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ABSTRACT 

Roughly 47.5 million people in the US have a disability, with 8.6 million reporting 

arthritis as their main cause of disability, making arthritis the leading cause of physical disability. 

With decreased mortality rates and a large, aging baby boomer generation, there will be more 

adults living with chronic musculoskeletal conditions causing disabilities that limit walking. 

Since walking ability is directly related to an individual’s independence at home and in the 

community, losing this ability is a major setback for patients with arthritis. Knee osteoarthritis 

(OA) is the most prevalent form of arthritis affecting approximately 27 million adults and 

accounts for over 55% of all arthritis-related hospital admissions. OA is a highly painful disease 

with treatments limited to pain management. However, gait modification has recently shown 

promise as an early intervention treatment strategy to slow disease progression. Thus, the 

objective of this dissertation is to investigate subject-specific gait modifications to minimize joint 

loads for treating patients with knee OA.  

  The first study in this dissertation relies heavily on the development of subject-specific 

musculoskeletal models to analyze muscle forces and joint contact loads during toe-in gait 

modification for subjects with knee OA. This study will generate muscle-actuated, dynamic 

simulations to estimate muscle forces and internal joint contact loads during gait. The results of 

this study will aid in the advancement of gait modification as a treatment strategy for knee OA. 

The last two studies will employ machine learning and optimization techniques— specifically, 

forward sequential feature selection and surrogate-based optimization— to evaluate toe-in gait 

modification and improve its efficacy for use as a treatment strategy for knee OA. The goal will 

be to develop testable subject-specific gait modification patterns that reduce joint loads. 

The use of both dynamic simulations and data mining techniques provides a unique 

approach to investigating the relationship between joint biomechanics and muscle function and 

joint contact loads with respect to gait modification. This approach has the potential to gain 

much needed insight into the underlying mechanism of gait modification and help advance 

research to create subject-specific gait modification patterns for treating knee OA in the future. 
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PREFACE 

This dissertation presents three studies conducted using dynamic simulations, machine 

learning, and optimization to develop more effective gait modification strategies for treating 

knee osteoarthritis (OA). Each chapter is written as a separate technical paper, and an overview 

of the goals and methods employed in each study are provided. Note, the first specific aim of this 

dissertation was conducted as two separate studies, thus this chapter is written as two technical 

papers. Additionally, each chapter provides an in-depth discussion of the study findings and how 

these findings were used to answer the questions posed. Chapter 6 provides a summary of the 

results and conclusions of the three studies in the dissertation and delineates how they were 

applied to develop better gait modification strategies for advancing the treatment of knee OA. 
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CHAPTER ONE: INTRODUCTION 
1.1 Project Summary 

Millions of people around the globe suffer from a physical disability that lowers their quality 

of life. Arthritis is currently the leading cause of disability in the United States, with osteoarthritis 

(OA), especially of the knee, being the most prevalent form. Knee OA is characterized by decreased 

neuromuscular control, weakened knee musculature, and knee joint instability— with limited and 

ineffective treatment options to combat the pain and functional limitation associated with the disease. 

Gait modification has recently been proposed as a noninvasive, early intervention method to treat 

knee OA and has been shown to reduce the knee adduction moment (KAM), a key factor in knee OA 

disease progression. Many modification strategies have been studied, but one, a decreased foot 

progression angle, or toe-in gait, has been studied far less, despite having been shown to reduce 

KAM and improve knee joint function for patients with knee OA. 

Gait retraining paradigms typically focus on modifying kinematics, though the underlying 

muscle force modifications responsible for the kinematic changes remain unknown. By ignoring 

muscle forces, many studies are ignoring the potentially critical role the changes in muscle forces 

play in achieving gait modifications. Toe-in gait has been shown to reduce KAM, but the full effect 

of muscle forces and the corresponding knee loads is not known. Investigating knee joint contact 

loads, specifically the forces and moments corresponding to the internal loads the joint structure 

carries, under toe-in gait conditions, may better characterize this gait modification in terms of 

creating targeted intervention strategies. It may be that optimal gait patterns combine a number of 

previously reported modification strategies to reduce the net external KAM and joint loading to 

improve knee function and slow progression of knee OA. 

The ultimate goal of this research was to maximize the potential of a gait modification by 

investigating subject-specific gait modifications to minimize joint loads and improve overall joint 

function for treating patients with knee OA. The overall hypothesis was that several gait modification 

factors— foot progression angle, trunk lean, step width, etc.— contribute to changes in muscle forces 

and joint loads during gait for individuals with knee OA. Due to a lack of knowledge about how gait 

modifications assessed by clinical movement analysis correlate to muscle forces and joint loads that 

need treatment, currently gait rehabilitation treatments stand to be improved. A new treatment 

strategy using simulation-based medicine will lead to an enhanced and diverse understanding of 



 

2 
 

Osteoarthritis affects 
approximately 27 million 

adults, or nearly 13.9% of all 
adults over age 25 in the 

United States. 

rehabilitation. Patients' treatment outcomes are more likely to be favorable when interventions are 

performed that systematically correct the underlying biomechanical sources causing harmful joint 

loads as identified from the proposed simulations. 

1.2 Research Significance 

Arthritis is the leading cause of physical disability in the US and patients are commonly left 

with disabling pain leading to loss of mobility [1]. Currently, there are 47.5 million adults in the US 

who have a disability [2] and roughly 8.6 million report arthritis as the main cause of their disability 

[1]. Additionally, arthritis accounts for more than 23% of incident disability in daily living activities 

among older adults [3]. In coming years, with decreased mortality rates and a large, aging population 

of the baby boomer generation, there will be more adults than ever before living with chronic 

musculoskeletal conditions that cause disabilities that may limit walking; it is projected that over 67 

million people will be affected by arthritis by the year 2030 [1]. Since walking ability is directly 

related to an individual’s independence at home and in the community, losing this ability is a major 

setback for patients with arthritis. 

OA, especially in the knee, is the most prevalent form of arthritis affecting approximately 27 

million adults overall or over 13.9% of adults aged 25 and older [4] 

and accounts for over 55% of all arthritis-related hospital 

admissions [5] in the US. Job-related costs due to OA are estimated 

to be nearly $13.2 billion annually in the US alone [6]; moreover, 

indirect costs of missing work as a result OA adds another $10.3 

billion to the total US costs [7]. This issue is not limited to the US, as worldwide, OA in the US, 

Canada, UK, France, and Australia accounts 1–2.5% of each country’s gross national product [8]. 

Repetitive motions such as walking can be modified to achieve beneficial changes in joint 

loads linked to OA severity and progression, but how they can be modified to achieve the most 

favorable outcomes is an open question. In the past, experimental approaches have greatly advanced 

our understanding of the human body in relation to neuromuscular control, joint motion, muscle 

strength, and functional capacity. However, progress has been limited by three factors: 1) key 

variables, such as muscle forces, are not measured, 2) cause-and-effect relationships, such as the 

contribution of motion to joint loads, are not established [9], and 3) in the cases of patients currently 

suffering from a musculoskeletal disease, such as OA, important parameters cannot be directly 

measured. Determining just how individual muscles contribute to observed motions and joint 
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The research described 
helps bridge gaps between 
disciplines and enhances 
studying and teaching of 
movement modification. 

loading, though, is very difficult because a muscle can accelerate joints it does not cross and body 

segments to which it is not attached [9]. A detailed scientific framework is needed, in combination 

with experimental approaches, to uncover those principles that govern muscle forces and joint loads 

during abnormal movement in individuals with musculoskeletal disorders, such as OA. By utilizing 

muscle-actuated dynamic simulations, such a framework can be established. Additionally, these 

simulations complement experimental approaches by allowing important variables to be estimated 

and cause-and-effect relationships identified. The use of musculoskeletal modeling and simulations 

in combination with experimental approaches has the potential to greatly improve patient care [10]. 

1.3 Research Innovation 

At this time, there is a gap between the experimental approaches used by physicians, physical 

therapists, and rehabilitation scientists and the computer simulation approaches used by engineers, 

mathematicians, and computer scientists. The researched detailed in 

this dissertation combines these two different approaches and 

builds a relationship that allows each field to benefit from the 

strengths of the others. This is the first study of its kind, to look into 

the specific muscle contributions and joint loads of gait 

modification. The research in this dissertation is novel because 1) simulations were based on optimal, 

subject-specific models rather than generic, one-size-fits-all models, allowing the best possible 

results for individual subjects (similar to simulating aircraft-performance in the aerospace field or 

vehicle-performance in the automotive field) to be produced and 2) a quantitative basis to discover 

effective movement modifications has been fully enabled, providing evidence-based knowledge 

about which movement prescriptions work best in which patients with musculoskeletal disabilities. 

Although this research focuses on movement modification, this research may also impact other areas, 

including ergonomics, sports performance, and injury related to high joint loads. 

1.4 Research Methods 

To complete this research, we utilized OpenSim in connection with Matlab software to create 

subject-specific simulations. Simulations have been used in biomechanics for a wide variety of 

applications, such as analyzing athletic performance, designing ergonomically safe environments 

such as cars, and they have been extremely advantageous in helping to understand and treat 

movement disorders. They are also popular in the entertainment industry to create human and animal 

characters for movies and video games. While OpenSim provides the musculoskeletal simulation 
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software with a powerful graphical user interface (GUI) and open-source plug-in capabilities, it has 

limited recourses for rapid design and control of dynamics systems. On the other hand, Matlab 

provides powerful math software with rapid design and control of dynamic systems, but is limited in 

modeling musculoskeletal systems. Combining the strengths of both OpenSim and Matlab allows a 

unique way to answer scientific questions relating to human movement. Using the combination of 

OpenSim and Matlab, we completed the following three studies: 

1.4.1 Specific AIM 1: Determine muscle forces and corresponding joint loads before and after 

gait modification. 

Goal: The purpose of specific aim 1 was to answer the following questions: 

1) What are the individual muscle forces generated during toe-in gait? 

2) What are the internal joint contact loads at the knee during toe-in gait? 

Methods: To accomplish this study, subject-specific simulations reproduced experimentally 

measured kinematics of 10 subjects with medial compartment knee OA. For each simulation, 

individual muscle forces and joint loads were estimated using static optimization and joint 

reaction analysis. 

Significance: This investigation will clarify how muscles generate force to compensate for 

gait modification and how this affects the joint contact loads that characterize knee OA. 

1.4.2 Specific AIM 2: Identify the significant features of gait that have the potential to decrease 

joint loads. 

Goal: The purpose of specific aim 2 was to answer the following questions: 

1) What are the features of gait with the potential to decrease harmful joint loads during toe-

in gait? 

2) What are the features of gait that the top performing subjects use during toe-in gait to 

decrease joint loads? 

Methods: To accomplish this study, simulation data for all patients was divided into groups 

based on amount of decrease in joint loads following gait modification. Forward Sequential 

Feature Selection will be used with 10-fold cross-validation and pseudo-quadratic 

discriminant analysis to select a subset of features with the most potential to decrease joint 

loads. 
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Significance: This investigation clarified the potential of toe-in gait modification to decrease 

joint loads. 

1.4.3 Specific AIM 3: Design testable subject-specific gait modifications to minimize knee joint 

loads using surrogate-based optimization. 

Goal: The purpose of specific aim 3 was to answer the following questions: 

1) How can significant features of gait be used to create optimal gait modification strategies 

to minimize joint loads? 

2) What do optimal subject-specific gait modifications look like to minimize joint loads? 

Methods: To accomplish this study, joint loads were fit as a multidimensional quadratic 

function of the most significant features of gait modifications. Optimizations varied gait 

modifications to determine optimal patient-specific gait modification. 

Significance: This investigation created targeted training methods to use gait modification to 

decrease knee joint loads for patients with knee OA. 

This dissertation combines original ideas and comprehensive research strategies. These 

results advance our understanding of the efficacy of gait modification strategies to reduce knee joint 

loads for patients with knee OA. These methodologies advance core medical technology and clinical 

techniques, enable new discoveries for gait rehabilitation, and lay the framework for future studies 

on/applications to subject-specific simulation-based treatment options for knee OA. 
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CHAPTER TWO: LITERATURE REVIEW 
2.1 Background and Foundation 

Experiments alone have a limited understanding of the dynamics of human movement. 

Although some variables responsible for movement (e.g., ground reaction forces (GRF) and 

electromyography (EMG) muscle activity) can be measured experimentally, it is extremely difficult 

to measure variables such as individual muscle forces and joint 

loading. It is even more difficult to establish cause-and-effect 

relationships that convey an understanding of muscle function. 

Similar to an observed movement, a simulated movement results 

from many individual elements. Models and simulations based on 

experiments can generate the muscle-tendon dynamics, musculoskeletal geometry, and multi-joint 

dynamics during a simulated movement that are not able to be evaluated using experimental 

observation alone. These simulations enable important cause-and-effect relationships to be identified 

and allow “what if” studies to be performed to test different hypotheses, predict outcomes, and 

identify behaviors [9]. For example, insights into the potential treatment for knee pain and functional 

limitation from OA can be investigated. In most patients, OA pain is felt in the medial compartment, 

causing the patient to adopt new gait abnormalities to deal with the pain. However, to prescribe a gait 

retraining strategy simply by clinical evaluation proves to be difficult with limited success. Subject-

specific simulations have the ability to determine the potential utility of a gait retraining treatment 

strategy. The simulated movement can also provide estimates of important variables involved in 

generating the movement. The simulations can provide necessary information about the movement to 

develop a new treatment recommendation for knee OA. Clinicians often use intuitive models based 

on clinical experience or general approaches based on population studies to plan treatments for knee 

OA. However, because such models are constructed using data from other patients, the predicted 

clinical outcome for a particular patient is unreliable. 

2.1.1 Knee Osteoarthritis: A Significant Clinical Problem 

Knee OA (Figure 1), the most common type of OA, is a top ten cause of disability impacting 

quality of life, has a high incidence of pain, and carries high socio-economic costs [45]. Knee OA is a 

chronic condition that occurs when the joint cartilage deteriorates, resulting in decreased 

neuromuscular control, weakened knee musculature, and joint instability [11]. The symptoms of this 
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disease include pain, tenderness, stiffness, loss of flexibility, bone spurs, and more. These symptoms 

develop slowly and worsen over time over time with limited treatment options available. Treatment 

is mainly focused on pain management and improving functionality [12], until pain becomes too 

severe and impacts daily living to the point where a joint replacement is needed. 

 

 

Figure 1:  A comparison of a healthy knee joint (far left) and different severities of knee 
osteoarthritis (OA) (moderate OA, middle; severe OA far right). Knee OA causes the joint space 
to narrow, articular cartilage deterioration, bone spur formation, loss of synovial fluid, and more, 
making it a highly painful disease [13]. 
 
 Most patients with OA suffer medial compartment pain, nearly 10 times more often than 

lateral compartment, likely due to greater medial loading during walking and daily activities [46]. 

Knee OA affects both knee kinematics and kinetics, leading to abnormal coordination to maintain 

stability. This abnormal bracing can lead to a significant increase in KAM and knee flexion moment 

that together force the knee joint toward a greater varus alignment, or an inward angulation of the 

distal part of the knee joint (Figure 2) [14]. This forces the weight of the body to be localized to the 

medial aspect of the knee, such that the GRF trajectory passes medial and posterior to the knee joint 

itself. The magnitude of the KAM directly correlates to joint space narrowing, medial joint capsule 

loosening, pain levels, and functional limitations [15]. These biomechanical changes are the primary 

source of pain and functional limitation, and, therefore, preventing the progression of these changes 

is critical in managing and treating knee OA [16]. 
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Figure 2: Schematic showing the calculation of the knee adduction moment (KAM), such that 
KAM is equal to the ground reaction force (GRF) multiplied by the moment arm to the knee 
joint center of rotation (LA) [14]. 
 
 Presence, severity, and even progression of medial knee OA has been correlated with the first 

peak external KAM, which is commonly used to assess medial knee loading [15] due to high 

correlation with measured medial knee contact force [17]. However, this approach does not 

account for muscle forces when estimating joint contact loads. Determining internal joint contact 

loads gives a better understanding of joint mechanics and overall musculoskeletal function as 

this analysis includes muscle forces which change following gait modification [18, 19]. To better 

treat patients with knee OA, it is necessary to understand these internal knee joint contact loads 

(i.e., forces and moments). Computational models and experimental gait analysis provide a way 

to determine these internal musculoskeletal loads in silico because non-invasive in vivo 

measurements are not possible for patients currently suffering from knee OA [18]. 

In the future, a new approach using computational models based on engineering mechanics 

and optimization may be used to discover a new movement as a treatment. This method may also be 

used to predict post-treatment outcomes using pre-treatment data on an individual patient basis. 

Simulations are a vital tool for multidisciplinary study of human movement because they can provide 
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a fundamental understanding about the causes of movement in order to better determine optimal 

treatment recommendations.  

Currently, treatment recommendations are based on a physical examination and movement 

analysis, both of which characterize the movement without describing the underlying sources. 

Typically, clinicians use prior experience to combine observations, kinematic and kinetic 

measurements, and EMG data. Clinical examination of a single 

passive joint motion does not fully address coordinated multi-joint 

movements. Movement analysis describes the motion of limb 

segments but not the individual muscle contributions causing this 

motion. A new treatment strategy combining physical examination, movement analysis, and 

simulation-based approaches may lead to a better understanding of movement modification and, 

ultimately, a better treatment option for patients with knee OA. 

2.1.2 Gait Modification: A Promising Solution 

 Gait modification is a nonsurgical approach to reducing the KAM and can be a noninvasive 

alternative to a total knee replacement or a high tibial osteotomy, where a wedge of bone is added or 

removed from the proximal tibia to change the leg alignment. Currently, early treatment options are 

limited to pain management until the disease progresses to a point where pain is no longer 

manageable and a joint replacement surgery is needed. With more research and better understanding, 

gait modification will be better able treat patients with knee OA in the future. 

 Gait modification has recently been proposed as an early intervention strategy to better 

treat knee OA by mitigating harmful knee joint contact loads. These loads are considered major 

contributors to articular cartilage degeneration associated with OA progression [20] as patients 

with knee OA exhibit increased joint loads during gait [21]. It has recently been hypothesized that 

gait modification can reduce the first peak external KAM and subsequently reduce pain and 

discomfort associated with knee OA while slowing the progression of the disease itself [15, 22]. 

 Recently, many studies have investigated different modification strategies that reduce the 

first, and generally larger, peak KAM, including slowed walking speed, decreased stride length, 

increased medial-lateral trunk sway, and lateral heel wedges [15, 23, 24], and these 

modifications subsequently reduce pain associated with knee OA and slow disease progression 

[15, 22]. One way these modifications are designed to train subjects to adopt a gait pattern with 
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suffering from knee OA. 

increased hip adduction and internal rotation to reduce KAM [25]. It is common in these studies 

to find that while the first peak KAM is reduced, the knee flexion moment increases. This 

increase in knee flexion may increase overall knee contact force 

and counteract the potential benefits of a reduced KAM [26]. In 

comparison, toe-in gait, or internally rotating the feet to decrease 

the foot progression angle, does not constrain the hip angles and 

has been shown reduce the first peak KAM while not impacting the 

knee flexion moment in patients with medial knee OA [27, 28]. However, there are far fewer studies 

on toe-in gait, and the use of toe-in gait in current research has shown inconsistent results, showing 

the need for the development of optimal gait retraining paradigms [45]. 

 Though many studies have investigated gait modification strategies, few focus on toe-in gait 

and far fewer on internal joint contact loads that contribute to knee OA disease progression. Because 

most gait modification studies only focus on reducing KAM, which ignores the contributions of 

muscle forces, it will be important in the future to include the internal joint contact loads that account 

for the muscle forces in gait studies. It has recently been found that patients with medial knee OA 

alter their muscle force activations to achieve a desired gait modification in a subject-specific manner 

[19]. This finding highlights the need to include the internal joint contact loads in gait modification 

studies, especially those studying patients with knee OA. A better understanding of the effects of gait 

modifications on muscle forces and internal joint contact loads is necessary to incorporate gait 

modification as a treatment strategy for patients with knee OA. 

2.1.3 Musculoskeletal Modeling and Analysis of Human Movement 

Human movement requires the coordination of many muscles across multiple joints, and the 

transformations between neural control signal and purposeful movement are highly complex and 

involve many different elements (Figure 3) [9]. First, a neural command signal is given to excite 

certain muscles, of which the electrical potential can be recorded with EMG, to achieve a desired 

movement. Second, the muscle-tendon dynamics based on length and velocity properties of the 

muscle and tendon produce individual muscle forces. Third, musculoskeletal geometry defines the 

location of joints, the direction of muscle forces, and the muscle moment arms that produce joint 

moments. Fourth, given these moments, multi-joint dynamics determines accelerations and ground 

reactions which produce the observed movement. The way the human body moves affects 
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subsequent neural commands to adjust the movement and affects the length and velocity of each 

muscle-tendon, the direction of muscle forces and moment arms, and the resulting dynamics of the 

multi-body system. 

 

 

Figure 3: Diagram of the individual elements between a neural command and movement. 
Modified gait rehabilitation strategies alter many elements and the effects are not easily 
measured. 

 

Computational models and simulation-based approaches have emerged as powerful tools for 

investigating muscle coordination and function during human movement. Computational modeling 

of human movement relates different aspects of the human biological system to purposeful 

movement. In the past, biomechanical models were more simplistic, with only 1- or 2-dimensional 

models containing much fewer body segments, degrees of freedom, and muscles than those used 

today [29-32]. Thanks to immense advancements in computer technology, today’s biomechanical 

models are much more comprehensive and computationally efficient [33]. 

 Today, biomechanical models have been developed to estimate muscular forces in the lower 

extremity during walking [34-40], running [41, 42], cycling [43-47], jumping [48-52], kicking [53, 

54], and other physical activities [55-59]. Sophisticated muscle-actuated, forward dynamic 

simulations have been developed to address specific clinical questions. For example, studies have 

been conducted to assess electrical stimulation systems to restore unsupported gait to paraplegics 

[60], to evaluate exercise for persons with spinal cord injury [61, 62] and patients with patellofemoral 

pain [63], to examine the influence of foot positioning and joint compliance on ankle sprains [64, 
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65], and to investigate causes of stiff-knee gait [66-68]. These studies have demonstrated the 

potential utility of models for analyzing causes of gait abnormalities and the effects of treatments. 

Using computational modeling, researchers can now develop subject-specific models and 

simulations to relate joint kinematics and kinetics to muscle force production and overall function. 

Simulations can account for many musculotendon properties— such as muscle activation and 

contraction dynamics, force-length and force-velocity 

relationships, and moment arms— in their analyses to more 

accurately model the non-linear relationship between muscle 

activation and force production. This is a major advancement 

over using EMG, in which muscle activations are linearly 

related to muscle force. This allows simulations to be used in cause-and-effect relationship 

studies between muscle function and joint movement [69-73]. 

Given that the accuracy of a simulation is affected by its underlying model, an optimal model 

providing the best possible representation of the experiment will produce the best possible variable 

estimations and relationship identifications. It is also important that simulations be tested to 

determine limitations because approximations and assumptions are made in developing 

musculoskeletal models and simulations [10]. There is a rapidly growing community of engineers, 

therapists, and scientists eager to address clinically motivated questions on medical rehabilitation. 

For example, the excitation pattern of a muscle can be changed and the resulting motion can be 

observed through simulation. Subject-specific modeling and simulation allows for higher accuracy 

when investigating human movement to address the many questions on medical rehabilitation. If a 

one-size-fits-all model is used rather than a patient-specific one, then the simulation will not 

accurately represent the subject. Implementing subject-specific modeling and simulation has the 

potential to change the future of patient care, allowing maximum treatment efficacy, limited 

undesirable consequences, and reduced costs [10]. Thus, the research presented here promises to 

significantly impact more than one field. 

2.1.4 OpenSim: Musculoskeletal Modeling Software 

Musculoskeletal modeling software provides users with generic models to use in creating 

subject-specific simulations to explore a wide variety of research questions. One such software, 

OpenSim, provides the framework to build musculoskeletal models, simulate movement, and 
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analyze resulting behaviors. OpenSim enables the creation of musculoskeletal models and provides a 

set of tools to visualize the motion of the models and extract meaningful information. The 

mathematical and computational modeling framework of this software allows users to analyze 

anything from assessing the outcomes of surgical procedures like tendon lengthening in cerebral 

palsy patients to designing prosthetic devices and studying how they function in the body. 

Moreover, OpenSim allows for the study of cause-and-effect relationships and has the tools needed 

to extract meaningful information and predict outcomes. 

An important feature of OpenSim is that it is open-source, creating a unique scientific 

community and environment with plug-in capabilities to allow users to develop customized 

controllers, analyses, and models. Some recent model advancements (Figure 4) include a model of 

the scapulothoracic joint [74], the lower-limb [75], and the lumbar-spine [76]. This software is 

unique in that it is user friendly and that the open-source feature and plug-in capabilities allow users 

to increase model complexity to answer many difficult problems. This feature also encourages 

collaboration throughout the biomechanics and modeling community worldwide. A major benefit of 

using OpenSim in developing subject-specific models is that the discovery can be shared, 

investigated, and discussed to help advance the field.  

 

 

Figure 4: Examples of recent model advancements in OpenSim software. The open-source 
feature of this software allows users to develop more complex models, such as these pictured, in 
order to address the ever-evolving scientific questions relating to human movement [74-76]. 
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CHAPTER THREE: SPECIFIC AIM 1- 

TOE-IN GAIT UNIFORMLY REDUCES HARMFUL JOINT 

CONTACT LOADS WHILE MUSCLE FORCE 

MODIFICATIONS ARE NOT CONSISTENT FOR PATIENTS 

WITH KNEE OA 
In aim 1, subject-specific, muscle-actuated, dynamic simulations of 10 individuals with 

symptomatic, medial compartment knee OA were developed and analyzed in a multi-part study. The 

goal of specific aim 1 was to create subject-specific models and simulations to understand the 

individual muscle forces generated during toe-in gait and the associated joint loads. This study was 

accomplished using subject-specific musculoskeletal simulations that reproduced previously 

collected, experimentally measured gait kinematics and kinetics of those same 10 subjects with knee 

OA. For each simulation, individual muscle forces and knee joint loads were estimated using static 

optimization (SO) and joint reaction analysis (JRA) in OpenSim. This investigation clarified how 

muscles generate force to compensate for gait modification and how the knee joint contact loads that 

characterize knee OA change with this modification. 

3.1 Developing subject-specific musculoskeletal models and simulations 

Three hundred subject-specific, muscle-actuated dynamic simulations were created to 

reproduce the gait dynamics during normal and toe-in gait trials of 10 subjects with radiographic 

evidence of medial compartment knee OA. The simulations were used to conduct subsequent 

analyses of muscle forces and knee joint contact loads and changes in these measures between 

different gait conditions as well as to determine significant features of gait and create an optimal 

subject-specific gait pattern.  

3.1.1 Preparing the Model 

A three-dimensional, lower-limb musculoskeletal model with 12 degrees of freedom and 

43 muscle–tendon actuators was created by modifying the generic Gait 2392 model in OpenSim 

to match experimental data of the ipsilateral limb and pelvis [77]. The contralateral lower 

extremity, head, upper extremities, and torso were removed and represented as external, or 

residual, forces and torques acting on the pelvis. The position and orientation of the pelvis 
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relative to ground were defined with 6 degrees of freedom. The remaining lower extremity joints 

were modeled as follows: the hip as a ball-and-socket joint, the knee as a planar joint with 

tibiofemoral and patellofemoral translational constraints as a function of knee flexion [78], and 

the ankle and subtalar joints as revolute joints [79]. All inertial parameters for each of the body 

segments of the model are derived from Anderson and Pandy (1999) [48]. Each muscle–tendon 

actuator was modeled as a Hill-type muscle in series with a tendon based on musculotendon 

parameters from Thelen et al. (2003) [80]. Subject-specific musculoskeletal models were then 

created for each of the 10 subjects. In total, 30 muscle-actuated dynamic simulations (10 

consecutive normal gait steps before toe-in gait training, 10 consecutive post-training toe-in gait 

steps following the 6-week toe-in gait training regimen, and 10 consecutive follow-up toe-in gait 

steps 1 month following the end of training) were created for each subject during the stance 

phase of gait using a multi-step dynamic simulation process (Figure 5) detailed below [77]. 

 

 

Figure 5: Diagram showing the multi-step, dynamic simulation process to generate a muscle-
actuated simulation of a subject’s motion. The inputs are a dynamic musculoskeletal model, 
experimental kinematics, and experimental reaction forces and moments obtained from a subject 
during motion capture. In step 1, experimental kinematics is used to scale the model. In step 2, 
an inverse kinematics (IK) problem is solved to find model joint angles. In step 3, inverse 
dynamics (ID) determines the generalized forces for the given movement. In step 4, a static 
optimization (SO) algorithm is used to determine a set of muscle excitations to track the motion 
of the subject. 

3.1.2 Scaling the Model 

The generic Gait2392 musculoskeletal model in OpenSim [77] was scaled to represent 

each subjects’ mass properties and segment dimensions obtained from experimental marker data 
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using a novel scaling algorithm. When scaling by hand using the scale tool in the OpenSim GUI, 

it can be a tedious task of trial-and-error to fit the markers on the model as best as possible to the 

experimentally measured markers. The novel scaling algorithm was written to streamline and 

speed up the scaling process due to the large number of simulations to be created and ensure the 

lowest marker errors on the created models. A scale factor is computed using measurements 

between markers to appropriately scale the sizes of each body segment. Additionally, the masses 

of each segment are adjusted accordingly so the total mass of the model body equals the 

experimentally measured mass properties of the subject. To ensure the masses of the subject-

specific model segments are the same proportion as they are in the generic model, the segments 

masses are adjusted to preserve the mass distribution by scaling the masses using a constant 

factor. Next, the generic virtual markers on the Gait2392 model are repositioned on the model 

based on the location of the subjects’ experimental markers to identify the appropriate joint 

centers and define the correct segment lengths [77]. This novel scaling algorithm uses the scale 

tool in OpenSim by iteratively working to find the closest match to the experimentally measured 

marker data set with a RMS marker error less than 2cm. The subjects’ marker locations, 

determined from the experimental static pose, are compared to the virtual marker locations in the 

models’ static pose to ensure a strong match (i.e. minimal error) between the model and 

experimental marker sets. The error is the calculated average of the distance between the two 

marker sets so that the resulting model most closely matches the subjects’ experimentally 

measured mass properties and segment dimensions. 

Because the experimental data for this research was collected at three separate gait 

retraining sessions on different dates, the experimental marker locations were slightly different 

for each trial and thus resulted in a slightly different marker set for each model. In order to 

compare each model and each separate gait trial accurately, this novel scaling algorithm accounts 

for these small differences by creating models for each gait condition (baseline normal gait, post-

training toe-in gait, follow-up toe-in gait) based on an average scale factor. The scale factor is 

computed from measurements to scale the model’s geometry accurately. The average scale factor 

is determined by combining the different scale factors from the three separate sessions to create a 

new scale factor. Using this new scale factor, a general model that represents each trial is 

created. Additionally, this novel scaling algorithm also determined which markers were simply 

misplaced in the experimental data collection process and needed to be moved to the correct 
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bony landmark location to create an accurate model. This was done by comparing the locations 

of the markers, segment dimensions and proportions in the experimental static pose and the 

virtual markers in the model. The resulting, final scaled models were scaled with very small 

marker errors and took a fraction of the time to create in comparison to scaling by hand in 

OpenSim. Unlike when using the scaling tool by hand in the OpenSim GUI, this algorithm takes 

the guess-work and human error out of the process and makes the resulting models more 

accurate and comparable. 

3.1.3 Inverse Kinematics 

Inverse kinematics (IK) generated values of model’s generalized coordinates that best 

matched (RMS marker error < 2 cm) experimentally measured kinematics. IK calculates the 

ideal location to place the joint coordinates (angles and position) in the model to match the 

subjects’ experimental joint coordinates at regular time points throughout the measured 

movement. Each subject's measured kinematics and ground reaction force data were processed to 

solve an optimal IK problem, minimizing errors between markers on the patient and markers on the 

model. The IK problem (Equation 1) minimizes the weighted square error at each frame in the 

experimental kinematics, where �⃑�𝑖
𝑠𝑢𝑏𝑗𝑒𝑐𝑡and �⃑�𝑖𝑚𝑜𝑑𝑒𝑙 are the three-dimensional positions of the ith 

marker or joint center for the subject and model, 𝜃𝑖
𝑠𝑢𝑏𝑗𝑒𝑐𝑡and 𝜃𝑖𝑚𝑜𝑑𝑒𝑙  are the values of the jth joint 

angle for the subject and model, and 𝓌𝑖 and 𝓌𝑗  are user defined factors that allow markers and joint 

angles to be weighted differently [77]. Specifically, IK utilizes this weighted least squares algorithm 

(Equation 1) to reduce errors between the experimental (�⃑�𝑖
𝑠𝑢𝑏𝑗𝑒𝑐𝑡) and model (�⃑�𝑖𝑚𝑜𝑑𝑒𝑙) markers and 

the generalized coordinates (𝜃𝑖
𝑠𝑢𝑏𝑗𝑒𝑐𝑡and 𝜃𝑖𝑚𝑜𝑑𝑒𝑙). 

 

 

 

The weighting coefficients (𝓌𝑖 and 𝓌𝑗) are adjusted to track the markers and coordinates in 

which the researcher has the greatest confidence, such that the resulting models’ joint angles and 

positions most accurately track the experimental movement.  
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3.1.4 Inverse Dynamics 

 Inverse dynamics (ID) determined generalized forces for each given movement. This 

process tracks the observed kinematics with experimental ground reaction forces; in particular, 

ID calculates kinetic information (forces and moments) from experimentally measured kinematic 

information (joint positions, angles, velocities, accelerations from the motion). ID uses the 

known motion of the model, from experimental data collection, to solve the traditional equations 

of motion (Equation 2) for the unknown generalized forces [81]. The ID process is necessary to 

match the estimated accelerations of the model to that of the experimentally measured motion of 

the subject. 

 

 

 

 

 

 

 

 

 

 

3.1.5 Static Optimization 

SO [10] was implemented as an extension of ID to determine individual muscle 

activations and forces that produce the net joint moments at each instant in time consistent with 

the experimentally measured kinematics of the subject without violating muscle force limits. The 

resulting set of muscle forces produces net joint moments (Figure 6) at a discrete time, does not 

violate muscle force limits, and optimizes a performance criterion. The performance criterion is 

used to capture the goal of the neural control system, allowing the model to move the muscles 

consistent with the experimentally measured data by solving for a set of muscle excitations that 

produce a dynamic simulation that tracks the experimental data. 
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Figure 6: Example showing how to determine a net joint moment from muscle forces for the 
ankle joint during static optimization (SO) [82]. 

 

SO uses the known motion of the model to solve the equations of motion for the 

unknown generalized forces (i.e. joint torques) subject to constrained force-length velocity 

properties or minimizing the objective function (Equation 3). This is achieved by distributing the 

joint torques to muscle forces based on minimizing the sum of activations squared (Equation 3), 

subject to muscles forces generating equivalent generalized forces, with A being the moment-arm 

matrix, and τ is the net torque. 

 

 

 

 

SO was used because it is a well-established, computationally efficient method based on 

ID for estimating in-vivo muscle forces during movement. This approach has been widely used 

for over four decades to estimate muscle forces during gait because it produces strikingly similar 

results to dynamic optimization for muscle force estimation in gait with far less computing time 

[34]. It is important to note that SO is not a static problem but rather a “pseudo-dynamics” 

problem that determines results at each time step rather than over whole time like dynamic 

optimization. Finally, it was necessary to compare the simulated muscle excitations, joint moments, 
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and ground reaction forces to the experimental data in order to verify that the solution was a 

reasonable representation of each subject’s gait. 

3.2 Muscle force modification strategies are not consistent for gait retraining 

to reduce the knee adduction moment in individuals with knee osteoarthritis 

This work was published in the Journal of Biomechanics in 2015: Shull, P.B., Huang, Y., 

Schlotman, T.E., Reinbolt, J.A., “Muscle force modification strategies are not consistent for gait 

retraining to reduce the knee adduction moment in individuals with knee osteoarthritis.” Journal 

of Biomechanics, 2015. 48(12): p. 3163-9. 

3.2.1 Introduction 

Knee OA is a significant worldwide health concern characterized by joint pain and 

dysfunction and can lead to joint stiffness, muscle atrophy, and limb deformity [83]. In the 

United States, symptomatic knee OA affects 11% of women and 7% of men over age 60 

[84]with similar incidence rates reported in China for men and even higher for Chinese women 

[85, 86]. Medications are often used to treat symptoms though disease progression generally 

leads to total knee replacement [87]. Knee loading is believed to contribute to the degeneration 

of articular cartilage associated with OA progression [88, 89]. Thus conservative interventions 

often seek to reduce knee loading for early stage knee OA.  

The KAM is an important clinical measurement given the mechanical etiology of knee 

OA. In vivo instrumented knee replacement testing has revealed a strong correlation between 

medial compartment loading and the KAM [17, 90] and is thus often used as a surrogate measure 

of medial compartment loading. The first peak of the KAM has been linked with pain and the 

presence, severity, and progression of medial compartment knee OA [91-94] and the KAM 

impulse, area under the KAM-time curve, has been shown to be predictive of cartilage loss over 

12 months [20].  

Gait retraining is an effective method for reducing the KAM. Initial, proof-of-concept 

studies in healthy subjects showed that increased trunk sway, internal foot rotation (toe-in gait), 

reduced tibia angle, and medial thrust were all effective strategies for reducing the first peak 

KAM [25, 95-98], and gait retraining for individuals with knee OA has confirmed these initial 

trends for changes in foot progression angle and trunk sway [28, 99]. Gait changes have also 

been shown to improve symptoms. Shull et al. (2013b) demonstrated that toe-in gait reduced the 
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first peak KAM, reduced pain, and increased function for individuals with symptomatic knee OA 

after 6 weeks of gait retraining [27]. Hunt and Takacs (2014) performed 10 weeks of gait 

retraining and showed that a toe-out gait modification reduced the second peak KAM, the KAM 

impulse, and knee pain [100]. 

Gait retraining paradigms have thus far focused primarily on the relationship between 

altered gait kinematics and KAM while neglecting the potentially crucial role that muscle forces 

might play in intervention. For example, internal muscle forces may lead to higher knee joint 

compartment loading that is not captured by the KAM [26]. In addition, uniform kinematic gait 

modifications shown to reduce knee loads for a population on average can actually be ineffective 

for individuals within that population [100, 101], which has led some to propose subject-specific 

modifications [15, 23, 97]. Muscle force modification strategies may thus be crucial to the 

efficacy of gait retraining.  

Although there are many potential muscle force combinations that produce stable gait, 

humans are generally thought to select uniform muscle patterns while walking such as strategies 

based on fatigue cost functions or energy minimization [102-104]. Thus, we performed this study 

to test the hypothesis that a kinematic gait change known to reduce the KAM (i.e. toe-in gait) 

would be accompanied by a uniform muscle force modification strategy for individuals with 

symptomatic medial compartment knee OA. We further sought to determine the relative degree 

of force change across individual muscles for the gait modification. Identifying the combinations 

of muscle force modifications adopted by individuals with symptomatic knee OA provides an 

objective tool to study and potentially improve gait retraining. 

3.2.2 Methods  

Subjects 

Subjects were selected and trained by my collaborator, Dr. Peter B. Shull of Shanghai Jiao 

Tong University in Shanghai, China, during his time at Stanford University in Palo Alto, CA. Ten 

subjects with symptomatic, medial-compartment knee OA participated in this study (Appendix, 

Table 1). To be included, subjects were required to have radiographic evidence of medial 

compartment knee OA defined as Kellgren & Lawrence (K/L) Grade > 1. The K/L scale is 

comprised of four levels of increasing severity [105], Grade 1: doubtful narrowing of joint space 

and possible osteophytic lipping, Grade 2: definite osteophytes and possible narrowing of joint 
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space, Grade 3: moderate multiple osteophytes, definite narrowing of joint space and some 

sclerosis and possible deformity of bone ends, and Grade 4: large osteophytes, marked narrowing 

of joint space, severe sclerosis and definite deformity of bone ends. Subjects were also required 

to have self-reported medial compartment knee pain at least one day per week during the six 

weeks prior to participation, to be between 18 and 80 years, and to be able to walk unaided for at 

least 25 consecutive minutes. Exclusion criteria included: body mass index greater than 35; 

inability to adopt a new gait due to previous injury or surgery on back or lower extremities; use 

of a shoe insert or hinged knee brace; or corticosteroid injection within the previous six weeks. 

Gait retraining was focused on the limb with greatest self-reported knee pain (4 right legs, 6 left 

legs). All subjects gave informed, written consent for the collection and analysis of their gait data 

prior to participating, and the study was preapproved by the institutional review board. 

Experimental Data Collection 

The experimental data were collected and provided to me by my collaborator Dr. Peter B. 

Shull of Shanghai Jiao Tong University in Shanghai, China. Subjects performed weekly gait 

retraining sessions over six weeks to adopt a toe-in gait pattern (Appendix, Figure 7) and each 

session was experimentally recorded in a motion analysis laboratory. At the beginning of each 

testing session, a static standing calibration trial was performed with markers placed at the 

following locations: calcaneus, head of second metatarsal, head of the fifth metatarsal, lateral and 

medial malleoli, lateral and medial femoral epicondyles, lateral mid-shaft shank (2 markers), 

greater trochanter, lateral mid-shaft femur (2 markers), left and right anterior superior iliac 

spines, left and right posterior superior iliac spines, left and right acromion, and seventh cervical 

vertebrae. Medial malleolus and medial epicondyle markers were removed for subsequent 

walking trials. Marker trajectories were recorded with an eight-camera motion capture system 

(Vicon, Oxford Metrics Group, Oxford, UK) at 60 Hz, and treadmill forces and moments from a 

split belt instrumented treadmill (Bertec Corporation; Columbus, OH, USA) were recorded at 

960 Hz. 

Each gait retraining session used real-time streaming motion capture data and real-time 

feedback to achieve internal foot rotation for toe-in gait. During the first session, the subject 

walked for a two-minute warm up period establishing a preferred treadmill walking speed 

(average 1.22 ± 0.21 m/s), which was used for all subsequent trials, and then walked another two 

minutes during the normal gait trial. Afterward, gait retraining was performed for the remainder 
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of the first session and all subsequent sessions to train a toe-in gait modification with a target 5° 

of internal foot rotation. A vibration motor (Engineering Acoustics, Inc, FL, USA) was 

hypoallergenically adhered to the lateral-proximal aspect of the fibula and provided real-time 

haptic (touch) feedback [97] on each step during stance to inform the subject of the desired foot 

progression angle. A single vibration pulse indicated a required decrease in foot progression 

angle (toe-in more) and two vibration pulses indicated a required increase in foot progression 

angle (toe-out more). 

 Data were analyzed from the normal trial, the initial walking trial performed at the 

beginning of the first session, and from the toe-in trial, the post-training walking trial performed 

following the six weeks of gait retraining. Subjects reported knee pain on a visual-analog pain 

scale before walking at the beginning of the normal trial session and the toe-in trial session. The 

visual-analog pain scale ranged from 0 ‘no hurt’ to 10 ‘hurts worst’ [106]. Toe-in gait, on 

average, decreased the foot progression angle by 7° (p < 0.01) and reduced the first peak KAM 

by 20% (p < 0.01) (Appendix, Figure 8, Appendix, Table 1). Knee pain was reduced by 2 points 

on the visual-analog pain scale (p < 0.01) (Appendix, Table 1). 

Muscle Force Estimation 

A three-dimensional, lower-limb musculoskeletal model with 12 degrees of freedom and 

43 muscle–tendon actuators was created by modifying the Gait 2392 model in OpenSim [77]. 

The contralateral lower extremity, head, upper extremities, and torso were removed and 

represented as external, or residual, forces and torques acting on the pelvis. The position and 

orientation of the pelvis relative to ground was defined with 6 degrees of freedom. The 

remaining lower extremity joints were modeled as follows: the hip as a ball-and-socket joint, the 

knee as a planar joint with tibiofemoral and patellofemoral translational constraints as a function 

of knee flexion [78], and the ankle and subtalar joints as revolute joints [79]. All inertial 

parameters for the body segments of the model are derived from Anderson and Pandy (1999) 

[48]. Each muscle–tendon actuator was modeled as a Hill-type muscle in series with a tendon 

based on musculotendon parameters from Thelen et al. (2003) [80]. 

Twenty muscle-actuated dynamic simulations (ten consecutive steps from the end of the 

normal gait trial and ten consecutive steps from the end of the toe-in gait trial) for each subject 

during stance phase of gait were created using a three-step process. First, the musculoskeletal 

model was scaled to represent the experimentally measured size of the subject. Second, IK 
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analysis was utilized to obtain values of generalized coordinates for the model that closely 

matched (RMS marker error < 2cm) the experimentally measured kinematics of each subject. 

Third, SO [10] was implemented as an extension of ID that solves the “distribution problem” 

(i.e. more muscles than joints) to determine individual muscle activations and forces producing 

the net joint moments at each instant in time that generate the experimentally measured 

kinematics of the subject.  

Data Analysis 

To analyze the muscle force modifications for toe-in gait, gait analysis data were filtered, 

anatomic conventions defined, simulated muscle forces estimated, and differences between 

normal and toe-in gait computed. Marker data were low-pass filtered at 6 Hz and force plate data 

at 50 Hz using a zero-lag fourth-order, Butterworth filter. Foot progression angle was defined in 

the laboratory horizontal plane as the angle between the line connecting the calcaneus and 

second metatarsal head and the line of forward progression, which was aligned with the long axis 

of the treadmill. Toe-out was considered positive. Muscle forces were estimated from the 

muscle-actuated dynamic simulations described in the section above. Mean muscle force was the 

muscle force estimate averaged over ten steps of stance. Repeated measures, one-way analysis of 

variance was used to detect a difference among muscle force estimates for normal and toe-in 

gait; Tukey’s method was used for post-hoc pairwise comparison (α = 0.01). 

3.2.3 Results 

While significant muscle force modifications were evidenced within individuals, there 

were no consistent muscle force modifications across all subjects (Appendix, Table 2). 

Individuals altered muscle forces to achieve the toe-in gait modification by increasing force in 

some muscles and decreasing force in others (Appendix, Table 2). Muscle force profiles during 

stance for a typical subject demonstrate these muscle force tradeoffs showing increases in soleus 

and gluteus medius force and simultaneous decreases in vastus lateralis and rectus femoris force 

(Appendix, Figure 9).  

3.2.4 Discussion 

This study examined muscle force modifications due to a toe-in gait kinematic 

modification as compared with normal gait and tested the hypothesis that consistent muscle 

pattern changes would emerge. Contrary to expectations, muscle force modifications were not 
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consistent across subjects. Muscle force modifications were significant within individuals as 

evidenced by tradeoffs in the amount of force required among muscles. 

Pain might help explain the lack of a uniform muscle force modification strategy for 

subjects in the present study. While previous research has suggested humans adopt consistent 

muscle force strategies and by assumption would also modify muscle forces uniformly, these 

models have been based on pain-free walking in healthy individuals [102-104]. However, all 

individuals in the present study experienced knee pain symptomatic of knee OA, and thus these 

assumptions may no longer hold. Henriksen et al. showed that adding experimental knee pain to 

healthy subjects caused changes in gait patterns in a way that reduced the KAM [107]. Similarly, 

when knee pain was reduced, individuals with symptomatic knee OA changed their gait patterns 

in a way that increased the KAM [108]. Thus there seems to be a cause-and-effect relationship 

between knee pain and gait changes, and it may be that this relationship extends to muscle force 

modifications as well as kinematic changes. Subjects in the present study had varying levels of 

knee pain and changes in knee pain pre- and post-training (Appendix, Table 1), which could at 

least partially account for the inconsistent muscle modification strategies. While pain measures 

are notoriously difficult to quantify due to subjectivity, future work focused on discovering a link 

between pain and muscle force strategies could shed light on this issue. 

This study provides further evidence for the need to perform subject-specific gait 

retraining. While training a population to make uniform kinematic changes may work on 

average, generalized treatments may be ineffective for individuals. Hunt and Takacs (2014) 

showed that on average 10 weeks of toe-out gait retraining reduced the 2nd peak KAM for 15 

individuals with symptomatic knee OA [100]. However, for five of the subjects, toe-out gait 

either did not change or increased the 2nd peak KAM. Similarly, Erhart et al. (2008) showed that 

variable stiffness shoes on average initiated gait changes to reduce the 1st peak KAM in a 

population of 79 individuals with symptomatic knee OA [101]. However, for 18% of these 

individuals, the 1st peak KAM either did not change or increased. Thus, is has been suggested 

that gait retraining should be subject-specific to ensure benefits for each individual [15]. Subject-

specific training should account for subject-to-subject differences in muscle force strategies as 

they can affect internal forces potentially increasing knee loads, and it is important to identify 

which muscles necessitate higher forces to inform muscle fatigue and injury prevention. In 

particular, elevated muscle force is associated with increased muscle fatigue and soreness [109] 
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and increased risk of muscle injury [110]. 

The findings in this study contribute to the growing body of literature on gait 

modification for treatment of early-stage knee OA. Barrios et al. (2010) showed that training 

subjects to adopt a gait with increased hip adduction and hip internal rotation significantly 

reduced the KAM [25]. Subjects were instructed to maintain a constant foot progression angle, 

causing distal kinematics to change, i.e., increased knee flexion and foot eversion. A similar 

phenomenon occurs for medial thrust gait, which encourages medializing the knee while 

maintaining a constant foot progression angle [23]. However, this modification may be less than 

optimal as increased knee flexion may increase the overall knee contact force counteracting the 

benefits of a reduced KAM in the medial compartment [26]. The toe-in gait modification 

performed in the present study does not constrain the foot progression angle or hip angles, and 

thus may be a more natural gait modification [28]. Toe-out gait allows similar freedom of 

movement for all lower limb kinematics, and several studies have shown that toe-out gait 

reduces the 2nd peak KAM while toe-in gait reduces the 1st peak [27, 28, 98, 111, 112]. Given the 

recent interest in wearable, portable systems for gait analysis and intervention [113], future real-

time feedback gait retraining studies for knee OA may want to incorporate portable 

electromyographic sensing of muscle forces as complementary input to the feedback control 

loop. In addition to unassisted gait modifications, several devices have been shown to cause 

kinematic changes to reduce the KAM, including: center-of-pressure modifying shoes [114], 

lateral wedge insoles [115], variable stiffness shoes [101], and valgus knee braces [116]. 

Though there are different approaches to estimate muscle forces from experimental data, 

we chose SO because it is a well-established, computationally efficient method based on ID for 

estimating in-vivo muscle forces during movement [10]. This approach has been widely used for 

more than four decades to estimate muscle forces during gait. Another common modeling 

approach is dynamic optimization, based on forward dynamics, which has been shown to 

produce nearly equivalent solutions to SO during gait for predicted muscle forces and joint 

contact forces [34]. However, dynamic optimization tends to be computationally expensive, 

typically requiring 1000 times more computation time than SO. Erdemir et al. (2007) provide an 

extensive review of various modeling approaches including ID-based SO, optimal control 

strategies, and alternative methodologies for model-based estimation of muscle forces [117]. 

Although different approaches may result in different muscle force estimates, the relationship of 
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muscle force modifications observed between normal and toe-in gait would not be likely to 

change because SO was performed consistently across all subjects and the muscle force 

estimates are constrained by the experimental data and net joint torques generating the 

movement. 

In conclusion, this study showed that muscle force modifications were not consistent for toe-

in gait retraining to reduce the KAM in individuals with knee OA. It may be that self-selected 

muscle pattern changes are not uniform for gait modification particularly for individuals with 

knee pain. Thus, there is a need for subject-specific gait retraining which accounts for variations 

in muscle force modification strategies. Future studies focused on altering knee loads should not 

assume consistent muscle force modifications for a given kinematic gait change across subjects 

and should consider muscle forces in addition to kinematics in gait retraining paradigms. 

3.3 Toe-in gait reduces the varus-valgus contact moment in individuals with 

knee osteoarthritis 

This work was submitted to the Journal of Orthopaedic Research in 2016 and is under 

review: Schlotman, T.E., Shull, P.B., Reinbolt, J.A., “Toe-in gait reduces the varus-valgus 

contact moment in individuals with knee osteoarthritis.” Journal of Orthopaedic Research, 2016. 

In review. 

3.3.1 Introduction 

Knee OA is a painful chronic condition causing physical disability for elderly adults 

worldwide. Over 8.6 million U.S. adults report arthritis as their leading cause of physical 

disability, leading to loss of mobility and overall quality of life [118]. OA is the most prevalent 

form of arthritis affecting 14% of U.S. adults aged 25 years and older [119] and accounts for 

over 55% of all arthritis-related hospital admissions [120]. Knee OA, the most common type of 

OA, is characterized by decreased neuromuscular control, weakened knee musculature, and knee 

joint instability, with symptoms developing slowly over time [16] and carries high 

socioeconomic costs [15]. Currently, treatment options are limited to pain management until the 

disease progresses to a point where pain is no longer manageable and a joint replacement surgery 

is necessary. 

To better treat patients with knee OA, it is necessary to understand the internal knee joint 

contact loads (i.e., forces and moments). Computational models and experimental gait analysis 
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are often used to determine musculoskeletal loads in silico because non-invasive in vivo 

measurements (Appendix, Figure 10c) are not possible for patients currently suffering from knee 

OA [18]. Knee joint contact loads are considered major contributors to articular cartilage 

degeneration associated with OA progression [20] and patients with knee OA exhibit increased 

joint loads during gait [21], which potentially may be mitigated with gait modification. Patients 

with knee OA suffer medial compartment degeneration nearly 10 times more often than lateral 

compartment, likely due to greater medial knee forces during gait and daily activities [89]. 

Changes in knee kinematics and kinetics associated with knee OA lead to abnormal coordination 

to maintain stability, causing a significant increase in the external KAM [16]. Presence, severity, 

and progression of medial knee OA has been correlated with KAM, which is commonly used to 

assess medial knee loading [15] due to high correlation with measured medial knee contact force 

[17]. ID has traditionally been used to estimate the net joint loads, such as KAM, during 

movement (Appendix, Figure 10a), but this approach does not account for muscle forces when 

estimating joint contact loads. Additionally, KAM reductions may be achieved without 

corresponding reductions in medial contact forces [26]. Determining internal joint contact loads 

(Appendix, Figure 10b), including muscle forces, will lead to a better understanding of joint 

mechanics and overall musculoskeletal function [18]. One knee joint contact load deserving 

further exploration is the varus-valgus contact moment (VVCM). The VVCM, determined with 

OpenSim’s JRA [10], is an internal knee joint contact moment directly related to unbalanced 

loading between the medial and lateral compartments (Appendix, Figure 10b), as patients with 

medial knee OA have increased varus alignment and greater medial loading during gait and daily 

activities [22]. The VVCM results from a higher order method than ID which includes muscle 

forces when determining joint contact loads and provides an improved estimate of medial knee 

contact forces in patients with natural knees, as there is no other way to obtain this measurement. 

Importantly, internal knee joint contact loads, such as the VVCM, may change when gait is 

modified to alleviate symptoms of knee OA.  

Gait modification is a conservative intervention strategy for treating knee OA symptoms. 

Different modification strategies reduce the first, and generally larger, peak KAM, including 

slowed walking speed, decreased stride length, increased medial-lateral trunk sway, and lateral 

heel wedges [15, 23, 24], and these modifications subsequently reduce pain associated with knee 

OA and slow disease progression [15, 22]. There are far fewer studies on the effects of toe-in 
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gait; despite the fact, it reduces the peak KAM for patients with knee OA [15, 28]. Toe-in gait 

modification, internally rotating the feet to reduce foot progression angle, reduces the first peak 

KAM without impacting the knee flexion moment in patients with medial knee OA, though the 

effects on joint contact loads remain unknown [27, 28]. Though several studies investigated 

various gait modifications, few focus on toe-in gait and far fewer on joint contact loads 

accounting for muscle forces, which have been found to be different following gait modification 

[19]. A better understanding of the effects of toe-in gait modification on joint contact loads is 

necessary to use this modification as a treatment strategy for patients with knee OA. 

This study determined the effects of toe-in gait modification on the knee joint contact 

loads in individuals with medial knee OA. We hypothesized that toe-in gait will change the 

VVCM in subjects with medial knee OA. We tested this hypothesis by comparing the knee joint 

contact loads during normal gait and different sessions (post-training and follow-up) of toe-in 

gait. Identifying changes in knee joint contact loads with toe-in gait contributes to our 

understanding of this modification and provides insights needed to improve gait modification 

programs minimizing detrimental knee joint contact loads associated with the progression of OA. 

3.3.2 Methods 

Three hundred subject-specific, muscle-actuated dynamic simulations were created to 

reproduce the gait dynamics during normal and toe-in gait trials of 10 subjects with radiographic 

evidence of medial compartment knee OA. The simulations were used to conduct subsequent 

analyses of knee joint contact loads and changes in these loads between gait conditions.  

Experimental Data Collection 

The experimental gait analysis data were collected from 10 subjects (Appendix, Table 1) 

with symptomatic, medial-compartment knee OA [27]. Inclusion criteria required that each 

subject (i) had radiographic evidence of medial compartment knee OA as defined by a Kellgren 

& Lawrence (K/L) Grade>1 [105], (ii) had self-reported medial compartment knee pain at least 

one day per week during the 6 weeks prior to participation, (iii) was between 18 and 80 years of 

age, and (iv) was able to walk unaided for at least 25 consecutive minutes. Exclusion criteria 

prevented each subject from (i) having a corticosteroid injection within the previous six weeks, 

(ii) using shoe inserts or a hinged knee brace, (iii) being unable to adopt a new gait due to 

previous injury or surgery on the back or lower extremities, (iv) or having a body mass index 
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(BMI) greater than 35. The subjects were trained to adopt the toe-in gait modification over the 

course of six weeks [27]. To determine the knee joint load changes due to gait modification, 

experimental gait analysis data were analyzed for normal gait (session prior to toe-in gait 

training), post-training toe-in gait (session following the 6-week training regimen), and follow-

up toe-in gait (session 1 month after the 6-week training regimen ended). The toe-in gait 

modification, a 7° decrease in the foot progression angle, reduced the first peak KAM by 20%, 

and reduced symptomatic knee pain by 2 points on a visual-analog scale from 0 to 10, on average 

[28]. All subjects gave informed, written consent for collection and analysis of their gait data 

prior to participating, and the study was preapproved by the institutional review board. 

Musculoskeletal Models and Simulations 

A generic, three-dimensional, lower-limb musculoskeletal model consisting of 12 degrees 

of freedom and 43 muscle-tendon actuators was created by modifying the Gait2392 model in 

OpenSim to match experimental data of the ipsilateral limb and pelvis [77]. The contralateral 

lower extremity, head, upper extremities, and torso were removed and replaced by external, or 

residual, forces and torques acting on the pelvis. The pelvis position and orientation was defined 

relative to the ground with 6 degrees of freedom, the hip as a ball-and-socket joint, the knee as a 

planar joint with tibiofemoral and patellofemoral translational constraints as a function of knee 

flexion [78], and the ankle and subtalar joints as revolute joints [79]. All body segment inertial 

parameters were derived from Anderson and Pandy (1999) [48]. The muscle-tendon actuators 

were modeled as Hill-type muscles in series with a tendon based on musculotendon parameters 

from Thelen et al. (2003) [80]. 

Subject-specific musculoskeletal models were then created for each of the 10 subjects. In 

total, 30 muscle-actuated dynamic simulations (10 consecutive normal gait steps from the end of 

the trial before toe-in gait training, 10 consecutive post-training toe-in gait steps from the end of 

the trial after the 6-week training regimen, and 10 consecutive follow-up toe-in gait steps from 

the end of the retention trial 1 month following the end of training) were created for each subject 

during the stance phase of gait using a three-step process. First, the generic musculoskeletal 

model was scaled to represent the experimentally measured size of each subject. Second, IK 

generated values of model’s generalized coordinates that best matched (RMS marker error < 2 

cm) experimentally measured kinematics. Third, SO [10] determined individual muscle 

activations and resulting muscle forces that produced the net joint moments consistent with the 
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experimentally measured kinematics and GRFs. 

Knee Joint Contact Load Analysis 

 To determine changes in knee joint contact loads (i.e., forces and moments) between gait 

conditions, the contact loads were estimated using JRA in OpenSim (Appendix, Figure 10b) 

[10]. This analysis calculates joint contact forces and moments transferred between consecutive 

bodies resulting from all motions and forces acting on the model, including muscle-tendon 

actuators, using multibody dynamics. Analogous to traditional ID, the equations of motion of the 

multibody system are represented in terms of generalized coordinates and forces; however, 

muscle forces or internal joint contact loads are not required to solve these equations for the 

generalized forces, or net joint loads. Therefore, JRA carries out an important, additional step 

incorporating muscle forces along with joint kinematics and GRFs to determine the resultant 

joint contact loads [121]. This analysis results in 6 different outputs, including contact forces in 

the x-, y-, and z-directions, or anterior shear, superior compression, and lateral shear, 

respectively, and contact moments about the x-, y-, and z-axes, or varus-valgus, internal-external 

rotation, and flexion-extension. The goal is to extract insights from the subject-specific models 

and gait simulations to better understand the experimentally measured motion [10]. Joint contact 

forces were normalized by each subject’s body weight (%BW) and moments by body weight 

times height (%BW*HT). The knee joint contact loads were compared between gait conditions 

where the first peak KAM occurs during stance, which is thought to have the largest effect on 

joint loads as the first peak is generally the larger of the two peaks in KAM [22] during stance 

and is widely used to evaluate efficacy of gait modification strategies.  

We evaluated our hypothesis comparing the knee joint contact loads between gait 

conditions by conducting a paired sample, two-tailed t-test at the 0.01 significance level. A 

paired t-test was used to make comparisons for the same subject before and after gait 

modification, and a two-tailed test was used due to not having an a priori expectation about 

directionality of change (i.e., each joint contact load may increase or decrease). The null 

hypothesis was that the difference in each joint contact load between normal and toe-in gait was 

zero. A low p-value of 0.01 was used because there is strong evidence against the null 

hypothesis, meaning we expect changes in the joint loads between normal and toe-in gait due to 

the kinematic and kinetic changes seen with toe-in gait, thus the null hypothesis will most likely 

be rejected. The test was performed against the two-tailed alternative hypothesis that each joint 
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contact load either increased or decreased, on average, in the simulations of toe-in gait compared 

to normal gait. 

Validation of the Varus-Valgus Contact Moment 

We validated our modeling, simulation, and analysis approaches using experimental data 

collected from an instrumented knee implant (eKnee) available from the 4th Knee Grand 

Challenge [122] because our subjects have natural knees with medial OA and, thus, direct in 

vivo joint load measurements are not possible. The collected data did not include toe-in gait 

modification; consequently, we chose to compare normal and medial thrust gait. Both medial 

thrust and toe-in gait have been shown to reduce the first peak KAM for patients with knee OA 

[24, 27]; therefore, medial thrust gait is an appropriate modification for validating the VVCM. 

Four subject-specific, muscle-actuated dynamic simulations (2 consecutive normal gait steps and 

2 consecutive medial thrust gait steps) were created for the 4th Knee Grand Challenge subject 

during the stance phase of gait using the same modeling, simulation, and joint contact load 

analysis process described above. The VVCM was compared to experimentally measured eKnee 

medial forces during normal and medial thrust gait. Values of the VVCM and eKnee medial 

force were respectively averaged between 20% and 35% stance, where the first peak KAM is 

known to occur, and compared between gait conditions. To further validate our approach, the 

relationship between the VVCM and experimentally measured eKnee medial force was 

evaluated with a correlation analysis to determine whether and how strongly the variation in 

VVCM was related to eKnee forces before and after gait modification.  

3.3.3 Results 

Following toe-in gait modification, patients with medial knee OA reduced their VVCM, 

while all other knee contact loads remained unchanged. The knee joint contact load results were 

evaluated at 27% of stance, where the first peak KAM occurs, on average, for subjects in this 

study (Appendix, Figure 11a). At the post-training session, the VVCM significantly decreased 

(p<0.01) approximately 15%, on average, when subjects walked with toe-in gait (3.0±0.7 

%BW*HT) compared to normal gait (3.5±0.8 %BW*HT) (Appendix, Figure 11b, Appendix, 

Table 3). While the VVCM significantly decreased, there were no significant differences in the 

compressive and shear knee joint contact forces (p>0.16) nor flexion-extension and internal-

external rotation contact moments (p>0.09) during toe-in gait compared to normal gait 
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(Appendix, Table 3). Furthermore, these results were further improved 1 month following the 

end of gait retraining. At the follow-up session, the VVCM significantly decreased (p<0.01) 

approximately 17%, on average, when subjects walked with toe-in gait (2.9±0.7 %BW*HT) 

compared to normal gait (3.5±0.8 %BW*HT) (Appendix, Figure 11c, Table 3). Again, there 

were no significant differences in the compressive and shear knee joint contact forces (p>0.13) 

nor flexion-extension and internal-external rotation contact moments (p>0.06) during toe-in gait 

compared to normal gait (Appendix, Table 3). 

Our modeling, simulation, and analysis approaches generated results consistent with 

eKnee data collected during the 4th Knee Grand Challenge [122]. The knee joint contact load 

results were evaluated between 20% and 35% stance, where the first peak KAM is known to 

occur. The experimentally measured eKnee medial forces (Appendix, Figure 12a) decreased 

approximately 8.9%, on average, when the subject walked with medial thrust gait (137 %BW) 

compared to normal gait (150 %BW). The VVCM, from JRA, shows similar changes during 

stance (Appendix, Figure 12b). The VVCM decreased approximately 8.0%, on average, when 

the subject walked with medial thrust gait (1.5 %BW*HT) compared to normal gait (1.7 

%BW*HT). Furthermore, the VVCM showed high correlation to and varies as a function of the 

eKnee medial force during both normal gait (R2=0.93, Appendix, Figure 13a) and medial thrust 

gait (R2=0.94, Appendix, Figure 13b). This comparison confirms that a reduction in the VVCM 

while all other loads remained relatively the same, as seen in our study, represents a reduction in 

the knee contact force in the diseased, osteoarthritic medial compartment of the joint.  

3.3.4 Discussion 

 How gait modifications affect internal joint loads on natural knees with medial OA is an 

open question and answers are necessary to effectively use gait modifications as a conservative 

intervention strategy. Through in silico approaches validated with in vivo measurements, we 

confirmed our hypothesis and determined toe-in gait significantly reduces the VVCM, the 

contact moment directly related to unbalanced loading between the medial and lateral knee joint, 

compared to normal gait in subjects with medial knee OA. All subjects uniformly reduced the 

VVCM, while adopting different muscle force modifications [19], and further improved at the 1-

month follow-up session. The VVCM decrease is consistent with first peak KAM decrease 

observed during toe-in gait [27, 28]; furthermore, our results provide new insights about subject-
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specific contact load changes in natural knees. The VVCM changes during toe-in gait were 

accompanied by no significant changes in the flexion-extension and internal-external rotation 

contact moments or the compressive and shear contact forces, thus the VVCM decrease 

represents a reduction in the contact force on the diseased medial knee compartment. This 

change was validated by comparing with the experimentally measured medial contact force from 

the 4th Knee Grand Challenge [122].  

Some possible explanations for the uniform reduction in VVCM across all subjects while 

there were inconsistent changes in muscle forces [19] include pain management or tolerance and 

varying degrees of knee OA severity. Pain relief, the primary goal of treating knee OA, is likely 

to influence VVCM changes, as modified joint loads during gait can be a consequence of pain 

management [123]. As such, how long a patient has symptomatic knee OA and manages pain by 

altering kinematics could lead to different muscle and joint load changes. Subjects may alter 

joint mechanics differently to continue knee function with less pain, as gait and neuromuscular 

pattern differences exist between patients with varying degrees of knee OA [124]. Understanding 

the relationship between pain and subsequent alterations in gait, including modifications of joint 

contact loads and kinematics, is critical to advancing treatments for knee OA because increased 

knee joint loads are considered major contributors to the development and progression of this 

disease [93, 123, 125]. 

There were a few limitations in our study and the results should be interpreted in context 

with our research challenges. First, SO, rather than dynamic optimization, was used to 

determined muscle forces in the simulations. We chose SO because of its low computational 

expense and availability in OpenSim to create the large amount of 300 simulations (10 subjects 

with 30 each). Additionally, static and dynamic optimization are essentially equivalent for 

estimating in vivo quantities such as muscle forces and joint contact loads during gait [34]. 

Therefore, SO results should not significantly affect conclusions drawn from this study. 

Second, the knee joint contact loads were not localized to the medial and lateral 

compartments of the joint. The load values reported in the current study represent the whole knee 

joint contact loads, rather the medial compartment where subjects exhibit radiographic evidence 

of knee OA. The VVCM directly relates to the unbalanced contact forces on the medial and 

lateral knee compartments causing the bone-on-bone contact characteristic of OA, thus finding a 

reduction in this contact moment shows an improvement for patients with medial knee OA. We 
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do not see this variable selection as a major limitation because our modeling, simulation, and 

analysis approaches were validated through favorable comparisons to instrumented knee implant 

data [126]. Although the absolute magnitude of knee joint contact loads may change if we made 

different modeling assumptions, our conclusions regarding the relative reduction in VVCM 

during toe-in gait compared to normal gait would be unlikely to change significantly because the 

same assumptions would be used across gait conditions. 

Finally, the VVCM changes remain an in silico estimate for subjects with knee OA in this 

study. Though actual bone and joint contact loads (Appendix, Figure 6c) can be determined with 

higher order analyses or direct in vivo measurement from an instrumented knee implant, these 

loads are not available for subjects having natural knees with OA before undergoing total knee 

replacements; therefore, the contact loads are, with good reason, estimated using the knee joint 

contact load analysis described earlier.  

Our results add to an increasing body of knowledge needing further research to determine 

optimized subject-specific gait modifications for early treatment of knee OA. Determining knee 

joint contact loads is important in understanding the efficacy of gait modification strategies, as 

these loads have a large impact on the net KAM in normal gait [18], and thus should be included 

in studying different strategies. While we found a uniform VVCM decrease across subjects, 

individual subjects had varying amounts of changes with some improving more than others, 

which agrees with others showing KAM decreases do not guarantee joint contact load decreases 

[23, 26] and different patterns of knee contact forces exist across subjects with severe knee OA 

[127]. However, these studies did not investigate toe-in gait and had much smaller sample sizes 

compared to our study; therefore, it is unknown the extent to which their results can be 

generalized to different modification strategies within larger populations. Furthermore, many 

studies have investigated the effectiveness of gait modification to reduce the knee loads for 

patients with knee OA showing a wide range of results, though toe-in gait has been studied far 

less than other modification strategies and has not been included in instrumented knee studies. 

Previous studies found the use of bilateral hiking poles significantly reduces medial and lateral 

knee compartment forces, and found many modifications reduce external knee moments, 

including toe-out, slow speed, decreased stride length, medial-lateral trunk sway, lateral heel 

wedges, walking with a cane, and medial thrust gait [24, 128]. Future studies should include toe-
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in gait modification as it has been shown to reduce the net KAM [15, 28] while the peak knee 

flexion moment remains unchanged [27]. 

Further research is necessary to determine optimal, whole-body kinematics to minimize 

joint loads through gait modification. Currently, there are few studies investigating the design of 

subject-specific gait modification patterns, though some have shown promise. One group 

designed novel gait modifications with potential clinical benefits using optimizations of subject-

specific, full-body gait models [23]. Additionally, this group found subject-specific cost 

functions combined with subject-specific gait models can predict clinically significant gait 

features for designing rehabilitation and surgical treatments optimized to individual patient needs 

[129]. Optimal subject-specific gait training in the future may combine a number of previously 

reported modification strategies to reduce the net external KAM and joint contact loading to 

improve knee function and slow progression of knee OA. 

 This study found toe-in gait modification reduces the VVCM in individuals with knee 

OA. The uniform improvement in the VVCM despite non-uniform self-selected muscle patterns 

[19] to achieve toe-in gait modification shows the efficacy of toe-in gait to improve overall knee 

function for individuals with knee OA, especially with these positive results being retained in all 

subjects after 1 month. Because certain subjects are able to reduce this contact load more than 

others, it may be beneficial to further analyze individual muscle activities and significant features 

of modified gait to improve toe-in gait modification for all patients with knee OA. Our results 

show the potential of toe-in gait modification for early treatment of knee OA and this work can 

be implemented into future studies of optimal subject-specific gait modification strategies that 

would be able to account for variation in joint contact loads on an individual basis. 
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CHAPTER FOUR: SPECIFIC AIM 2- 

SELECTED SIGNIFICANT FEATURES OF GAIT WITH THE 

GREATEST POTENTIAL TO DECREASE JOINT LOADS FOR 

PATIENTS WITH KNEE OA 
In aim 2, data mining and machine learning techniques were applied to select a set of 

significant features of gait that differentiate between subjects with high and low knee joint contact 

loads during toe-in gait. The goal of specific aim 2 was to discover the significant features of gait that 

have the potential to decrease harmful knee joint loads. This study was accomplished by further 

analyzing simulation data to identify significant features through a machine learning technique based 

on a pseudo-quadratic discriminant analysis with a 10-fold k-fold cross validation of the gait data. 

This investigation will clarify the potential of gait modification to decrease joint loads. 

4.1 Significant Features of Toe-in Gait with Potential to Lower Knee Joint 

Contact Loads of Individuals with Knee Osteoarthritis: Implications for 

Improving Gait Modifications  

 This work was submitted to the Journal of Biomechanics in 2017 and is under review: 

Schlotman, T.E., Shull, P.B., Reinbolt, J.A., “Significant Features of Toe-in Gait with Potential 

to Lower Knee Joint Contact Loads of Individuals with Knee Osteoarthritis: Implications for 

Improving Gait Modifications.” Journal of Biomechanics, 2017. In review. 

4.1.1 Introduction 

Knee OA is a chronic condition causing physical disability in 14% of U.S. adults aged 25 

and older [119]. This disease is characterized by decreased neuromuscular control, weakened 

knee musculature, and knee joint instability. Currently, treatment options are limited to pain 

management until pain is no longer manageable and a joint replacement surgery is necessary. A 

better understanding of whole-body kinematics, or features of gait, used during toe-in gait 

modification to reduce joint loading is necessary to use this modification as a treatment strategy 

for patients with knee OA and design optimal patient-specific modifications in the future. 

Gait modification has been proposed as an early intervention strategy to treat knee OA by 

mitigating knee joint contact loads. These loads are considered major contributors to articular 
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cartilage degeneration associated with OA progression [20] as patients with knee OA exhibit 

increased joint loads during gait [21]. KAM is a common measure used to assess medial knee 

loading [15] due to high correlation with measured medial knee contact force [17], presence, 

severity, and progression of medial knee OA; however, this approach does not account for 

muscle forces when estimating joint loads. Internal joint contact loads, such as VVCM, account 

for muscle forces which change following gait modification [19]. VVCM, determined with 

OpenSim JRA, is an internal knee joint contact moment directly related to unbalanced loading 

between medial and lateral knee compartments and accounts for muscle forces [10]. Importantly, 

VVCM is reduced with toe-in gait (Appendix, Table 4). Because the modifications of features of 

gait that allow subjects to reduce joint loading are not well understood, it is important to 

determine these features to improve efficacy of gait modification. Understanding which features 

have the greatest potential to reduce harmful joint loads, such as VVCM, allows researchers to 

develop and test improved gait modification strategies to progress this method as a treatment for 

patients with knee OA. Instead of training subjects to walk based on one modification feature, 

such as a decreased foot progression angle in toe-in gait, subjects can likely be trained with more 

features to increase the effectiveness of gait retraining and maximize benefits to patients by 

further alleviating knee OA symptoms with reduced joint loading. 

To determine which features of gait are most significant, the high dimensionality of 

human gait data must be reduced because predictive power decreases as dimensionality increases 

[130]. Machine learning is well-recognized method in computer science for discovering models, 

patterns, such as feature selection, in data. The goal of feature selection is to use a set of 

candidate features and select a subset with the best performance under a certain classification 

system to manage large amounts of irrelevant features. While there are many algorithms for 

feature selection, one of the most widely used is sequential forward search [131]. Sequential 

forward search uses a wrapper method to evaluate a specific subset of features inducing a model 

from a training group with the model used for prediction and classification of a testing group. 

Because wrapper approaches carry the risk of over fitting [132, 133], cross-validation was 

implemented. Cross-validation separates the data, using some for training and the rest for testing, 

and uses measures of fit to estimate the model’s predictive performance, so not all of the data is 

used to build the model [134].  
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This study utilized machine learning to develop and test a model for selecting significant 

features of toe-in gait with the greatest potential to reduce VVCM. Additionally, because 

subjects reduce VVCM by varying amounts, we tested another model for selecting a different or 

additional set of significant features of toe-in gait for the top performing subjects, or those with 

the greatest reduction in VVCM. We tested the models using a forward sequential feature 

selection (fSFS) algorithm with pseudo-quadratic discriminant analysis (pQDA) and 10-fold 

cross validation to determine the significant features of toe-in gait. Identifying changes in whole-

body kinematics and kinetics, or features of movement, during toe-in gait contributes to our 

understanding of this modification and provides insights needed to improve gait retraining 

programs aiming to minimize detrimental knee joint contact loads associated with the 

progression of knee OA. 

4.1.2 Methods 

Three hundred subject-specific, muscle-actuated dynamic simulations were created to 

reproduce the gait dynamics during normal and toe-in gait trials of 10 subjects with radiographic 

evidence of medial compartment knee OA. The results of these simulations (e.g., kinematics and 

kinetics) were used to conduct a subsequent machine learning forward feature selection to 

determine the significant features of toe-in gait with the greatest potential to reduce VVCM.  

Experimental Data Collection 

Experimental gait analysis data were collected from 10 subjects (Appendix, Table 4) with 

symptomatic, medial-compartment knee OA trained over the course of six weeks to adopt a 7° 

decrease in foot progression angle to achieve a toe-in gait modification [27] (see Shull, et. al 

2013b for more experimental data collection details). Experimental gait analysis data were 

analyzed for normal gait (session prior to toe-in gait training), post-training toe-in gait (session 

following the 6-week training regimen), and follow-up toe-in gait (session 1 month after the 6-

week training regimen ended) to determine the knee joint load changes due to gait modification. 

Toe-in gait modification, reduced the first peak KAM by 20%, and reduced symptomatic knee 

pain by 2 points on a visual-analog scale from 0 to 10, on average [28]. All subjects gave 

informed, written consent for collection and analysis of their gait data prior to participating, and 

the study was preapproved by the institutional review board.  
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Musculoskeletal Models and Simulations 

A generic, three-dimensional, lower-limb musculoskeletal model consisting of 12 degrees 

of freedom and 43 muscle-tendon actuators was created by modifying the Gait2392 model in 

OpenSim to match experimental data of the ipsilateral limb and pelvis [77]. The contralateral 

lower extremity, head, upper extremities, and torso were removed and replaced by external, or 

residual, forces and torques acting on the pelvis. The pelvis position and orientation were defined 

relative to the ground with 6 degrees of freedom, the hip as a ball-and-socket joint, the knee as a 

planar joint with tibiofemoral and patellofemoral translational constraints as a function of knee 

flexion [78], and the ankle and subtalar joints as revolute joints [79]. All body segment inertial 

parameters were derived from Anderson and Pandy (1999) [48]. The muscle-tendon actuators 

were modeled as Hill-type muscles in series with a tendon based on musculotendon parameters 

[80]. 

A subject-specific musculoskeletal model and 30 muscle-actuated dynamic simulations 

(10 consecutive normal gait steps from the end of the trial before toe-in gait training, 10 

consecutive post-training toe-in gait steps from the end of the trial after the 6-week training 

regimen, and 10 consecutive follow-up toe-in gait steps from the end of the retention trial 1 

month following the end of training) was created for each subject during the stance phase of gait 

using a multi-step process. First, the generic musculoskeletal model was scaled to represent the 

experimentally measured size of each subject. Second, IK generated values of model’s 

generalized coordinates that best matched (RMS marker error < 2 cm) experimentally measured 

kinematics. Third, SO [77] determined individual muscle activations and resulting muscle forces 

that produced the net joint moments consistent with the experimentally measured kinematics and 

GRFs. Finally, JRA in OpenSim [10] estimated contact loads to determine changes in knee joint 

contact loads (i.e., forces and moments) between gait conditions. This analysis calculates joint 

contact forces and moments transferred between consecutive bodies resulting from all motions 

and forces acting on the model. The equations of motion of the multibody system, represented in 

terms of generalized coordinates and forces, are solved analogous to ID, but includes an 

additional step incorporating muscle forces with joint kinematics and GRFs to determine 

resultant joint contact loads [121]. 
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Subject Performance Grouping 

 To determine the features of gait with potential to reduce VVCM, we first grouped 

subjects based on the change in VVCM from normal (baseline) to toe-in gait (post-training and 

follow-up sessions) (Appendix, Figure 14b). The subjects were grouped separately for changes at 

post-training and follow-up because some exhibited further decrease in VVCM at follow-up as 

compared to post-training. This grouping allowed us to determine the top performing subjects, or 

those with the most improvement. These subjects moved to a better grouping at follow-up, such 

that group 1 was the worst group and group 6 was the best. The six groups were defined by the 

amount of change in VVCM from normal to toe-in gait, using the average decrease in VVCM 

(14%) as the basis for forming each group. Each group was formed by adding or subtracting half 

of the average decrease (7%) to space each group evenly around the average decrease, with the 

addition of a slight increase group to account for more variability in the subjects tested 

(Appendix, Table 5). Six groups were determined so small changes between subjects would be 

accounted for in the differences between groupings. These groupings allow the specific changes 

in each significant feature to be considered between varying amounts of improvement using toe-

in gait to better understand how to improve this modification for optimal benefits to the patients 

in the future. Group 1 included subjects with an increase in VVCM. At the post-training session, 

group 1 contained 2 subjects and 3 subjects at follow-up. Group 2 included subjects having a 0-

6.99% (well below average) decrease in VVCM, with 2 subjects at the post-training session, and 

1 subject at follow-up. Group 3 included subjects having a 7-13.99% (below average) decrease in 

VVCM with 3 subjects at the post-training session and 1 subject at follow-up. Group 4 included 

subjects having a 14-20.99% (average) decrease in VVCM, with no subjects at the post-training 

session and 2 subjects at follow-up. Group 5 included subjects having a 21-27.99% (above 

average) decrease in VVCM, with 2 subjects at the post-training session and 1 subject at follow-

up. Group 6 included subjects having a 28% or greater (well above average) decrease in VVCM, 

with 1 subject at the post-training session and 2 subjects at follow-up. 

 The choice of 6 groups could impact the results of this study; therefore we compared 

feature selection results of different numbers of groups to understand the effects of varying the 

number of groups on the selection of significant features of gait. This comparison serves to 

validate the use of 6 groups in this study, by comparing the selected features and the order in 

which they are selected to those in the different groupings. We compared the selected feature 



 

42 
 

results of our 6 groups to results for 5, 4, 3, and 2 groups, respectively. These additional 

groupings were created in a similar manner to creating the 6 groups, such that each grouping was 

centered on the average decrease (14%) in VVCM by adding or subtracting half the average 

decrease to form the additional groups (7%) (Appendix, Table 5). 

Dimensionality Reduction via Forward Sequential Feature Selection 

Machine learning was used to address the high dimensionality of data from our 

simulations of gait and select a subset of the most significant features. A supervised process 

trained a model to predict desired results using a fSFS algorithm in a wrapper fashion on all 

simulation results for all subjects with 10-fold cross validation [135] and pQDA. The pQDA was 

used to allow covariance matrices to vary among classes by inverting the covariance matrix 

using the pseudo inverse. 

The fSFS algorithm used 96 different features from our simulations (Appendix, Figure 

14a), including GRF, motion from IK, joint moments from ID, muscle force estimates from SO, 

and joint contact loads from JRA during normal gait (baseline) and toe-in gait (post-training and 

follow-up sessions) (Appendix, Figure 14a). Because we are interested in the features of gait with 

the potential to reduce VVCM, feature selection was based on the reduction in VVCM following 

toe-in gait compared to normal gait using the subject performance groups described earlier 

(Appendix, Figure 14b). To obtain a set of significant features of toe-in gait, the fSFS algorithm 

used two main components, the objective function and sequential search. The objective function, 

known as the criterion, was minimized over all possible feature subsets; in our case, the criterion 

was the misclassification error (MCE) found during cross validation. We used a forward search 

(Appendix, Figure 14c) to sequentially add features from the simulation data while evaluating 

the MCE.  

The prediction performance of feature subsets identified during this supervised learning 

process was evaluated by dividing the simulation input data into training and test data sets based 

on 10-fold cross validation [135]. The 10-fold cross-validation separated the input data into 10 

equal-sized data sets or folds and progressively used 9 sets for training and the remaining set for 

testing and calculation of the MCE. Next, fSFS selects a subset of features by sequentially 

adding features until the criterion stopping condition, minimizing MCE, is satisfied. From the 

training data, features are selected and fit with a pQDA model and the performance of each 

candidate feature subset is evaluated and compared. The test data is then used to evaluate the 
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performance of the final selected feature. fSFS continues until local minimum MCE is found, 

and then the entire fSFS process repeats 10 times, until all observations are used for both training 

and validation or testing. Importantly, each observation is only used once as a validation or test 

set. Finally, a final average of each repetition determines the subset of features selected as target 

outputs (Appendix, Figure 14d).  

4.1.3 Results 

Sixteen significant features were identified from 96 different features of toe-in gait with 

the potential to reduce VVCM. The percentage of correct predictions made by the pQDA was 

98.8%, on average, across the 10 cross-validation folds (R2 = 0.97). The selected significant 

features of toe-in gait included ground reactions (vertical reaction force), motion (pelvis list, 

rotation, tilt, height, and mediolateral position, hip flexion, adduction, and rotation), joint 

moments (KAM), muscle force estimates (biceps femoris short head, gluteus maximus anterior, 

and gluteus maximus middle), and joint contact loads (hip compression and anterior shear force, 

and metatarsophalangeal flexion-extension contact moment) (Appendix, Table 6, post-training; 

Appendix, Table 7, follow-up). The top 3 features selected, hip rotation, KAM, and pelvis list. 

There were 4 (of the 10) subjects classified as top performers because they exhibited 

further decrease in VVCM between post-training and follow-up. These subjects had a slightly 

different set of significant features to achieve improvements. Eleven significant features were 

identified from 96 total features of toe-in gait for this group. The percentage of correct 

predictions made by the pQDA model was 100%, on average, across the 10 cross-validation 

folds (R2 = 0.98). For top performers, selected significant features of toe-in gait included ground 

reactions (mediolateral reaction force, free torque), motion (pelvis list, rotation, tilt, and height, 

hip adduction and rotation), joint moments (hip adduction moment) and joint contact loads (hip 

superior compression force, knee flexion-extension contact moment) (Appendix, Table 8). The 

top 3 features for top performing subjects were pelvis list and tilt, and hip rotation. 

In comparing the effects of varying the number of groupings on the selection of features 

to validate the use of 6 groups in this study, we found that varying the number of groups selected 

similar features in a similar order despite different amounts of groups (Appendix, Table 9). The 

use of 5 groups selected 57% of the same features as using 6 groups. The use of 4 groups had 

34%, 3 groups had 41%, and 2 groups had 53% of the same selected features as using 6 groups 
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(Appendix, Table 10). Hip rotation appeared as the top selected feature in 6, 5, and 4 groups, and 

was in the top 6 selected features for 3 and 2 groups. Hip rotation, pelvis tilt, and pelvis height 

were in the top 6 selected features for all of the groupings as well. Additionally, every grouping 

showed hip rotation, pelvis tilt, pelvis height, hip adduction, and biceps femoris short head force 

to be significant features to decrease VVCM during toe-in gait (Appendix, Table 9). Importantly, 

predictive power decreased with the number of groupings, such that having 6, 5, and 4 groups 

had 99% correct predictions across the 10 cross-validation folds, while using only 3 groups had 

98% correct predictions and 2 groups had only 91% correct predictions (Appendix, Table 10). 

Finally, 14 out of 16 selected features when using 6 groups, as in this study, were also selected in 

at least two of the other groupings, showing the selected features in this study are truly 

significant for decreasing VVCM, regardless of number of groups used during feature selection 

(Appendix, Table 9). 

4.1.4 Discussion 

 How subjects achieve gait modifications by altering whole-body kinematics and kinetics 

is an open question and answers are necessary to effectively use gait modifications as a 

conservative intervention strategy for treating knee OA. Using machine learning, we determined 

significant features of toe-in gait that reduce VVCM, the contact moment directly related to 

unbalanced loading between the medial and lateral knee joint, in subjects with medial knee OA. 

Generally, the identified significant features were focused on the hip and ankle, not the knee 

itself. Additionally, we determined a set of significant features of gait for top performing 

subjects, or those with the most VVCM decrease. While top performers shared many of the same 

features from the entire group, importantly, different significant features were identified in these 

subjects. Each of the identified significant features of toe-in gait are associated with a decrease in 

knee joint contact loads, which supports the use of clinical motion analysis and musculoskeletal 

simulation to better understand gait modification as an early intervention treatment strategy for 

patients with knee OA. We validated our methods for feature selection by investigating the 

effects of varying the number of groups during feature selection and comparing the results to 

those using 6 groups as in this study. The selected features of gait should be targeted in future 

gait modification studies to maximize benefits for patients. For example, while measuring foot 

progression angle to achieve toe-in gait in real time during gait retraining, these other features 
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may also be measured to improve the efficacy of gait retraining. Targeting these significant 

features helps realize the potential of gait modification to treat knee OA by alleviating symptoms 

and lowering knee joint loads associated with disease progression. 

 Of the 16 selected features in this study, the top 3 features were very telling. The top 3 

features, hip rotation, KAM, and pelvis list, were those the change in VVCM was most sensitive 

to when selecting features to minimize the MCE. Because subjects walked with toe-in gait and 

reduced VVCM and KAM (Appendix, Table 4), we anticipated hip rotation, resulting from 

decreasing the foot progression angle in toe-in gait, and KAM, a common measure of medial 

knee loading that decreases with toe-in gait, to be two of the top features. These features 

resulting as top features support the use of toe-in gait to improve symptoms for patients with 

medial knee OA and the use of KAM to assess efficacy of gait modification strategies. Also, 

pelvis list and hip rotation as top features shows major changes are being made at the hip joint 

and pelvis to improve symptoms at the knee. However, it is unknown whether these changes may 

negatively affect the hip and pelvis or lower back with prolonged use of toe-in gait. Additionally, 

for top performing subjects, the top 3 features were similar to those of the entire group, including 

pelvis list and tilt, and hip rotation, and were focused around the hip and pelvis. Future studies 

should consider the hip and pelvis in addition to the knee to fully assess the efficacy of gait 

modification strategies for treating patients with knee OA. Investigating optimal outputs for 

these features to minimize harmful knee joint loading in the future will help determine the most 

efficient method for gait retraining. 

 Comparing the results of varying the number of subject groupings during feature 

selection validated the use of 6 groups in this study. We compared the feature selection results of 

our 6 groups to the results using 5, 4, 3, and 2 groups all centered around the average decrease in 

VVCM as well. We found that 88% of the selected features in this study appear as significant 

regardless of the number of groupings. 14 out of the 16 selected features with 6 groups appear as 

significant features in two or more groupings, with the last two selected, metatarsophalangeal 

flexion-extension moment and gluteus maximus anterior force, being those that were not similar 

to any of the other groupings. This suggests that these last two features may not have a large 

impact on decreasing VVCM. Additionally, hip rotation was the top selected feature for 6, 5, and 

4 groups, and was in the top 6 selected features for 3 and 2 groups, highlighting this feature to 

most significant for decreasing VVCM during toe-in gait. Finally, hip rotation, pelvis tilt, pelvis 
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height, biceps femoris short head force, and hip adduction were significant features in all 

groupings, indicating these may be the most important features to be targeted in future gait 

retraining studies to decrease harmful joint loading in patients with medial knee OA. 

Importantly, using different numbers of groups yielded different sets of significant features. 

However, each of the groupings had many of the same selected features, for example 5 groups 

had 57% of the same features as using 6 groups, while 4, 3, and 2 groups had 34%, 41%, and 

53% respectively. Additionally, as the number of groups decreases, the predictive power also 

decreases, such that using 6 groups had 99% correct predictions, while using 2 groups only had 

91% correct. These results indicate that using fewer groupings may not be able to correctly 

classify the significant features as accurately and using more groups. Using more groupings 

helps highlight the smaller, unique differences between each subject during toe-in gait, utilizing 

more information about gait on a subject-specific basis to select features more efficiently, while 

using fewer groups yields more generalized results that may be significant on average but not on 

an individual basis. Therefore, the use of 6 groups is a valid choice in this study to select 

significant features of gait to decrease VVCM for individuals with medial knee OA.  

 Some possible explanations for the selected feature sets differing between the entire 

group and the top performers could be that top performers identified how to enhance the toe-in 

gait retraining in such a way that works best for their specific body anthropometry and reduced 

pain or discomfort. Also, subjects adopted unique muscle force modifications to achieve toe-in 

gait modification [19], thus the key to reducing joint loads very likely lies in subject-specific 

modification patterns. Additionally, a major side effect of knee OA is pain, thus it is probable 

there is a cause-and-effect relationship between knee pain and gait changes, and it may be that 

this relationship is present in selecting features of gait between different subject groups [107, 

108, 123]. Also, subjects in this study presented varying amounts of knee pain and changes in 

knee pain both pre- and post-training (Appendix, Table 4), which could contribute to varied sets 

of significant features. 

 There were a few limitations in our current study. First, changes in muscle forces and 

VVCM in this study remain an in silico estimate for subjects with knee OA. Higher order 

analyses can determine actual joint contact loads and muscle forces through a direct in vivo 

measurement from an instrumented knee implant and EMG. However, EMG was not available 

for this subject group and in vivo measurements are not available for subjects with natural knees 
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with OA before undergoing a total joint replacement. Therefore, simulated muscle forces and 

joint loads are estimated, with good reason, using the modeling and simulation methods 

described earlier. 

 Second, while we found significant features of gait with potential to reduce harmful joint 

loads during toe-in gait, it is important to note that different sets of features may be found for 

other gait modification strategies. Many studies investigated different modification strategies 

which reduce the first peak KAM similar to toe-in gait [27, 28], including slowed walking speed, 

decreased stride length, increased medial-lateral trunk sway, and lateral heel wedges [15, 23, 24], 

and these modifications subsequently reduce pain associated with knee OA and slow disease 

progression [15, 22]. However, the significant features of toe-in gait in this study were selected 

to achieve the same ultimate goal of reducing loading in the medial knee joint compartment. 

Thus, it is likely that using these different gait modification strategies will produce similar 

results. Additionally, modification studies found training subjects to adopt a gait pattern with 

increased hip adduction and internal rotation as well as using a medial thrust gait, or medializing 

the knee while maintaining a constant foot progression angle, can significantly reduce KAM [23, 

25], but also increase knee flexion which may increase overall knee contact force and counteract 

the potential benefits of a reduced KAM [26]. Toe-in gait, however, does not constrain hip 

angles or foot progression angle and may be a more natural modification strategy [113].  

 The results of this study highlight the need for further research to develop subject-

specific optimized gait modifications for better treatment of knee OA. Determining significant 

features of gait is important for understanding specific changes occurring during gait 

modification and the effectiveness of this treatment strategy for reducing joint loads and should 

be included in studying optimal gait modification paradigms. Many studies focus on using gait 

modification for treating early-stage knee OA, but few have investigated which features of the 

modification have the most potential to positively impact joint contact loads and provide the 

most benefits for individuals with knee OA. In the future, it will be useful to incorporate these 

features of gait in evaluating gait modification strategies and designing optimal subject-specific 

gait modifications that account for variation in joint contact loads on an individual basis. Our 

results show the potential of toe-in gait to be used for early treatment of knee OA and this work 

can be implemented into future studies to improve this modification for optimal joint contact 

load results. 
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CHAPTER FIVE: SPECIFIC AIM 3- 

TESTABLE GAIT MODIFICATIONS TO MINIMIZE KNEE 

JOINT LOADS DESIGNED USING SURROGATE-BASED 

OPTIMIZATION 
In aim 3, surrogate models based on polynomial response surfaces were created to 

characterize the gait-load relationships of the modified gait and efficiently find optimal modifications 

for specific patients. The goal of specific aim 3 was to understand how the significant features 

influence gait modification and how they can be used to create testable gait modifications to decrease 

joint loads on an individual basis. This study was accomplished by fitting the joint loads as a 

multidimensional quadratic function of the most significant features of gait modifications. Then, 

optimizations varied the gait modification patterns to determine the optimal gait modification 

strategies that minimize harmful knee joint loads. This investigation clarified the potential of 

surrogate-based optimization to design testable gait modification strategies to minimize knee joint 

loads. This analysis provides new guidelines for determining if, and under what conditions, gait 

modifications are likely to decrease joint loads and benefit specific patients. 

5.1 Using surrogate-based optimization to design testable gait modification 

strategies with potential to minimize varus-valgus contact moment  

5.1.1 Introduction 

Knee OA is a prevalent, chronic condition characterized by decreased neuromuscular 

control, weakened knee musculature, and knee joint instability, with symptoms developing 

slowly over time [16]. Despite the need for early, effective treatment, few clinical options are 

available and are limited to pain management, though gait modification has shown promise as an 

early intervention strategy by mitigating harmful knee joint contact loads. These loads are 

considered major contributors to articular cartilage degeneration associated with OA progression 

[20], thus reducing these loads is especially vital for treating patients with knee OA. 

One of the most common measurements of joint loading, the external KAM, has been 

correlated with presence, severity, and progression of medial knee OA [15]. While KAM 

exhibits two peaks during the gait cycle, only the first peak in early stance has been shown to be 

higher in patients with knee OA as compared to healthy individuals [91, 136, 137], thus lowering 
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the first peak KAM is a key design factor in creating gait modification strategies. Because in vivo 

measurements of medial loading cannot be measured noninvasively, KAM is often used as an 

external measurement to assess gait modification strategies due to a high correlation with 

measured medial knee contact force [17]; however, this approach does not account for muscle 

forces when estimating joint contact loads and does not guarantee a decrease in medial contact 

force during gait [26]. Determining internal joint contact loads, such as VVCM, that account for 

muscle forces gives a better understanding of joint mechanics and overall musculoskeletal 

function as this analysis includes muscle forces which change following gait modification [18, 

19]. VVCM, determined with OpenSim’s JRA [10], is an internal knee joint contact moment 

directly related to unbalanced loading between the medial and lateral compartments resulting 

from a higher order method than ID which includes muscle forces when determining joint 

contact loads. Importantly, because VVCM directly impacts medial knee OA, reducing this joint 

contact load should be of highest priority in design gait modification strategies for treating knee 

OA. 

Though numerous studies have investigated various gait modifications, few focus on 

optimizing these gait patterns in order to minimize joint loads. Optimizing gait modification 

strategies allows for more efficient treatment of knee OA, reducing symptoms and delaying 

disease progression by mitigating harmful joint loads. Optimization methods can be used to 

determine a feasible combination of model parameters, such as significant features of gait, and 

produce natural gait patterns that minimize joint loading. Full-body models and simulations with 

optimization computational methods have previously been used to identify relationships between 

whole-body kinematics and peak knee moments during walking using OpenSim (simtk.org, 

Stanford, Ca)  musculoskeletal modeling software [23]. Optimization of human movement is 

highly complex and involves high dimensionality with 10 or more design variables, making these 

large-scale problems with high computational expense of iterative evaluation of the cost function 

and constraints [138]. Gradient-based optimization methods were the first to be parallelized for 

human movement [139-141] and have been widely used in large-scale problems investigating 

human movement [23, 139, 140, 142-146]. Creating testable, optimized gait modification 

patterns allows researchers and experimentalists to use this information to test new patients in the 

future with more immediate benefits to those patients.  
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High computational expense can be a limiting factor in optimization problems; however, 

response surface optimization provides a methodology to address this limitation [147]. Response 

surface optimization is a rapid evaluation approach that has successfully been used in many other 

studies to eradicate computational bottlenecks. These surfaces are multidimensional surfaces fit 

to outputs of interest, such as VVCM, predicted by a model or measured experimentally. The 

coefficients of the mathematical form of the response surface are determined to provide the best 

fit between the output  of interest as a function of desired design variables, such as significant 

features of gait, and the surface approximation acts as a surrogate for engineering analyses when 

optimizations are performed [147]. Importantly, with highly dimensional gait data, response 

surfaces provide a rapid evaluation method for optimizing with many design variables, allowing 

optimal gait modification patterns to minimize joint loading to be developed with lower 

computational expense.  

This study determined testable gait modification strategies to minimize joint contact 

loads, specifically minimizing VVCM. We used surrogate response surfaces based on significant 

features of gait and a gradient-based optimization to determine an optimal gait modification 

strategy to minimize VVCM for patients with medial knee OA. Identifying unique gait patterns 

to minimize knee joint loads associated with the progression of OA contributes to our 

understanding of gait modification and provides insights needed to improve gait modification 

programs to provide optimal benefits to patients. 

5.1.2 Methods 

Three hundred subject-specific, muscle-actuated dynamic simulations were created to 

reproduce the gait dynamics during normal and toe-in gait trials of 10 subjects with radiographic 

evidence of medial compartment knee OA. The results of analyzing these simulations were used 

to construct surrogate response surfaces reflecting the subjects’ gait analysis data that were used 

to create testable, optimized gait modification strategies. 

Experimental Data Collection 

The experimental gait analysis data were collected from 10 subjects (Appendix, Table 4) 

with symptomatic, medial-compartment knee OA [27]. To be selected, subjects were evaluated 

with both inclusion and exclusion criteria (see Shull 2013b for more experimental data collection 

details). To develop a surrogate-based response surface reflecting the gait analysis data, 
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experimental gait analysis data were analyzed for normal gait (session prior to toe-in gait 

training), post-training toe-in gait (session following the 6-week training regimen), and follow-

up toe-in gait (session 1 month after the 6-week training regimen ended). The toe-in gait 

modification, a 7° decrease in the foot progression angle, reduced the first peak KAM by 20%, 

and reduced symptomatic knee pain by 2 points on a visual-analog scale from 0 to 10, on average 

[28]. All subjects gave informed, written consent for collection and analysis of their gait data 

prior to participating, and the study was preapproved by the institutional review board. 

Musculoskeletal Models and Simulations 

A generic, three-dimensional, lower-limb musculoskeletal model consisting of 12 degrees 

of freedom and 43 muscle-tendon actuators was created by modifying the Gait2392 model in 

OpenSim to match experimental data of the ipsilateral limb and pelvis [77]. The contralateral 

lower extremity, head, upper extremities, and torso were removed and replaced by external, or 

residual, forces and torques acting on the pelvis. The pelvis position and orientation was defined 

relative to the ground with 6 degrees of freedom, the hip as a ball-and-socket joint, the knee as a 

planar joint with tibiofemoral and patellofemoral translational constraints as a function of knee 

flexion [78], and the ankle and subtalar joints as revolute joints [79]. All body segment inertial 

parameters were derived from Anderson and Pandy (1999) [48]. The muscle-tendon actuators 

were modeled as Hill-type muscles in series with a tendon based on musculotendon parameters 

[80]. 

Thirty subject-specific muscle-actuated dynamic simulations (10 consecutive normal gait 

steps from the end of the trial before toe-in gait training, 10 consecutive post-training toe-in gait 

steps from the end of the trial after the 6-week training regimen, and 10 consecutive follow-up 

toe-in gait steps from the end of the retention trial 1 month following the end of training) were 

created for each subject during the stance phase of gait. First, the generic musculoskeletal model 

was scaled to represent the experimentally measured size of each subject. Second, IK generated 

values of model’s generalized coordinates that best matched (RMS marker error < 2 cm) 

experimentally measured kinematics. Third, SO [77] determined individual muscle activations 

and resulting muscle forces that produced the net joint moments consistent with the 

experimentally measured kinematics and GRFs. Finally, JRA in OpenSim [10] estimated contact 

loads to determine changes in knee joint contact loads (i.e., forces and moments) between gait 

conditions. This analysis calculates joint contact forces and moments transferred between 
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consecutive bodies resulting from all motions and forces acting on the model, including muscle-

tendon actuators, using multibody dynamics. Because muscle forces or internal joint contact 

loads are not required to solve the equations of motion of the multibody system, JRA carries out 

an important, additional step incorporating muscle forces along with joint kinematics and GRFs 

to determine the resultant joint contact loads [121].  

The outputs from these OpenSim analyses were used as inputs for feature selection to 

determine the most significant features of gait with the greatest potential to reduce VVCM. 

Subjects were grouped subjects based on the amount of change in their VVCM from normal gait 

(baseline) to toe-in gait during two different sessions (post-training and follow-up) in order to 

determine which features of toe-in gait have the greatest potential to decrease VVCM. The 

subjects were grouped separately for changes at post-training and follow-up because some 

subjects saw a further decrease in VVCM at follow-up as compared to post-training. 

Selecting Significant Features of Gait 

 A supervised process trained a model to predict desired results using a forward sequential 

feature selection (fSFS) algorithm in a wrapper fashion on all simulation results for all subjects 

with 10-fold cross validation [135] and pseudo-quadratic analysis (pQDA). The pQDA was used 

to allow covariance matrices to vary among classes by inverting the covariance matrix using the 

pseudo inverse. 

The fSFS algorithm compared 96 total features from our OpenSim simulations. Because 

we are interested in the features of gait with the greatest potential to reduce joint loads, feature 

selection was based on the reduction in VVCM following toe-in gait compared to normal gait 

using the subject groupings. The objective function, the misclassification error (MCE) found 

during the cross validation, of the fSFS was minimized over all possible feature subsets. We used 

a forward search to sequentially add features from the simulation data while evaluating the MCE. 

The prediction performance of feature subsets identified during this supervised learning 

process was evaluated by dividing the simulation input data into training and test data sets based 

on 10-fold cross validation [135]. The 10-fold cross-validation separated the input data into 10 

equal-sized data sets or folds and progressively used 9 sets for training and the remaining set for 

testing and calculation of the MCE. fSFS continued until local minimum MCE was found, and 

then repeated the process until all observations were used for both training and validation or 
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testing. Importantly, each observation is only used once as a validation or test set. In the end, a 

final average of each repetition determines the subset of features selected as target outputs. 

Surrogate Response Surfaces 

To determine the optimal gait modification strategy to minimize joint contact loads, we 

created surrogate models of joint loads as a function of significant features for each percent of 

stance. These surrogate models were based on a multivariable polynomial regression fit, 

characterizing the gait-load relationships of modified gait. First, VVCM was fit as a 

multidimensional quadratic function of the selected significant features of gait for each percent 

of stance (0-100%). The coefficients of the approximating function for the response surface were 

determined using data from the musculoskeletal simulations of the experimentally measured gait 

analysis. The approximate functions of significant features were fit to match joint load data using 

regression. We constructed a quadratic polynomial response surface, of the form 

 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥12 + 𝛽4𝑥22 + 𝛽5𝑥1𝑥2 + ⋯+ 𝛽𝑖𝑥𝑛 + 𝛽𝑖𝑥𝑛2 + 𝛽𝑖𝑥𝑛−1𝑥𝑛    (1) 

 

where y is the optimal VVCM, βi (i=0,...,153) are the coefficients identified to fit simulation data, and 

xn (n =1,...,16) are the design variables or significant features of gait determined from the 

musculoskeletal simulations of toe-in gait.  

Each subject was represented on the surrogate response surface as cluster of points 

representing each the 10 measured steps from each gait analysis trial at each point during stance (10 

consecutive normal gait steps from the end of the trial before toe-in gait training, 10 consecutive 

post-training toe-in gait steps from the end of the trial after the 6-week training regimen, and 10 

consecutive follow-up toe-in gait steps from the end of the retention trial 1 month following the 

end of training). As the subjects move through stance from 0-100%, the surface changes, as does the 

global minimum, to represent the different kinematic changes made during gait. The accuracy of the 

surrogate response surfaces was measured using the errors between the polynomial surfaces and the 

gait analysis data used to construct them. The quadratic degree of the polynomial surface was 

selected due to a good fit and high coefficient of determination (R2) between the simulation gait data 

and response surface. 
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Gradient-based Optimization to Minimize Knee Joint Loads 

To create a testable, optimal gait modification strategy to minimize harmful joint contact 

loads, a cost function was created from the surrogate response surface of the gait-load 

relationships. This function represented VVCM with respect to the design variables or the 

selected significant features of gait. To obtain the global minimum, 1,000 nonlinear 

optimizations were performed for each percent of stance (0-100%) using a gradient-based 

optimizer function, fmincon, in the Matlab Optimization Toolbox (Matlab version 2014a, The 

MathWorks Inc., Natick, Ma) [148]. The optimizer iteratively searched the quadratic response 

surface cost function to determine the minimum VVCM at each percent of stance by varying the 

different significant features of gait. Finally, the cost function results from each of the 1,000 

optimizations were compared to find the global minimum of the group for each percent of stance 

from 0% (heel-strike) to 100% (toe-off). 

To ensure the optimal values of the significant features of gait were physically attainable 

and represented a human gait pattern, lower and upper bounds were set for each of the features of 

gait from the simulated gait data. Initially, for 0% stance, the bounds were set to be between the 

mean value plus or minus one standard deviation of each feature from the subjects’ simulation 

data. This allowed the optimizer to determine a starting point within the natural bounds of the 

gait data. For 1-100% stance, the bounds were set based on the slopes of the gait data significant 

features. Because there is a tradeoff between a minimized output and the smoothness of the 

design variable curves through stance, we systematically increased the amount each lower and 

upper bound was allowed to vary by plus or minus 10% of the natural slope of the gait data. This 

was done until the minimized VVCM was equal to or less than the mean VVCM of the subjects’ 

gait data to ensure the results reflected optimized features that minimized VVCM for the subjects 

tested. The features of gait were allowed to vary by plus or minus 40% of the natural slope of the 

gait data, ensuring the resulting optimized gait minimized VVCM and was natural and 

comfortable to be incorporated into daily living for patients with knee OA. Allowing each 

feature to vary based on the natural slope was done to ensure the resulting optimal values were 

physically attainable between each time step. For example, it would not be possible to switch 

from the maximum value to minimum value in one time step, thus these bounds ensure a 

physically reasonable change to prevent that issue. 
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5.1.3 Results 

Surrogate-based optimization determined a physically attainable optimal gait 

modification strategy to minimize VVCM for patients with medial knee OA based on 16 

significant features of gait including ground reactions (vertical reaction force), motion (pelvis 

list, rotation, tilt, height, and mediolateral position, hip flexion, adduction, and rotation), joint 

moments (KAM), muscle force estimates (biceps femoris short head, gluteus maximus anterior, 

and gluteus maximus middle), and joint contact loads (hip compression and anterior shear force, 

and metatarsophalangeal flexion-extension contact moment). Of these 16 features, the top 3, or 

those features the fSFS algorithm was most sensitive to in reducing VVCM, were hip rotation, 

KAM, and pelvis list. While a surface with all 16 design variables cannot be visualized, we 

constructed multiple surfaces with the top 3 features of gait, hip rotation, KAM, and pelvis list, to 

visualize the fit between a surface approximation and gait data (Appendix, Figure 15). 

The quadratic surrogate response surface had a high correlation fit to the data from the 

significant features of gait (R2=0.99), allowing for an extremely accurate representation of the 

simulated gait data during the optimization. The VVCM was minimized in comparison to the 

mean and standard deviation of the subject gait data (Appendix, Figure 16). The results of each 

feature of gait from the optimizations were plotted to show the optimal output of each selected 

feature over full stance in comparison to the mean and standard deviation of the subjects’ data 

resulting from our simulations (Appendix, Figure 17). The optimized results indicated many 

kinematic changes to minimize VVCM including an increase in internal hip rotation to decrease 

the foot progression angle, pelvis rotation to rotate the ipsilateral limb forward, and pelvis height 

to stand taller. The results also show a decrease is necessary in pelvis list and pelvis tilt, or 

moving toward the contralateral limb, pelvis mediolateral position, or moving the pelvis more 

towards the midline, hip flexion, or lengthening the leg to stand taller, and hip adduction, or a 

wider stance width. 

5.1.4 Discussion 

 Because knee loading is a major contributor to the progression of knee OA, reducing this 

loading is a key factor in designing efficient treatment plans. Gait modification has been 

proposed as one such treatment method to mitigate harmful joint loads, however; the most 

efficient methods to minimize internal joint loading are not well understood. Through the use of 
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surrogate-based optimization, we developed testable optimized gait modification strategies to 

minimize harmful internal joint loads in patients with knee OA.  

 This study optimized outputs of 16 significant features of gait with potential to reduce 

VVCM in order to minimize this joint contact load for patients with medial knee OA. As 

expected, the optimized gait pattern utilized a combination of previously studied gait 

modification strategies, making whole body kinematic and kinetic changes to minimize VVCM. 

Each of the identified significant features of toe-in gait are associated with a decrease in knee 

joint contact loads and the optimized outputs highlight the key changes to be made during gait 

modification to ensure the most effectiveness in treating knee OA, which supports the use of 

clinical motion analysis and musculoskeletal simulation to better understand gait modification as 

an early intervention treatment strategy for patients with knee OA. These results highlight the 

major kinematic changes being made at the hip and pelvis in order to minimize contact loading at 

the knee. Future gait modification studies should consider and monitor these kinematic changes 

during gait retraining for individuals with medial knee OA, training subjects to adopt this 

optimized gait pattern to realize the most benefits of gait modification. 

 There were a few limitations in our current study that should be taken into consideration 

when evaluating our results. First, the muscle forces were estimated using SO rather than a 

dynamic optimization due to its low computational expense and ready availability in OpenSim to 

create a large amount of simulations (300 total for 10 subjects with 30 simulations each). 

However, SO produces results that are nearly equivalent to dynamic optimization for estimating 

in vivo quantities such as joint contact loads and muscle forces during gait [34]. Also, VVCM is 

an in silico estimate for subjects with knee OA resulting from JRA in OpenSim. Higher order 

analyses can directly determine actual joint contact loads and muscle forces through a direct in 

vivo measurement from an instrumented knee implant and EMG, though, EMG was not available 

for this subject group and in vivo measurements are not available for subjects with natural knees 

with OA before undergoing a total joint replacement. Therefore, the simulated muscle forces and 

joint loads are estimated, with good reason, using the modeling and simulation methods 

described earlier and should not impact the conclusions drawn in this study. 

 Second, the results of this study reflect optimized features of gait that minimize VVCM 

based on experimentally measured toe-in gait data. Because the data were collected with subjects 

walking with a decreased foot progression angle, these results should be considered in relation to 



 

57 
 

this specific gait modification strategy. However, our results complement a previous study which 

predicted an optimized gait with a “medial-thrust” method, with decreased pelvis rotation, and 

slightly decreased pelvis tilt for one subject with knee OA [23]. With the addition of numerous 

subjects with knee OA, this study adds to a body of knowledge suggesting that kinematic 

changes at the pelvis may be the most effective way to decrease knee loading in individuals with 

knee OA. Also, our optimized result for hip rotation, having more internal rotation in early 

stance and an external rotation in late stance support previously findings that while toe-in gait 

reduces the first peak KAM [27, 28], toe-out reduces the second peak [91, 111, 149, 150]. 

Additionally, many previous studies have investigated different modification strategies reduce 

the first peak KAM similar to toe-in gait [27, 28], including slowed walking speed, decreased 

stride length, increased medial-lateral trunk sway, and lateral heel wedges [15, 23, 24], and these 

modifications subsequently reduce pain associated with knee OA and slow disease progression 

[15, 22]. However, the significant features of toe-in gait used in this study were selected to 

achieve the same ultimate goal of reducing loading in the medial knee joint compartment and, 

thus, would likely be the same or similar to significant features of other gait modification 

strategies to reduce joint loads. One important reason to further study toe-in gait, though, is that 

many modification studies find that training subjects to adopt a gait pattern with increased hip 

adduction and internal rotation as well as using a medial thrust gait, or medializing the knee 

while maintaining a constant foot progression angle, can significantly reduce KAM [23, 25], this 

can also increase knee flexion which may increase overall knee contact force and counteract the 

potential benefits of a reduced KAM [26]. Toe-in gait, however, does not constrain the hip 

angles or foot progression angle and may be a more natural modification strategy [113] to use for 

creating optimal gait modification patterns to minimize harmful joint loads for patients with knee 

OA. 

 Additionally, an assumption in our computational methodology was that the selected cost 

function coefficients and optimized results were representative of the gait data of this specific 

subject group. The bounds for each feature of gait varied during the optimization were set to be 

within the natural slope of the gait data for only the subjects tested in this study. With a different 

subject group, or with additional subjects, the slopes and bounds would be different and result in 

different optimized outputs. Additionally, there are different filtering or optimization penalty 

methods that would changes the bounds and result in different values for the features of gait. 
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However, we used the subjects’ own gait data to create the bounds in this study to ensure the 

optimized results to reflect a more natural gait designed specifically for these subjects. With 

these results, experimentalists can now tailor gait modification studies to subjects with knee OA 

and design more efficient gait modification strategies. With more studies in the future, more data 

can be added to the surrogate response surface, and the optimization can be updated and refined. 

These results highlight the potential of simulation-based medicine to make an impact in patient 

lives, improving outcomes and reducing costs of healthcare with tailor-made treatment options. 

 The results of this study highlight the key features to be considered in designing subject-

specific gait modifications to improve effectiveness of this method as an early intervention 

treatment for knee OA. Additionally, these results highlight the need for further research to 

develop personalized gait modifications to best treat patients with knee OA. Many studies focus 

on using gait modification for treating early-stage knee OA, but few have investigated optimized 

gait patterns using features of the modification with the most potential to positively impact the 

joint contact loads and provide the most benefits for subjects with knee OA. Using modeling and 

simulation to develop optimized gait modification to be used as a treatment for knee OA can 

greatly improve patient care and reduce healthcare costs as well [10]. Finally, our results show 

the potential of gait modification for early treatment of knee OA and this work can be 

implemented into future studies to test and improve this modification for optimal results and 

benefits to patients with knee OA. 
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CHAPTER SIX: FINAL CONCLUSIONS AND 

RECOMMENDATIONS 
 

Knee OA is a significant global problem with no effective treatments available. Slowing the 

progression of disability for these patients will have a large impact across the globe. Completing this 

research has allowed for principles that govern relationships between muscles contributions and 

purposeful movement like gait modification to be uncovered. This work also lays a foundation for 

future studies to further improve knee OA treatment. Combining experiments and simulation-based 

approaches leads to a better understanding of movement modification and treatment plans for 

patients with knee OA in the future. Patient-specific models and simulations created in this 

dissertation will help to realize the potential of simulation-based medicine in identifying new 

treatments and lay a framework for future gait modification studies. The described research activities 

fully enabled scientific tools and simulations to investigate gait modifications that minimize patient-

specific joint loads to study gait rehabilitation for patients with knee OA. The specific benefits of this 

research include the utility of simulation-based medicine to discover new rehabilitation strategies and 

facilitate patient-specific treatments reducing pain and physical disability to maintain independence 

and a good quality of life. 

6.1 Significance of Research 

 Effective early intervention, non-invasive treatment strategies have potential to 

drastically improve the quality of life for patients with knee OA and prolong the need for 

invasive interventions such as a high tibial osteotomy or total joint replacement. However, 

improving early treatment interventions, such as gait modification, is challenging because the 

cause-and-effect relationships between muscle forces and joint loading with respect to gait 

modification and knee OA are not well understood. Dynamic simulations, as used in this 

research, provide the framework needed to determine, study, and understand the role of muscle 

forces and joint loads before and after gait modification to clarify this relationship. Utilizing 

simulations helps highlight the potential of gait modification as an early intervention treatment 

strategy by identifying how gait modification affects muscle forces and joint loads to determine 

optimal gait patterns to minimize harmful joint loading.  
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 Linking the detailed knowledge of the neuromusculoskeletal system to fully understand 

both normal and disordered movement is a major challenge in biomechanics research. The 

models, computational tools, and optimal gait patterns developed in this research have a wide 

variety of applications to addressing the many questions in biomechanics problems. While many 

studies have investigated gait modification strategies in connection with the KAM, few have 

investigated the impact of gait modification on internal knee joint contact loads and how to 

minimize these loads for optimal effectiveness in treating knee OA symptoms. With the new 

understanding of how to minimize joint loading and the development of a novel, automated 

scaling algorithm, this research can greatly impact future studies investigating all different types 

of biomechanical problems. We anticipate the insights gained from this research will provide 

new guidelines to creating, testing, and study new gait modifications for treating knee OA or 

other musculoskeletal disorders. 

This work developed methodologies for interpreting how gait modification impacts the 

whole-body kinematics and kinetics for patients with knee OA, developed a novel scaling 

algorithm, and provided new testable guidelines for future gait modification studies. The 

simulations developed used freely available musculoskeletal modeling and simulation software 

with many user extensible capabilities that allows these results to be shared with other 

biomechanical researchers across the globe. To date, there has been 163,000 downloads of the 

many models, simulations, and software from the project’s website with over 27,000 active users 

[151]. This research adds to this community and further highlights the need for additional studies 

of the whole-body biomechanics of gait modification in patients with knee OA. 

6.2 Research Innovation 

Currently, there is a gap between the experimental approaches used by physicians, physical 

therapists, and rehabilitation scientists and the computer simulation approaches used by engineers, 

mathematicians, and computer scientists. Movement science has long been driven by observations 

alone, but many key variables to understanding human movement can not be observed [10]. 

However, musculoskeletal modeling and simulation allows for these variables to be estimated. The 

reaserch detailed in this dissertation combines these different approaches and forms a working 

relationship that allows each field to benefit from the strengths of others. 
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Experimental approaches have contributed a great detail of knowledge to our understanding 

of biomechanics and human movement, but these advances are inherently limited in nature. Many 

important variables, such as muscle forces and joint loads, are difficult to measure, and in the case of 

patients currently suffering from a musculoskeletal disorder, impossible to measure without invasive 

measures. Without these variables, the detailed cause-and-effect relationships between muscle forces 

and joint biomechanics to purposeful movement has limited the progress of this type of research. 

Because muscles can accelerate joints they do not cross and body segments they are not attached to, 

it is extremely difficult to measure the full effect of muscles during movement. Additionally, without 

an instrumented implant, directly measuring joint loading is not possible. In order to determine these 

muscle forces and joint loads during gait in patients with knee OA, a novel approach was required. 

This approach was driven by the use of a unique set of tools found in musculoskeletal modeling to 

achieve this task. 

The use of these models and simulations has considerable potential to improve patient 

care and reduce the high healthcare costs of treating movement disorders. Muscle-actuated 

dynamic modeling and simulation provides the necessary scientific framework needed to 

complement experimental approaches to estimate and understand those key variables, identify 

the cause-and-effect relationships and predict outcomes [9, 10]. In the research detailed in this 

dissertation, the use of muscle-actuated, dynamic models and simulations helped to bridge the 

gap between experimental and computer approaches to further our understanding of human 

movement. 

This work advanced basic knowledge and understanding of human movement by 

combining experimental data and observation with computer models and simulations. A major 

benefit to this work is the use of OpenSim, freely available open source software. The direct 

benefits to patients suffering from musculoskeletal diseases and disorders can be accelerated 

with these results being readily available and shared throughout the biomechanics research 

community with the use of this software.  

6.3 Fundamental Contributions 

 The main objective of this research was to uncover the muscle forces and joint loads 

associated with gait modification and the specific features of gait with the greatest potential to reduce 

joint loads to design optimal gait modification patterns that minmize joint loading. The goal of this 
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research was to maximize the potential of a gait modification by investigating subject-specific gait 

modifications to minimize joint loads and improve overall joint function for treating patients with 

knee OA. The research presented in this dissertation was able to fully accomplish this goal and 

complete these objectives. 

 SO and JRA techniques have both been widely used to previously study movement 

biomechanics and understand muscle forces and joint loading during gait. However, their use in this 

work was the first of its kind to apply these tools to understand the effectiveness of gait modification 

and design optimal gait patterns. Developing subject-specific gait modification for many subjects 

with knee OA allowed this research to be tailored to directly benefit this large global demographic 

and get to the root of the resarch questions being asked. Because the patients in this study had medial 

compartment knee OA, the most common form of knee OA, this study focused on understanding 

how gait modification can improve symptoms in this area of the knee joint. However, there is no 

model that fully represents the knee with the medial and lateral compartments. While some such 

knee models are being developed [152], currently the best option is an estimation using the direction 

of the internal knee joint contact loads using JRA as done in this study. The use of estimated loading 

is a legitimate limitation to this study and highlights the need for the develpoment of more complex 

and advanced models in the musculoskeletal software to more accurately represent human anatomy 

and physiology. As more studies are done highlighitng the differences between medial and lateral 

knee joint loadings, more advanced models will be developed and incorporated into modeling and 

simulation software for wide use and applications. Furthermore, the implementation of these tools to 

understand gait modification for treating knee OA is an important step in knee OA research. The 

results show that ignoring muscle force modifications, by only investigating the KAM, is a serious 

limitation in studies of this type. We found the more approriate representation of knee loading is 

determined with JRA that incorporates the muscle forces when determing joint loads, because 

muscle forces are different after gait modification [19]. Specifically for patients with medial knee 

OA, the VVCM proved to be an accurate indicator of joint loading at the site of the disease, as this 

load directly relates to the unblanced forces experienced in the medial and lateral compartments. 

Thus, reducing this load should be a key factor in designing gait modifications for treating medial 

knee OA. 

 Machine learning techniques used in this research draw from many different fields to detect 

the significant features of gait with the greatest potential to reduce harmful joint loading. The 
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techniques used in this study uncovered patterns within the biomechanical data. Forward sequential 

feature selection (fSFS) with pseudo-quadratic discriminant analysis (pQDA)  and 10 fold cross 

validation analyses were used to identify the features of gait, including GRFs, IK angles, ID 

moments, SO muscle forces, and JRA contact loads, with the greatest potential to reduce harmful 

joint loads. Sixteen out of 96 features were found to have a significant impact in reducing joint 

loading in patients with medial knee OA. Interestingly, these selected features were focused more 

around the hip and ankle joint rather than the knee itself where the patients have OA. The 

significance of finding these features is that this information can be used to improve gait modifcation 

effectiveness for treating knee OA. In this study, these features were used to fit a surrogate response 

surface to use for a gradient-based optimization to develop optimal gait modification strategies for 

minimizing harmful joint loading. By varying the selected significant features of gait to determine 

the optimial gait pattern with minimal joint loading throughout stance, the benefits of gait 

modification can be maximized. 

 The key contributions of this work include the creation and use of subject-specific 

musculoskeletal models and simulations to assess the individual muscle forces and joint loadings 

during gait modification in patients with knee OA. Musculoskeletal models and computational tools 

are crucial  to biomechanical research because they allow researchers to fully evaluate the 

relationship between joint movement biomechanics and muscle function. This work developed 

unique methodologies for examining the potential of gait modification to serve as an early 

intervention, non-invasive treatment for knee OA by developing testable, optimal gait patterns to 

minimize joint loading. With these optimal gait modification patterns, experimentalists can study 

patients with these modifcations to see how these patterns impact their disease. It has been suggested 

that gait modification can delay the progression of the knee OA, so developing the most effective 

methods is necessary to realize the potential of gait modification. 

6.4 Summary 

 All three studies presented in this dissertation found the importance of understanding joint 

loading during gait modification in patients with knee OA. Millions of people currently suffer from 

knee OA across the globe, with numbers expected to continue to rise in coming years. Gait 

modification, as studied in this work, has shown promise to serve as an early, non-invasive treatment 

for alleviating symptoms of knee OA and delaying progression of the disease. Gait modification 
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paradigms typically focus on modifying kinematics, though the underlying muscle force 

modification responsible for the kinematic changes and the corresponding joint loads have largely 

remained unknown. This work sought to maximize the potential of gait modification to treat knee 

OA by investigating toe-in gait modification and developing an optimal gait pattern based on 

findings. 

The muscle force analysis found that subjects adopt unique muscle for activation patterns 

while walking with the same desired gait modification, toe-in gait. Even though subjects adopted 

unique muscle forces to achieve toe-in gait modification, the subject group was able to uniformly 

reduce the VVCM. From these results, it was evident that subjects are able to subconsciously adapt 

their gait in such a way to minimize pain from OA and improve overall joint functionality. This 

result highlighted the need to determine the specific whole-body kinematics, or features of gait, 

subjects were altering during gait in order to reduce the VVCM and see the most benefits from toe-in 

gait modification. This study found that only 16 out of 96 total features were significant in reducing 

joint loading. With these selected features, optimal gait modification strategies were developed with 

the goal of minimizing harmful joint loads. These findings were preliminary in that they set a testable 

framework for future studies to investigate the optimal gait patterns developed with these significant 

features of gait that minimize harmful joint loading for patients with knee OA. In the end, this work 

was successful in investigating the complex relationship between joint biomechanics and muscle 

function in respect to gait modification treatment for knee OA. 

6.5 Glossary  

 The following terms are used throughout this dissertation. 
 
Acceleration The rate of change of velocity. Measure of the change in a 

body’s velocity. 

Adduction Movement where the limb moves toward the midline of the 
body 

Anterior Refers to the front of the body. 

Biceps femoris short head One of the lateral hamstring muscles. It functions to flex the 
knee and laterally rotate the leg when the knee is flexed. 

Center of mass The point about which a body’s mass is equally distributed. 
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Cross-validation Model validation technique for assessing the results of a 
statistical analysis. This technique combines measures of fit to 
determine a more accurate estimate of a model’s prediction 
performance. 

Degree of freedom A single coordinate of relative motion between two bodies. 
Such a coordinate responds without constraint or imposed 
motion to externally applied forces or torques. For translational 
motion, a DOF is a linear coordinate along a single direction. 
For rotational motion, a DOF is an angular coordinate about a 
single, fixed axis. 

Distal The more distant of two or more objects with respect to the 
origin or point of reference. 

Dorsiflexion The motion that occurs when the toes move up toward the tibia. 

Extension Movement that moves two limbs farther apart, increasing the 
angle between them, which occurs in the sagittal plane. 

External Rotation Motion that rotates away from the midline of the body. 

Femur The bone that is located between the hip and knee joints. 

Flexion Movement that moves two limbs closer together, reducing the 
angle between them, which occurs in the sagittal plane. 

Force An action or effect applied to the body that tends to produce 
acceleration. 

Force plate  A transducer that is set in the floor to measure about some 
specified point, the force and torque applied by the foot to the 
ground. These devices provide measures of the three 
components of the resultant ground reaction force vector and 
the three components of the resultant torque vector. 

Forward dynamics Utilizes know known forces and torques to calculate motion. 

Free torque Torque acting on the foot as a result from a rotation of the foot 
when in contact with the ground. 

Frontal plane This is one of three planes used to divide and describe the body. 
This plane separates the anterior and posterior sections of the 
body. Knee adduction-abduction occurs in this plane. 
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Gait modification Altering gait to achieve reduced loading for patients with a 
musculoskeletal disease. These can be learned, where a patient 
is taught to walk differently, or assisted, with the use of an 
assistive object like a cane. 

Generalized coordinates A set of coordinates (or parameters) that uniquely describes the 
geometric position and orientation of a body or system of 
bodies. Any set of coordinates that are used to describe the 
motion of a physical system. 

Gluteus Maximus Muscle that acts on the posterior thigh. It functions to extend 
and laterally rotate the thigh at the hip. 

Gradient-based 
optimization 

An optimization algorithm that searches cost functions for a 
minimum value. 

Graphical user interface A visual way of interacting with a computer. This can be done 
using windows, icons, and menus. 

Ground reaction force The force exerted by the ground that is equal and opposite to a 
force applied to the ground by an impacting object (e.g. foot). 

Hip adduction-abduction Motion of the shank within the frontal plane as seen by an 
observer positioned along the anterior-posterior axis. 

Hip flexion-extension Motion of the shank within the sagittal plane as seen by an 
observer positioned along the medial-lateral axis. 

Hip internal-external 
rotation 

Motion of the medial-lateral axis of the shank within the 
transverse plane as viewed by an observer positioned along the 
longitudinal axis. 

Inferior Refers to the lower or bottom half of a structure or body. 

Injury Describes damage to the tissue caused by physical trauma. 

Internal rotation Motion that rotates toward the midline of the body. 

Inverse kinematics A process that derives joint angles from experimental marker 
data. 

Joint contact load Load (i.e. forces and moments) carried by the joint structure 
itself. 

Joint stability The ability of a joint to resist dislocation and maintain an 
appropriate functional position throughout its range of motion. 

Kinematics Describes movement without regard to the forces involved. 
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Kinetics Describes movement with regard to the forces involved. 

Knee adduction-abduction Motion of the long axis of the shank within the frontal plane as 
seen by an observer positioned along the anterior-posterior axis 
of the thigh. 

Knee adduction moment Motion of the long axis of the shank within the frontal plane as 
seen by an observer positioned along the anterior-posterior axis 
of the thigh. 

Knee flexion-extension Motion of the long axis of the shank within the sagittal plane as 
seen by an observer positioned along the medial-lateral axis of 
the thigh. 

Knee internal-external 
rotation 

Motion of the medial-lateral axis of the shank with respect to 
the medial-lateral axis of the thigh within the transverse plane 
as viewed by an observer positioned along the longitudinal axis 
of the shank. 

Knee Lateral Compartment Portion of the knee joint located away from the midline or 
center of the body 

Knee Medial Compartment Portion of the knee joint located along the midline or center of 
the body 

Lateral Located away from the midline or center of the body. 

Lateral gastrocnemius One of the muscles that makes up the calf muscle complex. It 
lies on the lateral side of the posterior portion of the tibia. It 
functions to plantarflex the foot and flex the knee. 

Machine Learning A type of artificial intelligence that allows a computer to learn 
without explicitly being programmed. Focuses on the 
development of a model that can change with new data. 

Medial Refers to the midline or center of the body. 

Medial thrust gait Gait modification that involves medializing the knee during the 
stance phase of gait. 

Mediolateral Refers to the direction from side to side or from the medial to 
lateral side of the body. 

Moment The effect of a force that tends to rotate or bend a body or 
segment. 

Newton Unit of force (N). 
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Osteoarthritis A type of arthritis that occurs when the articular cartilage at the 
end of bones wears away. 

Plantarflexion The motion that occurs when the toes away from the tibia. 

Pelvis List Motion of the pelvis downward (obliquity) to increase the 
effective length of the shank at toe-off and heel-strike. 

Pelvis Rotation Motion of the pelvis such that anterior rotation occurs at heel-
strike and posterior rotation occurs at toe-off to increase the 
effective length of the leg. 

Pelvis Tilt Motion of the pelvis in respect to the thigh. Motion can move 
anterior-posterior or mediolateral. 

Posterior Refers to the back plane of the body. 

Proximal The closer of two or more objects with respect to the origin or 
point of reference. 

Sagittal plane One of three planes used to divide and describe the body. This 
plane divides the right and left halves of the body. Knee 
flexion-extension occurs in this plane. 

Static Optimization An algorithm that uses optimization to estimate individual 
muscle forces during dynamic movements. 

Superior Refers to the upper or top half of a structure or body. 

Tibia One of two bones located between the knee and ankle joint. 

Transverse plane One of three planes used to divide and describe the body. This 
plane dives the superior and inferior halves of the body. Knee 
internal-external rotation occurs in this plane. 

Toe-in gait Gait modification that involves decreasing the foot progression 
angle, or turning toes slightly inward. 

Torque The effect of a force that tends to cause a rotation or twisting 
about an axis. 

Valgus Medial deviation of a joint (e.g., knock-kneed). 

Varus Lateral deviation of a joint (e.g., bowlegged). 

Velocity The rate of change of position of an object. 
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6.5 List of Acronyms  

 The following terms are used in acronym form throughout this dissertation. 
 
 
BW Bodyweight 

BW*HT Bodyweight times Height 

EMG Electromyography 

fSFS Forward Sequential Feature Selection 

GRF Ground Reaction Force 

GUI Graphical User Interface 

ID Inverse Dynamics 

IK Inverse Kinematics 

JRA Joint Reaction Analysis 

KAM Knee Adduction Moment 

OA Osteoarthritis 

pQDA Pseudo-Quadratic Discriminant Analysis 

SO Static Optimization 

VVCM Varus-Valgus Contact Moment 
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 Table 1: Subject demographics. 

 

    Mean (SD) 

   Gender 
 
F: 4, M: 6 

Age (year) 
 
60 (13) 

Height (cm) 
 
171 (9) 

Mass (kg) 
 
79 (20) 

BMI (kg/m2) 
 
26.6 (4.7) 

Kellgren & Lawrence grade 
 
II: 2, III: 6, IV: 1 

Foot Progression Angle (deg) 
      Normal Gait 
 
2.1 (4.0) 

    Toe-in Gait 
 
-5.1 (5.1)* 

Knee Adduction Moment (%BW*HT) 
      Normal Gait 
 
3.11 (1.40) 

    Toe-in Gait 
 
2.61 (1.47)* 

Visual Analog Pain Score 
      Normal Gait 
 
3.2 (2.30) 

    Toe-in Gait 
 
1.35 (0.88)* 

      
* Represents a significant difference compared to normal gait at the p<0.01 significance level. 
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Figure 7: A representative subject walking with (left) normal gait and (right) toe-in gait. The 

subject internally rotated the foot by 6° which reduced the first peak knee adduction moment by 

20%. 
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Figure 8: Averaged (top) foot progression angle and (bottom) knee adduction moment for all 

subjects for normal and toe-in gait. 
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Table 2: Percent change in mean muscle force between baseline and toe-in gait for all subjects. Though muscle forces changed within 
subjects, there were no muscle force modifications across all subjects. 
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Figure 9: Example muscle force profiles from a representative showing muscle force tradeoffs 
to perform toe-in gait. Soleus and gluteus medius forces decreased, while vastus lateralis and 
rectus femoris forces increased. Muscle forces are averaged over ten steps of stance and shading 
represents one standard deviation. Significant muscle force modifications were evidenced in 
individuals like this representative subject, though no consistent muscle force modifications 
emerged for the gait modification across all subjects. 
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Figure 10: Illustrations showing the differing orders of approximations made through analyses 
of joint kinetics for an example planar knee joint. The net external knee adduction moment 
(KAM) (a, blue curved arrows) about the joint center results from a traditional inverse dynamics 
analysis determining the net generalized forces responsible for the movement. Very importantly 
for our case, the net KAM is determined without regard for the effects of internal muscle forces, 
which may be different following gait modification. The varus-valgus contact moment (VVCM) 
(b, green curved arrows) about the joint center results from a joint reaction analysis, taking into 
account the same forces and moments used for inverse dynamics but also includes the internal 
muscle force estimates (b and c, red straight arrows). This contact moment is directly related to 
the unbalanced bone-on-bone forces experienced by the medial and lateral knee joint 
compartments. As illustrated in this example of the knee modeled as a revolute joint, the VVCM 
is necessary to carry loads of the joint structure maintaining the joint motion of the two-piece 
hinge rotating about a common pin (gray shaded). The bone and joint contact loads (c, black 
straight arrows) may be obtained from higher-order analyses or measurements with an 
instrumented knee implant. Ultimately, the net external KAM (a) is a rough first-order 
approximation and the VVCM (b) is a second-order approximation with additional details 
related to the muscle forces affecting joint contact loads (c). 
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Figure 11: All subjects showed, on average, (a) a reduction in the first peak external knee 
adduction moment located at 27% stance during the post-training session at the end of 6 weeks 
of training from normal gait (green, solid), (b) a 14.7% decrease (p<0.01) in the varus-valgus 
contact moment (VVCM), the load directly related to the unbalanced contact forces on the 
medial and lateral knee joint compartments during gait, at this same point in stance during the 
post-training session at the end of 6 weeks of training (red, dashed), and (c) a 16.7% decrease 
(p<0.01) in the VVCM at this same point in stance during the follow-up session 1-month after 
the end of 6 weeks of training (blue, dashed).  
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Figure 11: Continued. 
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Figure 11: Continued. 
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Table 3: Summary of knee joint contact load means and standard deviations (SD) for normal and 

toe-in gait at the location in stance of the first peak net external knee adduction moment (KAM). 

The most relevant second-order approximation to the actual medial and lateral contact forces 

associated with knee osteoarthritis (OA) is the positive varus-valgus contact moment (VVCM), 

responsible for unbalanced compression of the medial compartment of the knee joint with 

respect to the lateral compartment. At the post-training session, the VVCM significantly 

decreased (p<0.01) during toe-in gait, while all other knee joint contact loads showed no 

significant change (p>0.09). These results were retained at the follow-up session. The VCCM 

significantly decreased (p<0.01) during toe-in gait, while all other knee joint contact loads 

showed no significant change (p>0.06). 

               
Knee Joint Contact Loads Mean (SD) at First Peak KAM 

   Toe-in Gait 
Moments (%BW*HT)  Normal Gait Post-training Follow-up 

 Varus-Valgus Contact 3.52 (0.78) 3.01 (0.65)* 2.94 (0.69)* 

 Internal-External Rotation 0.309 (0.35) 0.307 (0.28) 0.425 (0.61) 

 Flexion-Extension 1.41 (0.25) 1.54 (0.23) 1.41 (0.25) 
Forces (%BW)     
 Anterior Shear 119 (14.2) 130 (13.5) 127 (13.6) 

 Superior Compression 256 (17.7) 260 (14.6) 259 (13.9) 

 Lateral Shear 4.71 (2.79) 4.33 (2.38) 4.11 (2.37) 
          
* Represents a significant difference compared to normal gait at the p<0.01 significance level. 
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Figure 12: Validation of varus-valgus contact moment (VVCM) using normal and medial thrust 
gait data collected from an instrumented knee implant (eKnee) available from the 4th Knee 
Grand Challenge competition. The (a) eKnee medial force measured from an instrumented knee 
decreases following medial thrust gait modification. Similarly, the (b) VVCM computed from 
joint reaction analysis follows this same trend, showing a decrease following medial thrust gait 
modification. 
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Figure 13: The correlation between the experimentally measured eKnee medial force and the 
model estimated varus-valgus contact moments (VVCM) for (a) normal gait and (b) medial 
thrust gait from 0-100% stance yields high coefficients of determination, R2= 0.934 and 
R2=0.942, respectively. This correlation shows the relationship between eKnee medial force and 
VVCM, such that the variation in VVCM is strongly related to the experimentally measured 
eKnee medial force before and after gait modification. 
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Table 4: Subject demographics for 10 subjects with medial compartment knee OA. Subjects 
were trained to walk with a 7° decrease in foot progression angle to achieve toe-in gait 
modification. With toe-in gait, subjects decreased knee adduction moment (KAM) by 20%, 
varus-valgus contact moment (VVCM) by 14.7% at post-training, VVCM by 16.7% at follow-
up, and improved their visual analog pain score. 
 
    
  Mean (SD) 

  Gender F: 4, M: 6 
Age (year) 60 (13) 
Height (cm) 171 (9) 
Mass (kg) 79 (20) 
BMI (kg/m2) 26.6 (4.7) 
Kellgren & Lawrence grade II: 2, III: 6, IV: 1 
Foot Progression Angle (deg) 

     Normal Gait 2.1 (4.0) 
    Toe-in Gait -5.1 (5.1)* 
Knee Adduction Moment (%BW*HT) 

     Normal Gait 3.11 (1.40) 
    Toe-in Gait 2.61 (1.47)* 
Varus-Valgus Contact Moment (%BW*HT) 

     Normal Gait 3.52 (0.78) 
    Post-Training Toe-in Gait 3.01 (0.65)* 
    Follow-up Toe-in Gait 2.94 (0.69)* 
Visual Analog Pain Score 

     Normal Gait 3.2 (2.30) 
    Toe-in Gait 1.35 (0.88)* 
    

  * Represents a significant difference compared to normal gait at the p<0.01 significance level.  
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Figure 14: Schematic showing the forward sequential feature selection process from beginning 
to end. First, OpenSim modeling and simulation determines the initial inputs (a) or the various 
features of gait. These inputs include ground reaction forces (GRF), inverse kinematics (IK), 
inverse dynamics moments (ID), static optimization muscle forces (SO), and joint reaction 
analysis joint contact loads (JRA). Second, subjects are grouped based on performance (b) 
following toe-in gait analysis. These groupings are based on the amount of change in the varus-
valgus contact moment (VVCM) following toe-in gait at both the post-training and follow-up 
sessions. Third, machine learning in Matlab (c) is used to carry out forward sequential feature 
selection to determine the significant features of gait with the potential to reduce joint loads 
during toe-in gait. To begin, the OpenSim input data is divided into testing and training groups 
using 10-fold cross validation. The data is separated into 10 folds, where 9 are used for training 
and 1 used for testing. Using the forward sequential feature selection (fSFS) algorithm, the 
training data is fit with a pseudo-quadratic discriminant analysis (pQDA) model to select 
features. Each possible subset of features is evaluated and compared before being validated with 
the testing data. The test data evaluates the final selected feature set. This will continue until a 
local minimum of the misclassification error (MCE) is found. The fSFS algorithm process 
repeats 10 times, going through each of the 10 cross validation folds until each observation is 
used for testing and training. Then a final average of the results of each fold repetition 
determines the final set of selected features. The final average contains the selected significant 
features of gait, or the target outputs (d). 
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Table 5: Summary of the grouping parameters used to create each group for comparing the effects of the number of groups on the 
feature selection process.  
 
 
 
              

Number of 
Groups 

Percent Decrease in VVCM 
Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 

 
      6 Increase 0-6.99% 7-13.99% 14-20.99% 21-27.99% 28% + 

5 < 7% 7-13.99% 14-20.99% 21-27.99% 28% +   
4 < 7% 7-13.99% 14-20.99% 21% +     
3 < 14% 14-20.99% 21% +       
2 < 14% 14% +         
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Table 6: Summary of average and standard deviation (SD) normalized values over stance of each selected significant feature of gait 
for all subject performance groupings at for toe-in gait at the post-training session. Forces were normalized by %BW and moments by 
%BW*HT. We used 10-fold cross-validation to estimate the ability of the regression model to make predictions for a new group with 
98.8% of features correctly classified on average across the 10 cross-validation folds (R2 = 0.97). The significant features included 
ground reactions (vertical reaction force), motion (pelvis list, rotation, tilt, height, and mediolateral position, hip flexion, adduction, 
and rotation), joint moments (knee adduction moment), muscle force estimates (biceps femoris short head, gluteus maximus anterior, 
and gluteus maximus middle), and joint contact loads (hip compression and anterior shear force, and metatarsophalangeal flexion-
extension contact moment). Group 1 (n=2), the worst group, included subjects with a slight increase in varus-valgus contact moment 
(VVCM). Group 2 (n=3) included subjects with a 0-6.99%, or well below average, decrease in VVCM. Group 3 (n=2) included 
subjects with a 7-13.99%, below average, decrease in VVCM. It is important to note that there were no subjects in group 4, or those 
subjects with a 14-20.99% (average) decrease in VVCM, at post-training, thus there are no results for this group. Group 5 (n=2) 
included subjects with a 21-27.99% (above average) decrease in VVCM. Group 6 (n=1), the best group, included subjects with a 28% 
or greater (well above average) decrease in VVCM. 
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Table 6: Continued. 
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Table 7: Summary of average and standard deviation (SD) normalized values over stance of each selected significant feature of gait 
for all subject performance groupings at for toe-in gait at the follow-up session with 98.8% of features correctly classified on average 
across the 10 cross-validation folds (R2 = 0.97). Forces were normalized by %BW and moments by %BW*HT. The significant 
features included ground reactions (vertical reaction force), motion (pelvis list, rotation, tilt, height, and mediolateral position, hip 
flexion, adduction, and rotation), joint moments (knee adduction moment), muscle force estimates (biceps femoris short head, gluteus 
maximus anterior, and gluteus maximus middle), and joint contact loads (hip compression and anterior shear force, and 
metatarsophalangeal flexion-extension contact moment). The baseline (normal gait) gait data has only one group for all subjects as 
this is the starting point for all subjects. The subject groupings for the follow-up (toe-in gait) data contain different subjects than the 
groupings for the post-training (toe-in gait, Table 2) data as some subjects improved to a new, better grouping at follow-up as 
compared to post-training. To improve to a better grouping, subjects saw a greater change in varus-valgus contact moment (VVCM) 
and moved to a different subject grouping based on the amount of change in VVCM, such that group 1 was the worst with a slight 
increase in VVCM and group 6 was the best with the most decrease in VVCM. Group 1 (n=3), the worst group, included subjects with 
a slight increase in VVCM. Group 2 (n=1) included subjects with a 0-6.99%, or well below average, decrease in VVCM. Group 3 
(n=1) included subjects with a 7-13.99%, below average, decrease in VVCM. Group 4 (n=2) included subjects with a 14-20.99% 
(average) decrease in VVCM. Group 5 (n=1) included subjects with a 21-27.99% (above average) decrease in VVCM. Group 6 (n=2), 
the best group, included subjects with a 28% or greater (well above average) decrease in VVCM. 
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Table 7: Continued. 
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Table 8: Summary of average and standard deviation (SD) normalized values over stance of each selected significant feature of gait 
for the top performing subjects at all gait sessions with 100% of features correctly classified on average across the 10 cross-validation 
folds (R2=0.98). Forces were normalized by %BW and moments by %BW*HT. The selected features from ground reaction force 
(GRF) readings were the mediolateral reaction force and ground free torque. The selected features from inverse kinematics (IK) 
include pelvis list, tilt, height, and mediolateral position, and hip adduction and rotation. The selected features from inverse dynamics 
(ID) include the joint moment, hip adduction moment. Finally, the selected features from joint contact load analysis (JRA) were the 
superior compression contact force at the hip joints and the knee flexion-extension contact moment. 
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Table 9: Comparison of the effects of varying the number of groups during feature selection, highlighting which of the selected 
features with 6 groups from this study also appear in 5, 4, 3, and 2 groups, respectively. 14 out of the 16 selected features (88%) with 
6 groups appear as significant features in two or more groupings, with the last two selected, metatarsophalangeal flexion-extension 
moment and gluteus maximus anterior force, being those that were not similar to any of the other groupings. This suggests that these 
last two features may not have a large impact on decreasing VVCM. Additionally, hip rotation was the top selected feature for 6, 5, 
and 4 groups, and was in the top 6 selected features for 3 and 2 groups, highlighting this feature to most significant for decreasing 
VVCM during toe-in gait. Finally, hip rotation, pelvis tilt, pelvis height, biceps femoris short head force, and hip adduction were 
significant features in all groupings, indicating these may be the most important features to be targeted in future gait retraining studies 
to decrease harmful joint loading in patients with medial knee OA. In the end, these results validate the use of 6 groups during feature 
selection in this study, as 88% of these selected features appeared in the other groupings as well. 
 

 
 
 
 
 
 
 

Hip 
Rotation*

Knee 
Adduction 
Moment

Pelvis 
List

Pelvis 
Tilt*

Pelvis 
Height*

Hip 
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Compression 
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Hip 
Flexion

Biceps 
Femoris 
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Head*

Pelvis 
Rotation

Pelvis 
Mediolateral 

Position 

Gluteus 
Maximus 
 Middle 

Hip 
Adduction*

Vertical 
Reaction 

Force 

Hip 
Anterior 
 Shear 
Force 

Metatarsophalangeal 
 Flexion-Extension 
Contact Moment

Gluteus 
Maximus 
 Anterior

6 • • • • • • • • • • • • • • • •
5 • • • • • • • • • • • •
4 • • • • • • • • • • •
3 • • • • • • • • • • •
2 • • • • • • • •

Selected Signficant Features of Gait in Order of Selection

Number of 
Groups

* Indicates this feature was significant in all groupings.



 

102 
 

 
Table 10: Comparison of the predictive power and percentage of similar selected features between 6 groups as used in this study and 
varied numbers of groups during feature selection. Predictive power decreases and the number of groups decreases, such that using 6, 
5, or 4 groups had 99% correct predictions across the 10 cross-validation folds, using 3 groups had 98% correct predictions, and using 
2 groups had 91% correct predictions. These results indicate that using fewer groupings may not be able to correctly classify the 
significant features as accurately and using more groups. Using more groupings helps highlight the smaller, unique differences 
between each subject during toe-in gait, utilizing more information about gait on a subject-specific basis to select features more 
efficiently, while using fewer groups yields more generalized results that may be significant on average but not on an individual basis. 
Importantly, using different numbers of groups yielded different sets of significant features. However, each of the groupings had many 
of the same selected features, for example 5 groups had 57% of the same features as using 6 groups, while 4, 3, and 2 groups had 34%, 
41%, and 53% respectively. These results validate the use of 6 groups in the same set of features appear to be significant, regardless of 
the number of groups used during feature selection. 
 
 
        

Number of 
Groups 

Percent Correct 
Predictions 

Number of Selected 
Features 

Percentage of Same 
Features 

    6 99% 16   
5 99% 21 57% 
4 99% 32 34% 
3 98% 27 41% 
2 91% 15 53% 
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Figure 15: Example surrogate response surfaces. While the approximate surface for the 
optimization in this study had 16 design variables, or features of gait, these surfaces are visual 
representations of how the simulated gait data fits with the surrogate response surface for two 
features at a time. The surfaces shown represent the response surface approximation for 
combinations of the top 3 selected significant features of gait including (a) hip rotation and knee 
adduction moment (R2=0.83), (b) hip rotation and pelvis list (R2=0.55), and (c) knee adduction 
moment and pelvis list (R2=0.78). To visualize the fit of the simulated gait data to the response 
surface, the gait data were plotted over the surface (pink, open circles). Because the response 
surface moves and changes through stance, these visuals represent only 1% of stance, 
specifically showing 27% of stance of the average location of the first peak knee adduction 
moment (KAM) for the subjects in this study. Note the fit of two features at 27% stance is 
different than the fit of all 16 features over full stance (0-100%) used for the surrogate-based 
optimization in this study and serves as a visual example of how a surface can be fit to gait data. 
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Figure 15: Continued. 
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Figure 16: By varying significant features of gait, the optimizer was able to minimize the varus-
valgus contact moment (VVCM) (blue, solid) in comparison to the mean and standard deviation 
of the subject data (red, dashed) for individuals with medial knee OA. The VVCM was 
minimized to be less than the mean of the subject data for most of the stance phase of gait. The 
few time steps where the VVCM was slightly larger than the mean were still within 1 standard 
deviation.  
 
 
 
 
 
 
 
 
 
 
 
 
 



 

106 
 

Figure 17: Target design variables (blue, solid) for the sixteen significant features of gait over 
stance as determined from a surrogate-based optimization compared to the mean and standard 
deviation of the subjects’ simulation data (red, dashed). The sixteen features include ground 
reactions (vertical reaction force), motion (pelvis list, rotation, tilt, height, and mediolateral 
position, hip flexion, adduction, and rotation), joint moments (knee adduction moment), muscle 
force estimates (biceps femoris short head, gluteus maximus anterior, and gluteus maximus 
middle), and joint contact loads (hip compression and anterior shear force, and 
metatarsophalangeal flexion-extension contact moment). The top 3 selected features were hip 
rotation, knee adduction moment, and pelvis list. These results serve as recommendations to 
minimize VVCM by incorporating the kinematic changes in future gait retraining studies. For 
example, hip rotation should be increased, or further rotate the ipsilateral limb internally, and 
pelvis list should be decreased to increase obliquity on the contralateral limb for minimized 
VVCM with toe-in gait. 
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Figure 16: Continued. 
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Figure 17: Continued. 
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