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Abstract

The development of model reduction techniques for physical systems modeled by partial

differential equations (PDEs) has been a very active research area. Large number of states

is needed to accurately capture the dynamics of such systems which makes them unsuitable

for control design. The order of the system must be reduced prior to control design. In

this dissertation, new methods that generalize the popular proper orthogonal decomposition

(POD) to nonlinear PDEs are investigated. In particular, cluster based POD algorithms

are developed and applied to the one and two dimensional Burgers equations that govern

a nonlinear convective flow. Each cluster contains relatively close in distance dynamic

behavior within itself, and considerably far with respect to other clusters. Three different

clustering schemes in time, space and space-time are proposed. A complete and detailed

approach for the Orthogonal Locality Preserving Projections (OLPP) modes computation

for the incompressible Navier-Stokes PDE that governs the dynamics of the NACA 0015

airfoil fluid flow is presented. Close snapshots in the full order model are forced to stay

close in the reduced order model by defining an optimization problem that preserves local

distances. Optimal boundary control laws are derived based on the proposed nonlinear

reduced order models, and applied to various distributed parameter systems including:

Nonlinear convection, temperature control in energy efficient buildings systems governed

by the heat equation, power and voltage control in large electromechanical oscillations in

the power grid governed by the wave equation, and flow separation control for fluid flows

governed by the Navier-Stokes equations.

v



Table of Contents

1 Introduction 1

2 Time, Space and Space-Time Hybrid Clustering POD 6

2.1 Proper Orthogonal Decomposition (POD) . . . . . . . . . . . . . . . . . . . 7

2.2 Generalization of the Proper Orthogonal Decomposition . . . . . . . . . . . 8

2.3 The Burgers’ Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Clustered POD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Time Snapshots Clustering (TSC) POD . . . . . . . . . . . . . . . . 20

2.4.2 Space Vector Clustering (SVC) POD . . . . . . . . . . . . . . . . . . 22

2.4.3 Space-Time Hybrid (STH) POD . . . . . . . . . . . . . . . . . . . . . 24

3 Nonlinear Control of the Reduced Order 1D Burgers’ Equation 29

3.1 Galerkin Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Solution to the Homogeneous Dirichlet Boundary Conditions System . . . . 34

3.3 Nonlinear Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Flow Separation Control for the NACA 0015 Airfoil Based on an OLLP

Reduced Order Model 42

4.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 POD Basis Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Orthogonal Locality Preserving Projection . . . . . . . . . . . . . . . . . . . 48

4.4 Galerkin Projection and Nonlinear Optimal Control . . . . . . . . . . . . . . 50

4.5 Flow Separation Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vi



5 Model Reduction and Control of Temperature in Energy Efficient Build-

ings 63

5.1 Finite Element Solution of the 3D Heat Equation Problem . . . . . . . . . . 65

5.2 Temperature Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Reduced Order Model Using POD . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Optimal Control for Wave oscillations in the Power Grid 74

6.1 The Continuum System Constant Voltage Swing PDE . . . . . . . . . . . . . 75

6.1.1 Optimal Control of the Constant Voltage Swing PDE Using Power as

The Control Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1.2 Optimal Control of the Constant Voltage Swing PDE Using Voltage

as The Control Input . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Space Dependent Voltage Magnitude Swing PDE . . . . . . . . . . . . . . . 85

7 Optimal Control of Droop Controlled Inverters in Islanded Microgrids 89

7.1 Microgrid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.2 The optimal control Problem formulation and existence of solution . . . . . . 94

7.3 Solution of the Optimal Control Problem . . . . . . . . . . . . . . . . . . . . 95

7.4 Simulation Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8 Conclusions 102

Bibliography 105

Vita 114

vii



List of Tables

2.1 Error norms at t = 30 for the 1D equation for different POD versions . . . . 26

7.1 Microgrid Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

viii



List of Figures

2.1 1D Full order solution at three different times . . . . . . . . . . . . . . . . . 18

2.2 2D Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 2D Full order solution at t=30 . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 TSC 4 Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 First 4 modes of TSC POD in 4 clusters . . . . . . . . . . . . . . . . . . . . 21

2.6 2D First four modes of TSC POD in cluster 1 . . . . . . . . . . . . . . . . . 22

2.7 SVC 4 clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 First 4 modes of SVC POD in 4 clusters . . . . . . . . . . . . . . . . . . . . 24

2.9 2D First four modes of SVC POD in cluster 1 . . . . . . . . . . . . . . . . . 25

2.10 STH 4 clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.11 1D Burgers equation model reduction. Dotted blacks are the full order models

and reds are the reduced ones using (starting from the top): Global, TSC,

SVC and STH POD, all at t=30 . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.12 2D Burgers equation model reduction using (starting from the top): Global,

TSC, SVC and STH POD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Full (solid) Vs Reduced (dashed) model with Re=100 . . . . . . . . . . . . . 33

3.2 Full (solid) Vs Reduced (dashed) model with Re=5000 . . . . . . . . . . . . 34

3.3 The two POD Basis functions for the highly nonlinear system . . . . . . . . 35

3.4 The spatial derivative of the two POD basis functions shown in Figure 3.3 . 35

3.5 Full (solid) Vs Reduced (dashed) for nontrivial boundary controls, Re=5000

with 5 states model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Full Vs 3 states reduced order nonlinear control . . . . . . . . . . . . . . . . 40

ix



3.7 Linear control, full (solid) Vs reduced (dashed) . . . . . . . . . . . . . . . . . 41

3.8 Nonlinear control, full (solid) Vs reduced (dashed) . . . . . . . . . . . . . . . 41

4.1 Model Reduction and Boundary Control Process Diagram . . . . . . . . . . 42

4.2 Domain and Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Problem geometry and mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Full order solution at t = 10, velocity magnitude . . . . . . . . . . . . . . . . 47

4.5 w POD modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6 v POD modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 w full order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.8 v full order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.9 Reduced w component: POD (top) and OLPP (bottom) . . . . . . . . . . . 57

4.10 Reduced v component: POD (top) and OLPP (bottom) . . . . . . . . . . . . 58

4.11 w velocity component at one location . . . . . . . . . . . . . . . . . . . . . . 58

4.12 v velocity component at one location . . . . . . . . . . . . . . . . . . . . . . 59

4.13 Control actuation location for the flow separation control problem . . . . . . 59

4.14 Flow separation with no control applied, snapshots at times t=0.1 (top left),

0.4, 0.6, 1, 2 and 3 seconds (bottom right) . . . . . . . . . . . . . . . . . . . 60

4.15 Flow separation controlled, snapshots at times t=0.1 (top left), 0.4, 0.6, 1, 2

and 3 seconds (bottom right) . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.16 Vorticity with suction, injection and no control applied at the boundary . . . 61

4.17 Effect of fluid injection on vorticity . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Room geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 The 3D heat equation with corresponding finite element mesh. Number of

mesh nodes = number of states = 18182 nodes. . . . . . . . . . . . . . . . . 67

5.3 Temperature distribution in F after 1 minute . . . . . . . . . . . . . . . . . 67

5.4 Temperature distribution in F after 20 minutes . . . . . . . . . . . . . . . . 68

5.5 Temperature distribution in F after 40 minutes . . . . . . . . . . . . . . . . 68

5.6 Temperature distribution in F after 60 minutes . . . . . . . . . . . . . . . . 69

5.7 Sensor Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

x



5.8 Step response for 2 desired set points 70 and 83 . . . . . . . . . . . . . . . . 70

5.9 Control input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.10 Full order model at t = 40 minutes . . . . . . . . . . . . . . . . . . . . . . . 71

5.11 Reduced order model at t = 40 minutes . . . . . . . . . . . . . . . . . . . . 72

5.12 Full order model at t = 60 minutes . . . . . . . . . . . . . . . . . . . . . . . 72

5.13 Reduced order model at t = 60 minutes . . . . . . . . . . . . . . . . . . . . 72

5.14 Step response for full and reduced order models . . . . . . . . . . . . . . . . 73

5.15 Controlled input signal for full order and reduced order controlled systems . 73

6.1 Power System Model [74] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Initial disturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Controlled System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Electromechanical wave propagation in the continuous 2D system . . . . . . 87

7.1 Microgrid basic elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 Penetration due to Solar Energy Generation in Home 1 . . . . . . . . . . . . 91

7.3 Penetration due to Solar Energy Generation in Home 2 . . . . . . . . . . . . 92

7.4 A Kuramoto oscillator network . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.5 A microgrid of 2 paralleled inverters and a load . . . . . . . . . . . . . . . . 98

7.6 Frequencies measured at inverter1 . . . . . . . . . . . . . . . . . . . . . . . . 99

7.7 Active Power generated from inverters 1 and 2 . . . . . . . . . . . . . . . . . 99

7.8 Angles for inverters 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.9 Frequencies measured at inverter1 . . . . . . . . . . . . . . . . . . . . . . . . 101

7.10 Active Power generated from inverters 1 and 2 . . . . . . . . . . . . . . . . . 101

xi



Chapter 1

Introduction

Model order reduction became an active research area in the last few decades as it is

computationally difficult to design control laws for systems described by partial differential

equations. Large number of states is needed to accurately capture the dynamics of such

systems which makes them unsuitable for control design [50]. Conventionally the order of

the system must be reduced before control law design can be done.

Many different model reduction approaches exist, but only few of them are optimal

in some sense. The popular balanced truncation based on singular value decompositions

is one of them. It is a main tool used in both ”reduce-then-design” and ”design-then-

reduce” approaches. The theory of balanced model reduction was initiated by B.C. Moore

for controllable, observable and exponentially stable linear systems in state space form [47].

In balanced truncation, the system is first transformed to a basis where the ”difficult

to reach” states are simultaneously ”difficult to observe. This is done by simultaneously

diagonalizing the reachability and the observability Gramians, which are solutions to the

reachability and the observability Lyapunov equations. The reduced model is obtained by

truncating these states. While this method preserves stability, it suffers two important

limitations; it is not optimal in any sense and it efficiently applies to linear systems

only. Some work has been done by [69] to extend balancing to nonlinear systems but the

limitation there is that the method requires solving the complicated nonlinear Hamilton

Jacobi equations.
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Proper Orthogonal Decomposition (POD), introduced in the context of fluid dynamics

by [42] and detailed by [26] is a model reduction technique that is efficient when used to

reduce models that approximate nonlinear infinite dimensional systems to lower order finite

dimensional systems, especially those who describe the dynamics of fluid flows. POD is a

popular model reduction technique used to alleviate the computational expense required for

very high dimensional systems [26]. The tools of POD have been used for some time as a

model order reduction technique to achieve faster simulations of complex high dimensional

systems. POD models of only a few dozen states have been shown to accurately capture the

system dynamics of the full order system model of thousands of states [15]. Model reduction

using POD is often conducted to extract a relevant set of basis vectors.

In POD the snapshot method is usually used to create an ensemble of solutions with

particular open loop control input data. [71] suggested the method of snapshots as a way of

determining the optimal basis vectors without explicitly calculating the kernel necessary for

POD.

The problem with POD is that it fails to capture the nonlinear degrees of freedom in

nonlinear systems, since it assumes that data belongs to a linear space and therefore relies

on the Euclidean distance as the metric to minimize. However, snapshots generated by

nonlinear partial differential equations (PDEs) belong to manifolds for which the geodesics

do not correspond in general to the Euclidean distance. A geodesic is a curve that is locally

the shortest path between points. The global nonlinear manifold geodesic is difficult to be

quantified in general but we show in this dissertation that it can be approximated efficiently

by local linear Euclidean distances.

In [1] the solution snapshots were partitioned into sub-regions that characterize the

nonlinear features of the solutions of interest. This partitioning was performed by computing

snapshots of the solution, clustering them according to their relative distances using the

k-means algorithm, computing in each cluster a reduced-order basis using POD method,

identifying each snapshot cluster with a sub-region of the solution space, and assigning to

this sub-region the reduced-order basis computed in that cluster.

Nonlinear control theory covers a wider class of systems that do not obey the

superposition principle. It applies to more real-world systems which are often governed

2



by nonlinear partial differential equations. The mathematical techniques which have been

developed to handle them are more rigorous and much less general, often applied only to a

narrow class of systems. Even if the plant is linear, a nonlinear controller can often have

attractive features such as simpler implementation, faster speed, more accuracy, or reduced

control energy, which justify the more difficult design procedure [29].

The reduction-control conventional path is to reduce the model, linearize, design the

control based on the reduced model, and then apply the controller to the full order model.

However, for systems with dominant nonlinearities linearization fails. The same path is

followed throughout this dissertation but with no linearization, instead, the nonlinear optimal

controller is designed based on the POD reduced order system with a particular quadratic

nonlinearity in the state and the control.

Contributions

New methods that make POD more accurate are investigated. In chapter 2, POD is applied

locally to clusters instead of applying it to the global system. Each cluster contains relatively

close in distance behavior within itself, and considerably far with respect to other clusters.

Three different clustering schemes in time, space and space-time are introduced. For time

clustering, time snapshots of the solution are grouped into clusters where the solution

exhibits significantly different features and a local basis is pre-computed and assigned to

each cluster. Space clustering is done in a similarly for the space vectors of the solution

instead of snapshots, and finally space-time clustering is applied through a hybrid clustering

scheme that combines space and time behavior together. Our methods are applied to reduce

a nonlinear convective PDE system governed by the Burgers’ equation for fluid flows over

1D and 2D domains.

In the same chapter, the proper orthogonal decomposition without the usual integral or

inner product constraints is extended to general Hilbert spaces, such as Sobolev spaces,

using functional analytic methods. It is shown that a particular tensor product space

is dense in the Hilbert space where the partial differential equation (PDE) solution lives.

This allows approximating the PDE solution by tensors to any desired accuracy. Optimal

approximation by these tensors is shown to result in the POD using operator theoretic

3



arguments. This is achieved by solving a nonlinear optimization problem where the PDE

solution is approximated by operators of a prescribed finite rank in the corresponding trace

class 2 norm. POD modes can then be computed by solving an infinite dimensional eigenvalue

problem using Hilbert-Schmidt theory. Contributions of this chapter have been published in

[57], [16], [64], [65], [55], [59], [60], [58], and [11].

Nonlinear systems of quadratic type nonlinearity with the presence of a linear term are

the reduced order finite dimensional version of the fluid flow systems described by the Navier

Stokes equations. The one dimensional version of the Navier Stokes PDE reduces to the one

dimensional Burgers’ equation. In chapter 3, an analytical solution is presented for the one

dimensional quadratic system with homogeneous type Dirichlet Conditions. The resulting

finite dimensional nonlinear system for both PDEs has the same structure, hence the result

in this note applies also to the Navier Stokes system. The same chapter includes deriving the

POD model reduction, Galerkin projection, and finally the nonlinear optimal control design

for the 1D Burgers equation PDE. Explicit expressions for the adjoint and state equations

are derived in order to avoid numerical instabilities. The nonlinear control design is shown

to be significantly better than the linearized one when the nonlinearities in the system are

dominant. Contribution in this chapter has been published in [61].

In chapter 4, complete and detailed approach for the Orthogonal Locality Preserving

Projections (OLPP) modes computation for the incompressible Navier Stokes PDE that

governs the dynamics of the NACA 0015 airfoil fluid flow problem is presented. Close

snapshots in the full order model are forced to stay close in the reduced order model by

defining an optimization problem that preserves local distances. The POD reduced model

is computed for the same problem. The PID closed loop flow separation control problem is

shown in which fluid suction on part of the airfoil boundary is used to control flow separation

on the boundary layer. Contribution in this chapter has been published in [62].

The heat equation is used as an application of a linear PDE system. The building sector

in the United States consumes a large part of the energy used and is responsible for nearly

40% of greenhouse gas emissions. It is therefore economically and environmentally important

to reduce the building energy consumption to realize massive energy savings. In chapter 5,

a method to control room temperature in buildings is proposed. The approach is based

4



on a distributed parameter model represented by a three dimensional (3D) heat equation

in a room with heater/cooler located at ceiling. The latter is resolved using finite element

methods, and results in a model for room temperature with thousands of states. The latter

is not amenable to control design. A reduced order model of only few states is then derived

using POD. A Linear Quadratic Regulator (LQR) is computed based on the reduced model,

and applied to the full order model to control room temperature. Contribution in this chapter

has been published in [66].

Sudden disturbances in large electrical power networks cause electromechanical oscil-

lations that have been modeled as spatially continuum systems that follow the dynamics

of a second order nonlinear wave equation with constant voltage assumptions. In chapter

6, the optimal control problem is solved for both the constant voltage continuum system

and the generalized time-space voltage varying PDE. First the mechanical power is used

as the control input and then the varying voltage magnitude is used as the control input.

Contribution in this chapter has been published in [63].

For an islanded microgrid modeled by a Kuramoto oscillators nonlinear model, the

distributed optimal controller is designed in chapter 7 using the maximum principle

optimization theory. Synchrony is quantified in terms of phases and droop coefficients at the

inverters in the microgrid and then it is maximized. The solution existence of the distributed

optimal control problem is proved and the solution is found. Performance is evaluated in a

simulation case. Contribution in this chapter has been published in [56].
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Chapter 2

Time, Space and Space-Time Hybrid

Clustering POD

POD fails to capture the nonlinear degrees of freedom in nonlinear systems, since it assumes

that data belongs to a linear space and therefore relies on the Euclidean distance as the

metric to minimize. However, snapshots generated by nonlinear partial differential equations

(PDEs) belong to manifolds for which the geodesics do not correspond in general to the

Euclidean distance. A geodesic is a curve that is locally the shortest path between points.

The global nonlinear manifold geodesic is difficult to be quantified in general but we show

in this chapter that it can be approximated efficiently by local linear Euclidean distances.

In this chapter, new methods that make POD more accurate will be investigated. POD

will be applied locally to clusters instead of applying it to the global system. Each cluster

contains relatively close in distance behavior within itself, and considerably far with respect

to other clusters. Three different clustering schemes in time, space and space-time will be

introduced. For time clustering, time snapshots of the solution are grouped into clusters

where the solution exhibits significantly different features and a local basis is pre-computed

and assigned to each cluster. Space clustering is done in a similarly for the space vectors

of the solution instead of snapshots, and finally space-time clustering is applied through a

hybrid clustering scheme that combines space and time behavior together. Our methods will

be applied to reduce a nonlinear convective PDE system governed by the Burgers’ equation

6



for fluid flows over 1D and 2D domains. The next section provides a brief introduction about

global POD.

2.1 Proper Orthogonal Decomposition (POD)

Proper Orthogonal Decomposition (POD) provides an optimal set of basis functions such that

a low dimensional subspace is obtained by the basis functions projection on the governing

PDE. The fundamental idea behind POD is as follows: Given a function w(x, t) in the

standard Hilbert space L2(Ω, T ) where x ∈ Ω for some Ω ⊂ Rp and T is a finite time

interval. The n POD basis functions set {φi}ni=1 is computed by minimizing the following

cost function:

J(φ) :=

∫ T

0

∫
Ω

|w(x, t)−
n∑
i=1

αi(t)φi(x)|2dxdt (2.1)

where w(x, t) is the solution of the governing PDE, which is usually difficult to analytically

compute. Alternatively, Numerical simulations are easier to compute and the solution is

defined at the mesh locations at different times (snapshots) {Si}Ni=1, then the optimization

problem becomes discrete as follows:

J(φ) :=
∑
k

∑
m

|S(xm, tk)−
n∑
i=1

αi(t)φi(x)|2dxdt (2.2)

For a given snapshots matrix S, the solution of the optimization problem (2.2) up to n pod

basis functions is given by the n eigenvectors that correspond to the maximum n eigenvalues

in the eigenvalue problem [26]:

SSTφ = λφ. (2.3)

7



2.2 Generalization of the Proper Orthogonal Decom-

position

POD is known to be optimal in the sense of energy minimization. That is, the reduced

order model is based on minimizing the energy error with the full order system subject to

an integral constraint [26]. The energy is quantified in terms of the L2 norm in the space

domain. In this section, this result is extended to Sobolev spaces by studying its optimality

using functional analytic methods. First, it is shown that a particular tensor product space

is dense in the Sobolev space where the partial differential equation (PDE) solution lives.

This allows approximating the PDE solution by tensors to any desired accuracy. Optimal

approximation without the usual POD integral constraint by these tensors is shown to result

in the POD using operator theoretic arguments. This is achieved by solving a nonlinear

optimization problem where the PDE solution is approximated by operators of a prescribed

finite rank in the corresponding trace class 2 norm. POD modes can then be computed

by solving an infinite dimensional eigenvalue problem using Hilbert-Schmidt theory. Some

work has been performed in extending POD to more general Hilbert spaces, see for e.g.,

[34, 33, 25]. However, in these works the corresponding optimizations are all subject to

integral or inner product constraints on the POD coefficients. This sets apart our work from

the existing literature. Let Ω ∈ Rn be a domain (open bounded set). In this paper, PDE

solutions are regarded as mapping from Ω into R. Let L2(Ω) denote the Hilbert space of

measurable and square integrable functions f : Ω→ R, i.e.,

‖f‖2
L2(Ω) =

∫
Ω

|f(x)|2dx <∞ (2.4)

Introduce the Sobolev space H1(Ω) as the Hilbert space of continuously differentiable

functions f : Ω→ R under the norm

‖f‖2
H1(Ω) =

∫
Ω

(|f(x)|2 + ‖∇f(x)‖2)dx <∞ (2.5)
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where ∇f(x) denotes the gradient of f(x), and ‖.‖ stands for the Euclidean norm in Rn.

H1(Ω) is endowed with the inner product for f, g ∈ H1(Ω),

< f, g >H1=

∫
Ω

(f(x)g(x) +∇f(x) · ∇g(x))dx (2.6)

where ”·” denotes the Euclidean inner product.

We will point out how our results generalize to Sobolov spaces Hm(Ω), that is, the spaces of

m continuously differentiable functions under the norm

‖f‖2
Hm :=

∫
Ω

(|f(x)|2 +
m∑
α=1

‖∇αf(x)‖2)dx <∞ (2.7)

where ∇αf(x) is the partial derivative of order α of f(x) with respect to x.

Now define the space L2([0, T ])×H1(Ω) as the Hilbert space of function defined on [0, T ]×Ω

with values in R under the norm w(t,x) ∈ L2([0, T ])×H1(Ω)

‖w(t,x)‖2 :=
(∫ T

0

∫
Ω

(|w(t,x)|2 + ‖∇w(t,x)‖2)dtdΩ
) 1

2 (2.8)

and the inner product

< w(t,x), v(t,x) >:=

∫
[0,T ]

∫
Ω

(w(t,x)v(t,x) +∇w(t,x)∇v(t,x))dΩdt (2.9)

For arbitrary n define the tensor product L2([0, T ])⊗H1(Ω) as the space

L2([0, T ])⊗H1(Ω) = {µ =
n∑
i=1

ai(t)⊗ bi(x);

ai(t) ∈ L2([0, T ]), bi(x) ∈ H1(Ω);n arbitrary} (2.10)
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The inner product on L2([0, T ]) ⊗ H1(Ω) is defined so that if u =
∑n

i=1 ai(t) ⊗ bi(x), v =∑m
j=1 cj(t)⊗ dj(x) then

< u, v >=
n∑
i=1

m∑
j=1

< ai(t), cj(t) >L2< bi(x), dj(x) >H1 (2.11)

where < ·, · >L2 denotes the inner product of L2[0, T ].

Note that L2([0, T ])⊗H1(Ω) under the inner product (2.11) is an inner product space. The

norm induced by this inner product is

β(u) = β(
∑

ai ⊗ bi) := {
n∑
i=1

m∑
j=1

< ai(t), aj(t) >L2< bi(x), bj(x) >H1}
1
2

The completion of L2([0, T ])⊗H1(Ω) with norm β is denoted by L2([0, T ])⊗βH1(Ω). We show

in the next proposition that the completion is in fact equal to the Hilbert space L2([0, T ])×

H1(Ω).

Proposition 1.

L2([0, T ])⊗β H1(Ω) = L2([0, T ])×H1(Ω)

Proof:

Let u ∈ L2([0, T ]) ⊗ H1(Ω), u =
∑n

i=1 ai(t) ⊗ bi(x) where ai(t) ∈ L2([0, T ]), bi(x) ∈ H1(Ω)

and associate to u the function

f(t,x) :=
n∑
i=1

ai(t)bi(x) (2.12)

Note that f ∈ L2([0, T ])×H1(Ω). Define the map

L : L2([0, T ])⊗H1(Ω)→ L2([0, T ])×H1(Ω)

u→ f = Lu
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L is linear and norm preserving since

‖f‖2
g =

∫
[0,T ]

∫
Ω

(|f(t,x)|2 + ‖∇f(t,x)‖2)dΩdt (2.13)

= β(u)

Therefore, the completion of L2([0, T ]) ⊗ H1(Ω) in the β norm is equal to its closure in

L2([0, T ])×H1(Ω). Now, we need to show that the closure of L2([0, T ])⊗H1(Ω),

L2([0, T ])⊗β H1(Ω) = L2([0, T ])×H1(Ω) (2.14)

To this end it suffices to show that the orthogonal complement of L2([0, T ])⊗H1(Ω) is {0}

in L2([0, T ])×H1(Ω).

Let F = (F1, F2) ∈ L2([0, T ])×H1(Ω) and ∀u⊗ v ∈ L2([0, T ])⊗H1(Ω),

< F, u⊗ v >=< F1, u >L2< F2, v >H1= 0

since u is arbitrary in L2([0, T ]) and v is arbitrary in H1(Ω)

< F1, u >= 0⇒ F1 = 0 a.e.

< F2, v >= 0⇒ F2 = 0

Therefore (2.14) holds and the proposition is proved. �

The proposition shows that any PDE solution w(t,x) in L2([0, T ]) × H1(Ω) can be

approximated as closely as desired by functions of the form
∑n

i=1 ai(t)ϕi(x), t ∈ [0, T ],x ∈ Ω

in the norm ‖.‖2, that is, as n→∞ we have

‖w(t,x)−
n∑
i=1

ai(t)ϕi(x)‖2 → 0 (2.15)
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For fixed n, define the shortest distance minimization in the norm ‖.‖2 from the function

w(t,x) to the set S, by

µ = inf
∫∈S
‖w(t,x)− ∫(t,x)‖2 (2.16)

where

S := {F =
n∑
i=1

ai(t)ϕi(x); ai ∈ L2([0, T ]), ϕi ∈ H1(Ω)} (2.17)

It is important to note at this point that the minimization (2.16) is not subject to any

constraint besides the minimizer belonging to S as is for instance the case in [34, 33, 25],

i.e., we do not impose, a priori, any relationship between the POD coefficients ai(t) and ϕi,

i = 1, 2, · · · .

Following [14], let Γ be the integral operator with kernel w(t,x):

Γ : H1(Ω)→ L2[0, T ] (2.18)

φ→ (Γφ)(t) =

∫
Ω

(w(t,x)φ(x) +∇w(t,x) · ∇φ(x))dx

It can be shown that such an operator is compact, that is, an operator that maps bounded

sets into pre-compact sets. In fact, for w(t,x) ∈ L2([0, T ]) × H1(Ω) , Γ is a trace class 2

operator, that is, the sum of all the singular values squared is finite (see for, e.g., [68]). The

class of trace class 2 operates from H1(Ω) into L2([0, T ]) will henceforth be denoted by C2.

Let us define the adjoint of Γ, Γ?, as the operator acting from L2[0, T ] into H1(Ω) as for
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f(x) ∈ H1(Ω), g(t) ∈ L2[0, T ],

< Γf, g >L2

:=

∫ T

0

∫
Ω

[w(t,x)f(x) +∇w(t,x) · ∇f(x)]dx · g(t)dt

=

∫
Ω

f(x)

∫ T

0

[w(t,x)g(t) +∇T (t,x)g(t)]dt · ∇f(x)dx (2.19)

=:< f,Γ?g >H1

This shows that

(Γ?g)(t) =

∫
[0,T ]

w(t,x)g(t)dt (2.20)

Using polar representation of compact operators [68]

Γ = U(Γ?Γ)
1
2

where U is a partial isometry and (Γ?Γ)
1
2 is the square root of T, which is also trace class 2

operator, and admits a spectral factorization of the form [68]

(Γ?Γ)
1
2 =

∑
i

λiνi ⊗ νi (2.21)

where λi > 0, λi ↘ 0 as i ↑ ∞, are the eigenvalues of (Γ?Γ)
1
2 , and νi form the corresponding

orthonormal sequence of eigenvectors, i.e., (Γ?Γ)
1
2νi = λiνi, i = 1, 2, · · · . Putting Uνi =: ψi,

we can write

Γ =
∑
i

λi νi ⊗ ψi (2.22)

Both {νi} and {ψi} are orthonormal sequences in L2[0, T ] and H1(Ω), respectively. The sum

(2.22) has either a finite or countably infinite number of terms. The above representation is

unique.
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Noting that the polar decomposition of Γ? = U?(ΓΓ?)
1
2 , a similar argument yields

(ΓΓ?)
1
2 =

∑
i

λiψi ⊗ ψi (2.23)

Γ? =
∑
i

λiψi ⊗ νi (2.24)

which shows that αi from an orthonormal sequence of eigenvectors of (ΓΓ?)
1
2 corresponding

to the eigenvalues λi. From (2.21) and (2.24) it follows that

Γψi = U(Γ?Γ)
1
2ψi = λiνi (2.25)

Γ?νi = U?(ΓΓ?)
1
2νi = λiψi (2.26)

We say that ψi and νi constitute a Schmidt pair [53]. In terms of integral operators

expressions, identities (2.25) and (2.26) can be written, respectively, as

νi(t) =

∫
Ω

[w(t,x)ψi(x) +∇w(t,x) · ∇ψi(x)]dx (2.27)

ψi(x) =

∫ T

0

w(t,x)νi(t)dt (2.28)

In terms of the eigenvalues λi’s of Γ, its trace class 2 norm ‖ · ‖C2 is given by [68]

‖Γ‖C2 =
(∑

i

λ2
i

) 1
2

(2.29)

Note that since the operator Γ is trace class 2, the sum in (2.29) is finite. The Trace class 2

norm is also induced by the operator inner product defined by (2.32).

By interpreting each elements of the subspace S defined in (2.17) as a trace class 2 operator

as we did for w(t,x), we see that S is the subspace of trace class 2 operators of rank n, i.e.,

S ={s =
∑n

j=1
ϑj fj(t)⊗ χj(x) :

fj(t) ∈ L2([0, T ]), χj(x) ∈ H1(Ω), ϑj ∈ R} (2.30)
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In addition, the distance minimization (2.16) is then the minimal distance from Γ to trace

class 2 operators of rank n. In other terms, we have

µ = min
s∈S
‖Γ− s‖C2 (2.31)

The space of trace class 2 operators is in fact a Hilbert space with the inner product [68],

denoted (·, ·), if A and B are two trace class 2 operators defined on H1(Ω),

(A,B) := tr(B?A) (2.32)

where tr denotes the trace, which in this case is given by the sum of the eigenvalues of the

operator B?A which is necessarily finite [68]. Note that the inner product (2.32) induces the

trace class 2 norm ‖A‖C2 =
(
tr(A?A)

) 1
2 .

Theorem 2.1.

µ = min
∫∈S
‖Γ− ∫‖C2

= min

αi ∈ R,

fi ∈ H1(Ω),

gi ∈ L2([0, T ]),

‖fi‖H1 = ‖gi‖L2 = 1

‖Γ−
n∑
i=1

αifi ⊗ gi‖C2

= ‖
∞∑

i=n+1

λiνi ⊗ ψi‖C2

=
( ∞∑
i=n+1

λ2
i

) 1
2

(2.33)

Proof: For simplicity we shall prove (2.33) only for n = 1. The general case can be

proved by induction. Let then

∫ = α1f1 ⊗ g1, α1 ∈ R, f1 ∈ H1(Ω), g1 ∈ L2([0, T ])
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For n = 1 (2.33) becomes

µ = min

α1 ∈ R

f1 ∈ H1(Ω),

g1 ∈ L2([0, T ]),

‖f1‖H1 = ‖g1‖L2 = 1

‖Γ− α1f1 ⊗ g1‖C2 (2.34)

Let {ϕi} be an orthonormal basis of H1(Ω) with ϕ1 = f1 then by definition of trace class 2

norm:

‖Γ− α1ϕ1 ⊗ g1‖2
C2 =

∞∑
i=1

‖(Γ− α1f1 ⊗ g1)ϕi‖2
L2

=
∞∑
i=1

‖Γϕi − α1 < ϕ1, ϕi >H1(Ω) g1‖2
L2

;

note that < ϕ1, ϕi >H1(Ω)= 0 ∀i ≥ 2

=
∞∑
i=2

‖Γϕi‖2
L2

+ ‖Γϕ1 − α1g1‖2
L2

= ‖Γ‖2
C2 − ‖Γϕ1‖2

L2 + ‖Γϕ1 − α1g1‖2
L2 (2.35)

We need to minimize (2.35) with respect to ϕ1 ∈ H1(Ω), ‖ϕ1‖ = 1, g1 ∈ L2([0, T ]), ‖g1‖L2 =

1. To do so we need to maximize ‖Γϕ1‖L2 w.r.t. ϕ1 and minimize ‖Γϕ1 − α1g1‖L2 w.r.t. ϕ1

and g1. We get then

arg max

ϕ1 ∈ H1(Ω),

‖ϕ1‖H1(Ω) = 1

‖Γϕ1‖L2 = ψ1(x)

arg min

α1 ∈ R,

‖g1‖L2 = 1

‖Γϕ1 − α1g1‖L2 → α1 = λ, g1 = ν1

since Γϕ1 =
∑∞

i=1 λi < ψi, ψ >H1 νi = λ1ν1, and the Theorem is proved.
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remark 1. The above results generalize to the Sobolev spaces Hm(Ω) by using the following

inner product

< f, g >Hm :=∫
Ω

(
f(x)g(x) +

m∑
α=1

(
∇αf(x) · ∇αg(x)

))
dx

instead of the inner product in H1 defined in (2.6).

2.3 The Burgers’ Equation

The Burgers’ equation is a nonlinear PDE with a quadratic type nonlinearity. The 1-D

viscous Burgers’ equation is given by [7]:

∂w

∂t
=

1

Re

∂2w

∂x2
− w∂w

∂x
(2.36)

where x ∈ [a, b] is the space variable, t ∈ [t0, tf ] is the time variable, 1/Re is the viscosity

constant and the initial condition is:

w(x, t0) = w0(x) (2.37)

with Dirichlet boundary conditions specified as: w(a, t)

w(b, t)

 =

 ua(t)

ub(t)

 := u(t) (2.38)

For x ∈ [0, 100] and boundary conditions

 w(0, t)

w(100, t)

 =

 2

1

, numerical solution at

three different times is shown in Fig. 2.1.

The 2D Burgers’ equation is given by [7]:
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Figure 2.1: 1D Full order solution at three different times

∂w

∂t
+ w(

∂w

∂x
+
∂w

∂y
) =

1

Re

(
∂2w

∂x2
+
∂2w

∂y2
) (2.39)

where x and y are the spacial variables, t is the time variable and 1/Re is the viscosity

constant such that Re is analogues to the Reynolds number that appears in the Navier

Stokes equations. The spatial domain is shown in Figure 2.2 where the fluid enters from the

left boundary in a specified constant velocity and pases around an obstacle as shown. The

2D Burgers’ equation PDE shares the same nonlinearity as the Navier stokes PDE. It has

the same quadratic nonlinearity and can be used to model incompressible fluid flows.

Figure 2.2: 2D Geometry

The 2D Burgers’ equation full order system is solved numerically in Matlab using 2000

space mesh elements and Re = 300, on the space domain shown in Fig. 2.3 which shows
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the solution at t = 30 seconds. This domain models the velocity of a fluid with a constant

Dirichlet parabolic velocity profile at the left boundary that is maximum in the middle and

zero in the top and bottom. The fluid passes over an obstacle to show the velocity behavior

that the 2D Burgers’ equation models.

Figure 2.3: 2D Full order solution at t=30

2.4 Clustered POD

K- means algorithm groups together nearby locations according to their relative clustering

distances. The clustering distance is defined as follows:

d(Ei, Ej) =
√

(Ei − Ej)T (Ei − Ej) (2.40)

where d is the Euclidean distance between two time snapshots Ei and Ej. These vectors

contain the solution at times i and j respectively for all space location times.

Suppose we want to group N time snapshots {Ei}Ni=1 into T clusters {χj}Tj=1, we first

randomly choose T time snapshots as centroids {Ecj}Tj=1. Then the distance between each

time snapshot and the centroid is calculated as:

d(Ei, Ecj) =
√

(Ei − Ej)T (Ei − Ecj) (2.41)

Let ci be the argument of the minimum distance between Ei and Ecj :

ci = arg min
j=1,··· ,T

d(Ei, Ecj) (2.42)
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Then the new centroids would be:

Ecj =

∑N
i=1 1ci=jEi∑N
i=1 1ci=j

(2.43)

where j = 1, · · ·T and 1ci=j = 1 if ci = j and zero otherwise. Then the last step is to assign

each time snapshot Ei to the cluster χcj .

2.4.1 Time Snapshots Clustering (TSC) POD

The time snapshots are grouped into clusters where the solution exhibits significantly

different features. A cluster is a group that contains states which are close in some defined

distance. Time Clustering for the 1D equation is shown in Figure 2.4. Local bases are

pre-computed and assigned to each cluster. The set of pre-computed time snapshots are

partitioned into T clusters using K-means clustering algorithm discussed in the previous

section.

Figure 2.4: TSC 4 Clusters

Reduced order bases are now computed for each cluster as follows:

Let the number of time snapshots in cluster k be Nk, the Nk×Nk correlation matrix Lk

is defined by [26]:

Lki,j =
〈
Ek
i , E

k
j

〉
(2.44)
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is constructed, where 〈, 〉 denotes the Euclidean inner product of time snapshots Ek. With

Rk denotes the number of TSC POD modes to be constructed for cluster k, the first Rk

eigenvalues of largest magnitude, {λ}Rk

i=1 , of Lk are found. They are sorted in descending

order, and their corresponding eigenvectors {vk}Rk

i=1 are calculated. Each eigenvector is

normalized so that

∥∥vki ∥∥2
=

1

λki
(2.45)

The orthonormal TSC POD basis set {φki }R
k

i=1 is constructed according to:

φki =
∑Nk

j=1
vki,jE

k
j (2.46)

where vki,j is the jth component of vki . The 1-D Burgers’ equation solution time snapshots

were grouped into 4 clusters as shown in Figure 2.4 and the first four modes of each cluster

are shown in Figure 2.5.

Figure 2.5: First 4 modes of TSC POD in 4 clusters

The 2-D Burgers’ equation solution time snapshots were grouped into 8 clusters. The

first four modes of cluster 1 are shown in Figure 2.6.
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Figure 2.6: 2D First four modes of TSC POD in cluster 1

Then the constructed local reduced order bases are projected to their corresponding

locations in the full solution as follows:

{UTSC}Tk=1 ≈ {
∑Rk

i=1
αki φ

k
i }Tk=1 (2.47)

2.4.2 Space Vector Clustering (SVC) POD

In TSC POD discussed in the last section, time snapshots are clustered. In this section, the

solution space domain is clustered where the solution exhibits significantly different features.

Local bases are pre-computed and assigned to each cluster. The set of pre-computed solution

space domain is partitioned into T clusters using K-means clustering algorithm. Space vector

clustering is shown in Figure 2.7.

Let the number of space vectors in cluster k be Nk, the Nk ×Nk correlation matrix Lk

is defined by:

Lki,j =
〈
W k
i ,W

k
j

〉
(2.48)

is constructed with Rk denotes the number of SVC POD modes to be constructed for

cluster k, the first Rk eigenvalues of largest magnitude, {λ}Rk

i=1 , of Lk are found. They
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Figure 2.7: SVC 4 clusters

are sorted in descending order, and their corresponding eigenvectors {vk}Rk

i=1 are calculated.

Each eigenvector is normalized so that

∥∥vki ∥∥2
=

1

λki
(2.49)

The orthonormal SVC POD basis set {φki }R
k

i=1 is constructed according to:

φki =
∑Nk

j=1
vki,jW

k
j (2.50)

where vki,j is the jth component of vki . The 1-D Burgers’ equation solution space vectors

were grouped into 4 clusters and the first four modes of each cluster are shown in Figure 2.8

The 2-D Burgers’ equation solution space vectors were grouped into 8 clusters. The first

four modes of cluster 1 are shown in Figure 2.9.

The SVC modes in Figure 2.9 are different from the modes of the global POD because

they are based only on one cluster that includes relatively close states. These states are

clearly the ones on the far left of the domain that share a relatively higher fluid velocities

most of the time. We should notice from the modes of this cluster that locations which are

close to the top and bottom of the left side do not appear to belong to this cluster. This is

due to the fact that they have lower velocities most of the time so they are grouped in some

other clusters other than the one shown in Figure 2.9.
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Figure 2.8: First 4 modes of SVC POD in 4 clusters

Now we have computed the clusters with their local reduced order bases, the last step is

the projection to the full solution. The constructed local reduced order bases are projected

to their corresponding locations in the full solution as follows:

{USV C}Tk=1 ≈ {
∑Rk

i=1
αki φ

k
i }Tk=1 (2.51)

2.4.3 Space-Time Hybrid (STH) POD

In this section, the whole solution space and time domains is clustered using K-means

algorithm. Note that clusters now contain space-time points instead of time snapshots or

space vectors in the previous sections. However, these points are then reshaped to form either

time or space vectors in each cluster. STH clustering is shown in Figure 2.10. Note that

this is not uniform for all clusters, meaning that some clusters could contain time snapshot

vectors while others contain space vectors, we will call them STH vectors. The optimum

choice will be investigated in future work. Reduced order bases are computed for each cluster

as follows: Let the number of STH vectors in cluster k be Nk, the Nk×Nk correlation matrix

Lk is defined by:

Lki,j =
〈
Hk
i , H

k
j

〉
(2.52)
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Figure 2.9: 2D First four modes of SVC POD in cluster 1

is constructed with Rk denotes the number of STH POD modes to be constructed for

cluster k, the first Rk eigenvalues of largest magnitude, {λ}Rk

i=1 , of Lk are found. They

are sorted in descending order, and their corresponding eigenvectors {vk}Rk

i=1 are calculated.

Each eigenvector is normalized so that

∥∥vki ∥∥2
=

1

λki
(2.53)

The orthonormal STH POD basis set {φki }R
k

i=1 is constructed according to:

φki =
∑Nk

j=1
vki,jH

k
j (2.54)

where vki,j is the jth component of vki .

It is important to record the original ordering of snapshots because we need this in

the projection process. The constructed local reduced order bases are projected to their

corresponding locations in the full solution as follows:

{USTH}Tk=1 ≈ {
∑Rk

i=1
αki φ

k
i }Tk=1 (2.55)
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Figure 2.10: STH 4 clusters

Performance comparison between reduced order models using all methods presented in

this chapter compared with global POD for the 1D Burgers’ equation is shown in Figure

2.11 with the full number of states N = 500 is reduced to R = 15 where the space domain

is x ∈ [0, 100] and the time domain is t ∈ [0, 50].

The error norms at t = 30 for the two methods when reducing the order from 500 states

to 15 states are shown in Table 2.1.

Table 2.1: Error norms at t = 30 for the 1D equation for different POD versions

Method Error norm at t = 30
Global POD 0.3080
TSC POD 0.0352
SVC POD 0.0012
STH POD 0.0009

The reduced order systems for the 2D domain Burgers’ equation problem using the three

methods presented in this paper along with global POD is shown in Figure 2.12 with full

number of states N = 2000 is reduced to R = 10 states.
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Figure 2.11: 1D Burgers equation model reduction. Dotted blacks are the full order models
and reds are the reduced ones using (starting from the top): Global, TSC, SVC and STH
POD, all at t=30
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Figure 2.12: 2D Burgers equation model reduction using (starting from the top): Global,
TSC, SVC and STH POD
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Chapter 3

Nonlinear Control of the Reduced

Order 1D Burgers’ Equation

Nonlinear systems of quadratic type nonlinearity with the presence of a linear term are the

reduced order finite dimensional version of the fluid flow systems described by the Navier

Stokes equations. The one dimensional version of the Navier Stokes PDE reduces to the one

dimensional Burgers’ equation. In this chapter, we present an analytical solution for the one

dimensional quadratic system with homogeneous type Dirichlet Conditions. The resulting

finite dimensional nonlinear system for both PDEs has the same structure, hence the result

in this note applies also to the Navier Stokes system. The remainder of this chapter includes

deriving the POD model reduction, Galerkin projection, and finally the nonlinear optimal

control design for the 1D Burgers equation PDE. Explicit expressions for the adjoint and

state equations are derived in order to avoid numerical instabilities. The nonlinear control

design is shown to be significantly better than the linearized one when the nonlinearities in

the system are dominant.

The one dimensional Burgers’ equation is given by:

∂w

∂t
=

1

Re

∂2w

∂x2
− w∂w

∂x
(3.1)

where 1/Re is the viscosity term that plays a similar role that is done by the Reynolds

number in the Navier Stokes equations. If the solution w(t, x) is approximated by a linear
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combination of the POD basis functions as:

w(x, t) =
N∑
i=1

αi(t)φi(x) (3.2)

where φi(x) is the POD basis i and αi(t) is the corresponding ith temporal coefficient, and the

expression in (3.2) is used in (3.1) and Galerkin projection is performed, we get a quadratic

nonlinear system of the dynamics of the temporal coefficients αi(x). In this chapter we give

an analytical expression for the solution of this system in the case of homogeneous Dirichlet

boundary conditions.

3.1 Galerkin Projection

The solution w(t, x) of the distributed parameter system is approximated by a linear

combination of the POD basis functions as:

w(x, t) =
N∑
i=1

αi(t)φi(x) (3.3)

The expression in (3.3) is used in the 1D Burgers’ PDE:

∂w

∂t
=

1

Re

∂2w

∂x2
− w∂w

∂x
(3.4)

and Galerkin projection is performed by multiplying (3.4) by the basis functions φj(x) and

integrating over the spatial domain. Due to the orthogonality of POD basis, the left hand

side of (3.4) becomes:

∫
Ω

∂w(x, t)

∂t
φj(x)dx =

∫
Ω

∂
∑N

i=1 αi(t)φi(x)

∂t
φj(x)dx

= α̇j(t) (3.5)
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Integrating the linear diffusion term by parts yields:

∫
Ω

1

Re

∂2w

∂x2
φj(x)dx =

1

Re

(
∂w

∂x
φj

∣∣∣∣
∂Ω

−
∫

Ω

∂w

∂x

dφj
dx

dx

)
=

1

Re

(
∂w(b)

∂x
φj(b)−

∂w(a)

∂x
φj(a)−

∫ b

a

∂w

∂x

dφj
dx

dx

)
(3.6)

The spatial derivatives at the boundaries can be approximated as:

∂w(a, t)

∂x
=
w(a+ h, t)− w(a, t)

h
(3.7)

∂w(b, t)

∂x
=
w(b, t)− w(b− h, t)

h
(3.8)

where h is a sufficiently small mesh step size, w(a, t) and w(b, t) are the control inputs defined

as:  w(a, t)

w(b, t)

 =

 ua(t)

ub(t)

 := u(t) (3.9)

and

w(a+ h, t) =
N∑
i=1

αi(t)φi(a+ h) (3.10)

w(b− h, t) =
N∑
i=1

αi(t)φi(b− h) (3.11)

The linear term then has the form Aα +Bu where

Aji = − 1

Re

(
φi(b− h)φj(b)

h
+
φi(a+ h)φj(a)

h
+

∫ b

a

dφi
dx

dφj
dx

dx

)
(3.12)

and B is the Nx2 matrix such that:

Bj1 =
φj(a)

hRe
, Bj2 =

φj(b)

hRe
(3.13)
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The nonlinear term in (3.4) can be written as 1
2
∂w2

∂x
, so the Galerkin projection becomes:

−
∫

Ω

1

2

∂w2

∂x
φj(x)dx = −

(
w2

2
φj

∣∣∣∣
∂Ω

−
∫

Ω

w2

2

dφj
dx

dx

)
= −1

2

(
w2(b)φj(b)− w2(a)φj(a)−

∫ b

a

w2dφj
dx

dx

)
(3.14)

The nonlinear term then has the form N(α) + B′u2 where u2 is the vector of the term by

term squares of the inputs vector u described in (3.9):

u2 =

 u2
1

u2
2

 (3.15)

and,

N(α) =
1

2

∫ b

a

(
N∑
i=1

ai(t)φi(x))2dφj(x)

dx
dx (3.16)

where B′ is the Nx2 matrix such that:

B′j1 =
φj(a)

2
, B′j2 = −φj(b)

2
(3.17)

Finally, the initial condition:

w(x, t0) = w0(x) (3.18)

is projected onto the POD basis to find the initial values for α. The complete reduced order

system becomes:

α̇ = Aα +N(α) +Bu+B′u2 (3.19)

α(0) = α0.

32



Figure 3.1: Full (solid) Vs Reduced (dashed) model with Re=100

Figures 3.1 and 3.2 compare the solution of the full and reduced order models. Solid is

the full order, dashed is the reduced. POD modes were constructed from 50 snapshots and

the number of spacial degrees of freedom is 200, i.e. the full order system size is 200. The

reduced order size is two only. The low number of states needed to get this performance is

driven by the fact that zero Dirichlet boundary conditions are used to generate the snapshots.

We will see later that as input values change, more states will be needed to achieve the same

performance.

Although the reconstructed solution looks to agree with the full order one, there is still

a problem for highly nonlinear situations (high Re) where discontinuities might appear as

shown in Figure 3.3 where both POD modes have a sharp change at x = 0.5 where shocks

occur as shown earlier. As shown in (3.19), the spatial derivative of the POD modes is needed

to design the system parameters in (3.19). Figure 3.4 shows how large these derivatives are

around the shock location.

Now, for the same initial condition but using different controls, we use ua = t and ub = −t

where t runs from 0 to 1, five states are needed to show the performance in Figure 3.5. Notice

the multiple shocks that increase overtime.
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Figure 3.2: Full (solid) Vs Reduced (dashed) model with Re=5000

3.2 Solution to the Homogeneous Dirichlet Boundary

Conditions System

For a zero input boundary conditions, the quadratic nonlinear system (3.19) can be written

as:

α̇ = Aα + diag(α)Mα (3.20)

α(0) = α0.

where A,M ∈ Rr×r are time invariant matrices since they are functions of spacial POD

modes as described in the previous section , α ∈ Rr is the temporal coefficients vector and

diag(α) ∈ Rr×r is a diagonal matrix in which α is its main diagonal.

We claim that the solution of (3.19) is given by:

α(t) = AeAt(I − diag(c)MeAt)−1c (3.21)
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Figure 3.3: The two POD Basis functions for the highly nonlinear system

Figure 3.4: The spatial derivative of the two POD basis functions shown in Figure 3.3

where c ∈ Rr is a constant vector that is a function of the initial condition α0 and given by:

c = (I + diag(MA−1α0))−1A−1α0 (3.22)

and diag(c), diag(MA−1α0) ∈ Rr×r are diagonal matrices in which c and MA−1α0 are their

main diagonals respectively. To proof our claim, we differentiate the expression (3.21) with

respect to time, we get:

α̇ = AAeAt(I − diag(c)MeAt)−1c+ (3.23)
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Figure 3.5: Full (solid) Vs Reduced (dashed) for nontrivial boundary controls, Re=5000
with 5 states model

AeAt(I − diag(c)MeAt)−1diag(c)MAeAt(I − diag(c)MeAt)−1c

and using α = AeAt(I − diag(c)MeAt)−1c, equation (3.23) becomes:

α̇ = Aα + AeAt(I − diag(c)MeAt)−1diag(c)Mα (3.24)

To show that AeAt(I − diag(c)MeAt)−1diag(c) = diag(α), let

AeAt(I − diag(c)MeAt)−1diag(c) := P (3.25)

where P ∈ Rr×r,then we have:

AeAt(I − diag(c)MeAt)−1 = Pdiag(c)−1 (3.26)
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Then we multiply c to the right of both sides we get:

α = Pdiag(c)−1c

= P1r (3.27)

where 1r ∈ Rr is the unity vector of length r, i.e all elements in 1r are ones.

It is clear that the only P that satisfies (3.27) is P = diag(α). Then (3.23) becomes:

α̇ = Aα + diag(α)Mα

Finally we need to show that the initial condition is satisfied, we show that the choice of the

constant c given by (3.22) satisfies the initial condition in (3.20) as follows:

c = (I + diag(MA−1α0)−1A−1α0

(I + diag(MA−1α0))c = A−1α0

c+ diag(MA−1α0)c = A−1α0

c+ diag(c)MA−1α0 = A−1α0

c = (I − diag(c)M)A−1α0

A(I − diag(c)M)−1c = α0 (3.28)

which equals the initial condition α(0) in (3.20).

3.3 Nonlinear Control

In most applications, the control objective for such systems is to track a particular trajectory,

so we consider the minimization of the cost function:

J(u) =
1

2

∫ tf

0

[(α− αr)TQ(α− αr) + uTRu]dt (3.29)
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subject to the constraints:

α̇ = Aα +N(α) +Bu+B′u2

α(0) = α0.

where αr is the reference states vector that the system is supposed to track, Q is a diagonal,

symmetric and positive semidefinite matrix of state weights, R is a diagonal, symmetric and

positive-definite matrix of control weights. The optimization problem (3.29) is considered

over all controls u ∈ L2(0,∞).

The Hamiltonian is defined as:

H =
1

2
(α− αr)TQ(α− αr) +

1

2
uTRu+ λT (Aα +N(α) +Bu+B′u2) (3.30)

where λ is the adjoint variables vector. Derivative of H w.r.t the control u is zero at the

critical control values, so the optimality equation becomes:

∂H

∂u
= Ru+BTλ+ 2(B′Tλ ◦ u) = 0 (3.31)

where ◦ denotes the Hadamard product (term by term multiplication). Since R is diagonal

then it is easy to factorize it as:

Ru = diag(R) ◦ u (3.32)

where diag(R) is the diagonal vector of R. The optimal control can be found:

uopt =
−BTλ

diag(R) + 2B′Tλ
(3.33)

Note that the division in (3.33) is computed term by term between the numerator and

denominator vectors. It is the inverse operation of the Hadamard product.
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The adjoint equation is:

λ̇ = −∂H
∂α

= −Q(α− αr)− ATλ+
dλTN(α)

dα
(3.34)

λ(tf ) = 0.

dλTN(α)
dα

is found by differentiating the expression in (3.16). It is convenient to express the

integral over the domain Ω as a sum (which is how it is actually coded in Matlab), so:

dλTN(α)

dα
= 2ΦT (

dΦ

dx
◦ Φα) (3.35)

where Φ is the matrix that contain all POD basis vectors. Finally the coupled states and

adjoint systems (3.19) and (3.34) are solved simultaneously.

The state system has initial conditions while the adjoint has final conditions. One method

to solve such coupled systems is the forward backward sweep method explained in [40] and

[5]. The steps of the forward backward sweep algorithm is as follows:

1. Start with an initial guess for the control uopt over the domain.

2. Using the state system initial conditions and the values for uopt , solve for α forward

in time.

3. Using the adjoint final conditions and the values for uopt and α, solve λ backward in

time.

4. Update uopt by entering the new α and λ into the expression of the optimal control.

5. Check convergence. Stop if the difference is negligible between this iteration and the

previous one, otherwise return to step 2.

Convergence and stability of this algorithm is discussed in [23].

Figure 3.6 shows a comparison between a full order controlled system and a 3 states

reduced system with Re = 100.
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Figure 3.6: Full Vs 3 states reduced order nonlinear control

While linearized controllers might work just fine with low Re, they definitely fail when

Re is large when the nonlinearity dominates the system behavior. To compare our nonlinear

controller to the linear one, a high Re is used with the same number of reduced order

system (5 states) and the same tracking function which is an arbitrary solution obtained with

symmetric sinusoidal boundary conditions and a sin wave initial condition as usual. Figure

3.7 and 3.8 show how the linear control fails to track the reference function as well as the

nonlinear one. Reference trajectories are the solid blues and controlled system trajectories

are the dashed reds.

40



Figure 3.7: Linear control, full (solid) Vs reduced (dashed)

Figure 3.8: Nonlinear control, full (solid) Vs reduced (dashed)
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Chapter 4

Flow Separation Control for the

NACA 0015 Airfoil Based on an

OLLP Reduced Order Model

In this chapter, complete and detailed approach for the Orthogonal Locality Preserving

Projections (OLPP) modes computation for the incompressible Navier Stokes PDE that

governs the dynamics of the NACA 0015 airfoil fluid flow problem is presented. Close

snapshots in the full order model are forced to stay close in the reduced order model by

defining an optimization problem that preserves local distances. The POD reduced model is

computed for the same problem. Optimal control to track a defined trajectory is designed.

The closed loop flow separation control problem is solved in which fluid suction on part of

the airfoil boundary is used to control flow separation on the boundary layer.

Figure 4.1: Model Reduction and Boundary Control Process Diagram
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Locality Preserving Projections are linear projective maps that arise by solving a

variational problem that optimally preserves the neighborhood structure of the data set. The

authors in [48] applied a locality preserving algorithm in the image processing field to reduce

dimensionality. The algorithm builds a graph incorporating neighborhood information of the

data set. This linear transformation then optimally preserves local neighborhood information

in a certain sense. In other words OLPP guarantees that close neighbors in the full order

model will stay close in the reduce order model. Although POD beats OLPP in a global

sense, the latter preserves the local behavior that POD misses.

Flow control is the process of bringing on desired changes in the behavior of the flow. A

laminar flow of fluid moving in a deterministic way, is associated with considerable less drag,

or friction, at the boundary layer, than a turbulent flow, which is characterized by velocity

components that appear to be stochastic in nature. Laminar flows are unstable, and will

unless controlled, become turbulent flows. Laminar flows are easier to control before it is

too late when the transition to turbulence happens. Control objectives include separation

prevention, transition delay, drag reduction, lift enhancement, and noise suppression [20].

Flow control can be passive or active. Passive control requires no auxiliary power and

no control loop and can be implemented by choosing values for several surface parameters

that can influence the boundary layer flow such as shape, roughness, porosity, and curvature

[19]. Active control requires a control loop which can be open or closed. Control techniques

either modifies the shape of the instantaneous mean velocity profile or selectively influences

the small dissipative eddies [20].

Prandlt in [52] introduced the boundary layer theory and explained the physics of the

separation phenomena. Laminar flow control and polymer drag reduction techniques were

notable achievements during the world war II era, partially summarized in [37] and [75].

Control methods such as using large eddy breakup devices and riblets to reduce skin friction

drag in turbulent boundary layers were developed in the 70’s and 80’s [27] [9] [4]. Reactive

control strategies have been developed beyond the 90’s by the help of the development of

micro electromechanical systems (MEMS) and neural networks [77] [44] [18].

Suction and injection of primary fluid can have significant effects on the flow field. In

suction, favorable pressure gradient or lower wall viscosity results in vorticity flux away
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from the wall, making the surface a source of spanwise and streamwise vorticity. The

corresponding velocity profiles have negative curvature at the wall and are more resistant to

separation but associated with higher skin friction drag. Injection is the opposite; adverse

pressure gradient or higher wall viscosity makes the velocity profile faster to separate but

associated with lower skin friction [2], [12], [76].

Full model reduction and boundary control process for the flow separation control problem

is shown in Fig 4.1. This chapter is basically going through this process block by block as

follows; In section 6.2, the fluid flow system is described and a numerical solution for the

problem is found. In section 6.3, the POD basis functions are computed. In section 6.4, the

OLPP algorithm is presented and flow separation control is shown in section 6.5.

4.1 Problem Description

We consider the 2D incompressible fluid flow over the NACA 0015 airfoil shown in Figure

4.4.

The PDE that models the fluid velocity and pressure behavior is the two dimensional Navier

Stokes Equation, given by the following dimensionless equations:

∂w

∂t
=

1

Re

(
∂2w

∂x2
+
∂2w

∂y2

)
− w∂w

∂x
− v∂w

∂y
− ∂p

∂x

∂v

∂t
=

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
− w∂v

∂x
− v∂w

∂y
− ∂p

∂y
(4.1)

∂w

∂x
+
∂v

∂y
= 0 (4.2)

where x and y are the spatial coordinates in the 2D domain Ω and t ∈ [t0, tf ] is the time

variable, w, v are the velocity components in x,y directions, p is the pressure and Re is the

Reynolds number. Equations (4.1) are the momentum equations while (4.2) is the continuity
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equation. Initial conditions are given by:

w(Ω, t0) = w0

v(Ω, t0) = v0 (4.3)

p(Ω, t0) = p0

Figure 4.2: Domain and Boundaries

Let ∂Ω denotes the boundary of the domain Ω such that ∂Ω = ∂Ωa ∪ ∂Ωleft ∪ ∂Ωright ∪

∂Ωup ∪ ∂Ωdown as shown in Fig (4.2) where ∂Ωa is the airfoil boundary where the control

input is applied, ∂Ωleft is the rectangle left boundary where the inflow condition for velocity

is specified, ∂Ωright is the rectangle right boundary where the outflow condition for velocity

is specified, ∂Ωup and ∂Ωdown are the rectangle upper and lower boundaries where periodic

flow condition is defined. Boundary conditions are summarized as:
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w(∂Ωa, t) = uw(∂Ωa, t) w Dirichlet control input,

v(∂Ωa, t) = uv(∂Ωa, t) v Dirichlet control input,

w(∂Ωup, t) = w(∂Ωdown, t) w periodic flow conditions,

v(∂Ωup, t) = v(∂Ωdown, t) v periodic flow conditions,

p(∂Ωup, t) = p(∂Ωdown, t) p periodic flow conditions

w(∂Ωleft, t) = wleft w inflow condition,

v(∂Ωleft, t) = vleft v Inflow condition,

p(∂Ωright, t) = 0 p Outflow condition.

Numerical simulation is performed for Re = 10, 000 and 2226 finite element mesh nodes

for 10 seconds with time step 0.1 seconds Using Comsol Multiphysics software. As shown in

Fig 4.3, mesh is finer around the boundary of the airfoil where faster dynamics is expected.

Figure 4.4 shows the full order model simulation for the velocity magnitude (
√
w2 + v2) at

t = 10 with open loop zero inputs at the airfoil boundary.

Figure 4.3: Problem geometry and mesh
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Figure 4.4: Full order solution at t = 10, velocity magnitude

4.2 POD Basis Computation

Let

 w(x, y, t)

v(x, y, t)

 be the fluid velocity solution to (4.1) and (4.2) such that:

 w(x, y, t)

v(x, y, t)

 =

 w̄(x, y, t)

v̄(x, y, t)

+

 ŵ(x, y, t)

v̂(x, y, t)

 (4.4)

where w̄(x, y, t), v̄(x, y, t) are the mean velocity components and ŵ(x, y, t), v̂(x, y, t) are the

turbulent fluctuating velocity components. The turbulent velocity field is approximated by

a linear combination of the POD basis functions as: ŵ(x, y, t)

v̂(x, y, t)

 =
N∑
i=1

αi(t)

 φwi (x, y)

φvi (x, y)

 (4.5)

As shown in [26], the process is to maximize the averaged projection of the velocity field

onto the basis functions ‖φw‖ and ‖φv‖ that are normalized. In other words, the optimization

problem as explained in [26] is to find φw, φv ∈ L2(Ω) such that:

〈

 ŵ

v̂
,
φw

φv

2

〉, ‖φw‖ = ‖φv‖ = 1 (4.6)
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is maximized where 〈·〉 denotes an averaging operation, ‖.‖ is the L2 norm, and (, ) is the

inner product in L2(Ω) for vector valued functions given by:

(f,g) =

∫
Ω

fTg dA (4.7)

The solution of this maximization problem is given by the eigenfunctions φw and φv that

correspond to the largest eigenvalues of the following eigenvalue problems:

∫
Ω

〈w(x, y)w(x́, ý)〉φw((x́, ý))dΩ = λwφw(x, y) (4.8)∫
Ω

〈v(x, y)v(x́, ý)〉φv((x́, ý))dΩ = λvφv(x, y) (4.9)

The ensemble of solution snapshots is available and the equivalent discrete optimization

problem is simply the eigenvectors of the sample covariance matrix. 6 POD modes and their

energy preserving percentages for w and v are shown in figures 4.5 and 4.6. By projecting

the first 6 optimal modes on the full order set we get the reduced order representation of

w and v shown in Figures 4.9 and 4.10. Figures 4.7 and 4.8 show the full order w and v

velocity components at t = 10. These 6 modes capture 94.2% of w and 93.6% of v energies.

4.3 Orthogonal Locality Preserving Projection

In general, POD is not optimal in the manifold metric minimization sense. We propose

to use locality preserving concept as an alternative to the classical POD model reduction

technique.

Let M = Md be a d- dimensional smooth and compact submanifold of the Euclidean

space Rn. Let {xi} ⊂ M be a finite set of snapshots that lie on M. The manifold metric

between two distinct snapshots xi and xj is defined by:

dM(xi, xj) = inf
γ
{length(γ)} (4.10)
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where γ varies over a set of piecewise smooth arcs connecting xi to xj. It is clear that

dM(xi, xj) is different than the Euclidean distance ‖xi−xj‖ in the higher dimensional space

n. Conventional POD minimization problem is stated as follows:

φ = arg min
‖φ‖=1

∑
i

‖xi − (xi, φ)φ‖2
2 (4.11)

If xi and xj are too close on the manifold then it is a valid approximation that dM(xi, xj) '

‖xi−xj‖2. This means that close members in the original full order set must stay close in the

reduced order set to preserve an approximate global manifold metric among other members

in the set.

OLPP projects the data in a way that preserves a certain affinity graph G = (V , E) where

graph nodes V are the snapshots. The edges can be defined by taking some k number of

nearest neighbor nodes to every state xi. Another option to define the edges is to include all

neighbors within a radius ε from xi.

OLPP defines the projected points in the form yi = V Txi by putting a penalty for

mapping the nearest neighbor nodes in the original graph to distant points in the projected

data, so the objective is to minimize:

J(Y ) =
1

2

n∑
i,j=1

wij‖yi − yj‖2
2 (4.12)

subject to the orthogonality constraint V TV = I and the weights wij are defined by solving

the following minimization problem:

J(W ) =
∑
i

‖xi −
∑
j

wijxj‖2
2 (4.13)

with the constraints that wij = 0 if xj is not a neighbor of xi and
∑
j

wij = 1, in other words,

xi is approximated by a convex combination of its neighbors. The solution, as shown in [48]

is the eigenvalue problem:

X(D −W )XTvi = λivi (4.14)
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where W is the weights matrix and D is diagonal with dii =
n∑
j=1

wij.

Simulation results show close agreement between POD and OLPP as shown in Figures

4.9 and 4.10. To visualize the comparison better, one location on the domain is chosen and

both velocity components with time are shown in Figures 4.11 and 4.12.

4.4 Galerkin Projection and Nonlinear Optimal Con-

trol

Using the approximated velocity expression in (4.5) to replace the velocity vector in the

Navier stokes system (4.1) and applying a Galerkin projection on the POD/OLPP basis

functions, the following finite dimensional system is obtained:

α̇ = Aα +N(α) +Bu+B′u2

α(0) = α0. (4.15)

where

Aji = (∇φj,∇φi)L2

Njki = (φj, (φk.∇)φi)L2 ,

where (.) is the inner product defined in (4.7), B,B′ are the boundary term matrices resulting

from applying Green’s identity in the Galerkin projection and u is vector of the discretized

control input at the blue section in Fig 4.13 and u2 is a vector of the squares of u.

The control objective to track a particular trajectory, so we consider the minimization of

the cost function:

J(u) =
1

2

∫ tf

0

[(α− αr)TQ(α− αr) + uTRu]dt (4.16)
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subject to the constraints:

α̇ = Aα +N(α) +Bu+B′u2

α(0) = α0.

where αr is the reference states vector that the system is supposed to track, Q is a diagonal,

symmetric and positive semidefinite matrix of state weights, R is a diagonal, symmetric and

positive-definite matrix of control weights. The optimization problem (4.16) is considered

over all controls u ∈ L2(0,∞).

The Hamiltonian is defined as:

H =
1

2
(α− αr)TQ(α− αr) +

1

2
uTRu

+ λT (Aα +N(α) +Bu+B′u2) (4.17)

where λ is the adjoint variables vector. Derivative of H w.r.t the control u is zero at the

critical control values, so the optimality equation becomes:

∂H

∂u
= Ru+BTλ+ 2(B′Tλ ◦ u) = 0 (4.18)

where ◦ denotes the Hadamard product (term by term multiplication). Since R is diagonal

then it is easy to factorize it as:

Ru = diag(R) ◦ u (4.19)

where diag(R) is the diagonal vector of R. The optimal control can be found:

uopt =
−BTλ

diag(R) + 2B′Tλ
(4.20)

Note that the division in (4.20) is computed term by term between the numerator and

denominator vectors. It is the inverse operation of the Hadamard product.
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The adjoint equation is:

λ̇ = −∂H
∂α

= −Q(α− αr)− ATλ+
dλTN(α)

dα
(4.21)

λ(tf ) = 0.

It is convenient to express the integral over the domain Ω as a sum (which is how it is

actually coded in Matlab), so:

dλTN(α)

dα
= 2ΦT (

dΦ

dx
◦ Φα) (4.22)

where Φ is the matrix that contain all POD/OLPP basis vectors. Finally the coupled states

and adjoint systems (4.15) and (4.21) are solved simultaneously.

4.5 Flow Separation Control

Suction and injection of primary fluid can have significant effects on the flow separation

phenomena. Flow separation occurs when the boundary layer travels far enough against an

adverse pressure gradient that the speed of the boundary layer relative to the object falls

almost to zero. The fluid flow becomes detached from the surface of the object, and instead

takes the forms of eddies and vortices [2], [12], [76]. Fig 4.14 shows how the flow separation

happens starting roughly at t=1 second and evolves to cause the vorticies shown at t=3

seconds. To control separation, fluid suction is actuated from the blue part of the boundary

as shown in Fig 4.13. In suction, favorable pressure gradient or lower wall viscosity results

in vorticity flux away from the wall, making the surface a source of spanwise and streamwise

vorticity and the corresponding velocity profiles have negative curvature at the wall and

are more resistant to separation but associated with higher skin friction drag. The effect

is shown in Fig 4.15 where a PID controlled suction function is applied at the actuation

location. Fluid injection on the other hand causes faster separation and stronger vorticity

as shown in Fig 4.17. Fig 4.16 shows how the vorticity magnitude response with suction,

injection and no control applied at the airfoil boundary.
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To summarize this chapter, POD modes for the NACA 0015 airfoil fluid flow problem

are computed, and since POD is not in general optimal in the manifold metric minimization

sense, we forced close snapshots in the full order to stay close in the reduced order model

by defining an optimization problem that preserves local distances of members. We showed

how the flow separates on the boundary layer and how fluid suction controls the separation.
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Figure 4.5: w POD modes
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Figure 4.6: v POD modes
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Figure 4.7: w full order

Figure 4.8: v full order
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Figure 4.9: Reduced w component: POD (top) and OLPP (bottom)
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Figure 4.10: Reduced v component: POD (top) and OLPP (bottom)

Figure 4.11: w velocity component at one location
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Figure 4.12: v velocity component at one location

Figure 4.13: Control actuation location for the flow separation control problem
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Figure 4.14: Flow separation with no control applied, snapshots at times t=0.1 (top left),
0.4, 0.6, 1, 2 and 3 seconds (bottom right)
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Figure 4.15: Flow separation controlled, snapshots at times t=0.1 (top left), 0.4, 0.6, 1, 2
and 3 seconds (bottom right)

Figure 4.16: Vorticity with suction, injection and no control applied at the boundary
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Figure 4.17: Effect of fluid injection on vorticity
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Chapter 5

Model Reduction and Control of

Temperature in Energy Efficient

Buildings

Buildings are complex multi-scale, multi-physics, and highly uncertain dynamic systems

with many sources of disturbances. Whole building simulation presents a formidable

computational challenge making the development of design, optimization, and control tools

of whole buildings difficult. At a fundamental level, there are several possible approaches to

the design and control of high performance buildings. These include: (1) Simulation Based

Design, (2) Holistic Fully Integrated Design, and (3) Hybrid Design Methods. Optimal

design and control of these systems are very challenging problems and are often done by

first developing a reduced order model on which the design is based [6]. This is known as a

simulation based design.

In this chapter, distributed parameter theory is shown to provide useful information about

building design and control. The problem illustrated by a single room shown in Figure 5.1 is

considered. By solving the system numerically, the dynamical equations of the system with

different parameters shed light on the best sensor location, temperature distribution of the

room, and the corresponding energy consumption. Finite element theory is used to solve the

PDE that describes the cooling and heating process.
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The finite element technique is a numerical method for finding approximate solutions of

partial differential equations (PDE). The Finite Element Method is a good choice for solving

partial differential equations over complicated domains (like cars and oil pipelines), when

the domain changes (as during a solid state reaction with a moving boundary), when the

desired precision varies over the entire domain, or when the solution lacks smoothness [72].

The approach is based on simplifying the PDE into an approximating system of ordinary

differential equations, which are then numerically integrated using standard techniques such

as Euler’s method, Runge-Kutta, etc. In solving PDEs, the main challenge is to create an

equation that approximates the equation to be studied, but is numerically stable, such that

errors in the input and intermediate calculations do not accumulate and make the resulting

output to be meaningless. The finite element model comprises thousands (18182) states

and therefore is not directly amenable to control design. This is due to the fact that the

systematic design of optimal controllers based on the full order model results in the former

having the same dimension, i.e., thousands of states. This is computational expensive and

not feasible in real time. The order of the model needs to be first reduced and then a

controller is designed based on the reduced model, and applied to the full order system to

control the heat/cooling systems.

Figure 5.1: Room geometry
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5.1 Finite Element Solution of the 3D Heat Equation

Problem

The cooling and heat flow is modeled by a 3-dimensional (3D) heat equation [13]

ρCp
∂T (t, x, y, z)

∂t
+∇.(−k∇T (t, x, y, z)) = Q (5.1)

where t denotes time, x, y, z are spatial coordinates assumed to belong to a domain Ω which

represents the room geometry, ρ is the density in lb/ft3, Cp is the specific heat capacity at

constant pressure in J/lb.F , T is the absolute temperature in F , k is thermal conductivity

in w/ft.F and Q is the heat source in w/ft3. The initial temperature is 50oF . Boundary

condition at the center of the top surface is a fixed temperature at 150oF . The domain of

the 3D heat equation Ω is the room geometry and,

• The initial conditions at t = to is T (x, y, z, to) = To(x, y, z) inΩ

• Dirichlet type boundary condition T (x, y, z, t) = T̂ (x, y, z, t) in ∂ΩT

• Neumann type boundary condition q(x, y, z, t) = q̂(x, y, z, t) in ∂Ωq

where q := −kOT is the heat flux, ∂ΩT and ∂Ωq are Dirichlet and Neumann boundaries

respectively as shown in Figure 5.1 where ∂Ω = ∂ΩT ∪ ∂Ωq. The 3D heat equation is

multiplied by a basis function δT and integrated over the domain Ω as follows:

∫
Ω

ρCpṪ δT +

∫
Ω

∇ · (−k∇T ) δT = 0 (5.2)

The basis function δT has the following property

δT = 0 in ∂ΩT (5.3)
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Using the divergence theorem:

∫
Ω

∇.(−k∇T )δT =

∫
Ω

∇(−k∇TδT )−
∫
Ω

(−k∇T )∇δT

=

∫
∂Ω

−k∇TδTni −
∫
Ω

(−k∇T )δT (5.4)

Using the Neumann boundary condition and the basis function property 5.3 we have:

∫
∂Ω

−k∇TniδT =

∫
∂Ωq

−k∇TniδT +

∫
∂ΩT

−k∇TniδT (5.5)

= q̂(x, t)

Then the weak formulation of the problem follows

∫
Ω

ρCpṪ δT −
∫
Ω

q∇δT −
∫
∂Ωq

q̂δT = 0 (5.6)

The spatial approximation of solution in the domain Ω is performed by a linear combination

of shape functions , where φs = φs(x), where

T (x, t) = θs(t)φs(x), s = 1, · · · , N (5.7)

where N is the total number of solution nodes and θs(t) is the time dependent coefficients.

The basis function is also approximated as:

δT (x) = θr(t)φr(x) (5.8)

Since the basis function is time independent, θr coefficients will only be numbers. Substitute

in the weak form 5.6 and after some derivations; we get the system of ordinary differential

equations (ODEs) as follows

Mrsθ̇s = Krsθs +

∫
∂Ω

q̂φr (5.9)
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whereMrs =
∫
Ω

ρCpφsφpdxdydz is the thermal capacity matrix andKrs =
∫
Ω

(−k∇φs + ρCpuiφs)∇φrdxdydz

is the heat transfer matrix. The system in 5.9 can then be written in state space form as

ẋ = Ax+Bu (5.10)

where A := M−1
rs Krs, B := M−1

rs and x := θs The plot of one snapshot of the 3D heat

diffusion in the room using finite element analysis with the corresponding mesh is shown in

Fig 5.2. One heating/cooling element is assumed to be installed in the room ceiling. Finite

element solution at different times is shown in figures 5.3, 5.4, 5.5 and 5.6.

Figure 5.2: The 3D heat equation with corresponding finite element mesh. Number of
mesh nodes = number of states = 18182 nodes.

Figure 5.3: Temperature distribution in F after 1 minute
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Figure 5.4: Temperature distribution in F after 20 minutes

Figure 5.5: Temperature distribution in F after 40 minutes

5.2 Temperature Control

A linear quadratic regulator (LQR) controller [36] is designed to keep the room temperature

at the desired value. The control design is based on the reduced order model and applied to

the full order system of the form

ẋ = Ax+Bu

where x is the states vector that contains 18182 temperature values at the nodes shown in

the mesh figure. The sensor location is chosen at (04, 0, 0.5), so the measurement equation

has the following form:

y = Cx
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Figure 5.6: Temperature distribution in F after 60 minutes

Figure 5.7: Sensor Location

where C = [00 · · · 1 · · · 00] is a vector of zeros everywhere except for the sensor location node

where the value is 1. Note that we assumed the temperature is measured by only one sensor.

One of the main issues arising in automatic control of room temperature is the best

location of sensors in order to effectively estimate the temperature, especially in the context

of using distributed parameter models. From a general point of view, the problem of optimal

sensor location can be viewed as the problem of maximizing the output generated by a given

state [21], [8]. In room temperature control it is no possible to sense inside the flow domain

and full state estimation is not practical. For such problems, the sensors must be located on

the boundary, in our case, somewhere on the room walls. In this work we rely on a search

over the domain boundary ∂Ω for candidate locations to determine the best sensor position.

In our simulation the best sensor location is represented in Figure 5.7.
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Figure 5.8: Step response for 2 desired set points 70 and 83

Figure 5.9: Control input

LQR controller is used as follows: the state-feedback law u−−Kxminimizes the quadratic

cost function:

J(u) =

∫
(xTQx+ uTRu)dt (5.11)

Subject to the system dynamics ẋ = Ax+Bu.

Figure 5.8 shows the step response for two different desired values of 70oF and 83oF .

Note that the closed-loop response is stable and tracks the set points. The corresponding

control input is plotted in the Figure 5.9. A constraint for the input signal to be bounded

between 40oF and 150oF is added to account for heating/cooling systems saturation.

5.3 Reduced Order Model Using POD

With N snapshots in hand the N ×N correlation matrix L is defined by:

Li,j = 〈Si, Sj〉 (5.12)

is constructed, where 〈, 〉 denotes the usual Euclidean inner product of snapshots S. With

M denoting the number of POD modes to be constructed, the first M eigenvalues of
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Figure 5.10: Full order model at t = 40 minutes

largest magnitude, {λ}Mi=1 , of L are found. They are sorted in descending order, and their

corresponding eigenvectors {v}Mi=1 are calculated. Each eigenvector is normalized so that

‖vi‖2 =
1

λi
(5.13)

The orthonormal POD basis set {φi}Mi=1 is constructed according to:

φi =
∑N

j=1
vi,jSj (5.14)

where vi,j is the jth component of vi . With a POD basis in hand, the solution T of the

distributed parameter model is approximated as a linear combination of POD modes, i.e.,

T ≈
∑M

i=1
αiφi (5.15)

This shows that POD finds a low dimensional embedding of the snapshots that preserve

most of the energy as measured in a much higher dimensional solution space. It is found

that taking only the largest 50 eigenvalues keeps 98% of the energy of the full order system.

Figures 5.10 and 5.11 show the full order model compared to the reduced order model of 50

modes respectively, both after 40 minutes. Figures 5.12 and 5.13 show the full order model

compared to the reduced order model of 50 modes respectively, both after 60 minutes. It is

shown from the figures that the reduced order is so close to the full order which means that

working with the reduced order is acceptable and reliable.
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Figure 5.11: Reduced order model at t = 40 minutes

Figure 5.12: Full order model at t = 60 minutes

Figure 5.13: Reduced order model at t = 60 minutes
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Figure 5.14: Step response for full and reduced order models

Figure 5.15: Controlled input signal for full order and reduced order controlled systems

Step response for both full and reduced controlled system is shown in Figure 5.14. The

difference lies between 1 or 2 F which is very acceptable considering the large reduction

ratio from 18182 states to 50. Figure 5.15 shows the input signal for full and reduced order

systems. The reduced order controlled input signal leads or lags the full order controlled

input signal by 1 or 2 minutes.

So In this chapter, we developed a modeling and control approach for room temperature

in buildings. The approach is based on a distributed parameter model coupled with high

performance computing, and modern control theory to regulate room temperature. This

theory allows us to study optimal sensor location. The results obtained show excellent

performance and are promising for practical implementation.
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Chapter 6

Optimal Control for Wave oscillations

in the Power Grid

Sudden disturbances in large electrical power networks cause electromechanical oscillations

that have been modeled as spatially continuum systems that follow the dynamics of a second

order nonlinear wave equation with constant voltage assumptions. In this chapter, the

optimal control problem is solved for both the constant voltage continuum system and the

generalized time-space voltage varying PDE. First the mechanical power is used as the control

input and then the varying voltage magnitude is used as the control input.

The fundamental equation that describes the rotor dynamics in power systems is the swing

equation [67]:

2H

ω
δ̈ + ωDδ̇ = Pm − Pe, (6.1)

where H is the is the inertia constant, ω is the electrical angular velocity, D is the rotor

damping constant, Pm and Pe are the mechanical and electrical power respectively, all

expressed in per unit on the system base power. It represents the equation of motion of

synchronous machines[46], [45], [32].
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6.1 The Continuum System Constant Voltage Swing

PDE

In this section, Thorp’s constant voltage swing wave PDE [74] is reviewed. The distributed

power system model shown in Fig. (6.1) [74] is considered. Each node is a generator that

supplies a variable current and voltage producing a variable power.

Figure 6.1: Power System Model [74]

The continuum system is described by the following second order hyperbolic wave PDE

[74]:

∂2δ

∂t2
+ ν

∂δ

∂t
− v2∇2δ + u2|∇δ|2 = P, (6.2)
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and the PDE parameters are given by:

v2 =
ωV 2sinθ

2h|z|

u2 =
ωV 2cosθ

2h|z|

P =
ω(pm −GV 2)

2h

ν =
ω2d

2h

where E(x, y) = V ejδ(x,y) and V is the constant voltage magnitude, δ is the angle,

z = |z|(cosθ + jsinθ) is the transmission line impedance and G is the real part of the

admittance, ∇ and ∇2 are the first and second spatial derivatives, respectively, h is the

inertia constant, ω is the electrical angular velocity, d is the rotor damping constant, pm is

the mechanical power.

6.1.1 Optimal Control of the Constant Voltage Swing PDE Using

Power as The Control Input

Here the mechanical power P is used as the control input that drives the angle δ(x, y) to

track a reference value δr(x, y) for the constant voltage swing PDE. So our goal is to minimize

the cost function:

J(P ) =
1

2

∫ T

0

∫
Ω

[
|δ(x, y, t)− δr(x, y, t)|2 + P (x, y, t)2

]
dAdt (6.3)
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Subject to:

∂2δ

∂t2
+ ν

∂δ

∂t
− v2∇2δ = P

δ(x, y, t) = 0 for δ(x, y, t) ∈ ∂Ω× [0, T ]

δ(x, y, 0) = δi

δt(x, y, 0) = δti

Uad = {P (x, y, t) ∈ L2(Ω× (0, T )) | 0 ≤ P (x, y, t) ≤M}

where Uad is the admissible control set and 0,M are the lower and upper control bounds

respectively. Here we assume a lossless system in which θ = π/2 then the term u2|∇δ|2 is

dropped out. To derive necessary conditions for optimality, the cost function is differentiated

with respect to P , i.e. the map P 7→ J(P ) is differentiated. However, δ contributes to J(P )

so the map P 7→ δ(P ) must also be differentiated.

Let

ψ = lim
ε−→0

δ(P + εl)− δ(P )

ε
(6.4)

be the sensitivity of the state with respect to the control where l is a variation function and

ε > 0.

Then the PDE that corresponds to the control P + εl is:

δεtt + νδεt − v2∇2δε = P + εl (6.5)

Subtracting the constraint in (6.3) from (6.5) and dividing both sides by ε yields:

(
δε − δ
ε

)
tt

+ ν

(
δε − δ
ε

)
t

− v2∇2

(
δε − δ
ε

)
= l

Lψ =: ψtt + νψt − v2∇2ψ = l

where ψ ∈ L2[0, T ]×H1
0 (Ω) := Ψ.

L : Ψ→ R
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L∗ : R∗ → Ψ∗ = R→ Ψ.

The operator L and the adjoint operator L∗ are related by:

< λ,Lψ >=< L∗λ, ψ >

where < ., . > is the L2 inner product. For ψtt, for zero boundary conditions, Green’s formula

gives:

∫ T

0

∫
Ω

λψttdAdt =

∫ T

0

∫
Ω

ψλttdAdt

For ψxx: ∫ T

0

∫
Ω

λ∇2ψdAdt =

∫ T

0

∫
Ω

ψ∇2λdAdt

For ψt: ∫ T

0

∫
Ω

λψtdAdt = −
∫ T

0

∫
Ω

ψλtdAdt

So the adjoint operator will be:

L∗λ = λtt − νλt − v2∇2λ (6.6)

Then the adjoint PDE is:

L∗λ =
∂integrand(J)

∂δ

λtt − νλt − v2∇2λ = δ∗ − δr (6.7)

The sensitivity and adjoint functions are used in the differentiation of the map P 7→ J(P ).

lim
ε→0+

J(P ∗ + εl)− J(P ∗)

ε
≥ 0 (6.8)
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The numerator terms are:

J(P ∗) =
1

2

∫ T

0

∫
Ω

[
|δ∗ − δr|2 + (P ∗)2

]
dAdt

J(P ∗ + εl) =
1

2

∫ T

0

∫
Ω

[
|δε∗ − δr|2 + (P ∗ + εl)2

]
dAdt

Then the limit (6.8) becomes:

= lim
ε→0+

1

2

∫ T

0

∫
Ω

[
(δε∗)2 − (δ∗)2

ε
− 2δr(δ

ε∗ − δ∗)
ε

+ 2P ∗l + εl2]dAdt

= lim
ε→0+

1

2

∫ T

0

∫
Ω

[
(δε∗ − δ∗)

ε
(δε∗ + δ∗)− 2δr(δ

ε∗ − δ∗)
ε

+ 2P ∗l + εl2]dAdt

=
1

2

∫ T

0

∫
Ω

[ψ(2δ∗)− 2δrψ + 2P ∗l] dAdt

=

∫ T

0

∫
Ω

[ψ(δ∗ − δr) + P ∗l] dAdt

Then from (6.7) we get:

∫ T

0

∫
Ω

[ψ(L∗λ) + P ∗l] dAdt = 0∫ T

0

∫
Ω

[λLψ + P ∗l] dAdt = 0∫ T

0

∫
Ω

[λl + P ∗l] dAdt = 0∫ T

0

∫
Ω

[l(λ+ P ∗)] dAdt = 0

So the optimal control in the interior of Uad becomes:

P ∗ = −λ
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Taking into account the control bounds, the optimal control becomes:

P ∗ = min(max(−λ, 0),M) (6.9)

where λ is computed by solving the coupled PDE system:

δ∗tt + νδ∗t − v2∇2δ∗ = min(max(−λ, 0),M)

λtt − νλt − v2∇2λ = δ∗ − δr

where initial and boundary conditions are defined for the state PDE:

δ(x, y, t) = 0 for δ(x, y, t) ∈ ∂Ω× [0, T ]

δ(x, y, 0) = δi

δt(x, y, 0) = δti

while final and boundary conditions are defined for the adjoint PDE:

λ(x, y, t) = 0 for λ(x, y, t) ∈ ∂Ω× [0, T ]

λ(x, y, T ) = 0

λt(x, y, T ) = 0

The difficulty in solving these coupled PDEs arises from the fact that the state PDE

has initial conditions while the adjoint PDE has final conditions. One method to solve such

coupled systems is the forward backward sweep method explained in [40] and [5]. The steps

of the forward backward sweep algorithm is as follows:

1. Start with an initial guess for the control P ∗ over the domain.

2. Using the state PDE initial conditions and the values for P ∗, solve δ∗ forward in time.

3. Using the adjoint PDE final conditions and the values for P ∗ and δ∗, solve λ backward

in time.
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4. Update P ∗ by entering the new δ∗ and λ into the expression of the optimal control.

5. Check convergence. Stop if the difference is negligible between this iteration and the

previous one, otherwise return to step 2.

Convergence and stability of this algorithm is discussed in [23]. Figure (6.3) shows the

numerical solution of a controlled system for the initial disturbance shown in Figure (6.2).

Figure 6.2: Initial disturbance

Figure 6.3: Controlled System
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6.1.2 Optimal Control of the Constant Voltage Swing PDE Using

Voltage as The Control Input

Although constant voltage is the assumption for the swing PDE in this case, voltage can still

be used as a control input if the deviation above or below a constant value is kept minimum.

We need to assume that the voltage varies only within a narrow neighborhood around a

constant Vr because letting it vary freely violates the original assumption in deriving the

swing PDE (6.2), then the cost function to be minimized is :

J(V ) =
1

2

∫ T

0

∫
Ω

[
|δ(x, y, t)− δr(x, y, t)|2 + |V (x, y, t)|2

]
dAdt (6.10)

Subject to:

∂2δ

∂t2
+ ν

∂δ

∂t
− ωV 2sinθ

2h|z|
∇2δ =

ω(pm −GV 2)

2h

δ(x, y, t) = 0 for δ(x, y, t) ∈ ∂Ω× [0, T ]

δ(x, y, 0) = δi

δt(x, y, 0) = δti

Uad = {V (x, y, t) ∈ L2(Ω× (0, T )) | Vr − εv ≤ V (x, y, t) ≤ Vr + εv}

where Uad is the admissible control set and εv is a small positive number and ν, ω, h, z, θ, pm, G

are all constants. The sensitivity of the state with respect to the control input V is:

ψ := lim
ε−→0

δ(V + εl)− δ(V )

ε

= lim
ε−→0

δε − δ
ε

For the control input V + εl we have:

∂2δε

∂t2
+ ν

∂δε

∂t
− ω(V + εl)2sinθ

2h|z|
∇2δε =

ω(pm −G(V + εl)2)

2h
(6.11)
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while for the control input V we have:

∂2δ

∂t2
+ ν

∂δ

∂t
− ωV 2sinθ

2h|z|
∇2δ =

ω(pm −GV 2)

2h
(6.12)

Subtracting (6.12) from (6.11) and dividing both sides by ε yields:

(
δε − δ
ε

)
tt

+ ν

(
δε − δ
ε

)
t

− ωV 2sinθ

2h|z|
∇2

(
δε − δ
ε

)
−ωl(2V + εl)sinθ

2h|z|
∇2δε = −ωGl(2V + εl)

2h

ψtt + νψt −
ωV 2sinθ

2h|z|
∇2ψ − ωl(2V )sinθ

2h|z|
∇2δ = −2ωGlV

2h

Defining the operator Lψ := ψtt + νψt −
ωV 2sinθ

2h|z|
∇2ψ we have:

Lψ =
ωl(2V )sinθ

2h|z|
∇2δ − 2ωGlV

2h
(6.13)

Then the adjoint operator will be:

L∗λ = λtt − νλt −
ωV 2sinθ

2h|z|
∇2λ (6.14)

= δ∗ − δr

Now the sensitivity and adjoint functions will be used in the differentiation of the map

V 7→ δ(V ).

lim
ε→0+

J(V ∗ + εl)− J(V ∗)

ε
≥ 0 (6.15)
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where

J(V ∗) =
1

2

∫ T

0

∫
Ω

[|δ∗ − δr|2 + |V ∗ − Vr|2]dAdt

J(V ∗ + εl) =
1

2

∫ T

0

∫
Ω

[|δε∗ − δr|2 + |V ∗ − Vr + εl|2]dAdt

Then the limit (6.15) becomes:

lim
ε→0+

1

2

∫ T

0

∫
Ω

[
(δε∗)2 − (δ∗)2

ε
− 2δr(δ

ε∗ − δ∗)
ε

+ 2V ∗l + εl2]dAdt

= lim
ε→0+

1

2

∫ T

0

∫
Ω

[
(δε∗ − δ∗)

ε
(δε∗ + δ∗)− 2δr(δ

ε∗ − δ∗)
ε

+ 2(V ∗ − Vr)l + εl2]dAdt

=
1

2

∫ T

0

∫
Ω

[ψ(2δ∗)− 2δrψ + 2(V ∗ − Vr)l] dAdt

=

∫ T

0

∫
Ω

[ψ(δ∗ − δr) + (V ∗ − Vr)l] dAdt

=

∫ T

0

∫
Ω

[ψL∗λ+ (V ∗ − Vr)l] dAdt

=

∫ T

0

∫
Ω

[λLψ + (V ∗ − Vr)l] dAdt

=

∫ T

0

∫
Ω

[
λ

(
ωl2V ∗sinθ

2h|z|
∇2δ − 2ωGlV ∗

2h

)
+ (V ∗ − Vr)l

]
dAdt

=

∫ T

0

∫
Ω

l

[
λV ∗

(
ωsinθ

h|z|
∇2δ − ωG

h

)
+ (V ∗ − Vr)

]
dAdt

And then the optimal control input V ∗ in terms of the adjoint variable λ would be:

V ∗ =
Vr

λ

(
ωsinθ

h|z|
∇2δ − ωG

h

)
− 1

(6.16)

And remember that the variation for V ∗ should be limited around Vr for practical results.

Substituting the expression for V ∗ in (6.16) into the adjoint PDE (6.14), then substituting
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also in the state PDE (6.12) yields the coupled state and adjoint PDEs:

λtt − νλt −
ωV ∗2sinθ

2h|z|
∇2λ = δ∗ − δr

δ∗tt + νδ∗t −
ωV ∗2sinθ

2h|z|
∇2δ∗ =

ω(pm −GV ∗2)

2h
(6.17)

where initial and boundary conditions are defined for the state PDE:

δ(x, y, t) = 0 for δ(x, y, t) ∈ ∂Ω× [0, T ]

δ(x, y, 0) = δi

δt(x, y, 0) = δti

while final and boundary conditions are defined for the adjoint PDE:

λ(x, y, t) = 0 for λ(x, y, t) ∈ ∂Ω× [0, T ]

λ(x, y, T ) = 0

λt(x, y, T ) = 0

6.2 Space Dependent Voltage Magnitude Swing PDE

In this section, the PDE that describes the electromechanical wave propagation for the space

varying voltage magnitude, i.e. E(x, y) = V (x, y)ejδ(x,y) is derived.

The space varying generator current is then given by:

I(x, y) = −∆2

z
∇2E(x, y) + ∆Y E(x, y), (6.18)

where Y is the shunt admittance, ∆ is the separation between adjacent nodes and ∇ is the

space derivative. So the spatial gradient of E(x, y) is:

∇E = ∇V ejδ + V j∇δejδ (6.19)
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where the Laplacian of E would be:

∇2E = ∇2V ejδ +∇V j∇δejδ

+ j[(∇V∇δ + V∇2δ)ejδ + V j(∇δ)2ejδ]

= [∇2V − V (∇δ)2 + j(2∇V∇δ + V∇2δ)]ejδ (6.20)

Using the current expression in (6.18), the electrical power Pe is given by:

Pe = Re{EI∗}

= Re{V ejδ(−∆2

z
[∇2V − V (∇δ)2 − j(2∇V∇δ

+ V∇2δ)]e−jδ + ∆Y ∗V e−jδ)}

The complex exponential terms cancel and the electrical power expression simplifies to:

Pe = Re{V (−∆2

z
[∇2V − V (∇δ)2 − j(2∇V∇δ + V∇2δ)]

+ ∆Y ∗V )}

Using the complex form of the impedance z = |z|(cosθ + jsinθ) we have:

Pe = Re{V (−∆2

|z|
[∇2V − V (∇δ)2 − j(2∇V∇δ + V∇2δ)](cosθ

− jsinθ) + ∆Y V )}

= V (−∆2

|z|
[(∇2V − V (∇δ)2)cosθ − (2∇V∇δ + V∇2δ)sinθ]

+ ∆V 2G, (6.21)

where G = Re{Y }.

The discrete swing equation parameters H,D,Z, and Pm in (6.1) translate for the con-

tinuum system into the distributed parameters ∆h(x, y),∆d(x, y),∆z(x, y), and ∆pm(x, y)

respectively. Substituting the electrical power expression (6.21) into the discrete swing
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equation (6.1) and taking the continuum limits yields:

2h

ω

∂2δ

∂t2
+ ωd

∂δ

∂t
= pm + V (

1

|z|
[(∇2V − V (∇δ)2)cosθ

− (2∇V∇δ + V∇2δ)sinθ]−GV 2 (6.22)

where the dependence on ∆ cancels. The PDE (6.22) is also a hyperbolic second order wave

equation but includes nonlinearities that didn’t show up in the constant voltage swing PDE

(6.2). For a particular but also practical choice of θ = π
2
, (6.22) simplifies to:

δ̈ + νδ̇ = −α(2V∇V∇δ + V∇2δ) + β(pm −GV 2) (6.23)

where ν =
ω2d

2h
, α =

ω

2h|z|
and β =

ω

2h

Figure (6.4) shows a numerical simulation for the electromechanical wave propagation

for the angle δ in a continuous 2D system. Initial disturbance is a Gaussian function of

space where its peak is at the center. The voltage magnitude V is allowed to have a random

(uncontrolled) space variation from 0.9 to 1.1 pu. Control design for systems governed by

Figure 6.4: Electromechanical wave propagation in the continuous 2D system

these types of nonlinear PDEs is not an easy task due to the existence of the nonlinear
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terms in the right hand side of (6.23). Optimal Control design for ODE systems is not

difficult. Space discretization can be implemented on the PDE (6.23) to obtain a state space

system of ODEs for which control techniques are well studied in the literature. But before

discretization, since it is a second order type PDE, states x1 and x2 are defined as follows:

x1 = δ, ẋ1 = δ̇

x2 = δ̇, ẋ2 = δ̈

Then (6.23) can be written in the form:

ẋ1 = x2 (6.24)

ẋ2 = −νx2 − α(2V A1V A1 + V A2)x1 + β(pm −G(V ).(V ))

where ∇ = A1 and ∇2 = A2 are the discretization matrices and

(V ).(V ) =


V1 0 · · ·

0
. . . 0

0 · · · VN



V1

...

VN



88



Chapter 7

Optimal Control of Droop Controlled

Inverters in Islanded Microgrids

A microgrid is an interconnected low voltage group of devices consisting of distributed energy

resources (DERs) and loads. It is typically seen by the main grid as a single controllable entity

and it connects or disconnects to the main grid on previously defined events and therefore

works in grid connected or islanded mode respectively [24]. DERs can be either AC resources

such as wind turbines or DC resources such as solar panels and, for both cases, AC/AC or

DC/AC voltage source inverters are needed to ensure network synchronization. A microgrid

may consist of a wind turbine, solar energy resource, storage device and loads connected in a

logical bus (or ring) as shown in Figure 7.1. Microgrids facilitate distributed generation and

high penetration of renewable energy sources and hence increase power quality and reliability

of electric supply [3]. Fault events within the connection with the main grid could lead to

an islanded mode of operation [28].

Frequency control is needed in both grid connected and island modes. Control strategies

for island modes are discussed in [49] where it was shown that the forced islanding of the

microgrid can be performed safely under several different power importing and exporting

conditions. They also showed that management of storage devices are essential to implement

successful control strategies. In this chapter we take advantage of the existence of storage

devices to provide a desired feasible control flexibility to respond to renewable energy sources

that do not have a well predicted power generation behavior. In a grid connected mode, the
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Figure 7.1: Microgrid basic elements

microgrid - depending on the amount of power generated and consumed - acts as either a load

when the power consumption within the microgrid exceeds the supply, or as a generator when

the supply exceeds the consumption. The latter case is called power penetration where the

grid injects power to the main grid [43]. Although this penetration reduces the overall amount

of power needed to be supplied by the main grid, the fluctuating and intermittent nature

of this renewable generation causes variations of power flow that can significantly affect

the operation of the electrical grid and causes frequency instabilities [31]. Wind generation

for instance is a growing renewable energy resource but a known challenge is to effectively

integrate a significant amount of wind power into the power network [22].

Figures (7.2) and (7.3) show a 24 hours simulation of power consumption and supply

for two households that use solar energy resources.The black curve is the amount of power

supplied by the main grid, the blue curve is the household consumption while the red curve

is the generated power from the solar energy resources. The simulation starts at 12:00 am

at night where there is no solar energy generation so the power consumption equals exactly

the power supplied by the grid. In the morning, the solar energy generator starts generating
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Figure 7.2: Penetration due to Solar Energy Generation in Home 1

power and therefore the main grid supply decreases. The maximum solar energy generation

occurs in the afternoon time where the grid supply becomes negative, which means that this

household is now injecting power into the main grid and therefore is seen as a generator.

So the problem of interest is how to use the droop values at the inverters in order to

achieve frequency stability around the nominal value. In this chapter we design the optimal

controller for the islanded mode while the grid connected mode will be analyzed in future

work. Many control strategies have been discussed in the literature, but they assume either

linear models or linearized ones. In [38] and [10], a control scheme based on droop concepts to

operate inverters feeding a standalone ac system is presented. Some droop control methods

are proposed in [41], [30], and [54]. Here we develop an optimal control algorithm for the

nonlinear model formulation.
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Figure 7.3: Penetration due to Solar Energy Generation in Home 2

7.1 Microgrid Model

In a microgrid like the one shown in figure (7.5) that includes N inverters, the electrical

active power injected into the network at the ith inverter is given by [32]

Pe,i =
N∑
j=1

EiEj[Bij sin(δi − δj) +Gij(δi − δj)], (7.1)

where Ei, Ej are the nodal voltage magnitudes at inverters i and j respectively, δi, δj are the

nodal voltage phases at inverters i and j respectively, Bij, Gij are the real and imaginary

parts of yij = Bij + jGij respectively, where yij is the ijth entry in the nodal admittance

matrix Y .

For a pure inductive admittance matrix Y , (7.1) becomes:

Pe,i =
N∑
j=1

EiEjBij sin(δi − δj) (7.2)

92



In frequency droop control, the power demand changes the frequency ωi at inverter i by

ωi = ω∗ − (diPe,i − P ∗i ), (7.3)

where ω∗ is the nominal frequency, P ∗i is the nominal active power injection at inverter i and

di is the ith droop coefficient. The frequency droop controller (7.3) can be written as

δ̇i = P ∗i − diPe,i, (7.4)

where δ̇i = ωi − ω∗ is the frequency deviation from the nominal frequency ω∗ at inverter i

[70].

Substituting (7.2) in (7.4) gives the dynamics:

δ̇i = P ∗i − di
N∑
j=1

EiEjBij sin(δi − δj), (7.5)

δi(0) = δ0
i ,

It has been shown by [70] that for a microgrid model whose elements are connected in parallel

as shown in figure (7.5) and described by (7.5) is equivalent to a network of n Kuramoto

phase coupled oscillators model given by [35]:

δ̇i = Ωi − di
N∑
j=1

aij sin(δi − δj), (7.6)

where δi ∈ S1 (the unit circle) is the phase of oscillator i, Ωi is the natural frequency, aij is

the coupling strength between oscillators i and j, and di is a the ith oscillator coefficient. A

Kuramoto oscillator network is shown in figure (7.4).

In the next section we show the existence of the optimal control problem.
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7.2 The optimal control Problem formulation and

existence of solution

In this section, we use the approach discussed in [39] to show the existence of solution. Let

r(t) =

∣∣∣∣ 1

N

N∑
i=1

ejδi(t)
∣∣∣∣ quantify the synchrony in the network such that r(t) = 1 refers to a

perfectly synchronized network while r(t) = 0 means there is no synchronization [73].

So the optimization problem is:

sup
D∈U

J(D) =
∫ T

0
r2(δ,D)dt (7.7)

=
∫ T

0

1

N2

[
N∑
j=1

sin(δj)
2 +

N∑
j=1

cos(δj)
2

]
dt,

subject to the constraints:

δ̇i = P ∗i − di
N∑
j=1

EiEjBij sin(δi − δj),

δi(0) = δ0
i ,

where δ = [δ1, · · · , δN ]T is the phase vector at nodes 1, · · · , N and is also called the states

vector, D = [d1, · · · , dN ]T is the vector of droop coefficients at nodes 1, · · · , N and is also

called the controls vector. A practical constraint for D is that it should be bounded, i.e.

‖D‖ ≤ C for some constant C where ‖ · ‖ is the Euclidean norm, so U in (7.7) is the set of

feasible controls defined as:

U := {D ∈ RN : ‖D‖ ≤ C} (7.8)

Theorem 7.1. A solution exists for the optimization problem (7.7).

Proof. Let D∗ denotes the optimal control vector when they exist and δ∗ denotes the

corresponding optimal states vector. Choose a sequence {Dn} in U such that

J(Dn) = max
D∈U

J(D) (7.9)
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U is a closed and bounded subset of RN , then there exists a subsequence Dn that converges

to an element D∗ ∈ U . For a fixed and finite final time T , and bounded states derivatives, the

states δni corresponding to the controls Dn are then uniformly bounded and equicontinuous,

which implies (by Arzela–Ascoli Theorem) that there exists a subsequence {δn} and a

continuous function δ∗(t) such that δn(t) uniformly converges to δ∗(t), then the following

is true:

∫ T

0

dv(t)

dt
δ∗i (t)dt = −

∫ T

0

v(t)
dδ∗i (t)

dt
dt (7.10)

= −
∫ T

0

v(t)

(
P ∗i − d∗i

N∑
j=1

EiEjBij sin(δ∗i − δ∗j )

)
dt,

for all v ∈ C∞(0, T ). Then δ∗i is absolutely continuous and satisfies [17]:

dδ∗i
dt

= P ∗i − d∗i
N∑
j=1

EiEjBij sin(δ∗i − δ∗j ) (7.11)

almost everywhere, that is δ∗ corresponds to D∗. Finally:

J(D∗) =
∫ T

0
r∗(t)2dt

= lim
n→∞

∫ T
0
rn(t)2dt

= lim
n→∞

J(Dn)

= supD∈U J(D)

So the optimal control exists and the theorem is proved.

In the next section, the solution of the optimal control problem is computed.

7.3 Solution of the Optimal Control Problem

Let g(δ,D) := δ̇ be a column vector function and f(δ,D) = r2 be a scaler function where

r is defined in (7.7), then we define the adjoint row vector function y = [y1, · · · , yN ] that
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satisfies [40]:

ẏ = −ygδ(δ,D)− fδ(δ,D) (7.12)

y(T ) = 0 (7.13)

where fδ denotes a row vector of length N of the partial derivatives of f with respect to the

vector δ and gδ denotes an N ×N Jacobean matrix:

gδ(δ,D) =


dδ̇1
dδ1

· · · dδ̇1
dδN

:
. . . :

dδ̇N
dδ1

· · · dδ̇N
dδN

 (7.14)

Using (7.5), the expression for gδ(δ,D) can be written as:



N∑
j=1

d1E1EjB1j cos(δ1 − δj) −d1E1E2B12 cos(δ1 − δ2) ...

−d2E2E1B21 cos(δ2 − δ1)
N∑
j=1

d2E2EjB2j cos(δ2 − δj) ...

:
. . . :

−dNENE1BN1 cos(δN − δ1) ...
N∑
j=1

dNENEjBNj cos(δN − δj)


By differentiating f w.r.t. δ, the ith component of fδ is:

fδi(δ,D) =
2

N2

N∑
j=1

sin(δj) cos(δi)− sin(δi) cos(δj)

=
2

N2

N∑
j=1

sin(δj − δi) (7.15)
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Figure 7.4: A Kuramoto oscillator network

Then the ith component of (7.12) can then be written as:

ẏi =
N∑

j=1,j 6=i

(yj − yi)diEiEjBij cos(δi − δj)

− 2

N2

N∑
j=1

sin(δj − δi) (7.16)

Now we will find the optimal control D in terms of the adjoint variable y. Using the

maximum principle theory, we define the Hamiltonian [51]:

H(t, δ,D, y) = yg(t, δ,D) + f(t, δ,D) (7.17)

Differentiating H w.r.t. the control D yields:

dH(t, δ,D, y)

dD
= y

dg(t, δ,D)

dD
(7.18)

Finally the optimal control D∗ is obtained when
dH

dD
= 0, or :

y
dg(t, δ,D∗)

dD
= 0 (7.19)

In the next section we present simulation results of operating such systems in practice.
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Figure 7.5: A microgrid of 2 paralleled inverters and a load

7.4 Simulation Case

The microgrid shown in figure (7.1) can be mathematically viewed as the parallel circuit

shown in figure (7.5). It includes two inverters and a load. Microgrid parameters are shown

in table (7.1). The load in this case scenario suddenly changes from 2.5 KW to 5 KW at

t = 2 and then back to 2.5 KW at t = 4.

Table 7.1: Microgrid Parameters

Parameter Value

Load Active Power (for t ∈ [0, 2]) -2.5 KW
Load Active Power (for t ∈ [2, 4]) -5 KW
Load Active Power (for t ∈ [4, 6]) -2.5 KW

Nominal Frequency 60 Hz
Line inductance between bus 1 and 2 0.7 mH
Line inductance between bus 2 and 3 0.5 mH

Power ratings for inverter 1 4 KW
Power ratings for inverter 2 5 KW

Nominal Voltage for inverter 1 120 V
Nominal Voltage for inverter 2 122 V

Before solving for the optimal problem discussed in the last section, let us demonstrate

the case in which the droop coefficients are constants such that d1 = 1/2000 and d2 =

1/3000. Using the microgrid data in table (7.1), we get the results for frequency, active

power generation and angles shown in figures (7.6), (7.7) and (7.8) respectively.

As we see, while constant drops can bring the system frequency close to 60Hz, it is still

not clear how to choose the best and most efficient values. So what are the optimal values

for the droops is what we show in this section. Using the same microgrid model and the

same parameters, we solve the optimization problem in section 4 to find the optimum set

of droop coefficients. Figure (7.9) shows the frequency measured at inverter 1 while figure
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Figure 7.6: Frequencies measured at inverter1

Figure 7.7: Active Power generated from inverters 1 and 2

99



Figure 7.8: Angles for inverters 1 and 2

(7.10) shows the active power supplied by the two inverters over time and there we can see

the performance of our optimal control algorithm.

We have described a distributed optimal controller for an islanded microgrid with a

Kuramoto oscillators nonlinear model. We have borrowed results from the optimal control

theory area, namely, the maximum principle optimization theory. We formulated the

objective as an optimal control problem and we showed that a solution exists and found

it. Finally, we presented a simulation case to illustrate the optimal controller performance.
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Figure 7.9: Frequencies measured at inverter1

Figure 7.10: Active Power generated from inverters 1 and 2
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Chapter 8

Conclusions

New methods that make POD more accurate are investigated. In chapter 2, POD is applied

locally to clusters instead of applying it to the global system. Each cluster contains relatively

close in distance behavior within itself, and considerably far with respect to other clusters.

Three different clustering schemes in time, space and space-time are introduced. For time

clustering, time snapshots of the solution are grouped into clusters where the solution

exhibits significantly different features and a local basis is pre-computed and assigned to

each cluster. Space clustering is done in a similarly for the space vectors of the solution

instead of snapshots, and finally space-time clustering is applied through a hybrid clustering

scheme that combines space and time behavior together. Our methods are applied to reduce

a nonlinear convective PDE system governed by the Burgers’ equation for fluid flows over

1D and 2D domains. The proper orthogonal decomposition without the usual integral or

inner product constraints is extended to general Hilbert spaces, such as Sobolev spaces, using

functional analytic methods.

Nonlinear systems of quadratic type nonlinearity with the presence of a linear term are

the reduced order finite dimensional version of the fluid flow systems described by the Navier

Stokes equations. The one dimensional version of the Navier Stokes PDE reduces to the one

dimensional Burgers’ equation. In chapter 3, an analytical solution is presented for the one

dimensional quadratic system with homogeneous type Dirichlet Conditions. The resulting

finite dimensional nonlinear system for both PDEs has the same structure, hence the result

in this note applies also to the Navier Stokes system. The same chapter includes deriving the
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POD model reduction, Galerkin projection, and finally the nonlinear optimal control design

for the 1D Burgers equation PDE. Explicit expressions for the adjoint and state equations

are derived in order to avoid numerical instabilities. The nonlinear control design is shown

to be significantly better than the linearized one when the nonlinearities in the system are

dominant.

In chapter 4, complete and detailed approach for the Orthogonal Locality Preserving

Projections (OLPP) modes computation for the incompressible Navier Stokes PDE that

governs the dynamics of the NACA 0015 airfoil fluid flow problem is presented. Close

snapshots in the full order model are forced to stay close in the reduced order model by

defining an optimization problem that preserves local distances. The POD reduced model

is computed for the same problem. The PID closed loop flow separation control problem is

shown in which fluid suction on part of the airfoil boundary is used to control flow separation

on the boundary layer.

The heat equation is used as an application of a linear PDE system. The building sector

in the United States consumes a large part of the energy used and is responsible for nearly

40% of greenhouse gas emissions. It is therefore economically and environmentally important

to reduce the building energy consumption to realize massive energy savings. In chapter 5,

a method to control room temperature in buildings is proposed. The approach is based

on a distributed parameter model represented by a three dimensional (3D) heat equation

in a room with heater/cooler located at ceiling. The latter is resolved using finite element

methods, and results in a model for room temperature with thousands of states. The latter

is not amenable to control design. A reduced order model of only few states is then derived

using POD. A Linear Quadratic Regulator (LQR) is computed based on the reduced model,

and applied to the full order model to control room temperature.

Sudden disturbances in large electrical power networks cause electromechanical oscilla-

tions that have been modeled as spatially continuum systems that follow the dynamics of

a second order nonlinear wave equation with constant voltage assumptions. In chapter 6,

the optimal control problem is solved for both the constant voltage continuum system and

the generalized time-space voltage varying PDE. First the mechanical power is used as the

control input and then the varying voltage magnitude is used as the control input.
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For an islanded microgrid modeled by a Kuramoto oscillators nonlinear model, the

distributed optimal controller is designed in chapter 7 using the maximum principle

optimization theory. Synchrony is quantified in terms of phases and droop coefficients at the

inverters in the microgrid and then it is maximized. The solution existence of the distributed

optimal control problem is proved and the solution is found. Performance is evaluated in a

simulation case.
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