. These

regions are closest to the location of large RERs and also have low load most of the year.

Therefore, the average LMP decreases after expansion most of the year.
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Figure 8.2: LSE benefit change in Southwest

8.2 Robust IBDR Optimization

In robust optimization, random variables are modeled as uncertain parameters that be-

long to a convex uncertainty set and primarily protect against worst case scenarios. In

robust optimization, the uncertain quantities, either parameters or random variables, are

modeled as parameters that belong to predefined intervals. One important concept in

robust optimization is the level of conservativeness.

8.2.1 Ellipsoid Uncertainty

Ellipsoidal uncertainty sets are used in this study but they will increase the problem

complexity. For example, the robust representative of a linear program is a second-order

cone problem. Ellipsoidal uncertainty sets are deemed an appropriate choice here based

on the Ben-Tal study [163]. Namely:

• A simple geometry of uncertainty is not mathematically interesting and provides

little insight.
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• An ellipsoid is a convenient entity as in can be represented in a simple parametric

format and is well-behaved numerically.

• In many cases of stochastic uncertain data, probabilistic arguments allow one to

replace stochastic uncertainty by an ellipsoidal deterministic uncertainty. For ex-

ample, an uncertain Linear Programming (LP) problem with random entries in

the constraint matrix. For a given x, the left hand side li(x) = aTi x + bi of the

ith constraint in the system, ATx + b0 ≥ 0, is a random variable with expectation

ei(x) = (a∗i )Tx + bi, and standard deviation vi(x) =
√
xTVix . A typical value

of the random variable li(x) will therefore be ei(x) ± O(vi(x)). For a light tail

distribution of the random data, a likely lower bound on this random variable is

l̂i(x) = ei(x) − θvi(x) with “safety parameter” θ of order of one (cf. the engineers

“3-rule” for Gaussian random variables). This bound leads to the “likely reliable”

version:

ei(x)− θvi(x) ≥ 0 (8.1)

Note that the latter constraint is exactly the robust counterpart of the original

uncertain constraint.

aTi x+ bi ≥ 0 ∀ai ∈ ui (8.2)

ui is specified as the ellipsoid set as follows:

ui = {a : (a− a∗i )TV −1
i (a− a∗i ) ≤ θ} (8.3)
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8.2.2 Robust format of IBDR

To include elasticity uncertainty, the market price in (4.2) in chapter 4 is rewritten as:

max
NB∑
b=1

M∑
t=1

[−DbtLMPbt −∆D̄btP
0
b + ∆D̄btLMPbt −∆D̄btP

inc
bt ] (8.4)

∆D̄bt =
DT∑
j=1

gjP
inc
bt (8.5)

4Dmin
btj
≤ ∆Dbtj ≤ 4Dmax

btj
(8.6)

Substituting the equality constraint (8.5), we obtain:

max
NB∑
b=1

M∑
t=1

[−DbtLMPbt −
DT∑
j=1

gjP
inc
btj
P 0
b +

DT∑
j=1

gjP
inc
btj
LMPbt −

DT∑
j=1

gjP
inc
btj
P inc
btj

] (8.7)

4Dmin
btj
≤ ∆Dbtj ≤ 4Dmax

btj
(8.8)

The equivalent minimization problem is:

min
NB∑
b=1

M∑
t=1

[DbtLMPbt +
DT∑
j=1

gjP
inc
btj
P 0
b −

DT∑
j=1

gjP
inc
btj
LMPbt +

DT∑
j=1

gjP
inc
btj
P inc
btj

] (8.9)

4Dmin
btj
≤ ∆Dbtj ≤ 4Dmax

btj
(8.10)

Introducing the auxiliary variable Z, we simplify (8.9) to:

min Z (8.11)

subject to:
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Z − [
NB∑
b=1

M∑
t=1

DT∑
j=1

gjP
0
b P

inc
btj
−

NB∑
b=1

M∑
t=1

DT∑
j=1

gjLMPbtP
inc
btj

+

NB∑
b=1

M∑
t=1

DT∑
j=1

gjP
inc
btj
P inc
btj

] ≥
NB∑
b=1

M∑
t=1

DbtLMPbt (8.12)

4Dmin
btj
≤ ∆Dbtj ≤ 4Dmax

btj
(8.13)

In matrix representation, (8.12) is:

−P 0GeTP inc + Z +GLMP TP inc − P incT diag(G)P inc ≥ DTLMP (8.14)

And by adding uncertainty range of variable to (8.14), we have:

− P 0(G0 + u1G
1)eTP inc + Z + (G0 + u1G

1)(LMP 0 + LMP 1)TP inc

− P incT diag((G0 + u1G
1))P inc ≥ DT (LMP 0 + LMP 1) (8.15)

∀(u : ‖u‖2 ≤ 1) (8.16)

If there is a point in the ellipsoid ‖u‖2 ≤ τ that cannot satisfy the constraint (8.15),

the entire problem becomes infeasible. This possibility highly depends on the range of

variation, which we can manipulate to gain insight into the problem. We first define

conservativeness. In a linear problem, ρ ≥ 1 is level of conservativeness u = {(A0, b0) +

ρ(A1, b1)}. As ρ increases above 1, the feasible region shrinks and eventually fells inside

the original feasible region. The smallest ρ for which this occurs is called the level of

conservativeness. So we can increase the viable range by selecting a narrow range and

increasing ρ. Conversely, we can start with a large range and decrease ρ to find the largest

feasible set.

− P 0(G0 + u1G
1)eTP inc + Z + (G0 + u1G

1)(LMP 0 + LMP 1)TP inc−
P incT diag((G0 + u1G

1))P inc −DT (LMP 0 + LMP 1) ≥ 0 (8.17)

∀((u, τ) : ‖u‖2 ≤ τ) (8.18)
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We want to make sure that if ‖u‖2 ≤ τ then constraint (8.17) holds. If we replace the

left hand side by w then we can write:

τ − uTu ≥ 0⇒ w ≥ 0 if ∃λ ≥ 0 : w ≥ λ(τ − uTu)
So if such a λ exists the problem is feasible. We can write this as another optimization
problem as follows:

max τ (8.19)

Subject to:

‖u‖2 ≤ τ (8.20)

− P 0(G0 + u1G
1)eTP inc + Z + (G0 + u1G

1)(LMP 0 + LMP 1)TP inc−

P incT diag((G0 + u1G
1))P inc −DT (LMP 0 + LMP 1)T ≥ λ(τ − uTu) (8.21)

λ ≥ 0 (8.22)

We use the τ as in the original model.

8.3 Robust IBDR Results

In this section, a deterministic and robust IBDR program are analyzed from different

perspectives. The price uncertainty is obtained from chapter 7 with elasticity range

is considered to be [−0.05 − 0.15] for small commercial and industrial customers and

[−0.1 − 0.2] for the residential sector. An important component in this work is identifying

risks that robust design can minimize.
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Figure 8.3: Hourly incentive payment vs. expected LMP in San Diego during July

8.3.1 Comparison of Deterministic and Robust Program

From the LSE point of view, an IBDR program faces risks due either unexpectedly high

LMP or unexpectedly low LMP. For high LMP, LSEs should pay greater incentive and

increase the demand response. In a deterministic solution, this situation leads under-

payment for DR. For low LMP, the deterministic program results in over-payment of

incentives.

As shown in chapter 3 for most times, the expected day-ahead LMP falls approxi-

mately midway between the lowest and highest possible LMP. In thess hours, robust and

deterministic programs have similar results. This does not always though. In Fig. 8.3, an

hourly incentive payment for deterministic and robust program vs. market price range

are shown for peak hours in one week of July. When the expected LMP falls close to ei-

ther the maximum on minimum LMP, then there is robust solution provides significantly

different incentive payments. In Fig. 8.4, results are plotted in the Southwest region for

one week in October. When risk of higher LMP is greater, e.g. hours 5, 6 and 7, ro-

bust pay greater incentive to the customers to take advantage of an “opportunity” in the

market. For a lower price risk, e.g., hours 1, 2 and 3, robust pays less incentive to avoid

unnecessary losses from over-payments.
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Figure 8.4: Hourly incentive payment vs. expected LMP in Southwest during October

If real time LMP deviates little the forecast value, then obviously the robust IBDR

program has little benefit. Still, significant errors during only a few hours results in

significant loss without the robust approach. Tab. 8.1 show LSE benefit under the two

IBDR programs for expected case, low LMP and higher LMP cases. Note that profit loss

the expected values covers an entire month but unexpected LMP reflects only an hour.

Thus, the robust solution can cover lost profit with with just a few hours of unexpectedly

high or low prices.

Another important comparison between robust and deterministic program is the effect

on market price. Higher incentive payments will lead to greater DR. Therefore, con-

sidering low LMP concern, the robust solution pays less incentive, while for high LMP

concern, the robust pays more incentive. Thus, the net effect should be less volatility in

LMP. Fig. 8.5 shows LMP variation in one day at July for Bay area region. In hour 10,

the robust solution lowers LMP but increases LMP during.

8.3.2 Effect of IBDR on LSE profit

Whether RER expansion results in profit loss or gain for LSEs, IBDR is an effective

tool to reduce market peak prices and bring other benefits to all participants. IBDR
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Table 8.1: Comparison of LSE profit by DR (different between robust and deterministic)

July
Region Expected Low LMP High LMP

Southwest -$109,953 $55,277 $32,276
San Diego -$10,022 $16,902 $6,362
LADWP -$17,883 $7,307 $7,560
Bay area -$20,152 $6,684 $2,939
Fresno -$9,283 $3,480 $2,511

Rocky Mt. -$43,855 $18,416 $16,077
Idaho -$13,147 $5,130 $4,559
Nevada -$9,387 $5,753 $6,038
SMUD -$27,720 $8,722 $11,583

Feb.
Region Expected Low LMP High LMP

Southwest -$160,336 $51,141 $47,221
San Diego -$18,327 $4,410 $2,519

San Francisco -$29,168 $2,134 $1,924
Bay area -$193,073 $23,863 $20,679
Cnt. Coast -$67,225 $7,434 $5,246
PG&E -$267,146 $60,296 $80,058

rocky Mt. -$209,917 $15,818 $14,758
Idaho -$58,673 $11,492 $10,754
SCE -$196,412 $19,161 $12,026

program design in this thesis is region based, so each region implements a DR program

individually. Considering the total demand response, the LMP changes are considerable

even with relatively small load changes in each region. Fig. 8.6 shows two examples of

LSE profit change after RERs expansion and DR. In (a), several regions are shown that

lose profit under RER expansion but DR decreases the percentage loss. In (b), several

regions are shown that increase profit and under DR profit increases more. Fig. 8.7 shows

the effect of DR on net revenue in regions where expansion has an overall negative impact

on profit (part a) and an overall positive impact on profit (part b). In both cases, DR

remains effective and helps compensate for economic consequence of high RERs.
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Figure 8.5: Effect of robust and deterministic program on LMP in Bay area during June

8.3.3 Customer savings under IBDR

Fig. 8.8 shows customer saving per load change during summer and winter. As expected,

summer has the greatest benefits for customers, since the load change in the peak season

is more critical. The incentive payments shown in Fig. 8.8 indicate the proposed IBDR

achieves acceptable saving for customers. The proposed IBDR in this thesis would be

a voluntary program and would not change customers monthly tariff, but simply pay

sufficient incentives to reward participants. That is, savings are only for customers who

participate.

8.3.4 Effect of IBDR on LMP

In addition to benefits for load aggregators and customers, the proposed IBDR program

will impact price, especially at peak times. In Fig. 8.9, Fig. 8.10 and Fig. 8.11, the LMP

variation for the worss day of August, February and October is shown, respectively. The

largest effect on LMP occurs during the summer higher sensitivity to load change at

peak times and greater incentive payments from each LSE (Fig. 8.8). The effect of RER

expansion on LMP variation can be seen in Fig. 8.11. While the LMP profile no longer

simply follows load variation but follows RER generation profile. Still, DR reduces LMP
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a) Profit loss (summer)

b) Profit gain (winter)

Figure 8.6: LSE benefit change under RER expansion and DR
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a) Profit loss

b) Profit gain

Figure 8.7: LSE net revenue change under RER expansion and DR
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a) Winter

b) Summer

Figure 8.8: Customer saving under each IBDR program
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Figure 8.9: LMP variation in one day of August in Fresno

volatility.

8.4 Discussion on TOU Effectiveness

Implementation of an effective TOU program after RER expansion is challenging as the

variation of LMP does not follow a regular pattern that customers could anticipate. Note

the following situations:

• Low load and high RER production. The variation of price in one day will not

match the typical specific peak and off peak hours, because LMP variation mostly

follows the RER output instead of load profile. An example is show in Fig. 8.12 for

Idaho during first four days of October.

• High load and low RER production. iWe can find peak and off peak period for each

day individually but they will still vary across days. Even though RER output

is low, the RERs still have the highest influence on LMP value. The peak prices
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Figure 8.10: LMP variation in one day of Feb. in PG&E

occur during the lowest RER production. An example is shown in Tab. 8.2 for the

San Diego area in March. The table compares day two and three as an example

to variation in peak hours. To design an effective TOU program, the peak and off

peak time period must be changed each day.

• Moderate load and moderate RER production. Peak and off peak time periods are

relatively similar each day; however, the LMP value varies greatly. The TOU can

be designed based on constant peak and off peak period with a varying tariff from

day to day. An example is shown in Fig. 8.13 for Rocky Mt. during one week of

January.

110



Figure 8.11: LMP variation in one day of October in Nevada

Figure 8.12: LMP variation during 4 days of October in Idaho

111



Table 8.2: Peak and off peak periods from March 8th to 14th in San Diego

Off peak hours
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

1 1 1 1 1 2 1
2 2 14 2 2 4 2
3 4 15 3 3 5 3
4 3 16 4 4 14 4
5 5 17 5 5 15 5
6 6 18 6 6 16 6
19 7 19 7 7 17 7
20 8 20 8 19 18 8

Peak hours
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

7 12 2 13 8 1 12
8 13 3 14 9 3 13
9 14 5 15 10 6 14
10 15 4 16 11 7 15
11 16 6 17 12 8 16
12 17 7 18 13 9 17
13 18 8 19 14 10 18
14 19 9 20 15 11 19

Figure 8.13: LMP variation in one week of January in Rocky Mt.
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9 Estimation of IB Elasticity for Residential

Customers

A key factor in the design of almost all demand response programs is the load elasticity.

Elasticity is a measure of the customer response to a tariff or incentive. Due to the com-

plexity of human behavior and corresponding electricity use, demand elasticity remains

poorly understood. Many studies have been conducted over the years to estimate elastic-

ity of electricity demand to price signals, particularly, during the 1980s and early 1990s

when energy prices were rising rapidly and concerns about energy conservation increased

[173]. The majority of these studies use an electricity demand modeling technique to

calculate price and income elasticity of electricity; however, they almost exclusively focus

on on PB elasticity. There is a need for further research on IB elasticity. This chapter

explores this subject.

9.1 Problem Statement

The distinction between customer response to a price or incentive signal is the main

motivation for this study. IBDR as a reward program should compare favorably to

PBDR programs as customers tend to see PB approaches as a punishment. There are

three components of elasticity explored in this chapter:

• elasticity of residential customers,

• elasticity toward an IBDR program, and
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• elasticity specific to different household appliances.

9.1.1 Residential customer

The residential sector makes up about 40% of total electric energy consumption. At peak

time, the share is higher and it can be as much as 50% of consumption. In addition,

according to U.S. energy information administration, residential sector load is growing

and demand is expected to increase at least 15% by 2040 [167]. Historically, industrial

and large commercial loads are considered to be best candidates for DR programs due to

the challenge of controlling large numbers of small residential loads. Still, residential loads

can provide more reliable response in compare with small number of large loads [174].

Local controls in the residential sector can allow for faster response [175, 176]. Finally,

smaller loads can effectively provide continuous response unlike larger loads [177]. Today,

DR potential of residential sector remains untapped.

9.1.2 IBDR programs

IBDR is a reward system in contrast with PBDR programs that can be seen as a punish-

ment (paying a penalty) program. Studies show that people subject to punishment type

programs are more nervous, less happy and are less responsive [178]. People are more

likely to accept incentive contract described in bonus terms than contracts that appear

exactly the same except for being explained in penalty terms [179]. In addition, cus-

tomer’s preference for reward based programs increase with experience that makes IBDR

programs more effective over the long term [180]. Other concerns about PBDR programs

include the need for extensive infrastructure to implement on a large scale, social equity

and price volatility [181, 182]. Generally, retail customers are risk-averse and not willing

to make decisions about consumption on hourly basis as is required for PBDR programs,

such as, TOU [183]. Precise evaluation of the IBDR program on other hand is highly

related to elasticity.
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9.1.3 Household appliance usage

Elasticity at household appliance level is similar to the concept of distributed control of

different appliance in residential demand management programs [184, 185]. Residential

load can be classified into two categories: controllable and critical. Critical loads that are

very important in a customer’s life with interruptions highly inconvenient or dangerous.

Controllable loads are those that can be shifted in time without as great an impact on

consumers lifestyle [186]. Space cooling and heating, water heating, lighting and washing

device are generally considered controllable. HVAC has the main potential as a DR

resource because of the relatively large power consumption. Overall, about 25% of total

electric energy consumption belongs to air conditioners, ventilation and heating [167]. In

addition, they are easily defer able since buildings have thermal inertia. Washing devices

do not have much power consumption, but can be easily rescheduled without significant

effect on comfort. Assessing elasticity at the appliance level can lead to more accurate

estimation of the effectiveness of DR programs.

9.2 Methodology

Elasticity is generally the proportion of relative change in demand for a product that

is caused by a change in the price of the product. Generally, the demand for most

products decreases as the price of the commodity increases. This is true for electricity

as well, therefore elasticity of electricity has a negative sign. In addition since electricity

is so critical in today’s life, price change would hardly effect consumption of customer.

Therefore, elasticity of electricity is small and less than unity most of the times. Elasticity

is formulated as follows:

ε =
∂q
q0
∂p
p0

=
∂(q′−q0)

q0

∂(p′−p0)
p0

∼=
(q′−q0)
q0

(p′−p0)
p0

=
4q
q0
4p
p0

(9.1)
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For IBDR , price change would substitute by incentives upon customer monthly elec-

tricity bill:

ε =
(q′−q0)
q0

(b′−b0)
b0

=
4q
q0
4b
b0

(9.2)

9.2.1 Approach

Approach for calculation of elasticity in (10.1) accordingly requires estimation of the load

change and incentives.

9.2.1.1 Financial incentive calculation

There are different ways to estimate customer’s financial incentives expectation. Process

of estimation is both complicate and divers. Perhaps one of the best way is directly

asking customers. This means a survey should design for each target customers to get

information about their desired incentives. However, there is tight relation between

incentive amount and load change that makes this step complex. Customers should

know how much they should change their consumption to fill out their desired incentives,

and in other hand, utility should know how much response they would be received to

estimate their affordable incentives. To overcome this complexity, there is two ways. One

is that utilities should ask several questions to cover different possibilities. This method,

although would give more comprehensive vision of customers, but it makes survey too

long and tedious. Alternative way is to ask about optimum situation that is acceptable

for both customers and utility. In this chapter, second method is chosen.

9.2.1.2 Load change calculation

Another step of elasticity estimation is calculation of load change in response to financial

incentives as illustrates briefly in Fig. 9.1. Since elasticity in this chapter is based on
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Figure 9.1: Methodology Diagram

appliance, so load change for each one should calculate separately. There is two ways

to determine hourly power of each appliance, bottom up model and load disaggregation.

In bottom up model, each individual house energy would calculate based on some basic

information, like their life style, number of residence, area of house, outdoor temperature,

parameter of their electric device and etc. In this method, power consumption of each

appliance and load change could be both calculate with one tool. In case of lack of

information, load disaggregation method could be useful. This method uses historical

data to separate each device energy signal from aggregated one.

Controllable appliances divide into two groups, appliance with thermal setting and

other devices with ON/OFF switch. For thermal appliance like HVAC, water heating

and refrigerator, it’s against customer’s comfort to completely shut them down. One

way to save energy of these devices is to change their thermostat setting temporarily.

Therefore problem for these devices is converting the thermostat change to MW change

during the DR hour and calculation of returning load after DR hours. For this type of

device it is necessary to have access to appropriate toolbox to simulate their power in

order to convert temperature changing to MW.

For other appliance that could stop their consumption, like lighting, or shift them to off

peak hour like washing device, no conversion to MW is needed. Either load disaggregation

method or load simulation tools could be helpful [191].
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9.2.2 Data Estimation

In this subsection more details would be given on procedure of elasticity estimation by

explaining following tools: survey for incentive expectation evaluation, and Matlab based

toolbox for residential load modeling.

9.2.2.1 Survey Platform and Participants

The two survey studies were conducted through Amazon’s Mechanical Turk (MTurk).

MTurk is a crowd sourcing internet market place which enables researchers and companies

to collect data on human intelligence tasks rapidly and inexpensively. Mturk has been

received great popularity among social scientists as a useful research tool to collect data .

To ensure the relevance and representatives of the data, only people who live in the U.S.

were asked to take the surveys. Surveys ran on two different season, winter and summer

respectively, to test customer’s reaction at different outdoor condition.

For the first survey, valid responses were collected from 665 U.S. residents. Among

the 711 respondents, 54.7% were females. Ages ranged from 18 to 75 (Medium = 30).

The majority of participants were White (81.80%), followed by Asian (5.11%), Black

(4.51%), and Hispanic (3.91%). Nearly half of the participants had at least a bachelor’s

degree or equivalent (47.14%). 60.16% participants had an annual household income

higher than $35,000, including a 21.63% having an annual household income higher than

$75,000. 35.49% identified themselves as democrats, while 15.04% identified themselves

as republicans.

For the second survey, 754 valid responses were collected, and the demographic char-

acteristics were similar: 58.2% were females. Ages ranged from 18 to 72 (Medium = 32).

The majority of participants were White (83.82%), followed by Black (4.91%), Hispanic

(4.38%), and Asian (3.58%). A little over half of the participants had at least a bache-

lor’s degree or equivalent (52.24%). 67.02% participants had an annual household income

higher than $35,000, including a 27.10% having an annual household income higher than
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$75,000. 40.05% identified themselves as democrats, while 28.25% identified themselves

as republicans.

The two surveys were composed of similar parts as follow: first, respondents answered

the type of heating and cooling devices that they use, source of energy, whether someone

stays at home between 9 am and 5 pm, and the usual thermostat setting during the

summer and winter. Second, respondents were proposed with a series of DR behaviors,

and asked to choose the minimum amount of money (scaled as a percentage of average

monthly bill) they would accept in exchange for adopting those behaviors. The major

behaviors included:

1) Raising/lowering HVAC thermostat setting for 2-3F 0 during summer/winter when

someone is at home.

2) Raising/lowering HVAC thermostat setting for 5F 0 or more during summer/winter

before everyone will be away for more than 4 hours.

3) Letting utility companies adjust HVAC thermostat setting for 2-3F 0 during sum-

mer/winter when someone is at home and the system load is high.

4) Shutting down HVAC devices for 10 minutes or 30 minutes as soon as receiving an

emergency message from the utility company.

Fig. 9.2 shows the answers of survey 1 participants to second part of questions. As it

shows, majority of customers need at least 10% incentives to modify their consumption.

Another interesting point is that, number of people who don’t change their load at all,

would significantly increase if utility wants to automatically adjust thermostat setting.

It shows people are concerned about their freedom and privacy. This could support

this claim that people are better responding to volunteer program than automation DR

programs.

Also, it is worth to point out, that during emergency situation, acceptable number of

people are willing to change their load without any incentives. They only need appropriate

message to informed them.
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Figure 9.2: Participant response to different incentive value questions

Third, respondents were asked to rate their electricity saving habits, such as “turn-

ing off lights when not in use” and “raising/lowering the cooling/heating temperature

when sleeping or away from home” on a Likert scale from 1 (“never”) to 7 (“always”).

At the end, social-psychological variables (such as concern for environmental impacts,

bill/money consciousness, need for comfort, and trust in utility companies) were mea-

sured and demographic information was collected.

We could divide survey participants based on their response to incentive expectation

to three groups. Low contribution groups which asks for more than 20% incentives, high

contribution which request less than 10% and medium contribution group. Although

there is not any dominant demographic characteristic between these groups, but still

some statistical pattern are interesting in these groups. Fig. 9.3 and Tab. 9.1 show some

statistical difference between low and high contribution groups.
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Figure 9.3: Education and rent/own distribution within different groups

Table 9.1: Demographic distribution in low and high contribution groups

characteristic High cooperative Low cooperative
Age More younger Less younger

Rent / own More rental Less rental
Education Higher education Even distribution

House occupant Less occupant More crowded
Income Less income Higher income

Male / female Even distribution More female
House area Average house Larger house

9.2.2.2 Residential load simulation

B. Johnson [187] develops Matlab based dynamic model for residential appliance including

home’s heating, ventilation, and air conditioning (HVAC) system, water heater, refriger-

ator, freezer, washer, dryer, dishwasher, lighting, cooking, television and computer. The

dynamic model development is based on three items. First, occupant behavior and res-

idential activity pattern for an appliance are developed using data from the American

Time Use Survey (ATUS) [188]. Second, dynamic models for each appliance are built

using available literature. Third, these models are combined to produce a model of resi-

dential power demand. This model is based on statistics of contribution of each appliance

in residential load consumption, typical power rating of each of them and demographics
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of the overall population.

For model validation, multiple resources is used. The Oak ridge National Laboratory

rotating shadow band radiometers is used for recording local environmental data [189].

Residential load power consumption data is collected from ten control house in TVA’s

Campbell Creek energy efficient homes project and occupied home in Atlanta, GA is used

to validate individuals load models [190].

Residential appliance divide to four groups in this model, thermostatically controllable

load, deferrable load, uninterruptible load and additional load power. Details on modeling

of each appliance is given in reference [187, 188]. Using the information that is given in

two surveys, this toolbox is used to estimate power consumption of people who participate

before and after load change in Feb. and July of 2013.

9.3 Elasticity per appliance

For elasticity estimation of each device two values should calculate, load change and

incentive expectation. In Tab. 9.2 these values are listed for main appliances at home,

HVAC, lighting and washing device. Incentive amounts are derived from survey 1 and load

change is calculated using toolbox that is introduced in sec. 9.2.2.2. Load modification is

implemented for peak hour from 17:00 to 22:00.

Since in (10.1) both numerator and denominator must be in percentage, incentive

expectation is divided by monthly bill of survey participants.

In both months, highest elasticity belongs to lighting. It seems that energy saving from

lighting is relatively easy for most people to accept and they expect minimal incentives

to turn off extra lights. Elasticity among the various washing device appears relatively

and independent of season. HVAC depends highly on season as might be expected given

the variable needs of the year and different tolerance of hot and cold temperature.

Another point that could be discussed in Tab. 9.2 is load change of each appliance in

compare with total load change. This point could be more explained by Tab. 9.3 that
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Table 9.2: Survey1- elasticity report

Survey 1 July (%)
Appliance Appliance change Total change Incentive Elasticity
HVAC 4.77 2.71 13.01 0.21
Lighting 38.75 1.55 3.43 0.45

Dishwasher 35.57 0.65 5.46 0.12
Washer 28.32 0.11 6.05 0.23Dryer 28.52 1.27

Survey 1 Feb. (%)
HVAC 2.15 1.2 10.96 0.11
Lighting 28.27 1.41 3.37 0.42

Dishwasher 41.81 0.71 5.24 0.13
Washer 30.95 0.13 5.88 0.27Dryer 31.2 1.47

Table 9.3: Share of each device in aggregate signal

July Daily ratio (%) Peak ratio(%)
Appliance Average Min Max Average Min Max
HVAC 55.54 40.1 67.5 53.2 30.7 66.9
Lighting 4.7 3.4 6.9 6.2 4.1 12.4

Dishwasher 1.6 0.9 2.3 3.1 1.7 5.5
Washer 0.4 0.3 0.6 0.4 0.3 0.7
Dryer 4.6 3.1 7.1 5.4 3.3 8.9

Feb.
HVAC 52.2 35.6 74.4 37.6 22.9 70.8
Lighting 5.8 3.1 7.8 10.8 5.5 14.2

Dishwasher 1.6 0.8 2.4 3.8 1.3 5.4
Washer 0.4 0.2 0.5 0.5 0.2 0.7
Dryer 4.6 2.1 6.4 6.1 2.4 8.2

shows share of each appliance in aggregated load signal. In this table, average, maximum

and minimum contribution of each appliance power signal in monthly energy signal is

shown.

In Tab. 9.3, HVAC has highest contribution in total load signal by consuming on average

half of total load. For washing device, although customers contribution for load shift

program is acceptable and about 30% are willing to delay their washing program from

peak time to off peak, but since their power consumption is low, total load change is

small for this appliance and therefore elasticity is not significant number.
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Figure 9.4: Load signal of survey2 participants- July 2013

In Fig. 9.4 aggregated load signal is shown after HVAC and washing device load change

for hottest day in July 2013 considering survey 2 participants. Thermostat modification

has significant effect on load signal at peak hour. However, effect of washing device load

change is hardly noticeable on load profile. For washing device load is deferred form

peak time to off peak, so in Fig. 9.4 it’s shown at early morning that modified load curve

is higher than original one. In addition for HVAC device, thermostat setting change

should return to its original point for customer comfort after peak time, therefore load

consumption after 22:00 is considerably higher than original load level. To avoid new

peak load after 22:00, returning to original thermostat setting should be distribute in

time. In this chapter, DR end signal is administered in two hours.

9.4 Elasticity for HVAC Device

Generally speaking, highest portion of residential electricity consumption belongs to air

conditioner device (depending on the region), therefore its worth to study it in more

details. Elasticity is load change divided by incentive asking; so customers could be

124



Table 9.4: Survey2- HVAC elasticity report

July Total saving Incentive Average Energy (MWh/m) Elasticity
≤64 1.36 9.05 1.261 0.151
65 -68 2.41 10.30 1.058 0.234
68 -70 2.7 11.12 0.904 0.242
70-72 2.92 10.85 0.791 0.269
72 -74 3.06 10.14 0.682 0.3013
74 - 76 3.16 12.88 0.575 0.246
76 - 78 3.22 10.44 0.479 0.308
78- 80 3.08 11.81 0.381 0.261
≥80 3 10.79 0.3 0.2782

Feb.
≤64 0.64 9.39 1.196 0.069
65 -68 1.27 10.61 1.134 0.1195
68 -70 1.26 11.82 1.22 0.107
70-72 1.29 11.54 1.274 0.112
72 -74 1.2 10.5 1.435 0.1142
74 - 76 1.18 12.57 1.622 0.094
76 - 78 1.12 10.67 1.549 0.105
78- 80 1.19 9.4 1.979 0.126
≥80 0.98 9.75 2.308 0.101

divide based on their incentive requesting or their level of consumption.

9.4.1 Elasticity for Different Consumption Level

In this subsection customers segmentation based on different load levels is illustrated.

HVAC consumption is highly related to its thermostat setting, so in this part customers

are divided based on their thermostat settings. Load change and incentive needing for

each group is summarized in Tab. 9.4 for July and Feb., using survey 2 participants.

In Tab. 9.4 although incentive requesting of different groups are similar, but energy

saving and as a result elasticity is different in each group. Power saving is highly related

to average power consumption of each house as it shown in Fig. 9.5. It’s important to

consider this point that elasticity variation is proportional to reward expectation that is

based on survey participant’s response and could include some noise, therefore elasticity

could have smoother pattern and decrease more monopoly as average power consumption
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Table 9.5: Survey2- HVAC elasticity report for combined groups

Feb. Elasticity Load Incentive Average Energy Elasticity
Temp. Change (MW/m) change (%)
≤70 0.106 1.187 11.195 72.289 -1.028
70-75 0.11 1.243 11.327 83.412 2.708
≥75 0.107 1.106 10.32 106.94 -0.093
July
≤ 64 0.15 1.36 9.053 112.249 -41.950
65-70 0.239 2.58 10.812 95.867 -7.508
70-74 0.282 2.977 10.544 81.622 9.133
74-78 0.28 3.196 11.424 68.398 8.359
78-80 0.266 3.056 11.476 57.132 2.942

decrease.

Grouping customers based on their temperature settings would lead to more diverse

elasticity values. In some group difference with average elasticity for whole customers is

higher and for some is less. In winter the lowest elasticity belongs to temperature setting

more than 80 degree and in summer the lowest elasticity is for group people of that put

their thermostat on less than 60 degree. Considering this fact the comfort temperature

for most of people is around 72 degree in both season, there is obviously high difference

between comfort setting and mentioned ones. Both of these temperature shows that

these people do care more about their comfort than money, so their elasticity is lower

than other groups.

It may be seemed so hard to decompose total HVAC consumption to 9 distinct groups.

Alternative way is to combine groups with each other and make less customer groups. In

winter, since most of group’s elasticity are close to each other, it is better to have only 3

groups, but in summer we try to keep more diversity since elasticity is higher in summer.

9.4.2 Elasticity for different incentive level

We can divide survey respondents into three groups based on their incentive expectation.

1. High contribution group: incentive expectation is less than 10% of monthly bill,
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Table 9.6: Elasticity per customer cooperative segmentation

Device Low contribution Medium contribution High contribution
winter summer winter summer winter summer

HVAC 0.055 0.123 0.106 0.253 0.352 0.499
Lighting 0.326 0.316 0.426 0.458 0.618 0.653

Dishwasher 0.156 0.143 0.2 0.217 0.217 0.253
Washer/Dryer 0.209 0.197 0.297 0.297 0.381 0.379

2. Medium contribution group: incentive expectation is between 10%-15% of monthly

bill,

3. Low contribution group: incentive expectation is more than 20% of monthly bill.

Elasticity for each group in summer and winter based on survey 2 data is listed in Tab. 9.6.

There is considerable difference between the elasticity of each group for each appliance.

For HVAC, this difference is critical. In the peak of summer (depending on region),

HVAC may count for as much as 50% of total load. Targeting a group with elasticity

of 0.5 at this time could make an important difference in the IBDR program design and

implementation.

In Fig. 9.6, the load change for each customer group by IBDR is shown for one day. The

DR program in all cases is the same, a two degree change in thermostat setting, turning

extra lights off and shifting washing device from peak to off peak time in return for

some incentive. Load change is close for each group since the same type of DR program

is applied for each group; however, there is some differences between results. These

differences arise from variations in parameters that are used to simulate load profile.

Thermostat setting in the high contribution group is lower (in summer) than other groups.

Therefore, the load reduction from a 2 degree thermostat setting change is higher in this

group. The required incentive at each hour according to elasticity of each group is shown

in Fig. 9.7.

As it is shown, there is significant difference between incentive expectation for similar

load change. Fig. 9.7 could simply shows huge potential of saving, if appropriate customer
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clustering could be done. In other words, if we could target right group pf customers,

with right amount of incentive, significant financial difference could be achieved.
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Figure 9.5: Comparison of elasticity and average power for survey2 participants- July
2013

129



min

Figure 9.6: Load change in each customer group

min

Figure 9.7: Required incentive for each customer group
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10 Effect of Customer Classification on

IBDR program

In this chapter, IB elasticity is considered for the proposed IBDR program to understand

how elasticity estimation affects results. Estimated elasticity is specific to IBDR programs

and is calculated based on the main appliances in each residence instead of aggregated

across all residential customers. The motivation is to not only evaluate IB elasticity

vs. PB elasticity but also to consider the individual importance load types. In addition,

customer classification is used to improve modeling precision. Elasticity has been typically

considered across broad customer groups only, such as, the residential, commercial and

industrial sectors. This ignores potentially valuable information that could be used to

improve accuracy. In this chapter, customers are classified based on surveys of their

willingness to participate in IBDR programs and also their nominal HVAC thermostat

settings. IB based elasticity is examined under both low and high penetration of RER

scenarios.

10.1 IBDR Design using IB Elasticity

In this study, the proposed IBDR formula in chapter 3 is modified to consider individual

appliance elasticity for the residential sector as follows [192]:

max
NB∑
b=1

M∑
t=1

[(Dbt −∆D̄bt)(P 0
b − LMPbt)−∆D̄btP

inc
bt ] (10.1)
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∆D̄bt = ∆DR
bt + ∆DC

bt + ∆DI
bt (10.2a)

∆DC
bt = εCP inc

bt (10.2b)

∆DC min
bt ≤ ∆DC

bt ≤ ∆DC max
bt (10.2c)

∆DI
bt = εIP inc

bt (10.2d)

∆DI min
bt ≤ ∆DI

bt ≤ ∆DI max
bt (10.2e)

∆DR
bt =

Dapp∑
k=1

∆DR
btk

(10.2f)

∆DR
btk

= εRk P
inc
bt (10.2g)

∆DR min
btk

≤ ∆DR
btk
≤ ∆DR max

btk
(10.2h)

Equation (10.1) is valid over the time that IBDR is requested. The load change in (10.1)

is a summation of the various customer responses. Each type has a range of load change

and specific elasticity value. Elasticity represents the relation between the incentive

payment and the load reduction. Parameter M indicates the time that DR is applied

and can be either fixed or optimized as developed in chapter 3. In (10.2f), residential

load change is a summation of the various appliances in the home and different thresholds

for consumption modification are considered for each. The residential customer response

can be model separately for each appliance using an appliance based elasticity as shown

in (10.2g). Customer segmentation can also further segment response to achieve more

accurate results. Equations (10.2f) and (10.2g) are modified to (10.3a) and (10.3b),

respectively, to reflect customer change in demand.

∆DR
bt =

Dcon∑
g=1

Dapp∑
k=1

∆DR
btgj

(10.3a)

∆DR
btgk

= εRgkP
inc
bt (10.3b)
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Table 10.1: Elasticity values for scenario 1

Time Period/ Load Type Residential Commercial Industrial
Day 0.1 0.15 0.15
Night 0.07 0.01 0.01

Table 10.2: Elasticity values for scenario 2

Time Period/ Appliance HVAC Lighting Washing device
Winter 0.1 0.42 0.27
Summer 0.21 0.45 0.23

10.2 Residential Incentive Based Elasticity

To evaluate the effects of new elasticity values on IBDR performance under low pen-

etration of RERs, three scenarios are examined. First, an average price based elastic-

ity is used within the residential, commercial and small industrial sectors. Second, an

appliance-incentive based elasticity is used for each season in the residential part. Third,

the residential customers are classified based on their willingness to participate and abil-

ity to contribute toward the IBDR program. Elasticity values for each scenario are shown

in Tab. 10.1 to Tab. 10.3.

For the case of high RER production, one more scenario is studied. Customers are

divided based on their thermostat setting to three groups: thermostat settings below 70,

between 70-75 and above 75 degrees in either summer or winter. The elasticity for each

Table 10.3: Elasticity values for scenario 3

Customer Group/ Appliance HVAC Lighting Washing device
Winter

Low contribution 0.055 0.38 0.4
Medium contribution 0.1 0.45 0.59
High contribution 0.35 0.48 0.7

Customer Group/ Appliance HVAC Lighting Washing device
Summer

Low contribution 0.12 0.28 0.35
Medium contribution 0.25 0.32 0.59
High contribution 0.65 0.35 0.65
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Table 10.4: Elasticity values for scenario 4

Customer Group/ Appliance HVAC Lighting Washing device
Winter

Temp. Group 1 0.1
0.42 0.27Temp. Group 2 0.11

Temp. Group 3 0.09
Customer Group/ Appliance HVAC Lighting Washing device

Summer
Temp. Group 1 0.17

0.45 0.23Temp. Group 2 0.257
Temp. Group 3 0.3

grouping is shown in Tab. 10.4.

10.3 Results of IBDR for Base Case data of WECC

The appliance-incentive based elasticity of customers impact on the IBDR program is

analyzed under low penetration of RERs with the base case data of WECC 240-bus

system. Fig. 10.1 and Fig. 10.2 show load change and required incentive payments for

each scenario in the various regions of WECC during the summer.

The required incentive for scenario 1 is higher than the others but results in significantly

Figure 10.1: Load change for different scenarios in WECC
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Figure 10.2: Incentive payment for different scenarios in WECC

lower load reduction. The reason is without targeting the incentive carefully the LSE has

to provide greater incentives to more customers. Scenario 3 has the best performance

as it obtains the most load change while paying the least incentive. This verifies the

value of customer classification to target the most receptive group of customers to a DR

program. The different in load changes under each scenario result in different benefits

for both the LSEs and customers as shown in Fig. 10.3 and Fig. 10.4. Scenario 1 brings

the least benefit and scenario 3 leads to the highest benefit for all participants. LSEs

additional profit increases by as much as a factor 10 times in some regions under scenario

3. Customer saving is also significantly higher, which suggests all DR participants can

gain using a more sophisticated IBDR design.

In addition to benefits for LSEs and customers, the proposed IBDR program has an

considerable impact on peak prices. Fig. 10.5 shows the LMP profile during one week

in August, including scenario 4 now. As shown, scenario 2 and 3 not only have better

performance relative to case 1 but they can reduce the price to during the cheapest weak
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Figure 10.3: Percentage of LSE benefit by different IBDR scenario

of the month.

Fig. 10.6 shows LMP profile in one day of July after each IBDR scenario. Scenario

1 has the least effect and scenario 3 has the highest effect on market price as it was

expected. These Figures verifies the effect of customer classification on DR design which

could bring more benefit for all participants and in addition has better effect on peak

shaving of price.

10.4 Sensitivity of LSE Benefit to Elasticity Values

An interesting point in Fig. 10.3 is that although there is a considerable difference in load

change under scenario 2 or 3, LSEs benefits are similar in both cases. In other words,

although scenario 3 has higher elasticity value (for the high and medium contribution

group) and brings more load change with less incentive payments, it does not bring

significantly higher benefit for LSEs. To illustrate, the sensitivity of LSE benefit to
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Figure 10.4: Percentage of Customer saving by different IBDR scenario

elasticity is calculated and plotted in Fig. 10.7 and Fig. 10.8 for summer and winter,

respectively. Note for higher elasticity (larger than 0.3), LSE benefit is less sensitive to the

elasticity value even though it continues to gain some benefit from higher elasticity. The

advantage of customer grouping is more clear when the ability to pay incentives is limited.

In this case, targeting the high contribution of customers could lead to significantly more

load modification with the same amount of incentive relative to average elasticity for all

customers.

10.5 Results of IBDR under High Level of RER

In this section, effects of customer classification and using appliance-incentive based elas-

ticity are studied assuming high penetration of RER. Fig. 10.9 and Fig. 10.10 show the

effect of each DR scenario on LSE benefit in spring and fall for 4 regions in California.

The results are shown based on the percentage of benefit change compare with low renew-
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Figure 10.5: LMP profile in one week of August after each DR scenario

able production and no DR. The greatest benefit arises under scenarios 3 and 4. DR of

scenario 3 group customer based on incentive expectation has the most benefit followed

closely by grouping considering thermostat setting. These results verify the need and ef-

fect of customer classification on IBDR design. Customer grouping should lead to higher

profit for participants under either low or high RER production. Customer segmentation

is helpful to design right type of DR for each customer group and consequently increase

benefits.

Tab. 10.5 shows the LSE’s net revenue per total load in winter and summer for selected

regions. Revenue after renewable expansion and by using different DR scenarios is com-

pared. LSEs would have the highest revenue if they classify customers based on their

incentive request and contribution level to IBDR program. The revenue gain for scenario

3 is as much as 3 times higher relative to using a simple average price based elasticity as

in scenario 1.

To illustrate LSE benefit change under each DR scenario, Tab. 10.6 shows the total
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Figure 10.6: LMP profile in one day of July under each DR scenario

Table 10.5: LSE net revenue per unit load under different DR scenarios

Winter After expansion DR 1 DR 2 DR 3 DR 4
Fresno $4.33 $8.46 $8.60 $15.98 $10.11

Cnt. Coast $5.00 $7.79 $10.06 $17.31 $12.33
PG&E $6.90 $15.62 $22.81 $33.60 $24.94

Northwest $2.18 $4.08 $6.09 $24.37 $18.82
Summer
PG&E $46.27 $52.82 $59.77 $136.58 $62.34
LADWP $12.68 $16.69 $15.08 $26.45 $22.25
SCE $14.42 $17.87 $19.80 $30.11 $22.69

SMUD $16.08 $15.32 $15.78 $39.72 $32.51

amount of incentive payments and load change in different seasons of the year. In general,

scenario 1 requires highest incentive for each MW of load change. Using appliance-

incentive based elasticity allows a little bit of improvement. The best scenarios are again

scenario 3 and 4. This table provides some insight on how the scenarios benefit LSEs.

In addition to the more benefit that using incentive-appliance based elasticity and

customer grouping could bring for utilities and customers, another motivation for using

these types of DR under high penetration of RERs is reducing price variation. The easiest

way to reduce price variation is load shifting, which is easier with an understanding of

customer appliance use. Washing devices are the primary shiftable loads, which can
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Figure 10.7: LSE benefit as a function of demand elasticity during summer

Figure 10.8: LSE benefit as a a function of demand elasticity during winter

easily be shifted to the cheaper times of the day. Knowing the elasticity of customers

and their incentive expectation allows these loads to be targeted. HVAC consumption

is both reducible and shiftable. People can change their thermostat setting during peak

times to reduce consumption. Still, one they return to a normal setting, HVAC would

consume more electricity for some time. This extra needed power is called “return of

load” and acts as shiftable load in the system. In this study, the return of load for HVAC

is calculated based on temperature data for different regions in the WECC. In Fig. 10.11

and Fig. 10.12, the effect of proposed DR scenarios are shown for one day in summer and

140



Figure 10.9: LSE benefit change under different DR scenarios in spring

fall, respectively.

As shown, using appliance based elasticity, and more importantly customer classifica-

tion, not only reduces price at peak hours but also increases the cheaper price during

off peak period. Notably in the fall, when renewable expansion leads to many negative

LMP hours, load shifting eliminates many such hours and could allow better use of wind

turbine generators. This effect is shown in Fig. 10.12.

Tab. 10.7 shows statistical variation of LMP in San Diego area for different months

of the year. Customer classification and load shifting, under scenarios 3 and 4, has

considerable impact on reducing peak prices and volatility.
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Table 10.6: Total load change and incentive payments in each season

Region
Winter Spring

DR 1 DR 2 DR 3 DR 4 DR 1 DR 2 DR 3 DR 4

Southwest
5,219 5,649 10,020 7,795 5,887 5,830 10,519 7,757

$13,085 $10,284 $8,789 $10,363 $15,444 $14,414 $11,273 $14,706

Bay area
4,532 3,763 5,108 4,912 5,496 3,597 5,070 4,917

$16,067 $11,329 $9,081 $12,958 $18,291 $13,739 $9,632 $15,034

Fresno
2,133 1,412 1,522 1,450 2,922 1,591 1,901 1,757
$6,812 $5,956 $3,840 $5,163 $8,089 $7,459 $4,518 $6,391

Nevada
3,493 1,778 2,088 1,972 3,807 1,751 2,087 2,017

$10,772 $7,708 $6,379 $6,772 $13,521 $7,686 $7,873 $7,214
Region Summer Fall

Southwest
12,452 11,315 20,706 15,682 5,528 4,719 8,095 6,727
$31,435 $29,161 $21,600 $28,187 $13,832 $12,680 $10,391 $12,980

Bay area
7,674 5,624 9,125 8,835 6,019 3,696 4,195 4,008

$20,656 $18,513 $12,119 $18,313 $19,182 $15,047 $9,847 $14,183

Fresno
5,005 3,114 3,897 3,630 1,713 1,026 1,086 1,023

$14,835 $12,513 $7,835 $11,326 $8,450 $6,358 $4,288 $6,642

Nevada
7,701 3,399 4,336 4,209 2,000 1,111 1,321 1,271

$20,938 $16,655 $12,942 $16,708 $7,567 $5,417 $4,787 $6,044

Table 10.7: Monthly variation of LMP in San Diego area under different DR scenarios

Month May June
Price variation Min. Max. STD Min. Max. STD
After expansion 4.52 86.60 11.74 8.31 86.60 13.09

DR 1 4.52 65.32 10.81 8.31 60.29 10.95
DR 2 5.04 72.07 10.11 10.74 63.89 10.08
DR 3 15.32 67.72 8.01 17.50 58.24 7.78
DR 4 15.78 68.34 8.97 15.80 61.72 8.97
Month November December

Price variation Min. Max. STD Min. Max. STD
After expansion 8.26 58.20 10.68 8.33 76.48 13.87

DR 1 8.26 49.90 9.01 8.33 56.73 10.82
DR 2 8.32 53.00 8.86 12.21 60.48 9.20
DR 3 17.39 48.42 4.65 18.81 57.84 8.78
DR 4 17.39 50.42 5.50 18.81 56.18 8.26
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Figure 10.10: LSE benefit change by different DR scenarios in fall

Figure 10.11: LMP variation after different DR scenarios in Southwest region, July
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Figure 10.12: LMP variation after different DR scenarios in Idaho during November
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11 Conclusions

In this work, a demand response framework combining TOU and IBDR programs has

been developed. The comprehensive model explores the potential of both reward and

punishment in DR tariffs. A method to design optimum peak and off peak tariffs utilizing

self and cross elasticity is developed. For the IBDR program, a novel formulation for

the optimal reward is proposed. The optimization determines not only the appropriate

incentive payment and load reduction but also when to activate the IBDR program. Two

different types of thresholds for requesting load response are considered: a constant level

above the market price and an optimal threshold. Results show that while the constant

threshold performs well at high load times, the variable threshold is more effective under

more normal conditions. Customer satisfaction should be a determining factor since not

only total savings is important but also the frequency for which they need to change their

consumption relates closely to their convenience. From this point-of-view, the variable

threshold with appropriate constraints is more desirable.

A successful demand response program can significantly reduce electricity prices, im-

prove system reliability and reduce price volatility. A case study using representative

data from the WECC 240-bus reduced model demonstrates the effects of the proposed

DR programs on reducing price variation and peak demand considering both load shift-

ing and load reduction. Consequently, total generation cost reduce significantly and all

participants in market benefit. Customer savings consists of both the incentives received

and the resulting lower prices, which together yield significant savings. From the ISO

point-of-view, an interesting point is that although the percentage of time for DR re-
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quests is less than 10% in each region, there is considerable reduction in price volatility

and average LMP across all regions.

Application of the IBDR in emergency situations is also analyzed. During generator

outages, the LMP may increase with system wide effects. In order to avoid price changes,

LSEs can implement an IBDR over a short period of time to decrease load. The pro-

posed IBDR program tests on the WECC model shows significant LMP reduction during

outages. An important aspect of the program is that the DR program only needs to be

implemented in a few regions and for a small portion of customers to result in significant

savings. During outage conditions, time may be a key factor, therefore, an economic

ranking of generators was introduced to quickly identify needed DR. Results show that

electrical distance between a generator to the more expensive generators can act as proxy

for the price impact of an outage.

The effect of small customer’s DR under high penetration of RERs is analyzed. LMP

variation after renewable expansion becomes highly correlated with renewable intermit-

tent. As a result, a TOU program is difficult to successfully implement; however, results

show IBDR can diminish most sharp price changes during peak load. To model the risk

that is associated with renewable forecast uncertainty, a robust optimization is designed

considering market price and elasticity variation. A DOE approach is used to analyze

different scenarios of market price according to renewable forecast errors. Analysis of

the associated market risk using a deterministic approach shows two possible concerns:

unexpected high LMP leading to opportunity loss and unexpected low LMP causing eco-

nomic loss. A comparison between robust and deterministic results shows that although

the LSE loses some benefit using the robust design under normal conditions, even a few

hours of large price deviations can render the robust approach valuable.

Elasticity of residential customers toward IBDR was calculated for different appliances

and for different HVAC thermostat settings, using two nation wide surveys and a Matlab

based load modeling toolbox. Results show customer incentive expectation for lighting
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and washing device is far less than HVAC. Still since HVAC generally has the highest share

of the aggregate load, the resultant load reduction from the HVAC thermostat changes is

higher than from other devices. Due this important role of HVAC load, especially at peak

hours, the HVAC elasticity is analyzed for different thermostat settings. Incentive ex-

pectation across temperature groups are close, based on survey data, therefore, elasticity

mainly depends on load change. Considering the relationship between load change and

average power consumption, the elasticity of HVAC decreases as average power increases.

In addition, customers are clustered based on their incentive expectation. Elasticity of

each group is calculated and compared with the average. There is a significant difference

between the elasticity of low and high contribution classes. This type of classification

could help utilities and load aggregators target customers with the appropriate incentive

to achieve required load response. This type of approach could also help achieve higher

levels of response at lower cost while motivating greater customer participation.

Next, it was demonstrated how the right information about incentive based elastic-

ity of customers can improve DR performance. Two cases of incentive based elasticity

are compared with a standard price based elasticity assumption. An appliance based

elasticity is considered for residential customers in order to reflect the various roles of

each device daily use. Second, customers are classified according to their contribution to

IBDR. These scenarios are tested on data from the WECC 240-bus reduced model for the

whole year. Results show the necessity of accurately accessing IB elasticity with detailed

information of customers, such as, targeted appliances and customers classes. More in-

formation means greater benefit for participants and reductions in peak market prices.

In summary for efficient and economical design of IBDR program, it is necessary to have

appropriate data to allow detailed and accurate information about customer response to

IB programs.

Effect on customer classification and incentive based elasticity on high penetration of

renewable resource is also evaluated. For high renewable generation, four scenarios are
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compared. The effect of using average price based elasticity, appliance and incentive

based elasticity, incentive based elasticity and customer classification based on people

incentive request, and finally customer grouping based on temperature setting at each

house. Using the customer clustering improves the results of load reduction at the peak

time and by using the potential of shiftable appliance, price variation also decreases.
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