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ABSTRACT 
 

What structures systems across the landscape and over time has long been a focus of 

ecosystem ecology. Together, abiotic and biotic components interact to shape the flow of 

nutrients and energy through a system. My Ph.D. explores how small mammals directly 

and indirectly affect ecosystem structure and function using a manipulation experiment in 

an old-field system in East Tennessee. Despite previous research showing herbivores 

have large and sustained impacts on ecosystems, small mammals, specifically, are oft 

overlooked despite their ubiquitous presence. Specifically, I will examine how small 

mammals contribute to above and belowground community structure, nutrient cycling 

and decomposition, and how they influence an ecosystem’s stability in response to fire 

disturbance. By manipulating their presence, I can explore how a biotic ecosystem 

component directly structures an ecosystem and indirectly by examining an interaction 

with an abiotic disturbance. 
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INTRODUCTION  
 Ecosystem structure is driven by abiotic factors including climate and soil type, as 

well as biotic components and their interactions. These drivers of ecosystem structure 

vary both spatially and temporally. For example, abiotic disturbances such as hurricanes 

and wildfires influence ecosystem structure and function by massive, immediate removal 

or addition of biotic material (Lodge and McDowell 1991; Gardner et al. 1992) and are 

most common during the autumn (hurricanes) or summer (fires) season in the northern 

hemisphere (Michener et al. 1997; McKenzie et al. 2011). Similarly, herbivores 

substantially acquire and redistribute nutrients in ecosystems through their continuous 

consumption of net primary productivity (Frank and McNaughton 1992; Augustine et al. 

2003; Martin and Wilsey 2006) and addition of nutrients through waste deposition (Clark 

et al. 2005; Habeck and Meehan 2008), throughout the year and across continuous spatial 

scales. Therefore, understanding how the abiotic and biotic components of ecosystems 

act individually and together to regulate immediate and long-term structure and function 

is increasingly important as human activity across the landscape increases. 

 Herbivory can be viewed as a chronic biotic ecosystem disturbance with variable 

effects on plant communities. Although herbivores harvest large amounts of aboveground 

biomass in forests—even more in grasslands (Frank and McNaughton 1992, Augustine et 

al. 2003)—and can alter plant community composition (e.g. Howe et al. 2002, 2006), the 

direction of the plant community response to herbivory is not always consistent. While 

herbivores tend to selectively graze on more palatable, and therefore higher quality 

(lower carbon:nitrogen and lignin:nitrogen) plant material, herbivory does not always 

select for a recalcitrant landscape. For instance, early successional plants can positively 

respond to foliar herbivory through compensatory growth and outcompeting 

establishment of later successional species with poorer quality litter (McNaughton et al. 

1997; Augustine and McNaughton 1998). Conversely, herbivores can drive succession 

when high quality plants are selectively grazed and more recalcitrant, herbivory-resistant 

species colonize (Ritchie et al. 1998; Bardgett and Wardle 2003). However, the responses 

to herbivores are not limited to plant community composition. Through these changes 

aboveground, herbivory can lead to changes in belowground community structure (e.g., 
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Wardle et al. 2001; Veen et al. 2010; Niwa et al. 2011; Lessard et al. 2012; Gergocs and 

Hufnagel 2016) and function (e.g., Bagchi and Ritchie 2010; Chomel et al. 2016). 

Therefore, herbivores are one example of the biological community that can alter 

ecosystem structure through changes in above and belowground structure and processes. 

 While long-term abiotic and biotic conditions including soil type, precipitation 

patterns, growing season, and herbivory all influence ecosystem structure directly 

through controls on primary production (e.g., Grimes 1979; McIntyre et al. 1995; 

Bardgett and Wardle 2010), short-duration abiotic events also influence the movement of 

energy and nutrients through an ecosystem (Gardner 1992; Michener et al. 1997; 

McKenzie et al. 2011). In particular, discrete, high-intensity events such as windstorms or 

wildfires can cause massive mortality while simultaneously adding a large influx of 

nutrients. For fires, the degree of mass loss and nutrient volatilization depends on fire 

regime (i.e., intensity, frequency, and season), which in turn, depends on ecosystem 

properties such as regional climate but also fuel quantity and quality. Since herbivores 

alter plant communities, it follows they also alter fuel loads and should indirectly alter 

fire patterns. Across grassland systems, for instance, ungulates and other large herbivores 

often alter woody-grass dynamics by reducing the fine fuel quantity provided by grasses 

which feeds back to alter fire frequency and severity (e.g., van Auken 2000; Gordijn et al. 

2012). With anthropogenic caused changes to global climate patterns, including changes 

in precipitation regimes, increases in severity and intensity of storms and lightning 

occurrences, combined with decades-long fire suppression, it is important to 

understanding the effects of both biotic and abiotic controls and their interactions on 

short and long-term ecosystem structure and function.  

Key questions 

 My dissertation will address the overarching question: how do rodents directly 

influence ecosystem structure and how do aboveground changes influence a fire 

disturbance? The chapters of my dissertation will address three specific research 

questions. Chapter 1 explores the influence of rodents on above- and belowground 

communities and ecosystem functioning through manipulation of rodent presence and 
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assessing the (1) plant community standing biomass, composition, and structure, (2) the 

soil community bacterial and fungal abundance, (3) soil microbial extracellular enzyme 

activity, and (4) potential net nitrogen mineralization. Chapter 2 further analyzes the 

effects of rodents on ecosystem structure by examining whether rodent-driven changes in 

the aboveground community can alter a fire disturbance pattern. Chapter 3 will expand 

the investigation of how rodents influence ecosystem structure by exploring whether 

rodent exclusion alters decomposition processes at a small spatial scale through the 

creation of a home-field advantage for litter decomposition. 

In chapter 1, I explored how rodents influence above- and belowground community 

structure and function by using an exclosure experiment and measured the response of 

the plant community, soil fungal and bacterial abundance, microbial activity, and 

potential net nitrogen (N) mineralization. I found functional group composition differed 

between small mammal treatments whereby C3 graminoids dominated exclosure plots 

more than access plots in both foliar cover and biomass. I found rodent exclosure had no 

effect on bacteria and fungi abundance nor did exclusion affect potential nitrogen 

mineralization. However, I did find that extracellular enzyme activity was higher when 

rodents were excluded. My findings indicate that rodents alter the aboveground plant 

community and appear to slow ecosystem processes. 

 In chapter 2, I explored whether rodent-driven changes in the plant community 

alter the way a fire disturbance moved through my system. I found exclosure plots had 

3.6 times more ground area burned than access plots. While there was no difference in 

the composition or structure of our plant community of the previous season (measured 

mid-summer), biomass measurements taken in the fall two years ago did differ and 

helped to explain the difference in burning observed. In particular, increased C3 

graminoid biomass explained about sixty percent of the burn pattern. Furthermore, while 

I found no difference in the plant community during the previous growing season, I found 

the access and exclosure communities did differ during the growing season following the 

burn. Richness was nineteen percent higher in exclosures and species and functional 

group composition differed with graminoid cover, in particular, increasing in exclosure 

plots from pre- to post-burn seasons. These results highlight the important role rodent 
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consumers play and highlight that their impacts on community phenology and 

productivity should be considered when using fire as a management tool. 

In chapter 3, I explored whether rodents can create a home-field advantage for litter 

decomposition. Understanding the feedbacks between plants and soil communities is an 

exciting new (relatively) area of ecosystem research. Previous research indicates that 

plant litter often decomposes faster in the habitat where it was produced than in ‘other 

habitats’ because the decomposition communities in the home habitat have developed 

while decomposing the litter from that habitat; this phenomenon is known as ‘home field 

advantage’ (HFA). HFA has been shown in disparate ecosystems where, for example, 

leaf litter from a forest decomposes faster in a forest than in a grassland (Veen et al. 

2014). However, fewer studies have focused on whether HFA can work within an 

ecosystem. Since previous work in my system found that rodents altered plant 

community structure and soil function, decomposition may also vary when rodents were 

present or absent. Further, rodent presence may select for a soil community that is most 

efficient at decomposing litter produced when rodents are present—an HFA of rodent 

presence. To determine if rodents can create an HFA for litter decomposition I tested 

whether litter from access treatments decomposes faster in access plots (‘home’) or in 

exclosure plots (‘away’) and vice versa. I found no litter by site interaction indicating 

rodents do not create an HFA. However, I did find access plots had higher decomposition 

rates compared to exclosure plots and access litter decomposed faster than exclosure 

litter—with initial access litter bags having a higher nitrogen content than initial 

exclosure bags. These results indicate that while rodents do not appear to create a home-

field advantage, they do increase decomposition rates overall through differences in litter 

quality and through some change at the plot level. 

Study System 

All chapters of my dissertation take advantage of a long-term manipulation 

experiment. This study site is located on Freels Bend part of the Oak Ridge National 

National Environmental Research Park near Oak Ridge, Tennessee (35º58’ N, 84º17’W). 

The site was abandoned from agricultural use in 1943 and has been maintained as 
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wildlife habitat since 2000. This site was burned with a low intensity fire on 22 March 

2008 prior to establishing the experiment. The soil is classified as a Typic Hapludult. 

Precipitation is evenly distributed throughout the year with an annual mean of 1360 mm. 

January minimum temperatures average 3°C and July maximum temperatures average 

31°C. Common herbaceous plant species include tall goldenrod (Solidago altissima), 

blackberry (Rubus sp.), white cornbeard (Verbesina virginica), trumpet creeper (Campsis 

radicans), sericea (Lespedeza cuneata), brome grass (Bromus sp.), yellow crownbeard 

(Verbesina occidentalis), clover (Trifolium sp.), broomsedge (Andropogon virginicus), 

and orchard grass (Dactylis glomerata). The most common small mammals at our site are 

the hispid cotton rat (Sigmodon hispidus), Microtus species, and Peromyscus species. 

 In March of 2008, twenty 4 m × 8 m rectangular plots were constructed in an old-

field and randomly assigned ten plots to small mammal exclosure and ten plots to no-

exclosure (i.e., access plots) treatments (Figure 1). Plot perimeters consisted of a 

galvanized hardware cloth fence (122 cm width, 0.64 cm mesh) sunk 40 cm below 

ground and extending 82 cm above ground. Fencing depth is sufficient to exclude 

burrowing rodents. We installed aluminum flashing (36 cm width) on the upper portion 

of the fence to exclude climbing small mammals. Holes (15 cm × 30 cm) were cut at 

ground level around the perimeter of the access plots to allow passive entry of rodent-

sized animals while the exclusion plots remained unmanipulated. For the duration of the 

study there was no evidence of rodent activity in the exclusion plots. For multiple years, 

we assed the plant community in our treatments by measuring plant foliar cover in 2008, 

2009, 2011, and 2012. We measured species-specific foliar cover with a modified Braun-

Blanquet cover class scale (Braun-Blanquet 1932) with six categories: 1 = <1%, 2 = 1-

5%, 3 = 5-25%, 4 = 25-50%, 5 = 50-75%, 6 = 75-100%. The foliar cover of forbs, C3 

graminoids, C4 graminoids, nitrogen fixers, and woody species were summed for 

individuals in the different functional groups (Moorhead et al. in press). 
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Figure 1. Aerial and ground views of field site (A) Google Earth image of Freel’s Bend 

study site showing aerial image of access (“A”) and exclosure (“X”) plots. Area 

containing plots within mowed perimeter is roughly 60 m × 60 m. (B) Photograph of two 

of the twenty 4 m × 8 m rectangular rodent manipulation plots established in an old-field 

community. Plot perimeters consisted of a galvanized hardware cloth fence sunk 40 cm 

into the soil profile and extending 82 cm above the soil surface. We installed aluminum 

flashing on the upper portion of the fence to exclude climbing rodents. Holes were cut in 

half of the plots at ground level for rodent-sized animal access. 
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Abstract  

 Herbivores modify their environment by consuming plant biomass and redistributing 

materials across the landscape. While small mammalian herbivores, such as rodents, are 

typically inconspicuous, their impacts on plant community structure and chemistry can be 

large. We used a small mammal exclosure experiment to explore if rodents in a 

southeastern old field directly altered the aboveground plant species composition and 

chemistry, and indirectly altered the belowground soil community composition and 

activity. In general, when rodents were excluded, C3 graminoids increased in abundance, 

contributing towards a shift in plant species composition relative to plots where rodents 

were present. The plant community chemistry also shifted; litter fiber concentration and 

carbon:nitrogen were higher, whereas litter nitrogen concentration was lower in exclosure 

plots relative to access plots. While microbial community enzyme activity increased 

when rodents were excluded, no significant changes in the fungal:bacterial ratio or 

potential nitrogen mineralization occurred between treatments. Our results show that 

rodents can rapidly influence aboveground plant community composition and chemistry, 

but their influence on belowground processes may require plant inputs to the soil to 

accumulate over longer periods of time. 
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Introduction 

 Understanding how abiotic factors such as temperature and precipitation shape large-

scale plant distributions, diversity patterns, and ecosystem function remain a focal 

interest of ecology (Whittaker 1960; Meentemeyer 1978). However, biotic factors, 

including plant-herbivore interactions (Bardgett and Wardle 2003), often shape local-

scale diversity patterns and associated functions. Globally, herbivores consume 10 to 

20% of net primary productivity (NPP) in forests and over twice as much in grasslands 

(Frank and McNaughton 1992; Augustine et al. 2003; Howe et al. 2006; Martin and 

Wilsey 2006; Borer et al. 2014). Thus, via their consumption of plants, herbivores 

influence the amount and quality of materials that enter the soil system, having large 

impacts on the functioning of ecosystems. 

 In addition to the removal of plant biomass, herbivores can selectively consume high-

quality plants leading to temporal shifts in the nutrient content of plants in the community 

(Ritchie et al. 1998; van Wijnen et al. 1999). Further, herbivory can induce plant defenses 

that can bind nutrients into complexes that are difficult both for herbivores to digest and 

decomposers to degrade (e.g. Schultz and Baldwin 1982; Agrawal et al. 1999). Lower 

quality litter slows microbial decomposition and thus can slow ecosystem function 

(Pastor et al. 1993; Sirotnak and Huntly 2000). However, at larger scales, herbivores can 

also stimulate nutrient cycling and plant productivity (e.g., Bardgett and Wardle 2003; 

Clark et al. 2005) by redistributing nutrients on the landscape (Day and Detling 1990; 

Afzal and Adams 1992; Willot et al. 2000). In particular, small mammals can stimulate 

soil nutrient cycling through fecal deposition (Bakker et al. 2004) and by mixing soil and 

litter with their rooting and burrowing behaviors (e.g., Hole 1981; Brown and Heske 

1990; Huntly and Reichman 1994). 

 Some of the characteristics that make plants generally more palatable to herbivores, 

such as a high nitrogen concentration, are also characteristics that make leaf material 

more labile to decomposers. Thus, herbivore-mediated changes in plant community 

composition should impact the decomposer community and its function in soils (Wardle 

et al. 2001; Sariyildiz et al. 2005; Cornwell et al. 2008; Bagchi and Ritchie 2010; Lessard 
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et al. 2012). As the inputs to the soil system change to an altered chemical quality, the 

soil community may shift its function to produce enzymes that can degrade this new 

complex of molecules (Sinsabaugh et al. 2002) or change from being dominated by fast 

decomposing bacterial dominated to slower decomposing fungal dominated assemblages 

(e.g. Ritchie et al. 1998, Bardgett and Wardle 2003). Thus, via direct changes in plant 

composition (quality) and plant material inputs (quantity), herbivores can indirectly alter 

belowground communities, processes, and ecosystem functioning (Wardle et al. 2001; 

Bagchi and Ritchie 2010; Veen et al. 2010; Niwa et al. 2011; Lessard et al. 2012). 

 Clearly, the influence of herbivores on ecosystems can be complex and variable (e.g., 

Huntly 1991). To explore how rodents alter the above- and belowground composition and 

function of an old-field ecosystem, we used a rodent exclusion experiment and measured 

the response of above-ground (plant community structure and composition, standing 

green plant biomass and litter mass chemistry) and below-ground (soil fungal and 

bacterial gene copy numbers, extracellular enzyme activity (microbial activity), and 

potential N-mineralization (nutrient cycling and an index of soil nitrogen available for 

plant uptake)) variables. We predicted that excluding rodents from an ecosystem would 

stimulate ecosystem function. Specifically, we predicted that rodent exclusion would: (1) 

directly increase aboveground plant biomass as well as cause a shift in plant community 

composition towards more palatable nitrogen fixers and C3 grasses and thereby 

increasing plant community chemical quality, (2) indirectly lead to an increase in soil 

bacteria relative to fungi, extracellular enzymatic activity, and nutrient cycling. 

 

Materials and Methods 

Experimental Design 

 In March 2008, we constructed twenty 4 × 8 m rectangular plots in an old-field 

community and randomly assigned ten plots as rodent exclosure treatment plots and ten 

plots as access plots (the control plots for the experiment). Plot perimeters consisted of a 

galvanized hardware cloth (122 cm width, 0.64 cm mesh) fence sunk 40 cm into the soil 
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profile and extended 82 cm above the soil surface. Fencing depth was sufficient to 

exclude burrowing rodents. We installed aluminum flashing (36 cm width) on the upper 

portion of the fence to exclude climbing rodents. Ten holes (15 cm × 30 cm) were cut at 

ground level around the perimeter of the access plots to allow for passive entry of rodent-

sized animals while the exclusion plots remained unaltered (Fig. 1).  

 To monitor the effectiveness of the exclusion and access plots, we surveyed the 

rodent community across the entire field site twice annually (March and July) inside and 

outside plots from 2008 to 2010, using Sherman live traps in a 10 × 10 square grid with 

traps spaced 10 meters apart. Low recapture rates precluded estimation of densities for 

the species captured, so we report minimum number known alive, averaged between 

trapping periods within years. Microtus pinetorum was absent in 2008 but trapped in 

2009 and 2010 (7 and 17 individuals, respectively). Reithrodontomys humulis and 

Sigmodon hispidus showed similar patterns (0, 10, 3; 0, 3, 40; respectively). Peromyscus 

species were found in 2008 (7) as well as 2009 (3) and 2010 (7). In addition, we set two 

traps inside each of the access and exclusion plots during each trapping period to monitor 

the effectiveness of the rodent barriers. Although captures of rodents were low in the 

access plots, rodent signs in the form of runways, burrows, feces and herbivory were 

obvious. We never caught rodents or observed signs of rodent activity in any of the 

exclusion plots, suggesting that the barriers were effective. To check continued exclosure 

efficacy, we used track plates to measure rodent activity in 2012. We created track plates 

using acetate paper painted with a graphite solution and stapled to sheets of aluminum 

flashing (see Connors et al. 2005). Two plates were placed within each mammal access 

and exclosure plot and collected after 48 hours. At collection, we took pictures of each 

plate. In the lab we used WinFolia 2009a to scan each photo. This program differentiates 

contrast differences between leaves and background color and is often used to measure 

percentage of leaf herbivory. We set the parameters of the program to distinguish black 

and white contrast and recorded the number of black and white pixels using white pixels 

as a proxy of disturbance. Disturbance included smudges from incidental vegetation 

movement (e.g., wind) and mammal activity. We found disturbance events on the plates 

were significantly higher under mammal access (64.61 (8.72); 34.38 (6.24) Mean (SE); F 
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= 9.85, p < 0.05). Further, we saw numerous rodent prints on plates in the access plots, 

but never saw indication of rodent activity on plates from exclusion plots.  

Above-ground Structure and Composition 

 We assessed plant community structure in our treatments by measuring plant foliar 

cover and harvesting plant aboveground biomass in two randomly selected 0.25 m2 

subplots at peak growing season in September 2009. We measured species-specific foliar 

cover with a modified Braun-Blanquet cover class scale (Braun-Blanquet 1932) with six 

categories: 1 = <1%, 2 = 1-5%, 3 = 5-25%, 4 = 25-50%, 5 = 50-75%, 6 = 75-100%. We 

used the median of each foliar cover category value as an estimate of species-specific 

abundance per plot, averaged across the two 0.25 m2 subplots. We calculated the 

Shannon diversity index (H´) from foliar cover data using the median of each cover class 

category as our values of abundance. We then calculated the proportional cover of each 

species and then summed across proportions. We calculated evenness (J´) as H´/ln 

(species richness). Functional group (e.g., forbs, C3 graminoids, C4 graminoids, nitrogen 

fixers, and woody) foliar cover was calculated as summed species-specific foliar cover 

within each functional group. Finally, to determine aboveground biomass we clipped all 

individuals within each 0.5 m2 subplot, sorted them into forbs, C3 graminoids, C4 

graminoids, nitrogen fixers, and woody, and then oven-dried them at 60oC for at least 48 

hours to calculate oven-dry mass. 

Plant and Litter Chemistry 

 During September 2010, we harvested samples of aboveground plants and plant litter 

from each plot to understand how rodent exclusion influenced the relative abundance and 

chemical composition of plant functional groups and litter inputs. We harvested all 

aboveground standing green plant biomass within two randomly located 0.5 m2 subplots 

per plot by clipping at ground level. Standing green biomass was sorted into functional 

groups (woody, C4 graminoids, C3 graminoids, nitrogen fixers, and forbs) for further 

analysis. Litter mass (i.e., senesced plant material) was harvested from standing biomass 

(suspended litter) and from the soil surface (surface litter). Suspended litter mass was 
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collected by gently lifting it out from standing green biomass by moving two open hands 

slowly up from the base to the top of the plant canopy. Surface litter mass was collected 

from the soil surface after standing litter mass and aboveground biomass was removed. 

Prior to further analysis, suspended and surface litter samples were combined into a 

single litter sample for each subplot. Directly after harvest, we dried aboveground green 

biomass and litter mass samples at 60°C for 48 hours. We quantified functional group 

and litter abundance as oven-dried mass (g), after which a portion of each sample was 

ground in a Wiley mill in preparation for foliar chemical analysis.  

 In an attempt to understand how rodent-mediated changes in the plant community 

might influence ecosystem processes, we assayed each plant functional group and litter 

sample separately for foliar chemical properties related to resistance to herbivory and 

decomposition. These properties were carbon (C), nitrogen (N), fiber, and lignin. C and N 

were quantified via combustion analysis using a Thermo Finnigan Flash 1112 elemental 

analyzer (Thermo Finnigan, San Jose, CA, USA). Fiber (cellulose and lignin) and lignin 

were quantified as acid detergent fiber (ADF) and acid detergent lignin (ADL), 

respectively, via sequential extraction in hot acid-detergent using an Ankom 200 Digestor 

(ANKOM Technology Corporation, Fairport, NY).  

 For each replicate plot, we linked functional group biomass with foliar chemical 

properties by calculating an index we call community chemistry. The community 

chemistry (CC) of foliar chemical property j for each plot was calculated as 

𝐶𝐶" = 𝐵%𝑃%

'

%()

 

 where Bi is the proportional biomass relative to total biomass of functional group i, and 

Pi is the assayed value of the foliar chemical property (e.g., % ADF) of functional group 

i.  

Below-ground Structure and Composition 

 Given the strong plant responses to herbivore exclusion reported in the literature, we 

predicted that litter inputs to the soil system would also have changed. Thus, we followed 

up the plant community work with soil measurements in July of 2010. Plots were visually 
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divided into three equal sections and soil cores (0-15 cm, 5 cm diameter) were taken from 

the middle of each section, to minimize edge effects. We combined and homogenized all 

three cores taken per plot. A subsample was frozen for molecular analysis and the rest of 

the samples were kept cool (4oC) until analysis within 24 hours. Soils not used in 

molecular analyses were sieved to 2 mm and gravimetric water content was determined 

by drying a subsample (105oC for 48 hours). Relevant data are shown on a dry mass 

basis. 

 We assessed the composition and activity of the soil community in three ways. First, 

we estimated the relative abundances of fungi and bacteria using quantitative polymerase 

chain reactions (qPCR). To amplify 16s and 18s rRNA genes from bacteria and fungi, 

respectively, we performed PCR analyses using primers 63f and 1087r8 for 16s rRNA 

genes and ITS1f and ITS4r for 18s rRNA genes on a 96-well T-gradient thermocycler 

(Biometra, Goettingen, Germany; see Cregger et al. 2012). Next we assessed microbial 

potential extracellular-enzyme activity by assaying phenoloxidase, peroxidase, β-

glucosidase, cellobiohydrolase, β-xylosidase, α-glucosidase, N acetylglucosaminidase 

(NAGase), phosphatase, and sulfatase. We measured activity using substrates: L-3,4- 

dihydroxphenylalanine (L-DOPA), 4-MUB-β-D-glucoside, 4-MUB-β-D- cellobioside, 4-

MUB-β-D-xyloside, 4-MUB-α-D-glucoside, 4 MUB- N-acetyl-β-D-glucosaminide, 4-

MUB-phosphate, and 4-MUB-sulfate respectively. Phenoloxidase and peroxidase are 

involved in lignin degradation. β-Glucosidase, cellobiohydrolase, β-xylosidase, and α-

glucosidase break down carbohydrates and polysaccharides. NAGase mineralizes 

nitrogen from chitin, phosphatase releases inorganic phosphorus, and sulfatase is 

involved in inorganic sulfur release. We suspended one gram of soil from each sample in 

125 ml of sodium acetate buffer (pH 5) by mixing the slurry on a stir plate for 2 minutes. 

We used eight replicate 96-well plates (clear for phenoloxidase and peroxidase, black for 

other enzymes) in the following ways: clear plates had negative substrate controls and 

negative sample controls; black plates used a similar well set up but also used 8 replicate 

wells for reference standards and quench controls. We incubated plates in a dark 

environment at room temperature and read them using BioTek Gen 5 software on a 

BioTek Synergy HT multi-mode microplate reader according to activity. We stopped 
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reactions in black plates using 25 µl of NaOH prior to reading (see Saiya-Cork et al. 

2002). Finally, we measured the ability of the microbial community to mineralize 

nitrogen (NO3
- and NH4

+) with a potential net nitrogen mineralization incubation (see 

Robertson et al. 1999). We removed a subsample (~ 20 g) of soil from each plot and 

brought it up to field water holding capacity. We incubated all samples in a mason jar 

(25°C in the dark) for 28 days. We extracted samples, 0 day and 28 days, with 2M KCl 

and determined soil nitrate (NO3
-) and ammonium (NH4

+) concentrations on an 

autoanalyzer (SmartChem 200, Unity Scientific, Brookfield, CT).  

Statistical Analyses 

 We used a series of one-way analyses of variance (ANOVA) to examine the impact 

of rodents on plant community structure (biomass, richness, evenness, diversity, and 

plant functional groups), plant and litter chemistry (fiber, lignin and nitrogen 

concentrations, C:N and fiber:N), soil community structure (fungal:bacterial), and soil 

community potential function (extracellular enzyme activity, nitrogen mineralization). 

Response variables that did not meet normality assumptions were log transformed. P-

values <0.05 were considered statistically significant and values between 0.05 and 0.10 

were considered marginally significant.  

 To determine the effects of rodents on plant functional group composition and to 

explore whether the composition of belowground enzymes contributed to overall 

differences in activity between treatments, we conducted a permutational multivariate 

analysis of variance (PERMANOVA) (Anderson 2006). The PERMANOVA tested 

whether the observed variability in plant functional group and extracellular enzyme 

composition between treatments differed from expected variability generated from 

permutational shuffling (10,000 iterations). Functional group foliar cover and microbial 

extracellular enzyme activity were used in the permutational shuffling that generated 

pseudo F-ratios. PERMANOVA tests were conducted on Bray-Curtis similarity 

triangular matrices (Bray and Curtis 1957) generated from transformed (log x + 1) 

functional group-specific relative foliar cover and on extracellular enzyme-specific 

relative activity. A significant pseudo F-ratio from a PERMANOVA indicates between-
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treatment differences in location of functional group or extracellular enzyme 

composition. Likewise, within-treatment differences in dispersion of functional group or 

extracellular enzyme composition in multivariate space could also contribute to a 

significant pseudo F-ratio. As a result, we followed PERMANOVA analyses with a 

permutational analysis of multivariate dispersions (BETADISPER) to test whether, in 

addition to differences in compositional location, there were any differences in 

community dispersion (i.e., variability) within treatments. Finally, we used a principal 

coordinate (PCO) approach to explore how plant functional groups (2009 and 2010) and 

specific enzymes described access and exclosure communities. PCO was performed on 

the Bray-Curtis similarity matrix, which was based on log-transformed (log x +1) 

functional group-specific relative foliar cover, biomass, and extracellular enzyme-specific 

relative potential activity. Plant functional group and extracellular enzyme vectors were 

overlaid to represent their association to the PCO axes and associated rodent treatments. 

We used R version 3.2.2 (R Core Team 2013) and JMP versions 9 and 11.1 for statistical 

analyses. 

Results 

 When rodents were excluded, total aboveground plant biomass in 2009 was slightly 

(19%) higher than in plots where rodents were present, a marginally significant effect. 

Rodent exclusion resulted in 2.6 × greater foliar cover of C3 graminoids while woody 

foliar cover was 4.4 × greater in access plots—although differences in these groups were 

marginally significant—and there were no changes in foliar cover of nitrogen fixers, 

forbs, or C4 graminoid plant species (Table 1, Fig. 2a). We found no difference between 

rodent treatments in plant richness, evenness, and diversity (Table 1). However, the effect 

of rodents on the plant community was significant in 2010; C3 biomass was 672% greater 

in exclosure plots compared to access plots while forb cover was 140% greater in access 

plots but C4, woody, and nitrogen fixer biomass did not differ between treatments. We 

find similar patterns between years in composition as well. We found rodent exclusion 

only marginally influenced the compositional similarity of the plant functional group 

community in 2009 (Fig. 3a, Pseudo F = 2.86, P (perm) = 0.07). However, in 2010 we  
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Table 1. Means, standard errors, F, and P-values for all above- and belowground 

responses in small mammal access and exclosure plots. Significant P-values (< 0.05) are 

bolded. Marginal P-values (0.05 – 0.10) are shown in italics. 

 

 Access Exclosure F P 

Plant community 2009     

Woody cover (%) 9.30  ± 3.23 2.10 ± 1.47 3.63 0.07 

C4 graminoid cover (%) 37.55 ± 1.50 42.58 ± 5.97 0.48 0.50 

C3 graminoid cover (%) 1.55 ± 1.50 3.95 ± 1.87 3.23 0.09 

Nitrogen fixer cover (%) 12.83  ± 3.92 21.88 ± 6.60 1.39 0.25 

Forb  cover (%) 37.75 ± 4.06 41.13 ± 5.94 0.22 0.65 

Total cover (%) 

Standing biomass 

98.98 ± 7.52 

354.71 ± 22.29 

111.63 ± 8.45 

420.50 ± 25.59 

1.25 

3.76 

0.28 

0.07 

Species diversity 1.79 ± 0.05 1.72 ± 0.06 0.65 0.43 

Species evenness 0.75 ± 0.02 0.74 ± 0.02 0.30 0.59 

Species richness 11.00 ± 0.45 10.60 ± 0.60 0.29 0.60 

Plant Community 2010     

Woody biomass (g) 17.07 ± 5.49 12.31 ± 3.19 0.53 0.48 

C4 biomass (g) 104.09 ± 39.39 56.83 ± 19.64 0.07 0.79 

C3 biomass (g) 38.97 ± 14.35 301.0  ± 39.90 24.11 <0.05 

N-fixer biomass (g) 180.40 ± 66.50 64.31 ± 25.66 1.68 0.21 

Forb biomass (g) 102.17 ± 37.19 42.68 ± 17.82 5.41 <0.05 

Total biomass (g) 442.70 ± 44.57 477.27 ± 41.86 0.32 0.58 

Litter biomass (g) 197.69 ± 29.77 186.31 ± 20.27 0.10 0.76 

Green Leaf Chemistry 2010     

ADF (cellulose+lignin, %) 43.10 ± 0.73 45.09 ± 0.59 4.35 0.05 

ADL (lignin, %) 13.05 ± 0.99 11.47 ± 0.59 1.77 0.20 

N (nitrogen, %) 1.57 ± 0.10 1.27 ± 0.11 4.31 0.05 

C (carbon, %) 46.85 ± 0.84 45.51 ± 1.32 0.96 0.34 

C:N 30.64 ± 1.59 38.21 ± 3.37 4.42 0.05 

ADL:N 8.42 ± 0.66 9.43 ± 0.64 1.21 0.29 
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Table 1. Continued 

 Access Exclosure F P 

Microbial community  

(gene copy number/g soil) 

    

Fungal:bacterial 0.81 ± 0.13 0.83 ± 0.15 0.53 0.48 

Fungal abundance 1.89 (105) ± 2.77 (104) 2.50 (105) ± 3.54 (104) 2.10 0.16 

Bacterial abundance 2.54 (105) ± 3.69 (104) 3.12 (105) ± 2.25 (104) 2.91 0.11 

Enzyme activity 

(nmol/hour/g soil) 

    

Phenoloxidase 465.86 ± 44.94 626.88 ± 51.33 5.57 0.03 

Peroxidase 1058.21 ± 156.89 1011.80 ± 146.42 0.05 0.83 

Beta Glucosidase 23.50 ± 8.41 35.92 ± 6.03 2.53 0.14 

Cellobiohydrolase  1.81 ± 1.27 3.95 ± 2.48 5.27 0.04 

Xilosidase 6.59 ± 3.49 8.34 ± 1.50 1.5 0.24 

Alpha Glucosidase 0.88 ± 0.23 1.58 ± 0.33 4.85 0.04 

Nagase  30.21 ± 5.78 43.28 ± 5.53 2.69 0.12 

Phosphatase 55.70 ± 11.67 109.77 ± 17.00 6.88 0.02 

Sulfatase 3.94 ± 0.67 5.58 ± 0.63 3.18 0.09 

Total enzyme activity 1502.92 ± 206.93 1829.03 ± 281.92 0.12 0.74 

Potential nitrogen availability 

(mg/kg/day) 

    

Total (NH4+NO3) 0.41 ± 0.11 0.37 ± 0.15 0.03 0.86 

Nitrate (NO3) 14.92 ± 2.96 18.57 ± 6.11 0.05 0.83 

Ammonium (NH4) -2.66 ± 1.09 -7.35 ± 2.22 3.52 0.08 

Soil moisture (GWC)     

 0.20 ± 0.01 0.23 ± 0.01 6.52 <0.05 
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Figure 2. Effects of rodent absence/presence on (A) 2009 and 2010 aboveground 

community structure; (B) plant leaf chemistry and belowground structure; and (C) 

ecosystem process and function expressed as log (2) of the ratios of means from rodent 

exclusion to access plots. Values below 0 indicate stimulation under rodent acess; values 

above 0 indicate stimulation under rodent exclusion. * P < 0.05, + indicates 0.05 < P < 

0.10. Values for actual means +/- SE and ANOVA results are given in Table 1. 
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 Figure 3. Principal coordinate (PCO) axes illustrating 2009 plant functional group (A), 

2010 plant functional group (B), and extracellular enzyme composition (C) with small 

mammal access (clear circles) and rodent exclusion (filled circles) plots. PCO was 

performed on Bray-Curtis similarity matrix, which was based on log-transformed (log x 

+1) functional group-specific relative foliar cover and extracellular enzyme-specific 

relative potential activity. Plant functional group and extracellular enzyme vectors were 

overlaid to represent their association to the PCO axes and associated rodent treatments.   

-10 -5 0 5 10

-1
0

-5
0

5
10

Nfixer

Woody

Forbs

C3

C4

mammal access
mammal exclosure

Axis 1 (23% of variation explained)

A
xi

s 
2 

(1
9%

 o
f v

ar
ia

tio
n 

ex
pl

ai
ne

d)
A

-10 -5 0 5 10

-1
0

-5
0

5
10

Nfixer

C4
Forbs

Woody

C3

Axis 1 (32% of variation explained)

A
xi

s 
2 

(1
5%

 o
f v

ar
ia

tio
n 

ex
pl

ai
ne

d)

mammal access
mammal exclosureB

-20 -10 0 10 20

-2
0

-1
0

0
10

20

PhenOx

Perox

Phos

NAG

a-Gluc

Sulf

mammal access

mammal exclosure

Axis 1 (25% of variation explained)

A
xi

s 
2 

(1
9%

 o
f v

ar
ia

tio
n 

ex
pl

ai
ne

d)

C



24 
 

found a stronger impact of rodent exclusion on compositional dissimilarity (Fig 3b, 

Pseudo F = 0.259, P (perm) < 0.05). Plant community chemistry also changed when 

rodents were removed. Litter fiber concentration and C:N were 4.6% and 24.7% higher, 

respectively, in exclosure plots relative to access plots, while litter nitrogen concentration 

was 23.6% higher in access plots compared to exclosure plots (Table 1). 

 While we found no change in the soil fungal to bacterial ratio between our treatments 

(Table 1), when rodents were excluded enzyme activity tended to increase. Specifically, 

in exclusion plots, phosphatase activity was 97% higher, phenoloxidase was 35% higher, 

cellobiohydrolase was 118% higher, and α-glucosidase was 80% higher relative to access 

plots (Table 1, Fig. 2b). Sulfatase activity was marginally significantly higher in 

exclusion relative to access plots, whereas xylosidase, β-glucosidase, and peroxidase 

activities were not significantly different between exclusion and access plots. 

Compositional similarity of the belowground community function (microbial 

extracellular enzyme activities) differed between treatments (Fig. 3, Pseudo F = 4.06, P 

(perm) = 0.02). Potential net nitrogen mineralization and nitrification rates were not 

significantly different between the treatments, however, ammonium immobilization was 

marginally higher in exclusion plots (Table 1). 

 Finally, we found no effects of rodent treatments on over-dispersion (2009 plant 

functional group BETADISPER: F = 0.04, P (perm) = 0.85; 2010 plant functional group 

BETADISPER: F = 0.36, P (perm) = 0. 98; extracellular enzyme BETADISPER: F = 

0.57, P (perm) = 0.46). This result indicates that the compositional dissimilarity between 

rodent treatments was a function of rodent treatment effects on compositional location 

(e.g., lack of overlap between plant or enzyme composition in rodent present vs. rodent 

removal plots) rather than on compositional variability (e.g., the amount of over-

dispersion of composition in rodent present vs. rodent removal plots). 

Discussion 

 After three years of rodent experimental manipulation, plant community structure and 

composition shifted as we predicted—toward higher biomass (in 2009) and a community 

with more C3 graminoids in our small-mammal exclusion treatments. In 2009 and 2010, 



25 
 

the cover and biomass of C3 grasses was higher in the exclosure plots than in the access 

plots, a pattern that became stronger in the second year. In 2009, C3 cover was 155% 

higher in exclosure plots and in 2010 C3 biomass was 672% higher in exclosure plots 

than in access plots. This large increase in C3 grasses suggests the plant community is 

shifting toward a newly C3 dominated community composition (Fig. 3). In addition, the 

standing stock of aboveground plant biomass was 19% higher when rodents were 

excluded in the short term (2009). Our findings support previous work showing rodents 

can significantly alter plant communities. For example, when meadow voles (Microtus 

pennsylvanicus) were given access to previously enclosed prairie grassland communities, 

both a legume and C3 grass species were eliminated within 48 months (Howe and Lane 

2004). Similarly, exclusion of small mammals in an annual grassland system in northern 

California led to a 47% increase in aboveground plant biomass and a 90% increase in 

primarily C3 grasses (Peters 2007).  

 Given the plant functional group composition shifted toward higher C3 graminoid 

cover and biomass in the exclosure plots, it is not unexpected we would find both fiber 

and C:N ratios to be higher in the exclosure plots relative to access plots. Furthermore, 

the higher plant leaf nitrogen in the access plots may be a consequence of rodents 

preferentially avoiding plants that are higher in nitrogen concentration because they may 

also be higher in unpalatable secondary compounds—such as alkaloids—which we did 

not measure. Alternatively, changes in the plant community composition may alter 

carbon allocation to the soil community via root exudation, a process that can increase 

microbial activity, nitrogen mineralization, and plant available nitrogen, but we did not 

observe this increase in our study (Wardle et al. 2003, Wardle et al. 2004, Ladygina and 

Hedlund 2010).  

 We predicted that declines in the quality of plant inputs to the soil would lead to an 

increase in the fungal relative to bacterial gene copy numbers; however, we did not see 

differences in fungal and bacterial gene copy numbers. While gene copy numbers give 

insights to what organisms are present in the soil community, they also capture the 

inactive microbial pool (Strickland & Rousk 2010). Thus, these measurements are a 

rather coarse scale measure of microbial community composition and may not have   
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captured changes in the active community. At the same time, the community may have 

stayed constant, but shifted its activity with the changing plant inputs. Finally, old-field 

ecosystems can be relatively nutrient rich (Blue et al. 2011); thus bacteria may still 

dominate the decomposition pathway even if litter entering the system is of lower quality.  

 While the coarse-scale composition of the microbial community remained unchanged, 

the enzyme activity of the soil community was higher in exclosure relative to access 

plots. Rodent exclosures had higher cellulose (cellobiohydrolase), starch (alpha-

glucosidase) organic phosphorus (phosphatase), and lignin (phenoloxidase) degrading 

enzyme activity. Whether enzyme activity reflects what nutrients are available (substrate 

supply) versus what microbes are seeking (microbial demand) remains unknown. 

However, nutrient additions via herbivores or changes in plant communities can increase 

enzyme activities (Riggs & Hobbie 2016). The addition of labile carbon substrates to 

nutrient rich ecosystems can stimulate enzyme activity by alleviating microbial carbon 

limitation (Asmar et al. 1994). When herbivores were removed from the plots, the plant 

community shifted and the carbon inputs to the soil also likely shifted (e.g. Ritchie et al. 

1998; Sirotnak & Huntly 2000). It may be that the aboveground chemical quality 

declined in the exclosure plots which led to an increase in enzyme activity to break down 

the more recalcitrant litter inputs—with the higher phenoloxidase activity in exclosure 

plots possibly providing further support for this hypothesis. 

 Rodents in our system had little impact on potential soil nitrogen mineralization and 

nitrification rates; however, this lack of directional response has been observed in other 

studies (Sirotnak & Huntly 2000; Bakker et al. 2004). Potential nitrogen mineralization 

could be high in the access and the exclosure plots for different reasons: bioturbation of 

the soil or deposition of fecal material by rodents may increase mineralization in the 

access plots to the same extent that changes in the plant composition may increase 

mineralization in the exclosure plots. Bioturbation by pocket gophers increased 

nitrification rates by 186% in an alpine system (Litaor et al. 1996). Herbivores in the 

access plots could have mixed the soil, leading to a release of plant available nutrients 

that we were unable to measure with our potential mineralization assays. An increase in 

mineralization due to soil mixing could lead to an increase in plant chemical quality when 
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rodents were present. Alternatively, total soil carbon and nutrient pools are large and thus 

can be slow to respond to short-term (4–10 years of experimental manipulation) changes 

in plant inputs (e.g., Hungate et al. 1996; Smith 2004). For example, deer exclosures in a 

boreal ecosystem impacted soil nitrogen mineralization, but only after 10 years of 

manipulation (Harrison and Bardgett 2004). Thus, changes in the nitrogen mineralization 

may increase between our treatments over time as the influence of changes in biomass 

inputs and chemistry compounds. 

 Overall, our study shows that rodents can directly and indirectly impact above- and 

below-ground ecosystem properties, even over short 2–3 year time scales. These data 

contribute to a growing body of work demonstrating that vertebrate consumers, both 

large and small, are important components of ecosystems and that their impacts on 

ecosystem function can extend beyond the consumption of plant biomass (Bardgett et al. 

1998, Bardget and Wardle 2003, Wardle et al. 2004, Habeck and Meehan 2008). 

However, consumers and their effects are often excluded or ignored in large-scale 

ecosystem manipulations that aim to understand how ecosystems will function under a 

variety of global changes (but see Borer et al. 2014). If ecologists are to better describe 

and predict what factors will structure ecosystems and their functions across landscapes 

and over time, rodent consumers should be included in both manipulations and models. 
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CHAPTER II 

THE PRESENCE OF RODENTS DECREASES THE EXTENT OF 

BURNING 
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Abstract 

While herbivores and fire individually shape plant communities, each can alter the 

patterns of the other through direct changes to and feedbacks from the plant community. 

It is assumed primary consumers alter fire dynamics through the reduction or alteration of 

plant-derived fuel loads, but this interaction is seldom directly tested. Here, we examined 

whether i) rodent exclusion altered a fire disturbance in an old-field ecosystem, ii) rodent-

driven changes in plant community composition or structure influenced the fire 

disturbance, and iii) changes in the plant community resulted from fire disturbance. We 

found burn extent was 260% greater in plots where rodents were experimentally excluded 

than where they were present. However, we found no indication rodents altered the plant 

community prior to burning in a way that explains this burn response. We also found 

cover of graminoids and species richness increased under rodent exclusion post-fire and 

plant community composition differed between rodent treatments. These results support 

previous work demonstrating fire and consumers alter plant communities and highlights 

that consumers can reduce the extent of the effects of fire. Furthermore, our results 

indicate that rodents, like larger primary consumers, influence fire dynamics and should 

be included when considering fire management of ecosystems. 
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Introduction 

 There is little doubt that herbivores influence the structure and dynamics of plant 

communities (e.g., Frank and McNaughton 1992, Augustine et al. 2003), either through 

selective browsing or biomass removal. Disturbance by fire is, in many ways, similar to 

herbivory—some may even call it pyric herbivory—inasmuch as it removes aboveground 

biomass, sometimes selectively (Bond & Keeley 2005; Michener et al. 1997; McKenzie 

et al. 2011). As a consequence, fire can alter plant populations and communities over the 

short- and long-term (Boerner 1982), and the cascading effects of fire can modify 

successional patterns, re-shape plant community structure, and influence animal 

populations (Ahlgren & Ahlgren 1960; Fox & Fox 1987).  

 In many ecosystems, fire and herbivory rarely act independently but rather interact to 

shape plant communities. Indeed, a growing number of studies examine how the response 

of plants depends on whether fire and herbivory interact or operate independently (e.g., 

Collins & Calabrese 2012; Sankaran et al. 2008; Belsky 1992). The response of a plant 

community to fire and herbivory may depend on the order in which fire and herbivory 

occur. For example, some studies highlight how fires can affect plant community 

composition and in turn the behavior of herbivores (e.g., Allred et al. 2011; Pfeiffer & 

Hartnett 1995; Vermeire et al. 2004). Herbivores can also influence the dynamics of fires 

by altering the composition and standing biomass of the resident plant community, 

presumably changing fuel load and quality. However, the bulk of these studies examine 

the effects of high-density ungulate or elephant populations of herbivores and overlook 

the role of rodents on plant community structure and fires. 

 Here, we examine whether the presence of rodents influences the impact of fire in an 

old-field ecosystem and in turn alters plant community structure. The majority of studies 

to date that ask whether herbivores mediate the effects of fire on plant communities have 

focused on the impacts of mega-herbivores and ungulate grazers in grassland ecosystems 

(e.g., Sankaran et al. 2008; Archibald et al. 2005; Collins & Calabrese 2012). Despite 

their ubiquity and abundance, few studies, to our knowledge, have examined how rodents 

might mediate the effects of fire on the plant community. Specifically, we ask a series of 



38 
 

inter-related questions:(1) Does the presence of rodents mediate a fire disturbance? (2) Is 

the effect of rodents on fire disturbance due to alterations of the plant community? (3) Do 

fire and rodents interact to shape plant community structure? 

 

Methods and Materials 

Site description 

We conducted this work in an old-field ecosystem at Freels Bend at the Oak Ridge 

National Environmental Research Park (NERP) near Oak Ridge, Tennessee (35º58’ N, 

84º17’W). The soil is classified as a Typic Hapludult (Phillips et al. 2001). Precipitation 

is evenly distributed throughout the year with an annual mean of 1360 mm, while mean 

daily temperatures range from 3°C in January to 31°C in July. Common rodents at this 

site include the hispid cotton rat (Sigmodon hispidus), woodland vole (Microtus 

pinetorum), eastern harvest mouse (Reithrodontomys humulis) and deer mice 

(Peromyscus spp.). Old-field ecosystems are a common ecosystem type, occupying 

upwards of 2.02 × 107 ha in the eastern US alone (Cramer et al. 2008). Common plant 

species at our site include tall goldenrod (Solidago altissima), sawtooth blackberry 

(Rubus argustus), white cornbeard (Verbesina virginica), trumpet creeper (Campsis 

radicans), sericea (Lespedeza cuneata), brome grass (Bromus sp.), yellow crownbeard 

(Verbesina occidentalis), clovers (Trifolium spp.), broomsedge (Andropogon virginicus), 

and orchard grass (Dactylis glomerata). 

Experimental design 

 In March 2008 twenty (4 × 8 m) experimental plots were established following a 

moderate prescribed burn that removed the majority of the aboveground biomass. Each 

plot was separated from its neighbor by 4 to 8 meters over an area of roughly 40 × 60 

meters (Figure 1). Each plot was trenched around its perimeter with a backhoe and 

galvanized hardware cloth fencing (122 cm width, 0.64 cm mesh) was installed 40 cm 

into the soil profile. The installed fencing extended 82 cm above the soil surface and 

aluminum flashing (36 cm width) was installed on the upper portion of the fence to 
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exclude climbing rodents. Ten plots were randomly assigned as access treatment plots 

and ten as exclosure plots. Ten holes (15 cm × 30 cm) were cut at ground level around 

the perimeter of access plots to allow for passive entry of rodent-sized animals.  

 We used live trapping in March and July in 2008, 2009, and 2010 to determine the 

effectiveness of the exclusion treatment. Sherman live traps were placed in a 10 × 10 grid 

with traps 10 meters apart. Recapture rates were low so densities were not calculated but 

instead we report just minimum number known alive, averaged between trapping periods 

within each year. Microtus pinetorum was found only in 2009 and 2010 (7 and 17 

individuals, respectively). Similarly, Sigmodon hispidus and Reithrodontomys humulis 

were also captured only in 2009 and 2010 (3, 40; 10, 3; repectively). Peromyscus, 

however, was found in all three years (7, 3, 7). During each trapping period we also 

placed two traps inside each access and exclusion plot. While rodent numbers in the 

access plots were low, we did observe signs of activity in the access plots in the form of 

runways, feces, burrows, and herbivory. No rodents were ever trapped within exclusion 

plots nor did we notice signs of activity. Furthermore, in June 2012 we checked for 

rodent activity, or lack thereof, by using track pads to estimate rodent activity. Track pads 

were created using acetate paper painted with a graphite solution (see Connors et al. 

2005). Two plates were placed within each plot and plates were placed outside between 

plots and around the perimeter of the site. Plates were left for 48 hours after which were 

collected and photos taken of each plate. In the lab we used WinFolia 2009a to scan each 

photo to determine “activity” levels. Traditionally, this program differentiates contrast 

between leaves and background color and is most often used to measure leaf herbivory. 

We used the program to distinguish between black (undisturbed, painted) and white 

contrast. We recorded the number of black and white pixels and used these pixels as a 

proxy for disturbance. Disturbance did include smudges from vegetation movement (e.g. 

wind) but also mammal activity (foot prints were at times clear and readily distinguished 

but never on exclosure plates). Disturbance events on plates were significantly higher in 

access plots (64.61 (8.72); 34.38 (6.24) Mean (SE); F = 9.85, p < 0.05). 

 On 15 March 2012, a controlled burn was implemented as part of a conservation 

approach to maintain a grassland-forest mosaic. The burn was performed only on March 
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15th. Each plot—and the areas between and surrounding the plots—were individually lit 

on fire with drip torches. The metal fencing did not impede or hinder the fire and the fire 

was prescribed by a team who were unfamiliar with the study and its design. To examine 

whether rodent exclusion mediated the burn, we measured percent ground cover burned 

in each plot immediately following the controlled burn (March 20). Within each of the 

experimental plots, we randomly placed two 1-m2 quadrats and recorded percent cover of 

green vegetation, burned vegetation, and bare ground. The random location of these 

quadrats were determined by subdividing the 4 x 8 m plots into smaller 1 m2 (or 0.25 m2 

for plant community detailed below) using the southwestern corner of each plot as point 

0,0 and the southern edge as our X-axis and the western edge as our Y axis. We then used 

a random number generator from Excel to determine our X and Y coordinates for two 

different subplots within each larger treatment plot. This was done for each of the twenty 

plots. To test whether there was a difference in fire disturbance between the treatment 

plots, we used a Wilcoxon signed-rank test because the residual variance was not 

normally distributed between the treatments.  

 To address whether the effect of rodents on the fire disturbance was explained by 

alterations in the plant community and whether fire and rodents interacted to influence 

the plant community post burn, we assessed plant community composition in each plot by 

measuring plant foliar cover in two randomly selected 0.25 m2 subplots at the peak of the 

growing season in June 2011 and 2012—three and four years after exclosures were 

installed. Plant species-specific foliar cover was measured using a modified Braun-

Blanquet cover class scale (Braun-Blanquet 1932) with six categories: 1 = <1%, 2 = 1-

5%, 3 = 5-25%, 4 = 25-50%, 5 = 50-75%, 6 = 75-100%. We recorded the median foliar 

cover category value for each species in each subplot, then we took the average of these 

values between the two 0.25 m2 subplots within each plot. We converted absolute cover 

to relative cover as a way to standardize among our plant communities. This approach 

allows us to compare shifts in composition even if total cover is altered. Foliar cover for 

each functional group (e.g., forbs, graminoids, nitrogen fixers, and woody) was 

calculated by summing the species-specific foliar cover within each functional group. 

Species evenness was calculated as the probability of interspecific encounter, PIE, where 
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P(i) was the proportion of foliar cover for species i. 

  

 

Statistical Analysis 

 We used a one-way analysis of variance (ANOVA) to examine the impact of rodent 

exclosure on plant community structure (richness and evenness) in 2011, prior to the 

burn. To examine the relationship between the rodent treatment and 2011 plant 

community composition, we used a distance-based redundancy analysis (dbRDA) for 

both species and functional group levels. We followed this analysis with a permutation 

significance test generating a pseudo F-ratio (PERMANOVA) (Anderson 2006). 

Permutation tests were conducted on Jaccard abundance-based similarity matrices.  

 We used ANOVA to examine the impact of rodent presence and absence on plant 

species richness and evenness in July 2012 (post-burn). To examine the effects of the 

prescribed burn on community composition, we used exactly the same approach 

described above (as in 2011) and again conducted a PERMANOVA test on plant 

functional groups and species cover. To further explore whether fire altered plant 

community composition, we used an analysis of multivariate homogeneity of variance 

(betadisper) to determine whether there were any differences in community dispersion 

(i.e., variability) among treatments (Anderson 2006b). Finally, we used a repeated 

measures ANOVA to examine the change in relative functional group cover between 

years and treatments. All of the data were square root-transformed to meet assumptions 

of normality for ANOVA. All of the statistical analyses were completed with the use of 

the vegan package in R version 3.2.2 (R Core Team 2013). 

 

Results 

 When rodents were excluded, burn extent, defined as the percent area ground cover 

burned, was 3.6× greater than when rodents were present (F = 209.38, p < 0.01, Figure 

4). This suggests that rodents most likely altered the plant community the previous year  
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Figure 4. Difference in percent ground cover burned between access and exclosure plots. 

Typical access and exclosure plots post burn pictured.  
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so as to affect the observed burn patterns drastically. However, prior to burning this old-

field ecosystem, rodents had no significant effect on plant species richness (F = 2.32, p = 

0.15; Figure 5a), evenness (F = 1.47, p = 0.24; Figure 5b), community dispersion (Pseudo 

F = 1.70, p (PERM) = 0.21; Figure 5c), species community composition (Pseudo F = 

0.67, p (PERM) = 0.81), or functional group composition (Pseudo F = 1.26, p (PERM) = 

0.26; Figure 5d) during mid-summer of 2011. However, when the plant community was 

surveyed in previous years, measurements were taken later in the growing season 

(September). When measured during September (2010), we found differences in the plant 

community—in particular between C3 graminoid cover and total standing biomass 

(Moorhead et al. in press). However, despite the different sampling times, we found a 

similar pattern in C3 graminoid response—C3 cover was 2.6 × higher (September 2009) 

and C3 biomass was 7.7 × higher (September 2010) under rodent exclusion. When we use 

C3 graminoid biomass from September 2010 to predict our observed burn patterns, we 

find C3 graminoid biomass explains ~65% of the variation in burning (Figure 6). 

 While plant communities were similar between treatments prior to the burn, their 

composition diverged significantly after the burn, suggesting fire and rodents interact to  

shape the trajectory of the plant community. After the prescribed burn, plant species 

richness was 19% greater in rodent exclosure plots than in access plots (F = 4.05, p = 

0.06; Figure 7a), but evenness did not differ between exclosure and access plots (F = 

2.17, p = 0.16; Figure 7b). While there was no effect of rodents on community dispersion 

(Pseudo F = 0.03, p (PERM) = 0.85; Figure 7c), both species composition (Pseudo F = 

1.79, p (PERM) = 0.03; Figure 7d) and functional group composition (Pseudo F = 2.25, p 

(PERM) = 0.06) differed between exclosure plots and access plots. Post-burn, rodent 

treatment accounted for 9% of the variation in species composition and 11% of the 

variation in functional-group composition. In particular, cover of graminoids did not 

differ between rodent treatments in 2011 (pre-burn) but graminoid cover was 89% greater 

in exclosure treatments post burn (F = 6.73, p = 0.01; Figure 8a). 
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Figure 5. Plant community structure and composition between access and exclosure plots 

in 2011 (pre-burn). There was no difference among treatments in richness (a), evenness 

(b), dispersion (c) or functional group composition (d) (axis 1 explains 7%, axis 2 

explains 42%). 
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Figure 6. Percent area burned in response to 2010 C3 graminoid biomass (F = 31.23, p < 

0.001).  
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Figure 7. Plant community structure and composition between access and exclosure plots 

in 2012 (post-burn). There was no difference in evenness (b) or dispersion (c); marginal 

difference in richness (a) with functional group composition (d) differing between access 

and exclosure plots (axis 1 explains 11%, axis 2 explains 37%).  
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Figure 8. Each line represents one plot’s functional group cover change between 2011 

and 2012. Bold lines represent treatment averages (solid line for exclosure plots, dashed 

line for access plots). Treatment only had an effect on graminoid cover in 2012 (note the 

narrowing of both dashed and solid lines from 2011 to 2012); sample years had no effect 

(meaning each functional group’s cover did not differ between years for either access or 

exclosure treatments) and there was no treatment × year effect.  
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Discussion 

 The effects of herbivores on plant community structure are often idiosyncratic;  

sometimes herbivory increases diversity and richness or alters community composition, 

and sometimes it does not (e.g., Hobbs 1996; Milchunas & Lauenroth 1993; Diaz et al. 

2006; Augustine & McNaughton 1998). While initially surprising (at least to us), the lack 

of an effect of herbivory is not altogether uncommon. In another 6-year experiment 

conducted within the same research area as our study, there was no direct effect of 

reduced insect abundance on aboveground structure (Wright et al. 2014). Similarly, there 

was no effect on total aboveground biomass, richness, or composition of the subdominant 

plant community when two dominant species were removed (Souza et al. 2011). 

Together, these results indicate an overall lack of change in response to a variety of 

different manipulations and suggests that the plant communities in these old fields may 

be resistant to vegetation removal, however it occurs. Or, it could be that rodents simply 

have no impact on plant communities in this ecosystem. 

 Despite the lack of an effect of rodents on plant community structure in 2011, burn 

extent was nearly 4× greater when rodents were absent than when they were present. One 

likely mechanism is that fuel load is affected by the presence of rodents. It is possible that 

rodent activity, and their impacts on the plant community and fuel load, happened later in 

the growing season when we did not take measurements. Rodent populations, such as 

voles, can peak at the end of a growing season (Norrdahl et al. 2002) when plant 

communities are beginning to senesce. Thus, their impacts on plant community 

composition and fuel load may be delayed. In support, in 2010 aboveground biomass was 

measured in September and similar to that in other ecosystems (e.g., Leonard et al. 2010), 

but access plots had ~ 8× less C3 graminoid biomass later in the season compared to 

exclosure plots (standing green biomass harvested to ground level and sorted into 

functional groups, unpublished data). However, we did not have biomass data from 

September 2011 to test this idea. Rodents can also remove fuel load during the winter 

months (Norrdahl et al. 2002), a response we would not have captured in this study. In 

sum, rodents at our site either do not have a measurable effect on plant community 



49 
 

structure and fuel load, or their effects are stronger during times of the year that we did 

not capture.  

 Our results do suggest rodents and fire interact and the change in the 2012 plant 

community composition between treatments is a response to this interaction. 

Furthermore, previous research conducted nearby found insect herbivores interact with 

nitrogen availability and the propagule pressure of an invasive plant species to alter 

aboveground biomass, suggesting herbivore interactions with other biotic and abiotic 

components of the system are required to set the trajectory of the ecosystem in a new 

direction (Sanders et al. 2007; Wright et al. 2014). 

 Herbivores have large and sustained impacts on ecosystem structure and function—

impacts that do not necessarily scale to herbivore size. For example, large herbivores, 

such as moose, can slow the function of forests by selectively consuming higher quality 

forage while leaving behind lower quality plants leading to dominance of more slowly 

processed plant litter (e.g. Pastor et al. 1993). Small mammals can similarly shape 

ecosystems by consuming plant material (Zorn-Arnold et al. 2006) and engineering of 

plant communities (Howe et al. 2002). However, a large comparative study by Bakker et 

al. (2006) finds the effects of small mammals on plant community structure to be variable 

across a productivity gradient whereas the effects of larger herbivores were consistent. 

Since small mammals have been shown to alter the structure of the aboveground plant 

community, just as larger herbivores can and do, it should be expected that rodents would 

indirectly influence fire patterns, yet that area of research is dominated by studies of large 

herbivores.  

 Herbivores and fire both independently and collectively shape plant communities. For 

example, woody-grass dynamics are highly responsive to fire-grazer interactions (e.g 

Archibald et al. 2005; Gordijn et al. 2012; Guldemond & van Aarde 2008). While natural 

fire regimes can suppress woody growth (Bond et al. 2005; Higgins et al. 2000), 

herbivores can indirectly increase woody encroachment due to consumption of grasses 

and other herbaceous forage (e.g., Van Auken 2000; Grellier et al. 2012). In both 

American and South African grasslands, large grazers decreased graminoid and increased 

forb cover, but the effects of fire on plant community structure depended on whether 



50 
 

grazers were present or not and in what abundance (Koerner and Collins 2013). 

Similarly, fire and grazing interacted to alter plant community structure in Konza Prairie 

(Kansas, USA). Grass cover varied in response to burning frequency—cover was highest 

on infrequently burned, ungrazed grasslands and lowest in areas that experienced 

frequent burning and grazing (Collins & Calabrese 2012). In the other direction, fire can 

structure plant communities by influencing herbivore grazing patterns. Large grazers 

preferentially feed in areas that are more frequently burned or more recently burned (e.g., 

Allred et al. 2011; Pfeiffer & Hartnett 1995; Vermeire et al. 2004). While large 

herbivores such as American bison or African elephants can change plant communities 

and in turn alter the behavior and impact of fires, or fire can alter plant communities and 

in turn change grazing patterns of large herbivores, our work demonstrates that small 

consumers such as rodents can also interact with fire to structure plant communities. 

However, it is important to note that the results we report here include only one growing 

season post fire and any interactive effects of rodents and fire on plant communities may 

be short term. Regardless, our work uniquely demonstrates that small consumers such as 

rodents can strongly alter burning patterns and interact with fire to structure plant 

communities post burn. Furthermore, since smaller herbivores may have less predictable 

effects on plant communities than larger herbivores (Bakker et al. 2006), they may also 

have less predictable effects on fire dynamics—an area of research that begs for more 

attention. 

 Overall, we demonstrated that rodents can modify a landscape and through their 

modification they can alter how a fire disturbance moves through a grassy ecosystem. 

These data add to the large body of work that explores how vertebrate consumers, plant 

communities, and fire interact and change the trajectory of the subsequent plant 

community, but our work is novel because it demonstrates that even small consumers can 

influence an ecosystem’s resistance to a fire disturbance. We suggest that rodents and 

their roles in structuring herbaceous plant communities over time and space should be 

considered when determining best management practices—such as when and under what 

conditions to use a controlled burn. 
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CHAPTER III 

RODENTS DO NOT CREATE A HOME-FIELD ADVANTAGE FOR 

LITTER DECOMPOSITION; THEY JUST SPEED UP THE 

PROCESS 
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Abstract 

Studies show plant litter often decomposes faster in the habitat it derives from than in 

a different habitat—an idea known as home-field advantage (HFA). Within this literature, 

HFA is often found when litter between different functional groups of plants is tested as 

well as between disparate ecosystems, but we have less understanding of how or even if 

HFA works within an ecosystem. Furthermore, herbivores can alter plant community 

composition and redistribute nutrients via waste input, processes that can alter 

decomposition and nutrient cycling processes. However, it is unknown whether herbivore 

activities might mediate litter decomposition HFAs. We explored this question using 

decomposition bags in a reciprocal design. We find no litter-by-site interaction 

suggesting rodents do not create a home-field advantage for litter decomposition. 

However, litter bags from rodent access plots decomposed faster than bags containing 

exclosure litter—possibly due to access litter bags having a higher initial nitrogen 

content. Furthermore, access plots had higher decomposition rates than exclosure plots, 

indicating that rodents influence decomposition at the microsite level. These results 

support previous work showing that large herbivores can alter ecosystem processes but 

highlight the important role small inconspicuous consumers can play in these processes 

as well. 
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Introduction 

From the Serengeti to the high arctic, herbivores have large and sustained impacts on 

ecosystem structure and function. Driven primarily through responses from the plant 

community, herbivores influence processes such as nutrient turnover. In particular, 

decomposition is a vital ecosystem process governed by climate and the quality of 

material (Melillo et al. 1982; Parton et al. 2007), the soil community (Gessner et al. 

2010), litter diversity (Wardle et al. 1997, 2003; Ball et al. 2009; Crutsinger et al. 2009) 

and the interactions and feedbacks between these drivers (e.g., Wall et al. 2008; 

Upadhyay et al. 1989; Berg 1993; Shaw and Harte 2001; Ayres et al. 2006, 2009a, 

2009b; Vivanco and Austin 2008). 

Litter quality has long been recognized as one of the most important drivers of 

decomposition (Melillo et al. 1982; Parton et al. 2007). Specifically, decomposition often 

responds positively to increases in the “quality” of litter—i.e. lower carbon to nitrogen 

and lignin to nitrogen ratios. However, while litter quality as a whole is an important 

driver of decomposition at large spatial scales, at smaller scales, the species composition 

of the leaf litter has been shown to influence decomposition rates (Wardle et al. 1997, 

2003; Ball et al. 2009). The same chemical characteristics that drive litter quality are tied 

to those that describe palatability. Unsurprisingly, through foraging behavior, mammalian 

herbivores can alter plant community composition, and therefore the leaf litter 

composition entering the decomposer pathway (Bardgett and Wardle 2003; Howe et al. 

2002, 2006; McInnes et al. 1992; Pastor et al. 1993; Wang et al. 2010). However, the 

patterns of herbivores on plant composition, and therefore ecosystem processes, are not 

consistent across habitats. Herbivores can select for a plant community that responds with 

compensatory growth and therefore a more palatable (and labile) landscape whithatch can 

lead to an increase in soil microbial activity and, subsequently, potentially increase 

nitrogen mineralization rates, leading to positive feedback to the plant community 

(Bardgett et al. 1998; Hamilton et al. 2008) and increased decomposition rates. However, 

if foraging selects for more palatable plants to be overgrazed, a shift to higher dominance 

of less palatable plants can follow, leading to more recalcitrant litter inputs. This litter is 
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slower to decompose and leads to lower nitrogen mineralization, leading to a reduction in 

plant productivity within the system (e.g. Pastor et al. 1993). In addition to altering the 

chemical quality of the overall community, herbivores can also directly alter the litter 

quality at the species level by inducing chemical defenses and increasing the 

concentration of secondary metabolites in foliar material, which can also retard microbial 

activity and decomposition rates (e.g. Findlay et al. 1996). It is not just through changes 

in the plant community whereby herbivores can alter the process of decomposition. 

Along with litter quality, climate is a primary driver of decomposition. Initial 

decomposition responds positively to increases in temperatures and rainfall (Vitousek 

1994; Murphy et al. 1998), but these patterns are constrained to temperate regions (Berg 

1993; Couteaux et al. 1995). Warmer and wetter conditions help fracture and degrade leaf 

litter, as well as create suitable conditions to stimulate the decomposer microbial 

community. More recently—as with research on litter quality and composition—focus 

has shifted to examine the smaller spatial scale to explore how microclimate variation 

influences decomposition. Changes in litter quality herbivores can bring about via 

alteration of the plant community composition may mean changes in the litter layer 

structure and microclimate, which can alter the structure and function of the detritivore 

community (Kochy and Wilson 1997; Kaneko and Salamanca 1999; Shaw and Harte 

2001). Herbivores can also speed nutrient turnover through fecal and urine deposition 

since breakdown of this material is faster than breakdown of plant litter (Inouye et al. 

1987; Frank et al. 1994; Hobbs 1996). Furthermore, herbivores, and in particular small 

mammal herbivores, may further alter microsite conditions through behaviors such as 

rooting and burrowing that can mix the litter and soil profile as well (Hole 1981; Brown 

and Heske 1990; Huntly and Reichman 1994; Gervais et al. 2010; Reichman and 

Seabloom 2002)—changes that would influence decomposition and nutrient turnover. 

Research on the drivers of decomposition has increasingly focused on interactions 

and feedbacks between multiple drivers. Specifically, researchers have examined the 

effects of abiotic drivers on soil food-web community structure and function (e.g., 

Seastedt 1984; Moore 2004; Wall et al. 2008), interactions between abiotic conditions 

and litter quality (Upadhyay et al. 1989; Berg 1990, 1993; Shaw and Harte 2001; Herman 
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2003), and how interactions between local environment, substrate quality and the 

decomposer community influence decomposition rates (Ayres et al. 2006, 2009a, 2009b; 

Norris 2001; Vivanco and Austin 2008). Studies have shown plant litter often 

decomposes faster in the habitat it derives from than in a different habitat. The general 

consensus is that soil communities have locally adapted to decompose the most abundant 

litter they encounter. Most often, this is litter from the plants directly above them. This 

idea is known as home-field advantage (HFA). Studies examining decomposition in an 

HFA context have measured decomposition rates of litter between different functional 

groups of plants (e.g. spruce vs. aspen forests) as well as between disparate ecosystems 

(e.g. fields vs. forests) (Ayres et al. 2009; St. John et al. 2011). Most studies have 

consistently found higher rates of decomposition of leaf litter in their home habitats when 

litter is more recalcitrant (Ayres et al. 2009b; Milcu & Manning 2011). Current evidence 

suggests that an HFA can occur between very disparate ecosystems or litter types, but we 

have less of an understanding of how or even if it may work within an ecosystem. 

Herbivores shape ecosystems in a myriad of ways—they alter plant composition, induce 

plant defenses, and redistribute nutrients via waste input—all of which can alter 

decomposition and nutrient cycling processes. However, an unaddressed question is 

whether herbivores can transform ecosystems in ways to create an HFA for litter 

decomposition. Therefore, we ask if small mammal—specifically rodent—herbivores 

create an HFA in decomposition within such a small spatial scale. 

 

Materials and Methods 

Experimental Design 

In March 2008 twenty (4 × 8 m) experimental plots were established following a 

moderate prescribed burn that removed the majority of the aboveground biomass. Each 

plot was trenched around its perimeter with a backhoe, and galvanized hardware cloth 

fencing (122 cm width, 0.64 cm mesh) was installed 40 cm into the soil profile. The 

installed fencing extended 82 cm above the soil surface and aluminum flashing (36 cm 
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width) was installed on the upper portion of the fence to exclude climbing rodents. Ten of 

the plots had openings cut at ground level to allow mammal access and ten remained 

uncut to exclude mammal access. For each rodent access plot, ten access holes (15 cm × 

30 cm) were cut at ground level around the perimeter to allow for passive entry of rodent-

sized animals. We used live trapping in March and July 2008 to determine the 

effectiveness of the exclusion treatment; no rodents were trapped within exclusion plots. 

Furthermore, in June 2012 we checked for rodent activity, or lack thereof, by using track 

pads to estimate rodent activity and found no evidence of rodents in the exclusion plots 

(see Moorhead et al. 2017 in press for more detail). 

Bag Construction 

Litter was collected in autumn of 2011 from within treatment plots. We collected 

litter from the five most abundant plant species common to both treatments. These 

species were Lonicera japonica, Rubus argutus, Plantago lanceolata, a Poa sp., and 

Andropogon virginicus. Leaf litter decomposition bags (15-cm2) were made using a 

double layer of 5-mm nylon mesh and a single layer of 1.2-mm charcoal fiberglass 

window screening on the downward facing side. Three edges were sewn together with the 

remaining side stapled shut using stainless steel staples. A total of 210 bags were 

constructed for 200 deployment bags (20 plots x 2 treatments x 5 removal dates) and 10 

control bags (five access and five exclosure controls). Control bags were used to calculate 

mass loss in transit and to determine differences in decomposition bag chemical quality. 

Each bag contained 2.0 g of leaf litter—the amount representative of the leaf litter layer 

for a 15 cm2 area within our site. The amount of litter from each species in the 

decomposition bag reflected the abundance of that species found within the treatments, 

relative to the other four species. Within the access community, L. japonica comprised 

6% abundance, R. argustus 35%, P. lanceolata 20%, P. sp. 19%, and A. virginicus 20% 

relative to each other. Therefore, within each 2g bag, the respective weights were 0.12g, 

0.7g, 0.4g, 0.38g, and 0.4g. Likewise, for exclosure litter bags (13%, 25%, 10%, 27%, 

and 25%) the respective weights were 0.26g, 0.5g, 0.2g, 0.54g, and 0.5g. 
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Bag Deployment and Pickup 

Litter decomposition bags were deployed on May 15, 2013. Bags were placed 

window screening side down to reduce root penetration during deployment while 

allowing invertebrate access through nylon mesh. Within each access (n=10) and 

exclosure (n=10) plot, five bags of each litter type (access or exclosure) were placed. Five 

bags of each litter type (access or exclosure) were placed in each plot for a total of ten 

bags per plot. The decomposition bags were picked up from the field in 5 collections: 

June 12 (4 weeks), July 24 (10 weeks), September 18 (18 weeks), November 27 of 2013 

(28 weeks), and February 19 of 2014 (40 weeks). One access and one exclosure bag were 

removed per plot per removal date (n=40). Decomposition bags were initially air-dried, 

sorted to remove foreign debris, weighed for air dried mass, then subsequently oven-dried 

at 60º C for 48 hours and immediately weighed for oven dried mass. Control bags were 

taken to the field site, laid on ground, and placed back in individual paper bags and taken 

back to the lab to calculate mass loss in transit. Control bags were also air- and oven-

dried. All samples were ground to a fine powder using a SPEX 8000D ball mill grinder 

(SPEX sample prep, Metuchen, NJ). We took 50 mg of ground sample, folded within 

adhesive-free cigarette paper, and digested the sample at 350º C in 5 mL H2SO4 in a 

Kjeldatherm digestion block (Gerhardt, Königswinter, Germany) for 5 h. After cooling, 

we added 45 mL deionized water to each digest. We then measured total Kjeldahl 

nitrogen (N) and phosphorous (P) expressed as a proportion of total tissue mass using a 

Westco Smartchem 200 discrete analyzer (Unity Scientific, Brookfield, CT, USA). 

Another set of subsamples were ashed at 550º C for 6 h. All data are shown on an ash-

free oven-dry basis. 

Data Collection and Analysis 

We calculated the mass lost in transit for each litter bag type by measuring the mass 

loss in the control bags prior to drying. To correct mass loss values for litter bag 

treatments, we subtracted the proportion of mass lost in transit from the proportion of 

mass lost overall. Proportional data were square-root transformed to meet assumptions of 

normality and homogeneity of variance. All preliminary figures show untransformed 
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data. For preliminary decomposition data, we used a full factorial, fixed effects, analysis 

of variance (ANOVA) to test for the effects of removal date, location placed, and litter 

origin on percent mass loss. 

 We followed up our ANOVAs with a Tukey HSD test to determine differences 

within removal dates. All statistical analysis was completed using R software program (R 

Core Team 2013). 

 

Results 

Plot treatment, litter type, and removal date all explained mass loss, but there were no 

significant interactions (Figure 9, Table 2). In particular, there was no interaction 

between litter type and plot location indicating no home-field advantage. However, 

patterns show mass loss and decay rates to be faster in access plots, and with access litter 

(Tables 3, 4). 

 Initial nitrogen content differed between access and exclosure bags with access bags 

having 26% greater nitrogen content than exclosure bags (14.19 (2.33), 11.23 (2.32); 

access and exclosure respectively; t = 2.20, p = 0.06; Figure 10a). However, phosphorous 

content did not differ between litter treatments (1.23 (0.32), 1.25 (0.31); access and 

exclosure respectively; t = -0.09, p = 0.93; Figure 10b). There was also no difference in 

the N:P ratio between litter types of the control bags (12.00 (2.79), 9.16 (1.83); t = 1.90, p 

= 0.10). 

 

Discussion 

Recently, a slew of studies has explored whether plants create a home-field advantage for 

litter decomposition, with results supporting a wide variation in response (e.g., Jacob et 

al. 2010; Wang et al 2013; Gao et al. 2015; Sun & Zhao 2016). For example, Ayres and 

others (2009) found a positive HFA for several high-elevation tree species, while a study  
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Figure 9. Decomposition curves for our four litter x plot treatments. 
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Figure 10. Nitrogen (A) and phosphorous (B) content of initial (control) litter bags for 
access and exclosure litter treatments. 
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Table 2. ANOVA table output for mass loss.  

Factor df Sum Sq F p 

Litter Type 1 0.34 20.63 <0.001 
Plot Treatment 1 0.13 7.75 <0.001 
Removal Date  4 16.53 247.88 <0.001 
Litter Type x Plot 1 <0.001 0.04 0.83 
Litter x Removal 4 0.05 0.67 0.62 
Plot x Removal 4 0.02 0.27 0.90 
Litter x Plot x Removal 4 0.03 0.38 0.82 
Residuals 179 2.98   
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 Table 3. Litter x plot treatment decay rates.  

Treatment (Litter type x plot treatment) Decay rate constant (k/week) 

Access x Access 0.043 
Access x Exclosure 0.037 
Exclosure x Access  0.039 
Exclosure x Exclosure 0.035 
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Table 4. Post-hoc test for overall treatment differences. 
Treatment (Litter type x plot treatment) Means Tukey Group 

Access x Access 0.64 A 
Access x Exclosure 0.69 AB 
Exclosure x Access  0.72 BC 
Exclosure x Exclosure 0.77 C 
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by Gao et al. (2016) found both positive HFAs as well as positive away-field advantages 

for tree litter decomposition, while others found no indication of an HFA for forest litters 

(e.g. Gießelmann et al. 2011). Our results add to this growing body of literature by 

showing while that, rodents in this system do alter plant community composition 

(Moorhead et al. in press), this plant community response does not translate to the 

creation of a home-field advantage for litter decomposition. In support of this result, a 

recent meta-analysis exploring global patterns of HFAs found grassland-grassland 

transplants often do not show an HFA effect (Veen et al. 2014). It appears our site—

which has high cover and biomass of graminoids—aligns with these previous studies. 

The reason for this lack of an effect may be tied to the magnitude of dissimilarity, or lack 

thereof, of the plant community represented in our decomposition bags. Strong HFA 

effects appear to be explained, in part, by dissimilarity between the litter quality (C:N and 

N:P) of material used in the transplant studies (Freschet et al. 2012; Veen et al. 2014; 

Jewell et al. 2015). 

 While we do not find any indication of an HFA within our system, we do find that 

rodents accelerate decomposition. One possible mechanism through which they are doing 

this is by changing the litter quality entering the system. While the N:P does not differ 

between our litter treatment bags, the nitrogen content is higher in the access bags. This is 

a possible explanation for why we see access litter bags decomposing faster than 

exclosure litter bags. A change in litter quality is one way herbivores can influence 

decomposition and nutrient cycling. Mammalian herbivory has been reported to slow or 

speed decomposition and nutrient cycling depending on ecosystem type, for instance. 

Faster decomposition and nutrient cycling occurs when grazed plants respond to 

herbivory through compensatory growth (McNaughton 1985; McNaughton et al. 1997; 

Bardgett et al 1998; De Manzancourt et al. 1999; Hamilton and Frank 2001; Frank et al. 

2002; Bardgett and Wardle 2003) keeping the community dominated by palatable and 

therefore more labile plants. The opposite pattern has also been found when preferred 

plants are lost from a system and replaced by a less palatable and lower quality plant 

community as seen in the classic case on Isle Royale, Michigan (Pastor 1993; see also 

Ritchie et al. 1998; Howe et al. 2006; Kasahara et al. 2016). However, change in litter 
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quality is not the only pathway through which herbivores can alter decomposition and 

nutrient cycling. 

 In addition to litter quality differences, we also found rodent presence increased 

decomposition rates indicating some plot level difference is partly responsible. Previous 

research in this site has found plant community composition at both the species and 

functional group level differed starting just one year after plots were in place (Moorhead 

et al. in press; Table 1). Besides changes in litter quality, specific plant species and 

functional group identity have been found to influence decomposition. Removal of 

shrubs, for instance, has been found to slow decomposition (Jonsson and Wardle 2008). 

Others have found removal of graminoids and forbs to slow decomposition (McLaren and 

Turkington 2011). These responses in decomposition rates to changes in plant community 

may be due to differences in soil temperature and moisture found under these different 

plant species and groups or differences in rhizosphere communities supported by 

different plant species (Dormaar 1990; Bardgett et al 1999). Herbivores can also 

influence root exudation by plants which can alter microbial activity and composition 

(e.g., Hamilton and Frank 2001; Hamilton et al. 2008). Lastly, rodents in our system may 

be further altering decomposition rates through pathways other than the plant community, 

such as through burrowing behavior or waste deposition.  

 One important consideration for how rodents might be increasing decomposition rates 

through plot level differences is through behaviors other than herbivory. Burrowing and 

formation of runs by rodents and other mammals can alter nutrient cycling through 

mixing of the soil profile and alteration of soil moisture and temperature (Hole 1981; 

Huntly and Reichman 1994; Ross et at. 2007; Gervais et al. 2010). For example, 

burrowing by gophers led to larger ammonium and nitrate pools in mounded soil 

compared to undisturbed soil nearby and soil temperature was higher (Canals et al. 2003). 

Similarly, vizcacha burrows in Argentina have higher total nitrogen, carbon, and 

phosphorous than in undisturbed soils at similar depths (Villarreal et al. 2008; Clark et al. 

2016). In addition to disturbance of the soil and litter profile, mammalian herbivores can 

influence nutrient cycling through fecal and urine deposition (e.g., Afzal and Adams 

1992; McNaughton 1997, Bardgett et al. 1998, Willot et al. 2000; Wardle et al. 2002; 
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Bardgett and Wardle 2003; Bakker et al. 2004; van der Wal et al. 2004; Clark et al. 2005; 

Mikola et al 2009). Since nitrogen from waste deposits are more readily available for 

plant and microbial use it is likely waste deposition and subsequent stimulation of the 

microbial community is one possible mechanism contributing to the faster decomposition 

of plant litter in access plots compared to exclosures. 

 Overall we demonstrate that while rodents do not create a home-field advantage for 

litter decomposition, they do appear to speed decomposition rates within a small spatial 

scale. These data contribute to both the HFA literature as another study that shows 

grassland-grassland HFA experiments do not find HFAs, as well as to the growing body 

of literature examining aboveground consumer effects on belowground processes. While 

previous literature has shown primary consumers such as ungulates can alter 

belowground communities and processes through changes in the quality of the plant 

community (McInnes et al. 1992; Pastor et al. 1993; Bardgett & Wardle 2003; Howe et 

al. 2002, 2006; Wang et al. 2010), our study provides new evidence on how smaller 

consumers may also alter plant community quality but also highlights the importance of 

examining changes at the microsite level to explain changes in decomposition. 
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CONCLUSION 
My dissertation examines how rodents can interact with other biotic and abiotic 

components to influence ecosystem structure. My work finds rodents quickly alter plant 

community composition and structure in an old-field ecosystem, that changes in the 

aboveground community can alter how fire moves through the ecosystem and how the 

ecosystem recovers from fire disturbance, and that rodents speed litter decomposition 

due, in part, to their influence on the plant community. However, future research to 

further elucidate the direct and indirect effects of rodents begs the following: 

1. While Chapter 1 showed clear effects of rodents on aboveground communities, I 

found few effects on the belowground community. A worthwhile next step would 

be to determine whether rodents in this system are altering the plant community 

through herbaceous consumption, or if changes in the plant community is the 

result of other non consumptive behaviors such as granivory or removal of 

material for nesting. Further, while I found few impacts of herbviores on the 

belowground ecosystem, a more detailed exploration of the belowground 

community composition would likely provide new insight into how primary 

consumers can impact the belowground system.  

2. In Chapter 2 I showed that rodents altered the plant community and this 

community change altered the way a prescribe burn moved through the 

ecosystem. Interestingly, my plant community measurements from the mid 

growing season prior to burning did not explain this burn pattern. It was not until I 

used plant community results from the end of the growing season a year and a 

half prior to burning was I able to explain the control of plant community on 

burning. Future work exploring the effects of rodents on plant community 

structure and composition should take multiple measurements from the very start 

of the growing season to the very end as it seems we are likely to miss strong 

seasonal effects. This additional information would benefit agencies and land 

managers by helping to inform the decision of when to use a controlled burn as 

well as expand on understanding of consumer-driven plant phenological shifts. 
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3. In Chapter 3 I found litter treatment and plot treatment influenced decomposition 

rates with rodent presence resulting in faster mass loss. While litter treatment can 

be explained by a difference in the litter quality of the bag, plot level differences 

responsible for the faster mass loss in access plots could be a result of differences 

in the detritivore community composition in response to indirect rodent-mediated 

changes in plant community or to direct rodent-mediate changes through fecal and 

urine deposition. Further research would help elucidate the pathways through 

which primary consumers alter decomposition and nutrient cycling and when. 

Although my work highlights both community and ecosystem level responses to 

rodents, it begs the question if patterns found in my site are unique to my site or if they fit 

a larger pattern of rodent effects on ecosystems. As previously discussed, herbivores can 

shape ecosystems through their interactions with the plant community. However, 

although herbivores can alter plant communities, the direction of the plant community 

response is not always consistent. In fact, plant-herbivore interactions can vary along 

latitudinal gradients (Schemske et al. 2009). Specifically, increasing rates of leaf 

herbivory and investment in plant defenses are correlated with decreasing latitudes. 

However, the influence of herbivores on plant communities can also vary with 

precipitation. Grazing promotes a positive growth response of palatable species in humid 

environments, while unpalatable species increase with herbivory in drier environments 

(Grime 1977; Coley et al. 1985; Milchunas and Lauenroth 1993). Furthermore, studies 

examining the response of plant communities to ungulate grazing found that factors such 

as topography and precipitation help explain plant responses to herbivory (Harrison and 

Bardgett 2004; Diaz et al. 2007). Together, these results suggest plant response to 

herbivores depends on multiple factors including herbivore identity and abiotic 

conditions. 

A quick literature search using “rodent*” and “plant+community” limited to studies 

within the USA returned over 400 results. However, these studies included everything 

from the effects of mice to tunneling rodents, such as pocket gophers, on plant 

communities as well as the effects of plant community structure, foliar cover, and edge 

effects on rodent communities. Therefore, since several species of the vole genera 
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Microtus are found throughout fields, forest edges, and grasslands of the US including 

my field site, I used a second literature search of “microtus” and “plant+community” to 

find studies explicitly measuring plant community responses to the presence of Microtus 

voles. Web of Science returned 52 studies, of which I was able to qualitatively 

summarize the main plant community response to voles from 14 studies and points were 

overlaid onto a map of the US (Figure 11). The majority of studies found results similar 

to mine—Microtus presence notably reduced cover of grasses as a whole, or of dominant 

grass species. Furthermore, this response was almost always met with an increase in forb 

cover. Additionally, in several studies from New York, Microtus species were found to 

limit seedling recruitment into old fields through preferential consumption. 
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Figure 11. Preliminary map showing response of plant communities to vole (Microtus) 

exclusion. Green points indicate a general plant community response of loss of graminoid 

functional groups or dominant grass species in favor of increasing forb cover or biomass. 

Yellow points indicate loss of forb cover in favor of graminoid cover. Black points 

indicate no plant community composition response was found. Studies represented by 

brown points (clustered in SE New York), are a series of studies that find meadow voles’ 

consumption of tree seedlings prevent or slow woody encroachment and succession in 

old-fields. 
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