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Abstract 
 

As synchrophasor data start to play a significant role in power system operation and 

dynamic study, data processing and data analysis capability are critical to Wide-area 

measurement systems (WAMS).  The Frequency Monitoring Network (FNET/GridEye) is 

a WAMS network that collects data from hundreds of Frequency Disturbance Recorders 

(FDRs) at the distribution level. The previous FNET/GridEye data center is limited by its 

data storage capability and computation power. Targeting scalability, extensibility, 

concurrency and robustness, a distributed data analytics platform is proposed to process 

large volume, high velocity dataset. A variety of real-time and non-real-time synchrophasor 

data analytics applications are hosted by this platform. The computation load is shared with 

balance by multiple nodes of the analytics cluster, and big data analytics tools such as 

Apache Spark are adopted to manage large volume data and to boost the data processing 

speed. Multiple power system disturbance detection and analysis applications are 

redesigned to take advantage of this platform. Data quality and data security are monitored 

in real-time. Future data analytics applications can be easily developed and plugged into 

the system with simple configuration. 
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Chapter 1 Overview of FNET System 

1.1  Introduction 

With the increasing loads of power grids and massive inter-area power transfers 

enabled by the deregulation, it is very important to improve operators’ situational 

awareness. A Wide-area measurement systems (WAMS) consists of advanced 

measurement technology, information tools, and operational infrastructure that facilitate 

the understanding and management of the increasingly complex behavior exhibited by 

large power systems [1]. The Synchrophasor technologies, as the major components of the 

WAMS, provide significant information about the bulk power grid captured by Phasor 

Measurement Units (PMUs). Large volumes of data are streamed into a central data server 

in real-time. However, unless the server system is designed with the capability to efficiently 

process and analysis the data, system operators cannot exploit the information hidden in 

the data to assist the system operation or control.   

Big data technologies are increasingly boosting the performance to handle data with 

large volume, high velocity and variety [2]. Introduction of the technologies like Hadoop 

and Spark could bring the smart grid data analytics to a new era, in which comprehensive 

analysis algorithms can be applied in real-time, and close-loop data solutions can be 

implemented for situation awareness, asset management, planning, fault detection and 

protection [3]. Some works has been done to study the availability using big data 

technologies for grid data storage [4], data processing [5], and data analysis [6]–[8].  

However, most of these studies are based on simulation or offline data. More challenges 
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have to be solved to build an infrastructure for real-time data collection, analysis and 

visualization.  

1.2  Frequency Monitoring Network (FNET/GridEye) 

The FNET/GridEye system is a wide-area synchrophasor measurement network, 

which measures synchrophasor information at distribution level, as shown in Figure 

1-1.Frequency and voltage phase angle information about system dynamics can be 

obtained using low-cost, high-accuracy Frequency Disturbance Recorder (FDR), which is 

a single phase version of PMU [9], [10]. 

 

 

Figure 1-1 FNET/GridEye structure 

 

Since 2004, more than 150 FDRs have been deployed in United States and about 50 

are deployed worldwide, as shown in Figure 1-2 and Figure 1-3. These measurements are 

then time-stamped and transmitted to the FNET/GridEye data center at the University of 

Tennessee, Knoxville for data processing and long-term storage. A variety of  
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Figure 1-2 Map of FDR locations in North America. 

 

 

 

 

Figure 1-3 Map of worldwide FDR coverage. 
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synchrophasor applications have been developed over FNET/GridEye situational 

awareness system, including real-time event detection and location estimation, oscillation 

detection and modal analysis, line trip detection, off-grid/islanding detection, and forensic 

authentication of digital evidence [9]–[19]. 

1.3  Frequency Disturbance Recorders 

FDR is a GPS-synchronized single-phase PMU, which measures frequency, voltage 

magnitude and angle at distribution level. The first generation of FDRs was built in 2003, 

and it has expanded to three generations and several relative devices as shown in Figure 

1-4.  

The measurement data are transmitted to MCU and sent out to FNET servers through 

the network module by TCP/IP protocol. Timing synchronization of the measurement data 

is important for FDRs and FNET. Discrete Fourier Transform (DFT) is one of the common 

algorithms used in synchrophasor measurement area, and it is adopted as the basic 

framework of the FDR algorithm. The angle and frequency error of the most updated 

version of FDR is less than 0.005 degree and 0.00015Hz respectively at 60Hz nominal 

frequency. 

1.4  Organization of Materials 

The data collection server system and improvements are discussed in Chapter 2. The 

challenges and methods to develop real-time synchrophasor applications based on 

FNET/GridEye system is discussed in Chapter 3. An example application, real-time line 

trip detection, is illustrated in Chapter 4. The data quality and data security issues about 

synchrophasor applications are discussed in Chapter 5. A data analytics platform is  
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Figure 1-4 Frequency Disturbance Recorder  

(a) Generation I, (b) Generation II (c) Generation III (d)Universal Grid Analyzer (e) 

Wireless FDR (f) FDR on Smartphone 
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proposed to for big data applications in Chapter 6. The conclusions and future works are 

summarized in Chapter 7. 
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Chapter 2 Data Collection 

2.1  Data Collection Server System 

The FNET/GridEye server system collect data from FDRs via internet connection. 

The FDRs are configured to set up TCP connections between the FDR data transmission 

interface and the FNET servers. Two servers in the system are programmed to 

communicate with FDRs directly, including a main data collection server and a backup 

server. Each of the FDRs are configured to create independent connections to the two 

servers using their server IP addresses as destination. (The backup server IP is set up using 

Google domain name service, so FDRs are configured to set connection to a domain name 

URL.) 

Both main data collection server and backup server are programmed to handle three 

major functions, receiving data from internet, store received data locally, and forward the 

data stream to other servers for other application purposes. These functions are 

implemented using TCP sockets. 

The TCP sockets are designed with client-server models, supporting guaranteed 

connection with three-way handshakes. A brief illustration of TCP socket model is shown 

in Figure 2-1. The TCP client is defined as the connection end which initiate the 

connection, while the TCP server is defined as the end which waits for connection to be 

requested. A basic TCP connection is built within a few steps: 1) The server creates a TCP 

socket, bind with its local IP address and port number, and start to listen to incoming 

connection requests; 2) the clients creates a TCP socket, and request a connection using 

the server IP and port number; 3) the server observes the connection request, it can accept 
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and process the request to setup the connection; 4) once the connection is configured, either 

the server side or the client side can send and receive data packets; 5) if the data 

transmission is finished, either the server or the client can close and destroy the socket and 

notify the other side.  

 

 
Figure 2-1 TCP sockets connection model 

 

In the data collection server, FDRs are the TCP clients and the server host is the 

server. However, when the data collection server forwards data to other servers, the sending 

server is the TCP client, and the receiving servers are considered as TCP server. In this 

case, the data is always transmitted from the TCP client to the TCP server. The data 

collection server is used as a proxy to forward data, as shown in Figure 2-2. Since each 

FDR is set to send data to a specific port, the number of listening and receiving socket 
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depends on the number of FDRs. For each of the FDR, the sever will create a list of 

forwarding sockets to connect to other servers. Therefore, the number of forwarding 

sockets depends on not only the number of FDRs, but also the number the remote servers 

that the data collection server forwards data to. 

 

 

Figure 2-2 Functionality of data collection server 

 

 

Once the FDR data is received, the serve will verify the received data packet, and 

store them in a local MS Access database. Also, the data will be send to screen display 

module if the unit is selected on the server program user interface. MS Access database is 

a light weight database system that has a capacity limit of 2GB. The server overcome this 

issue by automatically backup the Access files at certain time of the day.  

2.2  FDR Configuration Synchronization 

The problem of storing the FDR unit list using a text file is that each server has its 

own unit list, which makes it difficult to maintain. Instead of manually update the text file 

Cassocked 

Listening Socket 

Receiving Socket 

Forwarding Socket 

Display 

Remote Hosts 

Local DB 

UnitConfig.txt 
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on each server, a new scheme to synchronized the FDR unit configuration file is 

implemented using MySQL database. 

All the servers in the FNET system query this MySQL database for the FDR 

information. Therefore, the FDR information are always synchronized among the servers. 

However, there are chances that the server hosting the MySQL database is not accessible, 

because of network failure or server failure. In this case, to ensure the other servers operate 

normally, each server also maintains its own local configuration files, as shown in Figure 

2-3.  

 

 
Figure 2-3 FDR configuration synchronization 

 

The FDR information, including their hardware information, IP address, operation 

status and the information about their hosts, are stored in a MySQL database, as shown in 

Figure 2-4. 

Whenever a server needs to update its FDR configuration information, it trys to query 

the most updated information from the MySQL database. If the FDR information is  
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Figure 2-4 Data Model of FDR Schema in the FNET Configuration Database 
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retrived, it compares the updated information with its local configuration files. The server 

will then decide which units are added to or removed from the system. Since the sockets 

has high resource consumption and depends on the number of FDRs and number of 

forwarding destinations, the serve can dynamically create and destroy sockets based on the 

diffence between the updated FDR list and the existing FDRs and sockets running in the 

server. In this way, the server resource consumption, including networking, computing and 

memory is significantly reduced. 

To further simplify the process to update the FDR information for FDR distribution 

team, a web interface is developed to update the FDR list and the host information. With 

this scheme, the FDR information is easily updated, syncronized among difference servers, 

while the server performance is improved and the maintenance job is simplified. 

2.3  Timestamp Correction 

The early versions of FDRs, including the first generation and some second 

generation, have been observed with random timestamp shifts. The shift is caused by the 

mismatch of FDR local clock and the GPS synchronized timing system.  

The FDR clock is driving by its local oscillator. However, this clock is affected by 

many factors like temperature. Thus, a universal clock is required to provide accurate clock 

synchronized across the system. Current FDRs and PMUs are using GPS signal to 

synchronize the clocks. FDRs synchronize its local clock by receiving a Pulse Per Second 

(PPS) signal from the onboard GPS module, and the timestamp is requested from the GPS 

module at the beginning of every second.  
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However, even though the PPS signal can be considered accurate, the timestamp can 

be shifted. For example, if the local clock runs faster than the GPS clock, the FDR will 

have a shorter length of “second” comparing the the GPS. It may request the timestamp 

twice at the beginning and the end of one local second, while both request are received 

within one GPS second. That will result a same timestamp obtained twice by the FDR. This 

phenomenon is called “overlapping second”. On the other hand, if the local clock runs 

slower than GPS clock, a “missing second” may occur, as shown in Figure 2-5 

By investigating the data of all FDR units, most of the timestamp shifts occur in 

paris, which means a missing second is usually observed before or after a overlapping 

second. The time slot between a missing second and a overlapping second is usually within 

a few seconds, and most of them are one second. This is because the local clock is corrected 

by the PPS signal quickly after it shift away, then the shifted second will shift back whin 

in one second. 

 

 

Figure 2-5 Timestamp shift caused by clock mismatch 
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To correct the shifted timestamp, a correction algorithm is implemented on the data 

collection server, as shown in Figure 2-6. Once the TCP data stream is received by the 

receiving socket, and parsed by the data parsing function, the timestamp of the current data 

packet is buffered in a two-second processing queue. The timestamp processing queue store 

the timestamps received in the past to seconds, and the head of the queue is the timestamp 

received two second earlier. The “second” part of the timestamps are extracted and 

compared. If the timestamps are not increamentally consecutive, the timestamps in queue 

will be corrected based on the head timestamp of the queue, then the data in the queue will 

be pushed to the next processing module for further steps, including display, data 

forwarding and store to MS Access database. Otherwise, if the timestamps are verified to 

be correct, the data in the head of  the queue are sent to the processing module directly. 

By implementing this algorithm, the timestamps within two seconds are ensured to 

be increamentally consecutive. If the timeshift slot between the missing timestamp and the 

overlapping timestamp is greater than two second, this algorithm can not guarantee the 

timeshift over two second can shift back. However, since most of timestamp shift are 

within one second, this is a efficient solution. Test results show over 90% of the timestamp 

shifts can be corrected.  

The timestamps shifts issue is compensated in the later version of FDR hardware. 

However, many of the old FDRs can not be replaced in a short time. The algorithm can be 

used to correct timestamp for either online data, or the stored historian data.  
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Figure 2-6 Timestamp correction algorithm 
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2.4  Conclusion 

The data collection server received data from FDRs through TCP sockets. It store 

data in local database and forward them to other server systems. By synchronizing the FDR 

configuration information, the information updates and maintenance are simplified. The 

timestamp correction algorithm solves over 90% timestamp shift caused be clock 

mismatch.  
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Chapter 3 Real-time Synchrophasor Applications  

3.1  Motivations 

As synchrophasor measurements and applications play a growingly critical role in 

the modern power systems, the number of FDRs has expanded to approach the limit of the 

originally designed system capacity. Also, an increasing number of real-time applications 

and data analytics algorithms have pushed the system to reach its computation limit. Thus, 

the FNET/GridEye system is proposed to be redesigned to incorporate the following 

features: 

Scalability: The system is required to collect, store and process the data without 

delay as the number of FDRs continuously increases.   

Extensibility: A variety of technologies developed in recent years to solve power 

system stability issues also requires the server system to include easy plug-in interface for 

adapting new applications. 

Concurrency: More complex data analytical algorithms are introduced to the 

system, which requires higher computation capability. To ensure the data are processed in 

real-time, the server system should be able to execute applications in parallel by 

distributing the computation stress to multiple nodes.  

Robustness: The system should be able to operate under stress and tolerate 

unpredictable or invalid input. 

http://en.wikipedia.org/wiki/Fault-tolerant_system
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3.2  Synchrophasor Applications 

Since 2006, the FNET/GridEye system has been developed to host a series of 

synchrophasor applications for power system monitoring and visualization. A list of 

currently implemented online applications is shown in Table 3-2. 

Several other online applications are being developed or under test, including Fault-

Induced Delayed Voltage Recovery (FIDVR) detection, dynamic Beta-value estimation, 

etc.  

Beyond these online application, FNET/GridEye system also provides the platform 

supporting a variety of offline data analytics, including post-event analysis, long-term 

statistics, data quality analysis etc. [9]. 

3.2.1 Real-time Online Applications 

Synchrophasor applications are usually time sensitive. In the FNET/GridEye system, 

the online applications are divided into two tiers based on their response time, real-time 

application and near real-time applications, as shown in Table 3-1.  

 

Table 3-1 Two tiers of Real-time Applications 

 Tier 1 Tier 2 

Time constrains Real-time Near-real-time  

Response Time <10s <2 min 

Server Platform Data Server Application Server  

Data Source  Memory   Historian 

Sensor Units All units Selected units 

Includes  

(ID as shown in Table 3-2 ) 

1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11,12* 

 

*The response time of Video Replay depends on the video resolution and time length. 

It usually takes 5 to 10 minutes to render a video. 
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Table 3-2 Online Applications hosted by FNET/GridEye 

ID Application Description 

1 Event Trigger Detects generator trip and load shedding by continuously 

monitoring the ROCOF of the incoming frequency data [11]  

2 Oscillation 

Trigger 

Detects inter-area oscillation by monitoring the relative 

phasor angle [12]  

3 Islanding Trigger Detects the situation in which a part of the grid becomes 

electrically isolated from the remainder of the power system 

[13]  

4 Line Trip Trigger Detects a line outage event by monitoring sudden change but 

quickly damped frequency feature on local units [14] 

5 Ambient Mode 

Analysis 

Continuously analyzes system ambient oscillation frequency 

and damping ratio in real-time 

6 Real-time Data 

Visualization 

Web-based real-time data display in table, trend, and map 

format [15] 

7 Event Location Estimates generation trip or load shedding event location 

using TDOA algorithm [16] 

8 Frequency 

Response 

Analysis 

Analyzes frequency excursion during events, estimates 

events MW amount, point A,B,C frequency etc. [17] 

9 Oscillation Mode 

Analysis 

Estimates inter-area oscillation frequency, magnitude and 

damping ratio for dominate modes [12], [19] 

10 Online Report Generates web-based online analytics reports for detected 

disturbances [15] 

11 Email Alert Sends Email alert messages to registered customers about 

detected disturbances in real-time [10] 

12 Event Video 

Replay 

Automatically generates animation video for disturbances 

[15] 
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The real-time applications require fast reaction, usually in seconds. Thus the 

computation is designed to stay close to the data source. Trigger algorithms with minimum 

computation complexity are designed to achieve this goal with data read from buffered 

memory in the data server. In contrast, the Tier 2 applications obtained data from historian. 

This enables the applications to process time-aligned data with assured data quality. Tier 2 

applications are developed to handle more complicated algorithms like location 

triangulation and oscillation mode analysis.  

Although the time requirement of the Tier 2 applications are not as critical as those 

of Tier 1 applications, some data processing algorithms are still intensive for a computation 

node, especially when multiple applications request the CPU simultaneously.  

3.2.2 Online Applications Dependency and Priority 

In many cases, the online applications cannot be isolated from each other. It is 

intuitional to hold the report and visualization for the results from other applications, and 

the Event Location executes only when the Event Trigger fires. However, there are some 

hidden links between certain applications. For instance, both the Event Trigger and the 

Oscillation Trigger analyze the incoming data streams of all FDR/PMU units, unless one 

or a few units are isolated from the rest of the power grid, which is detected by the Islanding 

Trigger. In this case, the Islanding Trigger has to execute in advance to provide the unit 

status for the other two triggers, even though they are all considered as Tier 1 application.  

Figure 3-1 demonstrates the dependency of the current online applications on 

FNET/GridEye system.  
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The dependency between applications purposes significant challenge for application 

distribution. Each of the applications has to be ranked with priority, and queued in the 

system to execute.  

 

 

Figure 3-1 Online application dependency 

 

3.2.3 Offline Data Analytics 

The offline analytics normally refers to applications which are not time sensitive, 

including but not limited to post-event analysis, statistical analysis, data quality analysis, 

system model validation, model reduction, social impact and forensic studies, etc. [9], [18]. 

These applications usually require extraction of large volume of data from historian, 

analysis data in temporal or spatial domain, and compare or integrate with data from other 

sources.  

An example application could be a project to summarizing the GPS synchronization 

losses of all the FDR units in the past five years, and finding their relationship with local 

weather conditions. In this case, large volume data has to be processed, tabulated with 

location coordinates, and matched with data from historical weather report. For statistical 
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analysis like the example, big data analytics techniques and parallel processing are 

introduced to accelerate the computation speed. 

3.3  System Architecture Design 

To solve the challenges brought by the real-time phasor applications, as well as to 

ensure the system scalability, extensibility, concurrency and robustness, a distributed 

computing architecture is proposed to host the server system and data analytics platform, 

as shown in Figure 3-2 . 

 

 
 

Figure 3-2 Distributed data analytics system architecture 

 

The proposed architecture consists of a data server, a data historian, a web server, 

and a computing cluster for data analytics. The synchrophasor data are collected by the 

data server through internet. Tier 1 applications are executed in the data server, processing 

real-time data from all income phasor measurements. The real-time phasor data are 
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concentrated and aligned with timestamps and dumped to historian. Also, the phasor data 

are scanned by the real-time triggers, which detect disturbances and send trigger messages 

to the analytics clusters.  

The analytics cluster contains a series of computation nodes. Whenever the analytics 

cluster receives the trigger message, the trigger processing interface (TPI) finds its 

corresponding Tier 2 applications, and dispatches them to the computation nodes. Also, the 

TPI is responsible for loading the data from historian according to the requested time range. 

The applications are distributed into different node based on their computation complexity, 

so that the computation load is balanced.  

For offline applications, the analytics cluster can be reused if there is no Tier 2 

application being processed or waiting in queue. Multiple software packages, including 

Spark, Hadoop and R, are hosted on the cluster to support big data analytics. 

The web server requests down-sampled data from the historian for real-time display, 

as well as publish disturbance analysis reports whenever it receives the processing results 

from analytics cluster.  

By utilizing this design, the Tier 1 and Tier 2 applications are decoupled. Tier 1 

applications stays close to the data source for its time-sensitivity, while Tier 2 applications 

are capable to process complex computation using the clusters. Both near-real-time 

applications and offline analytics can scale up easily by adding more computation nodes. 

Failure of any one application does not impact the other applications, or the performance 

of the whole system. 
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3.4  System Implementation 

Following the proposed architecture, the distributed data collection and analytics 

system is implemented with each component elaborated in this section.  

3.4.1 Data Concentrator  

The FNET/GridEye data server plays the role as a data concentrator that collects data 

from hundreds of FDRs around the world. Synchrophasor data are transferred to the server 

through TCP connections. Since the FDRs are developed as distributed level PMUs, the 

FDR data format is designed as a simplified version of IEEE C37.118 standard format [20], 

which only contains timestamp, frequency, angle, voltage information measured at the 

distribution level, as well as the GPS coordinates of each FDR unit. The openPDC 

developed by Grid Protection Alliance (GPA) is tailored to adopt FNET/GridEye data 

stream format [21], and serves as the server-side concentrator software for FNET/GridEye 

system. Once a connection is built, the data server continuously receives the data packet, 

parses data to structured format, and verifies data validity.  

Even though the FDRs are synchronized with GPS time, and their data packets are 

labeled with timestamp, the network latency from a FDR to the data server is not 

guaranteed. This requires the data server to be synchronized with an accurate clock and to 

be able of tolerate minor delay from different FDR units.  

The data server is synchronized with a NTP server clock to compensate the time drift 

effect caused by the inaccuracy of its local clock. Other clock sources, like atomic clock or 

eLoarn clock are optional to improve the timing accuracy of the server system [22].  
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The openPDC allows operator to customize the Lead Time and Lag Time parameters 

for the input data streams. The Lead Time represents the maximum time intervals that the 

server can accept if an arriving data packet has a timestamp ahead of local server clock. 

The Lag Time defines the maximum time that the server can wait for the data to arrive with 

a timestamp later than the local server clock [21]. The data server buffers all the incoming 

data within the Lead Time and Lag Time range, and then publish the data with the same 

timestamp as a collective measurement frame. The phasor data from all channels are sorted 

and aligned with the correct timestamps before they are dumped to the historian or 

transferred to other servers. 

3.4.2 Data Storage 

The capability to write and read large volume of data with high speed is critical for 

the data historian. After exploration of a several relational databases, including MS Access 

and MySQL, and a variety of NoSQL databases, including MongoDB and Cassandra, the 

openHistorian 2.0 developed by GPA is selected to fulfill the requirements.  

The openHistorian 2.0 is a file based storage system designed to efficiently integrate 

and archive SCADA, synchrophasor, digital fault recorder and other process control data 

to support real-time grid operations and post-disturbance analysis. It supports indexed data 

retrieval interface and lossless data compression, which largely saves the storage capacity 

of the historian. The archive files produced by the openHistorian are ACID Compliant [23], 

which create a very durable and consistent file structure that is resistant to data corruption. 

Internally the data structure is based on a B+ Tree that allows out-of-order data insertion. 

http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/B%2B_tree
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It also provides high-speed APIs that can be customized for visualization of real-time and 

historical data, web-based data access and remote historian data extraction [24].  

3.4.3 Real-time Disturbance Detection  

The major objective of real-time applications is to detect disturbance 

instantaneously. All the detection triggers are hosted in the data server, which has fast 

access to the data as soon as they are parsed and cached into the memory. The disturbance 

detection triggers are implemented by customizing the Input/Action/Output Interface 

(IAON) Adapters of the Grid Solutions Framework (GSF), which is the fundamental 

library collection of openPDC and openHistorian [21].  

The real-time triggers, include event trigger, oscillation trigger, islanding trigger and 

line trip trigger etc., are extended from the action adapter class. The functions to process 

the measurement data are implemented as modular methods within the action adapter. Each 

of the triggers consists a series of modules to be executed in order.  For instance, Figure 

3-3 shows the implementation of the line trip trigger as an action adapter with series of 

function modules [14]. An input adapter and the historian output adapter are also included 

for testing purpose.  

The triggers are fired if the final processing result exceeds the predefined threshold. 

The thresholds for these triggers are different for each power grid, thus the configuration 

parameters and thresholds are open to user for initialization and modification. Some of the 

commonly used functions, like the average or median filter are packaged as libraries to 

share across multiple triggers.  
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The triggers of each power grid interconnection are defined as a thread, so they can 

be executed in parallel. In practice, however, since the real-time trigger applications may 

have dependencies, they cannot be processed in the form of “embarrassingly parallelism”, 

but rather in a pipelined structure, as shown in Figure 3-4. In this case, Trigger 2 and 3 rely 

on the decision result of Trigger 1, thus they cannot make final decision before Trigger 1 

thread publishes its results. Even if Trigger 2 completes the computation before Tigger 1, 

it holds the result until Trigger 1 finalizes the decision.  

An example is the dependency between the islanding trigger and the others, as shown 

in Figure 3-1. If an FDR unit detects islanding from the rest of the system, it should not be 

counted for the event trigger or oscillation trigger. However, regional islanding is rare case 

in the power system. To ensure the real-time features of the trigger computation, event 

trigger and oscillation trigger calculate the preliminary results, and wait for the islanding 

trigger to confirm that islanding is not detected, then fire the alarm trigger. Otherwise, the 

two trigger have to remove the islanded unit and recalculate the results. 

3.4.4 Trigger Processing Interface 

Since the real-time triggers are designed to detect disturbances as early as possible, 

the triggers are not capable of confirming the case without complete analysis. Some phasor 

features may create false alarms, and some may invoke multiple types of triggers. It is 

critical to retrieve more detailed data and perform more complicated analysis using the 

near-real-time applications. Detailed information including event location and oscillation 

modes can be estimated by retrieving data from the data historian and applying algorithms 

like Location Triangulation and Matrix Pencil methods. 
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Figure 3-3 IAON Adapter layer design of Line Trip Trigger 

 

 

 

 

Figure 3-4 Trigger threads with dependencies  
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To implement the distributed data analysis platform as designed in Section III, the 

TPI is developed to facilitate the communication between the data server and the analytics 

cluster nodes, and to dispatch the analysis tasks and historian data to the proper 

applications.  

The TPI is developed as a shell library with the functionality as shown in Figure 3-5. 

Whenever a real-time trigger is fired, the TPI sender broadcasts a trigger message to the  

analytics cluster though a UDP connection. The message is constructed by metadata of the 

trigger information, including the trigger type and the time range of relevant historian data.  

The analytics cluster hosts a list of data analysis applications. The received trigger 

messages are queued in buffer, and checked with priority. Some disturbances may fire 

multiple triggers, for instance, a generator trip mixed with oscillation. It is necessary to 

analyze both of the generator trip and oscillation. However, in some other cases, like the 

measurement from an islanded unit shows a line trip like feature. Only the islanding should 

be considered in this case, while the line trip trigger can be treated as a false alarm. With 

the priority check, system operators can configure a ranked order that the data analytics 

applications should follow. 

The TPI also provides interfaces to load historian data from openHistorian and 

dispatch the data to the suitable applications to process. In case any error occurs, the TPI 

has authority to kill the application process. 

With the implementation of TPI, the analysis applications are fully decoupled and 

distributed to multiple nodes. The computation load is shared in balance, and future 

applications can be tested and deployed easily. 
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Figure 3-5 Workflow of TPI 
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3.4.5 Distributed Near-real-time analytics 

The near-real-time analytics involves more comprehensive algorithms comparing to 

the real-time applications. The modules that take most of computation burden in these 

algorithms are usually the ones responsible for processing of the data from all FDRs. 

Because of this feature, the algorithms are naturally parallelizable. For instance, analysis 

of the oscillation frequency and damping ratio of each FDR using Matrix Pencil algorithm 

can be shared by multiple nodes on the cluster.  

Unlike the statistical analysis of long term historian data, the input data size of the 

near-real-time applications is limited within a few minutes. Thus, even without utilizing 

the installed Hadoop HDFS file system, in-memory processing with multi-threads or MPI 

shows good performance for these applications. Other real-time processing techniques like 

Apache Storm or Spark Stream are being investigated to further boost the performance. 
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Chapter 4 Real-time Line Trip Detection 

4.1  Algorithm Design 

Previous study shows that both frequency and phase angle are informative for line 

outage detection, as frequency variations directly reflect the machine rotational speed thus 

related to the generation and load, and voltage phase angle is related to the power flow 

distribution in the power network [3]. 

From simulation and observed measurements, line trip events impact only the nearby 

system on both sides of the tripped line: frequency rises suddenly on the power sending 

side and drops on the power receiving side. At the same time, voltage angles shift rapidly 

from their original value. Figure 4-1 shows the simulation results of tripping a 500kV line 

in the TVA system [3].  

 

 
(a)      (b) 

Figure 4-1 Line trip caused (a) frequency variation (b) voltage angle shift 

FNET/GridEye sensors are able to capture high precision frequency measurements.  
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However, since they are widely deployed at distribution level, their angle 

measurements may not reflect the transmission level angle change caused by line trip. It is 

practical to develop the line trip detector based on frequency variations for higher accuracy. 

Based on the characteristics of frequency variation, an algorithm is developed to 

detect such events. The block diagram of this algorithm is shown in Figure 4-2. 

 

 
 

Figure 4-2 Line trip detection block diagram 

 

A sample line trip event is presented in Figure 4-3 to explain the algorithm. The 

signals from two FDRS at the sending side and the receiving side respectively are shown 

in this figure. Figure 4-3(a) shows the raw frequency data where the line trip introduced 

oscillations are observable together with other high-frequency noises and possible local 

dynamics in the distribution network. The first low-pass filter in the block diagram in 

Figure 4-2 is to remove the high-frequency noises in the raw frequency and a moving 

median filter is used. The filtered frequency data is shown in Figure 4-3(b). 

Then the filtered frequency is fed into the second low-pass filter, a moving average 

filter, to get the trend of frequency data which is then subtracted from the filtered data. The 

signal of interest in the line trip detection is the oscillation caused by the line outage, so 

de-trending is necessary to remove the effects of the data trend and maintain the oscillatory  
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(a) 

 
(b) 

 
(c) 

Figure 4-3 Signal outputs of each block of line trip detector 

(a) Raw input (b) Median filtered frequency (c) De-trended frequency 
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part at the same time. Figure 4-3(c) shows the de-trended data which becomes zero-mean 

signals and the rapidly varying components of the original frequency are clearly presented. 

Two thresholds are set to detect the initial frequency peaks during the first swing of 

the de-trended signal. It has been observed that the oscillations caused by line trips are 

usually well-damped, which means that the peak values of the oscillations are descending. 

Within a two-second time window, if the first peak is larger than the higher threshold and 

the second peak exceeds the lower threshold, the algorithm will throw a trigger flag and 

generate reports. The two-second time window is decided based on observations from 

measured line trip events as well as simulation results that the period of the first swing is 

usually less than two seconds.  

4.2  Simulation Results 

The frequency based detection algorithm is programmed in MATLAB to verify its 

performance. The program is tested with confirmed historical line trip event data observed 

by FNET/GridEye. Some selected test results are demonstrated below. 

Figure 4-4(a) shows the results of line a trip event that occurred on April 11, 2007, 

observed by four FDR units, while Figure 4-4(b) shows another event on May 14, 2008, 

seen by six FDR units. From the above tested results, the de-trended frequency is effective 

to detect line trip events if the thresholds are chosen properly. To summarize the simulation 

results, 48 line trip events out of 63 are detected. 
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(a) 

 
(b) 

Figure 4-4 Sample cases tested by Matlab simulation  

 (a)Line trip event on 2007/4/11 (b) Line trip event on 2008/5/14 
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4.3  Application Development 

4.3.1 Application Architecture 

This application serves as a part of the FNET/GridEye trigger application framework. 

The new generation of the FNET/GridEye system is based on openPDC platform, as shown 

in Figure 4-5.   

 

 
Figure 4-5 openPDC based FNET application architecture  

 

In the architecture diagram, the openPDC provides the fundamental infrastructure 

for the historian database and data connections. The Time Series Framework assembles 

real-time data stream through TCP or UDP ports. It also provides the interface to 

communicate with OpenHistorian, the file based real-time database. Phasor Protocol Layer 

provides varies protocols to parse received data, such as BPA, IEEE C37.118 and FNET 

data format.  

On top of the openPDC platform, a code library is developed for the FNET/GridEye 

with some commonly used program modules, such as median filter, average filter and peak 
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detector. The real-time trigger applications, including line-trip trigger, are developed by 

assembling modules from the code library. FNET/GridEye system provides rich alert 

system and visualization interface, which are shared by real-time triggers. 

4.3.2 Adapter Design 

To implement line trip trigger application on openPDC platform, the concept of 

Input/Action/Output Interface (IAON) Adapter is introduced by the Time Series 

Framework. Each of these adapters is a base class: Input Adapters handle the functions of 

reading and parsing data stream, Action Adapters are in charge of data manipulation, and 

Output Adapters format the output data, as shown in Figure 4-6. 

 

 
Figure 4-6 IAON Adapter layer design 

 

The FNET data format is included in the Phasor Protocol library. For real-time 

trigger applications, a Phasor Protocol Input Adapter is used to parse input data stream 

from TCP port. It forwards the parsed data to both the Action Adapter and the Output 

Adapter. The Historian Archive Adapter packs the parsed raw data to the OpenHistorian 
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format and stores it in the historian files. The CSV Reader Adapter is developed to replay 

historical FNET line trip event for testing purpose.  

Signal processing functions mentioned in the previous section, such as peak detector 

and low pass filters, are implemented as Action Adapter, which is the major part of 

application development. The Line Trip Detector plays the role of the main function that 

calls the other modules and triggers the alarm. The Signal Calculator is a pre-developed 

adapter in openPDC library to perform simple mathematical calculation of signal 

measurements, such as addition and multiplication. Signal processing modules are 

triggered in the order given by the algorithm. Each of them processes a short interval of 

measurement data and sends its calculation results to the next module. Once Line Trip 

Detector collects the final results, it compares the results to the predefined threshold and 

check if the alarm should be triggered. 

To enhance the flexibility of adapters, the openPDC platform enables users to define 

parameters as Connection Strings, in which users can specify the input signal, output signal 

and other critical arguments, such as threshold values, for each adapter.  

Error! Reference source not found. lists some of the parameters defined for line t

rip detection. Line Trip Detector class reads these parameters from the user interface, and 

forwards them to their destination modules. Different parameters may apply in various 

conditions. For instance, the thresholds may change in different interconnections. By 

tuning these parameters based on historical data, the accuracy of the line trip trigger can be 

improved such that it can reject false alarms efficiently.  
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Table 4-1 Connection String Properties 

Name Type Description 

detectionWindowSize INT 
Number of frames for 

detection (buffer size) 

averageFilterSize INT Window length of mean filter 

medianFilterSize INT 
Window length of median 

filter 

firstPeakThreshold FLOAT 
Threshold value of the first 

peak during line trip 

secondPeakThreshold FLOAT 
Threshold value of the 

second peak during line trip 

minValidNodes INT 
Number of node seeing line 

trip event to trigger alarm 

 

4.3.3 Alarming 

Once a line trip event is detected by the peak detector module, it reports to the Line 

Trip Detector to trigger an alarm signal. The alarm is designed to be a binary output signal, 

which is obtuse to sudden change of input with a user defined delay to avoid false alarm, 

and hysteresis condition is considered when the alarm is cleared. As shown in Figure 4-7, 

the alarm is triggered when the value exceeds the threshold and stays above the threshold 

for a certain amount of time. The alarm is cleared when the value drops to a hysteresis 

point, which is lower than the alarm trigger threshold [2]. 

The alarm threshold is determined based on historical line trip events. The threshold 

Sthreshold is calculated by the following equation. 

 

where SLT is empirical signal magnitude when line trip occurs, and SnonLT is empirical 

signal magnitude when there is no fault event. Thus, the threshold is set to be the mean 

S
threshold

= [ max ( | S
nonLT  

| ) + min ( | S
LT 

| ) ] / 2 
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point between the minimum peak value when events occur and the maximum signal noise 

when there is no event. 

 

 
Figure 4-7 Alarm trigger mechanism 

 

4.4  Test Results 

The Application is tested with confirmed historical line trip events. Based on these 

historical data, some critical parameters are decided. The median filter window size is set 

to 7 points, while the average filter size is chosen to be 31 points. Figure 4-8 and  Figure 

4-9 show a sample test result on openPDC Manager, based on a line trip event observed by 

an FDR device near Rolla, Missouri, on March 28, 2007.  

It can be seen from Figure 4-8 that the median filter effectively removed the high 

frequency noise, but preserved the frequency characteristics at the edges (blue trace). By 

subtracting the trend signal detected by the average filter (green trace), the frequency pulse 

change caused by the line trip event was significantly boosted from the ambient frequency 

(red trace). Note that the de-trended frequency (red trace) is scaled to fit in the display. 

Figure 4-9 demonstrates the peak detection mechanism of the above line trip event. 

With the detection window set to two seconds (20 points), the peak detector continuously  
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Figure 4-8 Display of filtered and de-trended frequency 

 

 

 

 

         
Figure 4-9 Display of alarm trigger 
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calculates the maximum and minimum values of the de-trended frequency within the last 

2 seconds.  The threshold of the first peak is set to 0.0045 Hz and that of the second peak 

is 0.0025 Hz based on empirical values. Once the peaks of the de-trended frequency exceed 

the thresholds, the binary alarm signal is triggered to 1. In this case, the maximum value 

reaches the first peak threshold first, and the minimum value hits the negative second peak 

threshold immediately after. The alarm signal is cleared after two seconds when the 

detection window shifts to upcoming data stream. 

A warning message pops up to openPDC console with the event time stamp as soon 

as a line trip event is detected. Further reporting formats such as email reminder and graphic 

report are being developed. 

4.5  Conclusion 

This paper proposed a frequency based line trip detection algorithms and it is verified 

through actual line trip data. Utilizing the openPDC platform, the frequency-based 

detection algorithm is implemented as a real-time online application, which consists of 

median filter, average filter, signal calculator and peak detector. These modules are 

included in FNET/GridEye application library for other applications. Test results shows 

that the system effectively detects line trip events and set the proper alarms.   

The angle based algorithm will be tested and implemented for line trip detection as 

the next step. Multi-channel detection will be considered to improve the detection accuracy 

and to provide the possibility to locate the event. Since line trip events often occur in 

companion with other faults such as generation trips or load changes. Further study will 
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show the sensitivity of the line trip trigger and possible approaches to separate it from other 

events. 
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Chapter 5 Synchrophasor Data Quality and Security 

5.1  Introduction 

Synchrophasor data quality are affected by many factors. One of the major reasons 

for low quality data is GPS signal losses. Accurate timing source is vitally important for 

PMUs. Correct operation of a PMU requires a common and accurate timing reference. The 

timing reference is described in IEEE Std. C37.118.1-2011. To achieve a common timing 

reference for the PMU acquisition process, it is essential to have a source of accurate timing 

signals (i.e., synchronizing source) that may be internal or external to the PMU. For 

internal, the synchronization source is integrated into the PMU but external global 

positioning system (GPS) antenna still required. In the latter case, the timing signal is 

provided to the PMU by means of an external source, which may be local or global, and a 

distribution infrastructure (based on broadcast or direct connections). Within a PMU, a 

phase-locked oscillator is used to generate the time tags within the second. The time tag is 

sent out with the phasors. Thus if a phasor information packet arrives out of order to a 

phasor data concentrator (PDC), the phasor time response can still be assembled correctly. 

If the GPS pulse is not received for a while, the time tagging error may result in significant 

phase error. 

The time system of a PMU based is depicted in Figure 5-1. The standard temporal 

reference of this system is generated with a signal of one pulse per second (one PPS) from 

a GPS. This pulse as received by any receiver on earth is coincident with all other received 

pulses to within 1 microsecond. PPS signal is used for sampling the analog data. The GPS 
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time does not take into account the earth’s rotation. Corrections to the GPS time are made 

in the GPS receivers so that they provide UTC clock time. 
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Figure 5-1 Indicator of the GPS loss and recovery flag. 

 
 

This project studies the GPS loss by processing the historical PMU data from 2009 

to 2012. The statistics of four-year GPS loss is implemented, in particular, the name of 

units, starting and ending time, and duration are recorded. Yearly, monthly and hourly loss 

are the selected statistical quantity. But comparison of the above quantity, we can have a 

clear picture of GPS loss in PMUs. 

5.2  Methodology 

The latest PMU/PDC protocol is the IEEE C37.118-2011 that was developed in the 

last few years. By monitoring the value of the 13th bit of the STATUS flag defined in the 

IEEE Standard C37.188.1-2011, we can get the number and duration of GPS loss, which 

flow chart is shown in the Figure 5-2. 



 
47 

1
GPS Status

0

1
GPS Status

0
GPS Loss

GPS Recovery

Duration

PMU Status Flag (16 bit)

13

Indicator of GPS Status

00

1

       

Load PMU data

Check the status flag in 

the PMU file

Is GPS loss or 

GPS recovery?

End

No

Is finished?
No

Yes

Yes
 

 
 

Figure 5-2 Indicator of GPS loss and how to detect a GPS loss.  

(a) Indicator of the GPS loss and recovery flag.  

(b) Flow chart of GPS loss detection for PMU data. 
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The one-bit GPS status flag is used as the indicator of GPS loss: “0”-status indicates 

that the PMU is with GPS timing signal whereas “0”-status means without GPS signal. So 

by monitoring the variance of the GPS flag, we can see when the GPS loss started and 

ended, and how long the loss was. 

 

On the algorithm shown in Figure 5-2(a), a tool for detecting the GPS loss in PMU 

data is developed by Microsoft Visual Studio C# 2012, whose user interface is shown in 

Figure 5-2(b). Thus, the tool is used to obtain the statistical results of PMU GPS loss from 

2009 to 2012. 

FDR data does not include GPS information in every data frame. Instead, it updates 

the number of locked GPS satellites every 1 minute, which can be considered as the 

strength of the timing signal. Thus, the PMU data give the GPS loss information in higher 

resolution, while FDR data provide more information about GPS strength. 

5.3  Temporal Patterns of GPS Losses 

As the more PMUs and FDRs are deployed over the past years, more GPS loss are 

observed. Figure 5-4 shows the number of monthly GPS losses from 2010 to 2012. The 

total number of FDRs increased from 53 in Jan 2010 to 131 in Dec 2012. Over 50% of the 

FDRs suffer from frequent GPS Timing losses. Similarly, over 50% of the sampled PMUs 

detected GPS loss. 
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Figure 5-3 Number of PMU GPS losses from 2009 to 2012 

 

 

 

Figure 5-4 Number of FDR GPS losses from 2010 to 2012 
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5.3.1 Loss-recovery time 

Both PMU and FDR data shows that the number of GPS losses decreases 

exponentially as recovery time increases. Most of GPS losses recover within a short period 

of time. For FDR data, since there is a forced coasting period of 1 or 2 hours, (FDR stops 

sending data if lose GPS timing over 1 or 2 hours), there are high count values at 60 minutes 

and 120 minutes.  

5.3.2 Monthly Trend 

Figure 5-7 and Figure 5-8 shows the trend of average monthly loss per unit of FDRs 

and PMUs. No obvious seasonal or monthly trend was found. 

5.3.3 Daily Trend 

From PMU or FDR data, we observed that some unit lost GPS more frequently in 

certain hours in a day. However, there is no obvious pattern detected that matches for all 

the units. 

 With the FDR data include the number of GPS satellites locked per minute, we are 

able to exam more details of GPS signal strength. Figure 5-11 shows the number of 

satellites of an FDR in days.   

The four figures show four FDRs which (a) has always strong GPS signal;(b) has 

always weak GPS signal; (c) has a daily pattern, that tend to lost GPS at around 9AM every 

day; (d) has no obvious daily pattern, but never loss GPS timing. 
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Figure 5-5 Count of GPS loss recovery time of PMU data 

 

 

 
Figure 5-6 Count of GPS loss recovery time of FDR data 
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Figure 5-7 Average monthly loss per unit of FDR 
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Figure 5-8 Average monthly loss per unit of PMU 
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Figure 5-9 Daily GPS loss pattern per PMU 

 

 

 

 
Figure 5-10 Daily GPS loss pattern of all FDRs 
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Since FDR need at least one GPS satellite locked to synchronize timing, the number 

of GPS locked can be represented as the number of backups the timing signal has, named 

timing signal strength. If a FDR is not locked with any GPS satellite, it losses timing 

synchronization. With good GPS signal reception, a receiver should be able to see 4 to 12 

GPS satellites [2]. However, FDRs are usually installed indoor with a directional GPS 

antenna instead of an omnidirectional antenna, the GPS reception may be affected by 

whether the antenna is installed at a window with open view to the sky. The GPS signal 

may be blocked or reflected by buildings or other obstacles in certain times of the day, 

which can cause a daily pattern as shown above.  

More analytics result from PMU data are included in Appendix.  

5.4  Spatial Patterns of GPS Losses 

We counted the number of GPS losses of each unit across the United States, as shown 

in Figure 5-12. Theoretically, the GPS signal strength is affected by the latitude of the 

sensor location [2]. However, no significant geological pattern was observed in real data.  

5.5  Impact of Weather/ Space Weather  

GPS signal strength is also affected by space weather, especially solar activities. [3] 

The largest solar activity in the last 6 years happened on March 7, 2012 00:24 UTC – the 

sun unleashed an X5.4-class solar flare. However, no obvious impact was detected on the 

overall FDR data.  

Historical weather reports are studied as well. No obvious relationship was found 

between GPS loss and local temperature or precipitation.  Offline Experiments. 
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(a)    (b) 

 
(c)    (d) 

Figure 5-11 Daily pattern of number of satellites locked of FDRs 

 

 

 
Figure 5-12 GPS losses per unit in United States 
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5.6  Data Security and Encryption 

Data security is a critical concern in synchrophasor measurements. IEEE standard 

C37.118.2-2011 defines synchrophasor data transfer format and communication protocol. 

As the standard specifies, phasor measurement system commonly use the IP over network 

communication. At transport layer, either TCP or UDP or a combination of both can be 

used to transfer data and configuration commands [15]. However, there is no encryption 

method included in the standard, which exposes synchrophasor data to cyber-attacks.  

To enhance the confidentiality of synchrophasor data, an encryption system is 

proposed by Scout Industries and tested with FNET. The system setup is demonstrated in 

Figure 5-15. 

As shown in the Figure 5-15, a pair of hardware encryptors is added to the connection 

between PMU/FDR and the Phasor Data Concentrator (PDC) server. The encryptors 

installed for the test are Certes CEP10 modules, as shown in Figure 5-15, which enables 

10 Mbps, full duplex data encryption. The CEP10 modules offer multi-layer security, 

including IP packet encryption for Layer 3 networks, and Layer 4 data payload encryption 

for IP and MPLS networks [16]. Each CEP 10 provides three ports for the network 

connection: PMU/FDR and PDC server are connected to Local (L) port; Remote (R) port 

is to transfer data over the network; Management (M) port is connected to an encryption 

server, TrustNet Manager. TrustNet Manager is a web based server platform to configure 

and manage the encryption policies, and to update encryption keys, as shown in Figure 

5-15. Also the TrustNet server can be accessed from any web or command line client in 

the network. 
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Figure 5-13 Historical trend of solar activities [5]  

 

 

 
Figure 5-14 GPS loss trend from 2010 to 2012 
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Figure 5-15 Cyber-security test system setup 

 

The encryptors and the TrustNet server can be connected either over a local area 

network (LAN), or over the Internet. Phasor data is transferred without knowing the 

network topology or configuration. For this test, all the devices are connected over a LAN, 

and the encryption policy is configured to use 256-bit Advanced Encryption Standard 

(AES) for encryption and SHA1 for authentication. AES was announced by National 

Institute of Standards and Technology (NIST) in 2001 [17] and National Security Agency 

(NSA) approved that 256-bit AES is sufficient to protect classified information up to the 

Top Secret level [18]. Report shows that to brute force crack an AES 256-bit key with a 

state of art supercomputer, it would take 3.31×1056 years, while the age of universe is 

13.75×109 years [19]. TrustNet server assigns new encryption key to the encryptors every 

24 hours (this is the default value and the re-key time is configurable). With this setup, the 

http://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
http://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology


 
59 

phasor data is transferred over a secure but transparent link. The data transmission is 

verified by sending both single phase measurements from FDR and single channel, three 

phase measurements from MethaTech PMU to the OpenPDC server.  

Since phasor data is intensive real-time data and sensitive to time delay, a verification 

test is designed to measure the encryption delay added to the communication system.  

The PDC server is set to run 100 pings the PMU with 32 bytes, 64 bytes, 128 bytes 

messages, with and without encryption, respectively. Figure 5-16 shows the round trip 

latencies by pinging the PMU. The average latencies of 32 bytes, 64 bytes, 128bytes 

messages without encryption are 0.50ms, 0.52ms, 0.85ms respectively, while with 

encryption, these values increases to 0.79ms, 0.83ms and 1.56ms. The delay introduced by 

encryption, which is the difference between the results with and without encryption, 

increases as the message length grows.  

 

 

Figure 5-16 ICMP Ping latency with message length of 32, 64, 128 bytes  
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Since FDRs and many PMUs implements TCP protocol for data transmission, 

another latency test with 32 bytes TCP ping is shown in Figure 5-17. The results with 

encryption is 1.63ms, approximately twice of the one without encryption, 0.82ms. The TCP 

ping adds more latency because of its multiple-handshake scheme, which also makes the 

results vary in a wider range. Also, the larger TCP header, comparing to a normal ICMP 

ping header, contributes to further delay.  

Since a single channel PMU data frame is 52 bytes long as defined in IEEE 

C37.118.2-2011, and a typical FDR data frame is 55 bytes in length, we expect the 

proposed encryption system add 1ms to 1.5ms delay in a real system.  Though the total 

communication delay in a real system changes case by case, a typical estimation of delay 

from PMU to PDC is in the 20ms and 50ms range [15], which makes the encryption delay 

a relative small amount.  

 

 

Figure 5-17 TCP Ping latency 
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5.7  Conclusion 

By exploring the GPS loss pattern from PMU data from 2009 to 2012 and FDR data 

from 2010 to 2012, we found that PMUs and FDRs suffer from loss of GPS 

synchronization frequently, but most of the losses can recover in a few minutes. GPS loss 

that last longer than an hour is very rare. For FDRs, the GPS timing signal strength is most 

affected by antenna direction. No obvious GPS loss pattern is discovered that is related to 

day/month/season of the year, location, weather, or solar activity. In addition, a cyber-

security solution is proposed to encrypt phasor data. Test results show that the system 

introduced limited encryption delay. Future work includes improvements of timing signal 

and data security by using additional timing source such as eLoran system as a backup for 

GPS system. 
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Chapter 6 Data Analytics Platform for Synchrophasor Data 

6.1  Introduction 

To enhance the capability to host large volume data for post event and statistical 

analytics, the Apache Spark is configured on the analytics cluster. Unlike conventional 

Hadoop MapReduce platform, Spark is designed to support in-memory processing, which 

enable it to run up to100 times faster. It also supports SQL queries, streaming data, and 

complex analytics such as graph algorithms and machine learning [25].  

For post event and statistical data analytics, the phasor dataset are mapped to the 

worker nodes as Resilient Distributed Datasets (RDDs). Each of the data point can be 

mapped into key-value pairs, with the timestamp as the key and the data to be processed as 

the value. After certain processing or analysis operation, the result data are collected or 

reduced, first locally on each node, then globally to the master node. A sample statistical 

analysis of historian events is demonstrated in the next section.   

Besides utilizing Spark to improve the computation speed, other data analytics tools 

like R and Pandas are hosted by the analytics cluster for more complicated data queries, 

data summary and visualization. In addition, the most commonly used data, for instance 

event data, are copied as snapshots in the Hadoop Distributed File System (HDFS) on the 

cluster nodes, to save the burden to retrieve data from historian to the analytics system. 

A variety of real-time and near-real-time analytics applications hosted by the 

FNET/GridEye system were published since 2006. The offline applications were recently 

migrated to the cluster analytics platform to fully utilize the big data technologies. A 

sample statistical analysis using Apache Spark is demonstrated in this section. 
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6.2  Sample Test 

The frequency disturbance event trigger detects frequency deviation caused by 

generation trip or load shedding. All the triggered events are logged with a timestamp and 

the raw event data are stored in the data historian. North American Electric Reliability 

Corporation (NERC) utilizes a system frequency for frequency response analysis [27]. The 

system frequency is calculated using the median value at each sampling time from the event 

data including 1 minute pre-event and 5 minutes post-event frequency. From 2012 to 2015, 

tens of thousands of events are captured, which makes the data extraction and conversion 

a challenging job. 

Assuming 10000 events are to be analyzed with 100 FDR data, and the sampling 

frequency of FDRs is 10 per second, the total data size is 10000* 100 FDRs *10 per second 

* 360 second*4bytes = 24 Gigabyte. At each time point of 0.1 second, the frequency value 

of 100 FDRs are to be sorted to obtain the median point.  

The distributed data analytics platform with Apache Spark provides a solution to 

process such amount of data in parallel. Each of the frequency data and is according 

timestamp are packed as key-value pairs, and loaded as Spark RDDs. The RDD will first 

map the data partitions to computation nodes for processing, and let each nodes execute 

the sorting function in parallel. Then the calculated median values are sorted by their 

timestamps, to form a frequency time series for each event. Eventually, the time series are 

grouped by their event id and are aggregated as final result to the master node. Unlike 

traditional MapReduce method, Spark handles the whole process in memory, which 

ensures the computation speed to be significantly faster. 
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6.3  Performance 

The test environment is setup using a server system with two Intel Xeon E5-2470v2 

processors, which includes 20 cores with hyper-threading. The test results show that for 

100 events, the least computation time is about 128 milliseconds, while without the Spark 

implementation, the computation time is 2592 millisecond, which is over 20 times slower. 

 

  

Figure 6-1 Computation Time vs. Number of Partitions. 

 

Increasing the number of partitions of the dataset may improve the performance by 

processing data in a more parallel cluster. However, the communication overhead to map 

and collect the dataset will also increase. Figure 6-1 demonstrates the computation time 

using different partitions of the dataset. In this case, the least computation time is achieved 

with 8 partitions. Using more than 8 partitions will increase the computation time because 

of communication.  
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6.4  Test Results 

To further investigate the frequency response of events,  the time of occurrence of 

the events are calculated using the distributed platform, to learn if it matches a daily or 

seasonal variation pattern [28].  

To count the events happened by their hour of the day in each month, the timestamps 

of events in Eastern Interconnection (EI) from July 2012 to July 2015 are stored in a Python 

list structure. The timestamps are then converted to a Spark RDD using PySpark, and 

grouped by their month and hour segment, as shown in the following Python program. 

The number events with the same hour within each month is counted, and the results 

is plotted as a colored contour map in Figure 6-2, with the X axis as the months, Y axis as 

the hours of the day (UTC time), and the color representing the total number of events 

counted within the time range.  

 

 

Figure 6-2 Count of EI events by month by hour of the day 
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Since most of the events are congregated at 7:00 to 14:00 UTC, it is suspected that 

some scheduled operation is one of the major causes of events. To prove this hypothesis, 

generation trip events and load shedding events are plotted separately in Figure 6-3 and 

Figure 6-4. 

 

 

Figure 6-3 Count of EI generator trip events by month by hour of the day 

 

The generation trip events are random distributed over a day, and there is no obvious 

pattern over a year. However, the load shedding events are concentrated around 9:00 and 

21:00 UTC (4:00 and 16:00 EST). It confirms that most of the events are scheduled load 

shedding or pump storage shut down. Also, Figure 6-4 shows the peaks of the number of 

load shedding events appears at April and October each year, but very few load sheddings 

are captured in summer or winter.  

To further compare events between Eastern and Western Interconnections, the events 

data in WECC is analyzed with the same procedure. Similarly, the generation trip events 
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are randomly distributed. However, most the load shedding events in WECC are laid 

between 10:00 to 17:00 UTC, as shown in Figure 6-5. It implies that the utilities in WECC 

may have one scheduled time per day for load shedding or storage shut down. The peak 

positions of load shedding indicate that these operations are usually 2 to 3 hours later than 

the load sheddings in EI, possibly caused by the local time difference. 

 

 

Figure 6-4 Count of EI load shedding events by month by hour of the day 

 

6.5  Conclusion 

The computation power is enhanced by parallelizing analysis algorithms, distributing 

the computation load across multiple nodes, and utilizing big data analysis tools like Spark. 

Large volume historian data are easily accessible to for applications and external clients. 

Based on this platform, more sophisticated data analytics algorithms and visualizations 

tools can be easily implemented for power system monitoring, operation and control.  
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Figure 6-5 Count of WECC load shedding events by month by hour of the day 
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Chapter 7 Conclusions 

The wide area synchrophasor data server system and data analytics platform 

discussed in this dissertation are designed and implemented based on FNET/GridEye 

system. The system provides a comprehensive solution for synchrophasor data collection, 

real-time data application, data quality monitoring and big data analytics. It collects 

distribution level synchrophasor data from FDRs, stores the data in openHistorian database, 

and connected with data analytics systems with Spark. Many real-time and offline 

applications have been developed to monitor the system status of the North American 

transmission system. 

The data collection server system is implemented using TCP sockets. The server is 

utilized to receive data, store in a local database, and forward data to multiple other server 

systems. The FDR configuration is synchronized across servers using MySQL database. 

The timestamp shift error introduced by FDR clock mismatch was corrected. 

The real-time applications are divided into multiple tiers based on their time 

sensitivity. These applications are implemented using openPDC based action adapters. 

Real-time data are stored in openHistorian system, and a trigger processing interface is 

introduced to connected real-time disturbance detection, historian data extraction and near-

real-time data analysis. A line trip detection application is developed to demonstrate the 

process. 

A data analytics platform is proposed to handle analytics jobs that involves big 

volume of historian data. The analytics platform is built on a virtual cluster, and Apache 
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Spark in implemented for data processing. Test results shows that the computation 

performance is increased by tens of times. 

Synchrophasor data quality, including GPS losses and data security issues are also 

discussed in this dissertation. Both temporal and spatial pattern of GPS losses are 

investigated. 

Based on the architecture proposed in this dissertation, more real-time applications, 

including but not limited to forced oscillation detection, FIDVR detection, islanding 

detection, can be easily implemented. Future works may also focus on data analytics using 

the data analytics platform.  

This system improves the scalability, extensibility, concurrency and robustness of 

the FNET/GridEye system. It not only boosted the performance of synchrophasor 

applications, but also provides a reference for industrial level wide area synchrophasor 

monitoring system. 
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PMU GPS Losses from 2009 to 2012 

 
1. Results of 2009 

 

Table A-1 Units with GPS loss in 2009 

Name Number Gross Duration Mean Time (per unit per loss) 

- 10384.42 123724.86 11.91 

- 7935.31 1398.27 0.18 

- 4772.12 1941.13 0.41 

- 3655.69 1706.46 0.47 

- 2772.82 2915.09 1.05 

- 2362.73 3085.25 1.31 

- 2267.05 2880.29 1.27 

- 247.49 97.78 0.40 

- 169.16 180.18 1.07 

- 59.12 5650.72 95.59 

- 44.24 45.72 1.03 

- 41.67 43.06 1.03 

- 35.77 6.54 0.18 

- 30.99 4.32 0.14 

- 30.15 67.35 2.23 

 

 

Table A-2 Monthly GPS loss in 2009 

Mont

h 

Unit 

Number 

Loss Number (per 

unit) 

Duration 

(sec) 

Mean Time  

(sec, per unit per 

loss) 

Jan 7.00 109.71 107.58 0.98 

Feb 9.00 171.74 2696.46 15.70 

Mar 12.00 651.41 4026.09 6.18 

Apr 10.00 80.85 390.98 4.84 

May 10.00 45.22 65.33 1.44 

Jun 11.00 161.45 678.12 4.20 

Jul 8.00 221.44 130.67 0.59 

Aug 13.00 322.42 173.28 0.54 

Sep 9.00 22.50 9.92 0.44 

Oct 6.00 19.83 8.16 0.41 

Nov 4.00 30.13 11.04 0.37 

Dec 2.00 4.83 5.00 1.03 
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Table A-3 Hourly GPS loss in 2009 

Hour (UTC) Unit Number 
Loss Number  

(per unit) 
Duration (sec) 

Mean Time  

(sec, per unit per loss) 

1 10 441.16 984.60 2.23 

2 11 208.57 668.04 3.20 

3 11 185.37 701.96 3.79 

4 11 89.49 55.25 0.62 

5 11 80.23 52.57 0.66 

6 10 138.95 595.34 4.28 

7 8 217.08 820.59 3.78 

8 10 114.37 130.73 1.14 

9 10 99.97 86.29 0.86 

10 11 92.27 51.29 0.56 

11 11 298.53 109.51 0.37 

12 13 111.32 459.70 4.13 

13 13 183.67 642.05 3.50 

14 11 228.92 618.79 2.70 

15 12 264.70 1180.75 4.46 

16 14 109.07 1671.95 15.33 

17 10 219.00 1470.37 6.71 

18 13 296.25 1509.48 5.10 

19 12 235.34 2054.05 8.73 

20 12 315.28 1676.57 5.32 

21 13 308.73 1099.39 3.56 

22 11 289.11 1434.59 4.96 

23 12 192.24 720.42 3.75 

24 9 244.63 859.27 3.51 
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Figure A-1 Monthly GPS loss in 2009. 
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Figure A-2 Hourly GPS loss in 2009. 
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2. Results of 2010 

Table A-4 Units with GPS loss in 2010 

Name Number Gross Duration Mean Time (per unit per loss) 

- 3126.58 6418.68 2.05 

- 2440.41 260.72 0.11 

- 1860.44 3830.15 2.06 

- 1705.83 3832.31 2.25 

- 1591.33 3484.63 2.19 

- 1465.80 3123.41 2.13 

- 1220.73 5384.25 4.41 

- 1198.87 5516.73 4.60 

- 542.40 4316.89 7.96 

- 508.84 20868.27 41.01 

- 417.39 530.10 1.27 

- 407.21 544.65 1.34 

- 260.02 5368.02 20.64 

- 257.72 3756.83 14.58 

- 193.70 53.73 0.28 

- 130.97 31.37 0.24 

- 77.24 239.44 3.10 

- 64.51 66.67 1.03 

- 48.98 50.61 1.03 

- 40.95 595.59 14.54 

- 37.06 38.29 1.03 

 

 

Table A-5 Monthly GPS loss in 2010 

Mont

h 

Unit 

Number 

Loss Number (per 

unit) 

Duration 

(sec) 

Mean Time  

(sec, per unit per 

loss) 

Jan 9 23.11 28.15 1.22 

Feb 8 230.65 30.91 0.13 

Mar 8 27.00 33.35 1.24 

Apr 19 112.93 1045.54 9.26 

May 17 407.93 2013.77 4.94 

Jun 6 13.93 100.75 7.23 

Jul 15 110.89 158.94 1.43 

Aug 16 79.67 246.59 3.10 

Sep 14 132.25 130.62 0.99 

Oct 15 46.57 17.60 0.38 

Nov 7 16.07 18.29 1.14 

Dec 6 21.95 25.02 1.14 
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Table A-6 Hourly GPS loss in 2010 

Hour (UTC) Unit Number 
Loss Number  

(per unit) 
Duration (sec) 

Mean Time  

(sec, per unit per loss) 

1 4 22.63 75.68 3.34 

2 11 26.90 13.26 0.49 

3 10 46.76 15.38 0.33 

4 11 31.39 17.72 0.56 

5 19 307.33 1330.77 4.33 

6 11 31.56 16.85 0.53 

7 9 35.94 51.57 1.43 

8 14 27.88 16.14 0.58 

9 9 48.43 38.13 0.79 

10 11 43.56 33.38 0.77 

11 16 34.19 28.06 0.82 

12 15 75.28 87.74 1.17 

13 15 33.27 39.46 1.19 

14 13 67.95 469.67 6.91 

15 14 51.47 504.01 9.79 

16 15 70.82 569.38 8.04 

17 12 64.53 592.55 9.18 

18 16 62.36 485.82 7.79 

19 15 287.89 233.25 0.81 

20 19 236.15 1243.32 5.26 

21 16 41.82 326.63 7.81 

22 14 60.05 318.46 5.30 

23 9 33.47 26.06 0.78 

24 11 15.82 9.44 0.60 
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Figure A-3 Monthly GPS loss in 2010. 
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Figure A-4 Hourly GPS loss in 2010. 
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3. Results of 2011 

Table A-7 Units with GPS loss in 2011 

Name Number Gross Duration 
Mean Time  

(per unit per loss) 

- 23447.20 466785.61 19.91 

- 5078.26 5426.23 1.07 

- 866.95 5515.52 6.36 

- 448.66 599.69 1.34 

- 447.34 598.68 1.34 

- 177.61 11.27 0.06 

- 151.25 8.86 0.06 

- 123.04 131.31 1.07 

- 109.97 5.25 0.05 

- 98.01 5.66 0.06 

- 92.66 6.24 0.07 

- 90.85 5.52 0.06 

- 88.18 5.14 0.06 

- 72.94 75.54 1.04 

- 59.10 62.35 1.05 

- 36.40 1420.54 39.03 

- 13.52 1256.90 92.97 

- 2.49 0.16 0.07 

 

 

Table A-8 Monthly GPS loss in 2011 

Mont

h 

Unit 

Number 

Loss Number (per 

unit) 

Duration 

(sec) 

Mean Time  

(sec, per unit per 

loss) 

Jan 8 600.01 111.45 0.19 

Feb 6 35.83 90.36 2.52 

Mar 8 63.38 47.63 0.75 

Apr 9 18.49 34.06 1.84 

May 13 37.39 30.43 0.81 

Jun 8 20.68 27.73 1.34 

Jul 9 25.92 65.97 2.55 

Aug 10 65.98 730.11 11.07 

Sep 8 56.71 69.76 1.23 

Oct 8 1240.58 35207.81 28.38 

Nov 5 1844.38 16751.93 9.08 

Dec 9 27.66 295.65 10.69 
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Table A-9 Hourly GPS loss in 2011 

Hour 

(UTC) 

Unit 

Number 

Loss Number (per 

unit) 

Duration 

(sec) 

Mean Time  

(sec, per unit per 

loss) 

1 6 210.42 90.57 0.43 

2 7 171.93 4652.48 27.06 

3 9 117.54 3283.50 27.93 

4 7 167.32 3802.88 22.73 

5 9 199.72 3028.00 15.16 

6 7 207.70 3849.65 18.53 

7 6 156.88 4579.76 29.19 

8 8 128.94 3435.49 26.64 

9 9 176.46 3441.33 19.50 

10 7 419.40 3729.41 8.89 

11 7 486.21 4010.31 8.25 

12 9 391.53 3026.60 7.73 

13 8 449.75 3382.12 7.52 

14 9 380.80 3159.49 8.30 

15 10 303.12 2784.58 9.19 

16 10 154.70 3398.09 21.97 

17 8 143.27 4092.45 28.56 

18 15 203.96 2551.36 12.51 

19 10 302.29 4087.52 13.52 

20 8 240.26 4371.94 18.20 

21 9 205.31 3854.53 18.77 

22 9 127.34 3109.42 24.42 

23 8 164.34 3455.42 21.03 

24 9 104.99 2904.70 27.67 
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Figure A-5 Monthly GPS loss in 2011. 
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Figure A-6 Hourly GPS loss in 2011. 
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4. Results of 2012 

Table A-10 Units with GPS loss in 2012 

Name Number Gross Duration 
Mean Time  

(per unit per loss) 

- 8125.84 1543.74 0.19 

- 4311.01 4398.91 1.02 

- 2620.99 92.74 0.04 

- 1203.31 7699.59 6.40 

- 872.14 1237.90 1.42 

- 840.11 1204.42 1.43 

- 639.03 138.72 0.22 

- 405.43 5132.03 12.66 

- 273.98 71.05 0.26 

- 218.72 55.46 0.25 

- 149.16 167.71 1.12 

- 46.40 11595.60 249.92 

- 26.42 14.68 0.56 

 

 

Table A-11 Monthly GPS loss in 2012 

Mont

h 

Unit 

Number 

Loss Number (per 

unit) 

Duration 

(sec) 

Mean Time  

(sec, per unit per 

loss) 

Jan 6 24.73 37.42 1.51 

Feb 7 199.96 1157.39 5.79 

Mar 6 24.43 26.94 1.10 

Apr 6 87.60 126.03 1.44 

May 6 27.52 40.06 1.46 

Jun 7 21.05 26.26 1.25 

Jul 7 1077.88 766.95 0.71 

Aug 6 5.22 14.09 2.70 

Sep 10 1073.85 85.78 0.08 

Oct 4 105.52 141.99 1.35 

Nov 3 9.26 1962.55 211.88 

Dec 5 37.04 2290.14 61.83 
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Table A-12 Hourly GPS loss in 2012 

Hour 

(UTC) 

Unit 

Number 

Loss Number (per 

unit) 

Duration 

(sec) 

Mean Time  

(sec, per unit per 

loss) 

1 11 54.96 28.27 0.51 

2 11 70.89 20.81 0.29 

3 9 78.95 18.68 0.24 

4 11 55.98 19.21 0.34 

5 10 62.87 18.84 0.30 

6 8 73.63 17.56 0.24 

7 10 57.56 18.52 0.32 

8 11 64.42 18.67 0.29 

9 10 65.70 20.84 0.32 

10 11 65.08 21.50 0.33 

11 10 702.58 143.08 0.20 

12 11 67.18 55.39 0.82 

13 11 60.94 1663.84 27.30 

14 12 46.64 18.13 0.39 

15 11 60.24 607.58 10.09 

16 12 56.39 17.83 0.32 

17 11 69.87 246.30 3.52 

18 12 61.92 124.64 2.01 

19 12 575.54 215.36 0.37 

20 13 86.73 645.16 7.44 

21 12 163.77 493.48 3.01 

22 12 75.07 94.19 1.25 

23 12 51.55 16.59 0.32 

24 11 61.33 19.60 0.32 
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Figure A-7 Monthly GPS loss in 2012. 
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Figure A-8 Hourly GPS loss in 2012.  
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